Abstract

Aim:

The aim of the study is to investigate the effect of CO₂ on neurovascular coupling in response

to epileptiform activity after trancallosal electric stimulation in rats.

Methods:

Adult albino rats (250-350g, n=6) were anaesthetized with isoflurane and epidural silver EEG electrodes were implanted and fixed into the skull over sensorimotor cortices. To measure regional cerebral blood flow (rCBF) during epileptic activity a self-made metal holder for Laser Doppler Flowmeter (LDF) probe was fixed to thinned skull with dental acrylic. To measure arterial blood pressure (BP) and arterial blood gasses a plastic catheter was implanted into the common carotid artery. After postsurgical recovery animals were placed in a recording chamber. After 20 minutes of background recording effect of CO₂ on basal BP an rCBF was tested by inflating a mixture of $10\%CO_2$, $20\%O_2$ and $70\%N_2$ for 30seconds. To assess changes in neurovascular coupling a rat model for myoclonic seizures was used. Biphasic constant current suprathreshold stimulus (8Hz, 15s) was applied under normal or elevated CO₂ atmosphere.

Results:

Elevated CO_2 led to a significant increase of both regional cerebral blood flow and blood pressure. In addition, inhalation of $10\%CO_2$ during electrical stimulation of senzorimotor cortex (8Hz, 15s) caused significant increase in regional cerabral blood flow. Surprisingly, basal blood pressure did not increase after $10\%CO_2$ exposure during electrical stimulation of senzorimotor cortex. Transcallosal electrical stimulation produced cortical epileptic 1

afterdischarges which were paralleled by facial and fore limb clonic seizures. Elevated CO₂ reduced or completely blocked the stimulation-evoked epileptiform afterdischarges. **Conclusions:**

Our data suggest that application of CO_2 may be effective in the acute treatment of epileptic seizures. The effect of CO_2 might be explained by both decreased excitability due to tissue acidosis and elevated rCBF levels.

The project was supported by grant no. P303-10-0999 of ASCR.