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Abstrakt 

Společným jmenovatelem nejčastějších onemocnění jater je aktivace mechanismů vrozené 

imunity, které přispívají k rozvoji zánětu a poškození jaterního parenchymu. Klíčovou úlohu 

v rozvoji jaterního poškození hrají Toll-like receptory, jejichž charakterizace v posledním 

desetiletí vedla přehodnocení patofyziologie některých jaterních onemocnění. Předkládaná 

práce studuje význam alelických variant v genech kódujících proteiny Toll-like receptorové 

signální kaskády a mezibuněčné signalizace v patogenezi alkoholické nemoci jater, přináší 

nový pohled na probiotika v léčbě nealkoholické steatohepatitidy a nové poznatky o 

protizánětlivém působení interferonů I. typu u některých jaterních chorob. 

 

Abstract 

Recent reports suggest that majority of chronic and acute liver diseases share a significant 

degree of liver inflammation and injury attributable to innate immunity, activated through 

Toll-like receptors. Detailed characterization of Toll-like receptor sigaling cascades in the last 

decade changed the view on the pathophysiology of liver injury by emphasizing the 

involvement of immune-mediated mechanisms. This thesis is focused on the role of allelic 

variants in genes encoding proteins of Toll-like receptor signaling pathways and cellular 

cross-talk in the pathogenesis of alcoholic liver disease, reports novel data on the role of 

probiotics in therapy of non-alcoholic steatohepatitis, and demonstrates anti-inflammatory 

role of Type I interferons in selected liver diseases, suggesting possible therapeutic 

implications. 

 

 

Klíčová slova: Toll-like receptory, přirozená imunita, onemocnění jater 

Keywords: Toll-like receptors, innate immunity, liver diseases
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Summary 

 

Recent reports suggest that a majority of chronic and acute liver diseases share a 

significant degree of liver inflammation and injury attributable to innate immunity, activated 

through Toll-like receptors (TLRs). In our research, we investigated the effects of 

downstream signaling mechanisms triggered by TLRs on the pathogenesis of alcohol-induced 

liver damage, non-alcoholic steatohepatitis and immune-mediated liver injury. 

In a multicentric study in Central European region involving more than 370 patients 

with alcoholic liver cirrhosis (ALC) and 700 controls, we investigated genetic susceptibility 

to ALC. We asked whether the risk of ALC could be modified by allelic variants in key 

molecules involved in TLR4 signaling, which is induced by the gut-derived 

lipopolysaccharide (LPS). We did not find any consistent association of any alleles under the 

study with ALC. Statistically significant association of one of the investigated alleles was 

found only after our data were included in a meta-analysis. However, the relative risk 

attributable to this allelic variant was below any biological importance. Our data indicated 

that the contribution of the studied alleles to genetic susceptibility to ALC is low, and 

suggested existence of other TLR-dependent mechanisms that could mediate the damaging 

effect of alcohol/LPS in the liver. 

Therefore, using a mouse model, we investigated the role of the interferon-regulatory 

factor 3 (IRF3) in the pathogenesis of alcohol-induced liver injury. IRF3, an alternative 

downstream mediator of TLR4 activation, activated independently of the MyD88 adaptor, 

induces inflammatory cytokines and Type I interferons (IFNs). We found that IRF3 deficient 

mice were protected from alcohol-induced liver injury. As IRF3 is expressed both in liver 

macrophages and hepatocytes, we generated chimeric mice with selective Irf3 deficiency in 

bone-marrow derived cells or in liver parenchymal cells. We identified that the pro-

inflammatory effect of IRF3 in alcoholic liver injury is specific to bone marrow-derived cells, 

supporting the crucial role of TLR4/IRF3-mediated inflammation in alcohol-induced liver 

injury. In contrast, we showed that IRF3 in parenchymal liver cells has a protective role in 

alcoholic liver injury. This effect is most likely mediated by hepatocyte-derived Type I IFNs 

that induce Type I IFN-dependent anti-inflammatory cytokines in liver mononuclear cells 

which in turn modulate the extent of liver inflammation and injury. 

Having demonstrated the differential effects of TLR4 signaling in the liver, we asked 

whether TLR4 downstream pathways could be amenable to therapeutic intervention in 
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NASH, which is critically dependent on gut-derived LPS. We hypothesized that modification 

of gut microflora by a probiotic diet would ameliorate diet-induced NASH in mice. 

Administration of the VSL#3 probiotic diet failed to prevent liver steatosis or inflammation. 

In contrast, VSL#3 ameliorated liver fibrosis in NASH. Analysis of fibrogenic pathways 

revealed a modulation of transforming growth factor-β signaling and collagen expression in 

the liver by the VSL#3 diet. These results suggested that the benefit of the VSL#3 probiotic 

treatment on fibrosis may occur even in the absence of significant changes in markers of 

inflammation and fat in the liver. 

In addition to TLR4 activation, a number of liver diseases, including autoimmune, 

exhibit induction of inflammatory TLR9 signaling, triggered by DNA from gut-derived 

bacteria or from dying host cells. In addition to inflammatory cytokines, activation of TLR9 

induces a strong Type I IFN response. In a mouse model of TLR9-associated liver injury, we 

showed that genetic deficiency of Type I IFN induction or signaling exaggerated liver 

damage and inflammation, and increased production of TNF-α by liver mononuclear cells. 

Mice deficient in Type I IFNs showed decreased expression of the interleukin 1-receptor 

antagonist (IL-1ra), which is a Type I IFN-inducible anti-inflammatory cytokine. IL-1ra 

protected cultured hepatocytes from IL-1β-mediated sensitization to cytotoxicity from TNF-

α. Moreover, administration of exogenous Type I IFN or IL-1ra ameliorated TLR9-associated 

liver injury, implying that the endogenous anti-inflammatory signaling induced by Type I 

IFNs and mediated by IL-1ra regulates the extent of TLR9-induced liver damage. 

In conclusion, our data demonstrate a cell-specific role of IRF3 in the pathogenesis of 

alcohol-induced liver injury and support the importance of the TLR4-dependent/MyD88-

independent signaling in alcoholic liver disease. Furthermore, our novel findings emphasize 

the active role of hepatocytes in modulating the extent of the innate immune response in the 

liver. Also, we demonstrate that the endogenous anti-inflammatory signaling induced by 

Type I IFNs regulates the extent of liver damage induced by the innate immunity, and support 

the indispensable role of Type I interferon signaling in TLR-mediated liver injury. Lastly, we 

suggest a potential role for IL-1ra in therapy of liver diseases with inflammatory component 

induced by TLR signaling. 
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Shrnutí 

 

Společným jmenovatelem většiny chronických a akutních onemocnění jater je 

aktivace mechanismů vrozené imunity, které přispívají k rozvoji zánětu a poškození jaterního 

parenchymu. Klíčovou úlohu v rozvoji jaterního poškození hrají Toll-like receptory (TLR), 

jejichž signální mechanismy jsme zkoumali v souvislosti s alkoholickou a nealkoholickou 

nemocí jater a s imunitně zprostředkovaným jaterním poškozením. 

V rámci geneticko-epidemiologické studie jsme testovali hypotézu, zda je dědičná 

predispozice k rozvoji ALC ovlivněna alelickými variantami v signalizačních drahách 

zprostředkovaných receptorem TLR4. Receptor TLR4 je aktivován bakteriálním 

lipopolysacharidem (LPS), který u alkoholiků ve zvýšené míře proniká z trávicího traktu do 

jater. Neprokázali jsme jednoznačnou asociaci žádné ze studovaných alelických variant 

s ALC. Zařazení našich dat o meta-analýzy sice vedlo ke zjištění statisticky signifikantní 

asociace jedné ze studovaných variant, avšak relativní riziko spojené s nosičstvím této alely 

bylo klinicky nevýznamné. Naše data ukazují, že příspěvek studovaných alelických variant 

k ALC je malý, avšak nevylučují, že genetická predispozice k ALC nemůže být 

zprostředkovaná jinými mechanismy závislými na TLR signalizaci. 

Z tohoto důvodu jsme na myším modelu analyzovali význam interferonu regulujícího 

faktoru (IRF3) v patogenezi alkoholického poškození jater. IRF3, který je alternativním 

intracelulárním adaptérem receptoru TLR4, indukuje zánětlivé mediátory a interferony I. 

typu. Zjistili jsme, že zvířata postrádající gen Irf3 byla kompletně chráněna před 

alkoholickým poškozením jater. Vzhledem k tomu, že IRF3 je exprimován jak v jaterních 

makrofázích, tak v hepatocytech, studovali jsme buněčně specifickou úlohu IRF3 za použití 

chimérních myší se selektivní deficiencí Irf3 v jaterních buňkách původem z kostní dřeně 

nebo se selektivní deficiencí Irf3 v buňkách parenchymatózních. Tento postup potvrdil naši 

domněnku, že prozánětlivý efekt IRF3 v alkoholickém poškození jater je zprostředkován 

buňkami původem z kostní dřeně. Narozdíl od prozánětlivé úlohy IRF3 v monocytech a 

makrofázích se zdá, že IRF3 v buňkách jaterního parenchymu má protizánětlivé vlastnosti. 

Ty jsou pravděpodobně zprostředkovány IRF3-dependentní produkcí interferonů I. typu, 

které indukují produkci protizánětlivých cytokinů, a tak modulují rozsah jaterního zánětu a 

poškození. 

V následující studii jsme hledali odpověď na otázku možného ovlivnění TLR4 

signalizace u NASH, jejíž patogeneze úzce souvisí se střevním LPS. Cílem studie bylo ověřit 
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hypotézu, že modifikace střevní mikroflóry probiotiky zabrání vzniku dietou indukované 

NASH. Probiotická dieta VSL#3 nezabránila vzniku steatózy a zánětu, avšak zpomalila 

progresi fibrózy. Analýza mechanismů fibrogeze odhalila modulaci signalizace TGF-beta a 

exprese kolagenu. Výsedky naznačují, že antifibrotické působení diety VSL#3 je nezávislé na 

stupni zánětu a steatózy. 

Kromě aktivace receptoru TLR4 se v patogenezi jaterních chorob podílí receptor 

TLR9, který je aktivován DNA původem ze střevních bakterií, anebo eukaryotickou DNA 

z apoptotických buněk. Kromě indukce prozánětlivých cytokinů je signalizace 

zprostředkovaná TLR9 silným aktivátorem interferonů I. typu. Na myším modelu jaterního 

poškození vyvolané ligandy pro TLR9 jsme prokázali, že nepřítomnost interferonů I. typu 

výrazně zhoršuje stupeň a rozsah jaterního zánětu a poškození. Deficit interferonů I. typu byl 

spojen se sníženou expresí antagonisty receptoru pro interleukin 1 (IL-1ra), což je 

protizánětlivý protein závislý na interferonové signalizaci. Rekombinantní IL-1ra ochránil 

kultury primárních hepatocytů před cytotoxicitou vyvolanou prozánětlivými cytokiny, a po 

podání in vivo významně zmírnil jaterní zánět a poškození zprostředkované TLR9. 

Naše výsledky prokazují buněčně-specifickou úlohu transkripčního faktoru IRF3 

v patogenezi alkoholické nemoci jater a podtrhují klíčový význam aktivaci TLR4-

dependentních mechanizmů v poškození jater alkoholem. Výsledky našeho výzkumu také 

naznačují aktivní roli hepatocytů v modulaci vrozené imunitní odpovědi v játrech. Naše data 

rovněž demonstrují, že rozsah imunitně zprostředkovaného jaterního poškození je regulován 

endogenní signalizací zprostředkovanou interferony I. typu, a naznačují potenciální úlohu pro 

použití IL-1ra v léčbě jaternícho chorob se zánětlivou komponentou indukovanou TLR 

signalizací. 
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1. Introduction 

 

Parts of this chapter have been published in Petrasek J, Mandrekar P, Szabo G. Toll-

like receptors in the pathogenesis of alcoholic liver disease. 2010; Gastroenterology research 

and practice. doi:10.1155/2010/710381, and in Petrasek J. Genetické faktory v patogenezi 

alkoholické nemoci jater. In: Špičák, J et al. Novinky v gastroenterologii a hepatologii. Grada 

publishing 2006, pp. 87-118. ISBN: 978-80-247-1783-8. 

 

Liver diseases represent a significant cause of morbidity and mortality worldwide (1-

3). In industrialized countries, up to 2% of all deaths are attributable to liver disease, which 

ranks liver diseases as cause of death to the 9
th

 position. Among all gastrointestinal diseases, 

the liver disease is the 2
nd

 leading cause of death after colorectal cancer (4). 

A majority of chronic and acute liver diseases share a substantial degree of liver 

inflammation and injury mediated by the innate immune response (5). These conditions 

comprise prevalent liver diseases such as alcoholic liver disease (6), non-alcoholic 

steatohepatitis (7), viral hepatitis (8), primary biliary cirrhosis (9) and sclerosing cholangitis 

(10), paracetamol-induced liver injury (11), and autoimmune hepatitis (12). In addition, the 

innate immune response plays a pivotal role in the pathogenesis of liver fibrosis (13), 

ischemia-reperfusion injury (14) and liver graft rejection (15).  

Innate immunity is the first line of defense against microbial invasion, and includes 

physical and chemical barriers, humoral factors, lymphocytic and phagocytic cells, and a 

group of pattern-recognition receptors that identifies specific signature molecules expressed 

on invading pathogens. The examples of pattern-recognition receptors include a group of 

Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns 

(PAMPs) to determine the presence of pathogens. Once pathogens are identified, TLRs 

induce multiple signaling pathways that regulate the expression of proinflammatory cytokines 

and chemokines to mount protective responses against invading pathogens (16). 

Given the anatomical association of the liver with the intestine and its exposure to 

PAMPs derived from the gut, TLRs play a major role in liver physiology and 

pathophysiology (17). Widely expressed on liver non-parenchymal and parenchymal cells, 

TLRs are of a paramount importance in the initiation and progression of liver inflammation, 

which is an inseparable component of both acute and chronic liver injury (16). 
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So far, 10 human and 12 murine functional TLRs have been identified, with TLR1 – 

TLR9 being conserved in both species (18). Mouse TLR10 is not functional because of 

retrovirus insertion (19), and TLR11 and TLR12 have been lost from the human genome 

(20). The existence of a large number of TLRs enables the innate immune system to 

discriminate between PAMPs that are characteristic of different microbial classes and that 

include lipids, lipoproteins, proteins and nucleic acids derived from a wide range of microbes 

such as bacteria, viruses, parasites and fungi (18). 

The liver is constantly exposed to small amounts of microbial components derived 

from the intestine. These substances are recognized by the TLR-expressing cells in the liver, 

but do not induce liver inflammation or injury, presumably due to low baseline expression of 

TLRs contributing to high tolerance of the liver to TLR ligands (21). However, disruption of 

the intestinal barrier, resulting in increased liver exposure by microbial components, together 

with external insults to the liver, such as exposure to ethanol, autoimmune insult or viral 

infection, compromise the liver TLR tolerance. As a result, the innate immune response is 

activated, resulting in liver inflammation and damage which, if sustained, proceeds into 

fibrosis and cirrhosis (22). 

Our research has focused at two categories of TLR-induced liver diseases. The first 

research subject has been the alcoholic liver disease (ALD) and the non-alcoholic 

steatohepatitis (NASH), two major causes of liver cirrhosis which are critically dependent on 

signaling mediated by the TLR4. Within ALD, we asked whether variants in genes encoding 

crucial components of the TLR4 signaling could be instrumental in evaluation of individual 

susceptibility to ALD in humans (23). As for NASH, we investigated whether TLR4 

signaling could be amenable to therapeutic modulation in mice. These projects have been 

followed by a set of experiments aimed at cell-specific role of TLR-mediated signals in the 

pathogenesis of ALD. These studies showed that the LPS-TLR4 signaling in hepatocytes may 

be protective in ALD, and suggested an important anti-inflammatory role of Type I 

interferons (Type I IFNs) (24). The important protective role of Type I IFNs in liver diseases 

was subsequently confirmed in the second range of experiments, focused on liver injury 

mediated by the TLR9 signaling, which is a common pathogenic mechanism of numerous 

liver diseases (25). 
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 Table 1. General information on Toll-like receptors (TLRs) 

 Reference 

TLRs are a cornerstone of the innate immune system and provide an almost 

instant anti-microbial response to fight pathogens 

(26, 27) 

TLRs are pattern recognition receptors that detect the presence of minute 

amounts of signature molecules present in pathogens (pathogen-associated 

molecular patterns (PAMPs)) 

(28, 29) 

Activation of TLRs activates antiviral and pro-inflammatory signaling 

pathways 

(30, 31) 

TLRs signal through the adaptor molecules myeloid differentiation factor 88 

(MyD88), TIR domain-containing adaptor inducing IFN-β (TRIF) or both to 

activate the “MyD88-dependent” and “MyD88-independent” signaling 

pathways 

(18, 32) 

It has been suggested that TLRs may also be activated by endogenous 

ligands. Many of these endogenous ligands are associated with injury and 

inflammation and belong to a group of molecules termed damage-

associated molecular patterns (DAMPs).  

(33) 
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1.1. The role of Toll-like receptors in innate immunity 

 

1.1.1. Structure and ligands for cell surface Toll-like receptors 

 

Toll-like receptors are structurally characterized by the presence of a leucine-rich 

repeat domain in their extracellular portion and a toll/interleukin 1 receptor (TIR) domain in 

their intracellular domain (34). They are largely divided into two subgroups depending on 

their cellular localization and respective PAMP ligands. One group is composed of TLR1, 

TLR2, TLR4, TLR5, TLR6 and TLR11, which are expressed on cell surfaces and recognize 

mainly microbial membrane components such as lipids, lipoproteins and proteins; the other 

group is composed of TLR3, TLR7, TLR8 and TLR9, which are expressed exclusively in 

intracellular vesicles such as the endoplasmic reticulum, endosomes, lysosomes and 

endolysosomes, where they recognize microbial nucleic acids. 

TLR4, a founding member of the TLR family, was identified as the receptor that 

responds to bacterial lipopolysaccharide (LPS), a component of the outer membrane of 

Gram-negative bacteria that can cause septic shock (35). In mice and humans, TLR4 is 

critical for host defense against Gram-negative bacteria (35). TLR4 forms a complex with 

MD2 on the cell surface, and together they serve as the main LPS-binding component (36). 

Binding of LPS to the TLR4/MD2 complex initiates signal transduction by recruiting 

intracellular adaptor molecules (Fig. 1). Additional proteins such as LPS-binding protein 

(LBP) and CD14 are also involved in LPS binding (36). LBP is a soluble plasma protein that 

binds LPS, and CD14 is a glycosylphosphatidylinositol-linked, leucine-rich repeat-containing 

protein that binds LBP and delivers LPS-LBP to the TLR4-MD2 complex.  

TLR2 is involved in the recognition of a wide range of PAMPs derived from bacteria, 

fungi, parasites and viruses (35). These include lipopeptides from bacteria, peptidoglycan and 

lipoteichoic acid (LTA) from Gram-positive bacteria, and lipoarabinomannan from 

mycobacteria. TLR2 generally forms heterodimers with TLR1 or TLR6 (Fig. 1).  

TLR5 recognizes the flagellin protein component of bacterial flagella (35), especially 

in lamina propria dendritic cells in the small intestine, which promote the differentiation of 

IL-17-producing helper T cells (TH17) and T helper type 1 (TH1) cells, as well as the 

differentiation of naïve B cells into immunoglobulin A-producing plasma cells in response to 

flagellin (37).  
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Fig. 1. PAMP recognition by cells surface Toll-like receptors. TLR4 in complex with MD2 engages LPS. Five 

of the six lipid chains of LPS bind MD2 and the remaining lipid chain associates with TLR4. The formation of a 

receptor multimer composed of two copies of the TLR4-MD2-LPS complex initially transmits signals for the early-

phase activation of NF-κB by recruiting the TIR domain–containing adaptors TIRAP (Mal) and MyD88 (MyD88-

dependent pathway). The TLR4-MD2-LPS complex is then internalized and retained in the endosome, where it 

triggers signal transduction by recruiting TRAM and TRIF, which leads to the activation of IRF3 and late-phase 

NF-κB for the induction of type I interferon (TRIF-dependent pathway). Both early- and late-phase activation of 

NF-κB is required for the induction of inflammatory cytokines. TLR2-TLR1 and TLR2-TLR6 heterodimers 

recognize triacylated and diacylated lipopeptide, respectively. Two of the three lipid chains of the triacylated 

lipopeptide interact with TLR2, and the third chain binds the hydrophobic channel of TLR1 (absent from TLR6). 

TLR2-TLR1 and TLR2-TLR6 induce NF-κB activation through recruitment of TIRAP and MyD88. TLR5 

recognizes flagellin and activates NF-κB through MyD88. Figure adapted from (18). 

 

 

1.1.2. Structure and ligands for nucleic acid-sensing Toll-like receptors  

 

TLR3 was originally identified as recognizing a synthetic analogue of double-

stranded RNA (dsRNA), polyinosinic-polycytidylic acid (poly(I:C)), which mimics viral 

infection and induces antiviral immune responses by promoting the production of both Type I 

IFN and inflammatory cytokines. The recognition mechanism was elucidated by structural 

analysis of the human TLR3 ectodomain bound to dsRNA (38) (Fig. 2). In addition to 

recognizing poly(I:C), TLR3 recognizes the genomic RNA of reoviruses, dsRNA produced 

during the replication of single-stranded RNA viruses, and certain small interfering RNAs 

(39). TLR3 triggers antiviral immune responses through the production of the Type I IFN and 

inflammatory cytokines, which suggests that TLR3 has an essential role in preventing virus 

infection. 
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TLR7, originally identified as recognizing imidazoquinolone derivatives such as 

imiquimod and resiquimod (R-848) and guanine analogs such as loxoribine, recognizes 

ssRNA derived from vesicular stomatitis virus, influenza A virus and human 

immunodeficiency virus (40). There is a high expression of TLR7 on plasmacytoid dendritic 

cells (pDC) that are able to produce large amounts of Type I IFN after virus infection, and 

cytokine induction by pDCs in response to RNA viruses is totally dependent on TLR7 (35, 

40), which suggests that TLR7 serves as the sensor of infection with ssRNA viruses. 

TLR8 is physiologically most similar to TLR7. Human TLR8 mediates the 

recognition of R-848 and viral ssRNA. In contrast to mice that lack TLR7, mice that lack 

TLR8 respond normally to these agonists (41). TLR8 is expressed in various tissues, with its 

highest expression in monocytes, and is upregulated after bacterial infection. 

TLR9 recognizes unmethylated 2’-deoxyribo(cytidine-phosphate-guanosine) (CpG) 

DNA motifs that are frequently present in bacteria and viruses (Fig. 2). Synthetic CpG 

oligonucleotides function as TLR9 ligands and directly activate dendritic cells (DCs), 

macrophages and B cells, and drive strong TH1 reponses (35). There is a high expression of 

TLR9 by plasmacytoid dendritic cells (pDCs), and it serves as a sensor of DNA virus 

infection (35, 40). Recently, it has been shown that TLR9 can be activated also by DNA 

derived from apoptotic mammalian cells (42). 
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Fig. 2. PAMP recognition by intracellular Toll-like receptors. TLR3 recognizes dsRNA derived from viruses or 

virus-infected cells; dsRNA binds to N- and C-terminal sites on the lateral side of the convex surface of the TLR3 

ectodomain, which facilitates the formation of a homodimer via the C-terminal region. TLR3 activates the TRIF-

dependent pathway to induce type I interferon and inflammatory cytokines. In pDCs, TLR7 recognizes ssRNA 

derived from ssRNA viruses in endolysosomes and activates NF-κB and IRF7 via MyD88 to induce inflammatory 

cytokines and type I interferon, respectively. In addition, autophagy is involved in delivering ssRNA to TLR7-

expressing vesicles. TLR9 recognizes DNA derived from both DNA viruses and bacteria. Proteolytic cleavage of 

TLR9 by cellular proteases is required for downstream signal transduction. TLR9 recruits MyD88 to activate NF-

κB and IRF7 in pDCs. TLR3, TLR7 and TLR9 localize mainly to the ER in the steady state and traffic to the 

endolysosomes, where they engage with their ligands. UNC93B1 interacts with these TLRs in the ER and is 

essential for their trafficking. Figure adapted from (18). 

 

1.1.2.1. Cellular localization of nucleic acid-sensing Toll-like receptors 

Nucleic acid-sensing TLRs localize to various intracellular compartments. The 

finding that blockade of endolysosome acidification prevents TLR7- and TLR9-induced 

responses suggests that the delivery of internalized nucleic acids to the endolysosomes is 

pivotal to interaction with these TLRs. TLR9 and TLR7 are exclusively sequestered in the 

endoplasmic reticulum in unstimulated cells and rapidly traffic to endolysosomes after ligand 

stimulation (43). (Fig. 2).Mice with defective endomosomal trafficking due to a missense 

mutation in the gene encoding endosomal protein UNC93B1 (Fig. 2) have defects in cytokine 

production and upregulation of costimulatory molecules in response to TLR7 and TLR9 

ligands, as well as TLR3 ligands, and are highly susceptible to viral and bacterial infection 

(44). In addition, macrophages deficient in gp96, a member of the endoplasmic reticulum-

resident heat-shock protein 90 family, have defects in cytokine induction in response to 

agonists for TLR1, TLR2, TLR4, TLR5, TLR7 and TLR9.  

TLR9 is proteolytically cleaved by intracellular proteases in endolysosomes, which 

generate a functional receptor that mediates ligand recognition and initiates signal 

transduction. The proteases that potentially mediate TLR9 cleavage include cathepsins and 

asparaginyl endopeptidase (18) (Fig. 2).  

 

1.1.2.2 Endogenous ligands for Toll-like receptors 

It is becoming increasingly evident that, in addition to responsing to PAMPs, TLRs 

respond to endogenous host molecules and trigger inflammatory responses. Most of these are 

produced as a result of cell death and tissue injury; hence their name “Damage-associated 

molecular patterns (DAMPs)”. They include degradation products of the extracellular matrix, 

heat-shock proteins and high-mobility box 1 (HMGB1) proteins, which act as stimulators for 

cell surface TLRs. Furthermore, chromatin-DNA and ribonucleoprotein complexes released 
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by dying cells and immune complex-containing self antigens, all of which contain self 

nucleotides, can stimulate intracellular TLR7 and TLR9 and lead to the development of 

systemic autoimmune disease. 

As a result of injury or inflammation, components of extracellular matrix are cleaved 

by cellular proteases and are released outside cells. Some of the released components activate 

TLR2 and TLR4. These include biglycan, hyaluronic acid, versican, fibronectin and 

surfactant protein A (18). Biglycan induces the production of inflammatory cytokines and 

chemokines, and this induction is totally abolished by deficiency in both TLR2 and TLR4. 

Hyaluronic acid fragments can stimulate macrophages to produce chmokines through TLR2 

and TLR4.  

In addition to ECM components, other cellular components such as HMGB1 and 

heat-shock proteins serve as ligands for TLR2, TLR4 and TLR9 (45). HMGB1, a nuclear 

non-histone protein that is released by necrotic cells or during inflammation, is a 

proinflammatory mediator in septic shock and in ischemia-reperfusion models. Neutralizing 

antibodies to HMGB1 inhibit damage in a hepatic ischemic reperfusion model, and Tlr4-

deficient mice show less damage in this model (46). This finding suggests that TLR4 reponds 

to endogenous molecules and mediates inflammatory responses in a noninfectious situation. 

 

 

1.1.3. Major intracellular pathways involved in Toll-like receptor signaling 

 

Individual TLRs trigger specific biological responses. For example, TLR3 and TLR4 

generate both Type I IFNs and inflammatory cytokines, whereas cell surface receptors TLR1-

TLR2, TLR2-TLR6 and TLR5 induce mainly inflammatory cytokines. These differences are 

explained by the discovery of TIR domain-containing adaptor molecules, including MyD88, 

TIRAP (Mal), TRIF and TRAM, which are recruited by distinct TLRs and activate distinct 

signaling pathways (Fig. 3). MyD88, the first identified member of this TIR family, is used 

by all TLRs except TLR3, and activates the transcription factor nuclear factor kappa B (NF-

κB) and mitogen-activated protein kinases (MAPKs) to induce inflammatory cytokines (35). 

In contrast, TRIF is used by TLR3 and TLR4 and induces alternative pathways that lead to 

activation of the transcription factors IRF3 and NF-κB and to consequent induction of type I 

interferon and inflammatory cytokines. Thus, TLR signaling pathways can be largely 

classified as either MyD88-dependent pathways, which drive the induction of inflammatory 
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cytokines, or TRIF-dependent pathways, which are responsible for the induction of type I 

interferon as well as inflammatory cytokines (47). 

 TLR4 is the only TLR that activates both the MyD88-dependent and TRIF-dependent 

pathway (Fig. 3). TLR4 initially recruits TIRAP at the plasma membrane and subsequently 

facilitates the recruitment of MyD88 to trigger the initial activation of NF-κB and MAPK 

(48). TLR4 subsequently undergoes dynamin-dependent endocytosis and is trafficked to the 

endosome, where it forms a signaling complex with TRAM and TRIF, rather than TIRAP and 

MyD88, to initiate the TRIF-dependent pathway that leads to IRF3 activation as well as the 

late-phase activation of NF-κB and MAPK (49). Thus, TLR4 activates the MyD88-dependent 

pathway earlier than the TRIF-dependent pathway. Notably, activation of both the MyD88- 

and TRIF-dependent pathways is necessary for the induction of inflammatory cytokines via 

TLR4 signaling, which is in contrast to other TLRs, for which activation of either the 

MyD88- or the TRIF-dependent pathway is sufficient for the induction of inflammatory 

cytokines.  
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Figure 3. Overview of TLR signaling pathways. TLR-mediated responses are controlled mainly by the MyD88-

dependent pathway, which is used by all TLRs except TLR3, and the TRIF-dependent pathway, which is used by 

TLR3 and TLR4. TRAM and TIRAP are sorting adaptors used by TLR4 and TLR2-TLR4, respectively. In 

conventional dendritic cells (cDC) and macrophages, MyD88 recruits IRAK4, IRAK1, IRAK2 and TRAF6 and 

induces inflammatory responses by activating NF-κB, MAPK and IRF5. TRAF6 activates TAK1 in complex with 

TAB2 and TAB3 and activates the IKK complex consisting of NEMO and IKKα/β, which catalyze phosphorylation 

of IκB proteins. NF-κB induces C/EBPδ, IκBδ, IκB-NS, Zc3h12a, ATF3 and tristeraprolin (TTP), which influence 

the genes encoding IL-6, IL-12p40 or TNF-α. TRIF recruits TRAF6, TRADD and TRAF3. TRADD interacts with 

Pellino-1 and RIP1. RIP1 and TRAF6 cooperatively activate TAK1, which leads to activation of MAPK and NF-κB. 

TRAF3 activates the kinases TBK1 and IKKi, which phosphorylate and activate IRF3, the last of which controls 

transcription of type I interferon. Nrdp1 is involved in TBK1-IKKi activation. The TRIF-dependent pathway leads to 

inflammasome activation during TLR4 signaling. In pDCs, TLR7 and TLR9 recruit MyD88 along with IRAK4 and 

TRAF6, which activate IRF5 and NF-κB for inflammatory cytokine induction and IRF7 for type I interferon 

induction. For IRF7 activation, IRAK1- and IKKα-dependent phosphorylation is required, and TRAF3 is located 

upstream of these kinases. The PI(3)K-mTOR-p70S6K axis enhances the TLR7 and TLR9 signaling pathways. 

IRF1 is involved in the induction of type I interferon by TLR7 and TLR9 in cDCs rather than plasmacytoid 

dendritic cells (pDCs). Among the many negative regulators of TLRs that have been identified, TANK (which 

suppresses TRAF6), A20 (which suppresses TRAF6 and RIP1), ATG16A (which suppresses inflammasome 

activation) and SHP-1 (which suppresses IRAK1 and IRAK2) are reported to be indispensable for preventing 

inflammatory diseases caused by enhanced or prolonged TLR signaling. Yellow, TLRs; green, stimulators; pink, 

negative regulators; blue, target genes. Figure adapted from (18) 

 

 

1.1.3.1. The MyD88-dependent pathway in Toll-like receptor-induced signaling 

After the engagement of TLRs by their cognate PAMPs, MyD88 recruits the IL-1 

receptor-associated kinases IRAK4, IRAK1, IRAK2 and IRAK-M (Fig. 3). IRAK4 is 

activated initially and has an essential role in the activation of NF-κB and MAP downstream 

of MyD88 (35). IRAK1 and IRAK2 are activated sequentially, and activation of both kinases 

is required for robust activation of NF-κB and MAPK (50). IRAK activation results in an 

interaction with TRAF6, an E3 ligase that catalyzes the synthesis of polyubiquitin linked to 

Lys63 (K63) on target proteins, including TRAF6 itself and IRAK1. The K63-linked 

polyubiquitin chains then bind to the zinc finger-type ubiquitin-binding domain of TAB2 and 

TAB3, the regulatory components of the kinase TAK1 complex, to activate TAK1. The K63-

linked polyubiquitin chains also bind to the ubiquitin-binding domain of NEMO, and 

essential regulatory component of the IKK complex required for NF-κB activation. Thus, the 

K63 polyubiquitin chains might be responsible for recruiting TAK1 to form a complex with 

IKK, thus allowing TAK1 to phosphorylate the inhibitor of nuclear factor kappa-B kinase 

subunit beta (IKKβ) through its close proximity to the IKK complex, which leads to 

phosphorylation and subsequent degradation of inhibitors of kappa B (IkB) proteins, and thus 

enables activation of the NF-κB (51). Activation of the MyD88-dependent pathway also 

results in genes that have critical roles in modulating NF-κB-dependent transcription. These 

genes encode the IkB protein IkBξ, C/EBPδ, IkB-NS and ATF-3 (Fig. 3). 
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1.1.3.2. The MyD88-independent/TRIF-dependent pathway in Toll-like receptor-

induced signaling 

The TRIF-dependent pathway culminates in the activation of both IRF3 and NF-κB 

(39) (Fig. 3). TRIF recruits TRAF6 and activates TAK1 for NF-κB activation, most probably 

through ubiquitination-dependent mechanisms similar to those of the MyD88-dependent 

pathway. TRIF also recruits the adaptor RIP1 through the distinct RIP homotypic interaction 

motif. RIP1 undergoes K63-linked polyubiquitination after stimulation by TLR3 agonists, 

and this modification is required for NF-κB activation. The adaptor TRADD binds RIP1, and 

TRADD-deficient cells show impaired RIP1 ubiquitination with concomitant loss of NF-κB 

activation (52), which suggests involvement of TRADD in RIP1 activation downstream of 

TLR3. Collectively, TRIF forms a multiprotein signaling complex along with TRAF6, 

TRADD, Pellino-1 and RIP1 for the activation of TAK1, which in turn activates the NF-κB 

and MAPK pathways. 

In addition to leading to NF-κB activation, the TRIF-dependent pathway leads to 

IRF3 activation and interferon-β transcription (Fig. 3).TRIF recruits a signaling complex 

involving the noncanonical IKKs TBK1 and IKKi (IKK-ε), which catalyze the 

phosphorylation of IRF3 and induce its nuclear translocation (53). The activation of TBK1-

IKKε by TRIF requires TRAF3. TRAF3 deficiency impairs interferon-β induction by various 

nucleic acid-sensing receptors (54). 

 

 

1.1.4. Activation of the Interferon regulatory factors and Type I 

Interferons via the Toll-like receptor signaling 

 

The key factors in IFN induction are the interferon regulatory factors (IRF). The IRFs 

are transcription mediators of virus-, bacteria- and IFN-induced signaling pathways and play 

a critical role in antiviral defense, immune responses, cell growth regulation and apoptosis. 

To date, nine human cellular IRF genes have been indentified (IRF-1, IRF-2, IRF3, IRF-

4/Pip/ICSAT, IRF-5, IRF-6, IRF7, ICSBP/IRF-8 and ISGF3/p48/IRF-9) (55). These factors 

all share significant homology in the N-terminal 115 amino acids, which contains the DNA-

binding domain. All IRFs with the exception of IRF-1 and IRF-2 contain the IRF associated 

domain which mediates these interactions in the 3’-terminal part of the protein. The 
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availability of genetically modified mice, which have distinct IRF deleted, has revealed that 

the function of IRF is not limited to the induction of Type I IFN genes (Table 2).  

 

Table 2. Phenotypic changes in IRF null mice. IRF3 and IRF7, whose roles have been 

studied within our research projects, are highlighted in bold.  

 

IRF Defects Reference 

IRF-1 Apoptosis, iNOS, IL-12 (56) 

IRF-2 NK cell deficiency and inhibition of NK cell maturation; development of 

mDCs 

(57) 

IRF3 Down-modulation of Type I IFN induction; increased susceptibility to 

infection 

(58, 59) 

IRF-4 T, B cell maturation (60) 

IRF-5 Induction of inflammatory cytokines TNF-α, IL-6 and IL-12 (61) 

IRF-6 Embryonic lethal, differentiation of keratinocytes (62) 

IRF7 Block in Type I IFN induction (59, 63) 

IRF-8 Differentiation of pDC, induction of IL-12, IL-23 (64) 

IRF-9 Type I and II IFN signaling, induction of IRF7, IFN-α and ISG (65) 

 

 

1.1.4.1. Interferon regulatory factor 3 (IRF3) and 7 (IRF7) 

The identification of IRF3 and IRF7 in transcriptional activation of Type I IFN genes 

had a major impact of the understanding of the molecular mechanism of the pathogen 

induced innate antiviral responses (66). It became obvious that although pathogen recognition 

may be mediated by distinct cellular receptors and signaling pathways, they all lead to the 

activation of IRF3 and IRF7, which are critical for the transcriptional activation of Type I 

IFN genes (35) (Fig. 4). 

The ubiquitously expressed IRF3 (67) is activated in infected cells upon recognition 

of dsRNA, which has been considered the common signature of virus-infected cells. TLR3 or 

the cytoplasmic RNA helicases RIG-I and MDA-5 are important for the recognition of most 

RNA virus infections (35, 68). The TLR3, RIG-I/MDA-5 signaling pathways, and TRIF-

dependent TLR4-mediated pathway lead to the phosphorylation of IRF3 at the C’ terminal 

region, where serine 386 is critical for activation by the two non-canonic IκB kinases, TBK-1 
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and IKKε (69). Crystal structure analysis shows that phosphorylation results in the structural 

changes which allow IRF3 activation (70). The activated IRF3 then homodimerizes with 

another IRF3 or heterodimerizes with IRF7 and translocates to the nucleus, where it 

stimulates transcription of IFN-B as well as some interferon stimulated genes (ISG), such as 

RANTES, ISG15 and ISG56 (71). While expression of IRF3 alone is sufficient to activate the 

promoter of the IFN-B gene (72), the IFN-B enhanceosome contains not only IRF3 but also 

IRF7 recognition elements (58, 73). 

IRF7 was initially identified as a factor binding to the promoter of the Epstein-Barr 

virus and a splice variant of IRF7 was recognized as a factor that plays a critical role in the 

induction of IFN-A genes (66). Reconstitution of IRF7 expression in infected human 

fibroblasts which expressed only IFN-β conferred expression of several IFN-A genes (74). 

Mice with homozygous deletion of IRF7 were unable to express Type I IFN genes upon viral 

infection or activation of TLR9 by CpG-rich DNA, indicating that IRF7 is a master regulator 

of Type I IFN expression (63). Like IRF3, IRF7 is phosphorylated by the TLR3, TLR-7 and 

TLR9 mediated signaling pathways in which serines 477 and 479 appear to be critical targets 

for activation by TBK-1 (75). In contrast, TLR7- and TLR9-stimulated phosphorylation of 

IRF7 is dependent not on TRIF/TBK-1 but rather on MyD88 and IκB (76) and involves 

formation of ternary complex containing MyD88, IRAK-4, IRAK-1 and TRAF6 (77). Virus-

induced expression of distinct IFN-A subtypes is determined by the organization of the IRF3 

and IRF7 recognition domains in the virus responsive element of the IFN-A promoters. The 

differential expression of the individual IFN-A subtypes has been shown to be due to a 

distinct nucleotide substitution in the domains (78) and by the presence of negative regulatory 

sequences located in the upstream regulatory region of some IFN-A subtypes (79). IRF3 and 

IRF7, together with histone transacetylases, have been shown to be part of the 

transcriptionally active human IFNA1 enhanceosome (80), whereas the murine Ifna11 

promoter, which is not activated by IRF3, binds only IRF7 homodimers (78). These data 

indicate that the relative levels of IRF3 and IRF7 in cells determine the levels of expression 

of individual IFN-A subtypes. IRF7 was shown to have a short half-life which may play a 

role in the regulating the transient expression of IFN-A genes (58).  

 

1.1.4.2. TLR7 and TLR9 signaling in plasmacytoid dendritic cells 

The TLR7 and TLR9 signaling pathways in plasmacytoid dendritic cells (pDCs) have 

been extensively investigated to elucidate their potential to induce the production of type I 



28 

interferon after viral infection. The TLR7 and TLR9 signaling pathways in pDCs are unique 

in that they both require MyD88 for the induction of Type I IFN (Fig. 4). In this context, 

IRF7, which is constitutively expressed by pDCs, binds MyD88 and forms a multiprotein 

signaling complex with IRAK4, TRAF6, TRAF3, IRAK1 and IKKα (39) (Fig. 4). In this 

complex, IRF7 becomes phosphorylated by IRAK1 and IKKα, dissociates from the complex 

and translocates into the nucleus. In addition to requiring phosphorylation, IRF7 activation 

requires TRAF6- and Ubc13-dependent ubiquitination. In addition, the phosphoinositol 3-OH 

kinase (PI(3)K) and mTOR are required for nuclear translocation of IRF7 and induction of 

Type I IFN (81).  

 

 

 

Figure 4. TLR-Mediated Type I IFN Induction Pathways. (A) The receptor complex composed of TLR4, MD-2, 

and CD14 recognizes LPS and signals through at least four adaptors: TIRAP, MyD88, TRAM, and Trif. Among 

them, TRAM and Trif mediate the activation of IRF3. Trif associates with TBK1 through TRAF3 and NAP1, which 

mediates the phosphorylation of IRF3. Phosphorylated IRF3 forms homodimers and induces IFN-β and Cxcl10 

genes. (B) TLR3 (expressed in endosomes) activates IRF3 through a pathway similar to that utilized by TLR4. 

PI3K is recruited to the phosphorylated tyrosine residues of TLR3 and supports the activation of IRF3. The 

tyrosine kinase c-Src also associates with TLR3 and is involved in the activation of IRF3; however, the precise 

role of c-Src remains to be clarified. (C) Upon TLR7 or TLR9 (expressed in endosomes) stimulation, IRF7 

interacting with MyD88 is activated by the IRAK4-IRAK1-IKKα kinase cascade. The exact function of the other 

molecules depicted here is not known. Secreted type I IFNs enhance the expression of IRF7 gene, leading to 

further enhancement of type I IFN gene induction. (D) IFN-γ stimulation induces the expression of IRF1 via the 

formation of homodimers of STAT1. Induced IRF1 interacts with and is activated by MyD88 by an as yet 

unknown mechanism and translocates to the nucleus to induce IFN-β, iNOS, and IL-12p35 genes. All pathways 

depicted here operate in a cell type-specific manner. Figure adapted from (68). 
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Retention of the CpG-TLR9 signaling complex in the endosome is also an important 

mechanism used by pDCs to control antiviral innate immune responses. The A (D)-type CpG 

oligodeoxynucleotide, which contains a single CpG motif and a poly(G) tail on 

phosphorothioate-phosphodiester backbone, is able to induce the secretion of Type I IFN by 

pDCs. It is stably retained in the early endosomes in pDCs along with TLR9, MyD88 and 

IRF7 (63). In contrast, the B (K)-type CpG oligonucleotide, which contains multiple CpG 

motifs on a phosphothiotate backbone can induce both IL-12 production by cDCs and B cell 

activation, is rapidly transferred to late endosomes or lysosomes, which results in less 

activation of IRF7. 

 

1.1.4.3. The family of Interferons 

Interferons, so called because of their activity to interfere with virus replication in the 

cell, are divided into at least three distinct types: types I, II and III (82). Type I IFNs are 

composed of various genes including IFN-α and IFN-β (83), and others, such as IFN-ω, IFN-

ε and IFN-κ (82). In humans and mice, the IFN-α genes are composed of more than 13 

subfamily genes (13 in humans and 14 in mice), whereas only a single IFN-β gene is found 

(84).  

Type II IFN is referred as IFN-γ, the gene which exists in a single copy; this gene is 

structurally unrelated to Type I IFNs and is typically induced in cells of the immune system 

such as T cells or NK cells (85). Recently, some new IFN gene members, namely IFN-λ1, - 

λ2 and –λ3, also known as IL-29, IL-28A and IL-28B, respectively, have been indentified 

and classified as type III IFN (82).  

 

1.1.4.3.1.  Plasmacytoid dendritic cells as the major producers of Type I IFNs 

Although virtually all cells can produce Type I IFNs in response to viral or bacterial 

pathogens, pDCs are the most potent, producing up to 1000-fold more Type I IFNs than other 

cell types (86). Functionally, immature pDCs exhibit low allostimulatory activity and can 

even be tolerogenic (87). Activation of immature pDCs with viruses, CpG DNA, IL-3 or CD-

40 ligand allows them to become mature, expressing high levels of class I and class II MHC, 

costimulator CD80 and CD86 molecules, as well as CD8α, thereby resembling conventional 

DCs (88). The number of pDCs in lymphoid organs is very low, and there is considerable 

mouse strain variation (89). A substantial recruitment of these cells in bone marrow and 

spleen can be achieved by the Flt3-ligand (90). 
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The most distinguishing feature of human and mouse pDCs is their production of 

large amounts of Type I IFNs in the precursor stage. This production is further enhanced 

upon stimulation of endosomal TLRs (TLR7 and TLR9) with ssRNA, CpG DNA, or certain 

types of autoantigen-autoantibody immune complexes. The reason for the extraordinary 

production of Type I IFNs by pDCs may be explained by a high constitutive expression of 

IRF7, compared to other cell types (91). 

 

1.1.4.3.2. Induction of Type I IFNs: a two-step hypothesis 

It has been shown that IRF3 is expressed constitutively in a variety of cells and 

localizes in the cytoplasm as an inactive monomer (92). Upon phosphorylation at the 

phosphorylation sites in the C-terminal region (Ser385, 386, 396, 398, 402 and 405), 

activation of IRF3 and homodimerization ensues (93). The dimeric form of IRF3 then 

translocates to the nucleus, forms a complex with the p300/CBP co-activator and binds to the 

PRD I or PRD III element (18) (Fig. 5). 

IRF3 was thought to be primarily responsible for the initiation of IFN-β induction: the 

IFN-β gene is first activate by signals that induce the cooperative binding of IRF3 with other 

transcription factors, namely NF-κB, c-Jun/ATF2, to the IFNB promoter, resulting in initial 

induction of relatively small amounts of IFN-β. This initial induction of IFN-β triggers a 

positive amplificatory loop by binding to Type I IFN receptors and a strong induction of 

Type I IFNs (second phase), mediated by IRF7, which can activate both IFN-α and IFN-β 

genes (94) (Fig. 5). Recent findings suggest that in addition to IRF3 homodimers, the IRF7 

homodimers and IRF3/IRF7 heterodimers are also critical for activating the initial phase of 

IFN-β induction (55). Once the initial activation of IFN genes is achieved by IRF3 and IRF7, 

the positive feedback becomes fully operational, wherein the IFN-induced IRF7 fully 

participates. 
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Fig. 5. Positive amplificatory loop in Type I interferon induction. The initial induction of IFN-β is initiated 

through cytoplasmatic RNA receptors, such as RIG-I, or through membrane-bound receptors, such as TLR3 or 

TLR4. Signals from these receptors to the IFNB promoter is mediated by IRF3/IRF3 homodimers and by 

IRF3/IRF7 heterodimers. Secreted IFN-β binds to Type I IFN receptors (IFNAR1/IFNAR2) and in autocrine or 

paracrine way activates the transcription complex ISGF3, composed of Stat1/Stat2/IRF-9. The ISGF3 

transcription complex induces IRF7, which in turn strongly activates genes encoding IFN-β and IFN-α. Adapted 

from (55). 

 

 

1.1.4.3.3. Signaling triggered by Type I Interferons 

IFN-α and IFN-β share a ubiquitously expressed heterodimeric receptor IFNAR 

composed of IFNAR1 and IFNAR2 subunits. Evidence suggests that IFNAR2 serves as the 

ligand-binding chain, but both chains are required for signal transduction (95). In general, 

various cell types display small numbers of these high-affinity receptors. IFN-α or IFN-β 

binding leads to ligand-induced receptor dimerization, followed by phosphorylation of the 

two receptor-associated Janus protein tyrosine kinases (Tyk2 on IFNAR1 and Jak1 on 

IFNAR2) (96). Phosphorylation of the Jak kinases results in phosphorylation of the 

intracellular domain of IFNAR1 and creation of docking sites for STAT2 (preassociated with 

STAT1 on IFNAR2), which is phosphorylated and serves as a platform for recruitment and 

phosphorylation of STAT1 (97). The phosphorylated STAT1/STAT2 heterodimers then 

dissociated from the receptor and translocate into the nucleus through an unknown 

mechanism, where they associated with the IFN regulatory factor 9 (IRF-9, also referred to as 

p48) to form the heterotrimeric complex IFN-stimulated gene factor 3 (ISGF3) (98). The 

ISGF3 binds to upstream regulatory consensus sequences (IFN-stimulated response elements 

– ISRE) on Type I IFN-inducible genes and initiates transcription (99). 
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1.2. Expression of Toll-like receptors in the liver 

 

Due to its anatomical links to the gut, the liver is constantly exposed to gut-derived 

bacterial products, and functions as a major filter organ and a first line of defence. Eighty 

percent of intravenously injected endotoxin is detected in the liver within 30 minutes (100). 

Moreover, the liver is an important site for bacterial phagocytosis and clearance as it hosts 

more than 80% of body macrophages. Kupffer cells, the resident macrophages of the liver, 

are able to efficiently take up endotoxin and phagocytose bacteria carried through the portal 

vein and are considered to play a major role in the clearance of systemic bacterial infection 

(101). The healthy liver contains low mRNA levels of TLRs such as TLR1, TLR2, TLR4, 

TLR6, TLR7, TLR8, TLR9, TLR10 and signaling molecules such as MD-2 and MyD88 in 

comparison to other organs (102), suggesting that the low expression of TLR signaling 

molecules may contribute to the high tolerance of the liver to TLR ligands from the intestinal 

microbiota to which the liver is constantly exposed. 

 Kupffer cells, the resident macrophages of the liver, play a crucial role in host 

defence which is linked to their ability to phagocytose, process and present antigen, and 

secrete various pro-inflammatory mediators including cytokines, prostanoids, nitric oxide and 

reactive oxygen species (103). Kupffer cells are among the first cells in the liver to be hit by 

gut-derived toxins such as LPS and orchestrate inflammatory responses within the liver. 

Accordingly, Kupffer cells express TLR4 and are responsive to LPS (104). Although some 

studies have demonstrated that Kupffer cells are involved in the uptake and hepatic excretion 

of LPS (105, 106), others have shown that Kupffer cell depletion does not reduce LPS 

clearance, most likely due to the ability of hepatocytes to uptake and to eliminate LPS into 

the bile (107). Moreover, Kupffer cells can inactivate LPS by deacetylation (108). Following 

stimulation with LPS at concentrations between 0.1 – 1000 ng/mL, Kupffer cells produce 

TNF-α, IL-1β, IL-6, IL-12, IL-18, IL-10 and several chemokines (109). Kupffer cell-derived 

IL-12 and IL-18 activate hepatic natural killer (NK) cells to increase the synthesis and release 

of antimicrobial IFN-γ (110). Notably, Kupffer cells mediate the majority of cytokine and 

chemokine expression in liver after LPS injection, as demonstrated by depletion experiments 

(111). Moreover, Kupffer cells stimulated profibrogenic response by the production of 

transforming growth factor beta 1 (TGF-β1), matrix metalloproteinases, platelet-derived 

growth factor, and reactive oxygen species (112). Kupffer cells also functionally express 

TLR2, TLR3 and TLR9 (110). In comparison to peripheral blood monocytes, Kupffer cells 
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express low levels of CD14 (113). Moreover, freshly isolated human Kupffer cells secrete the 

anti-inflammatory cytokines IL-10 in response to stimulation with LPS, which contributes to 

the downregulation of pro-inflammatory cytokines (114). Thus, Kupffer cells may have a 

higher LPS tolerance to adapt to the special circumstances in their anatomical location that is 

frequently hit with low levels of LPS even under normal conditions. 

Hepatocytes express TLR4 receptors and are responsive to LPS, but this response is 

fairly weak with only 2-fold induction of most upregulated genes in a microarray after 

stimulation with LPS. Moreover, dose of 100 ng/mL and higher were required to see 

significant induction of the NF-κB-dependent and MAPK-dependent signaling in hepatocytes 

(115). Similarly, stimulation with TLR2 ligands induces NF-κB activation (116). The 

expression of TLR2 in hepatocytes is upregulated by LPS, TNF-α, bacterial lipoprotein and 

IL-1β in and NF-κB dependent manner indicating that hepatocytes become more responsive 

to TLR2 ligands under inflammatory conditions (116). In contrast, TLR4 expression in 

hepatocytes is not upregulated by proinflammatory mediators (117). 

Hepatocytes play a major role in the uptake of LPS and its removal from the systemic 

circulation by secreting LPS into the bile (105, 107). Clearance of LPS occurred at a similar 

rate in rats that had been depleted of Kupffer cells by gadolinium chloride indicating that 

hepatocytes are the principal mediators of this process (107). A recent study demonstrated 

that TLR4, CD14 and MD-2 are required for the uptake of LPS by hepatocytes (118). 

Interestingly, TLR4 signaling is not required for this process as hepatocytes from Tlr4-

deficient C3H/HeJ mice were as efficient as those isolated from TLR4-sufficient C3H/HeOuJ 

mice to take up LPS (118).  

Hepatic stellate cells. Following liver injury, hepatic stellate cells (HSCs) undergo an 

activation process and become the predominant extracellular matrix-producing cell type in 

the liver (119). Activated human HSCs express TLR4 and CD14 and respond to LPS with the 

activation of NF-κB and JNK as well as the secretion of pro-inflammatory cytokines (120). 

Activated mouse HSCs express TLR2, TLR4 and TLR9 and respond to LPS, lipoteichoic 

acid and CpG-DNA with an upregulation of extracellular-related kinase (Erk) 

phosphorylation and IL-6, TGF-β1 and monocyte chemoattractant protein-1 (13, 121, 122). 

Quiescent murine HSCs express as much TLR4 as in vivo-activated HSCs and are highly 

responsive to LPS, even at low doses (1 ng/mL) (13). Moreover, quiescent HSCs activate 

NF-κB in response to LPS injection in vivo. Notably, LPS downregulates the TGF-β 

pseudoreceptor Bambi in quiescent HSCs to promote TGF-β signaling and stellate cell 

activation (13). 
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Biliary epithelial cells. Mouse biliary epithelial cells express CD14, MD-2 and 

TLR2, TLR3, TLR4 and TLR5 (123), and display NF-κB activation and TNF after high-dose 

LPS stimulation (123). Human biliary epithelial cells express TLR1-10 (124).  

Sinusoidal endothelial cells form the fenestrated lining of the hepatic sinusoids and 

thus have an important function in hepatic perfusion and nutrient supply. Sinusoidal 

endothelial cells constitutively express TLR4 and CD14 as well as TLR9, and show an 

increase in NF-κB activation after LPS stimulation (125, 126). Moreover, mRNA for TLR1-9 

was detected in sinusoidal endothelial cells, and functional expression of TLR3, but not of 

TLR4, has been demonstrated by the ability of supernatants from poly(I:C)- treated 

sinusoidal cells to reduce hepatitis B virus replication in immortalized hepatocytes (127). 

After repetitive LPS challenges, sinusoidal endothelial cells showed reduced NF-κB 

activation, CD54 expression and a reduced ability to promote leukocyte adhesion (125). In 

sinusoidal endothelial cells, LPS tolerance is not regulated at the level of TLR4 surface 

expression, but appears to be linked to prostanoid expression (125). The role of sinusoidal 

endothelial cells in the hepatic uptake of LPS is currently unclear (105, 107). 

Hepatic dendritic cells (DCs) are the professional antigen-presenting cells of the 

liver. Plasmacytoid DCs (pDCs, CD11c+B220+), but not conventional DCs (cDCs, 

CD11c+B220-), are the principal cells that produce IFN-α in response to the ligands for 

TLR9 and TLR7, but not TLR4 (89). Hepatic pDCs produce TNF-α and IL-6 in response to 

the ligands for TLR2, TLR3 and TLR4 (128). Both pDCs and cDC subsets upregulate co-

stimulatory molecules (CD40, CD80 and CD86) in response to TLR4, TLR7 and TLR9 (89). 

Of note, hepatic DCs are hyperresponsive to TLR ligands to produce TNF-a, IL-6 and IL-12, 

but less capable of inducing TLR4-mediated and TLR9-mediated allogenic T cell 

proliferation compared with splenic DCs (128). Thus, hepatic DCs have unique properties 

that enable to induce strong innate responses with a lower capability of allostimulation. 

Other types of immune cells in the liver. Liver natural killer (NK) cells synthesize 

high amounts of IFN-γ in response to IL-12 synergistically with IL-18 (129). Liver NK 

express TLR1, TLR2, TLR3, TLR4, TLR6, TLR7 and TLR9 and respond to corresponding 

TLR agonists synergistically with IL-12 to produce IFN-γ and chemokines, such as CCL3, 

CCL4 and CCL5 (130). In general, T cells are indirectly activated by TLRs through APC-

mediated IL-12 and IFN-α, which induce Th1 polarization (131). There is limited evidence 

that T cells directly respond to LPS to enhance their adhesion (132).  



35 

1.3. Toll-like receptors in the pathogenesis of liver 

diseases 

 

During the past few decades, a rapid progress has been made in understanding the role 

of innate immune system liver physiology and pathophysiology. This advancement has been 

made possible by the key findings that: 1. identified the liver as a crucial organ involved in 

response to microbial components (100, 133); 2. demonstrated that numerous cell types in the 

liver express TLRs and respond to TLR ligands (summarized in (22, 112)) ; 3. reported 

increased exposure of the liver by pathogen- and damage-associated molecular patterns in 

many types of chronic liver diseases (summarized in (16)), and 4. documented that absence of 

TLR ligands or deficiency in their recognition prevented numerous types of liver diseases in 

animal models (134-139). (Table 3). 

 

Table 3: The current concept for the role of TLRs in liver diseases 

 

 Reference 

The liver is a target of bacterial TLR ligands due to its anatomical connection with the 

intestine 

(100, 101, 

133) 

Under normal circumstances, the liver is exposed to small amounts of bacterial 

PAMPs, but does not show signs of inflammation due to its higher tolerance to 

PAMPs and its ability to efficiently excrete PAMPs such as LPS 

(105, 107) 

In many types of liver diseases, levels of PAMPs are elevated. Most research has 

focused on LPS, and has shown increased LPS levels in chronic viral hepatitis, liver 

fibrosis and cirrhosis, and alcoholic liver disease 

(16) 

LPS promotes liver injury and fibrogenesis under many circumstances. Blocking LPS 

release from the intestinal microbiota, or inhibiting activation and signaling of the LPS 

receptor TLR4 may therefore represent a feasible strategy for the prevention or 

treatment of chronic liver disease. 

(134-136, 

140) 

 

Toll-like receptors proved to be essential in pathogenesis of alcoholic liver disease 

(141), non-alcoholic steatohepatitis (7), hepatitis B and C (142, 143), primary biliary cirrhosis 

(9) and sclerosing cholangitis (10), paracetamol-induced liver injury (11), and autoimmune 

hepatitis (12). In addition, innate immunity plays a pivotal role in the pathogenesis of liver 

fibrosis (13, 144, 145), ischemia-reperfusion injury (14) and liver graft rejection (15).  



36 

In the following sections, we will provide a detailed account on liver injury mediated 

by TLR4 signaling, such as ALD and NASH, and on immune-mediated liver injury induced 

by TLR9 signaling, which have been the focus of our research. Information on the role of 

TLRs in other liver diseases that were not included in our research projects can be found 

elsewhere (16, 22, 112, 141). 

 

1.3.1. Toll-like receptors in the pathogenesis of alcohol-induced liver injury 

 

Alcohol abuse is a leading cause of morbidity and mortality worldwide (146), and 

ALD, ranging from steatosis, steatohepatitis to fibrosis and cirrhosis, accounts for up to 50% 

of deaths from cirrhosis in Western world (147). 

The pathogenesis of ALD involves both liver parenchymal and non-parenchymal 

cells, including resident and recruited immune cells that contribute to liver damage and 

inflammation (148). The concept of dysregulated innate immunity as an indispensable 

component of alcohol-induced liver disease dates back to the observations that patients with 

ALD have increased antibodies against Escherichia coli in plasma (149), and that chronic 

alcohol administration increases gut-derived endotoxin in the portal circulation, activating 

resident liver macrophages to produce several proinflammatory cytokines (150). Recognition 

of Toll-like receptors (TLR) as the key components involved in activation of the innate 

immune system enabled a substantial progress in understanding of the mechanisms mediating 

alcohol-induced liver injury. The current concepts for the pathogenesis of alcohol-induced 

liver injury are summarized in Figure 5.  
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Fig. 5. Pathophysiology of TLR-mediated alcohol-induced liver injury.  

(A) Ethanol promotes translocation of LPS and other pathogen-associated molecular patterns (PAMPs) from the gut to the 

portal vein and to the liver. In the liver, LPS induces activation and recruitment of bone marrow-derived inflammatory cells. 

Activated bone marrow-derived cells synthesize inflammatory cytokines and reactive oxygen species that induce liver injury. 

Chronic ethanol per se contributes to sensitization of monocytes/macrophages to LPS, and to sensitization of hepatocytes to 

the cytotoxic effect of inflammatory cytokines. The latter is brought about by accumulation of lipids, opening of mitochondrial 

permeability transition (MPT) pores and depletion of glutathione (GSH). (B) In macrophages/Kupffer cells, TLR4 recognizes 

LPS in cooperation with its co-receptors, CD14 and MD-2. The signal is passed through MyD88-dependent or TRIF-dependent 

intracellular pathways, which activate various transcription factors, including AP-1, NF-κB and IRF3, and induces pro-

inflammatory cytokine and Type I interferon genes.  

 

1.3.1.1.  Gut-derived bacterial components are critical in the pathogenesis of ALD 

Due to its unique anatomy and blood supply the liver receives blood from the 

intestine, exposing hepatocytes and cells in the liver sinusoids not only to nutrients but also to 

gut-derived microbial products. The gut mucosal epithelium serves as an interface between 

the vast microbiota and internal host tissues (151). Under normal circumstances, a normal 

balance of gut barrier function, gut permeability and equilibrium of commensal and 

pathogenic microorganisms in the gut lumen is maintained and mostly prevents microbial 

translocation from the gut (152). LPS (endotoxin), a component of Gram negative bacterial 

wall and other components derived from bacteria in the intestinal microflora normally 

penetrate the mucosa only in trace amounts, enter the portal circulation and are cleared by 80-

90% in the liver through uptake by Kupffer cells (resident liver macrophages) and 

hepatocytes in a manner that prevents cell damage or inflammation (153). This physiological 

uptake and detoxification is important for preventing systemic reactions to gut-derived 

bacterial components. 

Multiple lines of evidence support the hypothesis that gut-derived endotoxin is 

involved in alcoholic liver injury. First, it has been shown that excessive intake of alcohol 
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increases gut permeability of normally nonabsorbable substances (154). Second, intestinal 

Gram-negative bacteria, as well as blood endotoxin, are increased in acute (155) and chronic 

(156) alcohol feeding models. Patients with alcoholic fatty liver, alcoholic hepatitis and 

alcoholic cirrhosis have 5- to 20-fold increased plasma endotoxin compared to normal 

subjects (157). Third, intestinal sterilization with antibiotics (136) and displacement of Gram-

negative bacteria with Lactobacillus treatment (158) prevented alcohol-induced liver injury. 

The mechanism underlying the disruption of the intestinal barrier appears to be multifactorial 

(159). Disruption of tight junctions has been attributed to acetaldehyde (152) and liver-

derived inflammatory cytokines, particularly TNF-α, that enter the systemic circulation and 

further disrupt tight junctions, thus perpetuating intestinal barrier dysfunction (160). Gut 

permeability may be also increased by ethanol-induction of miR212, a microRNA that 

downregulates proteins of the zona occludens in intestinal cell culture and that was increased 

in colonic biopsy samples in patients with ALD (161). 

Activation of Kupffer cells has been identified as one of the key elements in the 

pathogenesis of alcohol-induced liver damage. Kupffer cells are the largest population of 

tissue macrophages, predominantly distributed in the lumen of hepatic sinusoids and exhibit 

endocytic activity against blood-borne materials entering the liver (162). Triggering of toll-

like receptor signaling drives Kupffer cells to produce inflammatory cytokines and 

chemokines and to initiate the inflammatory cascade (22). Indeed, the essential role of 

Kupffer cells as a central component of the pathomechanism of ALD has been demonstrated 

in studies in mice and rats that show that inactivation of Kupffer cells with gadolinium 

chloride or liposomal clodronate can almost fully ameliorate alcohol-induced liver disease 

(135, 137). 

 

1.3.1.2.  Recognition of Toll-like receptor ligands in alcohol-induced liver injury 

Activation of Kupffer cells via TLR4-dependent mechanism plays a crucial role in the 

pathogenesis of alcohol-induced liver injury (136, 150, 163). LPS, a component of Gram-

negative bacteria, is a potent activator of innate immune responses through its binding to the 

TLR4 complex, and comprises three distinct parts: a carbohydrate (O-antigen), the 

oligosaccharide core region and a lipid portion (Lipid A). Only the lipid A portion is 

immunogenic (164). While TLR4 cannot directly bind LPS, the co-receptors CD14 and MD-

2 bind LPS and upon LPS binding activate TLR4. CD14 is a GPI-anchored protein, which 

also exists in soluble form, and facilitates the transfer of LPS to the TLR4/MD-2 receptor 
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complex that modulates LPS recognition (165). MD-2 is a soluble protein that non-covalently 

associates with TLR4 and binds LPS directly to form a complex with LPS in the absence of 

TLRs (166). The association between LPS and CD14 is facilitated by LPS-binding protein 

(LBP), which is a soluble shuttle protein (167). TLR4, CD14 and LBP are critical in alcohol-

induced liver injury. Alcoholic liver injury was prevented in C3H/HeJ mice (134), which 

have functional mutation in the TLR4 gene and have defective response to bacterial 

endotoxin (168). Prevention of alcohol-induced liver inflammation and injury in C3H/HeJ 

mice was associated with decreased TNF-α expression, compared to wild-type mice. Similar 

protection from alcohol-induced liver injury was observed in mice deficient for Lbp (139) 

and CD14 (169), whereas mice transgenic for human CD14 were hypersensitive to LPS 

(170).  

Since disruption of intestinal barrier by ethanol increases permeability for 

macromolecular substances in general (152), it is likely that other bacterial components, in 

addition to LPS, are translocated to the portal blood in alcoholics. In particular, bacterial 

DNA was found in serum and ascites of patients with advanced liver cirrhosis leading to 

increased cytokine production in peritoneal macrophages (171, 172). Bacterial DNA, which 

is detected by TLR9, sensitizes the liver to injury induced by LPS via upregulation of TLR4, 

MD-2 and induction Th1-type immune response in the liver (173). Hepatic expression of 

TLR9 was increased in wild-type animals using the Lieber-DeCarli chronic alcohol feeding 

model, and alcohol feeding sensitized to TLR9 ligand CpG to enhance TNF-α production 

(174). In patients with alcoholic cirrhosis, purified B cells stimulated with TLR9 ligand CpG 

ex vivo showed significant upregulation of immunoglobulin A, compared to B cells from 

control individuals (175), suggesting involvement of TLR pathways in alcohol-induced 

hyperimmunoglobulinemia (175). Also, overexpression of TLR9, TLR4 and TLR2 was 

associated with impaired neutrophil function in alcoholic liver cirrhosis (176). 

Taken together, it seems likely that sensitization to TLR ligands in alcohol-induced 

liver damage is regulated by multiple mechanisms, including those that are directly 

dependent on gut-derived bacterial components and TLR signaling, but also other 

mechanisms, such as lipid accumulation in hepatocytes (177), histone acetylation in ethanol-

exposed macrophages (178) or activation of Kupffer cells by C3 and C5 components of the 

complement pathway (179). 
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1.3.1.3.  Downstream effects of TLR4 signaling in alcohol-induced liver injury 

Recent evidence suggests that TLR4 downstream signaling in ALD is mediated 

predominantly through MyD88-independent pathway, rather than through the MyD88-

dependent mechanism. Alcohol feeding with the Lieber-DeCarli diet (180, 181) resulted in 

significant steatosis and liver damage in MyD88-deficient mice compared to mice on pair-fed 

diet and the extent of alcohol-induced changes was comparable in alcohol-fed MyD88-

deficient and wild-type mice (182). The involvement of the MyD88-independent TLR4 

signaling pathway was indicated by upregulation of IRF7, an IRF3-inducible gene, in Kupffer 

cells (183). In a different study it was reported that mice deficient in Trif, which is a key 

TLR4 downstream adaptor in the MyD88-independent pathway, were protected against 

alcohol-induced liver disease and it is likely that IRF3, a transcription factor downstream to 

TLR4/TRIF, binds to the TNF-α promoter resulting in induction of TNF-α (184). These 

findings demonstrate that TLR4-mediated signaling via MyD88-independent pathways is 

critical in induction of alcoholic liver disease. 

 

1.3.1.4.  Transcription factors in alcohol-induced liver injury 

The importance of molecular mechanisms culminating in nuclear events leading to 

activation of a wide array of transcription factors in various liver cell types is widely studied 

in progression of alcoholic liver injury. These transcription factors bind to the promoter 

regions in target genes resulting in induction of cytokines, chemokines and various other 

mediators including kinases, adaptor proteins and receptors. Similar to alterations in 

transcription factors related to fatty acid metabolism, chronic alcohol induced inflammatory 

mediators are also modulated by key transcription factors. The most studied transcription 

factor is NF-κB and alteration in its DNA binding activity has been observed in livers 

following chronic alcohol consumption (173) as well as in isolated monocytes/macrophages 

(185). Chronic alcohol increased NF-κB activity in monocytes and macrophages leading to 

an up-regulation in various inflammatory cytokine and chemokine genes (186, 187). Another 

transcription factor modulated by chronic alcohol exposure is AP-1, wherein increased 

expression and activity was observed in livers of chronic alcohol fed mice (188). Activation 

of peroxisome proliferator-activated receptor gamma (PPARγ), another transcription factor, 

was beneficial and prevented chronic alcohol-induced liver injury in mice (189). While 

PPARγ is thought to be involved in anti-inflammatory cytokine production, its exact 
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mechanism in alcoholic livers is not known. Further, Egr-1 another zinc finger transcription 

factor, is up-regulated in LPS-stimulated isolated Kupffer cells from chronic alcohol-fed mice 

and is dependent on ERK activation (190). Egr-1 knock-out mice were protective to alcoholic 

liver injury, indicating a role for the Egr-1-ERK pathway in the pathogenesis of alcoholic 

liver injury (191).  

 

1.3.1.5.  Pro-inflammatory cytokine induction in alcoholic liver disease  

Alcoholic steatohepatitis is characterized by infiltration of various inflammatory cells 

in the liver, including monocytes, macrophages, neutrophils and lymphocytes, which occurs 

as a consequence of activation of inflammatory mediators induced by TLR signaling (192, 

193). In humans with alcoholic steatohepatitis, serum TNF-α, IL-6 and IL-8 levels are 

increased and their levels correlate with markers of the acute-phase response, liver function 

and clinical outcome (194). There is also evidence for activation of circulating monocytes in 

individuals with ALD, based on increased TNF-α production and increased NF-κB activation 

(195).  

Induction of TNF-α by TLR4 signaling and by reactive oxygen species in Kupffer 

cells has been identified as a major component in ALD (196, 197). The effect of TNF-α in 

hepatic inflammation and hepatocyte apoptosis is mediated through TNF receptor TNF-R1 

(196). Binding of TNF-α to TNF-R1 activates several signal transduction pathways (198), 

resulting in the activation transcription factors including NF-κB and c-Jun-N-terminal kinase 

(199), and in activation of pro-apoptotic Fas-associated death domain (200).  

Circulating levels of TNF-α and TNF-R1 are higher in patients with alcoholic 

steatohepatitis than in heavy drinkers with inactive cirrhosis, heavy drinkers who do not have 

liver disease, and individuals with neither alcoholism nor liver disease (201, 202). High 

serum levels of TNF-α and TNF-R1 correlated with mortality in patients with acute alcoholic 

hepatitis (202, 203). Hepatic expression of TNF-R1 is enhanced in chronic ethanol 

consumption (204), and liver injury is substantially reduced when alcohol diet is administered 

in TNF receptor 1 (TNF-R1) – knockout mice or in rats that have been pretreated with anti-

TNF-α antibodies or thalidomide, which reduces production of TNF-α (138, 205). 

Under normal circumstances, hepatocytes are resistant to the pro-apoptotic effect of 

TNF-α; however, several conditions prime hepatocytes to TNF-α-mediated cell death in the 

setting of chronic alcohol consumption (206). Hepatocytes from rats chronically fed alcohol 
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have increased TNF-α induced cytotoxicity associated with mitochondrial permeability 

transition pore opening (206) and with a profound effect of alcohol on mitochondrial 

functional integrity (207). Also, decreased mitochondrial glutathione in alcohol-fed rats 

(208), or inhibition of hepatic transmethylation reactions by S-adenosylhomocysteine (209) 

has been shown to sensitize hepatocytes to TNF-α mediated cytotoxicity. Moreover, animal 

models of alcohol-induced liver injury show impaired function of proteasomes that increases 

hepatocyte sensitivity to TNF-α-mediated apoptosis (210). Interestingly, although 

upregulation of TNF-R1 is observed in the livers of patients with alcoholic steatohepatitis 

(204), a recent in vitro study showed that free fatty acids sensitized HepG2 cells to TRAIL-

mediated apoptosis, but not to cytotoxicity mediated by TNF-α (177). 

In addition to the metabolic changes involved in sensitization to TNF-α cytotoxicity, 

the net effect of TNF-α on hepatocytes is influenced by other cytokines. For example, 

deficiency of IL-10, an anti-inflammatory cytokine, exacerbates TNF-α mediated liver injury 

in mice by alcohol (211). Conversely, mice that are deficient in interleukin-12 (212), 

interferon-γ (213), or interleukin-18 (214), are protected against TNF-α -induced liver 

damage. The subtle balance between hepatocyte proliferation and apoptosis is also regulated 

by an autocrine cascade involving the pro-proliferative TGF-α and IL-1 receptor antagonist, 

and the anti-proliferative IL-1β (215). 

 

1.3.1.6.  Toll-like receptors and induction of oxidative stress in alcohol-mediated liver 

injury 

Cellular responses induced by oxidative stress play an important role in innate 

immune cell activation. Kupffer cells produce reactive oxygen species (ROS) in response to 

chronic alcohol exposure as well as endotoxin (216). Interaction of NADPH with TLR4 is 

involved in LPS-mediated ROS generation and NF-κB activation and production of 

inflammatory cytokines in neutrophils (217) and in human monocytes (218). Pretreatment of 

chronic alcohol fed rats with inhibitor of NADPH oxidase diphenyleneiodonium normalized 

ROS production, decreased LPS-induced ERK1/2 phosphorylation and inhibited increased 

TNF-α production in Kupffer cells (216). Inhibition of NADPH oxidase prevented steatosis, 

upregulation of TLR2, 4, 6 and 9 mRNA, and sensitization to respective ligand-induced liver 

injury (174), indicating a cross-talk between oxidative stress and TLR pathways in ALD. 

Protection from alcohol-induced liver injury was observed in p47 phox-/- mice, deficient in 
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the main cytosolic component of NADPH oxidase, further supporting the important role of 

NADPH oxidase in alcohol-induced inflammatory response and liver injury (216). 

Protection against hepatocyte damage induced by alcohol is mediated by the 

mitochondrial superoxide dismutase 2 (SOD2), which inactivates superoxide radicals that are 

increasingly generated in early phases of alcohol-induced liver injury (219). Overexpression 

of SOD2 induced by in vivo transfection of hepatocytes using adenoviral vector prevented 

alcohol-induced liver injury in rats (220). The increase in mitochondria-derived reactive 

oxygen species (ROS) is controlled also by the uncoupling protein 2 (UCP2) (221). The 

UCP2 gene is constitutively expressed in Kupffer cells, whereas no baseline expression has 

been described in healthy hepatocytes. Treatment with LPS decreases UCP2 expression in 

Kupffer cells. In contrast, stimulation with TNF-α in vitro increases UCP2 expression in 

hepatocytes (222). It seems likely that decreased UCP2 expression in Kupffer cells 

contributes to ROS production, whereas hepatocyte-specific expression of UCP2 (223) and 

SOD2 (224) protect hepatocytes from oxidative stress. 

 

1.3.1.7.  Cell-specific effects of the Interferon regulatory factor 3 (IRF3) in the 

pathogenesis of alcoholic liver disease: questions relevant to our research  

The current concept of TLR4-dependent pathogenesis of ALD supports the 

predominant role of the MyD88-independent (TRIF-dependent) pathway (182), mediated by 

the transcription factors IRF3 and NF-κB. However, IRF3 has reportedly been expressed in 

multiple liver cells types, including Kupffer cells (non-parenchymal cells) and hepatocytes 

(parenchymal cells). Moreover, although IRF3 in monocytes is crucially involved in the 

TLR4-mediated induction of inflammatory cytokines (184), multiple reports have 

demonstrated that IRF3 is also involved in Type I IFN induction in hepatocytes (225-227) 

and. These findings suggest that both inflammatory cytokines and Type I IFNs may play a 

role in the pathogenesis of ALD and point at a possible cell-specific role of IRF3 in the liver. 

We hypothesized that IRF3 is critical in alcohol-induced liver injury. Given the differential 

input of parenchymal and non-parenchymal cells in pathophysiology of ALD, we further 

hypothesized that IRF3 may be critical in alcoholic liver injury in a cell-specific manner. 

Therefore, we employed a mouse model in which the effect of chronic alcohol feeding on 

liver damage was evaluated in animals with global deficiency of IRF3 or in animals with 

selective deficiency of IRF3 in liver parenchymal or non-parenchymal cells. 
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1.3.2. The role of genetic factors in the pathogenesis of alcoholic liver 

disease 

 

1.3.2.1. Genetic susceptibility to alcoholic liver disease 

Susceptibility to alcoholic liver disease has a genetic predisposition that is separate 

from the susceptibility to alcoholism (228). Concordance rates for alcoholic psychosis 

(21.1% vs. 6.0%) and liver cirrhosis (14.6% vs. 5.4%) are higher among monozygotic twins 

than dizygotic twins (229). Concordance for alcoholism, however, is similar among twin 

pairs, and the greater concordance for a pathological outcome among monozygotic twins 

favors a genetic predisposition for the organ-specific complications of alcoholism. The low 

frequency of cirrhosis among heavy drinkers of alcohol (10-20%) also suggests a separate 

genetic basis for a pathological outcome in some patients (230). The predilection does not 

refute a dose-response relationship between the amount of alcohol consumed and the risk of 

advanced liver disease (231), but it does suggest that host-related factors modify individual 

susceptibility to alcohol-related injury.  

 

1.3.2.2. Candidate pathways for genetic susceptibility to alcoholic liver disease 

Genes that modulate alcohol metabolism, fibrogenesis, display of histocompatibility 

antigens and lipid peroxidation, and genes encoding cytokines have been implicated in the 

pathogenesis of alcoholic liver disease (232). However, data that would support the role of 

fibrogenic genes, HLA haplotypes or genes regulating lipid peroxidation do not provide a 

firm evidence for their involvement in susceptibility to alcoholic liver disease (228). In 

addition, a recent meta-analysis showed that none of the once promising allelic variants in 

alcohol-metabolizing enzymes are associated with alcohol-induced liver injury (233). Taken 

together, it cannot be excluded that the genetic variants involved in the above mentioned 

mechanisms modulate alcohol-induced liver injury, but they do not seem to play an essential 

role in the genetic susceptibility to alcoholic liver disease. 

 

1.3.2.3.  Genetic variability in genes modulating the TLR4-induced alcoholic liver 

injury 

The lack of a firm evidence for genetic predilection for ALD that would be conferred 

by genes in the alcohol metabolism, histocompatibility antigens and lipid peroxidation 
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suggests involvement of other pathways and genes. To exert a substantial role in genetic 

predisposition to ALD, these pathways would have to be of critical importance in the 

pathogenesis of ALD and would have to abound with gene variations that would influence 

expression of the respective gene or the function of the respective protein.  

Looking from this perspective, the TLR4 signaling seems to be a suitable candidate, 

given its critical role in the pathogenesis of ALD and the fact that majority of genes coding 

for receptors and signaling molecules involved shows a high frequency of functionally 

relevant allelic variants. For example, the -159C/T variation in the promoter of CD14 

enhances its expression by monocytes (234), whereas two linked variations, c.896A/G and 

c.1196C/T, in the coding region of TLR4 impede the activation of monocytes by LPS (235). 

In addition, the recognition of LPS by TLR4 is modulated by the LBP c.1306C/T and the BPI 

c.645A/G allelic variants (236). The variations -238G/A and -863C/A in the TNFA promoter 

independently increase transcription of TNF-α (237, 238). The IL-1 gene cluster contains 

IL1B and IL1RN genes, which encode IL-1β and its receptor antagonist IL-1ra, respectively. 

The variant –31T in the promoter of IL1B, which is in linkage disequilibrium with the variant 

IL1B -511C, significantly increases IL-1 transcription (239). The IL1RN gene contains a 

penta-allelic 86-bp tandem repeat. The second most common IL1RN*2 allele containing two 

repeats increases the secretion rate of IL-1β in vitro (240).  

Functional genetic variants have been described also in genes for regulators of 

mitochondrial oxidative stress, which is inducible by the TLR4 mechanism (chapter 1.3.1.6) 

and is critically involved in the pathogenesis of ALD. For example, three functional allelic 

variants have described in the UCP2 gene: the promoter variant UCP2 -866G/A, the variant 

45 ins/del in 3’-untranslated region (UTR) and the UCP2 c.164C/A in exon 4. The former 

two variants modulate UCP2 expression, the latter decreases UCP2 protein activity (241-

244). Only one functional allelic variant SOD2 c.47C/T (Ala16/Val) has been reported in the 

mitochondrial targeting sequence of the SOD2 protein (245). The amino acid exchange alters 

the protein conformation and increases the efficacy of mitochondrial targeting of SOD2 

(246).  
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1.3.3.  The role of probiotics in TLR4-mediated pathogenesis of non-

alcoholic steatohepatitis 

 

Nonalcoholic fatty liver disease and its advanced stage NASH are becoming the most 

common causes of chronic liver disease in Western countries. Recent reports demonstrate 

that high fat diet and obesity alters the composition of caecal microbiota in favor of LPS-

containing strains, and increases the gut permeability, resulting in increased bacterial 

translocation (22). The key role of LPS and TLR4 signaling in NASH is supported by 

reduced hepatic triglyceride content and inflammation in mice undergoing intestinal 

decontamination with antibiotics, or in mice deficient for Tlr4 (16). These findings emphasize 

the crucial role of gut-derived bacterial products in the pathogenesis of NASH (see also 

chapter 1.3.4.1) and suggest that modification of intestinal microbiota by probiotics may 

represent a feasible approach for the prevention and treatment of NASH. 

To test the hypothesis that modification of intestinal microbiota would have impact on 

NASH, we employed a mouse model of NASH which were administered with the VSL#3, a 

probiotic preparation of live, freeze-dried bacteria containing eight bacterial species 

(Streptococcus salivarius subsp. thermophilus, Bifidobacterium [B. breve, B. infantis, B. 

longum], Lactobacillus acidophilus, L. plantarum, L. casei, and L. delbrueckii subsp. 

bulgaricus). We asked whether the VSL#3 probiotic preparation, which has been previously 

shown to prevent hepatic damage and maintain colonic barrier function in a mouse model of 

sepsis (247), would ameliorate diet-induced NASH by modulation of liver inflammation and 

fibrosis. 
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1.3.4. The Toll-like receptor 9-mediated signaling: a shared mechanism in 

the pathogenesis of liver inflammation and injury 

 

The increasing amount of information on the regulation of innate immunity in the 

liver suggests that individual liver diseases are unlikely to be attributable to a single signature 

TLR ligand; instead, multiple TLR ligands and receptors, often with overlapping signaling 

pathways, contribute to prevalent liver inflammation and injury (Table 4).  

 

Table 4. The overlapping spectrum of TLRs involved in the pathogenesis of liver diseases. 

Involvement of pathways mediated by TLR9 is highlighted in bold. 

 

Liver diseases Abnormalities in 

expression and 

function of 

TLRs 

Mechanisms of action and consequences Reference 

    

Alcoholic hepatitis TLR 2, 3, 4, 6 

TLR 7, 9 

 

CD14 

TLR 4 – pathogenesis through gut-derived LPS 

TLR 2, 3, 4, 5, 6, 9, CD14 – upregulation in the 

liver 

TLR 2, 3, 4, 5, 6, 9, CD14 – increased 

sensitization to ligands and pro-inflammatory 

cytokine production 

(134, 182) 

(174, 182) 

 

(174) 

Non-alcoholic fatty 

liver 

TLR 4, 9 TLR 4 – pro-inflammatory cytokine production (248, 249) 

Hepatitis B TLR 1, 2, 3, 4, 6 

 

TLR7, 9 

TLR 1, 2, 4, 6, 7, 9 – downregulation of mRNA 

and cytokine production 

TLR 3, 9 – decreased HBV replication in Kupffer 

cells and liver sinusoidal endothelial cells 

(250) 

 

(251) 

Hepatitis C TLR 1, 2, 3, 4, 6 

TLR 7, 8, 9 

TLR 3 – recognition of virus, hijacked by NS3/4A 

TLR 2 – dendritic cells, monocytes recognize NS3 

and HCV core 

TLR 4 – hyperresponsive monocytes to LPS; loss 

of TLR tolerance 

TLR 7, 9 – decreased IFN-α by plasmacytoid 

dendritic cells 

TLR 2, 3, 6, 7, 8, 9 – upregulation of mRNA in 

monocytes and T cells 

(252) 

(253) 

 

(142) 

 

(253) 

 

(142, 254) 
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Liver fibrosis TLR 2, 4, 9 TLR 2, 4, 9 – activation of stellate cells (22) 

Primary biliary 

cirrhosis 

TLR 2, 3, 4, 5 

TLR 9 

TLR 3 – upregulation of mRNA 

TLR 2, 3, 4, 5, 9 – sensitization to ligands in 

monocytes 

(255, 256) 

Primary sclerosing 

cholangitis 

TLR 4, 9 TLR 4, 9 – induction of inflammation (10) 

Acute liver failure TLR 4, 9 TLR 4, 9 – sensitization to LPS injury 

TLR 9 - induction of inflammation 

(257) 

(11) 

Ischemia-

reperfusion injury 

TLR 2, 4, 9 TLR 2, 4 – activation of inflammatory responses 

leading to injury 

(258) 

Liver graft 

rejection 

TLR 9 TLR 9 – abrogation of spontaneous tolerance (15) 

 

It is noteworthy that all liver conditions mentioned in Table 4 show involvement of 

TLR9 signaling. This may seem surprising given the fact that TLR9 is an endosomal receptor 

activated by prokaryotic CpG-rich DNA (63). However, since disruption of intestinal barrier, 

observed in numerous liver diseases (22), increases permeability for macromolecular 

substances in general (152), it is not unexpected that other bacterial components, in addition 

to LPS, are translocated to the portal blood and to the liver (259). Second, it has been 

reported that the CpG-rich repeats that activate TLR9 are present in DNA from apoptotic 

mammalian cells (42), and that intraportal administration of DNA isolated from apoptotic 

hepatocytes induced liver injury (11). These findings suggest that TLR9-mediated signaling 

in the liver can be activated by gut-derived bacterial CpG-DNA and/or by DNA released 

from hepatocytes undergoing apoptosis as a result of a previous insult. Therefore, it seems 

that TLR9 may be a common denominator in different pathogenic processes that lead to liver 

damage. 

Specifically, emerging data provide an evidence for the role of CpG DNA and TLR9-

mediated inflammation in acute and chronic liver injury of diverse origin, including non-

alcoholic steatohepatitis (249), acetaminophen-induced liver injury (11), alcoholic liver 

disease (174), primary biliary cirrhosis (9) and primary sclerosing cholangitis (10). TLR9-

initiated signals are also involved in liver fibrosis (140), ischemia-reperfusion injury (14), and 

liver graft rejection (15). TLR9 acts synergistically with the TLR2 ligand LTA (260), and 

sensitizes to liver injury induced by the TLR4 ligand LPS (257). 

 



49 

1.3.4.1.  The role of TLR9 signaling in alcoholic and non-alcoholic steatohepatitis 

It is widely accepted that LPS, a gut bacteria-derive endotoxin, is important for the 

development and progression of ALD and NASH through TLR4 activation and induction of 

Kupffer cell activity (16, 22, 141). Experimental and clinical data have demonstrated that 

levels of circulating and hepatic LPS are elevated both in ALD and NASH. Increased LPS 

levels in ALD are likely owing to increased gut permeability caused by excessive alcohol 

intake (152), whereas in individuals with NASH, it may be related to small intestinal bacterial 

overgrowth and alterations of the intestinal barrier (261). In addition to TLR4, increased 

expression TLR9 was observed in animal models of ALD and NASH (7, 174). In addition, 

feeding with alcohol resulted in sensitization to liver inflammation and damage because 

administration of TLR4 and TLR9 ligands increased expression of TNF-α (174).  

Direct evidence supports the crucial role of TLR9 signaling in the pathogenesis of 

NASH. Miura et al. (249) have identified TLR9 as another important player in the 

pathogenesis of NASH. They based their findings on a murine model of NASH induced by a 

choline-deficient amino acid-defined (CDAA) diet. As demonstrated in their study (249), 

consumption of CDAA diet activates TLR9 signaling on Kupffer cells, thereby inducing IL-

1β production via a MyD88-dependent pathway, inflammation and liver injury. Additionally, 

IL-1β then increases lipid accumulation in hepatocytes by up-regulating diacylglycerol 

acyltransferase 2 and subsequently induces hepatocyte death. Produced by Kupffer cells, IL-

1β was also previously shown to play an important role in the development of hepatic 

steatosis via down-regulating PPAR-α in a murine model using a high-fat diet (262). 

 

 

1.3.4.2.  The role of TLR9 signaling in paracetamol-induced liver injury 

The analgesic paracetamol (acetaminophen) is widely known for its potential to cause 

severe and sometimes lethal liver injury. When ingested in large amounts, acetaminophen 

overwhelms the normal metabolic pathways of glucuronidation and sulfation and undergoes 

oxidation to form the highly reactive intermediate N-acetyl-p-benzoquinone-imine (NAPQI). 

NAPQI is not harmful if it combines rapidly with glutathione; however, when hepatic 

glutathione stores are depleted, NAPQI escapes detoxification, resulting in liver cell death 

(263). In the liver, the initial wave of drug-induced hepatocellular destruction is followed by 

a robust innate immune response, in which invading inflammatory cells cause a second wave 
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of destruction (264). This is evident from studies in a mouse strain with a mutation in Tlr4, in 

which liver disease is significantly attenuated following an acetaminophen challenge (265). 

Recently, Imaeda et al. (11) demonstrated, in a mouse model, that DNA from dying 

hepatocytes is the trigger of the innate immune response induced by the TLR9, and that the 

exaggerated immune response seen in liver injury induced by acetaminophen is mediated 

predominantly through the inflammatory cytokines IL-1β and IL-18 in a TLR9-dependent 

manner. Mammalian DNA interacts specifically with TLR9, which, like all nucleic acid–

sensing TLRs, is sequestered intracellularly within endosomes. TLR9 was once considered 

incapable of binding mammalian DNA because of its affinity for unmethylated CpG motifs 

characteristic of microbial DNA. DNA from injured mammalian cells, however, has the 

capacity to activate TLR9 (266), and recently even normal mammalian DNA has been shown 

to engage this receptor and stimulate an immune response (267).  

 

 

1.3.4.3.  TLR9-induced loss of TLR tolerance in the pathogenesis of liver transplant 

rejection 

 Rejection of liver allograft is less severe in liver transplantation than in the 

transplantation of other solid organs (268). In addition, human liver allografts require lower 

doses of immunosuppressive therapy than other organs, and the liver allograft is 

spontaneously accepted in mice (269). The mechanisms for the distinctive liver tolerance in 

humans and for the spontaneous liver tolerance in mice include apoptotis of alloreactive 

recipient cells (270), inability of the recipient dendritic cells to provide costimulatory signals 

as a consequence of the donor/recipient leukocyte chimerism (271), and the presence of T 

regulatory cells that suppress the alloimmune response (272). 

In a recent study, Ma et al. (15) demonstrated the negative role of TLR9 signaling in a 

mouse model of liver transplantation. Ma et al. (15) showed that administration of CpG-DNA 

to transplant recipients 7 days after liver transplantation induced acute inflammatory infiltrate 

and hepatocyte damage in the liver allograft, acute allograft rejection and decreased survival 

of animals. Consistent with the induction of inflammatory cytokines mediated by TLR9, the 

acute allograft rejection was associated with increased activation of NF-κB. In addition, 

administration of CpG ODN that activates TLR9, breached the liver allograft tolerance and 

dramatically induced Th1-immune response.  
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2. Specific aims 

 

To gain insight into the downstream effects of Toll-like receptors in alcohol-induced liver 

injury, non-alcoholic steatohepatitis and Toll-like receptor 9 –associated liver injury, we 

proposed the following specific aims: 

 

A.  To elucidate the role of common allelic variants in genes involved in Toll-like 

receptor 4-mediated liver injury in genetic susceptibility to alcoholic liver cirrhosis. 

B.  To determine the cell-specific effect of the Interferon regulatory factor 3 (IRF3) in the 

pathogenesis of alcohol-induced liver injury 

C. To investigate the role of probiotics in modulation of liver inflammation, injury and 

fibrosis in the pathogenesis of non-alcoholic steatohepatitis 

D.  To assess the role of Type I interferons in the pathogenesis of Toll-like receptor 9 – 

induced liver injury 
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3. Methods 

 

3.1. General methods 

 

Nucleic acid and protein isolation from human and animal cells and tissues 

Restriction analysis of DNA 

Reverse transcription of total RNA (generation of cDNA) 

Polymerase chain reaction, quantitative real-time polymerase chain reaction 

DNA electrophoresis on agarose and polyacrylamide gel 

Enzyme-linked immunoabsorbent assay (ELISA) 

SDS-PAGE protein electrophoresis and protein immunobloting (Western blotting) 

Biochemical analysis of alanine aminotransferase and lactate dehydrogenase activity  

Cell culture techniques 

Flow cytometry 

Immunohistochemistry 

Experimental work with small laboratory animals, including in situ liver perfusion 

and cell isolation  

Descriptive statistics, parametric and non-parametric tests of statistical hypotheses, 

power calculation, regression analysis 

Statistical methods in genetics and in genetic epidemiology 

 

3.2.  Specific methods 

 

3.2.1. Methods related to genetic susceptibility to alcoholic liver cirrhosis  

DNA genotyping. Genomic DNA was isolated from peripheral blood using the QIAamp DNA 

Blood Mini Kit (Qiagen GmbH, Hilden, Germany). Single nucleotide allelic variants were 

determined by polymerase chain reaction (PCR) followed by restriction fragment length 

(RFLP) analysis of the products. Genotyping of the IL1RN variable number of tandem repeats 

(VNTR) locus was performed by a PCR-based fragment length polymorphism method. 

Restriction endonucleases were purchased from Fermentas (Fermentas UAB, Vilnius, 
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Lithuania). After testing for Hardy-Weinberg equilibrium (HWE), allele frequencies were 

checked for consistency with data from the population of European ancestry [Utah Residents 

with Northern and Western European Ancestry (CEU)] from the HapMap database 

(www.hapmap.org). 

Statistical analysis. Two-sided power calculations at p=0.05 for 80% statistical power were 

performed using the DSTPLAN software (http:// linkage.rockefeller.edu/soft). When the odds 

ratio (OR) of a polymorphism was assumed to be 2, the required sample size was 100 cases 

and 180 controls for the polymorphism with frequency of 0.5 (CD14 –159C/T). When the OR 

was assumed to be 4, the same sample size was sufficient to detect a true effect of a 

polymorphism with frequency of 0.03 (TNFA –238G/A). HWE of alleles at individual loci 

was evaluated using the program HWE (http://linkage.rockefeller.edu/soft). Haplotype 

frequencies for pairs of alleles and linkage disequilibrium (LD) coefficients D’=D/Dmin or max 

and r
2
 were calculated using the Arlequin software (273). Age and median alcohol 

consumption between the groups was compared using the Mann-Whitney test. Male to 

female ratios were compared using the Fisher exact test. All association analyses were 

performed by logistic regression analysis using SPSS software version 14.0 (SPSS Inc., 

Chicago, IL, USA). Where applicable, logistic regression analysis adjusted for age was 

performed. 

 

3.2.2. Methods related to the role of IRF3 in the pathogenesis of alcohol-

induced liver injury  

 

Animal and experimental protocol. Six to eight-week-old, female C57Bl/6 wild-type, Irf3-

deficient (IRF3-KO) and Type I interferon α/β receptor 1-deficient (IFNAR1-KO) mice (kind 

gift of Jonathan Sprent, Scripps Research Institute, La Jolla, CA), were employed. Chimeric 

mice were generated by transplanting wild-type (C57Bl/6) bone marrow into irradiated WT 

mice (WT/WT-BM) to Irf3 deficient mice (IRF3-KO/WT-BM), or by transplanting IRF3 

deficient bone marrow into WT mice (WT/IRF3KO-BM). Some animals were fed with the 

Lieber-DeCarli diet (Dyets, Inc., Bethlehem, PA) with 5% (vol/vol) ethanol (36% ethanol-

derived calories) for 4 weeks; pair-fed control mice matched the alcohol-derived calories with 

dextran-maltose. Serum was stored at -80°C. Livers were snap-frozen in liquid nitrogen for 

proteins, or stored in RNAlater (Qiagen GmbH, Hilden, Germany) for RNA extraction, or 

fixed in 10% neutral-buffered formalin for histopathological analysis. 
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Bone marrow transplantation protocol. Female mice were lethally irradiated with 900 rads 

(cGy) from a Cesium irradiator (Gammacell 40, Atomic Energy of Canada), and 4 hours later 

transplanted with 5 million male bone marrow cells via a single tail vein injection. Marrow 

was collected from the tibia and femur of donor 8-week old male mice by flushing with a 25g 

needle and passed through a cell strainer to remove clumps. Transplanted mice were housed 

in microisolator cages and placed on antibiotic water (Sulfamethoxazole/Trimethoprim, Hi-

Tech Pharmacal Inc.) until engraftment is complete at 4-6 weeks. Engraftment was confirmed 

by PCR genotyping of blood cells and the chimeric mice were used at 6 weeks post-

transplantation. In pilot experiments mice received GFP expressing total bone marrow from 

C57BL/6J-beta-actin-EGFP (Jackson laboratories, Bar Harbor, Maine, USA) mice and 

engraftment was monitored by FACS analysis of peripheral blood collected from the tail 

vein. The survival rates for all transplanted mice were >95% with excellent engraftment, e.g., 

>90% of the peripheral blood is of donor origin at 6 weeks post-transplant by FACS (eGFP 

donors) and only donor alleles were detected by PCR genotyping of blood cells (i.e., IRF3 

KO donors). 

Biochemical assays. Serum alanine aminotransferase (ALT) was determined using a kinetic 

method (D-Tek LLC., Bensalem, PA). Liver triglyceride levels were assessed using the L-

Type Triglyceride H kit (Wako Chemicals USA Inc., VA). 

Cytokine measurement. Mouse IL-1β ELISA kit was purchased from R&D (R&D systems, 

Inc., Minneapolis, MN), mouse and human TNF-α, IL-1β and IL-10 kits from BD Bioscience 

(BD Biosciences, San Jose, CA) and mouse IFN-β kit from PBL (PBL interferon source, 

Piscataway, NJ).  

RNA Analysis. RNA was purified using the RNeasy kit (Qiagen Sciences, Maryland, USA) 

and on-column DNA digestion. cDNA was transcribed with the Reverse Transcription 

System (Promega Corp., Madison, WI). SybrGreen-based real-time quantitative polymerase 

chain reaction was performed using the iCycler (Bio-Rad Laboratories Inc., Hercules, CA).  

Protein quantification. Whole-cell lysates were extracted from liver, as described (274). 

Equal amounts of proteins were separated on a 10% polyacrylamide gel, and transferred to a 

nitrocellulose membrane. Interleukin-10 was detected by western blot and immunostaining 

with specific primary antibody, followed by horseradish peroxidase-labeled secondary 

antibody (both from Santa Cruz Biotechnology, Santa Cruz, CA). The specific 

immunoreactive bands of interest were detected by chemiluminescence (Amersham, 

Piscataway, NJ), and quantified by densitometric analysis. 
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Histopathological analysis. Sections of formalin-fixed livers were stained with hematoxylin 

and eosin or by Oil-red-O and analyzed by microscopy. 

Isolation of hepatocytes and liver mononuclear cells. Animals received anesthesia with 

ketamine (100 mg/kg) and xylazine (10 mg/kg); the livers were perfused with saline solution 

for 5 minutes followed by in vivo digestion with Liberase blendzyme 3 (Roche Diagnostics 

GmbH, Mannheim, Germany) for 5 minutes at 37°C. The hepatocytes were separated by 

centrifugation at slow speed (350 g), liver mononuclear cells (LMNCs) were purified by 

centrifugation in Percoll gradient.  

Phenotype analysis by flow cytometry. Cells were washed in PBS and incubated with anti-

albumin (FITC), anti-F4/80 (PE), anti-CD68 (FITC), anti-GFAP (Alexa 488) antibodies for 

30 minutes on ice. After incubation, cells were washed with PBS, fixed in paraformaldehyde 

and analyzed by flow cytometry. Some cells were permeabilized and stained for intracellular 

IL-10 using the anti-IL10 (Alexa 488) antibody. All antibodies were from eBioscience 

(eBioscience, Inc., San Diego, CA). 

Isolation of human peripheral blood mononuclear cells. Human peripheral blood 

mononuclear cells (PBMCs) were separated from blood of healthy volunteers by 

centrifugation in Ficoll gradient. 

In vitro experiments. Primary hepatocytes and LMNCs were cultured in Dulbecco's modified 

Eagle's medium containing 10% fetal bovine serum and 1% insulin, transferrin, selenium 

solution. Primary hepatocytes were seeded in 6-well collagen-coated plates, LMNCs 

(10
6
/insert) were plated in cell-culture inserts with pore diameter 0.4 μm (Becton Dickinson 

Labware, Bedford, MA). Hepatocytes, LMNCs or co-cultures of hepatocytes with LMNCs 

were stimulated with LPS (Sigma, St. Louis, MO). IFN-β, IL-10 and TNF-α were measured 

in supernatants using ELISA. RAW264.7 macrophages were stimulated with LPS, 

recombinant mouse IFN-α2a (eBioscience, San Diego, CA), recombinant mouse IL-10 

(Peprotech Inc., Rocky Hill, NJ) or with anti-mouse IL-10 receptor antibody (Biolegend, San 

Diego, CA). Human PBMCs were stimulated with LPS, recombinant human IFN-α (PBL, 

Piscataway, NJ), recombinant IL-10 (Ebioscience, San Diego, CA) or IL-10 receptor 

antibody (R&D systems, Inc., Minneapolis, MN). 

Hepatocyte cytotoxicity assay. Lactate dehydrogenase (LDH) release from the hepatocyte 

into the culture supernatants was measured using the LDH-cytotoxicity assay kit (Abcam, 

Cambridge, MA), and normalized to total LDH (determined after treatment of cells with 

detergent-based lysis solution). 
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3.2.3.  Methods related to the role of probiotics in the pathogenesis of non-

alcoholic steatohepatitis 

 

Animal and experimental protocol. C57Bl/6 mice were fed a methionine-choline-deficient 

(MCD) diet or a methionine-choline-supplemented (MCS) diet (Dyets, Inc. (Bethlehem, PA); 

the latter control diet was composed of MCD diet supplemented with L-methionine (1.7 g/kg) 

and choline bitartrate (14.48 g/kg). The mice were fed these diets for a total period of 10 

weeks; there were 6-8 mice per experimental group. After a week of adaptation to the new 

diets, the MCD diet-fed mice were divided into two groups, with one group having its water 

supply replaced by water containing VSL#3 (VSL Pharmateuticals, Ft. Lauderdale, FL) for 

the remaining 9 weeks of the experimental feeding. One packet of VSL#3 (450 billion 

colonies/packet) was mixed in 1L of water and provided to mice instead of drinking water 

freshly made daily. In pilot experiments we were able to isolate viable VSL#3 bacteria from 

stool in VSL#3–fed mice; no pathogenic bacteria were isolated from this water. At the end of 

the 10 week-feeding period some animals were challenged with LPS (0.5mg/kg body weight, 

i.p) or comparable volumes of saline injected as control. 

Histopathological analysis. Sections of formalin-fixed, paraffin-embedded livers were 

stained with hematoxylin and eosin to assess for histologic features of steatohepatitis, and 

sirius red stain and trichrome stain (Masson’s method) to evaluate for hepatic collagen 

deposition and fibrosis. The liver sections were also subject to immunohistochemical staining 

(anti-α–smooth muscle actin antibodies from Abcam, Cambridge, MA).  

Protein quantification. Equal amounts of liver protein extract from different stimulation 

groups were separated on a 10% polyacrylamide gel, and transferred to a nitrocellulose 

membrane. The proteins of interest were detected by western blot and immunostaining with 

specific primary antibodies, followed by horseradish peroxidase (HRP)-labeled secondary 

antibodies (anti-Collagen and anti-α-SMA from Abcam, Cambridge, MA, secondary-HRP 

labeled antibodies from Santa Cruz Biotechnology, Santa Cruz, CA). The specific 

immunoreactive bands of interest were detected by chemiluminescence (Amersham, 

Piscataway, NJ), and quantified by densitometric analysis. 

Electrophoretic Gel Mobility Shift Assay was performed using equal amounts (5 μg) of 

nuclear protein and a 32P-labeled consensus oligonucleotide specific for NF-κB (Promega, 

Madison, WI) or PPRE (Santa Cruz Biotechnology, Santa Cruz, CA). For dissection of PPAR 

complex composition, nuclear proteins (5 μg) were pre-incubated with 2µl of specific 
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antibodies (anti-PPARα, anti-PPARγ and anti-RXR, all from Santa Cruz Biotechnology) for 

1 hour, followed by 32P-labeled consensus oligonucleotide specific for PPRE. In every assay, 

a 20-fold excess of specific unlabeled double-stranded specific probe was added to a separate 

reaction mixture for cold competition assay. Protein-DNA complexes were subsequently 

resolved in polyacrylamide gels; the gels were then dried and exposed to autoradiographic 

films at –80°C.  

 

3.2.4.  Methods related to the role of Type I interferons the pathogenesis of 

TLR9-associated liver injury 

 

Animals and experimental protocol. The B6.129F2 and C57Bl/6 wild-type (WT) mice were 

purchased from Jackson Laboratory. Irf7-deficient (IRF7-/-) mice on B6.129F2 background 

were provided by Tadagatsu Tanaguichi (Department of Immunology, Graduate School of 

Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan) and type I interferon 

α/β receptor 1-deficient (IFNAR1-/-) mice on the C57Bl/6 background were the kind gift of 

Jonathan Sprent (Scripps Research Institute, La Jolla, CA). All animals were 6–8 weeks old. 

We employed a previously described model of TLR9-associated liver injury induced by 

administration of TLR9 and TLR2 ligands. After acclimatization, WT, IRF7-/- and IFNAR1-

/- mice were injected intraperitoneally (i.p.) with saline or the combination of 2.5 mg/kg 

unmethylated DNA rich in cytidine-phosphate-guanosine (CpG, ODN1826 murine TLR9 

ligand; InvivoGen, San Diego, CA), and 5 mg/kg lipoteichoic acid (LTA, from 

Staphylococcus aureus; Sigma, Saint Louis, MO). Three days after the above priming 

stimulus, the mice were injected i.p. with either saline or 0.5 mg/kg lipopolysaccharide (LPS, 

from Escherichia coli 0111:B4, Sigma, St. Louis, MO) and sacrificed as indicated. Some 

C57Bl/6 WT mice received a single i.p. injection of 100,000 IU human pegylated interferon 

alpha-2b (pegIFNα2, Pegintron, Schering, Kenilworth, NJ) two hours prior to LPS. Others 

were pretreated with recombinant human interleukin-1 receptor antagonist (IL-1ra) 25 mg/kg 

i.p. every six hours (Anakinra, Amgen, Thousand Oaks, CA) for 24 hours before CpG+LTA, 

and the treatment with IL-1ra was ongoing until sacrifice. Serum was separated by 

centrifugation. Livers were snap frozen, stored in RNAlater (Qiagen GmbH, Hilden, 

Germany) or fixed in 10% formalin. ALT was quantified by biochemical assay (D-Tek 

Analytical Laboratories Inc, San Diego, CA). 
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Histopathology analysis. Sections of formalin-fixed, paraffin-embedded livers were stained 

with hematoxylin and eosin (H&E), and assessed for inflammatory infiltrate; area of 

inflammatory infiltrates was calculated with Microsuite (Olympus Soft Imaging Solution 

GmbH, Munster, Germany) image analysis software in 20 high power fields. 

Isolation of hepatocytes and liver mononuclear cells. Animals received anesthesia with 

ketamine and xylazine; the livers were perfused with saline solution followed by in vivo 

digestion, as we previously described. The hepatocytes and liver mononuclear cells (LMNCs) 

were purified by centrifugation at slow speed (350g) and in Percoll gradient, respectively. 

Phenotype analysis by flow cytometry. Cells were washed in PBS and incubated with anti-

CD68 (FITC), anti-CD11c (FITC) or anti-PDCA1 (Alexa Fluor 647) antibodies for 30 

minutes on ice. After incubation, cells were washed with PBS, fixed in paraformaldehyde and 

analyzed by flow cytometry. All antibodies were from eBioscience (eBioscience, Inc., San 

Diego, CA). 

In vitro cell culture. Primary hepatocytes were cultured in Dulbecco's modified Eagle's 

medium (DMEM) containing 10% fetal bovine serum (FBS), 1% insulin, transferrin, and 

selenium supplement on collagen-coated plates (Becton Dickinson Labware, Bedford, MA). 

Primary LMNCs and murine lymph node endothelial cells SVEC4-10 (ATCC No. CRL-

2181) were cultured in DMEM with 10% FBS. Hepatocytes were treated with recombinant 

murine IFN-α2b (500 IU/mL, eBioscience, San Diego, CA), murine IL-1ra (100 pg/mL, 

R&D Systems, Minneapolis, MN), murine IL-1β (100 IU/mL, Peprotech Inc., Rocky Hill, 

NJ) or murine TNF-α (0-100 ng/mL, Peprotech). LMNCs were treated with mouse IFN-α2b 

or LPS (100 ng/mL, Sigma, St. Louis, MO); SVEC4-10 cells were treated with recombinant 

murine IFN-α2b. 

Hepatocyte cytotoxicity assay. Lactate dehydrogenase (LDH) release from the hepatocyte 

into the culture supernatants was measured using the LDH-cytotoxicity assay kit (Abcam, 

Cambridge, MA), and normalized to total LDH (determined after treatment of cells with 

detergent-based lysis solution). 

Cytokine and chemokine measurement. Interleukin 1β and tumor necrosis factor alpha (TNF-

α) were measured using ELISA from BD Biosciences (BD Biosciences, San Jose, CA); IL-1 

receptor antagonist (IL-1ra) and monocyte chemotactic protein 1 (MCP-1) ELISAs were 

from R&D (R&D Systems, Minneapolis, MN). 
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4. Results and discussion 

 

We assessed the role of downstream signals induced by Toll-like receptors in the 

context of alcoholic liver disease and non-alcoholic steatohepatitis, and in liver inflammation 

and damage mediated by TLR9 signaling. We used a broad spectrum of approaches, 

including population-based genetic testing, in vivo animal models and in vitro methods to 

identify pathogenic mechanisms that could be of potential use in diagnosis and therapy of 

liver diseases.  

 

4.1.  Specific aim A - The role of allelic variants in TLR-induced 

signaling in genetic susceptibility to alcoholic liver cirrhosis 

 

Enclosure 1: Petrasek J, Hubacek JA, Stickel F, Sperl J, Berg T, Ruf E, et al. Do 

common genetic variants in endotoxin signaling pathway contribute to predisposition to 

alcoholic liver cirrhosis? Clin Chem Lab Med 2009;47:398-404. 

 

The TLR4 recognizes LPS and induces inflammatory cytokines, predominantly via 

the activation of the transcription factors NF-κB and IRF-3. In addition, interaction of TLR4 

with NADPH oxidase is involved in LPS-mediated generation of reactive oxygen species, 

which contribute to NF-κB activation and further increase the production of inflammatory 

cytokines. To define the importance of genetic variations in TLR4-dependent inflammatory 

signaling and oxidation stress, we performed a multicentric allelic association study. Using a 

candidate-gene strategy, we investigated functional allelic variants in genes involved in LPS 

recognition (LBP, CD14, BPI, TLR4), inflammatory signaling (TNF-A, IL-1B, IL-1RN) and in 

modulation of oxidative stress (SOD2, UCP2).  

 

4.1.1. Association of allelic variants involved in TLR4-mediated 

inflammatory signaling with alcoholic liver cirrhosis 

 

In the pilot cohort involving 100 Czech patients with ALC and 180 Czech population 

controls, we investigated the frequency of allelic variants in the genes for LBP, CD14, BPI, 
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TLR4, TNF-A, IL-1B and IL-1RN. The genotype frequencies in the control individuals were in 

HWE, suggesting a normal distribution of genotypes in the population under study, and were 

consistent with the reference data from Utah residents with a Northern and Western European 

ancestry (CEU) population from the HapMap database (275). The TNF-A -863 locus, which 

showed a deviation from HWE due to an excessive frequency of homozygotes for the minor 

A allele, was a priori excluded from the association analysis.  

We observed a complete LD between the TLR4 +896 and the TLR4 +1196 loci (D’ > 

0.9, r
2
 = 0.7) and an absolute LD between the IL-1B -511 and the IL-1B -31 loci (D’ = 1, r

2
 = 

1). The LD between the IL-1B -31 and the IL-1RN was weak (D’ < 0.5). Alleles in the TNF-A 

-863 and TNF-A -238 and in the LBP +1306 and LBP +645 demonstrated a random 

segregation (Table 1). The complete LD between the loci TLR4 +896 and TLR4 +1196 and 

the absolute LD between loci IL-1B -31 and IL-1B precluded haplotypic analysis due to 

oversaturation of the statistical model in which inclusion of both loci would be redundant. 

Similarly, the absence of LD between the loci LBP +1306 and BPI +645 suggested a random 

segregation of alleles which was not suitable for haplotype analysis. On the other hand, the 

low strength of LD between the IL-1B -31 and the IL-1RN loci permits an additive effect of 

the proinflammatory alleles IL-1B -31T and IL-1RN*2 with a larger effect size than would be 

expected from either of the alleles alone (276). Therefore, in addition to the single locus 

analysis, we performed an association analysis of the [IL-1B -31; IL-1RN] haplotype. 

 

Table 1. Haplotype frequencies and linkage disequilibrium coefficients for pairs of syntenic 

loci.  

 

 Haplotype  Linkage disequilibrium 

Locus 1-1 1-2 2-1 2-2 1-3.4.5 2-3.4.5  D' r
2
 χ

2
 P 

Patients (n = 100)            

TLR4 +896/TLR4 +1196 0.909 0.01 0.005 0.075    0.93 0.81 162.3 0.0001 

LBP +1306/BPI +645 0.049 0.056 0.476 0.419    -0.11 0.01 0.33 0.56 

TNF-A -863/TNF-A -238 0.815 0.045 0.139 0.00003 - -  -0.99** 0.01 1.52 0.22 

IL-1B -31/IL-1B -511 0.365 0 0 0.635 - -  1.00 1.00 200 0.0001 

IL-1B -31/IL-1 RN* 0.174 0.190 0.485 0.145 0 0.005  0.32 0.09 9.04 0.0001 

            

Controls (n = 180)            

TLR4 +896/TLR4 +1196 0.941 0 0.016 0.041    0.99 0.70 252.6 0.0001 

LBP +1306/BPI +645 0.054 0.069 0.492 0.393    -0.13 0.01 0.89 0.35 
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TNF-A -863/TNF-A -238 0.806 0.028 0.161 0.006 - -  0.01 0.01 0.0001 0.99 

IL-1B -31/IL-1B -511 0.355 0 0 0.644 - -  1.00 1.00 359 0.0001 

IL-1B -31/IL-1 RN* 0.157 0.192 0.534 0.097 0.006 0.013  0.47 0.16 30.44 0.0001 

 

*) PCR-RFLP products of the IL-1RN VNTR variants are coded as follows: allele 1 = 4 repeats (size 442-

bp), allele 2 = 2 repeats (280-bp), allele 3 = 5 repeats (528-bp), allele 4 = 3 repeats (356-bp), allele 5 = 6 repeats 

(614-bp). The rare alleles 3, 4 and 5, which represent less than 5% of allelic variants of IL-1RN, were pooled for 

statistical analysis. 

**) The D’ value for the haplotype TNF-A -863/TNF-A -238 is an inflation artifact due to the low frequency 

of the 2-2 haplotype. 

 

 

4.1.1.1 Haplotype analysis 

We observed that patients with ALC showed a significantly higher frequency of the 

[IL-1RN*2/*2; IL-1B -31T+] diplotype, consisting of alleles that increase the production of 

IL-1β in vitro (239, 240), and that the [IL-1RN*2/*2; IL-1B -31T+] diplotype was 

significantly associated with ALC (odds ratio for ALC = 9.45, 95% confidence interval 1.96 

– 45.7, p = 0.006) (Table 4 in Enclosure 1). The association remained significant even after 

correction for testing of multiple statistical hypotheses (Pcorrected = 0.048). This finding would 

suggest that a genetically determined increase in IL-1β signaling contributes to the increased 

susceptibility to alcoholic liver disease. Indeed, in vitro studies have shown that IL-1β 

increases the susceptibility of hepatocytes to cytotoxicity induced by TNF-α, a principal 

cytokine critically involved in the pathogenesis of ALD (215, 277, 278).  

 

4.1.1.2 Single locus analysis 

Analysis of individual genetic variants LBP c.1306T/C, BPI c.645A/G, CD14 -

159C/T, TLR4 c.896A/G, TLR4 c.1196C/T, TNF-A -238G/A, IL-1B -511T/C, IL-1B -31C/T 

and IL-1RN VNTR in our cohort did not show an association with ALC (Table 3 in Enclosure 

1 and Table 2). 
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Table 2. Genotype frequencies in 100 Czech patients with ALC and 180 healthy controls 

(Extension of Table 3 from Enclosure 1). 

  Patients  Controls  Association with alcoholic cirrhosis 

Lokus Genotype n = 100 %   n = 180 %   χ
2
 P OR (CI 95%) 

LBP +1306 T/T 79 79.0  139 0.77    1.00 

 C/T 21 21.0  41 0.23  0.10 0.75 0.91 (0.52 - 1.59) 

 C/C 0 0.0  0 0.00  - - - 

           

BPI +645 A/A 29 0.29  52 0.29    1.00 

 A/G 47 0.47  93 0.52  0.26 0.61 1.09 (0.77-1.55 

 G/G 24 0.24  35 0.19  0.80 0.37 1.31 (0.73 - 2.36) 

4.1.1.3 Validation of positive findings 

The current requirements for the methodology of allelic association studies (279), led 

us to validate the association of the [IL-1RN*2/*2; IL-1B -31T+] diplotype with ALC in 

additional cohorts. Unfortunately, we failed to confirm the association in an extended cohort 

of 198 Czech patients and 370 Czech controls, and in a second cohort of 173 German patients 

and 331 German controls.  

To achieve the highest possible power to detect a true association with ALC, we 

recruited an alternative control group of 109 German heavy drinkers without liver disease. 

These control individuals, who did not develop ALC in spite of heavy alcohol consumption 

(hypernormal controls), are expected to have a low frequency of alleles predisposing to ALC 

and a higher frequency of alleles that protect from the disease. In spite of including 

hypernormal controls, we did not find an association of the [IL-1RN*2/*2; IL-1B -31T+] 

diplotype with ALC (Table 4 in Enclosure 1). It is therefore likely that the initial positive 

finding in the pilot group of 100 patients and 180 controls resulted in an overestimation of the 

true effect size, which was identified as a Type-I error (false positivity) in subsequent 

validation steps. 

 

4.1.2.  Allelic variants in genes involved in the protection against oxidative 

stress 

 

We investigated allelic variants in the genes for SOD2 and UCP2 in 158 German 

patients with ALC and 400 population controls. The genotype frequencies were in HWE with 

the exception of the locus UCP2 +164, which showed a deviation from HWE due to an 
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excessive frequency of homozygotes for the rare A allele, and was therefore excluded from 

the association analysis. We observed a weak LD between the UCP2 -866 and the UCP2 

ins/del 45bp 3’UTR (D’ < 0.5, r
2
 = 0.12) (Table 3). 

 

Table 3. Haplotype frequencies and linkage disequilibrium coefficients for pairs of syntenic 

loci. 

 Haplotype  Linkage disequilibrium 

Locus 1-1 1-2 2-1 2-2  D' r
2
 χ

2
 P 

Patients (n = 158)          

UCP2 -866/UCP2 ins/del 45bp 3´UTR 0.518 0.069 0.170 0.243  0.62 0.25 50.0 0.0001 

          

Controls (n = 400)          

UCP2 -866/UCP2 ins/del 45bp 3´UTR 0.485 0.116 0.193 0.206  0.40 0.12 87.2 0.0001 

  

Analysis of individual genetic variants SOD2 c.47C/T, UCP2 -866G/A and UCP2 

ins/del 45bp 3’UTR did not show an association with ALC (Table 4). Similarly, we did not 

find any difference in distribution of the [UCP2 -866; UCP2 ins/del 45bp 3´UTR] haplotypes 

between patienst and controls (global P value for difference = 0.19), supporting no 

association with ALC. 

 

Table 4. Genotype frequencies in 158 Czech patients with ALC and 400 healthy controls 

  Patients  Controls  

Association with alcoholic 

cirrhosis 

Locus Genotype n = 158 %   n = 400 %*   χ
2
 P OR (CI 95%) 

SOD2 +47 C/C 32 0.20  97 0.24    1.00 

 C/T 95 0.60  199 0.50  0.13 0.72 0.95 (0.73 - 1.24) 

 T/T 31 0.20  104 0.26  2.51 0.11 0.69 (0.44 - 1.09) 

           

UCP2 -866 G/G 51 0.32  133 0.33    1.00 

 G/A 82 0.52  206 0.51  0.10 0.75 1.04 (0.80 - 1.36) 

 A/A 25 0.16  62 0.15  0.01 0.92 1.02 (0.64 - 1.70) 

           

UCP2 ins/del 45bp 3´UTR ins/ins 75 0.47  195 0.49    1.00 

 ins/del 68 0.43  154 0.38  0.09 0.76 0.92 (0.72 - 1.27) 

 del/del 16 0.10  51 0.13  0.74 0.39 0.77 (0.43 - 1.40) 
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4.1.3.  Association of the TNF-A -238G/A allelic variant with alcoholic 

liver cirrhosis (meta-analysis) 

 

In our study, we did not observe any significant association of the TNF-A -238A allele 

with ALC, contrary to previously published studies that suggested an association of this allele 

with alcoholic steatohepatitis (280) and cirrhosis (281). On the other hand, our results were 

compatible with studies that demonstrating no association with ALD (282-285). This 

controversy is likely due to a low frequency of the TNF-A -238A allele (~3%) in the 

population, low power of individual studies to detect a true association of the risk allele with 

ALD, and lack of validation cohorts that would confirm the initial positive findings 

(discussed in (23, 279)). 

Our group was asked by dr. M. Marcos, at the University of Salamanca, Spain, to 

submit the results of the TNF-A -238G/A genotyping to a meta-analysis based on data from a 

total of 11 studies (Marcos et al., Am J Epidemiol 2009;170(8):948-56, our contribution 

acknowledged). Concerning the TNF-A -238G/A polymorphism, the authors found a 

significant association of the TNF-A -238A allele and the risk of alcoholic liver cirrhosis 

(odds ratio = 1.47, 95% confidence interval: 1.05 - 2.07) (286). In spite of a significant 

statistical association of the TNF-A -238G/A with ALD, the low odds ratio (relative risk) 

suggested its weak biological effect in the pathogenesis of ALC.  

 

4.1.4.  Discussion 

 

In our study, we included only those cytokines whose role in the pathogenesis of 

alcohol induced liver injury was proved in animal models and those allelic variants whose 

impact on the expression of the respective gene or the function of the respective protein was 

described in in vitro studies. However, in contrast to published reports (280-284, 287-290), 

we found no association between any of the functionally relevant polymorphisms and the risk 

of alcoholic liver cirrhosis. The only consistent association of an allelic variant involved in 

TLR-dependent signaling with ALC was calculated by Marcos et al. (286) for the TNF-A -

238 locus after pooling more than 800 patients and 1000 controls from 11 different studies, 

including our data (25); however, the low relative risk conferred by this allele suggested its 

minor biological importance. Taken together, our data suggest a limited value of allelic 

association studies in ALD. This notion has two aspects that relate to the methodology of 
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genetic association studies, and to the relative importance of allelic variants in multifactorial 

diseases with strong exogenous causal factors.  

The first explanation refers to the discrepancy between individual single-center 

studies that often fail to conform to the currently accepted guidelines for the design of 

genotype/phenotype association studies (279, 291). The prerequisites for the design of allelic 

association studies include a logical rationale for the chosen candidate genes, coherent 

hypothesis based on the functional significance of the studied genetic variants, inclusion of 

cases and controls with comparable baseline characteristics, assurance of the reliability of 

genetic testing by calculating the HWE, correction for testing of multiple statistical 

hypotheses and a sufficient statistical power (discussed in detail in our recently published 

work (23, 292, 293)). 

In particular, insufficient statistical power to detect a true allelic association represents 

the most obvious explanation for the variability of findings in different studies of the same 

condition. The key quality determinant of an association study is the sample size (279), which 

should be determined by the power calculation in the study-designing phase. Results obtained 

from inadequately powered studies tend to have a decreased probability of detecting a true 

effect of a polymorphism due to the type II error (false negativity). Moreover, for any choice 

of significance level, the proportion of false-positive results among all positive results (type I 

error) is greatly increased as power decreases (294). Our calculation revealed that none of the 

studies reporting an association of polymorphisms in TLR4-induced signaling with ALD 

complied with the current demands for 80% power (280-284, 287-290). Moreover, none of 

the studies included an independent validation cohort, which should be implemented 

particularly in small studies that are likely to overestimate the true effect size (295). 

The second explanation refers to the limited biological role of allelic variants in the 

pathogenesis of multifactorial diseases with a strong exogenous component that induces a 

broad spectrum of pathological interactions. The typical effect sizes of individual genetic 

variants for complex diseases are modest, pertaining to odds ratios of 1.2 – 1.6 (296, 297). 

Using a multivariate regression modeling, we demonstrated that the relative contribution of 

allelic variants to a complex clinical outcome, such as kidney transplant rejection, did not 

exceed 1% and that the majority of risk was attributable to much stronger clinical and 

demographic determinants (276). That would suggest that the genetic component of complex 

diseases relies upon multiple genetic loci with a small relative contribution. Indeed, it has 

been calculated that that the combination of a few genetic variants (10 to 20) at multiple loci, 

each with a small effect size (odds ratio of about 1.5), may account for a substantial 
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proportion of the population attributable fraction for many common diseases (298). 

Unfortunately, the calculated sample size that would enable association analysis of multiple 

allelic variants with small effect size encompasses between 50000 – 100000 individuals to 

answer questions even of modest complexity (296). Clearly, this requirement is beyond the 

sample size of the two recent meta-analyses on genetic predisposition for alcoholic liver 

disease (233, 286), and even the single largest general-purpose observational cohorts and 

biobanks (299, 300) would be challenged to meet these numbers. 

A novel approach to identification of candidate genes involved in the pathogenesis of 

complex diseases is represented by the genome-wide association studies (GWAS) (301). 

Among the GWAS publications, twelve are concerned with hepatological conditions, 

including NASH. A recent GWAS demonstrated a genetic association of the rs738409 locus 

in the PNPLA3 gene, encoding adiponutrin, with NASH (302). Prompted by these results, 

another research team has currently found a strong association of the rs738409 locus with 

alcoholic liver cirrhosis in Mestizo individuals in Mexico City (303). However, the authors 

restricted the analysis to the genomic region surrounding the PNPLA3 locus and did not 

analyze any allelic variants relevant to the signaling mediated by Toll-like receptors. 

The original idea behind the allelic association studies was that testing of candidate 

alleles would enable a reliable assessment of genetically determined individual risk for a 

particular disease and enable an early intervention. From that perspective, our data and 

studies of others (23, 280-282, 286, 288, 303-305) available so far are disappointing and can 

hardly be used for any predictive modeling. 

In conclusion, our results imply that although there is a little doubt that cytokine- 

mediated immune reactions play a role in the pathogenesis of ALC, hereditary susceptibility 

caused by variants in key genes involved in TLR4-mediated liver injury seems to be low, or 

at least such is the case in central European population (23). It remains possible that genetic 

predisposition to alcoholic liver cirrhosis is determined by multiple polymorphisms with a 

low individual contribution to the phenotype that cannot be assessed in allelic association 

studies. Alternatively, other as yet unidentified polymorphisms may significantly affect the 

risk of alcoholic liver cirrhosis. Therefore, identification of such polymorphisms warrants 

future large-scale, multicentric studies that will be fully compliant with the currently accepted 

standards for genetic association studies. 
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4.2.  Specific aim B - The cell-specific role of the interferon 

regulatory factor (IRF3) in the pathogenesis of alcoholic liver 

disease 

 

Enclosure 2: Petrasek J, Dolganiuc A, Nath B, Hritz I, Kodys K, Catalano D, et al. 

Hepatocyte-specific IRF3 and Type I interferons are protective in alcohol-induced liver 

injury in mice via cross-talk with macrophages. 2010; Manuscript submitted. 

 

TLR4 recognizes LPS and activates two signaling pathways by utilizing the adaptor 

molecules MyD88 and TRIF, respectively. Previously, it was showed that MyD88 is 

dispensable in ALD (182). In addition to induction of inflammatory cytokines via NF-κB, 

MyD88-independent activation of TLR4 triggers production of Type I IFNs, which is largely 

dependent on activation of intracellular pathways involving the IRF3 (32). 

 

4.2.1. Summary of results 

 

To study the role of IRF3 in the pathogenesis of alcohol-induced liver injury, we fed 

wild-type mice (WT), Irf3-deficient mice (IRF3KO), WT mice with transplanted WT bone 

marrow (WT/WT-BM), WT mice with Irf3-KO transplanted bone marrow (WT/IRF3KO-

BM) and IRF3KO mice with transplanted WT bone marrow (IRF3KO/WT-BM) with Lieber-

DeCarli diet (5% v/v ethanol) or control diet for 4 weeks.  

Alcohol feeding resulted in liver injury, steatosis and induction of inflammatory 

cytokines in WT mice but not in IRF3KO mice. As this finding suggested that IRF3 is 

involved in the pathogenesis of ALD, we tested the selective contribution of Irf3 in BM-

derived cells (WT/IRF3KO-BM mice) and in hepatocytes (IRF3KO/WT-BM mice). We 

observed that the WT/IRF3KO-BM chimeras showed partially ameliorated alcohol-induced 

liver injury and induction of inflammatory cytokines, compared to WT/WT-BM controls, 

supporting a proinflammatory role of IRF3 in BM-derived cells in ALD (184). 

In contrast, IRF3KO/WT-BM chimeras fed with alcohol showed increased liver 

injury, steatosis and serum inflammatory cytokines, but a significantly decreased expression 

of Type I IFNs and IL-10, an anti-inflammatory cytokine, compared to WT mice. Co-cultures 

of primary hepatocytes and primary mononuclear cells isolated from WT, Irf3 and Type I 
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IFN receptor α/β–deficient mice demonstrated that hepatocyte-derived IFN-β, dependent of 

IRF3, induces anti-inflammatory IL-10 and suppressed TNF-α and IL-1β in liver 

macrophages in paracrine manner. 

 

4.2.2. Discussion 

 

The study on the role of IRF3 in the pathogenesis of ALD is an extension of the 

previous study that has demonstrated that MyD88 is dispensable for TLR4-mediated ALD 

(182), and that suggested a dominant role for the TRIF-dependent pathway, mediated by 

IRF3. Indeed, the data from the present study demonstrate a complete protection from 

alcohol-induced liver injury in mice with global deficiency for Irf3, as documented by 

decreased liver injury, steatosis and induction of inflammatory mediators, compared to wild-

type mice (24). The results therefore confirm the hypothesis IRF3 is indispensable for the 

pathogenesis of ALD, and suggest that IRF3 is the key transcription factor mediating the pro-

inflammatory effect of the TLR4-/TRIF-dependent signaling. In addition, the study presents 

several novel concepts suggesting a protective role of IRF3 in hepatocytes, mediated by Type 

I IFNs, and emphasizes the active role of hepatocytes in modulating the extent of the innate 

immune response elicited by LPS/TLR4. 

 

4.2.2.1. The role of macrophage-specific IRF3 in induction of pro-inflammatory 

cytokines 

Chronic ethanol abuse results in the development of steatosis, hepatitis and cirrhosis. 

Augmented TNF-α production by macrophages and Kupffer cells and signaling via the TNF-

α receptor has been shown to be critical for these effects of chronic ethanol; however, the 

molecular mechanisms leading to augmented TNF-α production remain unclear. Using cell 

culture models and in vivo studies, Zhao et al. (184) demonstrated that chronic feeding with 

ethanol resulted in increased TNF-α transcription, which was independent of NF-κB. Using 

reporter assays and chromatin immunoprecipitation, they found that this increased 

transcription was attributable to increased IRF3 binding to and transactivation of the TNF-A 

promoter. As IRF3 is downstream from the TLR4 adaptor TRIF, Zhao et al. (184) 

demonstrated that macrophages from Trif-/- mice were resistant to upregulation of TNF-α 

transcription by ethanol in vitro as well as ethanol-induced steatosis and TNF-α upregulation 

in vivo.  
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These data were consistent with previous findings that the promoter of TNF-A 

contains an IRF3 specific transcription site (306), and with our finding that absence of IRF3 

protected mice from alcohol-induced liver injury (24). Taken together, these findings suggest 

that the synergy of NF-κB and IRF3 plays a central role in induction of the inflammatory 

component seen in alcohol-induced liver diseases, and support the current concept of 

synergistic activation of cytokines enabled by concomitant binding of multiple transcription 

factors, enabling context-specific fine tuning of inflammatory response (307). 

 

4.2.2.2. Activation of IRF3 and induction of IFN-β in hepatocytes 

The exaggerated liver inflammation and injury observed in Irf3-deficient mice with 

transplanted wild-type bone marrow suggested a protective role of IRF3 in liver parenchymal 

cells. Given the fact that a majority of liver parenchymal cells is represented by hepatocytes, 

we hypothesized that the protective role of hepatocyte-specific IRF3 is mediated by IFN-β 

upon LPS activation. 

Indeed, hepatocytes have been shown to uptake and eliminate endotoxin from portal 

and systemic circulation (112). A study using primary mouse cultured hepatocytes 

demonstrated that hepatocytes expressed TLR1 through TLR9 as well as MyD88 and MD-2 

transcripts, indicating that hepatocytes express all known PAMP recognition molecules. In 

addition, hepatocytes stimulated with LPS showed activation of NF-κB; this activation was 

reduced in TLR4-mutant or null hepatocytes compared to control hepatocytes, and this defect 

was partially restored by adenoviral transduction of mouse TLR4 (115). 

We observed that stimulation of primary mouse hepatocytes with LPS induced IFN-β 

in wild-type primary mouse hepatocyte cultures; Irf3-deficient hepatocytes did not show any 

induction of IFN-β (Fig. 4 in Enclosure 2). This novel finding of TLR4/IRF-3 –dependent 

induction of IFN-β in hepatocytes supports previous reports demonstrating the capacity of 

hepatocytes to produce IFN-β (225). 

To ensure that the production of IFN-β from primary hepatocyte cultures is not 

attributable to contaminating cells, we stained the isolated primary hepatocytes with markers 

specific for monocytes/macrophages (CD68), hepatic stellate cells (glial fibrillary acidic 

protein – GFAP), hepatocytes (albumin) and cholangiocytes (cytokeratin 7). Flow cytometry 

analysis demonstrated more than 95% purity of primary hepatocyte cultures with less than 

5% contamination with other cell types (Fig. 1) 

 



70 

 

 

Fig. 1. Representative flow cytometry histograms and scatter plots documenting high purity of primary 

hepatocyte isolates. Primary hepatocytes isolated from wild-type mice were stained with antibodies against 

CD68-FITC (monocyte/macrophage specific) and GFAP-Alexa fluor 488 (hepatic stellate cells specific); 

intracellular staining for albumin-FITC (hepatocyte specific) and CK7-PE (cholangiocytes-specific) was performed 

after previous cell fixation and permeabilization. Gating is based on the respective isotype controls. We used 

primary Kupffer cells as a positive control for CD68 staining. No positive control was available for GFAP staining.  

 

 

4.2.2.3.  The role of crosstalk between hepatocytes and immune cells in anti-

inflammatory signaling in the liver 

 

Chronic consumption of alcohol is linked to liver steatosis and inflammation in 

humans as well as in experimental models. Whereas activation of TLR4-dependent pathways 

by gut-derived LPS and induction of inflammatory cytokines has been traditionally attributed 

to bone marrow-derived Kupffer cells (22), the role of crosstalk between parenchymal and 

non-parenchymal (bone marrow-derived cells) in alcohol-induced liver injury remains 

elusive.  
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We demonstrated that liver response to TLR ligands is a multistep process: 

hepatocyte-specific IRF3 drives Type I IFN induction in the liver and hepatocyte-derived 

Type I IFNs lead to modulation of inflammatory cytokines in BM-derived cells. We suggest 

that the paracrine link between hepatocyte-derived Type I IFNs and monocyte-derived 

inflammatory cytokines is critically regulated by the anti-inflammatory IL-10 produced by 

liver leukocytes. Indeed, the IL10 gene contains a Type I IFN-responsible transcription site in 

its promoter that increases production of IL-10 (308). 

One could also assume that liver mononuclear cells stimulate hepatocytes to produce 

very large amounts of IL-10, and that hepatocytes are the source of the majority of IL-10 

reported in our manuscript (24). However, our additional data showed that even 

supraphysiological stimulation of primary hepatocytes with LPS, phorbol-myristoyl acetate, 

ionomycin and brefeldin A did not induce IL-10 in hepatocytes (Fig. 2). Therefore, we favor 

the hypothesis that the primary producing cell type of IL-10 in the liver is the mononuclear 

cell population. 

 

 

 

 

 

 

 

 

Taken together, our results underscore the paracrine cross-talk between hepatocytes 

and liver leukocytes that fine-tunes the hepatic response to alcohol-induced injury. These 

findings also highlight that hepatocytes are not simply targets of inflammatory cytokines, but 

function also as early responders to LPS. The findings are also especially novel because they 

place hepatocytes at the crossroads of innate immunity regulation in the response to liver 

injury. 

Fig. 2. Lack of IL-10 induction in primary mouse hepatocytes. Primary hepatocytes isolated from 

WT mice were stimulated with LPS for 12 hours, and with phorbol myristoyl acetate and ionomycin for 

the last 6 hours of stimulation. Brefeldin A was added for the last four hours of stimulation. Cells were 

washed, fixed, permeabilized, stained with anti-IL10 (Alexa fluor 488 – Fl1) and subjected to flow 

cytometric analysis. Representative histogram from N=3 mice is shown. The anti-IL-10 antibody was 

previously validated using RAW264.7 macrophages as positive controls. 
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4.2.2.4  Incomplete protection from alcoholic liver injury in mice with bone marrow-

specific deficiency in IRF3 

Our finding that global Irf3 deficiency protected mice from alcohol-induced liver 

injury, whereas Irf3 deficiency selective for parenchymal cells aggravated liver injury 

suggested that the pro-inflammatory effect of IRF3 is specific for bone-marrow derived cells. 

That would be expected, given the fact that bone marrow-derived cells, in particular Kupffer 

cells, are considered the key cell population involved in inflammatory signaling in the liver 

(135, 136). To prove this hypothesis, we fed WT mice transplanted with Irf3-deficient bone 

marrow (WT/IRF3KO-BM) with alcohol. Surprisingly, we observed only partial protection 

from alcohol-induced liver injury, documented by serum ALT and histology, compared to 

wild-type animals (Fig. 3). On the other hand, alcohol fed WT/IRF3KO-BM mice did not 

show any increase in the proinflammatory cytokines TNF-α and IL-1β, compared to pair-fed 

animals (Fig. 3). 

Based on the incomplete protection from alcohol-induced liver injury in 

WT/IRF3KO-BM mice, it could be speculated that BM transplantation to wild-type mice did 

not lead to a complete reconstitution with IRF3-KO bone marrow. However, our data do not 

favor this notion; instead, we demonstrate replacement of wild-type bone marrow-derived 

cells with cells deficient in IRF3 (Fig. 4).  

In addition, the discrepancy between incomplete protection from alcohol-induced 

injury and complete absence of upregulation of inflammatory cytokines in WT/IRF3KO-BM 

mice fed with alcohol might suggest that IRF3 may have additional roles, which are 

independent of innate immune signaling. Indeed, such role has been recently proposed by 

Chattopadhyay et al. (309), who showed that IRF3 has a pro-apoptotic function independent 

of its transcriptional activity. Therefore, one could hypothesize that the complete protection 

from alcohol-induced liver injury, observed in mice globally deficient in IRF3, might be a 

joint result of absent induction of inflammatory cytokines in IRF3-deficient bone-marrow 

derived cells, and of a survival advantage of hepatocytes that lack the pro-apoptotic IRF3. 

This hypothesis is currently under investigation. 

An alternative explanation could be that the pro-inflammatory role of IRF3 in the 

livers exposed to alcohol is also exerted by cells with inflammatory capacity that are not 

derived from bone marrow. Hepatic stellate cells, the key cell type involved in liver 

fibrogenesis, may be a likely candidate: a recent study demonstrated that hepatic stellate cells 
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express TLR4 and promptly respond to LPS stimulation in vitro and in vivo (13). However, to 

the best of our knowledge, no data on IRF3 signaling in hepatic stellate cells has been 

published yet. 

 

 

Fig. 3. Incomplete protection from alcohol-induced liver injury in mice with selective deficiency of IRF3 in 

bone-marrow derived cells. Figure represents an extension of Figure 2 from Enclosure 2. Wild-type mice with 

transplanted WT bone marrow (WT/WT-BM), Irf3-deficient mice with transplanted wild-type bone marrow (IRF3-

KO/WT-BM) and WT mice with transplanted IRF3-KO bone marrow (WT/IRF3KO-BM) were fed Lieber DeCarli 

ethanol or control (pair-fed) diet and sacrificed after 4 weeks. Livers were stained with H&E; magnification 200x 

(A). Serum ALT levels (B) and liver triglycerides (C) were analyzed. Messenger RNA levels of liver (D) tumor 

necrosis factor α (TNFA), (E) interleukin 6 (IL-6) and (F) interleukin-1β (IL-1β) were analyzed by real-time PCR 

and normalized to 18s. Liver IL-1β levels were analyzed using ELISA (G). Values are shown as mean ± SEM fold 

increase over wild-type pair-fed control group (5-7 mice per group). Numbers in graphs denote p values; *) p < 

0.05 vs. pair-fed wild-type mice; #) p < 0.05 vs. ethanol-fed wild-type mice. 
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Fig. 4. Engraftment of transplanted bone-marrow was confirmed from DNA isolated from peripheral blood 

using primers specific for wild-type and truncated form of IRF3. Samples 20, 21, 22 together with the WT 

and IRF3-/- control samples were run in a different row of the same agarose gel and were collated to the rest of 

the samples to enable comparison. 

 

 

4.2.3 Conclusion 

 

In conclusion, our results demonstrate a cell-specific role of IRF3 in the pathogenesis 

of alcoholic-induced liver injury. Global Irf3 deficiency confers protection from liver injury 

induced by alcohol, most likely as a result of reduced induction of pro-inflammatory 

cytokines. On the other hand, hepatocyte-specific IRF3 activation and type I IFN induction 

have protective effects in ALD. Disruption of IRF3 in hepatocytes decreases type I IFN 

induction and increases liver injury due to dysregulated expression of pro- and anti-

inflammatory cytokines (24). 

The results therefore confirm the hypothesis IRF3 is indispensable for the 

pathogenesis of ALD, and suggest that IRF3 is the key transcription factor mediating the pro-

inflammatory effect of the TLR4- /TRIF-dependent signaling. In addition, the study 

emphasizes the active role of hepatocytes in modulating the extent of the innate immune 

response elicited by LPS/TLR4. 
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4.3.  Specific aim C - The role of probiotics in modulation of 

fibrosis in non-alcoholic steatohepatitis 

 

Enclosure 3: Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, 

Mandrekar P, et al. VSL#3 probiotic treatment attenuates fibrosis without changes in 

steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 

2009;49:989-997. 

 

Non-alcoholic fatty liver disease and NASH are frequent causes of chronic liver 

diseases in Western world. NASH features the metabolic syndrome and liver inflammation. 

Individuals with advanced stages of NASH develop fibrosis, which may progress to cirrhosis 

and to end-stage liver disease (247). Given the fact that gut-derived bacterial components 

contribute to the pathogenesis of NASH, modulation of intestinal microbiota could represent 

a potential therapeutic approach in NASH.  

 

4.3.1.  Summary of results 

 

We tested the hypothesis that probiotic VSL#3 may ameliorate the MCD diet–induced 

mouse model of NASH. MCD diet resulted in NASH in WT mice compared to MCS diet 

feeding. This was evidenced by liver steatosis, increased triglycerides, inflammatory cell 

accumulation, increased TNF-α levels, and fibrosis. The VSL#3 probiotic diet failed to 

prevent MCD-induced liver steatosis or inflammation. In contrast, VSL#3 treatment 

ameliorated MCD diet–induced liver fibrosis resulting in diminished accumulation of 

collagen and α-smooth muscle actin. Thus, VSL#3 treatment prevented fibrosis in the MCD 

diet-induced NASH without significant attenuation of the ongoing steatohepatitis. This 

observation supports the concept that in vivo fibrosis and steatohepatitis can be regulated 

independently (310), and points to a potentially new therapeutic application of VSL#3. 

 

4.3.2.  Discussion 

The current concept of the mechanism of NASH favors a model in which steatosis 

and steatohepatitis are induced as a result of fatty acid overload and inflammation, leading to 

subsequent activation of HSCs that produce extracellular matrix and lead to liver fibrosis 
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(22). Activation of HSCs is induced by multiple insults, including TNF-α and transforming 

growth factor beta (TGF-β) (16). We identified increased production of TNF-α production in 

mice with MCD diet-induced NASH, which remained elevated in MCD + VSL#3-treated 

mice in agreement with previous reports (247). Also, we identified that MCD diet 

upregulated TGF-β, a known activator of HSCs. Because TGF-β regulates collagen 

production (13), increased TGF-β could contribute to the MCD-induced liver fibrosis.  

VSL#3 inhibited fibrosis and, importantly, triggered the production of Bambi, a 

transmembrane protein highly similar to TGFβ receptors (13). In contrast to regular TGFβ 

receptor, the intracellular domain of Bambi lacks a serine/threonine kinase domain that is 

essential for transducing TGF-β signals; thus, Bambi functions as a pseudoreceptor and acts 

as a negative regulator of TGF-β signaling pathway. To date, the mechanisms of Bambi 

regulation are not fully understood. However, several authors reported that Bambi is 

regulated via NF-κB–dependent mechanisms (13, 311). We report increased NF-κB activity 

and elevated expression of Bambi in MCD diet–fed VSL#3-treated group compared to 

controls fed the MCD diet alone. Further, Bambi RNA changes mirror the protein levels, and 

Bambi expression is restricted to HSCs. Thus, in the presence of VSL#3, high levels of 

Bambi could prevent TGF-β-induced signals, and control the unrestricted activation of HSCs 

by ongoing inflammation. These data are in agreement with those of Seki et al. (13), who 

showed that down-regulation of Bambi mRNA and protein expression, and subsequent 

sensitization to TGF-β signals, is mediated by a MyD88/NF-κB–dependent pathway and 

occurs with ongoing liver inflammation. 

 

4.3.3. Conclusion 

 

In summary, our data indicate that VSL#3 modulates liver fibrosis but does not 

protect from inflammation and steatosis in NASH. The mechanisms of VSL#3-mediated 

protection from MCD diet–induced liver fibrosis likely include modulation of collagen 

expression and impaired TGF-β signaling (312). Our results suggest that the beneficial effect 

of the VSL#3 probiotic treatment on fibrosis in the NASH model may occur even in the 

absence of significant changes in markers of inflammation and fat in the liver. 
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4.4.  Specific aim D – The protective role of Type I interferons in 

TLR9-associated liver injury 

 

Enclosure 4: Petrasek J, Dolganiuc A, Csak T, Kurt-Jones E, Szabo G. Type I 

Interferons Protect from Toll-like Receptor 9-Associated Liver Injury and Regulate IL-1 

Receptor Antagonist in Mice. Gastroenterology 2010, doi. 10.1053/j.gastro.2010.08.020. 

 

TLR9-dependent liver inflammation and injury is involved in the pathogenesis of 

alcoholic liver disease(174), non-alcoholic steatohepatitis (249), acetaminophen-induced liver 

injury (11), primary biliary cirrhosis (9) and primary sclerosing cholangitis (10), as well as in 

pathological processes such as liver fibrosis (313), liver cirrhosis (16), ischemia-reperfusion 

injury (14), and liver graft rejection (15), Thus, TLR9 holds the common link between 

different processes which lead to liver diseases; therefore, unraveling the pathogenesis of 

TLR9-induced liver injury may aid in identification of novel, efficient pathogenesis-based 

management or cure. 

 

4.4.1.  Summary of results 

 

We investigated the role of Type I IFNs and Type I IFN-dependent downstream 

mediators in regulation of TLR9-associated liver injury. We evaluated liver injury and 

inflammation in wild-type (WT), Irf7-deficient (IRF7-KO) or IFN α/ß receptor 1 –deficient 

(IFNAR1-KO) - mice in a model of TLR9-dependent injury following intraperitoneal 

injection of TLR9 (CpG DNA) plus TLR2 (lipoteichoic acid) ligands. 

We observed that Type I IFNs were upregulated during TLR9-associated liver injury 

in WT mice. IRF7- and IFNAR1-deficient mice, that have disrupted Type I IFN induction 

and signaling, respectively, exhibited exaggerated TLR9-induced liver damage and 

inflammation, associated with significantly lower recruitment of dendritic cells into the liver, 

and increased production of TNF-α by LMNCs. These findings indicated that Type I IFNs 

have anti-inflammatory activities in liver.  

Interleukin 1-receptor antagonist (IL-1ra), which is produced by LMNCs and 

hepatocytes, is an IFN-regulated antagonist of the pro-inflammatory cytokine IL-1β. We 

identified decreased IL-1ra in IRF7- and IFNAR1-deficient mice downstream of TLR9, 

compared to WT mice, suggesting an imbalance in IL-1β/IL-1ra signaling and preferential 
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proinflammatory activation. IL-1ra protected cultured hepatocytes from IL-1β-mediated 

sensitization to cytotoxicity from TNF-α. In vivo administration of Type I IFN to WT mice 

induced IL-1ra and significantly ameliorated TLR9-associated liver injury. The protective 

role of IL-1ra was confirmed in vivo where administration of recombinant IL-1ra protected 

against TLR9-associated liver injury suggesting that the anti-inflammatory effect of Type I 

IFNs could be mediated by IFN-dependent induction of IL-1ra.  

 

4.4.2. Discussion 

 

An important role for TLR9 is recognized in a variety of liver disease and this makes 

the current novel finding (Enclosure 4) of significance. In our model of TLR9-induced liver 

injury, we have convincingly shown an IRF7-mediated increase of Type I IFNs resulting in a 

significant reduction in liver injury by upregulation of IL-1ra. In the framework of our 

research projects, this is the second set of experiments that provides evidence for anti-

inflammatory role of Type I IFNs in the liver. In addition, the present study presents novel 

concepts: First, both liver mononuclear cells and hepatocytes are the cellular sources of IL-

1ra in the liver. Second, Type I IFNs are involved in sensitization of hepatocytes to cell death 

induced in the context of TLR9-associated liver injury, and IL-1ra has a protective effect in 

this process. Third, recruited inflammatory cells are sensitized to induce tumor necrosis factor 

α after TLR9 priming in IRF7- and IFNAR1-dependent manner. Last, dendritic cells are 

preferentially recruited to TLR9-induced liver in a CCL21/CCR7-dependent manner. 

 

4.4.2.1. The TLR9-associated liver injury model used in our research project 

Although the current model is being presented as TLR9-associated liver injury, three 

TLR agonists are being used (TLR9, TLR2 and TLR4). Our recent and previous (173, 257) 

data show that liver inflammation and injury induced in this model are primarily dependent 

on TLR9; liver damage elicited by CpG is aggravated by co-stimulation with TLR2 and a 

secondary stimulation with TLR4. Of these TLRs, TLR2, 4 and 9 activate the MyD88-

dependent pathway, while IRF3 activation is exclusive to TLR4. Type I IFN and IRF7 

induction can occur via both TLR9 and TLR4 (314). 
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4.4.2.2.  The contribution of IRF7 and IFNAR1 to the sensitization of hepatocytes to 

cell death 

Our findings of increased liver inflammation and damage suggested a protective role 

of IRF7 and IFNAR1 in cell death of hepatocytes. To address this question, we isolated 

hepatocytes from WT, IRF7 and IFNAR1-deficient mice treated in vivo with saline or 

CpG+LTA (Fig. 1). Ex vivo culture of saline-treated WT hepatocytes on collagen-coated 

plates for 24 hours lead to some LDH release, suggestive of cell death. LDH release was 

significantly lower in IRF7- and IFNAR1-deficient hepatocytes compared to WT. These 

findings indicated that absence of IRF7 and IFNAR1 in hepatocytes per se does not induce 

spontaneous hepatocyte death. In contrast, IRF7- and IFNAR1-deficient hepatocytes isolated 

from CpG+LTA-primed mice showed a significantly higher LDH release, compared to WT 

hepatocytes (Fig. 1). These findings indicated that absence of IRF7 and IFNAR1 in 

hepatocytes is involved in sensitization of hepatocytes to cell death induced in the context of 

TLR9-associated liver injury. These data provided us with the background to explore the 

mechanistic aspects of the phenomenon. 

 

 

 

 

 

 

 

 

 

 

 

To further dissect the mechanism, we tested the hypothesis that the increased 

sensitivity of hepatocytes to death is a consequence of enhanced pro-inflammatory signals in 

IRF7- and IFNAR1-deficient mice and/or of insufficient anti-inflammatory signals. This 

hypothesis derived from our observation of significantly enhanced ex vivo induction of TNF-

α in liver mononuclear cells isolated from IRF7- and IFNAR1-deficient mice, compared to 

WT mice (Fig. 6B in Enclosure 4), thus we further asked whether TNF-α per se could 

contribute to hepatocyte death. Consistent with previous reports that healthy hepatocytes are 

Fig. 1. WT, IRF7- and IFNAR1-deficient mice were primed with 

saline or CpG+LTA i.p. After 3 days, primary hepatocytes were 

isolated and plated on collagen-coated plates. LDH release into 

cell culture supernatant was measured after 24 hours and 

normalized to total LDH. Representative values from total n= 4 

per group are shown as average ± SEM. *) P <0.05 vs WT 

control, #) P < 0.05 vs WT CpG+LTA. 
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resistant to stimulation with TNF-α alone (215), we observed that increasing doses of 

recombinant TNF-α did not induce death in WT hepatocytes (Fig. 6D in Enclosure 4).We 

also noted that IL-1β, which has been induced in our model of TLR9-associated liver injury 

(Fig. 5A,B in Enclosure 4), could sensitize hepatocytes to cell death induced by TNF-α (Fig. 

6D,E in Enclosure 4). We further report that pretreatment with recombinant IL-1ra 

significantly decreased WT hepatocyte death induced by IL-1β and TNF-α (Fig. 6D,E in 

Enclosure 4). Based on these data, we conclude that the protective role of IRF7 and IFNAR1 

in hepatocyte death in TLR9-associated liver injury is mediated by Type I IFN-dependent 

induction of IL-1ra, which opposes the IL-1β –dependent sensitization of hepatocytes to 

TNF-α –induced cell death. 

 

4.4.2.3.  Cell types recruited into the TLR9-associated liver inflammatory infiltrates 

The increased inflammatory infiltration in IRF7- and IFNAR1-deficient mice 

stimulated with TLR9 + TLR2 ligands, compared to WT animals, lead us to investigate the 

types of recruited inflammatory cells. We employed flow cytometry analysis and observed 

that both WT and IFNAR1-KO mice showed comparable proportion/activation of 

monocytes/macrophages, as indicated by the expression of CD68 (Fig. 4A in Enclosure 4). 

This finding was compatible with the lack of significant differences in expression of 

chemokines and chemokine receptors (Supplementary Fig. 1 in Enclosure 4) involved in 

trafficking of monocytes/ macrophages. In contrast, we observed a significantly decreased 

recruitment of myeloid and plasmacytoid dendritic cells in IFNAR1-deficient animals (Fig. 

4B in Enclosure 4). This finding suggested a role of Type I IFNs in recruitment of dendritic 

cells in the context of TLR9-associated injury.  

To search for possible explanation, we analyzed liver expression of the chemokine 

ligand 21 (CCL-21) and its receptor CCR7, which are critically involved in trafficking of 

dendritic cells (315), and observed a significant downregulation of CCL-21 in the livers of 

IFNAR1-deficient mice (Fig. 4C,D in Enclosure 4).  

Our finding of decreased CCL-21 expression in the liver of mice deficient in IFNAR1 

implied involvement of Type I IFNs in regulation of this chemokine. We further performed a 

database search (Genecards) which showed that the gene for human CCL-21 contains a Type 

I IFN-responsive element for IRF7 in its promoter (Fig 2). CCL-21 is a chemokine produced 

predominantly in lymphatic endothelium or in high endothelial venules in liver portal tracts 

(316). Using a murine lymphatic endothelium cell line SVEC4-10, we demonstrated that 
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IFN-α significantly induced CCL-21 (Fig. 3). Our data suggest a novel Type I IFN-dependent 

mechanism for dendritic cell recruitment into the liver mediated by CCL-21. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.4.  Mechanisms of sensitization of TLR9+TLR2 ligands to LPS 

Our results have shown that administration of LPS to mice previously primed with 

TLR9 + TLR2 ligands significantly aggravated liver injury. This finding led us to the 

hypothesis that recruited inflammatory cells are sensitized after TLR9+TLR2 treatment. We 

observed that LMNCs isolated from mice pretreated with TLR9+TLR2 ligands in vivo and 

stimulated with LPS ex vivo showed a significant induction of TNF-α and IL-1β, compared to 

cells from non-sensitized mice ex vivo stimulated with LPS, or in comparison to cells from 

sensitized mice without ex vivo stimulation (Fig. 6B,C in Enclosure 4). We observed 

significantly higher production of TNF-α after ex vivo stimulation with LPS, in cells isolated 

from CpG+LTA-primed mice deficient in IRF7 or in IFNAR1 compared to cells isolated 

from WT mice (Fig. 6B in Enclosure 4). Production of IL-1β (Fig. 6C in Enclosure 4) did not 

differ between genotypes, which is in line with distinct regulatory mechanisms involved in 

regulation of TNF-α vs. IL-1β (317).  

 

4.4.2.5.  The role of dendritic cells in liver damage/inflammation/fibrosis 

In our study, we observed a significantly decreased recruitment of both conventional 

and plasmacytoid dendritic cells into the liver of IFNAR1-deficient mice with TLR9-

associated liver injury, compared to wild-type mice. This finding suggested that dendritic 

cells may have a protective role in the liver. However, Yoneyama et al. (316) demonstrated 

that dendritic cell infiltration is essential for formation of inflammatory infiltrate and 

inducing Th1 type inflammatory response in Propionibacterium acnes treated livers (CpG + 

Fig. 2. Position of the ISGF-3 binding site in human 

CCL21 gene promoter. Adapted from Genecards 

(www.genecards.org), accession number GC09M034699. 

Accessed 7/2010. 

 

Fig. 3. Murine SVEC4-10 cells were stimulated 

with mouse IFN-α2b for 6 hours. Protein levels 

of CCL-21 were measured using ELISA. Values 

are shown as mean ± SEM. 

http://www.genecards.org/
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LTA model mimics this model). In addition, Connolly et al. (140) demonstrated that 

depletion of dendritic cells reduced liver fibrosis, indicating that dendritic cells induce 

inflammation. Therefore it is unclear whether dendritic cells are required for pro-

inflammatory or anti-inflammatory signaling in the liver. 

Consistent with earlier observation (173), TLR9-induced inflammatory infiltrates that 

require dendritic cell recruitment to the liver (318), amplified pro-inflammatory cytokine 

induction by LPS. Our data therefore support the previously reported pro-inflammatory role 

of dendritic cells (316). On the other hand, our novel data indicate a yet unrecognized dual 

role for dendritic cells by providing anti-inflammatory signals in the liver. Our data also 

imply a potential role of CCL-21 and CCR7 in liver injury. To the best of our knowledge, the 

role of inactivation of this chemokine/chemokine receptor pair is currently unknown. 

 

4.4.3. Conclusion 

 

In summary, our findings imply that the endogenous anti-inflammatory signaling 

induced by Type I IFNs and mediated by IL-1ra regulates the extent of TLR9-induced liver 

damage, and support the indispensable role of Type I interferon signaling in immune-

mediated liver injury. Our data also suggest a potential role for IL-1ra in therapy of TLR9-

associated liver diseases. 
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5. Conclusions 

 

Within the subject of Toll-like receptors in the pathogenesis of liver injury, our work resulted 

in and contributed to the following points: 

 

A.We determined that hereditary susceptibility caused by common variants in genes involved 

in TLR4-induced pathogenesis of alcoholic liver cirrhosis is low in central European 

population. 

a. Small or pilot allelic association studies frequently result in positive findings that are 

not replicable in larger cohorts. 

b.  Performing allelic association studies in meta-analyses or multicentric studies 

increases the probability of detecting a true positive association; however, statistically 

significant results from such studies may be of low biological significance in the 

context of stronger demographic and clinical determinants.  

 

B. We showed that hepatocyte-derived Type I interferons play anti-inflammatory role in the 

pathogenesis of alcohol-induced liver disease in mice. 

a.  The pathogenesis of alcohol-induced liver disease is critically dependent on the 

interferon regulatory factor 3 (IRF3), an alternative downstream mediator of TLR4 

activation. 

b. IRF3 in bone-marrow derived cells in the liver has pro-inflammatory role in alcohol-

induced liver disease. 

c.  Hepatocyte-specific IRF3 is protective in alcohol-induced liver disease by means of 

induction of Type I IFNs that induce the anti-inflammatory IL-10 in mononuclear 

cells, thus diminishing the extent of alcohol-induced liver inflammation and injury. 

d.  In the context of alcohol-induced liver disease, the crosstalk between hepatocytes and 

bone-marrow derived cells is critical in regulating the extent of liver inflammation 

and damage induced by ethanol. 
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C. We demonstrated a differential effect of probiotic diet on inflammation and liver fibrosis 

in non-alcoholic steatohepatitis (NASH) model in mice. 

a.  VSL#3 probiotic diet did not show any effect on TLR4-dependent inflammatory 

signaling, inflammation and steatosis in NASH. 

b.  VSL#3 probiotic diet significantly ameliorated NASH-associated liver fibrosis. This 

effect likely involved modulation of collagen expression and impaired TGF-β 

signaling. 

c.  Our results suggest that, at least in the NASH model, the benefit of the VSL#3 

treatment on fibrosis may occur even in the absence of significant changes in markers 

of inflammation and fat in the liver. 

 

D. We identified a protective role of Type I IFNs in immune-mediated liver injury induced by 

TLR9 signaling. 

a.  Type I IFNs are significantly induced in TLR9-associated liver diseases 

b.  Absence of Type I IFN induction or signaling substantially aggravated TLR9-

associated liver inflammation and injury, increased production of inflammatory 

cytokines by liver mononuclear cells, and decreased the expression of interleukin 1-

receptor antagonist, which is a Type I IFN-dependent anti-inflammatory cytokine. 

c.  Our results demonstrated a critical anti-inflammatory and protective role of Type I 

IFNs and Interleukin-1 receptor antagonist in immune-mediated liver injury and 

suggest potential therapeutic implications. 
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  Papers with first authorship: 22.7 
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9. Marcos M, Bala S, Kodys K, Catalano D, Petrasek J, et al . MicroRNA-155 in 

Kupffer cells mediates increased TNF-alpha production in alcoholic liver disease. The 



100 

Liver Meeting 2009, American Association for the Study of Liver Disease (AASLD), 

30.10.2009 - 3.11.2009, Boston, Massachusetts, U.S.A. Poster.  

10. Petrasek J, et al. Temporary nasobiliary drainage induces relief from severe long-

lasting pruritus in drug-induced canalicular cholestasis. 43rd Annual Meeting of the 

European Association For The Study Of The Liver (EASL), Milano, Itálie, 23. - 27. 4. 

2008. Poster.  

11. Petrasek J, et al. N-acetyl cysteine ameliorates liver injury in patients with 

erythropoietic protoporhyria. Digestive Disease Week 2008 (DDW), 17. - 22. 5. 2008, 

San Diego, U.S.A. Poster. 

12. Petrasek J, et al. Polymorfismy v genovém clusteru interleukinu 1: rizikový faktor 

alkoholické jaterní cirhózy. XII. Gastrofórum 2007, Štrbské pleso, SR, 23. – 26. 1. 

2007. Poster.  

13. Petrasek J, et al. Hypersekretorní haplotyp genového clusteru interleukinu 1: 

rizikový faktor alkoholické cirhózy jater. XI. Hradecké gastroenterologické dny, 

Hradec Králové, 16. -17. 3. 2007. Oral presentation. 

14. Petrasek J, et al. Hypersecretory haplotype of the IL-1 gene cluster increases the risk 

of alcoholic liver cirrhosis. Digestive Disease Week 2007, 19. - 24. 5. 2007, 

Washington, U.S.A. Poster. 

15. Petrasek J, et al. High secretory haplotype of interleukin-1 gene cluster increases the 

risk of alcoholic liver disease. 42nd Annual Meeting of the European Association For 

The Study Of The Liver, Barcelona, Spain, 11. - 15. 4. 2007. Poster. 

16. Petrasek J, et al. Hypersekretorní haplotyp genového clusteru interleukinu-1: 

rizikový faktor alkoholické cirhózy jater. XXXV. Májové hepatologické dny, 9.-

12.5.2007, Karlovy Vary. Oral presentation. 

17. Petrasek J, et al. Hypersecretory haplotype of interleukin-1 gene cluster increases the 

risk of alcoholic liver cirrhosis. 11th Congress of the European Society for 

Biomedical Research on Alcoholism (ESBRA), Berlín, Německo, 23. – 26. 9.2007. 

Oral presentation. 

18. Paclt I, Kopeckova M, Petrasek J, et al. ADHD polymorhpisms in case control study 

of 100 subjects 6-10 age. Celostátní sjezd Společnosti lékařské genetiky ČLS JEP, 

Praha, 19. – 21.9.2007. Poster. 

19. Petrasek J, et al. Revised King´s college score for liver transplantation in adult 

patients with Wilson´s disease. 13th Congress of the European Society for Organ 

Transplantation. Prague, 29.9. – 3.10.2007. Oral presentation. 



101 

20. Brabcova I, Petrasek J, et al. Cytokine and chemokine gene variants and kidney graft 

outcome. 13th Congress of the European Society for Organ Transplantation (ESOT), 

Prague, 29.9 – 3.10.2007. Poster.  

21. Sperl J, Frankova S, Petrasek J, et al. Liver transplantation for epitheloid 

hemangioendothelioma: a single-centre experience. 13th Congress of the European 

Society for Organ Transplantation (ESOT), Praha, 29.9 – 3.10.2007. Poster. 

22. Petrasek J, et al. Nucleoside analogues in acute hepatitis B. 9th European Bridging 

Meeting in Gastroenterology. 22.11-24.11.2007, Magdeburg, Germany. Oral 

presentation. 

23. Petrasek J, et al. Lamivudine has no effect on the course and outcome of acute 

fulminant hepatitis B. 9th European Bridging Meeting in Gastroenterology. 22.11-

24.11.2007, Magdeburg, Germany. Poster.  

24. Hejlova I, Petrasek J, et al. Budd-Chiari sydnrome as an indication for liver 

transplantation – single center experience. 9th European Bridging Meeting in 

Gastroenterology. 22.11-24.11.2007, Magdeburg, Germany. Poster.  

25. Petrasek J, et al. Úloha polymorfismů modulujících odpověď na stimulaci 

endotoxiny v patogenezi alkoholické nemoci jater. XXXIV. Májové hepatologické dny, 

Karlovy Vary, 3. – 5. 5. 2006. Oral presentation. 

26. Petrasek J, et al. Zhodnocení diagnostických a prediktivních indexů u pacientů 

s fulminantní a dekompenzovanou chronickou Wilsonovou chorobou. XXXIV. Májové 

hepatologické dny, Karlovy Vary, 3. – 5.5.2006. Oral presentation. 

27. Petrasek J, et al. Diagnostic and predictive indexes in patients with fulminant and 

decompensated Wilson´s disease. 41st Annual Meeting of the European Association 

For The Study Of The Liver, Vídeň, Rakousko, 26-30.4.2006. Poster.  

28. Trunecka P, Petrasek J, et al. Validation of diagnostic and predictive indexes in 

patients with fulminant and chronic decompensated Wilson's disease. Digestive 

Disease Week 2006. Los Angeles, U.S.A, 15. – 20. 5. 2006. Poster.  

29. Petrasek J, et al. Polymorphisms in interleukin-1 gene cluster are associated with 

increased risk of alcoholic liver disease. Falk symposium 156: Genetics in Liver 

Diseases, 8.-9. 10. 2006, Freiburg, SRN. Poster.  

30. Sperl J, Petrasek J, et al. Polymorphisms in interleukin 1 gene cluster are associated 

with increased risk of alcoholic liver cirrhosis. The 57th Annual meeting of the 

American Association for the study of Liver Diseases: The Liver Meeting. Boston, 

Ma, U.S.A., 27. - 31. 10. 2006. Poster.  



102 

31. Petrasek J, et al. Je fibróza parenchymatózních orgánů potenciálně reverzibilní? 9. 

vzdělávací a diskusní gastroenterologické dny, Karlovy Vary, 16.-18. 11. 2006. Oral 

presentation. 

32. Petrasek J, et al. High secretory haplotype of interleukin-1 gene cluster increases the 

risk of alcoholic liver cirrhosis. 8th European Bridging Meeting in Gastroenterology, 

Neapol, Itálie, 23. - 24. 11. 2006. Oral presentation. 

33. Petrasek J, et al. Validation of diagnostic and predictive indexes in patients with 

fulminant and chronic decompensated Wilson's disease. 7th European Bridging 

Meeting in Gastroenterology, Magdeburg, SRN, 24. - 26. 11. 2005. Oral 

presentation. 

34. Petrasek J, et al. The role of genetic factors in pathogenesis of the alcoholic liver 

disease. 32. Májové hepatologické dny, Karlovy Vary, 2. - 14. 5. 2004. Oral 

presentation. 

35. Petrasek J, et al. Association of uncoupling protein-2 and superoxide dismutase-2 

polymorphisms with susceptibility to alcoholic liver disease. 12th United European 

Gastroenterology Week, Prague, 25. - 29. 9. 2004. Poster. 



103 

8. Enclosures 

 

 

1. Petrasek J, Hubacek JA, Stickel F, Sperl J, Berg T, Ruf E, et al. Do common genetic 

variants in endotoxin signaling pathway contribute to predisposition to alcoholic liver 

cirrhosis? Clin Chem Lab Med 2009;47:398-404. IF: 1.89 

2. Petrasek J, Dolganiuc A, Nath B, Hritz I, Kodys K, Catalano D, et al. Hepatocyte-

specific IRF3 and Type I interferons are protective in alcohol-induced liver injury in 

mice via cross-talk with macrophages. 2010; Manuscript submitted. 

3. Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, et al. 

VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a 

diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 2009;49:989-

997. IF: 11.56 

4. Petrasek J, Dolganiuc A, Csak T, Kurt-Jones E, Szabo G. Type I Interferons protect 

from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist 

in mice. Gastroenterology 2010, doi. 10.1053/j.gastro.2010.08.020. IF: 12.89 

 

 

 

 



Clin Chem Lab Med 2009;47(4):398–404 � 2009 by Walter de Gruyter • Berlin • New York. DOI 10.1515/CCLM.2009.112 2007/577
Article in press - uncorrected proof

Do common genetic variants in endotoxin signaling pathway
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Abstract

Background: Tumor necrosis factor-a (TNF-a) and
interleukin-1b (IL-1b), produced by endotoxin-activat-
ed Kupffer cells, play a key role in the pathogenesis
of alcoholic liver cirrhosis (ALC). Alleles TNFA –238A,
IL1B –31T and variant IL1RN*2 of repeat polymor-
phism in the gene encoding the IL-1 receptor antagon-
ist increase production of TNF-a and IL-1b, respec-
tively. Alleles CD14 –159T, TLR4 c.896G and TLR4
c.1196T modify activation of Kupffer cells by endotox-
in. We confirmed the published associations between
these common variants and genetic predisposition
to ALC by means of a large case-control association
study conducted on two Central European
populations.
Methods: The study population comprised a Czech
sample of 198 ALC patients and 370 controls (MONI-
CA project), and a German sample of 173 ALC
patients and 331 controls (KORA-Augsburg), and 109
heavy drinkers without liver disease.
Results: Single locus analysis revealed no significant
difference between patients and controls in all tested
loci. Diplotype wIL1RN*2/*2; IL1B –31Tqx was associ-
ated with increased risk of ALC in the pilot study, but
not in the validation samples.
Conclusions: Although cytokine mediated immune
reactions play a role in the pathogenesis of ALC,
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hereditary susceptibility caused by variants in the
corresponding genes is low in Central European
populations.
Clin Chem Lab Med 2009;47:398–404.

Keywords: alcoholic; genetic; interleukin-1b; liver cir-
rhosis; polymorphism; tumor necrosis factor-a.

Introduction

Recent studies on epidemiology of alcoholic liver dis-
ease suggest that only 40% of heavy drinkers will
develop steatohepatitis and less than 5% will develop
cirrhosis (1, 2). In addition to the cumulative dose of
alcohol, gender and certain comorbidities including
viral hepatitis and obesity, and yet unidentified genet-
ic factors account for at least 50% of the individual
susceptibility to alcoholic liver cirrhosis (ALC) (3, 4).
Numerous studies have focused on genetic variability
of the genes encoding ethanol metabolizing enzymes,
genes affecting the severity of liver steatosis, oxida-
tive stress and fibrosis, as well as genes modifying
the response to endotoxins (lipopolysaccharide, LPS)
(3, 5). However, the results of candidate gene case-
control studies have been either inconclusive or non-
replicable (6, 7).

The importance of endotoxins and activation of
Kupffer cells in the pathogenesis of ALC is evidenced
by experimental studies in animals (8–10) and
humans (10, 11). Adachi et al. (12, 13) showed that
Kupffer cell inactivation by gadolinium chloride, intes-
tinal sterilization and targeted disruption of the genes
encoding the LPS recognition receptor CD14 and the
toll-like receptor 4 (TLR4) protected the animals from
alcohol induced liver injury (14, 15). Similarly, mice
knocked-out for tumor necrosis factor-a (TnfA) (16),
type I-TnfA receptor (17), or interleukin-1b (IL-1B)
(18) were resistant to alcohol-induced liver damage,
whereas interleukin-1 receptor antagonist (IL1-ra)
knockout mice were more susceptible to alcohol-
derived insults than their wildtype littermates (19).
These data strongly support the crucial role of LPS
receptors and the main inflammatory cytokines pro-
duced by Kupffer cells in mouse models of alcohol
induced injury.

Several functionally relevant genetic variants have
been identified in the genes for CD14, TLR4, tumor
necrosis factor a (TNF-a), IL-1b and IL-1ra in humans.
Accordingly, the –159C/T variation in the promoter of
CD14 enhances production of CD14 by monocytes
(20), whereas two linked variations, c.896A/G and
c.1196C/T, in the coding region of TLR4 impede the
activation of monocytes by LPS (21). The polymor-
phism –238G/A of the TNFA promoter increases the
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transcription of TNF-a (22). The IL1 gene cluster on
chromosome 2 contains IL1B and IL1RN genes, which
encode IL-1b and its receptor antagonist IL-1ra,
respectively (23). The variant –31T in the promoter
of IL1B, which changes the wildtype sequence
–31CATAA to –31TATAA, significantly increases IL-1
transcription (24). The IL1RN gene contains a penta-
allelic 86-bp tandem repeat. The second most com-
mon IL1RN*2 allele containing two repeats increases
the secretion rate of IL-1b in vitro (25). The role of
these variations in susceptibility to alcohol-induced
liver injury has been suggested by several groups
(26–30), with the highest disease risk attributed to the
IL-1 gene cluster polymorphisms in the Asian popu-
lation (27, 28).

In our study, we sought to confirm the published
associations between these common variations and
genetic predisposition to ALC by means of a large
case-control association study conducted on a Central
European (CEU) population.

Materials and methods

Subjects

Primary assessment of allelic frequencies was performed in
a pilot study. Positive associations were confirmed in valid-
ation samples. The study was approved by the institutional
Review Boards of all participating centers. Written informed
consent was obtained from all subjects and the study con-
formed to the declaration of Helsinki Ethical Guidelines.

Pilot study We consecutively included 100 Caucasian
patients with ALC referred to the Institute for Clinical and
Experimental Medicine, Prague, Czech Republic, from March
2004 to October 2005. Their daily alcohol consumption was
more than 40 g in female patients and more than 60 g in
male patients for more than 10 years. The Czech control
group consisted of 180 healthy volunteers without self-
reported history of liver disease. The controls were selected
out of 653 individuals after being ranked by a questionnaire
on reported alcohol consumption, who participated in the
population-based MONICA ( toring of trends and deter-MONI
minants in rdiovascular disease) project between MarchCA
1996 and November 1997 (31).

Validation study For validation purposes, 173 patients with
ALC treated in the Department of Medicine, University of
Erlangen, Germany, and the Department of Medicine, Char-
ité, Humboldt University Berlin, Germany, were analyzed.
These patients had been recruited between August 1995 and
December 2003. Their daily alcohol consumption was the
same as for the Czech subjects. The German control group
consisted of 331 healthy volunteers without self-reported
history of liver disease. The controls were selected out of
812 individuals drinking 20–40 g of ethanol/day who were
part of a total number of 4261 participants of the S4 survey
of the population-based KORA ( operative Gesundheitsfor-KO
schung in der RIegion AI ugsburg) project between 1999 and
2001 (32). In addition, a second German control group con-
sisting of 109 heavy drinkers without liver disease was
included. These patients were admitted between January
1999 and December 2003 to the University of Erlangen,
Germany for alcohol detoxification or for other health-relat-
ed problems, such as infections and accident injuries.

Subjects were assigned to the groups of ALC according to
clinical/laboratory evidence for the presence of cirrhosis
evidenced by simultaneous presence of: a) clinical findings
typical for liver cirrhosis (jaundice, spider naevi, ascites,
encephalopathy), b) abnormal blood tests (abnormal coag-
ulation tests, decreased serum albumin concentration and
platelet count), c) abnormal liver ultrasound, and d) esoph-
ageal varices on upper gastrointestinal endoscopy. In total,
11 (5.6%) Czech and 22 (12.7%) German patients with ALC
who did not meet these criteria underwent liver biopsy due
to presence of cirrhosis. Liver biopsy was not performed in
patients with advanced liver dysfunction (coagulopathy and
ascites) who met the above-mentioned criteria. A total of
83 (42%) Czech and 96 (56%) German patients with ALC
underwent liver transplantation and the diagnosis of liver cir-
rhosis was confirmed in all cases by explanted liver histol-
ogy. Patients with positive serology of hepatitis B or C, high
ferritin and elevated transferrin saturation, anti-nuclear or
anti-mitochondrial antibodies, decreased level of a1-antitryp-
sin and those with suspected liver cancer were excluded.

Heavy drinkers without liver cirrhosis had negative clinical
findings indicating liver disease, normal blood tests and nor-
mal liver ultrasonography. Blood tests were performed while
actively drinking and demonstrated normal results for ala-
nine aminotransferase, aspartate aminotransferase, total
bilirubin, albumin, platelet count and prothrombin time. Ele-
vation of g-glutamyltransferase was not an exclusion factor.
None of the heavy drinkers underwent upper gastrointestinal
endoscopy or liver biopsy due to ethical reasons.

The demographic and alcohol exposure data on all studied
groups are summarized in Table 1.

Genotyping

Genomic DNA was isolated from peripheral blood from all
patients using the QIAamp DNA Blood Mini Kit (Qiagen
GmbH, Hilden, Germany). For MONICA and KORA controls,
isolated DNA was obtained. Single nucleotide polymor-
phisms were determined by polymerase chain reaction
(PCR) followed by restriction fragment length (RFLP) analysis
of the products. Genotyping of the IL1RN variable number
of tandem repeats (VNTR) locus was performed by a PCR-
based fragment length polymorphism method (see Table 2).
Restriction endonucleases were purchased from Fermentas
(Fermentas UAB, Vilnius, Lithuania). The PCR products of the
IL1RN VNTR analysis were coded as follows: allele 1s4
repeats (size 442-bp), allele 2s2 repeats (270-bp), allele 3s5
repeats (528-bp), allele 4s3 repeats (356-bp), allele 5s6
repeats (614-bp). The rare alleles 3, 4 and 5, constituting less
than 5% of the IL1RN allelic variants, were grouped in the
statistical analysis.

Samples from cases and controls were included in each
96-sample batch analyzed. In order to minimize genotyping
errors, blank control wells were left on the PCR plates and
assays were wholly re-typed if the call rate was below 90%.
Three operators, unaware of the status of the samples, inde-
pendently performed the genotype assignment. Out of 3762
genotyping analyses performed, approximately 100 (2.7%)
were duplicated due to the discrepancy between oper-
ators. After testing for Hardy-Weinberg equilibrium, allele
frequencies were checked for consistency with data from
the population of European ancestry wUtah Residents with
Northern and Western European Ancestry (CEU)x from the
HapMap database (33).

Statistical analysis

Two-sided power calculations at ps0.05 for 80% statistical
power were performed using the DSTPLAN software (http://
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Table 1 Demographic and alcohol exposure data on patients with ALC, general population controls without cirrhosis and
heavy drinkers without cirrhosis.

Alcoholic liver Controls without Heavy drinkers
cirrhosis cirrhosis without cirrhosis

Czech study population (ns568)
n 198 370 –
Male (%) 149 (75.3) 255 (69.0) –
Age, years, median (IQR) 54 (26–72)a 50 (24–80) –
Alcohol, g/day, median (range) 100 (75–143)a 13 (6–29) –

German study population (ns613)
n 173 331 109
Male (%) 117 (67.6) 222 (67.0) 84 (77.1)
Age, years, median (IQR) 50 (24–71)b 50 (30–69) 43 (22–70)
Alcohol, g/day, median (range) 100 (70–150)c 30 (20–40) 250 (185–335)

ap-0.05 vs. controls without liver cirrhosis; bp-0.05 vs. heavy drinkers without cirrhosis; cp-0.05 vs. controls without liver
cirrhosis and vs. heavy drinkers without cirrhosis. IQR, interquartile range.

Table 2 Genotyped loci in the CD14, TLR4, TNFA, IL1B and IL1RN genes.

Variation Forward primer Tm, 8C Restriction enzyme
Ref. dbSNPa id Reverse primer Time, s Fragment length, bp

CD14 –159C/T 59-TTGGTGCCAACAGATGAGGTTCAC-39 608C HaeIII
rs2569190 59-TTCTTTCCTACACAGCGGCACCC-39 30 s 204, 201, 156
TLR4 c.896A/G 59-GATTAGCATACTTAGACTACTACCTCCATG-39 598C NcoI
rs4986790 59-GATCAACTTCTGAAAAAGCATTCCCAC-39 40 s 223, 26
TLR4 c.1196C/T 59-GGTTGCTGTTCTCAAAGTGATTTTGGGAGAA-39 558C HinfI
rs4986791 59-ACCTGAAGACTGGAGAGTGAGTTAAATGCT-39 40 s 378, 29
TNFA –238 G/A 59-GCCCCTCCCAGTTCTAGTTC-39 628C BamHI
rs361525 59-CTCACACTCCCCATCCTCCCGGATC-39 30 s 185, 26
IL1B –31 C/T 59-CCCTTCCATGAACCAGAGAA-39 608C AluI
rs1143627 59-GCTGAAGAGAATCCCAGAGC-39 30 s 97, 87, 54
IL1B –511 T/C 59-TGGCATTGATCTGGTTCATC-39 608C AvaI
rs16944 59-GCCCTCCCTGTTCTGTATTGA-39 30 s 190, 60
IL1RN VNTR 59-CCCCTCAGCAACACTCC-39 648C –
156109b 59-GGTCAGAAGGGCAGAGA-39 30 s 442, 270, 528, 356, 614
aNCBI database of genetic variation, www.ncbi.nlm.nih.gov/SNP. bNCBI database of unified sequence tagged sites,
www.ncbi.nih.gov/genome/STS. VNTR, variable number of tandem repeats; Tm, melting temperature.

linkage.rockefeller.edu/soft). The size of the pilot study was
calculated as follows. When the odds ratio (OR) of a poly-
morphism was assumed to be 2, the required sample size
was 100 cases and 180 controls for the polymorphism with
frequency of 0.5 (CD14 –159C/T). When the OR was assumed
to be 4, the same sample size was sufficient to detect a true
effect of a polymorphism with frequency of 0.03 (TNFA
–238G/A). To confirm the association of the wIL1RN*2/*2;
IL1B –31Tqx diplotype with ALC, we calculated the minimal
size of the pilot and validation studies from the observed
haplotype frequencies obtained by investigation of 100
Czech cases and 180 Czech controls and in the extended pilot
study, respectively.

Hardy-Weinberg equilibrium of alleles at individual loci
was evaluated using the program HWE (http://linkage.
rockefeller.edu/soft). Haplotype frequencies for pairs of
alleles were estimated using the software EH based on the
expectation-maximization algorithm (http://linkage.rocke-
feller.edu/soft). Linkage disequilibrium (LD) coefficients
D9sD/Dmin or max and r2 were calculated using the MIDAS soft-
ware (34). Age and median alcohol consumption between
the groups was compared using the Mann-Whitney test.
Male to female ratios were compared using the Fisher exact
test.

All association analyses were performed by logistic
regression analysis using SPSS software version 14.0 (SPSS
Inc., Chicago, IL, USA). Where applicable, logistic regression
analysis adjusted for age was performed. Due to the multiple

testing, the level of significance in the pilot study was set at
p-0.01. In the extended pilot and validation studies, where
only one association was tested, the level of significance was
set at p-0.05. All p-values were two-sided.

Results

In the control populations, the alleles at the individual
loci were in Hardy-Weinberg equilibrium. The geno-
type frequencies in healthy controls for all polymor-
phisms were in concordance with the reference
HapMap database (33). As the LD between the IL1B
–511 and IL1B –31 loci in 100 Czech patients with ALC
and 180 population controls was perfect (D9s1, r2s1),
we investigated only the IL1B –31 polymorphism in
both the pilot and validation samples. A significant
(p-0.0001) but weak LD (D9-0.5) was found between
the IL1B –31 and IL1RN VNTR loci.

Single locus analysis

Single locus analysis was performed in 100 Czech
patients with ALC and 180 population controls (see
Table 3). The proportion of the TLR4 c.1196T allele
was higher in patients with ALC (8.5%) than in healthy
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Table 3 Genotype frequencies in 100 Czech patients with ALC and 180 Czech healthy controls.

Locus Genotype Patients Controls Association with alcoholic cirrhosis

Unadjusted Adjusted for agen % n %a

p OR (95% CI) p OR (95% CI)

CD14 –159 C/C 21 21.0 31 17.2 1 (reference) 1 (reference)
C/T 43 43.0 82 45.6 0.45 0.77 (0.40–1.51) 0.37 0.73 (0.37–1.45)
T/T 36 36.0 67 37.2 0.51 0.79 (0.40–1.58) 0.49 0.78 (0.36–1.58)

TLR4 c.896 A/A 85 85.0 160 88.8 1 (reference) 1 (reference)
A/G 14 14.0 19 10.6 0.39 1.39 (0.67–2.90) 0.49 1.30 (0.61–2.77)
G/G 1 1.0 1 0.6 0.66 1.88 (0.12–30.5) 0.72 1.67 (0.10–27.2)

TLR4 c.1196 C/C 85 85.0 166 92.2 1 (reference) 1 (reference)
C/T 13 13.0 13 7.2 0.11 1.95 (0.87–4.40) 0.13 1.91 (0.83–4.37)
T/T 2 2.0 1 0.6 0.27 3.90 (0.35–43.7) 0.21 4.79 (0.41–56.6)

TNF –238 G/G 91 91.0 170 94.4 1 (reference) 1 (reference)
G/A 9 9.0 10 5.6 0.28 1.68 (0.66–4.29) 0.28 1.17 (0.65–4.48)
A/A 0 0.0 0 0

IL1B –511 T/T 14 14.0 23 12.8 1 (reference) 1 (reference)
C/T 45 45.0 82 45.6 0.83 0.92 (0.43–1.96) 0.98 1.01 (0.47–2.19)
C/C 41 41.0 75 41.7 0.74 0.88 (0.41–1.89) 0.97 0.98 (0.45–2.16)

IL1B –31 C/C 14 14.0 23 12.8 1 (reference) 1 (reference)
C/T 45 45.0 82 45.6 0.83 0.92 (0.43–1.96) 0.98 1.01 (0.47–2.19)
T/T 41 41.0 75 41.7 0.74 0.88 (0.41–1.89) 0.97 0.98 (0.45–2.16)

IL1RN 1/1 42 42.0 82 45.6 1 (reference) 1 (reference)
1/2 47 47.0 80 44.4 0.49 1.20 (0.72–2.02) 0.37 1.28 (0.75–2.16)
2/2 10 10.0 11 6.4 0.21 1.82 (0.71–4.63) 0.16 1.99 (0.77–5.18)
1/3,4,5 1 1.0 5 2.8 0.25 0.29 (0.03–2.40) 0.42 0.41 (0.05–3.57)
2/3 0 0.0 2 1.1

aThe sum of the percentages may exceed 100% due to rounding. OR, odds ratio; CI, confidence interval.

Table 4 Association of the wIL1RN*2/*2; IL1B –31Tqx diplotype with ALC in patients with ALC, healthy population controls
and heavy drinkers without cirrhosis.

Population Unadjusted Adjusted for age

p OR (95% CI) p OR (95% CI)

Pilot study (100 Czech ALC patients vs. 180 0.006 8.80 (1.86–41.6) 0.005 9.45 (1.96–45.7)
Czech population controls)
Extended pilot study (198 Czech ALC 0.083 2.09 (0.97–4.84) 0.092 2.06 (0.89–4.78)
patients vs. 370 Czech population controls)
Validation I (173 German ALC patients vs. 0.973 0.99 (0.52–1.90) a a

331 German population controls)
Validation II (173 German ALC patients vs. 0.326 1.63 (0.61–4.34) 0.484 1.44 (0.52–3.95)
109 German heavy drinkers without ALC)
aAs there was no age difference between cases and controls, no adjustment for age was performed. OR, odds ratio; CI,
confidence interval; ALC, alcoholic liver cirrhosis.

controls (4.2%), but the association was not signi-
ficant. For the other six loci, no significant differences
in allele or genotype frequency between patients and
controls were found (Table 3). In spite of a better
goodness-of-fit of the regression model, adjustment
for age did not significantly influence the results. Fur-
thermore, genotyping of the TNFA –238A, IL1B –31T,
CD14 –159T and TLR4 c.1196T loci in an extended
sample of 198 Czech ALC patients and 370 Czech con-
trols did not yield any significant association. Speci-
fically, the TLR4 c.1196T locus was not associated
with ALC both in the heterozygous model wOR 1.56,
95% confidence interval (CI) 0.88, 2.78, ps0.13x and
in the homozygous model (OR 3.93, 95% CI 0.35,
43.65, ps0.26).

Haplotype analysis In the pilot study of 100 Czech
patients with ALC and 180 population controls, the

wIL1RN*2/*2; IL1B –31Tqx diplotype, determined by
homozygosity for the IL1RN allele 2 and carriage of
the IL1B –31T allele, was associated with an increased
risk of ALC when compared to other diplotypes in the
IL-1 gene cluster. In total, 9% of cases (compared to
1.1% of controls) revealed this diplotype, with an age-
adjusted OR of 9.45 (95% CI 1.96, 45.7, ps0.005) for
ALC (see Table 4). Although the power of the haplo-
type analysis was 85%, we were aware of the wide CI
for the OR. Therefore, we evaluated the association of
the diplotype in three subsequent steps.

First, we expanded the sample size of Czech
patients and controls. Assuming an OR of 5, a
required sample size of 198 cases and 370 controls
was used. In total, 98 consecutive patients with ALC
from the same center prospectively recruited between
November 2005 and September 2006 were added to
the 100 Czech patients included in the pilot study, and
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the control sample was extended by 190 subjects
from the MONICA study. Thus, the total population
sample comprised 198 patients and 370 controls. The
association of the wIL1RN*2/*2; IL1B –31Tqx diplotype
was not significant; however, it was close (age-adjust-
ed OR 2.06, 95% CI 0.89, 4.78, ps0.09). The non-sig-
nificance could be caused by increased prevalence of
the diplotype in the extended number of controls
(2.8%).

Second, the wIL1RN*2/*2; IL1B –31Tqx diplotype
frequency of German ALC patients was compared to
that of the German population control group. Assum-
ing an OR of 2.5, a required sample size of 173 cases
and 331 controls was used in the validation study. No
association with ALC due to the same prevalence of
the diplotype in patients and controls (8.8% in both
groups) was found.

Finally, the association was further tested in
German patients with ALC and heavy drinkers without
liver disease as controls. Even then, no significant
association was found (see Table 4), and the frequen-
cy of the wIL1RN*2/*2; IL1B –31Tqx diplotype in the
group of healthy heavy drinkers was not significantly
different from that in German population controls
(5.5% vs. 8.8%, ps0.30).

Discussion

In our study, we included only those genes encoding
cytokines whose role in ALC was proved in animal
models and those polymorphisms whose impact on
gene expression or protein function was described in
in vitro studies. Moreover, the included polymor-
phisms have been associated with an increased risk
of alcoholic liver disease (26, 29, 30, 35), accelerated
progression of fibrosis in chronic hepatitis B (36) and
endotoxin hyporesponsiveness in humans (21). To
include gene variants with the largest possible effect
size, we also investigated the wIL1RN*2/*2; IL1B
–31Tqx diplotype, because it increases the production
of IL-1b more than either of the polymorphisms alone
(24, 25). This is enabled by the low strength of LD
which permits the additive effect of both proinflam-
matory alleles (i.e., IL1RN*2 and IL1B –31T) on IL-1b

production. Importantly, both polymorphisms
increased the risk of ALC in the Asian population with
a high OR for the disease exceeding 4.5 (27, 28). Con-
trary to the paper by Takamatsu et al. (27), we did not
include the IL1B q3953C/T polymorphism because it
does not alter in vitro protein secretion (37), and we
did not include the silent IL1B –511C allele. Instead,
we analyzed the IL1B –31T allele, which is in complete
LD with the IL1B –511C allele, creates a TATAA
sequence in the promoter and results in a five-fold
increase of IL1B transcription (24).

Selection of the appropriate cases and controls is a
major issue in genetic studies on ALC. In case-control
studies, individuals with the disease under investiga-
tion (cases) are compared to individuals who do not
have the disease, but who are thought to be compar-
able in other respects (controls). Inclusion of patients

with advanced ALC reduces the risk of misclassifica-
tion, increases phenotypic homogeneity and the
power to detect genetic association. Indeed, selection
of extreme cases, such as patients undergoing liver
transplantation, further increases the power of the
study but also inflates the estimation of population-
based parameters, such as population attributable
risk. However, it was not the purpose of our study to
assess this measure because such assessment would
require a significantly higher number of individuals
with ALC recruited in a population-based manner.

Daly and Day (38) advocated that control individu-
als in genetic studies should reveal a comparable
exposure to alcohol as cases. Compared to popula-
tion controls, use of ‘‘hypernormal’’ controls (healthy
heavy drinkers) would be expected to improve the
power by increasing the difference in susceptibility
allele frequency between cases and controls. How-
ever, this benefit is usually not substantial and is
counterweighted by the costs and effort of defining a
‘‘hypernormal’’ population (39). In our study, investi-
gating healthy German heavy drinkers did not yield a
positive association with an increased risk of ALC and
the frequency of the wIL1RN*2/*2; IL1B –31Tqx diplo-
type in this group was not significantly different from
that in German population controls. Taken together,
it does not seem to us that inclusion of ‘‘hypernor-
mal’’ controls is superior to population controls.

The discrepancy between our findings and the pre-
viously published studies (26–30, 35, 40) might be
explained by ethnical differences and/or the lack of
statistical power. Moreover, none of the studies
(26–30, 35, 40) included an independent validation
sample which should be implemented particularly in
smaller studies that are likely to be subject to a type
1 error which overestimates a genetic effect due to
chance (41). Verifying positive findings in an inde-
pendent validation sample helps to detect false asso-
ciations, as exemplified in our study in which a
seemingly positive association from a pilot study was
rejected by its subsequent validation in an additional
group of subjects with the same phenotype.

Also, genetic association studies are frequently
subject to type 2 errors (false negativity), because
polymorphisms are not causal and act only as pheno-
type modifiers. In our study, we maximized the power
to detect an association with an increased risk of ALC
by (i) selecting genes and polymorphisms that are
expected to have the highest possible effect size (pro-
tection against alcohol-induced liver injury in animal
knockout models, additive effect of IL1B –31T and
IL1RN*2 alleles on the secretion rate of IL-1b), (ii)
inclusion of patients with advanced ALC, and (iii)
inclusion of ‘‘hypernormal’’ controls. The design of
our study would enable us to detect biologically sig-
nificant associations if they exist. Our study was not
powered enough to detect OR below 2, although poly-
morphisms with a small effect size could act as dis-
ease modifiers and confer a measurable attributable
risk. However, their clinical significance is question-
able. In fact, they could hardly be used for predicting
the risk of ALC in ethanol-drinking individuals, which
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is the ultimate goal of identifying disease susceptibil-
ity markers.

In conclusion, although there is little doubt that
cytokine mediated immune reactions do play a role in
the pathogenesis of ALC, hereditary susceptibility
caused by variants in the corresponding genes seems
to be low, or at least such is the case in a CEU
population.
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Abstract 

Alcoholic liver disease (ALD) features increased hepatic exposure to bacterial 

lipopolysaccharide (LPS). Toll-like receptor-4 (TLR4) recognizes LPS and activates signaling 

pathways depending on MyD88 or TRIF adaptors. We previously showed that MyD88 is 

dispensable in ALD. TLR4 induces Type-I interferons (IFN) in MyD88-independent manner that 

involves interferon regulatory factor-3 (IRF3). We fed alcohol or control diets to wild-type and 

IRF3 knock-out (KO) mice, and to mice with IRF3 deficiency in hepatocytes. Whole-body IRF3-

KO, but not wild-type, mice were protected from alcohol-induced liver injury, steatosis and 

inflammation. In contrast, deficiency of IRF3 only in parenchymal cells rendered the mice more 

susceptible to alcohol-induced liver injury, associated with higher pro-inflammatory cytokine 

TNF-α, lower anti-inflammatory cytokine IL-10 and lower Type-I IFN production compared to 

wild-type mice. Co-culture of wild-type primary murine hepatocytes with liver mononuclear 

cells (LMNC) resulted in higher LPS-induced IL-10, higher IFN-β, and lower TNF-α levels 

compared to LMNC alone. Type-I IFN was important since co-cultures of hepatocytes with 

LMNC from Type-I IFN receptor KO mice showed attenuated IL-10 levels compared to control 

co-cultures from wild-type mice. We further identified that Type-I IFNs potentiated LPS-induced 

IL-10 and inhibited inflammatory cytokine (TNF-α) production in both RAW264.7 murine 

macrophages and human leucocytes, indicating preserved cross-species effect. These findings 

suggest that hepatocytes produce type-I IFN in TLR4/IRF3-dependent manner. Further, 

hepatocyte-derived type-I IFNs increase anti-inflammatory and suppress pro-inflammatory 

cytokines production by liver macrophages in a paracrine manner. In conclusion, our results 

indicate that hepatocyte-specific IRF3 activation and resulting type I IFNs have protective effects 
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in ALD via modulation of pro- and anti-inflammatory functions in macrophages. These results 

suggest potential therapeutical targets in ALD. 
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 Alcoholic liver disease (ALD) is the most common drug abuse-induced liver disease and 

accounts for 40% of deaths from cirrhosis in the United States (1). Gut-derived 

lipopolysaccharide (LPS), a component of the gram-negative bacterial wall, has been proposed 

as a key player in the pathogenesis of ALD (2, 3). Exposure to LPS during chronic alcohol 

consumption results in increased production of inflammatory mediators, leading to progression 

of liver injury (4). Indeed, mice treated with antibiotics to eliminate gut microflora, or mice 

deficient in tumor necrosis factor-alpha (TNF) type I receptor were protected from alcohol-

induced liver injury (5, 6). 

Recognition of pathogen-derived molecules occurs through pattern recognition receptors such as 

Toll-like receptors (TLR), which are widely expressed on parenchymal and non-parenchymal 

cell types in the liver (7). TLR4 recognizes LPS and activates two signaling pathways via 

recruitment of adaptor molecules (8, 9). Recruitment of the common TLR adaptor, myeloid 

differentiation factor 88 (MyD88), leads to rapid activation of nuclear factor B (NF-κB) and 

increased TNFα production, while recruitment of TIR domain-containing adaptor inducing 

interferon-beta (TRIF) activates TANK-binding kinase 1/inhibitor of κB kinase epsilon 

(TBK1/IKKε) and interferon regulatory factor 3 (IRF3), leading to production of type I 

interferons (IFNs) and delayed NF-κB activation (10-12).  

We have previously reported that MyD88 deficiency failed to prevent alcohol-induced liver 

damage and inflammation suggesting that TLR4-mediated MyD88-independent pathways are 

important in induction of ALD (13). The significance of MyD88-independent pathways 

including activation of IRF3 in ALD is yet to be evaluated. 
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Considering the importance of LPS-induced inflammatory activation in ALD (3) and the role of 

MyD88-independent downstream pathways in TLR4 signaling (13), we hypothesized that IRF3 

was critical in alcohol-induced liver injury. Given the differential input of parenchymal and non-

parenchymal cells in pathophysiology of ALD, we further hypothesized that IRF3 may be critical 

in alcoholic liver injury in a cell-specific manner. Therefore, we employed a chimeric mouse 

model to evaluate the effect of chronic alcohol feeding on liver damage, steatosis and 

inflammation in animals with selective deficiency of IRF3 in liver parenchymal cells. 

Here we demonstrate that hepatocyte-specific IRF3 activation and downstream type I IFN 

induction have protective effects in ALD. We report that disruption of IRF3 in liver parenchymal 

cells decreases type I IFN production and increases liver injury due to dysregulated expression of 

pro- and anti-inflammatory cytokines.
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Materials and methods 

Animal studies 

All animals received proper care in agreement with animal protocols approved by the 

Institutional Animal Use and Care Committee of the University of Massachusetts Medical 

School. Six to eight-week-old, female C57Bl/6 wild-type, IRF3-deficient (IRF3-KO) and Type I 

interferon α/β receptor 1-deficient (IFNAR-KO) mice (kind gift of Jonathan Sprent, Scripps 

Research Institute, La Jolla, CA), were employed. Some animals were fed with the Lieber-

DeCarli diet (Dyets, Inc., Bethlehem, PA) with 5% (vol/vol) ethanol (36% ethanol-derived 

calories) for 4 weeks; pair-fed control mice matched the alcohol-derived calories with dextran-

maltose (13). Chimeric mice were generated by transplanting wild-type (C57Bl/6) bone marrow 

into irradiated, IRF3 deficient mice (IRF3-KO/WT-BM). Serum was stored at -80°C. Livers 

were snap-frozen in liquid nitrogen for proteins, or stored in RNAlater (Qiagen GmbH, Hilden, 

Germany) for RNA extraction, or fixed in 10% neutral-buffered formalin for histopathological 

analysis. 

Biochemical assays 

Serum alanine aminotransferase (ALT) was determined using a kinetic method (D-Tek LLC., 

Bensalem, PA). Liver triglyceride levels were assessed using the L-Type Triglyceride H kit 

(Wako Chemicals USA Inc., VA). 

Cytokine measurement 
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Mouse IL-1β ELISA kit was purchased from R&D (R&D systems, Inc., Minneapolis, MN), 

mouse and human TNF-α, IL-1β and IL-10 kits from BD Bioscience (BD Biosciences, San Jose, 

CA) and mouse IFN-β kit from PBL (PBL interferon source, Piscataway, NJ).  

RNA Analysis 

RNA was purified using the RNeasy kit (Qiagen Sciences, Maryland, USA) and on-column 

DNA digestion. cDNA was transcribed with the Reverse Transcription System (Promega Corp., 

Madison, WI). SybrGreen-based real-time quantitative polymerase chain reaction was performed 

using the iCycler (Bio-Rad Laboratories Inc., Hercules, CA), as described (13); primer sequences 

are shown in Table 1.  

Histopathological analysis 

Sections of formalin-fixed livers were stained with hematoxylin and eosin and analyzed by 

microscopy. 

Isolation of hepatocytes and liver mononuclear cells 

Animals received anesthesia with ketamine (100 mg/kg) and xylazine (10 mg/kg); the livers 

were perfused with saline solution followed by in vivo digestion, as we previously described 

(13). The hepatocytes were separated by centrifugation, liver mononuclear cells (LMNCs) were 

purified by centrifugation in Percoll gradient. 

Isolation of human peripheral blood mononuclear cells 

Human peripheral blood mononuclear cells (PBMCs) were separated from blood of healthy 

volunteers by centrifugation in Ficoll gradient, as we previously described (14). 
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In vitro experiments 

Primary hepatocytes and LMNCs were cultured in Dulbecco's modified Eagle's medium 

containing 10% fetal bovine serum and 1% insulin, transferrin, selenium (ITS) solution. Primary 

hepatocytes were seeded in 6-well collagen-coated plates, LMNCs (106/insert) were plated in 

cell-culture inserts with pore diameter 0.4 µm (Becton Dickinson Labware, Bedford, MA). 

Hepatocytes, LMNCs or co-cultures of hepatocytes + LMNCs were stimulated with LPS (Sigma, 

St. Louis, MO). IFN-β, IL-10 and TNF-α were measured in supernatants using ELISA. 

RAW264.7 macrophages were stimulated with LPS, recombinant mouse IFN-α2a (eBioscience, 

San Diego, CA), recombinant mouse IL-10 (Peprotech Inc., Rocky Hill, NJ) or with anti-mouse 

IL-10 receptor antibody (Biolegend, San Diego, CA).  

Human PBMCs were stimulated with LPS, recombinant human IFN-α (PBL, Piscataway, NJ), 

recombinant IL-10 (Ebioscience, San Diego, CA) or IL-10 receptor antibody (R&D systems, 

Inc., Minneapolis, MN). 

Statistical Analysis 

Statistical significance was determined using the T-test or the nonparametric Kruskal-Wallis test. 

Regression plots were constructed using the Graphpad Prism 5.01 (GraphPad software, Inc., La 

Jolla, CA). Data are shown as mean ± standard error of the mean (SEM) and were considered 

statistically significant at P < 0.05.
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Results 

IRF3-deficiency protects against alcohol-induced liver damage  

TLR4 recognizes LPS and activates two signaling pathways by utilizing the adaptor molecules 

MyD88 or TRIF, respectively. We showed that MyD88 is dispensable in ALD (13). In addition 

to induction of inflammatory cytokines via NF-κB, MyD88-independent activation of TLR4 

triggers production of Type I IFNs, which is largely dependent on activation of intracellular 

pathways involving interferon regulatory factor-3 (IRF3) (12). To define the importance of the 

MyD88-independent, IRF3-dependent signaling cascade and Type I IFNs in alcohol-induced 

liver injury, we fed ethanol or isocaloric control (pair feeding) diet to wild-type (WT) and IRF3-

KO mice.  

Histopathological analysis revealed that chronic alcohol feeding induced micro- and 

macrovesicular steatosis and inflammatory cell recruitment in ethanol-fed wt mice, suggestive of 

ALD (Fig 1A). In contrast, none of the histopathological features of ALD were observed in 

IRF3-KO mice (Fig. 1A). Consistent with the histopathology, serum ALT levels were 

significantly higher in alcohol-fed WT mice, but not in the IRF3-KO mice, compared to the pair-

fed controls (Fig. 1B). We also found that the expression of inflammatory cytokines TNF-α and 

IL-6 in the liver was significantly higher in alcohol-fed WT mice compared to pair-fed controls; 

this alcohol-induced pro-inflammatory state was absent in IRF3-KO mice (Fig. 1C,D). Alcohol 

feeding to WT mice triggered expression of Type I IFN stimulated gene (ISG) 56, suggesting 

activation of Type I IFN signaling in alcohol-induced liver injury. In contrast, alcohol feeding of 

IRF3KO mice failed to upregulate ISG56 (Fig. 1E). These data suggested a role of IRF3 and/or 

Type I IFNs in alcohol-induced liver injury. 
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Hepatocyte-specific IRF3 deficiency aggravates alcohol-induced liver damage 

The liver functions with a complex co-existence of parenchymal (hepatocytes) and non-

parenchymal cells. To explore whether the protective effect of IRF3 in alcoholic liver injury is 

mediated by hepatocytes or (BM)-derived immune cells, we generated IRF3-chimeric mice by 

transplanting wild-type BM into irradiated, IRF3-deficient mice (IRF3-KO/WT-BM mice). 

Wild-type mice with wild-type bone marrow transplant served as controls (WT/WT-BM). As 

expected, WT/WT-BM mice developed ALD after 4 weeks of Lieber-DiCarli diet, as indicated 

by liver steatosis, inflammatory infiltrate and liver injury, compared to pair-fed controls (Fig. 

2A,B,C).  

In sharp contrast to WT/WT-BM mice, IRF3-KO/WT-BM mice showed aggravation of alcohol-

induced liver injury, as indicated by exaggerated steatosis and inflammatory infiltrate on 

histology (Fig. 2A). This finding was accompanied by elevation in serum ALT and in liver 

triglycerides, compared to WT/WT-BM ethanol-fed mice (Fig. 2B,C). Further, IRF3-KO/WT-

BM mice showed exaggerated expression of inflammatory cytokines TNF-α, IL-6, IL-1β (Fig. 

2D-G). These data suggested a protective role of hepatocyte-specific IRF3 in ALD by limiting 

liver inflammation and injury. 

Hepatocyte-specific IRF3 deficiency is associated with decreased Type I IFN and IL-10 

induction 

Activation of IRF-3 leads to preferential induction of IFN-β (15). We identified that, in contrast 

to WT mice, IRF3-KO/WT-BM mice showed a significantly decreased expression of IFN-β (Fig. 

3A). This finding indicated that aggravated liver injury in IRF3-KO/WT-BM mice is associated 
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with deficient induction of the IRF3-dependent type I IFNs and suggested possible involvement 

of IRF3- and Type I IFN-dependent anti-inflammatory factors in alcohol-induced liver injury. 

We thus analyzed the expression of the Type I IFN-dependent gene, IL-10, which is a major anti-

inflammatory cytokine (16). Liver IL-10 mRNA was substantially upregulated by alcohol-

feeding in WT/WT-BM mice, but not in IRF3-KO/WT-BM mice (Fig. 3B), and IL-10 protein 

levels were significantly lower in ethanol-fed IRF3-KO/WT-BM mice compared to controls (Fig. 

3C). Collectively, these findings suggested that hepatocyte-specific IRF3 is required for 

expression of IFN-β and IL-10 in alcohol-induced liver injury. 

Hepatocytes produce Type I IFN in IRF3-dependent manner and modulate cytokine production 

in liver mononuclear cells 

Our findings suggested that expression of liver IL-10 is linked to activation of hepatocyte-

specific IRF3. We thus intended to dissect the cell-specific role in the IRF3-dependent type I 

IFNs vs IL-10 balance during ALD. We found that isolated primary hepatocytes of WT, but not 

those of IRF3-KO mice, produced IFN-β in response to LPS (Fig. 4 A,B). Both unstimulated and 

LPS-stimulated WT hepatocytes produced significantly more IFN-β than LMNCs (Fig. 5A), 

suggesting that hepatocytes are a dominant source of IFN-β in the liver. On the contrary, IL-10 

was produced mainly by LMNCs, which supports the data that Kupffer cells stimulated with LPS 

produce IL-10 (17, 18). Importantly, LMNCs co-culture with primary hepatocytes resulted in 

increased IL-10 production, compared to either cell types alone, which was further significantly 

increased upon stimulation with LPS (Fig. 5B). The induction of IL-10 in hepatocyte/LMNC co-

culture exceeded a merely additive contribution of both cell types to the secretion of IL-10, 

suggesting that hepatocyte-derived IFN-β facilitates the production of IL-10 in immune cells in 
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the liver. In contrast, there was no IL-10 induced by co-cultures of hepatocytes and LMNCs from 

IFNAR-KO mice (Fig. 5B), supporting our hypothesis that hepatocyte-dependent enhancement 

of IL-10 expression in LMNCs is a Type I IFN-dependent process.  

Given the tight control of the pro-and anti-inflammatory balance in the liver we further asked 

whether Type I IFN-dependent IL-10 production may affect the level of TNF-α in liver immune 

cells. We identified that TNF-α production by WT LMNCs was significantly downregulated 

upon their co-culture with WT hepatocytes; such effect was absent in LMNCs of IFNAR-KO 

mice (Fig. 5C).  

To further evaluate if regulation of IL-10 by Type I IFNs is preserved across species, we 

stimulated murine RAW264.7 murine macrophages or human peripheral blood mononuclear 

cells (PBMC) with LPS and Type I IFN, and identified a significant increase of IL-10 in the 

presence of Type I IFN compared to stimulation with LPS alone in both species (Fig. 6A,B). We 

found that expression of TNF-α was significantly decreased in RAW264.7 murine macrophages 

stimulated with LPS in the presence of recombinant IL-10, whereas neutralization of the IL-10 

receptor (IL-10R) with anti-IL10R antibody significantly upregulated TNF-α (Fig. 6C). We also 

observed a dose-dependent inhibition of TNF-α and IL-1β by IL-10 in human PBMCs (Fig. 6D). 

Further, a 50% inhibitory concentration (IC50) of IL-10 caused a significant inhibition of LPS-

triggered TNF-α and IL-1β (Fig. 6D,E,F), while inhibition of IL-10 receptors using IL-10R Ab 

significantly upregulated secretion of inflammatory cytokines in human PBMCs (Fig. 6E,F). 

These data confirmed that IL-10 is upregulated by Type I IFNs across species. 
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Taken together, these data demonstrate that hepatocyte-derived Type I IFNs upregulate IL-10 

and downregulate inflammatory cytokines in non-parenchymal cells in the liver. More 

importantly, they outline the paradigm of intercellular cooperation and regulation in the liver, 

where hepatocytes control the inflammatory potential of immune cells.
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Discussion 

Chronic consumption of ethanol is tightly linked to liver steatosis and inflammation in human 

disease as well as in experimental models. Whereas activation of TLR4-dependent pathways by 

gut-derived LPS and induction of inflammatory cytokines has been traditionally attributed to 

BM-derived Kupffer cells (19), the role of crosstalk between parenchymal (i.e. hepatocytes) and 

non-parenchymal (BM-derived immune cells) in ALD remains elusive. Here we demonstrate that 

liver response to insults is a multistep process: hepatocyte-specific IRF3 drives Type I IFN 

induction in the liver and hepatocyte-derived Type I IFN leads to a modulation of inflammatory 

cytokines in non-parenchymal BM-derived cells (Fig. 7). Our novel findings outline a link 

between hepatocytes and liver immune cells in modulation of innate immune signaling in ALD.  

BM-derived cells are considered to be the main targets of pathogen-derived products in the liver 

due to their strategical position to encounter pathogens in the portal system and broad-range 

expression of TLRs. Our study provides novel lines of evidence that hepatocytes are the main 

producers of Type I IFNs in response to alcohol/LPS exposure. First, chimeric mice containing 

IRF3-deficient hepatocytes and wild-type BM-derived cells show a similar reduction in baseline 

and ethanol-induced expression of Type I IFNs as mice deficient in IRF3 throughout the body 

(IRF3-KO mice). Second, ex vivo stimulation of wild-type primary mouse hepatocytes with LPS 

resulted in a significant upregulation of Type I IFNs, in contrast to hepatocytes isolated from 

IRF3KO mice that failed to induce Type I IFNs. 

The liver is a main target of intestinally-derived bacterial products and various models of ALD 

have shown protective phenotype in mice deficient in TLR4, CD14 receptor and LPS-binding 

protein (20-22), rendering LPS a likely candidate mediator of TLR4-dependent activation of 
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IRF3 and induction of Type I IFNs. Accordingly, we found induction of Type I IFNs in livers of 

mice fed with ethanol as well as in primary mouse hepatocytes stimulated with LPS. Moreover, 

deficiency of IRF3 abrogated Type I IFN induction and signaling in liver, suggesting that IRF3 is 

a dominant signaling molecule inducing Type I IFNs in ALD. 

Our study defines induction of Type I IFNs via IRF3 in hepatocytes and downregulation of 

inflammatory cytokines in BM–derived cells as two complementary, yet independent 

mechanisms by which TLR4 controls the extent of alcohol-induced liver inflammation and 

injury. Kupffer cells stimulated via TLR4 are a main source of inflammatory cytokines in the 

liver and promote tissue inflammation, injury and fibrosis (19). Thus, TLR4 seems to activate 

IRF3 in both parenchymal and non-parenchymal liver cells: here we demonstrate that while the 

signaling pathways are shared, we observed a cell-specific response to LPS, with a distinct 

outcome. While BM-derived cell-specific IRF3 is instrumental in activation of NF-κB and 

induction of inflammatory cytokines, thereby playing a direct proinflammatory role (10, 23, 24), 

hepatocyte-specific IRF3 seems to dampen TLR4-induced inflammatory response by indirect 

(paracrine) mechanism mediated by Type I IFNs. The importance of this cell-specific activation 

of IRF3 and Type I IFNs is emphasized by our finding that aggravated liver inflammation and 

injury was observed in mice chimeras lacking IRF3 in hepatocytes, and was further associated 

with a significantly decreased expression of IL-10, a major anti-inflammatory cytokine, in the 

liver.  

Our finding of Type I IFN-dependent induction of the anti-inflammatory state in the liver is 

supported by the fact that the IL-10 promoter contains a Type I IFN-dependent responsive 

element (25) which makes this cytokine a Type I IFN-dependent anti-inflammatory mediator. 
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We found that, ex vivo, liver mononuclear cells synthesized significantly more IL-10 when co-

cultured with primary hepatocytes that produced significant amounts of Type I IFNs. The 

existence of a hepatocyte/immune cell regulation loop is further supported by our finding that the 

facilitation of IL-10 production by hepatocyte-specific Type I IFNs in liver mononuclear cells 

was abrogated in cells lacking Type I IFN receptor, and that administration of recombinant Type 

I IFNs significantly upregulated IL-10 in wild-type mononuclear cells. Furthermore, our data 

show that administration of IL-10 to mouse macrophages or human PBMCs stimulated with LPS 

significantly suppresses inflammatory cytokines, and therefore support the critical role of IL-10 

in determining the pro- and anti-inflammatory balance in the pathogenesis of ALD (17, 26). 

Taken together, these findings demonstrate that full expression of anti-inflamatory factors in 

BM-derived cells is dependent on Type I IFN signaling from hepatocytes, which is regulated by 

IRF3.  

TLRs fulfill a variety of functions in the liver, and inhibition of TLR4 signaling may alter 

biological processes related to liver inflammation, injury and fibrosis (20-22, 27). TLR4 also 

promotes disease progression in alcoholic and nonalcoholic steatohepatitis (13, 28), primary 

sclerosing cholangitis (29) and ischemia-reperfusion injury (30), and therefore represents a 

potential therapeutic target. Indeed, use of probiotics, antifibrotics or anti-inflammatory agents 

are proposed as potential therapeutic options for these diseases (31). However, excessive TLR 

signaling triggers not only harmful responses, but also beneficial responses, such as clearance of 

microorganisms (32), tissue regeneration (33), and, as we demonstrate in this study, indirect 

induction of anti-inflammatory loop via induction of protective Type I IFNs in hepatocytes in 

IRF3-dependent manner. Therefore, it seems plausible that fine tuning, in contrast to approaches 
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that would completely abrogate TLR signaling, may have a future in efforts to translate TLR 

pathophysiology into clinical practice in human liver diseases.  
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Tables 

 

Table 1. Real-time PCR primers. 

 

 

Target gene Forward primer (5’→ 3’) Reverse primer (5’→ 3’) 

18S gta acc cgt tga acc cca tt cca tcc aat cgg tag tag cg 

TNF-A cac cac cat caa gga ctc aa agg caa cct gac cac tct cc 

IL-6 aca acc acg gcc ttc cct act t cac gat ttc cca gag aac atg tg 

IL-1B tct ttg aag ttg acg gac cc tga gtg ata ctg cct gcc tg 

IL-10 ctg gac aac ata ctg cta acc g ggg cat cac ttc tac cag gta a 

IFN-B agc tcc aag aaa gga cga aca t gcc ctg tag gtg agg gtt gat ct 

ISG-56 ggg cct tgc agg cat cac ctt tcc tgc ctt ctg ggc tgc ct 
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Figure legends 

 

Fig. 1. IRF3-deficiency protects against alcohol-induced liver damage. 

Wild-type (WT) and IRF3-deficient (IRF3-KO) were fed Lieber DeCarli ethanol or control (pair-

fed) diet and sacrificed after 4 weeks. Livers were fixed in formalin and stained with H&E; 

magnification 200x (A). Serum ALT levels (B) were analyzed. Messenger RNA levels of liver 

(C) tumor necrosis factor α (TNFA), (D) interleukin 6 (IL-6) and (E) interferon stimulated gene 

ISG56 were analyzed by real-time PCR and normalized to 18s.Values are shown as mean ± SEM 

fold increase over WT pair-fed control group (3-6 mice per group). Numbers in graphs denote p 

values; *) p < 0.05 vs. pair-fed WT mice; #) p < 0.05 vs. ethanol-fed WT mice. 

Fig. 2. Hepatocyte-specific IRF3 deficiency aggravates alcohol-induced liver damage 

Wild-type mice with transplanted WT bone marrow (WT/WT-BM) and IRF3-deficient mice 

with transplanted wild-type bone marrow (IRF3-KO/WT-BM) were fed Lieber DeCarli ethanol 

or control (pair-fed) diet and sacrificed after 4 weeks. Livers were fixed in formalin and stained 

with H&E; magnification 200x, arrows point at inflammatory foci (A). Serum ALT levels (B) 

and liver triglycerides (C) were analyzed. Messenger RNA levels of liver (D) tumor necrosis 

factor α (TNFA), (E) interleukin 6 (IL-6) and (F) interleukin-1β (IL-1β) were analyzed by real-

time PCR and normalized to 18s. Liver IL-1β levels were analyzed using ELISA (G). Values are 

shown as mean ± SEM fold increase over wild-type pair-fed control group (5-7 mice per group). 

Numbers in graphs denote p values; *) p < 0.05 vs. pair-fed wild-type mice; #) p < 0.05 vs. 

ethanol-fed wild-type mice. 
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Fig. 3. Hepatocyte-specific IRF3 deficiency is associated with decreased Type I IFN and IL-10 

induction 

Wild-type mice with transplanted WT bone marrow (WT/WT-BM) and IRF3-deficient mice 

with transplanted wild-type bone marrow (IRF3-KO/WT-BM) were fed Lieber DeCarli ethanol 

or control (pair-fed) diet and sacrificed after 4 weeks. Messenger RNA levels of (A) liver 

interferon β (IFN-β) and (B) interleukin 10 (IL-10) were analyzed by real-time PCR and 

normalized to 18s. Liver IL-10 protein levels were analyzed using immunoblot analysis (C). 

Values are shown as mean ± SEM fold increase over wild-type pair-fed control group (5-7 mice 

per group). Numbers in graphs denote p values. *) p < 0.05 vs. pair-fed wild-type mice; #) p < 

0.05 vs. ethanol-fed wild-type mice. 

 

Fig. 4. Hepatocytes induce Type I IFN in IRF3-dependent manner. 

Primary hepatocytes were isolated from WT and IRF3-deficient (IRF3-KO) mice and stimulated 

with 100 ng/mL lipopolysaccharide (LPS). Messenger RNA levels of interferon β (IFN-β) were 

analyzed by real-time PCR and normalized to 18s (A). IFN-β protein levels in supernatant were 

analyzed using ELISA (B). Values are shown as mean ± SEM (5 mice per group). Numbers in 

graphs denote p values; *) p < 0.05 vs. nonstimulated WT hepatocytes; #) p < 0.05 vs. LPS-

stimulated WT hepatocytes. 
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Fig. 5. Hepatocyte-derived Type I IFNs upregulate IL-10 and downregulate TNF-α in liver 

mononuclear cells 

Primary hepatocytes and liver mononuclear cells (LMNC) were isolated from WT or Type I 

interferon α/β receptor 1-deficient (IFNAR-KO) mice and stimulated with 100 ng/mL 

lipopolysaccharide (LPS) in transwell cell-culture systems as indicated. Protein levels of (A) 

interferon β (IFN-β), (B) interleukin 10 (IL-10) and (C) tumor necrosis factor α (TNF-α) in cell-

free supernatants were analyzed using specific ELISA. Values are shown as mean ± SEM (5 

mice per group). Numbers in graphs denote p values. *) p < 0.05 vs. nonstimulated WT 

hepatocytes; #) p < 0.05 vs. LPS-stimulated WT hepatocytes. 

 

Fig. 6. Type I IFN-dependent induction of IL-10 modulates inflammatory cytokines in 

mononuclear cells 

Murine RAW264.7 macrophages were stimulated with 100 ng/mL LPS, 1000 IU/mL murine 

recombinant IFNα2a, 10 ng/mL recombinant murine IL-10 and 1 µg/mL anti-mouse IL10 

receptor antibody (anti IL-10R Ab). Human peripheral blood mononuclear cells (PBMCs, N=4) 

were stimulated with 10 ng/mL LPS, 1000 IU/mL human recombinant IFNα2, 10-2000 pg/mL 

recombinant human IL-10 and 1 µg/mL anti-human IL10 receptor antibody (anti IL-10R Ab). 

Protein levels of (A,B) interleukin 10 (IL-10), (C,D,E) tumor necrosis factor α (TNF-α) and 

(D,F) interleukin 1-β (IL-1β) were analyzed using ELISA. Values are shown as mean ± SEM. 

Numbers in graphs denote p values; *,#,§,†) p < 0.05 vs. respective control group 
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Fig. 7. Proposed mechanism of hepatocyte-mediated control of inflammatory responses in 

alcohol-induced liver injury.  

Chronic alcohol consumption results in increased exposure of the liver to the gut-derived 

lipopolysaccharide (LPS). LPS is recognized via the Toll-like receptor 4 (TLR-4) on non-

parenchymal and parenchymal cells. In non-parenchymal cells, LPS increases production of 

TNF-α. In parenchymal cells, LPS induces Type I interferons (IFN) in IRF3-dependent manner. 

In turn, hepatocyte-derived Type I IFNs enhance IL-10 and downregulate TNF-α in non-

parenchymal cells, thus regulating the balance between inflammatory and anti-inflammatory 

cytokines in the liver. 



ALT serum

WT IRF3-KO
0

50

100

150

200 pair-fed
EtOH-fed

0.044

*
#A

L
T

 (
IU

/L
)

TNFa  liver mRNA

WT IRF3-KO
0

1

2

3

4

5 pair-fed
EtOH-fed0.03

*

#

m
R

N
A

  (
re

la
ti

ve
 e

xp
re

s
s

io
n

)

IL-6 liver mRNA

WT IRF3-KO
0

2

4

6 pair-fed
EtOH-fed

0.03

* #

m
R

N
A

  (
re

la
ti

ve
 e

xp
re

s
s

io
n

)

ISG-56 liver mRNA

WT IRF3-KO
0

1

2

3 pair-fed
EtOH-fed

0.01

*
#

m
R

N
A

  (
re

la
ti

ve
 e

xp
re

s
s

io
n

)

WT IRF3-KO

P
a

ir
-f

e
d

E
tO

H
-f

e
d

A.

B. C.

D. E.

Figure 1.



ALT serum

0

50

100

150

200

250

#

WT/
WT-BM

IRF3-KO/
WT-BM

*

0.001

pair-fed
EtOH-fed

0.044

A
L

T
 (

IU
/L

)

WT/
WT-BM

IRF3-KO/
WT-BM

P
a

ir
-f

e
d

E
tO

H
-f

e
d

A.

B. C.

D.

Liver triglycerides

0

5

10

15

0.001

WT/
WT-BM

IRF3-KO/
WT-BM

0.004

pair-fed
EtOH-fed

m
g

/d
L

/m
g

 t
is

su
e

TNFa  liver mRNA

0

1

2

3

4

5

0.069

#

WT/
WT-BM

IRF3-KO/
WT-BM

pair-fed
EtOH-fed

m
R

N
A

  
(r

e
la

ti
ve

 e
x

p
re

ss
io

n
)

IL-6 liver mRNA

0

1

2

3

#

WT/
WT-BM

IRF3-KO/
WT-BM

pair-fed
EtOH-fed

m
R

N
A

  
(r

e
la

ti
ve

 e
x

p
re

ss
io

n
)

E.

F. G.
IL-1b  liver mRNA

0

1

2

3

4

#

WT/
WT-BM

IRF3-KO/
WT-BM

pair-fed
EtOH-fed

#

*

0.018

m
R

N
A

  
(r

e
la

ti
ve

 e
x

p
re

ss
io

n
)

IL-1b  liver protein

0

20

40

60

80

#

WT/
WT-BM

IRF3-KO/
WT-BM

pair-fed
EtOH-fed

#

0.003

p
g

/m
g

 p
ro

te
in

Figure 2.



IFN-b

0

1

2

3

4

5

#

WT/
WT-BM

IRF3-KO/
WT-BM

*

0.015

pair-fed
EtOH-fed

liv
e

r 
m

R
N

A
(r

e
la

ti
ve

 e
xp

re
s

s
io

n
)

A.

B. IL-10

0

1

2

3

WT/
WT-BM

IRF3-KO/
WT-BM

pair-fed
EtOH-fed

#
*

liv
e

r 
m

R
N

A
(r

e
la

ti
ve

 e
xp

re
s

s
io

n
)

C. WT IRF3-KO/
WT-BM

pairf
ed

EtO
H

EtO
H

pairf
ed

IL-10

b-actin

IL-10

0

1

2

3

WT/
WT-BM

IRF3-KO/
WT-BM

pair-fed
EtOH-fed

*

0.009

0.02

0.003

0.001

liv
e

r 
p

ro
te

in
(f

o
ld

 c
h

an
g

e
)

Figure 3.



WT IRF3-KO
0

1

2

3

4

5

#
*

0.022

control
LPS

IF
N

- b
 m

R
N

A
(r

e
la

ti
v

e
 e

x
p

re
s

s
io

n
)

A.

B.

WT IRF3-KO
0

5

10

15

20

#

0.049 control
LPS

IF
N

- b
  (

p
g

/m
L

)

Hepatocytes

Figure 4.



WT WT IFNAR-KO
0

5

10

15

20

25

#*

LPS

0.001

0.016

0.001

0.05

IF
N

- b
  (

p
g

/m
L

)

A.

C.

WT WT IFNAR-KO
0

25

50

75

100

*

LPS

0.043

0.004

#

0.011

IL
-1

0 
 (

p
g

/m
L

)

WT WT IFNAR-KO
0

10

20

30

*

LPS

<0.001

#0.006

*0.001

T
N

F-
a

  (
p

g
/m

L
)

Hepatocytes
LMNC
Hepatocytes + LMNC

B.

Figure 5.



RAW264.7 macrophages

Control LPS
0

50

100

150

#

*

0.019
control
IFN

IL
-1

0 
 (

p
g

/m
L

)

A. B. Human PBMCs

Control LPS
0

2000

4000

6000
#

0.028
control
IFN

*

IL
-1

0 
 (

p
g

/m
L

)

RAW264.7 macrophages

Control LPS
0

5000

10000

15000

*

0.005

control
IL-10
anti IL-10R Ab

*

*

0.007

0.003

T
N

F
- a

  
(p

g
/m

L
)

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

IL-1b
TNF-a

2000

P <10-6
P <10-6

P <10-6

P <0.006

P <0.019

IL-10 (pg/mL)

re
la

ti
ve

 in
h

ib
it

io
n

C. D.
Human PBMCs

Human PBMCs

Control LPS
0

2000

4000

6000

#

0.017

Control
IL-10

�
*

anti IL-10R
IL10 + anti-IL10R

<0.001

0.008

0.006

<0.001

<0.001

§

T
N

F
- a

 (
p

g
/m

L
)

E. F. Human PBMCs

Control LPS
0

2500

5000

7500

10000 Control
IL-10

*

anti IL-10R
IL10 + anti-IL10R

0.013

0.005

0.017

0.002

<0.001

#

�
§

IL
-1

b
 (

p
g

/m
L

)

Figure 6.



Figure 7.



VSL#3 Probiotic Treatment Attenuates Fibrosis
Without Changes in Steatohepatitis in a Diet-Induced

Nonalcoholic Steatohepatitis Model in Mice
Arumugam Velayudham, Angela Dolganiuc, Michael Ellis, Jan Petrasek, Karen Kodys, Pranoti Mandrekar, and

Gyongyi Szabo

Nonalcoholic fatty liver disease (NAFLD) and its advanced stage, nonalcoholic steatohepa-
titis (NASH), are the most common causes of chronic liver disease in the United States.
NASH features the metabolic syndrome, inflammation, and fibrosis. Probiotics exhibit
immunoregulatory and anti-inflammatory activity. We tested the hypothesis that probiotic
VSL#3 may ameliorate the methionine-choline-deficient (MCD) diet–induced mouse model
of NASH. MCD diet resulted in NASH in C57BL/6 mice compared to methionine-choline-
supplemented (MCS) diet feeding evidenced by liver steatosis, increased triglycerides, in-
flammatory cell accumulation, increased tumor necrosis factor � levels, and fibrosis. VSL#3
failed to prevent MCD-induced liver steatosis or inflammation. MCD diet, even in the
presence of VSL#3, induced up-regulation of serum endotoxin and expression of the Toll-
like receptor 4 signaling components, including CD14 and MD2, MyD88 adaptor, and
nuclear factor �B activation. In contrast, VSL#3 treatment ameliorated MCD diet–induced
liver fibrosis resulting in diminished accumulation of collagen and �-smooth muscle actin.
We identified increased expression of liver peroxisome proliferator-activated receptors and
decreased expression of procollagen and matrix metalloproteinases in mice fed
MCD�VSL#3 compared to MCD diet alone. MCD diet triggered up-regulation of trans-
forming growth factor beta (TGF�), a known profibrotic agent. In the presence of VSL#3,
the MCD diet–induced expression of TGF� was maintained; however, the expression of
Bambi, a TGF� pseudoreceptor with negative regulatory function, was increased. In sum-
mary, our data indicate that VSL#3 modulates liver fibrosis but does not protect from
inflammation and steatosis in NASH. The mechanisms of VSL#3-mediated protection from
MCD diet–induced liver fibrosis likely include modulation of collagen expression and im-
paired TGF� signaling. (HEPATOLOGY 2009;49:989-997.)

Nonalcoholic fatty liver disease (NAFLD) is the
most common cause of chronic liver disease in
the United States.1,2 The advanced stage of

NAFLD, nonalcoholic steatohepatitis (NASH), features
liver inflammation and fibrosis, and has a strong associa-
tion with the metabolic syndrome, including insulin re-
sistance, dyslipidemia, and obesity.1-4 The complexity
and the chronology of pathophysiological events leading

to development of NAFLD/NASH are not fully under-
stood. Among mechanisms of inflammation, tumor ne-
crosis factor� (TNF�) appears to play a critical role in
both insulin resistance and hepatic inflammatory cell re-
cruitment in NAFLD/NASH.3-5 Furthermore, activation
of nuclear factor �B (NF-�B), a master regulator of in-
flammation, has been demonstrated in nonalcoholic fatty
livers.3,6 Based on the similarities in the pathologic

Abbreviations: �-SMA, alpha-smooth muscle actin; Bambi, bone morphogenic protein and activin membrane-bound inhibitor; ip, intraperitoneal; LPS, lipopolysac-
charide; MCD, methionine-choline-deficient; MCS, methionine-choline-supplemented; MMP, matrix metalloproteinase; MyD88, myeloid differentiation primary re-
sponse gene 88; mRNA, messenger ribonucleic acid; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NF-�B, nuclear factor kappa B;
PGC-1�, peroxisome proliferator-activated receptor-� coactivator 1�; PPAR, peroxisome proliferator-activated receptor; PPRE, peroxisome proliferator-response element;
TLR, toll-like receptor; TNF�, tumor necrosis factor alpha; TGF�, transforming growth factor beta; SC, stellate cells.
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changes in the liver in NASH and alcoholic steatohepati-
tis, it has been proposed that endotoxin from gut-derived
gram-negative bacteria and lipopolysaccharide (LPS)-
sensing machinery, including Toll-like receptor 4
(TLR4)/MyD88 pathways, may play a role in the patho-
genesis of NASH.7 Both fat metabolism and inflamma-
tion are regulated by peroxisome proliferator-activated
receptors (PPARs),1-3 suggesting that inflammation is a
complex process regulated at different levels during devel-
opment of NAFLD and its progression to NASH.

NASH can lead to liver fibrosis and cirrhosis.1 Recent
studies suggest that most “cryptogenic” cirrhosis is the
result of previously undiagnosed NASH8; however, there
are no known determinants of progressive liver damage at
the cellular or molecular level and therapeutic modalities
that could prevent progression of NASH are yet to be
developed.

The human gut microflora is important in regulating
host immune homeostasis.9 In vivo administration of
VSL#3, a probiotic preparation of live, freeze-dried bac-
teria containing eight bacterial species (Streptococcus sali-
varius subsp. thermophilus, Bifidobacterium [B. breve, B.
infantis, B. longum], Lactobacillus acidophilus, L. planta-
rum, L. casei, and L. delbrueckii subsp. bulgaricus), atten-
uated liver steatosis in ob/ob mice that present
characteristics of NAFLD.10 Although the cellular and
molecular basis of the action of probiotics is yet to be
understood, some liver-related beneficial effects of VSL#3
treatment were found in a small cohort of patients with
NAFLD.11

Based on the features of NAFLD/NASH in humans,
which include steatosis and liver inflammation followed
by fibrosis,12 and based on the suggested anti-inflamma-
tory properties of VSL#3 in animal models of chronic
inflammation,10,13 we entertained the hypothesis that
probiotic treatment with VSL#3 will ameliorate MCD
diet-induced NASH by modulation of liver inflammation
and/or fibrosis.

Materials and Methods

Animals and Experimental Protocol. The study
obeyed Institutional Animal Care and Use Committee
regulations at the University of Massachusetts Medical
School. Female C57BL/6 mice were fed a methionine-

choline-deficient (MCD) diet or a methionine-choline-
supplemented (MCS) diet; a group of MCD diet-fed
mice also received VSL#3 (the protocol is detailed in Sup-
porting Information). The MCD diet feeding represents
an animal model of NAFLD/NASH, which reproduces
several aspects of human diseases, such as liver steatosis,
inflammation, and fibrosis.14-16

Preparation of serum and tissue, histopathological
analysis, biochemical assays and cytokine detection were
described previously17,18 and are detailed in the Support-
ing Information.

Electrophoretic Gel Mobility Shift Assay. The elec-
trophoretic gel mobility shift assay (EMSA) was per-
formed using 5�g of nuclear protein; other proteins were
quantified in western blot, as described previously,17,18

and detailed in Supporting Information.
RNA Analysis. Total RNA was extracted from liver

tissue, and messenger RNA (mRNA) analysis was per-
formed using quantitative real-time polymerase chain re-
action (qPCR) as described.17,18 All specific mRNA levels
were corrected for the 18S internal control results from
the same sample. The specific PCR primer sequences used
in this study are listed in Table 1.

Statistical Analysis. Statistical significance for in vivo
tests was determined using nonparametric Kruskal-Wallis
and Mann-Whitney tests. Data are presented as mean �
standard error; a P value � 0.05 was employed as the
statistical threshold of significance.

Results

VSL#3 Treatment Prevents Fibrosis but not Fatty
Liver and Inflammation in the MCD-Diet–Induced
Model of NASH. Administration of the MCD diet to
C57BL/6 mice resulted in an a classical pathophysiologi-
cal picture of NASH compared to MCS diet feeding: first,
disturbed lipid metabolism was suggested by microvesicu-
lar and macrovesicular steatosis (Fig. 1A) and increased
liver triglyceride levels (Fig. 1B); second, inflammation
occurred as indicated by multiple foci of inflammatory
cell accumulations in the livers (Fig. 1A) and by increased
in serum (data not shown) and liver TNF� (Fig. 1C);
and, third, liver fibrosis occurred, as indicated by in-
creased accumulation of collagen (Fig. 1F) and �-smooth
muscle actin (�-SMA; Fig. 1G). These changes induced
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Table 1. qPCR Primers

Target gene Forward primer (5�33�) Reverse primer (5�33�)

18S gta acc cgt tga acc cca tt cca tcc aat cgg tag tag cg
TNF� cac cac cat caa gga ctc aa agg caa cct gac cac tct cc
TLR4 gcc ttt cag gga att aag ctc c aga tca acc gat gga cgt gta a
CD-14 gga agc cag aga aca cca tc cca gaa gca aca gca aca ag
MD-2 gac gct gct ttc tcc cat a cat tgg ttc ccc tca gtc tt
MyD88 aga aca gac aga cta tcg gct cgg cga cac ctt ttc tca at
PPAR� aac atc gag tgt cga ata tgt gg agc cga ata gtt cgc cga aag
PPAR� gga aga cca ctc gca ttc ctt tcg cac ttt ggt att ctt gga g
PGC1� aga cgg att gcc ctc att tga tgt agc tga gct gag tgt tgg
TGF-�1 att cct ggc gtt acc ttg ctg tat tcc gtc tcc ttg gtt
MMP-2 ttt gct cgg gcc tta aaa gta t cca tca aac ggg tat cca tct c
MMP-9 tgc cca ttt cga cga cga c gtc cag gcc gaa tag gag c
Procollagen-I gct cct ctt agg ggc cac t cca cgt ctc acc att ggg g
Bambi aaa act tca gac ggg tgt gg tgg tgc tgg aga aat cac ag

Fig. 1. VSL#3 treatment failed to
prevent MCD diet–induced liver in-
jury. Mice were fed a MCS or MCD
diet for 10 weeks; VSL#3 was ad-
ministered for the last 9 weeks of
the MCD diet. Liver-to-body weight
ratio was determined. Data are
shown from six mice per experimen-
tal group. Liver histology was as-
sessed after hematoxylin and eosin
staining of liver tissue. Micrograph in
(A) is a representative picture, with
magnification 100�; the asterisk
indicates inflammatory foci. (D) Liv-
er/body ratio, (B) liver triglycerides
(TG), (C) liver TNF�, and (E) serum
ALT were determined from n �
6/group. (F) Liver sections were an-
alyzed for collagen expression with
trichrome (top panel) and Sirius Red
(medium panel) staining; liver colla-
gen I protein content was quantified
in western blot using equal amounts
of total liver proteins from each an-
imal; one representative blot and
densitometric analysis from n �
6/group (bottom panel) are shown.
(G) Liver sections were analyzed for
�-SMA expression using immuno-
histochemistry (top panel) staining;
liver �-SMA protein content was
quantified in western blot using
equal amounts of total liver proteins
from each animal; one representa-
tive blot and densitometric analysis
from n � 6/group (bottom panel)
are shown.
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by the MCD diet feeding lead to increased liver-to-body
weight ratio (Fig. 1D) and liver damage, as suggested by
elevated serum alanine aminotransferase (ALT) level (Fig.
1E).

Coadministration of the probiotic VSL#3 had no sig-
nificant effect on MCD diet–induced disturbance of fat
metabolism because it failed to prevent steatosis (Fig. 1A)
or to protect from accumulation of liver triglycerides (Fig.
1B). VSL#3 also failed to prevent the development of the
inflammatory component of NASH as suggested by the
lack of protection from inflammatory cell recruitment
(Fig. 1A) or elevation of MCD diet�VSL#3-induced
TNF� increase (Fig. 1C) compared to the MCD diet
alone. VSL#3 treatment also failed to protect from MCD
diet–induced liver injury (Fig. 1E,D).

In contrast, coadministration of VSL#3 reduced the
progression of MCD diet–induced liver fibrosis as indi-
cated by minimal evidence of collagen, identified by
trichrome and sirius red staining (Fig. 1F) in
MCD�VSL#3 diet–fed mice compared to mice fed the
MCD diet alone. Further, the increased �-SMA expres-
sion in the livers of MCD diet–fed animals was signifi-
cantly diminished by VSL#3 treatment as indicated by
immunohistochemical staining (Fig. 1G). Consistent
with the histology staining results, western blot analysis
revealed increased collagen (Fig. 1F) and �-SMA (Fig.
1G) protein levels in the liver of mice subjected to MCD
but not to MCS or MCD�VSL#3 diets. These results
demonstrate that VLS#3 has a beneficial effect in the
MCD-induced model of NASH. Our data also suggest
that VSL#3 attenuated the fibrosis, but not the inflamma-
tion and liver damage, in MCD diet–induced steatohepa-
titis.

VSL#3 Treatment Inhibits Expression of Type I
Collagen and Matrix Metalloproteinases. Collagen
deposition and fibrosis are the result of stellate cell activa-
tion in the liver.15,19 Recent evidence suggests that perox-
isome proliferator-activated receptors (PPARs) may have
antifibrotic effects.20,21 PPARs, especially PPAR� and
PPAR� isoforms, not only play an important role in
NAFLD through regulation of fat and glucose metabo-
lism but also regulate stellate cell (SC) activity.20,21 The
effect of probiotics on PPAR activity is largely unknown.
Based on our findings of antifibrotic effects of VSL#3, we
hypothesized that VSL#3 treatment may modulate liver
PPAR activity.

Investigation of liver mRNA levels revealed signifi-
cantly increased PPAR� (Fig. 2A) and PPAR� (Fig. 2B)
levels in VSL#3-treated mice compared to MCD diet
feeding alone. Although the PPAR activation and DNA
binding were comparable in MCD-treated and
MCD�VSL#3-treated mice (Fig. 2C), the antibody su-

Fig. 2. VSL#3 induces expression of peroxisome proliferator-activated
proteins. The expression of liver peroxisome proliferator-activated recep-
tor-� (PPAR-�) (A), PPAR-� (B), and PPAR-� coactivator 1 � (PGC-1�
(E) were assessed using qPCR. Data are shown as fold increase of MCD
or MCD�VSL#3 group over control MCS diet with six mice pergroup. (C)
Equal amounts of nuclear proteins were analyzed in EMSA for binding to
the PPAR response element (PPRE). One sample was preincubated with
cold PPRE oligonucleotide prior to EMSA as specificity control (C); a
representative EMSA gel (top) and the densitometric analysis from six
mice per group (bottom panel) are shown. (D) Equal amounts of nuclear
proteins were analyzed preincubated with anti-PPAR�, anti-PPAR� or
anti-RXR antibodies and subjected to EMSA for binding to the PPRE; a
cold competition control (Comp) was included as above. A representative
EMSA gel (top) and the densitometric analysis from six mice per group
(bottom panel) are shown.
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pershift indicated a predominant presence of PPAR� and
retinoid X receptor (RXR), and to a lesser extent of
PPAR�, in MCD-induced and MCD-VSL#3–induced
PPAR activation (Fig. 2D). Downstream in the activation
pathway, the mRNA levels of the PPAR-� coactivator 1�
(PGC-1�), a transcriptional coactivator of PPAR,22 was
significantly increased by VSL#3 treatment (Fig. 2E).

Administration of the MCD diet increased mRNA lev-
els of procollagen 1�, and this response was attenuated in
the presence of VSL#3 treatment (Fig. 3A). Changes in
procollagen I-�1 mRNA levels closely mirrored changes
in collagen protein levels and correlated with collagen
expression detected by trichrome and Sirius red staining
(Fig. 1F).

Changes in collagen expression also correlated with the
expression of matrix metalloproteinases (MMPs) that

play an important role in hepatic fibrosis.23 SCs are im-
portant sources of MMP in the liver,23,24 and PPAR acti-
vators modulate MMP expression.25 Thus, we followed
our finding of the elevated PPAR activity in the liver of
MCD�VSL#3-fed compared to MCD-fed animals (Fig.
2) and predicted that first, the MCD diet will elevate liver
MMP levels, and second, VSL#3 treatment will modulate
liver MMP levels. Indeed, we found a significant induc-
tion of MMPs, including MMP-2 and MMP-9, in livers
of animals on the MCD diet (Fig. 3B,C). Confirming our
hypothesis, coadministration of VSL#3 significantly at-
tenuated the MCD diet–induced liver expression of both
MMP-2 and MMP-9 (Fig. 3B,C).

Diet-Induced Steatohepatitis Is Associated with In-
creased Serum Endotoxin Levels, Increased Expression
of the TLR4 Receptor Complex, and Hyperresponsive-
ness to LPS Stimulation. Previous studies suggested
that gut-derived endotoxin plays a key role in develop-
ment and progression of NASH.1-3,5-7 Endotoxin is a po-
tent activator of liver parenchymal and nonparenchymal
cells, of which Kupffer cells and SCs govern the develop-
ment of NASH.26 Further, probiotic bacteria prevent he-
patic damage and maintain colonic barrier function in a
mouse model of sepsis.13 We identified a moderate but
statistically significant increase in serum LPS levels in
mice with MCD diet–induced steatohepatitis compared
to MCS control diet–fed mice (Fig. 4). However, VSL#3
treatment did not significantly affect serum endotoxin
levels compared to the MCD diet alone (Fig. 4). These
data were in agreement with our findings that elevated
serum (data not shown) and liver TNF� (Fig. 1C) and
ALT (Fig. 1E) levels were not affected by VSL#3 treat-
ment, because endotoxin is a major stimulator of the
TNF�-producing immune cells, and TNF� plays a key
role in liver damage during NASH.26,27

Based on these findings, we speculated that VSL#3
treatment would fail to prevent the activation of endotox-
in-triggered inflammatory activation in the MCD diet–

Fig. 4. VSL#3 failed to protect from MCD diet–induced endotoxemia.
Mice were fed MCS or MCD diet for 10 weeks; VSL#3 was administered
for the last 9 weeks of the MCD diet. Serum levels of endotoxin were
analyzed at the end of the 10-week feeding period using a Limulus
Amebocyte Lysates assay. Mean � standard error data from six mice per
group are shown.

Fig. 3. VSL#3 limits the expression of MCD diet–induced matrix
metalloproteinase in the liver. The liver RNA levels of (A) liver procollagen
I-�1, (B) matrix metalloproteinase-2 (MMP-2), and (C) MMP-9, and the
18S control were analyzed using qPCR. Data are shown as fold increase
of MCD or MCD�VSL#3 group over control MCS diet, all adjusted to 18S
internal controls, with six mice per group.
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induced NASH model. LPS induces activation of the
proinflammatory cascade and cellular activation via the
TLR4 complex expressed on most liver cells, including
nonparenchymal (Kupffer cells and SCs), immune in-
flammatory cells, and hepatocytes.28 Thus, increased ex-
pression of the components of the TLR4 receptor
complex, including TLR4, its coreceptors CD14 and
MD-2, and the common TLR adapter MyD88 may in-
crease cellular responses to LPS.28,29 We found that RNA
levels of CD14 (Fig. 5A), MD-2 (Fig. 5B), and MyD88
(Fig. 5C) were significantly up-regulated after MCD or
MCD�VSL#3 diet feeding compared to the control
MCS diet. Further, MD-2 (Fig. 5B) mRNA levels were
increased by VSL#3 treatment whereas there was no sig-
nificant change in the mRNA levels of TLR4 (Fig. 5E)
between mice on the different diets. These results sug-
gested that MCD diet–induced up-regulation of the
TLR4 coreceptors CD14 and MD-2, and molecules in-
volved in TLR4 downstream signaling, such as MyD88,
may sensitize livers with steatohepatitis to increased re-
sponsiveness to LPS.

Activation of TLR4 triggers downstream signaling that
culminates in activation of nuclear transcription fac-
tors.28,29 Among those, the NF-�B pathway plays a key
role in activation of Kupffer cells and SCs during liver
diseases.26 We found that baseline activation of NF-�B
was statistically similar in all analyzed groups (Fig. 5E).
Based on the fact that NASH is a multihit disease,1-3,5-7 we
further employed an exogenous LPS administration strat-
egy to reveal the physiological relevance of our above-
described findings in the LPS-sensing receptor complex.
LPS challenge resulted in significantly higher NF-�B nu-
clear translocation and DNA binding in the livers of mice
fed the MCD diet compared to mice fed the MCS control
diet (Fig. 5E). Furthermore, VSL#3 administration aug-
mented the LPS-induced NF-�B activation in MCD di-
et–fed mice (Fig. 5E). These results suggested that MCD
diet–induced steatohepatitis activated proinflammatory

cytokine induction pathways and VSL#3 treatment failed
to attenuate the exaggerated proinflammatory activation
in response to LPS.

VSL#3 Modulates Transforming Growth Factor-�
Signaling Pathways. Our data suggested so far that
VSL#3 failed to ameliorate inflammation, yet prevented

™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™3
Fig. 5. VSL#3 augments MCD diet–induced modulation of the LPS

signaling complex. The liver mRNA levels of (A) CD14, (B) MD-2, (C)
MyD88, (D) toll-like receptor (TLR) 4, and 18S were analyzed using
qPCR. Data are shown as fold increase of MCD or MCD�VSL#3 group
over control MCS diet, all adjusted to corresponding 18S housekeeping
controls, with six mice per group. (E) Mice were fed MCS or MCD diet for
10 weeks; VSL#3 was administered for the last 9 weeks of the MCD diet.
At the end of the 10-week feeding period, the animals were challenged
with LPS (0.5 mg/kg body weight, i.p. for 1.5 hours). Liver nuclear
extracts were analyzed for NF-�B binding activity in EMSA using specific
radioisotope-labeled oligonucleotides; 20� excess of unlabeled oligo-
nucleotide was used for cold competition (Comp). A representative gel is
shown on the top and the densitometric analysis from six mice per group
is shown on the bottom of each panel. Asterisk represents P � 0.01
compared to the saline group with the same diet feeding.
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fibrosis in the MCD diet–induced model of NASH. Al-
though inflammation has been suggested as a prerequisite
for development of fibrosis,7,12,26 the chronology and in-
terdependence of inflammation and fibrosis are yet to be
fully understood in NASH. More recently, a link between
proinflammatory and profibrogenic signals was suggest-
ed.26 Seki et al. indicated that during liver inflammation,
LPS down-regulates the transforming growth factor-beta
(TGF�) pseudoreceptor, Bambi, to sensitize SCs to
TGF�-induced signals from inflammatory cells in a
TLR4/MyD88-NF-�B–dependent manner, thus modu-
lating liver fibrosis.26 Based on our data, we predicted that
the MCD diet–induced NASH could modulate TGF�
expression and/or signaling due to endotoxemia and LPS-
receptor–mediated signaling, similar to changes seen in
other inflammation models.26 We further hypothesized
that VSL#3 treatment could modulate the MCD diet–
induced changes in expression of Bambi, the TGF� pseu-
doreceptor, and thus disrupt the profibrotic TGF�
signaling pathway, despite ongoing inflammation. TGF�
RNA levels were increased by the MCD diet (Fig. 6A),
suggesting that the MCD-triggered TGF� could contrib-
ute to SC activation and collagen production (Figs. 1 and
3). In the presence of VSL#3 during the MCD diet,
TGF� levels showed a decreasing trend that was not sta-
tistically significant (Fig. 6A). However, we found that
Bambi was significantly up-regulated in the presence of
VSL#3 treatment compared to MCD diet alone (Fig. 6B).

These data suggested that VSL#3 treatment promoted the
expression of the TGF� pseudoreceptor Bambi that could
arrest the SCs in a quiescent state.

Discussion
Our study shows that VSL#3 treatment prevents fibro-

sis in the MCD diet–induced NASH model without sig-
nificant attenuation of the ongoing steatohepatitis. This
observation supports the concept that in vivo fibrosis and
steatohepatitis can be regulated independently30,31 and
points to a potentially new therapeutic application of
VSL#3.

The current view on the mechanisms and progression
of NASH favors a model in which steatosis and then
steatohepatitis are induced as a result of fatty acid over-
load and inflammation, leading to subsequent activation
of SCs that produce collagen and lead to liver fibrosis.1-

3,5-7,26 The key component in the mechanisms of fibrosis
in the liver is the activation of SCs that are the primary
source of �-SMA and collagen deposition.14,20,26 SC acti-
vation is induced by multiple insults, including TNF�,
and TGF�.4,5,7,26 We identified increased TNF� produc-
tion in MCD diet–induced NASH, which remained ele-
vated in MCD�VSL#3-treated mice, in agreement with
studies from Ewaschuk et al.13 and Hart et al.32 TNF�
modulates SC activation via a mechanism that involves
inhibition of PPAR expression and its binding to the per-
oxisomal proliferator response element (PPRE).33 We
found an increase in PPAR mRNA levels in the livers of
MCD�VSL#3-treated mice compared to those treated
with the MCD diet alone. Although there were no signif-
icant differences in the levels of PPAR activity or in com-
position of the PPAR complex, we identified that VSL#3
treatment during MCD diet led to an increase in PGC-1a
and a decrease in Col1a, which are targets of PPARs.34,35

Taken together, these changes suggested a role for PPARs
in the antifibrotic effects of VSL#3. However, we identi-
fied that MCD diet up-regulated TGF�, a known SC
activator.26 Because TGF� regulates collagen produc-
tion,30,36 increased TGF� production could contribute to
the MCD-induced fibrosis. VSL#3 inhibited fibrosis and,
importantly, triggered the production of Bambi, a trans-
membrane protein highly similar to TGF� receptors.37 In
contrast to regular TGF� receptor, the intracellular do-
main of Bambi is short and lacks a serine/threonine kinase
domain that is essential for transducing TGF� signals;
thus, Bambi functions as a pseudoreceptor and acts as a
negative regulator of TGF� signaling pathway.26,37 To
date, the fine mechanisms of Bambi regulation are not
fully understood. However, several authors reported that
the bone morphogenic protein family, which also in-
cludes Bambi,37 is regulated via NF-�B–dependent

Fig. 6. VSL#3 modulates TGF� pathway. The liver RNA levels of (A)
TGF�, (B) Bambi, and 18S were analyzed using qPCR. Data are shown
as fold increase of MCD or MCD�VSL#3 group over control MCS diet, all
adjusted to corresponding 18S housekeeping controls, with six mice per
group.
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mechanisms.26,38-40 We report increased NF-�B activity
and elevated expression of Bambi in MCD diet–fed
VSL#3-treated group compared to controls fed the MCD
diet alone. Further, Bambi RNA changes mirror the pro-
tein levels, and Bambi expression is restricted to SCs of
the liver.26 Thus, in the presence of VSL#3, high levels of
Bambi could prevent TGF�-induced signals, and control
the unrestricted activation of SCs by ongoing inflamma-
tion. These data are in agreement with those of Seki et al.,
who showed that down-regulation of Bambi mRNA and
protein expression, and subsequent sensitization to
TGF� signals, is mediated by a MyD88/NF-�B–depen-
dent pathway and occurs with ongoing liver inflamma-
tion.26

We identified increased expression of the components
of the signaling pathway initiated by LPS via TLR4, in-
cluding CD14, MyD88, and NF-�B, during MCD-in-
duced NASH and these were further exacerbated in
MCD�VSL#3-treated mice. Thus, the increased serum
LPS levels in the MCD diet–fed mice are likely to con-
tribute to the sustained inflammation. In light of these
findings, and taking into consideration the significantly
higher levels of serum ALT in VSL#3-exposed animals
compared to MCD diet–fed controls, it is possible that
VSL#3 treatment not only failed to inhibit but also aug-
mented MDC diet–induced inflammation; such a con-
clusion could not be reached because of the imprecise
nature of histological scoring. VSL#3 has TLR2-stimulat-
ing and TLR9-stimulating capacity41; both TLR2 and
TLR9 share the MyD88-dependent signaling pathway
with TLR4.28,29 We did not identify changes of TLR2
levels (data not shown); however, the increased expression
of MyD88 in VSL#3-exposed animals could accommo-
date signaling via TLR2, TLR4, or TLR9. We also ac-

knowledge that the presence/processing of VSL#3 in vivo
is needed in order to achieve antifibrotic effects; in this
context, the effects of VSL#3 on gut, the gut microbiota-
liver relationship, the detailed composition of VSL#3-
derived microbial products, and their specific interactions
with stellate cells at biochemical and mechanistic levels
remain the subject of future research.

In summary, our data indicate that VSL#3 modulates
liver fibrosis but does not protect from inflammation and
steatosis in NASH. Within the limitations of the animal
model,14,15,18,42 our current working model takes into
consideration a role for the endotoxin/TLR4/MyD88
pathway, but also acknowledges the differential contribu-
tions of TNF�-mediated, NF-�B–mediated, PPAR-me-
diated, and TGF�/Bambi-mediated activation pathways
toward development of inflammation and fibrosis during
NASH (Fig. 7). Our results suggest that, at least in the
NAFLD/NASH model, the benefit of the VSL#3 treat-
ment on fibrosis may occur even in the absence of signif-
icant changes in markers of inflammation and fat in the
liver.
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et al. Silencing of TGF-beta signaling by the pseudoreceptor BAMBI.
Nature 1999;401:480-485.

38. Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists.
Rev Endocr Metab Disord 2006;7:51-65.

39. Carneiro K, Fontenele M, Negreiros E, Lopes E, Bier E, Araujo H. Graded
maternal short gastrulation protein contributes to embryonic dorsal-ven-
tral patterning by delayed induction. Dev Biol 2006;296:203-218.

40. Saas J, Haag J, Rueger D, Chubinskaya S, Sohler F, Zimmer R, et al.
IL-1beta, but not BMP-7 leads to a dramatic change in the gene expression
pattern of human adult articular chondrocytes–portraying the gene expres-
sion pattern in two donors. Cytokine 2006;36:90-99.

41. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky
B, et al. Toll-like receptor 9 signaling mediates the anti-inflammatory
effects of probiotics in murine experimental colitis. Gastroenterology
2004;126:520-528.

42. Portincasa P, Grattagliano I, Palmieri VO, Palasciano G. Nonalcoholic
steatohepatitis: recent advances from experimental models to clinical man-
agement. Clin Biochem 2005;38:203-217.

HEPATOLOGY, Vol. 49, No. 3, 2009 VELAYUDHAM ET AL. 997



 
Accepted Manuscript 

Type I Interferons Protect from Toll-like Receptor 9-Associated 
Liver Injury and Regulate IL-1 Receptor Antagonist in Mice 

Jan Petrasek, Angela Dolganiuc, Timea Csak, Evelyn A. Kurt-Jones, 
Gyongyi Szabo 

PII: S0016-5085(10)01238-2 
DOI: 10.1053/j.gastro.2010.08.020 
Reference: YGAST 56526 

To appear in: Gastroenterology 

Received date: 4 December 2009 
Revised date: 27 July 2010 
Accepted date: 6 August 2010 
 
Please cite this article as: Petrasek, J., Dolganiuc, A., Csak, T., Kurt-Jones, E.A., Szabo, 
G., Type I Interferons Protect from Toll-like Receptor 9-Associated Liver Injury and 
Regulate IL-1 Receptor Antagonist in Mice, Gastroenterology (2009), doi: 
10.1053/j.gastro.2010.08.020. 
 
This is a PDF file of an unedited manuscript that has been accepted for publication. As a 
service to our customers we are providing this early version of the manuscript. The 
manuscript will undergo copyediting, typesetting, and review of the resulting proof 
before it is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers that 
apply to the journal pertain. 

http://dx.doi.org/10.1053/j.gastro.2010.08.020�
http://dx.doi.org/10.1053/j.gastro.2010.08.020�
http://dx.doi.org/10.1053/j.gastro.2010.08.020�


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Type I Interferons Protect from Toll-like Receptor 9-Associated Liver Injury 

and Regulate IL-1 Receptor Antagonist in Mice 

 

Short title: Type I interferons in TLR9-associated liver injury 

 

Jan Petrasek, Angela Dolganiuc, Timea Csak, Evelyn A. Kurt-Jones, Gyongyi Szabo 

Department of Medicine, University of Massachusetts Medical School 

 

Jan Petrasek - Acquisition of data, analysis and interpretation of data, statistical analysis and 
manuscript writing 
Angela Dolganiuc - Acquisition of data, analysis and interpretation of data, and manuscript 
writing 
Evelyn A. Kurt-Jones - Intellectual content, critical revision of the manuscript 
Timea Csak - Acquisition of data, analysis and interpretation of data 
Gyongyi Szabo - Study concept and design, critical revision of the manuscript, and obtained 
funding 
 
Financial support: This work was supported by PHS grant # RO1DK075653 from NIDDK (to 
G.S.). Core resources supported by the Diabetes Endocrinology Research Center grant DK32520 
were also used.  
 
Abbreviations: CpG, cytidine-phosphate-guanosine-rich DNA; IFN, interferon; IFNAR1, type I 
interferon receptor; IL-1ra, interleukin 1 receptor antagonist; IL-1 , interleukin 1 beta ; IRF, 
interferon regulatory factor; ISG, interferon stimulated gene; LPS, lipopolysaccharide; LTA, 
lipoteichoic acid; NF B, nuclear factor B; TLR, toll-like receptor 
 
Correspondence: Gyongyi Szabo M.D. Ph.D. 
University of Massachusetts Medical School, Department of Medicine, LRB215, 364 Plantation 
Street, Worcester, MA 01605 Tel: (508) 856-5275 Fax: (508) 856-4770. Email:  
gyongyi.szabo@umassmed.edu 
 
Disclosures: nothing to disclose 
 

ACCEPTED MANUSCRIPT

mailto:gyongyi.szabo@umassmed.edu�


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

2 

 

Abstract:  

Background & Aims: Liver inflammation and injury are mediated by the innate immune 

response, which is regulated by Toll-like receptors (TLR). Activation of TLR9 induces Type I 

interferons (IFNs) via the interferon regulatory factor (IRF)-7. We investigated the roles of Type 

I IFNs in TLR9-associated liver injury in mice. 

 

Methods: Liver injury was induced in wild-type (WT), IRF7-deficient, and IFN- /ß receptor-1 

(IFNAR1)-deficient mice by administration of ligands for TLR9 or TLR2. Findings from mice 

were verified in cultured hepatocytes and liver mononuclear cells, and in vivo experiments using 

recombinant Type-I IFN and interleukin-1 receptor antagonist (IL-1ra). 

 

Results: Type I IFNs were upregulated during TLR9-associated liver injury in WT mice. IRF7- 

and IFNAR1-deficient mice, which have disruptions in Type I IFN production or signaling, 

respectively, had greater amounts of liver damage and inflammation, decreased recruitment of 

dendritic cells, and increased production of TNF-  by liver mononuclear cells (LMNC). These 

findings indicate that Type I IFNs have anti-inflammatory activities in liver. The IL-1ra, which is 

produced by LMNC and hepatocytes, is an IFN-regulated antagonist of the pro-inflammatory 

cytokine IL-1 ; IRF7- and IFNAR1-deficient mice had decreased levels of IL-1ra, compared 

with WT mice. IL-1ra protected cultured hepatocytes from IL-1 -mediated sensitization to 

cytotoxicity from TNF- . In vivo exposure to Type I IFN, which induced IL-1ra, or 

administration of IL-1ra reduced TLR9-associated liver injury; the protective effect of Type-I 

IFNs therefore appears to be mediated by IFN-dependent induction of IL-1ra. 
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Conclusions: Type I IFNs have anti-inflammatory effects mediated by endogenous IL-1ra which 

regulates the extent of TLR9-induced liver damage. Type I interferon signaling is therefore 

required for protection from immune-mediated liver injury. 

 

KEY WORDS: liver disease; immunology; innate immunity; bacterial DNA 
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Liver-related etiologies are among the top ten leading causes of death in the United States.1 The 

common hallmark of most liver diseases is inflammation and injury, which may result in acute 

liver failure, or, if persist, promote the development of fibrosis and eventually cirrhosis.2 

Presently, liver inflammation and injury have no pathogenesis-specific treatment, but they share 

a common pathway of induction of innate immune responses, triggered by Toll-like receptors 

(TLRs).3  

For example, TLR9 is activated by unmethylated DNA rich in cytidine-phosphate-guanosine 

(CpG). This motif is present in bacterial DNA and also in DNA from apoptotic mammalian 

cells.4 Emerging data provide evidence for the role of CpG DNA and TLR9-mediated 

inflammation in acute and chronic liver injury of diverse origin, including alcoholic liver 

disease,5 primary biliary cirrhosis,6 primary sclerosing cholangitis7 and acetaminophen-induced 

liver injury.8 TLR9-initiated signals are also involved in general processes such as liver fibrosis,9, 

10 liver cirrhosis,11 ischemia-reperfusion injury,12 and liver graft rejection13. TLR9 acts 

synergistically with the TLR2 ligand lipoteichoic acid (LTA),14 and further sensitizes the liver to 

injury induced by the TLR4 ligand lipopolysaccharide (LPS).15, 16 

Activation of TLR9 by CpG results in increased production of inflammatory mediators via the 

nuclear factor B (NF B), and in a strong induction of Type I interferons (IFN-  and IFN- ) via 

the interferon regulatory factor 7 (IRF-7),17 which together with IRF3 also plays a role in TLR4-

dependent induction of Type I IFNs. 18 While NF B-dependent induction of inflammatory 

cytokines by CpG is considered the key event in the TLR9-mediated liver injury,5, 6, 8, 13 little is 

known about the role of IRF7-dependent Type-I IFN induction and signaling after TLR9 

stimulation. 
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Here we demonstrate that induction of Type I IFNs and Type I IFN-mediated signaling has a 

protective role in TLR9-induced liver inflammation and injury. We report that impaired 

induction of interferon-stimulated genes, including the anti-inflammatory cytokine, interleukin 1 

receptor antagonist (IL-1ra), increases liver inflammation and injury. Our results also 

demonstrate a protective effect of the IL-1ra in vivo in TLR9-associated liver injury.  
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Experimental procedures 

Animals and experimental protocol 

The B6.129F2 and C57Bl/6 wild-type (WT) mice were purchased from Jackson Laboratory. 

IRF7-deficient (IRF7-/-) mice on B6.129F2 background were provided by Tadagatsu Tanaguichi 

(Tokyo) and type I interferon /  receptor 1-deficient (IFNAR1-/-) mice on the C57Bl/6 

background were the kind gift of Jonathan Sprent (Scripps Research Institute, La Jolla, CA). All 

animals (3-6/experimental group) were 6–8 weeks old and received proper care in agreement 

with animal protocols approved by the Institutional Animal Use and Care Committee of the 

University of Massachusetts Medical School. 

We employed a previously described model of TLR9-associated liver injury induced by 

administration of TLR9 and TLR2 ligands.15, 16 After acclimatization, WT, IRF7-/- and IFNAR1-

/- mice were injected intraperitoneally (i.p.) with saline or the combination of 2.5 mg/kg 

unmethylated DNA rich in cytidine-phosphate-guanosine (CpG, ODN1826 murine TLR9 ligand; 

InvivoGen, San Diego, CA), and 5 mg/kg lipoteichoic acid (LTA, from Staphylococcus aureus; 

Sigma, Saint Louis, MO). Three days after the above priming stimulus, the mice were injected 

i.p. with either saline or 0.5 mg/kg lipopolysaccharide (LPS, from Escherichia coli 0111:B4, 

Sigma, St. Louis, MO) and sacrificed as indicated. Some C57Bl/6 WT mice received a single i.p. 

injection of 100,000 IU human pegylated interferon alpha-2b (pegIFN 2, Pegintron, Schering, 

Kenilworth, NJ) two hours prior to LPS. Others were pretreated with recombinant human 

interleukin-1 receptor antagonist (IL-1ra) 25 mg/kg i.p. every six hours (Anakinra, Amgen, 

Thousand Oaks, CA) for 24 hours before CpG+LTA, and the treatment with IL-1ra was ongoing 

until sacrifice. Serum was separated by centrifugation. Livers were snap frozen, stored in 
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RNAlater (Qiagen GmbH, Hilden, Germany) or fixed in 10% neutral-buffered formalin. ALT 

was quantified by biochemical assay (D-Tek Analytical Laboratories Inc, San Diego, CA). 

Histopathology analysis 

Sections of formalin-fixed, paraffin-embedded livers were stained with hematoxylin and eosin 

(H&E), and assessed for inflammatory infiltrate; area of inflammatory infiltrates was calculated 

with Microsuite (Olympus Soft Imaging Solution GmbH, Munster, Germany) image analysis 

software in 20 high power fields. 

Isolation of hepatocytes and liver mononuclear cells 

Animals received anesthesia with ketamine (100 mg/kg) and xylazine (10 mg/kg); the livers 

were perfused with saline solution followed by in vivo digestion, as we previously described.19 

The hepatocytes and liver mononuclear cells (LMNCs) were purified by centrifugation at slow 

speed (500g) and in Percoll gradient, respectively. 

Phenotype analysis by flow cytometry 

Cells were washed in PBS and incubated with anti-CD68 (FITC), anti-CD11c (FITC) or anti-

PDCA1 (Alexa Fluor 647) antibodies for 30 minutes on ice. After incubation, cells were washed 

with PBS, fixed in paraformaldehyde and analyzed by flow cytometry. All antibodies were from 

eBioscience (eBioscience, Inc., San Diego, CA). 

In vitro cell culture 

Primary hepatocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 

10% fetal bovine serum (FBS), 1% insulin, transferrin, and selenium supplement on collagen-
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coated plates (Becton Dickinson Labware, Bedford, MA). Primary LMNCs were cultured in 

DMEM with 10% FBS. Hepatocytes were treated with recombinant murine IFN- 2b (500 

IU/mL, eBioscience, San Diego, CA), murine IL-1ra (100 pg/mL, R&D Systems, Minneapolis, 

MN), murine IL-1  (100 IU/mL, Peprotech Inc., Rocky Hill, NJ) or murine TNF-  (0-100 

ng/mL, Peprotech Inc., Rocky Hill, NJ). LMNCs were treated with mouse IFN- 2b or LPS (100 

ng/mL, Sigma, St. Louis, MO). 

Hepatocyte cytotoxicity assay 

Lactate dehydrogenase (LDH) release from the hepatocyte into the culture supernatants was 

measured using the LDH-cytotoxicity assay kit (Abcam, Cambridge, MA), and normalized to 

total LDH (determined after treatment of cells with detergent-based lysis solution). 

Cytokine and chemokine measurement 

Serum concentrations of the secreted forms of interleukin-1  (IL-1 ) and IL-1 receptor 

antagonist (IL-1ra) were analyzed with ELISA (R&D Systems, Minneapolis, MN). Monocyte 

chemotactic protein 1 (MCP-1) in the liver lysate was measured with ELISA from R&D, and 

TNF-  in cell culture supernatants was analysed using ELISA from BD Biosciences (BD 

Biosciences, San Jose, CA). 

RNA analysis 

RNA was extracted from liver tissue using the RNeasy kit (Qiagen Sciences, Maryland, USA) 

and on-column DNase digestion was performed using the DNase Set (Qiagen GmbH, Hilden, 

Germany); cDNA was synthesized with Reverse Transcription System (Promega Corp., 

Madison, WI). Real-time quantitative polymerase chain reaction (qPCR) was performed using 
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the iCycler iQ Cycler (Bio-Rad Laboratories, Inc., Hercules, CA) and specific primers 

(Supplementary Table 1).  

Statistical Analysis 

The data are presented as mean ± SEM. Comparison of the means was performed using 

Student’s T-test or Kruskall-Wallis test, when appropriate. P values less than 0.05 were 

considered significant. 
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Results 

Type I IFNs are induced in TLR9-associated liver injury 

TLR9 signaling induces Type I IFNs, which may play a role in tissue injury and regeneration. 20, 

21 We have previously demonstrated that MyD88, a common adaptor to TLR9, TLR2 and TLR4 

is critical in sensitization to liver injury.16 Here we employed a model of TLR9-associated liver 

injury owed to sensitization by the synergistic effect of the TLR9 ligand CpG and the TLR2 

ligand LTA, followed by a second hit with LPS,15, 16 and asked if the integrity of the Type I IFN 

pathway was involved in liver damage. We found that combined administration of TLR9 and 

TLR2 ligands induced and sensitized the liver to injury by the TLR4 ligand LPS, as indicated by 

increased serum ALT levels in WT mice (Fig. 1A). More importantly, TLR9+TLR2 ligands 

induced expression of IFN  (Fig. 1B) and IFN  (Fig. 1C) mRNA in the liver and expression of 

both IFN  and IFN  was further upregulated upon TLR4 stimulation in WT mice. We also found 

that expression of the Type I IFN-inducible gene, interferon regulated gene ISG15, was induced 

by TLR9+TLR2 ligand treatment and the expression was further increased upon subsequent LPS 

stimulation (Fig. 1D). Collectively, these data suggested that Type I IFNs and IFN-triggered 

signaling pathways were upregulated in TLR9-associated liver injury. 

 

Deficiency in Type I IFN induction exacerbates liver injury  

Our data indicated activation of Type I IFN signaling in TLR9-associated liver injury. While 

both TLR9 and TLR2 ligands activate production of proinflammatory cytokines, TLR9 

stimulation also triggers Type I IFNs.17 Type I IFN production induced by TLR9 is largely 
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dependent on activation of intracellular pathways involving interferon regulatory factor-7 

(IRF7).22 To define the importance of Type I IFN in TLR9-associated liver injury, we tested 

IRF7-deficient mice. 

In sharp contrast to their wild-type littermates, IRF7-deficient mice showed exacerbation of 

TLR9-associated liver injury, as indicated by serum ALT elevations (Fig. 2A). Histopathology 

analysis (Fig. 2B) of IRF7-deficient livers revealed an about 5-fold increase in the number of 

inflammatory infiltrates (10.33 ± 3.71 in IRF7-KO vs. 1.75 ± 0.48 in WT, P = 0.026) and an 

about 2.5-fold increase in total area of inflammatory infiltrates (0.67 ± 0.05 vs. 0.28 ± 0.05 mm2, 

P = 0.017), compared to wild-type controls. 

The increased TLR9-associated liver injury in IRF7-deficient mice was accompanied by 

deficient induction of IFN  (Fig. 2C) and IFN  (Fig. 2D), compared to controls. LPS stimulation 

could partially overcome the deficit in IFN  and IFN  expression in TLR9+TLR2 primed mice, 

presumably by the direct effect of TLR4 signaling on Type I IFN induction.23 However, there 

was decreased induction of the IFN-inducible genes, ISG15 (Fig. 2E) and IP-10 (Fig. 2F), in 

IRF7-deficient mice and further expression of these molecules upon stimulation with LPS was 

limited. These data supported our hypothesis that Type I IFN induction plays a role in the 

pathogenesis of TLR9-induced liver damage and suggested a protective role for Type I IFNs in 

liver injury. 
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Deficiency in Type I IFN signaling exacerbates liver injury  

The effects of Type I IFNs are mediated by a cognate receptor composed of two chains, IFNAR1 

and IFNAR2, both of which are essential to initiate production of the interferon-stimulated genes 

(ISGs).24 To differentiate between the direct and indirect protective effects of Type-I IFNs in 

TLR9-associated liver injury, we tested mice deficient in type I interferon receptor expression 

(IFNAR1-deficient mice). 

Similar to findings in IRF7-deficient mice, mice deficient in IFNAR1 expression showed 

significantly increased serum ALT (Fig. 3A), widespread liver inflammation, about 5-fold 

increase in the number of inflammatory foci (4.80 ± 0.49 in IFNAR1-KO vs. 1.0 ± 0.58 in WT, P 

= 0.018) and about 7-fold increase in total area of inflammatory infiltrate (0.40 ± 0.11 vs. 0.06 ± 

0.04 mm2, P = 0.036) after TLR9+TLR2 stimulation compared to wild-type controls (Fig. 3B).  

Type I IFNs per se are IFN-sensitive and are strictly regulated by a self-initiated amplification 

loop involving IRF7 and both IFN receptor chains.24 Consistent with this mechanism, IFNAR1-

deficient mice showed substantially lower induction of liver IFN  (Fig. 3C), IFN  (Fig. 3D) and 

minimal expression of ISG15 (Fig. 3E) and IP-10 (Fig. 3F), compared to controls. This 

difference was not overcome by LPS stimulation. Collectively, these data suggested that both 

Type I IFN induction and IFN-induced signaling may play a protective role in the liver by 

limiting inflammatory infiltrate and liver injury. 

 

Deficiency of Type I IFN signaling results in decreased dendritic cell recruitment to the liver in 

TLR9-associated injury 
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The exaggerated liver inflammatory infiltrate in IRF7- and IFNAR1-deficient mice suggested a 

role for Type I IFNs in recruitment of inflammatory cells in TLR9-associated liver injury. We 

thus aimed to define the cell composition of these inflammatory infiltrates. Flow cytometric 

analysis of liver mononuclear cells (LMNCs) showed equal enrichment of CD68+ 

monocytes/macrophages in the livers of both WT and IFNAR1-deficient mice after TLR9+TLR2 

priming (Fig. 4A). Similarly, liver expression of chemokines MCP-1, MCP-2, MIP-1  and MIP-

1  (Suppl. Fig. 1A-E) and chemokine receptors CCR1, CCR2 and CCR5 (Suppl. Fig. 1F-H), 

which are involved in macrophage recruitment, was upregulated in TLR9-associated liver injury 

to a comparable extent in both WT and IFNAR1-deficient mice. 

In contrast to WT mice, LMNCs isolated from mice deficient in IFNAR1 showed a significantly 

lower proportion of CD11c+ (myeloid) and PDCA1+ (plasmacytoid) dendritic cells (DC) (Fig. 

4B). This finding was associated with a significantly decreased liver expression of the 

chemokine ligand 21 (CCL-21) (Fig. 4C), a key molecule involved in recruitment of DC, 25 and 

decreased expression of the CCL-21 receptor CCR7 (Fig. 4D). These data support our hypothesis 

that in TLR9-associated liver injury, Type I IFNs are required for dendritic cell recruitment to 

the liver.  

 

Deficient Type I interferon signaling results in an imbalance in IL-1  / IL-1 receptor antagonist 

induction in TLR9-associated liver injury 

The protective effect of Type I IFN induction and signaling against TLR9-associated liver injury 

implied the involvement of Type I IFN-dependent anti-inflammatory factors. We thus analyzed 
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the expression of another IFN-dependent gene, IL-1 receptor antagonist (IL-1ra), which is a 

natural endogenous antagonist of the proinflammatory interleukin-1  (IL-1 ) at the receptor 

level.26 Pro-IL-1  gene in the liver (Fig. 5A) and IL-1  protein (Fig. 5B) in the serum were 

significantly induced by TLR9+TLR2 ligands and further upregulated by LPS to a comparable 

extent in WT, IRF7- and IFNAR-deficient mice (Fig. 5A,B). Induction of IL-1ra mRNA in the 

liver and of the secreted IL-1ra protein in serum were decreased both in IRF7- and IFNAR1-

deficient mice treated with CpG+LTA, compared to controls (Fig. 5C,D). More important, 

sensitization via TLR9+TLR2 ligands resulted in less IL-1ra protein production upon stimulation 

with LPS in both IRF7- and IFNAR1-deficient mice compared to their wild-type controls (Fig. 

5D). This finding suggested that aggravated TLR9-associated liver injury in Type I IFN deficient 

animals is associated with a significant imbalance in IL-1 /IL-1ra signaling. 

 

IL-1ra protects hepatocytes from IL-1 -dependent sensitization to cell death induced by TNF-   

Our data suggested a protective effect of IL-1ra in TLR9-associated liver injury. To gain a 

mechanistic insight, we first investigated the source of IL-1ra in the liver. We observed that WT 

primary hepatocytes and LMNCs stimulated with IFN-  in vitro produced significantly more IL-

1ra, compared to non-stimulated cells (Fig. 6A). Next, we asked whether deficiency of Type I 

IFNs results in differential production of inflammatory cytokines by LMNCs. In vivo priming of 

mice with TLR9+TLR2 ligands sensitized LMNCs to ex vivo stimulation with LPS and resulted 

in significantly greater induction of inflammatory cytokines TNF-  (Fig. 6B) and IL-1  (Fig. 

6C), compared with LPS-stimulated LMNCs of non-sensitized mice. In contrast to WT mice, 

LMNCs isolated from IRF7- and IFNAR-deficient mice showed significantly increased 
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induction of TNF-  upon ex vivo stimulation with LPS (Fig. 6B); induction of IL-1  did not 

significantly differ between genotypes (Fig. 6C).  

Consequently, we asked whether IL-1ra could play a protective role in hepatocyte death induced 

by synergistic activities of TNF-  and IL-1 . Treatment of primary WT hepatocytes with TNF-  

did not induce hepatocyte death (Fig. 6D), consistent with previous reports that healthy WT 

hepatocytes are resistant to stimulation with TNF-  alone.27 However, pretreatment with IL-1  

sensitized hepatocytes to TNF-  induced death (Fig. 6D). More important, the sensitizing effect 

of IL-1  was significantly reduced by IL-1ra (Fig. 6D). Stimulation with IL-1  + TNF-  lead to 

a significantly greater extent of hepatocyte death in IRF7- and IFNAR1-deficient hepatocytes, 

compared to WT; significant protection from hepatocyte death was observed after co-treatment 

with IL-1ra in all genotypes (Fig. 6E). 

Taken together, these data suggested that Type I IFNs induce IL-1ra production both in 

hepatocytes and LMNCs, and that IL-1ra protects hepatocytes from IL-1 -dependent 

sensitization to TNF- -induced cell death. 

 

Type I interferon induces endogenous IL-1ra in vivo and ameliorates TLR9-associated liver 

injury  

To evaluate the protective role of Type I IFN in TLR9-associated liver injury, we first 

administered pegylated IFN 2a (pegIFN 2) to WT mice and observed a significant induction of 

serum IL-1ra (Suppl. Fig. 2). Next, we showed that pegIFN 2 administered to TLR9+TLR2-

primed mice two hours prior to LPS significantly prolonged survival (Fig. 7A) and ameliorated 
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TLR9-associated liver injury (Fig. 7B), compared to control mice. Furthermore, pegIFN 2 

prevented aggravation of LPS-induced liver injury after TLR9+TLR2-priming (Fig. 7B). 

Importantly, serum IL-1ra positively correlated with the length of survival (Suppl. Fig. 3A), and 

negatively correlated with the extent of liver injury (Suppl. Fig. 3B). Accordingly, 

histopathology analysis revealed reduction in liver inflammatory infiltrate and the extent of 

necrosis in mice pretreated with pegIFN 2 compared to controls (Fig. 7C). Taken together, these 

data suggest that type I IFNs induce IL-1ra which has hepatoprotective and anti-inflammatory 

effects in TLR9-induced liver injury. 

 

IL-1ra ameliorates TLR9-associated liver injury 

To demonstrate the direct protective effect of IL-1ra, we initiated treatment with recombinant IL-

1ra in WT mice 24 hours prior to administration of TLR9+TLR2 ligands and continued with IL-

1ra throughout the experiment. Mice pretreated with IL-1ra showed significantly prolonged 

survival after injection of LPS (Fig. 7D), which was associated with lower ALT levels (Fig. 7E) 

and reduction in liver inflammatory infiltrate and extent of necrosis compared to controls (Fig. 

7F). Collectively, these data suggested that Type I IFNs are needed to elicit a strong anti-

inflammatory response by induction of IL-1ra, and that Type I IFN-regulated IL-1 /IL-1ra 

system is key to the protective role of Type I IFNs in liver injury. 
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Discussion 

TLR9-dependent liver damage is involved in the pathogenesis of several liver diseases, such as 

alcoholic liver disease,5 primary biliary cirrhosis,6 primary sclerosing cholangitis7 and 

acetaminophen-induced liver injury,8 as well as in pathological processes such as liver fibrosis,10 

liver cirrhosis,11 ischemia-reperfusion injury,12 and liver graft rejection.13 Thus, TLR9 holds the 

common link between different processes which lead to liver diseases; therefore, unraveling the 

pathogenesis of TLR9-induced liver injury may aid in identification of novel, efficient 

pathogenesis-based management or cure. Here we report the novel finding that Type I IFNs have 

an important regulatory role in TLR9-induced liver injury by limiting inflammation and liver 

injury. Further, we demonstrate that Type I IFN-induced IL-1ra could serve as a potential 

therapeutic target in liver injury. 

In the current liver injury model, three TLR agonists are being used. Our recent and previous 15, 

16 data show that liver inflammation and injury induced in this model are primarily dependent on 

TLR9; liver damage elicited by CpG is aggravated by co-stimulation with TLR2 and a secondary 

stimulation with TLR4. Of these TLRs, TLR2, 4 and 9 activate the MyD88-dependent pathway, 

while IRF3 activation is exclusive to TLR4. Type I IFN and IRF7 induction can occur via both 

TLR9 and TLR4. 18  

We first demonstrated that Type I IFNs, IFN  and IFNß, were induced at the mRNA 

level in the TLR9-associated liver injury. This Type I IFN was biologically active as suggested 

by the increased expression of the IFN-inducible genes, ISG15 and IP-10 in the liver. Our novel 

observation of the increased liver inflammatory infiltrate and exacerbated liver injury in IRF7 

and IFNAR1-deficient mice suggested a protective role for the Type I IFN induction in the liver. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

18 

 

Indeed, previous studies suggested that Type-I IFNs can mediate anti-inflammatory effects 

(summarized in 28).  

Compared to IFNAR1-deficient mice, where the protective Type I IFN signaling was fully 

inhibited, IRF7-deficient mice could still produce TLR4-induced Type I IFNs (preferentially 

IFN ) via the TLR4-IRF3 pathway. In our study, TLR9-associated liver injury was associated 

with induction of IFN , IFN  and interferon-stimulated genes in wild-type mice. Notably, 

IFNAR1-deficiency abrogated the induction of Type I IFN response to much greater extent than 

IRF7 deficiency. Also, IFNAR1-deficient mice showed the most severe TLR9-associated 

histological liver damage, which exceeded the extent present in IRF7-deficient mice. The 

different observation between IRF7- and IFNAR1-deficient mice could be explained by 

differential composition of inflammatory liver infiltrate, or by the fact that Type I IFNs are 

potentially inducible by multiple pathways, including IRF1, IRF3 and IRF7.23, 29 Therefore, 

protective Type I IFNs could still be induced in IRF7-deficient mice by TLR9 in an IRF7- 

independent, IRF3-dependent manner, while the downstream protective effect of Type I IFNs is 

completely abolished in IFNAR1-deficient mice which cannot respond to type I IFNs.  

We found that deficient Type I IFN signaling was associated with decreased liver recruitment of 

dendritic cells and with decreased expression of CCL-21and CCR7, a key chemokine-receptor 

pair involved in dendritic cell trafficking.30 Our novel findings indicating a role of Type I IFNs 

in recruitment of dendritic cells and in expression of CCL-21, together with data showing that 

TLR9-activated dendritic cells are key producers of Type I IFNs,31 suggest a novel self-

sustaining mechanism for dendritic cell recruitment into the liver. It has been reported that 

dendritic cells are essential for Th1 response in the liver induced by TLR9 + TLR2 ligands 32 and 
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contribute to liver fibrosis,9 Consistent with earlier observations15 TLR9-induced inflammatory 

infiltrates, that require dendritic cell recruitment to the liver,32 amplified pro-inflammatory 

cytokine induction by LPS. Our novel data suggest a dual role for dendritic cells in the liver. 

First, dendritic cells are necessary for TLR9-induced inflammatory cell infiltrates and 

sensitization to TLR4 ligands. Second, dendritic cells provide anti-inflammatory signals 

mediated by Type I IFNs.  

We observed a synergistic effect of TLR9 + TLR2 and TLR4 ligands in upregulation of IL-1ra in 

wild-type animals; both IRF7-deficient and IFNAR1-deficient mice showed decreased induction 

of IL-1ra, compared to WT. One can speculate that this synergistic effect of TLR ligands on IL-

1ra induction is mediated by Type I IFNs and IRF7. This notion is consistent with our data 

showing a synergistic effect of TLR9+2 and TLR4 ligands on Type I IFN expression in wild-

type mice. We observed that Type I IFN induces IL-1ra in hepatocytes and liver mononuclear 

cells, and that IL-1ra protects hepatocytes against the sensitizing effect of IL-1  towards 

cytotoxicity induced by TNF- . Our findings support previous reports that in order to become 

susceptible to the cytotoxic effect of TNF- , hepatocytes require priming with ligands that 

interfere with their proliferation.27 Indeed, IL-1  has been shown to inhibit DNA synthesis in rat 

hepatocytes.33 

We further showed that administration of recombinant pegIFN 2 induced IL-1ra in vivo. This 

finding was in agreement with our in vitro data from hepatocytes and liver mononuclear cells, 

with in vitro data that IL-1RA promoter region contains Type I IFN-inducible elements,34 and 

with data demonstrating increased in vivo production of IL-1ra upon treatment with recombinant 
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IFN in humans.35 In addition, we observed that in vivo administration of pegIFN 2 significantly 

ameliorated TLR9-associated survival, liver injury and inflammation. 

Our novel data demonstrated that pretreatment with recombinant IL-1ra significantly ameliorated 

liver injury and inflammation in WT mice. These findings confirm the anti-inflammatory effect 

of IL-1ra in liver injury and are complementary to study of Iizasa et al.36 who showed that 

deficiency of IL-1ra resulted in exacerbated liver injury and inflammation induced by 

Propionibacterium Acnes, which activates TLR9 and TLR2 receptors.15, 16 Our results show for 

the first time that Type I IFNs potentially protect from liver injury by inducing anti-inflammatory 

IL-1ra. 

IL-1ra acts as a natural antagonist of IL-1 ,26 and we show that in the liver IL-1ra is produced by 

both hepatocytes and liver mononuclear cells. Our data also demonstrates the protective effect of 

IL-1ra in TLR9-associated liver injury and survival. In previous studies, Imaeda et al.8 showed 

that in acetaminophen hepatotoxicity, inflammatory response is triggered by apoptotic 

mammalian DNA that increases transcription of IL-1 , and that inflammatory response is 

ameliorated in mice deficient for TLR9 and in mice treated with anti-IL-1  antibody. 

Importantly, IL-1ra has been reported for the treatment of hepatic failure in rats using a 

bioartificial liver device.37 These studies support our finding that the balance between IL-1 /IL-

1ra is of crucial importance in TLR9-induced liver damage (Suppl. Fig. 4). 

In conclusion, our findings suggest that the endogenous anti-inflammatory signaling induced by 

Type I IFNs and mediated by IL-1ra regulates the extent of TLR9-induced liver damage, and 

support the indispensable role of Type I interferon signaling in immune mediated liver injury. 

Finally, we suggest the potential role of IL-1ra in therapy of TLR9-associated liver diseases.
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 Figure legends 

Fig. 1. Type I IFNs are induced in TLR9-associated liver injury 

Wild-type mice were injected i.p. with 2.5 mg/kg CpG DNA and 5 mg/kg LTA. Three days later 

mice were injected with saline or 0.5 mg/kg LPS i.p. and sacrificed after 2 hours. Serum ALT 

levels (A) were measured and messenger RNA levels of (B) liver interferon -4 (IFNA4), (C) 

interferon  (IFNB) and (D) interferon-stimulated gene 15 (ISG15) were analyzed by real-time 

PCR and normalized to 18s. Values are shown as mean ± SEM fold increase over saline-primed 

group (3-6 mice per group). Numbers in graphs denote p values. *) p < 0.05 vs. saline-stimulated 

control mice; #) p < 0.05 vs. LPS-stimulated control mice 

 

Fig. 2. Deficiency of Type I IFN induction exacerbates liver injury  

B6.129F2 wild-type mice and IRF7-deficient mice were treated with CpG DNA + LTA ± LPS as 

in figure 1. Serum ALT levels were measured (A). Assessment of liver inflammatory infiltrate 

(B) was performed in histology samples stained with H&E. Arrows point at inflammatory 

infiltrates, magnification 200x. mRNA levels of liver (C) interferon -4 (IFNA4), (D) interferon 

 (IFNB), (E) interferon-stimulated gene 15 (ISG15) and (F) IP-10 were analyzed by real-time 

PCR. Values are shown as mean ± SEM fold increase over saline-primed control group (3-6 

mice per group). *) p < 0.05 vs. saline-primed wild-type mice; #) p < 0.05 vs. saline-primed 

IRF7-/- mice 

 

Fig. 3. Deficiency of Type I IFN signaling exacerbates liver injury  

C57Bl6 wild-type mice and IFNAR1-deficient mice were treated with CpG DNA + LTA ± LPS 

as in figure 1. Serum ALT levels were measured (A), and H&E-stained samples assessed for 
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liver inflammatory infiltrate (B) was performed in histology samples stained with H+E. Arrows 

point at inflammatory infiltrates, magnification 200x. mRNA levels of liver (C) interferon -4 

(IFNA4), (D) interferon  (IFNB), (E) interferon-stimulated gene 15 (ISG15) and (F) IP-10 were 

analyzed by real-time PCR. Values are shown as mean ± SEM (3-6 mice per group). *) p < 0.05 

vs. saline-primed wild-type mice; #) p < 0.05 vs. saline-primed IFNAR1-/- mice 

 

Fig. 4. Deficiency of Type I IFN signaling results in decreased dendritic cell recruitment to the 

liver in TLR9-associated liver injury 

(A,B) Wild-type and IFNAR1-deficient mice were injected i.p. with CpG DNA + LTA ± LPS as 

indicated. Liver mononuclear cells were isolated, stained with anti-CD68 (A), anti-CD11c and 

anti-PDCA1 (B) monoclonal antibodies and analyzed using flow cytometry (N= 5 mice per 

group). mRNA levels of (C) liver chemokine ligand 21 (CCL-21) and (D) chemokine receptor 7 

(CCR7) were analyzed by real-time PCR. Values are shown as mean ± SEM. *) p < 0.05 vs. 

saline-primed wild-type mice; #) p < 0.05 vs. saline-primed IFNAR1-deficient mice 

 

Fig. 5. Deficient Type I interferon signaling results in an imbalance in IL-1  / IL1 receptor 

antagonist induction in TLR9-associated liver injury. 

Mice were treated with CpG DNA + LTA ± LPS as in figure 1. mRNA levels of liver pro-

interleukin-1  (IL-1 ) and interleukin 1-receptor antagonist (IL-1ra) were analyzed by real-time 

PCR (A,C). Serum IL-1ra levels were measured by ELISA (B,D). Values are shown as mean ± 

SEM fold increase over saline-primed group (3-6 mice per group). *) p < 0.05 vs. saline-primed 

wild-type B6.129F2 or C57Bl6 mice; #) p < 0.05 vs. saline-primed IRF7-/- or IFNAR1-/- mice 
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Fig. 6. IL-1ra protects hepatocytes from IL-1  –dependent sensitization to cell death induced by 

TNF- . 

(A) Hepatocytes and liver mononuclear cells (LMNCs), isolated from WT mice, were stimulated 

with murine IFN- 2b, and IL-1ra in supernatants was measured with ELISA (N=5 mice per 

group). (B,C) WT, IRF7- and IFNAR1-deficient mice were treated with i.p. with CpG DNA + 

LTA. Three days later, LMNCs were isolated, ex vivo stimulated with LPS, and TNF-  and IL-

1  in supernatant were measured after 6 hours. Representative values from total N= 4 mice per 

group are shown. *,#,§,†) p < 0.05 vs WT cells from the respective treatment group. (D) Primary 

WT hepatocytes were ex vivo pretreated with murine IL-1ra and IL-1 . After four hours, murine 

TNF-  was added. LDH release into cell culture supernatant was measured at 24 hours and 

normalized to total LDH. Representative values from total N= 4 mice are shown. *) p < 0.05 vs. 

cells not treated with IL-1 ; #) p < 0.05 vs. cells not treated with IL-1ra. (E) Primary hepatocytes 

from WT, IRF7- and IFNAR1-deficient mice were isolated and treated ex vivo as indicated for 4 

hours, followed by murine TNF- . LDH release into cell culture supernatant was measured at 24 

hours and normalized to total LDH. Representative values from total N= 4 mice per group are 

shown. *,#) p < 0.05 vs. WT hepatocytes of the respective treatment group.  

 

Fig. 7. Type I interferon induces endogenous IL-1ra and ameliorates TLR9-associated liver 

injury. 

(A-C) Wild-type mice were injected with CpG DNA + LTA i.p., followed 3 days later by saline 

or 100,000 IU pegIFN 2, and followed by LPS i.p. for the last 2 hours. Survival (A) and serum 

ALT were analysed at indicated time points (B). Livers were stained with H&E, magnification 
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200x (C). Values are shown as mean ± SEM (11 mice per group). *) p < 0.05 vs. control mice, #) 

p < 0.05 vs. control mice treated with pegIFN 2.  

(D-F) Wild-type mice were treated with saline or with recombinant IL-1ra 25 mg/kg i.p. every 

six hours. Twenty-four hours after IL-1ra initiation, mice were injected with CpG DNA + LTA, 

followed by LPS 3 days later. Survival (D) and serum ALT (E) were analysed at indicated time 

points. Livers were stained with H&E, magnification 200x (F). Values are shown as mean ± 

SEM (15 mice per group). *) p < 0.05 vs. control mice, #) p < 0.05 vs. control mice treated with 

IL-1ra 
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Supplementary table 1. Real-time PCR primer sequences and reaction conditions 

 

 

Primer Sense 5'-3' Antisense 3'-5' 

18S gta acc cgt tga acc cca tt cca tcc aat cgg tag tag cg 

pro-IL-1B tct ttg aag ttg acg gac cc tga gtg ata ctg cct gcc tg 

IL-1RA tca gat ctg cac tca atg cc ctg gtg ttt gac ctg gga gt 

IFNA4 agg att ttg gat tcc cct tg tat gtc ctc aca gcc agc ag 

IFNB agc tcc aag aaa gga cga aca t gcc ctg tag gtg agg gtt gat ct 

ISG-15 cag gac ggt ctt acc ctt tcc agg ctc gct gca gtt ctg tac 

IP-10 ccc cgg tgc tgc gat gga tg agc tga tgt gac cac ggc tgg 

MCP-1 cag gtc cct gtc atg ctt ct tct gga ccc att cct tct tg 

MCP-2 cca gat aag gct cca gtc acc t ggc act gga tat tgt tga ttc tct 

MIP-1α tct cag cgc cat atg gag ct ttc cgg ctg tag gag aag ca 

MIP-1β ccg agc aac acc atg aag c cca ttg gtg ct gaga acc ct 

CCL-21 aaa gaa ccg gga acc tct aa cag tcc tgc tgt ctc ctt cc 

CCR1 gtt ggg acc ttg aac ctt ga ccc aaa ggc tct tac agc ag 

CCR2 agg agc ctc ttt gcc ttg tgg c tgg cag cct cat gcc ctc ct 
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CCR5 tgg ggt gga gga gca ggg ag tag gcc aca gca tcg gcc ct 

CCR7 tcc tag tgc cta tgc tgg ct atg aag act acc acc acg gc 

 

Real-time polymerase chain reaction (RT-PCR) was performed using the iCycler iQ Cycler (Bio-

Rad Laboratories). The PCR conditions were: 95°C for 15 minutes followed by 50 cycles at 

95°C for 15 seconds, 60°C for 10 seconds, and 72°C for 30 seconds. The reaction mixture for the 

SYBR Green assay contained 12.5 μL SYBR Green PCR Master Mix (Eurogentec, Fremont, 

CA), 0.5 μM of forward and reverse primer and 1 μL of complementary DNA (corresponding to 

100 ng RNA) for a total volume of 25 μL. All amplifications and detections were carried out in a 

MicroAmp optical 96-well reaction plate with optical tape. At each cycle, accumulation of PCR 

products was detected by monitoring the increase in fluorescence by double-stranded DNA-

binding SYBR Green. After PCR, a dissociation melting curve was constructed in the range of 

55°C to 95°C. All data were analyzed using Bio-Rad iCycler software. The 18S was used for 

normalization of all experiments. Data was analyzed using the comparative Ct method (ΔΔCt 

method) using the following formula: ΔCt = Ct (target) - Ct (normalizer). The comparative ΔΔCt 

calculation involved finding the difference between the sample ΔCt and the baseline ΔCt. Fold 

increase in the expression of specific mRNA compared with 18S was calculated as 2
-(ΔΔCt)

. 
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Supplementary figure legends 

 

Supplementary Fig. 1. Induction of chemokines and chemokine receptors involved in 

monocyte/macrophage recruitment in TLR9-associated liver injury 

C57Bl6 wild-type mice and IFNAR1-deficient mice were treated with CpG DNA+LTA ± LPS 

asi in figure 1. mRNA levels of liver (A) macrophage chemotactic protein 1 (MCP-1), (C) 

macrophage chemotactic protein 2 (MCP-2), (D) macrophage inflammatory protein 1 alpha 

(MIP-1α), (E) macrophage inflammatory protein beta (MIP-1β), (F) chemokine receptor 1 

(CCR1), (G) chemokine receptor 2 (CCR2) and (H) chemokine receptor 5 (CCR5) were analyzed 

by real-time PCR. Liver MCP-1 protein (B) was measured using ELISA. Significantly decreased 

liver expression of MCP1, MCP2, MIP-1α and MIP-1β was observed in IFNAR1-mice 

stimulated with LPS, compared to WT mice. Values are shown as mean ± SEM (3-6 mice per 

group). *) p < 0.05 vs. saline-primed wild-type mice; #) p < 0.05 vs. saline-primed IFNAR1-

deficient mice 

 

Supplementary Fig. 2. Induction of endogenous IL-1ra by Type I IFNs in vivo 

Wild-type mice were injected with 100,000 IU pegIFNα2 i.p. and IL-1ra in serum was measured 

at indicated timepoints (N = 4 mice). Numbers denote p values compared to baseline. 

 

Supplementary Fig. 3. Serum IL-1ra positively correlates with survival and negatively 

correlates with liver damage in TLR9-associated liver injury. 

Wild-type mice were injected with CpG DNA + LTA i.p. Three days later mice received saline 

or pegIFNα2, followed by LPS i.p. for the last 2 hours. Serum IL-1ra at was correlated with the 

length of survival (A) and serum ALT (B).  N = 6-7 mice per group. 
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Supplementary Fig. 4. Proposed mechanism of the protective role of Type I IFNs in TLR9-

associated liver injury.  

TLR9, TLR2 and TLR4 ligands stimulate liver macrophages to produce inflammatory cytokines. 

TLR9 ligands stimulate dendritic cells to produce Type I IFNs in IRF7-dependent manner. Type 

I IFNs bind to Type I IFN receptors (IFNAR1) and induce IL-1ra in hepatocytes and in liver 

mononuclear cells. IL-1ra binds to IL-1 receptor (IL-1R) and inhibits IL-1β –dependent 

sensitization to TNF-α –induced hepatocyte death. Blue and black arrows depict interaction 

pathways; red arrows depict pathways of potential therapeutic targets 
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