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Abstract: In the present work we study the indexing methods for large XML
databases and their time efficiency when evaluating path queries.

There are several ways of indexing XML data but we focus on indexing root-
to-leaf paths and grouping them according to the common criteria, path labels.
We study the existing methods and combine them in order to create the iXUPT,
a novel native indexing concept using path templates, which leverages advantages
of current approaches. We provide two variations of our solution depending on the
way of handling ancestor-descendant relationships. The first one uses the proposed
numbering scheme, while the second one relies on the Rho-Index structure. Fur-
thermore, we prove the feasibility of our concept by the implemented prototype
and by evaluating sample regular path expressions represented by XPath queries.
We compare the variations between each other and also with other solutions.

Keywords: Indexing XML, Rho-Index, path-based indexing, XPath queries
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Abstrakt: V predloženej práci študujeme metódy indexovania pre rozsiahle XML
databázy a ich časovú zložitosť pri vyhodnocovańı dotazov na vyȟladávanie ciest.

Existuje množstvo spôsobov, ako indexovať XML dáta, ale my sa zameriame
na indexovanie ciest od koreňa k listom a ich zhlukovanie na základe podobných
kritérii. Štúdium a správna kombinácia existujúcich metód nám slúži ako základ
pre vytvorenie nového nat́ıvneho indexu iXUPT, ktorý použ́ıva značkovanie ciest.
Predstavujeme dve variácie indexovania v závislosti od spôsobu zisťovania vzťahu
predok-potomok. Prvá možnosť použ́ıva č́ıselnú schému, druhá využ́ıva Rho-Index.
Správnosť nášho riešenia dokážeme implementáciou prototypu a vyhodnoteńım
niekǒlkých XPath dotazov predstavujúcich cesty v grafe. Nakoniec porovnáme
jednotlivé varianty a dosiahnuté výsledky s existujúcimi riešeniami.

Kĺıčová slova: Indexovanie XML, Rho-Index, indexovanie ciest, XPath dotazy
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Chapter 1

Introduction

In past few years there has been an expansion of semi-structured data mostly
stored as XML [15] files and used for saving and exchanging information over the
Internet. The XML files are purely text files with a specific structure containing
the information that might be structured, and the simplicity is only one of the
factors why the format became so popular.

As more and more files occurred in this format, we wanted to access the stored
data and search for the specific information according to prior criteria. For this
purpose languages such as XPath [13] or XQuery [14] have been created. They
allow searching for elements, attributes, or text values based on either specific
values or regular expressions. Moreover, they enable us to create simple or complex
queries and specify several search conditions in human readable format. If there
are multiple conditions in an XPath query, we can combine them, and we get the
regular path expression pattern.

The path expression usually matches several elements in the input XML file
that finally create the result set. The challenge is to find these elements quickly
and efficiently, especially in large files with a high number of elements and with
different structures. When the structure of input files is widely known or there
exists an XML schema (the description of component parts in DTD [10] or XML
Schema [16]), it is always easier to answer queries regarding the content because
we can leverage the structure of documents. But when we have to inspect a general
XML file, it might be difficult to find the result efficiently because the file might
be quite large with lots of distinct elements. Therefore one came with the idea
of indexing the XML data in order to quickly get the result for any query and
possibly for any XML file.

Indexing XML files means that we parse files and extract the valuable infor-
mation. Afterwards, we store it, probably in other format, into some structures
that are ready to answer our future queries. We might combine the existing values

6



with additional information that will help us to speed up the process of evaluating
queries. Which data we save and how the information is stored depend exclusively
on the indexing method.

No matter which indexing technique we use, if we had a regular path expres-
sion, the most problematic queries would be those with ’//’ (relative paths) or
’*’ (wildcards). These queries match numerous distinct elements and are difficult
to handle compared to expressions with absolute paths only. The reason is that
it is difficult to find out exactly which elements will be matched because we have
to either compare the element names with wildcards or, in case of relative paths,
skip some elements on a path from one element to another.

The indexing methods try to, in some way, improve the evaluation in terms
of the time or the space complexity (memory used for storing the index for XML
files), so they usually focus on specific queries. The best concept would be a
native XML index, which takes the XML as the fundamental unit and that is
effective for any query. Because there is always the trade-off between time and
space requirements, we will focus on the effectiveness and on decreasing the time
complexity.

1.1 Contributions

In this thesis, our aim is to combine the concepts of existing indexing methods
and enhance them in order to improve the evaluation time of XPath queries. We
analyze and focus mostly on the techniques using paths’ labeling and indexing
paths. To achieve our goal, we make contributions to several areas.

• The previous research showed that indexing paths is one of the effective ways
of indexing XML documents, so we use this approach and we create a novel
indexing method based on indexing paths using path templates (iXUPT).

• Additionally, we provide two variations of the proposed method. The first
one uses a special numbering scheme for revealing ancestor-descendant re-
lationships. For the second option, we replace the numbering method with
the existing structure that finds all paths between any two elements in the
source file, Rho-Index [3], in order to accelerate the evaluation of XPath
regular path expressions. Because the Rho-Index is a general structure, it
might be applied on any type of graphs while we designed the numbering
scheme for trees only.

• Finally we provide experimental results for both variations of the new con-
cept in terms of the time complexity while building the index and evaluating
sample XPath queries, and we show pros and cons for each method. We also
compare the new indexing method with other existing solutions.
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Chapter 2

XML technologies

The XML (eXtensible Markup Language) format has become the standard for
data exchange because it is self-describing and it stores not only information but
also the relationships between data. It is easy to use and it is human readable
because of strictly distinguishing content and markups that we call tags. Simply
speaking, elements, attributes, and text values as parts of an XML file define its
tree structure and we use them mostly to store semi-structured data (see the
structure of a sample XML in Figure 2.1).

This format separates the data layer from the presentation layer which means
that we can visualize the same XML file in multiple ways. No matter of the
visual style we apply, the data values remain the same. Many technologies benefit
and rely on this feature such as service-oriented architecture (SOA [36]) and web
services, XForms [17], or RSS feeds [43].

<?xml version="1.0" encoding="UTF-8"?>

<faculty name="Faculty of Mathematics and Physics">

<contact>

<address>

<street>Ke Karlovu 3</street>

<city>Prague</city>

</address>

<email>info@mff.cuni.cz</email>

<phone>22191 1111</phone>

</contact>

<department id="1" name="Department of Software Engineering">

...

</department>

</faculty>

Figure 2.1: The source of a sample XML file
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There are two methods of processing an XML file: DOM [12] (Document Object
Model) and SAX [7] (Simple API for XML). The first one builds the DOM tree
that corresponds to the input XML file (leveraging the tree structure of XML
files), while the second one processes the XML files as streams and it is upon
users to specify which events and elements will be processed and which elements
will be skipped.

Furthermore, we can define a schema for XML documents with a specific
language for structural description such as DTD [10] or XML Schema [16]. The
XML schema determines the sequence of elements, their relationships in terms of
subelement containments, required and optional attributes, and we can validate
input files against the schema. While the DTD format is older and simpler, using
XSD (XML Schema Definition Language) brings additional features such as the
type control or the restriction of values.

If there is a collection of XML documents, we might be speaking about an
XML database. Depending on the target location, we can store these documents
as files in the file system, transform and map the segments of an XML file to
tables in a relational database, or use the native XML databases (e.g. [32], [23],
or [40]).

In our work, we use XML files as the data format for the graph representation.
Because we do not expect XML files with a particular structure as the input, we
do not use any XML schema as the hint for parsing files.

2.1 XPath

The XPath (XML Path Language [13]) has been created to search for particular
elements in an XML file but we can use it also for the navigation in the source
file. An XPath expression is a string expression that consists of multiple absolute
or relative path expressions. Each path expression addresses some nodes and it is
context-specific. Absolute paths start with ’/’ and they represent the path from
the first node, the root. For relative paths (starting with ’//’ or nothing) we have to
define the context. The basic idea of using these types of paths for the navigation
is similar to navigating in the directory structures in common file systems.

We can divide both types of path expressions into several steps. Each step
produces the result, an unordered set of nodes, that will be used as the context
for processing the next step (if any). So the final result is the product of evaluating
the very last step in the given expression.

Example 1. The relative path expression ”//contact/address” has two steps.
The first one selects all <contact> elements and, as the second step, it searches
for <address> elements that are direct descendants of these elements.
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Table 2.1: XPath axes

XPath axis Type Description

child F Children (direct descendants) of the context node
descendant F The transitive closure of the child axis of the context node
attribute F Attributes of the context node
self F Only the context node itself
descendant-or-self F The context node itself or its descendants
following F Nodes following the context node in the document order

(except for descendants)
following-sibling F Siblings of the context node that are following

namespace F Namespace nodes of the context node
parent R The parent of the context node (the first node on the path

to the root)
ancestor R The transitive closure of the parent axis of the context node
ancestor-or-self R The context node itself or its ancestors
preceding R Nodes preceding the context node in the document order

(except for ancestors)
preceding-sibling R Siblings of the context node that are preceding

For the navigation, we might define XPath step expressions with forward and
reverse axes. The total number of 13 axes allow users to specify relationships be-
tween the nodes. For the forward axes (F), it might be the child or the descendant,
for reverse axes (R), we can use the parent or the ancestor axis (see Table 2.1).

XPath expressions include several other features such as built-in functions,
enabling wildcards in step expressions, using predicates for advanced conditions,
testing nodes for names or values, and many others. With these functionalities we
can easily build complex path expressions.

We can use the XPath expressions also as the major component in the XSLT
transformations [11] or in XQuery. For our purpose, we will use XPath as the
query description language.

2.2 Graph-structured Data

If we take XML files, they can be easily transformed into oriented graphs. The
elements and attributes correspond to graph nodes and the edges are derived from
the parent-child (or element-subelement) relationships. In practise, it means that
anytime we visit an element, we create a new node in the graph and connect
the new node with its parent. Every element, except for the root element, has a
preceding element that we will treat as the node’s parent. The orientation of the
edge that connects two nodes will be always from the parent to the child.

Without loss of generality, we can use also unoriented graphs to represent
the XML files instead of oriented ones. Everything will remain the same but we
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faculty (0) 

contact (1) department (7) department (14) department (15) 

address (2) email (5) phone (6) 

street (3) city (4) 

contact (8) 

address (9) fax (13) 

street (10) city (11) zip (12) 

contact (16) 

address (17) fax (19) email (20) 

city (18) 

Figure 2.2: The sample XML file displayed as the oriented graph

think that oriented graphs are more transparent and we can clearly and easily see
the parent-child relationships. Therefore in our method we will use the directed
graphs and the terms elements/nodes or the parent-child relationships/edges will
be interchangeable.

Generally, the graph from an XML file might contain loops but if we discard
the IDREF attributes, we will get a tree (see Figure 2.2). The tree is a special type
of a connected graph in which there are no loops and for each node, there is only
a single path from the root.

Because our concept expects the tree structure as the input, we will focus
primarily on indexing tree structures. Also some of the existing methods that we
discuss in the following sections, index trees only.

2.3 Indexing XML Data

To find the right information in an XML file, we need to have a fast and an
effective access to data. Similar to relational databases, we can create an index
in order to speed up the querying for the information. Creating a new indexing
concept means to define particular structures that hold some information about
the input XML, to specify how we acquire and store the data, and to describe the
algorithm that will use the structures when we evaluate a query.

There are various distinct approaches of indexing XML files. The main dif-
ference between them is that each method focuses on a specific topic such as
decreasing the number of I/O operations [1], converting the XML format into
tables in a relational DBMS to leverage the database engine ([21], [31], [45], [9],
or GRIPP [41]), or relying on the simplicity of numbering schemes and joining
elements (XISS [29] or twig joins [8]). The indexes might be based on a known
data structure such as Patricia tries [24] that are used in [18] or [1]; but more
often they use custom structures.
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Specializing on paths, the DataGuide [20] handles raw paths and provides the
basis for future path indexing methods such as XDG (Extended DataGuide [6]),
ViST [42], or Index Fabric [18].

We have a lot of possibilities how to divide the existing methods in categories
according to common criteria. Instead of describing all solutions, we decided to
focus on three types of solutions that influenced us while designing our indexing
concept: using numbering methods, mapping into relational databases, and trans-
forming into multi-dimensional tuples. Later, in Section 3.1, we provide details
about how our concept relates to existing solutions.

2.3.1 Numbering Schemes

One of the ways how to discover ancestor-descendant (A-D) relationships in the
input XML tree is to assign each node in the graph some numbers during the
tree traversal. In our best knowledge, the first approach how to determine these
numbers was the work of Dietz [19] in which the author proposed that for two
given nodes x and y of a tree T, x is an ancestor of y if and only if x occurs before
y in the preorder traversal of T and after postorder traversal :

x = ancestor(y)⇔ pre(x) < pre(y) ∧ post(x) > post(y) (2.1)

So when we assign, during the tree traversal, each node a pair of numbers that
will correspond to the preorder and postorder numbers, we can easily determine
the A-D relationships in the constant time. The disadvantage is that anytime a
node is added to the tree, we must recompute all assigned values.

Many other numbering schemes stem from this method and usually they add
other numbers to acquire more features.

(0,8)

(1,2) (4,4) (6,7)

(2,0) (3,1) (5,3) (7,5) (8,6)

Figure 2.3: Dietz’s numbering schema with preorder and postorder numbers

Example 2. We take a simple XML tree and assign nodes the numbers according
to the Dietz’s proposition (see Figure 2.3). In this case, the node (0,8) is the
ancestor of the node (3,1) because the node (0,8) comes before the node (3,1) in
the preorder (0 < 3) and after the node (3,1) in the postorder (8 > 1).
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2.3.2 Structural Joins

The easiest way of evaluating a path query is to divide the path expression into
step expressions, to find all elements for each step, and to join these partial results
to get the final result. We call the joins structural joins, and the result of a join
is an unordered set of elements that satisfy the A-D relationships between steps.
The concept is similar to joining tables in relational databases where each table
corresponds to a partial result (an unordered set of elements).

The advantage is that joining sets is simple and straightforward when we
know how to find all nodes that form the partial result. So the solutions that
use structural joins such as [23] or [29] focus mostly on how to quickly find these
nodes, and provide several algorithms how to evaluate the relationships between
them.

The main drawback is that we need to validate the A-D relationship for each
pair of nodes and although the partial results might contain numerous nodes, the
final result might be only a small subset of these nodes. So we have to test a lot of
nodes that do not meet the prior criteria, which is time-consuming and inefficient.

XISS

XML Indexing and Storage System (XISS [29]) is an indexing method based on
a numbering scheme and three major index structures (for elements, attributes,
and the structure index) combined with several algorithms that process regular
path expressions.

The numbering method is inspired by Dietz’s numbering scheme. However,
instead of preorder and postorder numbers, the authors suggest using an extended
preorder and a range for descendants. Therefore, each node gets two numbers
<order,size> as follows.

• For a tree node y and its parent x, order(x) < order(y) and order(y) +
size(y) ≤ order(x) + size(x). It other words, interval [order(y), order(y) +
size(y)] is contained in interval [order(x), order(x) + size(x)].

• For two sibling nodes x and y, if x is the predecessor of y in preorder
traversal, order(x) + size(x) < order(y).

• For a tree node x, size(x) ≥
∑

y size(y) for all nodes y that are direct
children for x.

Evaluating the A-D relationships is still in the constant time because for two
given nodes x and y of a tree T , x is an ancestor of y if and only if

order(x) < order(y) ≤ order(x) + size(x) (2.2)

13



(1,100)

(10,25) (40,15) (60,30)

(15,5) (25,5) (45,5) (65,5) (75,5)

Figure 2.4: Applied XISS numbering scheme

Example 3. See the sample numbering for a given tree with a proposed numbering
scheme in Figure 2.4 and compare it with the Dietz’s numbering scheme in Figure
2.3.

As the complement to the major structures, there is a name index implemented
as the B+-tree which stores all distinct name strings. The strings are identified
by the unique name identifier (NID) which is a key to the element index and the
attribute index that are implemented also as B+-trees.

When analyzing a complex path expression, authors first decompose it into
several simple path expressions (called subexpressions) which produce intermedi-
ate results and then they combine or join them into the final result. Subexpressions
might be a single element or an attribute, an element with an attribute (EA), two
elements (EE), a Kleene closure (+,*), or a union of two subexpressions. For each
of these situations, a path-join algorithm is proposed:

• EA-Join
This join takes a list of elements and a list of attributes as intermediate
results for corresponding subexpressions and join them if they belong to the
same document. Both lists are scanned sequentially.

• EE-Join
It joins two lists of elements which are intermediate results for two subex-
pressions that are in the same document. Both algorithms (EA and EE) use
two-stage sort-merge operation - merging according to the common docu-
ments in the first step and according to the A-D relationships in the second
step.

• KC-Join
The algorithm of Kleene closure is used when a regular path expression
contains zero, one, or more occurrences of a subexpression (using + or *).
It sequentially applies the EE-Join to the previous result until the join does
not produce more results.

14



Element1

EE-Join

Element2

Element3

EE-Join

Element4

EA-Join

Attribute1 Element5

EE-Join

Element6

KC-Join

Union

EE-Join

Figure 2.5: The decomposition of a sample path expression into single elements
and attributes; and the application of distinct path-join algorithms

Example 4. If we take a sample path expression, we are able to decompose it
into several simple expressions (single elements and attributes). According to the
expression types, we apply the desired path-join algorithms to acquire the final
result (see Figure 2.5 where the edges determine the data flow).

The solution brings a new numbering scheme that is more flexible and suitable
also for dynamic updates, adding or deleting nodes. Even though authors provide
good experimental results, the decomposed path expression might still produce
quite extensive intermediate results.

2.3.3 Mapping to Relational Databases

The combination of indexing XML with relational databases seems natural. If
we succeed in transforming the given XML into an RDBMS1, we can leverage
all features of databases such as ACID [22] (atomicity, consistency, isolation, and
durability).

If we had a schema, we could create corresponding database tables and map
the values from the XML file into tables. Then we will use the indices for database
tables mostly based on B+-trees. The problem appears when we have to process
files with no schema assigned.

1Relational DataBase Management System
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GRIPP

GRIPP (GRaph Indexing based on Pre- and Postorder numbering [41]) works
exclusively with database tables and expects the input graph to be stored in the
database prior the evaluation. It suggests an extended labeling scheme that assigns
each node in the graph at least one pair of preorder and postorder numbers (similar
to Dietz’s numbering schema). The node might have several ancestor because
GRIPP handles general graphs. At least one node must be without incoming
edges. If such node does not exist, authors create a new virtual root node.

They distinguish tree and non-tree edges and use the hop technique to find,
recursively, all reachable nodes from a given node in the graph.

The major issue is to choose the order of labeling nodes which has a great
impact on the query evaluation. There exists a known solution how to find the
best ordering but it relies on finding Hamilton paths in the graph which is NP-
complete problem, so it is not feasible for real applications. Therefore authors
suggest the heuristics how to compute the good ordering.

XPath Accelerator

The work [21] presents a method designed specially for XPath queries and han-
dling regular path expressions. It encodes parts of the input file into XML docu-
ment regions and assigns each node v a 5-dimensional descriptor :

desc(v) = {pre(v), post(v), par(v), att(v), tag(v)} (2.3)

The descriptor consists of preorder pre(v) and postorder post(v) numbers, par-
ent’s preorder ranking par(v), the boolean attribute flag att(v), and the element
or attribute name tag(v).

The evaluation of XPath queries is based on query windows and the inductive
generation of the SQL query. For each XPath axis, the concept defines the query
window according to the descriptors. Searching for all nodes that belong to a
specific query window is translated into an SQL query. The result provide the
context nodes for the next step, so the nested SQL query is generated.

Example 5. If we take a sample XML tree from the Figure 2.6(a) and assign
each node preorder and postorder numbers, we can visualize the nodes in the table;
see Figure 2.6(b). The context node f determines four disjoint regions:

1. the lower-right region contains all descendants of f

2. the upper-left region consists of ancestors of f

3. the lower-left region includes nodes preceding f in the document order

4. the upper-right region represents nodes following f in the document order
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Figure 2.6: A sample XML tree for XPath accelerator. (a) Graph-structured data,
(b) XML document regions according to preorder and postorder numbers

Because the node descriptors are in the 5-dimensional space, the solution sug-
gests using R-trees [5] as the database indices because they provide good results
in XPath step evaluations.

2.3.4 Multi-dimensional Approaches

Focusing on indexing paths, these methods try to transform the arbitrary long
paths from the input XML tree to multi-dimensional tuples. The main idea is
to avoid structural joins which might be slow and inefficient and leverage the
multi-dimensional data structures such as UB-trees [28] or R-trees [5].

Having the labeled paths transformed to points in multi-dimensional spaces,
we can use point or range queries to get the expected result as stated in [25]. Be-
cause these queries are a bit special, we need to either adjust the multi-dimensional
structures or create new structures.

The benefit of multi-dimensional points is that enabling the update actions
such as inserting or deleting is simple.

The main problem is that we do not know the dimension of spaces where we
place the multi-dimensional points before parsing a file. One can always generate a
file which has the maximal path length longer than expected, so we cannot rely on
the upper bound of the path lengths or the number of dimensions. Also not every
path has the same length, so we must take into account that the multi-dimensional
points might have different numbers of dimensions.
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Figure 2.7: The 3-dimensional space with indexed paths in the MDX approach.

Multidimensional Approach to Indexing XML (MDX)

The works of [25] and [26] propose a new indexing method for XML trees based
on multi-dimensional tuples without using structural joins, MDX. It models the
XML tree as a set of root-to-leaf paths using vectors (based on the work [27]; see
Figure 2.7). The method differentiates between paths (the sequence of unique node
numbers; identified by the unique number PID) and labeled paths (the sequence of
node tags; identified by the unique number LPID).

It assigns unique numbers to nodes (node identifiers) according to some num-
bering scheme. The numbering scheme might be easily adjusted to generate unique
node identifiers with gaps (e.g. incrementing by 100) to cover the update opera-
tions such as inserting new nodes or delete existing nodes without a big effort.

MDX contains three index structures:

1. Term index that includes unique numbers idT (si) for terms si (names, text
values of elements, or attributes). It provides the conversion between these
two values and might be implemented as the B-tree.

2. Labeled path index contains points, that represent labeled paths, together
with corresponding labeled paths’ unique numbers (LPIDs).

3. Path index consists of points that denote all root-to-leaf paths.

Example 6. Suppose we take a root-to-leaf path that consists of ”books/book/title”
elements, the corresponding tags are {0, 1, 4}, and the unique labeled path number
might be LPID = 2. So we insert the tuple {1, false, 0, 1, 4} into the Labeled path
index. The first value, docId, denotes the unique number of an XML collection, the
second value, attrF lag, is the boolean flag whether the path ends in an attribute
or not, and the rest is the list of unique node identifiers. If the node identifiers
are {0, 3, 8}, we also generate the tuple {2, 0, 3, 8}, where the first coordinate is
the LPID, and we store it in the Path index.
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The proposed query processing consists of several steps: find unique numbers
idT (si) for all terms, find labeled paths’ LPID (the point query), and search for
points in the path index (the range query). Branch queries are divided into path
queries and the algorithm applies a path join. It is different from the structural
join that must be executed for each pair of nodes because authors use it for branch
nodes only.

Although the results show faster query execution for sample queries compared
to element-based approaches such as XISS, the evaluation of complex queries
with relative paths might still force to full search of several whole dimensions for
resulting multi-dimensional points.

Indexing XML Data with UB-trees

Universal B-trees (UB-trees) combine the Z-ordering and the B-tree which is
the balanced, persistent, and paging tree, into a structure that accesses multi-
dimensional data. If we have the n-dimensional space, we can compute the Z-
address for any tuple (see Figure 2.8). The UB-trees then define the Z-regions
which make clusters of spatial neighbors and which provide a totally ordered
disjunctive partitioning of the given space.

This method takes paths from the root to the leaf and compute the path
content for each path e1/e2/ . . . /ek as a sequence of string values s1/s2/ . . . /sk.
The string values are further transformed into signatures, the binary numbers
of the same lengths, so we get the n-dimensional point that represents the path
content (sig(s1), sig(s2), . . . , sig(sk), . . .) where sig(si) is the signature of si for
1 ≤ i ≤ k, or sig(si) = 0 for n > k. Then we insert these points into the UB-tree.

Before the evaluation, the given query is transformed to a range query which
finds all points that includes the n-dimensional query cube (for 2-dimensional
space it means the rectangle). Authors propose query window as its name.
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Figure 2.8: Sample Z-ordering (a) Z-addresses for all points in 2-dimensional space
8 x 8, (b) The Z-curve that fills the entire 2-dimensional space 8 x 8
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When indexing the paths, the n-dimensional point is similar but the dimen-
sion of the space will be n + 1 because we add the unique path number to the
coordinates.

The work [28] showed that although the method is correct and viable, inserting
and finding points in UB-trees was not so demanding.
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Chapter 3

iXUPT: Indexing

In this section, we outline the new proposed indexing method iXUPT (Indexing
XML Using Path Templates), we explain how it differs from existing solutions,
and how it enhances present techniques, followed by the detailed description of
how to build and initialize the index structures. Finally, because we offer two
variations of our concept, we will compare them and depict the differences.

3.1 Overview

The aim of our proposed method is to build a native XML indexing scheme
which improves the evaluation of XPath queries in terms of the time complexity.
We follow the multi-dimensional techniques and leverage the path-based indexing
with focus on grouping paths according to common characteristics, path labels. We
expect this idea to eliminate many unsuitable paths and, as the result, to speed
up the evaluation of any query.

The interesting work of mapping all root-to-leaf paths into multi-dimensional
points, MDX [26], influenced us on designing our indexing method. Similar as
in this work, we take the root-to-leaf paths and label them. MDX tries to avoid
using structural joins because of their time complexity and so does our solution.
We also use joins only for branch queries.

We found also motivation in XISS [29] for the decomposition of XPath expres-
sions into simpler subexpressions and producing the intermediate results (called
candidates in our approach) that might be combined or joined to produce the final
result. Although the inspiration came from structural joins, we try to eliminate
such joins that does not add anything to the final result in order to accelerate the
querying. The method of path labeling helps us with doing so because we make
joins only on similar paths.

We understand the inefficiency of element-based approaches with structural
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joins but we also see the potential slowdown for the multi-dimensional mapping
methods when evaluating queries with multiple wildcards and relative paths. In
this case, the domain used for finding matching tuples might grow faster. Therefore
we focus on these special types of queries as well.

The Patricia trie data structure [24] inspired us while building the PrefixTree
(see Section 3.3).

Our approach considers only tree structures as the input. We also exclude
attributes and text values from the indexing and querying methods and focus
primarily on the elements and their relationships. The support for indexing and
evaluating attributes is straightforward because any attribute of an element might
be considered as a specific subelement with a specific edge. There will be no
big difference in querying as shown in the MDX method which handles also the
attributes.

3.2 Indexing Paths

When we get the input XML file, we need to parse the file, initialize the structures
and build the initial graph. We use the SAX (Simple API for XML) parsing
method. In this case, this method is more effective than the DOM (Document
Object Model) approach because we do not need to build the whole representation
of the XML file. We take only information and the data we need and store them in
our own structures. Because we process the file as a stream, we fill the structures
on-the-fly while parsing the file.

First of all, we assign elements in the source file the unique identification num-
bers (NodeIDs) and convert the element (tag) names into integers (TagIDs). We
use the numbering method that assigns a node the NodeID when the correspond-
ing element is visited for the first time. In terms of the tree traversing, we use
the in-order traversal sequence. The root element has the number 0, while the
numbers of following nodes are always incremented by 1 (see the sample XML file
with element names and NodeIDs in Figure 2.2).

Because element names might repeat, we create the TagID only for the first
occurrence of the specific name. The next time we visit a node with the same
element name, we use the previously created TagID. Therefore multiple NodeIDs

might have the same TagID. Similar to NodeIDs, the first element name has the
number 0, while the next unique element name is always incremented by 1, and
the conversion between element names and corresponding TagIDs might be im-
plemented with B-trees.

We prefer numbers over strings because we need to compare the element names
while evaluating and the comparison of integers is faster than comparing strings
with variable lengths even though it brings some memory overhead.
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Table 3.1: Terms definition and description

Term Description

NodeID The unique node number given by the numbering method.

TagName The name of an element.

TagID The unique number for the TagName given by the numbering method.

Path Label The sequence of TagIDs of the nodes on the path from the root to the
leaf.

Path Prefix The sequence of TagIDs that identifies a prefix of at least one path.

Path Template ID

(PTID)
The unique number for a path label. The path labels are converted
into integers (PTIDs).

Path Reference The sequence of NodeIDs of the nodes on the path from the root to the
leaf.

Next, we store all root-to-leaf paths according to their path labels. We deter-
mine the path labels by the sequence of TagIDs of the nodes on the path from the
root. Whenever we reach a leaf node, a new root-to-leaf path occurs, and we store
the Path reference according to its path label. The Path reference contains
the sequence of NodeIDs of the nodes on the path from the root to the current
(leaf) node and it is unique.

The difference between the Path reference and the path label is that the first
one contains NodeIDs while the second one uses TagIDs. The path label is stored
only once but one path label can contain several Path references. Moreover, we
convert each path label into corresponding Path Template ID (PTID) that groups
similar Path references together.

For the comprehension, we provide the list of new terms with their descriptions
in Table 3.1.

Example 7. If we take the sample XML file from the Figure 2.2 and we visit a leaf
node fax (13), the Path reference (sequence of NodeIDs) will be (0,7,8,13).
Converting element names "/faculty/department/contact/fax" to TagIDs, we
get the path label ’/0/7/1/9’. For details about the conversion, see Section 3.3 and
Table 3.2 (NodeTags table).

3.3 Structures

We maintain several in-memory structures that store the root-to-leaf paths and
other necessary information that we will later use when we evaluate queries. There
are three major data structures: the NodeTags table, the Paths table, and the
PrefixTree. While the first two structures are more like database tables, the last
one is definitely a tree structure.

Figure 3.1 shows the overview of the iXUPT Index and includes also temporal
structures for query evaluation (XPathTree; see Section 4.2.1).
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Figure 3.1: Overview of the iXUPT Index and its data structures

3.3.1 NodeTags Table

This table provides the conversion between the TagName and the TagID. The
TagNames are listed according to their first occurrence in the input XML file.
We save also all Path Template IDs (PTIDs) where the given TagID appear; see
Table 3.2. As we assign the TagIDs only to visited nodes, there must be always
at least one PTID for a given TagID because each node is included in at least one
root-to-leaf path.

3.3.2 Paths Table

This table contains the conversion between the path label and corresponding PTID.
We delimit the TagIDs in the path label with the ’/’ character similarly to the
directory navigation in common file systems. As mentioned before, a single path
label provides grouping for several Path references that we also store here; see
Table 3.3.
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Table 3.2: NodeTags table for the sample XML in Figure 2.2

TagName TagID Path Template IDs
faculty 0 {0,1,2,3,4,5,6,7,8,9}
contact 1 {0,1,2,3,4,5,6,7,9}
address 2 {0,1,4,5,6}
street 3 {0,4}
city 4 {1,5}
email 5 {2,9}
phone 6 {3}
department 7 {4,5,6,7,8,9}
zip 8 {6}
fax 9 {7}

Table 3.3: Paths table for the sample XML in Figure 2.2

PTID Path label Path references
0 0/1/2/3 {(0,1,2,3)}
1 0/1/2/4 {(0,1,2,4)}
2 0/1/5 {(0,1,5)}
3 0/1/6 {(0,1,6)}
4 0/7/1/2/3 {(0,7,8,9,10)}
5 0/7/1/2/4 {(0,7,8,9,11); (0,15,16,17,18)}
6 0/7/1/2/8 {(0,7,8,9,12)}
7 0/7/1/9 {(0,7,8,13); (0,15,16,19)}
8 0/7 {(0,14)}
9 0/7/1/5 {(0,15,16,20)}

3.3.3 Prefix Tree

The PrefixTree covers all distinct prefixes of path labels from the input file.
Each node in this tree has the TagID and the path from the root to a given node
represents the path prefix. Nodes also contain the list of all PTIDs which do have
the selected prefix. We use this structure to find all PTIDs to which a NodeID

might belong. Because a given NodeID determines its path from the root (the
prefix of a path label), we can use the sequence of TagIDs of nodes on this path
for the navigation in the PrefixTree and we get all possible PTIDs for this node
(for details about using this method within the query evaluation see Section 4).

Example 8. If we take the node contact (1) from the sample XML (see Figure
2.2), it belongs, according to the NodeTags table, to almost all PTIDs. And using
the PrefixTree, we find its prefix ’/0/1’ that matches the PTIDs {0,1,2,3}. So
the chosen node occurs only on paths with these path labels.
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Figure 3.2: PrefixTree for the sample XML file in Figure 2.2

3.4 Build Index

In previous sections, we introduced our own data structures that we will use while
indexing the XML files. To demonstrate how we initialize, build, and use the data
structures, we provide a simple algorithm which describes the main steps and
actions in the process of parsing the source file (see Algorithm 1).

After initializing our data structures, and creating a SAX reader, we read
sequentially the whole file. We expect the XML file to be well-formed, otherwise
an exception is thrown and the parsing fails. A document is well-formed if it meets
several constraints (declared in [15]) such as it contains only a single root element,
the start tag and its corresponding end tag are in the content of the same element,
and many others.

We handle two events when traversing the input XML file: when we visit a
new element (start element) and when we leave an element (end element). All
other events are skipped. Depending on the type of the event, we execute several
actions that we explain in the following text. We do not consider attributes or
text values as we stated at the beginning.

3.4.1 Start Element

When we visit an element for the first time, we need to assign the element the
unique identification number (NodeID) and we add the element name into the
NodeTags table. The table assures that the element name is appended and gets a
new TagID only if it is not present in the table yet. Otherwise we get the TagID

for an existing item from the table.
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Algorithm 1 Build iXUPT Index algorithm
Require: path to the source XML file
Ensure: Initialized iXUPT index
1: nodeID = 0
2: NodeTags ← new NodeTagsTable()
3: Paths ← new PathsTable()
4: PrefixTree ← new PrefixTree()
5: reader ← new SAXReader(path)
6: while reader.Read() do
7: if reader.IsStartElement then {first visit}
8: NodeTags.Add(reader.ElementName)
9: tagID = NodeTags.GetTagID(reader.ElementName)

10: pathRefStack.Push(nodeID)
11: pathLabelStack.Push(tagID)
12: nodeID = nodeID + 1
13: isLeafNode = true
14: else if reader.IsEndElement then {last visit}
15: if isLeafNode then
16: pathLabel = GetPathLabel(pathLabelStack)
17: if not Paths.Contains(pathLabel) then
18: Paths.Add(pathLabel)
19: PTID = Paths.GetPTID(pathLabel)
20: for all tagID in pathLabelStack do
21: NodeTags[tagID].AddPTID(PTID)
22: end for
23: PrefixTree.Process(pathLabelStack, PTID)
24: end if
25: Paths.AddPathReference(pathLabel, pathRefStack)
26: end if
27: pathLabelStack.Pop()
28: pathRefStack.Pop()
29: isLeafNode = false
30: end if
31: end while

We save the NodeIDs in the stack (PathRefStack) and whenever we visit
a leaf node, the stack represents a Path Reference that we consequently add
to the Paths table. Similarly, saving TagIDs in another stack (PathLabelStack)
provides a basis for creating the path label.

The boolean variable isLeafNode determines whether the path from the root
to the current node is a root-to-leaf path. When we traverse the tree downwards
(similar to Depth First Search), any new node that we visit might be a leaf node,
therefore we assign it true. When we visit a non-leaf node on the way back while
backtracking, the value will be false. It is assured by the End Element method.
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We omit some actions such as maintaining the current NodeID, creating the
initial graph (if we use the Rho-Index), or handling the array of already processed
elements with corresponding TagIDs. These actions are obvious and they depend
mainly on the chosen implementation.

3.4.2 End Element

This event represents the last visit of a node in the graph within the traversal
before backtracking. If a node is a leaf node, a new root-to-leaf path occurs and
we need to handle it. We create the path label from the TagIDs in the stack and
check whether it exists in the Paths table. If the path label is not present, we add
it to the table and it gets a corresponding PTID (Path Template ID). Furthermore,
we need to update the NodeTags table and for each TagID, we append this new
PTID to the existing list of PTIDs.

We also have to update the PrefixTree with the new PTID and add it to all
corresponding nodes. PrefixTree ensures that if any node does not exist, it will
be created.

No matter whether the path label occurred in the Paths table before or not,
we store a new Path Reference (sequence of NodeIDs) to the corresponding item
in the Paths table determined by the path label.

Because there are no more childnodes and we leave the node, we remove the
current NodeID and TagID from the stack because we will not use them in the
future.

Finally, we assign the isLeafNode variable the false value because we back-
track from the leaf node, so other nodes on the way back to the root cannot be
leaves. A new leaf might occur only if a node has not been visited yet, and we
handle this situation with the previous phase (Start Element) when we visit the
node for the first time.

3.5 Variations

As we stated at the beginning, we provide two variations of our new concept
of indexing XML files. Both of them provide a different approach to handle the
Ancestor-Descendant relationships when evaluating queries. They are interchange-
able and fully comparable, when we talk about the functionality.

The first variation is based on a new numbering schema while the second one
uses the Rho-Index, the indexing structure that is primarily used for processing
path queries and discovering relationships between elements. If we choose any
variation, the structures described in previous sections will remain the same.
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3.5.1 Numbering Scheme

When using the numbering scheme for revealing A-D relationships, we need to
add one more number to each node in the initial graph. We mark it as LastNodeID
and it is the NodeID of the last visited leaf node in the subtree determined by the
current node. We assign the number when we visit a node for the last time during
the tree traversal.

So we get the node interval (NodeID,LastNodeID) for each node in the tree.
This interval is similar to Dietz’s preorder and postorder numbers and it covers
all subelements. Precisely, the node x is an ancestor of the node y if and only if
the y.NodeID belongs to the node interval of the node x:

(y.NodeID > x.NodeID) ∧ (y.NodeID ≤ x.LastNodeID) (3.1)

Remark that using node intervals, we are able to compute the A-D relation-
ships for any two nodes in the tree in the constant time.

3.5.2 Rho-Index Structure

Rho-Index (also ρ-index [2], [3]) is a multi-level balanced tree structure that was
created to handle special path queries in graph structured data. When we take a
general graph, that comprises of vertices and edges, we can use this index to find
all paths between arbitrary two vertices in the graph1.

As the input, Rho-Index expects an existing graph, that, in our case, we create
while parsing the XML file. Then we need to compute required values before the
structure is ready to use. The main idea is to take the initial graph and transform it
to a new simplified graph with similar properties. Authors call this transformation
graph segmentation and the product of the transformation is the Segment graph.

Furthermore, they use a modification of the adjacency matrix to describe any
node in the tree structure. This modified Path Type Adjacency Matrix (PTAM)
stores the whole paths between two nodes instead of path counts that are saved
in the usual adjacency matrix. Together with customized matrix operations, +
and ∗, we can compute the transitive closure of this matrix. As the result, we
get a matrix that contains at each position [i, j] all paths between the node i
and the node j. Because path lengths in a graph might be arbitrary, computing
the transitive closure might be time-consuming. Therefore the index expects the
maximal path length as the input parameter in order to limit path lengths. This
bound increases the efficiency because it also determines the number of iterations
when we compute the transitive closure of the modified adjacency matrix.

1Although the Rho-index allows several other special path queries, we will use the structure
only to search for all paths between any two vertices in the graph to check A-D relationships.
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Algorithm 2 Create Rho-Index algorithm

Require: G = (V ,E), minSegmentSizes, maxSegmentSizes, maximal length L
Ensure: Rho-Index for the initial graph G
1: CG← G {CG is the Current Graph being processed}
2: for i = 1 to SegmentSizes do
3: S = CreateSegments(CG,minSegmentSizes[i],maxSegmentSizes[i])
4: SG = CreateSegmentGraph(S)
5: for all (segment in S) do
6: segment.CreatePTAM() {Path Type Adjacency Matrix}
7: segment.ComputeTransitiveClosure(L)
8: end for
9: CG← SG {The segmentation graph becomes the current graph}

10: end for
11: CG.CreatePTAM()
12: CG.ComputeTransitiveClosure(L)

When we create the index (see Algorithm 2), we are able to search for all
paths between any two vertices. The searching uses special transcription graph
with specific edge types that initially contains only the start and the end vertex
(as the input). While processing this graph, we transform the edges until we get
only edges of one particular type. At that time, the transcription graph contains
all paths between those two input vertices. We cover the details of the search
algorithm later in this section.

Graph Segmentations

The graph segmentation divides all vertices from the input graph into several
segments where each segment contains at least one vertex and each vertex belongs
to a single segment. Once we assign a vertex to a segment, it will remain in
the segment with no further changes. The difference between a segment and a
subgraph is that a segment can contain also an edge defined by two vertices
possibly in different segments.

When we get a set of segments, we connect the segments with edges applying
the rule that two segments S1, S2 are connected with an edge whenever there
exists two vertices v1, v2 such that v1 ∈ S1 and v2 ∈ S2. Because there might
be multiple edges, we can replace them with a single edge and save the multiple
edges in special Tables of Transitions between segments (based on the inverted
file index). We also discard the inner edges within the segments. Then, if we take
segments as the vertices and edges that connects segments as edges, we get a
new segment graph S(G) that has similar properties as the initial graph G but
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Figure 3.3: Rho-Index - Graph segmentations

it is smaller (see Figure 3.3). Furthermore, if there exists a path in an initial
graph, the path will remain in the segment graph but will be simplified. Instead
of vertices and edges from the initial graph, the path in the segment graph consists
of segments and edges between them and it is called the sequence of segments.

We create the path type adjacency matrix (PTAM) for each segment (line 6 in
Algorithm 2). Because segments have a smaller number of vertices, computing
the transitive closure for each matrix will be faster than computing the transitive
closure for a matrix covering the whole graph. The transitions between segments
will be represented by the graph at the higher level.

The previous steps describe only one iteration of the graph segmentation which
takes the initial graph G and transforms it to the segment graph S(G). Because
the resulting graph might be still large, we apply the same process of graph seg-
mentation to the segment graph S(G) and we get another segment graph S(S(G)).
The Figure 3.3 visualizes the graph segmentation method.

Number of graph segmentation iterations is another input parameter together
with minimal (minSegmentSizes) and maximal (maxSegmentSizes) number of
vertices in one segment. These bounds might differ for each iteration.

There are several segmentation methods available that divide vertices into
segments such as graph to forest of trees with or without vertex clustering, or the
segmentation using the topological order. The selection of a segmentation method
has an impact on the creation complexity of the Rho-Index. We implemented the
second method that uses the topological order because the input graph will be a
DAG (directed acyclic graph) as we focus on indexing trees only.
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Algorithm 3 Rho-Index search algorithm

Require: starting vertex s, ending vertex e
Ensure: Graph of all paths between s and e stored in Rho-Index
1: Get segments [S1, S2, . . . Sk] for s
2: Get segments [E1, E2, . . . Ek] for e
3: TG = BuildInitialTranscriptionGraph()
4: TG.TransformEdges()

Search Algorithm

After we process the initial graph and create several segment graphs, we are ready
to search for all paths between any two vertices using the transcription graph. At
any time, the transcription graph is a DAG. The search algorithm (Algorithm 3)
leverages the principle of the segmentation that each vertex on the higher level
corresponds to a graph on a lower level.

Initially the transcription graph contains the start vertex s and a list of seg-
ments S1, S2,. . .Sk to which this vertex belongs on higher levels (k denotes number
of segmentation iterations or levels). Then, we append the end vertex e with its
list of segments E1, E2,. . .Ek together with an entry from the top-most path type
adjacency matrix P [Sk, Ek].

There are four different edge types in the transcription graph and each edge
type is determined by the level at which the two connected nodes occur. The search
algorithm transforms these edge types, so we get only vertices at the lowest level
(vertices from the initial graph) that might be connected with edges (also from
the initial graph). If the resulting transcription graph is connected, it contains
all paths between vertices s and e with the limited path lengths. Otherwise, it
includes only the start and the end vertex and no edge. In this case, no path
between specified vertices exists.

3.6 Implementation Details

We develop the indexing technique that is completely stored in the main memory.
The advantage is that we can easily and relatively fast access the data we need
but the drawback is that it has higher memory requirements, especially for larger
files.

We understand the temporal inefficiency of loading the whole structures to
the main memory, and we propose to study this issue as the future work (see Sec-
tion 6.1). We see the perspective of saving the data structures to the secondary
memory for both variations. Considering the numbering scheme, we need to addi-
tionally store only a single integer (LastNodeID), and for Rho-Index, we might use
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some of the persistent memory structures designed for tree structures. Other data
structures such as Paths table or NodeTags table must be studied more properly
to create a serialization method that takes into account variable sizes of some
items.
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Chapter 4

iXUPT: Evaluating XPath
Queries

When we build and initialize the iXUPT index for a specific XML file, we are able
to use the defined structures for evaluating queries. Our algorithm supports not
only regular path expressions but also the branch queries. To provide a standard-
ized way of defining queries, we choose the W3C recommendation of the XPath
language [13] as the query description language that is capable of representing
any query we need.

The process of evaluating a given XPath query has several steps. In the follow-
ing sections, we describe the concept of evaluating and then we explain all these
actions in more detail.

4.1 Evaluating Queries

Evaluating an XPath query is divided into a number of subsequent steps (see
Algorithm 4). First we need to parse and prepare the query. In this step, we
convert the string expression into the appropriate tree structure. Then we prepare
and initialize the created tree structure for the evaluation.

As the most important step, we evaluate the query by traversing the tree
structure in correct order.

The last step gets the result node and provides the final result as the set of
nodes in the candidates table for this node.

Any of these steps might produce an exception for unexpected values or in-
correct data. If something goes wrong, we display appropriate error message and
abort the evaluation. In order to get the final results, all steps have to finish
successfully.

34



Algorithm 4 Evaluate XPath query algorithm

Require: XPath string expression expr, iXUPT index iXUPT
1: XPathTree treeQuery = XPathAnalyzer.Parse(expr);
2: PreProcessVisitor.Visit(treeQuery, iXUPT )
3: EvaluateVisitor.Visit(treeQuery, iXUPT );
4: XPathNode resultNode = EvaluateVisitor.GetResultNode();
5: return resultNode.Candidates

4.2 Parsing XPath Expressions

In the beginning, we take an XPath string, that includes a regular path expression,
and convert it into the structure that is appropriate for the evaluation. We selected
our own tree structure XPathTree.

The implemented prototype which proves the feasibility of our indexing con-
cept supports only some of the XPath axes: self, child, descendant, parent,
ancestor, descendant-or-self, and ancestor-or-self. Other XPath axes1

might be studied as the future work.

4.2.1 XPathTree

XPathTree is our own tree structure implemented with the Composite design pat-
tern [37] and created by two types of nodes (XPathNodes): steps and predicates.
Although they have different meanings and we evaluate them in different ways,
considering the data structures, they are implemented in the same way and dis-
tinguished only by the boolean flag. This structure is temporal for evaluating the
query and we create it on-demand for a given XPath expression.

The root node is the XPathNode that corresponds to the first step expression.

Steps If we divide the path expression into the sequence of step expressions, they
will be represented by these nodes. We handle the Step nodes as the major
nodes during the evaluation. Each node has at most one Step childnode and
we call it NextStepNode.

Predicates We express the further filter expressions by the Predicate nodes.
While the Step nodes cannot be added as childnodes to Predicate nodes,
each node in the XPathTreemight contain one or more Predicate childnodes.
If a node has more predicates as childnodes, we combine them using logical
conjunction (AND). It means that all the predicates must have a non-empty
resulting set of nodes in order to meet the filtering criteria of the given node.

1For the whole list of existing XPath axes see the Table 2.1
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Figure 4.1: The visualized XPathTree structure of sample queries. The Steps
are represented by boxes, while the Predicates are shown as ellipses. We use
oriented edges to determine the forward and reverse axes (the edge leads
always from an ancestor to a descendant). We put dashed edges and dot-
ted boxes or ellipses to indicate that the target node is generally a de-
scendant (not necessarily a childnode). The corresponding XPath expressions
are: (a) faculty/department/contact, (b) department//*/email, and (c)
faculty[department]//fax/ancestor::contact

Example 9. For better imagination, we can visualize the XPathTree that we
derive from an XPath expression (see Figure 4.1).

4.2.2 XPathNodes

Each node in the XPathTree contains several values:

• TagName The element name in the step or predicate expression assigned
during parsing the string expression.

• TagID The corresponding unique number for the element name if it exists
in the NodeTags table; otherwise the value is undefined (e.g. −100). We also
need a special value for TagID which represents the wildcard expression ’∗’
if it is used as the element name (e.g. −3). The value is assigned during the
pre-processing phase (see Section 4.3).

• Order The integer that corresponds to the order of evaluating the major
nodes (applicable only for Step nodes).

• IsMajor The boolean flag that is true for Step nodes and false for Predicates.
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• Axis The description of the XPath axis. Because the XPathNodes are in the
tree structure, each node has exactly one parent (except for the root). The
Axis defines the relation between a node and its parent in the XPathTree

and we use it as a designator when validating the A-D relationships.

Definition 1 (Alternating XPathNode).
Alternating XPathNode is a node that changes the axis direction. It means that
the incoming edge has different direction than the outgoing edge (forward-reverse
or reverse-forward)2.

4.3 XPathTree Pre-processing

After we parse the XPath expression and create the corresponding XPathTree,
we need to convert the stored element names into TagIDs. While converting, we
check whether the element names exist in the index. If a name does not occur
in the NodeTags table, the result is instantly available because no nodes will be
in the result set and no further evaluation is needed (as mentioned before, we
suppose all predicates to co-exist at the same time).

During the tree traversal, we also assign XPathNodes the integer Order, so we
know the order in which they are visited and evaluated. We will use this number
later while traversing the XPathTree to determine whether the minimal set of
PTIDs for a given node has been already computed or not.

As the result, we get the validated and properly initialized XPathTree that is
ready for the evaluation.

4.4 XPathTree Evaluating

When we build and validate the XPathTree, we can start evaluating a given query
by traversing the tree structure. As we outlined before, we use slightly different
evaluating methods according to the type of the current XPathNode. We evaluate
the Step nodes with the top-down approach (from the first to the last Step node
according to the Order), while the Predicate nodes are processed in the bottom-up
style (from the lowest level upwards using backtracking in the Depth-First Search).
The reason for distinct methods is that we have to evaluate step expressions in
the same order as they occur in the query because the intermediate result from
one step defines the context for the next step. On the other hand, all predicates
must be resolved before we can continue with the next XPathNode.

2For details see the types of the XPath axis in Table 2.1
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Algorithm 5 Visit procedure for evaluating an XPathNode in the XPathTree

Require: xnode is the current XPathNode in the XPathTree being visited
1: xnode.Candidates = GetCandidates()
2: for all (predicate in xnode.Predicates) do
3: visit(predicate) {recursive call for a predicate}
4: xnode.VoteForCandidateNodes(predicate.Candidates)
5: end for
6: if xnode.HasPredicates then
7: xnode.FilterCandidateNodes()
8: end if
9: if (xnode.IsMajor) then {it is the Step node}

10: MergeCandidates (lastNode, xnode)
11: lastNode ← xnode
12: if (xnode.NextStepNode is not null) then
13: visit(xnode.NextStepNode)
14: end if
15: end if

Even though we use the general tree traversal, we are able to apply different
approaches for distinct node types. We evaluate Step nodes when we first visit
them but we process Predicate nodes when we leave them.

The Algorithm 5 describes the visit procedure that we apply to all XPathNodes
as we visit them. There are several steps that we need to explain in more detail but
the main principle is that we save candidate nodes (NodeIDs) for each XPathNode

we visit, process the candidates if needed, merge the candidates with the previous
node if any, and continue with the next node.

The set of candidate nodes of the last Step node represents the final result.

4.4.1 Get and Save Candidates

The first step is to get and save candidate nodes for the current node (line 1). We
store them in the table called candidates. It contains PTIDs, where the current
XPathNode occur, with corresponding NodeIDs. Each PTID is stored only once
but one NodeID might be saved for more PTIDs. It is because we focus later on
merging candidates according to PTIDs rather than NodeIDs.

Get the Minimal PTID Set

To identify the set of PTIDs to be stored in the candidates table, we try to find
the smallest PTID set that is common for as many nodes as possible (using the
NodeTags table). For a predicate node, this means to take only PTIDs that are
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common for XPathNodes on the path from the current Predicate node to the first
Step node on the path from the current node to the root. Because we process
these nodes as we leave them (bottom-up), we might pre-compute the smallest
PTID set on the way down.

For a Step node we take the path from the first Step node. This holds only if
all axis directions on the path are the same; otherwise we take the last alternating
node instead. We try to find the PTID set for as many Step nodes as possible at
a time. It means that we ”look forward” (process the following Step nodes) and
store the maximal Order number for which the current set is valid. Then, when
we visit a node, its Order determines whether we have to compute the PTID set
or not.

If the XPathTree does not contain any alternating nodes, the minimal PTID
set is computed for all Step nodes at once. If we have an alternating node, it
divides the XPathNodes on the path from the first Step node into two groups for
which we have to compute the smallest PTID set separately.

Another option is to compute the minimal PTID set for each node in the
preprocessing phase which might be studied as a part of the future work. In our
concept, we prefer computing it on-demand when it is really needed, even though
it might slow down the evaluating.

Example 10. If we take the Query 3 in Figure 4.1(c), the alternating XPathNode
is the fax node. Therefore the minimal PTID subset can be computed only for set
of nodes {faculty,fax} and {fax,contact}. The candidates for this XPathNode

are shown in Table 4.1.

Table 4.1: Candidates table for the fax node in Figure 4.1(c)

PTID NodeIDs

2 {5}
9 {20}

Get Candidates

When we obtain the minimal PTID set, we use the Paths table to find the candidate
nodes (NodeIDs) according to the Path references for any PTID. If the TagID

does not represent ’*’ (wildcard), we find the positions of the TagID in the
Path label identified by the current PTID. We search only for positions that
are either after (forward axes) or before (reverse axes) the position of the last
node reflecting the minimal and maximal skipping bounds (explained later) of the
previous axis. We take all NodeIDs on those positions from the Path references

and store them to the Candidates table for the specific PTID.
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If the TagID reflects ’*’ and the XPathNode does not have any predicates, we
skip it and save the minimal and the maximal number of positions to be skipped
when searching for positions in the next XPathNode. The numbers are determined
by the current axis:

• (1, 1) for the direct relative (parent, child)

• (1,∞) for other axes (ancestor, descendant)

We cannot skip the node if it has predicates because the predicates eliminate
some nodes, so skipping the node might produce an incorrect result.

4.4.2 Evaluate Predicates and Voting

If there are any predicates for the current XPathNode, we need to handle them
before we continue with the next node. Because predicates give additional filtering
criteria, not all candidate nodes from the current XPathNode’s candidates will meet
the new criteria.

Therefore we use the voting mechanism to eliminate such candidate nodes
that do not meet filtering options (line 4). Every predicate node gives a vote for
all candidate nodes (NodeIDs) in the current XPathNode’s candidates table (no
matter of their PTIDs) that are reachable from a NodeID stored in the predicate’s
candidates. The reachability is dedicated from the axis type of the predicate node
and the given NodeIDs.

Because we provide two variations of our concept, the testing for reachability
for a pair of given NodeIDs and the axis type depends on the selected variation. If
we use the numbering scheme (explained in Section 3.5.1), we apply the interval
method (Equation 3.1). The second option considers the search algorithm of the
Rho-Index (see Section 3.5.2). Both approaches provide the same result: true if
there is a specific relation between two NodeIDs; false otherwise.

As the further optimization, we compare the NodeIDs between each other
before checking the A-D relationship because for any two nodes n1, n2 it holds
that if the node n1 belongs to ancestors of n2, the node n1 must have been visited
before the node n2 in the very first tree traversal while parsing the input file:

n1 = ancestor(n2)⇔ n1.NodeID < n2.NodeID (4.1)

We also optimize the testing for parent-child relationships. We leverage the
structure of the initial graph and check whether the first node is the parent or
child of the second node. Depending on the implementation, if we save the list of
childnodes as an associative array, we can reveal these relationships in the constant
time. Otherwise we get the linear time complexity O(N) where N denotes the
number of childnodes for the parent node.
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4.4.3 Filter Candidates

Whenever we use the voting mechanism, we need to finalize the candidates. We
call this action filtering candidates (line 7). The candidate nodes that have not
received enough votes will be removed from the candidates table. Number of votes
needed for being kept equals the number of predicates that has been included in
voting.

Suppose that the current node in the XPathTree is xnode. We define a function
xnode.V otes[nid] that returns the number of votes for a specific nid (NodeID)
receives, a function Result(xnode) that returns the result set of nodes for the
xnode, and a variable xnode.PredicatesCount which provides the total number
of predicates for a given XPathNode. Then we will get:

nid ∈ Result(xnode)↔ xnode.V otes[nid] = xnode.PredicatesCount (4.2)

After we eliminate unsuitable candidate nodes, we need to update the PTIDs

set for the next step because we expect it to decrease. By updating PTIDs we mean
find all PTIDs where a NodeID might occur. If the axis of the next XPathNode has
the same direction, we take the PTIDs only from the already computed smallest
PTID set for the current XPathNode. Otherwise, we need to consider potentially
all PTIDs. To take only some PTIDs, we use the PrefixTree that determines only
such PTIDs in which the given NodeID might occur.

To navigate in the PrefixTree, we need to find out the path prefix. We expect
the tree structure as the input, so revealing the path prefix is quite easy because
each NodeID uniquely determines the path to the root in the initial graph. While
traversing this path upwards, we store the TagIDs of the nodes in the stack. Then
we examine the stored TagIDs, which represent the path prefix. Because we use
the stack, the TagIDs are already in the reversed order as we reach the root node.
So, we can use them in the PrefixTree directly for the downward navigation
from the root and we finally get a node which holds all PTIDs with the given path
prefix. This is the set of PTIDs we need.

We cannot use only the Paths table because we will find PTIDs for any NodeID

with the same TagName and that produces bigger set than we need for a specific
NodeID. Therefore we search in the PrefixTree instead.

4.4.4 Merge Candidates

If we have two Step nodes, we need to merge their candidate nodes (line 10).
Usually we take the candidates of the last Step node and apply the same vot-
ing mechanism on the current XPathNode as with predicates. After voting, we
automatically filter candidates. The result candidates for the current XPathNode
contains previous candidate nodes that received votes.
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Chapter 5

Experimental Results

We implemented the prototype of the iXUPT native indexing method in .NET
Framework 2.0 [34] and used the laptop machine with Intel Core Duo processor
(1.66GHz), 3GB main memory, and Windows XP SP2 installed to execute the
experiments. We take standardized data sets as the input and choose sample
queries to evaluate.

We compare both variations of our concept between each other and also with
other existing solutions in terms of time complexity when evaluating sample
XPath queries.

5.1 Data Sets

For our experiments, we use XMark [39] (the XML benchmark database) as the
data set. XMark is designed to generate XML documents with multiple parts
meeting various XML approaches (data-centric and document-centric). Although
the generated documents are valid to a specific DTD, we do not use this schema
as the hint for indexing or evaluating.

To acquire the data set, we use the tool xmlgen [38] which is the implementa-
tion of the XMark. We generated several documents with different characteristics
(see Table 5.1 for details). The main driver of generation is the Factor which
determines the size of the XML document and number of elements.

Because we focus on indexing paths, we also studied other properties such as
number of Real paths (the total number of root-to-leaf paths) or number of PTIDs
(the total number of root-to-leaf paths with different path labels). In the following
sections, you find out how the data interrelates.
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Table 5.1: Characteristics of the XMark data set

Factor Size [MB] Nodes # Real paths # PTIDs
0.01 1.12 17 132 12 504 338
0.1 11.32 167 865 122 026 422
0.3 34.05 501 498 364 481 434
0.5 56.28 832 911 605 546 434
1 113.06 1 666 315 1 211 774 434

5.2 Indexing

For testing purposes, we created a simple framework that enables us to auto-
matically run the indexing tests. The configuration file contains the number of
iterations for each test, minimal and maximal segment sizes for the graph segmen-
tation if the Rho-Index structure is used, the output CSV1 file that will contain
the results, and the source file to be tested. We chose the CSV format for the
output because it easy to parse with other programs (e.g. R or MS Excel).

We observed several properties and in the following sections we provide the
results that we acquired.

5.2.1 Index Size

First, we focus on the size of the whole index. It means the total size of all major
data structures that we use to store the information while parsing the file (for
more detail see Section 3.3).

We can see the results in Figure 5.1. There are some differences between the
two variations. First, the numbering scheme occupies less memory than the vari-
ation that uses the Rho-Index. The reason is that Rho-Index needs more space to
store all the graph segmentations and modified adjacency matrices. Although any
Path Type Adjacency Matrix contains less than the half of the values (because
we take only trees, so there are no reverse edges as in general graphs), there is an
overhead; see Figure 5.1(a).

The next thing we want to accent is that the index sizes are always less than
the original file size. Although the reason might be the skipped attributes and
text values, we are able to build the index that stores all information needed for
query evaluation and occupies around 62% (using the Numbering scheme) or 73%
of the source file size; see Figure 5.1(b).

1Comma Separated Values.
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Figure 5.1: (a) The comparison between the total Index size and the File size,
(b) The percentage relation between the Index size and the File size

5.2.2 Creation Time

Except for the index size, we want to compare also the time needed to initialize
and build the index. We noticed that the two variations are almost incomparable
in terms of creating the index (see Figure 5.2).

The numbering scheme is really fast because we compute the intervals as we
traverse the tree. So there is no special dependency on the file size.

On the other hand, the variation that uses the Rho-Index structure is too
slow. The reason is that after parsing the file, we need to apply the segmenta-
tion, initialize all segments, and create segment graphs. Because there are several
iterations of the segmentation, the time complexity dramatically increases.

Table 5.2: Settings for the graph segmentation when building Rho-Index

Factor Levels Max Path Length Max Segment Sizes
0.01 3 11 {20,10,5}
0.1 4 11 {35,20,10,5}
0.3 4 11 {40,25,10,5}
0.5 4 11 {40,25,10,5}
1 5 11 {60,40,25,10,5}
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Figure 5.2: The total time of creating the index according to the File Size for both
variations

Build Rho-Index

We focus more on the variation with the Rho-Index variation trying to discover the
relation between the time we need to parse the file and time needed for building
the specific Rho-Index structures. We surprisingly found out that parsing the
XML file adds only a small value of 0.3–1% to the total time (see Figure 5.3). It
means that even though we are able to quickly parse the file and get the initial
graph, we need a lot of time to build and process the Rho-Index structure. This
does not seem like an advantage for further usage.

For our testing purposes, we use several different settings for the graph seg-
mentation when building the Rho-Index (see Table 5.2). As the basis, we take the
suggested values from the authors of the structure which they show in their work
[2]. Their approach considers only smaller graphs (5000–30 000 nodes) which is
not sufficient for us because it does not cover all files. Only the first one is capable
of being in this interval. Therefore we have to estimate the maximal segment sizes.
We tried some settings and took always the one that gave as the most promising
results for each file.

Although the proposed segmentation methods have both upper and lower
bounds, we do not apply the minimal number of nodes to be in the segment.
Without loss of generality, the segmented graph still delivers the expected func-
tionality.
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Figure 5.3: The comparison between the time to parse the source file and the time
to build the Rho-Index.

5.2.3 Paths Count

We examine also the relation between a number of all root-to-leaf paths and a
number of different Path labels for the given data sets; see Figure 5.4. As the
number of rooted paths in the document rises, the number of paths with unique
Path labels also increases but in the decreasing manner. The reason is that the
XML documents have usually pre-defined structure, so the Path labels repeat.
Because we assign the new PTID (that uniquely identifies a Path label) only
for the Path label that has not appeared yet, the number of different PTIDs is
smaller than the number of all paths (and in our case, it has an upper bound).
This is the fact, why we prefer searching for candidate nodes according to common
PTIDs which also enhances the speed of the evaluation.

Yet we understand that for general XML files we can easily generate documents
where the number of PTIDs equals the number of real paths which does not have
to improve the querying time. Though it holds that the number of PTIDs does not
exceed the number of real paths and usually the difference between those numbers
is in orders of magnitude.
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Figure 5.4: (a) The relation between the number of different Path labels (or PTIDs
and the number of real paths), (b) The comparison between the path counts and
the total number of nodes in the logarithm scale

5.3 Querying

In this section, we focus on the choosing and evaluating sample queries to prove
the feasibility of our study and acquire some results, so we are able to compare
the accomplished results with other existing solutions.

5.3.1 Sample Queries

We choose two sample queries according to the given DTD of the generated doc-
uments that will cover as many features and functionality as possible. The first
one is simple while the second one includes different XPath axes and predicates.
The aim is to demonstrate our technique and its efficiency on these queries.

After parsing each query, we build the corresponding XPathTree structure,
and traverse it to get the results. For better imagination, we also provide the
visualization of the sample queries in Figure 5.5. We use boxes for the Step nodes
and ellipses for the Predicates. The edge is always oriented and it leads from an
ancestor to a descendant. Whenever we use a dashed edge, it means the gen-
eral ancestor-descendant relationship, while the solid edges cover the parent-child
relationships.
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Figure 5.5: The visualization of XPathTrees for sample queries.

Query 1 (site/regions/*/item/location)

The first query (Q1) is simple, there are no predicates and it uses only direct
relatives (the child XPath axis) but it contains a wildcard; see Figure 5.5(a). It
represents a single path expression.

Query 2 (//regions[europe]/ancestor::*/people//person)

This query (Q2) is more complex, there is a predicate, a branching node, and an
alternating node. Furthermore, the second Step node matches several elements,
and different axis directions are used; see Figure 5.5(b).

5.3.2 Query Results

To eliminate any negative effects of the managed code, we run the experiments
as several subsequent steps and then we generalize the results. More precisely,
we present the average time of ten subsequent executions for each query. For the
evaluation time, we used a simple method of obtaining the system time before
and after the evaluation of a query and providing their difference. Considering
the memory usage, we utilized the CLR Profiler [33] tool.

Figure 5.6 displays the evaluation times for both sample queries. We see that
the simpler query (Q1) is evaluated much faster than the complex one (Q2). We
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Figure 5.6: The evaluation times for Query 1 and Query 2

also expect the evaluation time of Query 2 to rise at a faster rate for larger files.
Table 5.3 provides the characteristics of the query results. Although the result

node count for Query 1 is about 1.3%, the result size is less than 0.70%. For Query
2 the result node count is similarly around 1.5%, however, the result size is much
higher, around 11.5%; for details see Figure 5.7.

Yet we still need to consider that our indexing method is memory-based and it
indexes elements only when we compare it with other existing solutions. Therefore
we studied the memory usage for query evaluation in more details (see Figure 5.8).
We found out that even though the memory usage for evaluating queries increases
with larger files, in long term, we are able to approximately set the memory limit
for the query evaluation. Figure 5.8(b) shows that for the first query, the bound
is about 10–11%, while for the second query it is about 19–20% of the source file
size. So, the bounds highly depend on the query.

Table 5.3: Characteristics of the result sets

Factor Nodes Result Nodes Result Nodes
(Q1) (Q2)

0.01 17 132 217 255
0.1 167 865 2 175 2 550
0.3 501 498 6 525 7 650
0.5 832 911 10 875 12 750
1 1 666 315 21 750 25 550
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Figure 5.7: (a) The relation between the result size and the file size, (b) The
percentage relation between the result size and the file size
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Figure 5.8: (a) The relation between the query memory usage and the file size,
(b) The percentage relation between the query memory usage and the file size
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5.3.3 Competitors

As other solutions have different indexing methods than the one we propose and
it is not always easy to find out which approach they use and how they use it, we
chose the competitors randomly.

We compare the iXUPT prototype with several other products such as eXist
[32], Qizx [44], MS SQL Server 2005 [35], or the built-in XPathNavigator in .NET
Framework 2.0 (marked as XPN 2.0). While the first two solutions use native
indexing of the XML file only because they have been build primarily to store
and index XML documents, we have not found out the exact indexing approach
the others use.

The Figures 5.9 and 5.10 show the comparison of our iXUPT prototype with
other solutions in the terms of the time needed to get the result for each query.
Also notice that the result values are in the logarithm scale.

Query 1

The first, simple, query proved that there is an improvement of the query evalu-
ation using the common Path labels. For the smaller files with less nodes, our
concept provides good results.

As the number of nodes rises, the improvements decrease, and for the very
last file with more than a million of nodes, our method has been outperformed by
almost all selected competitors. We think that this downturn might be partially
also the result of using the managed code.

Figure 5.9: The evaluation times for Query 1 in the logarithm time scale
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Query 2

As we mentioned earlier, the second query is far more complicated than the first
one because it combines several advanced features. So the evaluation times in-
creased.

We had to excludeMS SQL Server from evaluating because it does not provide
support for ancestor axis, so we cannot execute the Query 2.

For the first two files, we are able to compare our solution only with the Qizx
product. All other methods gave better results. Furthermore, for larger files other
solutions outperformed our prototype by almost an order of magnitude.

We expected better results for Query 2 but our solution has not been highly
optimized as other existing products. We developed iXUPT to prove the feasibility
of our indexing concept, so we still see the potential to optimize it in order to gain
better performance and provide better results. We leave this optimizations for the
future work.

Figure 5.10: The evaluation times for Query 2 in the logarithm time scale
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Chapter 6

Conclusion

The main goal of this thesis was to create a native indexing method that we might
apply to larger XML databases, or precisely the XML files with a large number
of elements.

We started by studying the existing solutions (Section 2.3) which gave us
an overview of existing approaches. Although several different methods exist, we
found out that one of the most effective ways of indexing XML data is using
the paths. The approaches are usually not as simple as element-based concepts
but they provide better experimental results in terms of time complexity while
evaluating the queries.

We were mainly inspired by the widely known indexing approaches such as
using numbering schemes, transformations of paths into multi-dimensional spaces,
or structural joins. We studied all these areas in more detail and tried to take only
the advantages of each solution. Even though we noticed that structural joins do
not provide the best results, the idea of intermediate results fit exactly into our
concept.

Taking into account the existing solutions and leveraging their advantages, we
described our own indexing method that tries to combine the best ideas of all
mentioned approaches. The substantial part of our concept has been described in
the work [4] where authors define the main indexing principles.

We propose two variations of the indexing method that differ in the way they
handle ancestor-descendant relationships. The first one uses a new numbering
scheme, while the second one relies on the Rho-Index, the existing data structure
used mainly to discover paths in a graph between a given pair of nodes. We build
the whole concept on the basis of indexing and labeling paths.

To be able to evaluate regular path expressions, we selected the XPath to
be the language for path patterns because it is standardized and provides all
necessary features we needed.

53



The main idea of query evaluation is to decompose the XPath query into
several simple step expressions that we subsequently evaluate producing the in-
termediate results and then we combine them to build the final result. We use the
idea of structural joins but instead of full joins we search for nodes only within
the common path labels. This method eliminates several joins that will not be
parts of the final result.

We implemented the iXUPT prototype to prove the feasibility of our study for
both variations. In the Section 5 we compared these two variations from various
aspects such as the time of creating the index or the size of the index. Considering
the variations, the Rho-Index did not achieve the expected results and has been
totally outperformed by the simple numbering scheme. We leave the ideas of how
to simplify the Rho-Index for better performance for the future work, especially
for larger graphs with a large number of nodes because the structure did not
expect such huge graphs.

We also provided the comparison of experimental results between our concept
and some other existing solutions and showed how they differentiated from our
concept in terms of time complexity while evaluating the queries. Analyzing the
results, our methods improved some queries, especially on the files with small
or medium number of nodes. But it did not improve the evaluation of complex
queries such as branch queries as we expected.

6.1 Future Work

While we were creating and developing the indexing concept, we found out several
topics that might be interesting to study in the future. The first possible area
might be the modification the proposed numbering scheme, so we can apply it
also for general graphs as a replacement for the Rho-Index structure because, as
we saw, Rho-Index needs a lot of time to be fully initialized and built and it is
not probably the best choice here.

We might also focus on more technical background and rewrite the implemen-
tation into other programming language (e.g. C++) to avoid the managed code
and all the disadvantages it brings. There is still also the potential to optimize
the solution and make things ”smarter”.

We might also study a selected subset of XPath axes in more detail and opti-
mize the solution for some of them, or we could add the support for all remaining
XPath axes. At least the branch queries or twig queries are a good topic for the
future study.

As far as the memory is concerned, an interesting part will be storing the
created index with all major data structure to the secondary memory. This brings
additional requirements and issues such as how to efficiently load and store the

54



data, or how to manage them throughout processing queries. But it lowers memory
requirements.

Because most data structures we proposed have the characters of tables, we
might consider using database tables to implement our approach using the capa-
bilities of relational databases.

We see all of the mentioned areas with the potential to improve our concept
and also as good ideas for future work.
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[3] Stanislav Bartoň and Pavel Zezula. Indexing structure for graph-structured
data. In Mining Complex Data, volume 165 of Studies in Computational
Intelligence, pages 167–188. Springer Berlin / Heidelberg, 2009.
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Appendix A

CD-ROM Content

A.1 Source Code

We implemented the indexing concept in the .NET Framework 2.0 using the
C# language. So we attach the source code as the Visual C# 2005 solution. Be-
cause the project was originally named xmlRho, the source files are located in the
/source/xmlRho directory.

Both variations are implemented in the same project because of common data
structures and common logic. The choice of a variation depends only on the pre-
processing directive. If we define the RHO_INDEX_RELATIONSHIPS constant, after
compiling, we will get the variation using the Rho-Index for testing A-D relation-
ships. Otherwise the numbering scheme will be used.

/build contains executable programs for the Windows platform. It contains
console applications for

• the variation using the numbering scheme /build/1.Numbering scheme

• for the variation using the Rho-Index /build/2.Rho-Index.

A.2 Data Sets

The generated documents that we used for the indexing and querying tests are
located in /data_set directory. We add also DTD for the XML files and the exe-
cutable version of the program we use to generate the data sets xmlgen_win32.exe.

A.3 Test Results

We supply the experimental results for all indexing and querying tests in the
folder /test_results mostly stored as spreadsheet or CSV files.
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A.4 Documentation

We provide the documentation generated from the comments in source files in
HTML, LATEX, and XML formats obtained with the Doxygen1 program.

A.5 Supplemental Programs

While working on the project, we have written some additional programs for
supplemental purposes. We supply some of them:

• /source/xml2graph Converts the source XML file into a graph structure
and visualize it using the GraphViz 2 program.

• /source/xmlStat Provides statistics about the input XML file such as num-
ber of nodes, attributes, or paths.

• /source/XPathTest This graphical application implements the evaluation
of XPath queries using the built-in XPathNavigator.

1see http://www.doxygen.org/
2see http://www.graphviz.org/
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