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1. Objective 
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The aim of this thesis is to summarize the most important mechanisms that can 

contribute to the development of a resistance to platinum drugs (i.e. clinically used 

cisplatin, carboplatin and oxaliplatin; this essay does not consider agents that are not 

in clinical use at this time). 

This work focuses especially on the resistance caused by decreased influx and 

increased efflux of platinum drugs (diminished accumulation), detoxification by 

glutathione and metallothionein, improved repair of DNA lesions and enhanced 

tolerance to DNA-Pt adducts. For each of these intracellular mechanisms of resistance 

this essay tries to describe presumptive mechanism of action, importance in clinic and 

briefly assessed possibilities of circumventing resistance. 
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2. Introduction 
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Although the first platinum drug, cisplatin [cis-diamminedichlorplatinum (II)] (Figure 

1) was initially described by M. Peyrone in 1845 [1], its biological activity was 

discovered more than 100 years later. In 1965, Rosenberg and co-workers reported 

that the cytostatic effect induced by electric fields on cultures of Escherichia Coli was 

due to the formation of cisplatin and its corresponding tetrachloroplatinum(IV) analog 

by electrochemical reactions on platinum electrodes [2]. First preclinical pharmacology 

studies in 1969 have approved cisplatin antitumor properties [3]. Cisplatin is now in 

widespread use for the treatment of variety of human malignancies. However, many 

tumors are intrinsically resistant, and the development of acquired resistance during 

the course of treatment of initially sensitive tumors is a common occurrence that 

constitutes a major obstacle to the curative use of this drug [4]. Another important 

obstacle is severe side effects of which nephrotoxicity and peripheral neurotoxicity are 

the most serious [5, 6] (Figure 2) and limit its curative potential. Nephrotoxicity is 

primarily due to uptake by the proximal tubule cells of the nephron, with uptake by 

other cells having a lesser effect [6]. Nephrotoxicity has largely been controlled by 

diuretics and pre-hydratation of patients, such that neurotoxicity has now become the 

dose-limiting side effect.  These pharmacological disadvantages stimulated the search 

for other platinum analogues with improved pharmacological properties. A large 

number of platinum analogues have been synthesized since cisplatin cytostatic activity 

was discovered but only a few are in clinical use. 

Carboplatin [cis-diammine-1, 1-cyclobutanedicarboxylate platinum(II)] (Figure 1) is 

a second generation analogue. It has the same mechanism of action as cisplatin, is 

cross-resistant and forms similar lesions on DNA. But in contrast to cisplatin dose-

limiting side effects - nephrotoxicity, neurotoxicity and ototoxicity - carboplatin alone 

shows a low incidence of nephrotoxicity because of its slower rate of conversion to 

active platinum aquo species [7] and is also notably less neurotoxic than cisplatin at 

conventional doses (but with similar sensory neuropathy occurring in approximately 

6% of patients). [8]. Its dose-limiting side effect is  myelosuppression, specifically 

neutropenia and thrombocytopenia [9] (Figure 2). Both agents (cisplatin and 

carboplatin) are used for many types of cancer, including ovarian, cervical, head and 

neck, non-small cell lung and lymphoma, though carboplatin is supplanting the use of 
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cisplatin for most ovarian tumors and for treatment of non-small cell lung carcinoma 

[10]. 

Oxaliplatin [trans-L-1,2-diaminocyclohexaneoxalate platinum(II)] (Figure 1) is 

another clinically used platinum based analogue. It contains a DACH carrier ligand 

(diaminocyclohexane) and perhaps for this, oxaliplatin has consistently demonstrated 

antitumor activity in cell lines with acquired cisplatin resistance and appear to be 

active in tumor types that are intrinsically resistant to cisplatin and carboplatin [11-13]. 

Oxaliplatin’s intrastrand cross-links are different and may account in part for its 

different spectrum of activity as reviewed in preclinical screen of National Cancer 

Institute [14]. Oxaliplatin was shown to have markedly different spectrum of activity to 

cisplatin and carboplatin [15]. In in vivo studies, oxaliplatin is active against breast, 

colon, and gastric cancer, renal cell carcinoma, and sarcoma [16]. It has also been 

tested against ovarian, lung, cervix, colon, and leukemia cell lines. Much like previous 

platinum drugs, likewise oxaliplatin has its side effects. The most common toxicity 

associated with oxaliplatin treatment is peripheral neuropathy, which ranges from 

acute and transient to a cumulative neuropathy [9]. Oxaliplatin is generally free of 

ototoxicity and nephrotoxicity, with only moderate isolated cases of neutropenia and 

thrombocytopenia [17].  

A number of analogues have failed over the years, some because unexpected 

toxicities (such as nephrotoxicity) and some because of no clear advantage over the 

remarkable toxicity reduction exemplified by carboplatin. Nevertheless, a number of 

platinum analogues (e.g. satraplatin, transplatin, tetraplatin) and some formulations 

are currently undergoing study. How these new compounds differ mechanistically as 

well as pharmacologically from currently available platinum drugs should be the key to 

their future development [18].  
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Figure 1. The chemical structures of cisplatin, carboplatin and oxaliplatin. 
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Figure 2. Toxicities associated with the treatment with platinum drugs. The most common side 

effects associated with cisplatin treatment are ototoxicity, peripheral neuropathy, 

myelosuppression, and nephrotoxicity. Ototoxicity is notably higher in pediatric patients, while 

neuropathy is relatively more common in adult patients. The most common toxicity associated 

with carboplatin is myelosuppression, with rare cases of neurotoxicity and nephrotoxicity. 

Oxaliplatin most commonly causes neurotoxicity (Adopted from [9]). 
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3. Platinum drugs resistance 

  



12 
 

The development of resistance to platinum-based chemotherapy in the clinic is a 

major challenge for cancer chemotherapy [19]. Although the phenomenon of 

multidrug resistance against natural product drugs exemplified by the ATP-dependent 

efflux pump P-glycoprotein and other transporters is well characterized [20], the 

cellular responses that confer resistance to platinum complexes are multifactorial and 

less well understood [21, 22]. The generally accepted intracellular mechanisms by 

which cells acquire resistance to cisplatin and its congeners are (i) increased 

detoxification of drug by the thiols glutathione and metallothionein; (ii) improved 

repair of, and tolerance to, nuclear lesions, leading to a concomitant reduction in 

apoptosis; and (iii) diminished accumulation of platinum complexes [22, 23]. Overall, 

several factors may contribute to resistance (Table 1).   
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Table 1 - Mechanisms of resistance to platinum drugs (Adopted from [24]) 

Mechanism Contributing factor 

Impaired blood flow/drug delivery ↑ Tissue pressure ↑ Plasma fibrinogenb ↑ Blood viscosityb 

 
↓ Blood pressuree ↓ RBC deformabilityb 

 

 

Extracellular matrix/other factors ↑ Tissue pressure/↓ diffusion  ↑ γ-Glutamyltransferase 
 

 
↑ Fibronectin ↑ Type IV collagen ↑ Laminin 

 

Decreased drug uptake ↑ Cell membrane rigidity ↑ Sphingomyelin ↑ Cholesterol 

 
↑ NaClc  ↑ KClc ↑ Mannitolc 

 
↑ Extracellular pH ↑ Protein binding 

 

 
↓ Copper transporter CTR1 ↑ Copper ↓ CaCl2

c 

 

↓ Uptake concurrently of several 
factors 

Concurrent ↓ expression several 
transporters ↓ γ-Catenin 

 

Defective endocytosis/formation of 
endocytic recycling compartment 

↓ Small GTPases (rab5, rac1, rhoA) 
which regulate endocytosis 

 

 

Increased efflux ↑ Cu transporters ATP7A, -7B ↓ CuCl2c  ↑ Intracellular pH 

 
↑ MRP2/cMOAT/GSH-X pumpd ↑ MRP1d ↑ p-Glycoproteind 

 
↑ MVP/LRPd 

Abnormal sorting into exosomal 
pathway 

↑ Sequestration  
intracelluarly 

 

Increased detoxification ↑ GSH ↑ GSTd  ↑ GST-pi/GST-pi SNPse 

 
↑ γ-Glutamylcysteine synthase ↑ γ-Glutamyltransferase ↑ GSH peroxidase 

 
↑ Glutamate cysteine ligase ↑ GSH reductase ↑ Catalase 

 
↑ Dihydrodiol dehydrogenase ↑ Superoxide dismutase ↑ Metallothioneinsd,e 

 

Decreased drug binding ↑ Proton pumps ↑ Intracellular pH ↑ Extracellular pH 

 
↑ In cell cycle G1/ ↓ in G2/M ↑ Histone methylation 

 

 

Increased DNA repair 
↑ Nucleotide excision repair system 
(ERCC1 and XPF) ↑ XPAe ↑ BRCA1e 

 
Host ERCC1/XPD SNPse, ↑ Topoisomerase-II ↑ REV1 

 

↑ Base excision repair (DNA 
polymerase-βd, -zeta, and -eta) 

↑ Homologous recombination 
repair 

↑ DDB2 (damaged-DNA 
-binding-protein-2 

 

↑ DNA damage recognition protein 
HMG1 

  

 

Increased tolerance of DNA damage 
↓ DNA postreplicational mismatch 
repair ↓ hMLH1, hMSH2, hMSH6d  

↓ Non-homologous  
end-joining repair 

 

Decreased pro-apoptotic factors 

Down-regulation/↓ expression (p53, 
p53-binding-protein-2, Bax, Fas, 
caspases 8, 9, other) ↓ Activation (Fas, caspase 9) 

P53 mutation (with 
overexpression of a non-
functional protein)d,e 

 
Mitochondrial abnormalities P53 deletion 

 

 

Increased apoptosis inhibitors ↑ Bcl-2d,e ↑ Bcl-xLd,e ↑ Bfl-1/A1 

 
↑ Survivin Hypoxia (via ↑ Bcl-xL) ↑ FLIP 

 
↑ Xiap ↑ IAP-2 ↑ COX-2d,e 

 

http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn1
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn1
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn3
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn3
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn4
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn5
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn4
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Altered mitochondria ↑ Fatty acid use for O2 consumption 
↑Mitochondrial-uncoupling-
protein-2 ↑ No. mitochondria 

 
↓ Membrane potential 

  

 

Increased chaperones ↑ HSP27d  ↑ HSP90-β ↑ HSP70 

 
↓ GRP78 

  

 

Altered cell signaling pathways ↑ E-cadherin ↑ EGF/EGFR Catenins: ↑ α & β / ↓ γ 

 
↑ Heregulin/ ↑ p21WAF1/CIP1 ↑ Her-2/neud  PTEN loss 

 
↑ PI3K ↑ AKT ↑ mTOR 

 
↑ MAPK signaling cascaded ↑ p110α ↑ Hyaluronan-CD44 

 
↑ c-Myc/c-Fos/c-Jun activation ↑ /Mutated ras ↑ c-cot 

 
↑ STAT1/STAT3/JAK2 ↑ PDE2 ↑ PKC-iota 

 
↑ Protein phosphatases 2A & 4 SRPK1 inactivation ↓ SAPK/JNK activation 

 
↓ p38 kinase activation ↓ IP3R1 ↓ HGF 

 
Transcription factors, cell cycle related factors, 
checkpoint kinases, etc. ↑ YB-1 ↑ CTF2 ↑ ATF4 

 
↑ ZNF143 ↑ mtTFA ↑ Ets-1 

 
↑ Zipper transcriptional factor ↑ AP-2 ↑ SKP2 

 
↑ NF-kappaBd  ↑ Cyclin D1 

 

 
↓ Chk1 ↓ Chk2 

 

 
↓ Telomerase mRNA expression ↓ Telomere length ↓ Telomerase activity 

 

Gene arrays: differential expression ↑ FN1 ↑ TOP2A ↑ LBR 

 
↑ ASS ↑ COL3A1 ↑ STK6 

 
↑ SGPP1 ↑ ITGAE ↑ PCNA 

 
↑ MDR1 ↑ MRP1 ↑ MRP2 

 
↑ CD55 ↑ PGK1 ↓ Caveolin 1 

 

Proteomic analyses: differential expression 
↑ HSP60/HSP90/heat-shock cognate 
71 kDa protein ↑ Calmodulin ↑ Calumenin 

 
↑ Peroxiredoxins PRX 2/PRX 6 ↑ GST ↑14-3-3 

 

↑ Voltage-dependent anion-selective 
channel-1 

  

 

Miscellaneous ↑ Ribosomal proteins RPS13, RPL23 Altered sphingolipid pathway 
Altered ganglioside  
expression 

 
Chromosomal abnormalities ↑ Splicing factor SPF45 ↑ Serum LDHd,e 

 
↑ Glucose utilizationf ↑ Lactate productionf ↑ LDH-5e,f 

 
↑ Golgi apparatus ↓ Microsatellite D6S1581 ↓ Pyruvate kinase M2 

a Paradoxically associated with improved cisplatin efficacy and patient survival. 
  

b Thought to be important for drugs in general, but not directly tested with platinum drugs. 
  

c Alter platinum cellular uptake and efficacy when added in vitro. 
  

d Effect not seen consistently across all studies, or opposite effect seen in some studies. 
  

e Demonstrated in clinical studies. 
   f Despite cells with low intracellular and extracellular pH having decreased platinum efflux and increased platinum uptake, binding and 

efficacy. 
 

 

  

http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn4
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn4
http://www.sciencedirect.com.onelog3.ruk.cuni.cz/science?_ob=MiamiCaptionURL&_method=retrieve&_udi=B6T5S-4N5CSMR-2&_image=tbl1&_ba=&_user=1490772&_rdoc=1&_fmt=full&_orig=search&_cdi=5010&view=c&_isTablePopup=Y&_acct=C000053052&_version=1&_urlVersion=0&_userid=1490772&md5=c5a6a15ae0a7f1ff264e6b964699eb4c#tbl1fn4
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3.1. Resistance due to decreased blood flow and drug delivery 

 

As reviewed by Stewart [24], delivery of chemotherapeutic drugs and oxygen varies 

with blood flow. Hypoxia reduces efficacy of many agents, but has a little impact on 

platinum drugs [25]. With respect to drug delivery, tissue drug concentrations conform 

to either flow-limited models (varying with blood flow) [26] or to membrane-limited 

models (not proportional to flow) [27, 28]. In contrast to a flow-limited model for 

cisplatin, concentrations are as high in necrotic as in viable human tumors [29] and 

cisplatin concentrations in human autopsy tissues do not correlate with organ blood 

flow rates [30]. Human tumor cisplatin concentrations do vary with pulse and blood 

pressure, with metastatic site, and with tumor type [24, 29].  

Since blood flow autoregulation is defective in tumors, blood pressure fluctuations 

have greater impact on flow to tumors than to normal tissues [31], and agents that 

alter blood pressure may selectively alter tumor blood flow/drug delivery [31-33]. 

Decreased red blood cell deformability, high fibrinogen levels, etc. may reduce tumor 

blood flow by increasing blood viscosity [34, 35], while agents that reduce blood 

viscosity (e.g., pentoxifylline, mannitol or fibrinolytics [34, 36-38]) might increase 

tumor blood flow and drug delivery. While both blood flow [39] and drug diffusion 

through interstitium from vessel to tumor cell [40] may be impeded by the abnormally 

high tissue pressures in tumors, higher interstitial fluid pressures  may nevertheless be 

associated with increased platinum drugs efficacy and prolonged patient survival [41]. 

Overall, it is unknown to what extent tissue pressure and tumor blood flow affect 

platinum drugs activity clinically.  
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3.2. Resistance due to diminished accumulation 

 

Studies reported over the past 30 years have analyzed the ability of Pt-containing 

drugs to accumulate in cancer cell lines, measured the ability of new compounds to 

accumulate in resistant cells and have consistently demonstrated that accumulation of 

drug is a determinant of cellular resistance/sensitivity [42, 43]. Johnson et al. reported  

a strong correlation (r = 0.98) between cisplatin accumulation  and relative cisplatin 

resistance for a series of increasingly resistant lines derived from the BEL7404 human 

hepatoma cell line [44]. Koga et al. examined seven primary bladder cancer cell lines 

derived from untreated transitional cell cancer of the urinary bladder and found a 

positive correlation between cisplatin accumulation and sensitivity (r = -0.778) among 

the intrinsically resistant cell lines [45].  

It is important to note that the correlation between diminished accumulation of 

drug and increased cells resistance is not unique to cisplatin, and has been observed 

for the clinical analogs carboplatin [46] and oxaliplatin [47] and compounds in clinical 

trials as well [48, 49]. In addition, cross-resistance among platinum drugs was observed 

at an early stage of platinum drug research [50], and in some cases reflected reduced 

accumulation of these compounds (although there are exceptions) [46]. Stewart et al. 

examined platinum concentrations in human autopsy samples and demonstrated that 

patients whose tumors responded to Pt-containing therapies had higher tumor 

platinum concentrations than those that failed to response, seeming to indicate that 

platinum accumulation is an important factor for clinical efficacy [51]. 

It is presumed that accumulation of platinum drugs occurs by a variety of 

mechanisms, including passive diffusion and facilitated transport by multiple transport 

systems. To reduce drug accumulation to a significant extent, or to confer cross-

resistance to multiple cytotoxic Pt-containing drugs, cells must simultaneously 

inactivate more than one of these transport systems [19]. 
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3.2.1. Diminished accumulation caused by influence of extracellular 

environment 

 

3.2.1.1. Plasma and interstitium proteins 

Binding of platinum drugs to plasma and interstitium proteins may contribute to 

resistance. Platinum that is bound to protein is much less cytotoxic than is free [52, 

53], with substantially reduced uptake into cell [53] and tissues [54]. There is a general 

resemblance between the distribution patterns of cisplatin and carboplatin, although 

in vitro incubation with mouse plasma showed that number of interactions is higher 

for cisplatin [55]. The influence of protein-binding on oxaliplatin cytotoxicity has not 

been evaluated separately. 

Stewart reported [24] that cisplatin induced apoptosis is reduced in the presence of 

extracellular matrix proteins fibronectin, type IV collagen and laminin that may bind 

tumor cells [56]. Extracellular gamma-glutamyltransferase that may cleave glutathione 

to render thiol groups that bind and inactivate cisplatin and other electrophilic drugs 

also reduces apoptosis [57]. However, the impact of these factors in the clinic remains 

unknown. 

 

3.2.1.2. Extracellular pH 

Contrary of the tumor intracellular pH (that is neutral to alkaline), tumor 

extracellular pH is often acidic [58, 59]. It is because of anaerobic glycolysis that occurs 

in tumor cells. Lowering extracellular pH favors uptake of weak acids [58], markedly 

increases uptake of cisplatin and its DNA binding and also lowers intracellular pH [60]. 

In vivo, extracellular pH is lowered by intravenous glucose administration [61], while 

oral bicarbonate administration  raises it [62]. 

Other agents could also potentially have an impact on… [24]. For instance mannitol 

and NaCl, both used to reduce cisplatin nephrotoxicity, decrease cisplatin uptake and 
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cytotoxicity in vitro, as does KCl, while CaCl2 and CuCl2 may increase net cisplatin 

accumulation and cytotoxicity [63].  

In summary, there is substantial preclinical evidence suggesting that reduced 

extracellular and intracellular pH may be associated with platinum drugs uptake, 

binding and cytotoxicity, while increased extracellular pH may be associated with 

platinum drugs resistance. However, its clinical importance has not been adequately 

assessed yet [24].  
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3.2.2. Decreased drug uptake 

 

3.2.2.1. Passive diffusion 

It has long been presumed that cisplatin and carboplatin are taken up passively by 

the cell, as uptake is not saturable, nor it is inhibited by structural analogs [64]. Also 

oxaliplatin uptake was meant to be most likely passive, as a correlation between 

hydrophobicity and uptake has been shown [65]. Andrews demonstrated that Pt 

compounds could not lower accumulation by competitive inhibiton as would be 

expected if a unique active transporter were at play, whereas compounds that 

compromised membrane integrity increased accumulation [66].  

The relative amount of drug entering a cell by passive diffusion is dependent on the 

concentration of drug: at low drug concentrations, active transporter(s) may mediate 

the uptake of the majority of drug, but at high concentrations most uptake would be 

via passive diffusion. Collectively, there is evidence that drug can enter a cell by 

passive diffusion; however, given that resistant cells demonstrate only small changes 

(if any) in their membrane composition and biophysics, passive diffusion is not the key 

to decreased drug accumulation and the lowered accumulation must be due to other 

alterations (i.e. alterations of active mechanisms of uptake-see below) [19]. By reason 

that decreased drug uptake is thought to be dependent on alterations of active 

mechanisms, ability of drugs to enter cells by passive diffusion led to the design of 

lipophilic Pt-complexes that are capable of circumventing cisplatin resistance through 

increased accumulation in resistant cells, in a way independent of any active 

component of uptake [65, 67, 68]. 

  

3.2.2.2. Na+ ,K+ -ATPase and Na+ gradient 

Na+ ,K+ -ATPase primarily maintains the sodium gradient across the cell membrane 

(pumps sodium out and potassium into the cell). During the search for active uptake 

component Andrews et al. noted that preincubation with the Na+ ,K+ -ATPase-specific 
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inhibitor oubain reduced cisplatin accumulation in both the sensitive and the resistant 

cells by up to 50% [69, 70]. Short-term accumulation experiments showed that drug 

accumulation was immediately reduced on exposure, suggesting Na+ ,K+ -ATPase 

inhibition affects influx; replacement of sodium with choline in cell growth media 

reduced cisplatin uptake by a similar amount as oubain; and cisplatin uptake increases 

with extracellular sodium concentration, suggesting it is the sodium gradient 

dissipation rather than Na+ ,K+ -ATPase inhibition that lowers cisplatin uptake [69]. 

Interestingly, tissues subject to cisplatin toxicity, such as kidney and the inner ear, do 

express high levels of Na+ ,K+ -ATPase [69, 71]. Hall et al. reported that cisplatin is not a 

substrate for Na+ ,K+ -ATPase, and the inhibition  of Na+ ,K+ -ATPase by oubain reduces 

the Na+ gradient across the cell membrane that affects active/facilitated transport of 

cisplatin, although the specific transporters that rely on this sodium gradient have not 

been identified [19]. 

 

3.2.2.3. Gated channel Aquaporin 9 

Gately and Howell proposed that cisplatin accumulation could be facilitated via a 

gated channel, but cisplatin’s minimum cross-section (3.97 Å by 6.92 Å) is greater than 

that of biggest channel pores, with the possible exception of aquaporin 9, recently 

reported to have a pore size of approximately 7 Å by 12 Å [72]. Aquaporin 9 has been 

shown to permit the passage of neutral molecules, such as glycerol, urea, purines, and 

pyrimidines [73], and its expression correlates with As2O3 accumulation in myeloid and 

lymphoid leukemia lines [74].  

Although the ability for the aquaporins to transport Pt drugs has not been directly 

demonstrated, it is important to note that Pt-resistant lines have reduced expression 

of aquaporin 9, presenting a potential new Pt-drug transport family and new possibility 

that can contribute to Pt-drug resistance [19]. 
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3.2.2.4. Copper transporter CTR1 

Major inroads have been made recently in defining the role of transport of platinum 

drugs via copper transporter 1 (CTR1, SLC31A1) (Figure 3) into the cell as another 

determinant of drug sensitivity and resistance [75]. It has become clear that platinum 

drugs utilizes the copper transporters (and exporters), as well as other cation 

transporter [76]. CTR1 is an evolutionarily conserved copper influx transporter present 

in plant, yeast, and mammals, and is the main copper importer in mammalian cells. 

The human version, hCTR1, is expressed in all tissues and is a key player in the 

exquisite homeostatic regulation of intracellular copper levels [19, 77].   

Cisplatin, at plasma concentrations, not only prevents copper from being 

transported by CTR1 (cisplatin and copper are competitive inhibitors for the transport 

of the other molecule into the cell [75]) but also down-regulates protein expression of 

CTR1 in human  ovarian carcinoma cell lines [78]. Larson et al. demonstrated that 

exposure to cisplatin triggered the rapid degradation of mammalian CTR1, suggesting 

that its contribution to influx was likely to be on initial phase of drug entry. Loss of 

CTR1 decreased the initial binding of cisplatin to cells and reduced influx. Loss of CTR1 

also almost completely eliminated the initial influx of carboplatin and reduced the 

initial uptake of oxaliplatin [79]. Re-expression restored both cisplatin uptake and 

cytotoxicity [79]. It is not surprising that in comparing sensitive and resistant cell line 

pairs, the resistant small cell lung carcinoma (SCLC) line SR2 expresses less than half of 

CTR1 protein than its sensitive counterpart SCLC [80]. As expected SR2 cells take up 

much less cisplatin and carboplatin than SCLC cells [80]. Expression of transfected CTR1 

protein in SR2 cells results in an increase in the uptake rate of cisplatin [80].  

Although hCTR1 has been implicated in transport of cisplatin, carboplatin and 

oxaliplatin, it has been proposed to be important predominantly for the import of 

cisplatin and carboplatin into the cells [80, 81]. The results publicized by Holzer et al. 

[82] indicate that CTR1 regulates the cellular accumulation of all three drugs at 

concentrations attainable in humans but that at 5-fold higher concentrations, although 

accumulation of cisplatin and carboplatin is still CTR1-dependent, oxaliplatin 

accumulation becomes CTR1-independent, indicating that it is a substrate for another 
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cell-entry mechanism – a feature consistent with its different clinical spectrum of 

activity. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic diagram of hypothesized differences in copper (Cu) and platinum (Pt) drug 

vesicular sequestration, trafficking, and export pathways. Cu and the Pt drugs enter 

predominantly via hCTR1 and are sequestered by ATP7A/B into the trans-Golgi network (TGN) 

and vesicles of the secretory pathway. Cu triggers relocalization of vesicles that are then 

efficiently exported. The Pt drugs fail to trigger relocalization of vesicles into which they are 

sequestered by ATP7A, and the export of these vesicles appears to be limited (Adopted from 

[83]). 
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3.2.2.5. Organic cation transporters (OCTs) 

The organic cation transporters (OCTs) are the other key proteins involved in 

platinum drugs transporters [18]. The organic cation transporters (OCT) 1 (SCL22A1), 2 

(SLC22A2) and 3 (SLC22A3) are in the class of plasma membrane transporters 

belonging to the SLC22A family [84, 85]. The OCTs mediate intracellular uptake of a 

broad range of structurally diverse organic cations. Substrates of OCTs include 

endogenous compounds, such as choline, creatinine, and monoamine 

neurotransmitters, and variety of xenobiotics, and clinically used drugs, such as 

metformin, cimetidine, and amantadine [84]. In humans, OCT1 is primarily expressed 

in the liver [85-87] and less so in the intestine [88], whereas OCT2 is predominantly 

expressed in the proximal tubules of the kidney [84, 85]. OCT3 is expressed in many 

tissues, including placenta, heart, liver, and skeletal muscle [89, 90]. The expression of 

the OCTs has also been detected in several human cancer cell lines [91].  

The interactions of cisplatin with human OCTs has been investigated, and the 

results are discordant (Table 2) [92, 93]. In the recent study reported by Zhang et al. 

was observed that the influx transporters OCT1 and OCT2 play a critical role in the 

cellular uptake and consequently cytotoxicity of oxaliplatin. In contrast, the two 

transporters were relatively unimportant in mediating the uptake and cytotoxicity of 

cisplatin and carboplatin.  

Overexpression of OCT1 and, more strikingly, OCT2 in transfected cells not only 

increased the rate of cellular platinum drugs accumulation but also elevated the level 

of platinum-DNA adducts after oxaliplatin exposure [94]. Structure-activity relationship 

studies suggest that the 1, 2-diaminocyclohexane (DACH) moiety of oxaliplatin is an 

important pharmacophore for its interaction with the OCTs and that an organic on the 

nonleaving portion of the platinum complexes is essential. The greater affinity of 

oxaliplatin for these transporters, and their presence in colon cancer may be an 

explanation for its usefulness in this disease in contrast to other platinum drugs against 

which are colon cancer cells resistant [18, 95, 96]. 

In contrast to OCT1 and OCT2, overexpression of human OCT3 did not affect the 

cytotoxicity or resistance of any of the platinum drugs [94].
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Table 2 – Observations on cisplatin, carboplatin, and oxaliplatin substrate specificity for OCT1, 

OCT2, and OCT3 influx transporters (rat and human) (Adopted from [19]). 

 

 

 

 

 

 

   

Cisplatin 
OCT1 OCT2 OCT3 

Pan et al. [97] 
--- Yes --- 

Yonezawa et al. [98] 
No Yes --- 

Briz et al. [92] 
No No No 

Ciarimboli et al. [93] 
No Yes --- 

Yonezawa et al. [99] 
Yes(weak) Yes No 

Zhang et al. [94] 
Yes(weak) No No 

 

   

Carboplatin OCT1 OCT2 OCT3 

Ciarimboli et al. [93] 
--- No --- 

Yonezawa et al. [99] 
No No No 

Zhang et al. [94] 
Yes(weak) No No 

 

   

Oxaliplatin 
OCT1 OCT2 OCT3 

Ciarimboli et al. [93] 
--- No --- 

Yonezawa et al. [99] 
No Yes Yes(weak) 

Zhang et al. [94] 
Yes Yes No 
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3.2.3. Increased drug efflux 

 

3.2.3.1. Copper efflux transporters ATP7A and ATP7B 

Resistance may also be associated with increased platinum drugs efflux from cells 

[100] or from nucleus into cytoplasm [101]. The copper-transporting P-type adenosine 

triphosphatases ATP7A and ATP7B are implicated in platinum drugs efflux and 

resistance [83, 102-112] (Figure 3).  As reviewed by Rabik et al. [9], ATP7A/B are 

primarily responsible for the export of copper from the cell.  Under normal (Cu replete) 

conditions, ATP7A/ATP7B reside in the trans-Golgi network, where they receive Cu 

from the chaperone Atox1 and translocate it to the luminal side for incorporation into 

enzymes. When excess Cu exists in the cell, ATP7A/B are trafficked to the cell surface 

to directly efflux Cu from the cell [77].  

ATP7B was first proposed to be involved in cisplatin resistance when Komatsu et al. 

overexpressed this transporter in human epidermoid carcinoma cells and observed 

that these cells gained resistance to cisplatin as a result of ATP7B overexpression [113]. 

Cisplatin accumulation in ATP7B transfected cells was only 60% of that observed in 

cells transfected with empty vector. It was due to ability of ATP7B to sequester 

cisplatin into vesicles and transport it similar to copper out of the cell. Additionally, 

eighty-two primary ovarian carcinomas were profiled for expression of several known 

resistance genes – including ATP7B, MDR1, MRP1, MRP2, LRP, and BCRP [114]. With 

the exception of ATP7B, none were indicators for resistance of ovarian cancer to 

cisplatin.  

Patients whose carcinomas express high levels of ATP7B have a significantly poorer 

prognosis than patients with tumors that express low level of ATP7B [103]. ATP7B 

overexpression is associated with poor outcome in cisplatin-treated patients with 

ovarian carcinoma [103], esophageal cancer [108], squamous cell cancer of the head 

and neck [110] or human endometrial carcinoma [105], human solid carcinoma [112], 

human non-small cell lung cancer [109], human hepatocellular carcinoma [106]. 
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In accordance with Samimi et al. [83] ATP7A is able to sequester into vesicles not 

only cisplatin, but also both carboplatin and oxaliplatin. Increased expression of ATP7A 

in the 2008 cell line of ovarian carcinoma leads to increased resistance to all three of 

the clinically available Pt drugs; interestingly, overexpression leads to increased 

sequestration of platinum drugs and not to decreased total accumulation [83]. This 

seems to suggest that simple overexpression of ATP7A alone may be sufficient to 

compartmentalize and deactivate Pt, but not be enough to lower accumulation. ATP7A 

is not relocalized to the plasma membrane for Pt efflux as it is for Cu efflux, suggesting 

the Cu sensing domain associated with trafficking cannot sense Pt [115].  

In contrast with these outcomes, Rabik et al. presented data demonstrating that the 

expression of both ATP7A and ATP7B provide increased cellular resistance to cisplatin, 

while cells become hypersensitive to oxaliplatin [81]. This is in agreement with 

outcomes presented by Samimi et al. [116] and also by Plasencia et al. [117] who 

reported that oxaliplatin resistant colon cancer cells exhibited low basal expression 

levels of ATP7A (and ATP7B) compared to parent, non-resistant, cells. 

Overall, the role of ATP7A and ATP7B transporters in platinum drug sensitivity has 

not been completely elucidated. Some results contradict each other. The answer to 

these discrepancies could be found in tissue specificity. The potential tissue specificity 

should be analyzed through both overexpression and knockdown experiments in 

tumor cell lines to determinate the role of these transporters in clinical resistance and 

sensitivity to platinum drugs. In some tumor types, these transporters may be vital in 

providing resistance to platinum drugs, and this can be targeted in developing new 

therapies to modulate platinum drugs treatment. 

 

3.2.3.2. Drug efflux transporters 

The chelation of Pt drugs by glutathione is generally accepted to be a deactivation 

pathway (see below). Once the Pt drug is chelated by glutathione, the glutathione-Pt 

complex is effluxed from the cell in an ATP-dependent way by a transporter family 

termed MRP (ABCC) drug efflux transporters [118]. MRP drug efflux transporters are 
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ATP-dependent organic anion transporters. The first identified member of the family 

was the multidrug resistance-associated protein 1 (MRP1, ABCC1), a glycoprotein 

capable of effluxing a range of glutathione-conjugated molecules, and a member of the 

ABC (ATP-binding cassette) family of drug efflux transporters [119]. Seven more MRP1 

homologues have subsequently been indentified (MRP2-MRP8) but their importance in 

platinum drugs resistance remains unclear. Glutathione-conjugated Pt is already 

deactivated, so efflux by the MRP transporters is not necessarily a part of the 

accumulation-resistance phenotype; however, there is evidence in specific cases that 

their expression is associated with clinical resistance to cisplatin, but more work needs 

to be done [19]. 

Other drug efflux transporters that play important role in regulation of intracellular 

drug concentrations and thereby determining cell sensitivity to chemotherapeutic 

agents are ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, 

MDR1) and ABCG2 (Breast cancer resistance protein, BCRP).  

As discussed in the work of Ceckova et al. [120] the influence of ABCG2 on cisplatin 

resistance is unclear and there are remarkable discrepancies in current literature 

evaluating its importance. Several studies demonstrated no correlation between 

expression of ABCG2 and cisplatin resistance [121, 122]. However, dramatic up-

regulation of mRNA expression of ABCG2 has been recently reported in oxaliplatin-

resistant colorectal cancer cell line [123] and a correlation between ABCG2 positivity of 

tumor cells and low response rate to platinum-based chemotherapy has been 

described in patients with advanced non-small cell lung cancer (NSCLC), suggesting the 

ABCG2 efflux transporter to be responsible for drug resistance in patients with NSCLC 

[124]. 

ABCB1 seems to be unimportant in platinum drugs resistance as several studies 

demonstrated no correlation between its expression and cisplatin resistance [114, 

125].  
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3.3. Drug detoxification 

 

3.3.1. Glutathione and Glutathione-S-transferase 

In the cytoplasm, platinum drugs become aquated, which then enables them to 

react with thiol-containing molecules, including glutathione (GSH) and 

metallothioneins. Increased concentrations of these compounds are known to induce 

resistance against cisplatin [126-129]. However, few studies have described the role of 

these enzymes in oxaliplatin detoxification [117].Glutathione itself acts as an 

antioxidant of the cell, it helps to maintain the redox environment while maintaining 

reduced sulfhydryl groups. The resistance induced by GSH may be caused by 

binding/inactivating cisplatin, enhancing DNA repair, or reducing cisplatin-induced 

oxidative stress [126]. 

Rabik et al. [9] reviewed that in bladder carcinoma cell lines that are known to be 

resistant to cisplatin, exposure to buthiomine sulfoximine (BSO), which significantly 

depletes cellular glutathione concentration, resulted in a significant enhancement in 

cisplatin cytotoxicity [129]. Additionally, the NSAID (non-steroidal anti-inflamatory 

drug) indomethacin significantly decreases cellular concentrations of GSH and 

sensitizes bladder carcinoma cells to cisplatin treatment [129]. However, neither of 

these treatments sensitizes these cells to the level of their parent sensitive strain, 

indicating either that glutathione levels are only one component of cisplatin resistance 

[129], or that the NSAID may have other effects in the cell that prevent complete 

sensitization [9]. 

Glutathione-S-transferase (GST), particularly GST-π [130-136] or specific GST-π 

polymorphisms [136], may augment resistance by catalyzing GSH-drug binding. Colon, 

lung adenocarcinoma, and glioblastoma tumor cell lines [137], and ovarian [135, 138, 

139] and head and neck clinical samples [140] do exhibit a correlation between high 

GST-π levels and cisplatin resistance. However, in other studies of ovarian, cervical, 

and lung carcinoma, no relationship was evident [141-144]. Another study has shown 

that ovarian cancers with high expression of GST-π typically have lower survival and 
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less favorable response to cisplatin. Much of the GSH/GST data is conflicting, leading to 

question about its importance. While it may have some role in certain types of cancers, 

it does not appear to be a global indicator of cisplatin resistance [9].  

 

3.3.2. Metallothioneins 

Metallothioneins (MT) are very low molecular weight proteins comprised of several 

cysteine and aromatic amino acid residues. They are thought to be involved in 

controlling levels of copper and zinc, as well as protecting cells from oxidative stress 

and toxicities associated with heavy metals, including copper, cadmium, and zinc [145, 

146]. Elevated levels of metallothionein II have been described in cisplatin-resistant 

cell lines. Human bladder cancer xenografts [146] and esophageal [147] and 

transitional cell primary carcinomas [148] that express high levels of MT exhibit less of 

a clinical response to cisplatin. In head and neck cancers, cisplatin induces 

metallothionein expression [149], while in germ cell and testicular tumors, no 

relationship  between MT and cisplatin was observed [150]. The association of MT 

levels with cisplatin resistance may be tissue specific and may play a minor role 

depending on the cellular environment [9].  
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3.4. Platinum drugs and DNA  

 

3.4.1. Drug binding and DNA lesions 

Upon entering a cell, all platinum drugs become aquated, losing chloride or oxalate 

ions, and gaining two water molecules. This positively charged molecule is then able to 

interact with nucleophilic molecules within the cell, including DNA, RNA, and proteins 

[9], although it is  generally agreed that DNA is the preferential and cytotoxic target for 

cisplatin and other platinum drugs [151]. Platinum drugs cytotoxicity and DNA binding 

are highest with cell exposure during G1 and lowest during G2/M [152]. Reducing 

histone methylation relaxes condensed chromatin, increases cisplatin access to DNA, 

increases DNA-platinum adduct formation, and augments platinum drugs efficacy 

[153]. Rabik et al. reviewed that when binding to DNA, platinum drugs favor the N7 

atoms of the imidazole rings of guanosine and adenosine. Three different types of 

lesions can form on purine bases of DNA: monoadducts, intrastrand crosslinks, and 

interstrand crosslinks (Figure 4). Monoadducts are first formed as one molecule of 

water is lost from aquated platinum drugs; however, greater than 90% of 

monoadducts then react to form crosslinks. Almost all of these crosslinks are 

intrastrand, with the majority being 1,2-d(GpG) crosslinks (for cisplatin 60-65%) and 

1,2-d(ApG) crosslinks (for cisplatin 20-25%). Oxaliplatin forms fewer crosslinks than 

cisplatin at equimolar concentrations; however, it is equally as potent at these 

concentrations [154, 155] and is able to induce similar numbers of single-strand and 

double-strand breaks on DNA [156].  

All crosslinks result in contortion of DNA [157]. Cisplatin and carboplatin intrastrand 

crosslinks bend the double helix by 32-35° toward the major groove, whereas 

oxaliplatin treatment bends the helix even further [65]. Both 1,2-d(GpG) and 1,2-

d(ApG) intrastrand crosslinks unwind DNA by 13°, while the 1,3-d(GpXpG) intrastrand 

lesion unwinds DNA by 34°. Interstrand lesions induce even more steric changes in 

DNA, with extrusion of the cytosines at the crosslinked d(GpC)d(GpC) sites, bending of 

the double helix toward the minor groove by 20-40°, and extensive DNA unwinding of 
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up to 80°. Oxaliplatin adducts are bulkier and more hydrophobic than those formed 

from cisplatin or carboplatin, leading to different effects in the cell [17].  

 

 

 

 

 

 

 

 

 

Figure 4. Platinum drugs adducts on DNA. Platinum drugs are able to react with DNA to form 

monoadducts, intrastrand crosslinks (1,2-d(GpG), 1,2-d(ApG), 1,3-d(GpXpGp)), interstrand 

crosslinks (G-G), and DNA–protein crosslinks (Adopted from [9]). 
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There are different theories as to which lesion is responsible for cytotoxicity. Some 

believe that the interstrand crosslink is cytotoxic because of the level of distortion in 

the DNA; however, most believe that the predominant 1,2-intrastrand crosslinks are 

the cytotoxic lesion. It is because of comparisons with the biologically inactive trans 

isomer of cisplatin, trans-diamminedichlorplatinum (II) (trans-DDP). Due to steric 

reasons, trans-DDP is unable to form 1,2-intrastrand adducts between two adjacent 

purines in the same DNA strand, so trans-DDP mainly forms 1,3-intrastrand and 

interstrand crosslinks [158]. It is generally accepted that 1,2-intrastrand DNA adduct is 

responsible for the anticancer activity of cisplatin (although the possible importance of 

other adducts should not be ruled out).  

This assumption is supported by the discovery that some High mobility group 

(HMG) proteins specifically recognize this type of DNA adduct and therefore may 

regulate the processing of 1,2-d(GpG) intrastrand crosslinks formed by cisplatin [159]. 

Their presence is thought to be crucial also for sensitivity to carboplatin. The binding of 

HMG-1 to cisplatin helps in preventing replicative bypass (see below) [160] and HMG 

proteins such as SRY, UBF, and LEF-1 have been shown to block nucleotide excision 

repair (NER; see below) components from repairing the lesion via a “shielding 

mechanism” [161]. The cisplatin-DNA-HMG-1 ternary complex is also able to block 

transcription factors, thus preventing both transcription and replication. This block in 

cellular processes may be responsible for sending out DNA damage signals that result 

in initiation of apoptosis [126]. HMG has a much lower affinity for oxaliplatin crosslinks 

on DNA than it does for cisplatin or carboplatin adducts [160]. The molecular geometry 

of the oxaliplatin adduct , with a narrower major groove and correspondingly wider 

minor groove, is thought to be responsible for this observation [9]. 
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3.4.2. Repair of DNA lesions 

  

3.4.2.1. Nucleotide excision repair  

The ability of cells to repair DNA damage appears to be a critical determinant of 

resistance or sensitivity to platinum drugs. Nucleotide excision repair (NER) pathway is 

one of the major pathways involved in repair of DNA damage caused by platinum 

drugs. NER includes the recognition of DNA damage and demarcation of the specific 

area affected, followed by the formation of a complex to unwind the damaged portion 

and excise it. Finally, the excised area is resynthesized and ligated to maintain the DNA 

molecule [162] (Figure 5). 

 While NER recognizes all three types of intrastrand crosslinks (1,2-d(ApG), 1,2-

d(GpG), and 1,3-d(GpNpG)), the 1,2 intrastrand crosslinks are repaired less efficiently 

than the 1,3 intrastrand crosslinks, supporting the hypothesis that the 1,2 intrastrand 

crosslinks are the cytotoxic lesion [163, 164]. High levels of specific proteins of this 

pathway are expressed in cisplatin resistant cells [165, 166]. Rabik et al. reviewed that 

in ovarian cancer, XPA and ERCC1 (excision repair-complementation group)/XPF 

(xeroderma pigmentosum complementation group F) were shown to have increased 

expression in tumors of patients resistant to platinum drugs treatment [167, 168]. In 

primary ovarian tumors, levels of XPB transcripts were significantly higher in tumors 

resistant to cisplatin than in tumor samples from patients who responded well to 

platinum drugs treatment [169]. Similarly, gastric cancer showed a correlation 

between cisplatin resistance and ERCC1/XPF mRNA levels [170]. In addition, cell lines 

that developed resistance in vitro after exposure to cisplatin chemotherapy were 

found to have increased expression of ERCC1 [171]. 

Koberle reported that testis tumor cell lines, generally very responsive to cisplatin, 

has low levels of XPA and ERCC1/XPF. This is sufficient to explain their poor ability to 

remove cisplatin adducts from DNA and is providing further correlative evidence for 

the importance of NER in cisplatin resistance [172, 173]. Oxaliplatin treatment also 

induces the expression of NER genes and the rate and kinetics of NER are similar to 
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cisplatin [174]. In HT29 colon cancer cells, expression of ERCC1 and XPD was 

significantly higher in cells treated with oxaliplatin compared to untreated control cells 

[117] and also the median overall survival was significantly longer in patients without 

ERCC1 expression [175]. 

NER may be inhibited by the presence of nucleosomes along the DNA. Previous 

studies have indicated that the presence of nucleosome on DNA is able to inhibit NER 

in cells treated with DNA damaging agents, including cisplatin [176, 177]. Comparison 

of the extent of repair by mammalian cell extracts of free and nucleosomal DNA 

containing the same platinum-DNA adduct reveals that the nucleosome significantly 

inhibits nucleotide excision repair. With the d(GpTpG) DNA substrate, the nucleosome 

inhibits excision to about 10% of the level observed with free DNA, whereas with the 

less efficient d(GpG) DNA substrate the nucleosome inhibited excision to about 30% of 

the level observed with free DNA [177]. Nucleosome induced NER inhibition may be 

overcome by the activity of the SWI/SNF chromatin remodeling complex, which is 

activated upon damage recognition by the NER factors XPA and SPC [178]. Although 

SWI/SNF was not shown to be crucial for platinum drugs resistance/sensitivity, 

inhibition of this pathway may lead to a targeted therapy for sensitization of tumors to 

cisplatin and other DNA damaging agents.  
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Figure 5. A, NER-

nucleotide excision repair 

begins when a DNA adduct 

is formed and causes a 

change in the shape of the 

DNA helix. B, damaged 

DNA binding factor binds 

to preincision complex and 

this protein complex 

localizes to the damaged 

area of DNA. C, the DNA 

helix is unwound and the 

damaged portion is 

excised by ERCC1/XPF. D, 

DNA polymerase then 

resynthesizes the absent 

portion of DNA. E, when 

NER-nucleotide excision 

repair is complete, the 

DNA is repaired and 

resumes its normal helical 

shape. In the setting of 

ERCC1deficiency,the DNA 

cannot be repaired, and 

the altered DNA is unable 

to replicate, or perform its 

normal function, leading 

to cell death (Adopted 

from [162].  
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3.4.2.2. Mismatch repair 

As reviewed by Topping, the mismatch repair (MMR) system of proteins plays roles 

in diverse cellular processes, perhaps most notably in preserving genomic integrity by 

recognizing and facilitating the repair of post-DNA replication base pairing errors. 

Recognition of these errors and recruitment of repair machinery is performed by the 

MutSα complex (consisting of the MMR proteins MSH2 and MSH6) or MutSβ complex 

(consisting of MSH2 and MSH3) [179] (Figure 6). When MMR is deficient, unrepaired 

areas of DNA accumulate, resulting in microsatellite instability (MSI) [180]. This 

accumulation occurs when unrepaired base pair mismatches are replicated during DNA 

synthesis [162]. 

In addition to their role in DNA repair, MMR proteins also play a role in cytotoxicity 

induced by specific types of DNA damaging chemotherapeutic drugs, such as cisplatin. 

MutSα recognizes multiple types of DNA damage, including 1,2-intrastrand cisplatin 

adducts. Cisplatin adducts interfere with normal MMR activity, prevent a repair from 

being completed, and therefore treatment with cisplatin results in MMR protein-

dependent cell cycle arrest and cell death [179, 181-184]. MMR proteins thus serve to 

detect the DNA damage caused by platinum drugs and generate an injury signal that 

eventually contributes to the triggering of the apoptic reaction that destroys the cell 

[4]. MMR mediates cisplatin and carboplatin induced apoptosis [185-187] but there is 

no difference in sensitivity between MMR-proficient and MMR-deficient cells for 

oxaliplatin [4].  

The MMR protein-dependent cytotoxic response to cisplatin is largely unknown. 

Previous studies reported that only the p53-related transactivator protein p73 and the 

c-Abl kinase were clearly implicated as potential mediators of cisplatin/MMR protein-

dependent cell death in human cells [188, 189]. However, recent studies show that 

cisplatin induced MMR protein-dependent cytotoxic response is independent of p53 

signaling and demonstrate a MMR protein-dependent pro-death signaling pathway in 

cells treated with cisplatin [179].  

Pro-death members of the Bcl-2 family, such as Bax and Bak, target the outer 

mitochondrial membrane and cause the cytosolic release of pro-death factors residing 
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within the mitochondria of unstressed cell [190]. Predominant among these factors is 

cytochrome c, whose cytoplasmatic localization results in the formation of caspase-

activating platform (caspase-Cysteine Aspartate Specific proteinASE) known as the 

apoptosome [191]. This complex includes the adaptor protein Apaf-1, and when 

formed the apoptosome promotes the cleavage and activation of caspase-9 [192, 193]. 

Once activated, this apical caspase proceeds to cleave and activate caspase-3, the 

predominant effector protease of apoptosis [179]. Cleaved caspase-3 can cleave a 

number of substrates, including poly(ADP-ribose) polymerase (PARP). 

MMR seems to be important for cisplatin and carboplatin cytotoxicity. It is 

connected with triggering of apoptosis and therefore MMR deficiency or inhibition of 

apoptosis (see below) can cause cisplatin and carboplatin resistance; however, 

deficiency of MMR does not affect cytotoxicity of oxaliplatin. This is particularly 

important in the usage of oxaliplatin to treat mismatch repair deficient tumors (e.g. 

colorectal cancer) that are resistant to cisplatin and carboplatin.  
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Figure 6. A, MMR occurs when the Mut protein recognizes a mismatch or insertion/deletion 
loop. B, theMut protein orders the assembly of a protein complex which localizes to the 
affected area on the DNA molecule and excises it. C, DNA polymerase then resynthesizes the 
missing portion of DNA. D, accumulation of insertion deletion loops on a strand of DNA in the 
petting of MMR deficiency (Adopted from [162]).  
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3.4.2.3. Homologous recombination 

Homologous recombination has been proposed to play a role in repairing double 

strand brakes resulting from cisplatin-induced interstrand DNA adducts [194]. This can 

be caused by NER components XPF and ERCC1 [195, 196] and by proteins BRCA1 and 

BRCA2 (breast cancer type 1,2 susceptibility proteins). As reviewed by Powell and 

Kachnic BRCA2 has been shown to play a direct role in the repair of DNA by 

homologous recombination, by interacting with the Rad51 protein and facilitating the 

formation of Rad51 aggregates at the site of DNA damage. In the absence of BRCA2, 

the cell is more dependent on residual repair via Rad52, which makes Rad52 a target 

for therapy in BRCA-deficient tumors. BRCA1 plays a role in sensing DNA damage and 

replication stress and mediating the signaling responses [197].  

Powell and Kachnic demonstrated that the defect in homologous recombination 

changes the drug sensitivity profile, rendering the BRCA-deficient breast cancers 

sensitive to cisplatin and other drugs that produce complex double-stranded lesions in 

DNA [197]. Additionally, Tassone et al. demonstrated increased sensitivity of human 

breast cancer xenografts to platinum drugs in BRCA1-defective cells [198]. These 

results suggest the influence of BRCA1 and BRCA2 on resistance to platinum drugs and 

good prognosis of patients with BRCA-deficient tumors. 
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3.4.3. Adduct tolerance 

 

3.4.3.1. Replicative bypass  

According to Rabik and Dolan [9], platinum drugs tolerance can be achieved without 

the need for DNA repair. In order for platinated DNA to be replicated and tolerance to 

form, DNA polymerase must skip the platinum adduct, which is most commonly an 

intrastrand lesion. The classic DNA replication polymerases – α, θ, and ε – cannot  

bypass the lesion; however, several polymerases have been shown to bypass 

intrastrand crosslinks by translesion synthesis – namely, β, η, ζ, and τ [199-203].  

Dong et al. [204] examined expression of pol-β in patients with esophageal cancer, 

and found that pol-β expression in tumor tissue was higher than in the corresponding 

normal tissue. Iwatuski et al. [205] in recent study demonstrated that pol-β 

suppression increases cisplatin sensitivity, but interestingly, does not affect oxaliplatin-

mediated cytotoxicity. This is consistent with previous studies that showed 

dependence of cisplatin resistance on pol-β overexpression [206, 207]. 

Pol-ζ has been shown in MMR deficient cells to play a role in DNA tolerance and 

bypass of lesions [208]. Recent experiments with pol-η null and expressing variant of 

human fibroblast cells have shown significance of pol-η in platinum drugs resistance 

and have demonstrated that the absence of pol-η results in a statistically significant 

enhancement in cisplatin, carboplatin as well as in oxaliplatin sensitivity [209]. 

However, bypassing oxaliplatin adducts is caused in particular by pol-ζ and pol-γ 

without evident influence of pol-β which can be an additional clue for the difference 

between mechanisms of action of cisplatin, carboplatin and oxaliplatin [160].  

 

3.4.3.2. Reduced apoptic response 

Several genes regulating DNA damage, apoptosis and survival signaling may 

contribute to resistance [210]. Platinum drugs may induce apoptosis through the Fas-

receptor/Fas-ligand signaling complex (with activation of caspase-8, then caspase-3, -6, 
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-7), by mitochondrial cytochrome-c release [159], or by defective apoptic pathway (i.e., 

p53) [211].  

As reviewed by Stewart [24], cells with p53 deletions or mutations are often 

resistant to cisplatin [212, 213]. Cisplatin resistance has been associated with p53 

mutation in vitro in ovarian carcinoma [214], head and neck squamous cell carcinoma 

[215], and clinically in germ cell tumors [216] and advanced laryngeal carcinoma [217].  

Caspases-3, -8 and -9 are important in cisplatin-induced apoptosis [126]. A cisplatin 

resistant lines have global downregulation of caspase and Bax expression, but 

increased Bcl-2 [218]. Decreased Fas expression or pathway activation after cisplatin 

may lead to inhibition  of activation of caspase-3 and -8 [126], and was associated with 

resistance in germ cell tumors [219] and ovarian carcinoma cells [220]. Loss of caspase-

8 pathway was associated with resistance in a human laryngeal squamous cell 

carcinoma cell lines [221]. Decreased cisplatin caspase-9 activation was noted in cells 

with normal mitochondrial cytochrome-c release and normal Bcl-2 and Bcl-xL 

expression [222]. Cisplatin-resistant cells have also been reported with abnormal 

mitochondrial membrane potential, intracellular distribution, or structure, and with 

up-regulation of cytochrome-c in the mitochondria in response to cisplatin rather than 

release into the cytoplasm [223].  

 

3.4.3.3. Apoptosis inhibitors  

Apoptosis can be inhibited by overexpression of X-linked inhibitor of apoptosis 

proteins (Xiap), an intracellular anti-apoptic proteins, that plays a key role in cell 

survival by modulating death signaling pathways, including modulation of the PI3-

K/Akt pathway [224]. Overexpression of Xiap and other anti-apoptic proteins (incl. IAP-

2 (inhibitor of apoptosis protein) and survivin) correlated with cisplatin resistance in 

cisplatin-resistant prostate cancer cells [225]. Similar, Xiap down-regulation increased 

cisplatin sensitivity, caspase-3 activity and apoptosis in resistant ovarian carcinoma 

[226] and prostate cancer cells [227]. Transfection with hRFI (ring finger domain highly 
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homologous to XIAP) induced cisplatin resistance and inactivation of caspase-3 in 

colorectal cancer cells (where it is naturally preferentially expressed) [228]. 

Overexpression of Bcl-2 and Bcl-xL genes (with marked downregulation of caspase-3 

expression [229]) may contribute to apoptic inhibition and the development of 

cisplatin-resistance in human ovarian cancer [230, 231]. Bcl-xL is also up-regulated in 

cells adapted to hypoxic stress and contributes to their resistance to cisplatin 

treatment [232]. In addition, nitric oxide (NO) induces Bcl-2 S-nitrosylation, inhibits its 

ubiquitination and upregulates Bcl-2 expression. NO synthase activity and NO 

production correlate with resistance in NSCLC cells [233].  

Overexpression of ribosomal proteins (RP) S13 and RPL23 can promote cisplatin 

resistance in gastric cancer cells by suppressing drug-induced apoptosis (through 

increased Bcl-2 expression and the Bcl-2/Bax ratio) and increasing GST activity and 

intracellular GSH content [234]. Resistant cells may also exhibit overexpression of the 

Bcl-2 related protein Bfl-1/A1, mediated by nuclear factor-kappaB (NF-kappaB) [235].  
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3.5. Newer molecular factors linked to platinum drugs resistance 

 

3.5.1.  Cyclooxygenase-2 (COX-2) 

As reviewed by Stewart [24], in preclinical studies, cisplatin treatment augmented 

tumor cell Cyclooxygenase-2 (COX-2) expression [236] and cisplatin resistance was 

induced by COX-2 overexpression. Clinically, high COX-2 expression was associated  

with reduced platinum-based  therapy efficacy in esophageal [237, 238], bladder [239], 

cervical [240], and ovarian [241] cancers. The fact that a link is seen between therapy 

efficacy and COX-2 expression clinically makes the assessment of COX-2 inhibitors a 

particularly interesting focus for further research. 

 

3.5.2. Heat shock proteins 

Heat shock protein (HSP) HSP27 overexpression or gene transfection [242, 243] as 

well as overexpression of HSP-90β [244] and HSP70 also may augment cisplatin 

resistance, and cisplatin treatment increases HSP70 expression in vitro [245]. HSP 

inhibitors are currently undergoing clinical trials, but little is known regarding the role 

of HSP in clinical resistance, and it remains unknown whether HSP inhibitors will prove 

useful. 

 

3.5.3. cAMP-phosphodiesterase-2 

The gene PDE2, encoding cAMP-phosphodiesterase-2, may induce resistance by 

increasing tolerance of cisplatin-induced DNA lesions [246]. 
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3.5.4. Cell cycle related factors 

S-phase-kinase-associated-protein-2 (SKP2) controls stability of cell cycle related 

proteins. SKP2 overexpression reduced expression of p27Kip1, cyclin e, and p21Cip1, 

increased S-phase cells, and increased cisplatin resistance, while SKP2 downregulation 

increased sensitivity in vitro [247]. Cyclin D1 overexpression augmented pancreatic 

cancer cell chemoresistance both by promoting cell proliferation and by inhibiting 

drug-induced apoptosis in association with upregulation of NF-kappaB activity [248].  

 

3.5.5. NF-kappaB 

Up-regulation of expression of antiapoptic factors by NF-kappaB may antagonize 

cisplatin-induced apoptosis [249], and cisplatin significantly increases NF-kappaB DNA 

binding activity [250, 251]. NF-kappaB inhibitors augment platinum drugs activity 

against  some cancer cell lines [251-254] and tumor xenograft models [250], but not 

against normal cells [251, 252] nor against some other cancer cell lines [251, 254]. 

 

3.5.6. Chromosomal alterations 

Platinum drugs-resistant cells may have several chromosomal abnormalities [255, 

256]. Telomere length, telomerase activity, and telomerase mRNA expression were 

reduced in cisplatin resistant ovarian carcinoma cell lines [257], and ovarian 

carcinomas with a loss of microsatelite D6S1581 were cisplatin-resistant [258]. 
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4. Conclusion 
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This thesis evaluated possible ways of development of platinum drugs resistance. A 

variety of mechanisms has been described; however, none of them seems to be crucial 

in all resistant tumors. Moreover, none of them seems to be essential for all platinum 

drugs. The mechanisms by which cells acquire resistance to platinum drugs are mainly: 

(i) diminished accumulation of platinum complexes, (ii) increased detoxification of drug 

by the thiols glutathione and metallothionein, and (iii) improved repair of nuclear 

lesions and tolerance to them, leading to a reduction in apoptosis.  

Platinum drugs probably enter cells by a number of influx transporters (especially 

by gated channel Aquaporine 9, Copper transporter CTR1 and Organic cation 

transporters OCT1 and OCT2) along with passive diffusion, and they can be extruded 

via the Cu efflux systems (including copper efflux transporters ATP7A and ATP7B) or 

possibly via drug efflux transporters (ABCG2). It is clear from a review of the literature 

that disagreement exists about the relative importance of each of these transport 

pathways to platinum drugs accumulation. Studies of sensitive and resistant cell lines 

have not been able to identify a single transporter whose decreased presence on the 

plasma membrane significantly contributes to a reduction in accumulation of platinum 

drugs. It seems that to reduce drug accumulation to a significant extent, or to confer 

cross-resistance to multiple cytotoxic platinum drugs, cells must simultaneously 

inactivate more than one of these transport systems. 

Cell antioxidants glutathione and metallothionein also seem to play a role in 

platinum drugs resistance. They contain thiol molecules that can bind/inactivate 

platinum drugs and they can also contribute to enhancement of DNA repair and 

reduction of cisplatin-induced oxidative stress. However, much of the data is 

conflicting leading to question about their importance. They may have some role in 

certain types of cancers, but they do not appear to be a global indicator of cisplatin 

resistance. 

As the cytotoxic effects of platinum drugs are caused by binding to DNA and 

formation of intrastrand and interstrand crosslinks, the most important mechanisms 

that contribute to platinum drugs resistance is improved repair of nuclear lesions and 

enhanced tolerance to DNA adducts. Nucleotide excision repair pathway, one of the 
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major pathways involved in repair of DNA damage, recognizes DNA damage, forms a 

complex that unwinds the damage portion and excises it. Finally, it re-synthesizes and 

ligates the excised area to maintain the DNA molecule. The importance of this pathway 

was approved by overexpression of specific proteins of this pathway in cells of many 

Pt-resistant tumors (e.g. ovarian, gastric, testis cancer, etc.). Mismatch repair system 

of proteins, another determinant of platinum drugs sensitivity/resistance, plays a role 

in preserving genomic integrity by facilitating the repair of post-DNA replication base 

pairing errors. Platinum drugs prevent a repair from being completed and therefore 

treatment with platinum drugs results in MMR dependent triggering of apoptosis. 

Another one DNA repair mechanism is the homologous recombination. It is proposed 

to play a role in repairing double strand brakes resulting from platinum drugs-induced 

interstrand DNA adducts. 

Enhanced DNA adduct tolerance and reduction in apoptosis can appear if DNA 

polymerases skip the platinum adduct by translesion synthesis. This bypass can be 

caused by polymerase β, η, ζ, τ and is in common called Replicative bypass. Other 

cause for adduct tolerance is reduced apoptic response that can appear due to 

inhibition of pro-apoptic factors (caspase-3, -8, Fas, …) or due to overexpression of 

apoptosis inhibitors (Xiap, Bcl-2, Bcl-xL). 

There are also several new molecular factors that have been linked to platinum 

drugs resistance (e.g. COX-2, HSP, cAMP-phosphodiesterase-2, NF-kappaB and other). 

With only a few exceptions, the effect on platinum drugs efficacy has been assessed 

only in vitro to date, with little information on their impact on resistance in xenograft 

models or in clinical use. 

Overall, this thesis summarized most of yet known mechanisms that contribute to 

platinum drugs resistance. Some of them seem to be crucial in determining platinum 

drugs efficacy, but importance of most of them remains unclear. Therefore more work 

needs to be done to determine to which extent these mechanisms influence resistance 

to platinum drugs and influence their efficacy in the pharmacotherapy.  
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5. Abstract 

 

Although the first platinum drug cisplatin was initially described in 1845, its 

biological activity was discovered more than 100 years later. Since then are cisplatin 

and its clinically used analogues carboplatin and oxaliplatin in widespread use for the 

treatment of variety of human cancers, including ovarian, cervical, head and neck 

tumors, non-small cell lung, breast, colon, gastric and renal cell carcinoma, sarcoma 

and relapsed lymphoma. However, the treatment is often accompanied by severe side 

effects of which nephrotoxicity, peripheral neurotoxicity and myelosuppression are the 

most serious. Another important obstacle in their clinical use is drug resistance. This 

thesis evaluates possible mechanisms of the development of platinum drugs 

resistance. There is a variety of them and they include (i) diminished accumulation of 

platinum drugs affected by influx transporters (Aquaporin 9, CTR1, OCT1, OCT2) and by 

efflux transporters (ATP7A, ATP7B,ABCG2); (ii) increased detoxification of drug by 

thiols glutathione and metallothionein; (iii) improved repair of nuclear lesions affected 

by NER, MMR, Homologous recombination, and enhanced tolerance to nuclear lesions 

caused by Replicative bypass, inhibition of pro-apoptic factors (including caspase-3, -8, 

Fas and other), or by overexpression of apoptosis inhibitors (Xiap, Bcl-2, Bcl-xL). Some 

of them seem to be crucial in determining platinum drugs efficacy, but importance of 

most of them remains unclear. Therefore more work needs to be done to determine to 

which extent these mechanisms influence resistance to platinum drugs and influence 

their efficacy in the pharmacotherapy. 
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6. Abstrakt 

 

Ačkoliv první platinová sloučenina, cisplatina, byla poprvé popsána již v roce 1845, 

její biologická aktivita byla objevena o více než 100 let později. Od té doby je cisplatina 

a její klinicky využívané analogy karboplatina a oxaliplatina široce používána pro léčbu 

mnoha lidských karcinomů. Mezi ně patří zejména ovariální, cervikální, renální a 

nemalobuněčný plicní karcinom, karcinom hlavy a krku, prsu, tlustého střeva, žaludku, 

sarkom a lymfom. Bohužel je léčba často doprovázena vážnými nežádoucími účinky, ze 

kterých nefrotoxicita, periferní neurotoxicita a útlum kostní dřeně patří mezi ty 

nejzávažnější. Další významnou překážkou v jejich klinickém využití je vznik lékové 

rezistence. Tato práce hodnotí možné mechanismy vzniku rezistence na platinové 

sloučeniny. Jsou rozmanité a zahrnují (i) sníženou akumulaci platinových sloučenin 

způsobenou influxními (Aquaporin 9, CTR1, OCT1, OCT2) a efluxními (ATP7A, ATP7B, 

ABCG2) transportéry; (ii) zvýšenou detoxifikaci pomocí thiolových sloučenin 

glutathionu a metallothioneinu; (iii) zvýšenou schopnost opravovat jaderná poškození 

(NER, MMR a homologní rekombinace), zvýšenou toleranci k jaderným poškozením 

(Replicative bypass), inhibici pro-apoptických faktorů (kaspáza-3, -8, Fas a další) a nebo 

zvýšenou expresi inhibitorů apoptózy (Xiap, Bcl-2, Bcl-xL). Některé z těchto 

mechanismů se zdají být pro vznik rezistence na platinová cytostatika klíčové, avšak 

význam většiny z nich je nejasný. Pro objasnění toho, jakou měrou se podílejí na 

rezistenci nádorů vůči platinovým cytostatikům a jak ovlivňují účinnost těchto léčiv v 

protinádorové terapii musí být provedeny další studie.   
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