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Let me start this report with a preliminary remark. It is not easy to evaluate the
skills of a Ph.D. candidate when the manuscript is made of some articles, particularly
when the articles have several co-authors. Was the candidate the main contributor
and the main writer? It is even worse if, like in this manuscript, one of the articles
has already been published in a journal. If I would make negative comments about
that article, would it mean that the referees had not made a good job?

Let us now consider the manuscript which has three chapters. The topic of the first
chapter is the study of a V-cycle multigrid method for a symmetric positive definite
linear system when the coarsest level has a large number of nodes or unknowns. It
may not be feasible to use a direct method to solve the linear system on the coarsest
level and the solution has to be approximated with an iterative method.

The authors start with some motivating examples which arise from the discretiza-
tion of simple second-order PDEs on the unit square. The conclusion is that that
choice of coarsest-level solver accuracy can have a significantly effect on the conver-
gence behavior. Then, using some assumptions on the accuracy of the coarsest-level
solver, they study how the error is propagated in one V-cycle of the multigrid method.
They do that by comparison with the V-cycle with an exact coarsest-level solver.
Then, they study some stopping criteria for the coarsest-level solver and describe
some numerical experiments illustrating the theory for the two simple problems used
in the motivating examples.

If I would have been a referee for this article as it is in the manuscript, I would
have made the following remarks. Excerpts from the manuscript are in italic.

p. 15 respectively its transpose. It seems that some words are missing in this
sentence.

The authors never tell us which prolongation (interpolation) and restriction op-
erators are used in the numerical experiments.

p. 16 vj = vj +Mj(fjAjvj) is not a correct mathematical expression. It must be
vj +Mj(fjAjvj) → vj .

(1.2) seems a strong assumption that may not be satisfied by all smoothers.

p. 17 Why not showing a picture of the fine mesh used for the experiments?
We generate the sequence of stiffness matrices A0:J , by discretizing the problems

on each level of the hierarchy., Is (1.1) not used? We would have like to know which
finite elements were used.

We use the standard prolongation matrices What are they?
We modify the stiffness matrices What does this mean?
We would have like to know how many levels were used. Was CG used without

preconditioning?

p. 19 The conclusion could depend on the ingredients of the multigrid method.
What about the loss of orthogonality in CG? What about preconditioning?

p. 20 What is the A-norm of a matrix? It is used before being defined.
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p. 21 Last line is not really proved.

p. 22 Assumptions (1.11) and (1.12) seem very unrealistic for solving practical
problems.

Theorem 1.1 is not formulated as it should have been. The inexact algorithm
does not start from the same xprev. Things must be presented in a different way like:
exV-cycle starts from the same iterate. . .

p. 23 What is v
(k)
0 ? It is not obtained from exV-cycle.

p. 25 I do not fully understand (1.21).

p. 27 After (1.30), this is not a significant overestimation How do you know that?

p. 28 We simulate the exV-cycle method by using MATLAB backslash operator as
the solver on the coarsest level. How is v0 computed?

What is xnewex in (1.32)? This is not explained very clearly.

p. 30 The rates are significantly lower than its bounds → The rates are significantly
lower than their bounds.

How do you get an approximation of the smallest eigenvalue of the coarsest ma-
trix?

In conclusion, this paper contains interesting mathematical results. But, if I
would have been a referee, I would have asked for a minor revision. However, I did
not check if this chapter is completely similar to the published paper.

The goal of the second chapter is to develop a posteriori error estimates when the
coarsest-level problem is solved approximately with the conjugate gradient method
using an appropriate stopping criterion. This chapter is quite technical. The authors
consider several a posteriori estimates on the total and algebraic errors based on de-
composing the error on a sequence of finite element subspaces and using approximation
properties of quasi-interpolation operators, stable splittings, or frames.

The main contribution of the paper is a procedure for approximating the term
associated with the coarsest-level problem. This paper is not easy to read mainly
because of all the constants that are involved in bounds. The authors do not tell us
if they are computable or not, and if the bounds are sharp or not.

Some remarks are following.

p. 43 Note that approximations of r∗0A
−1
0 r0 can be obtained by running a few

iterations of the Lanczos algorithm.

p. 45 What is the equation satisfied by vJ?
The paper starts with a long review of works of other researchers. It is not easy

to see if there are any new results in that part of the paper.

p. 46 Why using the same notation for different inner products?
We first recall the standard residual-based error estimator for the discretization

error in a single-level setting assuming exact algebraic computations or to steer an
adaptive mesh refinement. This is a strange sentence.

p. 47 What are the significations of the names of the constants?

p. 56 I do not fully understand what is P Jj in (2.39).

p. 59 It seems that the main contribution of the paper is Section 2.5.4. Note that,
as I wrote above, the authors could have used Lanczos to approximate r∗0A

−1
0 r0.

p. 62 Is Cnumexp an ad-hoc constant?
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p. 63 Recall, however, that using a direct solver is for large problems in practice
unfeasible. This is clearly not the case for this example.

What is the stopping criteria for CG?

p. 65 Why do we have this difference between other levels and the coarsest one?
The estimates for total and algebraic errors involve some constants that must be

approximately determined, which involves heuristics. So, what do we have to do in
practice?

it provides a justification for extrapolating the estimated values of the constants
from smaller to larger problems. This does not seem very realistic.

This paper is an interesting contribution to the computation of error estimates in
finite element problems solved with the multigrid method. Note that I did not check
all the proofs in the appendix.

Chapter 3 studies some aspects of using a lower precision in parts of a multigrid
method. It is proposed to use an incomplete Cholesky (IC) factorization in lower
precision as smoother. Numerical experiments using a GPU are described.

Some remarks are following.

p. 88 we assumed that the computation was done in infinite precision arithmetic.
There is nothing as “infinite precision arithmetic”, this is just mathematics!

factorizarion → factorization.

p. 91 the computation does not break down due to overflow or underflow, This is a
strong assumption when using low precision, particularly in fp16 which has only five
bits for the exponent.

p. 94 is transpose of the prolongation matrix → is the transpose of the prolongation
matrix.

p. 95 There are other versions where smoothing is done both before and after
Smoothing before or after or both is more or less the same.

As I wrote above, there is nothing like infinite precision, this is just mathemat-
ics. Since everything is computed with the same precision in Algorithm 3.2, why
mentioning it?

For (3.12), after how many iterations is this assumed since this cannot be used
as a stopping criterion?

p. 96 In Theorem 3.1, δTG may not be small. The proof is written in a strange
way. Why assuming (3.15) and (3.16)?

p. 97 The author should recall that y is the exact solution.

p. 100 or a product of at least two of them. Is this the product of ε with something
else? What happens if ΛM or ΛC are large? What is Kα?

It would have been interesting to know on a given level which operations can be
done in lower precision. (this was done for the smoothing)

Why choosing this strategy on the precisions?

p. 102 Explain why using (3.37) for the coarsest level.

p. 103 Is (3.38) a realistic assumption?

p. 104 Where is the hypothesis on the precision needed in the proof?
A smoothing routine computes an approximate solution The role of a smoothing

routine is to smooth, not to compute an approximate solution.
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p. 105 there is no finite precision error analysis of incomplete Cholesky factoriza-
tion for general SPD IC does not always work for general SPD matrices. One needs
a stronger hypothesis, like being an H-matrix.

It is likely that solving trianguler systems in mixed precision must be already
known. Why not rounding b? Note that the author could have used the results
of S.M. Rump and C.-P. Jeannerod, “Improved backward error bounds for LU and
Cholesky factorizations”, SIMAX, v. 35 n. 2 (2014), pp. 684-698.

p. 108 Scaling can be expensive. In practice, what is the overhead of scaling?

p. 109 It does not seem very necessary to solve 1D problems with multigrid.
Moreover, it is not necessary to solve this smooth 1D problem with 409,599 nodes.

p. 111 Once again, the goal is not to have LLT like A, but to smooth the residual
vector.

p. 113 The explanations about the experiment are confusing. Using 64 bits for
the exponent when simulating low precision is not very realistic if some checks on the
range of numbers are not done. In low precision there can be problems because of the
small number of bits used for the exponent.

p. 117 It would have been nice to explain what is done on the GPU and what is
done on the CPU.

In conclusion, this paper shows that, at least on some problems, the incomplete
Cholesky smoothers can be used in lower precision. It would have been nice to study
if some other parts of the multigrid algorithm could be done in lower precision while
maintaining the same accuracy as in double precision.

This manuscript contains interesting mathematical and numerical results about
the multigrid method. The writing and the English could have been improved. As-
suming that the candidate is the main contributor of the papers, he deserves to obtain
a doctoral degree.

Gérard Meurant, November 19, 2024
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