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Abstract

The multireference Brillouin-Wigner coupled clusters method with connected
triple excitations has been developed and implemented in the ACES II pro-
gram. This method provides an accurate description of both the static and
dynamic correlation, and is thus suitable for chemical systems with quaside-
generacies, e.g. in cases of bond breaking, studies of larger sections of po-
tential energy surface, and systems with multi-determinantal character like
diradicals.

The connected triples were included in both iterative and noniterative
way. The iterative approach is more rigorous and conceptually straightfor-
ward, but computationally more demanding than the noniterative one.

The iterative inclusion of connected triples was done in two successive
steps. First, in the MR BWCCSDTa method, all terms except for the dis-
connected and unlinked ones in the T3 equation have been included. Second,
the missing terms were included to obtain the MR BWCCSDT method.

The noniterative inclusion of connected triples was based on triples correc-
tion to matrix elements of the effective Hamiltonian, which yield the total en-
ergy by diagonalization. In the MR BWCCSD(T,) method only the diagonal
elements of effective Hamiltonian are corrected, wheres in MR BWCCSD(T)
method correction is performed for all the elements. In all cases, the triples
correction is done after the size-extensivity correction.

In order to assess the performance of the newly developed methods, fol-
lowing four systems were studied: low lying electronic states of the oxygen
molecule, Cs, insertion pathway of Be to H,, singlet-triplet gaps of methylene
and silylene, and the automerization barrier of cyclobutadiene.
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Chapter 1

Introduction

1.1 Historical review

There is little doubt that the coupled clusters method is today one of the
most commonly used ab initio methods in quantum chemistry. The reason
behind its success is the size extensivity and high accuracy compared to other
methods with comparable computational demands.

The basic idea of the approach is the exponential ansatz with the cluster
operator, which leads both to the size-extensivity and to the inclusion of the
dominant part of tetraexcitations even when the cluster operator is truncated
to biexcitations.

The coupled clusters method was first proposed by Coester and Kiimmel
[1-3] for atomic nuclei. Their main inspiration was the concept of the ex-
ponential ansatz of wavefunction, proposed for the description of the bound
state by Gell-Mann and Low [4] and Hubbard [5]. This lead to the idea to cal-
culate directly the cluster amplitudes instead of perturbation contributions
to the energy.

It was introduced into the world of quantum chemistry in 1966 by Cizek
[6], who was also the first who derived the explicit form of the cluster equa-
tions. His work contained a general formulation of coupled clusters theory,
as well as an illustrative example of the CPMET method, which is today
denoted as CCD. However, the complexity of the theoretical aspects of the
method prevented it for years from becoming widespread.

Great progress was achieved in late seventies due to the availability of
work station computers. First general codes for the CCD method were pre-
sented simultaneously in 1978 by groups of Rodney J. Bartlett [7] and John
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A. Pople [8]. Since then, the coupled clusters method has been included into
vast majority of quantum chemistry programs.

The CCD method was extended by the inclusion of connected singles into
CCSD [9]. Soon it became clear, that in order to achieve higher accuracy, it
is necessary to include connected triple excitations. Tetraexcitations, which
are the most important contribution after biexcitations, were sufficiently in-
cluded even at the CCD level due to the exponential ansatz, while the role
of connected quadruples is generally very small. However, for triexcitations
the connected triples constitute the main contribution.

The full inclusion of connected triples, i.e. the CCSDT method [10-14],
was found to be computationally too expensive for most of the systems,
due to the n® scaling. Therefore, suitable approximations, both iterative
[10,11,15-17] and noniterative [16,18-24], were formulated. Among these,
the most successful became the CCSD(T) method [20-23] with the n” scaling
and balanced treatment of the fourth and fifth order contributions to the
energy.

After the connected triples, also the inclusion of connected quadruples
[25, 26] and pentuples [27] has been performed. A procedure for general
truncation of the cluster operator has been also developed [28].

More detailed historical reviews can be found in [29-33].

1.2 Multireference coupled clusters methods

As for today, the CCSD and CCSD(T) methods are widespread and com-
monly used for small and medium sized systems. However, like other single
reference approaches, standard coupled clusters method gives rather poor
performance for systems with quasi-degenerate boundary orbitals, unless
very high excitations are included in the cluster operator. These quaside-
generate systems are often encountered in many problems of great chemical
interest, particularly in cases of breaking of chemical bond, calculations of
larger sections of potential energy surface, and studies of states with a multi-
determinantal character, like diradicals. In these situations, it is highly de-
sirable and convenient to use a multireference scheme.

The generalization of coupled clusters approach to the multireference
scheme has therefore become a subject of interest. However, the task is
conceptually rather difficult, due to the fact, that the generalization of the ex-
ponential ansatz to the multireference case is not unique. Furthermore, these
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methods often suffer from high complexity of working equations, extremely
large computational demands, intruder state problems, or size-inextensivity.

There are several groups of multireference coupled clusters methods. In
the Fock space or valence universal methods [34-40] there is only one cluster
operator for all the reference configurations. In the case of the Hilbert space
methods [41-46], each of the reference configurations has its own cluster
operator. The latter group is then divided into the state specific and state
universal subgroups. The state universal methods study all the electronic
states within the given model space at once and all the eigenvalues of the
effective Hamiltonian have a physical meaning. For state specific methods
[47,48], one state is studied at time, only the selected eigenvalue has a physical
meaning, and the remaining ones are purely artificial.

All these approaches use the effective Hamiltonian formalism. The cluster
amplitudes are found by solving the Bloch equation. The energy is obtained
as a eigenvalue of the nonhermitian effective Hamiltonian matrix. For ma-
jority of these methods is also characteristic the intermediate normalization
of the projected wavefunctions.

Besides these multireference coupled clusters methods, there exist also
other state specific approaches which are not based on the Hilbert or Fock
space formalism. Some of these methods use basically a single reference
formalism with the inclusion of a subset of important higher excitations.
This can be performed in a standard way [49, 50}, or implicitly [51-57], or
using so called externally corrected approaches, which can be divided into
amplitude [58-63] or energy [64-66] type. The latter of these approaches is
closely related to the renormalized CCSD(T) method [67,68]. In connection
to indirect multireference coupled clusters methods are also often mentioned
the equation of motion (EOM) [69-72] and similarity transformed equation of
motion (STEOM) coupled clusters methods [73-76]. Between multireference
coupled clusters and configuration interaction lie the multireference linear
CC (MR LCCM) method [77], multireference averaged quadratic CC (MR
AQCC) method [78-80], multireference averaged coupled pair (MR ACPF)
method [81], and multireference coupled electron pair approximation (MR
CEPA) [82].

The multireference Brillouin-Wigner coupled clusters method is one of the
Hilbert space state specific methods. It was proposed by Hubag, Cérsky, and
M4sik [83-85], who also developed a pilot implementation for calculations
with two reference functions. An efficient implementation in the ACES II
program, which allows to perform calculations with an arbitrary number of
references including open shell ones, has been implemented by Pittner et.
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al. [86-89]. The main advantages of this approach are the linear scaling of
its computational complexity with the number of reference configurations
and avoidance of intruder states due to the denominator shift. The most
important drawback of this scheme is the size-inextensivity of the method.
Therefore, various size-extensivity corrections have been developed [90-92].

The implementation of MR BWCC method enabled investigation of nu-
merous chemical systems. These included studies of singlet-triplet gaps in
methylene, silylene, twisted ethylene [93], tetramethylethylene [86], alkyl-
carbenes [94] and trimethylenemethane [95]. Further studies investigated
the potential curves and surfaces of oxygen [96], fluorine [87], iodine bro-
mide [97], beryllium hydride [88], calcium carbide [98] and beryllium car-
bide [99] . Among the studies of moderately sized systems are the automer-
ization barrier of cyclobutadiene [100] and the Bergman reaction [101].

1.3 Why connected triples?

The studies mentioned above numerically verified the ability of the MR
BWCC method to include the static correlation at a very satisfactory level.
However, as the MR BWCC method was developed only with inclusion of
connected singles and doubles (i.e. MR BWCCSD method), it was often
found that the inclusion of dynamic correlation is far from quantitative.

A very good example of this behavior was the study of the low lying elec-
tronic states of the oxygen molecule [96]. The calculations were performed
using the standard Dunnings’s cc-pVTZ basis set [102]. The model space
was spanned by four reference configurations formed within the 7, antibond-
ing orbitals occupied by two electrons. The spectroscopic constants were
obtained by Dunham’s type polynomial expansion of the potential curves.

MR BWCCSD provides good values of most of the spectroscopic con-
stants. However, the vibrational frequency is sensitive to the potential en-
ergy curve in the vicinity of the equilibrium geometry, and, therefore, it is
sensitive to the description of dynamic correlation, with the static correlation
playing only a minor role. The vibrational frequency is here overestimated
by approximately 100 cm~!. This difference is not caused by the basis set
used, since the vibrational frequency increases with the size of the basis set.
On the other hand, standard single reference CCSD(T) method provides a
value only 10 cm™! above the experiment.

The accuracy of the vibrational frequencies obtained is even lower for
the excited states. The vibrational frequencies are overestimated by approx-
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imately 120 wavenumbers for the a'A, state and 145 cm™" for b'E} state.
The situation is improved when additional four reference configurations are
used, but the improvement is not large enough and it is clear that the descrip-
tion of static correlation itself is not sufficient without an accurate inclusion
of dynamic correlation.

For higher accuracy it is therefore inevitable to improve the description
of dynamic correlation. That implies the inclusion of connected triples to
the expansion of the cluster operator.

The first multireference coupled clusters method with connected triples
was the MR CCSD(T') by Balkova and Bartlett [46], which was based on the
state universal Rayleigh-Schrodinger coupled clusters method by Kucharski
and Bartlett [42]. Recently, there has been a great progress in this field and
several new approaches emerged. These include the state-universal coupled
clusters method with diagonal perturbative triples correction by Li and Pal-
dus [103,104], the Fock space multireference coupled clusters method with
noniterative triples by Vaval, Pal and Mukherjee [105], and with full con-
nected triples by Musial and Bartlett [106].

1.4 The subject and aim of the thesis

Like in the case of single reference coupled clusters method, there are several
ways how to include connected triple excitations. The rigorous approach is
based on explicit inclusion of connected triples within the cluster operator.
That requires solving the cluster amplitude equations for connected triples.
As these equations are solved iteratively, it is said that the connected triples
are included iteratively.

However, the full inclusion of connected triples is computationally very
demanding. It is therefore necessary to make further approximations which
would include the dominant part of triples contribution at a limited compu-
tational cost. Therefore methods, where the connected triples are included
only perturbatively in one step at the end of the calculation, were developed.
Such methods are called noniterative.

The iterative inclusion of connected triples is rigorous and more reliable.
However, because of much lower computational demands, the noniterative
methods can be used for significantly larger systems, and CCSD(T) is thus
commonly used in applications.

The aim of this work is, as already mentioned, to develop and imple-
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ment the multireference Brillouin-Wigner coupled clusters method with the
inclusion of connected triple excitations in both the iterative and noniter-
ative manner. The main task is to develop the MR BWCC generalization
of the standard CCSD(T), which would be capable of treating moderately
sized systems. Moreover, for the assessment of the performance of the non-
iterative method, it is necessary to have a method with iterative inclusion of
connected triples.

The first part of this work introduces the theoretical background used
throughout the thesis. It includes techniques commonly used in quantum
chemistry as well as the most important ab initio methods, relevant to this
work. Special attention is, of course, paid to the coupled clusters approach,
the inclusion of connected triples for single reference coupled clusters method
and to the multireference Brillouin-Wigner coupled clusters method.

The next two chapters are the center of the thesis and include the descrip-
tion of the newly developed methods. The second part discusses the itera-
tive approach towards the inclusion of connected triples to the MR BWCC
method, while the third part concerns the noniterative triples corrections to
MR BWCCSD.

Finally, the last chapter consists of applications of these methods. The
basic aim of all these studies is to assess the performance of the newly devel-
oped methods.
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Chapter 2

Theory

The aim of this chapter is to make a short review of the theoretical back-
ground of ab initio quantum chemistry methods, that are important for the
discussion of multireference Brillouin-Wigner coupled clusters method with
connected triples. Special attention is paid to the coupled clusters method
and particularly to the inclusion of connected triple excitations, state specific
multireference Brillouin-Wigner coupled clusters method, and the perturba-
tional analysis of the coupled clusters wavefunction. Further details about
these methods can be found in [107-114].

Throughout the text, the following notation is used. Unless stated oth-

erwise, indices 4, 7, k, ... correspond to occupied orbitals, indices a, b, c, ...
to virtual orbitals and indices p, g, 7, ... to orbitals not a priori occupied or
virtual.

2.1 Basic concepts

2.1.1 The reference and exact wavefunction. The wave
operator

The restriction of the variational trial wavefunction to one Slater’s determi-
nant or one spin-adapted combination of them is the nature of the Hartree-
-Fock method. However, the exact wavefunction follows no such restriction,
and therefore the solution of the Hartree-Fock equations is generally not equal
to the exact wavefunction. The difference between the exact nonrelativistic
energy, in a given basis set, and the Hartree-Fock energy is called correlation
energy.
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A vast majority of the post-Hartree-Fock methods uses the single deter-
minant wavefunction as a reference function, i.e. the starting point of further
calculations in the search of the exact wavefunction. Formally, the transition
from the reference wavefunction ® to the exact wavefunction ¥ is performed
by the wave operator QO

U = 0. (2.1)

Once the wave operator is known, the exact wavefunction is easily ob-
tained from this equation. Of course, the determination of the wave operator
is as complicated as the determination of the exact wavefunction.

_ Furthermore, let us define the projection operator to the reference state
P and its orthogonal complement @

® = Py, .
U = PU+QU. (2.3)

Let us assume, that the exact wavefunction fulfills the intermediate nor-
malization
(@ |¥)=1. (2.4)

Single reference methods are those which take as the reference one Slater’s
determinant. The multireference methods start from a linear combination of
several of them.

2.1.2 Second quantization

The second quantization is an alternative representation of quantum mechan-
ics. It is often described as the “occupation number representation”, since
the quantum mechanical states are described by occupation numbers with
respect to a given system of orthonormal one-particle functions. The main
advantages of this approach are automatically correct symmetry of the wave-
function with respect to exchange of identical particles and the possibility of
diagrammatic representation of the basic quantities of this formalism, which
enables derivation of rules to simplify calculations.

Let |k;) be a general complete set of orthonormal one-particle wavefunc-
tions. Then the space of the wavefunctions for a system of N identical
particles is constructed within the N-th tensor power of one-particle spaces.
In quantum chemistry, the studied particles are electrons. The one-electron
wavefunctions |k;) are spin orbitals, usually obtained from a Hartree-Fock
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calculation. The N-electron wavefunctions are described by linear combina-
tions of Slater’s determinants formed within this basis set.

The elementary operators within the second quantization theory are the
creation and annihilation operators. All other operators are constructed from
these elementary operators. The creation operator formally creates a particle
in a state described by requested one-particle wavefunction. The annihilation
operator annihilates an particle.

In an orthonormal basis set, the hermitian conjugate of the creation op-
erator d;‘, is the corresponding annihilation operator a, and vice versa.

—~
Q>
N’
gl
Il
[«
= -+

VamnS

>
o+ 3
SN—

pufly

Il

joh
<

Properties of these operators are defined in a way to satisfy the symmetry
requirement on the wavefunction. For fermions, which have antisymmetric
wavefunctions, the anticommutation relations

{al,a,} = ala, +a.a] = 6y
{&L’&I]} = {dpadq} =0
must therefore be obeyed.

Unlike the operators in the standard formulation of quantum mechanics,
the creation and annihilation operators do not conserve the particle number.
However, it is possible to construct from them number conserving combina-
tions, for example the excitation operator a:;ap, which excites a particle from
p-th state to g-th, and the number operator a;f,a,, which gives the occupation
number in p-th state.

As stated before, the N-electron state is represented by a set of occu-
pation numbers. Let us define the vacuum state |0) as the state with all
occupation numbers equal to zero. Let us also assume, that the vacuum
state is normalized.

Any N-electron state can be constructed from the vacuum state by apply-
ing N creation operators on the vacuum, generating electrons in N different
spin orbitals corresponding to the requested state.

The second quantization representation of the operators corresponding
to physical observables depends on the number of particles involved in the
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respective interaction. For one-body and two-body operators, which are
common in quantum mechanics, we have

O1=Y (p| O1|q) dla, (2.9)
pPq
and
O = 3 (pq| Oz | rs) aldlasa,. (2.10)
pqrs

The calculation of expectation values of operators is thus reduced to de-
termination of vacuum mean values of products of creation and annihilation
operators, because of the nature of second quantization representation of
both the state vectors and operators.

For the reduction of the number of creation and annihilation operators,
it is very convenient to introduce the concept of Fermi vacuum. Instead of
the “true” vacuum | 0), we choose the Slater’s determinant of the reference
Hartree-Fock state as the new vacuum and then redefine the creation and
annihilation operators via the hole-particle formalism. Here, the creation
operators generating a particle in a spin orbital, occupied in the Slater’s
determinant of the ground state, are taken as annihilation operators destroy-
ing the corresponding hole. Similarly, the annihilation operator destroying a
particle in an occupied orbital are considered to be creation operators gen-
erating a hole. As can be easily verified, this redefinition does not affect the
anticommutation relation of these operators.

Normal products, contractions, and their diagrammatic represen-
tation

A normal product N{...} of creation and annihilation operators is defined
as the product of these operators whose order in the product is rearranged in
such a way, that all the creation operators stand on the left from all the anni-
hilation operators, multiplied by the sign of the permutation corresponding
to the rearrangement

al...a,40,. .. (2.11)

Note that although the normal product of any number n > 2 of creation
and annihilation operators can, in general, be expressed in different forms,
all these forms are equivalent, due to the anticommutation relations (2.7).
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A contraction of two operators is then defined as the difference between
their product and normal product

[

AB = AB — N{AB) (2.12)

From the definition, we obtain the following formulas for contraction of
two operators:

alal = apa, =0 (2.13)
| —
aha, =0 (2.14)
—
Gplf = Opq (2.15)

This means, that a contraction of two second quantized operators is al-
ways a number, and as such it can be dealt with.

A vacuum mean value of a normal product of any nonzero number of
creation and annihilation operators vanishes, since either an annihilation op-
erator on the right acts on the vacuum state, or there is no annihilation
operator at all, which also leads to zero. According to Wick’s theorem, any
product of second quantized operators can be expressed as their normal prod-
uct plus the normal products with all possible contractions. A contraction
is a number, and as such it can be taken out of the mean value. All normal
products, except for the fully contracted ones, have zero contribution to the
vacuum mean value. By this procedure we are able to express vacuum mean
values in terms of fully contracted terms only, as all the remaining terms
vanish. Since a contraction of creation and annihilation operator are either
zero or equal to a Kronecker delta symbol, the vacuum mean value itself is a
linear combination of products of Kronecker’s deltas.

For expectation values of operators this leads to tensor contraction of
the indices from different matrix elements of respective operators of physical
quantities. These expressions can be represented diagrammatically. This
approach has been introduced by Feynman in quantum field theory and has
become widespread in many parts of theoretical physics.

The matrix elements of operators of physical quantities are represented
by vertices and contractions of creation and annihilation operators by inter-
nal lines connecting the vertices. The total number of lines outgoing from a
vertex corresponding to a n-body operator is equal to 2n, which is the to-
tal number of creation and annihilation operators within its representation.
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Figure 2.1: An example of connected and disconnected, linked and unlinked

BV = 1Y

Connected diagram Unlinked diagram

A

Disconnected linked diagram

These lines are either internal, corresponding to contractions as mentioned
above, or external.

The diagrammatic techniques thus provide a graphical representation of
the respective formulas. Furthermore, there are simple rules how to trans-
late the diagrams back to the algebraic formulas in which all the contractions
were already performed and the expressions thus simplified. There are sev-
eral classes of diagrams. Under connected diagrams we understand such
ones, where all the vertices are connected with one another through the in-
ternal or interaction lines. Those that do not fulfill this criterion are called
disconnected. As linked we denote all connected diagrams, as wall as such
disconnected diagrams, where each of its connected components has at least
one pair of external lines. Examples of diagrams belonging to these three
classes are shown in Figure 2.1.

There are many types of different diagrammatic schemes. The most com-
monly used ones are the Goldstone’s [115], Hugenholtz’s [116], and Brandow’s
[117] diagrams used in perturbation and coupled clusters theory. In this text,
the Brandow’s diagrams will be used. The details are given in the respective
chapters.

Hamiltonian in the second quantization
In quantum theory, the Hamiltonian plays a crucial role for the description of

the system. For a system consisting of electrons and atomic nuclei, the non-
relativistic Hamiltonian has a one-electron, two-electron components, and a
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term not depending on electron coordinates. The one-electron part includes
the electron kinetic energy and electron-nuclei potential energy, whereas the
two-electron part consists of the electron-electron interaction energy. Within
the Born-Oppenheimer approximation, atomic nuclei are considered station-
ary, and the nuclei-nuclei interaction is a constant and forms the part of
Hamiltonian independent of the position of the electrons. As such, it does
not influence the eigenfunctions of Hamiltonian and, therefore will be omitted
in further discussion.

Using the formalism of second quantization, the Hamiltonian can be writ-
ten as

A A N e 1 VTR
H=H +Hy =) hyala, + 3 Y (pq | rs)alalasa., (2.16)
P

pgrs

where the Hamiltonian was divided into one- and two-electron parts. Here,
hpq is a matrix element of the one—electron part of Hamiltonian, and (pg | rs)
a matrix element of the two—electron component

pa ] 75) = [ X032 X (xe(Didoaday (217

Using the Fermi vacuum instead of physical vacuum, the Hamiltonian can
be written in a normal product form

H=(®|H|®) + Hyi + Hyo (2.18)

where H n1 and H N2 are given by

fo = S huNiali) 219
pPq

A 1 TR

Hy, = 5 > (pq | rs)N{alata.a,}. (2.20)
pqrs

Here, fp, are matrix elements of the Fock matrix, and the integrals (pq | rs)
were defined above.

2.1.3 Size extensivity

A quantum chemistry method is called size-extensive, if it yields the energy,

which is for a system, consisting of n identical noninteracting subsystems,
directly proportional to n.
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A method is size-consistent, if it correctly describes the dissociation of
the system, i.e. the energy of noninteracting subsystems is equal to the sum
of the energies of the respective subsystems.

Methods, that are based on diagrammatic expansion with only connected
diagrams, are automatically size-extensive. However, they are not always
size-consistent, unless the orbitals used are localized. On the other hand,
some multireference methods are size-consistent without being size-extensive.

2.2 Configuration interaction

The configuration interaction method expands the wavefunction as a linear
combination of Slater’s determinants formed from Hartree-Fock orbitals, and
optimizes variationally the expansion coefficients.

It is based on the fact, that any antisymmetric many electron wavefunc-
tion can be expressed in this form, as long as the basis set of one electron
functions is complete. The expansion coefficients, and therefore the exact
wavefunction, are then obtained variationally by minimization of the total
energy.

However, the calculations with a complete basis set of one electron func-
tions are impossible, and results for the complete basis set are accessible only
through extrapolation. Therefore, we obtain the “exact” wavefunction and
“exact” energy only within a given basis set.

The Slater’s determinants in the expansion are classified by the rank
of their excitation with respect to the Slater’s determinant of the reference
wavefunction ®. This corresponds to the wave operator in the form

Qor=1+Y.Ci=1+C1+Co+Cs+ ..., (2.21)

where Y, C; is a linear combination of all excitation operators corresponding
to excitation of ¢ electrons.

C, = ana" (2.22)
C, = ZanbaTabaJaz (2.23)
1<j a<b

Here, the ¢ coefficients are the unknowns. The calculation is performed
by the diagonalization of the Hamiltonian matrix whose elements are given

21



by Hp, = (®p|H|®,), where the indices p and g run over all Slater’s deter-
minants in the expansion. There are several techniques for evaluation of the
elements of the CI matrix, including Slater’s rules, second quantization, and
the unitary group theory.

The correlation energy is given by

AE =" c®(D|H | 22). (2.24)

ijab

Although the energy depends directly only on expansion coeflicients of biex-
cited Slater’s determinants, the other excitations interact with biexcitations
and influence thus the energy as well.

Even with an incomplete basis set, the total number of Slater’s determi-
nants or its spin adapted combinations is generally too high. For K spatial
orbitals, n electrons and spin S, the total number of spin-adapted functions
is %—ffll(nl/{;fs) (n /é{_’?ﬂ) [118]. Therefore, some truncation of the expansion
of the wave operator (2.21) is inevitable. The equation (2.24) suggests that
the dominant contribution to the correlation energy comes from the biex-
cited determinants. Also, the role of monoexcitations and tetraexcitations is

significant.

Therefore, the most commonly used truncation is that with monoexcita-
tions and biexcitations (the CISD method). However, unlike the full config-
uration interaction, these limited expansions lead to size-inextensivity of the
method. This inextensivity is usually reduced by a a posteriori correction,
usually the Davidson correction.

The advantage of the CI method is its variational nature, which guaran-
tees that the energy obtained is always an upper bound of the exact energy.
The disadvantages include high computational demands and the lack of size-
extensivity for limited CI.

2.3 Perturbation methods

The perturbation theory is based on partitioning of the Hamiltonian into an
unperturbed Hamiltonian Hy and perturbation V'

H=Hy+V (2.25)

We assume, that the eigenfunctions and eigenvalues of the unperturbed
Hamiltonian Hy are known and that the perturbation is “small” compared
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to Ho. The perturbation theory then provides a way to find the solution of
the perturbed Schrodinger equation.

For the rest of this chapter, we introduce the following notation. Let W
be the wavefunction of the ground state of the Hamiltonian H with the exact
energy E. Let ® be the ground state of the unperturbed Hamiltonian Hy
with energy Fj.

2.3.1 Perturbation expansion of energy and wavefunc-
tion

Let z be an arbitrary complex number. Using the partitioning of the Hamil-
tonian (2.25), the stationary Schrodinger equation yields

~

(z— H)W =(z—-E+V)U. (2.26)

Assuming that the inverse of the operator (z — E + V) exists, and using
the definition of the @ operator (2.3), we obtain an infinite perturbation
expansion of the wavefunction

~

\p=§qjln1={2( Q (z~E+V)>n<I>, (2.27)

n=0 n=0 \Z — i

where \;f["] is the n-th order contribution to the wavefunction and the expres-
sion sz is called resolvent.

The perturbation expansion of the correlation energy is then

~

AE=Y AEM =3 (3| V( Qﬁ (2 — E+V)>n 1®),  (2.28)

Z2 — g

n=0 n=0

and for the wave operator we obtain

ngnlﬂ:ff( Q (z—E+V)>n. (2.29)

n=0

These expansions are in principle infinite. In practical calculations the
expansions are usually limited only to the first few contributions. However,
it is possible to sum up certain types of contributions to infinite order.
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The variable z is in principle an arbitrary complex number. However, for
some particular choice of z the expansions are very convenient. The two most
common choices of z are the exact energy £ and the unperturbed energy Ejy.
The former scheme is called Brillouin-Wigner perturbation theory, and the
latter Rayleigh-Schrodinger perturbation theory.

2.3.2 Rayleigh-Schrodinger expansion

The more commonly used approach is the Rayleigh-Schrodinger expansion.
Since the unperturbed energy is known apriori, the resolvent has a very
simple form

~

__9Q

Ey — Hp
However, the presence of the energy in the (Ey — E + V) term gives rise to
so called bracketing, or renormalization, terms

Ry (2.30)

n—1
vl = RVt — 3~ EF Ry wi (2:31)

k=1

where the energy El is given by
EM = (¢ | V| ey = (3| V| Qr-Ua). (2.32)

By using the equations (2.31) and (2.32) recursively, the formula for the
n-th order energy contribution E™ has generally the form

El = (& | V(RyV)" ! | ) + renormalization terms (2.33)

The first term is called the principal term, which has a simple general formula.
The latter term, the renormalization part of the formula, includes a rapidly
growing number of contributions. However, employing the diagrammatic
approach, the formula can be limited to the principle part, as long as the
unlinked diagrams are excluded from the principal part and the exclusion
principle violating terms [119-124] are included. By EPV diagrams we mean
such expressions, in which two summation indices, corresponding to adjacent
creation or annihilation operators, have the same value. The first condition
is the essence of the linked cluster theorem, which also guarantees the size-
extensivity of the method.
The wave operator fulfills the Bloch equation [125]

[QH, — HQP = VQOP — QPVQP, (2.34)

which is fully equivalent to the Schrodinger equation.
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2.3.3 Brillouin-Wigner expansion

In the Brillouin-Wigner perturbation theory, the constant z is chosen to be
the exact energy E. Therefore, no bracketing terms are present. However,
the exact energy remains in the resolvent, and this approach has thus to
be used iteratively, which is inconvenient for standard perturbation calcula-
tions. However, in combination with other iterative approaches (for example
coupled clusters theory), this scheme becomes useful.

Within this scheme, the wave operator fulfills the Bloch’s equation
Q=1+ BVQ, (2.35)

where B = E—f%; is the Brillouin-Wigner resolvent.

Since the formula for energy includes also the unlinked contributions, the
Brillouin-Wigner perturbation theory is not size-extensive.

2.3.4 Mgller-Plesset perturbation theory

So far, the discussion concerned a general partitioning of the Hamiltonian.
In quantum chemistry, one usually employs the Mgller-Plesset partitioning.
In this scheme, the Hamiltonian of the unperturbed system includes the
Hartree-Fock energy and the contribution of diagonal Fock matrix elements.
The perturbation is then obtained as the difference between H and Hy. In
the second quantization form this reads

ﬁo = (P|H|®)+ prpN{d;dp} (2.36)
p
Vv = Y foN{a}a,} + Huo, (2.37)
p7#q

As the reference state, the Hartree-Fock wavefunction is used. Because of
the Brillouin theorem, for restricted or unrestricted Hartree-Fock reference
functions the off-diagonal elements of the Fock matrix are zero, and therefore
the first term in Vi vanishes. However, for restricted open shell Hartree-Fock
or other types of orbitals, both terms are nonzero and have to be considered.
This conclusion is valid also in the coupled clusters theory.

Rayleigh-Schrodinger perturbation method with the Mgller-Plesset par-
titioning is automatically size-extensive and invariant with respect to orbital
rotations among occupied or among virtual orbitals, at all orders of pertur-
bation expansion.

25



Figure 2.2: Diagrammatic representation of Hy

Galrs) = e
foq = Z> """ X

The diagrammatic representation of Hy is shown in Figure 2.2. The
number of vertexes is equal to the order of perturbation theory. The vertexes
are connected by internal lines to obtain a connected diagram. Each internal
line is assigned a summation index. Diagrams corresponding to energy have
no external lines. A numerical factor is assigned to each diagram, depending
on the number of hole lines, loops and symmetry of the diagram. Details can
be found in literature, eg. [107,109-111].

2.4 Coupled clusters method

2.4.1 Cluster operator and cluster amplitudes

In the coupled clusters approach the wave operator is chosen in the form of
the exponential ansatz

QCC = 6T, (2.38)

where the cluster operator 7' is a linear combination of excitation opera-
tors. Therefore, the cluster operator can be divided according to the rank of
excitation

T=Ti+To+T5+ -, (2.39)

where T includes contributions from monoexcitations, T from biexcitations,
T; from triexcitations, etc.

T, = Zt“ 4l a (2.40)
T, = Z > t“b tala; a (2.41)
i<j a<b
The expansion coeflicients ¢¢, tf]", ... are called clusters amplitudes. They

are a priori unknown and their determination leads to determination of the
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wave operator, and therefore the wavefunction. The cluster amplitudes are
chosen to be totally antisymmetric in both occupied and virtual orbital in-
dices, which is possible due to the anticommutation of the creation and an-
nihilation operators.

Let us use the partitioning of Hamiltonian to (D | H | &) and remaining
terms Hy. Then, we obtain for the correlation energy

N . ~ “ 1~ N
AE = (d | Hye™ | ®)o = (@ | Hy (T1 + 5T+ Tg) |®).  (2.42)

The C index indicates that only contributions from connected diagrams are
included.

The number of cluster amplitudes in the full cluster operator is the same
as the number of CI coefficients. Again, the number of cluster amplitudes
is too large, and therefore a truncation of the cluster operator is inevitable.
Commonly used truncations are listed in Table 2.1, as well as the scaling
of the computational demands of the respective methods. The number of
occupied orbitals is denoted as n, and the number of virtual orbital as n,.

Table 2.1: Examples of truncation of the cluster operator

Method Cluster operator Scaling of the method
CCD T=T, (no)%(ny)*
CCSD T=T+T, (16)2(n)*
CCSDT T=T+T+Ts (no)3(ny)®
CCSDTQ T = Tl + Tg + Tg + T4 (no)4(nv)6

2.4.2 Cluster equations

As stressed before, the cluster amplitudes are the unknowns. They are ob-
tained by projection of the equation

e THye'® = AED (2.43)

to monoexcited, biexcited, etc. Slater’s determinants ®¢, @;‘;’ etc..

(@2 | e THye | ®)c = 0 (2.44)
(@ | e THyel |@)c = 0 (2.45)
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The first of these equations is called the T; equation, the second T,
equation, etc. The number of the cluster equations is equal to the number
of clusters amplitudes. The cluster equations are nonlinear in the cluster
amplitudes, and thus an iterative approach to their solution is used. We
separate the part of the expression linear in the respective cluster amplitudes
and put it to the left hand side, while the remaining terms are kept on the
right hand side of the equation. For T; and T, equations we get

1 R .
tf(new) = 552(2¢ | VeV | @) (2.46)
and . h
t (new) = =25 (@37 | Une©d | @), (2.47)
tj

Here, the denominators D¢ and ijb are combinations of the diagonal
elements of the Fock matrix

qu = fii - faa (248)
D?jb = fii + fij = faa = fo (2.49)
and in general
DY =fu+ fiz+- = faa— Foo— - (2.50)
The initial guess of the cluster amplitudes is taken as

fia
t =2 2.51
t D;l ( )

b _ (ij | ab)
ty = ——————D%b (2.52)

with cluster amplitudes corresponding to higher excitations equal to zero.
This corresponds to setting 7' = 0 in the right hand side of the cluster
equation in the zero-th iteration.

The diagrammatic representation of cluster amplitudes is given in Figure
2.3. The representation of Hy is the same as in the perturbation theory.
Diagrams in T; equation have one pair of external lines, in Ty two pairs etc.

2.4.3 Comparison of CI and CC approaches

Let us compare the expansion of the wave operator within the scheme of cou-
pled clusters and configuration interaction. By the expansion of the exponen-
tial ansatz of the coupled clusters wave operator (2.38) and its comparison
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Figure 2.3: Diagrammatic representation of the cluster operator

i a i a J b

with the Cl-like form (2.21) we obtain

¢, = T (2.53)
. . 1.

C, = Th+ §T3 (2.54)
. . . 1.

Cs = T3+TNTTh+ ng (2.55)
N . 1. 1 .5 PN 1.

Csy = Ty+ ‘2'T22 + '2'T12T2 + 1113 + ZTf (256)

From these equations it is clear that both approaches are equivalent,
if no truncation is applied. However, the coupled cluster scheme includes
contributions from higher excitations than a configuration interaction at the
same level of truncation. For 7" with all excitations up to the rank n the
first n contributions C’l, .. ,C’n contributions are included exactly, while the
higher excitations only partially.

For example, at the CCSD level, only the monoexcitations and biex-
citations are included fully. However, there are nonzero contributions to
triexcitations and particularly tetraexcitations, i.e. the most important con-
tributions beyond biexcitations. Consequently, the performance of CCSD is
only slightly worse than that of CISDTQ), although its computational cost is
comparable with CISD.

Further advantage of the coupled clusters scheme, when compared to CI,
is the size-extensivity of the method. The drawback is, that it cannot be
effectively performed as a variational method, since that would lead to an
infinite diagrammatic expansion of cluster equations.
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2.4.4 Perturbational analysis of coupled clusters ap-
proach

The coupled clusters method and the perturbation theory are two distinct
approaches to post-Hartree-Fock calculations. However, there is a clear link
between the two approaches, although not as obvious as in the case of coupled
clusters and configuration interaction.

In this section, this relationship is discussed. The aim is to obtain per-
turbation theory expressions in terms of cluster amplitudes, and vice versa
expressions for cluster amplitudes in terms of Fock matrix elements and
(pq | s) integrals.

In the perturbation theory, the wave operator is represented by the ex-
pansion

Q=5 al (2.57)

It is very convenient to separate the i-th order operator QU into several
different classes . -

O = Ol O ..+ Ol (2.58)
Here, QE] corresponds to the part of QY which involves only a k-tuple sub-
stitution of the reference Slaters determinant.

Then, € (the sum of QEI over all orders i) can be expressed using the
coupled cluster formalism by

N - Pl o~
Q=T + {z:}Jl—Il ;l_j-'TJ 7, (259)
n; =

where the summation runs over p-tuples {nj}g?:l, where p < k, 1 <n; <k
and 37, jn; = k. This provides the link between the perturbation theory
and the coupled clusters formalism.

The initial guess of cluster amplitudes, already shown in (2.51), is t = %

for connected singles, and t;’;’ = ﬁ%‘;-’,?l for connected doubles. These expres-
j

sions are identical to the first order contribution (! of the perturbation
expansion of the wave operator.

By inserting the initial guess of cluster amplitudes into cluster equations,
one generates higher order terms of the expansion. Using this approach,
the perturbation expansion of cluster amplitudes is obtained. Therefore, the
cluster amplitudes can be in principle expressed by expressions including only
elements of Fock matrix and two-electron integrals.
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Let us write the cluster operator and its components in the form of per-
turbation expansion

Ty =T 4 T 4 79 4 (2.60)

where ’f’q stands for either the whole cluster operator or any of its components.

In the first order of perturbation theory, only connected singles and dou-
bles yield nonzero contributions. Furthermore, when we restrict ourselves
to the Hartree-Fock reference function, Tlm vanishes, due to the Brillouin
theorem. In the following text, we will for simplicity adopt this restriction.
Using equation (2.59), the contributions to the wave operators in first three
orders of the perturbation theory are given by

o = 1 (2.61)
A N A A 1 1-

0P = T+ 1 4 7 4 ST (2.62)
08 = P PR (2,69

. ] 1 oyt af] o
+ T+ T+ BT
where we have used

T = 7 = 7l = 7l — g, (2.64)

The diagrammatic representation of the first and second order contribu-
tions to the cluster operator are shown in Figure 2.4. The correspondence
between perturbation theory and coupled clusters diagrams is established by
the factorization of the denominators [109).

As shown before, the correlation energy contributions are given by (2.32).
EM = (| V| Qr-lp) (2.65)

When we restrict ourselves to the Hartree-Fock reference function, the per-
turbation Vi includes only contributions from the (ij | ab) integrals. Using

this and the fact, that (ij | ab) = D;‘Jbtf;m, this equation can be, after per-
forming all the contractions, rewritten as

Bl = 3" patgeilgesin=] (2.66)

ijab

This equation provides an effective computational way for calculating
E2 and EBl. However, in the fourth order, the situation becomes more
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Figure 2.4: First and second order perturbation contributions to the cluster
operator

[1]

complicated, because of the complexity of T 2[3]. It is therefore very convenient
to use the Wigner’s rule, which states that using the wavefunction exact to
the n-th order of perturbation theory, it is possible to obtain the energy exact
to the (2n + 1)-th order.

The third order part of connected doubles, T2[3], is formed in the first
two iterations of the cluster equations. In the first iteration, only connected
doubles are nonzero. However, in the second iteration, even connected singles

and triples, and also disconnected quadruples from T22 emerge.
It is thus convenient to divide the fourth order energy E¥ into parts
corresponding to single, double, triple, and quadruple excitations E[4], E][;”,

Er[ﬁ] and Egl. The diagrammatic representation of these terms is presented
in Figures 2.5, 2.6, 2.7 and 2.8.
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Figure 2.6: Diagrammatic representation of EI[;l]

The Egi] comes from Tlm being substituted in VnTy term in the Ty equa-
tion. The effective way of evaluation of this term is

E{ =3 pegellye (2.67)

where the 2n + 1 rule [126,127] has been used.

Similarly, the Eg] term originates from TQ[Q] being inserted into the VnTy

term of the right hand side of T3 equation, and E%il] from T %2] being inserted

into the VT, term.

EY =33 Dyttt (2.68)
i>j a>b
abe,abcl2] ,abe
EY = Y Y Dl (2.69)

1>j>k a>b>c

The Eg] comes from %ﬂl]ﬂll, however, there is no convenient 2n + 1 rule
for this term.

From the computational point of view, the determination of Egi] scales as

n®, EY as n® and EW as n”. The computational cost of Egl can be reduced
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Figure 2.8: Diagrammatic representation of Eg]

from n® to n® by the vertical factorization technique [7,128]. The CCSD
energy includes Egi], EI[SH and Egl contributions, while missing E'%‘}].

In the fifth order of the perturbation theory, the situation is even more
complicated. The diagrams are classified by the excitation rank at two levels,
i.e. between the second and the third, and between the third and the fourth
vertex. The 15 resulting classes of energy contributions are denoted as Eg’s],
5, 5, £, 5, BB, 6B, B8, B8, BB, BB, AU, EGL, ELh
and E([,‘r::] Among these, there are two pairs of identical contributions, that
are hermitian conjugates of each other: Eg}]) with E][;’]S, and Eﬁj with Eg’]T
However, this identity is not valid for Eg’]T and Eg%, due to the asymmetric
nature of cluster e?uations, resulting in the disconnected energy contributions

E[T‘r’(]jc, Eg’(]jc and Ed5] [110].

C

From these contribution, the CCSD energy includes ES, Eb) EEL EEL
E][Dsg, Er[f?c]ic, Eg’l,c, and EE;] The CCSDT energy has contributions of all

the terms except for ES]T, and E([S]Q, which require inclusion of connected

quadruples.

Among these terms, only Eg:ll will be important in further discussion.

This term is larger than other fifth order contributions and plays a crucial
role in the noniterative coupled clusters methods, particularly in CCSD(T),
as will be shown in the following section.

2.4.5 Coupled clusters method with connected triples

The origin of the success of coupled cluster approaches is basically the fact
that the dominant contribution of tetraexcitations is included even at the
CCSD level. The perturbation analysis shows, that the %Tg term includes

contributions of the second order, while T4 of the third order.

However, the situation with triple excitations is less favorable. Assum-
ing the case of the Hartree-Fock reference wavefunction, the T3 term is of
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the second order, while TITQ of the third order. For the non-Hartree-Fock
reference, both the terms are of the second order.

For a correct description of triple excitations, the inclusion of Ty is there-
fore inevitable, since this term is at least as important as T 1T2. However,
inclusion of triple excitations within the cluster operator increases the com-
putational requirements of the method. The rigorous inclusion of connected
triples is thus usually not the preferred way, and the connected triples are
included in a noniterative way.

In the first part of this section, the full CCSDT method will be discussed,
whereas in the latter two subsections, the discussion of approximate iterative
and noniterative methods is given.

CCSDT

The CCSDT method is based on the straightforward inclusion of connected
triples to the cluster operator
T=T+Ty+Ts. (2.70)

Inserting the exponential ansatz with this truncation of the cluster oper-
ator leads to the following cluster equations:

A TV B
Dit{ = ((®)7 | Vn(Th + T2 + §T12 + T, + 5‘,T13' +13) | @) (2.71)

for T; amplitudes,

abia a ’ T T 1 ke L=
Dty = (@) | Wl + Ti+ T+ 5TE+ T + 510 + (2.72)

1 1.4 - PSN
T4 T2 + §T12T2 + T35 + T1T3) I CD)C

+@12

as the Ty equation, and finally

P BV 1
Dyt = ((® );’]",: | V(1 + Ti+To+ 5Tf + Ty Ty + T1 +1 T4
1., 1

+ 5TQ"’+§T1T2+3

4—E+ﬁﬁ+nn+§ﬁnn¢h (2.73)

3!
1.
'Wn+ “TVT2 +
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as the T3 equation.

Approximate iterative methods

By neglecting the computationally most expensive terms in the CCSDT clus-
ter equations, it is possible to greatly reduce the computational cost and to
obtain the n” scaling instead of n® of CCSDT. These approximations are
called iterative, since the T3 equation, although truncated, is being iterated
throughout the calculation.

These methods are denoted as CCSDT-n and form a hierarchy of the
approximations, with a decreasing number of terms included.

1. CCSDT-4 A
In the CCSDT-4 method, all nonlinear terms that include T3, i.e. the
T\T;, ToT3 and %Tng terms are neglected in the T3 equation.

2. CCSDT-3
The CCSDT-3 method is obtained by setting 75 = 0 on the right hand
side of the T3 equation. This means that all the terms on the right hand
side of the T3 equation that include connected triples are neglected.

3. CCSDT-2
In the CCSDT-2 method both Tg and Tl are set to zero in the T3
equation. Therefore, the right hand side of (2.73) includes only terms

4. CCSDT-1b
The CCSDT-1b method is obtained from CCSDT-2 by neglecting of
the %Tg term in the T3 equation. Therefore, the only remaining term

on the right hand side of (2.73) is VyT5.

5. CCSDT-1
The least accurate approximation, CCSDT-1, is the same as CCSDT-
1b, with one additional term omitted. This term is the 7173 contribu-

tion to the T3 equation. The wave operator is thus effectively restricted
to Q= el1tT2 4+ Ty,

Numerical studies have shown, that the energies obtained by CCSDT-1
and CCSDT-1b are usually very similar. This can be explained by the fact,

that the energy expressions in these methods differ only by terms of sixth
and higher orders of perturbation theory. CCSDT-2 and CCSDT-3 have
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generally higher deviation from CCSDT and FCI results than CCSDT-1. To
increase the accuracy beyond CCCSDT-1, it is necessary to include at least
the linear contributions of the connected triples to the T3 equation. Unlike
the lower approximations, CCSDT-4 requires the storage of connected triple

amplitudes, due to the intermediates including connected triples on the right
hand side of (2.73).

However, due to the success of the noniterative approximations, and par-
ticularly CCSD(T), all these methods are of rather limited practical use
and their importance lies mainly as historical predecessors of CCSDT and
CCSD(T).

Approximate noniterative methods

The motivation for the noniterative approach in the inclusion of connected
triple excitations is to greatly reduce the computational requirements of the
method, while preserving the accuracy of the calculated energy. Since the
general requirement for the energy is the accuracy up to the fourth order
of perturbation theory, the scaling of these method cannot become lower
than the n” scaling of the MBPT4 method. Since CCSDT-1 has the same
scaling as MBPT4, further computational savings can only be achieved by
the reduction of the number of the n” steps. Therefore, in the noniterative
calculations, the CCSD calculation is carried out first, and subsequently the
connected triples correction is included in one additional step.

The CCSD energy includes all contributions of second and third order,

and also the fourth order terms E[ | EE] and E[ | The only remaining fourth

order contribution, Ep, requires the inclusion of connected triples. It can be

expressed as

4 be[2 be[2
E¥ = 36 S t2e pabet el (2.74)
abcijk
where tglkabc are connected triples amplitudes exact to the second order of the

perturbation theory
Dgbeocl = ZPz/yk (a/be)tsa (bel|ei)

- ZP i/7k)P(a/bc)t bc[l](]kaa) (2.75)

Here, P(a/bc) is the antisymmetrisation operator, and the first order contri-
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bution to connected doubles amplitudes is given by

qadlll _ (ij || ab)

i - qu (276)
L

Numerical tests have shown that using converged doubles amplitudes in
(2.75) instead of their first order approximations tends to give more accurate
results. Since the final Ty amplitudes are known when the triples correction
is being evaluated, this procedure brings no additional computational costs.

In this way, the so called CCSD|[T] method was developed. The energy
here is given by
E(CCSD[T]) = E(CCSD) + EY (2.77)

where ng] is obtained from (2.74) and (2.75) using converged connected
doubles amplitudes.
However, the most commonly used approach, the CCSD(T) method, adds

an additional fifth order contribution EE]T The physical argument for this
inclusion is, that this term becomes fourth order, when non-Hartree-Fock
reference wave function is used; it is thus considerably larger than remain-
ing fifth order contributions, and a more balanced treatment is achieved by
including it.

The E[S]T term can be expressed as

5 aza
EE = Zsz t?, (2.78)
where the s intermediate is

a 1 abc
§; = 4 Z(bCH]k)tz]bk (279)
bejk

The connected triples amplitudes in (2.79) are obtained again from (2.75).
The CCSD(T) energy is then given by

E(CCSD(T)) = E(CCSD) + EY + EEL. (2.80)

For non-Hartree-Fock reference wavefunction, the offdiagonal Fock matrix
elements are nonzero and the connected singles give a contribution to the first
order energy, which leads to the presence of the E%]T term

E%lf— S fretiptite, (2.81)
abcz]k

38



and the CCSD(T) energy in this case becomes

E(CCSD(T)) = E(CCSD) + EM¥ + EE} + EU. (2.82)

Since this expression includes terms with off-diagonal Fock matrix ele-
ments, the energy is no longer invariant to unitary occupied-occupied and
virtual-virtual orbital transformations. To regain the invariance, it is neces-
sary to either iterate the T3 equation, or to use a special set of orbitals. The
first possibility is not practical, since the iterations of Ts equations would
spoil the noniterative character of the method. The use of semicanonical
orbitals has been introduced to solve this problem [23]. They are defined as
orbitals yielding diagonal virtual-virtual and occupied-occupied blocks of the
Fock matrix.

2.5 Multireference Brillouin-Wigner coupled
clusters method

The state specific multireference Brillouin-Wigner coupled clusters method is
one of multireference generalizations of the standard single reference coupled
clusters method. As its name suggests, it is based on the multireference
Brillouin-Wigner perturbation theory.

2.5.1 Basic concept of MR BWCC

For a correct description of quasidegenerate systems, it is necessary to ac-
count for the static correlation by the choice of reference wavefunction. The
reference function ® is taken in the form of a linear combination of several
Slater’s determinants, which are called reference configurations

M
®=Y C,0,. (2.83)

u=1

For a given set of reference configurations, the reference wavefunction is re-
stricted to the model space, which is a functional subspace of Hilbert space
with the basis set consisting of reference configurations. The coefficients
C, are a priori unknown and have to be determined in the subsequent cal-
culation. Similarly to other Hilbert space multireference coupled clusters
formalisms [42], the u-th reference configuration ®, acts as the p-th Fermi
vacuum.
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Furthermore, let us define a projection operator on the u-th reference
configuration P Then the projection operator P on the whole reference
space is the sum of the respective projection operators

A M ~
=3P, (2.84)
pu=1

The orthogonal complement of P will be denoted as Q

Next, let us define the effective Hamiltonian H°T as the operator, which,
when acting on the reference wafefunction, gives the exact energy

H® = E®. (2.85)

Of course, the effective Hamiltonian operator is a priori unknown and
depends on the exact wavefunction, or equivalently on the wave operator
(). When the intermediate normalization, P{) = P, is obeyed, the effective
Hamiltonian can be expressed as

H = PHQP. (2.86)

To find the wave operator, the Brillouin-Wigner perturbation theory is
employed, which requires that the wave operator fulfills the Bloch’s equa-
tion (2.35). The wave operator is assumed to be in the form of Jeziorski-
-Monkhorst ansatz [41]

~ M s A
=Y eWph,, (2.87)
pn=1

which introduces the coupled clusters formalism to the MR BWCC method.
The operator T(u) is the cluster operator corresponding to u-th reference
configuration, which plays the role of the u-th Fermi vacuum for the creation
and annihilation operators involved. The wave operator is thus uniquely
determined by M sets of cluster amplitudes corresponding to M reference
configurations in the expansion of the reference function.

Cluster amplitudes of excitations, transforming one reference configura-
tion to another, are called internal amplitudes and have a special position in
the scheme. To preserve the intermediate normalization, the internal ampli-
tudes must be kept equal to zero for a complete model space. For an incom-
plete model space, these amplitudes must fulfill the C conditions {129, 130].
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Within the model space, the effective Hamiltonian is represented by a
M x M matrix with elements Hf = (®, | H*T | ®,). Using the Jeziorski-
-Monkhorst ansatz, we obtain

HE = (, | H|®,)0u + (@, | Hv(v)eT™ | 2,). (2.88)

As suggested above, the knowledge of the effective Hamiltonian is suffi-
cient to find the exact energy. Inserting the expansion of reference wavefunc-
tion (2.83) into the definition of effective Hamiltonian (2.85) and using the
orthonormality of reference configurations, we obtain

Y HEC, = EC,. (2.89)

v

This is a non-hermitian matrix eigenvalue problem, and therefore the exact
energy is found as the selected eigenvalue of the effective Hamiltonian matrix
and the C, coefficients form the corresponding eigenvector. As noted before,
the MR BWCC method is state specific, and therefore only the selected
eigenvalue has a physical meaning.

Cluster equations

As noted above, the wave operator is uniquely determined by M sets of
cluster amplitudes. These cluster amplitudes are obtained by solving cluster
equations

(B~ (@, | H|®)) (@, | 7™ | ®,) = (@, | AveT™ | ®,),  (2.90)

which are derived by inserting the Jeziorski-Monkhorst ansatz of the cluster
operator (2.87) into the Bloch equation (2.35), and a subsequent projection
of this equation to a general (excited) Slater’s determinant ®,.

To obtain the T; equation, let us assume that the Slater determinant @,
is monoexcited with respect to u-th Fermi vacuum

Py = (D)5 (2.91)
The left hand side of the equation (2.90) is simplified using
((Pu)7 | el | @) =t (1) (2.92)
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The expression on the right hand side of the equation (2.90) is divided into
connected, disconnected linked, and disconnected unlinked part.
(@u)¢ | Hne™ [ @) = (®.)7 ] Hve™® | @,)c +
+ ((®u)F | Hve™™ | @,)por +  (2.93)
+ (@) | Hve"™ | @) pout

For the choice of &, = (®,)¢, the disconnected linked term yields zero con-
tribution. The unlinked term can be factorized as

(@u)¢ | Hne™™ | @) pour = t(®, | Hve™™ | @,)c, (2.94)
where (®,, | HyeT™ | ®,)¢ is recognized as a part of the diagonal element
of the matrix of the effective Hamiltonian (2.88).

The final form of the T; equation thus reads
(E— H)ti () = ()¢ | Hn(p) "™ | @,)c. (2.95)
Comparing this equation with the single reference coupled clusters one, the

term (E — HeT)t2(u) is included on the left hand side of the equation.

The T, equation is derived analogously. It is obtained by substituting
®y = ()% into the general cluster equation (2.93). Analogously to the T,

equation, the ((®,)# | Hyel® | ®,) term is again divided into connected,
disconnected linked, and unlinked parts. For the case of one reference con-
figuration, the disconnected terms vanish.

The unlinked term has a similar structure to the corresponding term in
the T; equation. Using the definition of 7°(1)

(@u)3 | "W | @) = t2(u)t(p) — t2()ts(w) + t2 () = T2(u),  (2.96)
we obtain

(2,02 | AveT™ | wyur = 78() (@ | AnT (1) | @p)o- (2.97)

In contrast to the T; equation, the disconnected linked part is nonzero
and must be included. It can be factorized into connected parts.

(@)% | Hve™ | @,)pc, = P(ab)P(if)te () (85 | Hnv(u)e™ | qz,»c,)
2.98
where P(ij) is an antisymmetrization operator within the indices ¢ and j.
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The resulting T, equation reads

(B — HMreb = (@)% | HyeT™® | )¢ + (2.99)
+P(if) P(ab) t (1) (@)% | Hve™ ™ | @,)c.

So far, no truncation of the cluster operator has been performed and
all equations are valid for any truncation. In the MR BWCCSD case, only
connected singles and doubles are included, i.e. T(u) = Ti(u) + To(x). In
this case, the T; and T, cluster equations derived above are sufficient to
determine all cluster amplitudes in the wave operator.

For higher approximations, additional cluster equations must be han-
dled. The inclusion of connected triples, which requires the T3 equation, is
discussed in the two following chapters.

2.5.2 Size-extensivity corrections

The main drawback of the multireference Brillouin-Wigner coupled cluster
method is the lack of size-extensivity. This size-inextensivity is caused by the
inclusion of unlinked and disconnected terms within the cluster equations.
However, these terms are responsible for a denominator shift, and thus for
avoiding the intruder states problem.

To reduce or eliminate the size-inextensivity of the MR BWCCSD method,
two corrections have been developed. Both approaches are based on the tran-
sition between the Brillouin-Wigner and the Rayleigh-Schrodinger perturba-
tion theories. Let us multiply the Bloch equation in the Brillouin-Wigner
scheme (2.35) by a parameter A and the Bloch equation in the Rayleigh-
-Schrédinger scheme (2.34) by (1—)), and add these two equations together.
Here, the parameter X is an arbitrary number between zero and one. In this
way, the generalized Bloch equation [92] is obtained

A A A A A A A A A A A

AEQP +[(1 — NQHy — HQ)P =VQP — (1 - \N)QPVQP.  (2.100)

The parameter X scales the transition between the Brillouin-Wigner and
the Rayleigh-Schrodinger perturbation theory. For A = 0, the generalized
Bloch equation corresponds to the Rayleigh-Schrodinger theory, and for A =1
to the Brillouin-Wigner theory.

By substituting the wave operator ansatz into the generalized Bloch equa-
tion and neglecting renormalization terms, the following cluster equation is
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obtained

ME — Ht)( @™ @18,) = (Dg|Hn(p)e™ (D)0 +
+ M@ Hn(w)e"™|®,)per  (2.101)

In all approaches, first the cluster amplitudes are converged with A set to
one. Then, two basic schemes are available. In the first one, one additional
iteration is done, with the value of A equal to zero. This leads to an approxi-
mate elimination of the size-inextensive terms in the cluster equations. This
correction is called “a posteriori”.

The other approach is the iterative correction, in which the parameter X is
reduced gradually from one to zero in a geometrical sequence, and the cluster
equations are iterated accordingly. Therefore, the a posteriori correction can
be viewed as a special case of the iterative one, with the transition involving
only one step.

The aposteriori correction was found to have a good performance. Its
advantage are the smaller computational demands. The iterative correction
is more rigorous, but its drawbacks include large computational time needed
and occasionally the numerical instability due to the reemerging intruder
state problem.
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Chapter 3

Iterative inclusion of connected
triples

This chapter is devoted to various approaches towards iterative inclusion of
connected triple excitations into the multireference Brillouin-Wigner coupled
cluster method. The iterative approach, although computationally more de-
manding, is rigorous and conceptually straightforward.

Starting from the full MR BWCCSDT method, several additional ap-
proximations can be made. First, the simplification of the connected part of
the cluster equations is possible, thus obtaining the multireference analogs of
the CCSDT-n methods mentioned in the previous chapter. Second, we can
neglect the disconnected and unlinked terms in the T3 equation, which leads
to so called a approximation.

3.1 First steps

Let us truncate the cluster operator to connected singles, doubles, and triples
T:TI+T2+T3 Eleg. (31)

In the following text the cluster operator within this truncation will be de-
noted as Tja3.

By substituting T3 into the general cluster equations of the multirefe-
rence Brillouin-Wigner method, we obtain

(B — HM)((2,)2]eT2W|0,) = ((9,)2| An(n)em=®|@,)c (3.2)
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for connected singles,

(B~ H){((@,)i1e"= WD) = (@) 1Hn(w)e" =W |@,)c +
+ (@I Hn (e =D)L (3.3)

for connected doubles, and

(E — HE)(®,)%1e"2W|D,) = (@)8Hy ()" =W ,)c +
+ (®0)2|Hn ()M |2, )pey (3.4)

for connected triples.

Let us compare these equations with those of MR BWCCSD method,
given in the previous chapter. Of course, there is the T3 equation, which
was not present at the MR BWCCSD level. Moreover, connected triples
contribute to T; and T; equations.

Let us postpone the discussion of unlinked and disconnected part of the
T3 equation and look firstly at the changes required for

1. the matrix elements of the effective Hamiltonian,

2. the connected part of cluster equations,

3. the unlinked part of the Ty and Tj cluster equations,

4. the disconnected linked part of the T; and T, cluster equations,

5. the denominators in the T3 equation.

3.1.1 Connected part of the cluster equations

The determination of the connected part of the cluster equations is the com-
putationally most expensive part of the calculation. Of course, the connected
triples contribute significantly to these terms, which are fully analogous to
their counterparts in the single reference CCSDT. These expressions can thus
be evaluated directly by the routines used in the CCSDT part of the code.
Since several reference configurations are included in the calculation, these
routines have to be called for each of them and appropriate sets of amplitudes
have to be given to them as input.
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3.1.2 Elements of the effective Hamiltonian matrix

For the diagonal elements, only the first term on the right hand side of (2.88)
is nonzero. This term can be viewed as the correlation energy correspond-
ing to p-th reference function. According to (2.42), the correlation energy
within the coupled cluster scheme depends only on the connected singles and
doubles, and the diagonal elements of effective Hamiltonian matrix are thus
not directly affected by the inclusion of connected triples.

For the off-diagonal elements, only the second term of (2.88) is nonzero.
This term generally includes contributions of connected triples. However,
their inclusion is rather simple. As stated before, the current implemen-
tation of the multireference Brillouin-Wigner coupled cluster method is re-
stricted to a model space, where the reference configurations are mutually
monoexcited or biexcited. In this case, the offdiagonal elements of the Hfjg
matrix have the form ((®,)?|Hy(u)eT22®)|®,)¢ for mutually monoexcited
and ((‘Du);‘lﬂf[ ~(w)ef12W|® )¢ for mutually biexcited pair of reference con-
figurations and they correspond to the right hand sides of the T; and T,
equations for respective internal excitations. As such, these terms are eval-
uated automatically when solving the T; and T, equation. As long as we
restrict ourselves to a model space with references mutually no more than
biexcited, no changes in the code are required. When expanding the pro-
gram to allow mutually triexcited references, it will be necessary to perform
a similar treatment for the T3 equation.

To be precise, it should be noted, that the ACES II package does not com-
pute explicitly the ((@,)?] A (1)e7 %) |@,,)c and {(®,)2| Ay (u)e™0]@,)
terms, but instead of that the “true” right hand sides ((®,)?|Vy (1)eT2®)|®,)c
and ((fbﬂ)fjﬂVN(u)eTm(“)Iq)u>c, where Vy was defined in (2.36). These ex-
pressions differ from the needed ones by D¢t and D§/t;} respectively. There-
fore, these terms have to be added in so called “fixing” of the right hand
sides. To distinguish these terms, let call the (((D#)ﬂ]:[ n(w)eh=W|d,) e
and ((@u)%ﬂf{ n(u)eTz®)|® )¢ fixed right hand sides, while the expressions
((2,)2|Vn(r)el=®|@, )¢ and ((®,)2]Viv(p)eT2W|d,)c will be denoted as
the right hand sides.

For a complete model space, the full right hand sides and the fixed ones
are for internal amplitudes identical. This is due to the fact that internal
amplitudes are equal to zero, and thus the difference between the two ex-
pressions vanishes.
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3.1.3 Unlinked part of the T; and T, cluster equations

For the T, equation, the unlinked term reads as (E— Hgf) ((@u)$|eT123(”) |D,,).
In the first factor, there is the difference between the exact energy and diag-
onal element of the effective Hamiltonian. As shown above, no changes are
required for Hﬁg. The total correlation energy is obtained from the diago-
nalization of the effective Hamiltonian matrix, which is not affected by the
presence of connected triples. The second part of the expression is identically
equal to t?, and therefore there are no contributions from connected triples.

For the T, equation, the situation is rather similar. The first factor of
the (B — H8)((®,)2|e"1W)|®,) expression is the same as in the previous
case, while the second factor is identically equal to the ’ri‘}b amplitude defined
in (2.96), which consists only of connected singles and doubles.

3.1.4 Disconnected linked part of the T cluster equa-
tion

The disconnected linked part of the T cluster equation can be expressed as

((20)5 1 (1)e™ 9| @) e, = (3.5)
= P(ab)P(ig) {£2()((@,)% | Hn(w) e =W | @,)0},

Connected triples do not affect directly the t7(u) amplitude, and therefore
contribute through ((®,)? | Hy () T2 | ®,)c only. Since these quantities
are already computed in the T; equation, the connected triples are included
automatically.

3.1.5 Denominators in the T3 equation

The D;’}’g denominators are constructed in an analogous way to the denomi-

nators in the T; and T, equation.
D?flg = fii + fij + for — faa — foo = fec: (3.6)

Since several reference configurations are taken into account, different spinor-
bitals are occupied in different references and it is necessary to reorder the
diagonal elements of the Fock matrix, similarly as has been done already in
MR BWCCSD for D¢ and Dg}.
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3.2 MR BWCCSDTa approximation

In previous section, various aspects of the multireference generalization of
CCSDT method were discussed. It has been shown, that apart of discon-
nected linked and unlinked terms in T3 equation, very few changes in the
ACES 1I package are required. This has lead to the MR BWCCSDTa ap-
proximation, where the disconnected linked and unlinked contributions to
the T3 equation are neglected. Otherwise, the connected triples are included
fully in the description. This approximation leads to the following cluster
equations

(E—Hgp)te(p) = (D)3 Hn(p)e™W|@,)q (3.7)
for connected singles,
(E—Hg)rd (1) = (2,)%|Hn(m)e™ W) |@,)c + (3.8)
+ P(ab)P(ig)t()((Du)] | Hn(w) "™ | @,)¢
for connected doubles, and
0 = ((B)2IAn(1)e™W|@,)c (3.9)
for connected triples.

The main motivation for this approximation was, of course, the easy
implementation of the MR BWCCSDTa method. However, this approach
faces several drawbacks. First of all, as the disconnected unlinked terms
in T3 are neglected, the method uses Rayleigh-Schrodinger denominators.
This means, that the MR BWCCSDTa is sensitive to the intruder state
problem. Furthermore, this method is not equivalent to the full configuration
interaction for three—electron systems.

The a approximation is compatible with the multireference generalization
of CCSDT-n methods. In this case, contributions of connected singles and
triples to the connected parts of T and T3 equation are handled in the same
way as in the single reference methods. This leads to MR BWCCSDT-na
methods, where n =1, 1b, 2, 3, 4.

3.3 Disconnected terms in the T3 equation

In the discussion of various aspects of the inclusion of connected triple ex-
citations into the cluster operator, we have so far omitted the disconnected
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linked and unlinked contribution to the T3 cluster equation.

For a rigorous treatment it is, however, inevitable to include these terms.
Also, with these terms the method is numerically more stable, due to the
Brillouin-Wigner T3 denominator shift.

3.3.1 Disconnected linked terms

Similarly to the MR BWCCSD case, the disconnected linked terms can be
factorized into connected parts. Since we are concerned with contributions
to the T3 equation, the corresponding diagrams must have three pairs of
external lines, which can be divided between the connected partsas 1+1+1
or 2+ 1.

The Hamiltonian Hy is included only once in disconnected terms, there-
fore only one of the connected parts includes the Hamiltonian and the re-
maining terms consist only of cluster amplitudes.

Let us first concentrate on the connected part which includes the Hamil-
tonian. As said before, it can have either one or two pairs of external lines.
In the former case, all connected diagrams with one Hamiltonian, one pair
of external lines and any number of cluster amplitudes contribute. However,
these diagrams are precisely those contributing to ((®,)2|Hy (1)eT12®™|®,)c,
which is the full right hand side of the T; equation. Therefore, this expression
is available at almost no additional computational cost. Similarly, for dia-
grams with two pairs of external lines we get the ((®,)2|Hy (1)el1=®)|d,)c
T,, which are multireference analogues of the T, right hand sides of the
standard CCSD method.

Since the full right hand sides of the Ty equation are not needed in the MR
BWCCSD method, the “fixing” of T5 right hand sides has to be performed
in a new routine.

The remaining connected diagrams without the Hamiltonian can only be
cluster amplitudes. The connected part with one pair of external lines is the
T, amplitude, connected part with two pairs the Ty amplitude.

The disconnected terms are shown in Figure 3.1. By the use of the defi-
nition of the 7%’ amplitude (2.96), we can write it as

()2 Hy ()eT2®[@,)pcr = Pli/jk)P(a/be) {(@,)2 Hn(w)e"®)|®,)crls
+ (@)% Ay (p)e™W|®,)c} (3.10)
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Figure 3.1: Disconnected linked terms in the T3 equation

YV YYY
Ly

where P(i/jk) and P(a/bc) are antisymmetrization operators defined in
[110].

From the computational point of view, both terms in (3.10) have the
same structure. They consist of an antisymmetrized product of a two-index
quantity, and four-index quantity. Therefore, they can be processed in the
same way.

3.3.2 Unlinked terms
Analogously to the situation in the T; and T equations, the unlinked part
of the T3 equation can be written as (E — HZT)((®,)a¢|eTiz1)]|®,).

The first part of this expression is the difference between the total energy
and the respective diagonal element of the matrix of the effective Hamilto-
nian. However, the second part of this expression is more complicated.

(@u)5kle"=W]@,) = 75(u) =

gol
+ ()t () — £ (u)toe () + ta(u)tls () (3.11)
— t2(u)t%e () + (w)tse () — th (s ()
+ 5 (u)tsp (i) — S (p)tip () + te(m)te ()
+ 82 ()ts ()t () — () (w)eg (i) + £ ()t ()t ()
— ()t ()t () + 5 ()t ()th(p) — t5(p)th(u)te(p)



In this expression, connected triple amplitude is added to the product of
either three T; cluster amplitudes or one Ty amplitude and one T; ampli-
tude It is possible to formally simplify this expression by introducing the
TzJ amplitudes, which absorb the terms with three T; cluster amplitudes. It
can be done in several ways, e.g.

() =5 (k) + () Te(k) — ()T () + t(e) T (k) (3.12)
A O I ERAMEAMER A
+ tf(u)t‘ﬁi(u)—tc(u) (k) + ti ()t (u)
=) + t()thi(n) — 3wtk (u) + th(u)tes (1)
— ()T () + ()T (1) — ()T ()
+ t8(p)esp(p) — t5(m)tae (1) + ti (m)th ()
=) + ()l (p) — ()t (k) + th(u)tls (u)
—  t2(u)tse(p) + th(p)eie () — tR(m)ts ()
+ ()T () — 5 ()T (1) + ()T (1)

It is convenient to write this equation in a symmetric form. If we sub-
stitute in (3.11) all the Ty amplitudes with corresponding 1o amplitudes, we

would include the terms with three T; amplitudes three times. Defining the

72¢(u) amplitude as

- 1
7 (1) = t55 () + {8 W) — £ W)}, (3.13)
the 725°(11) amplitude can be consequently written as

o) = () + (W) (k) — ()T (u)+t2(u)ﬂl}c(u) (3.14)
— ()T () + ()T (k) — t
+ (TR () — ()T () +

or, using the antisymmetrization operators, as
i (1) = tie () + P(i/5k)P(a/bo)ti (n) 77 (k) (3.15)
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3.4 Full MR BWCCSDT method

3.4.1 The T3 equation in MR BWCCSDT

In the previous two paragraphs, the discussion of the disconnected linked and
unlinked parts of T3 cluster equation was presented. Now, it is appropriate to
put all the terms together and present the final form of the T3 equation. By
substituting the expression for the disconnected linked (3.10) and unlinked
(3.15) part into the T3 equation (3.4), we obtain

(E — Hyy) (t85w) + PG/7k)Pa/be) {8 (W)TE(w)}) =

= (@)% Hn (w)e W@, )¢ + P(i/ k)P (a/be){
(D)2 v ()e W@, ) o7l + t2((@,) 5 B (m)e»®)|®,)c}  (3.16)
Now, let us divide the Hamiltonian Hy into Vy and the part including

diagonal elements of the Fock matrix. In a complete analogy to (2.46) and
(2.47), we obtain

(@) Hn(w)e"=®@,)c = DIt + (3.17)
+((@u) 2 Vi (1) [@,)

By inserting this expression into (3.16) we get

(E — He)(tehe(w) + P(i/ jR)P(a/be)te ()i (w)) = Digetibe(n) +  (3.18)
+ (Bulte |V (w)e™®)| @, )¢ + P(i/ k)P (afbe){
(@) Hn ()€™ ®,) o7t + t2((@,) 5 Hn ()€ M| D,0) }

Let us put all the terms with t:’;’,ﬁ on the left hand side of the equation,
and all the remaining terms on the right one.

(D¢ + E — Hif )t (u) = — (@01 Vi (w)e" = W@, ) e+ (3.19)

+P(i/jk)P(a/bc){(E — Hﬁﬁ)t?fu)?fi(u) +
+((@u)¢ | Hn (1) W)|®,) o7l + 15 ((@,)5 Hn (n)e" M| @,)c}

On the left hand side of the equation, there is a shift of the denominator
by (E — Hﬁg), which is characteristic for the Brillouin-Wigner theory and
enables us to overcome the intruder state problem.
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On the right hand side, apart from the standard connected part, there are
three terms with the same structure. All these terms are antisymmetrized
products of one quantity with one pair of external lines and one quantity
with two pairs, and can thus be treated in an analogous manner.

3.4.2 Notes on the implementation

The denominator shift is performed in a routine called rmd314, which divides
the right hand side of (3.19) by the denominator D.

The inclusion of the disconnected linked and unlinked terms is done using
the existing s1s214 and s1s223 routines. The first routine works for the spin
cases aaa and (B30, i.e. for cluster amplitudes corresponding to excitations
between spinorbitals with all « spin or 3 spin, respectively. The latter one is
used for the spin cases a8 and 3. These routines, which are used also for
forming so called “disconnected triple amplitudes” in the analytic gradient
of CCSD(T) and CCSD|T] method, perform generally the antisymmetrized
product of a quantity with one pair of external lines and a quantity with
such two pairs. These routines are called three times for each of the three
contributions of disconnected linked and unlinked terms in equation (3.19).

In the CCSDT ACES II code, the T3 cluster equations are solved before
the T, and T; equations. Therefore, the T; and Ts right hand sides from
previous iterations are used. The same is true for the denominator shift
E — H. The T, right hand sides ((®,)&|Vy(p)e™W|®,)c are fixed by
adding Dt%.

One potential difficulty is encountered, when doing a calculation with
restricted Hartree Fock reference function. In this case, only the a8 T,
amplitudes are obtained by solving cluster equations, and the remaining a«
ones are calculated using the equation

12 = &b — 42t (3.20)

Here, the indices without the bar indicate spinorbitals with the « spin and
indexes with bar spinorbitals with the 3 spin. No right hand sides are thus
computed for aa and B8 amplitudes. However, the right hand sides fulfill an
analogous equation to (3.20) and can be thus obtained by the same procedure
as the corresponding cluster amplitudes.
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Chapter 4

Noniterative inclusion of
connected triples

This chapter is devoted to the noniterative inclusion of connected triple ex-
citations into the multireference Brillouin-Wigner coupled cluster method.

4.1 Corrections to the effective Hamiltonian
matrix

In the single reference CCSD(T) method, the effect of connected triples is
handled as a perturbative correction obtained using an one-step approxima-
tion of connected triples amplitudes. In the multireference case, the situation
is slightly more complicated. Firstly, the correlation energy is obtained by
a diagonalization of the effective Hamiltonian. Secondly, for a calculation
with more than one reference configurations, there are several sets of cluster
amplitudes.

A natural way is thus not to calculate corrections to the correlation energy
itself, but to the matrix elements of the effective Hamiltonian. The corrected
energy is subsequently obtained by its diagonalization.

In the multireference Brillouin-Wigner coupled clusters method, the di-
agonal and off-diagonal elements of H°® matrix elements are obtained in a
different way. The diagonal elements are calculated formally as the “correla-
tion energy” of the respective reference function. The off-diagonal elements
are obtained as the full T; and T, right hand sides corresponding to internal
excitations. The further discussion is correspondingly divided into two parts.
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4.1.1 Correction to the diagonal Hef matrix elements

As stated before, the diagonal element I:I;iﬁ formally corresponds to the cor-
relation energy, calculated using the amplitudes of the p-th reference con-
figuration. Its triples correction is thus conceptually straightforward. The
diagonal elements flﬁﬁ are given by

€ € 4
H:T( MR BWCCSD(T)) = HST( MR BWCCSD) + B4 (1)
+ ESHp) + ESH(n), (4.1)

in an analogy to the single reference case.

In contrast to the case of MR CCSD(T) based on Rayleigh-Schrédinger
perturbation theory [46], there are no renormalization terms present in the
equations, and our expressions are fully analogous to the single reference
theory. However, the formulas for non-Hartree-Fock references have to be
used, since in a multireference theory the reference configurations are in
general not Hartree-Fock ones.

To demonstrate the simplification of the formalism due to the lack of the
renormalization terms we first look at the first term in the MR CCSD(T)

expression for E ( ) [46]

Ef(p) = - gzk Dabkc ul[éj{Tz )Vl @) (@I T2 (1)} + Ta(w) V]l ()5 )
x (@)1 Ta(1) Vvl @) } (4.2)

and for the connected triples amplitudes

D)t (i) = (@) el Do >VN|®u>—§<< Wl To(v) Vi |®,) He. (4.3)

The renormalization term in (4.3) is the second term. Without this term,
the equation becomes

Df(wytefi(n) = ()51 Te(w) Vvl @), (4.4)

which is analogous to the T3 equation of the single reference CCSD(T) and
CCSDT-1 method.

Similarly, the first term in the expression for Eg}] (1) (4.2) vanishes and

the formula reduces to a symmetrical form analogous to the single reference
CCSD(T) method
1 a
EP(n) = 55 2 thE(u) DEE (i (n), (4.5)
abcijk
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where we have used the equation for connected triples amplitudes (4.4)

For other terms, the situation is similar and we get

EE(u Z s (4.6)

[4] Z fk:c tab Zyblg(:u)’ (47)
abcz]k
where the s intermediate is given by
1 aoc
si(w) = 7 2 (bellik)ti(u) (4.8)
bejk

and the triple amplitudes are obtained by solving
DEe(mtii(n) = Z P(i/jk)P(a/be)ti(w) (bellei)

Z P(i/ k) P(a/bc)tys: (1) (k|Ima). (4.9)

All these equations differ from the CCSD(T) ones only by the index y, cor-
responding to the respective reference configuration, from the corresponding
equations (2.74), (2.75), (2.81), and (2.78) for the single reference CCSD(T)
method.

4.1.2 Correction to the off-diagonal elements of the
Hef matrix

The situation concerning the off-diagonal matrix elements of the effective
Hamiltonian is somewhat less clear.

Balkova and Bartlett in their method [46] calculated this correction as
the contribution of the connected triples to T; and T; right hand sides at the
CCSDT-1 level. The justification for this argument was that CCSD(T) can
be viewed as CCSD with one additional iteration of CCSDT-1. Li and Paldus
argued in their work [103,104] that these corrections are not necessary, since
they are already of the fifth or higher order of the perturbation theory. The
validity of this statement, however, might be undermined by several factors.
Firstly, for all reference configurations except the Hartree-Fock one, the Fock
matrix has nonzero off-diagonal elements, and then the perturbation order
of these contributions is reduced, due to the nonzero first order contribution
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to connected singles amplitudes. Secondly, the number of the off-diagonal
elements of effective Hamiltonian matrix grows quadratically with the size
of the model space, and their influence thus increases with the number of
reference configurations.

We have decided to implement both variants. In MR BWCCSD(Ty)
there are no corrections to the off-diagonal H®® matrix elements. In MR
BWCCSD(T), they are given by

HST( MR BWCCSD(T)) = (@,|Hy(u)e™520],) S0P
= (@ Hn()(EH + Ty() |20 (4.10)

4.2 The MR BWCCSD(T) method

As already mentioned, in single reference CCSD(T) the first step is a CCSD
calculation, which is followed by the noniterative perturbative correction. In
the case of multireference Brillouin-Wigner coupled clusters theory, the situ-
ation is the same. In the first step, MR BWCCSD calculation is performed.
Subsequently, using the MR BWCCSD amplitudes, the triples corrections to
the effective Hamiltonian are calculated, as suggested in the previous sec-
tion. Finally, the correlation energy is obtained by the diagonalization of the
effective Hamiltonian matrix.

However, there are several issues to be addressed. One of them is the size
extensivity correction. Another is the lack of invariance of the method with
respect to unitary transformations of orbitals.

4.2.1 Size-extensivity correction to MR BWCCSD(T)

The multireference Brillouin-Wigner coupled cluster method is not size ex-
tensive. Therefore, it is necessary to use size-extensivity corrections. The
two most common types, the aposteriori and iterative correction, were men-
tioned already in the first chapter within the discussion of the MR BWCC
theory.

However, in the case of methods with noniterative triple excitations the
situation is more complex, which is true especially for the commonly used
aposteriori correction. Here, not one, but two corrections are being performed
- one for the effect of connected triples and the second for size-extensivity of
the method. The question is, in what order to calculate these corrections.
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In this work, the size-extensivity correction was always performed first,
regardless of its type. It is assumed to be right to first partially remove the
artifact of the method before using its result for a further calculation.

For the iterative correction, the situation is conceptually quite satisfac-
tory, since the corrected amplitudes are a converged solution of respective
cluster equations. However, in the case of aposteriori correction only one
iteration of the cluster equations without the size-extensive terms is per-
formed. Thus we are combining two noniterative corrections, which is at
least potentially questionable, and has to be tested numerically.

However, since the MR BWCCSD has a n® scaling, while the triples cor-
rection has n' scaling, the computational expenses of the iterative correction
are, when comparing relatively, considerably smaller.

For most systems, the use of size-extensivity correction is inevitable. How-
ever, for very small systems both the aposteriori and the iterative correction
exhibit a very poor performance, while the uncorrected MR BWCC method,
which is close to full configuration interaction for these systems, provides
very accurate results. The use of MR BWCCSD(T) method without size-
-extensivity correction is thus in some situations inevitable.

Conceptually, the calculations without the size-extensivity correction rein-
troduce new problems. Since the size-extensivity correction is always per-
formed before the triples correction, there is no need to include the discon-
nected linked and unlinked contributions to the T3 equation, since all these
terms are already neglected or scaled to zero by the size-extensivity correc-
tion. However, without this correction, all these terms remain and should be
included.

At the moment, the inclusion of these terms is not implemented. The
number of systems, where it is possible to use uncorrected MR BWCC is rel-
atively small. Furthermore, this neglect is analogous to the a approximation
from the iterative methods, and as will be shown later, the effect of the o ap-
proximation on the actual energies is rather limited, and the fundamental
advantage of the full method is better convergence. Since here the connected
triples are included noniteratively, this aspect loses its importance.

4.2.2 Noninvariance with respect to orbital rotations
One of the most important drawbacks of the MR BWCCSD(T) method is

the lack of invariance with respect to unitary transformations within virtual-
virtual and occupied-occupied blocks of orbitals. In the single reference the-
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ory, CCSD(T) is noninvariant when a non-Hartree-Fock reference function
is used. To remove this noninvariance, the semicanonical orbitals are em-
ployed [23].

As mentioned before, the semicanonical orbitals have diagonal occupied—
occupied and virtual-virtual blocks of the Fock matrix. However, in the case
of a multireference method, the orbitals in the active space are occupied
for some reference configurations and virtual for other ones. The orbitals
can thus be made semicanonical only with respect to one of the reference
configurations. Therefore, the MR BWCCSD(T) is not invariant with respect
to occupied—occupied and virtual-virtual transformations.

To ensure the invariance of the MR BWCCSD(T) towards virtual—virtual
and occupied-occupied orbital rotations, it would be necessary to introduce a
special set of orbitals that has not only diagonal virtual-virtual and occupied-
occupied blocks Fock matrix, but is diagonal in the indexes corresponding to
the active orbitals. No progress has been achieved yet in this field, and this
problem remains open for further study.
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Chapter 5

Applications

In the previous two chapters, the development of several new multireference
Brillouin-Wigner coupled clusters methods was described. Here, we give the
results of calculations employing these methods with the main aim to assess
the performance of various aforementioned approaches. Parts of these results
were published in [89,131].

5.1 Study of the oxygen molecule

To assess the accuracy of the new methods, a study of the low-lying elec-
tronic states of the oxygen molecule has been performed. As noted before,
the previous study showed that MR BWCCSD overestimates the harmonic
vibrational frequencies by more than 100 cm™! in comparison with the ex-
perimental values. The aim of this study was to find, whether this discrep-
ancy would be significantly reduced, when connected triples are included in
the description of the dynamic correlation, as was found for single reference
methods.

5.1.1 Computational

The calculations of the oxygen molecule were performed using the model
space spanned by four spin unrestricted reference configurations. They were
formed by two electrons within the 17; antibonding orbital. Since this orbital
is doubly occupied, it is possible to construct four reference configurations
for the Mg = 0 spin component. The reference configurations are shown in
Figure 5.1.
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Figure 5.1: Four-reference model space for the oxygen molecule
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Within this model space, the first three electronic states of the oxygen
molecule can be studied, because the effective Hamiltonian has three dif-
ferent eigenvalues, due to degeneracy. The ground state, X3E;, is not a
genuine multireference system. Its Mg = 0 component is dominated by the
symmetric combination of ®; and ®, references. However, the Ms = 1 com-
ponent can easily be described using a single-reference approach. On the
other hand, the first two excited states, 'A, and 'E¥, benefit greatly from
a multireference treatment. For the lAg state, the most important reference
configurations are ®3 and ®,, while the IE; state is dominated by an anti-
symmetric combination of the ®; and ®, references. The 'A, state is doubly
degenerate.

In some calculations, an extended model space including eight reference
configurations has been used. In the four additional reference configurations,
the 1m, orbital was occupied by two electrons and the 1m; orbital by four
electrons. This enlarged model space is complete, due to different symmetry
of 1m, and lm; orbitals.

In these calculations, the standard Dunning’s correlation consistent basis
sets were used. For all methods, cc-pVTZ was employed. For noniterative
methods, calculations in cc-pVQZ are computationally feasible, and therefore
have been performed. The 1s electrons were excluded from the correlation
treatment, and the a posteriori correction for size-extensivity was used in all
calculations.

For each of the states, the spectroscopic constants were obtained by
Dunham-type polynomial expansion of the potential curve in the vicinity
of the equilibrium interatomic distance. The energies of vertical excitations
X3y, —! Ay and X3E; — 15} were calculated at the experimental bond

length of the X3%; state, 1.20739 A.
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5.1.2 Results and discussion

For this study, the whole set of multireference Brillouin-Wigner coupled clus-
ters methods, listed in previous chapters, has been used. Because of the
number of different approaches, this section is divided into three parts.

Table 5.1: Spectroscopic constants of the X3Eg‘ ground state of the oxygen
molecule.

Method Te We WeTe B. Qe
A cm™! cm™! cm™! cm™!

4R-BWCCSD® 1.199 1683.1 9.74 1.468 | 0.0140
8R-BWCCSD* 1.201 1661.4 9.98 1.461 0.0143
CCSDhe 1.199 1679.1 9.73 1.467 0.0140
CCSD(T) 1.211 1589.6 10.33 1.437 | 0.0150
MR BWCCSDT-1« 1.213 1580.8 14.20 1.432 0.0160
MR BWCCSDT-1ba | 1.213 1576.8 13.71 1.432 0.0160
MR BWCCSDT-2a 1.211 1592.0 13.41 1.437 0.0158
MR BWCCSDT-3a 1.212 1591.8 13.22 1.436 | 0.0150
MR BWCCSDT-4«a 1.211 1590.3 12.67 1.436 | 0.0157
MR BWCCSDT-a 1.211 1596.9 12.03 1.437 0.0151
8R-CISD® 1.198 1670.1 10.75 1.469 0.0148
Experiment® 1.20739 | 1580.361 | 12.0730 | 1.44566 | 0.01579

@ Ref. [96]

b Ref. [132]

MR BWCCSDTa results

The results for the spectroscopic constants for the X329_ state are given
in Table 5.1. As mentioned before, the main focus of this study was to
find, whether the inclusion of connected triples would lead to a significant
improvement particularly of the vibrational frequency, and to a lesser extent
of the anharmonicity.

Let us look first at the vibrational frequency we. With the model space
consisting of four reference configurations, the vibrational frequency is 1683.1
cm™!, which which differs only by 4 cm™! from the result of standard single
reference CCSD method, due to the single reference nature of the X3Eg‘ state.
By increasing of the model space to eight reference configuration, only a
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modest decrease of vibrational frequency of approximately 20 wavenumbers
to 1661.4 cm™! is achieved, which is still more than 80 cm™! above the
experimental value of 1580.361 wavenumbers.

When the connected triples are included, the situation is changed dra-
matically. The MR BWCCSDT-a method yields 1596.9 cm™!, which is only
about 17 cm~! higher than the experimental value. Furthermore, all the
approximative iterative methods MR BWCCSDT-na provide very accurate
values. The best agreement with experiment was obtained by the two compu-
tationally least expensive methods MR BWCCSDT-1a and MR BWCCSDT-
1ba. The higher approximations yielded values in the range between 1490
and 1492 cm™!.

However, it is necessary to stress that these calculations were performed
only in the cc-pVTZ basis set, and therefore are hardly converged with re-
spect to the basis set size. Particularly, the agreement of MR BWCCSDT-1«
and MR BWCCSDT-1ba with the experiment must be assumed to be only
a coincidence. As found by Tennyson and collaborators [133], to obtain vi-
brational frequencies with accuracy of one wavenumber, it is necessary to
include also contributions of connected quadruples and quintuples, employ a
nearly complete basis sets, and take into account relativistic effects.

Concerning anharmonicity wez., the inclusion of connected triples leads
to a significant increase. While at CCSD or MR BWCCSD level the an-
harmonicity is about 10 cm™!, the MR BWCCSDTa value 12.03 cm™! is in
an excellent agreement with experiment 12.0730 cm~!. Again, this level of
accuracy has to be regarded as numerical coincidence. Approximative MR
BWCCSDT-na methods all overestimate the anharmonicity. Unlike with the
vibrational frequencies, the more advanced approximations yield in this case
more accurate results.

The results also show, that the inclusion of connected triples leads to
an elongation of the bond length r.. While MR BWCCSD underestimates
the bond length by 0.007 A, MR BWCCSDTa overestimates this quantity
by 0.004 A. Among the MR BWCCSDT-na methods, MR BWCCSDT-1«
yields worst results, while the performance of the remaining approximations
is almost the same. Also, the connected triples yield more accurate values of
the rotation-vibration coupling constant c.

For the first excited electronic state, a'A,, the situation is in many as-
pects similar. MR BWCCSD overestimates the vibrational frequency by
approximately 120 cm™!, underestimates the bond length by 0.01 A and
anharmonicity by 2.6 cm~!. However, the a'/A, state has a genuine multire-
ference character, and therefore the increase of the size of the model space has
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Table 5.2: Spectroscopic constants of the alA; excited state of the O,
molecule

Method Te We WeTe B, Qe
A ecem™ {em™! | ecm™! | cm™!

4R-BWCCSD* 1.204 | 1628.4 | 10.27 | 1.453 | 0.0147

8R-BWCCSD* 1.210 | 1583.9 | 11.58 | 1.440 | 0.0156

MR BWCCSDT-1a 1.221 | 1515.6 | 14.68 | 1.414 | 0.0166
MR BWCCSDT-1be | 1.221 | 1511.1 | 13.64 | 1.414 | 0.0166
MR BWCCSDT-2« 1.219 | 1531.2 | 14.74 | 1.419 | 0.0161
MR BWCCSDT-3a 1.219 | 1525.0 | 11.29 | 1.419 | 0.0161
MR BWCCSDT-4«a 1.219 | 1524.7 | 12.47 | 1.418 | 0.0165
MR BWCCSDT-«o 1.219 | 1529.9 | 12.45 | 1.420 | 0.0167

8R-CISD* 1.208 | 1583.0 | 11.68 | 1.444 | 0.0160
Experiment® 1.2155 | 1509.3 | 12.90 | 1.4264 | 0.0171
® Ref. [96]
® Ref. [132]

a significant effect on the spectroscopic constants. The use of four additional
reference configurations leads to a decrease of the vibrational frequency by
approximately 45 cm™!, increase of the bond length by 0.006 A and increase

of the anharmonicity by 1.2 cm™1.

Similarly to the situation for the ground state, the inclusion of connected
triples leads to a dramatic improvement of the vibrational frequency. MR
BWCCSDTa result of 1529.9 cm™! is only 20 cm™! above the experimental
value of 1509.3 cm~!. Among the approximate methods, MR BWCCSDT-1c
and MR BWCCSDT-1ba provide the best agreement with the experiment.
However, the difference of only 6.3 and 1.8 cm™! cannot be assumed to be
anything but a numerical coincidence. The higher approximations give vi-
brational frequencies in between 1524 and 1532 cm™!, which is in a good
agreement with the full MR BWCCSDTa method.

For the bond length, the MR BWCCSDTa value 1.2185 A is only 0.003
A above the experiment, which is another significant improvement. The re-
sults of the approximative methods higher than MR BWCCSDT-1ba are
very close to the MR BWCCSDTa value, while MR BWCCSDT-1a and
MR BWCCSDT-1ba overestimate the bond length by 0.0055 A. The anhar-
monicity is overestimated by MR BWCCSDT-1a and MR BWCCSDT-1ba
and underestimated by the higher methods. The best performance is achieved
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by MR BWCCSDT-4a and MR BWCCSDT-a.

Table 5.3: Spectroscopic constants of the blﬁg,F excited state of the O,
molecule

Method Te We WeTe B. Qe
A cm™! cm™! | cm™! cm ™!

4R-BWCCSD* 1.211 1576.1 10.72 1.436 0.0153

8R-BWCCSD*® 1.222 1491.0 12.25 1.411 0.0169

MR BWCCSDT-1a 1.231 1443.5 | 1540 | 1.390 | 0.0182
MR BWCCSDT-1ba | 1.232 1441.5 | 14.56 | 1.390 | 0.0178
MR BWCCSDT-2a 1.229 1459.7 | 14.20 | 1.396 | 0.0175
MR BWCCSDT-3« 1.229 1458.1 13.19 | 1.396 | 0.0177
MR BWCCSDT-4« 1.228 1461.2 | 12.28 | 1.397 | 0.0175
MR BWCCSDT-« 1.229 1456.9 | 12.32 | 1.396 | 0.0181

8R-CISD* 1.220 1496.9 | 12.22 1.416 | 0.0170
Experiment® 1.22675 | 1432.687 | 13.950 | 1.40041 | 0.01817
@ Ref. [96]
> Ref. [132]

The situation is similar for the blz‘; state as well, only the multireference
character is even stronger. MR BWCCSD with four reference configurations
overestimates the vibrational frequency by approximately 140 cm™!, under-
estimates the bond length by 0.015 A and anharmonicity by 3.2 cm~!. The
enlargement of the model space to eight reference configuration results in a
decrease of the vibrational frequency by 85 cm™!, an increase of the bond
length by 0.01 A, and an increase of anharmonicity by 1.5 A.

The inclusion of connected triples has a similar effect as for the previ-
ous two states. The vibrational frequency obtained by MR BWCCSDT«
method, which is 1456.9 cm™!, is about 24 cm™! above the experimental
value of 1456.9 cm™!. The results of MR BWCCSDT-na for n = 2, 3,4 are
similar. Compared to the previous two states, the difference between MR
BWCCSDTa and MR BWCCSDT-1« is only about 12 cm™!.

Again, the bond length is overestimated by MR BWCCSDTa and all
its approximations. The MR BWCCSDTa« yields 1.2289 A which is ap-
proximately 0.002 A higher than the experiment. The performance of MR
BWCCSDT-1a is for bond length worse than of the full MR BWCCSDTa
method. The anharmonicity given by the MR BWCCSDTa method is
12.32cm™!, which is 1.6 cm™! below the experiment. When approximate
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triples methods are used, anharmonicity increases as the less rigorous ap-

proximations are used.

Table 5.4: Comparison of the vertical transition energies computed for the
O3 molecule in the cc-pVTZ basis at the experimental equilibrium distance

and harmonic 0-0 transition energies (in parenthesis)

Method T. ( X°L, — a'A,) | T (X°T,; — b'T])
eV eV

DIP-STEOM-CCSD* 1.066 1.803
4R-BWCCSD* 1.058 (1.055) 1.902 (1.801)
8R-BWCCSD* 1.026 (1.023) 1.777 (1.761)
8R-CISD® 0.982 (0.980) 1.698 (1.684)
4R-BWCCSDT-1a 1.074 (1.070) 1.803 (1.795)
4R-BWCCSDT-1a ® 1.067 (1.063) 1.792 (1.694)
4R-BWCCSDT-a 1.087 (1.083) 1.799 (1.790)
Experiment? 0.982 1.636

¢ Results obtained previously [96] employing the doubly ionized similarity
transformed equation of motion CCSD method [73-76] implemented in the
ACES II program [134].

® Computed in the aug-cc-pVTZ basis set.

¢ Ref. [96]

¢ Ref. [132]

From the performance of MR BWCCSD for the two excited states it
is obvious, that the size of the model space has a significant effect on the
accuracy of the spectroscopic constants. Calculations have been attempted
with eight reference model space. However, they were not successful due
to convergence problems. This can be explained by the sensitivity of the «
approximation to the intruder state effect, due to the Rayleigh-Schrodinger
denominators in the T3 equation (3.9).

The results of vertical excitation energies are listed in Table 5.4. In con-
trast to the situation with the spectroscopic constants, there is no apparent
improvement due to the inclusion of connected triples for both the X3Eg‘
— alAgj and X3%; — b'LY excitations. For X3%, — alA, vertical excita-
tion, both MR BWCCSDTa and MR BWCCSDT—1a show a larger devia-
tion from the experimental value than MR BWCCSD. In the case of X32g‘
— blE; the performance of MR BWCCSDTa and MR BWCCSDT—-1a is
slightly better than that of MR BWCCSD.
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It was suggested, that the lack of improvement can be caused by the use of
experimental geometry instead of the bond length calculated by the respec-
tive methods. Therefore, the vertical excitation energies were calculated also
using these geometries and results are shown in parenthesis in Table 5.4. In
all the cases, this leads to a better agreement with the experiment. However,
the effect is very small, compared to the deviation from the experimental
values.

It also has to be noted, that the data indicate that for vertical excita-
tion energies, the size of the model space is much more important than the
inclusion of connected triples.

Table 5.5: Spectroscopic constants of the X3Eg‘ ground state of the O,
molecule.

Method Te We WeZLe B, Q.
A cm™! cm™! cm™! cm™!
4R BWCCSDT-1« 1.213 1580.8 14.20 1.432 0.0160
4R BWCCSDT-4a | 1.211 1590.3 12.67 1.436 0.0157
4R BWCCSDT-« 1.211 1596.9 12.03 1.437 0.0151
4R BWCCSDT-1 1.213 1578.1 11.89 1.431 0.0145
4R BWCCSDT-1b 1.214 1577.8 11.90 1.431 0.0145
4R BWCCSDT-2 1.211 1593.7 12.88 1.436 0.0156
4R BWCCSDT-3 1.212 1587.2 10.82 1.436 0.0157
4R BWCCSDT-4 1.213 1580.2 11.87 1.432 0.0145
4R BWCCSDT 1.211 1596.5 12.60 1.436 0.0148
8R BWCCSDT-1 1.213 1568.5 10.63 1.432 0.0159
8R BWCCSDT 1.211 1589.2 11.66 1.437 0.0161
Experiment® 1.20739 | 1580.361 | 12.0730 | 1.44566 | 0.01579
® Ref. [132]

MR BWCCSDT results

The results of spectroscopic constants, obtained at the MRBWCCSDT and
MR BWCCSDT-n level, are presented in Table 5.5 for the X3E; state, in
Table 5.6 for the a' A, state and in Table 5.7 for the b'X} state.

For most of the methods used, the inclusion of disconnected terms in T'3
equation has a very limited effect on both the bond length and the vibrational
frequency. At the MR BWCCSDT-1 level, the vibrational frequency 1578.1
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cm~! is lowered by 2.7 cm~! compared to the MR BWCCSDT-1-a value,
while the bond length increased by 0.0002 A. At the MR BWCCSDT level,
the vibrational frequency decreased by only 0.4 cm™! to 1596.5 cm™!, and
the bond length increased by 0.0001 A.

The most significant shift was observed at the MR BWCCSDT-4 level.
The MR BWCCSDT-4 vibrational frequency of 1580.2 cm™! is lower by ap-
proximately 10 cm™! than the MR BWCCSDT-4-a value of 1590.3 cm™!.
Also, the bond length is increased by 0.002 A from 1.2114 A to 1.2130 A. The
MR BWCCSDT-4 results are thus very similar to those of MR BWCCSDT-1
and MR BWCCSDT-1-a methods.

Perhaps the most important difference from the calculations with the
a approximation was the increased numerical stability of the method, and
consequently a faster convergence of the calculation procedure. Therefore,
calculations with the eight reference model space have thus become possible.

The inclusion of eight reference configurations leads to a decrease of vi-
brational frequency and to an increase of the bond length. In some cases,
this also leads to a larger deviation from experiment. However, as will be
shown later, the use of larger basis set has the opposite effect on both of
these quantities. It is necessary to bear in mind, that cc-pVTZ is far from
being a complete basis set, and therefore a quantitative agreement with the
experiment cannot be expected.

Similarly to the situation for the ground state, the results of vibrational
frequency and the bond length of MR BWCCSDT method are very close to
its a counterpart. The MR BWCCSDT-1 vibrational frequency decreased
by 8.5 cm™! to 1507.4 cm™!, which is in an excellent agreement with the
experimental value. The bond length was not affected by the inclusion of
disconnected terms.

Furthermore, the MR BWCCSDT-4 bond length and vibrational fre-
quency differ significantly from those obtained by the MR BWCCSDT-4-«
method (i.e. 1.2197 A vs. 1.2191 A, 1524.7 cm™! vs. 1524.7 cm™!). In
contrast to the ground state, the MR BWCCSDT-4 results lie between the
MR BWCCSDT-1 and MR BWCCSDT values.

Similarly to the ground state, the extension of the model space results in
a decrease of the vibrational frequency. For this state, its magnitude of this
is larger, which is caused by a stronger multireference character of the a'A,
state.

The situation for the b12; state is in many aspects analogous to the
previous two states. The MR BWCCSDT results lie very close to the MR
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Table 5.6: Spectroscopic constants of the alA, excited state of the O,
molecule

Method Te We WeZLe B, Q,

A ecm™?! [em™!' | em™! | em™!
4R-BWCCSD 1.204 | 1628.4 | 10.27 | 1.453 | 0.0147
8R-BWCCSD 1.210 | 1583.9 | 11.58 | 1.440 | 0.0156

4R BWCCSDT-1a | 1.221 | 1515.6 | 14.68 | 1.414 | 0.0166
4R BWCCSDT-4a | 1.219 | 1524.7 | 12.47 | 1.418 | 0.0165
4R, BWCCSDT-a | 1.219 | 1529.9 | 12.45 | 1.420 | 0.0167
4R BWCCSDT-1 | 1.221 | 15074 | 11.03 | 1.413 | 0.0168
4R BWCCSDT-1b | 1.221 | 1507.2 | 11.03 | 1.413 | 0.0168
4R BWCCSDT-2 | 1.219 | 1524.0 | 11.65 | 1.419 | 0.0168
4R BWCCSDT-3 | 1.219 | 1523.5 ] 11.62 | 1.418 | 0.0168
4R BWCCSDT-4 | 1.220 {1517.9 | 11.14 | 1.417 | 0.0166
4R BWCCSDT 1.218 | 1528.5 | 11.84 | 1.419 | 0.0170
8R BWCCSDT-1 | 1.224 | 1483.3 | 10.00 | 1.407 | 0.0156
8R BWCCSDT 1.220 | 1509.0 | 11.45 | 1.415 | 0.0169
Experiment® 1.2155 | 1509.3 | 12.90 | 1.4264 | 0.0171

@ Ref. [96]
5 Ref. [132]

BWCCSDT-a ones, while most of the MR BWCCSDT-n approaches pro-
vide significant decreases of vibrational frequency. The MR BWCCSDT-1

frequency is lower by 7 cm™! compared to its a counterpart, while the most
significant change is observed for the MR BWCCSDT-4 method.

The changes of the bond length have a larger magnitude than for the two
lower states. The MR BWCCSDT-1 method provides a value of 1.2316 A,
which is larger by 0.0003 A than that of MR BWCCSDT-1-a. The largest
increase of the bond length was observed at the MR BWCCSDT-4 level,
where the MR BWCCSDT-4 value lies 0.0021 A above the MR BWCCSDT-

4-a result.

Vibrational frequencies calculated within the eight reference model space
are again significantly lower than those of four reference calculations.

The results of vertical excitation energies are listed in Table 5.8. The
comparison shows only minimal differences between the full MR BWCCSDT
method and its a approximation, when four reference configurations are used.
However, with a model space consisting of eight reference configurations,
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Table 5.7: Spectroscopic constants of the blzj excited state of the O,
molecule

Method Te We WeZe B, Q.
A cm™! cm™! | cm™! cm™!

4R-BWCCSD¢ 1.211 1576.1 10.72 1.436 0.0153

8R-BWCCSD*? 1.222 1491.0 12.25 1.411 0.0169

4R BWCCSDT-1a | 1.231 1443.5 15.40 1.390 | 0.0182
4R BWCCSDT-4a | 1.228 1461.2 12.28 1.397 | 0.0175
4R BWCCSDT-«a 1.229 1456.9 12.32 1.396 | 0.0181
4R BWCCSDT-1 1.232 1437.9 15.22 1.389 | 0.0183
4R BWCCSDT-1b | 1.232 1438.5 14.65 1.389 | 0.0181
4R BWCCSDT-2 1.229 1454.1 11.29 1.395 | 0.0175
4R BWCCSDT-3 1.229 1457.2 12.15 1.395 | 0.0175
4R BWCCSDT-4 1.231 1441.4 10.51 1.391 | 0.0174

4R BWCCSDT 1.229 | 1457.7 | 12.86 | 1.395 | 0.0179
8R BWCCSDT-1 | 1.238 | 1394.0 | 13.18 | 1.376 | 0.0175
8R BWCCSDT 1.233 | 1419.1 | 11.91 | 1.385 | 0.0183
Experiment? 1.22675 | 1432.687 | 13.950 | 1.40041 | 0.01817
@ Ref. [96]
® Ref. [132]

the vertical energies are significantly decreased, which results in a better
agreement with the experiment. At all calculation levels, the results for the
X3%, — b'E} are more accurate than those for X*°X; — a'A transition.

MR BWCCSD(T) results

The spectroscopic constants obtained are listed in Table 5.9 for the ground
X3%, state, in Table 5.10 for the a'A, state, and in Table 5.11 for b'ES}.

For the ground state, there is no significant improvement of the results due
to the multireference treatment. However, there is a dramatic improvement of
vibrational frequencies due to the connected triples, regardless of the level at
which they are included. The vibrational frequency of 1577.2 cm™! obtained
by MR BWCCSD(T) in cc-pVTZ basis set is incidentally in a very good
agreement with the experimental value of 1580 cm™!. The increase of the
basis set size to cc-pVQZ leads to an increase of the vibrational frequency

by approximately 10 cm™?.
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Table 5.8: Comparison of the vertical transition energies computed for the
O, molecule in the cc-pVTZ basis at the experimental equilibrium distance

Method Te ( X3E; — alAg) Te ( XBE; — blE;)
eV eV
DIP-STEOM-CCSD* 1.066 1.803
4R-BWCCSD?® 1.058 1.902
8R-BWCCSD? 1.026 1.777
4R-BWCCSDT-1« 1.074 1.803
4R-BWCCSDT-« 1.087 1.799
4R-BWCCSDT-1 1.075 1.802
4R-BWCCSDT 1.087 1.800
8R-BWCCSDT-1 1.043 1.745
8R-BWCCSDT 1.062 1.757
Experiment® 0.982 1.636

® Results obtained previously [96] employing the doubly ionized similarity
transformed equation of motion CCSD method [73-76] implemented in the
ACES II program [134].

® Ref. [96]

¢ Ref. (132

Without the triples correction to the off-diagonal Heft elements, the vi-
brational frequency is 1588.5 cm™! in the cc-pVTZ basis set and 1599.8 cm ™!
in cc-pVQZ. The value for cc-pVTZ basis set is almost identical to that of
single reference CCSD(T).

Extending the model space to eight reference configurations yields only
a minimal change of vibrational frequencies. This is hardly surprising, due
to the single-reference character of the X3E; ground state. However, these
changes are significantly lower than in the case of the MR BWCCSD method.

For the a'A, state, the MR BWCCSD(T) vibrational frequency 1523
cm™! is again close to the value 1529 cm™! obtained by the iterative MR
BWCCSDTa method and to the experimental value 1509 cm~!. The increase
of the basis set size leads to an increase of the vibrational frequency by 16.2
em™! to 1539.5 cm~!. For both basis sets, the MR BWCCSD(T,) results
are approximately five wavenumbers below the values the MR BWCCSD(T)
ones.

For the a'A, state, the multireference treatment starts to play an im-
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Table 5.9: Spectroscopic constants of the X32g‘ ground state of the O,
molecule, 1s orbitals excluded from correlation treatment

Basis Method Te We WeTe B, Qe
A em™ [ em™! [ em™! | cm!
cc-pVTZ | 4AR-BWCCSD® 1.199 | 1683.1 9.74 1.468 | 0.0140
cc-pVTZ | 8R-BWCCSD? 1.201 1661.4 9.98 1.461 | 0.0143
cc-pVTZ | CCSD 1.199 | 1679.1 9.73 1.467 | 0.0140
cc-pVTZ | CCSD(T) 1.211 1589.6 10.33 1.437 | 0.0150

cc-pVTZ | 4R BWCCSDT-1a | 1.213 | 1580.8 | 14.20 | 1.432 | 0.0160
cc-pVTZ | 4R BWCCSDT-a 1.211 | 1596.9 | 12.03 | 1.437 | 0.0151
cc-pVTZ | 4R BWCCSD(T) 1.213 | 1577.3 | 11.54 | 1.433 | 0.0156
cc-pVTZ | 8R BWCCSD(T) 1.213 | 1576.7 | 11.84 | 1.433 | 0.0159
cc-pVTZ | 4R BWCCSD(Tg)® | 1.212 | 1588.5 | 11.71 | 1.436 | 0.0156
cc-pVTZ | 8R BWCCSD(T4)* | 1.212 | 1588.5 | 11.71 | 1.436 | 0.0156
cc-pVTZ | 8R-CISD? 1.198 | 1670.1 | 10.75 | 1.469 | 0.0148
cc-pVQZ | 4R BWCCSD(T) 1.209 | 1589.6 | 12.37 | 1.442 | 0.0159
cc-pVQZ | 8R BWCCSD(T) 1.209 | 1589.7 | 12.38 | 1.442 | 0.0158

(

(

a
a

cc-pVQZ | 4R BWCCSD(Ty)* | 1.208 | 1599.8 | 11.78 | 1.445 | 0.0156
cc-pVQZ | 8R BWCCSD(Ty)® | 1.208 | 1599.8 | 11.77 | 1.445 | 0.0156

a
a

Experiment® 1.2074 | 1580.36 | 12.073 | 1.4457 | 0.01579

@ Triples correction only to diagonal elements of effective Hamiltonian matrix,
for details see text.

> Ref. [96]

¢ Ref. [132]

portant role. Therefore, the increase of the size of the model space has a
significant effect on the spectroscopic constants. For vibrational frequency it
leads to the decrease of MR BWCCSD(T) value by almost 20 cm™! to 1505
cm™! in the cc-pVTZ and 1520.5 cm™! in the cc-pVQZ basis set. In the case
of MR BWCCSD(Ty), the decrease is only about 5 cm™ in cc-pVTZ and 8
cm~! in cc-pVQZ basis set.

Finally, in the blilg+ excited state the general picture is similar to the
a'A, state. The MR BWCCSD(T) vibrational frequency 1454 cm™ is only
three wavenumbers lower than the MR BWCCSDTa result 1457 cm™!. The
cc-pVQZ value is larger by approximately 20 cm~! compared to the cc-pVTZ
one.
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Table 5.10: Spectroscopic constants of the a’!A, excited state of the O
molecule, 1s orbitals excluded from correlation treatment

Basis set | Method Te We WeZe B, Qe
A em™?! [em™ | em™ | em™!

cc-pVTZ | 4R-BWCCSD? 1.204 | 1628.4 | 10.27 | 1.453 | 0.0147

cc-pVTZ | 8R-BWCCSD? 1.210 | 1583.9 | 11.58 | 1.440 | 0.0156

cc-pVTZ | 4R BWCCSDT-1e | 1.221 | 1515.6 | 14.68 | 1.414 | 0.0166
cc-pVTZ | 4R BWCCSDT-a 1.219 | 1529.9 | 12.45 | 1.420 | 0.0167
cc-pVTZ | 4R BWCCSD(T) 1.219 | 1523.2 | 11.32 | 1.418 | 0.0161
cc-pVTZ | 8R BWCCSD(T) 1.221 | 1505.5 | 12.54 | 1.414 | 0.0172
cc-pVTZ | 4R BWCCSD(Tg)® | 1.220 | 1518.2 | 11.97 | 1.417 | 0.0167
cc-pVTZ | 8R BWCCSD(Ty)® | 1.221 | 1513.3 | 12.37 | 1.415 | 0.0160
cc-pVQZ | 4R BWCCSD(T) 1.215 | 1539.5 | 12.63 | 1.429 | 0.0167
cc-pVQZ | 8R BWCCSD(T) 1.217 | 1520.6 | 12.24 | 1.424 | 0.0168
cc-pVQZ | 4R BWCCSD(Ty)* | 1.215 | 15634.5 | 12.03 | 1.427 | 0.0167
cc-pVQZ | 8R BWCCSD(Ty)® | 1.216 | 1526.5 | 12.28 | 1.426 | 0.0170
Experiment® 1.2155 | 1509.3 | 12.90 | 1.4264 | 0.0171

a
a

¢ Triples correction only to diagonal elements of effective Hamiltonian matrix,
for details see text.

® Ref. [96]

¢ Ref. [132]

However, in this case the increase of the model space size has a dramatic
effect on the vibrational frequency, leading to a decrease by 50 cm~!. This
effect is diminished slightly when a larger basis set is used or without triples
correction to the non-diagonal effective Hamiltonian matrix elements.

Similarly to the a'A, state, the MR BWCCSD(T,) results show a weaker
dependence on the size of model space. With four reference configurations,
the vibrational frequencies are 1449.6 wavenumbers in cc-pVTZ and 1470.3
wavenumbers in cc-pVQZ, while with eight reference configurations the re-
sults are 1411.8 and 1431.8 cm™!, respectively. The differences between cal-
culations with four and eight references are thus reduced by approximately
10 cm™L.

The results of vertical excitation energies are listed in Table 5.12. The MR
BWCCSD(T) values are close to those of the iterative methods. Using larger
basis set, or larger model space leads to a decrease of the vertical excitation
energies. The MR BWCCSD(T),) results are close to the MR BWCCSD(T)
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Table 5.11: Spectroscopic constants of the le];,Ir excited state of the O,
molecule, 1s orbitals excluded from correlation treatment

Basis Method Te We WeTe B, Qe
A cm™! cm™! | cm™! cm™!

cc-pVTZ | 4R-BWCCSD? 1.211 | 1576.1 | 10.72 | 1.436 | 0.0153

cc-pVTZ | 8R-BWCCSD? 1.222 | 1491.0 | 12.25 | 1.411 | 0.0169

cc-pVTZ | 4R BWCCSDT-1a 1.231 | 1443.5 | 1540 | 1.390 | 0.0182
cc-pVTZ | 4R BWCCSDT-1ba | 1.232 | 1441.5 | 14.56 | 1.390 | 0.0178
cc-pVTZ | 4R BWCCSDT-4a 1.228 | 1461.2 | 12.28 | 1.397 | 0.0175
cc-pVTZ | 4R BWCCSDT-a 1.229 | 1456.9 | 12.32 | 1.396 | 0.0181
cc-pVTZ | 4R-BWCCSD(T) 1.229 | 1454.1 | 12.15 | 1.395 | 0.0171
cc-pVTZ | BR-BWCCSD(T) 1.236 | 1405.9 | 12.59 | 1.380 | 0.0180
cc-pVTZ | 4R-BWCCSD(Ty)* | 1.230 | 1449.6 | 12.23 | 1.394 | 0.0175
cc-pVTZ | BR-BWCCSD(Ty)* | 1.234 | 1411.8 | 12.76 | 1.384 | 0.0183
cc-pVTZ | 8R-CISD 1.220 | 1496.9 | 12.22 | 1.416 | 0.0170
cc-pVQZ | 4R-BWCCSD(T) 1.224 | 1472.7 | 12.64 | 1.407 | 0.0174
cc-pVQZ | 8R-BWCCSD(T) 1.230 | 1426.8 | 13.27 | 1.394 | 0.0177
cc-pVQZ | 4AR-BWCCSD(Ty)* | 1.224 | 1470.3 | 12.88 | 1.406 | 0.0171
cc-pVQZ | 8R-BWCCSD(T4)® | 1.229 | 1431.8 | 13.60 | 1.396 | 0.0180
Experiment® 1.2268 | 1432.69 | 13.950 | 1.4004 | 0.01817

¢ Triples correction only to diagonal elements of effective Hamiltonian matrix,

for details see text.
b Ref. [96]
¢ Ref. [132]

ones for the (X?%; — b'E}) excitation, while for the X*YX — alA, there
is a significant decrease of the excitation energy.

5.1.3 Conclusions

There has been a dramatic improvement of the vibrational frequencies due
to the inclusion of connected triples methods. The differences between full
MR BWCCSDT method and the a approximation were only modest. More
significant differences were observed in the case of some of the approxima-
tive MR BWCCSDT-n level, especially MR BWCCSDT-4. Better numerical
stability permitted calculations with eight reference configurations.

The MR BWCCSD(T) results were in a good agreement with both the
experiment and the results of iterative methods. The greatly reduced com-
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Table 5.12: Comparison of vertical transition energies computed for the O,
moleand harmonic 0-0 transition energies (in parenthesis)

Method Te ( X3Z; — alAg) | Te ( X32; — bIZ;)
eV eV
4R-BWCCSD? 1.058 1.902
8R-BWCCSD? 1.026 1.777
4R-BWCCSDT-1a 1.074 1.803
4R-BWCCSDT-« 1.087 1.799
4R-BWCCSD(T) 1.093 1.848
4R-BWCCSD(Ty)® 1.030 1.845
8R-BWCCSD(T) 1.074 1.774
8R-BWCCSD(Ty)® 1.038 1.804
4R-BWCCSD(T)¢ 1.074 1.826
4R-BWCCSD(T,)** 1.011 1.827
8R-BWCCSD(T)® 1.050 1.747
8R-BWCCSD(Ty)%¢ 1.016 1.779
Experiment? 0.982 1.636

® Results obtained previously [96]

® Computed in the aug-cc-pVTZ basis set.

¢ Computed in the cc-pVQZ basis set.

4 Ref. [132]

¢ Triples correction only to the diagonal elements of effective Hamiltonian
matrix, for details see text.

putational costs enabled us calculations with cc-pVQZ basis set.

5.2 Study of the perpendicular (C,) inser-
tion pathway of Be into H,

The perpendicular (also denoted as Cs,) insertion pathway of a beryllium
atom into the hydrogen molecule is one of popular benchmarks for testing
various multireference methods. However, it proceeds far from true transition
state of the reaction [135], and has therefore little importance for chemistry.
Nevertheless, it is very useful for assessing the performance of multireference
methods [81,88,135-139].
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This reaction path was designed by Purvis and collaborators [140], with
the aim to include points with many different reference configurations. Very
small model system has been chosen, in order to be able to perform full
configuration interaction (FCI) calculations and make a rigorous comparison
possible.

5.2.1 Computational

The reaction path includes ten points denoted as A-J. The geometries of
these points are given in table (5.13). Among these points, G - J are located
in the entrance of the Be + H, valley of the potential energy surface. At
these geometries, the dominant configuration is 1a? 2a? 3a?. The points A-C,
located in the exit of the valley, correspond to the linear structure of H-Be-H,
where the dominant configuration is 1a? 2a? 1b2. In the transition between
the two regions, the points D, E and F are located. At these geometries,
both of the aforementioned configurations have an important contribution.

Table 5.13: Geometry of BeH; path along the reaction path

Point | Cartesian coordinates
of hydrogen atoms
a.u. a.u. a.u.
A 0 +2.54 0.0
B 0 +2.08 1.0
C 0 +1.62 2.0
D 0 +1.39 2.5
E 0 £1.275 275
F 0 +1.16 3.0
G 0 +0.93 4.0
H 0 +0.7 4.0
I 0 +0.7 6.0
J 0 +0.7 20.0

¢ Beryllium atom is located at the origin of the set of coordinates.
® Ref [140]

The model space was spanned over the 1a? 2a? 3a? and 1a? 2a? 1b3 config-
urations. The CAS SCF calculations indicate presence of other moderately
significant configurations, but this treatment enables us to assess whether
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the high level treatment of dynamic correlation satisfactorily substitutes the
missing reference configurations.

Throughout the calculations, the basis set consisting of ten contracted
Gaussian functions has been used [140],

Since the main goal of the study is a comparison with the full configura-
tion interaction, all electrons are included in the correlation treatment. The
previous study [88] found, that for such a small system the size-extensivity
correction gives a poorer performance than uncorrected MR BWCCSD. We
have thus performed without a size-extensivity correction. Unlike in [88],
standard RHF orbitals were used throughout the calculations.

5.2.2 Results and discussion

The MR BWCCSDT and MR BWCCSDTa energies calculated in the smaller
basis set [140] are presented in Table 5.14.

Table 5.14: Differences of MR BWCCSDT and MR BWCCSDTa energies
from FCI for the BeH, molecule

Energy difference compared to FCI

Point | MR BWCCSDT¢ MR BWCCSDTa® MR BWCCSD? FCI

kcal /mol kcal/mol kcal/mol a.u.
A 0.014 not conv. 0.246 -15.779172
B 0.019 not conv. 0.239 -15.737225
C 0.012 0.020 0.257 -15.674818
D 0.055 0.095 0.111 -15.622884
E 0.184 0.266 -0.381 -15.602919
F 0.113 0.243 -0.083 -15.624964
G 0.091 0.145 0.135 -15.693195
H 0.114 0.133 0.162 -15.736689
| 0.165 0.165 0.180 -15.760878
J 0.168 0.168 0.171 -15.762903

¢ Without size-extensivity correction

For comparison, also the MR BWCCSD energies are given. These are
different from those presented in [88], since RHF orbitals (instead of CAS
SCF ones) were used throughout the study. The FCI energies [140] are given
as a benchmark.
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The performance of the MR BWCCSDT method in the exit part of the
valley (i.e. points A - C) is highly satisfactory, with differences from FCI
smaller than 0.02 kcal/mol. In this region, the description of dynamic cor-
relation is the most critical aspect for achieving of high accuracy. Since the
connected triples are included, and the system consists only of six electrons,
the agreement of the energies with FCI results is very good.

In the region near the transition state (i.e. points D - F), the static
correlation starts to play a dominant role. This results in an increase of
the deviations to 0.055 kcal/mol for point D, 0.184 kcal/mol for point E,
and 0.113 kcal/mol for point F. In contrast with the situation with the MR
BWCCSD, all the deviations have a positive sign, which means that MR
BWCCSDT energies lie above FCI for all studied geometries.

At the entrance to the valley, the deviation from FCI decreases, as the role
of static correlation is diminished. Further increase of the beryllium-hydrogen
interatomic distance and decrease of hydrogen-hydrogen bond length leads to
an increase of the difference between MR BWCCSDT and FCI energies. This
deviation is caused mainly by the size-inextensivity of the uncorrected MR
BWCCSDT method. Comparing these values with the MR BWCCSD ones,
it is clear that the role of connected triples is negligible. The reason for this
trend is that when the molecule dissociates into a hydrogen molecule and a
beryllium atom, which significantly reduces the role of dynamic correlation.

The results of MR BWCCSDT-a are generally close to those of MR
BWCCSDT. Near the transition geometries, MR BWCCSDTa yields en-
ergy 0.04 to 0.12 kcal/mol higher, and thus further apart from the FCI. The
larger differences were found at points D - E, where the multireference char-
acter of the system is strong and the neglected disconnected and unlinked
terms in T3 equation play a larger role. Also, MR BWCCSDTa was found
to be numerically less stable than the full MR BWCCSDT method, failing
to converge for geometries A and B.

Since the primary aim of this study is to assess the performance of the
MR BWCC methods, the transition state region is the most interesting one.
In Table 5.15, the results of previous studies for points D - F are listed the
results, as well as the the difference of the deviations of point D and F are
listed.

Among these methods, only MR CISD, MR BWCCSDT and its o coun-
terpart overestimate the energy for all three geometries. However, the agree-
ment of MR CISD energies with FCI is rather poor, with deviations ranging
from 0.53 kcal/mol for point A to 1.93 kcal/mol for point F. MR AQCC
provides a very good description for the point D, but considerably worse per-
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Table 5.15: Comparison of MR BWCC with other multireference approaches

AFE in kcal/mol
Method Geometry

D E F  Ap_pf
MR BWCCSD* 0.11 -0.38 -0.08 0.19
MR BWCCSD®*¢ |-0.68 0.26 048 -1.13
MR BWCCSDT® | 0.06 0.18 0.11 -0.05
MR BWCCSDTa® | 0.10 0.27 024 -0.14

MR CISD% 053 1.26 193 -1.40
MR AQCCY 0.18 0.70 124 -1.06
MR ACPFbde -0.56 -0.56 -0.33 -0.23
MR ACPF2b -0.07 028 025 -0.32

¢ Without size-extensivity correction.
b Using CAS SCF(2,2) orbitals.

¢ From reference [88].

¢ From reference [139)].

¢ From reference [81].
' Ap_r = AE(D) — AE(F)

formance for the two other states leads to a relatively large value of —1.04
kcal/mol for Ap_r. MR ACPF gives substantial, but very consistent, devia-
tions from FCI, which results in a very low value of Ap_g. Further improve-
ment is observed at MR ACPF2 level, where the largest deviation is only
0.28 kcal/mol for the point E. MR BWCCSD results with RHF reference are
clearly superior to those obtained with CAS SCF orbitals. Most evident is
the difference of the Ap_r values, where the use of RHF orbitals leads to only
0.19 kcal/mol and the use of CAS orbitals to 1.13 kcal/mol. Among these
methods, the results of MR BWCCSDT method provide the best agreement
with FCI, in terms of both the size of the deviations and their consistency.

5.2.3 Conclusions

The C5, insertion pathway of a beryllium atom to a hydrogen molecule was
studied by MR BWCCSDT and MR BWCCSDTa methods. The energies
were compared to FCI. MR BWCCSDT provides very accurate results, while
MR BWCCSDTa energies are generally close to the full MR BWCCSDT.
However, for some geometries MR BWCCSDTa fails to converge. Perfor-
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mance of both methods, compared to other multireference approaches, is
very satisfactory. The use of RHF orbitals is justified by calculations at MR
BWCCSD level.

5.3 Study of the XH, (X=C, Si) diradicals of
the IV. A group

Diradicals are chemical compounds with two electrons in two orbitals with
the same or nearly same energy. There are several classes of diradicals in-
cluding o0 — 7 diradicals, nonconjugated diradicals, non-Kekulé structures
and conjugated annulenes. For details see [141].

The o —7 diradicals have one of the aforementioned partially filled orbitals
of o and one of 7 symmetry. Different symmetry of the two orbitals prevents
their interaction. Carbenes and silylenes belong to this group.

With two electrons in two orbitals, six electron configurations can be con-
structed, as shown in Figure 5.2. Among these, four have the Mg component
equal to zero. For methylene and silylene two geometry configurations are
possible: a linear one and a bent one. The bent structure, which corresponds
to the equilibrium geometry, has Cy, symmetry. For methylene, the five low-
est molecular orbitals are- 1a; 2a; 1by 3a; 1b; with the two partially occupied
orbitals being 3a; and 1b;. The six electron configurations give rise to four
states 3By, 1A, 1 B; and 'A;.

Figure 5.2: Possible references for two electrons in 3a; and 1b; orbitals
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For linear geometry, the system has a D, symmetry. The la; and 2a,
orbitals become 1o, and 20,4, 1b, becomes 1oy, and the 163 and 3a? orbitals
form s degenerate 7, orbital. This results in the electronic states 32;, 1A,
and 'X}.

The relative ordering of these triplet and singlet states depends on the
energy difference between 3a; and 1b; orbital. When these orbitals are degen-
erate, the triplet state is favored, according to Hund’s rule. Any situation,
which increases the energy difference, leads to the stabilization of the sin-
glet. For methylene, the difference is relatively small and the ground state
is triplet. In silylene, the energy gap between these orbitals is increased due
to the smaller bond angle and different hybridization, and that results in a
singlet ground state.

The spin multiplicity plays a key role in chemical reactivity, and therefore
the knowledge of the energy differences between the lowest singlet and triplet
state is important. The singlet state has a significant two-reference character,
and the multireference treatment is thus beneficial.

Among the three studied systems, the methylene has been studied most
extensively. Foster and Boyes configuration interaction study of methylene
found a bent structure of the triplet state [142], in contrast to the results of
Herzberg’s photolysis experiment [143]. The experimental results were then
refined several times [144-147].

Reviews of early quantum chemistry calculations can be found in [148-
151]. Thanks to the small size of the system, various ab initio methods can
be applied [93,151-160], including FCI [151-154].

The studies of the singlet—triplet gap in silylene are considerably less
numerous [93, 156, 158, 161].

5.3.1 Computational

Four electronic states were studied, the singlet states !4; and 'A, and the
triplet states 3B; and 3Y~, depending on the symmetry.

Calculations of the singlet states were performed using the model space
consisting of two reference configurations, as shown in Fig. 5.3. Due to
the Cy, point group, the HOMO and LUMO orbitals have a different spa-
tial symmetry and the monoexcited reference configurations are not neces-
sary. The singlet state was studied by a variety of multireference Brillouin-
-Wigner coupled clusters approaches, which included MR BWCCSDT and
MR BWCCSDT-1 and their o approximations, MR BWCCSD(T) and MR
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BWCCSD(T,), as well as MR BWCCSD calculations. Calculations were
carried out with and without the posteriori size-extensivity correction. With
the exception of iterative triples methods, the iterative size-extensivity cor-
rection was also deployed. All calculations were done using restricted Hartree
Fock reference function. The calculations with noniterative triples used sem-
icanonical orbitals of the Hartree-Fock reference.

Figure 5.3: Two reference model space for the singlet state of carbene

1by — 16, 4

la; lay —

1b; 15,

2a; 2a,

+ FFF
+ FF

la, la,

For the triplet state, standard single reference methods CCSD, CCSD(T),
CCSDT-1, and CCSDT were used, due to its single reference character. Re-
stricted open-shell Hartree Fock reference functions were used for CCSD(T)
and CCSD, whereas CCSDT-1 and CCSDT used unrestricted Hartree Fock
reference function, due to the program restrictions.

Standard Dunning’s basis sets [162,163] cc-pVTZ, cc-pVQZ and cc-pV5Z
were employed. Some of these basis sets were obtained from the EMSL li-
brary. Unless noted otherwise, spherical Gaussians were used. All structures
were optimized in all basis sets used. Because of the lack of the analytical
gradient for MR BWCC methods, most of the optimizations were carried out
numerically. The 1s orbitals of all nonhydrogen atoms were excluded from
the correlation treatment. All calculations were performed using the ACES
IT package.

The singlet-triplet gaps were calculated as the difference between the
energetic minima of the respective states (i.e. adiabatically). On several
places, the extrapolation to complete basis set were carried out using the
Ex = Es + an™! formula [164, 165], where n is the number of basis set
functions.
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5.3.2 Results and discussion
CH,

Due to the multireference character, the main concern of this study are the
singlet states. The equilibrium geometries and corresponding energies for
the 1A; state are listed in Table 5.16 and for !X~ in Table 5.18. The values
of singlet triplet gaps are presented in Table 5.17 for bent structure and in
Table 5.19 for linear one.

Let us first concentrate on the geometries. In the cc-pVTZ basis set, the
MR BWCCSD method yields the C-H bond length of 1.078 A and the valence
angle of 102.30°. The influence of the type of the size-extensivity correction
is rather small, with the difference between the two approaches being only
0.0001 A for the bond length, and 0.05° for the valence angle.

The inclusion of connected triples leads to an increase of the bond length
by almost 0.002 A to 1.1094 A at MR BWCCSD(T), MR BWCCSD(T,) and
MR BWCCSDT-1 level. MR BWCCSDT gives a value larger by 0.0002 A
than the aforementioned methods. The difference between various noniter-
ative MR BWCC approaches is small to negligible, as well as the influence
of the a approximation. The valence angle decreases due to the inclusion of
connected triples by 0.3-0.4 degrees.

The size of the basis set has a significant effect on the equilibrium geome-
try. The bond length decreases by approximately 0.002 A, when the basis set
is expanded to cc-pVQZ. The use of cc-pV5Z basis set decreases the C-H dis-
tance by additional 0.0008 to 0.0001 A. Similarly, the valence angle increases
by approximately 0.35° and 0.25°, respectively.

The differences between geometries calculated with a posteriori and it-
erative size-extensivity correction are relatively small. Calculations without
size-extensivity correction yield bond length longer by approximately 0.001
A and valence angle smaller by 0.25°.

The comparison with experiment shows that both MR BWCCSD(T) and
MR BWCCSD underestimate the bond length and overestimate the valence
angle, when a sufficiently large basis set is used. However, the inclusion
of connected triples leads to a significant improvement. MR BWCCSD(T)
in cc-pV5Z basis set underestimates the bond length by 0.0006 A, while
MR BWCCSD by 0.0032 A. Similarly, MR BWCCSD in cc-pV5Z basis set
overestimates the valence angle by 0.43°, while MR BWCCSD(T) by only
0.08°.
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Table 5.16: The ' A; state of CH, diradical

| Method® | Basisset | rc_p (in A) | ag_c—p | Energy (in a. u.) |

MR BWCCSD a.c. cc-pVTZ 1.1072 102.30° -39.058635
MR BWCCSD i.c. cc-pVTZ 1.1071 102.35° -39.058810
MR BWCCSD n.c. cc-pVTZ 1.1077 102.15° -39.057578
MR BWCCSD(T) a.c. ce-pVTZ 1.1094 101.97° -39.062623
MR BWCCSD(Ty) a.c. | ce-pVTZ 1.1094 102.03° -39.062854
MR BWCCSD(T) i.c. | cc-pVTZ 1.1092 102.03° -39.062786
MR BWCCSD(Ty) i.c. cc-pVTZ 1.1093 102.08° -39.063036
MR BWCCSD(T) n.c. cc-pVTZ 1.1100 101.84° -39.061590
MR BWCCSD(Ty) n.c. | cc-pVTZ 1.1101 101.87° -39.061781
MR BWCCSDT-1 a.c. cc-pVTZ 1.1094 101.97° -39.062606
MR BWCCSDT-1-« a.c. | cc-pVTZ 1.1094 101.97° -39.062606
MR BWCCSDT-1 n.c. cc-pVTZ 1.1101 101.84° -39.061613
MR BWCCSDT-1-a n.c. | cc-pVTZ 1.1101 101.84° -39.061608
MR BWCCSDT a.c. cc-pVTZ 1.1096 101.94° -39.063029
MR BWCCSDTa a.c. cc-pVTZ 1.1096 101.94° -39.063029
MR BWCCSDT n.c. cc-pVTZ 1.1102 101.79° -39.062065
MR BWCCSDTa n.c. ce-pVTZ 1.1103 101.82° -39.062050
MR BWCCSD a.c. cc-pVQZ 1.1050 102.63° -39.068878
MR BWCCSD i.c. cc-pVQZ 1.1048 102.69° -39.069111
MR BWCCSD n.c. cc-pVQZ 1.1059 102.47° -39.067578
MR BWCCSD(T) a.c. cc-pVQZ 1.1073 102.29° -39.073354
MR BWCCSD(T,) a.c. | cc-pVQZ 1.1073 102.36° -39.073614
MR BWCCSD(T) i.c. ce-pVQZ 1.1071 102.34° -39.073576
MR BWCCSD(T,) i.c. cc-pVQZ 1.1073 102.39° -39.073854
MR BWCCSD(T) n.c. cc-pVQZ 1.1083 102.12° -39.072100
MR BWCCSD(T;) n.c. cc-pVQZ 1.1083 102.18° -39.072307
MR BWCCSDT-1 a.c. cc-pVQZ 1.1074 102.31° -39.073368
MR BWCCSDT-1-« a.c. | cc-pVQZ 1.1074 102.31° -39.073364
MR BWCCSDT-1 n.c. cc-pVQZ 1.1081 102.11° -39.072176
MR BWCCSDT-1-a n.c. | cc-pVQZ 1.1081 102.11° -39.072155
MR BWCCSD a.c. cc-pVbhZ 1.1039 102.83° -39.072195
MR BWCCSD i.c. cc-pV5Z 1.1038 102.87° -39.072531
MR BWCCSD n.c. cc-pVoZ 1.1085 102.53° -39.070456
MR BWCCSD(T) a.c. cc-pV5Z 1.1065 102.48° -39.076833
MR BWCCSD(Ty) a.c. | cc-pV5Z 1.1064 102.51° -39.077101
MR BWCCSD(T) i.c. cc-pV5sZ 1.1061 102.52° -39.077156
MR BWCCSD(Ty) i.c. cc-pV5Z 1.1062 102.59° -39.077439
MR BWCCSD(T) n.c. cc-pV5Z 1.1076 102.25° -39.075182
MR BWCCSD(Ty) n.c. | cc-pV5Z 1.1076 102.25° -39.075379
Experiment® 1.1070 102.4°

% a.c. stands for a posteriori size—extensivity correction, i.c. for iterative one, n.c. for no
correction
b Ref. [147]
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Table 5.17: Singlet-triplet gap for bent CH,

Method® cc-pVTZ | cc-pVQZ | cc-pV5HZ | CBS®
kcal/mol | kcal/mol | kcal/mol | kcal/mol

MR BWCCSD a.c. 9.86 9.08 8.63 8.19

MR BWCCSD i.c. 9.75 8.94 8.42 7.94

MR BWCCSD n.c. 10.52 9.90 9.72 9.36

MR BWCCSD(T) a. 9.53 8.74 8.28 7.83

MR BWCCSD(Ty ) 9.39 8.58 8.11 7.65

MR BWCCSD(T) i.c 9.43 8.60 8.08 7.6

MR BWCCSD(T; ) 9.27 8.43 7.90 7.42

MR BWCCSD(T) n 10.18 9.53 9.32 8.95

MR BWCCSD(Td) 10.06 9.40 9.19 8.82

MR BWCCSDT-1 a.c. 9.57 8.78

MR BWCCSDT-1-« a.c. 9.57 8.78

MR BWCCSDT-1 n.c. 10.19 9.53

MR BWCCSDT-1-a n.c. 10.20 9.54

MR BWCCSDT a.c. 9.58

MR BWCCSDT-« a.c. 9.58

MR BWCCSDT n.c. 10.18

MR BWCCSDT-«a n.c. 10.19

Experiment” 9.032 £ 0.057

¢ a.c. stands for a posteriori size-extensivity correction, i.c. for iterative one,
n.c. for no correction

® Extrapolation to complete basis set were performed according to [164,165].
¢ Ref. [166]

For MR BWCCSD and MR BWCCSD(T), it is safe to extrapolate to
a complete basis set. The MR BWCCSD(T) bond length calculated with-
out size-extensivity correction is then 1.1066 A while the valence angle is
predicted as 102.41°, which is in an excellent agreement with experiment.

As far as the methods with iterative inclusion of triples are concerned, no
cc-pV5Z data are available. Still, from the agreement between MR BWCCSD(T)
and MR BWCCSDT-1 in smaller basis sets, it can be expected that the MR
BWCCSDT-1 geometries will remain very close to the MR BWCCSD(T)
ones.

Secondly, let us have a look at the values of total energies and the sin-
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glet triplet gaps of methylene. In the cc-pVTZ basis set, MR BWCCSD
yields the value of 9.86 kcal/mol for the singlet-triplet gap. The iterative
correction reduces the gap by approximately 0.1 kcal/mol, the inclusion of
connected triples by 0.3 kcal/mol, leading to the MR BWCCSDT-1 value of
9.58 kcal/mol and MR BWCCSDT value of 9.57 kcal/mol. The effect of the
a approximation was found to be negligible.

However, significant differences have been found between the various
methods with noniterative inclusion of connected triples. Let us first con-
centrate on the values of total energies. In the cc-pVTZ basis set, all the
energies of the multireference methods with noniterative triples lie approx-
imately in the region between the MR BWCCSDT and MR BWCCSDT-1
energies. The MR BWCCSD(T) energy lies closer to the MR BWCCSDT-1
one, while the MR BWCCSD(T,) energy and results with the iterative cor-
rection closer to the MR BWCCSDT one. However, the MR BWCCSDT
and MR BWCCSDT-1 results were obtained with the a posteriori correc-
tion, and as such should be compared with results obtained with the same
size-extensivity correction.

As was stated already, CCSD(T) can be viewed as an one-step approxima-
tion of CCSDT-1. The same holds for their multireference Brillouin-Wigner
analogues. By comparison with MR BWCCSDT-1, MR BWCCSD(T) dif-
fers by less than 20 pHartree, while MR BWCCSD(T,) by approximately
250 pHartree. The same behavior has been observed in the cc-pVQZ basis
set. From these results we can draw the conclusion, that in this case the
performance of MR BWCCSD(T) is superior to that of MR BWCCSD(T,).

This argument can also be confirmed by the values of singlet triplet gaps.
While in the cc-pVTZ basis set MR BWCCSD(T) value differs from MR
BWCCSDT-1 by only 0.03 kcal/mol and in cc-pVQZ by 0.04 kcal/mol, MR
BWCCSD(Ty) results differ by 0.18 and 0.20 kcal/mol, respectively.

The use of the iterative size-extensivity correction lowers the results of
MR BWCCSD(T) by 0.10, 0.14 and 0.20 kcal/mol, depending on the basis
sets. For MR BWCCSD(Tjy), these changes are 0.12, 0.14 and 0.21 kcal/mol.
These values are very similar to the MR BWCCSD decreases of 0.09, 0.14 and
0.21 kcal/mol, obtained at MR BWCCSD level. Therefore, we can assume
that the size extensivity corrections work at a similar level of accuracy with
the use of connected triples as without them.

The calculations without size-extensivity correction lead in all cases to
substantially higher values of singlet triplet gaps. In a complete analogy
to calculations with size-extensivity correction, the MR BWCCSD provides
largest values and the inclusion of connected triples leads to a decrease of
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Table 5.18: The !X~ state of CH, diradical

| Method® | Basis set | rc_y (in A ) | Energy (in a. u.) |

MR BWCCSD a.c. cc-pVTZ 1.0634 -39.017869
MR BWCCSD i.c. cc-pVTZ 1.0634 -39.018299
MR BWCCSD n.c. cc-pVTZ 1.0632 -39.015827
MR BWCCSD(T) a.c. cc-pVTZ 1.0644 -39.020702
MR BWCCSD(Ty) a.c. | cc-pVTZ 1.0645 -39.021329
MR BWCCSD(T) i.c. cc-pVTZ 1.0644 -39.021136
MR BWCCSD(T,) i.c. cc-pVTZ 1.0645 -39.021766
MR BWCCSD(T) n.c. cc-pVTZ 1.0641 -39.018638
MR BWCCSD(Ty) n.c. | cc-pVTZ 1.0641 -39.019256
MR BWCCSDT-1 a.c. cc-pVTZ 1.0644 -39.020674
MR BWCCSDT-1-a a.c. | cc-pVTZ 1.0644 -39.020669
MR BWCCSDT-1 n.c. cc-pVTZ 1.0645 -39.018679
MR BWCCSDT-1-a n.c. | ce-pVTZ 1.0642 -39.018652
MR BWCCSDT a.c. cc-pVTZ 1.0646 -39.021320
MR BWCCSDTa a.c. cc-pVTZ 1.0646 -39.021312
MR BWCCSDT n.c. cc-pVTZ 1.0645 -39.019340
MR BWCCSDTa n.c. cc-pVTZ 1.0644 -39.019315
MR BWCCSD a.c. cc-pVQZ 1.0627 -39.029636
MR BWCCSD i.c. cc-pVQZ 1.0627 -39.030168
MR BWCCSD n.c. cc-pVQZ 1.0625 -39.027090
MR BWCCSD(T) a.c. cc-pVQZ 1.0638 -39.032800
MR BWCCSD(Ty) a.c. | cc-pVQZ 1.0639 -39.033520
MR BWCCSD(T) i.c. cc-pVQZ 1.0638 -39.033330
MR BWCCSD(Tg) i.c. | cc-pVQZ 1.0639 -39.034052
MR BWCCSD(T) n.c. cc-pVQZ 1.0635 -39.030259
MR BWCCSD(Ty) n.c. | cc-pVQZ 1.0636 -39.030965
MR BWCCSDT-1 a.c. cc-pVQZ 1.0638 -39.032791
MR BWCCSDT-1-a a.c. | cc-pVQZ 1.0638 -39.032808
MR BWCCSDT-1 n.c. cc-pVQZ 1.0636 -39.030344
MR BWCCSDT-1-a n.c. | cc-pVQZ 1.0636 -39.030296
MR BWCCSD a.c. cc-pV5HZ 1.0625 -39.034068
MR BWCCSD i.c. cc-pV5HZ 1.0625 -39.034770
MR BWCCSD n.c. cc-pVSZ 1.0624 -39.030389
MR BWCCSD(T) a.c. cc-pV5Z 1.0635 -39.037047
MR BWCCSD(Ty) a.c. | cc-pVSZ 1.0635 -39.037800
MR BWCCSD(T) i.c. cc-pV5Z 1.0635 -39.037743
MR BWCCSD(Ty) i.c. cc-pV5Z 1.0635 -39.038499
MR BWCCSD(T) n.c. cc-pV5Z 1.0633 -39.033486
MR BWCCSD(Ty) n.c. | cc-pV5Z 1.0633 -39.034217
Experiment® 1.070

2 a.c. stands for a posteriori size—extensivity correction, i.c. for iterative one, n.c. for no
correction
b Ref. [167)
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the gap, while MR BWCCSD(T) performs better than MR BWCCSD(Ty),
when compared with results of iterative methods.

The comparison with the experimental value shows, that all multire-
ference Brillouin-Wigner approaches underestimate the singlet triplet gap.
Surprisingly, the best agreement was obtained at the MR BWCCSD level,
which gave in cc-pV5Z a value lower by approximately 0.4 kcal/mol than the
experiment. The MR BWCCSD(T) results was lower by further 0.3 kcal/mol.

However, the situation is completely different, when no size-extensivity
correction is used. In this case, the MR BWCCSD overestimates in cc-pV5Z
the singlet-triplet gap by 0.7 kcal/mol, while MR BWCCSD(T) and MR
BWCCSD(T,) by only 0.3 and 0.2 kcal/mol respectively.

For linear methylene, situation is in many aspects similar. All the mul-
tireference Brillouin-Wigner coupled clusters approaches significantly under-
estimate the bond length. Inclusion of connected triples leads to an im-
provement compared to MR BWCCSD by approximately 0.001 A. Still, the
deviation from the experiment remains significant, being 0.0065 A at the MR
BWCCSD(T) level in the cc-pV5Z basis set.

Unlike in the case of the ! A; state, there is no increase of the bond length,
when no size-extensivity correction is used. For linear methylene, the bond
length is lowered at all levels of theory by 0.0002 - 0.0003 A, instead of a
significant increase.

As far as the singlet-triplet gaps are concerned, the situation is again very
much similar to the bent structure. The inclusion of connected triples leads
to decrease of the gap size. While MR BWCCSD yields 29.36 kcal/mol in
the cc-pVTZ basis set, the MR BWCCSDT gives 29.84 kcal/mol. In this
case, the MR BWCCSDT-1 gap is higher by 0.1 kcal/mol than the MR
BWCCSDT one. Similarly to the situation with bent geometry, there is an
excellent agreement between MR BWCCSD(T) and MR BWCCSDT-1. The
performance of MR BWCCSD(T) is again superior to MR BWCCSD(Ty).

The effect of the type of size-extensivity correction used is significantly
larger than for the bent structure, as is the effect of the a approximation.
This can be explained by significantly stronger multireference character of the
linear methylene, compared to the bent one. However, the difference between
the results obtained with a posteriori and iterative correction are almost
identical for MR BWCCSD, MR BWCCSD(T) and MR BWCCSD(T,). The
omission of size-extensivity correction leads to an increase of the gap by
approximately 1.3 kcal/mol, compared to the a posteriori correction.
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Table 5.19: Singlet-triplet gap for linear CH,

Method® cc-pVTZ | cc-pVQZ | cc-pV5Z | CBS®
kcal/mol | kcal/mol | kcal/mol | kcal/mol

MR BWCCSD a.c. 29.36 27.77 26.68 25.74
MR BWCCSD i.c. 29.09 27.44 26.24 25.27
MR BWCCSD n.c. 30.65 29.37 28.98 28.24
MR BWCCSD(T) a. 20.92 | 2845 | 2758 | 26.72
MR BWCCSD(Ty ) 29.53 28.00 27.10 26.20
MR BWCCSD(T) i.c 20.65 | 2812 | 27.14 | 26.24
MR BWCCSD(Ty ) 29.56 27.70 26.67 25.58
MR BWCCSD(T) n 31.22 | 3005 | 2081 | 29.14
MR BWCCSD(Td) 30.83 29.60 29.35 28.64
MR BWCCSDT-1 a.c. 29.96 28.49

MR BWCCSDT-1-«a a.c. 29.94 28.48

MR BWCCSDT-1 n.c. 31.19 30.03

MR BWCCSDT-1-a n.c. 31.23 30.06

MR BWCCSDT a.c. 29.84

MR BWCCSDT-« a.c. 29.85

MR BWCCSDT-a n.c. 31.09

MR BWCCSDT n.c. 31.10

@ a.c. stands for a posteriori size—extensivity correction, i.c. for iterative one,

n.c. for no correction

® Extrapolation to complete basis set were performed according to [164,165].

SiH,

The equilibrium geometries and total energies for the !A; and !X~ state are
presented in Table 5.20 and 5.22, while the values of the singlet-triplet gaps

are included in Tables 5.21 and 5.23.

In the cc-pVTZ basis set, MR BWCCSD provides the Si-H bond length of
1.5160 A. The inclusion of connected triples leads to an increase of the bond
length by approximately 0.002 A. The differences between various methods
with connected triples are relatively small, as is the influence of the a ap-

proximation and the type of size-extensivity correction.

The use of the cc-pVQZ basis set leads to a decrease of the bond length
by approximately 0.0014 A. The type of size-extensivity correction and the
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Table 5.20: The 'A; state of SiH,

Method Basisset | re_y | ag_c—nH Energy
A a. u.
MR BWCCSD a.c. cc-pVTZ | 1.5160 92.55° -290.223590
MR BWCCSD i.c. cc-pVTZ | 1.5158 92.60° -290.223719
MR BWCCSD n.c. cc-pVTZ | 1.1568 92.48° -290.222922

MR BWCCSD(T) a.c. cc-pVTZ | 1.5180 92.36° -290.228135
MR BWCCSD(Ty) a.c. cc-pVTZ | 1.5180 92.36° -290.228381
MR BWCCSD(T) i.c. cc-pVTZ | 1.5180 92.36° -290.228263
MR BWCCSD(Ty) i.c. cc-pVTZ | 1.5180 92.36° -290.228531
MR BWCCSD(T) n.c. cc-pVTZ | 1.5186 92.23° -290.227480
MR BWCCSD(Ty) n.c. cc-pVTZ | 1.5187 92.27° -290.227673
MR BWCCSDT-1 a.c. cc-pVTZ | 1.5179 92.32° -290.228070
MR BWCCSDT-1-«a a.c. | cc-pVTZ | 1.5179 92.32° -290.228069
MR BWCCSDT-1 n.c. cc-pVTZ | 1.5187 92.25° -290.2274945
MR BWCCSDT-1-a n.c. | cc-pVTZ | 1.5187 92.25° -290.227473

MR BWCCSDT a.c. cc-pVTZ | 1.5183 | 92.29° | -290.228667
MR BWCCSDT-a a.c. | cc-pVTZ | 1.5183 | 92.29° | -290.228648
MR BWCCSDT n.c. cc-pVTZ | 1.5193 | 92.20° | -290.228114
MR BWCCSDT-a n.c. | cc-pVTZ | 1.5193 | 92.20° | -290.228070
MR BWCCSD a.c. cc-pVQZ | 1.5025 | 92.76° | -290.221738
MR BWCCSD i.c. cc-pVQZ | 1.5022 | 92.80° | -290.221956
MR BWCCSD n.c. cc-pVQZ | 1.5037 | 92.65° | -290.220894

MR BWCCSD(T) a.c. | cc-pVQZ | 1.5044 | 92.48° | -290.226656
MR BWCCSD(T,) a.c. | cc-pVQZ | 1.5045 | 92.52° | -290.226898
MR BWCCSD(T) i.c. | cc-pVQZ | 1.5039 | 92.54° | -290.226878
MR BWCCSD(Ty) i.c. | ce-pVQZ | 1.5039 | 92.54° | -290.227140
MR BWCCSD(T) n.c. | cc-pVQZ | 1.5054 | 92.41° | -290.225834
MR BWCCSD(T,) n.c. | cc-pVQZ | 1.5052 | 92.44° | -290.226015
MR BWCCSDT-1 a.c. | cc-pVQZ | 1.5044 | 92.47° | -290.226610
MR BWCCSDT-1-& a.c. | cc-pVQZ | 1.5044 | 92.47° | -290.226606
MR BWCCSDT-1 n.c. |cc-pVQZ | 1.5055 | 92.36° | -290.225875
MR BWCCSDT-1-a n.c. | cc-pVQZ | 1.5052 | 92.40° | -290.225849
Experiment? 1.51403 | 91.9830°

¢ a.c. stands for a posteriori size—extensivity correction, i.c. for iterative one, n.c.

for no correction
5 Ref. [168).

a correction play a larger role in the larger basis set, while the differences
between MR BWCCSD(T) and MR BWCCSD(T,) remain minimal, as far
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as the bond length is concerned.

The inclusion of connected triples also results in an increase of the va-

lence angle from 92.55° at the MR BWCCSD level to 92.36° of the MR
BWCCSD(T) level, in cc-pVTZ. Again, the differences between various triples
approaches are relatively small. In cc-pVQZ, the valence angle is increased
by approximately 0.1°.

Table 5.21: Singlet-triplet gap of bent SiH,

Method cc-pVTZ | cc-pVQZ
kcal/mol | kcal/mol
MR BWCCSD a.c. -20.47 -20.66
MR BWCCSD i.c. -20.55 -20.79
MR BWCCSD n.c. -20.05 -20.13
MR BWCCSD(T) a. -20.69 -20.90
MR BWCCSD(T, ) -20.84 -21.05
MR BWCCSD(T) i.c -20.77 -21.03
MR BWCCSD(T, ) -20.94 -21.20
MR BWCCSD(T) n -20.28 -20.38
MR BWCCSD(Td) -20.40 -20.49
MR BWCCSDT-1 a.c. -20.60 -20.80
MR BWCCSDT-1-a a.c. | -20.65 -20.80
MR BWCCSDT-1 n.c. -20.24 -20.34
MR BWCCSDT-1-a n.c. | -20.22 -20.33
MR BWCCSDT a.c. -20.54
MR BWCCSDT-a a.c. -20.53
MR BWCCSDT n.c. -20.20
MR BWCCSDT-a n.c. -20.17
Experiment? —20.99 £ 0.69

® a.c. stands for a posteriori size—extensivity correction, i.c. for iterative one,
n.c. for no correction.

® Ref. [169)].

For the values of the singlet-triplet gaps, the connected triples play a
relatively small role. In the cc-pVTZ basis set, the MR BWCCSD value
of —20.47 kcal/mol is only 0.07 kcal/mol higher than the result of —20.54
kcal/mol of the MR BWCCSDT method. The MR BWCCSDT-1 value lies
0.06 and MR BWCCSD(T) value 0.16 kcal/mol below the MR BWCCSDT
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Table 5.22: The !X~ state of SiH,

Method Basis set | rc_y | Energy (in a. u.)
A a. u.

MR BWCCSD a.c. cc-pVTZ | 1.4499 -290.123022

MR BWCCSD i.c. cc-pVTZ | 1.4500 -290.123408

MR BWCCSD n.c. cc-pVTZ | 1.4495 -290.121516

MR BWCCSD(T) a.c. cc-pVTZ | 1.4525 -290.128654
MR BWCCSD(Tq4) a.c. | cc-pVTZ | 1.4529 -290.129172
MR BWCCSD(T) i.c. cc-pVTZ | 1.4528 -290.129112
MR BWCCSD(Ty) i.c. cc-pVTZ | 1.4532 -290.129631
MR BWCCSD(T) n.c. cc-pVTZ | 1.4519 -290.127022
MR BWCCSD(Ty4) n.c. | cc-pVTZ | 1.4523 -290.127535
MR BWCCSDT-1 a.c. cc-pVTZ | 1.4514 -290.128243
MR BWCCSDT-1-a a.c. | cc-pVTZ | 1.4514 -290.128249
MR BWCCSDT-1 n.c. cc-pVTZ | 1.4513 -290.126765
MR BWCCSDT-1-a n.c. | cc-pVTZ | 1.4513 -290.126768

MR BWCCSDT a.c. cc-pVTZ | 1.4520 -290.129117
MR BWCCSDT-« a.c. cc-pVTZ | 1.4520 -290.129119
MR BWCCSDT n.c. cc-pVTZ | 1.4518 -290.127637
MR BWCCSDT n.c. cc-pVTZ | 1.4518 -290.127647
MR BWCCSD a.c. cc-pVQZ | 1.4435 -290.120924
MR BWCCSD i.c. cc-pVQZ | 1.4437 -290.121456
MR BWCCSD n.c. cc-pVQZ | 1.4431 -290.119100

MR BWCCSD(T) a.c. cc-pVQZ | 1.4461 -290.127134
MR BWCCSD(Tg4) a.c. | cc-pVQZ | 1.4465 -290.127678
MR BWCCSD(T) i.c. cc-pVQZ | 1.4463 -290.127746
MR BWCCSD(Ty) i.c. cc-pVQZ | 1.4466 -290.128289
MR BWCCSD(T) n.c. cc-pVQZ | 1.4454 -290.125176
MR BWCCSD(Ty) n.c. | cc-pVQZ | 1.4460 -290.125714
MR BWCCSDT-1 a.c. cc-pVQZ | 1.4451 -290.126697
MR BWCCSDT-1-a a.c. | cc-pVQZ | 1.4451 -290.126690
MR BWCCSDT-1 n.c. cc-pVQZ | 1.4449 -290.124923

MR BWCCSDT-1-a n.c. | cc-pVQZ | 1.4449 -290.124907

% a.c. stands for a posteriori size-extensivity correction, i.c. for iterative one, n.c. for no
correction

result. The difference between MR BWCCSD(T) and MR BWCCSD(Ty)
is about 0.15 kcal/mol, while the MR BWCCSD(T) value is closer to MR
BWCCSDT-1. However, compared to methylene, the difference between MR
BWCCSDT-1 and MR BWCCSD(T) is significantly higher. The influence
of the a approximation is minimal, while the differences due to various types
of size-extensivity correction are 0.1 kcal/mol or smaller.

The singlet-triplet gaps calculated in the cc-pVQZ basis set are about 0.2
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kcal/mol below their cc-pVTZ counterparts.

For the 12~ state, the cc-pVTZ bond length 1.4520 A calculated by MR
BWCCSDT lies 0.0021 A above the MR BWCCSD value. There are signif-
icant differences between results of methods with approximate inclusion of
connected triples. The MR BWCCSDT-1 bond length is shorter by 0.0006 A
than MR BWCCSDT one, wheres MR BWCCSD(T) value is by 0.0005 A
longer. The results in the cc-pVQZ basis set are larger by 0.003-0.004 A.

Table 5.23: Singlet-triplet gap of linear SiH,

Method cc-pVTZ | cc-pVQZ
kcal/mol | kcal/mol
MR BWCCSD a.c. 19.09 17.89
MR BWCCSD i.c. 18.85 17.56
MR BWCCSD n.c. 20.04 19.04
MR BWCCSD(T) a. 18.71 17.46
MR BWCCSD(Td) ac. | 1839 | 17.12
MR BWCCSD(T) i.c 18.43 17.07
MR BWCCSD(Td) ac. | 1810 | 16.73
MR BWCCSD(T) n 19.74 18.69
MR BWCCSD(Td) 19.42 18.35
MR BWCCSDT-1 a.c. 19.02 17.80
MR BWCCSDT-1-« a.c. 19.01 17.80
MR BWCCSDT-1 n.c. 19.94 18.91
MR BWCCSDT-1-a n.c. | 19.94 18.92
MR BWCCSDT a.c. 19.01
MR BWCCSDT-« a.c. 19.01
MR BWCCSDT n.c. 19.94
MR BWCCSDT-« n.c. 19.93

¢ a.c. stands for a posteriori size—extensivity correction, i.c. for iterative one,
n.c. for no correction

For the singlet—triplet gaps, the effect of inclusion of connected triples is
rather small, being smaller than 0.1 kcal/mol. There is very good agreement
between MR BWCCSDT and MR BWCCSDT-1. The results of calculations
with noniterative inclusion of connected triples lie significantly lower than
those of more rigorous approaches. The effect of the type of size-extensivity
correction is about 0.3 kcal/mol, wheres the influence of the o approximation
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is minimal.

Compared to the 'A; state, the basis set dependence of the result of
singlet-triplet gaps is much stronger, the cc-pVQZ values lie lower by 1.2-1.4
kcal/mol than their cc-pVTZ counterparts.

5.3.3 Conclusions

The inclusion of connected triples leads to a significant improvement geome-
tries, while the effect on the energy differences is smaller and more question-
able, especially for noniterative approach.

The comparison with MR BWCCSD(T) shows the performance of the
MR BWCCSD(T) method is superior to MR BWCCSD(Ty).

The type of size-extensivity correction used has a large effect on the re-
sults obtained. For frozen core calculations of methylene (i.e. a six electron
system), the best agreement with experiment is obtained when no correction
is used.

5.4 Automerization barrier of cyclobutadiene

As an example of a study of moderately sized system, we have chosen to
investigate the automerization barrier of cyclobutadiene. The scheme of this
reaction is shown in Figure 5.4.

Figure 5.4: Automerization of cyclobutadiene

Cyclobutadiene is a classical example of an antiaromatic system, and as
such has two carbon-carbon single bonds and two double bonds. Between
the two rectangular structures lies the transition state with square geometry.
The rate of interconversion of the two rectangular ground states, which can
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be classified as a second order Jahn Teller distortion, is therefore determined
by the height of the automerization barrier.

This system has been extensively studied by theoreticians [46,100, 170-
183] and experimentalists [184-187].

The transition structure of the cyclobutadiene is a typical two reference
system. Therefore, single reference methods tend to significantly overesti-
mate the automerization barrier, unless at least CCSDT, CISDTQ or higher
method is used. Multireference treatment is thus highly beneficial. Among
these studies is the article by Balkova and Bartlett [46], who employed the
MR CCSD and MR CCSD(T) method. Therefore, the comparison of various
multireference coupled clusters approaches with or without connected triples
is available.

5.4.1 Computational

Calculations were performed using standard cc-pVDZ and cc-pVTZ basis
sets, as well as the [3s2p1d/2s| basis set [46], which has been used in earlier
studies. For the transition state, the D4, symmetry was slightly distorted by
the change of two opposite C-C bond-length by 0.0001A , in order to obtain
“rectangular” orbitals [188] for the reference function. In all calculations,
the 1s orbitals on carbon atoms and four highest molecular orbitals were
excluded from the correlation treatment.

The system was studied at MR BWCCSD(T) and MR BWCCSD(T,)

level, with both the a posteriori and iterative size-extensivity correction. For
comparison, MR BWCCSD results were also obtained.

The geometries were optimized numerically for all methods and basis
sets. Optimization of the transition state was carried out by a successive
interpolation of calculated energies under the constraint of square geometry.

In the square structure, the highest occupied molecular orbital is a pair
of two degenerate 7 (e,) orbitals ¢, and ¢3 housed with two electrons. It is
thus necessary to use a two-determinantal wavefunction, constructed from
reference configurations ¢2¢2 and ¢2¢3, as the reference for the CC treat-
ment (only the m-orbitals occupation is indicated). In the Dqy subgroup, the
symmetries of ¢, and ¢3 are byy and b, respectively, and the singly excited
configuration ¢2¢,¢3 may be excluded on symmetry grounds and the two
aforementioned references form a complete model space.
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5.4.2 Results and discussion
The bond lengths and bond angles of the optimized geometries are listed in

Table 5.24 for the rectangular optimal geometry, and in Table 5.25 for the
square structure of the transition state.

Table 5.24: Optimum geometries of the ground state of cyclobutadiene

Method Basis set re=c | Tc—c | Tc-H | Q@c—c—H
A A A
MR BWCCSD [3s2pld/2s] | 1.370 | 1.568 | 1.092 | 134.79°
MR BWCCSD cc-pVDZ 1.364 | 1.570 | 1.093 | 134.86°
MR BWCCSD cc-pVTZ 1.347 | 1.559 | 1.077 | 134.91°
MR BWCCSD* [3s2pld/2s] | 1.371 | 1.567 | 1.092 | 134.80°
MR BWCCSD® cc-pVDZ 1.365 | 1.570 | 1.092 | 134.86°
MR BWCCSD? cc-pVTZ 1.347 | 1.558 | 1.077 | 134.91°
MR BWCCSD(T) [3s2p1d/2s] | 1.375 | 1.573 | 1.093 | 134.80°
MR BWCCSD(T) cc-pVDZ 1.370 | 1.575 | 1.095 | 134.87°
MR BWCCSD(T) cc-pVTZ 1.354 | 1.564 | 1.079 | 134.94°
MR BWCCSD(T,) | [3s2pld/2s] | 1.377 | 1.571 | 1.093 | 134.80°
MR BWCCSD(T,;) | cc-pVDZ 1.372 | 1.574 | 1.095 | 134.87°
MR BWCCSD(T,) | cc-pVTZ 1.355 | 1.563 | 1.079 | 134.92°
MR BWCCSD(T)* | [3s2pld/2s] | 1.377 | 1.572 | 1.094 | 134.81°
MR BWCCSD(T)* | cc-pVDZ 1.372 | 1.574 | 1.095 | 134.88°
MR BWCCSD(T)?* | cc-pVTZ 1.354 | 1.563 | 1.079 | 134.92°
MR BWCCSD(T,)® | [3s2pld/2s] | 1.378 | 1.570 | 1.094 | 134.81°
MR BWCCSD(Ty)® | cc-pVDZ 1.373 | 1.573 | 1.095 | 134.88°
MR BWCCSD(T,)* | cc-pVTZ 1.356 | 1.562 | 1.079 | 134.92°

@ Calculated using the iterative correction to size-extensivity.

The bond lengths have a decreasing trend with the size of the basis set
for both structures and both MR BWCCSD and MR BWCCSD(T) methods,
with the only exception being the single C-C bond length for the ground state.
The magnitude of the changes of the bond lengths between results in the cc-
pVDZ and the cc-pVTZ basis set is about 0.010 —0.017 A for carbon-carbon
bonds, and 0.016 A for carbon-hydrogen bonds.

The difference between geometries obtained by MR BWCCSD(T) and
MR BWCCSD(T,) were found to be rather limited. Also, the type of size-
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extensivity correction has a little effect on the equilibrium geometry.

Table 5.25:

Optimum geometries of the transition state of cyclobutadiene

Method Basis set re—c | Tc—H
A A
MR BWCCSD [3s2p1d/2s] | 1.462 | 1.091
MR BWCCSD cc-pVDZ 1.459 | 1.092
MR BWCCSD cc-pVTZ 1.444 | 1.076
MR BWCCSD* [3s2pld/2s] | 1.463 | 1.091
MR BWCCSD* cc-pVDZ 1.459 | 1.092
MR BWCCSD® cc-pVTZ 1.444 | 1.076
MR BWCCSD(T) [3s2pld/2s] | 1.468 | 1.092
MR BWCCSD(T) cc-pVDZ 1.465 | 1.094
MR BWCCSD(T) cc-pVTZ 1.451 | 1.078
MR BWCCSD(Ty) | [3s2pld/2s] | 1.469 | 1.093
MR BWCCSD(Ty) | cc-pVDZ 1.466 | 1.094
MR BWCCSD(T,) | cc-pVTZ 1.452 | 1.078
MR BWCCSD(T)* | [3s2pld/2s] | 1.468 | 1.093
MR BWCCSD(T)?* | cc-pVDZ 1.466 | 1.094
MR BWCCSD(T)* | cc-pVTZ 1.451 | 1.078
MR BWCCSD(Ty)* | [3s2pld/2s] | 1.469 | 1.093
MR BWCCSD(Ty)* | cc-pVDZ 1.466 | 1.093
MR BWCCSD(Ty)* | cc-pVTZ 1.452 | 1.078

¢ Calculated using the iterative correction to size-extensivity.

The inclusion of connected triples leads to an increase in the bond lengths.
For the ground state, its is 0.005 — 0.007 A for the C=C bond, 0.005 A for
the C-C, and 0.001 — 0.002 A for the C-H bond. For the square structure,
the increase is 0.005 — 0.006 A for C-C bond, and 0.001 — 0.002 A for the
C-H bond. The effect on the C-C-H angle was found to be negligible. Again,
both the type of size-extensivity correction and of the noniterative triples
approach has little effect on the geometry.

The energies of both the rectangular and square structures are listed in
the first two columns of Table 5.26. The third column contains the energy
differences between the two states.

Similarly to geometries, there is a clear growing trend for the size of
the energy gap between the two states with the basis set size and quality
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of the method used. Larger basis sets lead to a larger value of AFE, with
the difference between the [3s2pld/2s| and the cc-pVDZ basis set results
0.5 — 0.7 kcal/mol and difference between the cc-pVDZ and the cc-pVTZ
basis set being 0.9 — 1.1 kcal/mol.

The MR BWCCSD(T) results of AE are consistently lower than those of
MR BWCCSD, with the difference increasing with the size of the basis set
from 0.2 kcal/mol for [3s2pld/2s] to 0.6 kcal/mol for the cc-pVTZ basis set.

Table 5.26: The automerization barrier of cyclobutadiene

Method Basis set Egs EY, AFE
set ground state | transition state
a.u. a.u. kcal /mol
MR BWCCSD [3s2p1d/2s] | -154.190896 -154.181697 5.8
MR BWCCSD cc-pVDZ -154.218996 -154.208680 6.5
MR BWCCSD cc-pVTZ -154.362879 -154.350776 7.6
MR BWCCSD¢ [3s2p1d/2s] | -154.191690 -154.183033 5.4
MR BWCCSD¢ cc-pVDZ -154.219565 -154.209745 6.2
MR BWCCSD¢ cc-pVTZ -154.363425 -154.351684 7.4
MR BWCCSD(T) [3s2pld/2s] | -154.211307 -154.202402 5.6
MR BWCCSD(T) cc-pVDZ -154.242451 -154.232711 6.1
MR BWCCSD(T) cc-pVTZ -154.397116 -154.385917 7.0
MR BWCCSD(T,) | [3s2pld/2s] | -154.212269 -154.204300 5.0
MR BWCCSD(Ty4) | cc-pVDZ -154.243409 -154.234616 5.3
MR BWCCSD(Ty) | cc-pVTZ -154.397856 -154.387497 6.5
MR BWCCSD(T)¢ | [3s2pld/2s] | -154.212131 -154.203876 5.2
MR BWCCSD(T)¢ | cc-pVDZ -154.243043 -154.233899 5.7
MR BWCCSD(T)¢ | cc-pVTZ -154.397688 -154.386926 6.8
MR BWCCSD(Ty)¢ | [3s2pld/2s] | -154.213198 -154.205814 4.6
MR BWCCSD(Ty)¢ | cc-pVDZ -154.244097 -154.235846 5.2
MR BWCCSD(Ty)¢ | cc-pVTZ -154.398499 -154.388534 6.3

¢ Energy of the ground state.
b Energy of the transition state
¢ Calculated using the iterative correction to size-extensivity.

Comparing the results of MR BWCCSD(T) and MR BWCCSD(T), the
energies obtained by MR BWCCSD(T;) are lower for both the ground state
as well as for the square transition structure. However, the decrease of the
energy is larger for the transition state, and therefore MR BWCCSD(Ty) pro-
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vides values of AE lower by 0.5-0.6 kcal/mol, compared to MR BWCCSD(T)
results. This situation is very similar to the methylene and silylene, where
also gaps calculated by MR BWCCSD(T,) were significantly lower than the
MR BWCCSD(T) ones. From the experience from the previous section, the
results of MR BWCCSD(T) should be regarded as more reliable.

The use of the iterative size-extensivity correction leads to a further de-
crease of the AFE value. The magnitude of this change is 0.3-0.4 kcal/mol
for the MR BWCCSD method and 0.2-0.4 kcal/mol for MR BWCCSD(T)
and MR BWCCSD(T,). Therefore, there has been found no increase of de-
pendence of MR BWCCSD(T) and MR BWCCSD(T,) on the type of the
size-extensivity correction used, compared to MR BWCCSD.

5.4.3 Conclusions

The automerization barrier of cyclobutadiene was studied at MR BWCCSD,
MR BWCCSD(T) and MR BWCCSD(T}) levels. MR BWCCSD(T) values
of the energy gaps were found to be 0.2-0.6 kcal/mol lower compared to
MR BWCCSD, where the use of larger the basis sets corresponds to a larger
difference in AE. MR BWCCSD(T,) results of AE lie 0.5-0.6 kcal/mol below
the MR BWCCSD(T) ones. The use of iterative correction of size-extensivity
leads to further decrease of AE by approximately 0.2-0.4 kcal/mol for all the
three methods used.

The size of the basis set used was found to have a crucial importance,
as well as the necessity to optimize the geometries in the cc-pVTZ basis set,
instead of using the cc-pVDZ geometries. Also, the type of size-extensivity
correction is also important. The relative changes of energies due to the
different size-extensivity corrections were found to be very similar for all
the three methods. This is an argument justifying the use the a posteriori
size-extensivity correction along with the noniterative inclusion of connected
triples.

100



Chapter 6

Conclusions

Multireference Brillouin-Wigner coupled clusters with the inclusion of con-
nected triple excitations has been developed and implemented in the ACES 11
program. The inclusion of connected triples was carried out in both iterative
and noniterative way.

First of these approaches was the MR BWCCSDT-a method, which is
a multireference generalization of the CCSDT method, with the omission
of unlinked and disconnected terms in T3 equation. It was found that the
inclusion of connected triples has a dramatic positive effect on vibrational
frequencies of the three electronic states of the oxygen molecule.

The remaining disconnected and unlinked terms have been added into the
calculation procedure to obtain the full MR BWCCSDT method. The study
of the oxygen molecule found results very close to MR BWCCSDT-« ones.
The main improvement is an increased numerical stability, which enabled
calculation with an extended model space.

The study of the Cs, insertion pathway of a beryllium atom to hydro-
gen molecule found a very good agreement of MR BWCCSDT and MR
BWCCSDT-a methods with the full configuration interaction. The differ-
ences between the full method and its a approximation were largest in the
region of the transition state. This is due to the strong multireference charac-
ter of the system in this region, which results in larger values of disconnected
and unlinked terms.

Finally, the noniterative inclusion of connected triples has been carried
out in two different ways. Both approaches are based on triples correction
to the matrix elements of the effective Hamiltonian. In MR BWCCSD(T}),
only the diagonal elements are corrected, whereas in MRBWCCSD(T) the
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correction concerns all the elements.

For the oxygen molecule, results of both noniterative methods were found
to be in a good agreement with both the experimental data and results of
calculations with iterative connected triples.

By a comparison with MR BWCCSDT-1, the study of methylene and
silylene has found a superior performance of the MR BWCCSD(T) method
compared to MR BWCCSD(T,). For the !4, state, both of these methods
gave results in an excellent agreement with the experiment, when a suffi-
ciently large basis set was used and the calculation was carried out without
size-extensivity correction, which is appropriate for very small systems.

The study of the automerization of cyclobutadiene was used to demon-
strate the applicability of the MR BWCCSD(T) method to moderately sized
systems. The reduced computational cost of the method enabled a full ge-
ometry optimization of the system in cc-pV'TZ basis set. For the height of
the energetic barrier, the inclusion of connected triples played a relatively
minor role. The role of the basis set size was found to be more important.
From comparison of results with different size-extensivity corrections, it was
found that the differences remain almost constant at all calculation levels,
which justifies the use of the a posteriori size-extensivity correction alongside
with the noniterative inclusion of connected triples.

The development in this field is far from complete. Among the most im-
portant problems, that remain to be solved, are the investigation of numerical
effects of the noninvariance of the MR BWCCSD(T) method with respect to
unitary occupied-occupied and virtual-virtual orbital transformations, cal-
culations with mutually triexcited reference configurations, and calculations
with an incomplete model space.

However, the existing evidence suggests, that the inclusion of connected
triples to the multireference Brillouin-Wigner coupled clusters theory yields
a highly accurate method suitable for systems with quasidegenetate orbitals,
and that the noniterative approach is applicable to a wide range of chemically
interesting systems.
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