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Introduction
Throughout all mathematical disciplines, we encounter countless problems with
the goal of finding a desired solution. From a fundamental standpoint it is reason-
able to ask whether it makes sense to attempt solving such problems without first
establishing that the sought solution actually exists. In the early 20th century, the
French mathematician Jacques Hadamard introduced the notion of well-posedness
for a problem, formulating the concept of such questions. According to Hadamard,
a problem is well-posed if it satisfies the following three key conditions. Specifically,
a well-posed problem is one for which a solution exists, the solution is unique, and
is continously dependent on the data upon which the problem is based, meaning
that small changes in the input data lead to correspondingly small changes in
the solution. At the start of 1960s, the Russian mathematician Andrey Tikhonov
introduced another notion of well-posedness. While his definition also requires
existence and uniqueness of the solution, he further imposes the convergence of
every minimizing sequence to a unique minimum point. In other words, sequences
of approximate solutions must converge to the optimal solution. Soon after, Lev-
itin and Polyak introduced a generalization of Tikhonov’s concept. Approximately
3 decades later, Beer and Lucchetti presented a further generalized concept of
well-posedness.

This thesis will explore and analyze each of these concepts, comparing them
and charactarizing their relationships. Additionaly present appropriate numerical
examples to highlight the differences in the notions of well-posedness. We will see
that under specific assumptions, the concepts coincide, which we will fully prove.
Then we will present our next contribution, where we will prove that the problem
of the minimizing variance of a two-asset portfolio is well-posed in compliance
with all aforementioned notions of well-posedness. To support this, we will also
show a simple example with real data of stock options for said problem. The
introduction of well-posed optimization problems conversely implies the notion of
optimization problems that are not well-posed, ill-posed problems. Which we will
address in the fourth chapter and present an approach to approximately solve such
problems. The final chapter involves a few examples of applied well-posedness in
various fields.
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1 Well-posedness
1.1 Problem introduction

Our main focus in the first chapter is to introduce and characterize various
notions of well-posedness for optimization problems involving the minimization of
a function f over a metric space X. Well-posedness in more general topological
spaces shares similar ideas, but the results are broader, while the concepts are
significantly more complex. Therefore, we choose to work with metric spaces. In
this section, we establish the necessary definitions to describe our problem.

Let X be a metric space with a metric d : X × X → R and we clarify the
following notations, which we will use throughout the paper. For a subset A ⊆ X
and a point x ∈ X we denote the metric d as d(x, A) = inf{d(x, a) : a ∈ A}.
Sequences {xn}∞

n=1 are denoted as simply {xn} unless explicitly mentioned other-
wise. Limits and convergences expressed with → are meant as the corresponding
index goes to ∞. For example xn → x0 denotes limn→∞ xn = x0 unless specified
differently.

With the following definitions, we will construct a set of functions suitable for
our problem.

Definition 1.1.1. Let f : X → R be an extended real-valued function. Then f
is said to be proper if it never assumes the value −∞ and it is not identically ∞.

Definition 1.1.2. Let f : X → R, then f is bounded from below if there exists a
real number K such that ∀x ∈ X : f(x) ≥ K.

Definition 1.1.3. Given a metric space X, let F(X) be a set of all extended
real-valued functions on X that satisfy the following properties:

F(X) := {f : X → R : f is proper and bounded from below}.

F(X) is equipped with the uniform metric:

e(f1, f2) := sup
x∈X

{︂
|f1(x)−f2(x)|

1+|f1(x)−f2(x)|

}︂
, f1, f2 ∈ F(X).

Next, we define the optimization problem that we will work with moving
forward.

Definition 1.1.4. Let X be a metric space and f ∈ F(X). Consider the problem
determined by the pair (X, f), which we will denote as min(X, f):

min
x∈X

f(x)

that consists of finding x0 ∈ X such that

f(x0) = inf
x∈X

f(x) := inf(X, f).

The set of optimal solutions for the problem min(X, f) is denoted by argmin (X, f).
If a solution x0 exists and is unique then:

{x0} = argmin (X, f).
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The rest of the chapter will concentrate on the well-posedness of min(X, f).
We are interested in the well-posedness of a minimization problem, but the ensuing
concepts can be applied to a maximization problem under analogous conditions
due to the relationship between minimization and maximization, which is given
by max(f) = − min(−f). The classical idea of well-posedness requires existence
of a unique solution and its continous dependancy on the data of the considered
problem.

1.2 Tikhonov well-posedness
We present the concept of Tikhonov well-posedness introduced in 1966 by A.N.

Tikhonov, which characterizes the classical idea with minimizing sequences.

Definition 1.2.1. Let X be a metric space and let f ∈ F(X). A sequence
{xn} ∈ X is called Tikhonov minimizing (briefly T. minimizing) of min(X, f) if

f(xn) → inf
x∈X

f(x), n → ∞.

Definition 1.2.2. A minimization problem min(X, f) is Tikhonov well-posed
(briefly T.w.p.) if all following conditions hold:

(i) there exists a unique solution x0 ∈ X, i.e., argmin (X, f) is nonempty and a
singleton;

(ii) every T. minimizing sequence {xn} of min(X, f) converges to x0.

The concept of Tikhonov well-posedness connects the theory of optimization
with its practical use in numerical analysis. We can view the T. minimizing
sequence as a sequence of approximate solutions for min(X, f) and Tikhonov
well-posedness ensures that every such sequence converges to the optimal solution
of min(X, f). Next we show a simple example of applied T.w.p. inspired by
Ferrentino, Boniello [1].

Example 1.2.1. Let X = R and f(x) = x2e−x, in that case the unique solution of
the minimization problem min(X, f) is clearly x0 = 0, where f(x0) = 0 = infR f .
Assume {xn} = {n}n∈N, then {xn} is T. minimizing for min(X, f), because f(xn)
is decreasing for n > 2 and converges to 0 = infR f as n → ∞. But xn = n → ∞,
therefore the T. minimizing sequence does not converge to the optimal solution
and min(X, f) is not T.w.p.
If we modify the problem and put f(x) = x2, then we can see that infX f = 0,
where the unique solution is x0 = 0. Now let {xn} be a T. minimizing sequence in
X, which yields f(xn) → f(x0) = 0. In other words x2

n → 0 and due to Continous
mapping theorem we get that xn → x0 = 0, therefore min(X, f) is T.w.p.

Since our goal is to find the infimum of f over a metric space X, then lower
semicontinuity of f is desirable as it plays a crucial role in the existence of a
solution for min(X, f).
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Definition 1.2.3. A function f ∈ F(X) is said to be lower semicontinous (briefly
l.s.c.) at x0 ∈ X if ∀ε > 0, there exists δ > 0 such that

f(x0) − ε < f(x) : ∀x that satisfy d(x, x0) < δ

f is called lower semicontinous if f is l.s.c. at every point of its domain.
For our purposes the following equivalence might be more telling:

f is l.s.c. at x0 ⇔ ∀{xn} ∈ X, xn → x0 : lim inf
n→∞

f(xn) ≥ f(x0).

Tikhonov well-posedness requires that a sequence of approximate solutions
approaches the point where f attains its infimum. Therefore, it is intuitive to
charactarize T.w.p. for f l.s.c. using level sets. This approach, introduced by Furi
and Vignoli, is known as the Furi-Vignoli criterion.

Definition 1.2.4. Let f : X → R. We define its level set at height a ∈ R as

fa := {x ∈ X : f(x) ≤ a}.

We will use the formulation of the Furi-Vignoli criterion as presented in
Proposition 10.1.6, Lucchetti [2]. To do so, we will need the definitions of a
complete metric space and Cauchy sequences. Additionaly we introduce the
following Lemma 1.2.1. about the properties of level sets for f l.s.c., which will be
helpful in the proof of the criterion.

Lemma 1.2.1. Let f ∈ F(X) be a lower semicontinous function and fa a level
set for a > infX f , then fa is nonempty and closed.

Proof. The function f is proper and bounded from below, therefore infX f exists
and is not equal to −∞. Since f is l.s.c., then f attains its infimum at some
x0 ∈ X, and we get f(x0) = infX f < a. Thus x0 ∈ fa and fa is nonempty.

Let {yn} ∈ fa be a sequence that converges to some y0 ∈ X, then from the
definition of l.s.c. we get

f(y0) ≤ lim inf f(yn) ≤ a.

Therefore f(y0) ≤ a, which yields y0 ∈ fa. Every convergent sequence in fa has
its limit in fa, hence fa is a closed subset of X.

Definition 1.2.5. A sequence {xn} ∈ X is called a Cauchy sequence if

∀ε > 0 there exists n0 ∈ N such that ∀m, n > n0 : d(xm, xn) < ε.

Definition 1.2.6. A metric space X is called complete if every Cauchy sequence
in X converges to a point also in X.
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Theorem 1.2.1. (Furi-Vignoli criterion)
Let X be a complete metric space and let f ∈ F(X) be lower semicontinous, then
the following assertions are equivalent:

(i) min(X, f) is Tikhonov well-posed;

(ii) inf
a>infX f

diamfa = 0,

where diamfa := sup
x,y∈fa

d(x, y).

Proof.
(i) ⇒ (ii); Assume min(X, f) is T.w.p. and (ii) does not hold, which means
that diamfa > 0 for a = infX f + ε, ε > 0. From Lemma 1.2.1., we get that
fa is nonempty and closed. Therefore there exist points x0, y0 ∈ fa such that
d(x0, y0) > 0. Then we can find δ > 0 and two T. minimizing sequences {xn}
and {yn} such that ∀n ∈ N : d(xn, yn) ≥ δ, where {xn} converges to x0 and {yn}
converges to y0, while f(x0), f(y0) ≤ infX f + ε. This implies that argmin(X, f)
is not a singleton and therefore (i) is not true, hence (i) ⇒ (ii) by contradiction.

(ii) ⇒ (i); The (ii) implies that there exists a > infX f such that diamfa = 0. For
said a we get a level set fa, where ∀x, y ∈ fa : x = y, because supx,y∈fa d(x, y) = 0
and as a result fa is a singleton, let us denote that point as x0. From the defi-
nition of a level set we get that x0 is the only point in X for which f(x0) ≤ a
is true and since a > infX f , then f(x0) = infX f . Consequently x0 is a unique
minimum point for f in X. Let {xn} be a T. minimizing sequence, then the T.
minimizing property f(xn) → infX f = f(x0) and (ii), which provides that points
of {xn} cannot be too far apart as we approach the minimum point, which implies
that {xn} is a Cauchy sequence. Since X is a complete space, then the Cauchy
sequence {xn} converges to a point in X. Again {xn} is a T. minimizing sequence
of min(X, f) and so f(xn) → f(x0), hence the point of convergence of {xn} is the
minimum point, which is unique as aforementioned. We have proved that every T.
minimizing sequence converges to a unique minimum point, and thus min(X, f)
is T.w.p.

Another characterization of Tikhonov well-posedness involves estimating the
difference between the value of an approximate solution f(x) and the value of
the optimal solution f(x0) in terms of d(x, x0). Such concept and its implications
are explored in Chapter 1, Section 2, Dontchev, Zolezzi [3] and Section 10.1,
Lucchetti [2]. Here we will only showcase how f(x) − f(x0) and d(x, x0) relates
to Tikhonov well-posedness by utilizing the notion of a forcing function.

Definition 1.2.7. Let T ⊂ [0, ∞) and a function c : T → [0, ∞), c is said to be
a forcing function if the following conditions hold:

(i) 0 ∈ T, c(0) = 0;

(ii) for a sequence {tn} ∈ T : c(tn) → 0 ⇒ tn → 0, n → ∞.
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Theorem 1.2.2. Let X be a metric space and f ∈ F(X). For the given mini-
mization problem min(X, f) the following are equivalent:

(i) min(X, f) is Tikhonov well-posed;

(ii) there exists a forcing function c and a point x0 ∈ X such that

f(x) ≥ f(x0) + c[d(x, x0)], ∀x ∈ X.

Proof.
(ii) ⇒ (i); Assume there exists a forcing function c and x0 ∈ X in compliance
with (ii). Let {xn} be a T. minimizing sequence of min(X, f). According to the T.
minimizing property of {xn} and assumption that (ii) holds, we get f(xn) → f(x0),
then c[d(xn, x0)] → 0, which implies d(xn, x0) → 0 as per the definition of a forc-
ing function. We have proved that every T. minimizing sequence of min(X, f)
converges to a single point x0, which means that min(X, f) is T.w.p. with x0 as
its solution.

(i) ⇒ (ii); Let min(X, f) be T.w.p. with a unique solution x0 ∈ X. We de-
fine c(t) for t ≥ 0 as

c(t) = inf
x∈X

{f(x) − f(x0) : d(x, x0) = t}.

We will show that c(t) is a forcing function. For t = 0 we get c(0) = f(x0)−f(x0) =
0 and since x0 is the solution of min(X, f), then f(x) − f(x0) ≥ 0 for all x ∈ X,
which means c(t) ≥ 0, ∀t ≥ 0.
Let {tn} be a sequence where tn ≥ 0, ∀n ∈ N such that c(tn) → 0, then there
exists a sequence {yn} in X such that f(yn) → f(x0) where d(yn, x0) = tn, ∀n ∈ N.
This means {yn} is T. minimizing and therefore tn → 0, which proves that c(t) is
a forcing function and so (i) ⇒ (ii).

In most research on the theory of well-posedness, there is a strong focus on
the density of the set of all well-posed problems in a given problem product space.
This leads to compelling results, demonstrating that in some sense the “majority”
of the optimization problems is well-posed under specific conditions. We mention
an example for Tikhonov well-posedness from Revalski [4].

Definition 1.2.8. Let X be a metric space, then we define H(X) as the set of
all nonempty closed subsets of X:

H(X) := {A ⊂ X : A ̸= ∅ and A is closed}.

H(X) is endowed with the Hausdorff distance ρH where:

ρH (A1, A2) := max
{︄

sup
x∈A2

d(x, A1), sup
x∈A1

{d(x, A2)}
}︄

, A1, A2 ∈ H(X).

Theorem 1.2.3. Let X be a complete metric space and Fl(X) be a set of all
functions f ∈ F(X) that are lower semicontinous. Denote PT ⊂ H(X) × Fl(X)
as a set of all Tikhonov well-posed problems, then PT is dense in H(X) × Fl(X).

Proof. Refer to Corollary 1.5., Revalski [4]
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1.3 Levitin-Polyak well-posedness
In the previous section, we were concerned with minimizing f over the entire

metric space X. In other words the problem min(X, f) was an unconstrained
problem. However, in practice, we often encounter optimization problems involving
boundaries or restrictions. Therefore we will now focus on the constrained problem
min(A, f), where A is a subset of X. This provides us with the possibility to
approximate the optimal solution using sequences, which do not necessarily lie
within A. This concept, introduced by Levitin and Polyak, presents a strengthened
notion of minimizing sequences and a new type of well-posedness, Levitin-Polyak
well-posedness.

Definition 1.3.1. Let A ⊂ X, A ̸= ∅ and f ∈ F(X). A sequence {xn} ∈ X
is called Levitin-Polyak minimizing (briefly L.P. minimizing) of min(A, f) if it
satisfies the following conditions:

(i) f(xn) → inf
x∈A

f(x), n → ∞;

(ii) d (xn, A) → 0, n → ∞.

Definition 1.3.2. A minimization problem min(A, f) is Levitin-Polyak well-posed
(briefly L.P.w.p.) if all following conditions hold:

(i) there exists a unique solution x0 ∈ A, i.e., argmin (A, f) is nonempty and a
singleton;

(ii) every Levitin-Polyak minimizing sequence {xn} of min(A, f) converges to
x0.

To illustrate the difference between the notions of Tikhonov and Levitin-Polyak
well-posedness, we solve the Exercise 10.1.14 from Lucchetti [2] in the following
example.

Example 1.3.1. Consider the minimization problem min(A, f), where X = R2,
A := {(x, y) ∈ X : y = 0} and f(x, y) = x2 − x4y2. Then for (x, y) ∈ A we have
f(x, 0) = x2 and we see that min(A, f) is T.w.p. as shown in Example 1.2.1.
According to the result in the aforementioned example, we have the unique solution
(0, 0), where f(0, 0) = infA f = 0. Now let {xn, yn} = {n, 1/n}n∈N be a sequence
in X and we get

f(xn, yn) = n2 − n4

n2 = 0, ∀n ∈ N,

(n, 1
n
) → (∞, 0) ∈ A ⇒ d((xn, yn), A) → 0, n → ∞.

As a result {xn, yn} is L.P. minimizing sequence, but (xn, yn) does not converge
to the solution (0, 0), therefore min(A, f) is not L.P.w.p

12



Recalling the Furi-Vignoli criterion from the previous section, we can similarly
characterize the Levitin-Polyak well-posedness using generalized level sets. We will
present the version of this concept as shown in Theorem 30, Dontchev, Zolezzi [3].

Definition 1.3.3. Let X be a metric space and f ∈ F(X). Consider a subset
A ⊂ X, A ̸= ∅. We define a generalized level set La for the subset A and a > 0 as

La = {x ∈ X : d(x, A) ≤ a and f(x) ≤ infA f + a}.

Theorem 1.3.1. Let X be a complete metric space with a closed subset A ⊂
X, A ̸= ∅ and f ∈ F(X) is lower semicontinous then

diam La → 0 as a → 0

implies that a minimization problem min(A, f) is Levitin-Polyak well-posed.

Proof. Let {xn} be any L.P. minimizing sequence of min(A, f), i.e. d(xn, A) → 0
and f(xn) → infA f . Assume that diam La → 0 as a → 0, then given ε > 0 there
exists δ > 0 such that

diam La < ε for 0 < a < δ.
Then for every a ∈ (0, δ), there exists a sufficiently large n0 ∈ N such that
f(xk) ≤ infA f + a and d(xk, A) < a for all k ≥ n0, and thus xk ∈ La, which
implies that {xn} is a Cauchy sequence, because ∀n, m ≥ n0 : xn, xm ∈ La,
therefore d(xn, xm) < ε. As a result {xn} converges to some x0 ∈ A, because
d(xn, A) → 0, where A is a closed subset of X, which is a complete metric space.
Now using the result xn → x0 and the definition of lower semicontinuity of f ,
we get lim inf f(xn) ≥ f(x0) and since f(xn) → infA f , then infA f ≥ f(x0). By
the definition of infimum we also have infA f ≤ f(x0) since x0 ∈ A, and thus
f(x0) = infA f . To show that x0 is unique, let a = 0, then x0 ∈ La, because
d(x0, A) = 0 and f(x0) = infA f . Assuming diam La → 0 as a → 0, we get that
x0 is the only point in La for a = 0, therefore x0 is a unique minimum point. We
have shown that every L.P. minimizing sequence converges to x0 ∈ A, where x0 is
a unique minimum point, therefore min(A, f) is L.P.w.p.

1.4 Strong well-posedness
Eventually, Beer and Lucchetti introduced a generalization of the Levitin-

Polyak minimizing sequences, leading to the concept of strong well-posedness, a
more robust version of Levitin-Polyak well-posedness.

Definition 1.4.1. Let A ⊂ X, A ̸= ∅ and f ∈ F(X). A sequence {xn} ∈ X is
called strongly minimizing of min(A, f) if it satisfies the following conditions:

(i) lim sup f(xn) ≤ inf
x∈A

f(x), n → ∞;

(ii) d (xn, A) → 0, n → ∞.
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Definition 1.4.2. A minimization problem min(A, f) is strongly well-posed
(briefly s.w.p.) if all following conditions hold:

(i) there exists a unique solution x0 ∈ A, i.e., argmin (A, f) is nonempty and a
singleton;

(ii) every strongly minimizing sequence {xn} of min(A, f) converges to x0.

Although, as we will demonstrate later in Theorem 1.6.1, the two notions
coincide in certain situations. But f being lower semicontinous is not enough as
will be shown in the following example taken from p.151, Revalski, Zhivkov [5].

Example 1.4.1. Let X = R2, A := {(x, y) ∈ X : y = 0} and consider the
minimization problem min(A, f) for

f(x, y) =

⎧⎨⎩x2 + y2, (x, y) ∈
{︂
(x, y) ∈ X : (x, y) ̸= (n, 1

n
)

n∈N

}︂
,

−1, (x, y) = (n, 1
n
)

n∈N

(1.1)

Where f is lower semicontinous, which can be shown thanks to the alternate
definition of l.s.c. It is obvious that f is l.s.c. at (x, y) ̸= (n, 1

n
)

n∈N, since x2 + y2

is a continous function on X. Now consider any sequence {ank
, bnk

} in X such
that (ank

, bnk
) converges to (n, 1/n) for all n ∈ N as k → ∞, then

f(ank
, bnk

) = a2
nk

+ b2
nk

,

and therefore

lim inf
k→∞

f(ank
, bnk

) ≥ 0 ≥ −1 = f(n, 1
n
), ∀n ∈ N,

which gives us that f is l.s.c. at all points in X. To show that min(A, f) is L.P.
well-posed, let us first restrict f on A to find the optimal solution. Because
∀(x, y) ∈ A : (x, y) ̸= (n, 1

n
)

n∈N we get

f(x, y) = x2, ∀(x, y) ∈ A.

Which gives us the unique solution (0, 0) and f(0, 0) = infA f = 0 again as shown
in Example 1.2.1.
Let {xn, yn} be any L.P. minimizing sequence, then

x2
n + y2

n → 0 and d((xn, yn), A) → 0, as n → ∞.

Where d((xn, yn), A) → 0 gives us that yn → 0, consequently x2
n → 0 ⇒ xn → 0

for xn ∈ R due to Continous mapping theorem. Therefore (xn, yn) → (0, 0), hence
min(A, f) is L.P.w.p. We will use a similar argument as in Example 1.3.1. to
show that min(A, f) is not strongly well-posed. Let {xn, yn} = {n, 1/n}n∈N be a
sequence in X. We can see that

f(xn, yn) = −1, ∀n ∈ N,

thus lim sup
n→∞

f(xn, yn) ≤ infA f and

(n, 1
n
) → (∞, 0) ∈ A ⇒ d((xn, yn), A) → 0, n → ∞,

therefore {n, 1/n} is a strongly minimizing sequence, but it does not converge to
our solution (0, 0), therefore min(A, f) is not s.w.p.
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The notion of well-posedness in metric spaces is quite general and often requires
stronger assumptions for the function f . Hence the setting of normed vector
spaces, particularly Banach spaces combined with convexity, has been extensively
researched. Including contributions by Lucchetti [2], Dontchev, Zolezzi [3] and
many others. Working in such setting provides significant advantages, as proving
existence and uniqueness of the solution is often more straightforward, because
convexity simplifies working with minimizing sequences and the structure of
Banach spaces offers the application of more advanced theorems. We will present
an interesting result from Lucchetti [2], where strong well-posedness is assumed
and under certain conditions we can explicitly approximate the optimal solution.

Definition 1.4.3. Let X be a vector space equipped with a norm || · || : X → R,
then X is called a Banach space if it is complete.

Definition 1.4.4. Let X be a vector space, then a subset C ⊂ X is said to be
convex if

∀x, y ∈ C : λx + (1 − λ)y ∈ C, ∀λ ∈ (0, 1).

Then the function f : C → R is called convex if

∀x, y ∈ C, x ̸= y : f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), ∀λ ∈ (0, 1).

Theorem 1.4.1. Let X be a Banach space and f ∈ F(X) be l.s.c. such that
lim||x||→∞ f = ∞. Further let g ∈ F(X) be a convex function and suppose there
exists x ∈ X such that g(x) < 0, then put A := {x ∈ X : g(x) ≤ 0}. Assume that
the minimization problem min(A, f) is s.w.p. and fn(x) is constructed as such

fn(x) := f(x) + n max{g(x), 0}.

Let {xn} be a sequence in X and {εn} in R such that

fn(xn) ≤ inf
x∈X

fn(x) + εn, ∀n ∈ N,

where {εn} is a sequence in R such that εn ↓ 0. Then xn → x0, where x0 ∈ A is
the unique solution for min(A, f).

Proof. Refer to Proposition 10.1.16, Lucchetti [2]

1.5 Hadamard well-posedness
Lastly, we introduce the notion of well-posedness that laid the foundation

for all others. Jacques Hadamard developed the classical idea of well-posedness
while studying the behavior of differential equations. His definition consists
of the commonly aforementioned requirements, the existence and uniqueness
of the optimal solution and its continous dependance on the data. The main
distinction, and the reason Hadamard well-posedness is more broadly applicable
than other types, is that Hadamard’s concept extends to the entire problem
min(A, f). Whereas before, we were using minimizing sequences as approximations
for the solution, here we consider the approximations (An, fn) of the pair (A, f),
which determines min(A, f). We require that the sequence of solutions to the
approximate problems converges to the optimal solution for the original problem.
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Definition 1.5.1. Let A ∈ H(X) and f ∈ F(X). A minimization problem
min(A, f) ∈ H(X) × F(X) is called Hadamard well-posed (briefly H.w.p.) if all
following conditions hold:

(i) there exists a unique solution x0 ∈ A, i.e., argmin (A, f) is nonempty and a
singleton;

(ii) for An ∈ H(X), fn ∈ F(X), ∀n ∈ N
every sequence of pairs {(An, fn)} → (A, f), n → ∞,
with respect to the product metric ν on H(X) × F(X), where

ν((An, fn), (A, f)) = [ρ2
H(An, A) + e2(fn, f)]1/2;

(iii) every sequence {xn} such that ∀n ∈ N : xn ∈ argmin(An, fn), converges to
x0.

We again provide a Furi-Vignoli-style characterization, now aligned with
Hadamard well-posedness.

Theorem 1.5.1. Let X be a complete and bounded metric space, A ∈ H(X) and
f ∈ F(X) be a continous function. Then for the minimization problem min(A, f)
the following assertions are equivalent:

(i) min(A, f) is Hadamard well-posed;

(ii) inf
a>0

diam La = 0,

where La is the generalized level set for A.

Proof. Refer to Theorem 17, p.96, Dontchev, Zolezzi [3]

Assuming the prerequisites of Theorem 1.5.1., we can see that (ii) implies
Tikhonov well-posedness of min(A, f) according to the Furi-Vignoli criterion. As
a consequence of the relation between the level sets fa+infA f = La, when we are
restricted only to A, as we are for Tikhonov well-posedness. In the following
example from Example 19 [3], we will show that T.w.p. does not imply H.w.p., if
f is only lower semicontinous.

Example 1.5.1. Let X = A = [0, 1] and f : X → R be defined as

f(x) =

⎧⎨⎩2 − x, 0 < x ≤ 1,

0, x = 0.
(1.2)

Clearly infA f = 0 is a unique minimum point attained only for x0 = 0. Also the
closed interval [0, 1] is a complete space and f is l.s.c., because 2 − x is continous
and for every sequence {xn} in A such that xn → 0 we get

lim inf
n→∞

f(xn) ≥ 0.
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Let a = infA f + ε for ε ∈ (0, 1), then the level set fa = {0} and so diamfa = 0,
therefore min(A, f) is T.w.p. by applying the Furi-Vignoli criterion.
Now let An = [ 1

n
, 1], then (An, f) → (A, f) and argmin(An, f) = {1}, ∀n ∈ N,

because

f(x) = 2 − x, 1
n

≤ x ≤ 1

obtains infAn f = 1 for x = 1. Let {xn} be a sequence such that xn ∈ argmin(An, f)
for all n ∈ N, then {xn} = (1, . . . , 1) and we see that xn does not converge to the
optimal solution x0 = 0, hence min(A, f) is not H.w.p. while being T.w.p. for f
l.s.c.

In the beginning of the 20th century, when Hadamard introduced the notion
of well-posedness, he presented the Cauchy problem for Laplace equation as an
example of an ill-posed problem, and as to why it is important to research the
concept of well-posedness. We will show the version of the historically important
example as in Example 3.12, Kabanikhin [6].

Example 1.5.2. Cauchy problem consists of finding a solution of a partial
differential equation that satisfies certain conditions, specifically in our case
the Laplace equation, which is a second-order partial differential equation for
u = u(x1, . . . , xn) formulated as

∆u =
n∑︂

i=1

∂2u

∂x2
i

= 0. (1.3)

Our specific example of the Cauchy problem for Laplace equation is defined in
the following way. Let x > 0 and y ∈ R, then the problem consists of finding
u = u(x, y) for given data f(y) such that all following conditions are satisfied

∆u = 0, u(0, y) = f(y), ∂u

∂x
(0, y) = 0. (1.4)

Let the data f(y) be chosen for n ∈ N in the following way

f(y) = u(0, y) = 1
n

sin(ny).

After substitution into the Laplace equation and solving the ordinary differential
equations we get the general solution for c1, c2, d1, d2 ∈ R

u(x, y) = (c1e
nx + c2e

−nx) (d1 cos(ny) + d2 sin(ny)).

By applying the conditions (1.4) we obtain the solution to the problem

u(x, y) = 1
n

sin(ny) (enx + e−nx) , ∀n ∈ N.

The essential concept of Hadamard well-posedness is that the solution must
continously depend on the data, which means that small perturbations in the
data should not change the solution by a large margin. In our example we see
that for any fixed x > 0, the solution u(x, y) reaches large values as n → ∞, while
the data f(y) approaches 0. Therefore, small changes in the data can lead to
indefinitely large changes in the solution. As a result the problem is ill-posed in
Hadamard sense.
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1.6 Relations of well-posedness
In this section, we determine the relations among the four types of well-

posedness introduced earlier with the corresponding proofs. Before proceeding,
we first define the concept of upper semicontinuity for functions.

Definition 1.6.1. A function f ∈ F(X) is said to be upper semicontinous (briefly
u.s.c.) at x0 ∈ X if ∀ε > 0, there exists δ > 0 such that

f(x0) + ε > f(x) : ∀x that satisfy d(x, x0) < δ

f is called upper semicontinous if f is u.s.c. at every point of its domain.
In our context the following equivalence might be more telling

f is u.s.c. at x0 ⇔ ∀{xn} ∈ X, xn → x0 : lim sup
n→∞

f(xn) ≤ f(x0).

We also need to establish that inf(·, ·) : H(X) × F(X) → R is u.s.c., provided
f is u.s.c. It is proved in [4],Lemma 1.3, for the case that f is continous, so we
need to prove for f u.s.c. In similar fashion we also need to prove that inf(·, ·) is
continous, if f is uniformly continous. The ensuing lemmas will be important in
the proof of Theorem 1.6.1.

Lemma 1.6.1. Let Fu(X) be a set of all functions f ∈ F(X) that are upper
semicontinous. Let inf(·, ·) : H(X) × Fu(X) → R be a function, where inf(A, f) =
infA f , then it is upper semicontinous everywhere in H(X) × Fu(X).

Proof. Given (A0, f0) ∈ H(X) × Fu(X) and ε > 0, there exists x0 ∈ A0 such that
f0(x0) ≤ infA0 f0 + ε/3.

We can afford to use ≤ instead of < in most cases, because all A ∈ H(X) are
closed subsets of X. Upper semicontinuity of f0 provides the existence of δ ∈ (0, 1)
such that δ

1−δ
≤ ε/3, and
f0(x) − f0(x0) ≤ ε/3, ∀x ∈ {x ∈ A0 : d(x, x0) ≤ δ}.

For f ∈ B(f0, δ), where B(f0, δ) = {f ∈ Fu(X) : e(f, f0) < δ}, we have

e(f, f0) = sup
x∈X

{︂
|f(x)−f0(x)|

1+|f(x)−f0(x)|

}︂
< δ,

which means that
f(x) − f0(x) < δ

1−δ
≤ ε/3, x ∈ X.

Let (A, f) ∈ B(A0, δ) × B(f0, δ), where B(A0, δ) = {A ∈ H(X) : ρH(A, A0) < δ}.
Since ρH(A, A0) < δ then there exists x1 ∈ A such that d(x1, x0) ≤ δ. Now we
use all the aforementioned inequalities

inf(A, f) = infA f ≤ f(x1) ≤ f0(x1) + ε/3 ≤ f0(x0) + ε/3 + ε/3 ≤
≤ infA0 f0 + ε/3 + ε/3 + ε/3 = infA0 f0 + ε

which gets us inf(A0, f0)+ε ≥ inf(A, f), ∀(A, f) ∈ B(A0, δ)×B(f0, δ). Therefore
inf(·, ·) is u.s.c. at every point in H(X) × Fu(X).

18



Lemma 1.6.2. Let Fuc(X) be a set of all functions f ∈ F(X) that are uniformly
continous. Let inf(·, ·) : H(X) × Fuc(X) → R be a function, where inf(A, f) =
infA f , then it is continous everywhere in H(X) × Fuc(X).

Proof. Given (A0, f0) ∈ H(X) × Fuc(X) we will first establish the implications of
f being uniformly continous.
Let f ∈ Fuc(X) and ε > 0, then there exists δ > 0 such that for ∀A ∈ B(A0, δ),
where B(A0, δ) = {A ∈ H(X) : ρH(A, A0) < δ}, we get the following according to
the uniform semicontinuity of f

∀x ∈ A, ∀x0 ∈ A0 : d(x, x0) < δ ⇒ |f(x) − f(x0)| < ε/2,
and consequently

| inf(A, f) − inf(A0, f)| < ε/2.
Now choose δε ∈ (0, 1) such that δε

1−δε
< ε/2. For f ∈ B(f0, δε), where B(f0, δε) =

{f ∈ Fuc(X) : e(f, f0) < δε}, we have

e(f, f0) = sup
x∈X

{︂
|f(x)−f0(x)|

1+|f(x)−f0(x)|

}︂
< δε

which means that
f(x) − f0(x) < δε

1−δε
< ε/2, ∀x ∈ A0,

then
| inf(A0, f) − inf(A0, f0)| < ε/2.

Put together we get
| inf(A, f) − inf(A0, f0)| ≤ | inf(A, f) − inf(A0, f)| + | inf(A0, f) − inf(A0, f0)| <

< ε/2 + ε/2 < ε.
Hence | inf(A, f) − inf(A0, f0)| < ε for ∀(A, f) ∈ B(A0, δε) × B(f0, δε). Therefore
inf(·, ·) is continous at every point in H(X) × Fuc(X).

At last, we present the theorem and its expanded proof regarding the relations
between types of well-posedness, as described in Theorem 2.1,Revalski,Zhivkov [5].

Theorem 1.6.1. , Let (A, f) ∈ H(X) × F(X). Consider the following assertions:

(i) min(A, f) is Hadamard well-posed;

(ii) min(A, f) is strongly well-posed;

(iii) min(A, f) is Levitin-Polyak well-posed;

(iv) min(A, f) is Tikhonov well-posed.

Then the ensuing implications are true, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).
Assuming additional conditions, we obtain the following equalities.
If f is upper semicontinous, then (i) ⇔ (ii).
If X is a normed vector space and f is continous, then (ii) ⇔ (iii).
If f is uniformly continous, then (i) ⇔ (iv).
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Proof.
(i) ⇒ (ii); Assume that min(A, f) is H.w.p. with a unique solution x0 ∈ A. Let
{xn} be a strongly minimizing sequence of min(A, f). We will now construct
a sequence of pairs {(An, fn)} and show that it complies with the definition of
Hadamard well-posedness. Let M ⊆ N be a subset of natural numbers denoted
as M := {n ∈ N : f(xn) ≤ infA f} and a complement set MC = N\M . Then we
construct fn(x) for x ∈ X in the following manner:

∀n ∈ M : fn(x) = f(x),

∀n ∈ MC : fn(x) =

⎧⎪⎪⎨⎪⎪⎩
f(x) − εn, f(x) − f(xn) ≥ εn,

f(xn), |f(x) − f(xn)| < εn,

f(x) + εn, f(x) − f(xn) ≤ −εn,

(1.5)

where εn = f(xn) − infA f .
We can see that for ∀n ∈ MC : f(xn) > infA f , therefore εn > 0. This con-
struction of fn ensures that fn gets closer to f as f(xn) approaches infA f . We
get e(fn, f) = 0 for n ∈ M and e(fn, f) ≤ εn for n ∈ MC . Applying the s.
minimizing property of {xn}, lim sup f(xn) ≤ infA f , we get that fn converges
to f with respect to the e metric in F(X) and since f is bounded from below,
accordingly fn is also bounded from below and so fn ∈ F(X) for all n ∈ N. Let
An ∈ X be defined as An = A ∪ {xn} for all n ∈ N. Then xn ∈ argmin(An, fn),
because fn(x) ≥ fn(xn), ∀x ∈ An. From the minimizing property of {xn} we
use d(xn, A) → 0 and get that An → A in the Hausdorff metric ρH . Therefore
(An, fn) → (A, f) and we get H.w.p of min(A, f) with the unique solution x0, and
thus xn → x0, hence min(A, f) is s.w.p.

(ii) ⇒ (iii); For this proof we can compare strongly and Levitin-Polyak min-
imizing sequences. Assume a sequence {xn} in X and xn → x0, then for said
sequence lim sup f(xn) ≤ infA f is a weaker condition than f(xn) → infA f , where
infA f = f(x0). So if we define Ps ⊂ H(X) × F(X) as a set of all s.w.p. min-
imization problems min(A, f) and likewise PLP for all L.P.w.p. problems, then
PLP ⊂ Ps and as a result s.w.p implies L.P.w.p.

(iii) ⇒ (iv); We can view T.w.p. of min(A, f) as a generalization of L.P.w.p.
considering the behavior of f only for x ∈ A. Assume that min(A, f) is L.P.w.p.,
then every L.P. minimizing sequence converges to a unique solution x0 ∈ A. Let
{xn} ∈ A be L.P. minimizing for min(A, f), then for all n ∈ N, we get d(xn, A) = 0
and f(xn) → infA f which means that {xn} is also T. minimizing for min(A, f)
and converges to x0, therefore min(A, f) is T.w.p. and (iii) ⇒ (iv).

(ii) ⇒ (i); Suppose min(A, f) is s.w.p. with a unique solution x0 ∈ A. Let
{xn} be a sequence in X, An ∈ H(X) and fn ∈ F(X) such that (An, fn) → (A, f)
and xn ∈ argmin(An, fn) for all n ∈ N. Let f be u.s.c. and ε > 0, then there
exists sufficiently large n0 ∈ N such that

fn(xn) = infAn fn ≤ infA f + ε/2, ∀n ≥ n0,
which we get from inf(·, ·) being u.s.c. according to Lemma 1.6.1. by the alternate
definition of u.s.c, which yields that for all (An, fn) such that

20



(An, fn) → (A, f), then lim sup
n→∞

inf(An, fn) ≤ inf(A, f).

Since (An, fn) → (A, f) means fn → f with respect to the e metric in F(X),
consequently we get

f(xn) ≤ fn(xn) + ε/2 ≤ infA f + ε, ∀n ≥ n0.
From (An, fn) → (A, f) we get that An → A in ρH metric, therefore d(xn, A) → 0.
As a result {xn} is a strongly minimizing sequence for min(A, f), which gives us
xn → x0 and that means min(A, f) is also H.w.p. with the unique solution x0.

(iii) ⇒ (ii); Let min(A, f) be L.P.w.p with a unique solution x0 ∈ A. As-
sume X is a normed vector space and f is continous. Let {xn} be a strongly
minimizing sequence for min(A, f), then we get

d(xn, A) → 0 and lim sup f(xn) ≤ infA f ,
where d(xn, A) = inf{||xn−y|| : y ∈ A}, because X is a normed vector space. Since
d(xn, A) → 0, then there exists a sequence {yn} in A such that ||xn − yn|| → 0.
For all n ∈ N we have f(yn) ≥ infA f and without loss of generality assume that
f(xn) → λ and f(yn) → µ, then we get

λ ≤ infA f ≤ µ.
Since f is bounded from below and continous, hence the interval [λ, µ] contains
values of f . Now according to the Intermediate value theorem for continous
functions, there exists a sequence {zn} in X for any ε > 0 such that ||zn − yn|| ≤
||xn − yn|| and |f(zn) − infA f | < ε as n → ∞, hence

f(zn) → infA f, ε → 0.
Therefore {zn} is L.P. minimizing, which means zn → x0, because min(A, f) is
L.P.w.p. as assumed. Now we show that zn → x0 implies xn → x0,

||xn − zn|| ≤ ||xn − yn|| + ||yn − zn|| ≤ 2||xn − yn|| → 0.
Consequently every strong minimizing sequence {xn} converges to the unique
solution x0 ∈ A, thereby min(A, f) is s.w.p.

(iv) ⇒ (i); Assume that a minimization problem min(A, f) is T.w.p. with
a unique solution x0 ∈ A and f is uniformly continous. Let {xn} be a se-
quence in X, An ∈ H(X) and fn ∈ F(X) such that (An, fn) → (A, f), where
xn ∈ argmin(An, fn) for all n ∈ N. Then according to Lemma 1.6.2 the inf(·, ·)
function is continous for f uniformly continous, which gives

(An, fn) → (A, f) ⇒ infAn fn → infA f .
Since xn ∈ argmin(An, fn), then fn(xn) = infAn fn and f(x0) = infA f , because
min(A, f) is T.w.p. with the unique solution x0. Now using that fn → f we get

lim
n→∞

f(xn) = lim
n→∞

fn(xn) = lim
n→∞

infAn fn = infA f = f(x0),

therefore f(xn) → f(x0), and thus {xn} is T. minimizing sequence for min(A, f),
which yields xn → x0. As a result min(A, f) is H.w.p.

This concludes the proof of all implications in Theorem 1.6.1.
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2 General well-posedness
2.1 Characterization of general well-posedness

In the previous chapter, we introduced three key conditions for well-posedness
and the uniqueness of the optimal solution was one of them. Yet, in some contexts,
this assumption can be too restrictive or even unnecessary. Therefore, we now
relax this requirement and extend the concept of well-posedness to minimization
problems that may not have a unique solution, introducing the notion of general
well-posedness. Recall that the previously defined types of well-posedness all
required every minimizing sequence of approximate solutions to converge to the
optimal solution. With the uniqueness requirement omitted, it is now sufficient
for each minimizing sequence to have a subsequence that converges to one of the
optimal solutions. Here, we will define the general versions of the four previously
introduced types of well-posedness, incorporating these relaxed requirements.

Consider X a metric space and f ∈ F(X) unless mentioned otherwise. We
will start with the definition of the generalized Tikhonov well-posedness for an
unconstrained minimization problem min(X, f).
Definition 2.1.1. A minimization problem min(X, f) is generalized Tikhonov
well-posed (briefly g.T.w.p.) if all following conditions hold:

(i) argmin (X, f) ̸= ∅;

(ii) every minimizing sequence of min(X, f) has a subsequence converging to
x0 ∈ argmin(X, f).

One of the changes in approach is that, before, we focused on whether
argmin(X, f) was a singleton for the problem min(X, f). In our new setting,
we will usually be interested in the compactness of argmin(X, f). From the
Definition 2.0.1., we can see that if min(X, f) is g.T.w.p., then argmin(X, f) is
compact, since it contains the limits of sequences in X.
Definition 2.1.2. A subset A ⊂ X is compact if for every collection C of open
subsets of X such that

A ⊆ ⋃︁
S∈C

S,

there exists a finite subcollection D ⊆ C such that
A ⊆ ⋃︁

S∈D
S.

Another formulation holds in metric spaces, which might fit our context better.
The subset A ⊂ X is compact if every infinite subset of A has a limit point in A.

Next is a simple example showing the difference between T.w.p. and g.T.w.p.
inspired by Examples 34, Dontchev, Zolezzi [3].
Example 2.1.1. Let X = R and f(x) = |x| − a for a ∈ R+, then we can see
that infX f = −a attained only for x = 0, therefore we have a unique solution
x0 = 0 for the minimization problem min(X, f). Let {xn} be any T. minimizing
sequence, then |xn| − a → −a and hence xn → 0 = x0. We get that min(X, f) is
T.w.p.
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Now consider the modification to the problem, let f(x) = ||x| − a|. In this case
infX f = 0 for x = a and x = −a, therefore argmin(X, f) = {−a, a}, which is not
a singleton, hence min(X, f) cannot be T.w.p. But let {xn} be any T. minimizing
sequence, then ||xn| − a| → 0 and so |xn| → a. We end up with two cases, either
xn → a or xn → −a. Without loss of generality consider the first case xn → a,
then we can take a subsequence {xk}, where xk > 0, ∀k and we get that xk → a
since a ∈ R+. As a result the modified problem min(X, f) is generalized T.w.p.
while not being T.w.p.

We now introduce the concept of Furi-Vignoli criterion for generalized Tikhonov
well-posedness.

Theorem 2.1.1. Let X be a complete metric space and f ∈ F(X) be lower
semicontinous, then the following assertions are equivalent:

(i) min(X, f) is Tikhonov well-posed in the generalized sense;

(ii) argmin(X, f) is compact and

∀ε > 0, ∃ a > infX f : fa ⊂ B [argmin(X, f), ε],

where B [argmin(X, f), ε] = {A ∈ X : ρH(A, argmin(X, f)) ≤ ε}.

Proof. Refer to Proposition 10.1.7, Lucchetti [2]

For constrained problems min(A, f), where A ⊂ X, we get that the generalized
versions of Levitin-Polyak and strong well-posedness follow the same principle as
g.T.w.p. in regard to the relaxation of the uniqueness requirement.

Definition 2.1.3. A minimization problem min(A, f) is generalized Levitin-Polyak
well-posed (briefly g.L.P.w.p.) if all following conditions hold:

(i) argmin (A, f) ̸= ∅;

(ii) every Levitin-Polyak minimizing sequence of min(A, f) has a subsequence
converging to x0 ∈ argmin(A, f).

Definition 2.1.4. A minimization problem min(A, f) is generalized strongly
well-posed (briefly g.s.w.p.) if all following conditions hold:

(i) argmin (A, f) ̸= ∅;

(ii) every strongly minimizing sequence of min(A, f) has a subsequence converg-
ing to x0 ∈ argmin(A, f).

Eeach type of mentioned well-posedness can charactarized according to the
concept of the Furi-Vignoli criterion, but in the case of general well-posedness,
it is slightly more complex. Since the characterization of s.w.p. in the previous
chapter was omitted, we will now mention it here for g.s.w.p. as in Theorem 4.1,
Revalski, Zhivkov [5]. For that we will need to define the Kuratowski measure of
noncompactness.
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Definition 2.1.5. Let X be a metric space and Cd a collection of subsets in
X such that for every S ∈ Cd : diam S ≤ d, then the Kuratowski measure of
noncompactness for A ⊂ X is defined as

α(A) = inf
{︄

d > 0 : Cd is finite and A ⊆ ⋃︁
S∈Cd

S

}︄
.

Theorem 2.1.2. Let ∅ ≠ A ⊂ X, f ∈ F(X) and La be a generalized level set for
A, then the following assertions hold:

(i) If min(A, f) is g.s.w.p., then α(La) → 0 as a → 0;

(ii) If X is a complete, A ∈ H(X), f is l.s.c. and α(La) → 0 as a → 0,
then min(A, f) is g.s.w.p.

Proof. Refer to Theorem 4.1, Revalski, Zhivkov [5]

In Theorem 4.3, Revalski, Zhivkov [5] it is shown that we can obtain equiva-
lence between g.L.P.w.p. and g.s.w.p. Let f ∈ F(X) be continous and for every
two sequences {xn}, {yn} in X such that d(xn, yn) → 0 and f(xn) → λ, f(yn) → µ,
where λ, µ ∈ R. Additionaly for every p ∈ (λ, µ), there exists a sequence {zn} in X
such that d(xn, zn) → 0 and p is a cluster point of {f(zn)}, which means that for
every ε > 0 there exists an infinite subsequence {znk

} such that |f(znk
) − p| < ε.

If the aforementioned properties are satisfied, then for every nonempty A ⊂ X
the minimization problem min(A, f) is g.L.P.w.p. if and only if it is g.s.w.p.

Lastly, from Revalski, Zhivkov [5], we present the notion of generalized Hadamard
well-posedness and the generalized version of Theorem 1.6.1.

Definition 2.1.6. Let A ∈ H(X) and f ∈ F(X). We define the set of solutions
argmin as a multivalued mapping argmin : H(X) × F(X) → X. A minimization
problem min(A, f) is generalized Hadamard well-posed (briefly g.H.w.p.) if all
following conditions hold:

(i) argmin is upper semicontinous;

(ii) argmin(A, f) ̸= ∅ and is a compact subset of X.

Theorem 2.1.3. Let (A, f) ∈ H(X) × F(X). Consider the following assertions:

(i) min(A, f) is g.H.w.p.;

(ii) min(A, f) is g.s.w.p.;

(iii) min(A, f) is g.L.P.w.p.;

(iv) min(A, f) is g.T.w.p.

Then the ensuing implications are true, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).
Assuming additional conditions, we obtain the following equalities.
If f is upper semicontinous, then (i) ⇔ (ii).
If f is uniformly continous, then (i) ⇔ (iv).

Proof. Refer to Theorem 4.2, Revalski, Zhivkov [5]
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3 Numeric example
3.1 Two-asset minimum-variance portfolio

Consider the problem of minimizing the variance of a two-asset portfolio. Let
X, Y ∈ Rn be the performance data of the two assets respectively over some
time period n ∈ N. For example consider the yearly performance of two stock
options over 10 year period. We seek to find an optimal solution of sharing our
wealth between the two assets such that the volatility of our investment is mini-
mal. As a main result, we will prove that said problem is well-posed in every sense.

To begin we denote the fundamental characteristics of the data.
Expected return of each asset:

RX = Xn = 1
n

n∑︂
i=1

Xi, RY = Y n = 1
n

n∑︂
i=1

Yi

Sample variance of each asset:

σ2
X = 1

n − 1

n∑︂
i=1

(︂
Xi − Xn

)︂2
, σ2

Y = 1
n − 1

n∑︂
i=1

(︂
Yi − Y n

)︂2

Sample covariance of the two assets:

σXY = 1
n − 1

[︄
n∑︂

i=1

(︂
Xi − Xn

)︂ (︂
Yi − Y n

)︂]︄

Let ωX , ωY ∈ [−1, 1] be the portfolio weights for each asset respectively. Positive
values denote long positions and negative values denote short positions. We
assume that all wealth is invested, therefore ωX + ωY = 1. For given weights we
can define the expected portfolio return as such:

Rp = ωX · RX + ωY · RY (3.1)

The following equation denotes the variance of the portfolio:

σ2
p = ω2

X · σ2
X + ω2

Y · σ2
Y + 2 · ωX · ωY · σXY

Applying ωX + ωY = 1, we get a more suitable formulation of the equation:

σ2
p = ω2

X(σ2
X + σ2

Y − 2σXY ) + ωX(−2σ2
Y + 2σXY ) + σ2

Y (3.2)

Theorem 3.1.1. Let A = [−1, 1], ωX ∈ A and σ2
p be a function as in (3.6) deter-

mined by the data X, Y ∈ Rn, then the two-asset portfolio variance minimization
problem min(A, σ2

p),

min
ωX

σ2
p, (3.3)

is well-posed in every sense mentioned in Theorem 1.6.1.
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Proof. First we need to show that a solution exists and is unique for

σ2
p = ω2

X(σ2
X + σ2

Y − 2σXY ) + ωX(−2σ2
Y + 2σXY ) + σ2

Y .

We will search for a global minimum point in A using the first derivative of σ2
p,

∂σ2
p

∂ωX

= 2ωX(σ2
X + σ2

Y − 2σXY ) − 2σ2
Y + 2σXY = 0.

As a result we get the only extreme point,

ωX = σ2
Y − σXY

σ2
X + σ2

Y − 2σXY

. (3.4)

Continuing with the second derivative to determine if ωX is a minimum point of
σ2

p,

∂2σ2
p

∂ω2
X

= 2(σ2
X + σ2

Y − 2σXY ),

∂2σ2
p

∂ω2
X

= 2
n − 1

[︄
n∑︂

i=1

(︂
Xi − Xn

)︂2
− 2

n∑︂
i=1

(︂
Xi − Xn

)︂ (︂
Yi − Y n

)︂
+

n∑︂
i=1

(︂
Yi − Y n

)︂2
]︄

,

n∑︂
i=1

(︂
(Xi + Yi) − (Xn + Y n)

)︂2
> 0 ⇒

∂2σ2
p

∂ω2
X

> 0. (3.5)

The second derivative is positive for all ωX ∈ A, hence the function σ2
p is convex

in A and so ωX is a global minimum point of σ2
p. Furthermore the inequality in

(3.5) gives us that the denominator in (3.4) is never zero, therefore the solution
always exists and, as mentioned before, is unique. Since σ2

p attains its minimum
value in A, then σ2

p is bounded from below and proper, hence σ2
p ∈ F(A). Let

{ωXn} be a T. minimizing sequence in A, then through the series of the following
operations,

σ2
p(ωXn) → σ2

p(ωX) ⇔ σ2
p(ωXn) − σ2

p(ωX) → 0,

(ω2
Xn

− ω2
X)(σ2

X + σ2
Y − 2σXY ) + (ωXn − ωX)(−2σ2

Y + 2σXY ) → 0,

ω2
Xn

− ω2
X

ωXn − ωX

→ 2σ2
Y − 2σXY

σ2
X + σ2

Y − 2σXY

= 2ωX ,

ωXn + ωX → 2ωX ⇔ ωXn → ωX ,

we obtain ωXn → ωX , which yields that min(A, σ2
p) is T.w.p.
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To establish other types of well-posedness, we must show that the function σ2
p

is uniformly continuous on A. Let a, b ∈ [−1, 1], then −2 ≤ a + b ≤ 2 and we get

|σ2
p(a) − σ2

p(b)| ≤ |a − b|
[︂
|(a + b)(σ2

X + σ2
Y − 2σXY )| + | − 2σ2

Y + 2σXY |
]︂

≤

≤
[︂
|2(σ2

X + σ2
Y − 2σXY )| + | − 2σ2

Y + 2σXY |
]︂

· |a − b|.

Therefore σ2
p is Lipschitz continous on A, which implies that σ2

p is uniformly
continous on A. We can clearly see that A is a closed set, consequently we can
use Theorem 1.6.1, specifically that T.w.p. implies H.w.p., which in turn implies
both L.P.w.p. and s.w.p. Altogether we have proved that the two-asset portfolio
variance minimization problem min(A, σ2

p) is well-posed in every sense.

We will now examine the continous dependancy of the expected portfolio
return function Rp on the data with a simple example. Let εX , εY ∈ R be a some
kind of fixed errors in the data X, Y such that Xε

i = Xi + εX and Y ε
i = Yi + εY

for i ∈ {1, . . . , n}, then

Rε
X = X

ε

n = 1
n

n∑︂
i=1

(Xi + εX) = RX + εX , Rε
Y = Y

ε

n = 1
n

n∑︂
i=1

(Yi + εY ) = RY + εY

σ2
Xε = 1

n − 1

n∑︂
i=1

(︂
Xε

i − X
ε
n

)︂2
= 1

n − 1

n∑︂
i=1

(︂
Xi + εX − Xn − εX

)︂2
= σ2

X .

We can see that the errors in this specific case do not affect the variance of X and
the same goes for the variance of Y and their covariance, hence the solution ωX is
also unaffected. Thus we switch our focus to Rp, where the modified version is

Rε
p = ωX · Rε

X + ωY · Rε
Y = ωX(RX + εX) + ωY (RY + εY ) = Rp + ωXεX + ωY εY .

Using the substitution ωX + ωY = 1, we get

Rε
p = Rp + ωX(εX − εY ) + εX . (3.6)

We can see a linear dependancy of the solution on the data, thefore such problem
for Rp would be considered well-posed.

To illustrate with a practical example, let us consider a two-asset portfolio compris-
ing Apple Inc. (AAPL) and ČEZ Group (CEZ) stocks. Assume we are provided
with the historical data for these two stocks over the past five years. The data
includes annualized expected returns, volatility and covariance over the 5Y period:

RA = 0.330, σ2
A = 0.0831, RC = 0.173, σ2

C = 0.0762, σAC = 0.00185

Plugging this data into min(A, σ2
p) results in the following portfolio:

ωA = 0.0643, ωC = 0.9357, σ2
p = 0.0051, Rp = 0.1831.
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4 Ill-posed problems
4.1 Ill-posed problems

Mathematical problems that fail to satisfy the criteria for well-posedness are
referred to as ill-posed problems. These problems arise in various areas of math-
ematics. For instance, we previously encountered the Cauchy problem for the
Laplace equation in Example 1.5.2, where small changes in the input data led
to significant discrepancies in the solutions. This sensitivity makes the problem
ill-posed in the Hadamard sense. Ill-posedness frequently appears in systems
of linear equations, integral equations, partial differential equations, and many
other mathematical frameworks. In physics, the study of inverse problems is
crucial because such problems are often ill-posed. An inverse problem involves
reconstructing the input data or causes based on observed outcomes. Examples
include image reconstruction, the backward heat equation, audio signal restoration,
for more see Chapter 5, Sizikov [7] and Chapter 3, Kabanikhin [6].

To illustrate the concept of an ill-posed problem, we present a simple exam-
ple inspired by p.4, Sizikov, [7]. Consider the task of finding the intersection point
of two “similar” lines in R2. Imagine a practical scenario where we attempt to
draw two lines as close to each other as possible without making them identical
or parallel. To locate their intersection, we measure the endpoints of each line
and plot them in R2. Additionaly assume there exists a coefficient error ε, which
corresponds to the error in our measuring.

Example 4.1.1. Consider a system of linear equations for x, y ∈ R given by data
parameter a ∈ R and coefficient error ε ∈ R :⎧⎨⎩(a + 0.1)x + y = (a + 0.1),

(a + ε)x + y = a.
(4.1)

We can solve using Cramer’s rule for determinants of coefficient matrices:

det A =
⃓⃓⃓⃓
⃓a + 0.1 1

a + ε 1

⃓⃓⃓⃓
⃓ , det A1 =

⃓⃓⃓⃓
⃓a + 0.1 1

a 1

⃓⃓⃓⃓
⃓ , det A2 =

⃓⃓⃓⃓
⃓a + 0.1 a + 0.1

a + ε a

⃓⃓⃓⃓
⃓

and we get the solution

x = det A1

det A
= 1

1 − 10ε
, y = det A2

det A
= −(a + 0.1)ε

0.1 − ε
.
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We observe that the solution for the x-coordinate is independent of the pa-
rameter a. Let us now examine how the coefficient error affects the solution.

if |ε| ≤ 0.001, then 0.99 ≤ x ≤ 1.01,
if |ε| ≤ 0.01, then 0.909 ≤ x ≤ 1.11,

if |ε| ≤ 0.1, then 0.5 ≤ x ≤ ∞.

It is evident that the solution increases rapidly, even with only minor changes in
the coefficient error. Therefore the problem (3.1) is ill-posed in the Hadamard
sense. The key takeaway is that the ill-posedness of solving systems of linear
equations is closely tied to the determinant of the coefficient matrix. The smaller
the determinant, the more ill-posed the problem becomes.

4.2 Tikhonov regularization method
Various methods can be employed to approximate a solution of an ill-posed

problem. Tikhonov regularization is one such method, which further develops the
well-known Gauss least-squares method. Tikhonov regularization gives the best
approximate solution for the problem introduced in the following definition.

Definition 4.2.1. Let X, F be metric spaces and A : X → F be a linear operator
from X into F . Consider the problem to find the solution x ∈ X for given A and
f ∈ F such that

Ax = f, x ∈ X, f ∈ F. (4.2)
Let Ã and f̃ ∈ F be known approximations of said problem and assume the error
ε ≥ 0 in setting A and likewise δ > 0 for f such that

||f̃ − f || ≤ δ,

||Ã − A|| ≤ ε.

Then we define the approximate solution x̃ ∈ X such that

Ãx̃ = f̃ , x̃ ∈ X, f̃ ∈ F. (4.3)

In the case of Example 3.1.1. the error in measuring ε corresponds to the error
ε in setting the elements of the coefficient matrix A and δ would be an error in
setting the right-hand side vector. For the problems defined by the Definition
3.2.1. a new notion of well-posedness is given.

Definition 4.2.2. Let X, F be metric spaces and A : X → F be a linear operator
from X into F . The problem (3.4) is called conditionally well-posed if the following
conditions hold:

(i) the solution x exists and belongs to a subset M ⊂ X;

(ii) A is invertible on the set M ;

(iii) the inverse operator A−1 is continous.

If any of the conditions are not satisfied, then the problem is called essentialy
ill-posed.
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The known method to minimize the discrepancy ||Ax − f || is the Gauss Least
Squares Method, where we solve the following

min
x

||Ax − f ||2.

However, this approach often results in highly unstable solutions. To address this,
Tikhonov introduced a generalized version incorporating a regularization parame-
ter α that acts a Langrange multiplier. This method uses the same discrepancy
minimization principle as the Gauss least-squares method, incorporating a regu-
larization parameter to find a pseudo-solution. It then utilizes the Moore-Penrose
pseudo-inverse matrix to obtain the desired solution.

Definition 4.2.3. A square matrix A ∈ Cn×n is called Hermitian if and only if

A = A∗,

where A∗ = AT .

Definition 4.2.4. The Moore-Penrose pseudo-inverse matrix of a matrix A ∈
Cm×n is a matrix A† ∈ Cm×n that satisfies the following conditions:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

Definition 4.2.5. Let X, F be metric spaces and A : X → F be a linear operator
from X into F . Consider the regularization parameter α > 0, then the following
version of the problem is Tikhonov regularized problem:

min
x

||Ax − f ||2 + α||x||2.

Which leads to the Euler-Tikhonov equation

(αI + A∗A)xα = A∗f,

with the ensuing solution,

xα = (αI + A∗A)−1A∗f,

where A∗ is the Hermitian matrix of A and I is the unit operator, i.e., Ix = x.

We can see that if α = 0, then the method is equal to the Gauss least-squares
method. If δ, ε → 0, then α → 0 and we get a solution using the pseudo-inverse
matrix.

xα = lim
α→0

(αI + A∗A)−1A∗f ≡ A†f.

For further analysis of the method, see Subchapter 4.7, Sizikov [7]. The prop-
erties of α and its effect on the regularization are explored in Definition 4.23,
Kabanikhin [6]. Examples of Tikhonov regularization method can be found in
p.160-176, Sizikov [7].
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5 Applied well-posedness
5.1 Physics and Engineering

In the last segment, we will highlight the practical applications of well-
posedness. Each paragraph draws information from one or two specific research
papers in the respective field, complemented by general knowledge.

Heat transfer The heat equation problem is similar to the Cauchy problem
for Laplace equation as in Example 1.5.2., as it also involves a partial differential
equation with boundary conditions. This problem consists of determining the
temperature of an object at a given time based on the initial heat distribution. It
is proved that the heat problem is ill-posed in reversed time, but well-posedness
of the problem in forward time is of great interest. The heat equation serves as
a mathematical model for heat diffusion, which describes how heat propagates
through a material over time. The practical applications range from physical
modeling to climate science. For example, in engineering, the heat equation is used
in optimizing thermal systems in electronics. Here, well-posedness guarantees that
an optimal solution exists and small measurement errors in initial temperatures
do not result in largely inaccurate predictions.

Acoustics Acoustic wave equations are partial differential equations, which
determine how pressure disturbances from acoustic waves propagate through a
material. In practice, these equations are often solved using least-squares finite
element methods. Applications of acoustic wave equations include optimizing noise-
canceling systems, improving hearing aids, designing underwater sonar systems,
advancing ultrasound imaging, and even analyzing seismic activity. Well-posedness
is crucial, because it guarantees stability in the results.

Electromagnetic fields Maxwell’s equations describe the propagation of elec-
tromagnetic waves in a polarizable medium. Predicting how electromagnetic fields
interact is important in numerous fields. This enables the development of wireless
networks, circuit designs in electronic devices, MRI scans, etc. Well-posedness
provides the existence of the solution and uniqueness additionaly makes it possible
to choose different appropriate methods to solve the corresponding problem. Pre-
cision in these systems is essential, therefore the stability given by well-posedness
is indispensable.

Fluid dynamics In continuum mechanics, the Navier–Stokes equations are par-
tial differential equations derived from the law of conservation of mass, describing
the motion of viscous fluid substances. These equations are crucial in the design of
power stations, the study of blood flow, and the design of aircrafts, etc. Again the
stability provided by well-posedness is really important, as these problems have a
significant impact on the functioning of society. The existence of solutions for the
three-dimensional Navier–Stokes equations remains unproven. This concept is so
important in physics that it has been deemed one of the seven Millennium Prize
problems.
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5.2 Finance
Forecasting option prices One of the most important concepts in modern
financial theory is the Black-Scholes model. This model is used to try forecasting
option prices. The Black-Scholes equation is solved in backward time, where
current value of a financial option, interest rate, and volatility are considered. We
solve for the strike price of the underlying asset and time. Proposed mathematical
models using the Black-Scholes equation in forward time were shown to be accurate
for 1-2 trading days ahead. In practice, the Black-Scholes models are far too
volatile for longer time periods. It is proved that Black-Scholes model in forward
time is ill-posed, therefore regularization methods are used to approximate the
solution, namely quasi-reversibility method.

5.3 Machine learning
Learning Problem Machine learning is a field in artificial intelligence that
consists of training machines to perform specific tasks without previous explicit
programming. Learning problem is defined by the problem goal, data processing
algorithm, and appropriate loss function, which measures the quality of learned
data. Key characteristics of successful learning problem include a suitable model,
relevant metrics, and enough quality input data. Well-posedness ensures that the
quality of input data is passed on to the solution data and we avoid inefficient
learning process.

5.4 Medicine
We have mentioned some applications of the previously introduced concepts

in medicine, including the use of electromagnetic waves in MRI scans, acoustic
waves to improve hearing aids, and fluid dynamics to study blood flow. It makes
sense that well-posedness plays a big role in medicine, since any inaccuracies may
lead to fatal mistakes.

Epidemiology Mathematical models in epidemiology are used to predict the
spread of transmissive diseases. The model uses the non linear transport equation
to simulate the spread. Determining parameters for this problem are incubation
period and the transmission rate for susceptible individuals. The movement of
infected individuals is simulated by space diffusion. Well-posedness provides
reliable predictions for the spreading rate of the disease.
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Conclusion
This thesis unified different notions of well-posed optimization problems from

various sources. Our focus was on minimization problems in metric spaces. We
introduced the concept of minimizing sequences and characterized each notion of
well-posedness accordingly. The concept of Furi-Vignoli criterion was applied to
most of the notions, therefore we have shown that level sets and minimization
problems are closely related. Proving Lemma 1.6.1. and Lemma 1.6.2. provided
additional properties for the inf(·, ·) function, which led to the main result of this
thesis. By completely proving Theorem 1.6.1., we have shown that the notions
of well-posedness are equivalent in certain metric spaces. We hinted at similar
principles in general well-posedness. The numerical example indicated the con-
nection between well-posedness and financial analysis. In the last two chapters,
we presented a summarized research regarding the nuances and applications of
well-posedness.

For future consideration, I would be interested in a different approach to proof
of Theorem 1.6.1. using the concept of Furi-Vignoli criterion, since all notions of
well-posedness can be similarly characterized by level sets. The concepts of well-
posed optimization problems span across all fields of science and are extensively
researched as shown in the last chapter and I have barely scratched the surface.
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