
BACHELOR THESIS

Aleš Kakos

A Tool for Graph Visualisation of Social
Networks

Department of Software Engineering

Supervisor of the bachelor thesis: Doc. RNDr. Irena Holubová, Ph.D.
Study programme: Informatics

Prague 2025

I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank my supervisor, Doc. RNDr. Irena Holubová, Ph.D. for her
guidance and support as well as the people making up the Software Engineering
department at Charles University for giving me the opportunity to study the
ever-so-interesting field of computer magic.

I would also like to thank my family for supporting me on this path of life.
Specical thanks belongs to my mother who didn’t allow me to give up when things
got tough and to my granfather to whom I promised the title of Bachelor bearing
his surname.

Last but not least I want to thank my girlfriend and future wife for her patience
and understanding during the hard times of my long overdue studies.

Title: A Tool for Graph Visualisation of Social Networks

Author: Aleš Kakos

Department: Department of Software Engineering

Supervisor: Doc. RNDr. Irena Holubová, Ph.D., Department of Software Engi-
neering

Abstract: This work is about the design and implementation of a website called
Aphantasia - a social network for graph enthusiasts which allows users to create
posts, link them to others, and view them as a part of a shared, ever-expanding
interactive graph. This strategy presents an alternative to user-post interaction
on social networks compared to the mainstream infinite scroll approach. We
developed Aphantasia into a fully functional prototype and compared it to other
graph-rendering software. Particular attention was paid to handling large numbers
of posts without sacrificing the graph view’s performance, readability, and user
experience.

Keywords: graph data, visualization, Big Data

Název práce: Nástroj pro grafickou vizualizaci sociálních sítí

Autor: Aleš Kakos

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: Doc. RNDr. Irena Holubová, Ph.D., Katedra soft-
warového inženýrství

Abstrakt: Tato práce se zabývá návrhem a implementací webové stránky naz-
vané Afantázie – sociální sítě pro grafové nadšence, která umožňuje uživatelům
vytvářet příspěvky, propojovat je s ostatními a zobrazit je jako rostoucí sdílený
interaktivní graf. Tento přístup představuje alternativu k interakci uživatelů s
příspěvky na sociálních sítích v porovnání s přístupem nekonečného posouvání.
Afantázii jsme vyvinuli do stavu plně funkčního prototypu a porovnali ji s jiným
softwarem pro vykreslování grafů. Zvláštní pozornost jsme věnovali zobrazení
velkého množství příspěvků, aniž bychom omezili výkon, čitelnost a uživatelskou
přívětivost grafového zobrazení.

Klíčová slova: grafová data, vizualizace, velká data

Contents

Introduction 7

1 Graph Layout Algorithms 9
1.1 Circular Layout . 9
1.2 Hierarchical Layout . 9
1.3 Radial Layout . 10
1.4 Force-Directed Layout . 11

2 Related Software 13
2.1 Obsidian . 13
2.2 Gephi . 14
2.3 Cytoscape.js . 15
2.4 Final comparison . 16

3 Design Analysis 22
3.1 Intended Use . 22
3.2 Functional Requirements . 22

3.2.1 Graph View . 22
3.2.2 User Management . 23
3.2.3 Thought Creation . 23
3.2.4 Routing and Pages . 24

3.3 Non-functional Requirements . 24
3.3.1 Graph View UX . 24
3.3.2 Extendability . 24

4 Implementation 25
4.1 Preparation . 25

4.1.1 Used Technologies and Libraries 25
4.1.2 Plan of Execution . 26

4.2 Basic Web Application . 27
4.2.1 Database Schema . 27
4.2.2 Backend Architecture . 28
4.2.3 Initial Frontend Implementation 30
4.2.4 Hosting and Server Management 31

4.3 Small Graph Vizualization . 32
4.3.1 FDL Implementation . 33
4.3.2 Parametrization . 33

4.4 Big Graph Visualization . 34
4.4.1 Frontend Architecture . 35

4.5 Final List of Features . 36
4.5.1 AuthX/Y . 37
4.5.2 Pages . 37
4.5.3 Localization . 38
4.5.4 Custom Graph Rendering Engine 38

5

5 Testing 50
5.1 Graph View Performance . 50

5.1.1 Limits of the Graph View 50
5.2 User Feedback . 50
5.3 Aphantasia Versus Related Software 52

6 Documentation 53
6.1 User Documentation . 53

6.1.1 Registering and Logging in 53
6.1.2 Opening a Thought . 53
6.1.3 Graph View . 54
6.1.4 Creating a New Thought 55
6.1.5 Settings . 55

6.2 Installation Guide . 56
6.2.1 Running Aphantasia Locally 56
6.2.2 Deploying Aphantasia . 59

6.3 Administrator Documentation . 61
6.3.1 Backend . 61
6.3.2 Frontend . 61

7 Conclusion 63

Glossary 65

References 66

List of Figures 67

List of Tables 68

6

Introduction
Motivation

In recent years, it has been hard to escape the infinite feed. It is a design
pattern where the user is presented with a list of posts that can be scrolled through
seemingly indefinitely. Infinite feed is the primary way of presenting posts used
by, for example TikTok, Instagram, Facebook, Twitter, Reddit, and, to a lesser
extent, YouTube. This approach is easy to implement, intuitive, and requires
minimal user interaction - A swipe or scroll is all the input is needed.

While the infinite feed is not necessarily bad or insufficient, it does have some
drawbacks. Namely:

• Echo chambers - When the recommendation system behind the infinite
feed also includes or even centers around user preferences as a factor, the
ideological or political similarity of the content consumed can narrow the
user’s worldview. This effect is often called an ”echo chamber” [1].

• Addictive design - The infinite feed might encourage mindless, addictive
consumption of content with each swipe akin to the pulling of a slot machine
lever. The term ”doomscrolling” [2] has been coined to describe this behavior.

• Lack of autonomy - The user does not decide on the next post in the
feed. Instead, it is decided by the recommendation algorithm (colloquially
referred to as ”The algorithm” [3]), which can be opaque and hard for
content creators and consumers to understand.

In this work, we will explore a graph-based approach as an alternative to the
infinite feed pattern.

Aphantasia
Aphantasia (sometimes also referred to as Afantázie) is the implementation

part and the final product of this thesis, currently available at:

• https://aphantasia.io internationally

• https://afantazie.cz for Czech user base

It is a social network concept based on graph visualization of its contents.
It lets users create posts called thoughts, interlink them, and explore them as
animated, interactive, and colorful graph.

In the following text, we will go through the design and implementation of
Aphantasia and explore whether it can mitigate or at least alleviate the drawbacks
of the infinite feed pattern.

• We will start by introducing the concept of Graph Layout Algorithms in
Chapter 1.

7

https://aphantasia.io
https://afantazie.cz

• Next, we will compare software products that provide graph visualization
in Chapter 2.

• In Chapter 3, we will look at the analysis, requirements, and use cases of
Aphantasia.

• Then we will implement the software accordingly in Chapter 4.

• Chapter 5 is where we test Aphantasia. We will compare it to the software
from Chapter 2, try its quantitative limits, and evaluate the user experience
when compared to the infinite feed.

• And finally, in Chapter ??, we will provide the User, Developer, and Ad-
ministrator documentation.

8

1 Graph Layout Algorithms
Graph layout algorithms (or GLAs for short) are a class of algorithms used for

computing positions of nodes so that they make a nice-looking or helpful diagram.
These algorithms accept graph-representing data as input and produce positions
of individual nodes as output.

In this work, we are going to assume that GLAs produce 2-dimensional layouts,
but it is worth mentioning that the number of dimensions can be arbitrarily high.

There are many types of GLA, each with its strengths and weaknesses. Let us
look at some of the common ones.

1.1 Circular Layout
Circular layout (Figure 1.1) algorithms arrange nodes in a circle, often empha-

sizing the structure of the graph by placing nodes with similar properties close
together. In a circular layout, nodes can be distributed evenly along the circum-
ference of the circle, or their placement can be weighted by specific properties
(e.g., node degree or importance).

Figure 1.1 Circular layout[4]

1.2 Hierarchical Layout
Hierarchical layout (Figure 1.2)algorithms are designed to emphasize direc-

tional relationships, such as those found in flowcharts, dependency graphs, or

9

organizational charts. These algorithms arrange nodes in layers or levels, with
edges generally flowing in a single direction (e.g., top to bottom or left to right).

This layout can be applied to general graphs but is most effective for directed
acyclic graphs (DAGs) or undirected trees. Note that the structure in Figure 1.3
is not a tree but a general graph.

Figure 1.2 Hierarchical layout[4]

1.3 Radial Layout
Radial layout (Figure 1.3) is a type of hierarchical layout where nodes are

arranged in concentric circles around a central node (root). Its immediate neighbors
are arranged in the first circle. Subsequent layers represent nodes further away.
Radial layout can help highlight relationships between the central node and its
surroundings.

Figure 1.3 shows a tree. In the context of social networks, many of the
contemporary social networks are composed of trees:

• Reddit - The root represents a post, and the rest are its comments

• Twitter - The root is a standalone tweet, and the rest form a series of
replies

• Youtube - The root is a video, and the rest are its comments

As such, if one visualized the content of these social networks, it might look like
a set of radial layouts. We are highlighting this fact because Aphantasia’s content

10

structure is not a tree but a DAG which might have interesting consequences for
navigation, user experience, and usage.

Figure 1.3 Radial layout[4]

1.4 Force-Directed Layout
This type of layout is going to be the focus of this work. All of the layouts

we will present in later chapters were produced by force-directed layout (FDL)
algorithms.

The main idea behind FDL algorithms is very intuitive: Nodes are attracted to
each other when connected by an edge and repelled otherwise. Elegant in concept
and easy to implement, this approach is endlessly customizable.

One particularly useful feature is that FDL algorithms are incremental and
update the layout continuously. This can be utilized to produce visually pleasing
animations of the data and allows for user interaction (e.g., dragging nodes around
or changing parameters). The dragging feature can also be used to aid the
algorithm in achieving a more desired layout during its run.

Thanks to this aspect, a developer implementing an FDL algorithm has the
ability to adjust the strength of the forces, add new ones, or implement entirely new
behaviors and parameters to fit specific use cases - all by watching the animation
run, interacting with it, and inferring what behavior needs to be changed or added.

These positives are, however, balanced by two drawbacks:

11

• high time complexity
The basic version of FDL has a time complexity of O(n2) per step, where
n is the number of nodes in the graph. For stabilization, usually n steps
are considered sufficient, and thus, the time complexity for producing a
stabilized graph is often computed as O(n3).

• sensitive parameterization
As for parameterization, the algorithm is highly dependent on the parameters
set by the user (or developer), some of which can be very sensitive and
radically change the resulting layout with only a small change in value.
This can be a challenge for users unfamiliar with the algorithm or the data
they are working with. Achieving a specific look or quality for the final
graph render often requires a significant amount of time spent tweaking the
parameters.
This fact also means that it is difficult to create a ”one size fits all” FDL
algorithm - the parameters that work well for one dataset might not work
well for another.

12

2 Related Software
There are plenty of programs and libraries for graph visualization with different

purposes. There are D3.js, Neo4j, Graphviz, Tulip, Wolfram Grapher, Pajek, and
many more, just to name a few.

In this chapter, however, we will focus on just three software products, each
with a very different use case and target user base.

• The first one is Obsidian which is primarily a note-taking application but
provides a graph view of the notes as an interesting and easy-to-use feature.

• The second is Gephi, a software focused on in-depth analysis and visualiza-
tion of large graphs.

• And finally there is Cytoscape.js. A JavaScript library for graph visualiza-
tion in the browser.

We chose these in particular because Aphantasia could be viewed as a hybrid
of the trio.

We will look into three aspects of these products:
• Primary use-case and target user base

• User experience

• Ability to visualize large graphs
As the source of data for testing the large-graph visualization capabilities, we

chose the dataset of citations between papers in the field of high-energy physics
[5] (Later refered to as CitHep). It contains 34 546 nodes, 4 215 78 edges, and
temporal data (i.e., dates of publication).

This dataset is suitable for our purposes because:
• It is large enough to test the capabilities of both the mentioned software

and Aphantasia

• It is a real-world dataset with temporal data that is going to play a role in
visualizing the contents of Aphantasia

2.1 Obsidian
Obsidian [6] was a direct inspiration for Aphantasia. It allows users to create,

edit, and, most importantly, interlink markdown file notes in the file system. One
Obsidian project is a system directory called a Vault - a set of markdown notes,
user settings, plugins, and other files. The interlinked notes in a Vault form a
directed graph, which can be visualized with just a click of a button. The graph
is animated and provides the ability to replay the history of the Vault from the
very first note to the current state.

It is apparent from this description that Obsidian is aimed at a general
audience of note-takers with maybe a slight bias towards graph/data visualization
enthusiasts. It is available for all the major operating systems and has a large
community of users and plenty of extensions available through the community
plugins.

13

Obsidian graph view
The graph visualization in obsidian (called graph view) is based on a force-

directed layout algorithm. 1 It is easy to use and provides an appealing visual
representation of the notes. The graph is animated and interactive, meaning the
user can drag nodes around, zoom in and out, and click on nodes to open the
associated note.

It is also customizable to some extent. The nodes’ colors can be set based
on different filters, such as path, tags, or text search. Users can also adjust four
sliders - central force, repel force, link force, and link distance. The graph view is
swift for small graphs, but the program needs to spend some time indexing the
notes for larger graphs. (Though this is a one-time operation, the indexes are
then saved in the Vault).

In Figure 2.1, one can see a typical Obsidian graph view depicting a small
Vault of one of our projects.

In Figure 2.2, we converted a part of the CitHep dataset with only the first
3000 nodes 2 to markdown notes and visualized them in Obsidian. It took our
machine over 10 minutes to index this graph. Once indexed, the application ran
smoothly.

We were unable to visualize the whole dataset without the program crashing
or taking too long to index. However, we found a few examples of larger datasets
rendered in Obsidian online, with one containing 22 000 nodes [7].

Obsidian is not very good at clustering nodes with a high degree of connectivity.
To our knowledge, it also does not support automatic node coloring based on
clusters, modularity, or other data indicators. Color must be user-defined based
on the content and location of the notes. CitHep nodes do not contain content
apart from id and date, so the nodes in Figure 2.2 are left default gray.

2.2 Gephi
Much more specialized than Obsidian, Gephi [8] is an open-source software

focused on visualization and quantitative analysis of large graphs. It provides
several algorithms for graph layout and quantitative analysis of various data and
is extendable through community plugins.

Gephi can compute quantitative characteristics of graph-based data such as
modularity, clustering coefficient, degree distribution, and many more. It can
visualize the working data in the viewport and export visually appealing images
of the visualized graph.

Gephi graph export
In Figure 2.3, one can see, again, the first 3000 nodes of the CitHep dataset

visualized in Gephi. Compared with Obsidian, the Gephi render export provides
more visually identifiable characteristics of the data:

• The layout is more structured, and communities are more visible
1We weren’t able to find any specifics about the algorithm used in Obsidian. However, from

the way its graph view behaves, it is safe to assume a variation of an FDL algorithm was used.
2The first as in the order they are stored in the dataset file.

14

• Colors of the nodes represent their associated modularity class

• Size of the nodes represents the number of citations the associated paper
has

Figure 2.4 is an exported image of the entire CitHep dataset visualized in
Gephi. The process of exporting this image took a few hours. We had to learn to
use the program itself, import the data, tweak the layout using various provided
algorithms (though we primarily relied on ForceAtlas 2), and finally export the
resulting image.

The software crashed a few times during the process, and with the citHep
dataset loaded in memory, it wasn’t always buttery smooth, but it was otherwise
very usable. Considering the amount of data, that is a commendable feat.

Again, one can find even larger datasets visualized using Gephi. One post on
Gephi forum [9] shows an exported image of 212 600 nodes and 4 045 203 edges.

The user experience of Gephi is one of a technical tool - something one has to
learn to use and spend time with to get the most out of it. But the reward is the
ability to visualize and analyze large graphs better than with any other software
we could find.

2.3 Cytoscape.js
Cytoscape.js is a JavaScript library for graph visualization in the browser. Its

homepage starts with a Demos section followed by the headline ’Introduction’ and
almost 8200 lines of text [10]. Among the demos, there are various examples of
usage ranging from simple FDLs to more complex use cases such as an interactive
graph of wine and cheese pairings. [11]

To assess the software, we used two projects - a simple project of our own and
one official template showcasing FDL features of the library.

Firstly, we attempted to create a react + cytroscpe.js project. We initialized
a fresh react ts project using Vite, added the dependency to Cytoscape.js, and,
using the official instructions on the Cytoscape.js homepage, we created a simple
application capable of rendering a graph. See the result in Figure 2.5. There is
nothing particularly noteworthy about this attempt apart from the fact that the
web application uses Cytoscape.js alongside react TypeScript, which seems to be
a valid combination of libraries.

The second project was an attempt to render the CitHep dataset in Cy-
toscape.js. In order to do so, we cloned the GitHub repository of one of the official
examples from the cytoscape.js homepage [12]. The example is called ’Euler’ and
showcases several small demos using a Cytoscape.js proprietary FDL.

The demo called ’Large graph’ showcases a path of 5000 nodes and the result
can be seen in Figure 2.6.

This example is animated, and when the page refreshes, the graph stabilizes
in real-time. We had to increase the simulation time as the default value resulted
in a tangled, unhelpful layout. In this case the animation was realtively smooth
and with the simulation time set to 10 seconds the graph layout worked well.

We modified this project to use, again, the first 3000 nodes from the CitHep
dataset. We tweaked several parameters such as force strength, edge length, and

15

repulsion strength, and in the end, we achieved the layout shown in Figure 2.7.
The performance during the runtime of the FDL data dropped under 10 FPS, but
the application remained usable and stable. The layout we produced was very
similar to the one we made with Obsidian.

We also attempted to render the entire CitHep dataset, but unfortunately, the
application could not handle it and crashed.

While we did not use the full capabilities of the library, the experience with
Cytoscape.js was very positive. The animations are smooth, there are plenty of
parametrization options, and the resulting layout is satisfactory.

2.4 Final comparison
As can be seen in Table 2.1, the three demonstrated software products vary

greatly. The intended use case and target user base are very different, and so is
their large graph rendering capability.

Obsidian is by far the most accessible but offers the least amount of control
over the graph layout.

Gephi is the most powerful but also the most complex and time-consuming
to use.

Cytoscape.js is a good middle ground between the two but only accessible
to developers.

Obsidian Gephi Cytoscape.js
Use-case note-taking data analysis and

visualization
graph visualiza-
tion in browser

Target Userbase general audience researchers, web developers
technical users

User Experience easy to use technical, programmatic,
steep learning
curve

mostly
parametriza-
tion

3 000 nodes slow indexing stable, stable but
handling but smooth after-

wards
smooth visibly lower FPS

34 546 nodes skipped as mostly stable, crashed
handling indexing took too

long
lower FPS while
running FDL

immediately

Table 2.1 Comparison of Obsidian, Gephi, and Cytoscape.js

16

Figure 2.1 A common graph view of a small Vault in Obsidian

Figure 2.2 The first 3000 nodes of the CitHep dataset visualized in Obsidian

17

Figure 2.3 The first 3000 nodes of the CitHep dataset visualized in Gephi

18

Figure 2.4 CitHep dataset visualized in Gephi (34546 nodes)

19

Figure 2.5 A simple application in react + cytoscape rendering a simple graph

Figure 2.6 An official example of large graph rendering in Cytoscape.js (path of 5000
nodes)

20

Figure 2.7 The first 3000 nodes of the CitHep dataset visualized in Cytoscape.js

21

3 Design Analysis
Before implementing Aphantasia, we will introduce its requirements and set

expectations. In short, Aphantasia will be a social network based on an Obsidian-
like graph view.

3.1 Intended Use
The use case of Aphantasia is very similar to other social networks. Users

will be incentivized to create text-based posts called thoughts, link them to other
thoughts, and try to collect replies from other users.

Apart from the graph aspect, Aphantasia will be novel in the structure of its
content. Whereas most other similar social networks allow only one link per post,
Aphantasia will allow up to 5. In graph theory, the structural difference between
the two approaches is that while other networks contain forests, Aphantasia will
be made of DAG components.

We expect this element to make the posts more interconnected. On that basis,
we want to create an online experience that encourages two aspects:

• Exploration of the thoughts of others

• and creation of new associations between them.

The ability to reply to more than one thought at once combined with graph
view means users will be able to interlink two separate connected components
together and thus create bridges of associations.

3.2 Functional Requirements
The functional requirements of Aphantasia are as follows:

3.2.1 Graph View
The focus of Aphantasia is the graph view. We want to create a comparable

user experience to Obsidian’s graph view, and thus, we will need to implement
the following features:

• Node Rendering - Each thought should be rendered as a node

• Edge Rendering - Links between thoughts should be rendered as edges

• Animated Graph Layout - The graph should stabilize using an FDL
algorithm and animate the stabilization process

• Interactivity - Nodes should be draggable to influence the layout algorithm

• Movement and Zoom - A viewport with the ability to move around and
zoom in and out through the graph

22

• Content Preview - Users should be able to click on a thought to see its
content

• Clickable links and backlinks - The content preview needs to provide
clickable links and backlinks (i.e., replies)

• Floating Titles - When zoomed in past a certain threshold, titles of
thoughts should be displayed under their nodes in the graph view

To then elevate the experience beyond Obsidian and towards its own online
shared experience, we will need to implement the following features:

• User-specific Coloring - Thoughts in graph view should be colored ac-
cording to the user who created them

• Replies-dependent Node Size - Thoughts that have more replies should
appear larger to indicate their importance 1

• Graph Exploration - The graph should be explorable by traversing the
thoughts through their edges

• Dynamic loading - Only a subset of thoughts should be loaded at once
based on the user’s position in the graph

• Big Graph Support - The graph view should be able to handle arbitrarily
big graphs

3.2.2 User Management
Aphantasia needs to provide a simple user management system. Concretely:

• Registration

• Login

• Logout

• Account Personalization

The personalization aspect should include the ability to choose color. Users’
thoughts will be displayed in this color.

3.2.3 Thought Creation
Registered users should be able to create new thoughts and link them to other

existing thoughts. Each thought should have a title, a body, and up to 5 links to
other thoughts.

1Obsidian does have this feature as well, but it is not as pronounced as we would like

23

3.2.4 Routing and Pages
Aphantasia should have at least the following pages:

• Graph View

• User Settings

• Post Creation Form

• Login and registration pages

3.3 Non-functional Requirements
Our non-functional requirements will be focused mainly on the graph view

and the user experience it provides.

3.3.1 Graph View UX
The graph view of Aphantasia should offer the following qualities:

• Fluidity - The graph should be animated without stuttering or FPS drops

• Responsive Design - The graph view should be usable on both desktop
and mobile devices

• Performance - The graph should be able to handle at least a hundred
thoughts on screen at once

• Intuitive Exploration - The graph exploration should be intuitive and
easy to understand

3.3.2 Extendability
We would like to design Aphantasia in a way that allows for easy extension and

modification. The app should be able to easily accommodate additional features
such as:

• Notifications - In the future, a page with replies to user’s thoughts is
planned

• Search and Filters - In time, users should be able to search for thoughts
and filter them based on various criteria

• Graph Parameters Modification - The graph view parametrization
(such as the strength of the forces in the FDL algorithm) does not need to
be available to the users right away, but the application should allow for it
in the future

24

4 Implementation
In this chapter, we will go through the implementation process of Aphantasia

and the technical challenges we faced. The relevant source code is available at
https://github.com/0rbit3r/afantazie_bachelors_thesis.

4.1 Preparation
Aphantasia will be a publicly accessible web application, and as such, we will

need to set up the following:

• Frontend - a webpage serving an interactive graph and UI

• Backend - for business logic and data processing

• Database - for persistence of data

• Hosting - to make the website accessible

4.1.1 Used Technologies and Libraries
Before implementing Aphantasia, we need to decide on the technologies we

will utilize.

Hosting, Database and Backend

Let us start from the bottom with hosting. We will use a Virtual Private
Server (VPS) from a hosting company, Váš Hosting. They will provide us with
a Linux server fully prepared for hosting, including SSL certificates, domains,
databases, and tools to manage the server.

For the backend, we will use .NET 8.0 with C#. While the main reason for
this decision is familiarity with the technology, the .NET platform is regardles as
a good choice as:

• It is Linux-compatible

• The provided the Entity Framework Core library provides ORM, com-
plete code-first solutions and makes it easy to replace database technology
later on if needed

For the database, we will use PostgreSQL (version 15.10) as it is one of the
most popular database engines and is known for its reliability and performance.
We will use code-first approach to database design and will use Entity Framework
Core (version 8.0.4) to scaffold and migrate the database (programmatically create
and update the database schema based on defined Entities in the project).

25

https://github.com/0rbit3r/afantazie_bachelors_thesis

Graph View

This is where the most crucial decisions will be made as its graph view is the
our primary focus and we are striving for a good user experience.

We already saw a library that might be usable in our case in Section 2.3.
We decided against using it as we would use only a fraction of its features, and
it might be overkill for our needs. Instead, we will implement our own graph
rendering engine using a custom GLA implementation and render the nodes using
a rendering library.

The reasoning behind this is primarily based on customizability - we will be
able to implement only the features we need and optimize the rendering for our
use case.

To render the graph, we will use an existing JavaScript library capable of 2D
graphics. We considered four possibilities to render the graph:

• HTML and CSS - the most barebones solution would be to use a set of
divs to represent nodes and SVG lines to represent edges

• HTML5 Canvas - a more sophisticated solution to draw both nodes and
edges in HTML5 Canvas API

• PixiJS - library for 2D rendering in the browser

• Three.js - library for 3D rendering in the browser

We chose to use PixiJS (version 7.4.2) as it seemed to provide a good com-
promise between ease of use and performance for 2D rendering in the browser.

Pages and UI

To implement graph view UI and pages for user management, login, and post
creation, it makes sense to take advantage of a JavaScript framework. We have
experience with two - Angular and React.

We will use React (version 18.2.0) with TypeScript. React has an unopin-
ionated approach to architecture, which should make it easier to integrate with
our rendering solution. We have already seen that React can be integrated with
Cytoscape.js in Section 2.3. We will attempt to integrate React with PixiJS to
create a graph view page with UI controls friendly on both desktop and mobile
devices.

4.1.2 Plan of Execution
With technological decisions made, the roadmap for the implementation of

Aphantasia is as follows:

1. In the first stage (Section 4.2), we will implement a basic web application,
including user management. We will host this application on the VPS, set
up a PostgreSQL database, and configure the reverse proxy server.

2. Next, in Section 4.3 we will implement small graph rendering engine. The
result of this stage should contain an Obsidian-like graph view capable of
rendering at least a few hundred nodes.

26

3. And lastly, in Section 4.4, we will extend the application to handle large
graphs and thus finish the implementation.

4.2 Basic Web Application
In this section we will describe our process of creating a simple web applica-

tion, scaffold the backend architecture, set up the database and implement user
management. We also decided to implement a simple chat service during this
phase. The reasoning behind this decision was the following:

• It will serve as preparation for the real-time server-client communication,
which will be useful for the graph view (see Section 4.2.3)

• The user management system, just on its own, is not useful or testable

• The chat is locked behind login, and thus, we can develop and test autho-
rization early on

• The messages inherit the color of their author, and thus, we can test the
color selection feature

4.2.1 Database Schema
We set up the database of Aphantasia, including the graph-specific tables:

• Users - holds the user data

• Thoughts - holds the thought data

• ThoughtReferences - holds the links between the thoughts

A diagram of the database schema can be seen in Figure 4.1.

Figure 4.1 Aphantasia Database schema

27

We created the database using code-first approach and scaffolded the local
development database and production database using Entity Framework Core.
With that, the database is ready to be used by the backend.

4.2.2 Backend Architecture
The backend of the basic application is an ASP.NET application written in

C#. Similarly to the database schema, we decided to develop architectural design
early on and it paid off as development of later features was much easier. The
initial architectural blueprint remained mostly unchanged until the end of the
project.

The solution of the backend consists of 19 projects implementing the backend
to Aphantasia and one project for secondary tools (see Section 6.2.1 for more
details).

The backend projects are divided into four directories (forming conceptual
layers):

• Presentation

• Service

• Core

• Data

There is also one project outside of these layers that serves to Bootstrap the
application and set up dependency injection. Figure 4.2 describes the architecture
of the backend with its dependencies.

This division is loosely based on Onion architecture [13]. Notice that the
Presentation layer doesn’t directly depend on the Service layer. Instead, it depends
on the Service Interface layer, and the actual implementation is injected at runtime.
This allows for clean separation of concerns, makes the code more testable, and
allows for easy swapping of implementations.

The following sections describe the individual layers and their responsibilities
in more detail.

Presentation Layer

The Presentation layer sits in the outermost layer of the application and is
responsible for handling HTTP requests and responses. It contains two projects -
Api and Model.

The Api project holds API controllers implemented using ASP.NET Core
MVC. The controllers and signalR hubs only handle incoming traffic and for
handling business logic, they call the appropriate service in the Service layer.

The Presentation Model contains definitions for the data transfer objects
(DTOs). These objects are used to transfer data between the client and the server.

Service Layer

The Service contains the business logic of Aphantaisa. It is a set of 5 projects
(and their respective interfaces):

28

• Auth - handles user registration, login, and JWT token generation

• Chat - handles the chat functionality

• Site Activity - handles the real-time stats of the site (such as the number
of users online)

• Thoughts - handles the creation and retrieval of thoughts

• User Settings - handles the user settings (such as selected color or on-screen
thoughts limit)

Core Layer

The Core contains three projects:

• Core Model - contains the core model of the application used in Repository
and Service interfaces as arguments

• Localization - contains the localization resources for the application

• Constants - contains constants (currently only the default on-screen
thoughts limit for newly registered users)

This layer sits in the midle of the application dependency wise and is used by
both the Service and Data layers.

Data Layer

The Data layer is called by services to access the database using Entity
Framework Core. It contains the Repository project and its interface. The
Repository project is responsible for handling the database queries and updates.

AfantazieServer Project

Since the application is using dependency injection we cannot put its entry
point inside any of the projects mentioned above without breaking the principles
of the Onion architecture. If we, for example, wanted to run the API by setting
setting the Presentation.Api as the startup project, we would have to add references
to the Service layer and Data layer to add their classes to dependency injection
container and thus break the separation of concerns.

Instead, we created a separate project that serves as the entry point for the
application. It is responsible for all the setup and configuration of the application,
which includes but is not limited to:

• Configuration files

• Dependency injection setup

• CORS setup (Cross-Origin Resource Sharing)

• Logging setup

29

Note that not all of these setups are done in the AfantazieServer project itself.
All individual projects contain the bootstrapping logic, and expose an ”AddModule”
method that is called from the AfantazieServer project to add the respective service.
For example, the AfantazieServer project calls the AddDataModule() method from
the Data project, which then registers the Data module with all its responsibilities,
allowing it to swap modules for different implementations if needed (as long as
they implement the corresponding interface).

Models

We use three different models to represent data in the application - each
serving a different purpose in its respective layer:

• Presentation Model - DTOs used for transmission between client and
server (The client has to implement the exact same model to be able to
communicate with the server)

• Data Model - Entities correspond to Database tables (which is created
code-first from the entities by Entity Framework)

• Core Model - Serves as an intermediary between the Presentation and
Data models. Business logic should be implemented in the Service layer
using this model.

Both Repository and Service interfaces use the Core Model as arguments and
return values. This means that the Service layer is not dependent on either the
Entities or the DTOs, but it also requires mapping between the Core Model and
the Data Model. For mapping, we used the Mapster library inside the Data and
Presentation Model projects.

4.2.3 Initial Frontend Implementation
During the first phase, we initialized the web application and implemented

authX/Y, real-time server-client communication and routing with a few pages:

• Home page

• Login page

• Registration page

• Chat page

• About page

We also styled the application using plain css. The styling is minimalistic and
not exactly modern but is functional and responsive.

30

Cache Busting

Browsers routinely cache files to speed up the loading of websites. This is a
good thing as it reduces the load on the server and speeds up the user experience.
However when the website is in active development and the files are changing
frequently the cache can become a problem. Users might not see the changes
made to the website because the browser is loading the old cached version of the
file. The techniques for solving this problem are called Cache busting. We used a
React library called React cache buster to resolve this issue.

At first, we had no success with the library as it was not working as expected.
The reason, as we found out, was that the library uses a meta.json file to store the
version of the application. The client then checks the version of the application,
and if it is different from the version in the meta.json file, it forcefully reloads the
page to get the new version of the application.

The problem was that Nginx was caching the meta.json file, and the client was
not getting the new version of the file. Instead, it was getting a response with a
304 status code (not modified). We solved this by adding a directive to the Nginx
configuration file that forces the server to provide a new version of the file at all
times. See Section 6.2.2 for the exact configuration used.

Server-Client Communication

For the chat application, we tried to use WebSockets for real-time communi-
cation. While we did manage to get this approach working, we did not like the
developer experience.

SignalR is a library that simplifies the process of setting up WebSockets and
provides a nice API for server-client communication. It is available for both .NET
and JavaScript and is easy to set up, with much less boilerplate code than using
WebSockets directly.

SignalR uses so-called hubs to communicate between server and client, which
automatically handle the connection and disconnection of clients.

We implemented two hubs - ChatHub and StatsHub, with the former being
used for chat messages while on the chat page and the latter used across the
entire application to keep track of and display the number of users online on the
homepage.

This feature can be exploited further, for example, to inform the client that
new thoughts were created.

4.2.4 Hosting and Server Management
The VPS we rented comes ready with a lot of tools to manage the server, is

fully prepared for hosting, is accessible via SSH and has a web-based control panel
for managing the server.

After installing the .NET 8 runtime, the process of running a .NET applica-
tion was as simple as transferring the program via SFTP and inputting ’dotnet
Afantazie.dll’ into the terminal. Deploying the frontend required only copying the
files to the necessary directory in the server filesystem. DNS and SSL certificates
were set with a mouse click in the provided server management.

31

Nginx

The greatest challenge when hosting the application came with setting up
a reverse proxy server (although that was mostly due to our inexperience with
the technology). Two provided reverse proxy server technologies were the default
Apache and Nginx. After a short research through forums we decided to make
the switch to Nginx as it is more modern alternative to Apache and can have
performance benefits. If needed, we could always switch back to Apache without
much hassle.

The provided template for the Nginx configuration was a good starting point,
but in order to make the application functional, we had to make a few additions
to the afantazie.cz.conf file:

• Reroute the API requests to the backend

• Set up redirection from HTTP to HTTPS

• Force the server to always provide a new version of the meta.json file used
for cache busting (see Section 4.2.3)

For a complete configuration file, see Section 6.2.2.

4.3 Small Graph Vizualization
Small graph implementation, the second phase of development, required two

things - rendering and forces simulation. As mentioned previously, we decided to
render the graph using PixiJS and implement our proprietary FDL.

To integrate PixiJS into the React application, we first followed the official doc-
umentation [14]. We were not happy with the result as the Pixi/react components
were hard to work with programmatically.

So, instead, we used a guide by Adam Emery [15] to integrate PixiJS into
the React application. His approach is different in that it only uses the Stage
component from the Pixi/react library , and the rest of the PixiJS code is written
in plain JavaScript (in our case, TypeScript). This allows us to better control the
PixiJS code and use the full potential of the library instead of using the pixi/react
wrapper.

After implementing a simple node and edges rendering, we quickly hit a
roadblock with massive memory leaks. As we found out, we were instantiating
new PixiJS objects every time the graph was updated. To mitigate this issue, we
created an interface - RenderedThought - that holds the PixiJS objects for each
thought (the Title text and the Circle graphics).

The RenderedThought interface remained to the end of the development and
we incrementaly added more properties to it as we needed them. It contains all
the properties that are needed to render the thought on the screen and to interact
with it. For example, each rendered thought has a boolean property ’held’ which
is used to determine if the thought is currently being dragged by the user.

Before big graph solution we stored the loaded thoughts in an array of rendered
thoughts kept in the React state.

Once we were able to render nodes and edges, we created a simple force
directed layout algorithm with two forces - pull connected and push unconnected.

32

At this point, we had an application with a comparable graph view to obsidian
(Figure 4.3).

Figure 4.4 showcases the first 3000 nodes of the citHep dataset now visualized
using Aphantasia in this stage of development. With this many nodes on the
screen, the application lagged a lot, although it remained somewhat usable.

4.3.1 FDL Implementation
The core of our FDL implementation is a set of two forces - pull and push.

These forces are defined as functions accepting distance between the nodes and
returning a force that should be applied to them.

These functions are defined in the graphParameters.ts file and currently look
like this:
export const pullForce = (borderDist: number) => {

if (borderDist <= 0) {
return borderDist;

}
const computed = 0.01 *

(borderDist - IDEAL_LINKED_DISTANCE);
const limited = computed > MAX_PULL_FORCE

? MAX_PULL_FORCE
: computed < -MAX_PULL_FORCE

? -MAX_PULL_FORCE
: computed;

const final = Math.sign(limited) === -1
? limited / EDGE_COMPRESSIBILITY_FACTOR
: limited;

return final;
};
export const pushForce = (borderDist: number) => {

if (borderDist === 0) {
return 0;

}
if (borderDist < 0) {

return -borderDist;
}
const computed = 5 / Math.sqrt(borderDist);
return Math.min(MAX_PUSH_FORCE , computed);

};

Note that the pull force can be negative. This is intentional as the connected
nodes should be attracted not towards each other but towards a certain ideal edge
distance. This distance is parameterized as IDEAL_LINKED_DISTANCE.

The numbers inside the functions are the respective force strength parameters.

4.3.2 Parametrization
As stated in Section 1.4, the FDL algorithm is highly dependent on the pa-

rameters set by the user. Thus, as expected, we had to implement and configure
number of parameters in order to make the graph view a smooth and enjoy-
able experience. The full list of parameters we implemented can be found in
Administrator documentation in Chapter ??.

33

Here, we will discuss what led us to implement many of these parameters -
jitter. In some situations, particularly when the graph was not yet fully stabilized,
and there were a larger amount of nodes in a small area, the nodes had the
tendency to oscillate quickly.

Parametrizing the forces themselves helped a little but not enought to mitigate
the issue. Instead we implemented a momentum system, where the nodes would
not react to the forces immediately but would instead gradually accelerate based
on forces applied. The momentum system is influenced by dampening system - a
set of parameters controlling how much the forces applied to the momentum and
the momentum itself are reduced each frame.

The jitter was not completely eliminated but was reduced to a level where
it was not noticeable in normal use. We also believe that if the problem arises
again, we will be able to alter the parameters accordingly and reduce the problem
further.

4.4 Big Graph Visualization
In the final stage of the development, we implemented the big graph solution.

State management
So far, we used React states and contexts to hold and manage the the graph

context. This worked for a simple small graph approach, but we were not happy
with this approach once the context started to become more complicated as we
had little control over the state from the PixiJS code.

A solution we used is a react library called Zustand [16]. This library allows
minimal state management in React that is compatible with external (meaning
non-React) code.

Dynamic loading
At the beginning of the development, we used one endpoint for all the data

at once. That worked until around 500 thoughts, after which the loading time
started to become noticeable.

The obvious solution was to load only a subset of the data at a time. We
implemented this idea in two ways:

• Temporal API endpoints - Client requests a new subset of nodes in
the form of ”beforeId / afterId / aroundId”. Thanks to the ascending ID
increment approach, it translates to the chronological order of the nodes.
When the time window exceeds the currently loaded data, it gets updated
with missing nodes from the relative past or future.

• Neighborhood API endpoints - Breadth-first search starting in a given
node up to a given depth is used to implement graph exploration.

This approach worked not just as an optimization technique but we ended up
building our big graph handling on it. In Figure 4.5, we can see the logic flow of

34

the big graph rendering solution. Aphantasia uses two arrays of rendered thoughts
- temporal array and neighborhood array.

To keep track of which thoughts should be visible on screen as well as fetching
and updating temporal and neighborhood thoughts, we created the file thought-
sProvider.ts.

4.4.1 Frontend Architecture
The frontend architecture is much less clear-cut than the backend but we

visualized the relationship between the main source code files in Figure 4.6.
All of the graph-related code sits inside the src/pages/graph directory of the
AfantazieWeb project and the containers in the diagram correspond to the folder
structure.

Let us look at the individual parts of the frontend architecture:

React

Graph Page contains the UI elements of the graph view:

• Content preview

• Controls (zoom and time slider)

• Time window date label

• New thought button

It also handles much of the initialization logic, such as getting the thought ID
from the URL and fetching the appropriate data (either the latest or around the
requested thought).

Graph Container This component is the bridge between React and PixiJS
code. It calls the run() method of the Graph Runer.

Simulation
In the Simulation directory, we find three files:

• Graph Runner - Contains the main logic loop of the graph simulation.
Its run() method is called by the Graph Container, and it initializes the
graphics, runs the render function and the simulation functions.

• Forces Simulation - Custom FDA implementation.

• ThoughtsProvider - Responsible for providing the temporal and neigh-
borhood thoughts as well as fetching data from the backend based on time
window position and graph exploration state.

The source code of the main logic loop of the application (located in the file
graphRunner.ts) is shown below. Note that the code is simplified for the sake of
brevity.

35

export default function runGraph(app: Application) {
const renderGraph = initGraphics(app);
useGraphStore.getState().setFrame(0);

// main application loop
app.ticker.add((_) => {

const graphState = useGraphStore.getState();

// cache thoughts
if (graphState.frame === THOUGHTS_CACHE_FRAME) {

...
localStorage.setItem('thoughts -cache',

JSON.stringify(thoughtsCache));
}

// Update temporal thoughts if needed
updateTemporalThoughts();

// FDL simulation
const frame = graphState.frame;
if (frame < SIMULATION_FRAMES) {

simulate_one_frame();
}
graphState.setFrame(frame + 1);

// render the graph
renderGraph();

});
}

Graphics
This directory contains two files:

• Graphics - Contains the initializeGraphics() method which returns a call-
back function render() called by the Graph Runner every loop.

• ViewportInitializer - Contains the addDraggableViewport() method which
sets up the viewport for the graph.

State and parameters
Here we find two files:

• Graph Store - Zustand store for the graph state.

• Graph Parameters - Constants used in the graph view, FDL and other
behavior.

4.5 Final List of Features
This section provides a deeper look into the user-facing features and technical

aspects of the application. More user-focused documentation will be available in
Chapter 6.1.

36

4.5.1 AuthX/Y
The application includes user account functionality supporting authentication

and authorization. Users can register, log in, and log out. Most pages and features
are accessible only to logged-in users.

Passwords are hashed using SHA256 encryption and must meet minimal
requirements:

• At least eight characters

• At least one uppercase letter

• At least one lowercase letter

• At least one number

Login is managed via JWT stored in local storage. Tokens expire after one
day, and a refresh token mechanism is not implemented, requiring users to re-login
every 24 hours.

Tokens are currently sent in URL parameters for SignalR WebSocket connec-
tions. This practice is not ideal and should be replaced in the future. A possible
solution involves a ticketing system where a logged-in client would request a
ticket from the API. This ticket would then authorize the WebSocket connection,
avoiding token exposure in the URL.

4.5.2 Pages
Thanks to React, the graph view is one of many pages in the application.

There are currently ten pages:

• Homepage: Displays a feed of recent thoughts and navigation buttons
(Figure 4.7)

• Welcome Page: Similar to the homepage but tailored for unregistered
users (Figure 4.7)

• About Page: Provides information about the project

• Chat Room: A basic real-time chat

• Settings Page: Contains user settings and a logout button

• Login and Registration Pages

• Notifications Page: Displays replies from other users

• Graph View: Enables users to view thoughts

• Thought Creation Page: Allows users to create new thoughts

37

4.5.3 Localization
Initially, we developed a Czech version of the application and later added

an English version. For frontend localization, we utilized two JSON files and
a Localization object which returns either Czech or English text based on Vite
configuration. This makes the application easily extensible to more languages.

Backend localization was also required, as the API returns localized authenti-
cation and validation messages. To achieve this, we created a Localization project
with classes implementing localization interfaces. During bootstrapping, a specific
localization is registered based on configuration. While this approach is somewhat
cumbersome, it suffices for the limited localization needs of the backend.

4.5.4 Custom Graph Rendering Engine
The graph view is the primary feature of Aphantasia and the most complex

part of the application. Its basic features include:

• Zooming and Panning

• Dragging Thoughts

• Floating Text Titles (Figure 4.9)

• Thought Highlighting (On Figure 4.8 and 4.9)

On-screen Thoughts Limit

The On-screen thoughts limit is a critical part of our big graph rendering
solution. The default value is 100, but users can adjust it in the settings.

The idea behind it is to always render, at most, this number of thoughts on
screen. And to view more user input is required - either by moving the time slider
or by using the graph exploration feature, both of which we will talk about briefly.

The limit is demonstrated in Figure 4.11 and 4.12 with the values set to 300
and 700, respectively.

Time Slider

Combining the On-screen thoughts limit, dynamic loading, and two UI buttons
resulted in a feature we call the Time slider. It allows users to move a conceptual
time window smoothly into the past or future by holding the corresponding button.
The resulting layout using the time slider is demonstrated in Figure 4.11 with 641
thoughts on afantazie.cz viewed in three different time windows of length 300.

Above the time slider controls, there is a label showing the current time
window’s position - the creation date of the newest thought on the screen. The
label can be seen in the bottom left in Figure 4.8.

New thoughts appear either in their cached positions (see Layout caching
section below) or in a circular pattern around the simulation container’s center.
When not yet cached, the appearance of newer/older nodes creates a visually
appealing effect as the thoughts gradually appear in what resembles a loading
spinner.

38

Live Preview

When the time slider moves beyond the last thought, the application enters
live preview mode indicated by ’Now...’ apearing in place of the time window’s
date in bottom left. In this mode, the client listens to new thoughts and adds
them to the graph in real-time.

While this feature enhances interactivity, it has only been tested with two
users creating thoughts simultaneously. Higher activity levels could potentially
overwhelm the system, but until there is an active user base, this remains a
theoretical concern.

We implemented this feature using long polling, meaning that the client
periodically sends requests to the server to check for new thoughts. This approach
is a bit wasteful, especially considering that we already have an active signalR
connection to use across the entire application. In the future we will replace long
polling with the active signalR connection.

Graph Exploration

The neighborhood API endpoint powers graph exploration demonstrated in
Figure 4.8. After clicking on a node, link, or reply, the client loads the neighborhood
of the newly highlighted thought, enabling interactive exploration.

In the example and many other screenshots provided in this work, some
thoughts appear hollowed out. This effect triggers when the thought’s direct
neighbors (links or replies) are not currently rendered on screen, signaling that
there is more to explore behind it. When the neighbors of a node are all visible,
the node is filled with its author’s color.

Currently, the graph exploration neighborhood array does not respect the
on-screen thoughts limit and loads all neighbors of the highlighted thought up to
a given depth. This didn’t pose a problem with the datasets we used but could
be a significant issue with highly connected datasets.

Thoughts Layout Caching

The browser’s local storage caches the thoughts layout after a period of
inactivity. The length of this period is parametrizable by a number of frames, with
the current value set to 1 000 frames, which corresponds to around 30 seconds of
inactivity on most devices. When a thought leaves the screen and later reappears,
it retains its previous position. This feature facilitates graph stability during time
sliding and between sessions and removes the need for the graph to stabilize again
and again.

Paired with the time slider, this approach produced an unexpected emergent
behavior. As the production dataset grew beyond 500 thoughts (five times the
default on-screen limit), it remained possible to create a stabilized graph across
the entire dataset. Moving the time slider across such a stabilized layout is a
uniquely satisfying experience, which we believe sets Aphantasia apart. To some
extent, this feature is visible in Figure 4.11 but it is best experienced in the live
application.

The cache currently has no size limit and is not cleared automatically, which
could be a potential issue with big datasets and longer graph view sessions. Logged-

39

in users can, however, delete cached positions in settings to force the graph to
re-stabilize.

40

Figure 4.2 Aphantasia Backend Architecture

41

Figure 4.3 Aphantasia graph view at the end of the small graph development stage

42

Figure 4.4 The first 3000 nodes of the CitHep dataset visualized in Aphantasia
(before big graph solution)

43

Figure 4.5 The logic flow of the big graph rendering solution

44

Figure 4.6 The frontend architecture of Aphantasia

45

Figure 4.7 The Welcome page and homepage of Aphantasia

Figure 4.8 The graph view on a mobile device - non-highlighted mode, half-screen
preview, and fullscreen preview, respectively

46

Figure 4.9 Floating titles in the graph view on desktop

Figure 4.10 Animated edges in the graph view

47

Figure 4.11 Aphantasia with the Czech production dataset in stabilized temporal
layout (641 nodes in three time windows of length 300)

48

Figure 4.12 The entire dataset of afantazie.cz (641 nodes) in a single time window

49

5 Testing
5.1 Graph View Performance

The graph can handle the entire CitHep dataset and, thanks to dynamic
loading, could handle even larger graphs. In Figure 5.1, one can see a highlighted
thought from the CitHep dataset.

To achieve this, we wrote a C# script to import the CitHep data files into the
Aphantasia database. In the graph view, we used the same parameter settings
we used for the much smaller graphs in production environment, which at the
time consisted of around 600 and 150 thoughts, respectively. To our surprise
the resulting graph behaved well and except for increased tendency to jitter the
CitHep graph view was smooth and stable. The only parameter we had to change
was neighborhood BFS depth - from three down to just one. CitHep graph is
bigger and much more interconnected than the small production graphs, so even
at depth two, the graph exploration feature often resulted in an unreasonable
amount of on-screen nodes.

5.1.1 Limits of the Graph View
In Figure 4.4, we have seen how Aphantasia handles 3 000 nodes even before

the dynamic loading was implemented.
The application is not meant to display large graphs at once, but out of

curiosity we tried to render as many thoughts as possible.
First, we tried to set the on-screen thought limit to 40 000 (and thus load and

render the entire CitHep dataset) and we were not able to fetch the data from
the backend. We are not sure why this happened but one possible explanation is
that the API response is too large and either the server and/or the client were
not able to handle it.

In the second test we set the on-screen thought limit to 10 000 and we were
able to fetch the data and render it. The result was not unexpected - a big hairball
of nodes and edges running at less than one frame per second. See Figure 5.2.

From our tests, we learned that Aphantasia’s performance begins to degrade
noticeably at around 400-700 on-screen thought limit and gradually drops to just
a few frames per second with the limit set to around 1 500. These values are
highly dependent on the connectivity of the data, with more connections leading
to more computation time and thus lower performance.

5.2 User Feedback
We advertised the application on Reddit, sharing both the Czech and English

versions across several subreddits.
Most comments were positive, praising the application’s concept and the

experience of exploring thoughts with one user describing the experience as feeling
like an ”archeologist” uncovering ideas.

Negative feedback focused on the lack of practicality, outdated UI, and oc-
casional bugs. Users also suggested missing features such as pinch zoom, image

50

Figure 5.1 A highlighted thought of the CitHep Dataset in Aphantasia

Figure 5.2 Cithep dataset rendered in Aphantasia with 10000 on-screen thought limit

51

posting, a better landing page, and filtering. Browser compatibility issues were
mentioned as well.

The feedback was mostly constructive, and we are grateful for it. It helped us
hone on the experience users already found fun and stimulating, specifically inter-
action and exploration. However, some users admitted they did not understand
the application, highlighting the need for a proper tutorial.

5.3 Aphantasia Versus Related Software
Ideologically, Aphantasia is closest to Obsidian. There is of course an obvious

difference between the two - Obsidian is local note-taking system with graph view
while Aphantasia is an online social experience based on graph view. Both are,
however, meant for the general audience, and their graph views bear a similarity.

Compared to Gephi and Cytoscape.js, Aphantasia has lower performance on
large graphs rendered at once. However, thanks to the time slider and graph
exploration features, it can handle much larger datasets in an intuitive way. The
dynamic loading could, in theory, handle millions of nodes. In such case the main
limiting factor would be the performance of the backend and the database.

Finally, in table 5.1, we added Aphantasia to the comparison table from the
first chapter. We can see that Aphantasia is a good compromise between the ease
of use of Obsidian and the performance of Gephi and Cytoscape.js.

Obsidian Gephi Cytoscape Aphantasia
Use-case note-taking data analysis

and visualiza-
tion

graph visu-
alization in
browser

social net-
work

Target general researchers, web general
Userbase audience technical

users
developers audience,

graph enthu-
siasts

User easy to use technical, program- intuitive,
Experience steep learn-

ing curve
matic, mostly
parametriza-
tion

slight learn-
ing curve

3 000 nodes slow stable, stable but stable,
handling indexing but

smooth after-
wards

smooth visibly lower
FPS

smooth, ex-
plorable

34 546 nodes skipped as mostly crashed stable,
handling indexing took

too long
stable, lower
FPS while
running FDL

immediately explorable,
slightly in-
creased jitter

Table 5.1 Comparison of Obsidian, Gephi, Cytoscape.js and Aphantasia

52

6 Documentation
The remaining chapter is dedicated to the documentation of Aphantasia.

6.1 User Documentation
All of the pages are accessible from the homepage and/or the collapsable

navbar in the top right.

6.1.1 Registering and Logging in
While not logged in, only the graph view, about page, and welcome page are

accessible.
To register, click on the register button on the home screen. The registration

requires selecting a unique username, email, and password. The password has
security requirements which are displayed immediately after opening the form
and in case of not meeting the criteria on submit.

To log in click on the login button on the homescreen. The login requires a
username or email and password.

At this point, the email is not used anywhere and is only included in preparation
for email verification functionality.

6.1.2 Opening a Thought
There are multiple ways to open a thought:

• New thoughts log on homepage - On the homepage, there is a feed of
the last three thoughts created on the website. Clicking on one of them will
open the thought in graph view.
Clicking on the ”All Thoughts” button under the feed leads to the list of all
thoughts.

• Notifications - The Notifications button and the bell icon in the navbar
lead to the list of replies. Replies are thoughts of other users linked to any
of the logged-in user’s thoughts. Clicking on a reply opens the respective
thought.

• Graph view - The main way to access thoughts is through the graph view.
We will take a closer look at it in the next section.

• Direct link - Every thought has a unique ID which can be shared and
accessed directly using the URL in format ’/graph/{thoughtId}’.
Example of the full URI leading to the thought with ID 1: https://aphanta-
sia.io/graph/1

53

6.1.3 Graph View
To access the graph view, click the ”Graph” button on the main page or click

on the graph icon in the navbar (three connected nodes).
In the graph view, the following controls are available:

• Mouse wheel or bottom right buttons - Zooms in and out
Once zoomed past a threshold, titles of the thoughts appear. (Figure 4.9)

• Draging the background - Pans the viewport

• Dragging a node - Moves the grabbed thought around
This is useful for customizing the layout, ”untying” thoughts that are too
close to each other or to speed up the process of the layout algorithm.

• Clicking a node - Highlights a thought and switches to highlighted mode.

Highlighted Mode

In default mode, the whole display is used to view the graph, and the user
can interact with it as described above. When a thought is accessed, the graph
view switches to highlighted mode. (Figure 4.8)

In highlighted mode half of the screen gets dedicated to the highlighted thought
preview and the other half to the graph view.

The graph view in highlighted mode shares almost all behavior with the default
mode, with a few exceptions:

• Visual node highlight - The currently opened thought is also visually
highlighted by a white circle around it.

• Visual edges highlight - All edges connected to the opened thought are
exaggerated in thickness and color while all other edges are dimmed.

• Neighborhood thoughts - On highlighting a thought, the application
loads its neighborhood.

Every time a thought is selected, the viewport also smoothly centers on it.
The thought preview shows the title, author, time of creation, content with

clickable links, and replies section. Both the links in content and titles in the
replies section are color-coded based on the author’s selected color, and one-click
will highlight the respective thought. At the bottom of the preview there are
Reply button and a close button (up icon on mobile and X on desktop).

Neighborhood Thoughts and Graph Exploration

When a thought is highlighted, the application loads its neighborhood. The
neighborhood is defined as thoughts accessible through BFS up to a given depth.
The currently used depth of the search is fixed at 3.

Some of the thoughts rendered on screen can be filled with black color. 4.8
This indicates that some neighbors of the node are not visible on screen, and thus,
the node is explorable.

54

6.1.4 Creating a New Thought
There are two ways to access the thought creation page:

• From the graph view - Click on the ”New thought” button at the bottom
of the graph view.

• From the thought preview - Click on the ”Reply” button at the bottom
of the thought preview.

Both of these ways lead to the thought creation page (Figure 6.1). The
difference between them is that when accessed through the Reply button, the
respective thought link is automatically added to the content input.

The thought creation page consists of two text fields: Title and Content.
Both the title and content are required. Title has a minimum length of

1 character. The content’s minimum length is 5 characters. Both of these
requirements are enforced by validation rules, and the user is notified by notification
messages if the submit fails.

Referencing Other Thoughts

When a link (or a reference) is added to a thought, it will be connected and
attract the corresponding node in graph view. Links can be added to the content
field as a link with the format ”[id](text)”, where id is the id of the thought and
text is the text that will be displayed. The text does not have to necessarily be
the original title of the linked thought.

Adding links can be done in three ways:

• Manually - By typing the link in the content field

• By ’Add reference’ button - This button opens an overlay with a list of
thought titles and a search bar. Click on a thought title to add it to the
content at the cursor position.

• Reply - As mentioned, the Reply button in the graph view adds the link to
the respective thought automatically.

Each thought can have up to five references.

6.1.5 Settings
The settings page (Figure 6.2) is accessible from the navbar by clicking on the

gear icon or by clicking the ”User settings” button on the homepage. Currently,
there are two settings that can be changed:

• On-screen thought limit - This setting changes the maximum number of
thoughts that are displayed on screen at once. The default value is 100. but
can be changed to virtually any positive value.

• Color - This setting changes the color of users’ thoughts in the graph view.
There are predefined colors accessible by clicking the username but users
are free to choose any color they like using a hexcode.

55

Figure 6.1 Aphantasia - Thought creation page

Apart from these settings, there is also a Log out button and Delete thought
positions button, which erases positions of thoughts saved in the browser - forcing
the graph to restabilize on the next load.

6.2 Installation Guide
Here we will look at how to set up and run both locally and how to deploy a

public instance.

6.2.1 Running Aphantasia Locally
To run Aphantasia locally, follow these steps:

56

Figure 6.2 Aphantasia - User settings

Database

The database is necessary for the application to run. It is set up using Entity
Framework Core and PostgreSQL but one can choose any other database engine
supported by EF Core. To use a different database engine, install the necessary
packages and replace the UseNpsql methods in these two files appropriately:

• Afantazie.Data.Model/DatabaseContextProvider.cs

• Afantazie.Data.Model/DesignTimeDataContextFactory.cs

With the database running the next step is to scaffold the database (ie. create
the schema compatible with Aphantasia). To do so, follow these steps:

1. Add a file named migrationsettings.json in the root of project Afan-
tazie.Data.Model.

2. Add the following content to the file:

57

{
"ConnectionStrings": {

"DefaultConnection": "DATABASE CONNECTION STRING"
}

}

3. Run the following command in the Data.Model project root:
dotnet ef database update

The command should print the connection string provided in the migrationset-
tings.json and ask for confirmation. If everything is correct, confirm the prompt
by inputting ”y”, and the database should be created.

Frontend

Before running the frontend make sure to have Node.js with npm installed on
the machine. Open the root of the AfantazieWeb directory in a command line
and run:

npm install
npm run dev

The application will then be accessible at the address seen in the console out-
put. The language of the application can be changed by replacing VITE_LAN-
GUAGE to either ’en’ or ’cz’ inside the .env.development file.

Backend

Before running the backend, make sure to have .NET 8 SDK installed on the
machine.

To run the Aphantasia backend, we recommend using Visual Studio and
following these steps:

1. Open the AfantazieServer.sln solution file in Visual Studio.

2. Right-click the AfantazieServer project and click on Manage User Secrets.

3. Copy the JSON with the connection string we provided in the database
setup section and paste it into the secrets.json file.

4. Set the AfantazieServer project as a startup project and run it.

The project can be configured in the appsettings.Development.json file, but it
is not necessary for the application to run.

Testing Data

Apart from adding testing data manually throught the appliaction or directly
inserting into the database one can also use the Afantazie.Tools project. It is a
.NET 8 console application inside the AfantazieServer solution we created to help
with various tasks regarding Afantazie development. Among other things, it can
generate random thoughts and users and add them to the database.

Before running the tool to generate thoughts, follow these steps:

58

1. Host and scaffold a database as described above.

2. Manually remove foreign key constraints from the ThoughtReferences table.
1

3. Create an appsettings.json in the root of the project. Its content should be
the same as the migrationsettings.json shown above.

Then, set the project as the startup project and run it. Again the tool wil
print the connection string and ask for confirmation after which it will present
several options to pick from. There are a few random data generators, but we
recommend using option 3 - ’Generate random rainbow thoughts’.

This option will generate random clusters of thoughts where each generated
thought has a set probability of being linked to a thought in a different cluster.
User will then be asked for various parameters - fill them in and let the tool run.
Once it finishes, the database will be filled with random clustered thoughts and
users with unique colors across the color spectrum.

6.2.2 Deploying Aphantasia
To host Aphantasia publicly, we recommend using a Linux server (We used

Debian 12.8).
Set up the database using the same steps as in the local setup. The database

can be hosted on the same server or on an external service (server or cloud).

Frontend

To prepare the frontend for deployment, first modify the .env.production file
in the root of the AfantazieWeb directory. Language and the backend URL need
to be configured. Here is an example of our configuration:

VITE_LANGUAGE=cz
VITE_URL=https://afantazie.cz

Then run the following commands in the root of the AfantazieWeb directory:
npm install
npm run build

This will create a dist directory with the compiled frontend code. Copy this
code to a public directory on the server.

Backend

To deploy the backend, first, modify the app settings.Production.json file at
the root of the AfantazieServer project. Here is an example of our configuration:
{

"ApplicationLanguage": "cz",
"JwtSecurityKey": "SECRET_KEY_HERE",

"ConnectionStrings": {

1This is necessary as the tool doesn’t generate the data optimally and violates these constraints.
They can be added back after the import but it is not necessary for the application to run.

59

"DefaultConnection": "DATABASE CONNECTION STRING"
}

}

In the JwtSecurityKey field, insert a secure string that will be used to sign
JWT tokens. In the ConnectionStrings field, insert the connection string to the
database. One can also change the language of the application by changing the
ApplicationLanguage field.

We recommend using Visual Studio IDE to build the backend. Create a new
publish profile and set the target runtime to ”Portable”. Then, publish the project
in a directory and copy the files to the server. Make sure to have the .NET 8
runtime installed on the server.

Finally, run the AfantazieServer.dll file with the following command:
dotnet AfantazieServer.dll

This way, the server will only run as long as the terminal is open. To run the
process in the background, we highly recommend using a program called tmux
(another alternative is program screen). Utilizing tmux makes it possible to run
the server in the background.

Nginx Configuration

As stated in Section 4.2.4 we use Nginx as a reverse proxy to reroute requests
to the backend and to force the meta.json file to be always returned. Here is how
we set up the Nginx configuration file:
server {

server_name www.afantazie.cz afantazie.cz;
root /www/hosting/afantazie.cz/www;

index index.php index.html;

include /etc/Nginx/sites-available/domains_conf/afantazie.cz.conf;
if ($scheme != https)
{

return 308 https://$host$request_uriis_argsargs;
}

location /api {
proxy_pass http://127.0.0.1:5000;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection keep-alive;
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;
proxy_set_header X-Forwarded -For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded -Proto $scheme;

}

location /hub {
proxy_pass http://127.0.0.1:5000;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;

60

proxy_set_header X-Forwarded -For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded -Proto $scheme;

}

location /meta.json {
add_header Cache-Control "no-cache, no-store, must-revalidate";
expires -1;

}
}

6.3 Administrator Documentation
This section is dedicated to the documentation of the Aphantasia administra-

tion.

6.3.1 Backend
To understand the architecture of the backend, see the detailed architecture

description in Chapter 4.2.2. There is not much to be done on the backend side
apart from the initial setup and deployment.

The application has an active console logging, and one can see the activity on
the site, including the number of currently active users, thoughts currently being
explored, as well as the creation of new thoughts.

6.3.2 Frontend
To understand the architecture of the frontend, see the detailed architecture

description in Chapter 4.4.1.

Graph Layout Algorithm Parameters

While running the Aphantasia’s frontend publically it is important to keep
in mind that the graph parametrization might become insufficient as the graph
grows. This is the main administration task on the frontend side - adjusting the
graph layout algorithm parameters.

• Forces: Pull force, push force, and gravity force, including maximum
allowed values and distance thresholds

• Gravity On: Boolean value that turns the gravity force on or off

• Link Distance: Controls the spacing between connected thoughts

• Momentum Dampening Divisor: Forces acting on thoughts are divided
by this number, resulting in a smoother with less jitter, but the graph will
be slower to stabilize.

• Stage Size: The size of the simulation container

• Radius Controls: Base radius, size multiplier (how much larger more-
referenced thoughts are), and maximum radius

61

• Simulation Falloff Time: Gradually slows down the GLA after each user
interaction (dragging or selecting thoughts and time sliding)

• Frames with Overlap: Allows newly appeared thoughts to overlap for a
given amount of frames

• Layout Caching Frequency: Specifies how often the layout is saved to
local storage

• Node Mass: Allows differently sized thoughts to have proportional influence
on each other, with maximum and minimum values also parametrized

• Backlinks Count Force Divisor: Reduces forces acting on highly con-
nected nodes

• Edges Appearance: Adjusts thickness and color of highlighted and un-
highlighted edges (edges leading in or out of the currently highlighted node)

• Animated Edges: Turns on animated edges feature (seen in Figure 4.10)

• Frames With Less Influence: New thoughts start with no influence over
the simulation and gradually gain it over time

62

7 Conclusion
In this thesis, we have presented a novel approach to social network content

presentation using a graph view instead of the traditional infinite feed. We
discussed the motivation and the potential benefits it might bring.

We have implemented a proof-of-concept web application called Aphantasia,
which utilizes such an approach, including a custom GLA implementation and a
rendering engine based on PixiJS. During the development, we have solved several
technical challenges regarding user management, server-client communication,
hosting, and, of course, graph rendering.

The finished application provides:

• Graph view able to render several hundred nodes at once

• Dynamic loading ensuring the capability to explore large graphs in order
of tens of thousands of nodes (and potentially much more)

• User management including registration and login

• User interface, including not just graph view but also pages with user
settings, post creation form, chat and rudimentary notifications

• Live preview of the graph view

We believe that we have proven graph view as a viable alternative to interact
with social media content, provided that the content structure is allowed to have
a form of DAG. To look again at the three drawbacks of infinite scroll design we
mentioned in the introduction:

• Echo chambers - Aphantasia’s graph view encourages exploration and
serendipity, which can help users break out of their echo chambers.

• Addictive design - Aphantasia’s graph view requires more user interaction
and engagement, which can help users avoid mindless consumption.

• Lack of autonomy - Aphantasia’s graph view allows users to decide which
thoughts to explore and how to navigate the graph.

We are satisfied with the result and believe the application is a good starting
point for further development.

63

Glossary
authX/Y - authentication and authorization, set of systems verifying user iden-

tity and granting access to resources .
32

BFS - breath first search - algorithm for traversing a graph while prioritizing
earlier visited nodes . 52, 56

business logic - the code that implements the business rules of a program (ie.
what the application is designed for) . 30

CitHep - dataset of citations between papers in the field of high-energy physics.
Contains 34546 nodes, 421578 edges and temporal data. . . 15, 17, 18, 52

code-first - a development approach where the database schema is generated
from the code, as opposed to the database-first approach 27, 30, 32

DAG - directed acyclic graph, a graph with directed edges and no cycles 13,
24, 65

dependency injection - a programming technique in which class instances
resolve their dependencies using a DI container set up during the startup .
30, 31

FDL - force-directed layout - a type of GLA that simulates physical forces
between nodes to determine their positions 17, 34, 38

FPS - frames per second - a measure of fluidity of animation and speed of a
simulation . 18, 26

GLA - graph Layout Algorithm - used for computing positions of nodes so that
they make a nice or useful diagram . 11, 28, 64, 65

graph - a set of nodes connected by edges . 15

JWT - JSON Web Tokens, a compact and self-contained way to securely transmit
information between parties as a JSON object . 39

local storage - web storage feature that allows JavaScript to store and retrieve
data in the browser betwen sessions . 39, 64

localization - adaption of a product to a specific locale or market (language,
currency, time format etc.) . 40

memory leak - a situation where a program fails to release memory it no longer
needs, leading to wasting memory and potentialy lower performance. . . 34

ORM - Object-Relational Mapping - a programming technique for converting
data between backend and database . 27

64

production (environment) - the instance of an application that is accessible to
its userbase, as opposed to development or testing environments . . . 41, 52

SHA256 - cryptographic hash function commonly used to securely hash pass-
words and tokens .
39

thought - a post on Aphantasia represented by a colored node in the graph view
24

tree - a graph with no cycles and exactly one path between any two nodes 13

Vite - frontend build tool that provides configuration and optimized production
builds . 17, 40

WebSockets - a two-way communication protocol allowing server sending mes-
sages to the client without client requesting them .
33

65

References
1. Wikitionary. Echo chamber wikipedia page. 2024. Available also from:

https://en.wikipedia.org/wiki/Echo_chamber_(media).
2. Wikitionary. Doomscrolling wikipedia page. 2024. Available also from:

https://en.wikipedia.org/wiki/Doomscrolling.
3. page, Wikitionary wikitionary. Algorithm. 2024. Available also from: https:

//en.wiktionary.org/wiki/algorithm#Noun.
4. yFiles. yFiles Demos - Layout styles. 2024. Available also from: https:

//www.yworks.com/demos/showcase/layoutstyles/.
5. Project, Stanford Network Analysis. High-energy physics citation network.

2024. Available also from: https://snap.stanford.edu/data/cit-HepPh.
html. Accessed: 2024-09-10.

6. Obsidian. Obsidian homepage. 2024. Available also from: https://obsidian.
md/.

7. image4n6. Graphview: At the beginning it starts with cool patterns, then
turns into total chaos, and then surprisingly structures emerge from the
chaos! (22k nodes). 2024. Available also from: https://www.reddit.com/
r/ObsidianMD/comments/1fyw2te/graphview_at_the_beginning_it_
starts_with_cool/.

8. Gephi. Gephi homepage. 2022. Available also from: https://gephi.org/.
9. pegerp. Large Steam network visualization with Google Maps + Gephi. 2012.

Available also from: https://forum-gephi.org/viewtopic.php?f=28&t=
2314.

10. Cytoscape.js. Cytoscape.js homepage. 2024. Available also from: https:
//js.cytoscape.org/.

11. Franz, Max. Wine and cheese graph - Interactive demonstration. 2024.
Available also from: http://www.wineandcheesemap.com/.

12. Franz, Max. Cytoscape.js Euler demonstration - GitHub repository. 2024.
Available also from: https://github.com/cytoscape/cytoscape.js-
euler.

13. Kapoor, Ritesh. Onion architecture. 2022. Available also from: https://
medium.com/expedia-group-tech/onion-architecture-deed8a554423.

14. PixiJS. PixiJS official React guide. 2024. Available also from: https://
pixijs.io/pixi-react/#1-create-a-new-react-project-with-vite.

15. Emery, Adam. PixiJS guide by Adam Emery. 2023. Available also from:
https://adamemery.dev/articles/pixi-react.

16. Zustand. Zustand homepage. 2024. Available also from: https://zustand.
docs.pmnd.rs/getting-started/introduction.

66

https://en.wikipedia.org/wiki/Echo_chamber_(media)
https://en.wikipedia.org/wiki/Doomscrolling
https://en.wiktionary.org/wiki/algorithm#Noun
https://en.wiktionary.org/wiki/algorithm#Noun
https://www.yworks.com/demos/showcase/layoutstyles/
https://www.yworks.com/demos/showcase/layoutstyles/
https://snap.stanford.edu/data/cit-HepPh.html
https://snap.stanford.edu/data/cit-HepPh.html
https://obsidian.md/
https://obsidian.md/
https://www.reddit.com/r/ObsidianMD/comments/1fyw2te/graphview_at_the_beginning_it_starts_with_cool/
https://www.reddit.com/r/ObsidianMD/comments/1fyw2te/graphview_at_the_beginning_it_starts_with_cool/
https://www.reddit.com/r/ObsidianMD/comments/1fyw2te/graphview_at_the_beginning_it_starts_with_cool/
https://gephi.org/
https://forum-gephi.org/viewtopic.php?f=28&t=2314
https://forum-gephi.org/viewtopic.php?f=28&t=2314
https://js.cytoscape.org/
https://js.cytoscape.org/
http://www.wineandcheesemap.com/
https://github.com/cytoscape/cytoscape.js-euler
https://github.com/cytoscape/cytoscape.js-euler
https://medium.com/expedia-group-tech/onion-architecture-deed8a554423
https://medium.com/expedia-group-tech/onion-architecture-deed8a554423
https://pixijs.io/pixi-react/#1-create-a-new-react-project-with-vite
https://pixijs.io/pixi-react/#1-create-a-new-react-project-with-vite
https://adamemery.dev/articles/pixi-react
https://zustand.docs.pmnd.rs/getting-started/introduction
https://zustand.docs.pmnd.rs/getting-started/introduction

List of Figures

1.1 Circular layout[4] . 9
1.2 Hierarchical layout[4] . 10
1.3 Radial layout[4] . 11

2.1 A common graph view of a small Vault in Obsidian 17
2.2 The first 3000 nodes of the CitHep dataset visualized in Obsidian 17
2.3 The first 3000 nodes of the CitHep dataset visualized in Gephi . . 18
2.4 CitHep dataset visualized in Gephi (34546 nodes) 19
2.5 A simple application in react + cytoscape rendering a simple graph 20
2.6 An official example of large graph rendering in Cytoscape.js (path

of 5000 nodes) . 20
2.7 The first 3000 nodes of the CitHep dataset visualized in Cytoscape.js 21

4.1 Aphantasia Database schema . 27
4.2 Aphantasia Backend Architecture 41
4.3 Aphantasia graph view at the end of the small graph development

stage . 42
4.4 The first 3000 nodes of the CitHep dataset visualized in Aphantasia

(before big graph solution) . 43
4.5 The logic flow of the big graph rendering solution 44
4.6 The frontend architecture of Aphantasia 45
4.7 The Welcome page and homepage of Aphantasia 46
4.8 The graph view on a mobile device - non-highlighted mode, half-

screen preview, and fullscreen preview, respectively 46
4.9 Floating titles in the graph view on desktop 47
4.10 Animated edges in the graph view 47
4.11 Aphantasia with the Czech production dataset in stabilized tempo-

ral layout (641 nodes in three time windows of length 300) 48
4.12 The entire dataset of afantazie.cz (641 nodes) in a single time window 49

5.1 A highlighted thought of the CitHep Dataset in Aphantasia . . . 51
5.2 Cithep dataset rendered in Aphantasia with 10000 on-screen thought

limit . 51

6.1 Aphantasia - Thought creation page 56
6.2 Aphantasia - User settings . 57

67

List of Tables

2.1 Comparison of Obsidian, Gephi, and Cytoscape.js 16

5.1 Comparison of Obsidian, Gephi, Cytoscape.js and Aphantasia . . 52

68

	Introduction
	Graph Layout Algorithms
	Circular Layout
	Hierarchical Layout
	Radial Layout
	Force-Directed Layout

	Related Software
	Obsidian
	Gephi
	Cytoscape.js
	Final comparison

	Design Analysis
	Intended Use
	Functional Requirements
	Graph View
	User Management
	Thought Creation
	Routing and Pages

	Non-functional Requirements
	Graph View UX
	Extendability

	Implementation
	Preparation
	Used Technologies and Libraries
	Plan of Execution

	Basic Web Application
	Database Schema
	Backend Architecture
	Initial Frontend Implementation
	Hosting and Server Management

	Small Graph Vizualization
	FDL Implementation
	Parametrization

	Big Graph Visualization
	Frontend Architecture

	Final List of Features
	AuthX/Y
	Pages
	Localization
	Custom Graph Rendering Engine

	Testing
	Graph View Performance
	Limits of the Graph View

	User Feedback
	Aphantasia Versus Related Software

	Documentation
	User Documentation
	Registering and Logging in
	Opening a Thought
	Graph View
	Creating a New Thought
	Settings

	Installation Guide
	Running Aphantasia Locally
	Deploying Aphantasia

	Administrator Documentation
	Backend
	Frontend

	Conclusion
	Glossary
	References
	List of Figures
	List of Tables

