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Opinion on Mykhaylo Tyomkyn: Problems in Extremal Combinatorics, Habilitation Thesis.

This is an evaluation of the Habilitation Thesis of Mykhaylo Tyomkyn. The material of the thesis covers
twelve papers of the candidate, written between 2016 and 2022. The topics of the papers is Extremal
Combinatorics. Each of the papers is independent from the others. However, as in this field it is standard,
the problems, conjectures and results have a center theme, and though there are a wide variety of tools,
apriori one cannot predict in advance which one could be used for which type of problems. Hence, it is
actually a focused research in the broad topics of Extremal Combinatorics.

As in a review it is not expected to list all the main results of the candidate, below I just sample some of
the results that I liked, this does not necessarily mean that those are the best results of the thesis.

Chapter 2 is related to hypergraph Turán problems. For an r-uniform hypergraph H, its extremal function
ex(n,H) is the maximum number of hyperedges of an H-free n-vertex hypergraph. The classical area in
extremal combinatorics is to determine this function for every H. While it is reasonable well-understood for
the case r = 2, the r > 2 case seems to be more complex, and our understanding is limited. An efficient tool
is the estimation of the Lagrangian of a hypergraph, which could be used to upper bound ex(n,H). However,
even the method of Langrangian is not well-understood. In 1989 Frankl and Füredi made a conjecture on
the maximum Lagrangian of an r-graph on m edges. The main result of this chapter is the confirmation
of the Frankl-Füredi Conjecture for ‘most’ values of m for every r ≥ 4. The proof, among others uses the
Kruskal-Katona theorem.

Section 3.1 investigates an extension of the famous Erdős-Hajnal conjecture, which claims that for every
graph F there is a constant c such that if an n-vertex graph does not contain an induced copy of F , then
it has a homogenous set (independent set or a complete subgraph) with nc vertices. Despite lots of efforts,
the Erdős-Hajnal conjecture is still open.

Theorem 3.1.1 is an interesting extension of the problem, which is the following:

For every 3-uniform hypergraph F and η > 0 there is a c such that every n-vertex 3-uniform hypergraph
containing no induced copy of F has an η-homogenous set with c log n vertices. Here a set is η-homogenous,
if the density of its edge set is at most η or at least 1− η. This result is best possible, upto the value of the
constant c.

The proof builds on the methods used in other papers, in particular it uses the hypergraph regularity lemma.
Additionally, the results has some consequences on hypergraph Ramsey theory.

Section 3.6 studies a variant of the Brown-Erdős-Sós conjecture. About 50 years ago they raised the
following question:

Assume that H is an n-vertex, r-uniform linear hypergraph, where linear means that any pair of edges
intersects in at most one vertex. Furthermore assume, that for a given v and k, every set of v vertices
spans at most k hyperedges. The general question of Brown-Erdős-Sós is the following: At most how many
hyperedges such hypergraph can have. The most famous case is when r = 3, v = 6, k = 3, which was solved
by Ruzsa and Szemerédi, and it has many applications. However, many cases left open, and even now, it is
considered as one of the central questions in combinatorics.

A recent related problem raised by Conlon and Nenadov is the following:

Prove that for every r, k ≥ 3 and c ≥ 2 and n sufficiently large, if G is a complete linear r-uniform hypergraph,
then in every c-colouring of its edges there are k hyperedges of the same colour, which are spanned by at
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most (r − 2)k + 3 vertices. Here complete linear means that every pair of vertices belong to exactly one
hyperedge.

Theorem 3.6.2 of the thesis solves this problem when r is sufficiently large. Theorem 3.6.3 let r be as small
as 4, in case only 2 colors are used.

Chapter 4 is about a more modern topics in extremal graph theory, about the so-called inducibility: Given
a graph F , what is the maximum number of induced copies of F in an n-vertex graph? This question is
interesting when F contains an edge but it is not a clique. The general theory of inducibility is not well-
understood. Even, the following question of Pippenger and Golumbic from 50 years ago is not solved: Is it
true that maximum density of the induced k-cycle Ck is k!/(kk − k), when k ≥ 3? When k = 3, then we
have C3 as a clique, and for k = 4 we have C4, for which the extremal graph (i.e. the graph containing the
maximum number of induced C4’s) is the complete bipartite graph. The k = 5 case was settled by Balogh,
Hu, Lidicky and Pfender, using among others the method of flag algebras. Theorem 4.1.3 gets close solving
the conjecture, the provided upper bound is about a multiplicative factor 3 away from it. Such bound was
out of reach using previous methods, in particular flag algebras.

Chapter 7 is another modern part of extremal combinatorics, though it has connection to classical results.
The main theme is that assume that the edge set of the complete graph is properly colored, i.e., each color
class forms a matching. Then what can be said about rainbow patterns, i.e. about subgraphs, whose edges
are all colored using different colors. This section investigates that under what conditions one can find
repeated copies of the same structure. Two copies of a graph H in a colouring of Kn are colour-isomorphic,
if there exists an isomorphism between them preserving the colours. To be more precise, define fk(n,H) to
be the smallest integer C such that there is a proper edge-coloring of the complete graph Kn with C colors
containing no k vertex-disjoint colour-isomorphic copies of H.

Theorem 7.1.2 is a general characterization of f2(n,H): It claims that this function is quadratic if H is a
forest, otherwise its growth rate is at most ncH for some constant cH < 2, and if H is not bipartite then
f2(n,H) ≤ n+ 1.

Theorem 7.1.2 claims that for arbitrary non-forest H there is a constant k that fk(n,H) is at most linear.
The proof, somewhat surprisingly, uses the random algebraic method, one of the modern deep tools of
combinatorics.

Chapter 8 contributes new results toward the theory of weak-saturation. The concept of weak saturation
was introduced by Bollobás more than 50 years ago. A (hyper)graph G is weakly H-saturated, if all there
is an ordering of the pair of vertices of the complement of G that adding them as an edge, one by one, to G
in this order, in each step we create a new copy of H. The function wsatr(n,H) is the minimum number of
hyperedges that an n vertex r-uniform weakly H-saturated hypergraph must have. The extremal question is
that what is the minimum number of edges of an n vertex weakly H-saturated graph. This innocent looking
problem was open for more than 10 years, and deep algebraic tools, including exterior algebras was used, to
settle the case when H is a complete graph.

One of the main results of Chapter 8 is Theorem 8.1.1., which determines the minimum number of edges
needed, when both G and H are complete multipartite graphs (and the process is slightly different). The
proof of Theorem 8.1.1 combines exterior algebra techniques with a new ingredient: the use of the coluorful
exterior algebra

Section 8.6 considers the non-weak version of the saturation problem, which was also introduced by Bollobás
in the same paper. An r-uniform hypergraph G is H-saturated (where H is also an r-uniform hypergraph),
if H ̸⊂ G and for every f r-tuple of the vertices of G, either f is a hyperedge of G, or adding f to G
creates an H. The function satr(n,H) is the minimum number of hyperedges that an n vertex r-uniform
H-saturated hypergraph must have. While it was proved in the 70s that for r = 2 and H to be a complete
graph the sat and wsat functions are equal, the general case was wide open. Determining the asymptotic
of wsat became famous as ”Tuza’s” conjecture (here I do not state the precise statement). Theorem 8.6.1
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solves Tuza’s problem. The proof is again deep and highly technical.

Overall, the collection of the results are impressive, they are sufficiently broad, and the depth of the proofs
shows the competence of the author.

I was asked to come up with a clear statement as to whether the thesis meets the standard requirements for
a habilitation thesis.

The quality of the thesis exceeds the standard requirements for a habilitation thesis.

I was asked to come up with an explicit recommendation or non-recommendation of work for further progress
in the habilitation procedure.

I strongly recommend for further progress in the habilitation procedure.

I was asked to check “Turnitin” report about overlapping of the Thesis with other papers. I confirm, that the
only significant overlaps are coming from the papers authored by Tyomkyn. All other overlaps are minor,
and the result of having similar introduction to papers of similar flavors, but all the results are new (in case
not, no one is aware of them, and any coincidence is incidental.) Hence, I am confident that all the results
claimed in the thesis are new and due to (upto joint work with some collaborators) of Tyomkyn.

József Balogh

Professor at UIUC
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