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Abstract

Forecasting of inflation rates has become crucial for both policy makers
and private agents who try to understand and react to Central Bank
decisions since many Central Banks implemented inflation targeting rules
instead of control of monetary aggregates. Inflation forecasting is considered
to be very complicated issue because univariate regression models and
structural macroeconomic models are usually outperformed by naive random
walk model. This work is intended for forecasting inflation in the Czech
Republic by employing Bayesian econometric method (namely Bayesian
Vector autoregression - BVAR). Bayesian methods proved to be useful in
inflation forecasting in developed countries (Fabio Canova: G-7 Inflation
Forecasts: Random Walk, Phillips Curve or What Else?, 2007 [1]).

Bayesian econometrics is one of the most developing fields of
econometrics for past two decades. In the centre of the approach is Bayesian
probabilistic theory based on conditional probabilities. This probabilistic
approach is, however, computationally demanding. Fast computer evolution
enables wide applications of Bayesian models. Model estimations are based
on combining information from some prior beliefs and from the data. Many
different sorts of models have their Bayesian variants (e.g. OLS) but the
emphasis in this work is on Bayesian Vector autoregression (BVAR). One
of the aims of the thesis is to become familiar with principles of Bayesian
econometric and be able to use Bayesian approach in various models.

In this thesis, I compared the forecasting performance of various
models by applying the Theil U-statistics. Since VAR models were able
to outperform Random Walk in pseudo out-of-sample forecasts, I undertook
an experiment with the aim to identify the best inflation predictors, that
should be included within the VAR model. For this purpose I employed a
set of almost 80 time series covering various economic indicators including
forward looking variables extracted from surveys.

I have found that unemployment is never in the set of best predictors
(rejection of Phillips curve as useful relationship), GDP measure appears only
in the long term forecast, whereas forward looking indicators are important
for shorter forecast horizons. Employing of BVAR models instead of VAR
have brought mixed results. Out of sample predictions for years 2010 and
2011 are also provided. Variants of future research are briefly discussed.
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Abstrakt

Vzhledem k tomu, že mnoho centrálńıch bank opustilo režim ćılováńı
peněžńı zásoby a přešlo k režimu ćılováńı inflace, stalo se předpov́ıdáńı
inflace zásadńım, jak pro politické rozhodováńı, tak pro soukromé aktéry,
kteř́ı se snaž́ı rozpoznat rozhodnut́ı centrálńı banky a reagovat na něj.
Předpov́ıdáńı inflace neńı jednoduché, neboť modely zahrnuj́ıćı jednu
proměnnou, stejně jako strukturálńı makroekonomické modely, jsou, pokud
se týká schopnosti předpovědi, překonávány naivńı předpověd́ı, která je
výsledkem modelu náhodné procházky. Ćılem této práce je předpov́ıdat
inflaci v České republice použit́ım bayesovského ekonometrického modelu
(konkrétně bayesovské vektorové autoregrese - BVAR). Bayesovské modely
se osvědčily při předpov́ıdáńı inflace ve vyspělých zemı́ch (Fabio Canova: G-7
Inflation Forecasts: Random Walk, Phillips Curve or What Else?, 2007 [1]).

Bayesovská ekonometrie je jednou z nejrychleji se rozv́ıjej́ıćıch oblast́ı
ekonometrie za posledńı dvě desetilet́ı. Ve středu bayesovského př́ıstupu
lež́ı bayesovská pravděpodobnostńı teorie, která je založena na konceptu
podmı́něné pravděpodobnosti. Tento př́ıstup je ovšem vpýočetně poměrně
náročný a jeho praktické využit́ı bylo umožněno teprve d́ıky rychlému
rozvoji výpočetńı techniky. Odhady model̊u jsou založené na kombinaci
určitých předpoklad̊u (priors) spolu s informaćı pocházej́ıćı z naměřených
dat. Většina ekonometrických model̊u má dnes i svou bayesovské variantě
(včetně metody nejmenš́ıch čtverc̊u), ovšem v této práci je využ́ıvána
předevš́ım bayesovská vektorová autoregrese (BVAR). Jedńım z ćıl̊u této
diplomové práce je seznámit se s principy bayesovské ekonometrie a osvojit
si použ́ıváńı bayesovského př́ıstupu v r̊uzných modelech.

V diplomové práci jsem porovnal předpovědi r̊uzných model̊u dle
Theilovy U-statistiky. Vzhledem k tomu, že modely typu VAR předčily
model založený na náhodné procházce, jsem provedl experiment, jehož ćılem
bylo určit nejlepš́ı prediktory pro předpověď inflace, které by měly být
zahrnuty ve VAR modelech. Použil jsem proto rozsáhlý soubor č́ıtaj́ıćı téměř
80 časových řad, které zachycuj́ı d̊uležité ekonomické indikátory, včetně vpřed
hled́ıćıch indikátor̊u źıskaných na základě pr̊uzkumů.

Výsledkem hledáńı vhodných prediktor̊u je, že nezaměstnanost mezi
ně nikdy nepatř́ı (Phillipsova křivka se tud́ıž nepotvrdila jako praktický
vztah), statistiky zachycuj́ıćı HDP jsou použity pouze pro dlouhodobé
předpov́ıdáńı inflace, zat́ımco vpřed hled́ıćı indikátory jsou d̊uležité pro
krátkodobé předpovědi. Použit́ı model̊u typu BVAR mı́sto VAR model̊u
přináš́ı smı́̌sené výsledky. Uvedeny jsou též předpovědi inflace pro roky 2010
a 2011 a krátce jsou diskutovány možnosti daľśıho výzkumu.
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1 Introduction

Forecasting of inflation rates has become crucial for both policy makers and
private agents who try to understand and react to Central Bank decisions
since many Central Banks implemented inflation targeting rules instead of
control of monetary aggregates. Inflation forecasting is considered to be
very complicated issue because univariate regression models and structural
macroeconomic models are usually outperformed in inflation forecasting by
naive Random walk model. This work is intended for forecasting inflation
in the Czech Republic by employing Bayesian econometric method (namely
Bayesian Vector autoregression - BVAR). Bayesian methods proved to be
useful in inflation forecasting [1].

Bayesian econometrics is the developing field of econometrics for past
two decades. Bayesian approach can be expressed by saying that anything
that is unknown can be expressed by theory of probability. Bayesian
econometrics views variables in econometric models as a realization of
random variable. Prior restrictions can be imposed to these random variables
(= parameters that represent final solution of econometric problem) and
actualization principle is used: updating of the likelihood of a parameter
from prior belief to posterior belief given the data. Many different sorts of
models have their Bayesian variants (e.g. OLS) but the ephasis in this work
is on Bayesian vector autoregression (BVAR). Basic theoretical concepts of
Bayesian econometrics and BVAR are described in the following chapter.

Bayesian methods are nowadays often used for inflation forecasting
since other models (e.g. structural models or ARMA) are usually
outperformed by naive Random walk forecast. Brief survey of literature
can be found in the section 3.6.

In this thesis, I compared the forecasting performance of various
models by applying the Theil U-statistics. Since VAR models were able to
outperform Random walk in pseudo out-of-sample forecasts, I undertook an
experiment with the aim to identify the best inflation predictors, that should
be included within the VAR model. For this purpose I employed a set of
almost 80 time series covering various economic indicators including forward
looking variables extracted from surveys. Anticipating the results, I have
found that unemployment is never in the set of best predictors (rejection of
Phillips curve as useful relationship), GDP measure appears only in the long
term forecast, whereas forward looking indicators are important for shorter
forecast horizons. Employing of BVAR models instead of VAR brings mixed
results.

Estimation procedure is based on Matlab environment including
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Econometric Toolbox by James P. LeSage [2]. The best inflation predictors of
the time series are sorted out and VAR and BVAR forecast performances are
compared. The contribution of BVAR models is discussed and the prospects
for future work are outlined.

This thesis is organized as follows. Firstly Bayesian econometrics and
BVAR concept are introduced. Introduction to inflation forecasting and
literature review is provided in the next chapter. The estimation procedure
is explained in detail in the chapter concerning the methodology. Chapter
Results provides all the results including graphical output. Las two chapters
discuss the results, raise the issues of future work and conclude.
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2 Bayesian Econometrics

The most controversial issue of Bayesian Econometrics is that parameters of
models are treated as random variables. We should deal with this controversy
right in the beginning. The chief competitors to Bayesian econometrics is
often called frequentist econometrics.1 Frequentist econometricians say that
parameters are not random but real. And econometric estimation is trying to
approach this real value of parameter. Here frequentists silently (or loudly)
assume that there exist some ’true’ model with real parameters, probably
given by nature or God. I argue that there is only one precise model of reality
and this is reality itself. In this reality model of reality could parameters be
’true’ (quantum physicists might not agree - thus I will leave this topic to
them). But in any model we necesarrily omit some relationships. And these
omitted relationships can and do influence our model relations. Thus we
have ’only’ some estimate of parameter that is not real in any meaning. On
the other hand Bayesian econometrics does not assume anything like ’true’
parameters. It is based on a subjective view of probability, which argues that
our uncertainty about anything unknown can be expressed using the rules of
probability. I feel this view onto econometrics as a far more realistic and I
would like to support also its usefulness. This does not mean that frequentist
econometrics is automatically worse I only argue that it also is not the other
way round.

Following sections comprise of comprehensive introduction to Bayesian
econometrics. This part follows Gary Koop’s Bayesian Econometrics [3]
and should serve as a brief overview of important concepts of Bayesian
econometrics for interested readers. For understanding methodology and
results of the thesis it might be particularly useful to read introductory
section and section concerning Bayesian vector autoregression (BVAR).
Readers familiar with the concept might skip whole chapter.

2.1 Introduction to Bayesian Theory

Main advantage of Bayesian approach is that Bayesian econometrics is based
on a few simple rules of probability. Literaly all the things we wish to do
(estimate the parameters of the model, obtain prediction from the model or
compare different models) involve the same, universal rules of probability.

1This distinction comes from how probability can be regarded as. Frequentists consider
probability to be the frequency of occurence of some outcome of random event. On the
other hand, form Bayesians’ point of view, probability of some outcome captures all the
information we have about the event.
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Let us consider two random variables A and B. From the rules of
probability:

p(A,B) = p(A|B)p(B) (2.1)

where p(A,B) is the joint probability of A and B ocuring, p(A|B) is the
conditional probability of A given B, and p(B) is the marginal probability of
B. Now we can reverse the roles and rewrite the equation:

p(A,B) = p(B|A)p(A) (2.2)

Putting these two equations together we get well-known Bayes’ rule:

p(B|A) =
p(A|B)p(B)

p(A)
(2.3)

In econometrics we typically work with models which depend upon
parameters and we are usually interested in estimating these parameters (e.g.
coefficients in regression model). Now, we move on in a little bit abstract
manner. Let y be a vector or matrix of data and θ be a vector of matrix
which contains the parameters of a model that tries to explain y. We have
the data y and we are interested in estimating θ. As Bayesians, we use Bayes’

rule. In other words, we replace B by θ and A by y in equation (2.3):

p(θ|y) =
p(y|θ)p(θ)

p(y)
(2.4)

We treat p(θ|y) as being of fundamental interest. It directly adresses
the question what do we know about the parameters if we have got the data.
Here we imply the treatment of θ as a random variable. Under this treatment
the conditional probability of the unknown given the known is the best way of
summarizing what we have learned. We are thus only instrested in learning
about θ so we reduce preceding equation since term p(y) does not involve θ2:

p(θ|y) ∝ p(y|θ)p(θ) (2.5)

The term p(θ|y) is reffered to as the posterior density ; the probability
density function for the data given the parameters p(y|θ) as the likelihood

function and p(θ) as the prior density, symbol ∝ means ’is proportional to’ .
Let us put it like lemma: posterior is proportional to likelihood times
prior.

2Term p(y) is of no particular importance and serves only as the normalization constant
to preserve p(θ|y) to be probability measure.
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The prior p(θ) does not depend on data. Accordingly it contains any
non-data information, in other words it contains all we know about θ before
we see the data. Prior is another controversial aspect of Bayesian methods.
Some technical econometricians would argue that this is cheating that we
employ some information that does not come of the data. But if we design
any model we employ some knowledge or presumptions that do not origin
from the data. Then we have to think of setting the priors as a part of
designing the model (see the discussion about SVAR later on). In fact,
compared to other methods, priors are useful for incomporating into model
some prior idea about value of some parameters or structure of the model in
an exact and transparent way.

Priors can be divided into informative, non-informative and empirical.
Those informative are the ”rigorous” priors that employ some prior
information. Non-informative priors deal with the controversy about
preliminary information and do not use any prior information. Finally
empirical priors employ already into priors some information from data.
These priors violate the basic premise of Bayesian methods (that prior p(θ)
is indpendent on the data) however work surprisingly well in practice.

The likelihood function p(y|θ) is the density of the data conditional
on the parameters of the model. This can be seen as the data generating
process (compare to common maximum likelihood estimation). For example,
in the linear regression model we usually assume that errors are normally
distributed. Thus, under Bayesian approach, it implies that p(y|θ) is
normally distributed and depends upon regression coefficients and the error
variance.

The posterior p(θ|y) summarizes all we know about patameters θ after
seeing the data. We can thought about equation (2.5) as of an updating
rule, where the data allows us to update our prior information about θ. The
result is the posterior which combines both data and non-data information
in a transparent way.

2.2 Simple regression model - an illustration

The aim of this section is to show how natural conjugate prior can be built,
how posterior is estimated and how the Bayesian econometrics combines the
information from prior and data. All on the very simple regression model
thus qutie easy to understand. Let us consider the simplest regression model
(single parameter - single explanatory variable, no constant term):

yi = βxi + εi (2.6)

12



for i = 1, ..., N , where εi is an error term. Inclusion of error term can reflect
measurement error (not often case in economics, but in physics), or it can
reflect the fact that the model relationship is only an approximation of the
true (real) relationship. Since no model can completely describe reality (no
model can be fitted through all data points - except trivial cases), error term
is inevitable.

2.2.1 The likelihood function

Assumptions about εi and xi determine the form of the likelihood function.
The standard assumptions are:

1. εi is i.i.d. N(0, σ2)

2. xi are either fixed (not random - this is conventional situation since we
usually think that we have ’measured’ data xi) or, if they are random
variables, they are independent of εi. In any case, these xi are said to
be dependent on some vector of parameters λ.3 Potentially random xi

is thus given by probability density p(xi|λ). Mind that parameters λ

must be independent of β and σ2.

Under these assumptions we allow xi to be realization of random
variable. Likelihood function is joint probability density function for the
data conditional on the parameters (see (2.5)):

p(yi, xi|β, σ2, λ) = p(yi|xi, β, σ2)p(xi|λ) (2.7)

The distribution of xi is not of interest and we will not explicitly
include x and λ in our conditioning, thus we are interested in likelihood
fucntion p(yi|β, σ2). From the assumptions made about the errors we can
build likelihood function. Firstly from assumption of the normality of errors
εi:

p(yi|β, σ2) =
1√

2πσ2
exp

[

−(yi − βxi)
2

2σ2

]

(2.8)

which is normal distribution with mean E(yi|β, σ2) = βxi and variance
var(yi, β, σ2) = σ2. Now we use assumption of εi being independent of εj for

i 6= j. Thus p(y|β, σ2) =
∏N

i=1 p(yi|β, σ2), hence:

p(y|β, σ2) =
1

(2π)
N
2

σN
exp

[

− 1

2σ2

N
∑

i=1

(yi − βxi)
2

]

(2.9)

3We artificially create random variable xi dependent on some λ from ’measured’ values
xi.
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To see the similarity between Bayesian and common OLS estimation we can
write this explicit likelihood function in a following form [3]. Derivation is
straightforward though sizeable and messy:

p(y|β, σ2) =
1

(2π)
N
2

{

exp

[

−h

2
(β − β̂)2

N
∑

i=1

x2
i

]}

{

h
ν
2 exp

[

− hν

2s−2

]}

(2.10)
where β̂, s2 and ν are the OLS estimator for β, standard error and degrees
of freedom, respecitvely. h is the error precision h = 1

σ2 . Let us note that
equation (2.10) is a product of normal distribution for β and so called gamma
distribution for h.

2.2.2 The prior

In this simple model we must elicit prior for β and h which we denote p(β, h)
and which will be determined in the form p(β, h) = p(β|h)p(h). We search
for natural conjugate prior that is defined by having the same form as the
likelihood function. The importance of natural conjugate prior is that once
both prior and likelihood function have the same form (the same probability
distribution), the posterior is also of this distribution. 4 Thus we need p(β|h)
to be normal distribution and p(h) to be gamma distribution. Priors can then
be written in a form:

β|h ∼ N(β, h−1, V ) (2.11)

h ∼ G(s−2, ν) (2.12)

Prior hyperparameters β, V , s−2, ν reflect researchers prior information.
These new symbols - hyperparameters represent just numbers and their
interpretation becomes clear from following section the posterior. Note only
that bars under parameters (e.g. β) denote parameters of prior density

whereas bars over parameters (e.g. β̄) denote parameters of posterior density.

2.2.3 The posterior

Since we used natural conjugate prior we have a posterior of the same form:

β, h|y ∼ NG(β̄, V̄ , ¯s−2, ν̄) (2.13)

4The importance lies in the fact that natural conjugate prior ensures that posterior is
of some well-defined probability distributions whose important properties (mean, variance
etc.) can be (mostly) calculated analytically. Hence no posterior simulation (see below)
is needed.
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where

V̄ =
1

V −1 +
∑

x2
i

(2.14)

β̄ = V̄
(

V −1β + β̂
∑

x2
i

)

(2.15)

ν̄ = ν + N (2.16)

and s̄−2 is defined through

ν̄s2 = νs2 + νs2 +
(β̂ − β)2

V +
(

1
∑

x2

i

) (2.17)

From equations (2.14)-(2.17) we can see how Bayesian methods combine prior
and data information in a very simple model. Common Bayesian estimate for
β is β̄, which is a weighted average of the OLS estimate β̂ and the prior mean
β. The weights are proportional to

∑

x2
i and V −1, respectively. Where V −1

is the confidence in the prior. The higher V the less certain we are about the
values of β before seeing the data and consequently the little weight is given
to the prior information in the posterior. On the other hand term

∑

x2
i is

proportional to variance of the data and reflects the confidence of data’s best
guess for β, OLS estimator β̂. Similarly we can interpret (eq. 2.17) posterior
sum of squares (ν̄s2) to be the sum of prior sum of squares (νs2), OLS
sum of squares (νs2) and a term which measures the conflict between prior
and data information.5 Equation (2.14) can be interpreted as saying that
posterior precision is an average of prior presicion (V −1) and data precision
(
∑

x2
i ). Thus posterior variance of β incoroporates transparently both prior

and data information. Now, using some algebra (namely integrating out
the dependency on h from the posterior distribution) we can count some
important properties of posterior that allow for continuing comparison to
common OLS model:

E(β|y) = β̄ (2.18)

var(β|y) =
ν̄s2

ν̄ − 2
V̄ (2.19)

E(h|y) = s̄−2 (2.20)

var(h|y) =
2s̄−2

ν̄
(2.21)

Note that in this simple example we do not need any numerical integration
nor posterior simulation. These equations also illustrate how Bayesian

5Note that natural conjugate prior can be interpreted as arising from fictious data set,
thus we can interpret ν as a prior sample size since it plays the same role as N .
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approach combines data and non-data information. We emphasized
similarities between Bayesian approach and OLS estimation. But two
differences are remarkable. Firstly Bayesian approach incorporates prior,
non-data information. And secondly Bayesians treat β as a random variable,
whereas frequentists interpret β̂ as a random variable.

2.2.4 Non-informative prior

Natural conjugate prior, used in last section, ensures that prior information
enters in the same manner as data information and this hepls with prosterior
elicitation. In many cases resarchers may be able to agree on what a sensible
prior might be (e.g. from economic theory). However, sometimes very
different priors can be tenable. Two Bayesian strategies adressing these
problem can be carried out.

1. Prior sensivity analysis can reveal the dependency of result on different
priors. Special case is extreme bound analysis that analyses the bound
of results with any sensible prior taken.

2. Noninformative prior is to set ν = 0 and V −1 = 0 in our simple
case. Results of Bayesian estimation are equal to OLS estimation. This
approach has undesirable propoerty that such prior is improper since
its density is not valid because does not integrate to one. Unfortunately
non-informative priors are improper in most models. Loosely speaking,
such non-informative prior takes the form of uniform density and such
density integrates to infinity over (−∞,∞). Thus such non-informative
prior is improper.

2.2.5 Extension 1 - Many explanatory variables

It is straightforward (and for skillful econometricians even easy) to extend
previous one parameter model to many parameters model. The only magic is
matrix notation. If we use again natural conjugate prior we get qualitatively
identic results. Particularly important is that our posterior is again well
known distribution - in this case it is multivariate t distribution. For
computational issues, we note that it is easy to take random draws from
this distribution.
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2.2.6 Extension 2 - Other priors

Until now we used natural conjugate prior with two conditionals p(β, h) =
p(β|h).p(h) with normal and gamma distributions, respectively. Now, let us
assume prior p(β, h) = p(β).p(h) with p(β) being normal and p(h) gamma
distribution. Likelihood remains the same as before and thus posterior can
be evaluated. Algebra is not so different and I will not write it explicitly
since in the center of the debate are qualitative considerations.

If we create our posterior we find out that the joint posterior density
(p(β, h|y)) does not take the form of any well-known density and hence,
cannot be directly used in a simple way for posterior inference. The
conditionals of the posterior are, however, simple. p(β|y, h) and p(h|β, y)
remain normal and gamma distributions, respectively. It must be stressed
that p(β, h|y) 6= p(β|y, h).p(h|β, y) and thus even from ’nice’ conditionals we
do not have information we need (’nice’ posterior). In fact posterior simulator
must be used. However this is already part of Bayesian Computation.

2.2.7 Extension 3 - Inequality constraints

Imposing inequality constraints on the parameters (e.g. coefficients in the
linear regression model) is something that the researcher may often wish to
do. Of a particular importance might be imposing stationarity into model
with autocorrelated errors. These cases can be all written in the form β ∈ A,
where A is relevant region. Under Bayesian analysis we can impose these
constraints simply through the prior. When constructing the prior, statement
β ∈ A is equivalent to statement that all other regions of parameter space
are a priori excluded, thus they receive a prior probability weight of 0. Such
prior information can be combined with any other prior information (e.g.
with natural conjugate prior as we did before). As a result we usually get
posterior that is truncated to the region where β ∈ A. In linear regression we
get posterior p(β|y) as a multivariate t distribtuion truncated to the region
β ∈ A. As a result of innequality restriction we might get posterior that is
not of any analytical form. It is common that posterior simulation called
importance sampling must be employed (see below).

2.3 Bayesian Computation

Historically, the computation issues are the reason for the minority status of
Bayesian econometrics. The computing revolution has led to a sharp growth
of using of Bayesian methods in many fields. In the previous very simple
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example we could calculate all integrals analyticaly. This is a very rare case.
In fact we often need to estimate some integrals numerically. In this section
we will discuss in detail methods based on Monte Carlo integration, namely
the Gibbs sampler and the Metropolis-Hastings algorithm.

Equation (2.5) defines the posterior and, importantly enough, does
not contain any integral. Moreover posterior density p(θ|y) summarizes all
information about parameters. However, it is rarely possible to present all
the information about p(θ|y) in a compact form. And (more importantly)
numerical summaries that we might wish to present usually involves
integration. This numerical summary can be for instance point estimate
with few various plausible options (in particular mean and median). The
posterior mean of any element is calculated as:

E(θi|y) =

∫

θip(θ|y)dθ (2.22)

This integral can be evaluated analytically only in few simple cases (one of
these was presented in the illustrative OLS example), otherwise it must be
eveluated by some numerical method.

We are also interested in measure of the degree of uncertainty associated
with the point estimate. The most common such measure is the posterior

standard deviation, which is the square root of the posterior variance, that
is calculated:

var((θi|y)) = E(θ2
i |y) − [E(θi|y)]2 (2.23)

This formula requires to integrate (2.22) and moreover:

E(θ2
i |y) =

∫

θ2
i p(θ|y)dθ (2.24)

Similarly we can be interested whether some parameter is positive:

p(θi ≤ 0|y) =

∫ ∞

0

p(θ|y)dθi (2.25)

Generaly, all these calculations have the form:

E(g(θ)|y) =

∫

g(θ)p(θ|y)dθ (2.26)

where g(θ) is a function of interest. Even the predictive density falls in this
framework if we set g(θ) = p(y∗, y, θ). The main exception are the marginal
likelihood and quantiles of the posterior density. These are not evaluated
using this form and usually easier to obtain. Certain problem arises that
E(g(θ)|y) might not exist (e.g. mean of cauchy distribution).
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2.3.1 Monte Carlo integration

There are several methods for evaluating (2.26), but the dominant aproach
is posterior simulation. This approach allows to approximate the value of
E(g(θ)|y) by sequence of some computationally manageable steps.

There exist many posterior simulators and these are all applications of
laws of large numers and central limit theorem.

Monte Carlo integration:

Let θ(s) for s = 1, ..., S be a random sample from p(θ|y), and define

ĝS =
1

S

S
∑

s=1

g
(

θ(s)
)

(2.27)

then ĝS converges to E(g(θ)|y) as S goes to infinity.

This approach allows us to approximate E[g(θ)|y] by taking random
draws from the posterior. θ(s) is reffered to as a draw or replication. ĝS

is a good approximation of E(g(θ)|y) only if S is sufficiently large. Using
central limit theorem and properties of normal distribution we can get the
approximate result

Pr

[

−1.96
σg√
S

≤ ĝS − E(g(θ)|y) ≤ 1.96
σg√
S

]

= 0.95 (2.28)

where σg = var[g(θ)|y], which is in practice unknown but can be
approximated by Monte Carlo integration procedure. The term σg√

S
is known

as the numerical standard error. Unfortunately, it is not always possible to
do Monte Carlo integration since algorithms for taking random draws do not
exist for any probability density.

2.3.2 Gibbs Sampler

Let us remind that in the extension 2 of our illustrative model (section 2.2.6)
we have posterior (p(β, h|y)) that does not take form of any well-known
density whereas its conditionals (p(β|y, h) and p(h|y, β)) are of defined
distributions. Thus we are interested to simulate random draws from
posterior (this is what we want but cannot directly do) using random draws
from conditionals (these are often perfectly available).

We have vector of parameters θ (in illustrative model θ = (β, h)6). Let
us divide θ into various blocks as: θ = (θ1, θ2, ..., θB), where each θj is scalar

6More precisely θ equals transpose of (β, h), since θ is vector.
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or vector of paramters. (In illustrative model it is convenient to set θ1 = β

and θ2 = h.)

Following the motivation of our example of having ’nice’ conditionals
we now define generally full conditional posterior distributions:

p(θ1|y, θ2, ..., θB), p(θ2|y, θ1, θ3, ..., θB), ...p(θB|y, θ1, θ2, ..., θB−1). (2.29)

(In regression model with independent priors these conditionals are
normal distribution p(β|y, h) and gamma distribution p(h|y, β).)

Let us consider now case B = 2. Suppose that we have initial
random draw θ0

2 from p(θ2|y).7 Now we make a draw θ1
1from (well known)

conditional p(θ1|y, θ2).
8 From properties of marginal and joint densities it

follows that this θ1
1 is a valid draw of θ1 from whole posterior p(θ|y). This

we got employing p(θ|y) = p(θ1|y, θ2)p(θ2|y). Anlogously we can write:
p(θ|y) = p(θ2|y, θ1)p(θ1|y). Thus having draw θ1

1 we can draw new θ1
2 from

conditional p(θ2|y, θ1). Hence we have first complete valid draw θ1 = (θ1
1, θ

1
2)

from full posterior p(θ|y). Moreover we can use θ1
2 to make a new draw θ2

1 and
continue indefinitely. This procedure of sequantially drawing from conditinal
posterior distributions is called Gibbs sampling.

The problem arises that sometimes it is hard to find initial draw θ0
2.

Usually we choose θ0
2 just ’somehow’ and then hope (or test or proove) that

this particular choice of initial draw does not contamine our draws from
p(θ|y). Moreover it is common, after having our set of S draws, to discard
first S0 draws to eliminate effect of the initial draw. Remaining S1 draws can
be used to create estimates of posterior features of interest:

ĝS1
=

1

S1

S
∑

s=S0+1

g
(

θ(s)
)

(2.30)

where ĝS1
converges to E[g(θ)|y] for S1 going to infinity.

We employ here Monte Carlo integration but we need to note that its
assumption of random draws is not fulfilled. Particularly our draws θs is not
independent from θs−1. This dependency on last value means that sequence
is a Markov Chain. There are many posterior simulators with this property.
Such posterior simulators have the general name of Markov Chain Monte

Carlo algorithms (MCMC).

7Lower index represents ordinal number of parameter - second parameter (would be h

in the example). Upper index represents ordinal number of the draw (zero draw - initial
draw). This number, in principal, runs to very high values through the procedure.

8Thus we have first draw of first parameter.
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2.3.3 MCMC diagnostics

We use various diagnotistics to see whether estimated results of MCMC

algorithms are reliable. Common MCMC diagnaostic is numerical standard
error. We can employ central limit theorem (similarly to 2.28) and get
numerical standard error being equal to σg√

S1

. But our new σg is higher than
in the case of original Monte Carlo integration because it has to compensate
the fact that θs is a correlated sequence.

Another diagnostic is based on the intuition that if the sufficiently large
number of draws have been taken, the estimate of g(θ) based on the first half
of draws should be the same as the estimate based on the second half. More
precisely we can divide our S1 of draws into first set SA, middle set SB and last
set SC . After discarding middle set we can construct so called convergence

diagnostic (CD) that compares estimates based on sets of draws SA and SC .

CD =
ĝSA

− ĝSC

σA√
SA

+ σC√
SB

→ N(0, 1) (2.31)

In words, convergence diagnostic is the difference between the estimates
divided by the sum of numerical standard errors. Moreover this converges to
normal distribution thus critical values of normal distribution can be used.
Large values of this diagnostic suggests that estimates are quite different
form each other and hence we have not taken enough replications (S1 is too
small).

MCMC diagnostics are usually quite informative though two exceptions
must be expressed.

1. When posterior is bimodal (e.g. comprises of two distinct normal
distributions that are located far from each other in parameter space)
then Gibbs sampler may not switch from one of these to the other. All
the result would be missing one of the two normals that comprise the
posterior. Unfortunately, MCMC diagnostics will not explore this.

2. When initial draw θ0 is too far from the region of the parameter space
where most of the probability lies then this region might not be found
and MCMC diagnostics might even not realize this. Both these cases
occur because of effect of the initial draw has not worn off. Common
practise is to run Gibbs Sampler several times using a different values
for θ0.

To be more precise, let us take m different initial values from very
different regions of the parameter space θ0,i, in the jargon overdispersed
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starting values. Now we can run Gibbs sampler m times and get m sequences
g(θs,i). From these we can count within sequence variance that represents the
variance of Gibbs sampler sequence with using one particular initial value.
The average of these is average within sequence variance:

W =
1

m

1

S1 − 1

m
∑

i=1

S
∑

s=S0+1

[

g(θs,i) − ĝi
S1

]2
(2.32)

We can also compute between sequence variance:

B =
S1

m − 1

m
∑

i=1

(

ĝi
S1

−
m
∑

i=1

ĝi
S1

)2

(2.33)

Note that W is an estimate of var[g(θ)|y] but heavily underestimate this
variance in two considered problematic cases (because some - or many -
sequences just does not find some part of posterior probability in parameter
space). On the other hand, B is based on overdispersed starting values and
efficiently cures our problematic examples. B overestimates var(g(θ)|y). It
can be shown that

ˆvar(g(θ)|y) =
S1 − 1

S1

W +
1

S1

B (2.34)

is a good estimate of var(g(θ)|y). Finally we get commonly presented MCMC
convergence diagnostic:

R̂ =
ˆvar(g(θ)|y)

W
(2.35)

Values of R̂ near one indicates that the Gibbs sampler has successfully
converged. Role of thumb suggests that values greater than 1.2 indicate

poor convergence.
√

R̂ is called the estimated potential scale reduction.

2.3.4 Importance Sampling

When we employed Gibbs Sampler we did not need analytic form of whole
posterior but we needed ’nice’ conditionals. Unfortunately we often get such
posterior that even its conditionals are not of any analytical form. Extension
3 of our illustrative linear regression model (section 2.2.7) might serve as a
motivation exapmle.

Firstly let us introduce the distribution function of parameters called
importance function q(θ). We can construct this distribution in prinicple
anyhow but we seek for two main features. First is that it must be easy to
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take random draws from this distribution and second q(θ) must approximate
p(θ|y) reasonably well (particularly q(θ) > p(θ|y) for any θ). After having
importance function we employ this posterior simulator:

Importance sampling

Let θs for s = 1, .., S be a random sample from q(θ) and define

ĝS =

∑S

s=1 w(θs)g(θs)
∑S

s=1 w(θs)
(2.36)

where

w(θs) =
p(θ = θs|y)

q(θ = θs)
(2.37)

then ĝS converges to E[g(θ)|y] as S goes to infinity (under weak assumptions).
In words, instead of simple averaging we use weighted averaging where weight
always describes how well importance function approximates posterior in a
particular point of randomly chosen parameter. We got rid of necessity of
taking random draws form posterior since we only take random draws from
importance functions and compare value of this importance function with the
computed value of posterior (we just put into the posterior function actual
random draw from importance function).

Main advantage of importance sapmling are very weak assumptions on
posterior (loosely saying we need only p(β|y) and E[g(θ)|y] existing). Its
biggest disadvantage is a need of careful choice of q(θ). Unless q(θ) does not
approximate the posterior well, then weight w(θs) is virtually zero for almost
every draw, thus S may need to be enourmous. As a result importance
sampling is far less popular than e.g. Gibbs sampler, because it usually
involves hunting for, justifying and fine tuning of convenient importance
functions.

Fortunately, in some cases, choosing importance function is quite
natural. In Extension 3 of our illustrative OLS model (section 2.2.7) we
imposed inequality restrictions on parameters (β ∈ A). As a result we got
truncated posterior that have lost its analytical form. Under framework
of importance sampling it is natural (and successfull) to define importance
function q(θ) as unrestricted posterior and weights being equal to 1 if
particular draw from parameters fullfils imposed restrictions, zero otherwise:
w(θs) = 1(βs ∈ A). This strategy simply involves drawing from the
unrestricted posterior and discarding draws which violate the inequality
restrictions.
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2.3.5 Metropolis-Hastings algorithm

Metropolis-Hastings algorithm can be be viewed as a whole class of
algorithms. It combines importance sampling with its genreality and Gibbs
sampler including its cook-book fashion.

What we called importance function in section Importance sampling

will now be called candidate generating density, q(θs−1; θ). This notation
indicates that candidate draw θ∗ is taken of the random variable θ whose
density depends on ’previous’ density θs−1. As with the Gibbs sampler
current draw depends on previous draw (unlike importance sampling). Thus
Metropolis-Hastings algorithm is a MCMC algorithm and the drawn values
are often reffered to as a chain.

With Metropolis-Hastings algorithm, we weight all draws equally (on
the contrary from importance sampling), but not all candidate draws are
accepted. New steps in this cookbook algorithm are that after taking
candidate draw we count acceptance probability α(θs−1, θ∗). And now we
set θs = θ∗ with probability α(θs−1, θ∗) and we set θs = θs−1 (refuse new
draw) with probability 1 − α(θs−1, θ∗).

Acceptance probability is chosen to be highest in areas where posterior
probability is highest. This ensures that if current θs−1 is in an area of high
posterior probability it will tend to stay here whereas if θs−1 is in an area
with low posterior probability the algorithm will tend to move quickly away.
Under this intuition we want a candidate draw (θ∗) to be accepted with high
probability if it is in a region of higher posterior probability than θs−1. In
other words we want the algorithm to stay longer in high probability regions
but still it must be able to visit the areas of low probability as well. Following
choice has these desirable properties:

α(θs−1, θ∗) = min

[

p(θ = θ∗|y)q(θ∗; θ = θs−1)

p(θ = θs−1|y)q(θs−1; θ = θ∗)
, 1

]

(2.38)

We must stress that equally as this algorithm combines advantages
of importance sampling and Gibbs sampler it also contains disadvantages
of both. From Gibbs sampler arises the need to find good initial draw
θ0 since each draw is dependent on the previous. And, more importantly,
from importance sampling arises the problem of searching for convenient
generating density q(θs−1; θ). There is a myriad of possible strategies to
choose candidate generating density. I will comment two of the common.

The Independence Chain Metropolis Hastings Algorithm

The name suggests that we use candidate generating density that is
independent on the previous draw q(θs−1; θ) = q∗(θ). The algorithm is then
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very similar to importance sampling. We also need good approximation
to the posterior. The only difference is that instead of different weighting
under importance sampling, we now use acceptance probability whether
to stay (thus similar to higher weight) or to quickly move on (similar to
low weight). Under notation from importance sampling we can rewrite
acceptance probability in simple and understandable form:

α(θs−1, θ∗) = min

[

w(θ = θ∗)

w(θ = θs−1)
, 1

]

(2.39)

In words, the acceptance probability is the ratio of importance sampling
weights evaluated at the old and candidate draws.

The most important issue remains in choosing candidate density. For
regression (even nonlinear) we know that maximum likelihood estimator
is asymptotically normal thus we can create a hint that, if sample size is
reasonably large the posterior might be approximately normal with mean
θ̂ML and variance varθ̂ML. However it is more common to use t-distribution
because it has been found that it is important for the candidate generating
density to have tails which are at least as fat as those of the posterior.

The Random Walk Chain Metropolis-Hastings Algorithm

With Random Walk Chain Metropolis-Hastings Algorithm we make
no attempt (we do not need) to approximate the posterior. Candidate
generating density is chosen to wander widely. Formally we generate
candidate draws according to random walk:

θ∗ = θs−1 + z (2.40)

where z is increment random variable. The acceptance probability ensures
that the ’random’ walk chain moves in the appropriate direction:

α(θs−1, θ∗) = min

[

p(θ = θ∗|y)

p(θ = θs−1|y)
, 1

]

(2.41)

The choice of density for z determines the precise form of the candidate
generatign density. A convenient choice is the multivariate normal
distribution. Thus q(θs−1; θ) is normal distribution with mean θs−1 and
variance-covariance matrix Σ. All we then need is to choose Σ in order to get
optimal acceptance rate. Rule of the thumb says that optimal acceptance
rate for univariate problem is 0.45 and with higher dimensions decreases
asymptotically to 0.23.

Metropolis-within-Gibbs
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We showed Gibbs Sampler as a simple method how to sequantially
combine random draws from posterior conditionals to get random draws form
posterior. Moreover we showed that Metropolis-Hastings algorithm allows us
to take efficiently draws from posterior even without having posterior of any
analytic form. Metropolis-within-Gibbs algorithm uses Metropolis-Hastings
algorithm to provide draws from some (or one or all) posterior conditionals
and then involves all Gibbs Sampler procedure. This method is very common
since many models have posterior where most of the conditionals are easy to
draw from, but few of them do not have convenient form.

2.4 Model Comparison - principles

Suppose we have m different models, Mi for i = 1, ...,m, which all seek to
explain y. The posterior for the parameters is then written as in (2.4):

p(θi|y,Mi) =
p(y|θi,Mi)p(θi,Mi)

p(y,Mi)
(2.42)

Now, we thus have posterior, likelihood and prior for each model Mi.

We use, of course, the Bayes’ rule to derive a probability statement
about we do not know (whether model Mi is good or not) conditional on
what we know (data y). We thus count posterior model probability p(Mi|y)
using (2.3):

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
(2.43)

p(Mi) is prior model probability, it does not contain information from the
data so it measures how likely we believe that Mi is correct before we see the
data. p(y|Mi) is the marginal likelihood. We can integrate (2.42) over θi and
use

∫

p(θi|y,Mi)dθi = 1 so we get p(y|Mi):

p(y|Mi) =

∫

p(y|θi,Mi)p(θi,Mi)dθi (2.44)

For comparing two models directly we usually use posterior odds ration:

POij =
p(Mi|y)

p(Mj|y)
=

p(y|Mi)p(Mi)

p(y|Mj)p(Mj)
(2.45)

We thus get rid of p(y) that is usually hard to compute directly. The
noninformative choice p(Mi) = p(Mj) = 1

2
is commonly made. In this case

we speak about Bayes factor, defined as:

POij =
p(y|Mi)

p(y|Mj)
(2.46)
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These principles are developed in many different ways to be applicable
to different types of models. Details concerning highest posterior density

intervals, Savage-Dickey density ratio, Gelfland-Dey method, posterior

predictive p-value or Bayesian model averaging can be found in [3].

2.5 Bayesian prediction

We might be interested in predicting some future, unobserved data y∗ given
the observed data y. As usual Bayesian reasoning sugests to use probability
of what we do not know (y∗) conditional on what we know (y). That is
predictive density p(y∗|y). It is known from probabilistic and statistical rules
that we can obtain marginal density from joint density through integration:

p(y∗|y) =

∫

p(y∗, θ|y)dθ (2.47)

We can now rewrite term term inside the integral using another known rule
about conditional probability and get:

p(y∗|y) =

∫

p(y∗|y, θ)p(θ|y)dθ (2.48)

This form is particularly favorable since it involves posterior. Let us assume
the case of simple regression model, we then need to assume that some new
values of explanatory variable (x∗) are known. We rewrite last equation:

p(y∗|y) =

∫ ∫

p(y∗|y, β, h)p(β, h|y)dβdh (2.49)

Since ε∗ is independent of any εi, y and y∗ are independent and thus
p(y∗|y, β, h) = p(y∗|β, h). This is likelihood function (see 2.8). Remaining
term is theposterior. Both these term are of well known analytical form in
this OLS case. Thus we can also solve equation (2.49) analytically and we
find that p(y∗|y) is t distribution with mean βx∗, variance ν̄s̄2

ν̄

(

1 + V̄ x∗2
)

, and
degrees of freedom ν̄. This result provides point predictions and measures of
uncertainty associated with the point prediction.

New issues arise when p(y∗|y) is not of analytical form. We then cannot
get complete p(y∗|y) similarly as we cannot get precise form of posterior. But
in the same manner as we extract information from posterior by simulation
(see eq. 2.26) we can extract virtually any predictive feature of interest in the
form E[g(y∗)|y]. For instance, calculating the predictive mean of y∗ implies
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setting g(y∗) = y∗, calculating the predictive variance g(y∗) = y∗2. We are
thus interested in calculating:

E[g(y∗)|y] =

∫

g(y∗)p(y∗|y)dy∗ (2.50)

From its similarity to posterior simulation (2.26) we can repeat Monte Carlo
integration theorem:

Let y∗(s) for s = 1, ..., S be a random sample from p(y∗|y), and define

ĝY =
1

S

S
∑

s=1

g
(

y∗(s)
)

(2.51)

then ĝY converges to E(g(y∗)|y) as S goes to infinity.

Using this formula, following strategy can be employed. We take a draw
θs (or in our particular regression βs and hs) from posterior using posterior
simulator (e.g. Gibbs sampler, Importance sampling, Metropolois-Hastings
algorithm). After that we can finally compute y∗ from p(y ∗ |βshs), which
is counted as likelihood function and is often of analytical form. Thus small
generalization of posterior simulator can provide also information about any
predictive feature of interest.

2.6 VAR and BVAR

Before we analyze BVAR approach we shortly revise the vector autoregression
(VAR) to adress its main advantages and problems.

2.6.1 VAR

Vector autoregression is an n-equation, n-variable linear model in which
each varaible is explained by its own lagged values, current values of the
remaining n − 1 variables and their past values. Under this framework rich
dynamics in multiple time series can be caputred. VAR is coherent and
credible approach to data description, forecasting, strucutral inference and
policy analysis. However, structural inference and policy analysis are more
difficult due to identification problem between causation and correlation.

Reduced form VAR expresses each variable as a linear function of its own
past values and the past values of all other variables plus serially uncorrelated
error term. Each equation is estimated by OLS and the number of included
lags can be determined by different methods. Unfortunately, if the different
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variables are contemporaneously correlated with the others - as they typically
are in macroeconomic applications - then the error term in the reduced form
model will also be correlated across equations.

Recursive VAR includes some contemporaneous values as regressors.
This is usually systemized by some ordering of equations. As a result,
error term in each regression equation is uncorrelated with the error in the
preceeding equatons. Problem is that all the results depend on the ordering of
equations and variables and there are n! possible recursive VARs representing
all posible orderings.

Structural VAR uses economic theory to sort out the contemporaneous
links among the variables, thus ordering of equations. Structural VAR
(SVAR) requires identifying assumptions under which correlations can be
interpreted causally. The number of SVARs is limited only to the fantasy
of the researcher. SVAR is also common name for any VAR in that
contemporaneous relationships occur.

Estimates of the VAR’s coefficients or R2 are often unreported. More
important are other analyses. Granger-causality statistics examine whether
lagged values of one variable help to predict the dependent one. Impulse

response analysis exhibits the response of current and future values of each
of the variables to a one-unit increase in the current value of one of the VAR
errors, under assumptions that error returns to zero in next period and other
errors are all zeros. This thought experiment makes more sense when the
errors are uncorrelated across equations, so impulse responses are typically
calculated for recursive and structural VARs. Forecast error decomposition

is the percentage of the variance.

Ultimate test of a forecasting model is its out-of-sample performance.
However, it is common to test pseudo out-of-sample performance. We
thus estimate model using some old data and make prediction that can be
immediately compared to the newer but still past data. We can predict in
different forecast horizons that are interesting in the pracitcal application.
It is common to compare prediction performance to simpler models like
univariate AR models or even to its its naive variant: Random walk models.

Standard VARs miss nonlinearities, conditional heteroskedasticity and
breaks in parameters. VAR model (mainly small VAR models) are
often unstable. However, adding variables to VAR creates the biggest
complication. Nine-variable, four-lag VAR has 333 unknown parameters
including intercepts. Macroeconomic series data cannot provide reliable
estimates of all these coefficients. In the case when there are more parameters
then observations, then, obviously, model cannot be estimated. However
even when there are less parameters then observation, but still quite an
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amount, then we speak about overparametrization or overfitting, since model
estimates and forecasts are not reliable anymore. Generally, this problem is
reffered to as ’degrees of freedom’ problem.

Common solution is to impose ad hoc restrictions to parameters
acording to more or less plausible assumptions from economic theory.
Some relationships are then suppressed (this effectively means setting some
groups of parameters to zero) and thus number of parmaters is reduced
(so called ’parsimonious VAR approach’). Such models then go from being
overparametrized to being overindentified [4].

Another option, prefferd in this work, is to impose common structure
on the coefficients using Bayesian methods.

2.6.2 BVAR

Bayesian VAR approach was introduced by Litterman (1979), expanded by
Doan, Litterman and Sims (1984) and somewhat summarized in Litterman
(1985) with ’five years of experience’ proving the forecasting ability of BVAR
models [5]. BVAR approach has proven to be a fleixble and effective
forecasting method [6].

BVAR model with general prior is atheoretical or statistical time-series
model as well as VAR without any structural restriction to parameters.
This advantege over macroeconomic structural models is already pointed
in Litterman, 1985 [5]. Short quotation right from the second paragraph
of this forty-pages article is more than illustrative: ’(BVAR) does not
require judgemental adjustment. Thus it is a scientific method which can be
evaluated on its own, without reference to the forecaster running the model’
(Litterman, 1985). However, complete specification requires, among others,
to specify the model variables. Variables are often selected according to their
economic plausibility (and thus dependent on the forecaster’s judgement).
Nevertheless, in this work, variables are selected according to their pseudo
out-of-sample forecast ability. Litterman’s call for scientific method is then
satisfied.

Under Bayesian framework, a priori information can be incorporated
into models through priors. Priors impose general restrictions on parameters
avoiding the problem of overfitting. Many different priors were defined and
used, though the majority of works still keep in with originally proposed prior
by Litterman: Minnesota prior.
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2.6.3 Minnesota Prior

Minnesota prior was originally proposed by Litterman, Doan and Sims
(1984). Priors restrict parameters of the VAR model and they are in the
form of normal distribution. Normal distribution is defined by mean and
variance thus prior for each parameter is defined by its mean and variance.

Concerning the means, Minnesota prior is based on the belief that
random walk is a good proxy for the behavior of ecconomic vaiables through
the time.9 This means that mean of the prior for the parameter is equal to
one for first lag of the dependent variable. All other parameters (connected
to all other variables and also to all higher lags of the dependent variable)
are endowed with the prior with zero mean. Minnesota prior thus take the
form [2]:

βi ∼ N
(

1, σ2
βi

)

(2.52)

βj ∼ N
(

0, σ2
βj

)

(2.53)

• βi - parameters associated with first lag of dependent variable in each
equation

• βj - all other parameters

This implies that each variable included in the model is assumed to be
dependent mainly on its own first lag. Higher-order lags and lags of other
model variables are thus viewed as less important.

The prior variances σ2
βi

spiecify uncertainty about the prior means
βi = 1, and σ2

βj
indicates uncertainty regarding the means βj = 0. Since

we are interested in model without judgemental adjustment and generally
model can contain a large number of parameters, it is useful to employ
certain formula10 to generate the standard deviations as a function of small
number of hyperparameters. This approach allows to specify individual prior
variances for a large number of coefficients in the model using only few
hyperparameters:

σijk = θw(i, j)k−φ

(

σ̂uj

σ̂ui

)

(2.54)

9It should be peferred to use ’random walk with drift’ when dealing with non-stationar
series. This was originally proposed by Litterman [5]. In this work we use priors without
drift because we predominantly use series expressed in growth rates and we are interested
in forecasting of inflation which is stationary series.

10This was suggested already by Doan, Litterman and Sims, 1984
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• σ̂ui- estimated standard error from a univariate autoregression involving
variable i11

• k - number of lag

• θ - overal tightness parameter

• φ - decay parameter

• w - weighting parameter or matrix

The variances of coefficients on lags of other than the dependent

variable are not scale invariant. Thus term
(

σ̂uj

σ̂ui

)

is a necessary scaling factor.

Hyperparameter θ indicates the tightness of the ’random walk’ restriction, or
the relative weight of the prior distribution (the higher θ the lower weight of
the prior). Another restriction is based on the assumption that, in general,
second-order lags contain more information than third-order lags and so on.
Using an harmonic lag decay function, the infomation content decay with
k−φ and so the prior tightens to zero. The higher is the decay parameter φ

the faster is the decay.

Last restriction needs more explanation since it allows some useful
manipulation. This restriction is based on the assumption used for each
equation, that the variable’s own lags contain more information than the lags
of other variables. This might be represented by scalar weight parameter w.
For example, if we want to restrict prior of other variables than the dependent
by setting the variance lower by one half, we set w being equal to 0.5.

By this general prior specification we fulfill the requirements for the
model to be atheoretical, without judgement adjusting and also giving
reliable results even for many variables included in the model with literally
any amount of included lags.12

2.6.4 Weight parameter under matrix notation

Last discussed prior restriction - weight parameter - might be extended to a
matrix notation. Following weight matrix represents the same exmaple that
was given in previous paragraph:

11This means that for each variable an univariate autoregression model with some
meaningful number of lags must be estimated in order to get standard error σ̂ui of the
residuals.

12until it is computationally feasible or econometrically meaningful
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w =











1 0.5 · · · 0.5
0.5 1 0.5
...

. . .
...

0.5 0.5 · · · 1











’Ones’ on the diagonal represent that the prior variances of the
coefficients corresponing to the lags of the dependent variables in each
equation are not further tightened by this ’weight’ restriction. However
’halves’ in the rest of the matrix represent that there is imposed further
shrinkage of prior to its zero mean value. These priors correspond to
the coefficients of the lags of all variables except of the dependent one
in each equation. Rows, obviously, correspond to the equations of vector
autoregression. Columns then correspond to the different variables (diagonal
terms thus reffer to the dependent variable lags as it is clear from previous
discussion). One matrix element reffers to whole variable in the equation
disregarding the number of lags, since lag dependence of the prior variance
is already given by decay function.

2.6.5 Structural restrictions in BVAR

Matrix notation of weight parameter allows to impose different restrictions
to the priors’ variances of different variables in each equation. Setting weight
parameter close to zero13 results in setting the coefficient value efficiently to
zero. This is very similar to imposing restriction (setting the parameters to
zero) in the VAR models. Through weight parameter can thus be implied any
structural assumptions. This, of course, contradicts the original Litterman’s
idea of BVAR being atheoretical model. However this setting might be very
useful in the models where some structural restrictions are undoubted or
when some variable has obviously bigger influence on the dependent variable
than other one. This is of particular interest when e.g. some economic
activity over different regions is simultaneously modeled. It is clear that
neighbouring regions affect each other more than distant regions. This kind
of information that does not origin from the measured data can be efficiently
implied by weight parameter under matrix notation [2].

2.6.6 VAR as a spiecial case of BVAR

Interestingly enough, VAR models can be regarded as special case of BVAR
model. We can equalize the variances of Minnesota prior over all variables

13It is not possible to set the parameter equal to zero, since prior would be improper
(non-integrable).
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by setting weight parameter w = 1. We can also erase lag decay function
by setting φ = 0. Thus all the variances are now equal. We know that
main difference between VAR and BVAR is that VAR does not use any prior
infomation. In principle, this can be done by setting overal tightness of
the prior parameter distribution to be infinite (θ = ∞). However, this is not
really possible. Nevertheless efficiently non-informative prior can be attained
by setting the tightness to be sufficientinly large (e.g. θ=̇1000) [1]. BVAR
estimated using this choice of the parameters then corresponds to the VAR
model.

2.6.7 Other priors

Modified Litterman prior Though it is not obvious, Minnesota prior
corresponds only to the situation of reduced VAR form[4], since it assumes
that the covariance matrix of the resiudals of the model is diagonal, fixed
and known. However, this does not hold if we intend to use structural model
rather than the reduced form, thus allow some variables to be mutually
contemporaneously dependent [7]. Improved prior is required to allow such
more flexible implementation of Minnesota prior. This improvement was
captured by Sims and Zha (1998) [8]. They added a prior for covariance
matrix of the residuals in the form of inverse-Wishart distribution. This
generalized prior is often called inverse-Wishart prior even though priors for
coefficients are still normally distributed.

It must be pointed that at the extent of this generalization, the weight
parameter must be erased from the Minnesota prior. The reason is that
once we allow contemporaneous relationships in VAR model, we get, in fact,
simultaneous equations. In this case it is impossible to distinguish in each
equation which variable is in fact dependent because this depends on the
chosen transformation from structural to reduced form. As a result we cannot
distinguish between the lags of the dependent variable (’own lags’) and lags
of other variables (’others lags’). Therefore inclusion of weight paramater is
of no meaning.

There are many different extensions to Minnesota prior that allow for
different flexible specifications. These extensions are usually reffered to as
modified Litterman prior [9].

Random walk averaging prior There are myriads of different priors
suitable for BVAR estimation. Random walk average prior, suggested by
LeSage and Krivelyova (1999) [10], alters not only the variances of parameters
but also their means. Basic idea is very similar to the idea of weight
parameter under matrix notation. In the weight matrix we can express
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higher impact of certain variable to the dependent one through widening the
prior distribution that is spread around zero mean. The ratio of the weight
parameters in one row of the matrix (one equation in the VAR) express
the relative importance of the parameters in the equation. However, under
Minnesota prior, this relative importance is represented only through the
variance of the prior.

On the other hand, we are interested in setting the mean of the prior
to be correspondent with the importance of the parameter in random walk
averaging prior. This can be done in an analogy with weight matrix in a
following manner. Firstly, let us normalize each row of the weight matrix
(the row then sums to ’one’). Secondly, we use this new paameters as the
mean of the priors for the first lag of corresponding variable (means of all
subsequent lags remain being ’zero’ - as in the Minnesota prior). Sum of the
means of the priors in each equation is equal to ’one’. In fact, the means of the
priors of the first lags of all variables sum to ’one’ and the others are zero. It
is similar to Minnesota prior where the mean of the first lag of the dependent
variable is equal to ’one’ and all the others are zero (thus also means sum to
’one’). Hence, both discussed prior are based on the assumption of random
walk behavior.

The advantage of random walk averaging prior is that it enlarges the
distinction between important and unimportant variables in each equation.
It can also suppress the autoregressive behavior that is always heavily
imposed by Minnesota prior. Serious disadvantage is that the time series
for the variables in the model need tobe scaled or transformed to have equal
magnitudes. Otherwise, it would make little sense to say that the mean
value of the inflation is equal to one half of US GDP measured in US dollars.
This shortcoming may limit the usage to certain data set or call for some
transformation of the data. More detailed discussion, computational solution
and illustrative example can be found in [2].

2.6.8 Bayesian computer software

The myriad of possible priors and likelihoods, we can choose, make it difficult
to construct a universal Bayesian computer package. Several software
packages that are useful for doing Bayesian analysis in certain classes of model
exist though many Bayesian econometricians create their own programs
in programming languages such as e.g. matrix programming environment
Matlab.14 To Matlab can be linked some useful Bayesian packages such

14Though implentation in quite traditional programming language Fortrean can be also
found [11].
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as BUGS (Bayesian Inference Using Gibbs Sampling), BACC (Bayesian
Analysis, Computation and Communication) or LeSage’s Econometric
Toolbox [2], which was extensively used in this work.
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3 Inflation Forecasting

3.1 Phillips curve

The traditional Phillips curve is heavily discussed trade-off relationship
between inflation and unemployment It is the most common econometric
basis for prdeiction of inflation, however the usefullness of the Phillips curve
has been questioned by several authors. Critiques follow two main directions.
The first is that there exist economic variables (e.g. confidence indices)
that allow for more accurate inflation forecasts [12], moreover parameters
of models based on Phillips curve change over time. The second is that
any forecast based on Phillips curve is worse than naive forecasts or simple
univariate autoregression [13]. This stream of critique makes Phillips curve
certainly unappropriate for efficient inflation forecasts.

3.2 Other approaches

There were attempts to forecast inflation using large number of different
models, each with a single predictor. However, most of the models do
not forecast inflation more accurately than naive steady state forecasts.
Moreover, even when a model has relatively higher predictive power, it tends
to be unstable over time. Thus even if model has good predicitve power in
one subperiod has little or no propensity to have good predictive power in
another subperiod.

Two approaches recently proved improved forecasting accuracy. First
is based on using large datasets - large number of predictive variables. It
is thus necessary to impose restriction on the huge amount of parameters
e.g. by employing BVAR estimation. Second approach consists of averaging
the forecasts of different models. This approach dates back to the work of
Granger and Bates (1969) [14]. It is widely discussed that the best predictive
performance is obtained by equalt weight averaging of forecasts from many
models. It is unlikely that the ’true’ optimal weights of many different models
are exactly equal, but the error, introduced by estimating these weights,
may more than offset any benefits [15]. However, Bayesian model averaging
(BMA) is succesfully used in current literature. This method averages the
models according to their posterior model probability (see section 2.4) [11].
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3.3 Inflation targeting

Forecasting of inflation rates has become crucial for both policy makers and
private agents who try to understand and react to Central Bank decisions
since many Central Banks implemented inflation targeting rules instead
of control of monetary aggregates. The transmision of monetary policy
to inflation and other real economic variables is not perfectly understood.
Nevertheless policy interventions are assumed to affect the economy with a
considerable lag. Succesful policy thus depends upon accurate forecasts of
relevant variables, mainly target variable - inflation. Apart of exploring the
monetary transmission, it is forecasting issue that needs to be dwelled on for
succesful monetary policy conducting.

Since this work is concerned with forecasting inflation in Czech republic,
it must be said that Czech national bank started to be pure inflation targeter
by January 1998.

3.4 Pseudo out-of-sample forecasts

Literally indefinite amount of models can be produced with an attempt
to forecast inflation. However, an economist would have to keep all her
models in mind (computer) and run time consuming real-time experiments
to validate the models. Another option is to run pseudo out-of-sample
experiment. Once the model is specified, we allow it to use only some old data
and produce forecasts for the horizon for which the real data are also already
known. It allows immediate comparison between model pseudo forecast and
the real value. This is by far the most common procedure in the literature
and it is also used in this work.

However, Litterman [5] warns against overestimating forecast ability
of pseudo out-of-sample forecasts, because it is very difficult to know what
kind of after-the-fact information was osed for generating the specifications
of the model. Regarding VAR and BVAR modelling it is mainly the choice
of the variables and the tuning of the model. This doubt arises the need for
tests of robustness of the model (mainly the stability of the parameters over
different periods). Revisions of the data must be also considered. Only data
that were readily available might be used.
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3.5 Forecasting and vector autoregression

Estimated values provided by reduced form of VAR are infact one step
ahead forecast. However, we are usually interested in multi step forcasting.
Common solution (also used in this work) is to use the chain rule of
forecasting. This means that estimated one-step-ahead forecasts are taken
as the basis for two-step-ahead forecasts and so on.

Another option is estimating the model whose dependent variables are
directly the (pseudo) future value and explanatory variables are lagged by
intended forecasting horizon (let’s say one year). Thus only the information
that was available one year before is used for estimating the dependent
variable. Similarly, using current values we can directly estimate the value
of the dependent variable one year ahead. This approach can be also used in
simple regression model [11]

Additional variables that are not estimated by the model can be
included on the right side of the VAR equations. These variables then can
influence dependent variables. This variables are thus exogenous (exogenous
external block of variables) [16]. Introducing this exogenous block is usually
connected with assumption of ’small open economy’. This block then
represents influence of foreign sector onto domestic economy (typically oil
prices or GDP growth of some important trading partner). However,
inducing this exogenous block effectively disallow using multi-step chain
forecasting, since it would be then necessary to employ seperate models for
each exogenous variable. In this context direct estimation described in the
last paragraph appears to be very beneficial.

3.6 Literature review

This section covers the most important results that influenced tis work. It
is in no meaning comprehensive summary of literature concerning inflation
targeting.

Litterman [5], apart of other already discussed things, provides short
discussion about fundamental scarcity of the data in economics. One of
the reasons the phenomenon of business cycles. In fact, business cycles
are to be predicted, but even if we measrue macroeconomic data with
higher frequency (e.g. monthly) and we have the time series as long as
possible, the number of the business cycles included in the data set is
quite low, thus hard to predict by statistical methods. Moreover structure
of economy and government policies are constantly changing. However,
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this uncertainty about the structure of the economy can be overcome y
bemploying Bayesian estimation techniques. Litterman provides results
form five year real-time experiment and shows that BVAR estimation and
forecasting show better performance than commercially available forecasts.
He also partly defends common criticism that the time-series models never
forecast turning points, nevertheless, it is admitted that time series modelling
is suitable for short-term forecasts, whereas structural models are needed to
capture the turning points.

One of the most influential articles for this work is by Fabio Canova
[1]. This ’horserace’ article compares different approaches to forecast inflation
in G7 countries. ARIMA models are used along with bivariate theory-based
models, VAR and BVAR models. Important forecasting horizons are set to be
one quarter, one year and two years (used also in this work). All the models
are estimated recursively and pseudo out-of-sample forecasts are compared
to the real values via Theil-U statistics (see in detail below).1 AR models
are generally better than naive steady-state forecast. Theory-based models
improve over univariate specification only at long but not at short horizons.
However theory-based models tend to be unstable over chosen subperiods
and over different countries (Phillips curve specification is relatively stable,
on the other hand not very useful). BVAR models are better then VAR,
however, perception of turning points is unimpressive. Significant improve
over univariate models can be only attained by employing time-varying
coefficients.

Bikker (1998) [6] provides estimations of BVAR models for EU-7 and
EU-14 countries and compares forecasts of these models to forecasts by
OECD. Author used 15 time series concerning the most important economic
indicators, however each model consists of eight variables only. BVAR
forecasts compare well to OECD forecasts at both one year and two years
forecasting horizons.

Authors Ballabriga and Castillo (2003) [16] provide BVAR model for
forecasting aggregate EMU inflation. They conclude that forecasting yields
favorable results with respect to forecasts of other analysts. Important
influence to inflation comes from external sector - GDP growth in outter
states and commodity prices.

Bayesian model averaging method is succesfully used to forecast
inflation by Wright (2009) [15] and Jacobson and Karlson (2004) [11]. Both
articles conclud that Bayesian averaging outperform simple equal-weight
averaging models. It can be also concluded that there is a dramatic difference

1Theil-U statistics was succesfuly used already by Litterman as a Theil coefficient.
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in forecasting perfromance between one year a two years forecasting horizons.

The most related paper from Czech economic environment is Borys
and Horváth (2007) [17]. Paper concerns the understanding the transmission
mechanism of monetary policy to inflation and other real economic variables.
Principle component analysis is employed onto large number of economic
time series to overcome the problem of limited number of variables that
can be included in VAR model. Factor augmented VAR (FAVAR) model
is subsequntly estimated. Providedv discussion concerning the data is
important for this work. Sample is restricted to the data from 1998 on, since
inflation targeting has been adopted by Czech national bank by January
1998. While other studies often employ quarterly data, given the length
of the sample authors decided to work at monthly frequency (and so it is
in this work). Authors also discuss the drawback of VAR literature for
its backward-looking dimension. On the other hand, inflation targeting
monetary policy is typically forward looking. However, this fundamental
drawback of VAR can be weaken by including forward looking variables.

Joiner (2002) and Bloor and Matheson (2009) used BVAR to describe
monetary policy effects in Australia and New Zealand respectively. However,
there must be used methodology which incoroporates restrictions in both
contemporaneous and lagged relationships in the model [8] to decompose
particular effects in BVAR.

Finally, it must be stressed, that there are already some developed
methods that allow for using Bayesian framework in identification of popular
DSGE models (e.g. An and Schorfheide, 2007 [19]).
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4 Data

Following Borys and Horváth [17] we use data from January 1998. This is
the time of adoption of pure inflation targeting by Czech National Bank.
Due to the reduced length of the sample we decided to use monthly data.
When possible, we chose data in the form of percentage change on the same
period of the previous year. Data were downloaded on the 8th of April 2010
and have not been furthermore updated in any way.

4.1 Data sources

4.1.1 ARAD database

The data were downloaded from two different sources. First source was
the database ARAD. ARAD is a public database presenting time series of
aggregated statistical data. Most of these data origins from Czech National
Bank (CNB), however data from external sources (mainly Czech Statistical
Office - CZSO) are also provided. Choice of the time series is heavily limited
by their availability. Only data that covers whole period from January 1998
were used, altogether 30 time series:

• discount rate, lombard rate - by the end of each month

• PRIBOR (3 months, 6 months, 1 year)

• registered unemployment

• sources and the use of the monetary base and their components (levels)

• GDP (by the type of expenditure) and its components - percentage
change on the same period of the previous year

• gross capital formation and its components - percentage change on the
same period of the previous year

• export and import and their components - percentage change on the
same period of the previous year

The last three groups of data origin from Czech statistical office and
are available only with quarterly frequency. Monthly data were eveluated by
employing linear inerpolation between two neighbouring values. As a result
these last three groups of data are generally available with one quarter delay.
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4.1.2 OECD database

As a second source serves database OECD Stats that is available for
subscribers. 49 time series were downloaded from this database, however
only 27 of them are available immediately:

• consumer and producer prices and their components (percentage
change on the same period of the previous year)

• share prices, industrial production (ratio to trend, smoothed), business
confidence - percentage change on the same period of the previous year

• overnight interbank rate, exchange rate (USD, percentage change on
the same period of the previous year of monthly averages)

• block of indicators from business tendency surveys (concerning
manufacturing industry, construction industry, retail trade, etc.) -
levels

Other time series are only available with one quarter lag (see discussion
below):

• industrial production, retail trade, broad money, imports and exports
- percentage change on the same period of the previous year

• harmonized unemployment

• leading indicator (aplitude adjusted) - OECD main cyclical indicator
providing qualitative information on short-term economic movements

• GDP and its components, service exports and imports (balance of
payments), total exports and imports and their difference - percentage
change on the same period of the previous year

• current account as a percentage of GDP

Last two groups of time series are published only with quarterly
frequency thus linear interpolation was again employed.

Precedings lists of used variables serve only as a summary. Complete
list of data can be found on the attached CD and their detail description is
publicly available.
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4.2 Forecasting horizons

We use percentage change on the same period of previous year of consumer
price index as inflation data. This choice is quite common (e.g. [11]).
This time series origins from OECD data, thus this choice allows for direct
comparison of forecasting performance between other European countries in
future work. However, it obscures the comparison to CNB forecasts.

All the data were divided into two groups. In the first group, data were
available until March 2010 - together 44 time series (27 by OECD, 17 from
ARAD). In the other group, the data were available only up to December
2009 - 35 additional time series (22 by OECD, 13 from ARAD).

Let us say that we want to provide reliable forecast one quarter to the
future (out-of-sample forecast). If we use only the data from the first group,
it is enought to compute the forecast three steps (months) ahead. However, if
we allow for using data from second group we need to employ longer forecast
(up to 6 steps) in order to get forecast one quarter to the future. It must be
admitted that in estimating ourr model this has not be taken into account
and the data from both groups were mixed.

Forecasting horizons were set to 3, 12 and 24 steps (months) for one
quarter, one year and two years predtictions, respectively.

Revisions of the data were not analyzed. Model must be adjusted for
both availability and revisions of the data in the future work.
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5 Methodology

For all the computations, except of some basic manipulations in MS Excel,
was used mathematic environment Matlab version 2007b1. Econometric
toolbox for Matlab by James P. Le Sage [2] was extensively used for
estimating VAR and BVAR models.

5.1 RW and AR model

Ljung-Box test and Augmented Dickey Fuller test were used for initial tests
whether inflation data are random or follow random walk or can be generally
further modeled. Both Ljung-Box test and Augmented Dickey Fuller test are
preprogrammed in GARCH toolbox as lbqtest and dfARTest, respectively.
Lag structure of Ljung-Box is chosen to be 24, which also serves as degrees of
freedom for chi-square distribution (asymptotic distribution of Q-statistice
that is calculated employing Ljung-Box test).

Random walk (or naive or steady state) forecasts are easily performed
only by shifting the vector of data forward by required forecasting horizon
(forecast horizon - steps of forecast - were in all functions denoted as
parameter k, thus we will reffer to forecast horizon also in text as k). These
RW forecasts then serve as a benchmark for forecasts provided by all other
models.

ARMA modelling is based on function armax from System Identification
toolobx. This function estimates ARMA model, once lags of both AR
and MA processes are stated. However, it is straightforward to program
short script (using other functions from the toolbox such as selstruc and
predict), which automatically chooses optimal lag for AR process (according
to Akaike criterion), estimates the ARMA model and provides vector of
forecasts in the required horizon. Except of data and forecast horizon, we
need to input also lag of the MA process, since this cannot be computed by
the procedure. Thus best AR lag is set according to the optimal estimation
of the model (Akaike criteron), whereas optimal MA lag is set manually
according to pseudo out-of-sample forecast performance (from comparison of
forecast and the data).

When computing the forecast at time t, model uses only data upto time
t − k. Model computes forecast k-steps forward employing the chain rule.
Then time t is moved one step forward (thus for estimation we use one further
value of the data). Model is reestimated and new k-steps ahead forecast is

1Version 7.5.0.342, released on 15 August 2007
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computed. The result of the procedure is then the vector of forecasts.

It is clear that pseudo out-of-sample forecast close to the beginning of
the data cannot be computed (up to forecast horizon plus number of lags)
and few more values are not reliable, since model estimation is there based
on a very short period of the data. It makes sense to test forecast accuracy
only several steps from the beginning of the data (we usually use whole first
half of the data for model learning and only the second half is compared to
the actual forecast; exceptions are explicitly stated in results chapter). Short
script, which was written for estimating AR model, employs functions that
were programmed to compute following statistics concerning the accuracy of
the forecast.

5.2 Forecast comparison

Forecast accuracy is calculated from comparing pseudo out-of-sample
forecasts vector and the vector of the real data. Forecast is absolutely
accurate when both vectors are equal. There are several statistics used for
comparing forecast to the data.

5.2.1 Mean square error

MSE =
1

T

T
∑

t=1

(ft − yt)
2 (5.1)

• f - vector of forecast

• y - vector of data

• T - the lenght of the time period that was used for comparing the
forecast and the data

Mean square error is common statistics used for estimation of
differences between two vectors (e.g. also between data and regression line -
errors). The lowest bound is obviously zero (absolutely exact forecast), there
is no upper bound. The lower value the better forecast. Compared to Mean
absolute error (MAE), MSE places a greater penalty on large forecast errors.
However, both these statistics fail to provide information on forecasting
accuracy relative to the scale of the series examined.
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5.2.2 Theil statistics

This subsection follows [20]. We use two different Theil statistics in this
work. First of these provides scaling to MSE.

Theil1

TheilU1 =

√

1
T

∑T

t=1 (ft − yt)
2

√

1
T

∑T

t=1 y2
t +

√

1
T

∑T

t=1 f 2
t

(5.2)

Meaning of the symbols is the same as in the definition of MSE.

This statistics takes into account scale of the time series and the
forecast. It is bounded between 0 and 1, with values closer to 0 indicating
greater forecasting accuracy. However, this statistics proved to be misleading
in some cases. Our data do not have zero mean (in fact, except of very few
values, inflation is positive). Thus forecast can systematically underestimate
the data (produce significant errors) but the scaling term

∑T

t=1 f 2
t remains

very low. On the other hand, if the forecast systematically overestimates the
data (such that the MSE can be equal in both cases - and so is the nominator
of Theil1 statisitics), the term

∑T

t=1 f 2
t is now much higher and as a result

Theil1 statistics is lower and signalizes improved forecast. Moreover, it may
easily happen that even obviously worse forecast (by MSE and from the
charts comparing forecasts with the data) shows improved forecast accuracy
according to Theil1 statistics. To sum up, this statistics can be used for
forecast coparison only combined with non-scaled statistics like MSE and,
preferably, with graphical representation.

Theil2 The notation follows [20]. However, in the literature is often
used Theil-U statistics [1], Theil statistics or Theil coefficient [5]:

TheilU2 =

√

∑T−k

t=1 (ft+k − yt+k)
2

√

∑T−k

t=1 (yt − yt+k)
2

(5.3)

• f - vector of forecast

• y - vector of data

• T - time period that was used for comparing the forecast and the data
(see discussion above in previous subsection)

Theil2 statistics is the most extensively used statistics for comparing
pseduo out-of-sample forecast to the real data throughout the work. Detailed
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inspection shows that in the nominator we find again square root of MSE.
In the denominator is square root of errors of random walk (steady state)
forecast. Theil2 statistics thus compares given forecast to potential random
walk forecast.

The lower is the value of the Theil2 statistics, the better is the forecast.
’0’ represents exact forecast. ’1’ describes forecast that is the same accurate
as random walk forecast. Values lower than ’1’ signalize that forecast is
better than steady state forecast, on the other hand, values higher than ’1’
signalize that the forecast is worse than the random walks forecast, thus quite
useless.

Theil2 statistics allows for comparison between the forecasts until the
potential random walk forecast remains unchanged (e.g. for one forecasting
horizon). However, comparison betwen the forecasts is problematic when we
also change random walk forecast (change forecasting horizon, truncate the
data,...). It cannot then be distinguished, whether given forecast improved
or random walk forecast became less accurate.

5.3 VAR and BVAR - pseudo out-of-sample forecast

Production of pseudo out-of-sample forecast is one of the main issue of
estimation procedure in this work. Generating these forecasts is almost the
same for both VAR and BVAR, thus it will be described at once.

Procedure is based on two important functions from James P. LeSage’s
Econometric Toolbox [2]. These are called varf and bvarf. They compute
multi-step ahead forecasts of VAR and BVAR model, respectively. The input
of the functions is matrix of the data, number of lags of the model, the number
of required forecasting steps and the beginning of the forecasting (usually the
end of the data that are available to the model). Function bvarf also uses
parameters specifying the prior of BVAR model.

The functions estimate VAR and BVAR models. Multi-step forecasts
are computed for all variables of the estimated model. Forecasts are produced
by chain procedure up to given horizon. Each step of the forecast is written
in the output (the 12th row of this forecast is the one year ahead forecast
from the end of the data, when employing monthly data). Thus if we want
e.g. 12 steps ahead forecast we need to compute all the forecasts up to 12
and then we use only the last one.

I programmed two new functions varpred and bvarpred based on the
two preprogrammed. These functions are intended to compute vector of
pseudo out-of-sample forecast for given forecasting horizon. Procedure is
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multi-step. The function varpred takes some part of the data (e.g. first
half) and let the function varf compute forecasts up to the given forecasting
horizon. varpred function then saves the last value (row) of the forecast,
because this is the forecast for given horizon. Then one more value (row)
of the data is added (procedure moves one step forward), model is again
reestimated (!), and next forecast is computed (by varf function). Procedure
moves up to the end of the data (in fact only up to k steps before the data
end, so even the last forecast can be compared to the last value of the data).
The result is vector of the forecasts, computed for given forecast horizon.

Finally, this forecast vector is compared to the data and values of MSE
and both Theil statistics are computed. Vector of forecasts is also used in
graphical representation.

5.4 VAR and BVAR - finding good predictors

Procedure that is described in previous section can be used after the
predictors of inflation are chosen. Following procedure describes how to
choose predictors according to their forecast accuracy.

Procedure is a straightforward generaliztaion of previous functions
varpred and bvarpred. We use these functions whose input is given matrix
of data (inflation plus chosen predictors) and output is, among others,
Theil2 statistics. Newly programmed functions varpredn and bvarpredn

use parameter n that defines how many variables should be included in the
VAR or BVAR model (including inflation). Functions also use all the data
that are available2. Functions generate all the combinations of predictors
(according to the parameter n and number of used time-series) and produce
the matrix of corresponding data for each combination. Functions varpred

and bvarpred are consequently used for each generated data matrix and
the forecast accuracy statistics are saved along with the corresondent choice
of the predictors. Finally, predictors combinations are sorted with respect
to Theil2 statstics. As a result we get MSE and Theil statistics and the
correspondent predictors for the best models according to Theil2 statistics.

2The more time-series we use, the longer is the computational time. This might be
substantial limit to the amount of used time-series. In our case we needed to divide the
data to halves to lower the computational burden.
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5.5 Turning points

I programmed two additional function to analyze further the quality of the
forecast. Function tp analyze whether the forecast is able to find turning
points in the data.

Let us have vector of data y. We define upturn of y at t if true:

yt−2 > yt−1 > yt < yt+1 < yt+2 (5.4)

downturn of series yt is then defined by:

yt−2 < yt−1 < yt > yt+1 > yt+2. (5.5)

The definition allows that the trend of the data can be changed (if
the change is not direct) without measuring the turning point. On the
other hand, we can measure the turning point and the data do not show
any long-term change in the trend. Turning points analysis must always be
accompanied by graphical representation.

Function tp is designed to find all the turning points in the data y

and then to find out whether turning point (of the same kind) is present
also in the forecast. However, forecast usually hardly predicts the turning
point exactly at the same date (especially when employing monthly data).
That is why we add parameter q that can be manually set. If q = 0 then
turning point of the forecast must be found exactly at the same date as the
turning point in the data to be evaluated as the succesfuly found turning
point. However, if q = 23 then turning point is eveluated to be succesfuly
found even if turning point in the forecast is found up to 2 positions earlier
or 2 position later.

Analyzing the turning points can be used as an additional statistics to
compare quality of the forecast. However, if there are not enough turning
points in the data, the results of this statistics are less useful.

5.6 Direction of forecast

This additional function analyses, whether forecast follow the same direction
(upward or downward) as the data, over the forecasting horizon (let us say
one year). Funtion analyses whether the value of the data one year ahead
is lower or higher than the current value. The same is evaluated for the
forecast. If the direction of the data disagrees with the forecast function

3This choice we use throughout the work.
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adds ’1’ to ’wrong direction variable’. Function scans through the data.
Finally, function divide its ’wrong directions’ by the number of points that
it has searched through. Output e.g. 0.40 means that at the 40% of the data
points the one year ahead forecast is higher than is the current forecast (that
have been established one year ago) but the future data value will be lower
than is the current value (or vice-versa). The function always analyses only
difference between two points that can be quite far from each other, thus we
can hardly speak about ’slopes’ of the forecast and of the data.

The best forecasts should receive the value close to zero, on the other
hand, completely wrong forecast receives ’1’.

5.7 Out-of-sample forecasts

Out-of-sample forecasts need only tiny modification of varpred and
bvarpred functions. Once the model is chosen (predictors and number of
lags), we can use these functions to provide the vector of the forecast. The
only difference is that now (functions varpredout and bvarpredout) we use
the final values of the data to compute forecast by chain rule (the end of the
data were originally not used in this respect). No MSE or Theil statistics can
be calculated, since we do not have any real data to be compared. The only
output is then the vector of the forecasts that is as long as is the forecast
horizon.

It must be noted that only the last value of the out-of-sample forecast
need the last value of the data, since the forecasts are still computed on the
basis of given forecast horizon.

All the programmed functions with comments about its inputs and
outputs are given in the Appendix A.
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6 Results

6.1 Random walk and AR model

Inflation data time series consists of 144 values, however only last 80
observations are shown in the chart 6.3, since only these last 80 values were
compared with different forecasts from AR model. Previous data are left for
model learning. In the figure 6.3 three cycles can be seen, the first two quite
indistinctive and, on the contrary, the last one longer in period and much
more apparent due to outstanding amplitude. Since we have just three cycles
in the data to be forecasted, we can recall the discussion of the scarcity of
economic data [5].

Data were tested by Ljung-Box test whether they are random.
This hypothesis was rejected with p-value below computer discrimination
ability.1 The rejection of random data hypothesis can be also observed
form autocorrelation functions (ACF) chart 6.1. Data were also tested by
augmented Dickey-Fuller test for a unit root. Hypothesis was also strongly
rejected.2
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Figure 6.1: ACF - data
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Figure 6.2: PACF - data
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Figure 6.3: Data
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Figure 6.4: AR - estimation

1pValue = 0; Qstat = 534.1447; CriticalValue = 36.4150
2pValue = 0; TestStat = -3.5524; CriticalValue = -1.9428
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Data were modeled by univariate ARMA model. Since adding MA lags
did not lead to improvement in forecast accuracy, AR(3) model was finally
chosen (autoregression lag according to Akaike criterion, choice is confirmed
by the chart of partial autocorrelation function - figure 6.2). Values, which
can be estimated by the model using step-by-step calculation, are shown in
figure 6.4 along with the data (blue line - data, green line - estimate, for
more detailed legend - see below).3

Residuals of this model were again tested by Ljung-Box test.
Hypothesis that the residuals are random was again rejected4, however
autocorrelation functions charts for both residuals (figure 6.5) and squared
residuals (figure 6.6) do not show any autocorrelation effects remaining,
except of some seasonality in residuals at one year period.

Due to no clear corellations remaining in the squared residuals, GARCH
analysis was not undertaken.
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Figure 6.5: ACF - r
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Figure 6.6: ACF - r2

Vector of forecasts was estimated from AR(3) model by chain rule.
Forecast was compared to the data in means of MSE and both Theil statistics.
Values of two additional functions (concerning turning points and correct
direction of forecast) were also calculated. Results are compared to steady
state naive forecast (Random Walk - RW) and summarized in table 6.1.
Numbers 3, 12 and 24 reffer to forecasting horizon of one quarter, one year
a two years, respectively.

Direct comparison between Random Walk and Autoregressive model is
given by figures 6.7 to 6.12. In these figures (and all other similar figures)
we skip legend since it would worsen the readability, so the legend is given
now and for all:

• blue line - data (always the same values)

3This calculated values from the AR(3) model can be regarded to as one step forecast
(k = 1).

4pValue = 0.0048; Qstat = 45.6736; CriticalValue = 36.4150
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Table 6.1: RW and AR models results
Model MSE Theil1 Theil2 Turns Directions
RW-3 1.3658 0.1770 1 0 0.39
RW-12 9.1068 0.4584 1 2 0.85
RW-24 7.1524 0.4404 1 0 0.68
AR-3 1.1734 0.1722 0.9263 0 0.42
AR-12 7.1944 0.5029 0.8881 2 0.85
AR-24 7.9378 0.6597 1.2767 1 0.64

• green line - forecast FOR given time (no matter at what time it had
been generated)

• vertical axis - percentage change on the same period of the previous
year of consumer price index (CPI) - provided by OECD Stats

• horizontal axis - time in months (period under consideration slightly
changes among different models and horizons)

It is clear that RW forecasts only shift the data curve by given number of
steps forward (this is the steady state forecast - the inflation after 12 months
will be the same as it is today, figures 6.7, 6.9 and 6.11). AR model estimates
the data quite succesfully (fig. 6.4), on the other hand, it is not particularly
suitable for forecasting, since it improves RW forecast just slightly (figs. 6.8,
6.10), and sometimes not even that (fig. 6.12).

Using the figures we may provide some discussion to the results in table
6.1.5 Concerning Theil2 statistics, RW obviously returns value of ’1’. AR-3
and AR-12 models are better than the RW, whereas AR-24 is significantly
worse. Moer over two counterintuitive results can be identified.

Firstly, Theil1 statistics is lower (better) for RW-12 than for AR-12,
but MSE is much higher (worse). The reason can be explored by looking at
appropriate charts (6.9, 6.10). RW-12 is worse forecast (especially in the end
of the observed period), that is why MSE is high, however, RW-12 forecast
is generally higher (containing higher values) comparatively to AR-12, which
usually underestimates the real data. As a result scaling factor in Theil1

5We remind that the lower MSE the better the forecast. The same holds for both Theil
statistics. Theil1 statistics is bounded between ’0’ and ’1’. Theil2 compares forecast to
steady state forecast (this benchmark is represented by ’1’). The higher value of turning
points statistics (maximum is 5) the better turning point prediction. The lower direction
statistics the better the forecast follows the slope of the data (bounded between ’0’ and
’1’).
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statistics is higher in the case of R-12 and resulting statistic value is lower,
signalizing better forecast. This supports discussion in section 5.2.2 that
Theil1 statistic must be taken into account with a great care.

Secondly, Theil2 statistics is better for AR-12 model than for AR-3.
The reason lies in fact in RW models. RW-3 is still quite succesful, thus the
basis of comparison is better (the denominator of Theil2 statistics is low)6.
On the other hand, RW-12 forecast is poor. As a result AR-12 shows bigger
improvement with respect to RW-12 than AR-3 to RW-3. Hence, it must
be always taken into account that value of Theil2 statistics depends heavily
on how succesful is the random walk forecast. The accuracy of RW forecast
must be considerd also in the discussion of results of VAR and BVAR models
represented by Theil2 statistics.

Concerning the turning points, there are only 5 turning points in the
data, two downturns and three upturns. Two turning points were identified
by both RW-12 and AR-12 (one upturn in the beginning of the data and
one downturn in the middle). However, these findings were just fortunate.
Identified turning points in the forecast represent only local change of the
slope instead of long-lasting change in trend. The only conclusion is that
this statistics (having only 5 turning points in the data) does not say much
about forecast accuracy in the mean of prediction of turning points.

We can non-surprisingly conclude from the second additional statistics,
that one quarter forecast follows the direction of the data best. However,
interesting is very poor performance of one year ahead forecast. High value
of this statistics alerts that forecast moves often in the opposite direction
than the data. This can be confirmed from the charts 6.9 and 6.10. Forecast
and the data seem to be in antiphase for both RW-12 and AR-12 models.
This is no longer true for 24 steps ahead forecasts and thus the statistics
’directions’ improves.
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Figure 6.7: RW-3
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Figure 6.8: AR-3

6The square root of MSE of RW models is in fact the denominator in Theil2 statistics
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Figure 6.9: RW-12
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Figure 6.10: AR-12
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Figure 6.11: RW-24
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Figure 6.12: AR-24

To conclude, AR model does not provide accurate forecasts and,
moreover, it does not markedly improve Random walk forecasts (in fact AR
forecast is even worse under 24 steps horizon). This section also covered
the principles of presentation of the results that will be kept throughout the
chapter.

6.2 VAR and BVAR

This section covers the most important results of this work - results from
both VAR and BVAR modeling. Results are divided according to forecasting
horizon. However, first we describe the estimation procedure, discuss the
optimization of BVAR models and comment out-of-sample forecasts.

6.2.1 Estimation procedure

First we use functions described in methodology to find the best predictors
according to the Theil2 statistics. We use only second half of the forecast
and the data for the comparison.7 First half is devoted only to learning of

7p = 0.5
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the model. (When we compute the Theil2 statistics, the truncated sample
is furthermore shortened by the number of forecasting steps. Data that are
used for comparison in the case of two years forecast horizon are thus too
short. That is why we use 70% of the data for the comparison in this case.)

Unfortunately, due to computation burden, it is impossible to analyse
all 79 time series at once8. Data set was thus divided into two groups9. In the
first half we chose ten best predictors, according to the procedure described
in the next paragraph. These time series were then added into second half
and the search for best predictors was repeated.

This time consuming procedure was undertaken simultaneously for both
VAR and BVAR models (the sets of best predictors were very similar for
both types of models). We considered models with up to three dependent
time series (equations in VAR)10. Bigger models would have allowed much
more combinations of the predictors and thus computational burden would
have rised substantially. The procedure was, of course, repeated absolutely
separately for each forecasting horizon. Number of lags was also varied during
the estimation procedure (best forecast accuracy has been usually found with
3 to 5 lags). Finally, top ten predictors were identified.

Detailed analysis was performed among this reduced dataset, employing
bigger models (arbitrarily big, e.g. including all ten time series) and
concerning the stability of the respective models. Reduced data were
produced for this reason. Data were shortened from the beginning by 12
and 24 values, respectively. Thus the learning sample differed significantly.
It might have been more accurate to delete some data from the period where
forecast is already compared to data, however, too short data would have
been then left for the forecast comparisons. Anyway, some models proved
to be unstable even after this slight change, whereas others remained in top
rated models. These stabile models were then chosen (with optimized number
of lags) as the best VAR and BVAR models for each forecasting horizon. The
results of these models are shown separately for each horizon and are denoted
by numbers (VAR2, BVAR2).

6.2.2 Optimization of BVAR models

BVAR models were further optimized in order to get improved forecast by
adjusting the parameters defining the variances of the priors. Parameters
were optimized ’manually’ one by one and forecast was always immediately

8Will be significantly improved by using more powerful computer in future work
9Division follows the data availability, as discussed in the chapter Data

10n = 3
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computed. Optimization continued until change of single parameter did not
provide improved forecast (according to Theil2 statistics). This procedure, of
course, does not necessarily find global extreme (the most accurate forecast).
However, forecast accuracy does not vary dramatically when we fine tune
the final parameters. It is also checked, whether it is not advantegous to
use different number of lags with new parameters (if so, then parameter
optimization must be undertaken again with new number of lags). Optimized
BVAR models are denoted by letter ’b’ (e.g. BVAR2b) and optimized
parameters of prior variance are shown along with used lags. Used predictors
are the same as in the correspondent non-optimized model.

6.2.3 Out-of-sample forecasts

The out-of-sample forecast is computed in the same manner as pseudo
out-of-sample forecast. Only such data are used that were available 3 (or
12 or 24) months before the declared forecast. Thus we need all the data (up
to December 2009) only for the last value of each forecast.

Forecasts are also compared to inflation forecasts of Czech National
Bank (CNB). CNB provides its forecast that are based on the percentage
change on the same period of the previous year of the consumer price
index. This time series is measured by Czech Statistical Office. However,
the methodics of the Czech Statistical Office is obviously (see table 6.2.4)
different from OECD methodics.11 Hence, CNB forecast is only partially
comparable to provided forecasts.

One and two years forecasts can be compared to real data in the future.
Such real-time experiment will allow for decision, which models are stable
over time. However, all models seem to underestimate inflation in years 2010
and 2011, at least when compared to CNB forecasts.12

Following three sections concerning three forecasting horizon are
organized as follows. First we revise the predictors that are used by all
the models concerning given forecast horizon. Predictors for each model and
the number of lags are then presented. Models are enumerated (e.g. VAR2
and BVAR2), the same number for both VAR and BVAR means that the
same predictors were used for both. Optimized BVAR parameters are also
given. Subsequently the table with forecasting comparison results is shown.
Finally, out-of-sample forecasts are provided. Some comments on the results
are provided continuously.

11Notes on the methodics can be found on the webpages of both institutions
www.czso.cz; www.oecd.org.

12Some more comments are provided in the chapter Discussion.
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6.2.4 Forecasting horizon - one quarter

For this horizon, three different combinations of parameters were chosen.
First combination consists of three time series (except of inflation series) and
other two consist of four predictors (in fact three from the first model and
one more added predictor in each of these subsequent models). Altogether
we used 5 different predictors13.

• Share price - provided by OECD, belongs to financial indicators,
national all-share price index, based on arithmetic average of the closing
daily values

• Leading indicator - provided by OECD, belongs to cyclical indicators,
composite indicator formed by aggregating a variety of component
indicators, designed to provide qualitative information on short-term
economic movements

• Volume of sterilisation - provided by CNB, belongs to monetary policy
factors of sources of the monetary base, end of month position

• Exports of goods and services - provided by CZSO14, belongs to
national accounts

• Consumer prices - food - provided by OECD, consumer price index
comprising only food as a product group

It is of particular interest that no GDP measure appeared in these top
five indicators, nor in the top ten (from national accounts only export have
appeared). Moreover no measure of interest rate is present (e.g. PRIBOR),
not speaking about unemployment at all. Broad money measure appeared in
the top ten as well as business confidence. Appearance of cyclical indicator
is not accidental at all - all the succesful models used some cyclical indicator.
This is also proved by forecasting with one year horizon.

Following three combinations of parameters led to succesful model in
both VAR and BVAR variants, BVAR models were subsequently optimized.

VAR1 (lags - 4), BVAR1 (lags - 6), BVAR1b (lags - 5)

13Details on each precictor can be found on the webpages of OECD and CNB, depending
on the origin of particular time series.

14Data are collected (calculated) by Czech statistical office (CZSO) and published also
through time series databaze ARAD that is run by CNB.
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• predictors: Share price, Leading indicator, Volume of sterilisation

VAR2 (lags - 4), BVAR2 (lags - 7), BVAR2b (lags - 5)

• predictors: Share price, Leading indicator, Volume of sterilisation,
Exports of goods and services

VAR3 (lags - 4), BVAR3 (lags - 7), BVAR3b (lags - 5)

• predictors: Share price, Consumer prices - food, Leading indicator,
Volume of sterilisation

• BVAR1b - parameters: θ = 0.5, w = 1 , φ = 115

• BVAR2b - parameters: θ = 0.5, w = 1 , φ = 1

• BVAR3b - parameters: θ = 0.5, w = 1 , φ = 1

We must note that optimized parameters define bigger variance than
the default and this means loosening the prior. Improved forecast is thus
reached when the BVAR is less restricted, this may signalize that the
assumptions of the prior are not perfectly fulfiled by the time series under
consideration (as it is partly suggested by Augmented Dickey-Fuller test).

Table 6.2: VAR and BVAR results - one quarter
Model MSE Theil1 Theil2 Turns Directions
VAR1 0.8917 0.1361 0.7845 0 0.31

BVAR1 1.1220 0.1537 0.8828 1 0.34
BVAR1b 0.8941 0.1377 0.7857 0 0.31
VAR2 0.9181 0.1355 0.7904 3 0.31

BVAR2 1.1178 0.1486 0.8872 0 0.33
BVAR2b 0.9262 0.1365 0.8055 3 0.34
VAR3 1.0368 0.1481 0.8466 1 0.39

BVAR3 1.1303 0.1537 0.8881 1 0.36
BVAR3b 0.9472 0.1422 0.8164 3 0.40

Few conlcusions can be made from the results in the table 6.2. Firstly,
BVAR in its default specification is always worse than the VAR. Secondly,

15It might be worth to repeat the default values: θ = 0.1, w = 0.5 , φ = 1.
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Figure 6.13: VAR1-3
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Figure 6.14: VAR2-3
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Figure 6.15: VAR3-3

once BVAR parameters are adjusted, BVARs reach the VAR models in
forecast accuracy. Further we can state that turning points are found with
more often by models that show generally better prediction ability (does
not hold for VAR1 model). No clear consideration can be made about the
accuracy of directions of the forecast (the third group of models falls out
slightly worse).

It must also be noted that bigger models did not outperform these
(quite) small in the forecast accuracy (not even in the BVAR form,
which is quite surprising if not disappointing). However, the most
important result is that VAR and BVAR models (under improved
specification) clearly outperformed autoregressive and random
walk models at one quarter forecasting horizon. This can be observed
from both the table 6.2 and the figures 6.13 to 6.21.

Out-of-sample forecasts of particular models can be compared from
the table 6.3. Only data up to December 2009 are used. Data from the
first quarter 2010 that are already provided by OECD and CNB (in fact by
CZSO) are added in table 6.3. OECD inflation measurement is probably
heavily influenced by rise of the excise duty by January 2010, which affected
mainly fuel prices. Data by CNB does not show any inflation jump in the
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Figure 6.16: BVAR1-3
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Figure 6.17: BVAR1b-3
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Figure 6.18: BVAR2-3
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Figure 6.19: BVAR2b-3
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Figure 6.20: BVAR3-3
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Figure 6.21: BVAR3b-3

beginning of the year.

It is clear that our forecasts follow decreasing trend from the end of
the used for two months further. In fact the most restricted models (BVAR
without adjustment) show the lowest decrease below zero inflation. However,
forecast for the March2010 was already very good.
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Table 6.3: Out of sample - one quarter
Forecast-3 VAR1 VAR2 VAR3 BVAR1 BVAR1b
Jan2010 -1.3 -0.9 -1.0 -0.4 -1.0
Feb2010 -1.2 -1.0 -1.2 -0.3 -1.1
Mar2010 -0.1 0.2 0.1 0.6 0.1

Forecast-3 BVAR2 BVAR2b BVAR3 BVAR3b OECD CNB
Jan2010 -0.1 -0.6 -0.3 -0.9 1.2 0.7
Feb2010 -0.1 -0.7 -0.2 -1.1 0.0 0.6
Mar2010 0.8 0.5 0.7 0.2 0.3 0.7

6.2.5 Forecasting horizon - one year

For one year horizon we estimated two different VAR models (VAR1 and
VAR2) and two different BVAR models (BVAR2 and BVAR3) plus adjusted
BVARs. Models’ labels indicate the fact that two models (VAR2 and
BVAR2) use the same predictors. BVAR3 model uses five predictors, whereas
others only three. BVAR variant of the VAR1 is not shown since it does not
follow high forecast accuracy of its counterpart. This holds vice-versa for
BVAR3 model.

We need altogether six different predictors. The sets of the predictors
used with one year and one quarter horizons are completely disjoint.

• Broad money - provided by OECD, belongs to financial indicators, M3
monetary aggregate, seasonally adjusted

• Order books indicator - provided by OECD, belongs to business
tendency and consumer opinion surveys indicators

• PRIBOR1year - provided by CNB, one year PRIBOR

• Producer prices - maufacturing - provided by OECD, producer pice
index that covers the branch of manufacturing

• Exports of goods - provided by OECD, belongs to international trade,
seasonally adjsuted

• Business confidence indicator - belongs to cyclical indicators, collected
from Business tendency and consumer opinion surveys

Order books indicator deserves further comment since it proved to be
very useful, since it appeared literally in all succesful. Indicator represents
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data that are collected from surveys from 1100 enterprises covering 65% of
total turnover in the manufacturing sector. The enterprises answer every
month to the question ’Do you consider your current overall order books to
be... + more than sufficient (above normal), = sufficient (normal for the
season), - not sufficient (below normal)’. This indicator can be considered as
future looking and important for future behavior of real economy, thus it is
not surprising that it is useful in forecasting. Business confidence indicator
plays similar role.

It must be again noted that no direct GDP measure neither
unemployment are represeted in the top ten predictors.

VAR1 (lags - 3)

• predictors: Broad money, Order books indicator, PRIBOR1year

VAR2 (lags - 3), BVAR2 (lags - 5), BVAR2b (lags - 5)

• predictors: Broad money, Producer prices - manufacturing, Order
books indicator, PRIBOR1year

BVAR3 (lags - 3), BVAR3b (lags - 3)

• predictors: Broad money, Producer prices - manufacturing, Order
books indicator, Exports of goods, Business confidence indicator

• BVAR2b - parameters: θ = 0.8, w = 1 , φ = 5

• BVAR3b - parameters: θ = 0.8, w = 1 , φ = 10

BVAR parameters optimization agian call for loosening the restrictions
of the prior, however in this case only for the first lag. The effect of further
lags is strongly suppressed by enormous decay parameter.

From the table 6.4 we can see that the best model is again of the VAR
type. However BVAR3b outperformed all other VAR models in the means
of Theil2 statistics. Poor peformance of RW model under one year forecast
horizon allows for eminent values of Theil2 statistics. However, contrary to
some results from literature [1], there is no doubt that forecast performance
of VAR models outperform the forecast ability of both Random walk and
AR models (though some robustness and stability tests might be required to
support this statement).
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Table 6.4: VAR and BVAR results - one year
Model MSE Theil1 Theil2 Turns Directions
VAR1 2.4639 0.2626 0.4782 0 0.35
VAR2 3.4734 0.2758 0.5305 3 0.39

BVAR2 3.7616 0.3000 0.5780 2 0.39
BVAR2b 3.3297 0.2760 0.5212 3 0.37
BVAR3 3.7224 0.2880 0.5434 2 0.39
BVAR3b 3.5454 0.2784 0.4983 3 0.37

It is also of interest that the best model (VAR1) did not adress single
turning point in the data since all the other models found 2 or 3 out of 5.
Directions statistics proves again to be quite useless.
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Figure 6.22: VAR1-12
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Figure 6.23: VAR2-12
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Figure 6.24: BVAR2-12
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Figure 6.25: BVAR2b-12

From the figures 6.22 to 6.27, we can observe that the forecast does not
look like moved and deformed copy of the data (it was the case of one-quarter
horizon). Cycles in the data seem to be at least partially forecasted (mainly
by VAR1 model), however the forecasts do not catch steep decrease in the end
of the data and furthermore forecasts then swing down to negative values. It
is also visible that the data that are used for forecast comparison are slightly
shortened due to longer forecasting horizon and the need for calculation the
Theil2 statistics.
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Figure 6.26: BVAR3-12
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Figure 6.27: BVAR3b-12

Table 6.5: Out of sample - one quarter
Forecast-12 VAR1 VAR2 BVAR2 BVAR2b BVAR3 BVAR3b CNB

Jan2010 -0.8 0.4 1.1 1.1 -0.7 -0.6 0.7
Feb2010 -0.5 0.7 1.0 1.2 -1.7 -1.7 0.6
Mar2010 -0.6 1.3 1.5 1.8 -0.7 -0.7 0.7
Apr2010 -1.8 0.2 0.5 0.4 -0.3 -0.3 0.9
May2010 -1.6 -0.2 0.6 0.6 -0.2 -0.2 0.9
Jun2010 -1.7 -0.6 -0.1 -0.2 -0.6 -0.7 0.9
Jul2010 -1.3 -0.4 -0.1 -0.3 -0.4 -0.6 1.4
Aug2010 -1.5 -1.1 -0.7 -0.9 -0.7 -0.9 1.9
Sep2010 -1.4 -1.2 -0.9 -1.5 -0.7 -1.1 2.0
Oct2010 -0.1 -0.1 -0.3 -1.0 -0.7 -1.3 2.2
Nov2010 0.0 0.0 -0.3 -1.0 -0.5 -1.0 2.3
Dec2010 0.2 0.6 0.4 -0.4 0.2 -0.4 2.1

Table 6.5 shows out-of-sample forecasts computed at one year forecast
horizon (thus all the available data are necessary only for the last value of
the forecast). Forecasts are also depicted in figure 6.28.

CNB forecasts are added for the comparison. First three months are
already known data, next three months (up to June 2010) are monthly
forecasts, however then CNB provides only quarterly forecasts. To get
monthly data, we put these forecasts to the middle month of the quarter
and missing values are then computed by linear interpolation between two
neighbouring known values. CNB forrecasts also reflect its inflation target -
2% (see Discussion).

It is very probable that all the forecasts underestimate the future values
of inflation. Models VAR2, BVAR2 and BVAR2b show the shortest swing
to negative values and thus are expected to be the most succesful.
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Figure 6.28: Forecast-12

6.2.6 Forecasting horizon - two years

In the line with the literature, two years ahead forecasting using statistical
models revealed to be very complicated issue. The biggest problem
arises with the stability of models and the best predictors. Already our
easy robustness check (shortening the learning data) appeared to have an
incredible effect on the top rated models. It was then very hard to decide
which predictors allow for the most accurate forecasts. Strong disbalance
between VAR and BVAR models resulted in that no set of predictors allow
for succesful forecast employing both VAR and BVAR models. Finally, three
different VAR models and only one BVAR model (plus its adjustment) were
estimated. Each model uses four predictors. However, we have altogether
eight predictors.

• Consumer prices - energy - provided by OECD, consumer price index
comprising only energy as a product group

• Leading indicator - provided by OECD, belongs to cyclical indicators,
composite indicator formed by aggregating a variety of component
indicators, designed to provide qualitative information on short-term
economic movements

• Overnight interbank rate - provided by OECD, belongs to financial
indicators

• GDP - provided by CZSO, constant prices

• GDP - Gross fixed capital formation - provided by CZSO, constant
prices

67



• GDP - provided by OECD, constant prices, seasonally adjusted

• GDP - Gross fixed capital formation - provided by OECD, constant
prices, seasonally adjusted

• Service exports - provided by OECD, belongs to balance of payments,
derived from both surveys and administrative records

This set of variables (no matter that doubled due to two different data
sources) might be theoretically supported. This is in accordance with the
hypothesis that theoretically based models are superior when dealing with
long-term horizons. However, unemployment is again missing.

VAR1 (lags - 4)

• predictors: Consumer prices - energy, Leading indicator, Overnight
interbank rate, GDP (CZSO)

VAR2 (lags - 4)

• predictors: GDP (OECD), Overnight interbank rate, GDP (CZSO),
Gross fixed capital formation (CZSO)

VAR3 (lags - 1)

• predictors: Consumer prices - energy, GDP (OECD), Gross fixed
capital formation (OECD), Gross fixed capital formation (CZSO)

BVAR4 (lags - 4), BVAR4b (lags - 3)

• predictors: Consumer prices - energy, GDP (OECD), Service exports,
Leading indicator

• BVAR4b - parameters: θ = 0.06, w = 0.5 , φ = 1

It must be noted that VAR3 is not really proper VAR model since using
only one lag is not common choice. Including only one lag reminds in fact
structural model, just instead of conemporanous values the first lag is used
and furthermore one autoregression parameter. Anyway this specification
appeared to give the best forecast. On the contrary to other forecasting
horizons, BVAR optimization now calls for tightening the prior, thus for
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Table 6.6: VAR and BVAR results - two years
Model MSE Theil1 Theil2 Turns Directions
VAR1 5.3775 0.3299 0.9574 1 0.33
VAR2 4.6570 0.3492 0.8544 0 0.35
VAR3 3.2757 0.2919 0.7751 0 0.24

BVAR4 2.8181 0.2474 0.5164 2 0.43
BVAR4b 2.7053 0.2418 0.4898 2 0.39

stronger restriction. This may be appointed to that unrestricted forecasts
are very poor thus prior restriction comparatively improves the performance.

The superior performance of BVAR models is obvious from the table
6.6. However, this is partly due to poor performance of other models.
Anyway, BVAR forecast accuracy is far better than performance of other
used method (especially AR model). In fact, the forecast performance is
better (see MSE and Theil1 statistics) than one year ahead forecast, which
is suspicious. Thus robustness and stability of this model should be further
tested, e.g. by real-time experiments.
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Figure 6.29: VAR1-24
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Figure 6.30: VAR2-24
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Figure 6.31: VAR3-24

It is clear from figures 6.29 to 6.33 that VAR forecasts are very very
wild and thus almost useless. On the other hand BVAR forecasts seem to
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Figure 6.32: BVAR4-24
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Figure 6.33: BVAR4b-24

be very succesful. However, the completely wrong beginning of the BVAR
forecasts suggest that fortune might have played crucial role.

Table 6.7: Out of sample - two years
Forecast-24 VAR1 VAR2 VAR3 BVAR4 BVAR4b CNB

Jan2010 0.7 2.4 2.4 3.4 3.4 0.7
Feb2010 -0.6 2.6 2.8 4.5 4.1 0.6
Mar2010 -0.7 2.9 2.7 3.8 3.8 0.7
Apr2010 -0.9 3.1 2.8 3.5 3.3 0.9
May2010 0.1 3.6 3.1 3.6 3.5 0.9
Jun2010 0.1 4.1 3.1 4.4 3.8 0.9
Jul2010 0.5 4.3 3.3 4.7 4.0 1.4
Aug2010 0.5 3.7 2.8 4.0 3.6 1.9
Sep2010 1.0 3.9 2.9 3.8 3.2 2.0
Oct2010 0.9 4.7 2.7 3.3 2.9 2.2
Nov2010 0.3 3.4 2.5 2.9 2.5 2.3
Dec2010 0.4 2.9 2.4 1.9 1.7 2.1
Jan2011 -1.0 2.4 2.2 1.3 1.1 2.0
Feb2011 -0.4 1.0 2.0 0.7 -0.5 1.8
Mar2011 -0.9 0.1 2.3 0.1 -1.9 1.8
Apr2011 -2.0 -1.6 1.3 -1.1 -3.5 1.8
May2011 0.4 1.9 2.4 -1.2 -3.1 1.8
Jun2011 -0.2 0.2 2.1 -1.4 -3.4 1.8
Jul2011 0.0 -1.7 2.0 -1.7 -3.5 1.8
Aug2011 1.7 0.6 2.7 -1.4 -3.7 1.8
Sep2011 1.0 0.3 2.9 -0.7 -2.9 1.8
Oct2011 1.4 -0.3 2.6 -0.8 -2.7 1.8
Nov2011 2.2 2.2 3.2 -0.2 -1.7 1.9
Dec2011 2.5 2.0 3.7 1.8 -0.1 1.9
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Out of sample forecasts that are summarized in table 6.7 and depicted
in figure 6.34 show different behavior of VAR and BVAR models. VAR
predictions are very wild, whereas those of BVAR models follow clear pattern.
However, VAR predictions might be more accurate, because once they did
not catch fast decline in the and of used data, they do not swing deep
into negative values as the BVAR does. Time-series models seem to be
unappropriate for providing inflation predictions two years ahead.
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Figure 6.34: Forecast-24
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7 Discussion

The chapter Discussion points out the most important results of the work
and comments them shortly. However, it also reveals all the imperfections
and thus opens lots of issues for future work.

7.1 Data

The choice of the data was as wide as possible, but from the two sources only
- OECD Stats and the databaze ARAD by Czech National Bank. One of the
reason is that these data are easily downloadable. However, the data from
Czech Statistical Office should be widely included into the used data, since
ARAD databaze contains only an extract of these data. Including some more
time series is considered to be beneficial. These might be some important
commodity prices (oil, steel, gold...) and important economic indicators from
other important countries (Germany, USA, etc.). However, these time series
should be contained in the external exogenous block of the data and usage of
this block is strongly limited because we use chain rule of forecasting. Once
direct future estimation is used (see Future work), the exogenous data will
be easily included into estimation and forecasting procedure.

The data sources commonly provide the methodics of the measurement
and comments on data revisions. These comments must be taken into account
when using the data to ensure that forecast is reliable, i.e. that we use in
pseudo out-of-sample only such data that were available.

Time series should also be divided by their availability (they partly
were) and if the availability of the time series is lagged behind the real time,
the forecasting horizon must be appropriately prolonged once this series is
used. It is quite possible that comparatively less powerful models will be
used just because the data they use are immediately available.

7.2 RW and AR models

Random walk model served as a benchmark for all other models, since Theil2
statistics was used as the main tool for comparison. It is important to depict
this benchmark estimation. We could see very poor performance of RW
model at one year forecasting horizon which clearly helped VAR and BVAR
models to reach excellent values of Theil2 statistics (incomparably better
then in Canova [1]).

AR model is suitable for esimation of the data. Structure of its
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residuals does not seem to allow for some further modelling (though this
is not confirmed by Ljung-Box test). Autocorrelation functions also revealed
some seasonality in inflation data. It might be useful to use some seasonal
variable when modeling the data. AR prediction power is very poor and
particularly in the case of two years horizon it is even worse than naive RW
forecast. AR model also serves as the benchmark for subsequent VAR and
BVAR modeling.

7.3 VAR and BVAR

Foremost, we must point that all the shown VAR and BVAR models (the
best VAR and BVAR models) have higher forecasting accuracy than both
AR and RW models.

On the other hand it must be pointed that generally believed idea that
BVAR modeling ensures improved forecasting accuracy over VAR models
cannot be confirmed. Results are mixed. The only case in that BVAR
was superior over VAR is the two years horizon. Nevertheless, this might
be attributed to poor performance of VAR models. Concerning other two
forecasting horizons, BVAR showed rougly the same forecasting accuracy.

It is of interest that in the case of one quarter and one year horizons, the
optimizing of BVAR parameters always lead to looseining of the prior. This
might suggest that the prior is not appropriate in these cases and some other
prior specification shoud be used. On the other hand, under two years horizon
(BVAR was superior), the prior variances were tightened by optimizing the
parameters, thus prior seems to be more accurate in this case.

One of the possible priors might be random walk averaging prior
proposed by LeSage [10]. However, it is not particularly favorable choice
since all the time series would have to be scaled. The prior assumes solely
positive impact on the dependent variable and moreover there must be
some mechanism that reveal which variables are important before seeing the
data to elicit precise form of the prior. It might be also helpful to include
contemporaneous variables into BVAR by employing approach by Waggoner
and Zha [18].

The biggest concern about the reliability of forecast lies in the
problematics of the stability and robustness of models, mainly the stability of
the choice of the predictors. Real-time experiment and adding further data
might reveal whether these models are succesful. In fact some robustness
test might have been already undertaken, but the problem is in the scarcity
of the data (it is common problem of the data from Central European states
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since the period without any major structural changes is still very short).
Such stability tests usually comprise of dividing the data into subperiods
and checking the model stability. However, subperiods in our case would be
so short that estimates in each of the subperiod would not be reliable anyway.

7.4 Future work

Many issues that might be covered in future work are already mentioned in
previous section. It comprises mainly of checking the availability and the
revisions of the data, employing different prior and testing stability of the
predictors.

Interesting issue of direct future value estimations was also partly
discussed. Model is of this general form ([11], [1]):

yt+k = β0xt + β1xt−1 + ... (7.1)

yt+k may represent only inflation data or whole set of dependent
variables. xt is a set of explanatory variables (may include the lags of the
dependent variables as well), k represents the forecasting horizon (e.g. 12
or 24). The notation should emphasize that required future value is directly
estimated from currently available data. For pseudo out-of-sample forecast
we use only data that were available ’k steps before or earlier’ to estimate
the ’current’ value of the dependent variable. By this process we get rid of
chain type step-by-step forecasting.

This approach seems to be quite advantageous. It allows to include
external exogenous block of the data. Moreover data might be organized
according their availability, disregarding what time they in fact describe.
(This might lead to less messy carrying of statistical inference, however
interpretation would then be quite obscured.) Finally, there is a promise
of improved forecasting accuracy.

Depending on the type of the dependent variables (whether it is just one
variable or whole set) and on the type of explanatory variables (whether there
are lags of the dependent variables) we may use (Bayesian) OLS estimation
or (B)VAR. These two types of estimation are not, in fact, so different. Other
estimation techniques are also available (GLS, Ridge regression, SUR etc.).
However we would like to focus an Bayesian estimation techniques.

Inflation forecasts should also take into account monetary policy rules
of the Central Bank (so called conditional estimation), since monetary policy
can seriously affects the inflation in the important forecasting horizons.
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(In fact the reasoning is vice-versa, important horizons are those at which
monetary policy can influence the inflation.) Assessing the monetary policy
is also very important and interesting issue. Moreover Bayesian estimation
techniques are suitable for analysing monetary policy effects [4], [7].

Finally, it might be of interest, and it is not so demanding (apart of
searching for all usefál data), to provide inflation forecasts also for other
(Central European) countries. Inter alia, it is interesting analysis of stability
of inflation predictors among the countries.
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8 Conclusion

This work starts with double theoretical introduction. The first
is comprehensive introduction to bayesian econometrics and bayesian
estimation techniques with emphasis on Bayesian vector autoregression
and Minnesota Prior. The second theoretical introduction comments the
importance of inflation forecasting under inflation targeting governed by
Central Bank. Generally the issue of forecasting in economy and particularly
forecasting by VAR are discussed. Short literature review is also provided.
Important forecasting horizons are said to be one quarter, one year and two
years.

The work concentrates on forecasting of Czech inflation. Monthly data
(almost 80 time series) were downloaded from two sources: OECD Stats and
ARAD, the latter is the time series databaze by Czech National Bank (CNB)
and Czech Statistical Office (CZSO). The choice of the data and handling
with them is not particularly elaborated and it is discussed throughout the
work.

Time consuming and computationally demanding procedure of
estimation is described in a detail. Main features are realization in Matlab
supplemented by James P. LeSage toolbox [2], multi-step choice of the best
predictors, optimization of BVAR parameters and calculation of pseudo
out-of-sample and out-of-sample forecasts by chain rule. Forecast comparison
statistics (particulary Theil statistics) are presented and extensively used.

Random walk and Autoregressive models were estimated as the
benchmark for VAR and BVAR modelling. AR model does not show good
forecast accuracy (in the case of two years horizon even worse than naive
Random walk forecast). VAR and BVAR modelling outperform both RW
and AR models for all three forecast horizons in forecasting accuracy. The
set of the best predictors is completely different for each forecasting horizon.
Interesting is that no GDP measure neither unemployment are among the
best predictors for one quarter and one year forecast horizon. On the
other hand, GDP is one of the used predictors in models for two years
ahead forecasts along with e.g. fixed capital formation (this agrees with the
literature that argues that structural relationships are useful when forecasting
horizon is long). Overall succes of various OECD indicators based on business
and consumers surveys is also surprising.

For the two shorter horizons (one quarter and one year) BVAR
forecasts are hardly better than the VAR. Moreover, optimizing of the BVAR
parameters comprises of loosening the prior. This suggest that Minnesota
prior is not particularly appropriate. Different situation arises under two
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years horizon. BVAR models clearly outperform the VAR models and
optimized parameters in fact tightened the prior.

Out-of-sample forecasts are compared to forecasts of Czech National
Bank. Almost all the forecasts showed improbable swing into negative values
of inflation during year 2010 or 2011. All the results are discussed in detail
and fairly enough issues are opened for future work.

The only reliable answer to the title question is: ’it depends.’
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10 Appendix A - List of used functions

This appendix contains the list of all used functions. We provide only names
of functions that are contained in the Matlab toolboxes. Functions that
I consequently programmed are accompanied with short comment on the
inputs and outputs. All functions can be found on the attached CD, however
without proper documentation.

• lbqtest - Ljung-Box Q test

• dfARTest - Augmented Dickey-Fuller test

• autocorr - Computes and plots autocorrelation functions

• parcorr - Computes and plots partial autocorrelation functions

arma2 - programmed script

• inputs: y - data vector, nc - number of MA lags, k - forecast horizon

• output: ypar - vector of forecast

function createfigure80(y,f,s,name,sizex,sizey)

• inputs: y - data matrix, f - forecast matrix, s - the column number of
the variable that we want to depict, name - name of the chart, sizex -
horizontal size of the chart, sizey - vertical size of the chart

• output: automatically generated chart depicting the forecast and the
data in the .eps format

function [MSE,th1] = theil1(y,f,s)

• inputs: y - data matrix, f - forecast matrix, s - the column number of
the variable that we want to forecast

• outputs: MSE - Mean square error of the forecast, th1 - Theil1 statistics

function [th2] = theil2(y,f,s,k)

• inputs: y - data matrix, f - forecast matrix, s - the column number of
the variable that we want to forecast, k - forecast horizon

• output: th2 - Theil2 statistics
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function[MSE,th1,th2,y3,f]=varpred(y,k,nlag,s,p)

• inputs: y - data matrix, k - forecast horizon, nlag - number of lags
included in the model, s - the column number of the variable that we
want to forecast, p - fraction of the data used to compare to froecast
with the data

• outputs: MSE - Mean square error of the forecast, th1 - Theil1 statistics,
th2 - Theil2 statistics, y3 - truncated data that are compared to the
forecast, f - forecast matrix

function[MSE,th1,th2,y3,f]=bvarpred(y,k,nlag,s,p,tight,weight,decay)

• inputs: y - data matrix, k - forecast horizon, nlag - number of lags
included in the model, s - the column number of the variable that
we want to forecast, p - fraction of the data used to compare to
froecast with the data, tight - tightness parameter θ, weight - weight
parameter w (scalar or matrix), decay - decay parameter φ

• outputs: MSE - Mean square error of the forecast, th1 - Theil1 statistics,
th2 - Theil2 statistics, y3 - truncated data that are compared to the
forecast, f - forecast matrix

function[e2,e3]=varpredn(z,k,nlag,s,p,n)

• inputs: z - complete data matrix, k - forecast horizon, nlag - number
of lags included in the model, s - the column number of the variable
that we want to forecast, p - fraction of the data used to compare to
froecast with the data, n - number variables included in VAR

• outputs: e2 - matrix that contains in each row in this order: MSE,
Theil1, Theil2 and reference numbers of the used predictors (according
to their column number in z matrix), matrix e2 is sorted by ascending
order with respect to Theil2, e3 - the first tenth of e2 matrix - just for
better orientation if e2 is too big

function[e2,e3]=bvarpredn(z,k,nlag,s,p,tight,weight,decay,n)

• inputs: z - complete data matrix, k - forecast horizon, nlag - number
of lags included in the model, s - the column number of the variable
that we want to forecast, p - fraction of the data used to compare to
froecast with the data, tight - tightness parameter θ, weight - weight
parameter w (scalar or matrix), decay - decay parameter φ, n - number
variables included in VAR

81



• outputs: e2 - matrix that contains in each row in this order: MSE,
Theil1, Theil2 and reference numbers of the used predictors (according
to their column number in z matrix), matrix e2 is sorted by ascending
order with respect to Theil2, e3 - the first tenth of e2 matrix - just for
better orientation if e2 is too big

function [otp,ftp,tpr,otpm,ftpm] = tp(y,f,q)

• inputs: y - data vector, forecast vector, q - parameter that allows
forecast not to hit the turning point in the data precisely

• outputs: otp - number of turning points in the data, ftp - number
of correspondent turning points in the forecast, tpr - ftp/otp,
otpm - positions of turning points in the data, ftpm - positions of
correspondent turning points in the forecast,

function [dm,dh,dl,dt] = td(y,f,k)

• inputs: y - data vector, forecast vector, k - forecast horizon

• outputs: dm - all positions marked by either ’1’ (forecast rises whereas
data decrease), ’-1! (vice-versa), or ’0’ (forecast follows the same
direction as the data, dm - number of points from where the forecast
rises and the data decrease, dl - number of points from where the
forecast decrases and the data rise, dt - total number of points where
do statistics was evaluated

function[f]=varpredout(y,k,nlag)

• inputs: y - data matrix, k - forecast horizon, nlag - number of lags
included in the model

• output: f - forecast matrix

function[f]=bvarpredout(y,k,nlag,tight,weight,decay)

• inputs: y - data matrix, k - forecast horizon, nlag - number of lags
included in the model, tight - tightness parameter θ, weight - weight
parameter w (scalar or matrix), decay - decay parameter φ

• output: f - forecast matrix
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11 Appendix B - Contents of the enclosed

CD

Text - contains the diploma thesis in .pdf and also all the source texts
(.tex) and all the used pictures (.eps)

Data - contains all the data, both originally downloaded and also after
different manipulations, lists of the top variables from the first group of the
data and lists of the top ten variables for each forecasting horizon are provided

Functions - contains all newly programmed Matlab functions, which
are described in Appendix A, functions should be copied to the directory
containing the VAR and BVAR functions by James P. LeSage to work
proprely

Reults - collection of MS Excel tables containing the results after each
estimation step
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