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1 Introduction  

 

During the past decades several spectacular findings have been made in the field of 

immunology. Elucidating the functions of the antigen presenting cells (APCs) belong to the 

most important. Dendritic cells (DCs) represent a specific group of APCs with a unique 

ability to initiate primary immune responses. Despite the fact that, in vivo, they are very rare 

and difficult to isolate, DCs came very fast into the focus of scientific interests. Development 

of novel laboratory techniques facilitated a robust expansion of their research. With time it 

has been proven that DCs play a pivotal role in initiation, maintenance and control of the 

immune responses. The extraordinary features of DCs were soon investigated in human 

clinical trials, where DCs have been particularly used as vectors for vaccination protocols, 

especially in the treatment of tumors.  

However, DCs capability to polarize the outcome of immune response and the 

potential to induce or suppress immunity under specific circumstances led to the idea that they 

might be also used in the treatment of autoimmune and allergic diseases or in transplantation 

medicine as well.  

There is a need to stress that most of the knowledge has been obtained from the in 

vitro generated DCs, but advanced technological methods bring us the opportunity to study 

DCs directly in vivo. Multiparametric flow cytometry, two-photon microscopy, confocal 

microscopy and others shed some light on the DCs in vivo identification, quantification, in 

vivo trafficking and complex systemic interactions. Data acquired by in vivo monitoring 

reflect normal and various pathological conditions and they might be used as prospective 

diagnostic tools in medicine. 
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2 The immune system  

 

The immune system works as a highly sophisticated network of protein, cells, tissues 

and organs, that provides rapid, nonspecific and specific protective immune responses for 

body against attacks by “foreign” invaders or potentially its own altered cells. In jawed 

vertebrates the immune system can be divided into two functionally distinct parts: innate and 

adaptive. These two groups are not isolated but have complex interactions constantly going on 

between them. The innate immune system senses pathogens through pattern-recognition 

receptors (PRR), which trigger the activation of antimicrobial defenses and stimulate the 

adaptive immune responses1. The adaptive immune system, in turn, activates innate effectors 

mechanisms in an antigen-specific manner. However the innate and adaptive immunity deals 

with the molecular diversity of pathogens in fundamentally different ways, the narrow 

cooperation between the two components is essential for the efficient host protection. This 

linkage is mainly mediated through the antigen presenting cells.    

 

2.1 Antigen presenting cells 

 

Dendritic cells, macrophages and B-lymphocytes are the three main APC subtypes. 

Due to the contribution to the process of naïve T-lymphocyte priming DCs stand for the 

privileged position. However their morphology is sufficiently distinctive, and in fact the term 

“dendritic cell” has arisen from their characteristic shape (first applied by Steinman and Cohn 

in 1973 who discovered these cells in mouse spleen), the uniqueness among the other APCs is 

mainly determined by their functions2. Recent findings support that DCs are quite 

phenotypically heterogeneous, and their only common feature is the ability to migrate and 

effectively stimulate primary immune responses3. In comparison to other APCs, the 

stimulatory capacity of DCs is highlighting more folds efficacious. It has been shown that 

exclusively DCs are capable to stimulate naïve, undifferentiated T-lymphocytes4.  On the 

other hand, cells already activated during the primary immune responses can be re-stimulated 

in the presence of another APCs5. These facts led to the hypothesis, that DCs initiate the 

immune responses de novo, whereas other types of APCs participate in their amplification.  
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3 Dendritic cells 

3.1  Biological features 

 

DCs act as the sentinels of immune system residing in most peripheral tissues, 

particularly at sites of interface with the environment6, 7. In the absence of ongoing 

inflammatory and immune responses they constitutively patrol through the blood, peripheral 

tissues, lymph and secondary lymphoid organs. In peripheral tissues they take up self and 

non-self antigens, which are then processed into proteolytic peptides and loaded onto MHC 

class I and II molecules in process called antigen presentation. Constitutively, however, 

peripheral DCs present antigens quite inefficiently until a signal from pathogens, often 

referred to as a “danger signal”, induces DCs to enter a developmental program called 

maturation, which transforms dendritic cells into efficient APCs and T cell activators. 

Notably, soon after encountering a danger signal the efficiency of antigen uptake, intracellular 

transport, degradation and the intracellular traffic of MHC molecules are rapidly modified7. 

Peptide loading as well as the half-life and delivery to the cell surface of MHC molecules 

increases and the surface expression of T cell costimulatory molecules rises. Concomitant 

with the modifications of the antigen presentation abilities, maturation also induces massive 

migration of DCs out of peripheral tissues towards secondary lymphoid organs, thus allowing 

the interaction with T cells6. This is accompanied by the modifications in the expression of 

chemokine receptors, adhesion molecules, as well as profound changes in the cytoskeleton 

organization of DCs. In addition to antigen presentation, DCs also influence the outcome of 

immune responses, because different DCs subsets at different maturation stages express 

distinct surface molecules and secrete varying cytokines, thus determining selectively the type 

of induced immune response.  

 

3.2 Subsets of dendritic cells 

 

It has been presumed that several and often opposing roles of DCs cannot all be 

carried out at once by the same cell and different sets of DCs performing different functions 

should exist. Such specialized DC subtypes might represent different activation states of a 

single lineage with functional differences depending entirely on local environmental signals 

(Fig.1a), or alternatively the specialized DCs subtypes could be the products of entirely 
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separate developmental lineages. In this case the signals that determine lineage segregation 

would act earlier and the immediate precursors of the DC would already be separate and 

functionally committed (Fig.1b). So far it is not clearly known which model is the more 

probable, however it seems that the reality consists of a combination of both models with a 

large degree of DCs functional plasticity as the general feature.  

 

 
Figure 1 | Alternative models for the generation of functionally distinct dendritic cells subtypes. a | The 

functional plasticity model proposes that all DCs belong to a single hematopoietic lineage, the different subtypes 

of DCs being generated by local environmental influences on a relatively mature but plastic end-product cell. b | 

The specialized lineage model proposes that the different subtypes of DCs derive from early divergences in the 

developmental pathway, producing several distinct haematopoietic sublineages.  

iDC, immature DC; pDC, precursor of DC. 

Adapted from Nat Rev Immunology (Shortman, Liu, 2002) 

 

Distinct subtypes were initially more evident among mouse than human DCs, because 

of the availability of different murine lymphoid tissues and the expression on mouse DC of 

markers not present on human DCs. So far five murine DC subtypes have been identified and 

characterized by the combination of surface expression of CD8, CD4, CD205 and CD11b8-10. 

In terms of the mentioned development models it was important to know whether these DC 

subtypes were products of separate developmental lineages or different activation states of a 

single lineage. Past studies on the mouse DCs focused on the possible origin from separate 

haematopoietic precursors. The hypothesis was based on the findings that although most DC 

were thought to be of myeloid origin11, there was evidence that some DCs shared early 
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development steps with B cells and that the thymus DCs shared early steps of development 

with T cells12-14. Thus all CD8+ mouse DCs were thought to derive from lymphoid-restricted 

precursors, and all CD8− DC to derive from myeloid-restricted precursors, leading to the 

terms ‘lymphoid’ and ‘myeloid’ DCs. Later on it has been shown that this concept was not 

fully correct, because certain mice knockouts (c-kit−γc− and conditional Notch1), which 

could not form T cells, still produced thymic CD8+ DC15, 16. After myeloid and lymphoid 

restricted precursors were isolated from the bone marrow, it became evident that both 

precursors could produce all mature splenic and thymic DCs subtypes, albeit with some bias 

in the subset balance17, 18. Recent data with bromodeoxiuridine (BrdU) labeling studies 

showed that a degree of DCs sublineage commitment must occur downstream of the early 

haematopoietic precursor19. 

 Searching for the human homology is complicated by several facts. First of all, there 

are relatively few studies performed on freshly isolated tissue mature DCs. Second, blood is 

the only readily available source and finally human DCs lack the expression of CD8, thus the 

equivalent of mature mouse CD8+ DCs remains elusive. The only one comparable subset 

remained the human Langerhans-cell DCs characterized by the expression of CD1a, langerin 

and the presence of Birberck granules. 

However, in a few studies a straight isolation of immature DCs from lymphoid tissues 

was made and direct comparison with mouse DC subtypes could be performed. Splenic and 

tonsillar DCs isolated this way showed heterogeneity in the expression of CD4, CD11b and 

CD11c resembling the complexity of mouse splenic DCs. Recent studies on human thymic 

DCs make a stronger case for subset segregation, similar to that in the mouse20, 21. Most 

human thymic DCs are CD11c+CD11b−CD45ROlo and lack myeloid markers, so resemble 

mouse thymic CD8+ DCs. Many different studies support that DC populations identified in 

distinct human organs are quite heterogeneous in their cell surface markers expression. 

Heterogeneity probably reflects the different activation and differentiation stages of DCs22, 

but the specific phenotype is also affected by their anatomic localization. Human DCs have 

been identified in skin epidermis (Langerhans cells), in dermis (intersticial DCs), in spleen (in 

marginal zone and T-zones), in germinal centers, thymus, liver and also in peripheral blood.   

Despite this heterogeneity, so far there are two major accomplished DC subsets in 

human with clearly different functional and phenotypic properties. These two subsets are the 

plasmacytoid (pDC) and myeloid dendritic cells (mDC) (recently renamed as conventional 

dendritic cells (cDC)). Both populations can be identified in peripheral blood where they 

represent approximately 1% of the white blood cells (WBC).   
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• Human plasmacytoid DCs 

 In 1958 Lennert and Remmele discovered a cell type similar to plasma cells residing 

in the T cell zones of human lymphoid tissues. These cells lacked typical B and plasma cell 

markers23. Subsequently phenotypic identical cells producing large amount of IFN-α were 

identified in peripheral blood24. Later on it is has been shown that these are identical cell 

populations of plasmacytoid DCs25. The circulating precursors of pDCs lack the myeloid 

marker CD11c but express CD123, the receptor for IL-3 (IL-3R). IL-3 together with other 

maturation signals like CD40 ligand can induce the differentiation of the progenitors to 

phenotypic mature DCs25. Recently other specific surface markers of peripheral pDC have 

been identified. These were the BDCA-2 and BDCA-4 molecules and the chemokine-like 

receptor 1 (CMKLR1) 26-28. Currently an enormous effort is concentrated on the pDCs 

research. The main reason for that is the evidence that pDC preferentially induce Th2 

responses and  might play a role in certain immuno-pathological conditions29. 

 

• Human myeloid DCs 

MDC are heterogeneous cell population phenotypical different from pDCs.  MDC are 

derived from the myeloid peripheral blood precursors expressing HLA II-class molecules and 

lacking lineage markers characteristic for other hematopoietic cell lines (so-called lineage 

negativity). In contrast to pDC, mDC express high amounts of CD11c and lack the expression 

of CD123. As the mDC are also called the in vitro generated DC from myeloid precursors 

(monocytes).  

 

3.3 Differentiation of DCs in vitro 

 

Most of the knowledge about the biology and developmental origin of human DCs has 

come from the experiments with in vitro generated immature or precursor DCs. These studies 

led to the concept of distinct developmental pathways, although the correlation between the 

naturally occurring DCs and their in vitro generated counterparts is still not clear. There are 

three basic approaches which have been used to generate human DCs in vitro, however, the 

most commonly used precursors are the blood monocytes. In the presence of macrophage 

colony-stimulating factor (M-CSF) they differentiate in macrophages, but in the presence of 

GM-CSF and IL-4 they turn into DCs30-32. The final maturation to CD14− CD38+ CD86+ -

surface MHC-IIhi DCs is then achieved by stimulating with maturation signals such as TNF-α 
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or LPS.  

Notably, there is also another model of human monocyte-to-DCs transformation which 

(although still involves cell culture) mimics better the events in vivo. This model uses a layer 

of endothelial cells over a collagen matrix with the monocytes migrating across this barrier 

into the matrix thus resembling the entry into tissues33. Many of the monocytes remain and 

become the equivalent of tissue macrophages. However, some reverse direction and migrate 

back across the endothelial barrier, mimicking the transit from tissues to lymph; these 

transmigrating monocytes become DCs.  

To summarize all of the so far known facts, there are two hypothesized models of DCs 

subsets development. The older model presumes that the definitive phenotype is already 

predetermined in the very early stages of differentiation and the diversity of DCs subsets is a 

result of different development lineages. Contrary to this is the second model which takes in 

account the fact, that in some studies all DC subtypes could be generated independently to the 

origin of their precursor18. The second model is currently preferred and the idea of “functional 

plasticity” is more presumable. This model supports the hypothesis that all DCs differentiate 

from the same haematopoetic precursor and that under certain circumstances an already well 

defined subtype of DCs can transform into another. 

 

3.4  Antigen uptake and processing 

 

Dendritic cells were long believed to display low endo- and phagocytic activities. The 

primary observations pointed out their inability to take up antigens and despite the high MHC 

class II expression DCs were not considered as APCs. This statement lasted until the 

identification of phagocytic Langherans cells (LCs) as the precursors of some DCs in 

lymphoid organs. Beyond this, some of the bone marrow-derived DCs (at their early stage of 

development) were shown to internalize particulate antigens. These observations led to the 

theory that the maturation state of DCs is crucial in the process of antigen uptake34.  

Immature DCs have several features that allow them to capture antigens. DCs mainly 

use receptor mediated endocytosis, phagocytosis or macropinocytosis.  

Endocytosis is mediated through a variety of receptors. The most important are the Fc 

receptors (CD64 and CD32), C-type lectins (mannose receptor, DEC-205) and the scavengers. 

The receptor-mediated endocytosis allows the uptake of macromolecules through the 

specialized regions in the plasma cell membrane, termed coated pits. The process is initiated 
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by the signal in the cytoplasmic tail of the endocytic receptor. This part is recognized by the 

family of adaptor proteins responsible for the recruitment of clathrin lattices and further 

formation of clathrin-coated endocytic vesicles.  

Particulate and soluble antigens are efficiently internalized by phagocytosis and 

macropinocytosis, respectively. Both processes are actin dependent, require membrane 

ruffling and result in the formation of large intracellular vacuoles. Phagocytosis is generally 

receptor mediated, whereas macropinocytosis is rather a cytoskeleton dependent type of fluid-

phase endocytosis. DCs can phagocyte apoptotic or necrotic fragments with the involvement 

of CD36, αVβ3 and αVβ5 integrins35, 36. Important are also the complement receptors, since 

DCs are able to capture apoptotic particles coated with the iC3b fragments. Notably, 

opsonisation with iC3b was declared to inhibit the maturation of DCs, thus contributing to the 

maintenance of self-tissues tolerance37. 

Macropinocytosis represents the critical antigen uptake pathway of DCs. It’s an 

intensive process which in vitro occurs spontaneously and permanently and all of this even 

without the addition of stimulating factors (TNF, LPS, IL-1) otherwise necessary for other 

cell types38. Immature DCs constitutively take up antigens in peripheral tissues until they 

obtain the maturation signal. After that macropinocytosis stops and DCs migrate towards 

secondary lymphoid tissues to present the engulfed antigens39.  

Exogenous antigens captured by DCs enter the endocytic pathway of the cell. The 

internalized antigens are degraded by lysosomal proteases and presented to T cells on MHC 

class II molecules. Comparing to macrophages, DCs are protease-poor, resulting in a limited 

capacity of lysosomal degradation. This seems to be very important, because it allows the 

generation of longer peptide fragments which fit better into MHC class II molecules and the 

prolonged degradation enables an extended antigen presentation40.  

In addition to the basic concept of MHC-class I or II restricted antigen presentation, 

DCs are capable to present exogenous antigens onto MHC class I molecules by a 

phenomenon called cross presentation35. This process leads to an efficient priming of 

cytotoxic CD8 T lymphocytes and acknowledges the key role of DCs in the defense against 

viruses or other intracellular pathogens41.  
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4 Maturation of DCs 

  

A major process in the life cycle of DCs is termed maturation. Once started, it is 

irreversible and leads to the transformation of DCs into potent stimulators of T-cells.  The 

pioneering studies on Langerhans cells revealed the changes in antigen presenting 

characteristics of the cells during in vitro cultivation42, 43. This and other similar observations 

led to the hypothesis that DCs exist in two major functional stages – immature and mature.  

 

4.1 Maturation signals 

 

 DCs maturation can be induced by a variety of so called “danger signals”. These can 

be divided into three major groups. In the first group are the common structural motifs of 

pathogens – pathogen associated molecular patterns, second group contains the “danger 

signals” produced by the host and the last one is characterized by the signals mediated by 

activated lymphocytes. Despite the signals diversity, the purpose is always the same - helping 

the immune system to recognize pathogens or upcoming infection.  

The concept of the “danger signals” theory, declaring that their presence is requested for the 

efficient DCs activation and T cells priming, has been initially postulated by professor 

Matzinger in 199444. Danger signals can be detected with a variety of receptors where the 

important families will be described below. 

 

4.1.1 Toll-like receptors 

 

  The concept of the innate immune recognition is based on the detection of molecular 

structures unique to microorganisms via pattern recognition receptors. This theory was 

proposed by Professor Janeway several years ago45, however the direct evidence came with 

the discovery of toll-like receptors (TLRs) by Medzhitov in 199746. This crucial finding 

transformed the view on the system of innate immunity and its role in the host protection 

against pathogens. The discovery of TLRs has been preceded by the identification of the 

protein called Toll in the fruit fly Drosophila. Toll was described as the essential molecule in 

embryonal patterning47 and later on shown to be the key component in antifungal immunity48. 

Subsequently a homologous family of Toll receptors has been identified in mammalians46.  
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So far eleven TLRs were described. The first characterized mammalian TLR was the human 

TLR4 that functions as the signal-transducing receptor for LPS49. This remarkable 

observation encouraged an intensive research and identification of further TLRs. 

The TLRs are transmembrane proteins, which comprise of an N-terminal leucine-rich 

repeats (LRRs) and a cytoplasmic Toll-IL-1 receptor (TIR) domain. The extracellular 

sequences of TLRs create specific structures that might be directly involved in the recognition 

and binding of the appropriate ligands. 

The vertebrate TLRs can be grouped into six major families based on their sequence 

similarity. Members within each family recognize certain class of PAMPs. The most 

important agonists are summarized in tab.1.  Briefly, the TLR2 subfamily (which includes 

TLR1 and 6) recognizes lipopeptides, TLR3 dsRNA, TLR4lipopolysaccharide (LPS), TLR5 

flagellin, and the TLR9 subfamily nucleic acids (TLR7/8: ssRNA, TLR9: unmethylated 

CpG). Murine TLR11 was shown to recognize protease-sensitive molecules from 

uropathogenic bacteria and a protozoan profilin-like protein from Toxoplasma gondii, 

suggesting that this TLR family recognizes a protein ligand, like TLR5, and provides 

protection against protozoan pathogens. It has been shown, that TLRs can be also activated by 

host factors – TLR2 and TL4 senses heat-shock proteins, fibrinogen, components of 

extracellular matrix50, 51. 

Important point is the subcellular localization of TLRs which correlates with the 

nature of ligands rather than their sequence similarity. While TLR1, 2, 4, 5, and 6, located on 

the plasma cell membrane, recognize bacterial components, antiviral TLR3, 7, 8, and 9 are 

expressed in the intracellular compartments52. The intracellular expression of viral TLRs most 

likely limits reactivity to self-ligands53. Experiments defining various expression patterns of 

TLRs shed some light on both the functions of individual receptors and the functions of 

specialized cell types as well. For example, the plasmacytoid DCs express TLR7 and 954 

correlating with their ability to produce large amounts of type I interferons during viral 

infections.  
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Table 1 | Toll-like receptors and their ligands 

Adapted from Nat Rev Immunology (Akira, 2004) 

 

The extensive research of TLRs led to the detailed analysis of their extremely complex 

intracellular signaling transduction pathways. Briefly, after the ligand binding comes to 

homo- or heterodimerisation of the receptors resulting into conformational changes, which 

allow the binding of certain adaptor proteins. The first identified adaptor protein was MyD88 

(myeloid differentiation primary response protein)55. MyD88 is utilized by all TLRs, with the 

exception of TLR3. The association of TLRs and MyD88 recruits members of the IL-1 

receptor-associated kinase (IRAK) family. Two members, IRAK4 and IRAK1, are 

sequentially phosphorylated, causing them to dissociate from the receptor complex, and then 

associate with TRAF6. TRAF6 forms a complex with ubiquitin-conjugating enzymes to 

activate the kinase TAK1, which in turn activates transcription factors - nuclear factor (NF)-

κB and activator protein-1 through the canonical IkB kinase (IKK) complex and the mitogen-
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activated protein kinase pathway, respectively. NF-κB activation by ‘MyD88-dependent 

pathway’ results in the expression of inflammatory cytokine genes, including TNF-α, IL-6, 

IL-1β, and IL-12. Experiments on the MyD88–/– deficient mice revealed that there must be 

also another – so called MyD88 independent pathway.  In this pathway the adaptor protein 

was identified as TRIF and is required for the production of type I interferons and type I 

interferon-dependent genes downstream of these receptors56, 57. All of this data suggests that 

individual TLRs can mediate distinctive responses by association with a different combination 

of the adapter proteins52. The importance of TLRs signaling is supported by the observations 

where impaired TLRs or their signaling pathways led to various pathological conditions as 

will be described in the following chapters.  

 
Figure 2 | The MyD88-dependent and independent pathways in TLR4 signaling. (a) Schematic 

representation and (b) biological outcome of TLR4 signaling pathway. TLR4 can activate the MyD88-dependent 

pathway (blue arrows), which can also be stimulated by IL-1 and IL- 18 and ligands for other TLR family 

members. TLR4 also activates MyD88-independent pathways (orange arrows). For example, NF-κB activation 

can be induced, with delayed kinetics, in the absence of MyD88 and leads to induction of costimulatory 

molecules. Phosphorylation and nuclear translocation of IRF3 can occur in a MyD88-independent manner and is 

involved in IFN-inducible gene expression. In addition, in Kupffer cells, caspase-1 activation can be induced 

independently of MyD88 and results in mature IL-18 production.  

Adapted from Nat Immunology (Akira, 2001) 
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4.1.2 Other membrane receptors recognizing pathogen structures 

 

Another group of PRRs are the C-type lectins. C-type lectins are transmembrane 

receptors that bind carbohydrates through one or more carbohydrate recognition domains 

(CRD). CRDs have specificity for mannose, galactose or fucose structures, but recognition 

also depends on the carbohydrate branching and spacing. C-type lectins are highly expressed 

on immature DCs, however their expression decreases following the DCs maturation. This 

reflects their role in the antigen capture and presentation. Signaling from C-type lectins can 

induce different downstream reactions depending on whether they are activated in 

combination with TLRs or not. 

 The scavengers’ receptor family SR-A (SR-A I and II, macrophage scavenger 

receptors - MSR) have been defined as another PRRs. They bind a broad spectrum of 

polyanionic ligands like ds-RNA, LPS or LTA. Their importance in immunity was confirmed 

by mice knockouts, where higher susceptibility to certain pathogens as Listeria 

monocytogenes could be determined58. 

 

4.1.3  Cytoplasmic receptors recognizing pathogenic structures 

 

TLRs and extracellular PRRs are poised to detect pathogens that reside in the 

extracellular space, or that gain access to endomsomal/lysosomal compartments inside the 

cell. However many pathogens, most notably viruses, invade the cytosol, seemingly out of 

range of TLRs. Recognition of these pathogens is mediated by a variety of intracellular PRRs.  

 

• Caterpiller (NLRs) – NOD and NALP 

In addition to TLRs, a protein family called Caterpiller has emerged as another class of 

intracellular pathogen receptors. All NLRs contain a nucleotide-binding oligomerization 

domain (NOD) followed by a leucine-rich-repeat domain at the carboxy terminus. At the 

amino terminus, NLRs have one of the three basic domains and are thereby categorized into 

three subfamilies: a caspase-recruitment domain (CARD), present in proteins in the NOD 

subfamily; a pyrin domain, in the NALP subfamily; or a BIR domain (baculoviral inhibitor-

of-apoptosis-protein repeat-containing domain), in the NAIP subfamily. The N-terminal 

effector domain (CARD, Pyrin) allows the interaction with RIP2 protein kinase, which 

subsequently activates NF- κB and MAPK signaling pathways. The middle domain (NACHT, 
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NOD) plays the critical role in the regulation of protein oligomerization and the C-terminal 

domain comprises LRRs, which similarly as in the TLRs interact with the ligand. The 

Caterpiller family comprises two major groups of protein families – NOD and NALP.  

The well-known members of the NOD family are Nod1 and Nod2 which have been 

shown to recognize meso-diaminopimelic acid (meso-DAP)-containing molecules and 

muramyl dipeptide (MDP) respectively, both components of peptidoglycan. In addition to 

their functions in the host protection, NOD2 mutation has been associated with several 

autoimmune diseases, like Crohn’s disease or Blau’s syndrome59-61.  

The NALP proteins are involved in the induction of the inflammatory response mainly 

mediated by the IL-1 family of cytokines, which are synthesized as inactive precursors and 

need to be cleaved by the pro-inflammatory caspases. The caspases are activated in a 

multisubunit complex called the inflammasome, which is categorized according their 

composition and the involvement of a particular NALP or NAIP.  Interestingly, NALP3 

inflammasone can be in addition activated by host signals, like low intracellular potassium 

concentration as a result of stress or bacterial toxins62. Necrotic host cells which indicate 

tissue damage caused by infection or other stimuli also belong to the danger signals capable to 

maturate DCs.  

 

• Helicases similar to RIG (retinoic acid inducible gene 1) 

In addition to TLR 3, intracellular recognition of viruses can be mediated by different 

two types of viral nucleic-acid sensors. The RNA helicase-family proteins RIG-I and MDA5 

can detect viral RNA in the cytosol, whereas the recently identified DAI27 protein detects 

viral DNA. RIG-I and MDA5 recognize different types of viral RNA: single-stranded RNA 

containing 5’triphosphate and double-stranded RNA, respectively. These structural features 

are absent from cellular (host) RNAs, which contain either short hairpin structures, in the case 

of transfer RNAs and ribosomal RNAs, or a 5’-cap structure, in the case of messenger RNA. 

These structural differences allow discrimination between viral and self-RNAs. Activation of 

RIG-I or MDA5 results in the production of type I interferons (IFNs; IFN-α and IFN-β) and 

thereby the induction of antiviral immunity63, 64.  
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4.2 Indirect mechanisms of danger signals sensing 

 

DCs are capable to sense danger signals by several indirect mechanisms. An example 

of this is the detection of pro-inflammatory cytokines produced by various activated cells 

(macrophages, NK cells, NKT cells, mast and endothelial cells) during the presence of 

pathogens. Some of the phenotypic changes are due to auto- or paracrine functions of pro-

inflammatory cytokines and not as the result of direct TLRs activity. Pro-inflammatory 

cytokines produced by DCs transmit the information about pathogens to cells that do not have 

the appropriate PRRs65. TLRs activation can be further supported by the synthesis of other 

mediators like chemokines, prostaglandins, leukotriens and membrane-bounded molecules. 

Their activity can potentially lead to DCs maturation. However, recent data show that DCs 

activated by inflammatory cytokines are not fully mature because they are unable to perform 

the requested third polarization signal (described later). The best evidence is the IL-12p70 a 

crucial differentiating factor of Th1 cells. It has been shown, that its production can be 

generated only by PAMPs and never by cytokine action only65. 

 

4.3  Signals mediated by activated lymphocytes 

 

Activated T lymphocytes support DCs with several signals. CD40L on CD4+ T cells 

binding its receptor on DCs (CD40) triggers their maturation including the production of IL-

12p70. DCs activated this way are licensed for further CD8+ T cells priming66. Activated 

CD8+ T cells produce large amount of IFN-γ which together with CD40L optimize further 

DCs activation. This supports the Th1 and CTL responses against intracellular pathogens67. 

Activated T cells up-regulate the expression of TNF-related activation induced cytokine 

(TRANCE) which binds to its ligand RANK on DCs and initiates the production of Th1 

cytokines and anti-apoptotic bcl-XL protein68-70. 

NK, NKT and some γδT cells have also the potential to induce the DCs maturation by 

cytokine production or CD40L binding71, 72. 
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4.4 Maturation process – features of immature and mature DCs 

 

Maturation of DCs leads to complex changes that culminate into complete 

transformation from antigen capturing to antigen presenting cells. Related to this the most 

important are: 

 

• Morphological changes 

• Chemokine production and different chemokine receptors expression profiles  

• Loss of endocytic capacity and changed antigen presentation abilities 

• Up-regulation of co-stimulatory molecules expression 

• Cytokine and pro-inflammatory factors production  

 

4.4.1  Morphological changes of DCs 

 

Morphological changes accompanying DCs maturation include the loss of adhesive                                   

structures, cytoskeleton reorganization and acquisition of high cellular motility73. During the 

maturation DCs become a characteristic shape with long dendrites. An important controller of 

cytoskeleton remodeling is the actin-bundling protein p55 fascin74, highly expressed in blood 

DCs and interdigitating DCs located in the T cell areas of lymph nodes75, 76. 

 

4.4.2 Migration of DCs 

 
Migration of maturing DCs is based on a coordinated action of several chemokines 

and chemokine receptors. After the antigen uptake, inflammatory stimuli turn off the DCs 

response to MIP-3α (and other chemokines specific for immature DCs) through the receptor 

downregulation or desensitization. Consequently, maturing DCs escape from the local 

gradient of MIP-3α. On the other hand, upon maturation DCs upregulate a single known 

chemokine receptor - CCR7, and accordingly acquire responsiveness to MIP-3β (CCL19) and 

secondary lymphoid-tissue chemokine (SLC, CCL21)77. As a consequence of this DCs leave 

the inflamed tissues and enter the lymph stream, potentially directed by CCL21 expressed on 

lymphatic vessels. Mature DCs entering the draining lymph nodes, will be driven into the 

paracortical area in response to the production of CCL19 and/or CCL21 by cells spread over 
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the T cell zone. The arriving DCs might themselves become a source of these cytokines 

allowing amplification and/or a persistence of the chemotactic signal. Because these two 

chemokines can attract mature DCs and naive T lymphocytes, they are likely to play a key 

role in helping the Ag-bearing DCs to encounter specific T cells.  

 There is a need to stress that the classical concept of mature DCs migration is in 

contrast to the recent observations, where immature DCs bearing apoptotic fragments have 

been shown to migrate towards secondary lymphoid tissues, thus playing a possible role in the 

peripheral tolerance maintaining78. In addition to these observations, a quite high percentage 

of DCs encountered from secondary lymphoid tissues were shown to be derived from the 

circulating blood progenitors and not from peripheral tissues79.  

 

4.4.3 Antigen processing 

 

Characteristic for DCs during the maturation process is their loss of antigen capturing 

features38. However, recent observations indicate that the antigen uptake and processing of 

immature DCs are initially transiently increased by maturation signals 39. 

 Mature and immature DCs differ in the expression of MHC-peptide complexes. 

During the maturation process antigen presentation on MHC class I and II complexes 

increases rapidly. In immature DCs the newly synthesized MHC class II complexes are 

localized in MIIC compartments (MHC class II-rich compartments). Upon stimulation these 

complexes are generated more effectively80 and it comes to their translocation towards cell 

surface81. It is presumed that all of these processes are trying to ensure the preferential 

presentation of peptides derived from the antigens, which activated the PRRs. While 

immature DCs internalize the MHC class II molecules promptly, mature DCs express stable 

complexes for several days thus allowing an optimal interaction with T cells. Some of the 

TLR ligands have the ability to increase the cross presentation of exogeneous peptides on 

MHC class I molecules, so a specific activation of CD8+ T lymphocytes is possible82. 
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4.4.4 Co-stimulatory and adhesive molecules expression 

 

Mature DCs in contrast to their immature counterparts express high levels of co-

stimulatory molecules like CD80, 86, 83 and CD406. TLR ligands or other PAMPs are strong 

stimulators of such expression83. Co-stimulatory molecules are also up-regulated by pro-

inflammatory factors or various T cell signals. In addition, mature DCs express higher 

amounts of adhesive molecules involved in the DC-T cell interaction. The most important are 

the CD2, CD11a, ICAM-1, LFA-3 and β1 and β2 integrins22. 

 

4.4.5 Cytokine production 

 

Maturation of DCs triggers the production of several groups of pro-inflammatory 

(TNF-α, IL-1, IL-6) or immuno-regulatory (IL-12, IL-18, IFN-α, IL-6, IL-10) cytokines.  

The cytokine storm is very complex and supports the induction of pro-inflammatory 

responses or helps to negotiate the negative effects of regulatory T cells84. Notably, different 

TLR ligands trigger the production of divergent cytokines thus affecting the final phenotype 

of immune response. This emphasizes the critical role of PAMPs recognized by DCs.  

 

5 Dendritic cells - T cells interaction 

5.1 Immunological synapse 

 
DCs initiate or “prime” T cell responses in secondary lymphoid organs such as lymph 

nodes, spleen, or mucosal lymphoid tissues. Effective priming of naive T cells is manifested 

by their clonal expansion and terminal differentiation into effector CD4+ helper or cytotoxic 

CD8+ T lymphocytes.  After the antigen elimination a significant decrease of antigen specific 

T cells can be marked, however some of them might persist and differentiate into memory 

cells85. The strength of the T-cell response is dependent on many factors, including the 

concentration of the presented antigen on DCs, the affinity of the T-cell receptor for the 

corresponding MHC-protein complex, the maturation state of DCs, as well as the type of 

maturation stimulus. While T-cell stimulation by immature DCs leads to initial T-cell 

proliferation but only short-term survival (“abortive proliferation”), stimulation by mature 

DCs results in long-term T-cell survival and differentiation into memory and effector T cells.   
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5.2  Signals delivered by DCs to T cells 

  

T cells activation by DCs is a step-fold process. DCs provide the T cells with three 

basic signals.  

5.2.1  Signal 1: antigen specific signal  

 

Signal 1 is the antigen-specific signal that is mediated through T-cell receptor (TCR). 

If performed alone it is thought to inactivate the naïve T cells by anergy, deletion or co-option 

into a regulatory cell fate (T regulatory cells - Tregs). In addition to this, it is known that the 

antigen concentration affects the final phenotype of the response. While higher antigen levels 

lead preferentially to Th1 response, lower concentrations mostly prime the Th2 responses86. 

The avidity of TCR-MHC-peptide interaction seems to be important as well, because if too 

strong, the internalization cycle of TCR decreases, new TCR complexes arise slowly and the 

DCs stimulatory capacity reducis87, 88.  

 

5.2.2 Signal 2: co-stimulation  

5.2.2.1 Co-stimulatory receptors of CD28 family 

 
Initiation of protective immunity requires T-cell co-stimulation, because if absent,      

T helper cells might become anergic and induce tolerance. The most important co-stimulatory 

molecules are CD80 (B7.1) and CD86 (B7.2) expressed on DCs which interact with CD28 on 

T cells. Co-stimulation through CD28 amplifies and stabilizes the phosphorylation of tyrosine 

motifs and attracts other proteins and kinases to the signalization complex89. Initially it has 

been proposed that the second signal was exclusively performed by CD80/86 binding the 

CD28, however, recent data show that the situation is proving to be much more intricate since 

other new B7 family members have been identified. The second signal is thus created by the 

summation of all positive and negative signals from various co-stimulatory molecules and 

their corresponding receptors.  
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5.2.2.2  TNF family members 

 

TNF family members - 4–1BBL (CD127L) and OX40L are expressed on maturing 

DCs. 4–1BBL has been described as the crucial player of the long-term expansion and 

persistence of CD8π memory T cells. OX40L stimulates helper T cells to migrate towards B 

cell follicles during the T-dependent antibody responses. On the other hand, BAFF, Blys, and 

APRIL are TNF-like molecules that allow DCs to stimulate T-cell independent antibody 

responses.  

 

5.2.3 Signal 3: cytokines, polarizing factors 

 

Signal 3 is the polarizing signal that is mediated by various soluble or membrane-

bound factors, such as interleukin-12 (IL-12) and CC-chemokine ligand 2 (CCL2), that 

promote the development of Th1 or Th2 cells, respectively. The nature of signal 3 depends on 

the activation of particular PRRs by PAMPs or tissue factors (TFs). Type 1 and type 2 

PAMPs and TFs can be defined as those that selectively prime DCs for the production of high 

levels of Th1-cell-polarizing or Th2-cell-polarizing factors. Whereas, the profile of T-cell-

polarizing factors is primed by recognition of PAMPs, optimal expression of this profile often 

requires feedback stimulation by CD40L expressed by T cells after activation by signals 1 and 

2.  It is now clear that cytokines such as interleukin-12, IL-18 and IFNα which are produced 

by DCs, can bias CD4+ T-cell priming towards a pro-inflammatory T helper 1-cell fate. These 

cytokines can act directly on newly activated T cells and, indeed, their production by DCs is 

often amplified by positive-feedback signals that are provided by the differentiating T cells. 

These cytokines can also activate natural killer (NK) cells, which produce IFNγ and indirectly 

promote the same type of immunity. It is also thought that DCs can promote Th2-cell 

responses, perhaps by selectively expressing members of the Jagged family of Notch 

ligands90, 91. In addition, DCs have been implicated in the induction of CD4+ T-cell 

differentiation into alternative cell fates, including regulatory cells or the newly discovered 

IL-17-producing CD4+ T cells. 
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5.3  Impact of DC maturation status on T cells responses  

 

T cell response characteristics to a particular antigen are affected by the group of 

factors acting at the time point of the antigen recognition by DCs. The final T cells fate then 

depends on the quality and quantity of the signal delivered from the DCs together with the co-

stimulatory molecules and cytokines produced by DCs or other cells as well. All these factors 

generate a specific microenvironment around the immunological synapse (described 

previously).  So far most of the researchers accept a slightly modified form of the original 

DCs maturation model in which mature immunogenic DCs can induce Th1-cell 

differentiation, Th2-cell differentiation and/or CTL priming, depending on the nature of the 

maturation signal they received, as well as the constraints imposed by ontogeny and/or 

environmental modifiers. 

 

6 Dendritic cells and peripheral tolerance 

 

There is now ample experimental evidence that DCs in the steady state — that is, in 

the absence of deliberate exposure to maturation signals — can tolerize peripheral CD4+ and 

CD8+ T cells by inducing deletion, anergy or T regulatory cells generation92. It is thought that 

this represents an important physiological process designed to purge the peripheral T-cell 

repertoire of those autoreactive T cells that escaped thymic deletion and that might otherwise 

be activated by immunogenic mature DCs co-presenting self and foreign antigens during an 

infection93. However, it should also be noted that antigen presentation by steady-state DCs 

need not result in T-cell inactivation and, in some instances, can result in immunity. 

Nevertheless, it is clear that negative selection in the thymus is not sufficient to eliminate all 

potentially pathogenic autoreactive T cells, because mice in which the development or the 

action of regulatory T cells is compromised often develop autoimmunity.  

The exact pathways how the “tolerogenic” DC induce the generation of Tregs cells are not 

fully understood.  One of the most recent discussed mechanisms is the local concentration 

decrease of amino acid tryptophan mediated by IDO (indoleamine 2,3-dioxygenase enzyme) 

expressed on tolerogenic DC. T cells, especially the activated ones are sensitive to 

trryptophane absence and under these conditions they die or preferentially differentiate into T 

regulatory cells. In addition, Tregs through CTLA-4:CD80/CD86 interaction can induce 

further tolerogenic DCs, thus amplifying the reaction94, 95. Another mechanism is the IL-10 
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production of tolerogenic DC or the production of other suppressive factors which promote 

the differentiation to Tregs, however, many others still need to be revealed. 

 

7 Extending dendritic cells biology into medicine 

 

Given the central role of DCs in controlling adaptive immunity, they are logical targets 

for many clinical situations that involve T cells: transplantation, allergy, autoimmune 

diseases, resistance to infections and to tumors, immunodeficiency and vaccines.  From many 

areas of interest, this review focuses only to those that are connected to experimental studies 

presented in this thesis.   

 

7.1 Dendritic cells in vivo as potential diagnostic biomarker 

 

DCs have been proved to play an important role in various diseases including cancer, 

autoimmunity, allergy, or infection96-98. Their in vivo monitoring during the steady state and 

pathological conditions represents a potential direction in diagnostic medicine. From the 

technical and ethical point of view, blood is the only readily source for such monitoring. 

Novel laboratory techniques allowed DCs identifying in peripheral blood where two major 

DCs subsets could be found. These are the plasmacytoid and myeloid DCs (described in 

previous chapters) characterized as CD45+/lineage-/HLA-DR+/CD123+ and CD45+/lineage-

/HLA-DR+/CD11c+, respectively. In addition to the identification and quantification of 

circulating DCs subsets, multi-color flow cytometry permits a simultaneous analysis of 

further surface or intracellular markers; like chemokines, co-stimulatory molecules, cytokines, 

etc., thus allowing a more detailed analysis. Data acquired by in vivo monitoring revealed 

different numbers of circulating DCs subset under various pathological conditions. Several 

diseases including cancer were associated with decreased numbers of circulating DCs, where 

some of them even corresponded with the disease stage99. It has been shown, that treatment 

modalities, especially the immunosuppressive agents have a profound impact on the 

circulating subsets. The decreased circulating DCs numbers have been show to correlate with 

the devolvement of severe post-transplant complications like acute graft versus host disease 

(aGVHD)100, 101. Taken together, although at their early stages, these studies show that an 
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important part of diagnostic medicine is developing and further research in this field needs to 

be performed.  

 

7.2 Dendritic cells in organ and bone marrow transplantation 

 
DCs play an important role in the outcome of solid organs or haematopoietic stem cell 

transplantation. It is important to note that in stem cell transplantation, the major alloreactivity 

is mediated by the graft immune system, with both donor and recipient DCs playing a role in 

antigen presentation, however, recipient DCs were defined as the key initiators of T-cell-

induced GvH reactions102. By contrast, in solid transplantation, the major alloreactivity is 

mediated by the host immune system, with donor DCs or ‘passenger APCs’ playing a 

transient, however not negligible role in antigen presentation. Immunosuppressive drugs in 

current clinical use have been shown to act on the rejection-inducing DCs as well as the 

rejecting T cells, however their limitations and side effects are well known. The complete 

mechanisms have yet to be pinpointed to explain the maturation and migration of DCs that 

accompany transplantation. From the clinical point of view, it seems reasonable to propose 

that strategies to block some of the DCs functions during transplantation will promote 

acceptance. Recent discoveries showed that DCs in grafted tissues could regenerate locally, 

thus providing a long-term source of antigen to stimulate rejection103. In this light, alternative 

pathways to use DCs to induce transplantation tolerance are being assessed. So far, several 

approaches have been tested to promote graft survival or specifically suppress the unfavorable 

immune reactions. One of them involves the activation of recipient natural killer cells, which 

reject donor DCs in tissue culture models and in vivo. Another pathway is to induce DCs to 

become tolerogenic, for example, to express the tolerogenic ILT3/ LILRB4 molecule, or to 

induce graft-specific FoxP3 Tregs to suppress graft-rejecting T cells104. In haematopoietic 

stem cell transplantation, regimens that lead to recipient DCs depletion are currently being 

tested in the clinic. 

 

7.3 Dendritic cells and TLRs signaling in primary immunodeficiencies 

 

TLRs mediated antigen recognition has been shown to play a critical role in protective 

immunity in vivo. DCs equipped with a broad spectrum of TLRs thus represent the key 

components of such sensing. The essential importance of functional TLRs has been already 
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shown in mice knockouts where diverse infectious phenotypes, depending on the TLR-

pathogen combination could be observed.  Based on this, human analogues with impaired 

TLRs sensing or transduction were searched. Anhidrotic ectodermal dysplasia with 

immunodeficiency (EDA-ID) belongs to the primary immunodeficiencies (PID) where 

association with impaired TLRs signaling was clearly defined105, 106. The infectious phenotype 

of these patients is characterized mostly by infections with encapsulated pyogenic bacteria, 

such as Haemophilus influenzae, Streptococcus pneumoniae, or S. aureus. The described 

genetic cause associated with the X-linked dominance was identified in the NF-κB essential 

modulator (NEMO, also known as IKK-γ) gene. Important was that identification of NEMO 

defined a completely new group of PIDs, marked by impaired NF-kB activation. Further 

investigation revealed a hypermorphic mutation in the IκBα subunit associated with the 

autosomal dominant form of the disease107.   

In 2003, Casanova and his colleagues first reported three children with autosomal 

recessive amorphic mutations in interleukin-1 receptor-associated kinase 4 (IRAK4)108. 

IRAK-4 plays a crucial role downstream of individual TLRs and IL-1R receptors and 

upstream of TNF receptor-associated factor-6 (TRAF-6). Comparing to the EDA-ID, IRAK4 

deficient patients are characterized with a purely immunological syndrome. The susceptibility 

to a narrow range of pyogenic bacterial infections (mostly caused by Streptococcus 

pneumoniae and S. aureus) become increasingly rare with age resembling a level of 

redundancy in TLR-mediated immunity. 

Casanova’s group also described a mutation in the TLR3 and UNC-93B protein, both 

manifested with herpes simplex encephalitis (HSE)109, 110.  Children who lacked functional 

UNC-93B   (an endoplasmic reticulum protein required for TLR signaling) fail to signal 

through TLR7, TLR8, and TLR9 and displayed impaired TLR3-dependent interferon -α, -β, 

and –λ production as well. In the case of TLR3 mutation the defect has been defined in the 

region thought to be critical for dsRNA binding.  

X-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by loss-

of-function in Bruton´s tyrosine kinase (Btk). Btk signaling has been shown to be crucial in 

the development, activation, and survival of B cells; however, several pieces of evidence 

indicated that Btk is a component of Toll-like receptor (TLR) signaling pathways. The recent 

studies provided by our group revealed an impaired TLR8 signaling upon stimulation with 

ssRNA, thus providing an explanation for the susceptibility to often fatal enteroviral 

infections in XLA patients111. 
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7.4 Dendritic cells and immunosuppressive agents 

 
Immunosuppresive agents are well known for their capacities to inhibit lymphocyte 

activation and proliferation. In recent years, several studies have proved that these otherwise 

diversely acting agents also affect the development and functional immunobiology of DCs, in 

vitro and in vivo. Given the central role of DCs in immunity and tolerance, it is important to 

know these effects and to use the possible advantages of their pharmacological modulation.  

From the group of anti-proliferative drugs (purine nucleotide biosynthesis inhibitors) 

azathioprine (AZA) and mycophenolate mofetil (MMF) are the mostly used. AZA and MMF 

have been shown to have immunosuppressive effects on T cell allostimulatory capacity of 

human epidermal LCs and bone marrow (BM)-derived mouse DCs, respectively112, 113. In 

addition, Mehling and his group demonstrated the impairment of the antigen presenting 

capacities of LCs following chronic MMF treatment in vivo.  

The widely used group of calcineurin inhibitors has been also shown to have profound 

effects on DCs functions.  Cyclosporin A (CsA) impairs the allostimulatory capacity of in 

vitro generated mouse BM-derived DCs by downregulation of their surface costimulatory 

molecule expression. Recently, Matsue and his colleagues reported a bi-directional DC-T cell 

interaction blockage in TCR transgenic mice following antigen presentation114. With regard to 

mouse LCs, CsA negatively affects their antigen presenting capacity in vitro and the capacity 

to induce contact hypersensitivity reactions in vivo as well.  Upon maturation with TNF α or 

LPS, human DCs treated by CsA showed an inhibition of co-stimulatory molecules 

expression and T cell allostimulatory capacity. Tacrolimus (FK506), another drug from the 

calcineurin inhibitor group directly affects the DCs functions. FK506 suppresses GM-CSF-

stimulated growth of mice bone marrow mDCs without affecting the MHC class II or co-

stimulatory molecules expression. In addition, tacrolimus blocks all changes that result from 

the mouse bi-directional DC-T cell interaction. The effects on human monocyte-derived DCs 

have been showing some discrepancies.  Most of the studies do not show any effect of FK506 

when added to cultures during maturation, however, some experiments proved reduced 

expression of CD83, decreased T cell stimulatory capacity and cytokine production. 

Tacrolimus is often used as topical agent. In has been shown that FK506 has effects on 

epidermal DCs. In these cases a decreased expression of IgE receptors on both LCs and DCs 

was observed115.  Rapamycin (RAPA), structurally resembling FK506 suppresses the 

functional activation and endocytosis of BM-derived DCs in vitro and in vivo.  In reports by 

Chiang, RAPA-treated BM-derived DCs had markedly impaired ability to induce antigen-
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specific cytotoxic T cell activities and exhibited decreased IFN-γ expression through the 

inhibition of Stat4 activation pathway. In human DCs, RAPA induces apoptosis, impairs the 

receptor-mediated endocytosis, co-stimulatory molecules expression and the allostimulatory 

capacity.   

Gluccocorticoids (GC) are the mostly used immunosuppressives. So far, there are 

more than 50 reports to date regarding the influence of GC on DCs, however new discoveries 

are still appearing. It was shown that the presence of GC in cell cultures strongly affected the 

phenotype of monocytes-derived DCs116. Controversial reports were published regarding the 

endocytic capacity of GC-treated DCs and their ability to induce T cell stimulation. Several of 

them showed an unchanged stimulatory capacity in contrast with other authors. The main 

reason for these conflicting data are the different maturation stages of DCs, drug 

concentrations and exposure times used in the experiments117. 

In addition, to the previously described mostly used agents, a variety of other drugs 

have been shown to inhibit DCs maturation and function. Among them are aspirin, vitamin D 

and N-acetyl-L-cysteine. 
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8 Aims of the thesis 

 

The aim of this thesis was to gain insight into the biology of human dendritic cells in 

the context of clinical immunology. The results of the thesis are presented in the form of three 

original articles studying the role of DCs in clinical medicine from different aspects.   

 

In the first study we analyzed the pattern of DCs reconstitution after allo BMT and 

characterized the impairments of DCs homeostasis in the case of acute GVHD.  

 

Second study identifies a defect in the function of myeloid DCs in patients with X-

linked agammaglobulineamia, a primary immunodeficiency.  

 

Last study describes the modification of DCs function by the most frequently used 

group of immunosuppressive drugs, glucocorticoids. In this study, we identify DCs as 

important targets of glucocorticoids in vivo and characterize the functional consequences of 

glucocorticoids treatment on DCs both in vitro and in vivo.  
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9 Results and discussion 

 
Results of the thesis have been summarized in three manuscripts that are shown in 

their original form, as published in the international scientific journals. Preceding comments 

resume and discuss the main points of the work and explain their importance. 

 

9.1 Kinetics of dendritic cells reconstitution and costimulatory molecules expression 

after myeloablative allogeneic haematopoetic stem cell transplantation: implications 

for the development of acute graft-versus host 

 
Allogeneic hematopoetic stem cell transplantation (HSCT) with myeloablative 

conditioning represents a unique opportunity to monitor the kinetics of reconstitution of DCs 

and their dynamics in distinct pathologies. In this study we extensively analyzed kinetics and 

pattern of circulating DCs subsets reconstitution after myeloablative HSCT. As DCs play a 

major role in the pathogenesis of acute graft versus host disease (GVHD), we separately 

analyzed patients who developed acute GVHD and compared this cohort to group with 

uncomplicated posttransplant course. In our study, peripheral blood DCs were monitored from 

the earliest phase of hematopoetic reconstitution until day 365 after HSCT. Our results 

showed that both myeloid DCs and plasmacytoid DCs appeared at earliest stages after 

engraftment and relative numbers within white blood cells compartment peaked between days 

19-25 after HSCT. Their proportion then gradually declined and absolute numbers of both DC 

subsets remained lower for the whole follow-up period when compared to healthy age 

matched controls. Expression of costimulatory molecules, especially CD83 and CD86 

transiently increased between days 15 and 35 and then went back to low steady state levels. 

Interestingly, patients who developed acute graft-versus-host disease had significantly lower 

numbers of circulating DCs whereas the decrease in DC counts preceded the onset of clinical 

symptoms by at least 24h and was independent of corticosteroids administration. Together 

with recently published studies, this study provides further insight into the biology of DCs in 

the settings of allogeneic HSCT and reveals quantification of plasmacytoid and myeloid DCs 

as a potential biomarker for the prediction of acute GVHD development. 
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9.2 Impaired Toll-like receptor 8–mediated IL-6 and TNF-α production in antigen-

presenting cells from patients with X-linked agammaglobulinemia 

 
The critical role of Bruton tyrosine kinase (Btk) in B cells has been documented by the 

block of B-cell development in X-linked agammaglobulinemia (XLA). However, less is 

known about Btk function in myeloid cells. Several pieces of evidence indicate that Btk is a 

component of Toll-like receptor (TLR) signaling. We analyzed whether Btk deficiency in 

XLA is associated with an impaired dendritic cell compartment or defective TLR signaling. 

We analyzed the expression of TLRs 1 to 9 on myeloid DCs generated from XLA patients 

and evaluated their response to activation by specific TLR agonists. We show that XLA 

patients have normal numbers of circulating DCs. Btk-deficient DCs have no defect in 

response to stimulation of TLRs 1/2, 2/6, 3, 4, and 5 but display a profound impairment of   

IL-6 and TNF-α production in response to stimulation by TLR-8 cognate agonist, ssRNA. 

These findings may provide an explanation for the susceptibility to enteroviral infections in 

XLA patients. 
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9.3 Glucocorticoids severely impair differentiation and antigen presenting function of 

dendritic cells despite upregulation of Toll-like receptors 

 
In this study, we investigated the effect of clinically widely used glucocorticoids (GC) 

on the multiple characteristics of DCs. Despite their wide use in the treatment of many 

autoimmune, inflammatory and allergic diseases, the complex cellular and molecular 

mechanisms underlying GC effects are not completely understood. Given the crucial role of 

Toll-like receptor triggering for the initiation of DCs maturation program, we analyzed the 

expression of TLR 2, 3, 4 by GC-treated DCs.  We show that presence of GC leads to the 

impairment of DC function at two levels: First, GC during DC differentiation skew their 

development into a qualitatively distinct population incapable of inducing the efficient 

immune response (high production of IL-10, whereas no production of IL-12 p70 was 

detected). Second, GC presence during the process of maturation impairs the quantity, that is, 

extent of this process (significantly reduced DC IL-12 p70, TNF production and T cell 

stimulatory function). Despite the fact that GC increased expression of TLR2, 3 and 4 on DC, 

their stimulation with TLR-derived signals did not induce maturation.  

To extend our in vitro findings, we analyzed the distribution of DC subsets in the 

blood of patients treated with high-dose corticosteroids. Administration of high-dose GC to 

the patients with systemic autoimmunity induced a decrease of circulating myeloid DCs and 

abrogated plasmacytoid DCs. These findings provide further insights into the mechanisms of 

GC immunosuppressive functions and reveal additional mechanisms of their therapeutic 

efficiency. 
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10 Concluding remarks 

 
 

The field of dendritic cell biology is robust, with many newly recognized functions in 

their control of immunity and tolerance. There is also no shortage of mysteries and 

challenges. DCs own extraordinary features, that allow them either intensify or subdue T-cell 

responses, depending on whether resistance or tolerance needs to be increased. At the present 

time, DCs biology provides opportunities to study some of the most challenging areas of 

medicine. The biology of DCs is ready to be extended to dissect disease pathways and to 

direct its prevention and treatment. Despite the obstacles to research in patients, now we have 

the knowledge and tools to think systemically about diseases, plan their therapies, and 

investigate how humans respond. DCs are an early player in disease development and an 

unavoidable target in the design of treatments. If we take in account that immunology, 

including T-cell-mediated immunity, has a central role in understanding how diseases 

develop, therapies aimed at the upstream events initiated by DCs have their rationale. 

In our studies we have been trying to answer some of the questions that might bring 

new insights into the understanding of DC roles in immunity and diseases. We have translated 

novel identification strategies into several parts of medicine. Using multicolor flow cytometry 

we have developed a method for identification of DCs in peripheral blood with the 

simultaneous monitoring of their co-stimulatory molecules. This method allowed an extensive 

monitoring and analysis of DCs subsets following the allogeneic-HSCT. Interestingly, DCs 

have been shown to reconstitute in the early stages after the transplantation, however their 

decline and low numbers could be observed during the further follow-up period comparing to 

healthy controls. We have detected two completely distinct DCs reconstitution patterns 

regarding the development of acute GVHD, where patients with this complication had 

significantly lower number of both DC subsets and this even prior the development of clinical 

symptoms and application of high-dose steroid therapy. These results show that monitoring of 

DC might have predictive value for in the diagnostics of aGVHD. 

In our second study we analyzed the critical role of Btk function in myeloid cells in 

XLA patients, whilst several evidence indicated that Btk might be a component of Toll-like 

receptor signaling. We have analyzed whether Btk deficiency in XLA could be associated 

with an impaired dendritic cell compartment or defective TLR signaling. Our data revealed a 

profound impairment in IL-6 and TNF-α production in response to TLR-8 cognate agonist 
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ssRNA stimulation. These findings may provide an explanation for the susceptibility to 

enteroviral infections in XLA patients. 

In the third study we have complexly analyzed the effects of widely used GC onto DC 

functions. We have shown profound impaired T cell stimulatory capacities and abrogated pro-

inflammatory cytokine production, despite an increased expression of several TLRs. We have 

also revealed that DCs treated by GC fail to mature upon TLR-derived stimulation. Our in 

vitro findings have been extended by in vivo analysis, where decreased circulating myeloid 

and abrogated plasmacytoid DCs counts could be measured. These data provide further 

insights into the mechanisms of GC immunosuppressive functions and reveal additional 

mechanisms of their therapeutic efficiency. 
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