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Introduction
It is well known that electric current in the presence of magnetic field perpendic-
ular to that current leads to accumulation of carriers at the sides of the conductor
giving rise to the transversal electric field. This mechanism, in traditional geom-
etry depicted in the figure 1, describes the so-called ordinary Hall effect.

Figure 1: Ordinary HE geometry. Source [1].

Division of the induced electric field Ey by current density jx and applied
magnetic field Bz then defines Hall coefficient RH , which provides measure of
strength of response to the field or current, as it captures all relevant quantities.
E.g. within the framework of the classical Drude theory one has for single charge
carrier type a B field constant RH dependent only on carrier density n and
elementary charge e

RH = − 1
en
, (1)

or equivalently B field linear dependent transversal resistivity ρxy, as that is given
merely by fraction of Ey field and current jx. Note that here RH is not dependent
on dissipation and scattering, via Drude mean free time between collision τ , and
is thus convenient for carrier density measurements.

Since the first observation of ordinary Hall effect by Edwin Hall in 1879 many
more similar effects were discovered, leading to the present with a wide category of
various Hall effects (HE). While the ordinary HE behavior may be well described
within the framework of fully classical theory, these newer Hall effects often rely
on additional material conditions, as, e.g. in the case of the anomalous HE,
which can be observed in ferromagnetic conductors, or require more sophisticated
theories for their description. Here being an integer or fractional HEs example as
their description needs adoption of the fully quantum view.

For an extensive enumeration of the HEs, see e.g. [2], but in the following are
presented basic descriptions of some more prominent of them.

Anomalous HE [3]: Present mainly in ferromagnetic materials and is observed
as a steep increase in transversal resistivity proportional to magnetization
in low magnetic fields until saturation is reached, at which point the de-
pendency becomes that of ordinary HE. Anomalous HE may be orders of
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magnitude stronger than ordinary HE and crucially this increase in resis-
tivity does not originate simply from aligning the magnetization in the
direction of external field.

Spin HE [4]: Phenomenon based on relativistic spin-orbit interaction where,
without the presence of the external magnetic field, electric current leads
to the transversal spin-currents and accumulation of the spin of opposing
orientation at the opposite sides of the samples, in which case it may be
connected with anomalous HE due to the arising magnetization.

Planar HE: Known as transversal anisotropic magnetoresistance, an effect oc-
curing in ferromagnetic metals when magnetisation is rotated in the x,y
plane [5]. The measured Rxy is then, unlike for other types of HE, not
antisymmetric with respect to time inversion.

In the following is taken a closer look to a selection of HEs, which are purview
of this work. All of them have in common that they are dependent on external
B field and, in principle, do not lay further requirements on the material itself.

Classical Hall effect

In pursuit of determination of behavior of realistic materials, a semi-classical
approach based on band structure of pure material is often employed. The case
of calculation of RH is the same in this regard as can be seen in, e.g., [6].

However, this approach has some obvious limitations. One of them is the
inclusion of temperature dependence, which can be done in principle, but in
practice brings its own difficulties. One goal of this work lies in answering the
question of the importance of this contribution using the Sommerfeld expansion.
Part of these results are presented in [7].

The second problem lies precisely in the fact that this approach is based
on band structure, which brings difficulties with accounting for the effects of
disorder. For example, limiting the scope of this problem only to substitutional
disorder, one can employ a rigid band approximation [8], which consists of a
simple shift of Fermi energy, while leaving the band structure of the used host
material unchanged. One can easily see that such an approximation often leaves
much to be desired even with small concentrations of impurities and renders it
outright unusable in e.g. alloys.

Therefore, it may prove beneficial in such cases to abandon altogether the
notion of band structure and approach the problem from a different angle. One
such way provides a coherent potential approximation (CPA) which is analyzed
and used for the calculation of RH for the square lattice model.

Integer quantum Hall effect

As can be seen from the figure 3 the behavior of transversal and longitudinal
resistivity is in a hight field much richer than predicted by classical theory. In
particular, the emergence of plateaus in ρxy is purely quantum effect.

To see the origin of this behavior it is enough to consider one particle Hamil-
tonian (i.e. a factored Hamiltonian of one electron of non-interacting 2D electron
gas).
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H = 1
2m (p − eA)2

Solving time independent Schrödinger
equation then yields spectrum consist-
ing of hugely degenerate Landau levels
(LL) separated by gaps. It is then con-
venient to introduce so called filling fac-
tor ν which is a measure of how many
LL are filled

ν = hn

eB
,

Figure 2: Integer quantum Hall effect
for 2DEG. Source [1].

with integer ν corresponding to the ν fully filled LLs. This discretization of
energy levels is the foundation for quantization of transversal resistivity, as the
conductivity becomes proportional to the number of fully filled LLs or equally
resistivity to the inverse of that number.

In more realistic systems, the same principle to conductivity quantization
remains, but the question of emergence of discrete highly degenerate LL is much
harder to answer. Good measure to determine if one is in quantum regime, i.e.
weather quantum effects can not be neglected provides magnetic length ℓ

ℓ =
√︄

ℏ
eB

,

which is a magnetic quantum length scale. It is to be compared with the charac-
teristic length scales of the material, i.e. lattice parameters for crystalline solids.
From this it can be seen that in order to observe IQHE one has to prepare systems
with artificial large length scale [9], or reach a sufficiently high field.

The study of the formation of LLs in square lattice tight binding model is
performed using numerical exact diagonalization with magnetic field introduced
via the Peierls substitution.

Fractional quantum Hall effect

The situation is more complicated still
as plateau-like behavior can be observed
even at some simple fraction of the fill-
ing factor ν. This has its origins at pre-
viously neglected electron-electron in-
teraction, which leads to emergence of
the energy gap, separating the ground
state from the rest of the excitation
spectrum.

While it is clear that now one has
to operate fully within the many-body
theory, there are still left many promis-
ing ways to tackle this problem.

Figure 3: Transversal ρxy and
longitudinal ρxx resistivity B field

dependence for measurement in 2DEG
system. Source [10].
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Numerical methods [11]: The most direct approach is to employ an exact diago-
nalization or similar numerical method. The shortcoming of these methods
is clear as the size of the matrices becomes with increasing number of elec-
trons quickly unmanageable. Still, even in small but computable systems
of ≈ 10 particles, one recovers a clear gap in the spectrum thus verify-
ing the statement above. Also, with the difficulty of the measurement of
the FQHE and mapping obtained results to analytical models, numerical
methods provides necessary data to test various theories.

Composite fermions [12]: In the heart of this method lies the proposed flux
attachment mechanism. Within this framework, one treats electrons with
discrete number of magnetic flux quanta as a single particle, the composite
fermion. These particles then have their own filling factor ν∗ which can be
mapped to the normal electron filling factor ν as

ν∗ = ν

2ν + 1 .

This mapping is used as an explanation for the plateau-like behaviour as the
emergence of the energy gap for integer ν is well described. [Shortcomings!]

Analytical approaches: Even besides composite fermion approach, there are
available other frameworks, which seek to describe FQHE as which seek
to describe FQHE as an incompressible liquid with fractionally charged
excitations [13]. The main benefit of these approaches lies not only in their
predictive power, but unlike numerical methods, they also bring light to the
mechanism which leads to the FQHE.

As an example of the analytical approaches, a single mode approximation
is further presented. It can be used to obtain the dispersion relation of the
so-called magnetoroton branch and via that energy gap size. SMA results are
compared with numerical data [14] and the discrepancy in the predicted and
observed behavior of the magnetoroton branch in hight k is explained.
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1. Classical Hall Effect
Semi-classical Boltzmann theory is usually employed for a description of the trans-
port properties of crystalline materials. This is also the case in the first section of
this chapter, Pure materials. Two classes of simple models are presented within
the section: First, ideal electron gas leading to Sommerfeld theory of metals, and
second, as a representative of crystalline materials, a cosine band models, i.e. de-
pending on the dimensionality chain and square lattice models. Zero temperature
Hall coefficient behaviour and then its temperature dependence are explored at
the level of the magnetic field B linear response.

Need to describe physical systems with broken translational symmetry, such as
alloys, motivates the second section, Substitutionally disordered materials. As the
band structure based semi-classical description fails for disordered materials, the
first part of the section is dedicated to introduction of necessary Green function
formalism and to its general properties. In the later parts are on a relatively
simple nearest neighbour tight binding substitutionally disordered chain model
demonstrated and discussed strengths and weaknesses of various approximations
for the central quantity, the so called self-energy, and especially coherent potential
approximation is examined in more depth. The coherent potential approximation
is then used to calculate the Hall coefficient for the square lattice model and its
behaviour is examined.

Lastly Application for Hall sensors puts previous sections in a context of
current Hall sensor development and specially focuses on particular requirements
of ITER and DEMO fusion projects.

1.1 Pure materials
Albeit full current j response to driving forces as external electric E and magnetic
B fields or gradients of temperature ∇T and chemical potential ∇µ extends well
beyond linear response, e.g. full non-linear and non-local second order electro-
chemical driving force response as derived in [15] (equation 42, with σ denoting
various conductivity tensors)

j = σ
(︃

E + 1
e

∇µ
)︃

+ σE2E2 + σE2

e2 (∇µ)2 + σ∇E∇E + σ∇E

e

∂2µ

∂r
+ . . . ,

for vast majority of transport phenomena is level of linear response sufficient for
their description.

For the description of the classical Hall effect, it suffices to consider current
response j linear in the electric field and bilinear in the electric and magnetic
fields governed by the respective conductivity tensors σ.

ji = σijEj + σijkEjBk (1.1)

Following the notation and derivation of Hall coefficient presented in [6], these
tensors are within the Boltzmann theory given by a material band structure via
its dispersion relation ε and associated group velocities v and effective mass tensor
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M. The simplest case of a single band model is assumed here, so no band indices
are present.

vi = 1
ℏ
∂ε

∂ki
, M−1

ij = 1
ℏ2

∂2ε

∂ki∂kj

To obtain tensors σ(ε) in the zero temperature limit one has to integrate k con-
tributions over whole Fermi surface (FS)

σ(ε) =
∫︂
FS
σ(k)dS,

where

σij(k) = e2τvivj, (1.2)

σijk(k) = −e3τ 2ϵkαβvivβM
−1
jα . (1.3)

In σ(k) expression is the positive elementary charge e, so the electron charge
qe = −e, ϵ represents the Levi-Civita tensor and τ denotes the relaxation time.
Isotropy of τ is also assumed here. Althought τ is in general direction k dependent
and disregarding anisotropy of τ may lead to huge errors with some materials,
this approximation is still applicable for a very wide range of others [16].

Hall coefficients R are in low field linear response case given by

Rijk =
Eind
j

jappi Bapp
k

= σ−1
αj σαβkσ

−1
iβ ,

and they are for anisotropic τ completely independent on relaxation time.
For a further manipulation and simplification of expressions present in this

chapter is useful to introduce pure system FS integrals ϕ and ψ, which are for a
system with diagonal effective mass tensor Mij = Miδij of the form

ϕij =
∫︂
FS
vivjdS, ψij =

∫︂
FS
v2
iM

−1
jj dS. (1.4)

Conductivity tensor formulas can be then written as

σijk = −e3τ 2ψijϵkji, σij = e2τϕij. (1.5)

Furthermore when conductivity is isotropic σij = σ0δij, hall coefficients expression
simplifies to

Rijk = −σjik
σ2

0
= 1
e

ψji
ϕ2
ii

ϵkij, and RH ≡ R123 = Rxyz = −1
e

ψyx
ϕ2
xx

, (1.6)

where RH = Rxyz in particular denotes the Hall coefficient as defined in (1) and
whose corresponding geometry is depicted in 1.
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Ideal electron gas

Dispersion εeg, derived velocities and effective mass are in ideal electron gas (EG)
case as follows

εeg = ℏ2k2

2m , vi = ℏki
m
, Mij = mδij.

Direct calculation of FS integrals (1.4) and RH (1.6) employing isotropy with
k2
i = k2/D, D being dimension of the system, yields

ψegyx = 1
m
ϕegxx, RH = − 1

emϕegxx
, where ϕegxx =

∫︂ dDk

(2π)D
k

mD
δ
(︃
k − 1

ℏ
√

2mε
)︃
.(1.7)

Density of states of 2DEG and 3DEG, which are relevant for physics of Hall
effect, are of the form

geg2D(ε) = m

2πℏ2 , geg3D(ε) = m3/2

21/2π2ℏ3 ε
1/2.

EG Hall coefficient expression is best written using particle density n

n(ε) =
∫︂ ε

g(ε′)dε′, (1.8)

as then in both 2DEG and 3DEG cases alike does the Reg
H formula reproduce the

classical Drude expression

Reg
H = − 1

en
. (1.9)

This result provides a simple test for more complicated crystalline systems to get
a measure of the carrier behaviour. I.e. when −ncRH , with nc being the carrier
density, is ≈ 1/e one would expect more EG-like behaviour, whereas in regions
where it differs significantly, the lattice effects play a major role.

Cosine band models

Cosine band models correspond to a tight binding nearest neighbour hopping
models for 1D, 2D and 3D, chain, square lattice and cubic lattice respectively,
with Hamiltonian of the form

H = ε0
∑︂
i

|i⟩ ⟨i| + t
∑︂

|i−j|=1
|i⟩ ⟨j| , (1.10)

where i and j are D dimensional multi-indices, ε0 on-site energy and t a hopping
parameter.

Such systems appear to be governed by two different energy variables ε0 and
t, but the time-independent Schrödinger equation is invariant with respect to
energy scaling, which in (1.10) means simultaneous scaling of both ε0 and t.

Since scaling them both simultaneously can not have any qualitative effect
on static properties, with only change in trivial rescaling of H spectrum, it is
convenient to introduce reduced energy units as

ã = a

t
, and specially t̃ = 1, (1.11)
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which allows to eliminate hopping parameter t. In the following are all cosine
band energy variables in their reduced form and the tilde is dropped.

The second symmetry of the time-independent Schrödinger equation is energy
translation, rendering the remaining energy variable ε0 trivial, also. This means
that in truth there are no nontrivial system properties governed by any variable.

Lattice parameter a is taken for simplicity as a = 1 and thus ki ∈ ⟨−π, π⟩ ∀
i. Corresponding dispersion relation is then

εcb = ε0 − 2
D∑︂
i=1

cos(ki) (1.12)

with band ε ∈ ⟨ε0 − 2D, ε0 + 2D⟩ and associated velocities and masses

vi = −2
ℏ

sin(ki), M−1
ii = − 2

ℏ2 cos(ki), M−1
ij = − 2

ℏ2 (sin(ki) + sin(kj)) , i ̸= j.

When it comes to DOS now, while the 1D chain gcb1D can be directly integrated,
square lattice gcb2D results in a formula involving a complete elliptic integral of the
first kind K and the cubic lattice gcb3D is more complicated still.

gcb1D(ε) = 1
π
√︂

4 − (ε− ε0)2
, gcb2D(ε) = 1

2π2K

[︄
1 −

(︃
ε− ε0

4

)︃2
]︄

Fortunately K is easy to evaluate by means of arithmetic-geometric mean M

K(x) = π

2M(1,
√

1 − x2)

and gcb3D can be calculated using square lattice DOS [17] (Appendix E).

gcb3D(ε) = 1
π

∫︂ α2

α1

du√
1 − u2

gcb2D(ε+ 2u), with α2 = min(1, 2 − ε/2)
α1 = max(−1,−2 − ε/2)

All presented cosine band DOS are normalised with one lattice point with one site
per lattice cell so their corresponding particle densities n ∈ ⟨0, 1⟩. That is, n as
defined by (1.8) with cosine band DOS gcb are elementary cell electron densities.

Figure 1.1: DOS of cosine band models. All shown with same bandwidth.
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In 1.1 there are noticeable discontinuities and peaks, known as Van Hove
singularities. These originate from extrema of the dispersion relation ε(k). In
3D they generally lead to DOS derivative divergences, as seen in the cubic lattice
case, while DOS of systems of lower dimensionality itself diverge at these points.

Also note that bounded nature of lattice bands allows to define hole density
nh in the same fashion as electron density ne ≡ n but counted from upper band
edge, or more straightforwardly yet, in the present case as nh = 1 − ne.

Sign of the Hall coefficient RH then determines majority carrier, which is
better suited to description of such system, and carrier density nc may then be
defined using Heaviside function θ as

nc = neθ(−RH) − nhθ(RH). (1.13)

RH calculation for square lattice model

In the following is taken ℏ = 1, but note that all powers of ℏ would cancel each
other out in a full calculation of RH . It can also be easily seen that ϕxy = 0 and
Hall coefficient is therefore given by the simplified expression (1.6).

FS integrals (1.4) for square lattice dispersion (1.12)

ϕxx = 4
∫︂
FS

d2k

(2π)2 sin(kx)2δ(ε− ε(k)),

ψyx = 8
∫︂
FS

d2k

(2π)2 sin(ky)2 cos(kx)δ(ε− ε(k))

are both invariant with respect to rotations by π/4 in {kx, ky} plane. Contribution
to the integral from each quadrant of the Brillouin zone is thus the same and it
is possible to restrict the integrals only to one such quadrant where are present
goniometric functions monotonous.

ϕxx = 4
π2

∫︂ π

0

∫︂ π

0
dkxdky sin(kx)2δ(ε− ε(k)),

ψyx = 8
π2

∫︂ π

0

∫︂ π

0
dkxdky sin(ky)2 cos(kx)δ(ε− ε(k)).

This allows a change of integration variables

i = − cos(ki), dki = di√
1 − i2

, sin(ki)dki = di, sin(ki) =
√

1 − i2,

where i ∈ {x, y}.

ϕxx = 4
π2

∫︂ 1

−1

∫︂ 1

−1
dxdy

√︄
1 − x2

1 − y2 δ(ε− ε0 − 2(x+ y))

ψyx = − 8
π2

∫︂ 1

−1

∫︂ 1

−1
dxdyx

√︄
1 − y2

1 − x2 δ(ε− ε0 − 2(x+ y))

Next introducing new variables {u, v}

u = x+ y, v = x− y, x = u+ v

2 , y = u− v

2 , dxdy = 1
2dudv
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with integration bounds

u ∈ ⟨−2, 2⟩, v ∈ ⟨−2 + |u|, 2 − |u|⟩

allows to eliminate one integration and resolve δ-function

δ(ε− ε0 − 2(x+ y)) = δ(ε− ε0 − 2u) = 1
2δ
(︃
u− ε− ε0

2

)︃
,

yielding final integral expressions

ϕxx = 1
π2

∫︂ 2−|u|

−2+|u|
dv

⌜⃓⃓⎷4 − (u+ v)2

4 − (u− v)2 , ψyx = − 1
π2

∫︂ 2−|u|

−2+|u|
dv(u+ v)

⌜⃓⃓⎷1 − (u− v)2

1 − (u+ v)2 ,

where u = (ε− ε0) /2. (1.14)

Although integrals in (1.14) have proper analytical solutions, their form is
unwieldy and special attention must be paid during their evaluation as there are
present terms as a fraction of two diverging quantities and the like.

A more straightforward approach is to calculate them numerically. Results of
such calculation are shown in figure 1.2.

a
. u

.

f

0,4

0,3

0,2

0,1

0,0

-0,1

-0,2

-0,3 Square lattice

-0,4 xx
, y

yx

-4 -3 -2 -1 0 1 2 3 4

e - e
0

Figure 1.2: Square lattice (εcb2D) FS
integrals ϕxx and ψyx energy
(ε− ε0) = 2u dependency.

Figure 1.3: Square lattice (εcb2D) FSs
for various energies ε.

First, focusing solely on the ϕxx in-
tegral which is proportional to the con-
ductivity tensor σxx: Graph 1.4 shows
that σ2Dcb

xx behaves near the band edges
similarly to the EG conductivity σ2Deg

xx

(and also the classical Drude model) as
it is proportional to the electron ne or
hole nh density, whichever is smaller.

Alternatively, this can be sum-
marised with the known RH sign (figure
1.5 below) using carrier density nc (|nc|
for nc defined in (1.13)) as σxx ∝ |nc|,
for |ε− ε0| ⪅ 2.

Figure 1.4: Square lattice (εcb2D)
conductivity σxx and electron density

ne energy dependence.
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The sign of the Hall coefficient RH is in (1.6) given by the sign of the FS
integral ψyx, whose sign is in turn determined by the weighted integration of
’curvature’ (effective mass tensor M) over FS.

In the present case, the resulting sign is clear as for none ε the ψyx integration
crosses an inflection equienergy line ε = 0 (1.3, or more detailed look in [18], fig.
2) where the character of the FS changes. It either stays within the convex region
ε < 0, follows the inflection line, or is within the concave region ε > 0.

As can be expected due to the shape of the band structure, the majority
carriers are for ε < ε0 = 0 electrons and for ε > ε0 holes.

Figure 1.5 contains the results of the calculation of RH . Since Hall coefficient
is divergent when approaching band edges where the carrier density vanishes
nc → 0 one has to be careful when evaluating the band edge value of −ncRH .
Here it was treated as a limit and resolved by applying the L’Hospital rule with
n′
c = ±gcb2D, and instead of derivatives of full analytical FS integrals ϕ and ψ

derivatives of their interpolation functions were used instead. Yielding

−ncR2Dcb
H → 1, as ε → band edge. (1.15)

D
O

S

R
H

-R
H
n

c

0,5 150

0,4
e0

100
0,3

0,2
50

0,1

e 0
1                 2                 3                 4                 5                 6                 7

1,0

-50

0,5
-100

0,0 -150

DOS, RH, -RHnc

Figure 1.5: Square lattice (εcb2D) RH and −ncRH energy ε dependence.

Square lattice conductivity and the Hall coefficient exhibit symmetry with
respect to electron-hole inversion, or alternatively R2Dcb

H is odd and σ2Dcb
xx even

with respect to ε0. Their behaviour near band edges mirrors an ideal electron gas,
which is to be expected as Taylor expansion of εcb2D in the lowest order results in
parabolic dispersion. On the other hand, the most prominent deviation from this
behaviour is in the vicinity of Van Hove singularity at ε0, where DOS diverges
and RH crosses zero.
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1.1.1 Temperature dependence
Inclusion of temperature in conductivity σ calculation is relatively straightforward
[6] [19] done via statistical averaging of zero temperature conductivity tensors σ(ε)
(1.2) and (1.3)

σ(T ) =
∫︂
dεσ(ε)

[︄
−∂fµ(ε;T )

∂ε

]︄
, fµ(ε;T ) = 1

e(ε−µ)/kBT + 1 , (1.16)

with fµ denoting Fermi-Dirac distribution for given chemical potential µ(T ). Zero
temperature limit yields µ(0) = εF

fµ(T ) → θ(εF − ε) and − ∂fµ(T )
∂ε

→ δ(εF − ε) as T → 0, (1.17)

and (1.16) thus reproduces the previous σ(ε) relations.
Instead of temperature T , it may be more convenient to introduce an inverse

’temperature’ β = 1/kBT a measure of thermal energy with dimension of the
inverse energy. Of special interest is then ratio of thermal and Fermi energies
1/βεF as a ratio of corresponding energy scales.

Because for most of a crystalline solid matter in standard conditions (e.g.
room temperature) is [20] εF of order of unity in electronvolts, while β ≈ 0.01 eV

1
βεF

≪ 1, (1.18)

it is natural to expect that inclusion of temperature within Boltzmann theory
would have assuming no phase transitions only a slight effect on conductivity
and Hall effect. The following part is dedicated to answering the question of how
exactly does non-zero temperature manifests in RH evaluation.

Sommerfeld expansion and electron gas

Sommerfeld expansion is a well-known low temperature expansion in the powers
of the energy ratio 1/βεF of integrals of the type

∫︂
φ(ε)fµ(ε)dε, with φ(ε) at

most polynomially diverging with ε → ∞ and vanishing for ε → −∞. Its full
derivation is presented in e.g. [20]. First order expansions∫︂

φ(ε)fµ(ε)dε =
∫︂ µ

−∞
φ(ε)dε+ π2

6β2φ
′(µ) +O

(︄
1
βµ

)︄4

(1.19)

first term can recognized as a zero temperature contribution (recall (1.17)) and
second term the first temperature dependent correction.

To apply this expansion to the EG conductivity one has to first rewrite σ(β)
expression to the required integral form.

σ(β) =
∫︂
σ(ε)

[︄
−∂fµ(ε)

∂ε

]︄
dε

p.p.= [σ(ε)fµ(ε)]∞−∞ +
∫︂ ∂σ(ε)

∂ε
fµ(ε)dε

Since σ(ε) ∝ εD/2 and is bounded from below, first term on the right hand side
is zero. Then using (1.19)

σ(β) =
∫︂ ∂σ(ε)

∂ε
fµ(ε)dε = σ(ε)

⃓⃓⃓
ε=µ

+ π2

6β2
d2σ(ε)
dε2

⃓⃓⃓⃓
⃓
ε=µ

+O

(︄
1
βµ

)︄4

. (1.20)

13



To obtain the correction, one has to account for the temperature dependence
of the chemical potential µ, which is given by the implicit integral equation cor-
responding to particle conservation. For particle density n has to hold

n =
∫︂
g(ε)fµ(ε)dε, (1.21)

which can be in most cases once more treated by Sommerfeld expansion to the
same order of 1/βµ.

2DEG proves to be atypical in this regard. On one hand simple form of its
DOS geg2D(ε) = geg2Dθ(ε) allows to fully integrate (1.21) and obtain closed form
expression for chemical potential

µeg2D(β) = 1
β
ln
(︂
eβεF − 1

)︂
, (1.22)

but on the other hand this expression can not be expanded in β as it is not an
analytical function in T = 0 or β = ∞.

3DEG case is straightforward in comparison. (1.21) expansion yields

µeg3D(β) ≈ εF

⎛⎝1 − π2

12

(︄
1
βεF

)︄2

+O

(︄
1
βεF

)︄4
⎞⎠ .

Plugging it into σ(β) expansion (1.20) and conductivity tensors in turn in RH

expression returns

R3Deg
H ≈ − 1

ne

⎛⎝1 +O

(︄
kBT

εF

)︄4
⎞⎠ ,

so first nontrivial term in expansion vanishes and corrections for zero temperature
R3Deg
H are at standard conditions 1/βεF ≈ 0.01 at least of order ≈ 10−8 or smaller.

This result was presented in [7] as a first estimate and consequently as an ex-
planation of the relative Hall coefficient temperature independence of a chromium
and, in general, all metal-based Hall sensors. More about this in Application for
Hall sensors.

2DEG RH temperature dependence

Zero temperature 2DEG Hall coefficient (1.7) is given solely by mass m charge e
and FS integral ϕxx. Inclusion of temperature dependence does lead to change

ϕ2Deg
xx →

∫︂ [︄
−∂fµ(T ;µ)

∂ε

]︄
ϕ2Deg
xx (ε)dε ∝

∫︂ [︄
βeβε

(eβ(ε−µ) + 1)2

]︄
εdε.

This integral may be solved, e.g. using substitution ε̃ = eβε, and using full
expression for chemical potential (1.22) then leads to∫︂ ∞

0
. . . dε

⃓⃓⃓
µ=µeg

2D

= 1
β
ln(eβµ + 1)

⃓⃓⃓
µ=µeg

2D

= εF .

Therefore, thermal averaging of ϕ2Deg
xx gives the same contribution as its zero tem-

perature variant and 2DEGs Hall coefficient R2Deg
H as well as conductivity σ2Deg

are in Boltzmann theory as presented here completely temperature independent.
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Numerical analysis of square lattice case

Square lattice is chosen as the simplest lattice case to gain a measure of the effects
of temperature on RH in periodic systems. Despite their relative simplicity, the
unwieldy forms of the FS integrals ϕ2Dcb

xx and ψ2Dcb
yx (1.14) and their thermal

averages do not lend themselves to any straightforward general mathematical
analysis.

This problem is thus approached from a numerical angle. For a set of different
densities n and for various values of kBT = 1/β are in two step process calculated
their Hall coefficients R2Dcb

H . First, the chemical potential µcb2D is obtained using
condition (1.21) by the interval halving procedure. In the second step are for given
µ and β evaluated thermal averages of FS integrals ϕ2Dcb

xx , ψ2Dcb
yx . Since they are

continuous, smooth and slowly varying (as seen in 1.2) an interpolation functions
of dense datasets {ε, ϕxx(ε)} and {ε, ψyx(ε)} were used in this step instead.

The results of these calculations are shown in graph 1.6 in the form of a
temperature correction over the absolute value of RH0 ≡ RH |T=0, ∆RH(β) =
RH(β) − RH0. Results for n = 0.5 are excluded as both correction and RH0 are
within the machine precision equal to zero.

Due to the energy translational and scaling invariance of the cosine band mod-
els the standard condition assumption (1.18) requires special attention. Since εF
may be in isolation in the present model chosen completely arbitrarily, it is as-
sumed that εF ⪅ 10 eV and 1/βεF ≈ 0.01 in accordance with many real materials
at room temperature. Thus, the condition (1.18) would roughly translate to the
kBT range of ⪅ 0.1 eV. Therefore, in the following are ’standard conditions’
understood as kBT ⪅ 0.1 (a.u.).
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Figure 1.6: Square lattice (εcb2D) ∆RH(β)/|RH0| temperature dependence for
various densities n.
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The first thing to note is that increasing temperature leads to a decrease in
the absolute value of Hall coefficient in the whole band, as when are majority
carriers electrons RH < 0 and sign of ∆RH(β) is positive and vice versa for holes.

As expected, graph 1.6 also explicitly shows preservation of the electron-hole
inversion symmetry of RH (i.e. RH odd with respect to n → (1 − n), first seen
in zero temperature R2Dcb

H0 , figure 1.5) in thermal averaging (1.16).
The effect of thermal averaging is most prominent near the middle of the

band, where RH crosses zero, while lower carrier densities seem to be affected
only slightly. This behaviour is in accordance with the expansion of the full
dispersion εcb, which in the lowest order takes the parabolic EG form and in
the same vein, the EG limit at the band edge in 1.8, (1.15). Since 2DEG Hall
coefficient was proved to be completely temperature independent, so should be
the band edge limit of square lattice.

The behaviour of the chemical potential µcb2D(β) is less intuitive. At first
glance, one may expect a shift in µ to be more pronounced near band edges as it
has to compensate for asymmetric cut-off of the Fermi-Dirac distribution fµ tails
due to the bounded band structure. But graph 1.7 shows that the region in the
vicinity of Van Hove singularity is affected more at first, until high enough tem-
perature is reached, when it is finally overtaken by lower carrier density regions.
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Figure 1.7: Square lattice chemical
potential µcb2D temperature dependence.

S
q

rt
[-
D

R
H
(b

)/
R

H
0
]

0,4
n

0.1
0.2

0,3                 0.3
0.4

0,2

0,1

0,0
0,0 0,1 0,2 0,3 0,4 0,5

k
B
T = 1/b
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It is clear from graph 1.8 that in standard conditions the temperature de-
pendence of Hall coefficient is quadratic. This is to be expected in general for
temperature averages of physical quantities of fermion systems, as the coefficients
of the Sommerfeld expansion (1.19) with odd powers of β are due to the symmetry
of ∂εfµ zero.

This result is thus interesting only in that it differs from EG behaviour. While
3DEG and 2DEG may hint at only marginal dependence or complete temperature
independence of RH (at least as long as there are no phase transitions involved),
this analysis of square lattice case paints a different picture.

In general, separating the temperature and density dependence, one has to
expect

RH(β) = RH0

[︄
1 − ∆RH(β)

RH0

]︄
≈ RH0

[︄
1 − η(n)2

β2

]︄
(1.23)

16



with η(n) term encompassing possibly complicated density dependence of the
first order correction for wide 1/β range.

Disregarding the region in the vicinity of the Van Hove singularity, where does
RH change sign, η(n) is ⪅ 1 and for 1/β ≈ 0.1 is the correction at least two orders
of magnitude lower than zero temperature Hall coefficient RH0.

1.2 Substitutionally disordered materials
Broken translational symmetry of pure crystalline solids presents main challenge
in the description of disordered materials, preventing straightforward use of the
band structure and notions based on it.

Still, there were such attempts, with one example being a rigid band approx-
imation. It was used primarily for the description of metal alloys and assumes
an unchanging band structure despite the substitution of a primary host element
for a secondary. Only effect of alloying in this approximation is then a change of
electron density nAlloy

nAlloy = (1 − c)nA + cnB (1.24)

for elements with different valence and subsequent shift in Fermi energy εF .
While there were some particular successes of this approach, it proved to be

completely insufficient in vast majority of cases [8]. It seems clear that a more
applicable theory has to take a step back from band structures and be built
properly without the underlying assumption of translational symmetry.

A system study case used in the further section will be the simplest example
of a substitutionally disordered material: a binary alloy.

Problem definition

Let substitutional binary alloy A(1−c)Bc be described analogously to pure cosine
band tight-binding (1.10) by Hamiltonian H of the form

H = W + V , V =
∑︂
i

|i⟩ εi ⟨i| , εi = ⟨i | V | i⟩ = p(A)εA + p(B)εB, (1.25)

where W is translationally invariant purely site off-diagonal part and V site di-
agonal disorder or impurity part. Furthermore, it is assumed that at each given
site i there is a single localised state (orbital) |i⟩ and overlap integral ⟨i | j⟩ = 0
for ∀i ̸= j.

The probability of a given site being occupied by an atom of type A, with
on-site energy εA, is denoted as p(A) and similarly for B. No preference in
distribution of atoms (e.g. clustering of certain type) is assumed, with correlations
arising solely from controlled concentration c of atoms of type B in the system.
These correlations are negligible for large enough systems as they are falling off
as N−1, with N being the number of sites, and for each site is then independently
p(A) = (1 − c) and p(B) = c.

Due to the stochastic nature of the system and its Hamiltonian (1.25) are
not of interest behaviour and properties of its any particular realisation, but only
corresponding configuration averages denoted as ⟨. . .⟩.
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Green’s functions and effective medium

Properties of the system, such as the density of states g or the lifetime τ for
decaying states, are easily accessible from Green’s functions (GFs). Only key
expressions directly connected with the problem at hand will be presented here
with a more detailed discussion, e.g., in [21] or[8].

All GFs in the following are two-point (single particle) retarded GFs, which
are for given Hamiltonian H defined as

G(z) = [z − H + iϵ]−1 ϵ > 0, (1.26)

with positive imaginary infinitesimal iϵ suppressed in further expressions. Note
the use of z for complex valued energy to differentiate it from real ε.

Objective of presented theory is to determine configuration averaged, so called
effective medium (or shortened only to ’effective’) GF G

⟨G⟩ = G. (1.27)

This GF corresponds to effective medium Hamiltonian H

H = W + Σ, (1.28)

which has restored translational symmetry due to the undertaken configuration
averaging. The effective Hamiltonian of the medium H consists of the original
diagonal part W and a new self-energy operator Σ which describes a mean field
arising from configuration averaged effects of original disorder potential V .

Self-energy is thus defined by (1.27) and (1.28), or altogether as

Σ(z) = z − W −G
−1(z), Σ(z) = P−1(z) −G

−1(z),

where P stands for the so called unperturbed GF which is in this context related
to Hamiltonian H0 = W . P is also called propagator as opposed to locator g
which involves different splitting of the full Hamiltonian H into an unperturbed
one and a perturbation.

Self-energy operator Σ is therefore the only unknown, whose determination
would be a key to the properties of the alloy via effective GF (1.27).

Analyticity and structure of Green’s functions

Retarded GF owes its name to causal ordering, which translates into analyticity
in the upper half-plane of complex energies. Its connection to the Schrödinger
equation is also very clear in the energy representation, as its poles correspond
to excitation energies of the system.

Note that due to the hermiticity of Hamiltonian (e.g. here (1.25)), retarded
GF (1.26) has its poles located along real axis displaced by infinitesimal ϵ to
complex lower half-plane. GF is in the case of finite dimensional Hilbert space
with finite energy basis clearly meromorphic function G : C → C or analytical
function G : C → C∗, where C∗ stands for extended complex numbers C ∪ {∞}
(Riemann sphere), as all poles are necessarily isolated singularities.
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This situation may change drastically on the infinite dimensional Hilbert space
when poles of the GF accumulate forming a branch cut (formal description in e.g.
[22]). In such case one has to perceive GF as a function C → C or (C∗) that is dis-
continuous along its branch cut, or more naturally as a meromorphic (analytical)
function defined on a larger Riemann surface R, G : R → C (C∗). Notably, GF
in this view has no branch cut i.e. no poles associated with original real energies
which formed it. Instead, one can find poles located in previously inaccessible
sheets of larger Riemann surface with non-zero (non-infinisimal) imaginary part.
The operator with which such GF is associated is no longer hermitian as no her-
mitian operator can have complex valued eigenvalues. This will be the case in
the following with the self-energy operator Σ in effective GF (1.27).

Also note that if original GF G : C → C∗ has no isolated poles and only
a branch cut (cuts), then function G : R → C∗ has necessarily poles on R as
otherwise it would have to be constant or more precisely zero in current con-
text of Hamiltonian H (1.25) due to its bounded spectrum which provides clear
asymptotic behaviour

G(z) → 1
z
, as z → ∞. (1.29)

One may also use a more general view of GF in the whole complex energy
plane G : R → C to see the connection of time ordering in GFs and their energy
representation. Since the Hamiltonian has to be bounded at lest from below there
is no branch cut splitting energy plane entirely in two halves and one can continue
retarded GF into lower half plane which corresponds to opposite time ordering of
advanced GF. In this sense, there is then only one ’whole’ GF G. Values of this
GF on the real axis, which is of physical importance, are outside of the spectrum
of the Hamiltonian determined uniquely as retarded and advanced GFs have the
same limit ϵ → 0.

On the other hand, this whole GF becomes multivalued in the presence of
poles or branch cut as a result of analytical continuation dependence on the
half plane from which is pole or cut approached. Infinitesimal imaginary parts
±iϵ differentiating retarded and advanced GFs then ensue correct behaviour by
explicitly selecting this complex half-plane from which is the real axis in the
aforementioned limit of ϵ approached.

Derived properties and Bloch wave basis

Density of states at a given site g is obtained from the corresponding diagonal
term of effective GF (1.27). E.g. taking site with index i = 0

g(ε) = − 1
π
Im[G00(ε)]. (1.30)

The choice of the 00 component in the GF above is arbitrary due to translational
invariance and this DOS relation holds for any diagonal component of G.

For calculation of site diagonal terms of effective GF, as in (1.30) or in follow-
ing self-consistent approximations for self-energy, one may use its translational
invariance to rewrite it as a trace, which can then be evaluated on a suitable
basis.

G00(z) = 1
N
Tr

[︂
G(z)

]︂
= 1
N

∑︂
k

1
z − ε(k) − Σ(z,k) (1.31)
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Last expression here corresponds to a trace in Bloch wave basis, which diagonal-
izes (site) translationally invariant operators. One present example is ε(k), which
is the Fourier transform of H0 = W . Similarly, translationally invariant Σ is also
diagonalized in this basis and in general is also k dependent.

Specially when is approximate self-energy obtained from properties concerning
configuration average at a single particular site immersed in effective medium, one
has self-energy independent of k. Σ(z) is in such case for each given energy point
z complex scalar. These approximations are owing to their nature known as
single site approximations (SSAs), and they will be a focus of this whole section.
Therefore, self-energy k independence is assumed in the following.

Imaginary part of the self-energy describes the scattering. In pure systems
with hermitian Hamiltonians there are only states with infinite lifetimes, whereas
inclusion of disorder leads to situation, where is the system best described with
quasi-particles (corresponding to complex valued energies of poles) with finite
lifetimes given by

τ = ℏ
2Γ = ℏ

−2Im[Σ] . (1.32)

Note that one cannot obtain this way k dependent lifetime τ as the single site
self-energy does not contain any information on site correlations. Where does
this dependence play a more vital role, one has to leave the limiting domain of
the SSAs for more precise theories with intersite correlations.

Scalar retarded self-energy Σ has to have a negative imaginary part so that
retarded GFs retain their analytical properties and here crucially so expressions
for DOS (1.30) and lifetime τ (1.32) have only positive valued output.

Effective GFs for disordered lattices

Formulas for the effective GF site diagonal of two previously discussed cosine
band models, the one dimensional chain and square lattice are shown below. In
context of general Hamiltonian (1.25) it means

W =
∑︂

|i−j|=1
|i⟩ ⟨j| , (1.33)

with i, j simple indices in 1D, or multi-indexes in 2D case. Note the absence of
the hopping parameter t due to the use of reduced energy units (1.11). System
Hamiltonian (1.10) and corresponding dispersion relations (1.12) were shown in
the previous section and for GF diagonal calculation is used relation (1.31).

G
1Dcb
00 (z) =

[︂
(z − ε0 − Σ)2 − 4

]︂−1/2
. (1.34)

Complex square root here is taken with branch cut along real axis, with its image
being complex upper half-plane, so the site diagonal of effective GF retains its
negative imaginary part.

This model is further used mainly for comparison of behaviour of examined
approximations. The simple form of effective GF diagonal (1.34) allows one to
solve self-energy equations of the examined approximations analytically and thus
provides a good start for their analysis.
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G
2Dcb
00 (z) = 2

π(z − ε0 − Σ)K
[︃ 4t
z − ε0 − Σ

]︃
.

The end goal is to describe magnetic field-induced properties, exemplified by the
Hall coefficient RH , which cannot be realistically discussed in the 1D chain case.
For this purpose, square lattice model will be employed.

Gershgorin circle theorem and DOS bound

While it may be hard to make broad statements about disordered materials, there
exists a simple bound on system density of states provided by the Gershgorin
circle theorem. It can be formulated as follows:

Let M ∈ Cn×n be a complex matrix and D(a, r) ⊂ C closed disc centred at
a ∈ C with radius r ∈ R. For spectrum σ (M) of any such M is then

σ (M) ⊂
n⋃︂
i=1

D(Mii, Ri), where Ri =
∑︂
i ̸=j

|Mij|.

This theorem takes a particularly simple form in the case of Hamiltonian H
(1.25) in the site basis H as all radii Ri = R ∀i due to translational invariance
of W, matrix site representation of W . H has only two different diagonal values
{εA, εB} and its spectrum is real (D ⊂ R).

σ (H) ⊂
⋃︂

i∈{A,B}
D(εi, R) (1.35)

Specially in previously discussed cosine band models with W (1.33) is R = 2 for
1D chain and R = 4 for 2D lattice

σ(Hcd
1D) ⊂ ⟨εA − 2, εA + 2⟩ ∪ ⟨εB − 2, εB + 2⟩ ,

σ(Hcd
2D) ⊂ ⟨εA − 4, εA + 4⟩ ∪ ⟨εB − 4, εB + 4⟩ .

It is reasonable to define scattering strength δ based on this bound

δ = εB − εA
R

, (1.36)

as for δ sufficiently large (|δ| > 2) there must necessarily be a region with zero
density of states splitting one energy band into two separated sub-bands, the host
band and impurity band.

Note that δ, or any related measure of A and B on-site energy difference εB−εA
is one of the only two nontrivial parameters, with concentration c, governing the
cosine band models and it is its only energy parameter.

1.2.1 Single site approximations
Effective GF can be expanded into infinite series consisting of all combinations of
terms of the type: free propagation (given by P ), scattering (Σ), free propagation,
and so on. This can be written in concise form as

G = P + PΣP + PΣPΣP + . . . = P + PΣG = P + P ⟨T ⟩P. (1.37)

21



The last equality shows another way to sum the series using T , the so-called
T-matrix, or transition matrix. T-matrix has its origin within the framework
of scattering theory, where it separates the effects of the scattering potential in
all scattering events from the free non-perturbed propagation. Both of these
terms then contribute to a total transition amplitude in the scattering matrix,
the S-matrix.

It plays the same role in the present case as it is the only nontrivial part
of the GF in equation (1.37) encompassing effect of all scattering events in the
dissordered system. Contrast this with self-energy, whose contribution to the GF
is repeated in infinite series, and only its summation captures all the disorder and
scattering fully.

Average T-matrix and self-energy are linked via

⟨T ⟩ = Σ (1 − PΣ)−1 , Σ = ⟨T ⟩ (1 + P ⟨T ⟩)−1 . (1.38)

Taking a step back from self-energy, one can write the GF series for disorder
potential V

G = P + P ⟨V⟩P + P ⟨VPV⟩P + . . .

and try to find approximation for the effective GF instead. The most straightfor-
ward way to do this would be (with the assumption of |V| ≪ 1) to truncate the
series after finite number of terms, but closer examination shows that any such
truncation covering any finite set of scattering processes would necessarily leave
hand print of pure material structure in the effective GF.

For example, the first term (P ) leaves pure band Van Hove singularities (recall
1.1) present in G and the case is similar with all higher terms, which would diverge
at critical points too [8] making any such approximation insufficient. Divergences
would also go against the underlying assumption of convergence of the series
(1.37), which is in the first place enabling to perform present infinite summations.

This illustrates one of the benefits of the self-energy formalism, as any non-
zero Σ leads to summation of infinite series of corresponding scattering processes
in GF and, as will be seen bellow, allows to leave completely the domain of
unperturbed GFs.

Full self-energy is given by

Σ = ⟨V + PVP + PVPVP + . . .⟩ = ⟨V⟩ + P ⟨V⟩P + P ⟨VPV⟩P + . . . (1.39)

and its analytical approximations usually tend to either truncate this series re-
sulting in e.g. Virtual crystal approximation (VCA) or Born approximation and
its improved variant Self-consistent Born approximation (SCBA), or using suit-
able decoupling scheme to deal with hard to track correlations in averages ⟨. . .⟩
allowing its summation as is the case in e.g. Average T-matrix approximation
(ATA) or Coherent potential approximation (CPA). All of these approximation
are SSAs as either due to the truncation or used decoupling scheme they result
in expressions evaluated only on one site, neglecting any correlations with both
near neighbours or any long range order.

Numerics and SSAs common behaviour

1D chain Hcb
1D model is used in this section for comparison of various SSAs and

discussion of their strengths and shortcomings. Numerical DOS, calculated using
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negative eigenvalue counting algorithm, of chain of length 108 sites is provided as
a reference to the analytical SSAs DOS.

Although these SSAs in many aspects differ as can be seen below, their com-
mon feature, the neglect of site configuration correlation, does lend them some
common properties.

For one, note the correct (numerical) DOS fine structure with its many sharp
peaks (1.9), while SSAs in general produce smooth DOS curves. This has its
origin in short range order, which are the SSAs unable to capture, and whose
effects are especially pronounced in systems of low dimensionality, where the
configuration number (number of closest neighbours) is very low. Clusters of the
same sites are then more prevalent, while each site in the higher dimensional
systems is more likely to be surrounded by a mix of both site types, which more
closely reflects the effective mean field of Σ.

On the other hand, the long range correlations have significant effect near
band edges where DOS decays exponentially. This is a behaviour which SSAs
consistently fail to reproduce [8], so extreme caution should be taken when they
are used in these regions.

Virtual crystal approximation

The very simple but intuitive method to account for alloying is to disregard any
scattering and assume that the alloy itself is again a pure crystal with only change
present in a constant energy shift in the Hamiltonian with respect to the host pure
material. It is natural to require correct pure material concentration limits (c → 0
and c → 1) and from this and the continuity in c for it to be a c interpolation
scheme between these two pure crystals. Taking this dependence as a linear one
has

ΣV CA = ⟨V⟩ = (1 − c)εA + cεB,

and virtual crystal Hamiltonian is simply

HV CA = W + ΣV CA.

Virtual crystal approximation (VCA) can in this regard be viewed as a spir-
itual successor of rigid band approximation at the self-energy level, with both
having in common that they result only in a shift of Fermi energy with respect
to a pure band.

Second and less arbitrary point of view is via self-energy series expression
(1.39), with VCA self-energy being simply lowest order approximation

ΣV CA = ⟨V⟩ .

Note that owing to even if trivial but still infinite series summation in GF related
to VCA medium, there are no longer present any remnants of ’original’ pure
crystal structure, as discussed before.

While VCA by itself is too rough to be useful, as was the case with the RBA,
virtual crystal medium is still appropriate as reference medium in the sense of

W −→ W + ΣV CA, V −→ V − ΣV CA,
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since for the disorder potential part is then

(1.40)

⟨i | V − ΣV CA | i⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Site A: p(A) = (1 − c)

εA − (1 − c)εA − cεB = c(εA − εB) = −c∆ε

Site B: p(B) = c

εB − (1 − c)εA − cεB = (1 − c)(εB − εA) = (1 − c)∆ε,

and by construction is configuration average of this new potential equal to zero.
Alternatively, using scattering strength δ (1.36) (R = 2 for chain and R = 4

in the case of square lattice), is

⟨i | V − ΣV CA | i⟩ =

⎧⎨⎩−cRδ Site A
(1 − c)Rδ Site B.

Its first benefit is simplifications of expressions involved in the derivation of
self-energy equations of various approximations, as e.g. first-order term in (1.39)
vanishes in configurational average due to the ⟨V⟩ = 0 property. Second and main
benefit is a better and more symmetric separation of the ’unperturbed’ H0 = W ,
which works now as a pure system concentration c interpolation scheme, from the
impurity part V , allowing to use the other SSAs themselves as an interpolation
scheme and with greater accuracy [8].

More sophisticated approximations for self-energy

Both average T-matrix approximation (ATA) and self-consistent Born approxi-
mation (SCBA) belong to the class of still relatively simple but yet in some cases
potentially sufficient approximations for self-energy.

Below follows their brief description and discussion of their properties. Figures
1.9 and 1.10 provide their comparison for fixed δ = 1 and various c ranging from
c = 0.01 up to a symmetric case c = 0.5.

Both of these approximations are applicable in certain concentration ranges
and both are in general more precise for systems of lower scattering strength δ,
since for higher δ each has its own fatal failure.

An ideal approximation would have to combine strengths of these, providing
a continuous and precise concentration interpolation scheme, and remedy the
high δ problems encountered in ATA and SCBA, effectively spanning the whole
parameter space. As will be seen below, CPA proves to be a very strong candidate
for this approximation.
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ATA self-energy

ΣATA = ⟨t⟩
1 + ⟨t⟩P0

with configurational average of single
site t-matrix ⟨t⟩

⟨t⟩ = (1 − c) εA
1 − P0εA

+ c
εB

1 − P0εB

is derived with an emphasis on consecu-
tive scatterings on the same site, while
neglecting configuration correlations for
returning particles. Due to this, ATA
is expected to correctly capture the be-
haviour of low c systems and to strug-
gle with higher concentrations (up to
c = 0.5, above symmetry in c′ = 1 − c
and the switch of on-site energies ε ow-
ing to the VCA reference medium).

This is confirmed in graph A, with
correct positioning of the impurity peak
and host band structure. By B, prob-
lems such as somewhat sharper and
shifted impurity DOS peak, or zero
Im[ΣATA] in part of the host band,
are becoming visible. Graph C shows
a complete failure of ATA to describe
given system. The host and impu-
rity bands are in ATA given much nar-
rower bands, disregarding their edges
completely and scattering is absent
(Im[ΣATA] = 0) outside the emerging
middle band located around ΣV CA.

Examination of ΣATA equation re-
veals that this behaviour originates in
a pole, which is present for all energies
in the corresponding pure band of the
VCA medium [8]. This is also the only
source of non-zero self-energy imaginary
part, leading to a limited energy range
where scattering occurs. This also hints
at a failure of ATA in higher δ, where,
depending on the concentration, ΣV CA

can be positioned outside of both host
and impurity bands. ATA will in such
case incorrectly predict new band in the
gap.

ATA

A

B

C
Figure 1.9: Chain

(︂
Hcb

1D

)︂
ATA

self-energy Σ and DOS. Comparison
with numerical calculation of DOS.

Constant scattering strength δ = 1 for
increasing concentration c, A 0.01, B

0.1 and C 0.5.
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SCBA given by

ΣSCBA = c(1 − c)∆2
εG (1.41)

is self-consistent (since G [ΣSCBA]) sec-
ond order truncation of self-energy se-
ries (1.39). It may be hard to make
predictions about its behaviour based
on its origin, but examination of the
SCBA self-energy equation itself reveals
its most important properties.

For one, ΣSCBA is proportional to
the effective GF itself, with a pure real
scaling parameter c(1−c)∆2

ε ∈ R. Limit
δ → 0 recovers pure material band
structure pointing at its validity in a
weak scattering regime. Taking imag-
inary part of self-energy equation leads
to

τ = ℏπ
2c(1 − c)∆2

εg
∝ 1
g
,

which guarantees scattering present in
the whole energy range accompanying
non-zero DOS. This relation is often
used more generally as an initial rough
estimate of the life-time τ (1.32).

Less welcome is the symmetry of the
self-energy equation. Since ΣSCBA is
odd in its real and even in imaginary
part with respect to ΣV CA, SCBA will
do well with systems of c ≈ 0.5, but
would (excluding δ ≪ 1 case) presum-
ably fare worse otherwise.

Huge setback for SCBA is absence
of structure, which would allow to ei-
ther split band or give rise to another.
This means that SCBA would necessar-
ily fail for all systems in the split band
limit (with δ ≥ 2).

These observations are confirmed in
graphs A to C. The symmetric case C
shows a good fit of SCBA to numerical
DOS, but even then, there is shown hint
at overflow at band edges. SCBA also

proves to be applicable in very low con-
centrations as in A, when ΣV CA ≈ εA
and disregarding band edges and impu-
rity peak the match of DOS is otherwise
good. Graph B serves as an example
in which are discussed bad traits most
prominent.

SCBA

A

B

C
Figure 1.10: Chain

(︂
Hcb

1D

)︂
SCBA

self-energy Σ and DOS. Comparison
with numerical calculation of DOS.

Constant scattering strength δ = 1 for
increasing concentration c, A 0.01, B

0.1 and C 0.5.
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1.2.2 Coherent potential approximation
Outline of CPA derivation stripped of most finer points is provided in the ap-
pendix and more detailed description can be found in the original article [19] or
in books concerning topic at hand, such as [8], or many others.

CPA in its simplest form presented here is known as the single site CPA
(SSCPA) as opposed to various more complex CPA schemes, which seek to also
incorporate cluster scattering and effects of short or long range order. As for
others SSAs, self-energy ΣCPA is scalar given by self-consistent (since G [ΣCPA])
equation

ΣCPA = − (εA − ΣCPA)G00 (εB − ΣCPA) ,

or writing explicitly VCA on-site potentials (1.40)

ΣCPA =
[︂
c(1 − c)∆2

ε + (1 − 2c)∆εΣCPA − Σ2
CPA

]︂
G00. (1.42)

Subscript CPA for self-energy ΣCPA will be omitted in the following text.
Note that the CPA self-energy equation is symmetric with respect to con-

centration inversion and on-site energy switch. This feature is common with
previously discussed ATA and SCBA and it is a necessary prerequisite for an ap-
proximation to appropriately function as a concentration interpolation scheme.

Since one of the concerns with simpler SSAs propelling search for better ap-
proximation was their inability to work properly in the entire concentration and
scattering strength (1.36) parameter space {c, δ}, it is vital to see how CPA fares
in this regard. As a reminder note, hopping term t is not a nontrivial parame-
ter due to the energy scaling invariance and, if not explicitly discussed as in the
following section, the use of reduced units (1.11) is always assumed.

Exploration of the parameter space {c, δ} will begin with its limiting cases.

Sharp level limit

Limit of isolated sites (no hopping term) t → 0, or equivalently W → 0 leads to
site-diagonal full GF G (1.26) which in turn yields site-diagonal and translation-
ally invariant effective GF

G00(z) −→ 1
z − ΣV CA − Σ(z) .

For CPA self-energy (1.42) is then

Σ = c(1 − c)∆2
ε

z − ΣV CA − (1 − 2c)∆ε

,

which is real valued leading to reducing density of states expression (1.30) to
delta function

g(z) = δ(z − ΣV CA − Σ).

Its argument has two distinct roots

z1,2

⎧⎨⎩ΣV CA − c∆ε = εA

ΣV CA + (1 − c)∆ε = εB
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corresponding to energies of isolated sites εA and εB. Full expansion yields
g(z) = (1 − c)δ(z − εA) + cδ(z − εB) (1.43)

and CPA reproduces correctly both position of the energy levels and their weight.
The same result can be reached by assuming no scattering (τ = ∞, Im[Σ] = 0)

and taking the imaginary part of the self-energy equation. Since (1.43) is the only
solution, within the CPA non-zero DOS implies non-zero Im[Σ] and vice versa.

Sharp level limit is also connected to seemingly different δ → ∞, but when
taking into account the energy scaling invariance of the models, narrowing bands
around the values of the on-site energies εA, εB while leaving their positions
unchanged corresponds in preserved reduced energy unit representation (1.7) to
the aforementioned high scattering strength limit.

It can also be seen on the Hamiltonian level in its site basis representation,
where t → 0 and δ → ∞ both break down the interacting system to a decoupled
series of isolated sites.

Weak scattering and low concentration limits

Weak scattering limit ∆ε → 0 (accompanied by ΣV CA → εA) and low concentra-
tion limit c → 0 can be derived by expanding the self-energy equation (1.42) to
the leading order in ∆ε or c respectively.

Σ ∆ε→0= c(1 − c)∆2
εG, Σ c→0= c∆ε2G00

1
1 − ∆εG00

Since effective GF is assumed to not diverge at any z (see Single site approx-
imations), the ∆ε → 0 limit is straightforward to perform and produces Σ = 0.
Also note that in the small scattering regime, CPA yields SCBA self-energy (1.41).

Zero concentration case is more involved as the present fraction may diverge
seemingly leading to a non-zero self-energy result. Closer inspection shows that
such case is not possible, as for the divergence to be present, effective GF would
need to be strictly real, which in turn mean zero DOS and also real self-energy.
Lastly due to conserved particle number, i.e. integral DOS, there needs to be a
band where Σ = 0 as a result of the present limit and due to its analyticity, that
means Σ = 0 everywhere.

In conclusion, both limits correctly yield unperturbed pure system.

Solution choice

Self-consistent equations for self-energy (CPA, but also e.g. previously discussed
SCBA (1.41)) are non-linear and in general have multiple solutions. In theory,
one would have to solve the equations with proper restrictions and boundary
conditions such that resulting Σ is not only a solution of a given self-energy
equation, but also truly reflects physics of the system.

In practise, the systems of interest are usually too complex to hope for an
analytical solution and self-energy equation needs to be solved numerically. In
such cases, the present rules may provide a basis for a test to decide whether the
calculated self-energy should be accepted or rejected as nonphysical.

The main set of conditions on solutions has its origin in general GF properties
and particularly in their analyticity. For this purpose there are also very useful
known limits such as (1.29).
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(i) Im [Σ] ≤ 0

(ii) Σ as a function R → C∗ is not discontinuous (i.e. no ’finite jump’ is allowed,
while on the other hand pole in self-energy correspond to zero in GF and is
therefore not impairing its analyticity).

(iii) G(z) → z−1 with z → ∞

(iv) Preserving normalization of density of states (particle number or density
conservation).

Another category consists of conditions emerging from properties of each given
approximation. E.g. for CPA self-energy is [8]

(v) ΣCPA → ⟨V⟩ = 0 (VCA medium) as z → ∞.

Self-energy solution selection is demonstrated in figure 1.11 for CPA self-
energy in 1D cosine band case. Equation (1.42) can be expressed as a third degree
polynomial equation for Σ(z) for each energy z and in C∗ has three distinct roots.
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e

Figure 1.11: Chain
(︂
Hcb

1D

)︂
CPA self-energy equation root selection. Range is

divided into 5 intervals {I1, . . . I5}. On I2 is 3rd and on I4 1st solution correct
due to conditions (i) and (iv). Solutions on other intervals need to be connected

continuously (ii), therefore on I1 and I5 is due to the (v) only 2nd solution
correct. Similarly on I3 only 1st solution meets condition (ii).
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Spanning the parameter space

With the question of limits answered and the border cases of the parameter
space covered with CPA providing exact solutions, what remains to be seen is its
applicability for the intermediate range of {c, δ}.

1D chain model with GF (1.34) is employed for this purpose. The series
of Σ and DOS for gradually increasing concentration c is shown in figure 1.12,
covering near limit case c ≪ 1 with c = 0.01, intermediate c = 0.1 and symmetric
c = 0.5. Results are shown for two distinct scattering strengths: Albeit significant
scattering with δ = 1, but still far below the split band upper bound of the
Gerschgorin circle theorem (1.35) (δ > 2). This also provides a direct comparison
with the results of ATA (1.9) and SCBA (1.10) results. As a representative of
hight scattering strengths serves δ = 3.

δ = 1 δ = 3

A

B

C
Figure 1.12: Chain

(︂
Hcb

1D

)︂
CPA self-energy Σ and DOS. Comparison with

numerical calculation of DOS. Scattering strength δ = 1 (left) and δ = 3 (right)
for increasing concentration c, from the top A c = 0.01, B 0.1 and C 0.5.
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As was the case in the previous section, the results of numerical calculation
of DOS for chain of length 108 sites are provided for comparison with CPA DOS.

Graphs 1.12 depict various regimes of CPA. 1C (as in δ = 1, C) is a singular
example of an undivided band with finite self-energy. 1A, 1B and 3A show de-
tached impurity band with finite self-energy whose real part crosses zero within
this band. Finally, self-energy in 3B and 3C has a pole and consequently GF a
zero in the band gap region.

While emergence of the impurity peak or band reflects the system at hand,
the self-energy pole is an inherent CPA feature. One can see that in a split band
case. For a given concentration c increasing the scattering strength δ leads to a
shift in energy z where Re[Σ] changes sign from within the impurity band closer
to inner band edge until sufficient strength is reached and a pole emerges at the
very edge of the impurity band. More on this behaviour in [19].

As can be seen in 1.12, CPA handles rather well all present cases. It success-
fully avoided pitfalls of impurity band emergence, failed in one form or another
in SCBA and ATA, and predicts scattering in a whole band (or bands).

Still, despite CPAs advantages and successes, presented graphs reveal one of
its shortcomings. Namely, its persistent inability to properly describe band edges.
It is a case especially with the impurity band for lower concentrations and albeit
not so badly for both bands in a more balanced material.

This relates back to general discussion of failings of SSAs and their inability
to capture band edge behaviour and finer intraband structures corresponding to
long range order and local environment correlations respectively.

It was shown that CPA is usable as an interpolation scheme in the entire {c, δ}
parameter space and comparison with some other used approximation as well as
their analysis [8] proved it to be the superior approximation within the realm of
SSAs.

1.2.3 Hall coefficient calculation
The form of a linear electric field E response conductivity tensor for the CPA
decoupling scheme was first presented in 1969 [19] and the electric E and magnetic
B field bilinear response conductivity tensor a year later [23].

The results of their derivations (in the later article [23]) were written in the
form of effective densities, equations (63a) and (64b), and integrals, (64a) and
(64b), with the CPA self-energy as a single input parameter besides pure material
band structure.

In the current framework, they can be succinctly written using of FS integrals
ϕxx, ψyx (1.4) as

Φ(ε) =
∫︂
κϕ(ε− Σ − ΣV CA − ε′)ϕxx(ε′)dε′, κϕ(x+ iy) = 1

π

2y3

(x2 + y2)2 (1.44)

Ψ(ε) =
∫︂
κψ(ε− Σ − ΣV CA − ε′)ψyx(ε′)dε′, κψ(x+ iy) = 1

π

8y5

3(x2 + y2)3 ,(1.45)

with κϕ and κψ disorder integration kernels. Disordered system Hall coefficient
R∗
H is then given by formally same expression to that of pure material RH (1.6)
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as

R∗
H = −1

e

Ψ
Φ2 . (1.46)

Band structure dependence is therefore recovered in the low field B linear
regime from the full quantum description utilising GFs as the conductivity tensors
(1.5) (∝ Φ and Ψ respectively) are given by integral transforms of their pure
translationally invariant counterparts.

Note the limiting behaviour of disorder kernels

κϕ(x+ iy) → δ(x), κψ(x+ iy) → δ(x), as y → 0,

applied in the zero-scattering limit

R∗
H(ε) → RH(ε− ΣV CA −Re[Σ]), as Im[Σ] → 0,

which results in simple shift in energy argument of pure RH . This case (Im[Σ] ≪
Re[Σ]) was studied in more detail for the cubic lattice Hcb

3D in [23].
Lastly limits c → 0 and δ → 0 (weak scattering and low concentration limits)

R∗
H(ε) → RH(ε), as c → 0 or δ → 0,

yield correctly pure material RH .

The next point concerns the dis-
order kernels κ, shown in graph 1.13.
Since they are both real, positive and
symmetric, the pure material discussion
of the Hall coefficient sign is largely
left unchanged. Second, inclusion of
the disorder via the integral form (1.44)
and (1.45) is reminiscent of the temper-
ature averaging (1.16), since both in-
volve a single sharply peaked function
(albeit in the disorder case usually much
broader). Important distinction here is
the different kernel used for ϕxx and ψyx
FS integrals, while thermal averaging is
the same for both.

k

kf,y=0.25

3 kf,y=0.5

ky,y=0.25

ky,y=0.5

2

1

0
-1,0 -0,5 0,0 0,5 1,0

e

Figure 1.13: Graphs of disorder
integration kernels κϕ and κψ centred

at zero for iy = 0.25 and 0.5.

Lastly, the inclusion of temperature is straightforward in this point, as it
consists again of thermal averaging of the form (1.16) only now with the disorder
variant of the FS integrals Φ and Ψ instead of pure material ones [19].

Results for square Lattice

Self-energy was calculated via simple iteration of CPA equation (1.24) employing
relaxation via parameter ω

Σnew = ωΣCPA[Σold] + (1 − ω)Σold,
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usually with ω ≈ 0.1 so that the iteration converges. Despite this, the algorithm
for ε in the region of the band gap and near the inner band edges did not converge,
and extrapolation from complex valued z to the real axis was unsuccessful, as the
problematic region tends to extend far from the real axis. The results presented
here are thus limited to lower scattering strength δ = 0.5 (A) and δ = 1 (B) for
three concentrations, c = 0.01, figure 1.14, c = 0.1 1.15 and lastly c = 0.5 1.15.

To provide a comparison for the CPA results, DOS was calculated by means
of diagonalisation of the Hamiltonian site representation sparse matrix Hcb

2D with
a fixed lattice size of 100 × 100 sites.

Hall coefficients are obtained using (1.46), with exact FS integrals ϕxx, ϕyx
(1.14) approximated with their interpolation functions to speed up the calculation
(see discussion in RH calculation for square lattice model). For a pure material
DOS and RH recall 1.5 in the same section.

Following that, the −ncRH quantity is accompanying RH plots, but unlike its
pure counterpart without usable analytical expressions for both RH(ε) and g(ε),
the band edge limits could not be computed. The closest approximation would
probably involve interpolation of both the CPA DOS and the Hall coefficient and
using its derivative instead, but the general struggle of CPA to capture band edge
behaviour renders this question meaningless, as the approximation itself is in the
first place not suited for such task.

Σ c = 0.01 RH

A

B

Figure 1.14: Square lattice
(︂
Hcb

2D

)︂
numerical and CPA DOS, self-energy Σ

(left) and RH (right). Fixed c = 0.01 for (A) δ = 0.5 and (B) 1.
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Σ c = 0.1 RH

A

B

Figure 1.15: Square lattice
(︂
Hcb

2D

)︂
numerical and CPA DOS, self-energy Σ

(left) and RH (right). Fixed c = 0.1 for (A) δ = 0.5 and (B) 1.

Σ c = 0.5 RH

A

B

Figure 1.16: Square lattice
(︂
Hcb

2D

)︂
numerical and CPA DOS, self-energy Σ

(left) and RH (right). Fixed c = 0.5 for (A) δ = 0.5 and (B) 1.

The concentration dependence of the Hall coefficient RH absolute value for
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various electron densities n is shown in figure 1.17. Constant electron density
is assumed, i.e., same valence of both host and impurity atoms, and therefore
the alloying leads only to changing Σ profile and DOS distribution, which is in
turn responsible for shift in Fermi energy εF . More generally, one would need to
include nAlloy (1.1) concentration dependence.

The first thing to note is the symmetry of RH , as it is an odd function of c
with respect to simultaneous mirroring of concentration with respect to c = 0.5
and the same for density n and n = 0.5.

This comes as no surprise, as the DOS and CPA Σ are in the process just
flipped together with Fermi energy εF and the change of sign simply reflects
different majority carriers. For the c = 0.5 itself (graphs 1.16) the symmetry
is then reduced to all present quantities being even or odd with respect to the
ΣV CA, i.e., n = 0.5 point.

Despite nontrivial effects of disorder that can be seen in the 1.17, Hall coef-
ficient behaviour does not qualitatively change within the presented framework
and for all shown densities n full RH curve remains in the vicinity of pure material
line (i.e. VCA interpolation scheme, which leaves RH constant).

Its influence on RH is most pronounced at the edge of the host band, which
would with a sufficiently high strength δ split off to form the impurity band, while
having only marginal effect in comparison deep within the host band. This can
be clearly seen e.g. from the flat profile of the low n lines for c < 0.5 and on the
other hand from the bend of the hight n RH curves for c > 0.5.
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Figure 1.17: Square lattice
(︂
Hcb

2D

)︂
constant δ = 0.5 Hall coefficient RH

dependency on concentration c for various values of fixed electron density n.
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The relative change (∆RH(c) over pure RH0) is highest near n ≈ 0.5 where
it is natural to expect a change in the majority carriers and RH zero crossing.
Figures 1.14 and 1.15 confirm such expectation for at least relatively wide c and δ
range, but also note figure 1.15 whose B graph (δ = 1) indicates that the position
of Hall coefficient zeros may be especially at higher strengths δ much harder to
predict.

Unlike previously discussed temperature dependence, the absolute change in
Hall coefficient ∆RH is for all n of the same order of magnitude. Also, unlike
inclusion of temperature which tends to lower the system Hall coefficient as seen
in 1.8, examined disorder leads to increase in RH near the band edge from which
would impurity band separate in higher δ and where is the effect most prominent.

The effects of disorder are when disregarding energy region deep within host
band (low n) and near symmetric constitution c ≈ 0.5 of the order ∆RH ⪅
RH0/10.

Comparison with (1.23) leads to the conclusion that it is reasonable to expect
the disorder effects to be up to an order of magnitude lower than pure material
Hall coefficient and any thermal effects at least and additional order smaller.

1.3 Application for Hall sensors
Central requirement for the sensing layer material of the Hall sensors is naturally
hight Hall coefficient as it is the proportionality parameter of the measured Hall
voltage. While it may be difficult to precisely determine RH in complex materials,
it retains its strong dependence on carrier density nc. This was seen explicitly in
the case of the classical Drude model (1), and in previous sections in semi-classical
free electron Reg

H (1.9), square lattice R2Dcb
H 1.5 and even in square lattice based

binary substitutional alloy 1.17.
It is therefore no surprise that semiconductor Hall sensors are in this regard

superior, with RH orders of magnitude higher than metal based ones. However,
the picture becomes much less unambiguous when taking into account specific
operational conditions.

ITER and DEMO fusion projects in particular present an interesting challenge
as their sensors must be operational in relatively high temperatures and be suf-
ficiently radiation resistant, as they are exposed to high neutron flux during the
fusion, which leads to sensor degradation via neutron capture and transmutation
of sensing layer atoms.

Semiconductor sensors are especially prone to this because element transmuta-
tion in their case is akin to doping of the original material, which vastly increases
carrier density and thus reduces sensitivity.

Requirements for the ITER outer vessel steady state sensors (OVSS) were
operation temperature range of 27 oC up to 127 oC and the need to withstand
peak temperatures up to 220 oC in separate baking cycles and total neutron
fluence of 1.3x1022 n/m2.
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Bismuth proved to be applicable in
this case [24]. As a semimetal it is much
more stable against neutron flux degra-
dation, while it keeps high Hall coeffi-
cient, which may be depending on dop-
ing even comparable to semiconductors.

This is no surprise, as its Fermi sur-
face (depicted in 1.18) consists of only
two tiny sheaves, which mirror trans-
port behaviour of the n-type semicon-
ductor in the vicinity of the L point
(leading to 3 electron pockets, each at
one of the L points of the Brillouin zone)
and the p-type near the T point (re-
sponsible for one hole pocket)[25].

Figure 1.18: Bulk Bi band structure
as calculated using various numerical

methods. Source [25].

DEMO has yet harder requirements to meet, as the operational temperature
here ranges from 300 oC up to 520 oC, which exceeds 271.4 oC the melting
temperature of otherwise very promising bismuth. This strict criterion opens up
a space for metal based Hall sensors with chromium as the leading candidate [7].

Temperature dependence

Sensor sensitivity SH (proportional to
the Hall coefficient of the sensing layer
material RH) temperature dependence
for various sensing layer materials is
shown in figure 1.19. Bismuth and anti-
mony are semi-metals, and the rest are
metals.

Semiconductors whose transport is
thermally (or otherwise) activated have
carrier density exponentially dependent
on the operating temperature, and
semiconductor sensors have therefore
Hall coefficient and sensitivity inverse
proportionally diminishing.

As seen in 1.19 the same holds at
least in a wide temperature range in the
case of semi-metals bismuth and anti-
mony.

Figure 1.19: Sensitivity of
semi-metal and metal Hall sensors

temperature dependence. Source [7].

The behaviour of metals qualitatively differs, with in comparison negligible
temperature dependence. Chromium in the temperature range below 200 oC is a
notable exception. It is anti-ferromagnetic below 35 oC and it is speculated [24],
that exhibited behaviour is connected with gradual disappearance of the short
range magnetic order above this temperature.

As an explanation of the high temperature chromium (and for other metals
more generally) Hall coefficient temperature independence was in [7] used result of
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semi-classical free electron gas model presented in section Sommerfeld expansion
and electron gas.

Alloys, disordered materials and future outlook

Recent need of Hall sensors for specific conditions motivates the search for new
materials. While pure materials have been a focus of this search so far, the
question of applicability of various alloys remains open and largely unexplored.

Additionally, particular hardship even for a pure sensing layer materials pre-
sents prediction of RH after long-term exposure to a high neutron flux.

Sensing layer content after given neutron fluence exposure can be predicted
by simulating neutron-induced transmutations, but the crux of the matter lies
in the determination of its Hall coefficient. Simplistic approximations based on
shift in carrier density or Fermi surface of the pure material as RBA or VCA can
be employed, but the true extent of the effects may be much more complex and
their realistic description would require substitutionally disordered material or
alloy based model.

There is thus a need for usable alloy model for Hall coefficient calculation and
section Substitutionally disordered materials serves as an initial exploration of
the problem.
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2. Integer Quantum Hall Effect
Treatment of magnetic field and its effects on transport properties is as a rule
with only few exceptions limited to semi-classical calculations which uses the
band structure as an input. Even more complicated approaches and methods
which strive to extend scope of its applicability usually retain connection to the
unperturbed band structure or are only able to provide information about low
magnetic field linear effects.

This was the case in the previous chapter with the approximations seeking
to provide realistic description of the disordered systems. While they all utilised
full quantum description of the tight binding lattice, magnetic field was later
introduced only as the first order linear perturbation and the resulting expressions
explicitly contained quantities related to pure material band structure.

While these endeavours may be sufficient for given problem at hand, the real-
istic high field transport model would necessarily has to be completely decoupled
from the band structure description as it would have to take into account for-
mation of the Landau levels (LL), the very defining feature of high (quantizing)
magnetic field .

Section Square lattice model is dedicated to study of this gradual emergence
and evolution of the LLs in the square lattice model with magnetic field intro-
duced via Peierls substitution. Outlook for the more complex three dimensional
lattices is discussed in the section, Models of realistic materials - Outlook.

2.1 Square lattice model
Standard method of introduction of homogeneous magnetic field into the lattice
models is well known Peierls substitution

|j⟩ ⟨i| −→ e−iϕij |j⟩ ⟨i| , |i− j| = 1,

where phases ϕij

ϕij = e

ℏ

∫︂ rj

ri
A · dr (2.1)

are calculated using shortest trajectory between the neighbouring sites.
Specially in the case of square lattice model (1.10), whose transport properties

are examined in detail in previous chapter, is

H∆ϕ = ε0
∑︂
i

|i⟩ ⟨i| + t
∑︂

|i−j|=1
|i⟩ ⟨j| . (2.2)

As was the case before, energy scaling and translation invariance of its time-
independent Schrödinger equation are utilized allowing use of the reduced energy
units (1.11). Meaning in practice here setting t = 1 and, for simplicity, ε0 = 0.
Recall DOS of pure square lattice H∆ϕ=0, 1.5.

Assuming A = B(0, x, 0) gauge and the lattice vectors aligned with the axes,
general (2.1) yields relation of the phases and magnetic fields in a very simple
form

a

ℓ
=
√︂

∆ϕ,
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where a is a the square lattice constant and ∆ϕ stands for the spacing between
phases of consecutive hopping terms in the y direction. Phases associated with
hopping along x axis are all zero.

The unitless a/ℓ comparison of the characteristic scales, that of the system
and the characteristic magnetic quantum scale, then serves as a natural quantity
in whose terms one can express magnetic field dependencies.

Even this relatively simple model contains a very rich self-similar fractal struc-
ture with an infinite number of separate levels, or zero-temperature phases as it
is, enumerated with topological Chern numbers, with corresponding quantized
integral conductance [1]. In the figure 2.1 is depicted this zero temperature frac-
tal phase diagram, which is due to its wing-like shape known as the Hofstadter
butterfly.

Figure 2.1: ’Hofstadter butterfly’. Energy (chemical potential) on the
horizontal axis and magnetic field (flux) on the vertical. Warm colours

corresponding to positive Chern numbers and cool to negative. Source [1].

The introduction of the magnetic field in the Hamiltonian (2.2) leads to break-
ing of the translational symmetry of the lattice as the periodicity of the phases
ϕij has to be taken into account. Only larger magnetic unit cell, in the present
case given by condition

∆ϕNy = 2πk∆ϕ, k∆ϕ ∈ Z.

remains properly translationally invariant.
In practise this means that matrix representation H∆ϕ of given periodic super-

cell Nx×Ny can describe only systems with field fulfilling the following condition.

a

ℓ
=

⌜⃓⃓⎷2πk∆ϕ

Ny

, k∆ε ∈ Z

2.1.1 Discretization metric
In order to quantify the LL formation in the increasing magnetic fields, it would
be welcome to have some DOS clustering measure, e.g. which would be high
when there are present prominent sharp LLs and low otherwise.
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With this goal in mind, first adopting equienergy partition of the energy axis
ε into bins, with energy spacing ∆ε. Then, i-th bin contains ni energy eigenvalues
of the given matrix representation H∆ϕ of (2.2) and

N =
∑︂
i

ni

is the degree of that representation.
Then introducing partition dependent ’discretization metric’

D[∆ε] = 1
2N

∑︂
i

|ni − ni−1|, (2.3)

which is constructed in such a way to reflect presence of the sharp peaks in the
DOS histogram with ∆ε spacing.

D[∆ε] is owing its name to the fact that it reaches its maximum value precisely
when all energy eigenvalues within ∆ε bin are separated by at least one bin of the
same length from the others. That is, when the DOS quasi-continuum of H∆ϕ

breaks apart to discrete energy levels. On the other hand, H∆ϕ reaches 0 only
when the DOS histogram is completely flat.

The prefactor 1/2N ensures that D[∆ε] ≤ 1, which can be easily seen, e.g. by
assuming single N -times degenerate level, which is then in the sum (2.3) counted
twice.

Note that as long as N is finite, for all systems is D[∆ε] → 1 as ∆ε → 0, since
with respect to arbitrarily small bin partitioning, all energy eigenvalues are well
separated.

2DEG in magnetic field and D[∆ε] behaviour

Simple, well-known, ideal 2DEG model in magnetic field, with equidistant LL
spacing provides a good test of applicability for the discretiazation metric D[∆ε]
and sheds more light on its behavior.

In the figure 2.2 it can be seen that
equidistant LL spacing ℏωc leads to
D[∆ε] = 1 when ∆ε ≤ ℏωc/2.

Further increasing the spacing ∆ε
results in a drop in D[∆ε] as sequences of
consecutive bins containing LL energy
become more common and D[∆ε] van-
ish completely when the spacing ∆ε =
∆ε = ℏωc as the related histogram be-
comes completely flat.

More generally, the D[∆ε] vanishing
condition is ∆ε = kℏωc for k ∈ N,
where k is the integer number of LLs
contained in each bin.

Figure 2.2: Ideal 2DEG in external
magnetic field, D[∆ϕ] as a function of

energy spacing ∆ε.

Diminishing fluctuations for spacing ∆ε ̸= kℏωc k ∈ N, ∆ε > ℏωc/2 originated
from the periodic oscillatory behavior of the underlying histogram, where some
bins cover one more LL than others. As ∆ε increases, these fluctuations diminish
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in amplitude as each bin contains more and more LLs, and eventually in the
∆ε → ∞ they vanish completely.

In general, disregarding the very limit D[∆ε] → 1, D[∆ε] increases with de-
creasing ∆ε when ∆ε ≈ ∆ε′LL′ (i.e., when it crosses some periodic peak spacing).
On the other hand, D[∆ε] falls off with decreasing ∆ε when the spacing becomes
comparable with the peak width.

2.1.2 Results
All results in this subsection are obtained using Wolfram Mathematica software
for the fixed Lattice size 37 × 200 sites (7400 sites in total) with the periodic
boundary condition. Chosen rectangular lattice allows to reach lower fields with
a minimum phase step ∆ϕ = 2π/200.

Spectra were calculated for a series of HkΦ∆ϕ, kϕ ∈ {1, 2, . . . , 30}, which corre-
sponds to a/ℓ ∈ {0.177245, 0.250663 . . . , 0.970813}. Figure 2.3 shows the values
of the discretization metric with spacing ∆ε = 0.1, which was chosen so that
D[0.1] can capture the formation of the LL structure both in low and high fields.
That is, to be small with respect to the whole spectrum bound of HkΦ∆ϕ (8) and
sufficiently big with respect to forming LLs width even in higher fields.

Since the 2DEG DOS continues periodically and indefinitely into hight ener-
gies, selection of the initial energy for the bin partitioning did not have any effect
on D[∆ε] values.

This is not the case here, as in the bounded systems does not have the ’benefit’
of the indefinite repetition of the 2DEG DOS. As a starting point of the analysis
is chosen ε0 = 0 as the initial energy value for the partitioning to reflect symmetry
of the problem.

Figure 2.3: Square lattice tight binding D[0.1] in increasing magnetic field.

The metric D[0.1] in figure 2.3 shows four distinct regimes.

(1) (a/ℓ ⪅ 0.3) D[0.1] as a function of ϕ (magnetic field) is near constant
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(2) (a/ℓ ∈ ≈ ⟨0.3, 0.6⟩) steep increase in D[0.1]

(3) (a/ℓ ∈ ≈ ⟨0.6, 0.8⟩) D[0.1] flattens

(4) (a/ℓ ⪆ 0.8) D[0.1] begins to fall off

To make sense of this dependence, four distinct kϕ, {3, 7, 17, 30}, correspond-
ing to the turning point or characterizing a given regime were chosen for further
analysis. Their DOS histograms, with ∆ε = 0.1 spacing, are shown in 2.3.
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Figure 2.4: Square lattice tight binding DOS for 4 values of k∆ϕ.

kϕ = 3, a/ℓ = 0.31, beginning of (2)

Near the band edges are emerging sharp peaks, LLs, with spacing ⪆ 2∆ε = 0.2.
This is the first magnetic field induced contribution to the base value of D[0.1] due
to the slowly varying profile of the original DOS.

Receding from the band edge, the small degeneracy of the newly formed Lan-
dau levels is further decreasing, until it disappears into the bulk of the original
broad DOS peak.

kϕ = 7, a/ℓ = 0.47, second half of (2)

Discretization progresses further from the band edge, cutting into central DOS
peak, and more than half of all eigenvalues are contained within well-separated
LL. The spacing between distinct LL is highest near the band edges (≈ 0.4) and
small (⪆ 0.2) near the center.
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kϕ = 17, a/ℓ = 0.73, middle part of (3)

The density of sates consists of well-formed LLs with only small remnants of
the original DOS in the middle of the band. Change in magnetic field and ϕ
have only marginal effect on D[0.1] as the two competing scales become relevant
and the interplay of two different effects leaves the discretization metric mostly
unchanging.

On the one hand, increasing the magnetic field would lead to separation of
the non-discretized remainder in the center. On the other hand, increasing the
field leads to a reduction in the total number of LLs, and the remaining ones
(especially near the center of the band) tend to be broad with respect to spacing
∆ε, lowering D[0.1] instead.

kϕ = 30, a/ℓ = 0.97, within (4)

No hint of the original DOS profile is
present, all eigenvalues are contained
within well-separated but broad LLs.
Increasing the magnetic field leads only
to fewer and broader LLs, resulting in a
further decrease of D[0.1]

Bin spacing analysis

The discretization metric can be used
as a simple peak frequency and weight
analysis tool when evaluated for given
σ
(︂
Hϕ

)︂
for various spacings ∆ε.

The subsequent set of figures 2.5, 2.6
and 2.7 corresponding to k∆ε = 1, 3 and
17 respectively depicts this dependency
on the interval ∆ε ∈ ⟨0, 1⟩.

At first in low fields k∆ε = 1 is the
weight of the forming LLs too small to
be captured by the discretization met-
ric, as for low ∆ε there is apparent only
the common D[∆ε] → 1 limit.

Following that, the case of k∆ε = 7
shows clear and prominent jump in that
region, which corresponds to the peak
spacing frequency observable in 2.4.

Lastly, the k∆ε = 17 case reveals a
less sharp and very broad peak origi-
nating from the fact that to the D[∆ε]
now contribute significantly both region
near the band edge with hight inter-
LL spacing as well as the middle of the
band, with spacing significantly lower.

Figure 2.5: Square lattice tight
binding D[∆ε] for a/ℓ ≈ 0.18.

Figure 2.6: Square lattice tight
binding D[∆ε] for a/ℓ ≈ 0.47.

Figure 2.7: Square lattice tight
binding D[∆ε] for a/ℓ ≈ 0.73.
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2.2 Models of realistic materials - Outlook
Starting from the analysis of simple 2D lattice model, it is in principle straightfor-
ward to extend to more complex lattices for description of realistic bulk materials,
with simple alkali metals, and specifically bcc lithium being the prime example.

Lithium tight-binding model would treat electron 1s states as core levels and
hence the effect of magnetic field on these states is to be ignored and remaining
single electron per atom in 2s states could be treated in direct analogy to the
square lattice model described earlier.

Introduction of low magnetic fields leads to the formation of the DOS modu-
lation in the vicinity of the parabolic band edge. If in turn the energy is fixed the
DOS will be oscillating function of the magnetic field giving rise to the Shubnikov-
de Haas oscillations. Of particular interest would be then yet higher (quantizing)
fields, when ℏωc becomes comparable with the band width, and the form the
electronic structure takes in such case.

Three dimensional nature of the problem prevents formation of fully separated
LLs typical for the 2D models and as such no structure akin to the Hofstadter
butterfly 2.1 is expected to be seen. Consequently no true quantization of con-
ductivity will arise. Nevertheless if DOS in quantizing magnetic fields can be
determined, magnetotransport properties beyond the usual scope of band struc-
ture formalism can be accessed.

Note that quantizing fields 2.3 are of order of hundreds of Tesla and ex-
perimentally hardly accessible. Whether interesting magnetotransport effects in
moderate magnetic fields can occur in certain materials remains to be explored
in future research.
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3. Fractional Quantum Hall
Effect
In the core of FQHE physics lies the question for which values of the filling
factor ν there is an incompressible, gaped, ground state and what its form is.
The following text approaches this question from an analytical point of view via
Single mode approximation.

Section Direct SMA presents the SMA in its original form, as developed for
the study of superfluid 4He and its assumptions, motivation, and derivation are
discussed. Direct SMA is applied to the QHE case of polarized 2 dimensional
electron gas and its failure to provide meaningful information about the intra-LL
excitation spectrum is examined in detail.

The necessary adjustment of the direct SMA for the FQHE, the projection of
the present operators and expressions to the LLL, is the subject of the section
Projected SMA. The final derived dispersion relation of the so-called magnetoro-
ton branch is used in the subsection SMA applied to ν = 1/3 problems to clarify
the origin of the flat magnetoroton dispersion in hight k present in numerical
calculations and efforts to apply SMA to the special WYQ ground state are dis-
cussed.

Notation

Both classical vector notation and complex notation

r = (x, y) ↔ z = x+ iy,

k = (kx, ky) ↔ k̃ = kx − iky. (3.1)

is used in the following. It should be clear, where is which notation utilized as
they are never used in any expression simultaneously.

3.1 Direct SMA
Assuming that ground state ϕ, which is liquid and therefore also has a homoge-
neous density, is known. Generally one would expect that in the case of nonzero
inter-particle interaction, when degrees of freedom associated with particle posi-
tions are not completely lost due to the Pauli exclusion principle, that the low
lying excitation spectrum will include density waves.

Of special interest are then systems where due to special circumstances there
are no low lying single-particle excitations, leaving excited state wave function of
the form of density modulation as a good variational wave function candidate.

Such was the case of superfluid 4He for whose purposes SMA was originally
developed by Feynman[26]. Here is of main interest 2D electron gas in magnetic
field so that low-lying single particle excitation spectrum normally originating
from small kinetic energy of excitations over Fermi surface is quenched into highly
degenerate discrete LL.
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The variational wave function which directly incorporates the ground state ϕ
may preserve most of its favorable correlations and properties. SMA proposes a
wave function of the form[27]

ϕk(r1,...,rn) = N−1/2ρkϕ(r1, . . . , rn) (3.2)

where ρk is Fourier transform of the density

ρ(R) =
N∑︂
j=1

δ2(R − rj), ρk =
∫︂
dR2e−ik.Rρ(R) =

N∑︂
j=1

e−ik.rj . (3.3)

This wave function (3.2) is for nonzero k orthogonal to the ground state ϕ while
preserving homogeneous density distribution. This can be seen by using the gen-
eral picture of two systems with the same density wave modulation (the same k),
but shifted with respect to each other, thus leading to different phase contribut-
ing in ρk (used translational invariance of the ground state). This phase factor
does not change the probability |ϕk|2 of such concrete realization of excited state
ϕk happening, leaving both of them equally likely to occur and therefore leaving
the mean density of ϕk uniform.

Using this wave function leads to variational excitation energy gap estimate

∆(k) = f(k)
s(k) , (3.4)

where s(k) denotes static structure factor, obtained from normalization of ϕk as

s(k) = ⟨ϕk |ϕk⟩ = N−1
⟨︂
ϕ
⃓⃓⃓
ρ†

kρk

⃓⃓⃓
ϕ
⟩︂
, (3.5)

and f(k), the so called oscillator strength, is given by

f(k) = N−1 ⟨ϕk | H − E0 |ϕk⟩ = N−1
⟨︂
ϕ
⃓⃓⃓
ρ†

k [H, ρk]
⃓⃓⃓
ϕ
⟩︂
. (3.6)

Note that f(k) stands as a right hand side of the Bethe oscillator strength
sum rule [28] (with |l⟩ being energy eigenstate with El)∑︂

l

(El − E0)N−1 |⟨ϕ | ρk | l⟩|2 = N−1
⟨︂
ϕ
⃓⃓⃓
ρ†

k [H, ρk]
⃓⃓⃓
ϕ
⟩︂

= f(k) (3.7)

where right hand side may be due to the form of ρk, which is given by function
of position operators, rewritten as

f(k) = 1
2N

⟨︂
ϕ
⃓⃓⃓ [︂
ρ†

k, [H, ρk]
]︂ ⃓⃓⃓
ϕ
⟩︂ ∗= ℏ2

2mN
⟨︂
ϕ
⃓⃓⃓
∇ρk · ∇ρ†

k

⃓⃓⃓
ϕ
⟩︂

= ℏ2k2

2m . (3.8)

The second part is only true within the current framework, where the interaction
term V in the Hamiltonian H commutes with the density operator ρk.

Yet another way to view ∆(k) is to rewrite its constituents using dynamic
structure factor

S(k, ω) = N−1∑︂
n

⟨︂
ϕ
⃓⃓⃓
ρ†

k

⃓⃓⃓
n
⟩︂
δ(ω − En + E0) ⟨n | ρk |ϕ⟩ ,
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yielding

s(k) =
∫︂ ∞

0
dωS(k, ω), f(k) =

∫︂ ∞

0
dωωS(k, ω).

From the rewritten form of the oscillator strength, it can be seen that ∆(k)
is the exact first moment (mean value) of the energy of the excitation spectrum
coupled with the ground state through the density operator ρk. This statement is
consistent with ∆ being the variational upper bound for the minimum collective,
density wave, mode energy. Also, note that saturation of the sum rule (3.7) with
a single mode is equivalent to the statement that the variational wave function
ϕk corresponds to the energy eigenstate. In that case, the mean value of the
excitation spectrum becomes the exact excitation energy between the ground
state and this eigenstate.

In this sense, assumption that ϕk is a good variational wave function is that
the density wave ϕk saturates the oscillator strength sum rule, leaving the ac-
quired dispersion (3.4) exact. Note that in that case also the dynamical structure
factor, which may be used to determine other properties of the system e.g. via
susceptibility, is easily accessible as

S(k, ω) = s(k)δ(ω − ∆(k)).

Full saturation of the oscillator sum rule by single mode is not even remotely
common and within QHE it will be shown that it actually holds only within the
long wavelength limit. Still, in many cases most of the oscillator strength may be
absorbed by single mode [29] and single mode approximation then, as one would
expect, lies in the assumption that sum rule is fully saturated by single excitation
mode.

g-functions and constraints

Static structure factor appearing within SMA framework can be obtained as
Fourier transform of g function (particle pair radial distribution function) g(r) of
given system as [30]

s(k) = 1 + ρ
∫︂
d2Re−ik.R (g(R) − 1) + ρ2πδ2(k), (3.9)

where ρ = ν/2πℓ2 and in general ν = 1/M . Specially for isotropic g function
g(r) → g(r) is static structure factor also isotropic and given by Hankel transform
FH of the form

s(k) = 1 + 2πρ
∫︂ ∞

0
drJ0(kr) (g(r) − 1) + ρ2πδ(k)

= 1 + ρ
∫︂ ∞

0
dr
∫︂ π

−π
eikr sin(ϕ) (g(r) − 1) + ρ2πδ(k),

where J0 denotes the Bessel function of the first kind.
Taking ν = 1 (IQHE case) results in the well-known exact wave function

with polynomial factor given by the determinant of Vandermonde matrix and the
corresponding g function may be directly calculated[31]
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gν=1(r) = 1 − e−r2/2ℓ2 −→ sν=1(k) = 1 − e−k2ℓ2/2. (3.10)

In the case of FQHE with ν given by simple fraction does usually Laughlin
wave function ΨL describe ground state well [29]. For g function g(r) then can be
used formula derived assuming Laughlin ground state[14] (summation over odd
values of m only)

g(r) = 1 − e−r2/2ℓ2 +
∞∑︂

m=1′

2
m

(︄
r2

4ℓ2

)︄m
cme

−r2/2ℓ2 . (3.11)

Note that[32]

FH

[︂
e−x2/2

]︂
(y) = e−y2

, and FH

[︂
xme−x2/2

]︂
(y) = y1/2

(︄
d

ydy

)︄m [︂
ym−1/2e−y2/2

]︂
,

and therefore g functions of the form (3.11) have easily accessible analytical Han-
kel transform, which makes them also very suitable for SMA energy gap calcula-
tions.

This general form (3.11) is further restricted due to various conditions orig-
inating from the ground state wave function used. First constraint is given by
known short-range behavior, which should be ∝ r−2M due to the (zi − zj)M term
in the Laughlin wave function. For this condition to hold, c1 must be equal to -1.

g(r) = 1 − e−r2/2ℓ2 − 2r2e−r2/4ℓ2 +
∞∑︂

m=3′

2
m

(︄
r2

4ℓ2

)︄m
cme

−r2/2ℓ2 . (3.12)

Next three conditions (denoted as {n, s, c} for charge neutrality, perfect screening
and compressibility sum rules respectively) are derived from classical 2D plasma
analogy of Laughlin state[14]

charge neutrality (n)
∞∑︂
m=1

cm = 1 −M

4 (3.13)

perfect screening (s)
∞∑︂
m=1

(m+ 1)cm = (1 −M)
8 (3.14)

compressibility (c)
∞∑︂
m=1

(m+ 2)(m+ 1)cm = (1 −M)2

8 . (3.15)

In [29] it is shown that the Laughlin state charge neutrality condition corresponds
to the conservation of the total number of particles and the perfect screening to
the conservation of the total angular momentum. Provided that particle number
and total angular momentum are constants of motion values of the first two terms
are set for any reasonable liquid ground state.

As there is no closed-form expression for the RDF of ΨL, in the following is gL
used to denote the RDF obtained by fitting 13 terms of expansion (3.12) to Monte
Carlo data (more on the method and results [27]). As it is an approximation of
the full Laughlin RDF it fulfils all of conditions above.

By direct expansion it can be shown that the charge neutrality (3.13) condition
fixes the first constant term of structure factor (3.9) in long wavelength expan-
sion (Taylor expansion of s(k) around k = 0). Similarly, the perfect screening
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condition (3.14) sets the numerical prefactor of k2 term and the compressibil-
ity sum rule (3.15) third k4 term. Thus these tree conditions straightforwardly
correspond to conditions on values of the first three terms of s(k) expansion.

sν(k) ≈ 0 + 1
2(kℓ)2 + 1 − 2ν

8ν (kℓ)4 + . . . =⇒ sν=1/3(k) ≈ 1
2(kℓ)2 + 1

8(kℓ)4 + . . .

First two coefficients in the long wavelength expansion are also related to prop-
erties of general liquid ground state.
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Figure 3.1: Laughlin-like g function gL and its Hankel transform derived static
structure factor.

Also note that condition s(k) → 0 as k approaches 0 is via compressibility
equation[30] (χT denoting isothermal compressibility)

lim
k→0

s(k) = ρkBTχT

statement about (macroscopic) incompressibility of given system. As will be seen
below, this condition is in SMA (both direct and projected) necessary condition
for the existence of the energy gap at k = 0.

Direct SMA results

Used in this direct form, the excitation gap energy ∆(k) (3.4) is due to the com-
mutation of the position and density operator ρk independent of the interaction
part of the Hamiltonian. SMA then yields (using commutation relations of kinetic
momenta π and position r and relation ℏ2/(ℓ2m) = ℏωc)

∆(k) = ℏωc
2
k2ℓ2

s(k) . (3.16)

The only nontrivial part is then the filling factor ν dependent structure factor
s(k). Notably, the resulting SMA energy gap is not dependent on the form of
interaction as it does not affect achieved result.

In the ν = 1 case, employing its known g function and static structure factor
(3.10), one has

∆(k) = ℏωc
2

k2ℓ2

1 − exp{−k2ℓ2/2}
, and ∆(k) → ℏωc as k → 0, (3.17)
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thus obtaining cyclotron excitation energy ℏωc in the long wavelength limit.
The origin of this behavior can be traced to the Pauli exclusion principle,

which within fully filled LL completely removes degrees of freedom associated
with particle position, with lowest possible excitations involving excitations of
particles into higher LLs, thus leading to arisal of cyclotron energy in SMA.

Figure 3.2: SMA excitation gap ∆(k)
dependence. Case of ν = 1 with

corresponding gν=1.

Figure 3.3: SMA excitation gap ∆(k)
dependence. Case of ν = 1/3 with

corresponding gL.

Further study of long wavelength asymptotic behaviour of Laughlin like states
in the SMA shows, employing known long wavelength behaviour of general ν
ground state static structure factor

s(k) = 1
2(kℓ)2 + o(k4),

that limit in (3.17) hold more in general independently on ν.
Note that even with fractional ν, when the Pauli principle no longer excludes

low lying intra-LL excitations as in the integer case, SMA still yields cyclotron
excitation energy ℏωc in the long wavelength limit. This can be explicitly seen in
the case ν = 1/3 using gL in the figure 3.3.

Cyclotron mode and saturation of the sum rule

To explain this result, following Kohn[33], writing total kinetic momentum oper-
ator

Π =
N∑︂
i

πi for which [H,Π] = i
ℏe
m

Π ×B,

allows to define ladder operator Π+.

Π+ = Πx + iΠy with [H,Π+] = ℏωcΠ+.

Therefore, for ground state |ϕ⟩ there is excited cyclotron eigenstate Π+ |ϕ⟩ with
energy E0 + ℏωc. In the long wavelength limit k → 0 associated cyclotron mode
saturates SMA Bethe oscillator sum rule (3.7) with its right hand side (3.8)

∑︂
l

(El − E0)N−1 |⟨ϕ | ρk | l⟩|2 = f(k) = ℏ2k2

2m , (3.18)
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resulting in exact cyclotron energy ∆(0) = ℏωc.
To see that it is true, one may recall that it is possible to choose CMS coor-

dinates with one center-of-mass coordinate and as rest take some combination of
relative coordinates to describe the system. Such choice leads to separation of the
center-of-mass part of the Hamiltonian, which then corresponds to a one-particle
Hamiltonian with free-particle spectrum.

This decoupling allows one to reduce this many-body problem to effectively
1-body problem. Clearly, the introduced operator Π is then proportional to the
center-of-mass momentum operator, and it can be seen that Π+ is proportional
to the LL ladder operator, employing 1-body ladder operator algebra as defined
in [34]

Π+ ∝ a† = ℓ√
2ℏ

(πx + iπy) . (3.19)

On the other hand, expanding density operator ρk and introducing center of
mass coordinate R leads to

ρk
k→0≈ 1 − ik ·

∑︂
i

rj = 1 − iNk · R = 1 − iNℓ√
2
(︂
k̃(b+ a†) + k(b† + a)

)︂
,

where last relation is obtained using both 1-body LL quantum number ladder
operators a, a† and angular momentum quantum number ladder operators b, b†.
Plugging obtained formula back into (3.18) yield, owing to orthogonality of energy
eigenstates ⟨ϕ | l⟩ = 0∑︂
l

(El − E0)Nℓ| ⟨ϕ | k · R | l⟩ |2 ∝
∑︂
l

(El − E0)N |
⟨︂
ϕ
⃓⃓⃓
k̃(b+ a†) + k(b† + a)

⃓⃓⃓
l
⟩︂

|2.

Next, one needs to take into account that a† annihilates ground state ⟨ϕ| and
that due to the free particle spectrum of center of mass part of the wave function
operators b, b† do not change its energy leaving possible transition with (El−E0) =
0 (or even more strongly in case of fully filled LL, b and b† also necessary annihilate
ground state due to Pauli exclusion principle).

Thus in the sum rule contributes in the lowest order of the long wavelength
expansion only a part, which by (3.19) corresponds to the cyclotron energy eigen-
state. Note that this contribution is proportional to k2, with other modes van-
ishing with k4 or faster, as is the right hand side of (3.18) and therefore cyclotron
mode with its excitation energy ℏωc saturates oscillator sum rule in long wave-
length limit.

This result is in accordance with the general idea that in asymptotically long
wavelengths external perturbation couples only to the CMS degree of freedom,
whose energy spectrum is wholly independent of inter-particle interaction. In
quantum Hall regime this coupling manifests itself with saturation of the sum
rule by inter-LL excitation of the center-of-mass wave part of the wave function.

SMA of this form thus tells nothing about low-lying collective modes. To
obtain a better estimate for the energy of intra-LLL excitations corresponding to
collective density waves, one needs to use a modified variational wave function
such that it does not have any weight in higher LL.
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3.2 Projected SMA
Analytical structure of the LLL wavefunction can be effectively used to find the
projection of the variational wave function ϕk (3.2), density operator ρk (3.3) and
the resulting SMA excitation energy gap (3.4).

LLL wave functions, when written using complex coordinate notation, are all
of the form

ϕα(z1, . . .) = fα[z1, . . .]e− 1
4ℓ2
∑︁

i
ziz̄i ,

where fα is analytical function of complex coordinates zi. Thanks to this specific
structure, all LLL states can be described as functions from Hilbert space of
analytical function of complex coordinates Θ = {fα}α with Gaussian measure
dµ[z] to absorb common exponential term

dµ[z] =
N∏︂
i

1
2πe

− 1
2ℓ2 ziz̄idzi

and appropriate inner product

(fα, fβ) =
∫︂
dµ[z]fα[z]∗fβ[z], (fα, fβ) < ∞ ∀αβ.

Hermitian conjugate (denoted with ∗) now takes these functions out of this
Hilbert space Θ, because z∗ is not an analytical function of z. On the other hand,
the adjoint operator of z with respect to inner product is now z† = 2∂z.

Operators z† and z∗ have the same matrix elements within LLL [35], and
therefore z† is sought projection of z∗ (whilst z is already analytical and thus lies
entirely within LLL). Unlike pair z, z∗, operators z and z† do not commute. This
introduces ambiguity in the ordering of the operators, which has to be resolved
by condition

⟨ϕα |ϕβ⟩ = (fα, fβ) ∀αβ,

i.e. by preservation of the original full Hilbert space inner product. As a result,
the correct ordering is such that all derivatives (adjoints) z† are to the left with
respect to the position operators z.

Within SMA is of major importance density operator, whose projection has
the form (taking into account ordering)

ρk =
N∑︂
j=1

e− ik̃
2 z

†
j e− ik̃∗

2 zj =
N∑︂
j=1

e−ik̃∂zj e− ik̃∗
2 zj , ρ†

k = ρ−k.

Due to the kinetic energy being quenched by magnetic field and staying con-
stant within LLL, only surviving term in Hamiltonian is electrostatic interaction
for which is

V = 1
2

∫︂ d2qℓ

(2π)2v(q)
∑︂
i<j

eiq.(ri−rj) −→ V = 1
2

∫︂ d2qℓ

(2π)2v(q)
(︃
ρ†

qρq −Ne− q2ℓ2
2

)︃
,

(3.20)
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due definition of q̃ in (3.1) and
∑︂
i<j

eiq.(ri−rj) −→
∑︂
i<j

e
iq̃
2 (zi−zj)†

e
iq∗

2 (zi−zj) =

=
∑︂
i,j

e
iq̃
2 z

†
i e

iq̃∗
2 zie− iq̃

2 z
†
j e− iq̃∗

2 zj −
∑︂
k

e
iq̃
2 z

†
ke

iq̃∗
2 zke− iq̃

2 z
†
ke− iq̃∗

2 zk

= ρ†
qρq −Ne− q2ℓ2

2 ,

where was used BCH formula with the following commutation relation[︃
iq̃∗

2 zk,
−iq̃
2 z†

k

]︃
= (qℓ)2

4
[︂
zk, z

†
k

]︂
= −(qℓ)2

2 ,

[X, Y ] = C (c-number) ⇒ eXeY = eY eXeC .

In similar fashion one can derive auxiliary expressions
[︂
ρk, ρq

]︂
=
(︃
e

k̃∗q̃ℓ2
2 − e

k̃q̃∗ℓ2
2

)︃
ρk+q, (3.21)

ρ†
qρq = ρ†

qρq +N
(︃

1 − e− q2ℓ2
2

)︃
, (3.22)

first of which is repeatedly used when evaluating oscillator strength term projec-
tion f(k) (3.6) and second needed for rewriting resulting mean values, or projected
structure factor terms s(k), to known (unprojected) s(k) (3.5)

s(k) =
⟨︂
ϕ
⃓⃓⃓
ρ†

kρk

⃓⃓⃓
ϕ
⟩︂

−→ s(k) =
⟨︂
ϕ
⃓⃓⃓
ρ†

kρk

⃓⃓⃓
ϕ
⟩︂

=
⟨︃
ϕ
⃓⃓⃓⃓
ρ†

kρk

⃓⃓⃓⃓
ϕ
⟩︃
.

Final relation

Using previously derived auxiliary expressions (3.21), (3.22) and interaction po-
tential projection (3.20) one derives SMA energy gap expression (corresponding
to equation (4.15) in the original article [27]):

∆(k) = f(k)
s(k) , s(k) = s(k) − (1 − e−k2ℓ2/2) (3.23)

f(k) = 1
2
∑︂

q
v(q)

(︂
eq̃

∗k̃ℓ2/2 − eq̃k̃
∗
ℓ2/2

)︂
×

×
[︂
s(q)e−k2ℓ2/2

(︂
e−k̃∗

q̃ℓ2/2 − e−k̃q̃∗ℓ2/2
)︂

+ s(k + q)
(︂
ek̃

∗
q̃ℓ2/2 − ek̃q̃

∗ℓ2/2
)︂]︂
.

For practical use, reciprocal complex vectors in f(k) need to be rewritten into
standard vector form instead of their complex analogues with

q̃∗k̃ = (qx + iqy)(kx − iky) = (qxkx + qyky) + i(qxky − qykx)
= q.k + iq × k|z,

(︂
eq̃

∗k̃ℓ2/2 − eq̃k̃
∗
ℓ2/2

)︂
= 2i sin

(︂
q × k|zℓ2

)︂
eq.kℓ2/2.
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Using these identities allows to write (3.23) in concise form

∆(k) = 1
s(k) − 1 + e−k2/2 × (3.24)

×
∫︂ d2q

(2π)2v(q) (1 − cos (q × k|z))
[︂
eq.k {s(q + k) − 1} − e−k2/2 {s(q) − 1}

]︂
.

The energy gap in SMA is then fully determined by the static structure factor
s(k) and the choice of potential v(q).

General behaviour and properties

Direct expansion of projected oscillator strength in (3.23) shows that

f(k) ∝ k4 + o(k6) as k → 0.

This is to be expected as k2 asymptotic behaviour of original f(k) is wholly
saturated by cyclotron mode. By projection to the LLL, the inter-LL modes were
removed leaving faster diminishing intra-LLL contributions.

The condition for excitation gap emergence in the long wavelength limit of
projected SMA is then s(k) ∝ k4 for small k.

Recalling discussion of asymptotic behavior of Laughlin-like liquid state static
structure factor one has that within LLL projected SMA is particle number and
total angular momentum preservation (condition (3.13) and (3.14) respectively,
fixing two lowest orders of long wavelength expansion) sufficient condition for
gap emergence. Specially in case of Laughlin wave function (fulfilling constraint
(3.15)) is

sν(k) ≈ 1 − ν

8ν (kl)4 + . . . =⇒ sν=1/3(k) ≈ 1
4(kl)4 + . . . .

Previously discussed case ν = 1 has by comparison of its structure factor
(3.10) and projection (3.23) s(k) = 0. This has to be understood as

ρk |ϕν=1⟩ = 0 −→ sν=1(k) = 0,

i.e. statement about vanishing of intra-LL density waves in fully filled LL due to
the Pauli exclusion principle.

While energy scale of direct SMA (3.16), (figures 3.2, 3.3) was set by dominant
cyclotron mode, in the projected SMA its scale is given entirely by interaction
potential v(q) in (3.24).

This can be traced back to the fact that in the direct SMA case the position-
dependent interaction potential commutes with the density operator ρk with only
contribution originating from commutator with kinetic energy part of the Hamil-
tonian, which is responsible for the LL quantization and therefore also for the
cyclotron mode. By projection to the LLL the kinetic energy part becomes triv-
ial constant and previously commuting interaction potential now fails to commute
with ρk due to the non-trivial behavior of z and z† operators.
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Interaction potential

The interaction potential v(q) is the second and last input required for the calcu-
lation of the projected energy gap of SMA (3.24). In case of exact 2D Coulomb
interaction this potential is of the well known form

v(q) = k
2π
q
.

In the context of FQHE are also commonly used the so called Haldane pseu-
dopotentials Vm, i.e. the relative angular momentum representation of the inter-
action V .

For example full Coulomb interaction in terms of pseudopotentials leads to

Vm = e2k

ℓ

Γ
(︂
m+ 1

2

)︂
2Γ (m+ 1) .

Since relative angular momentum quantum numbers are related to the relative
interparticle distance, with increasing m corresponding to larger distances, one
may define the ’cropped’ Coulomb potential V cr

k as consisting of exact Coulomb
pseudopotentials Vm for m ≤ k and rest zero.

V cr
k : Vm =

{︄
V Coulomb
m m ≤ k

0 m > k

Haldane pseudopotentials can be also used for the definition of new typically
short-range interactions, which are completely divorced from the electron-electron
Coulomb interaction. Two such examples are hard-core and hollow-core interac-
tions

VHard−Core : {V0, V1, V2, . . .} = {∞, 1, 0, . . .} (3.25)
VHollow−Core : {V0, V1, V2, V3, V4, . . .} = {0, 0, 0, 1, 0 . . .} (3.26)

To obtain potential in terms of q, V (q)[Vm], one can write [34]

Vm ≡ ⟨ϕm | V |ϕm⟩ =
∫︂ d2q

(2π)2V (q)
⟨︂
ϕm

⃓⃓⃓
eiq·r

⃓⃓⃓
ϕm
⟩︂

=
∫︂ d2q

(2π)2V (q)e−ℓ2q2
Lm

(︂
q2
)︂

where ϕm are relative angular momenta eigenfunctions and Lm denotes Lagguere
polynomials. Inversion of this expression yields the sought V (q)[Vm] relation.

V (q) = 4π
∑︂
m

VmLm
(︂
q2
)︂

3.2.1 SMA applied to ν = 1/3 problems
The results provided in this section are obtained by numerical evaluation of ∆(k)
(3.24) in Wolfram Mathematica software, where the integration is carried out
using the Monte Carlo method.
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Hard-core interaction and flat magnetoroton dispersion

Numerical calculations (notably here exact diagonalization) in the context of
FQH systems often employ hard-core interaction (3.25), which for the predicted
Laughlin ground state ΨL corresponds to the (trivially scaled) cropped Coulomb
interaction V cr

1 , or even V cr
2 as for the fully polarized ground state is ΨL anti-

symmetric, which in turn means that no Vm with even m contribute.

Although the results may suffi-
ciently capture many features of the
many-body excitation spectrum, e.g.
with the characteristic magnetoroton
branch emerging from the excitation
continuum above 3.4, there still remain
discrepancies, caused either by the na-
ture of the numerical approximation it-
self, limited sample size, its geometry,
or by the used short-range interaction.

One such disparity is the consis-
tently reproduced flat short-range be-
havior [36] k ≫ 1.

Figure 3.4: Results of exact
diagonalization for 4-10 electrons with

hard-core interaction in torus
geometry. Source [37].

To resolve the question of the origin of this behavior, the Laughlin ground
state and a series of potentials are examined using SMA. The resulting ∆(k)
are presented in 3.5. For easier comparison are their energy scales (given either
by various combinations of Vm or by e2/ε0 in the case of Coulomb interaction)
assumed such that all ∆(k) have same k → 0 limit.

D
[a

.u
.]

VCoulomb

V4
cr

V3
cr

V2
cr

V1
cr

VHard-Core

0,0 0,5 1,0  1,5 2,0 2,5 3,0

k [1/l]

Figure 3.5: Energy gap ∆(k) dependence calculated using gL radial
distribution function and various interaction potential.
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First, as expected, dispersions ∆(k) for V cr
1 , V cr

2 and VHard−Core fully align as
all these potentials are for the polarized ground state, disregarding scaling, the
same.

Second, ∆(k) for potentials V cr
3 , V cr

4 and their comparison to full Coulomb
VCoulomb shows that incorporating higher terms in V cr

k progressively leads to bend-
ing the more flat dispersion upward as it approaches the full Coulomb interaction.
Therefore, the potential choice has a significant effect on the k ≫ 1 magnetoroton
branch behavior and observed flat dispersion is at least in the main part caused
by the chosen potential.

Non-Laughlin WYQ state thermodynamic limit

Wójs, Yi and Quin (WYQ) in a series of articles [38], [39] and [40] propose exis-
tence of a ν = 1/3 liquid ground state with non-Laughlin correlations, emerging
due to the condensation of quasi-electrons or quasi-holes with their interaction
described via hollow-core potential (3.26). By means of exact diagonalization in
sphere geometry, they argue that such a state is gapped.

Their conclusion is contended by Misguich, Jolicoeur and Mizusaki [41], who
argue that their numerical results with limited number of electrons Ne do not
necessarily lead to an incompressible state in the thermodynamic limit Ne → ∞.
Analysis of the ∆(Ne) behavior is conducted and is argued that in the thermo-
dynamic limit the observed gap collapses.

Data from [41] are shown in 3.6: un-
der the phenomenological assumption
that the many-body energies scale lin-
early with 1/Ne, as common in litera-
ture [42], [43] or [44], the extrapolated
gap in an infinite system would be neg-
ative. Such phenomenology has, how-
ever, never been explained by funda-
mental arguments and should, there-
fore, be only accepted with due care.

SMA, which operates implicitly in
the Ne → ∞ limit, would be suitable to
provide further evidence to this claim.

Figure 3.6: Exact diagonalisation
1/∆(Ne) dependence of WYQ state.

Source [41]

Since the WYQ ground state is explicitly non-Laughlin, the RDF ansatz (3.11)
cannot be used. Instead is introduced more general

g(r) = 1 − e−r2/2ℓ2 +
∞∑︂
m=1

cm

(︄
r2

ℓ2

)︄2m

e−r2/2ℓ2 , (3.27)

and gWYG−fit10(r) is obtained by fitting first 10 nonzero coefficients cm to exact
diagonalisation RDF data provided in [41](Fig. 2). Table 3.1 contains values of
fitted coefficients and the gWYQ−fit10 itself is shown in 3.7

Although gWYQ−fit10 matches the numerical data very well, its continuation
to higher r with nontrivial structure proves to be problematic. As can be seen
in figure 3.8, related projected structure factor s̄(k) (3.23) has zeros outside the
limit k → 0, which would lead to non-physical divergencies of ∆(k) (3.24).

58



Since SMA breaks in such a way for constructed RDF gWYQ−fit10, calculation
of the energy gap in this framework would require further work on the form of
the g function and its long-range behavior. See Addendum for WYQ g-function
and SMA.

g
(r

)

1,4                 
g

WYQ-fit10

g
WYQ-num

1,2

1,0

0,8

0,6

0,4

0,2

0,0
0 1 2 3 4 5 6 7 8 9 10

r [l]

Figure 3.7: Exact diagonalisation
RDF WYQ data (source [41]) and
their fit gWYQ−fit10 using first 10

coefficients.
s(

k)
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0,8

0,6

0,4

0,2

0,0

-0,2

WYQ-fit10
-0,4

0,0 0,5 1,0 1,5 2,0 2,5 3,0

k [1/l]

Figure 3.8: WYQ projected structure
factor calculated using gWYQ−fit10.

cm(gWYQ−fit10)
c1 -0.169304 c6 0.000242965
c2 0.05772 c7 -0.0000139233
c3 -0.0462336 c8 4.54618.10−7

c4 0.0140173 c9 -7.78369.10−9

c5 -0.00244608 c10 5.35449.10−11

Table 3.1: gWYQ−fit10 coefficients.
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Conclusion
Within the vast field of Hall effect, three selected topics pertaining to non-
magnetic materials were explored. In order of gradually increasing magnetic field
it was: The ordinary Hall effect, integer quantum hall effect, and lastly fractional
quantum hall effect. Each part of the work concerning different topic, was then
dedicated to a selected problem with only a vague connection to the others.

Classical Hall effect

The temperature dependence of the semiclassical Hall coefficient was determined
by means of the Sommerfeld expansion for the ideal electron gas and square lattice
tight binding model.

Different single site approximations for description of substitutionally disor-
dered materials were examined, and effects of introduced on-site disorder in square
lattice model on the Hall coefficient were determined using coherent potential ap-
proximation.

Integer quantum Hall effect

The study of formation of Landau levels in the square lattice model with magnetic
fields introduced via the Peierls substitution was conducted using the introduced
descretization metric.

An approach to describe the effect of quantizing magnetic fields in realistic
three-dimensional material is outlined.

Fractional quantum Hall effect

The single mode approximation is examined in detail and applied to two distinct
problems concerning two-dimensional electron gas with filling factor ν = 1/3.

The short range hollow core potential used in the exact diagonalization cal-
culation of the excitation spectrum was identified as the main contributor to the
flat large k dispersion of the magnetoroton branch. An attempt was made to
apply single mode approximation to determine the excitation energy gap of the
WYQ ground state.
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[18] Pavel Středa and Jan Kučera. Orbital momentum and topological phase
transformation. Phys. Rev. B, 92:235152, Dec 2015.
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[37] K. Výborný. Spin in fractional quantum Hall systems. PhD thesis, niversität
Hamburg, 2005.
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Arkadiusz Wójs. Transport gap in a ν = 1/3 quantum hall system: A probe
for skyrmions. Phys. Rev. B, 74:195324, Nov 2006.

[45] Steven M. Girvin. Introduction to the Fractional Quantum Hall Effect, pages
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A. Appendices
A.1 Numerical calculation of 1D chain DOS
Negative eigenvalue counting algorithm [8] is used to obtain the DOS of the 1D
chain numerically. Let H ∈ Cn×n be a complex matrix site representation of
Hamiltonian (1.25), I unit matrix and define new matrix

A(z) ≡ H − zI.

The spectrum σ(A) of matrix A is for given z only the spectrum σ(H) shifted by
z. Therefore, the total number of negative eigenvalues of A is equal to the total
number of energy eigenstates with energy less than z. Or, yet in other words, it
is equal to the cumulative density of states N(z).

Sylvester’s law of inertia can be utilised for symmetric forms as N(z) is pre-
cisely negative index of inertia in As signature. Denoting a0 = 1 and ak k × k
principal upper left minor of A (determinant of k×k upper left submatrix), N(z)
is equal to the number of sign changes in sequence a0, a1, a2, . . ..

In particular in the 1D chain case, H is a tridiagonal matrix with stochas-
tic main diagonal consisting of terms εk and both lower and upper diagonals
filled with constant hopping parameters t. Direct expansion of determinant of
associated matrix A(z) shows

ak = (εk − z) ak−1 − t2ak−2 =⇒ ak
ak−1

= εk − z − t2
ak−2

ak−1

and this formula is further simplified by introduction of hi = ai/ai−1. Denoting
θ Heaviside step function then allows to summarize this algorithm as

N(z) =
n∑︂
i=1

θ(−hi), with h1 = ε1 − z, hk = εk − z − t2h−1
k−1.

Since the original Hamiltonian matrix H ∈ Cn×n does not appear in this
algorithm, one can choose to simply continue this iteration indefinitely. This can
be used to obtain the configuration average instead of generating multiple replicas
of the same system. The comparison of convergence of these two approaches is
presented in the following two figures A.1 and A.2, where the resulting DOS are
shown for two different values of defining parameters c, δ and for different sizes
of the system and for one large system as opposed to many smaller replicas.

Note that the chosen method calculates the cumulative density of states for
each energy point again (with a new generated distribution of site types), which
may result in a negative DOS. This behaviour becomes negligible with a large
enough system (or total number of sites counted) as the algorithm converges to
the right physical values. Alternatively, one has to perform this algorithm for
every energy point simultaneously using same sequence of potentials ϵk.
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Figure A.1: Numerical gcb1D results,
c = 0.5, δ = 3.
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Figure A.2: Numerical gcb1D results,
c = 0.1, δ = 2.

A.2 Single site approximations
ATA derivation

Denote P0 diagonal part of propagator P , and P ′ = P − P0 off-diagonal. Define
the single side t-matrix t as a sum of all repeated scattering processes on the
same site.

t = V + VP0V + VP0VP0V + . . .

Since it is by its construction single site dependent, its configurational average is
given by sum of two contributions, one corresponding to contribution of site A,
with energy εA, and second to site B, with εB.

⟨t⟩ = (1 − c) εA
1 − P0εA

+ c
εB

1 − P0εB

Full T-matrix T is then

T = V + VPV + VPVPV + . . . = t+ tP ′t+ tP ′tP ′t+ . . . .

Note the use of the off diagonal P ′, which prevents immediate return to the same
site, as that contribution is already included in t. Of interest is only configura-
tional average of T-matrix

⟨T ⟩ = ⟨t⟩ + ⟨tP ′t⟩ + ⟨tP ′tP ′t⟩ . . . ,

which is the most problematic part. The derivation is so far exact, but there is
no easy way to correctly account for all correlations in ⟨. . .⟩. A simple decoupling
scheme ⟨tP ′ . . . t⟩ = ⟨t⟩P ′ . . . ⟨t⟩ is chosen, so all processes without returns are
correctly accounted for in this approximation. I.e. in the T series, the first two
terms would be treated correctly and from the third term up the correlation of
returning particles would be neglected.

Now the T-matrix series can be summed

⟨T ⟩ = ⟨t⟩ (1 − P ′ ⟨t⟩)−1

and substituting it into ⟨T ⟩ (Σ) equation (1.38) and using P −P ′ = P0 then leads
to final ΣATA expression, with ⟨t⟩ given above.

ΣATA = ⟨t⟩
1 + ⟨t⟩P0

.
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SCBA derivation

Born approximation consists of taking only first two terms in self-energy expan-
sion series (1.39).

ΣBA = ⟨V⟩ + ⟨VPV⟩ + . . .

Assuming VCA medium the first term vanishes as ⟨V⟩ = 0. Sigma is here nec-
essarily scalar as the off-diagonal part would indicate that the present on-site
potentials would belong to different sites and consequently the term would also
vanish in configurational average. Since they are related to the same site, the
average gives

ΣBA = ⟨VPV⟩ = (1 − c)ε2
AP0 + cε2

BP0 = c(1 − c)∆2
εP0,

where the last equality is written using VCA on site potentials (1.40).
This approximation is clearly rather weak as it is correctly accounting for

only simple (once repeated) scattering on the same site, without any returns or
more complicated processes. Vast improvement then provides its self-consistent
variant (SCBA), which assumes that the propagation in self-energy expression is
through the effective medium itself, replacing P → G.

In mathematical sense, this substitution significantly broadens the set of scat-
tering processes included in the self-energy, improving the accuracy of the approx-
imation.

ΣSCBA = c(1 − c)∆2
εG00

CPA derivation

Assuming known effective medium Σ full GF G can be written as a series expan-
sion with respect to effective GF G as

G = G+G(V − Σ)G+ . . . = G+GT G.

Since by its definition is GF and its effective variant related via configurational
average

⟨G⟩ = G, ⟨G⟩ = G+G ⟨T ⟩G −→ ⟨T ⟩ = 0,

effective medium Σ should be now such that in average all scattering effects cancel
each other out.

Following formalism used in ??, namely G′ to denote off diagonal part, G00 =
G − G

′ and t single site scattering t-matrix, which is in current context of the
form

t = (1 − (V − Σ)P0)−1 (V − Σ),

leads to concise expression

T = (V − Σ)
(︂
1 +GT

)︂
= t

(︂
1 +G

′T
)︂
.
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Again, the second equality corresponds to different summation, now counting
all repeated scattering events on same site in t and continuing expansion with
explicitly forbidden immediate returns via G′.

In configurational average is

⟨T ⟩ = 0 =
⟨︂
t
(︂
1 +G

′T
)︂⟩︂

= ⟨t⟩ +
⟨︂
tG

′T
⟩︂
.

So far were all expression exact and at this point comes into play the CPA
decoupling scheme, where is assumed⟨︂

tG
′T
⟩︂

= ⟨t⟩G′ ⟨T ⟩ = 0.

This corresponds to neglect of the correlation of the ’main’ on site scattering t,
which is treated exactly, and all other contributions of the surrounding effective
medium governed by the G′T term. This interpretation can be seen from the
following. Since t is diagonal, for each given site i does the surrounding medium
contribution

tG
′T −→ ti

∑︂
j ̸=i

G
′
ijTji

span all scattering processes starting at site i, ending at j and then returns back
to i.

CPA self-energy condition then simplifies to

⟨t⟩ = 0 = (1 − c) εA − Σ
1 − (εA − Σ)G00

+ c
εB − Σ

1 − (εB − Σ)G00
,

which (taking into account VCA medium ⟨V⟩ = 0) yields

ΣCPA = − (εA − ΣCPA)G00 (εB − ΣCPA) .

A.3 Planar 1-body problem in magnetic field
Hamiltonian corresponding to a planar problem {x, y} of particle in external out
of plane magnetic field (B = −Bez) is in the symmetric gauge of the form

H1 = 1
2mπ2 = 1

2m (p − eA)2 ,A = B

2 (y; −x)T ,

where A stands for vector potential. π denotes vector kinetic momentum, and p
canonical momentum operators.

The radial coordinates {r, ϕ} are due to the chosen gauge more suitable for
the description of the problem at hand. Introducing angular momentum operator
Lz = −iℏ∂ϕ leads to

H1 = 1
2m

[︄
−ℏ2 1

r
∂r (r∂r) + L2

z

r2 + e2B2

4 r2 − eBLz

]︄
.

Since [H1, Lz] = 0, the eigenstates ϕn,m of H1 are determined by two separate
quantum numbers: n corresponding to the energy or Landau level (LL) and m
to angular momentum.
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The complete solution of the problem is elegantly captured using the ladder
operator algebra presented in full in [34] with its derivation and motivation. In
the following are provided only final expressions adapted to current formalism
(note assumed opposite orientation of external magnetic field) and bare bone
hints of their derivation.

First, introducing energy-level ladder operators

a† ≡ ℓ/ℏ√
2

(πx + iπy) , [a†, a] = 1,

with ℓ =
√︂
ℏ/eB magnetic length, leads to harmonic oscillator Hamiltonian with

cyclotron frequency ωc = eB/m

H1 = ℏωc
(︃
a†a+ 1

2

)︃
and energy εn = ℏωc

(︃
n+ 1

2

)︃
.

The second set of ladder operators b† and b corresponding to angular momentum
quantization have to fulfill

[b†, b] = 1, [b†,H1] = [b,H1] = 0

and all ladder operators from different sets have to commute.
Defining expression for a† hints at the usefulness of complex notation of 2D

vectors. Notably for the position is

r = (x, y) → z = x+ iy.

and using such notation allows one to write all ladder operators in a symmetric
form

b† = 1√
2

(︄
z

2ℓ − 2ℓ ∂
∂z̄

)︄
, b = 1√

2

(︄
z̄

2ℓ + 2ℓ ∂
∂z

)︄

a† = 1√
2

(︄
z̄

2ℓ − 2ℓ ∂
∂z

)︄
, a = 1√

2

(︄
z

2ℓ + 2ℓ ∂
∂z̄

)︄
.

All H1 eigenstates can be then written in the form

|ϕn,m⟩ =

(︂
a†
)︂n (︂

b†
)︂m

√
n!m!

|ϕ0,0⟩ , ϕ0,0 = 1√
2πℓ2

e−zz̄/4ℓ2 .

Especially in the LLL

ϕ0,m = zme−zz̄/4ℓ2

√
2πℓ22mm!

is the polynomial part of the eigenfunction reduced to a monomial with the
power equal to the quantum number m. The orthogonality of the eigenfunctions
is within the LLL same as the orthogonality of monomials of different power.
Also, all LLL wavefunctions consist of Gaussian term and prefactor analytical in
z.

The eigenfunction ϕ0,m is localized in the vicinity of the ring r =
√

2mℓ2,
where its probability amplitude peaks and then falls sharply. In the ring of the
radius R are thus enclosed 2πℓ2m eigenfunctions. This means that the degeneracy
of the LL increases proportionally with the increasing magnetic field B.
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A.4 Lowest Landau level polarized 2DEG
The many-body wavefunction can be constructed from the 1-particle wavefunc-
tion. In the LLL, they can be written in the form

Ψ(z1, z2, . . . zN) ∝ P [z1, z2, . . . zN ]e− 1
4ℓ2
∑︁

i
ziz̄i

consisting of common exponential term and general polynomial prefactor P (or
generally infinite series f), which is analytical function of its variables. Assuming
complete polarization P has to be antisymmetric.

The most simple case is that of fully filled LLL (filling factor ν = 1), where
any interaction would lead only to a shift of energy and leaves the wavefunction
unchanged. In such case is the exact wavefunction constructed as antisymmetri-
sation of all 1-particle eigenfunctions ϕ0,m, m ∈ {1, 2, . . .}

Ψν=1 ∝

⃓⃓⃓⃓
⃓⃓⃓⃓z

0
1 z1

1 . . .
z0

2 z1
2 . . .

... ... . . .

⃓⃓⃓⃓
⃓⃓⃓⃓ e− 1

4ℓ2
∑︁

i
ziz̄i =

∏︂
i<j

(zi − zj)e− 1
4ℓ2
∑︁

i
ziz̄i

and the polynomial prefactor is in this case a Vandermonde determinant.
When ν < 1 one has to take into account interparticle interaction V . Start-

ing with 2-body problem, wavefunctions are of the form (disregarding common
exponential term)

Ψ2(z1, z2) ∝ P (z1, z2).

It is natural to employ center of mass (CMS) coordinates

zr = z1 − z2, Z = z1 + z2

2
and view Ψ2 as constructed using CMS and relative motion eigenfunctions ϕcM ,
ϕrm with their angular momenta quantum numbers M and m. Their form is clear
from the following:

2-body Hamiltonian

H2 = 1
2mπ2

1 + 1
2mπ2

2

can be expressed in CMS coordinates as

H2 = Π2
c

2Mc

+ π2

2µ, with Mc = 2m, µ = 1
2m

with

Π2
c = (π1 + π2)2 = (p1 + p2 − e (A1 + A2))2 = (Pc − 2eAc)2

π2 =
(︃
π1 − π2

2

)︃2
=
(︄

p1 − p2

2 − e (A1 − A2)
2

)︄2

=
(︃

p − e

2A
)︃2
.

CMS and relative motion variables are fully separated allowing to write eigen-
function in the form

ΨMm = ϕcMϕ
r
m,
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with known 1-body eigenfunctions ϕcM , with magnetic length ℓc = ℓ/
√

2, and ϕrm,
with ℓr = ℓ

√
2. The cyclon frequency in both cases remains unchanged.

Of interest is mainly the relative motion part of the wavefunction ϕrm since
the interparticle interaction does not couple to the CMS DOF.

Expressing the 2-body interaction V in { ΨMm }∞
M,m=0 basis leads to the defi-

nition of the so-called Haldane pseudopotentials Vmm′ . Additionally, interaction
given by the potential independent of relative angular coordinate (i.e. purely
radial) leads to owing to the orthogonality relations of { zm }∞

m=0 non-zero only
diagonal terms of its matrix representation Vm′m.

Vm = ⟨ΨMm | V | ΨM ′m′⟩ δMM ′δmm′

Interaction are thus fully given by a set of pseudopotentials {Vm}∞
m=0, where in

the present case of fully polarised system contribute only terms with odd m due
to the antisymmetry of the polynomial part P (z1, z2, . . .) of the wavefunctions.

Specially for Coulomb interaction V (r) = ke2/r is in CMS coordinates

Vm = ⟨ΨMm |V | ΨMm⟩ = e2k

2ℓ2(m+1)4mm!

∫︂
r2me− r2

4ℓ2 dr.

For integrals of this form is

∫︂
dxxne−axb =

Γ
(︂
n+1
b

)︂
ba

n+1
b

, where a = 1
4ℓ2 b = 2,

yielding

Vm = e2k

ℓ2(m+1)4mm!
1
4Γ

(︃
m+ 1

2

)︃ (︂
4ℓ2
)︂m+ 1

2 = ke2

2ℓ
Γ
(︂
m+ 1

2

)︂
Γ (m+ 1) .

As can be seen in figure A.3 in LLL
Coulomb Vm monotonically decreases
with m and asymptotically is Vm ≈
m−1/2.

The pseudopotential representation
is also suitable for the definition of new
interaction potentials. For example,
since the relative angular momentum
quantum number m corresponds to a
relative distance [45], Vm are suitable
for the definition of short-range inter-
action potentials.

Figure A.3: Haldane pseudopotential
representation of LLL Coulomb

interaction potential.

Of particular interest is the Hard-core interaction

VHard−Core : {V0, V1, V2, . . .} = {∞, 1, 0, . . .}.
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With such a potential, only terms with relative angular momentum m = 1 con-
tribute to energy, and it is easy to construct the exact many-body ground state
wave function corresponding to the filling factor ν = 1/3.

ΨL ∝
∏︂
i<j

(zi − zj)3e− 1
4ℓ2
∑︁

i
ziz̄i

ΦL is ν = 1/3 realization of wider ansatz, the so called Laughlin wavefunction
[29].

A.5 Addendum for WYQ g-function and SMA
Straightforward application of the SMA energy gap function (3.24) in section Non-
Laughlin WYQ state thermodynamic limit, shown in figure A.4, clearly reveals
the problems of the RDF used gWYQ−fit10 3.7. There are not only expected
divergences present due to the zeros of the projected structure factor 3.8, but also
a negative gap ∆(k) going against the very assumption that gWYQ−fit10 describes
a ground state.

Another g-function gWYQ−fit5, with
only five nonzero coefficients A.1 of the
expansion (3.27) was fitted to the nu-
merical data. As can be seen in A.5,
gWYQ−fit5 is again a good fitting func-
tion for most of the data, but the few
very last points.

As is common in general for the
small system numerical calculations,
obtained long-range results may not re-
flect realistic macroscopic systems as
well as short-range ones. In this sense,
less emphasis on them in gWYQ−fit5
may even prove beneficial, as it allows
elimination of the additional structure
present in 3.7.

The related projected static struc-
ture factor A.6 now paints a very dif-
ferent picture than that of gWYQ−fit10,
figure 3.7. Elimination of gWYQ−fit10
long-range correlations drastically al-
ters structure factor dependence for
small k, removing one of the two prob-
lematic zeros.

D
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3
]

0,6

0,4

0,2

0,0

-0,2

-0,4

WYQ: g
WYQ-fit10

, V
Hollow-Core

-0,6
0,0 0,2 0,4 0,6 0,8 1,0

k [1/l]

Figure A.4: ∆(k) dependence
calculated using gWYQ−fit10 RDF and

hollow core interaction potential.

cm(gWYQ−5)
c1 -0.141474
c3 -0.00427787
c5 0.000010427
c7 6.02757.10−9

c9 -1.53175.10−11

Table A.1: gWYQ−fit5 coefficients, for
even m cm = 0.

Although gWYQ−fit5 could still not be used for a meaningful application of the
SMA to the problem, it reveals that the core of the issue lies in the long-range
behavior of the assumed g-function, for which no data are currently available.
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Figure A.5: Exact diagonalization
RDF WYQ data (source [41]) and

their fit gWYQ−fit5 using the first five
odd coefficients.
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Figure A.6: WYQ projected
structure factor calculated using

gWYQ−fit5.
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