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help, many pieces of advise and very useful suggestions during my whole work on this thesis.
I appreciate it very much.

Many thanks are also addressed to the professors and teachers from the Department of Probability and
Mathematical Statistics at Charles University in Prague where I have spent nine good years while obtaining
an interesting training in mathematics, probability and statistics. Thank you for introducing me into the
world of real mathematics. I am grateful for any inspiration, pieces of advice and new ideas I could learn
from you and I am very proud to count some of you among my friends.

“It is the supreme art of the teacher to awaken joy in creative expression and knowledge.”

Albert Einstein (1879 – 1955)

I also want to express my thanks to my parents and my brothers and sisters. You are those who were
giving me enough courage and confidence during the pursuit of my (any) degree and the whole composi-
tion of this thesis as well. You were still willing to provide my with encouragement, which helps more than
many people can even think...

“You don’t choose your family. They are God’s gift to you, as you are to them.”

Desmond Mpilo Tutu (1931 – . . . )

Last but not least, I want to express my thanks to all my friends, especially those who have spent most
of time with me here in Prague. It was always nice to enjoy time and fun with you. One can never stay
focussed on one thing only. He needs a variety of interests in order to survive and to be happy.
You have provided my with this and I hope you always will...

“Without friends no one would choose to live, though he had all other goods.”

Artistotle (384 BC – 322 BC)
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✉ huskova@karlin.mff.cuni.cz

✉ Mailing address
KPMS MFF UK
Sokolovská 83
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Abstract:

In this thesis we focus on local polynomial estimation approaches of an unknown regression
function while taking into account also some robust issues like a presence of outlying observa-
tions or heavy-tailed distributions of random errors as well. We will discuss the most common
method used for such settings, so called local polynomial M-smoothers and we will present the
main statistical properties and asymptotic inference for this method. The M-smoothers method
is especially suitable for such cases because of its natural robust flavour, which can nicely deal
with outliers as well as heavy-tailed distributed random errors.

Another important quality we will focus in this thesis on is a discontinuity issue where we allow
for sudden changes (discontinuity points) in the unknown regression function or its derivatives
respectively.

We will propose a discontinuity model with different variability structures for both independent
and dependent random errors while the discontinuity points will be treated in a proper statistical
way using one-sided M-smoothers estimates. We will propose a statistical test to decide if an
estimated jump and its location are significant for the model they are not. Given the asymptotic
distribution for the test statistic under the null hypothesis, which depends on some unknown
quantities we will propose some bootstrap algorithms, which can be used to mimic the unknown
distribution of interest. The appropriate bootstrap algorithms will be proposed for every
considered model scenario and all necessary proofs will be provided.

Finally, the proposed methods and the stated results are tested through out an extensive simu-
lation study presented at the end. Similarly, we also apply the proposed testing and estimating
methods to a real data case and the finite sample performance will be compared and discussed at
the very end of this thesis.
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”Every accomplishment starts
with the decision to try.”

Anonymous author 1
Introduction to Nonparametric Regression

and Robustness

1.1 Preface

An idea of a regression analysis was used by Francis Galton1 for the first time in the 19th century.
He studied a dependence of average heights between parents and their sons using a classical linear
regression approach where he also found a significant relationship, which was described as a half-way
inheriting reduction in excessive heights from parents to their sons.

Since that time regression modelling techniques attract a lot of attention not only on the field of
theoretical or applied statistics but also in almost all areas of real life. There were many new proposals
and adaptations introduced later on in order to make them more suitable for almost any possible
scenario. In this thesis we will focus on a class of nonparametric regression techniques while we also
want to stay less restricted with respect to a considered family of distribution functions of random errors.
Specifically, we will point our attention to a class of nonparametric robust regression approaches, which
allow for a presence of outlying observations in a model and what is even of more importance they
also allow us to consider heavy-tailed random error distributions, which was definitely not the case in
classical regression techniques based on a regular least squares method introduced by Carl Friedrich
Gauss in 1795.

Local polynomial M-smoothers are described in detail in this thesis and they are further discussed
as a statistical method, which can provide us with both a reasonably good level of flexibility in case of
modelling on one hand and a set of less restricted distributional assumptions in case of an inference on
the other hand. From the technical point of view the local polynomial M-smoothers can be thought of as
a combination of two at the first glance slightly unrelated statistical estimation methods: nonparametric
regression techniques and M-estimation procedures. More precisely, by nonparametric regression we will
refer in this thesis to a generalization of classical polynomial regression techniques into a local polynomial
regression, which brings in a huge additional flexibility in modelling by adopting a local approach. This
is a common fact for a nonparametric regression in general.

On the other hand the robust M-estimation methods introduce a parameter estimation under some
less restricted distributional assumptions, which allow us to incorporate outlying observations into
consideration and to apply the proposed models and techniques for heavy-tailed distributions as well.

1Francis Galton (1822–1911) was an English statistician, explorer and anthropologist who was knighted in 1909.
He was the first who used a notion “regression” in the same sense as we use it today. He is therefore considered to be a
pioneer of regression and correlation analysis.
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Introduction to Nonparametric Regression and Robustness

In the next two sections we will briefly mention both, the nonparametric regression techniques and
M-estimation procedures and we will shortly describe their main statistical properties and important
issues in order to offer to a reader some small statistical background, which will be necessary for a
better understanding of the whole M-smoothers concept that is discussed in later chapters.

1.2 Local polynomial regression

Let us start with a classical nonparametric regression, which is used later on to build a corresponding
M-smoothers regression method. We will discuss only the main outlines of the nonparametric regression
and we will state only the results, which are important for our further investigation of the M-smoothers
inference. For all further details we refer to a nice summary book of Fan and Gijbels (1996).

Nonparametric regression methods can be seen as an extension of classical regression techniques
where one a priori assumes more flexibility in hands as there is no parametric shape of the unknown
regression function considered in advance. The idea is to apply classical regression techniques however,
in small regions only – locally. This local approach is introduced via a combination of classical regression
methods and a kernel function together with a bandwidth parameter where the kernel function assigns
weights in a local region which is targeted by the estimation procedure and the bandwidth parameter
specifies this local region, its boundaries respectively. By adopting a nonparametric regression approach
one uses data driven procedures to come up with the final shape of the model estimate rather than using
any parametric assumptions, which are rather too much strict however, standard for any parametric
regression modelling.

Firstly, let us consider a random sample {(Xi, Yi); i = 1, . . . , N ∈ N} given from some unknown
joint distribution function F(X,Y)(x, y), where we assume the decomposition

Yi = m(Xi) + ε iσ(x), for i = 1, . . . , N,
�

�

�

�1.1

to hold. Under this notation function m(·) is called the regression function and function σ(·) is called
the variance function. Quantities {ε i}N

i=1 stand here for random error terms, which are assumed to be
independent and identically distributed (i.i.d.) with a zero mean and a unit variance. Given such model
we are interested in estimation of the unknown regression function m(·) (or σ(·) optionally), which is
unknown moreover, no other properties except some smoothness are further assumed.

This is the key difference between the nonparametric and parametric methods (semi-parametric
methods respectively), where one has to assume a specific parametric shape of the unknown regression
function in order to make sure that asymptotic properties are really satisfied. On the other hand,
given no parametric flavour in nonparametric modelling one gets models, which are more difficult to
interpret and they also become to much complex to by applied for some further prediction purposes.
Even thought, nonparametric methods are widely used in statistical modelling approaches and we will
consider them as the main building block for constructing the robust modelling approaches.

The most common estimate which assumes no parametric shape of the estimated regression function
was proposed by Nadaraya (1964) and Watson (1964) and it is defined by the minimization problem

m̂(x) = Argmin
b∈R

N

∑
i=1

(Yi − b)2 · K
(

Xi − x

hN

)
,

�

�

�

�1.2
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1.2. LOCAL POLYNOMIAL REGRESSION

which can be equivalently rewritten as an explicit solution for b ∈ R of the equation

m̂(x) =
∑

N
i=1 K

(
Xi−x

hN

)
Yi

∑
N
j=1 K

(
Xi−x

hN

) ,
�

�

�

�1.3

where function K(·) is a kernel function, which is usually a symmetric probability density function
on some compact support and hN > 0 is the bandwidth parameter, which controls the amount of
smoothness in the final fit and it satisfies that hN → 0 as N → ∞, such that NhN → ∞. Let us
mention that the original Nadaraya-Watson estimate was introduced for X1, . . . XN to be fixed and
known constants while Y1, . . . , YN were random quantities however, a generalization for X1, . . . XN to
be random variables as well was proposed afterwards. We will further consider such generalization
only. The Nadaraya-Watson estimators have been extensively studied by many authors, for example
Rosenblatt (1969), Mack and Silverman (1982) or Härdle (1990).

Another well-known proposal for an estimator of an unknown regression function m(·), which does
not assume a parametric flavour was proposed by Gasser and Müller (1979). This estimator can be
thought of as an alternative to the Nadaraya-Watson estimator as it has a lower bias term however, it
suffers from larger variance instead (see Fan and Gijbels (1996)). On the other hand, a serious drawback
of both proposed estimators (Nadaraya-Watson and Gasser-Müller) is given by so called boundary
issues. This reflects the fact that both estimators tend to produce inconsistent estimates at boundary
regions of the domain of interest. There were many proposals discussed and some modifications (like
adaptive kernel methods) were introduced to avoid these problems however, we will rather go for another
approach based on a local polynomial estimation, which as was shown in Fan and Gijbels (1996) can
handle boundary issues in a far more convenient and straightforward way.

In order to inherit nice properties from both estimators (a smaller bias term from the Gasser-Müller
estimator and a smaller variance term from the Nadaraya-Watson estimator) a generalization of the
Nadaraya-Watson estimator has been proposed where one incorporates a local linear modelling instead
of the local constant, which was used in both estimators before. Indeed, as one can see in Table 1.1
below the local linear approach improves the bias imprecision involved in the Nadaraya-Watson estimate
and the variability inefficiency given within the Gasser-Müller estimate too.

Estimation method Bias term approximation Variance term approximation

■ Nadaraya-Watson 1
2

(∫
R

u2K(u)du
)
·
[

m′′(x) +
2m′(x) f ′(x)

f (x)

]
σ(x)

f (x)NhN

∫
R

K2(u)du

■ Gasser-Müller 1
2

(∫
R

u2K(u)du
)
·m′′(x) 3σ(x)

2 f (x)NhN

∫
R

K2(u)du

■ Local linear 1
2

(∫
R

u2K(u)du
)
·m′′(x) σ(x)

f (x)NhN

∫
R

K2(u)du

Table 1.1: Pointwise asymptotic bias and variance approximations of kernel regression smoothers taken from Fan (1992)
given for some point x ∈ (h, 1− h) where the interval (0, 1) is assumed to be the domain of interest for m(·).

The most important advantage of the local linear approach however, is the fact that no boundary
issues occur for this method any more therefore, no modifications or adapted kernels are needed for this
regression setting. Indeed, it was shown in Fan and Gijbels (1996) that the local linear estimation can
avoid boundary problems, which are common for local constant fits and it can produce fully consistent
estimates also in regions arbitrarily close to the boundary points2.

2The consistency result of the local polynomial fit in boundary regions is given asymptotically only so the real data
result depends on finite sample properties of the given estimator.
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Just a straightforward extension of the local polynomial fit into higher orders of approximation gives
us a local polynomial modelling technique. The local polynomial estimator of an unknown regression
function m(·) at the given point from the domain of interest is defined by the minimization problem

β̂x = Argmin
(b0, . . . , bp)⊤ ∈ Rp+1

N

∑
i=1

(
Yi −

p

∑
j=0

bj(Xi − x)j

)2

· K
(

Xi − x

hN

)
,

�

�

�

�1.4

where β̂x = (β̂0, . . . , β̂p)⊤ ∈ Rp+1 is a vector of parameter estimates3 at some given x ∈ R from
the domain of interest and for the estimate m̂(x) of the unknown regression function m(·) at the point
x ∈ (0, 1) it holds that m̂(x) = β̂0. Given a classical L2 norm used for the minimization one can

easily obtain the parameter estimates from
�

�

�

�1.4 in explicit forms in a similar way as in the case of

Nadaraya-Watson estimator in
�

�

�

�1.3 . Moreover, for the local polynomial regression one obtains not
only an estimate for the regression function itself but also for its consecutive derivatives and it holds
that β̂ j = m̂(x)/j!.
This approach however requires a smoothness assumptions for the unknown regression function m(·)
up to the order p + 1 at least. It is also possible to use an adaptation of

�

�

�

�1.4 and by adopting an
appropriate kernel function one can directly get an estimate for the corresponding derivative only (see
e.g. an approach discussed in Zelinka and Horová (2001)).

We will now formulate two crucial theorems, which will play an important role for deriving a proper
statistical inference for the M-smoothers estimates. These theorems state the asymptotic conditional
bias and variance terms and the corresponding limit distribution of the local polynomial estimate, both
under some common model assumptions.
Let us however, firstly introduce a notation, which will be used in the next theorems but also in the
following chapters as well. For some K(·) to be a probability density function defined on interval [−1, 1]
such that K(·) is positive on this support we define quantities

S1 =

(∫ 1

−1
uj+lK(u)du

)

j = 0, . . . , p;

l = 0, . . . , p;

, S2 =

(∫ 1

−1
uj+lK2(u)du

)

j = 0, . . . , p;

l = 0, . . . , p;

,
�

�

�

�1.5

eν = (0, . . . , 0︸ ︷︷ ︸
ν−times

, 1, 0, . . . , 0︸ ︷︷ ︸
(p−ν)−times

)⊤, µp =

(∫ 1

−1
up+1K(u)du, . . . ,

∫ 1

−1
u2p+2K(u)du

)⊤
,

for some p ∈ N0 to be an order of the local polynomial approximation and ν ∈ {0, . . . , p} where it
holds that N0 = N ∪ {0}. Let the following assumptions4 are satisfied:

C1 Random errors ε1, . . . , εN are assumed to be independent and identically distributed, such that
Eε i = 0 and Var ε i = 1, for i = 1, . . . , N;

C2 The unknown regression function m(·) is assumed to be (p + 1)-times Lipschitz over the domain
of interest, which is generally assumed to be the interval (0, 1);

C3 The variance function σ(·) is Lipschitz and positive on the domain of interest;

C4 The density function f (·) of random variables Xi, for i = 1, . . . , N is assumed to be positive and
Lipschitz over the domain of interest;

3Using notation βx for the vector of true parameters (β0, . . . , βp)⊤ ∈ Rp+1 we just want to emphasize the relationship
between the vector of parameter estimates and the given point of interest x ∈ (0, 1), where the vector of parameter
estimates is defined at. For further simplicity we will omit the “x” notation for single elements of the vector βx .

4In case we are interested in estimation of the unknown regression function m(·) at the point x ∈ (0, 1) only, it is
sufficient to consider assumptions C2, C3 and C4 to be satisfied in some small neighbourhood of x ∈ (0, 1) only.
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1.2. LOCAL POLYNOMIAL REGRESSION

C5 The bandwidth parameter hN satisfies hN → 0 as N → ∞, such that Nh3
N → ∞;

Given the notation above and the stated assumptions we can formulate now the following theorems,
which describe the main statistical properties of the local polynomial estimate.

THEOREM 1.1 (Asymptotic bias and variance)

Let us assume model
�

�

�

�1.1 and let conditions C1 – C5 be all satisfied. Then the following holds:

(i) the asymptotic conditional bias for p− ν odd is given by

As.Bias
[
m̂(ν)(x)

]
=

ν! m(p+1)(x)

(p + 1)! h
ν−p−1
N

· e⊤ν S−1
1 µp + oP

(
h

p+1−ν
N

)
;

(ii) the asymptotic conditional bias for p− ν even is given by

As.Bias
[
m̂(ν)(x)

]
=

ν!
[
m(p+2)(x) + (p + 2)m(p+1)(x) f ′(x)

f (x)

]

(p + 2)! h
ν−p−2
N

· e⊤ν S−1
1 µp+1 + oP

(
h

p+2−ν
N

)
;

(iii) the asymptotic conditional variance is given by

As.Var
[
m̂(ν)(x)

]
=

ν!2σ2(x)

f (x)Nh1+2ν
N

· e⊤ν S−1
1 S2S

−1
1 eν + oP

(
1

Nh1+2ν
N

)
;

where p ∈ N0 is a degree of the local polynomial approximation and ν ∈ {0, 1, . . . , p}.

THEOREM 1.2 (Asymptotic normality)

Let us assume model
�

�

�

�1.1 and conditions C1 – C5 and some fixed x ∈ (0, 1) from the domain of
interest. Then the following convergence holds true

√
Nh1+2ν

N

(
m̂(ν)(x)−m(ν)(x)−Bias

[
m̂(ν)(x)

])
D−→

N→∞
N

(
0,

ν!2σ2(x)

f (x)
· e⊤ν S−1

1 S2S
−1
1 eν

)
,

for any ν ∈ {0, 1, . . . , p} and p ∈ N0 to be the order of the local polynomial approximation.

Proofs. The proofs of both theorems can be found in J.Fan and Huang (1993) together with some
further discussion on this topic so, we will omit it in this thesis.

�

Both results in theorems above are important in order to derive proper statistical properties for the
local polynomial M-smoothers, which are of the key interest in our research.

Finally, we would like to mention a few additional issues related to the choice of the order of the
local polynomial approximation – the degree p ∈ N0. One has to be aware of some irremissible trade
here where the accuracy and a small bias term on one hand stand against a small variance and good
interpretation options given a reasonable smoothness assumptions on the other hand. The higher the
order of the local polynomial approximation the lower the bias term however, this is balanced on the
other hand with a higher imprecision involved in a larger variability and somehow more strict smoothness
assumptions that we have to consider. And vice versa. Therefore, a reasonable balance has to be always
found in order to provide a suitable final fit.

DEPARTMENT OF PROBABILITY AND MATHEMATICAL STATISTICS, FACULTY OF MATHEMATICS AND PHYSICS 5



Introduction to Nonparametric Regression and Robustness

From the other point of view, it was shown in Ruppert and Wand (1994) that there is no loss in
terms of asymptotic variance by doing a local linear approach instead of a local constant fit, just the
bias term improves a little. The same reasoning also applies to a comparison of any even order of
approximation with its consecutive odd order of approximation (see Figure 1.1). Moreover, as we have
already mentioned the boundary issues in the case of local constant fits and their successful elimination
in the case of local linear fits, this also generally applies for any odd orders of the local polynomial
approximation. To be specific, serious boundary problems appear when using even order fits, which
contrasts with odd order approximations that have a nice boundary adaptive property similarly as we
have discussed in the case of local linear regression.
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Figure 1.1: The behaviour of an increase factor of the variance term given a specific order of the local polynomial
approximation (p ∈N) taken from Fan and Gijbels (1995) – see p. 79.

Given the previous argumentation, it is more common to consider odd orders of approximation where
one gets a better estimate with respect to a smaller bias term given the same variability (considering
the closest smaller even order) while also eliminating the boundary issues in the final model. In real
applications the most common choice of the degree of the local polynomial approximation is p = 3,
which introduces a local cubic approach but other choices can be also commonly found in practice.
It is worth to mention here that from Figure 1.1 one can also get an idea what could be an ideal
kernel function to be used for estimation as the variance increase is the slowest for the Gaussian kernel.
However, this is not as much crucial therefore, we will not rely on this in our work.

1.3 Robust M-estimates

Let us now turn our attention to M-estimation methods, which are later on used together with the local
polynomial regression as a key part of the whole concept of a construction of M-smoothers. Again, we
will only state the main results, which are of essential importance for developing a proper statistical
background required for the M-smoothers inference.

Let us consider a random sample X1, . . . , XN , for some N ∈N, which comes from some unknown
distribution function Fθ(·), where θ ∈ Θ ⊆ R is a location parameter and Θ ⊆ R is an open set. The
distribution function Fθ(·) is assumed to be symmetric around θ ∈ Θ. Under this setting the true but

6 FLEXIBILITY, ROBUSTNESS AND DISCONTINUITY IN NONPARAMETRIC REGRESSION APPROACHES



1.3. ROBUST M-ESTIMATES

unknown location parameter θ0 ∈ Θ of the distribution function Fθ0
(·) can be expressed as

θ0 = M(Fθ0
) = Argmin

t∈Θ

∫

R

(x− t)2 dFθ0
(x).

Given the random sample {Xi; i = 1, . . . , N} it is quite natural to define an estimate θ̂N of the true
parameter θ0 ∈ Θ as

θ̂N = M(FN) = Argmin
t∈Θ

∫

R

(x− t)2 dFN(x) = Argmin
t∈Θ

N

∑
i=1

(Xi − t)2 ,

where FN denotes the empirical distribution function of X1, . . . , XN . However, such solution defined
by the least squares method requires a normality assumption for distribution Fθ to be satisfied in order
to obtain nice statistical properties. Even a small number of outlying observations can cause a failure
of this estimator and moreover, if one considers a heavy-tailed distribution of random errors the least
squares estimator is completely inappropriate for such cases.

In order to avoid these problems Huber (1964) proposed to use a generalization of the least squares

methods where the empirical estimate θ̃N of the true parameter θ0 ∈ Θ is defined as

θ̃N = M̃(FN) = Argmin
t∈Θ

∫

R

ρ (x− t) dFN(x) = Argmin
t∈Θ

N

∑
i=1

ρ (Xi − t) ,
�

�

�

�1.6

for some general loss function ρ(·), which is assumed to be symmetric and convex. In general, the choice
of the loss function ρ(·) effects how much robust with respect to outliers or heavy-tailed distributions

the given M-estimator will be. In an analogous way the expression
�

�

�

�1.6 can be thought of as an
empirical counterpart of the theoretical functional

θ0 = M̃(Fθ0
) = Argmin

t∈Θ

∫

R

ρ (x− t) dFθ0
(x),

given for the true value of the parameter θ0 ∈ Θ. Let us now assume that the general loss function
ρ(·) has a derivative (one sided derivatives at least) and it holds that ρ′ = ψ almost everywhere. Under

this assumption it is easy to see that if θ̃N = M̃(FN) exists it than solves the equation

N

∑
i=1

ψ (Xi − t) = 0,
�

�

�

�1.7

with respect to t ∈ Θ. However, the solution of
�

�

�

�1.7 could be also not well-defined (none or more
than just one solution exists) therefore, it is usual to work with M-estimates defined by

θ̃N =
1

2

[
θ̃+N + θ̃−N

]
, where





θ̃+N = supt∈Θ

{
∑

N
i=1 ψ(Xi − t) > 0

}
;

θ̃−N = inft∈Θ

{
∑

N
i=1 ψ(Xi − t) < 0

}
;

We will further assume the definition
�

�

�

�1.7 . For more details we refer to Jurečková and Sen (1982) or
Huber (1981). Some modifications can be also found in Hampel (1986) or Hampel (1974).

In the next step, there is a convention in the M-estimation theory to define function λFθ
(·) where

λFθ
(t)

def.
= −

∫

R

ψ (x− t) dFθ(x),
�

�

�

�1.8
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and to assume that such function is differentiable in t ∈ Θ, which is mostly the case indeed. This
allows us to investigate statistical properties of M-estimates using the Taylor expansion of the smooth
function λFθ

(t) for t ∈ Θ, rather than investigating properties of M-estimates via a non-smooth or even

discontinuous function ψ(·). Using this notation it is easy to see that
�

�

�

�1.8 is (up to the sign) just a

theoretical version of the empirical equation
�

�

�

�1.7 therefore, it holds that λFθ
(t) = 0, for the true value

t = θ0 of the parameter θ ∈ Θ.

Given the notation above we can now formulate two theorems, which are crucial for deriving results
in the case of M-smoothers inference.

THEOREM 1.3 (Existence of the solution)
Let θ0 ∈ Θ be an isolated root of the equation λFθ

(t) = 0 and let ψ(x− t) be monotone in t ∈ R.

Then θ0 ∈ Θ is unique and any solution sequence {θ̃N}N∈N of the empirical equation λFN
(t) = 0

converges to θ0 almost surely. If moreover, ψ(t) is continuous in t in a small neighbourhood of θ0 ∈ Θ

at least then there exists such a solution sequence.

THEOREM 1.4 (Asymptotic normality of the solution)
Let θ0 ∈ Θ be an isolated root of the equation λFθ

(t) = 0 and let ψ(x− t) be monotone in t ∈ R.

Suppose that λFθ
(t) is differentiable at t = 0 such that λ′Fθ

(0) 6= 0. Let
∫

R
ψ2(x− t)dFθ(x) is finite

for t in some small neighbourhood of θ0 ∈ Θ and it is continuous at t = 0. Then any solution sequence
{θ̃N}N∈N of the empirical equation λFN

(t) = 0 is asymptotically normal with the expectation to be
equal to θ0 and the variance term equal to

σ2(ψ, Fθ0
) =

∫
R

ψ2(x− θ0)dFθ0
(x)[

λ′Fθ0
(θ0)

] .

Proofs. Complete and detailed proofs of both theorems can be found in Serfling (1980).
�

M-estimates are frequently referred to as robust estimation methods because of their robust flavour,
which is given by the choice of the general loss function ρ(·). There are many different choices for this
function (see a detailed discussion in Huber (1981) or a brief overview in Chapter 5) however, in this
thesis we will focus mainly on three specific ones: a classical L2 norm which brings M-estimates back
to the least squares estimation, L1 norm which is one of the most popular choices in case of robust
M-estimates and finally, the Huber function, which is defined as

ρ(x) =

{
x2/2, for |x| ≤ T;

T
(
|x| − T

2

)
, for |x| > T;

where T > 0 is some trimming constant, which effects the amount of sensitivity with respect to outlying
observations. The Huber function is considered to be the main representative of the whole class of loss
functions usually considered for the robust M-estimations procedures5.

Although, we have described M-estimates related to the estimation of a location parameter only
straightforward extensions were introduced for regression approaches as well. One can easily consider
M-estimates within classical linear regression models (see McKean (2004) or Yohai and Maronna (1979))
and further generalizations can be also found for nonparametric approaches and the robust local linear

5Some other common choices of the loss function ρ(·) are Tuckey’s function, Andrew’s function or many others.
For a short discussion and a list of the most common loss functions used for M-estimation we refer to Chapter 5.
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regression especially (He and Shao, 1996). We will extend the robust local linear approach into higher
orders of approximation and we will discuss local polynomial M-smoothers6.

The main idea of the M-smoothers approaches is to bring together the flexibility property gained
from adopting the local polynomial approach and the robustness property coming from the M-estimation
theory. One expects that combining these two statistical theories will bring new results, which can be
also seen in terms of a combination of results from these two theories separately. We will discuss the
M-smoothers regression techniques in more detail in the next chapters.

1.4 The aim of the thesis

The aim of this thesis is to develop a proper statistical theory for a flexible and robust estimation of an
unknown regression function while taking into account some possible structural breaks – discontinuity
points. The main idea is to generalize the local linear M-smoothers approach proposed by H.Rue et al.
(1998) and to consider local polynomial M-smoothers instead. Local linear M-smoothers were proposed
as a straightforward generalization of the local polynomial regression techniques to offer a new and
flexible method for image processing analysis where flexibility was the key issue with respect to frequent
outliers in one dimensional image data sequences. Local linear M-smoothers are also well discussed in
Antoch and Janssen (1989) and some brief overview can be also found in a nice summary book on
nonparametric regression by Fan and Gijbels (1996).

The main advantage of such generalization is to bring more flexibility into the final model and to
weak some distributional assumptions required for the statistical inference to hold. Adopting higher
orders of estimation (polynomial approach) allows us to model more complex regression functions while
also obtaining estimates for consecutive derivatives of the function.
On the other hand, using change-point techniques and regression methods together brings a possibility
to consider and to model regression functions with sudden changes like jumps, changes in direction or
changes in curvature as well. One can be also interested in higher order changes however, in such cases
the interpretation of results gets much more difficult and it is not straightforward any more7.

The change-point methods were firstly introduced within a noparametric regression framework by
Müller (1992) who considered one-sided kernel estimates in order to detect location changes.
One-sided kernel estimates were also considered by Loader (1996) who investigated changes in location
and direction at the same time. We will also base our approach on the one-sided kernel estimates and
we will consider local polynomial M-smoothers together with a change-point problem similarly as it was
also considered by Antoch et al. (2006) for the local linear scenario and the L2 norm.

A proper statistical theory is to be developed under a variety of different conditions, which includes
homoscedastic and heteroscedastic variance structures given for independent random errors and also for
some models with dependent structures of random error sequences. Specifically, we will considerer an
α-mixing dependence structure proposed by Rosenblatt (1956), which involves most common dependent
random error models including a very common auto-regressive (AR) model.

In order to make qualitative decisions regarding some possible change-point occurrences there will
be some statistical tests proposed in this thesis and the main statistical properties for such tests are
investigated under the conditions posed for the models under consideration.

6We will equivalently refer to the local polynomial M-smoothers as to M-smoothers only.
7It is said in general that a human naked eye is able to distinguish changes in behaviour of a function up to the third

order at most (jumps, direction and curvature) and all higher order structural changes are not visible any more.
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Once the testing theory for structural changes in the model is developed one will get into many
difficulties that make the application of such tests and direct methods rather inconvenient maybe even
infeasible. In order to avoid such difficulties we will propose an alternative way based on resampling
methods and bootstrapping and a proper statistical inference will be derived. We will use a small
adaptation of the bootstrap technique proposed by Bickel and Freedman (1981). An extensive study on
some bootstrap approaches applied to nonparametric regression can be also found in Belyaev (1995).
In case of block bootstrap techniques, which are required for dependent data cases we refer to Politis
and Romano (1992).

This thesis is structured as follows: in the next chapter we will mainly discuss the local polynomial
M-smoothers approaches under the variety of conditions and the main results will be also proved there.
In Chapter 3 we will introduce a model with structural breaks, change-points respectively. As far as
we are primary interested in estimation of regression functions with structural changes an appropriate
statistical theory will be developed in this chapter and some statistical tests for testing of significancy
of such changes will be proposed as well.

In Chapter 4 we will discuss alternative bootstrap approaches, which are used to mimic the unknown
distribution of interest for the test statistic under the null hypothesis. Three different approaches will
be shown and all proofs of the main results will be also presented. In Chapter 5 where we will shortly
mention some additional however, important key issues (e.g. bandwidth parameter selection, scale
function estimations or loss function choice), which are unfortunately not discussed in more details in
the thesis however, one can easily find all required details in references.

Finally, in Chapter 6 an extensive simulation study is presented in order to see the actual performance
of the proposed M-smoothers and the bootstrap algorithms. We will also use the modelling and testing
tools developed in this thesis on a real data sample and a detailed comparison and discussion will be
given. At the very end of this thesis a detailed discussion and conclusion is given in Chapter 7.

1.5 State of Arts

Before we start with a description of the main results in the thesis let us firstly clearly state here in a
few items what are the results derived by other authors before and what was derived directly in this
thesis as a new contribution to a statistical nonparametric modelling.

➩ we have proposed to extend the local linear M-smoothers approaches to the local polynomial
M-smoothers methods and the corresponding statistical inference and asymptotic is provided;

➩ a generalization of a homoscedastic model into a heteroscedastic variance structure is introduced
and all necessary results are proved;

➩ a generalization of some statistical tests and testing approaches is adopted in order to fit them
on considered model scenarios including homoscedastic and heteroscedastic variance structures
with both independent as well as dependent random error terms;

➩ we have proposed new bootstrap algorithms and all their adaptations, which are used to mimic the
unknown distribution functions of the test statistics under the null hypothesis and the considered
model scenario and all proofs are given in detail as well;

➩ an adaptation of the moving blocks bootstrap algorithm is discussed for models with dependent
random error terms for both, the homoscedastic as well as heteroscedastic model scenarios;

➩ we have investigated computational aspects of the proposed methods and an extensive simulation
study and a real data example are presented in this thesis together with a detailed discussion;
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”A pleasure in the job
puts perfection in the work.”

Aristotle

(384 BC – 322 BC) 2
Local Polynomial M-smoothers

2.1 Introduction to M-smoothers

Let {(Xi, Yi); i = 1, . . . , N ∈ N} be a finite two-dimensional random sample from some unknown
distribution function F(X,Y)(x, y). We would like to investigate a dependence structure of the random
variable Y given the value of the random variable X in sense of a classical nonparametric regression
based on a conditional expectation function m(x) = E[Y|X = x]. We will consider two different
scenarios here: firstly, a simpler case when one is interested in an estimation of the unknown regression
function m(·) at some pre-defined point x ∈ (0, 1) only, where we assume interval the (0, 1) to be
the domain of interest8 of the random variable X. On the other hand, one can be also interested in
estimation of the whole regression function at once, which involves estimation of m(x) for all x ∈ (0, 1).
This represents a slightly more complex approach. As far as a proper statistical inference slightly differs
for these two cases we will discuss both of them. Firstly, we will point our attention to an estimation of
m(·) at some pre-specified point and afterwards, we will generalize this simpler approach to estimate
the whole regression curve at once.

Unlike the classical nonparametric approaches we would like to adopt methods, which would allow us
to model the unknown regression function in a less restricted way specifically, we would like to weaken
some distributional assumptions to cover heavy-tailed distributions of random errors and to drop some
smoothness assumptions at the same time (implementing discontinuity points into the model).
Basically, we will proceed in three steps in order to propose a final method, which will take into account
all stated requirements.

❏ Using higher order approximation methods one gains much better results especially with respect to
a bias term, which necessarily decreases every time we increase the order of the polynomial approx-
imation. On the other hand, using the local estimation techniques (kernel methods) rather than
some global ones (classical linear regression or some piece-wise estimation techniques) brings into
the final estimate a huge amount of additional flexibility. By combining these two approaches one
obtains a very flexible class of estimators, which are referred to as the local polynomial estimators.

❏ In order to deal with some possible outlying observations or even with heavy-tailed distributions
(as in the case of classical M-estimates discussed in Chapter 1) we combine the local polynomial
regression techniques and M-estimation methods to introduce the local polynomial M-smoothers
approaches. Specifically, we will further consider three different situations here: a model with a
homoscedastic and heteroscedastic variance structure, both under the assumption of independent
and identically distributed random errors and we will also discuss an α-mixing model for a kind

8We consider interval (0, 1) to be the domain of interest for simplicity however, one can also consider any general
interval (a, b) for a, b ∈ R and the results will follow analogously.
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of dependence structure of a sequence of random errors, which include most dependence forms
that can be commonly considered in regression scenarios.
We will assume a heteroscedastic variance structure for this model in general.

❏ Finally, in the third step we would like to use the proposed local polynomial M-smoothers and
to admit even higher level of flexibility especially in cases where one wants to model a regression
function with some possible discontinuity points, so called jumps9. Moreover, we will accept an
occurrence of discontinuity points not only in the original regression function itself but also in all
order derivatives, up to the order of the local polynomial approximation.

Given the three steps above we are now interested in the local polynomial M-smoothers estimates
while also assuming some discontinuity points and we will discuss their main statistical properties and
the corresponding inference in the next sections.

For the given random sample {(Xi, Yi); i = 1, . . . , N ∈ N} we want to estimate the unknown
regression function m(·) in sense of a conditional expectation m(x) = E [Y|X = x] given at some
chosen point of interest x ∈ (0, 1) or over the whole interval (0, 1), which is the domain of interest.
In general, the local polynomial M-smoothers estimate is defined by the minimization problem

β̂x = Argmin
(b0, . . . , bp)⊤ ∈ R

p+1

N

∑
i=1

ρ

(
Yi −

p

∑
j=0

bj(Xi − x)j

)
· K
(

Xi − x

hN

)
,

�

�

�

�2.1

where β̂x = (β̂0, β̂1, . . . , β̂p)⊤ is a (p + 1)-dimensional vector of parameter estimates given at the

point x ∈ (0, 1) and p ∈ N is a degree of the local polynomial approximation10. Function K(·)
stands for a classical kernel function common for nonparametric regression modelling and hN is an
appropriate bandwidth parameter. Function ρ(·) stands for a general loss function, which is assumed
to be symmetric and convex such that for its derivative (or one-sided derivatives at least) it holds that
ρ′ = ψ almost everywhere (a.e.).

Under such representation the M-smoothers estimate m̂(x) of the regression function m(·) at the

fixed point x ∈ (0, 1) is given by the assignment m̂(x) = β̂0, where β̂0 is just the first element of the

vector of parameter estimates β̂x defined by
�

�

�

�2.1 . Moreover, if one is interested in an estimate of the
first derivative of the regression function m(·) at x ∈ (0, 1) rather than the regression function itself

an analogous identity m̂′(x) = β̂1 holds as well. In general, we can write m̂(ν)(x) = ν!β̂ν, for any
ν = 0, . . . , p, in order to get estimates of all other consecutive orders of derivatives of the regression
function m(·) up to the order p ∈ N, all given at the same point x ∈ (0, 1). However, unlike the

classical nonparametric approach presented in
�

�

�

�1.4 the functional representation of m(·) where we had
m(x) = E [Y|X = x] is not so much straightforward for

�

�

�

�2.1 as the functional representation of m(·)
heavily depends now on the loss function ρ(·) we choose for the minimization11.

In case we want to estimate the whole regression function m(·) at once, which is by our assumption

defined on interval (0, 1), we need to run the estimator defined by
�

�

�

�2.1 for all x ∈ (0, 1).

9We will refer to jumps as to change-points or structural breaks respectively as we allow for discontinuity points
(jumps) not only in the regression function itself but in its derivatives as well. The term “change-point” is commonly used
in times series analysis and sequential methods however, we will also adopt this notation for our purposes.

10From now on we will only assume the local polynomial approach given for the orders p ≥ 1 however, all results
immediately hold for p = 0 (the local constant approach) as well

11Some more discussion on the functional representation of the unknown regression function m(·) is addressed in
Chapter 5 in the section on different choices of the loss function ρ(·).
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Looking now at equation
�

�

�

�2.1 one can easily see there a combination of both, the local polynomial
regression approach and M-estimation approach as well. Local polynomial regression is implemented
through the kernel function K(·), which yields an estimation in a small neighbourhood of x ∈ (0, 1)
only, which increases a local flexibility and also a polynomial approximating term ∑

p
j=0 bj(Xi − x)j,

which is implemented in order to improve a local precision of the model fit. On the other hand robust
M-estimation methods are introduced in

�

�

�

�2.1 via a general loss function ρ(·) that generally takes a form
of the L2 norm however, in the M-smoothers approach another loss functions like L1 norm or Huber’s
function are used preferably. Apropos, the Huber function is considered to be the most traditional
choice in the case of robust estimation12 in general.

Given the finite sample size13 the convex property of ρ and the fact that ρ′ = ψ a.e. we can consider

a problem equivalent to
�

�

�

�2.1 , which is now expressed as a set of normal equations

N

∑
i=1

ψ

(
Yi −

p

∑
j=0

bj(Xi − x)j

)
· (Xi − x)l · K

(
Xi − x

hN

)
= 0,

�

�

�

�2.2

for l = 0, . . . , p,

which are solved for β̂x = (β̂0, . . . , β̂p)⊤ ∈ Rp+1. However, unlike the classical regression techniques

based on the L2 norm the solution of the set of equations
�

�

�

�2.2 is not given in an explicit form any
more. This also involves some issues related to an optimal bandwidth selection as the Asymptotic
Mean Squared Error term (AMSE), which is commonly used to determine the asymptotically optimal
bandwidth parameter in nonparametric regression settings is not expressible in an explicit form either
therefore, one has to implement iterative procedures or other methods in order to get close to the
solution14. Another common usage of the AMSE quantity is to judge the performance of the given
estimator but using the same argumentation as before this can not be so easily accessible for the
M-smoothers methods either. We will focus on some common approaches to these issues and we will
also discuss an optimal bandwidth parameter selection in Section 5.1.

Let us now start with the simplest model case we can consider under this scenario – a model with
a homoscedastic variance structure with independent random errors – and we will discuss the main
properties for such model in the next section. We will prove the main results and afterwards this
homoscedastic variance model will be generalized into a model with heteroscedastic variance and a
model with dependent random errors as well.

2.2 Homoscedastic models

Let us remind the given random sample {(Xi, Yi); i = 1, . . . , N ∈ N}, which comes from some
unknown distribution function F(X,Y)(x, y) where the dependence of the random variable Y given the
value of the random variable X can be in general described by the model

Yi = m(Xi) + ε i, ε i ∼ G, i.i.d, i = 1, . . . , N,
�

�

�

�2.3

12One can also consider many other choices of the loss function ρ(·) for example Tuckey’s function or Andrew’s function
or many others (see Section 5.3 some brief discussion on loss functions). However, in this text we will only consider L2

and L1 norms and the Huber function respectively.
13For an infinite sum one would need to satisfy some necessary assumptions in order to chance the sum and derivative

operators however, such assumptions trivially hold given the set of assumptions required for the model anyway.
14One can not even use a classical Newton-Raphson iterative algorithm here as it assumes an existence of a derivative of

a function under the minimization with respect to an argument which is of interest. However, this is usually not satisfied
in case of M-smoothers for most choices of the loss function ρ(·).
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where i.i.d. stands for independent and identically distributed random error terms with a symmetric
distribution function G(·), such that G(e) = 1− G(−e), for all e ∈ R.

Using this model definition we want to avoid any finite moments assumptions for random error
terms and to also account for heavy tailed distributions such as the Cauchy distribution or others.
Given this requirement we will refer to a scale of random errors rather than referring to their variance,
which is under our model scenario allowed to be infinite as well.

In order to quantify the scale of some random variable such that the definition will remain free
of any finite moment assumptions one can use many proposed methods, which have been extensively
discussed in literature (we refer to Bickel and Lehmann (1976a) and Bickel and Lehmann (1976b) for
some further details). However, in the following text we will only consider an interquartile range of
a random variable defined as

∆(ε1) ≡ ∆(G)
def.
= G−1

(
3

4

)
− G−1

(
1

4

)
,

for G to be a distribution function of ε1 and

G−1(u) = inf {e ∈ R; G(e) ≥ u} , for 0 < u < 1,

stands for a quantile function, which corresponds to the distribution function G(·). It was proved in
Bickel and Lehmann (1976a) or Bickel and Lehmann (1976b) respectively that ∆(G) when defined for
some function G(·) to be a symmetric distribution function then it satisfies all necessary assumptions,
which are required in general for a measure of dispersion (spread respectively) to be satisfied.

For model
�

�

�

�2.3 the estimate of the regression function m(·) at the given point x ∈ (0, 1) or the
estimates of the derivatives at the same point up to the order p ∈ N are defined by the minimization�

�

�

�2.1 same as they can be given in sense of an iterative solution of the set of equations
�

�

�

�2.2 .

In the following lines we will discuss the main statistical properties for such estimates and we
will investigate their asymptotic inference namely, the bias and variance terms and their distributional
properties too. Given the knowledge of an asymptotic behaviour of an estimate we can easily apply the
proposed M-smoothers method to deal with real data problems as we can easily construct confidence
bounds or critical regions for a corresponding hypothesis testing problems, which are mostly of the main
statistical interest.

2.2.1 Assumptions for homoscedastic model

Before we state the main results derived for the homoscedastic model
�

�

�

�2.3 let us firstly discuss a set

of assumptions, which are required for the results to hold15.

A1 The marginal density function f (·) of the random variables X1, . . . , XN , which are i.i.d. is assumed
to be absolutely continuous, positive and bounded on [0, 1];

A2 Random errors ε1, . . . , εN, are assumed to be i.i.d., mutually independent of Xi, for i = 1, . . . , N,
with a symmetric and continuous distribution function G(·);

15Once we are interested in an estimation of the unknown regression function or its derivatives respectively at some
pre-specified point x ∈ (0, 1) only, it is sufficient to consider assumptions A1 and A3 to be satisfied locally only – for some
small neighbourhood of x ∈ (0, 1).
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A3 The regression function m(·) is assumed to be (p + 1)-times Lipschitz on interval (0, 1), where
p ∈ N is a degree of the local polynomial approximation;

A4 The loss function ρ(·) is symmetric and convex moreover, we assume it is absolutely continuous
and it holds that ρ′ = ψ almost everywhere (a.e.);

A5 For function λG(t) = −
∫

ψ(e− t)dG(e), where t ∈ R we assume that the derivative λ′G(t)
exists and it is continuous at some neighbourhood of t = 0. Moreover,

∫
ψ2(e)dG(e) < ∞ and

λ′G(0) 6= 0. It is also satisfied that
∫
(ψ(e− ǫN)− ψ(e))2 dG(e) < K · |ǫN |, for some K > 0

and any sequence {ǫN}∞
N=1 such that ǫN → 0 as N → ∞;

A6 Function K(·) is a kernel function, which is assumed to be a symmetric16 density function with

a common support on interval [−1, 1], such that
∫ 1
−1 K2(u)du < ∞;

A7 The bandwidth parameter hN satisfies the following: hN
N → ∞−→ 0, such that NhN

N → ∞−→ ∞, more

precisely hN ≍ N ι, where ι ∈
(
− 1+δ

(1+2p)
,−δ

)
, for some δ > 0 small enough;

Most of the assumptions above are just usual conditions required for the M-smoothers method to
work and they are generally satisfied for most common situations including all practical choices of the
loss function ρ(·), the form of the distribution function G(·) or the shape of the kernel function K(·),
which is used for the estimation procedure. Assumption A1 requires that 0 < f (x) ≤ K, for some
0 < K < ∞ and any x ∈ [0, 1]. It is also important to assume a mutual independence of measurements
and random errors in the assumption A2 however, under the given model it is a quite natural condition.
Similarly, it is quite reasonable to assume a symmetric property of the distribution function G(·) in A2
and moreover, it also simplifies the proofs a lot.

One could think of assumption A3 to be slightly restrictive as it requires the Lipschitz property of
the order p + 1, where p ∈ N is the given degree of the local polynomial approximation however, this
is directly related to the fact that we claim the M-smoothers estimate to be a smooth estimate of the
order p. Once we do not want to assume the Lipschitz property for such high orders we do also have
to decrease the degree of the local polynomial approximation.

Referring to assumptions A4 and A5, they both come directly as straightforward modifications of
the assumptions posed in case of simple M-estimation techniques discussed in Section 1.3 specifically,
those are assumptions required for both Serfling’s theorems to hold17. The last two assumptions refer
to the kernel function K(·) and the bandwidth parameter hN > 0. They both come from the theory
on nonparametric kernel estimates (for some further discussion see Section 5.1).

The robust property of the M-smoothers estimates is implicitly given within the assumption A2
where we allow for any symmetric distributions with no explicit conditions posed on an existence of
any finite moments of random errors. This of course includes many kinds of heavy-tailed distribu-
tions including the Cauchy distribution that usually causes serious problems (even inconsistency of an
estimate) when they go together with the classical regression estimation methods based on the L2 norm.

On the other hand, this also accounts for models with random errors that could be possibly comprised
even of an inconsiderable amount of outlying observations. Unlike the classical least squares regression
methods, which would fail providing a correct inference using the M-smoothers approach one will get
fully consistent estimates with a proper inference in such cases as well.

16The symmetric property of the kernel function K(·) is not necessarily required however, it is quite common and
natural to assume so. We will also discuss non-symmetric kernels in Chapter 3.

17For more details on Serfling’s theorems see Chapter 1, specifically Section 1.3 or the paper by Serfling (1980).
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2.2.2 The main asymptotic results

In this section we will derive the main statistical properties for the M-smoothers estimates under the
homoscedastic model

�

�

�

�2.3 and we will discuss their most important qualities. All proofs of the results
will be also given here.

For sake of simplicity let us firstly introduce the following notation:

XN =

([
Xi − x

hN

]j
)

i = 1, . . . , N;

j = 0, . . . , p;

, S1 =

(∫ 1

−1
uj+lK(u)du

)

j = 0, . . . , p;

l = 0, . . . , p;

, S2 =

(∫ 1

−1
uj+lK2(u)du

)

j = 0, . . . , p;

l = 0, . . . , p;

,

WN = diag

{
K

(
X1 − x

hN

)
, . . . , K

(
XN − x

hN

)}
, and HN = diag

{
1, h−1

N , . . . , h
−p
N

}
,

are given matrices of the appropriate types and

eν = (0, . . . , 0︸ ︷︷ ︸
ν−times

, 1, 0, . . . , 0︸ ︷︷ ︸
(p−ν)−times

)⊤ and ψ (c) = (ψ(c1), ψ(c2), . . . , ψ(cN))
⊤

are both real-valued vectors where ν ∈ {0, . . . , p} and c = (c1, . . . , cN) ∈ RN is some arbitrary
N-dimensional real-valued (or random respectively) vector.

Moreover, λ′G(t) = − ∂
∂t

∫ ∞

−∞
ψ(e− t)dG(e) stands for a derivative of λG(·) defined by

�

�

�

�1.8 .

Given the assumption A6 both matrices S1 and S2 are just (p + 1)× (p + 1) type matrices with all
finite elements. Moreover, the definition of function λG(t) comes from the M-estimates theory as we
have described in Section 1.3 and matrices XN and WN respectively, can be thought as nonparametric
counterparts of a classical design matrix and a diagonal matrix of weights respectively, which are
commonly used in parametric regression. Under this notation and the assumptions above we can
formulate now the main results for the local polynomial M-smoothers estimates under the homoscedastic
model

�

�

�

�2.3 .

THEOREM 2.1 (Consistency for homoscedastic M-smoothers)

For model
�

�

�

�2.3 and assumptions A1 – A7 the M-smoothers estimates of the regression function m(·)
and its derivatives respectively are consistent, in other words it holds that

√
Nh1+2ν

N ·
(

β̂ν −
m(ν)(x)

ν!

)
= OP(1),

for N → ∞, any ν ∈ {0, . . . , p} and the given point x ∈ (0, 1).

Proof. See the proof of this theorem in Section 2.2.3 below.
�

The consistency result is one of the most important statistical properties for any estimation technique
as it can be interpreted as a property of converging to an unknown but the true quantity that is of
interest. Without assuring the consistency result firstly there is not too much sense in investigating any
further statistical properties. Once we have derived the consistency result we can focus on additional
statistical properties, which may be in hand when dealing with real data problems.

THEOREM 2.2 (Asymptotic conditional bias and variance for β̂x)

For model
�

�

�

�2.3 and assumptions A1 – A7 we can express the asymptotic conditional bias and variance
terms for the vector of parameter estimates as
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• Asymptotic conditional bias18 term:

H−1
N

(
β̂x − βx

)
=
(
X⊤NWNXN

)−1
· X⊤NWN

(
m(p+1)(x)

(p + 1)!
· (X− x)(p+1)

)
+ oP

(
h

p+1
N

) �

�

�

�2.4

• Asymptotic conditional variance term for HN β̂x:

E [ψ(ε1)]
2

[λ′G(0)]
2

(
X⊤NWNXN

)−1
X⊤NW2

NXN ·
(
X⊤NWNXN

)−1
+ oP

(
1

NhN

)
�

�

�

�2.5

Proof. The proof of this theorem will be given in Section 2.2.3 below.
�

In Theorem 2.2 the vector of parameter estimates β̂x is defined by the minimization problem
�

�

�

�2.1

and (X− x)(p+1) =
(
(X1 − x)p+1, . . . , (XN − x)p+1

)⊤
as X = (X1, . . . , XN)

⊤. Moreover, by the

assumption A5 it holds that Eψ2(ε1) =
∫

R
ψ2(ε1)dG(ε1) < ∞.

One has to be aware of the matrix notation used in Theorem 2.2 as it expresses the bias term and
the variance not only for the estimate of the unknown regression function at the given point x ∈ (0, 1)
but it also specifies the bias and variance terms for estimates off all order derivatives of the regression
function m(·) at x ∈ (0, 1) up to the order of the local polynomial approximation p ∈N.

However, rather than relying on the conditional bias and variance terms one is in statistic mostly
interested in an asymptotic distributional properties of the given estimate. Therefore, we will investigate
the asymptotic distribution of the M-smoothers estimates and we will also formulate two additional
theorems to state the asymptotic bias and variance terms as well.

THEOREM 2.3 (Asymptotic bias term for m̂(ν)(x))

For model
�

�

�

�2.3 , assumptions A1 – A7 and the given notation the asymptotic bias term for the
M-smoothers estimate of the unknown regression function or its derivatives respectively is equal to

As.Bias
[
m̂(ν)(x)

]
= ν!h

p+1−ν
N ·

(
m(p+1)(x)

(p + 1)!

)
· e⊤ν S−1

1 µp + oP

(
h

p+1−ν
N

)
,

where µp =
(∫ 1
−1 up+1K(u)du,

∫ 1
−1 up+2K(u)du, . . . ,

∫ 1
−1 u2p+2K(u)du

)⊤
∈ Rp+1 and ν ∈ {0, . . . , p}

stands for the order of the corresponding derivative of the unknown regression function m(·).
Proof. See Section 2.2.3 below.

�

THEOREM 2.4 (Asymptotic variance term for m̂(ν)(x))

For model
�

�

�

�2.3 , assumptions A1 – A7 and the notation above the asymptotic variance term for the
M-smoothers estimate of the unknown regression function or its derivatives respectively is equal to

As.Var
[

m̂(ν)(x)
]
=

ν!2Eψ2(ε1)

NhN f (x)[λ′G(0)]
2
· e⊤ν HNS−1

1 S2S
−1
1 HNeν + oP

(
1

Nh1+2ν
N

)
,

where ν ∈ {0, 1, . . . , p} stands again for the order of the derivative of the regression function m(·).
18In Theorem 2.2 we use the “bias” notation to refer to a difference between the parameter estimate and the true value

of the parameter rather than using the original definition as the bias expression in a classical sense of a conditional expec-
tation is not well-defined in this case (see the proof of the theorem for explanation).
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Proof. See Section 2.2.3 below.
�

Applying now the classical nonparametric approach we could use Theorems 2.3 and 2.4 to express
the Asymptotic Mean Square Error (AMSE) term of the estimate of the unknown regression function
m(·) at the given point x ∈ (0, 1) for ν = 0, which is commonly used in nonparametric regression to
determine the optimal value of the bandwidth parameter. The AMSE quantity defined as a sum of the
variance and the bias term squared would be expressed as

AMSEx(hN) = µ⊤p





(
m(p+1)(x)

(p + 1)!
h
(p+1)
N

)2

· I p+1 +
Eψ2(ε1)

NhN f (x)[λ′G(0)]
2
· S2



 µp + oP

(
h

p+1
N

)
,

where the optimal bandwidth hopt is given as the one that minimizes the AMSEx(hN) quantity. This
quantity can be however, equivalently approached via a minimization of the error estimates using a
general loss function ρ(·) that the cross-validation is generally based on (see also Chapter 5).
Anyhow, the value of hopt is not directly expressible in an explicit form for a general loss function
ρ(·) (its derivative ψ(·) respectively) unless, one considers some additional assumptions, which are not
necessarily required otherwise. Iterative procedures need to be considered again.

Finally, we will formulate a result, which will state the distributional property of the M-smoothers
estimate of the unknown regression function m(·) at some given point x ∈ (0, 1) or its derivatives
evaluated at the same point respectively.

THEOREM 2.5 (Asymptotic normality for m̂(ν)(x) under homoscedasticity)

For model
�

�

�

�2.3 , assumptions A1 – A7, and the notation introduced above the M-smoothers estimate
follows asymptotically in law a normal distribution, more precisely it holds that

√
Nh1+2ν

N ·
(

m̂(ν)(x)−m(ν)(x)−Bias
[

m̂(ν)(x)
])

D−→
N → ∞

N

(
0,

ν!2 ·Eψ2(ε1)

[λ′G(0)]
2 f (x)

· e⊤ν S−1
1 S2S

−1
1 eν

)
,

where ν ∈ {0, 1, . . . , p} stands for the order of the derivative of the regression function m(·), or its
estimate m̂(·) respectively, and x ∈ (0, 1) is the point of interest chosen in advance.

Proof. The proof of the theorem will be given in Section 2.2.3.
�

Theorem 2.5 formulates the most important result for the M-smoothers method, which is that the
estimate of the unknown regression function m(·) at some given point x ∈ (0, 1) or its derivatives
evaluated at the same point respectively, have in limit (as N → ∞) a normal distributional property
with a zero mean and a finite variance term. We would like to emphasise here that taking into account
the asymptotic order of the bias term (see Theorem 2.3) and the convergence rate of

√
NhN there is

no need to include the bias term in the normality results for ν = 0 as
√

NhN · hp+1 → 0 in this case.
It is also interesting to realize what is the composition of the variance term in Theorem 2.5. As we have
already mentioned at the beginning of this chapter, the local polynomial M-smoothers were proposed
as a combination of two different approaches, the nonparametric local polynomial regression and the
robust M-estimation methods. It is therefore quite natural to expect that the estimates produced by
local polynomial M-smoothers should inherit analogous statistical properties, which could be seen as
a combination of both, the statistical properties of nonparametric local polynomial estimates and the
robust M-estimates as well.

Indeed, the variance term in Theorem 2.5 can be easily decomposed into two main parts where the

first term would be equal to
Eψ2(ε1)
[λ′G(0)]

2 , which is similar to the variance expression of a simple M-estimate
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as given in Theorem 1.4 (Serfling’s theorem) while the remaining term of the decomposition would be

equal to ν!2

f (x)
· S−1

1 S2S
−1
1 , which comes from the variance term of a nonparametric local polynomial

estimate at some given point x ∈ (0, 1) (see Theorem 1.2 in Section 1.2).

Therefore, there is an obvious analogy between the M-smoothers regression approach and both
methods used for its construction: the local polynomial regression and the robust M-estimation method.

2.2.3 Proofs of Theorems 2.1, 2.2, 2.3, 2.4 and 2.5

In this section we will give complete and detailed proofs of all theorems formulated above and we will
justify all stated properties of the M-smoothers estimates under the homoscedastic regression model
assumptions as given in A1 – A7.

We will firstly discuss a general idea and we will introduce the main concept of the whole proof.
Once we derive a necessary background common for all proofs we will focus on proving the stated
results individually.

Let us start with the definition of the M-smoothers estimate, where the vector of parameter estimates

β̂x =
(

β̂0, . . . , β̂p

)
∈ Rp + 1 is defined as a minimizer of the expression

Argmin
(b0, . . . , bp)⊤ ∈ Rp+1

1√
NhN

N

∑
i=1

ρ

(
Yi −

p

∑
j=0

bj(Xi − x)j

)
· K
(

Xi − x

hN

)
,

�

�

�

�2.6

where we minimize with respect to a vector of parameters (b0, . . . , bp)⊤ ∈ Rp+1 for some point of
interest x ∈ (0, 1), which is given in advance. As we have already mentioned in case of M-estimates
we can similarly consider this minimization to be an empirical version of a true but unknown theoretical
functional, which defines the theoretical version of the minimization problem as

Argmin
(b0, . . . , bp)⊤ ∈ R

p+1

lim
h→0

∫ x+h

x−h

∫

R

ρ

(
y−

p

∑
j=0

bj(u− x)j

)
dF(Y|X=u)(y)dFX(u),

�

�

�

�2.7

which is minimized for the true vector of parameters βx =
(

β0, . . . , βp
)⊤ ∈ Rp+1. Function

F(Y|X=x)(·) stands here for a conditional distribution function of the random variable Y given X = x

and FX(·) is the corresponding marginal distribution function of the random variable X. Given the
random sample {(Xi, Yi); i = 1, . . . , N ∈ N} we can define an empirical version of this functional as�

�

�

�2.6 where the unknown joint distribution function F(X,Y)(u, y) implemented in
�

�

�

�2.7 as a product of

the conditional distribution F(Y|X=x)(y) and the marginal distribution FX(u) is replaced in
�

�

�

�2.6 by its
empirical counterpart instead.

Now, we want to show that the empirical version
�

�

�

�2.6 of the theoretical functional
�

�

�

�2.7 can be

effectively used in order to obtain estimates for the vector of true parameters βx =
(

β0, . . . , βp

)⊤
,

which minimizes
�

�

�

�2.7 and we will show that such vector of parameter estimates is a suitable estimate

for the vector of interest, which is

(
m(x), m′(x), m′′(x)

2! , . . . ,
m(p)(x)

p!

)
∈ Rp+1, as N → ∞.

We will use the definition of model
�

�

�

�2.3 , where Yi = m(Xi) + ε i moreover, using a (p + 1)-times
Lipschitz property of the unknown regression function m(·) (see assumption A3) we can approximate
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the quantity m(Xi) by the corresponding p-order Taylor expansion as

m(Xi) = m(x) + m′(x)(Xi − x) +
m′′(x)

2!
(Xi − x)2 + · · ·+ m(p)(x)

p!
(Xi − x)p + o

(
h

p
N

)
,

�

�

�

�2.8

given the fact that we use the local approach defined by kernel K(·) where we have that |Xi − x| ≤ hN

as all other cases where this is not true are set to zero by the property of the kernel function.

Plugging in the Taylor expansion
�

�

�

�2.8 for m(Xi) we can now replace the quantity m(Xi) in
�

�

�

�2.6

with the corresponding p-order Taylor polynom
�

�

�

�2.8 and we define a new minimization problem as

β̃x = Argmin
(b0, . . . , bp)⊤ ∈ R

p+1

1√
NhN

N

∑
i=1

ρ

(
ε i −

p

∑
j=0

(
bj −

m(j)(x)

j!

)
(Xi − x)j

)
· K
(

Xi − x

hN

)
,

�

�

�

�2.9

where β̃x = (β̃0, . . . , β̃p)⊤ ∈ Rp+1 is a vector of the corresponding parameter estimates.

We need to show now that for N → ∞ the vector of parameter estimates, which solves
�

�

�

�2.9 is
arbitrarily close in some sense to the vector of parameters, which was supposed to solve the original
minimization problem

�

�

�

�2.6 . However, this is quite obvious as the difference between two arguments

of the loss function ρ(·) in
�

�

�

�2.6 and
�

�

�

�2.9 is of the order O(h
p+1
N ) and we have that hN → 0 as

N → ∞ hence, using the Lipschitz property of function ρ(·), which comes from an existence of

the derivative ρ′ = ψ we can consider the minimization
�

�

�

�2.9 instead of the original one as we have
that the parameter estimates under both formulations can be arbitrarily close to each other, as N → ∞.

For sake of simplicity we will define a new vector of parameter estimates β̂
◦
x ∈ Rp+1 as

β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ def.
=

[(
β̃0 −m(x)

)
,
(

β̃1 −m′(x)
)
· hN , . . . ,

(
β̃p −

m(p)(x)

p!

)
· hp

N

]⊤
.

One can easily see that β̂
◦
x is now defined as a solution of an analogous minimization problem given by

β̂
◦
x = Argmin

(b0, . . . , bp)⊤ ∈ Rp+1

1√
NhN

N

∑
i=1

ρ

(
ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
· K
(

Xi − x

hN

)
.

�

�

�

�2.10

Unlike the previous notation where the minimizer of
�

�

�

�2.6 was supposed give us an estimate for

the vector of true parameters βx =
(

β0, . . . , βp
)⊤

=

(
m(x), m′(x), . . . ,

m(p)(x)
p!

)⊤
, using the new

notation with the vector of parameter estimates β̂
◦
x ∈ Rp+1 one will get an estimate for the true vector

of parameters which is β◦x = (0, . . . , 0)⊤ ∈ Rp+1 instead.

Using the assumption A5 we can now apply a partial differential operator to
�

�

�

�2.10 with respect to
arguments bj for j = 0, . . . , p, moreover, the position of the partial differential operator and the sum
operator can be reversed, which gives us the set of equations

1√
NhN

N

∑
i=1

ψ

(
ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
= 0,

�

�

�

�2.11

for l = 0, . . . , p,
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which are solved for the parameter estimates β̂◦0, . . . , β̂◦p. Unfortunately, this solution is expressed in

an implicit form only therefore, in order to investigate statistical properties of β̂◦j , for j = 0, . . . , p one

has to apply some further asymptotic expansions and sophisticated approximations.

The idea is to find a reasonable approximation of the solution of
�

�

�

�2.11 , which would be if effectively
found, asymptotically linear in the unknown vector of parameters β◦x = (β◦0, . . . , β◦p).
Given such asymptotic linear approximation one could then easily obtain a reasonable representation of
the parameter estimates in explicit forms and just a straightforward computation and classical inference
techniques would be required after that to obtain the final result.

We will now consider the minimization problem
�

�

�

�2.10 and the corresponding set of equations
�

�

�

�2.11
and we will proceed in three consecutive steps:

❑ firstly, we will show that the parameter estimates β̂◦0, . . . , β̂◦p need to be all in a small neighbour-

hood of zero in order to satisfy the set of equations
�

�

�

�2.11 ;

❑ next, we will prove that β̂◦j → 0 in probability as N → ∞ for every j = 0, . . . , p, more specifically,

we will show that
√

NhN β̂◦j ≡
√

Nh
1+2j
N

(
β̂ j − β j

)
= OP(1) for any j = 0, . . . , p.

❑ finally, we will prove the asymptotic normality property for the parameter estimates β̂◦j , for all
j = 0, . . . , p namely, we will show that

√
NhN

(
β̂◦j − β◦j

)
≡
√

Nh
1+2j
N

(
β̂ j −

m(j)(x)

j!

)
D−→

N → ∞
N(·, ·),

where N(·, ·) stands for a normal distribution with appropriate mean and variance quantities;

Proof of Theorem 2.1

Firstly, let us prove the first step, which we re-formulate for now as β̂◦j = OP(1), for all j = 0, . . . , p.

Let b = (b0, . . . , bj)
⊤ ∈ Rp+1 be an arbitrary vector. Assuming the minimization problem

�

�

�

�2.10 we
can define the “distance function” as

1

NhN

N

∑
i=1

h(ε i, Xi, b)
def.
=

1

NhN

N

∑
i=1

[
ρ

(
ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
− ρ (ε i)

]
· K
(

Xi − x

hN

)
,

�

�

�

�2.12

where
�

�

�

�2.12 is now minimized for the same vector of parameters as the minimization problem
�

�

�

�2.10 .
Let ι1 ∈ {1, . . . , N} is some index chosen arbitrarily. Then two different options are possible: either

∑
p
j=0 bj

(
Xι1
−x

hN

)j
≥ 0 or ∑

p
j=0 bj

(
Xι1
−x

hN

)j
< 0. Let us assume the first option holds. Using the

absolute continuity property of function ρ(·) we can express h(ε ι1, Xι1 , b) as

[
ρ

(
ε ι1 −

p

∑
j=0

bj

(
Xι1 − x

hN

)j
)
− ρ (ε ι1)

]
· K
(

Xι1 − x

hN

)
=
∫ b⊤Xι1

0
ψ(ε ι1 − t)dt · K

(
Xι1 − x

hN

)
,

where b⊤Xι1 = ∑
p
j=0 bj

(
Xι1
−x

hN

)j
and we will investigate the performance of h(ε ι1 , Xι1 , b) with respect

to the vector of parameters b ∈ Rp+1 using the conditional expectation conditioned on the random
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variable X. Given the fact that Eψ(ε i) = 0 for any i ∈ {1, . . . , N} the following now holds

Eh(ε ι1, Xι1 , b) = E

[∫ b⊤Xι1

0
[ψ(ε ι1 − t)− ψ(ε ι1)] dt · K

(
Xι1 − x

hN

)]
=

= −
∫ b⊤Xι1

0
λG(t)dt · K

(
Xι1 − x

hN

)
≤ 0,

�

�

�

�2.13

where the inequality follows easily from the non-decreasing property of function ψ(·) and the positiveness
property of the kernel function K(·). Assuming now the case where ∑

p
j=0 bj

(
Xι2
−x

hN

)j
< 0 for some

other ι2 ∈ {1, . . . , N} we analogously obtain

Eh(ε ι2, Xι2 , b) = E

[∫ |b⊤Xι2 |
0

[ψ(ε ι2 + t)− ψ(ε ι2)] dt · K
(

Xι2 − x

hN

)]
=

= −
∫ |b⊤Xι2 |

0
λG(−t)dt · K

(
Xι2 − x

hN

)
≥ 0,

�

�

�

�2.14

using again the non-decreasing property of function ψ(·) and the positiveness property of K(·).

Let us now assume that

∣∣∣∣∑
p
j=0 bj

(
Xi−x

hN

)j
∣∣∣∣ ≤ iN , for some iN > 0 to be small enough. Then

using the Taylor expansion and the fact that λG(0) = 0 we easily have for
�

�

�

�2.13 that

0 ≤
∫ |b⊤Xι1

|

0
λG(t)dtK

(
Xι1 − x

hN

)
≤
∫ iN

0
λG(t)dtK

(
Xι1 − x

hN

)
≤ i2

Nλ′G(0)
2

· K
(

Xι1 − x

hN

)
+ o(1),

and analogously, we obtain the same inequalities also for
�

�

�

�2.14 . Therefore, by summing over all indexes

i ∈ {1, . . . , N} we easily obtain that 0 ≤ 1
NhN

∑
N
i=1 Eh(ε i, Xi, b) ≤ K0 · λ′G(0) ·i2

N , for some K0 > 0.

On the other hand, using the same arguments for

∣∣∣∣∑
p
j=0 bj

(
Xi−x

hN

)j
∣∣∣∣ > iN we similarly have that

0 ≤ K1 · λ′G(0) ·i2
N < 1

NhN
∑

N
i=1 Eh(ε i, Xi, b) for some other K1 > 0.

The rest already follows from assumption A5 for iN → 0 as N → ∞ as we have that λ′G(0) 6= 0

and |λ′G(0)| < ∞ therefore, we need that |β̂◦j | = OP(iN) for iN → 0 as N → ∞, which we can

equivalently rewrite as |β̂◦j | = oP(1) for any j = 0, . . . , p.

In the second step, we need to show that
√

NhN β̂◦j = OP(1), for all j = 0, . . . , p, which can be

thought of as an equivalent for
√

N-consistency property common for classical parameter estimation
techniques. We will need an auxiliary lemma to finish the proof of the consistency result.

Lemma 1
For model

�

�

�

�2.3 and assumptions A1 – A7 the following bound in probability is achieved

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
−E

[
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ =

= OP

(
(NhN)

− p+1
p+3 · δ

2(p+1)
p+3

N

)
,
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for any l ∈ {0, . . . , p} and T > 0. Moreover, the expectation operator E[·] stands here for a conditional
expectation conditioned on values of X and 1/

√
NhN ≤ δN ≤ 1 is chosen arbitrarily.

Proof of Lemma 1

We will use a similar idea of the proof as was used in Hušková and Marušiaková (2009) however, we
will have to extend the proof into multiple dimensions. Let us define a regular (p + 1)-dimensional grid
of points in a (p + 1)-dimensional cube (−T, T)× · · · × (−T, T) as −T = ζ0j < ζ1j < · · · < ζDN j <
ζ(DN+1)j = T, for some DN ∈ N and j = 0, . . . , p, such that ζmj − ζ(m−1)j = νN for m = 1, . . . , DN

and T− ζDN j < νN for some νN → 0, which will be specified later. Let us remind that the expectation
operator stands for a conditional expectation conditioned of values of X. Using now the non-decreasing
property of ψ(·) we have

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≤

≤ max
1≤m≤DN
j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣+
�

�

�

�2.15

+ max
m=1,...,DN

ζ̃m∈V
p+1
m

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
E

[
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]

−E

[
ψ

(
ε i −

p

∑
j=0

ζm̃j j
δN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ,
�

�

�

�2.16

for any l = 0, . . . p, where ζ̃m = (ζm̃00, . . . , ζm̃p p)
⊤ ∈ V p+1

m , where V p+1
m is a set of vectors of indexes

such that m̃j ∈ {m, m− 1} for j = 0, . . . , p, according to the following rule: let V′(2, p + 1) be a set
of all variations with repetitions of a class (p + 1) with two elements {0, 1}. For each variation we
have a sequence of the length p + 1, which consists of zeros and ones only. Now, if there is a zero in
this sequence on the jth place for some j ∈ {0, . . . , p} we put m̃j = m and ζm̃j j

= ζmj and otherwise,

we put m̃j = m− 1 and ζm̃j j
= ζ(m−1)j.

Let us start with the second term
�

�

�

�2.16 , which is an easier one to bounds in probability. Using the
definition and the Lipschitz property of function λG(·) we have that

∣∣∣∣∣λG

(
p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− λG

(
p

∑
j=0

ζm̃j j
δN

(
Xi − x

hN

)j
)∣∣∣∣∣ ≤

≤ K ·
p

∑
j=0

(ζmj − ζm̃j j
) · δN ·

∣∣∣∣∣

(
Xi − x

hN

)j
∣∣∣∣∣ ≤

≤ K · (p + 1) · νNδN ,
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uniformly for all m ∈ {1, . . . , DN} and any ζ̃m = (ζm̃00, . . . , ζm̃p p)
⊤ ∈ V

p+1
m , where K > 0 and∣∣∣

(
Xi−x

hN

)∣∣∣ ≤ 1 given the kernel approach defined by K(·). Therefore, we have that the second term
�

�

�

�2.16 is of the asymptotic order OP(
√

NhN · νNδN), as N → ∞.

Let us now focus on term
�

�

�

�2.15 and we will investigate under what conditions for νN it can be
bounded in probability. Using Chebyshev’s inequality for any ǫ > 0 one easily gets that

P


 max

1≤m≤DN
j=0,...,p

1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤

≤
DN

∑
m=1
j=0

DN

∑
m=1
j=1

· · ·
DN

∑
m=1
j=p

P

[
1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤

≤
DN

∑
m=1
j=0

DN

∑
m=1
j=1

· · ·
DN

∑
m=1
j=p

(ǫNhNδNνN)
−2 ·E

[
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)]2

≤
�

�

�

�2.17

≤ (ǫNhNδNνN)
−2 · NhN · ν−(p+1)

N · K∗ = ǫ−2 · K∗ · (NhN)
−1δ−2

N ν
−(p+3)
N ,

�

�

�

�2.18

for someK∗ > 0, where we have used the fact that DN = O(ν−1
N ) as N → ∞ and assumption A5, which

gives us that the second moment in
�

�

�

�2.17 is finite. Therefore, we need that νN = o

(
(NhNδ2

N)
− 1

p+3

)
,

which gives us that
�

�

�

�2.16 is of the asymptotic order OP

(
(NhN)

− p+1
p+3 · δ

2(p+1)
p+3

N

)
therefore, we need

(
√

NhN)
−1 ≤ δN ≤ 1 in order to have terms

�

�

�

�2.15 and
�

�

�

�2.16 both bounded in probability. This now
completes the proof of Lemma 1. Taking the least favourable choice for δN we get a special case of
the assertion of Lemma 1 where we have that

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ = OP (1) ,

for δN = 1√
NhN

. �
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To finish the consistency proof we will use a decomposition with respect to two disjoint events and
consequently we will apply the special case of Lemma 1. This gives us

P

[
1√

NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)

+λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ > ǫ

]
≤

≤ P

[
1√

NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
+ λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)}
×

�

�

�

�2.19

×
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ > ǫ ,
∣∣∣β̂◦j
∣∣∣ ≤ T, ∀j=0,...,p

]
+

+ P

[
1√

NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
+ λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)}
×

�

�

�

�2.20

×
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ > ǫ , ∃j∈{0,...,p}
∣∣∣β̂◦j
∣∣∣ > T

]
,

which is satisfied for all T > 0 and ǫ > 0 small enough. The first term
�

�

�

�2.19 is bounded in probability by

Lemma 1 while the second term
�

�

�

�2.20 converges to zero by the fact that P
[
∃j∈{0,...,p}

∣∣∣β̂◦j
∣∣∣ > T

]
→ 0,

as we already know that β̂◦j = oP(1), for all j = 0, . . . , p. Therefore, we can focus on
�

�

�

�2.19 only, which

gives us

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
+

+λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ = OP (1) .

We can use now the Taylor expansion of the function λG(·) in zero as we already know that

∑
p
j=0 β̂◦j

(
Xi−x

hN

)j
= oP(1) given the fact that

∣∣∣Xi−x
hN

∣∣∣ ≤ 1, as other cases where
∣∣∣Xi−x

hN

∣∣∣ > 1 are not

considered by the property of the kernel function K(·). Hence, we obtain

λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)

= λG(0) + λ′G(t̃) ·
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

,

where λG(0) = 0 and t̃ is some value between zero and ˜̃t = ∑
p
j=0 β̂◦j

(
Xi−x

hN

)j
. Therefore, we have

∣∣∣∣∣
1√

NhN

N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hn

)j
)
+

+
√

NhNλ′G(t̃)
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ = OP(1),
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which is satisfied for all l ∈ {0, . . . , p}. The quantity
(

Xi−x
hN

)l
· K
(

Xi−x
hN

)
is bounded in probability

uniformly for all l = 0, . . . , p and i = 1, . . . , N therefore, we just have to realize that it also holds that

1√
NhN

N

∑
i=1

ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
= 0, for l = 0, . . . , p,

which follows from the definition of β̂◦j in
�

�

�

�2.11 for all j = 0, . . . , p.

This gives us that also
√

NhNλ′G(t̃) ∑
p
j=0 β̂◦j = OP(1). Using now assumption A5 we have that

|λ′G(t̃)| < K̃ for some K̃ > 0, so it follows easily that β̂◦j = OP(1/
√

NhN), for any j = 0, . . . , p.

Finally, from the definition of parameters β◦j , for j = 0, . . . , p we also obtain the consistency result√
Nh

1+2j
N β̂ j = OP(1), for j = 0, . . . , p, which finishes the proof of Theorem 2.1.

�

Beside the consistency result we are also interested in additional asymptotic properties of the given
estimate. However, as the parameter estimates β̂0, . . . , β̂p are not defined in any explicit form, classical
statistical techniques used for an inference will fail in this case therefore, an alternative approach needs
to be found. We will now focus on the asymptotic bias and variance terms.

Proof of Theorem 2.2

Let us start with an auxiliary lemma, which is important for the proof to proceed.

Lemma 2
For model

�

�

�

�2.3 and assumptions A1 – A7 the following convergence in probability is achieved

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (ε i) +

−Eψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣
P−→

N → ∞
0,

uniformly for all l = 0, . . . , p and any T > 0, where δN = (NhN)
−1/2.

Proof of Lemma 2

The idea of the proof is the same as in the case of Lemma 1.
Again, we define a regular (p+ 1)-dimensional grid of points in a (p + 1)-dimensional cube (−T, T)×
· · · × (−T, T) such that −T = ζ0j < ζ1j < · · · < ζDN j < ζ(DN+1)j = T, for j = 0, . . . , p, where
ζmj − ζ(m−1)j = νN for m = 1, . . . , DN and T − ζDN j < νN, for some νN → 0, as N → ∞.

For sake of simplicity let us use the notation

Ξ
ψ
N(Xi, x, t)

def.
=

[
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (ε i)

]
,

�

�

�

�2.21
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where t = (t0, . . . , tp)⊤ ∈ R
p+1 is an arbitrary vector. Using now the non-decreasing property of

function ψ(·) we can use a similar decomposition as we did for the proof of Lemma 1 hence, we obtain

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (ε i) +

−Eψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≤

≤ max
1≤m≤DN
j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
Ξ

ψ
N(Xi, x, ζm)−E

[
Ξ

ψ
N(Xi, x, ζm)

]}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣
�

�

�

�2.22

+ max
m=1,...,DN

ζ̃m∈V
p+1
m

1√
NhN

∣∣∣∣∣
N

∑
i=1

E

[
Ξ

ψ
N(Xi, x, ζm)− Ξ

ψ
N(Xi, x, ζ̃m)

]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ,
�

�

�

�2.23

for all l = 0, . . . p, where again we have ζm = (ζm0, . . . , ζmp)⊤ and ζ̃m = (ζm̃00, . . . , ζm̃p p)
⊤ ∈ V p+1

m ,

for the set of indexes V p+1
m to be constructed in the same way as in the proof of Lemma 1.

The second term
�

�

�

�2.23 can be shown to converge to zero in probability in the very same way as
the second term in the proof of Lemma 1 (see p. 24), as we have that

E

[
Ξ

ψ
N(Xi, x, t)

]
= E

[
ψ

(
ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ(ε i)

]
= −λG

(
p

∑
j=0

tjδN

(
Xi − x

hN

)j
)

,

for any t = (t0, . . . , tp)⊤ ∈ Rp+1, given the fact that Eψ(ε i) = 0 from the symmetric assumptions A2
and A4. Therefore, we can point our attention to prove the corresponding convergence in probability
for

�

�

�

�2.22 only.

Using again Chebyshev’s inequality we have that

P


 max

1≤m≤DN
j=0,...,p

1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
Ξ

ψ
N(Xi, x, ζm)+

−E

[
Ξ

ψ
N(Xi, x, ζm)

]}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤

≤
DN

∑
m=1
j=0

DN

∑
m=1
j=1

· · ·
DN

∑
m=1
j=p

P

[
1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
Ξ

ψ
N(Xi, x, ζm)+

−E

[
Ξ

ψ
N(Xi, x, ζm)

]}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤
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≤
DN

∑
m=1
j=0

DN

∑
m=1
j=1

· · ·
DN

∑
m=1
j=p

(ǫNhNδNνN)
−2×

×Var

[
N

∑
i=1

{
ψ

(
ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(ε i)

}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)]
≤

≤ (ǫNhNδNνN)
−2 · ν−(p+1)

N · NhN ·Var

[
ψ

(
ε1 −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(ε1)

]
�

�

�

�2.24

for ζm = (ζm0, . . . , ζmp)⊤ and any ǫ > 0, where we have again used the fact that DN = o(ν−1
N ) and∣∣∣∣

(
Xi−x

hN

)l
K
(

Xi−x
hN

)∣∣∣∣ = OP(1) uniformly for all l = 0, . . . , p.

Using now the assumption A5 we easily obtain for the variance term in
�

�

�

�2.24 that

Var

[
ψ

(
ε1 −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(ε1)

]
≤

≤ E

[
ψ

(
ε1 −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(ε1)

]2

= O

(
1√

NhN

)
,

�

�

�

�2.25

therefore, we have that
�

�

�

�2.24 is of the asymptotic order OP

(
(NhNδNνN)

−2 · ν−(p+3)
N ·

√
NhN

)
, which

we need to tend to zero as N → ∞. Just a straightforward calculation gives us that we necessarily

need νN = o
(
(NhNδ2

N)
−1/(p+3) · (

√
NhN)

−1/(p+3)
)
, which will imply that

�

�

�

�2.23 is of the order

OP

(
(
√

NhNδN)
(p+1)/(p+3) · (

√
NhN)

−1/(p+3)
)
, which we need to tend to zero as well in order to

have the assertion of Lemma 2 to be proved.

However, one can easily see that the choice δN = 1/
√

NhN satisfies this requirement and both

terms
�

�

�

�2.22 and
�

�

�

�2.23 now converge to zero in probability as N → ∞, which was supposed to be
proved. �

Using now the assertion of Lemma 2 we can proceed in a very analogous way as in the case of
consistency proof (see p. 25) and we obtain

1√
NhN

∣∣∣∣∣
N

∑
i=1

[
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
− ψ (ε i) +

+λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣
P−→

N → ∞
0,

for all l = 0, . . . , p and by applying the Taylor expansion of λG(·) in zero we get

λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)

= λG(0) + λ′G(0) ·
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

+ oP

(
1√

NhN

)
,

where again λG(0) = 0 and also given the fact that
∣∣∣∣∣

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
∣∣∣∣∣ ≤

p

∑
j=0

∣∣∣β̂◦j
∣∣∣ ·
∣∣∣∣∣

(
Xi − x

hN

)j
∣∣∣∣∣ ≤

p

∑
j=0

∣∣∣β̂◦j
∣∣∣ = OP

(
1√

NhN

)
.
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Hence, we obtain

1√
NhN

N

∑
i=1

[
ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
− ψ (ε i) + λ′G(0) ·

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

+

+oP

(
1√

NhN

)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
P−→

N → ∞
0,

which can be easily rewritten in an asymptotically equivalent way as

1√
NhN

N

∑
i=1

ψ(ε i) ·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
=

=
λ′G(0)√

NhN
·

N

∑
i=1

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
+ oP

(
1√

NhN

)
,

�

�

�

�2.26

for any l = 0, . . . , p, given the fact that

1√
NhN

N

∑
i=1

ψ

(
ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
= 0.

For simplicity we can rewrite
�

�

�

�2.26 using the matrix notation to obtain

1√
NhN

· X⊤NWNψ(ε) =
λ′G(0)√

NhN
· X⊤NWNXN β̂

◦
x + oP

(
1/
√

NhN

)
,

�

�

�

�2.27

where β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ is the vector of the parameter estimates, matrices XN and WN are those

defined at the beginning of this section and ψ(ε) = (ψ(ε1), . . . , ψ(εN))
⊤ ∈ RN . Once the matrix

X⊤NWNXN is regular19 we can use an inverse matrix to get the expression

β̂
◦
x =

1

λ′G(0)
·
(
X⊤NWNXN

)−1
· X⊤NWNψ(ε) + oP

(
1/
√

NhN

)
,

�

�

�

�2.28

which is in literature referred to as an asymptotic representation of the vector of parameter estimates

β̂
◦
x or Bahadur representation respectively, introduced in Bahadur (1966). For some more discussion on

Bahadur representations we refer to Bose (1998) or He and Shao (1996).

To finish the proof we will firstly focus on expression
�

�

�

�2.5 , which is an easier one to prove. Taking an

advantage of the given notation for β̂◦j for j = 0, . . . , p we can express only an asymptotic conditional

variance for β̂◦j and the conditional variance for β̂ j for any j = 0, . . . , p will follow immediately. Indeed,

we have that β̂◦j − β̂ jh
j
N = OP(h

j
N). From

�

�

�

�2.28 , just a straightforward calculation gives us

As.Var
[

β̂◦ | X
]
=

E[ψ2(ε1)]

[λ′G(0)]
2
· (X⊤NWNXN)

−1X⊤NW2
NXN · (X⊤NWNXN)

−1 + oP

(
1

NhN

)
,

�

�

�

�2.29

given the fact that random errors ε i, for i = 1, . . . , N are independent and identically distributed and
moreover, from the symmetric property of the distribution function G(·) and the loss function ρ(·) it
holds that Eψ(ε) =

∫
R

ψ(ε1)dG(ε1) = 0.

19The regularity property of matrix X⊤NWNXN is mostly really achieved under the assumptions A1–A7.
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Next, we will prove
�

�

�

�2.4 . However, one has to be aware of the fact here that the classical bias
definition in sense of an expectation of the difference between the estimate and the true value of the
parameter is not helpful here as a conditional expectation of the asymptotic representation

�

�

�

�2.28 is
equal to zero given the fact that Eψ(ε1) = 0. In order to express an imprecision in parameter estimates

we will rather approach the bias term only in sense of a difference β̂
◦
x − β◦x. This difference is however,

not obtained in an explicit form either and a similar asymptotic representation needs to be found.

Rather than working with the vector of parameter estimates itself we will again use function ψ(·)
and the conditional expectation and we will compare the original approach assumed by

�

�

�

�2.2 with the

one we have actually worked with, given by
�

�

�

�2.11 . Hence, we have two sets of equations

N

∑
i=1

ψ

(
Yi −

p

∑
j=0

bj(Xi − x)j

)
· (Xi − x)l · K

(
Xi − x

hN

)
= 0,

�

�

�

�2.30

and
N

∑
i=1

ψ

(
ε i −

p

∑
j=0

(
bj −

m(j)(x)

j!

)
(Xi − x)j

)
· (Xi − x)l · K

(
Xi − x

hN

)
= 0,

�

�

�

�2.31

both for l = 0, . . . , p where the given vector of estimates β̂x is supposed to solve the second one.

Considering now
�

�

�

�2.30 , the model definition
�

�

�

�2.3 and the (p + 1)-order Lipschitz property of
function m(·) we easily obtain a set of equations

N

∑
i=1

ψ

(
ε i −

p

∑
j=0

b◦j

(
Xi − x

hN

)j

+
m(p+1)(x)

(p + 1)!
(Xi − x)p+1 + o(hp+1)

)
(Xi − x)l K

(
Xi − x

hN

)
= 0,

for l = 0, . . . , p, where b◦j =

(
bj − m(j)(x)

j!

)
h

j
N . Term

m(p+1)(x)
(p+1)!

(Xi − x)p+1 can be thought of as a

leading term of the bias imprecision involved by re-defining the original problem.

Using now the conditional expectation conditioned on values of the random variable X, Lemma 2
and the matrix notation already defined we easily obtain two asymptotic representations

1√
NhN

· X⊤NWNψ(ε) =
λ′G(0)√

NhN
· X⊤NWNXN β̂

◦
x + oP

(
1/
√

NhN

)
,

1√
NhN

· X⊤NWNψ(ε) =
λ′G(0)√

NhN
· X⊤NWN

(
XN β̃

◦
x +

m(p+1)(x)

(p + 1)!
(X− x)

)
+ oP

(
1/
√

NhN

)
,

for X = (X1, . . . , XN)
⊤ where β̂

◦
x solves

�

�

�

�2.31 and β̃
◦
x would be a solution to the original problem

�

�

�

�2.30 . Comparing these two quantities one obtains the asymptotic conditional bias expression in sense
of the difference as

β̂
◦
x − β◦x =

(
X⊤NWNXN

)−1
· X⊤NWN ·

(
m(p+1)(x)

(p + 1)!
(X− x)

)
+ oP

(
h

p+1
N

)
.

�

�

�

�2.32

It follows immediately from our notation that the difference β̂
◦
x − β◦x is equivalent to HN ·

(
β̂x − βx

)
,

which is referred to as a conditional bias term in
�

�

�

�2.4 . This completes the proof of Theorem 2.2.
�
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Proof of Theorem 2.3

In order to proof Theorem 2.3 we will start with equation
�

�

�

�2.32 and we will derive an asymptotic
expression for the bias term where again we will refer to a difference between the parameter estimate
and the true value rather than referring to a classical bias definition in sense of an expectation20.

Let sk,N = ∑
N
i=1 K

(
Xi−x

hN

)
·
(

Xi−x
hN

)k
. Then we have SN = (X⊤NWNXN), where SN = (Sij)

p
i,j=0,

and Sij = si+j,N. Moreover, let function F(·) be the marginal distribution function of the random
variables X1, . . . , XN , which corresponds to the density function f (·) from assumption A1. Then it is
easy to see that the following holds:

sk,N = Esk,N + OP

(√
Var(sk,N)

)
See Fan and Gijbels (1996)

= N ·
∫ x+hN

x−hN

K

(
u− x

hN

)
·
(

u− x

hN

)k

dF(u) +OP

(√
Var(sk,N)

)

= NhN ·
∫ 1

−1
K(y)yk f (x + hNy)dy + OP

(√
NhN

)

= NhN ·
[∫ 1

−1
K(y)yk( f (x) + o(1))dy + OP

(
1/
√

NhN

)]

= NhN f (x) ·
∫ 1

−1
K(y)ykdy + oP(NhN). for k = 0, 1, . . . , 2p.

�

�

�

�2.33

In a quite analogous way let s♮k,N = ∑
N
i=1 K

(
Xi−x

hN

)
·
(

Xi−x
hN

)k
(

m(p+1)(x)
(p+1)!

(Xi − x)p+1

)
. Then it is

easy to see that we have s♮N = X⊤NWN ·
(

m(p+1)(x)
(p+1)!

(X− x)p+1

)
, for s♮N = (s♮0,N, . . . , s♮p,N)

⊤ and

s
♮
k,N = Es

♮
k,N + OP

(√
Var(s♮k,N)

)
See Fan and Gijbels (1996)

= N ·
∫ x+hN

x−hN

K

(
u− x

hN

)
·
(

u− x

hN

)k

·
(

m(p+1)(x)

(p + 1)!
(u− x)p+1

)
dF(u) + OP

(√
Var(s♮k,N)

)

= NhN ·
∫ 1

−1
K(y)yk f (x + hNy) ·

(
m(p+1)(x)

(p + 1)!
h

p+1
N yp+1

)
dy + OP

(√
Var(s♮k,N)

)

= NhN ·
∫ 1

−1
K(y)yp+1+k f (x + hNy) ·

(
m(p+1)(x)

(p + 1)!
h

p+1
N

)
dy + OP

(√
Nh

2p+3
N

)
.

Finally, once we realize that f (x + hNy) = f (x) + o(1) uniformly for x ∈ (0, 1) we will get expression

s♮k,N = NhN f (x) ·
(

m(p+1)(x)

(p + 1)!
h

p+1
N

)
·
∫ 1

−1
K(y)yp+1+kdy + oP

(
Nh

p+1
N

)
,

�

�

�

�2.34

20The reasoning behind the alternative bias definition remains the same as before as the expectation of the asymptotic
representation used to approximate the vector of parameter estimates is zero by the fact that Eψ(ε1) = 0.

DEPARTMENT OF PROBABILITY AND MATHEMATICAL STATISTICS, FACULTY OF MATHEMATICS AND PHYSICS 31



Local Polynomial M-smoothers

for k = 0, 1, . . . , p. Now, one needs to put together expressions
�

�

�

�2.33 and
�

�

�

�2.34 , which gives us an
asymptotic expression

β̂◦j − β◦j =

(
m(p+1)(x)

(p + 1)!
h

p+1
N

)
· e⊤ν+1 · S−1

1 · µ + oP

(
h

p+1
N

)
,

�

�

�

�2.35

for j = 0, . . . , p where µ = (
∫

up+1K(u)du,
∫

up+2K(u)du, . . . ,
∫

u2p+2K(u)du)⊤. Together with

the definition of the vector of parameters estimates β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ ∈ Rp+1 we will get the bias

expression as stated in Theorem
�

�

�

�2.3 .
�

Proof of Theorem 2.4

Using a sequence of similar steps we can also prove the assertion of Theorem 2.4. We will start with
equation

�

�

�

�2.29 that is

As.Var
[

β̂
◦
x

∣∣∣X
]
=

Eψ2(ǫ)

[λ′G(0)]
2
·
(
X⊤NWNXN

)−1
· X⊤NW2

NXN ·
(
X⊤NWNXN

)−1
+ oP

(
1

NhN

)
,

and we will derive the asymptotic variance term for β̂
◦
x. From there on just a straightforward reformu-

lation is required to show that the expression stated in Theorem 2.4 holds true as well.

From the proof of Theorem 2.3 we already have the asymptotic expression for SN = X⊤NWNXN ,
where we have showed an asymptotic relationship between SN and S1 for N → ∞. The only thing that
is still left to derive is an asymptotic expression for the term S̃N = (X⊤NW2

NXN). We will show there

is a similar asymptotic relationship between matrices S̃N and S2, for N → ∞ as there is in the case of
matrices SN and S1.

In an analogous way let s̃k,N = ∑
N
i=1 K2(Xi−x

hN
) ·
(

Xi−x
hN

)k
. Then it is quite obvious that the relation

S̃N = (X⊤NW2
NXN) holds for S̃N = (S̃ij)

p
i,j=0, where S̃ij = s̃i+j,N.

Hence, a just straightforward computation gives us

s̃k,N = Es̃k,N + OP

(√
Var(s̃k,N)

)
See Fan and Gijbels (1996)

= N ·
∫ x+hN

x−hN

K2

(
u− x

hN

)
·
(

u− x

hN

)k

dF(u) +OP

(√
Var(s̃k,N)

)

= NhN ·
∫ 1

−1
K2(y)yk f (x + hNy)dy +OP

(√
Var(s̃k,N)

)

= NhN ·
∫ 1

−1
K2(y)yk f (x + hNy)dy +OP

(√
NhN

)
,

= NhN ·
∫ 1

−1
K2(y)yk( f (x) + o(1))dy + OP

(√
NhN

)
,

= NhN f (x) ·
∫ 1

−1
K2(y)ykdy + oP (NhN) . for k = 0, 1, . . . , 2p.

�

�

�

�2.36

Now we need to get together
�

�

�

�2.33 ,
�

�

�

�2.36 and
�

�

�

�2.29 , which gives us the asymptotic variance expression

As.Var
[

β̂
◦
x

]
=

Eψ2(ε1)

[λ′G(0)]
2 f (x)NhN

· S−1
1 S2S

−1
1 + oP

(
1

NhN

)
.

�

�

�

�2.37

32 FLEXIBILITY, ROBUSTNESS AND DISCONTINUITY IN NONPARAMETRIC REGRESSION APPROACHES



2.2. HOMOSCEDASTIC MODELS

It is already easy to see now, that once we use the given notation for the vector of parame-

ters estimates β̂
◦
x, where β̂

◦
x =

(
(β̂◦0 −m(x)), (β̂◦1 −m′(x))hN, . . . ,

(
β̂◦p − m(p)(x)

p!

)
h

p
N

)⊤
, vector

eν = (0, . . . , 0︸ ︷︷ ︸
ν−times

, 1, 0, . . . , 0)⊤ ∈ Rp+1 and the diagonal matrix HN = diag{1, h−1
N , . . . , h

−p
N }, then the

asymptotic variance expression as stated in Theorem 2.4 follows immediately.
This completes the proof of Theorem 2.4.

�

Proof of Theorem 2.5

Finally, to show the asymptotic normality result from Theorem 2.5 we will use expression
�

�

�

�2.27 and we
will firstly focus on the left-hand side of this expression. Using the mutual independence assumption A2

we have that quantities ψ(ε i) ·
(

Xi−x
hN

)
K
(

Xi−x
hN

)
for i = 1, . . . , N satisfy all necessary assumptions21

for the Central Limit Theorem (CLT) for triangular arrays to hold therefore, we easily have that

1√
NhN

N

∑
i=1

ψ(ε i) ·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
D−→

N → ∞
N

(
0, σ2(ψ, l)

)
,

�

�

�

�2.38

for any l = 0, . . . , p, where σ2(ψ, l) is a corresponding variance, which depends on the choice of loss
function ρ(·) and l ∈ {0, . . . , p} and x ∈ (0, 1). From the regularity property of matrix X⊤NWNXN

and a common property of the normal distribution we obtain that the first term on the right-hand
side of

�

�

�

�2.28 converges in distribution to the normal law with the corresponding mean and variance
parameters as well. Finally, we can now apply Slutsky’s theorem as we know that the remaining term
on the right-hand side of

�

�

�

�2.28 converges to zero in probability therefore, we have that the parameter

estimates β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ converges element-wise to a normal distribution with a zero mean and

the variance parameter given by
�

�

�

�2.37 .

Moreover, the bias term in sense of a difference is stated in
�

�

�

�2.37 .

Now, we just need to use the definition of the vector of parameters β◦x = (β◦0, . . . , β◦p)
⊤) or the

parameter estimates β̂
◦
x respectively, and the result from Theorem 2.5 follows immediately.

�

We have now proved all results for the homoscedastic model scenario and we have shown that the
M-smoothers estimates, which have a flavour of being robust with respect to outlying observations
and heavy-tailed distributions of random errors are consistent and they follow in asymptotic a normal
distributional law with a zero mean and a finite variance term.
This will become an important property in Chapter 3 where we will discuss regression models with
discontinuity points. Given the knowledge that the M-smoothers estimates are asymptotically normal
we can easily construct confidence intervals or critical regions for statistical tests in order to decide
about a hypothesis testing problem related to a question if there is a jump in the unknown regression
function at some given pre-specified point (or some derivative respectively) or the function is continuous
at this point (the derivative is continuous respectively).
However, before we go to regression models with change-points let us firstly discuss some popular
generalization of the homoscedastic model scenario. We will prove similar statistical properties for the
heteroscedastic model and a model with dependent random errors as well.

21These random quantities are assumed to be independent and identically distributed with a zero mean parameter and
a finite variance term.
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2.3 Heteroscedastic models

The homoscedastic model scenario discussed in the previous section can be considered to be the basic
model for nonparametric higher order regression modelling with robust flavour and most of all further
generalizations introduced in years were mostly based on this specific model assumption indeed.

There are of course many different ways, which can be taken in order to propose more general
model structures: one can try to improve the flexibility with respect to the shape of the unknown
regression function or the model assumptions or with respect to the random sample requirements as
well. We will focus on two popular generalizations in the next two sections as we will firstly introduce
a heteroscedastic model and a model with dependent random errors after that.

Unlike the homoscedastic model scenario considered in Section 2.2 where we were concerned with
the unknown regression function m(·) only we will now introduce also a scale function σ(·), which will
be together with function m(·) in the center of our interest. By adopting a heteroscedastic variance
principle one brings more flexibility into the modelling as the local variability of random errors can freely
change over the domain of interest. Moreover, this heteroscedasticity is elegantly approached and no
extra additional requirements are necessary22 while we again obtain a set of fully consistent parameters
estimates with a proper statistical inference.

In general, we assume the model

Yi = m(Xi) + σ(Xi) · ε i, ε i ∼ G, i.i.d., i = 1, . . . , N,
�

�

�

�2.39

where G stands again for a continuous and symmetric distribution function but moreover, we also
assume that G(1) − G(−1) = 1

2 , which is to define a unit scale of random errors, rather than
specifying a unit variance as we want to stay free of any finite moments assumptions. Unlike the
homoscedastic case this is now necessary to well-define the whole model. The variability of the model
is now fully described by the scale function σ(·), which is now to be estimated as well. One can easily
see, that once we define the scale function σ(·) to be equal to a constant over the whole domain of
interest we get back to the homoscedastic model scenario, which we have discussed in the previous
section.

Considering
�

�

�

�2.39 we are again interested in estimation of the unknown regression function m(·)
and the scale function σ(·) while the estimates are defined at some given pre-specified point x ∈ (0, 1)
from the domain of interest or over the whole interval (0, 1) respectively.

One can apply at least two different approaches here. Indeed, we can define a vector of parameter
estimates in sense of the minimization problem

�

�

�

�2.1 as

β̂x = Argmin
(b0, . . . , bp)⊤ ∈ Rp+1

N

∑
i=1

ρ

(
Yi −

p

∑
j=0

bj(Xi − x)j

)
· K
(

Xi − x

hN

)
,

�

�

�

�2.40

where we get the parameter estimates for the vector of true parameters βx = (β0, . . . , βp)⊤ only and
the unknown scale σ(x) is still left to be estimated using some alternative approaches.

22One of course has to add some additional assumptions especially with respect to the unknown scale function σ(·)
however, by saying that “no extra additional requirements are necessary” we mean that the price for additional assump-
tions we have to incorporate into the model is balanced with respect to an additional flexibility we yield.
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On the other hand, we can also implement function σ(·) directly into the minimization problem and
to estimate the vector of true parameters βx ∈ Rp+1 while taking into account the scale factor23 at
the point x ∈ (0, 1). Using this type of estimation we obtain a minimization problem defined by

β̂
(s)

x = Argmin
b ∈ R

p+1

N

∑
i=1

ρ

(
Yi −∑

p
j=0 bj(Xi − x)j

σ̂N(Xi)

)
· K
(

Xi − x

hN

)
,

�

�

�

�2.41

where b = (b0, . . . , bp)⊤ and σ̂N(·) is an appropriate scale function estimate given in advance, such

that supx∈(0,1) |σ̂N(x)− σ(x)| = OP(1/
√

NhN) for N → ∞.

Such M-smoothers are called studentized M-smoothers (see Jurečková (2001) for some discussion
on studentized M-smoothers however, for a parametric regression only) as they are capable to provide
estimates for the location parameter while implicitly assume the scale. This approach however, requires
slightly more technical proofs and additional assumptions therefore, we will rather focus on the first
option where we firstly estimate the vector of parameter estimates βx only and later on we will construct
an estimate for the scale function using some additional estimation techniques. This approach is, in
our opinion, more straightforward and it is an easier one to be proved.

Before we discuss in detail the main statistical properties and inference for the heteroscedastic model�

�

�

�2.39 let us briefly mention all additional assumptions we need for the results to hold. We will again
consider assumptions A1 – A7 from Section 2.2.1, while we introduce the following modifications:

A1∗ The marginal density function f (·) of the i.i.d. random variables Xi, for i = 1, . . . , N is absolutely
continuous, positive and bounded on interval [0, 1], which is the support of X.
Moreover, we assume that the scale function σ(·) is Lipschitz and positive on interval [0, 1];

A2∗ Random errors ε1, . . . , εN, are assumed to be i.i.d., mutually independent of Xi, for i = 1, . . . , N,
with a symmetric distribution given by a continuous distribution function G(·), such that it holds
that G(1)− G(−1) = 1

2 ;

A5∗ We assume that function λG(t, v) = −
∫

ψ(ve − t)dG(e) is Hölder of the order α > ι−1
2ι in

argument v > 0 where ι is defined in assumption A7, the partial derivative λ′G(t, v) = ∂
∂t λG(t, v)

exists and it is continuous in t and
∫

R
[ψ(ve− ǫN)− ψ(e)]2 dG(e) < K · |ǫN | both for some

neighbourhoods of t = 0 and v = σ(x), for the point x ∈ (0, 1), any sequence ǫN → 0 and some

K > 0. Moreover,
∫

ψ2(σ(x)e)dG(e) < ∞ and λ′G(0, σ(x)) = ∂
∂t λG(t, σ(x))|t=0 6= 0, for the

given point x ∈ (0, 1) ;

The modified assumptions are proposed in order to properly incorporate the scale function σ(·)
into the model. In assumption A1∗ we have the same conditions posed on the density function f (·)
however, additional conditions are required to define all necessary properties for the scale function σ(·).
A positivity assumption is quite obvious while the Lipschitz property is natural as well24.

Assumption A2 is enhanced for a requirement on a unit scale of random errors, which is necessary
because the scale is now taken over by the scale function σ(·) otherwise, the estimation problem would

23It is important to realize here that once we are about to estimate the unknown regression function m(·) or the scale
function σ(·) at some given point x ∈ (0, 1) only then both functions defined over interval (0, 1) reduce to single values
only therefore m(x) and σ(x) are treated by the minimization problem as single parameter values rather than real-valued
functions on interval (0, 1).

24One can also propose a model with a heteroscedastic variance structure while assuming some sudden changes - jumps
in the scale function σ(·). However, this approach is not the subject of this thesis therefore, we will omit discussions on
such scenarios here.
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be not well-defined. Finally, assumption A5 has to be also modified in order to take into account the
scale function and the fact that it can flexibly change now for different values of x ∈ (0, 1).

Once we are interested in estimation of the unknown regression function m(·) or its derivatives
respectively in a local sense only – at one pre-specified point x ∈ (0, 1), it is sufficient to consider
assumptions A1∗∗, A3 and A5∗∗ to hold at some small neighbourhood of x ∈ (0, 1) only.

2.3.1 The main asymptotic results

Let us firstly recall the notation, which we have already established for the homoscedastic model
�

�

�

�2.3
in Section 2.2.2. Basically, we will show the same results however, unlike the homoscedastic model we
will now omit both expressions for the asymptotic conditional bias and variance terms as they can be
derived immediately from the asymptotic Bahadur representation later on.

THEOREM 2.6 (Consistency for heteroscedastic M-smoothers)

For model
�

�

�

�2.39 and assumptions A1 – A7 (for A1, A2 and A5 being modified by A1∗, A2∗ and
A5∗) the M-smoothers estimates of the regression function m(·) and its derivatives respectively are
consistent. In other words it holds that

√
Nh1+2ν

N ·
(

β̂ν −
m(ν)(x)

ν!

)
= OP(1),

for N → ∞ and any ν ∈ {0, . . . , p} given at the chosen point x ∈ (0, 1).

Proof. See Section 2.3.2 below.
�

THEOREM 2.7 (Asymptotic bias term for m̂(ν)(x) under heteroscedasticity)

For model
�

�

�

�2.39 , assumptions A1 – A7 (for A1, A2 and A5 being modified by A1∗, A2∗ and A5∗)
and the given notation the asymptotic bias term for the M-smoothers estimates is equal to

As.Bias
[
m̂(ν)(x)

]
def.
= β̂ν − βν = ν!h

p+1−ν
N ·

(
m(p+1)(x)

(p + 1)!

)
· e⊤ν S−1

1 µ + oP(h
p+1−ν
N ),

for ν ∈ {0, . . . , p} and µ =
(∫ 1
−1 up+1K(u)du,

∫ 1
−1 up+2K(u)du, . . . ,

∫ 1
−1 u2p+2K(u)du

)⊤
∈ Rp+1.

Proof. See Section 2.3.2 below.
�

The bias term in Theorem 2.7 is again derived in sense of a difference rather than expectation
while using the same argumentation as before. It is also not surprising that the bias expressions for
homoscedastic as well as heteroscedastic models are the same. Indeed, using the local approach defined
by the given kernel function K(·) the heteroscedasticity in random errors does not play any role with
respect to the bias term as the scale (variability respectively) in some small neighbourhood of the given
point x ∈ (0, 1) can be assumed to be constant.

Finally, we can formulate the asymptotic distributional property for the heteroscedastic M-smoothers
estimates, which can be again seen in an analogy with the homoscedastic normality result.
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THEOREM 2.8 (Asymptotic normality for m̂(ν)(x) under heteroscedasticity)

For model
�

�

�

�2.39 , assumptions A1 – A7 (A1, A2 and A5 replaced by A1∗, A2∗ and A5∗) and the
given notation the M-smoothers estimates follow in asymptotic in law a normal distribution given by

√
Nh1+2ν

N ·
(

m̂(ν)(x)−m(ν)(x)−Bias
[
m̂(ν)(x)

])
D−→

N → ∞
N

(
0,

ν!2 ·Eψ2(σ(x)ε1)

[λ′G(0, σ(x))]2 f (x)
· e⊤ν Veν

)
,

where ν ∈ {0, 1, . . . , p} stands for the order of the derivative of function m(·) or its estimate m̂(·)
respectively, and V = S−1

1 S2S
−1
1 .

Proof. See Section 2.3.2 below.
�

In the same way as before we can again express the Asymptotic Mean Square Error (AMSE) quan-
tity, which is used to determine the optimal value of the bandwidth parameter hN but a common
problem related to no explicit definition of this quantity remains for the heteroscedastic scenario as
well. Iterative approaches similar to those used for the homoscedastic model are proposed to solve this
problem. Mostly, they all can be thought of as straightforward generalizations of those already designed
for homoscedastic cases. Some of them are also discussed in more detail in Section 5.1.

The only clear difference in the results derived for homoscedastic and heteroscedastic M-smoothers
is the scale factor σ(x) used in addition for the heteroscedastic scenario where it multiplies the random
error quantities {ε i}N

i=1 and it brings them to a proper local scale. Unlike the homoscedastic model
where we could assume an arbitrary scale of random errors, in heteroscedastic models the scale of
random errors is by the assumption A2∗ restricted to one only and the scale factor σ(x) is used instead
to take into account scales different from one.

Using the local estimation approach and considering a small region around some specific point
x ∈ (0, 1) the whole heteroscedastic model scenario reduces to a homoscedastic structure as the scale
function σ(·) can be considered to be constant within a small neighbourhood of x ∈ (0, 1). Moreover,
one can easily seen that all results and expressions derived under the heteroscedastic model simplify in
a straightforward way to a homoscedastic model once the scale function is set to be constant.

2.3.2 Proofs of Theorems 2.6, 2.7 and 2.8

In the proofs we will consider a vector of parameter estimates defined by the minimization problem�

�

�

�2.40 . Moreover, as the lines of the proofs will closely follow the lines of the proofs of Theorems
�

�

�

�2.3 ,
�

�

�

�2.4 and
�

�

�

�2.5 we will state in detail the main differences only and otherwise, we will refer to the
corresponding lines of the proofs in Section 2.2.3.
Let us start with the minimization problem

�

�

�

�2.40 . Using the model definition
�

�

�

�2.39 , the Taylor
expansion of function m(·) and the convex property of the loss function ρ(·) and the corresponding
partial differential operators we obtain a set of equations

1√
NhN

N

∑
i=1

ψ

(
σ (Xi) ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
= 0,

�

�

�

�2.42

for l = 0, . . . , p,

which is solved for the vector of parameter estimates β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ ∈ Rp+1 where the definition

of the vector of parameter estimates β̂
◦
x is the same as in

�

�

�

�2.10 and the vector of the true parameters

is again β◦x = (0, . . . , 0)⊤ ∈ Rp+1.
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Analogously as before we will proceed in three consecutive steps:

❑ firstly, we need show that all parameter estimates β̂◦0, . . . , β̂◦p are close enough to zero in order to

satisfy the set of equations
�

�

�

�2.42 however, this can be done in very the same way as in the proof
for the homoscedastic model therefore, we will omit it here;

❑ in the second step we will show the consistency property of the parameter estimates, which means

that
√

NhN β̂◦j ≡
√

Nh
1+2j
N

(
β̂ j − β j

)
= OP(1) for any j = 0, . . . , p.

❑ finally, we will prove the asymptotic normality property and we will show that

√
NhN

(
β̂◦j − β◦j

)
≡
√

Nh
1+2j
N

(
β̂ j −

m(j)(x)

j!

)
D−→

N → ∞
N(·, ·), for j = 0, . . . , p,

where N(·, ·) stands for a normal distribution with appropriate mean and variance quantities;

Once we show the validity of all three steps just a straightforward calculations are required after
that to finish all proofs of the theorems stated above.

Proof of Theorem 2.6

The basic idea of the proof remains the same: we will introduce two auxiliary lemmas where the
assertions of both lemmas will be crucial for the rest of the proofs under the heteroscedastic model
scenario.

Lemma 3
For model

�

�

�

�2.39 and the same assumptions as in Theorem 2.6 the following bound in probability is
achieved

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN (τiN(x))j

)
−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN (τiN(x))j

)]}
(τiN(x))l K (τiN(x))

∣∣∣∣∣ =

= OP

(
(NhN)

− p+1
p+3 · δ

2(p+1)
p+3

N

)
,

for any T > 0 and l ∈ {0, . . . , p} where τiN(x) =
(

Xi−x
hN

)
. Moreover, the expectation operator

E[·] stands here for a conditional expectation conditioned on values of the random variable X and
1/
√

NhN ≤ δN ≤ 1 is chosen arbitrarily.

Proof of Lemma 3

The proof of Lemma 3 follows the same idea as the proof of Lemma 1 even with the scale factor σ(Xi)
used to multiply random error terms ε i, for i = 1, . . . , N, therefore, the detailed proof is omitted. �

Using now the same argumentation as in the proof of the consistency for the homoscedastic model
and applying the assertion of Lemma 3 we obtain that

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
+

+λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

, σ(Xi)

)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ = OP

(√
NhN

)
,
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and we can again use the Taylor expansion of function λG(·, σ(Xi)), for each i = 1, . . . , N, as we have
the Lipschitz property assured by assumption A5∗. This gives us

λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

, σ(Xi)

)
= λG(0, σ(Xi)) + λ′G(t̃, σ(Xi)) ·

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

,

for i = 1, . . . , N and l = 0, . . . , p, where λ′G(·, ·) stands for a partial derivative of function λG(·, ·)
with respect to its first argument.

In addition, t̃ ∈ R is some value between zero and ˜̃t = ∑
p
j=0 β̂◦j

(
Xi−x

hN

)j
.

It is important to realize here that rescaling of random quantities ε i’s, for i = 1, . . . , N does not have
any effect on their symmetric distributional property therefore, we also have that λG(0, σ(Xi)) = 0,
for any i = 1, . . . , N. Hence, we obtain

∣∣∣∣∣
1√

NhN

N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hn

)j
)
+

+
√

NhNλ′G(t̃, σ(Xi))
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ = OP(1).

uniformly in i = 1, . . . , N. One can easily bound λ′G(t̃, σ(Xi)) by some 0 < K < ∞, which follows from

the Lipschitz property of function λG(·, ·). Using now the fact that parameter estimates β̂◦0, . . . , β̂◦p
solve the equations

�

�

�

�2.42 and applying the same argumentation as in the consistency proof for the

homoscedastic case one will easily obtain the consistency property for parameter estimates β̂◦0, . . . , β̂◦p.
The consistency property for the M-smoothers estimates as stated in Theorem 2.6 follows immediately

once we recall the definition of the vector of parameter estimates β̂
◦
x ∈ Rp+1.

�

Proof of Theorem 2.7

Using now the consistency result for the M-smoothers estimates we can proceed to derive the asymptotic
bias term. We will firstly derive the asymptotic Bahadur representation for the vector of parameter

estimates β̂
◦
x and we will use this representation to derive the asymptotic bias term and the asymptotic

normality result for. We will need the assertion of the following lemma to continue.

Lemma 4
Let us assume model

�

�

�

�2.39 and the same assumptions as in Theorem 2.7. Then the following
convergence in probability is achieved

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i) +

−Eψ

(
σ(x)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣
P−→

N → ∞
0,

uniformly for all l = 0, . . . , p any T > 0 and the given point of interest x ∈ (0, 1), where it holds that
δN = (NhN)

−1/2.
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Proof of Lemma 4

The proof of Lemma 4 is slightly more complicated than the proof of Lemma 2 as one needs to correctly
deal with a relationship between quantities σ(Xi) and σ(x) respectively. Using a triangle inequality we
can however rewrite the expression in Lemma 4 as

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i)

−Eψ

(
σ(x)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≤

≤ sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i)

�

�

�

�2.43

−Eψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣+

+ sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
λG

(
p

∑
j=0

tjδN

(
Xi − x

hN

)j

, σ(Xi)

)
�

�

�

�2.44

−λG

(
p

∑
j=0

tjδN

(
Xi − x

hN

)j

, σ(x)

)}
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ,

and we will prove that both terms converge to zero in probability once we have δN = (NhN)
−1/2.

Using an analogous notation

Ξ̃
ψ
N(Xi, x, t)

def.
=

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i)

]
,

where t = (t0, . . . , tp)⊤ ∈ Rp+1 we can precisely go along the lines of the proof of Lemma 2 and to

decompose
�

�

�

�2.43 into two terms, which are both analogous to
�

�

�

�2.22 and
�

�

�

�2.23 , while the second term
of this decomposition can be easily dealt with using the Lipschitz property of function λG(·, σ(Xi)),
for any i = 1, . . . , N and the same argumentation as in Lemma 2.

The first term of the decomposition (the one analogous to
�

�

�

�2.22 ) can be taken care of using
Chebyshev’s inequality in the a similar way as in the proof of Lemma 2 however, this time we obtain

P


 max

1≤m≤DN
j=0,...,p

1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
Ξ̃

ψ
N(Xi, x, ζm)−E

[
Ξ̃

ψ
N(Xi, x, ζm)

]}(Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ




≤ (ǫNhNδNνN)
−2 · ν−(p+1)

N · NhN · Var
[

ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(σ(x)ε i)

]
,

for i ∈ {1, . . . , N} and any ǫ > 0, where DN, νN and ζm = (ζm0, . . . , ζmp)⊤ are defined in the proof

of Lemma 2. We need to show now that the variance term is of the order O
(

1√
NhN

)
.
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However, analogously as in
�

�

�

�2.25 we easily obtain from assumption A5∗ that

Var

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(σ(x)ε i)

]
≤

≤ E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
− ψ(σ(x)ε i)

]2

= O

(
1√

NhN

)
,

where in addition we have also used the Hölder property of the order α > ι−1
2ι for function λG(0, ·).

The required rate of convergence follows now immediately given the same argumentation as in the proof
of Lemma 2.

It is still left to prove the asymptotic convergence in probability for the second term
�

�

�

�2.44 but using
the partial derivative of function λG(·, ·) in its first argument we obtain

λG

(
p

∑
j=0

tjδN

(
Xi − x

hN

)j

, σ(x)

)
= λG (0, σ(x)) + λ′G(0, σ(x)) ·

p

∑
j=0

tjδN

(
Xi − x

hN

)j

+ oP (δN) ,

and analogously also

λG

(
p

∑
j=0

tjδN

(
Xi − x

hN

)j

, σ(Xi)

)
= λG (0, σ(Xi)) + λ′G(0, σ(Xi)) ·

p

∑
j=0

tjδN

(
Xi − x

hN

)j

+ oP (δN) ,

both for |Xi − x| ≤ hN and i = 1, . . . , N. To finish the proof one just needs to realize that
λG (0, σ(x)) = λG (0, σ(Xi)) = 0 for i = 1, . . . , N and |λ′G(0, σ(x))| ≤ K1 as well as |λ′G(0, σ(Xi))| ≤
K2 uniformly over i ∈ {1, . . . , N}, for some K1,K2 > 0, both under the Lipschitz property of function
λG(·, ·) in its first argument, which follows directly from the existence of the partial derivative. More-

over, we have that

∣∣∣∣∑
p
j=1 tjδN

(
Xi−x

hN

)j
∣∣∣∣ = OP

(
1√

NhN

)
therefore, the convergence in probability for

the second term
�

�

�

�2.44 follows immediately as well. This now finishes the proof of Lemma 4. �

Using the assertion of Lemma 4 and a similar argumentations as for the proof in the homoscedastic
model we obtain that

1√
NhN

N

∑
i=1

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i) +

+λ′G(0, σ(x)) ·
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

+ oP

(
1√

NhN

)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
P−→

N → ∞
0,

uniformly for l = 0, . . . , p and hence, applying the matrix notation we have

1√
NhN

· X⊤NWNψ(σ(x)ε) =
λ′G(0, σ(x))√

NhN
· X⊤NWNXN β̂

◦
x + oP

(
1/
√

NhN

)
,

�

�

�

�2.45

where ψ(σ(x)ε) = (σ(x)ε1, . . . , σ(x)εN)
⊤. Under the regularity property of matrix X⊤NWNXN we

finally obtain the Bahadur representation for the vector of parameter estimates β̂
◦
x given by

β̂
◦
x =

1

λ′G(0, σ(x))
·
(
X⊤NWNXN

)−1
· X⊤NWNψ(σ(x)ε) + oP

(
1/
√

NhN

)
.

�

�

�

�2.46
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This asymptotic Bahadur representation is just a heteroscedastic analogy of the Bahadur representation�

�

�

�2.28 derived under the homoscedastic model scenario where the only difference involved in is the scale
factor σ(x), which needs to be considered for the given point x ∈ (0, 1).

To finish the proof just a straightforward computation is needed similarly as in the case of ho-
moscedastic model. One just has to use function λ′G(0, σ(x)) instead of λ′G(0) and also ψ(σ(x)ε1)
instead of ψ(ε1). The rest of the proof is therefore omitted.

�

Proof of Theorem 2.8

To show the asymptotic normality results we will start with expression
�

�

�

�2.45 . The left-hand side of
this expression converges again to a normal distribution using the same argumentation as in the proof
of the asymptotic normality for the homoscedastic model. From the regularity property of XNWNXN

we obtain that also the first term on the right-hand side of
�

�

�

�2.46 converges element-wise to a normal
distribution with corresponding mean and variance parameters.

Applying now the Slutsky theorem the result follows immediately. Moreover, the corresponding
variance quantity can be easily expressed using the asymptotic Bahadur representation

�

�

�

�2.45 similarly
as in the case of homoscedastic scenario before.

�

We have showen in this section that the M-smoothers estimation approach under the heteroscedastic
assumption yields the same statistical properties as the M-smoothers approach under the homoscedastic
regression model. Indeed, we have proved consistency of the M-smoothers estimates as well as their
asymptotic normality property. Moreover, one can easily see a nice correspondence between the results
derived for homoscedastic and heteroscedastic models where the scale factor σ(x) is introduced in
addition in the heteroscedastic case in order to take care of an additional flexibility within slightly less
strict variance assumptions. Defining this scale factor σ(x) to be constant for all x ∈ (0, 1) the results
derived for the heteroscedastic model easily reduce back to the results derived for the homoscedastic
scenario. This is a nice additional property, which will simplify our next theory development for the
change-point models and a discontinuous robust regression approach.

The local polynomial M-smoothers introduced with independent random errors give us a flexible and
powerful tool in the regression estimation approach and the results derived under homoscedastic as well
as heteroscedastic scenarios are in a reasonable balance with assumptions required for their proofs. The
consistency property is important in order to have an estimation approach, which can provide us with a
good estimate for the unknown but true regression function of interest (or its derivatives respectively)
while the asymptotic normality property makes it easier to work with such estimates in real data cases,
as one can easily construct confidence bounds and acceptance/rejection regions for hypothesis testing
problems, which we will also focus on in the next chapter.

We will however, discuss one more extension of the M-smoothers regression approach and we will
propose the M-smoothers estimation for a model with dependent random errors, which is mostly the
case indeed in modern real data situations. Providing an analogous statistical inference for the model
with some dependent data concept we will obtain a quite complete set of statistical modelling tools
for the robust M-estimation techniques under the most common situations, which can be possibly
considered for different regression model scenarios.
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2.4 Models with dependent observations

We have already discussed a standard model based on the homoscedastic variance assumption and we
have also extended such model into the heteroscedastic variance scenario later on. In order to develop
even more flexible regression techniques one can still think of some further generalizations with respect
to less strict assumptions posed on the variance (scale respectively) function as we were only restricted
to Lipschitz functions so far. However, rather than discussing further variance/scale generalizations
we would like to focus on a generalization with respect to another important assumption, which was
required to be strictly satisfied until now.

It is always nice and convenient to start with an condition posed on a random sample from some
unknown distribution function however, an independence assumption, which is implicitly assumed for
every random sample may not be always the real case. However, this assumption is rather crucial and
even small disturbances from an independently generating random system may have a serious impact
on the final performance of the given estimator therefore, one needs to always consider a set of proper
statistical tools in order to deal with data samples, which do not necessarily satisfy the independence
assumption.

Before we discuss the M-smoothers estimation techniques together with some dependence structures
of random error sequences we will shortly introduce the most common dependence forms, which will
be considered later on.

2.4.1 Weak dependence

The concept of dependent statistical data is well known for many years in statistics however, the most
often used generalization of a sequence of independent, identically distributed random variables are
martingales and mixing random processes in discrete time. The notation “mixing” is used here in term
that random variables temporally far apart from one another have a tendency to behave like independent
ones. This is also in literature referred to as a weak dependence structure.

As far as we do not assume independent observations any more it is necessary to specify an exact
form of dependence using a statistical background to be able to proceed with further calculations.
Let us assume a sequence of random variables {ξn}∞

n=1 defined on a probability space (Ω,F , P). Let
A,B ⊆ F are two sub-σ-fields in F and let us introduce two measures on A× B defined by

α(A,B) def.
= sup

A∈A, B∈B
|P (A ∩ B)− P (A) P (B)| ,

ϕ(A,B) def.
= sup

A∈A, B∈B, P(A)>0

|P (B|A)− P (B)| .

Both measures can be used to measure the dependence of random events from the σ-field A on
random events from the σ-field B. It is also important to be aware here of the form of symmetry where
the first measure is obviously symmetric as we easily have that α(A,B) = α(B,A) while this is in
general not true for the second measure based on the conditional probability.

DEFINITION 1 (α-mixing and ϕ-mixing dependent variables)

Let F k
l be a σ-field generated by the sequence of random variables {ξi; l ≤ i ≤ k}. Then the sequence

of random variables {ξn}∞
n=1 is said to form a strong mixing (α-mixing) process if

α(n)
def.
= sup

k∈N

α(F k
1 ,F∞

k+n)→ 0,
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for n→ ∞. Moreover, the sequence {ξn}∞
n=1 is said to be uniformly strong mixing (ϕ-mixing) if

ϕ(n)
def.
= sup

k∈N

ϕ(F k
1 ,F∞

k+n)→ 0,

for n→ ∞ again.

The concept of the uniformly strong mixing dependence was introduced by Rosenblatt (1956) and
it holds that the uniformly strong mixing dependence implies the strong mixing dependence (see Lin
and Lu (1997) for the proof), which was introduced later on by Ibragimov (1959). Quantities α(n)
and ϕ(n) are called the coefficients of dependence and they express how much dependence there exists
between two events separated in time by at least n ∈ N other events.

The concept of the weak dependence is very useful in statistics as it effectively deals with most
common dependence structures, random processes and time series. Indeed, it was shown in Anderson
(1958) that m-dependent processes as well as finite order ARMA processes with innovations satisfying
Doeblin’s condition are ϕ-mixing. On the other hand, finite order processes, which do not satisfy
Doeblin’s condition were showed to be α-mixing instead (see Ibragimov and Linik (1971)). Additionally,
Rosenblatt (1971) provides general conditions for stationary Markov Processes to by α-mixing as well.

We will consider the α-mixing dependence for random error terms and we will discuss an extension
of the M-smoothers estimation approach for heteroscedastic25 model. This will also cover the most
common dependence structures of random error terms used in different regression settings including
auto-regressive (AR) processes of finite orders.

2.4.2 α- mixing model

Let us consider a bivariate sequence of random variables {(Xi, Yi); i = 1, . . . , N}, which comes from
some population (X, Y) taking values in [0, 1]× R and let this sequence forms a strictly stationary
α-mixing process with α-mixing dependence coefficients α(N), such that α(N)→ 0 for N → ∞.
As far as we still assume the model

Yi = m(Xi) + σ(Xi)ε i,
�

�

�

�2.47

the random error terms can be easily expressed as ε i = (Yi −m(Xi))/σ(Xi) for i = 1, . . . , N. This
also means that the random sequence {ε i}N

i=1 forms a strong mixing process with the same α-mixing
dependence coefficients as well given the fact that any measurable mapping of an α-mixing process
forms a strong mixing process with the same dependence coefficients again.
We are again primarily interested in estimation of the unknown regression function m(·) in sense of

the local polynomial M-smoothers approach defined by the minimization problem
�

�

�

�2.1 . We will show
that under some appropriate assumptions posed on the convergence rates of the mixing coefficients the
performance of the M-smoothers estimator and its asymptotic behaviour is essentially the same as in
the case of i.i.d. observations.

We will again start with the formulation of all necessary assumptions, which are required to deal
with the weak dependence concept considered in this section. They are somewhat analogous to those
considered in the previous sections however, some modifications are introduced.

25By introducing a generalization of the heteroscedastic model scenario together with the concept of weak dependent
random errors we also account for any homoscedastic model scenario as this follows easily as a special case of the het-
eroscedastic model.
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A1∗∗ The marginal density function f (·) of the random variables Xi, for i = 1, . . . , N is absolutely
continuous, positive and bounded on [0, 1], which is the support of X. Moreover, we assume that
the scale function σ(·) is Lipschitz and positive on interval [0, 1]. Additionally, we need the joint
density function fℓ(·, ·) of random variables X1 and X1+ℓ to be bounded for all ℓ ≥ 1;

A2∗∗ The sequence {(Xi, Yi)}N
i=1 forms a strongly stationary α-mixing process with the α-mixing

dependence coefficients {α(n)}∞
n=1 such that

∞

∑
n=1

[α(n)]δ/(2+δ) < ∞,
�

�

�

�2.48

for some δ > 0. Let Xi and ε i are mutually independent for i = 1, . . . , N and moreover, the
distribution function G(·) of {ε i}N

i=1 is assumed to be continuous and symmetric with a unit

scale, G(1)− G(−1) = 1
2 . It also holds that ∑

∞
ℓ=1 E[ψ(σ(x)ε1)ψ(σ(x)εℓ)] ≤ K2 < ∞ for the

chosen x ∈ (0, 1) and some K2 > 0;

A5∗∗ We assume that function λG(t, v) = −
∫

ψ(ve − t)dG(e) is Hölder of the order α > ι−1
2ι

in argument v > 0 for ι being defined in assumption A7. The partial derivative λ′G(t, v) =
∂
∂t λG(t, v) exists and it is continuous in t and

∫
R
(ψ(σ(x)e− ǫN)−ψ(σ(x)e))2dG(e) < K · |ǫN |

both for some neighbourhoods of t = 0 and v = σ(x), for the given point x ∈ (0, 1), any
sequence ǫN → 0 and some K > 0. Moreover, it holds that

∫
|ψ(σ(x)e)|2+δdG(e) < ∞ and

λ′G(0, σ(x)) = ∂
∂t λG(t, σ(x))|t=0 6= 0 for δ > 0 small enough and the given point x ∈ (0, 1);

In assumption A1∗∗ the requirements posed on the marginal density function and the scale function
remain the same as in the heteroscedastic case however, we have to account for the fact that random
variables {Xi}i are not independent anymore therefore, strict stationarity is assumed instead. Moreover,
we also need the joint density function fℓ(·, ·) to be bounded for all ℓ > 1 to be able to derive the
asymptotic normality result.
Assumption A2∗∗ defines a set of classical regularity conditions for the α-mixing coefficients in order to
obtain the same asymptotic performance of the M-smoothers estimator as in the i.i.d. case.
Finally, assumption A5∗∗ needs to be slightly alter in order to prepare a sufficient background for the
weak dependence inference however, the main idea remains the same.

We will now introduce the main results and will discuss the main statistical properties of the local
polynomial M-smoothers approach when considering weakly dependent strongly mixing sequences of
data points.

2.4.3 The main asymptotic results

We have already mentioned that under some appropriate conditions posed on the mixing coefficients
one mostly obtains estimates with the same asymptotic performance as those derived for the i.i.d. cases.
Indeed, it was proved in Baek and Wehrly (1993) or Boente and Fraiman (1995) that the performance
of the local constant kernel regression estimator for weakly dependent data (α-mixing and ϕ-mixing
dependence) is under the right regularity conditions essentially the same as for the independent and
identically distributed data.

We will extend this idea onto the local polynomial M-smoothers as well. We will firstly show the
consistency property for the M-smoothers estimates under the α-mixing dependence and after that we
will also state the asymptotic normality result and we will provide complete proofs for all stated results.
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THEOREM 2.9 (Consistency for α-mixing dependence)

For model
�

�

�

�2.47 and assumptions A1 – A7 (for A1, A2 and A5 being replaced by A1∗∗, A2∗∗ and
A5∗∗) the M-smoothers estimates of the regression function m(·) and its derivatives respectively are
consistent. Equivalently, we can state that

√
Nh1+2ν

N ·
(

β̂ν −
m(ν)(x)

ν!

)
= OP(1),

for N → ∞ any ν ∈ {0, . . . , p} and the given point x ∈ (0, 1).

Proof. See Section 2.4.4 below.
�

THEOREM 2.10 (Asymptotic bias term for m(ν)(x) under the α-mixing dependence)

Let model
�

�

�

�2.47 holds. Then for assumptions A1 – A7 with A1, A2 and A5 to be replaced by A1∗∗,
A2∗∗ and A5∗∗ and the given notation the asymptotic bias term for the M-smoothers estimates of the
unknown regression function and its derivatives respectively can be expressed as

As.Bias
[
m̂(ν)(x)

]
def.
= ν!

(
β̂ν − βν

)
= ν!h

p+1−ν
N ·

(
m(p+1)(x)

(p + 1)!

)
· e⊤ν S−1

1 µ + oP(h
p+1−ν
N ),

where µ =
(∫ 1
−1 up+1K(u)du,

∫ 1
−1 up+2K(u)du, . . . ,

∫ 1
−1 u2p+2K(u)du

)⊤
∈ Rp+1 and ν ∈ {0, . . . , p}

stands for the order of the corresponding derivative of the regression function m(·).
Proof. See Section 2.4.4 below.

�

THEOREM 2.11 (Asymptotical normality for m(ν)(x) under the α-mixing dependence)

Let model
�

�

�

�2.47 holds. Then for assumptions A1 – A7 with A1, A2 and A5 to be replaced by A1∗∗,
A2∗∗ and A5∗∗ and the given notation the M-smoothers estimate follows in asymptotic in law a normal
distribution given by

√
Nh1+2ν

N ·
(

m̂(ν)(x)−m(ν)(x)−Bias
[
m̂(ν)(x)

])
D−→

N → ∞
N

(
0,

ν!2 ·E [ψ(σ(x)ε1)]
2

[λ′G(0, σ(x))]2 f (x)
· e⊤ν Veν

)
,

where ν ∈ {0, 1, . . . , p} stands for the order of the derivative of the regression function m(·), or its
estimate m̂(·) respectively. Moreover, V = S−1

1 S2S
−1
1 as in Theorem 2.8.

Proof. See Section 2.4.4 below.
�

We have omitted stating the theorem for asymptotic variance term of the M-smoothers estimates
as it can be directly obtained from the variance term in the asymptotic normality expression. For the
bias term however, we have rather formulated the corresponding theorem above.

We can now compare all results derived under three different scenarios under consideration. We have
already shortly discussed the main differences between the homoscedastic and heteroscedastic model,
both derived for i.i.d. random errors. Now, we can compare those results with the results derived
under the weak dependence assumption namely, the α-mixing dependence. One can easily see a full
correspondence of the results, which we have expected as we had said that under the right regularity
conditions the performance of the estimator should be the same for i.i.d. cases as well as for the weak
dependence concept. We will now prove the stated results in order to justify such conclusions.
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2.4.4 Proofs of Theorems 2.9, 2.10 and 2.11

The main idea of all proofs remains the same as in the previous sections however, additional caution
needs to be paid to deal with the rates of convergence for the α-mixing dependence coefficients.

We will start with the minimization problem

β̂
◦
x = Argmin

(b0, . . . , bp)⊤ ∈ R
p+1

1√
NhN

N

∑
i=1

ρ

(
σ(Xi)ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
· K
(

Xi − x

hN

)
,

�

�

�

�2.49

which we can easily get using the original minimization problem
�

�

�

�2.1 , the definition of the model and
the (p + 1) order Lipschitz assumption posed on the unknown regression function m(·). The vector of

parameter estimates β̂
◦
x is supposed to give us a reasonable estimate for the vector of true parameters,

which is the vector β◦x = (0, . . . , 0)⊤ ∈ Rp+1 where the notation used here is the same as in the case

of minimization
�

�

�

�2.10 .

Using now the convex property of the loss function ρ(·) we can express the minimization problem
�

�

�

�2.49 in terms of a set of “normal” equations as

1√
NhN

N

∑
i=1

ψ

(
σ(Xi)ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
= 0,

�

�

�

�2.50

for l = 0, . . . , p,

which is solved for the vector of parameter estimates β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ ∈ Rp+1. Similarly, as in
the homoscedastic or heteroscedastic cases there is no explicit solution given and iterative numerical
approaches need to be used to express the parameter estimates in real data examples.
On the other hand, the asymptotic approximations and representations need to be found as well in
order to investigate the corresponding statistical inference of the parameter estimates.

Let us again proceed in three separate but consecutive steps:

❑ firstly, we will show that the parameter estimates β̂◦0, . . . , β̂◦p need to be all in a small neighbour-

hood of zero in order to satisfy the set of equations
�

�

�

�2.50 ;

❑ next, we will prove that β̂◦j → 0 as N → ∞ for every j = 0, . . . , p, more specifically, we will show

that
√

NhN β̂◦j ≡
√

Nh
1+2j
N

(
β̂ j − β j

)
= OP(1) for any j = 0, . . . , p.

❑ finally, we will prove the asymptotic normality property and we will show that

√
NhN

(
β̂◦j − β◦j

)
≡
√

Nh
1+2j
N

(
β̂ j −

m(j)(x)

j!

)
D−→

N → ∞
N(·, ·),

for some appropriate mean and variance parameters;

The first step of the proof can be easily shown using the same argumentation as the one we have
used for the proof of the results derived under the homoscedastic model scenario therefore, we will omit
copying it here again and we will proceed with the second step now.
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Proof of Theorem 2.9

We want to prove the consistency result for the parameter estimates β̂◦0, . . . , β̂◦p derived under the weak
dependence assumption. This is slightly more complicated to prove as one needs to properly take
into account the right form of the dependence structure within given data points. We will therefore
formulate two necessary lemmas at first.

Lemma 5
Let {ξi}N

i=1 be some strictly stationary α-mixing process with the dependence coefficients α(i).
Let moreover, gN(·) be some measurable mappings such that EgN(ξi) = 0. Then the following holds:

E

∣∣∣∣∣
N

∑
i=1

gN(ξi)

∣∣∣∣∣

2

≤ KN ·
(

E |gN(ξ1)|2+ǫ
) 2

2+ǫ ·
∞

∑
j=1

(α(j))
ǫ

2+ǫ ,

for some K > 0 and any ǫ > 0.

Proof of Lemma 5

The proof of the lemma follows easily from the proof of Theorem 1 in Yokoyama (1980). �

Lemma 6
Let us assume model

�

�

�

�2.47 and the set of the same assumptions as in Theorem 2.9.
Then the following bound in probability is achieved

sup
|tj|<T

j=0,...,p

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]}(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ =

= OP

(
(NhN)

− p+1
p+3 · δ

2(p+1)
p+3

N

)
,

for any T > 0 and l ∈ {0, . . . , p} and some arbitrary 1/
√

NhN ≤ δN ≤ 1. The expectation operator
E[·] stands here for a conditional expectation conditioned on values of the random variable X.

Proof of Lemma 6

Using again a (p+ 1)-dimensional grid of points in a (p+ 1)-dimensional cube (−T, T)× · · ·× (−T, T)
defined as in the proof of Lemma 1 we can again expand the expression in Lemma 6 into a sum of two
terms similarly as in the proof of Lemma 1. Now, the term which corresponds with

�

�

�

�2.16 can be easily
bounded in probability using the Lipschitz property of function λG(·, ·) in its first argument and the
definition of the mesh of grid points namely, the asymptotic rate of its expansion. We will therefore
omit this part of the proof here and we will pay attention to prove the rest.
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For the second term, which corresponds with
�

�

�

�2.15 (see the proof of Lemma 1 – p.23) we have

P


 max

1≤m≤DN
j=0,...,p

1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)
K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤

≤
DN

∑
m=1
j=0

DN

∑
m=1
j=1

· · ·
DN

∑
m=1
j=p

P

[
1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)
K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤

≤
DN

∑
m=1
j=0

DN

∑
m=1
j=1

· · ·
DN

∑
m=1
j=p

(ǫNhNδNνN)
−2 ·E

[
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]]2

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
 ,

�

�

�

�2.51

uniformly for l = 0, . . . , p, and ǫ > 0 given Chebyshev’s inequality and the fact that DN = O(ν−1
N ),

where νN and ζmj for m = 1, . . . , DN and j = 0, . . . , p are defined in the proof of Lemma 1.

Now we can apply Lemma 5 to function gN(·), which we defined as

gN(ε i)
def.
= ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)
−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]

,

which clearly satisfies the condition EgN(ε i) = 0. Therefore, we finally have

P


 max

1≤m≤DN
j=0,...,p

1

NhNδNνN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)

−E

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

ζmjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)
K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
≤

≤ (ǫNhNδNνN)
−2 · NhN · ν−(p+1)

N · K∗ = ǫ−2 · K∗ · (NhN)
−1δ−2

N ν
−(p+3)
N ,

�

�

�

�2.52

for some K∗ > 0 and given the property that E |ψ(ε1)|2+δ < ∞ for some δ > 0 and the fact that for
the α-mixing dependence coefficients α(i) we have ∑

∞
n=1 na[α(n)]b < ∞, for some a > b > 0.

To conclude, we can use the same argumentation as in the proof of Lemma 1 and we obtain that

νN = o

(
(NhNδ2

N)
− 1

p+3

)
. The first term (the one analogous to

�

�

�

�2.16 ) is therefore of the asymptotic

order OP

(
(NhN)

− p+1
p+3 · δ

2(p+1)
p+3

N

)
and we need (

√
NhN)

−1 ≤ δN ≤ 1 in order to have the assertion of

Lemma 6 to be proved. �
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The proof of the consistency for the vector of parameter estimates β̂
◦
x = (β̂◦0, . . . , β̂◦p)

⊤ ∈ Rp+1 fol-
lows now easily using an analogous argumentation as in the proof for the homoscedastic or heteroscedastic
model respectively and the assertion of Lemma 6. Therefore, we easily obtain that

√
NhN β̂◦j ≡

√
Nh

1+2j
N

(
β̂ j − β j

)
= OP(1),

for ∀j = 0, . . . , p, which follows directly from the definition of the vector β◦x ∈ Rp+1.
�

Proof of Theorem 2.10

Using the consistency property for the vector of parameter estimates β̂
◦
x derived under the α-mixing

dependence we can derive the asymptotic Bahadur representation for β̂
◦
x, which can be directly used to

get the bias expression as stated in Theorem 2.10. We again need an auxiliary lemma to finish the proof.

Lemma 7
For model

�

�

�

�2.47 and the same assumption as in Theorem 2.10 the following convergence in probability
is achieved

sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i) +

−Eψ

(
σ(x)ε i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣
P−→

N → ∞
0,

for any T > 0 and l = 0, . . . , p where x ∈ (0, 1) is the given point of interest and δN = (NhN)
−1/2.

Proof of Lemma 7

We will use the idea of the proof of Lemma 4 where the assertion of Lemma 5 needs to be used again
in addition to give bounds in probability for a sum of dependent random variables similarly, as we have
done it in the proof of Lemma 6. �

Adopting now the same argumentation as in the case of the proofs for the homoscedastic and
heteroscedastic models we can use the assertion of Lemma 7 and the definition of function λG(·, σ(x))
and we obtain that

1√
NhN

∣∣∣∣∣
N

∑
i=1

[
ψ

(
σ(Xi)ε i −

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j
)
− ψ (σ(x)ε i) +

+λG

(
p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

, σ(x)

)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣
P−→

N → ∞
0,

uniformly for l = 0, . . . , p. Applying the Taylor expansion of function λG(·, σ(x)) in zero, using the

fact that
∣∣∣∑p

j=0 β̂◦j
(

Xi−x
hN

)∣∣∣ = OP

(
1√

NhN

)
and the fact that parameter estimates β̂◦0, . . . , β̂◦p solves
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the set of equations
�

�

�

�2.42 we obtain the expression

1√
NhN

N

∑
i=1

ψ(σ(x)ε i) ·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
=

�

�

�

�2.53

=
λ′G(0, σ(x))√

NhN
·

N

∑
i=1

p

∑
j=0

β̂◦j

(
Xi − x

hN

)j

·
(

Xi − x

hN

)l

KhN

(
Xi − x

hN

)
+ oP

(
1√

NhN

)
,

which holds again for any l = 0, . . . , p. Rewriting the expression
�

�

�

�2.53 using the matrix notation from
before we finally obtain the asymptotic Bahadur representation for the vector of parameter estimates
under the α-mixing dependence where

β̂
◦
x =

1

λ′G(0, σ(x))
·
(
X⊤NWNXN

)−1
· X⊤NWNψ(σ(x)ε) + oP

(
1/
√

NhN

)
,

�

�

�

�2.54

where we have assumed a regularity property of matrix X⊤NWNXN . In addition to the given notation

we have ψ(σ(x)ε) = (ψ(σ(x)ε1), . . . , ψ(σ(x)εN))
⊤ ∈ RN .

In order to express the asymptotic bias term one can proceed in a very analogous way as we have al-
ready done in proving Theorem 2.3 one just needs to assume function λ′G(0, σ(x)) at the pre-specified
point x ∈ (0, 1) instead of function λ′G(0) that we were dealing with in the homoscedastic model
scenario. This finishes the proof of Theorem 2.10.

�

Proof of Theorem 2.11

We will show, that the left-hand side of expression
�

�

�

�2.53 converges for any l = 0, . . . , p element-wise
in law to a normal distribution with a zero mean and the corresponding variance-covariance parameter.
Unlike the homoscedastic and heteroscedastic models the sum on the left-hand side of

�

�

�

�2.53 is not
over independent random variables any more therefore, we need to introduce an appropriate statistical
machinery in order to deal with a sum of dependent variables.

THEOREM 2.12 (Central Limit Theorem for strongly mixing variables)

Let {ξNi}kN
i=1 be a triangular scheme of random variables, which are strongly mixing with finite second

moments, such that EξNi = 0, for all i ∈ N. Let moreover, the following conditions hold

(i) supN∈N

1
σ2

N
∑

kN
i=1 Eξ2

Ni < ∞,

(ii) 1
σ2

N
∑

kN
i=1 E

[
ξ2

NiI{|ξNi|>ǫ·σN}
]

N → ∞−→ 0,

for σ2
N = Var

[
∑

kN
i=1 ξNi

]
and any ǫ > 0.

Then the following convergence in distribution holds true

∑
kN
i=1 ξNi

σN

D−→
N → ∞

N (0, 1) ,

as N → ∞.
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Proof of Theorem 2.12

The proof of this theorem can be found in Peligrad (1996). Some more general version of the proof
can be also found in Lin and Lu (1997).

�

We want to show now that

1√
NhN

N

∑
i=1

ψ(σ(x)ε i) ·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
D−→

N → ∞
N(0, σ2(ψ, l, x)),

�

�

�

�2.55

for any l ∈ {0, . . . , p} and some appropriate variance-covariance parameter σ2(ψ, l, x).

We will apply Theorem 2.12 for ξiN = 1√
NhN

ψ(σ(x)ε i) ·
(

Xi−x
hN

)l
K
(

Xi−x
hN

)
and kN = NhN, for

i = 1, . . . , N. We need to verify the conditions of Theorem 2.12 for the sequence {ξNi}N
i=1.

Firstly, we need to realize that the sequence

{
1√

NhN
ψ(σ(x)ε i) ·

(
Xi−x

hN

)l
K
(

Xi−x
hN

)}N

i=1

forms a

weakly dependent strictly stationary random process, which is moreover, α-mixing as well with the
same α-mixing dependence coefficients as those for the original process of random errors {ε i}N

i=. This
is indeed a very convenient property common for α-mixing processes. Next, the process {ξNi}i is
conditionally on X centered around its zero mean, which is easily implied from the symmetric property
of the distribution function G(·) and the symmetric property of the loss function ρ(·). We easily obtain
the finite second order property as well, which follows directly from assumption A5∗∗. What remains is
to show that conditions (i) and (ii) are also satisfied. Let us introduce the following lemma.

Lemma 8 (Davydov’s inequality for α-mixing processes)
Let {ξi}i be a strictly stationary α-mixing process with mixing coefficients {α(n)}n. Let F k

j denotes

a σ-field generated by ξ j, . . . , ξk, for j ≤ k and let Z1 and Z2 be some measurable random variables

with respect to F k
1 and F∞

k+n respectively. Then the following inequality holds

|Cov(Z1, Z2)| ≤ 12 (α(n))
δ

2+δ ·
(

E|Z1|2+δ
)1/(2+δ)

·
(

E|Z2|2+δ
)1/(2+δ)

,
�

�

�

�2.56

for some δ > 0. Moreover, for a measurable and bounded function f : R
k → R it holds that

|Cov( f (ξ1, . . . , ξk), Z2)| ≤ 12 (α(n))1/2 ·
√

E(Z2)2 · ‖ f‖∞,
�

�

�

�2.57

where ‖ f‖∞ = supx∈Rk | f (x)|.

Proof of Lemma 8

The proof of
�

�

�

�2.56 can be found in Davydov (1970) or Ibragimov (1962). Assertion
�

�

�

�2.57 follows
easily from Davydov’s inequality, using the boundedness of the density function f (·). �
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Due to stacionarity we can easily express the variance-covariance parameter as

σ2
N(ψ, l, x) = Var [ξN1 + . . . , ξNN] = Var

[
1√

NhN

N

∑
i=1

ψ(σ(x)ε i) ·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)]
=

= E [ψ(σ(x)ε1)]
2 · 1

NhN

N

∑
1=1

(
Xi − x

hN

)2l

K2

(
Xi − x

hN

)
+

+
2

NhN

N

∑
i=1

N−i

∑
ℓ=1

E

[
ψ(σ(x)ε i)

(
Xi − x

hN

)l

K

(
Xi − x

hN

)
×

�

�

�

�2.58

× ψ(σ(x)ε i+ℓ)

(
Xi+ℓ − x

hN

)l

K

(
Xi+ℓ − x

hN

)]
,

for any l = 0, . . . , p and we will use Davydov’s covariance inequality to show that the covariance

expression
�

�

�

�2.58 converges to zero for N → ∞. We will firstly use the mutual independence assumption
between {ε i}i and {Xi}i, for i = 1, . . . , N, which allows us to express the joint expectation as

E

[
ψ(σ(x)ε i)

(
Xi − x

hN

)l

K

(
Xi − x

hN

)
· ψ(σ(x)ε i+ℓ)

(
Xi+ℓ − x

hN

)l

K

(
Xi+ℓ − x

hN

)]
=

= E [ψ(σ(x)ε i)ψ(σ(x)ε i+ℓ)] ·E
[(

Xi − x

hN

)l

K

(
Xi − x

hN

)(
Xi+ℓ − x

hN

)l

K

(
Xi+ℓ − x

hN

)]
,

where E [ψ(σ(x)ε i)ψ(σ(x)ε i+ℓ)] can be taken care of directly using Davydov’s inequality as we have
that Eψ(σ(x)ε i) = 0 for all i = 1, . . . , N therefore, it also holds that

Cov [ψ(σ(x)ε i)ψ(σ(x)ε i+ℓ)] = E [ψ(σ(x)ε i)ψ(σ(x)ε i+ℓ)] ≤ 12 (α(ℓ))
δ

2+δ · K1,

uniformly for i = 1, . . . , N, for some 0 < K1 < ∞, which follows from the stacionarity assumption and
the fact that

∫
R
|ψ(σ(x)e)|2+δdG(e) < ∞ for some δ > 0.

Therefore, we have

N−i

∑
ℓ=1

E [ψ(σ(x)ε i) · ψ(σ(x)ε i+ℓ)] ≤
N

∑
ℓ=1

E [ψ(σ(x)ε i) · ψ(σ(x)ε i+ℓ)] ≤ 12 · K1 ·
N

∑
ℓ=1

(α(ℓ))
δ

2+δ ,

and hence, by reversing the order of the sum operators and using an appropriate re-indexing we obtain
for the variance-covariance term the expression

σ2
N(ψ, l, x) ≤ E [ψ(σ(x)ε1)]

2 · 1

NhN
·

N

∑
i=1

(
Xi − x

hN

)2l

K2

(
Xi − x

hN

)
+

�

�

�

�2.59

+
24 · K1

NhN
·

N−1

∑
ℓ=1

(α(ℓ))
δ

2+δ ·
N−ℓ
∑
i=1

E

[∣∣∣∣
Xi − x

hN

∣∣∣∣
l ∣∣∣∣

Xi+ℓ − x

hN

∣∣∣∣
l

K

(
Xi − x

hN

)
K

(
Xi+ℓ − x

hN

)]
,

which clearly holds for any l = 0, . . . , p.
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Let now fℓ(·, ·) be a joint density function of random variables X1 and X1+ℓ. Given assumption
A1∗∗ we have that its bounded for all ℓ > 1 therefore, we obtain

E

[∣∣∣∣
Xi − x

hN

∣∣∣∣
l ∣∣∣∣

Xi+ℓ − x

hN

∣∣∣∣
l

K

(
Xi − x

hN

)
K

(
Xi+ℓ − x

hN

)]
=

=
∫ x+hN

x−hN

∫ x+hN

x−hN

∣∣∣∣
u1 − x

hN

∣∣∣∣
l ∣∣∣∣

u2 − x

hN

∣∣∣∣
l

K

(
u1 − x

hN

)
K

(
u2 − x

hN

)
· fℓ(u1, u2)du1du2 =

= h2
N

∫ 1

−1

∫ 1

−1
|v1|l |v2|lK(v1)K(v2) fℓ(x + hNv1, x + hNv2)dv2dv2 ≤

≤ K2 · h2
N ,

uniformly for i = 1, . . . , N and any l ∈ {0, . . . , p} where 0 < K2 < ∞.

Therefore, we finally obtain for
�

�

�

�2.59 that it holds that

24 · K1

NhN
·

N−1

∑
ℓ=1

(α(ℓ))
δ

2+δ ·
N−ℓ
∑
i=1

E

[∣∣∣∣
Xi − x

hN

∣∣∣∣
l ∣∣∣∣

Xi+ℓ − x

hN

∣∣∣∣
l

K

(
Xi − x

hN

)
K

(
Xi+ℓ − x

hN

)]
≤

≤ 24 · K1

NhN
·

N

∑
ℓ=1

(α(ℓ))
δ

2+δ ·
N

∑
i=1

K2h2
N −→

N→∞
0,

due to the fact that hN ·∑i(α(i))
δ/(2+δ)→ 0 for N → ∞.

Moreover, for the sum of the second moments of ξNi we obtain

N

∑
i=1

Eξ2
Ni =

1

NhN

N

∑
i=1

E

[
ψ(σ(x)ε i) ·

(
Xi − x

hN

)l

K

(
Xi − x

hN

)]2

≤

≤ K3

NhN

N

∑
i=1

E

[(
Xi − x

hN

)l

K

(
Xi − x

hN

)]2

≤ K∗3 hN −→
N→∞

0,
�

�

�

�2.60

for some constants K3 > 0 and K∗3 > 0 and any N ∈N therefore, conditions (i) and (ii) are also both
easily satisfied.

Using now the matrix notation it is easy to see that

σ2
N(ψ, l, x) −→

N→∞
σ2(ψ, l, x)

def.
= E [σ(x)ψ(ε1)]

2 · f (x) · S2,

where matrix S2 is the same as in Theorem
�

�

�

�2.5 or
�

�

�

�2.8 respectively.

To finish the proof of Theorem 2.11 one just needs to use the same arguments and an analogous
computations as in the proof of Theorem 2.4 and the result follows immediately therefore, we can omit
the rest of the proof.

�
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We would like to note that the Central Limit Theorem for triangular arrays was required here mainly
because of an adaptive bandwidth parameter hN used for the minimization. Indeed, once we adopt a
constant bandwidth approach (hN ≡ h > 0 for all N ∈ N) it is sufficient to use a standard Central
Limit Theorem for functional data more specifically, its special version related to a weak invariance
principle (WIP) and a convergence to a standard Wiener process W(t) for a fixed time t = 1.

Using an asymptotic bandwidth parameter hN , which depends on the sample size N ∈ N one intro-
duces more or less the same amount of flexibility and smoothness even when the sample size increases
as the bandwidth parameter flexibly adapts to correspond with the given data sample. On the other
hand one needs to pay more attention to derive the proper statistical inference using such asymptotic
bandwidth parameter hN .

However, given the fixed bandwidth parameter h > 0 the covariance quantities would not reduce so
easily and the variance-covariance quantity would be (asymptotically) equal to

σ2
N(ψ, l, x) = E [ψ(σ(x)ε1)]

2 + 2
∞

∑
ℓ=1

E [ψ(σ(x)ε1)ψ(σ(x)εℓ+1)] ,

where the sum of covariances would not tend to zero any more for N → ∞. This is caused by the fact
that the fixed bandwidth parameter do not reduce the dependence effect as the number of observations
increases therefore, this also needs to be reflected in the variance-covariance expression.

Referring to the bandwidth parameter, let us just mention that there are also statistical approaches
proposed for nonparametric regression techniques where so called adaptive bandwidth parameter is used
instead of hN , or h respectively, which are both the same along the whole domain of interest.
The adaptive bandwidth parameter is more suitable especially in situations where the presence (the
amount) of measurements (observations respectively) markedly differs along the domain of interest.
We have however, not considered such cases in this thesis.

It would be also interesting to show analogous results for the ϕ-mixing dependence concept. We
have already said that the uniformly strong mixing condition implies the strong mixing therefore, by
proving the results for ϕ-mixing dependence one would obtain slightly stronger results, which could
be easily adopted for α-mixing concept as well. The proofs of analogous results for the ϕ-mixing
dependence follow very the same idea as we have presented in this chapter for the case of α-mixing
dependence however, some additional assumptions need to be considered for such proofs to hold.

Proving all theorems stated under the weak dependence concept we have completed our study of the
local polynomial M-smoothers estimates under the variety of different situations. We have also proved
that using an appropriate regularization assumptions one can get the same asymptotic performance of
the M-smoothers estimators for independent as well as dependent data specifically, the strong mixing
dependence. Basically, we have covered most common situations, which can be commonly considered
for nonparameteric regression scenarios: homoscedasticity as well as heteroscedasticity and independent
random errors as well as dependent random errors too. We should now have sufficient robust modelling
tools in hand to handle most of all practical situations.

On the final note, there is also a way to extend the results to account for another concept of
dependent data, which we have not discussed yet, the φ-mixing dependence. The results can be
however, derived in a quite analogous way as well.

DEPARTMENT OF PROBABILITY AND MATHEMATICAL STATISTICS, FACULTY OF MATHEMATICS AND PHYSICS 55



Local Polynomial M-smoothers

2.5 Discussion on M-smoothers

We have proposed and discussed a set of very flexible statistical tools for a nonparametric regression
modelling where the flexibility in the model is approached from different angles at the same time. Firstly,
applying the local polynomial estimation techniques we account for a huge class of various regression
functions, which can be possibly allowed to be considered by the estimation approach while yielding a
consistent estimate. Moreover, asymptotic normality property is achieved as well.

From another point of view, using the M-estimation techniques (or so called robust approaches
respectively) we extend the flexibility of the model into another direction as we allow for some presence
of outlying observations or even heavy tailed distributions of random errors. This is not the case for the
classical L2-norm based estimation methods, which would fail once some outliers are present. Moreover,
the performance of the L2-norm based approaches in case of heavy-tailed random error distributions is
even roughly inconsistent and such approaches are definitely not suitable unless the normality condition
for the random error terms is assumed in advance.

Finally, the flexibility in modelling is approached from one more direction here – an independence
assumption. By introducing M-smoothers together with the weak dependence concept we extent the
flexibility of the model with respect to the set of assumptions even further more.

Local polynomial M-smoothers have a great potential to be applied in real situation mainly because
of two nice properties they inherit: a huge amount of flexibility while staying at a reasonable level with
a set of required conditions and on the other hand, assuring nice statistical properties (consistency and
asymptotic normality), which makes them usable in real data situations.

There is however, one more aspect of the flexibility in the final model, which have been not addressed
yet: a flexibility with respect to the smoothness assumption posed on the unknown regression function
and its derivatives respectively. We will discuss an extension with respect to such smoothness flexibility
in the next chapter, and we will generalize the class of admissible regression functions as we slightly
relax the assumption related to the Lipschitz property considered so far.
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Charles University in Prague

”To improve is to change.
To be perfect is to change often.”

Winston Churchill

(1874 – 1965) 3
Change-point models

As we already have all necessary background for the M-smoothers estimation we can now describe
a model where the smoothness assumption posed in the assumption A3 is relaxed a little as we will
allow also a model with some discontinuity points – change-point occurrences respectively. To be
more specific, one should rather refer to change-points as to structural breaks instead as we allow for
discontinuity points not only in the unknown regression function itself but also in all order derivatives
(up to the order of the local polynomial approximation given by p ∈ N). This implicitly means that
we take into account sudden changes not only in a location parameter but also in direction, curvature
and all higher order levels of topology as well. One has to realize here that except the location and
direction changes all higher order discontinuity points are barely visible with a naked eye and any further
interpretation of such changes requires a huge amount of imagination at first.

Unlike some other authors and papers related to this topic, in our approach we want to stay fully
free of any assumptions given with respect to some ties among discontinuity points. There are many
methods proposed where there is a kind of hierarchy considered between jump occurrences. Specifically,
if there is a structural break (jump) considered in the first derivative – a change in direction – there
is automatically a break (jump) assumed also in all lower order derivatives – in this case a change in
location. However, this will not be the case in our approach as our methods can perfectly handle a
situation if there is (e.g.) a sudden change in curvature only (jump in the second derivative) while all
lower and higher order derivatives can stay nicely continuous. This is, in our opinion a more realistic
scenario therefore, there are no ties considered between change-point occurrences in our approach at all.

We will distinguish two different options in this chanper. Firstly we will discuss a model where
all considered change-points (structural breaks respectively) are given in advance hence, we have an a
priori knowledge where the jump locations could occur. On the other hand, in the second scenario we
assume no a priori knowledge about the change-point occurrences at all therefore, jump locations are
treated as unknown parameters and they are subject of the whole estimation process as well.

We will mostly focus on change-point models under the heteroscedastic model assumption. The
homoscedastic scenario follows easily as a special case of the heteroscedastic model and change-point
models under the weak dependence assumption can be derived in an analogous way as well however,
slightly more technical proofs are required to handle the given dependence concept.

3.1 Inconsistency with classical M-smoothers approach

Let us firstly propose a situation where we will consider a model with some change-point occurrences
but the method which is used to estimate the unknown regression function (possibly discontinuous) or
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its derivatives respectively (possibly discontinuous as well) will remain as before – with no additional
adaptation. We will show that using the proposed M-smoothers approach together with discontinuity
assumptions however, with no additional modification will cause a serious inconsistency and it will
introduce a systematic bias term, which can not diminish even if the sample size tends to infinity.

Indeed, just a common sense dictates that once the regression function m(·) is discontinuous at
some point x0 ∈ (0, 1) while we try to impose a continuous estimation at this point even though
then there necessarily has to occur some imprecision involved at least within a small neighbourhood
(x0 − hN , x0 + hN) of x0 ∈ (0, 1) for hN > 0 to be the given bandwidth parameter. To be more
specific, this imprecision can be expressed explicitly and it is given by the theorem below.

THEOREM 3.1 (Inconsistency of M-smoothers in change-point locations)
Let the assumption of Theorem 2.8 are satisfied and moreover, we assume that the regression function

m(·) has a discontinuity point at x0 ∈ (0, 1). Then the proposed M-smoothers estimator introduces a
systematic bias within the point x0 and it holds that

√
NhN · (m̂(x0)−m(x0))

D−→
N → ∞

N

(
∆ · e⊤0 µ0

e⊤0 S1e0

,
Eψ2(σ(x0)ε1)

[λ′G(0, σ(x0))]2 f (x0)
· e⊤0 S−1

1 S2S
−1
1 e0

)
,

where µ0 =
(∫ 1

0 u0K(u)du, . . . ,
∫ 1

0 upK(u)du
)⊤
∈ Rp+1 and ∆ 6= 0 stands for the corresponding size

of a jump at the given point x0 ∈ (0, 1).

Proof. We will formulate some important issues of the proof only. The rest of the proof follows easily
according to the proofs for the heteroscedastic model (see Section 2.3.2).

Assuming the model with a discontinuity point at x0 ∈ (0, 1) we can express the model relationship
as Yi = m(Xi) + ∆ · I{Xi>x0} + σ(Xi)ε i, for i = 1, . . . , N and ∆ 6= 0 to be the size of the jump.

Let us consider the minimization problem
�

�

�

�2.1 for x = x0. Then the analogy of
�

�

�

�2.42 leads us in this
case to the set of equations

1√
NhN

N

∑
i=1

ψ

(
σ (Xi) ε i + I{Xi>x0} −

p

∑
j=0

bj

(
Xi − x0

hN

)j
)
·
(

Xi − x0

hN

)l

K

(
Xi − x0

hN

)
= 0,

for l = 0, . . . , p,

which is solved for the vector of parameter estimates β̃
◦
x0

= (β̃◦0, . . . , β̃◦p)
⊤ ∈ Rp+1. Using the same

reasoning as in the proof of Theorem 2.8 and the sequence of analogous steps one can easily obtain an
asymptotic conditional representation of the vector of parameter estimates as

1√
NhN λ′G(σ(x0)ε1)

· X⊤NWNψ(σ(x0)ε) =
1√

NhN
· X⊤NWNXN β̃

◦
x0
+ oP

(
1√

NhN

)
+

+
∆√
NhN

N

∑
i = 1
Xi > x0

(
Xi − x0

hN

)l

K

(
Xi − x0

hN

)
,

�

�

�

�3.1

for any l = 0, . . . , p, where the notation is the same as in Chapter 2. It is easy to verify now that

µ
(N)
l

def.
=

1

NhN

N

∑
i = 1
Xi > x0

E

[(
Xi − x0

hN

)l

K

(
Xi − x0

hN

)]
−→

N→∞
f (x0) ·

∫ 1

0
ylK(y)dy,
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for any l = 0, . . . , p therefore, µ
(N)
l −→ f (x0)µ̃l as N → ∞ where µ0 = (µ̃0, . . . , µ̃p)⊤ ∈ Rp+1.

The results now follows from the definition of matrix S1 (see the proof of Theorem 2.3).
�

Corollary 1

An analogous theorem to Theorem 3.1 can be formulated in case of higher order discontinuities as well.
Once the quantity ∆ 6= 0 reflects the size of a jump in some derivative of the unknown regression

function m(·) at the point x0 ∈ (0, 1), the systematic bias result for
√

Nh1+2ν
N

(
m̂(ν)(x0)−m(ν)(x0)

)

is obtained once we replace vector e0 in the limit distribution by the corresponding vector eν.

Theorem 3.1 states the asymptotic bias imprecision only therefore, it is only defined for the point
x0 ∈ (0, 1) where the jump occurs. However, using a finite sample approximation one will experience a
systematic bias not only at the point x0 ∈ (0, 1) but in some small neighbourhood (x0 − hN , x0 + hN)
around this point as well for some fixed value of the bandwidth parameter hN > 0. In this case the
systematic bias imprecision can be approximated by an appropriately standardized sum in

�

�

�

�3.1 .

3.2 Change-points known in advance

Let us start with the simplest case where all possible change-point occurrences (jump locations) in
the model are known in advance, which means we do have an a priori knowledge about all possible
candidates where the structural breaks could occur. This can be given by some previous exploration or
the nature of an experiment or just by a subjective opinion of a statistician.

3.2.1 Single change-point model

The simplest scenario to consider is a model where only one change-point is present in the model. We
will assume it is a jump located in the unknown regression function itself while its position is well-known
in advance. Considering such model we would like to investigate the main statistical properties for such
generalization. Indeed, change-point models follow as an obvious generalization of models discussed in
Chapter 2 as the Lipschitz assumption is slightly released and some discontinuity points are allowed to
be a part of the model. Some further generalizations into models with structural breaks (higher order
discontinuities) or models with multiple change-points follow easily and we will mention them later on.

Let again {(Xi, Yi); i = 1, . . . , N ∈ N} be a random sample given from some unknown joint
distribution function F(X,Y)(x, y) where the decomposition

Yi = m(Xi) + σ(Xi) · ε i, ε i ∼ G, i.i.d., i = 1, . . . , N,
�

�

�

�3.2

is assumed to hold, where for function m(·) we assume that

m(Xi) = m0(Xi) + ∆ · I{Xi>x0}, for some ∆ ∈ R \ {0}.
The point x0 ∈ (0, 1) is chosen in advance and function m0(·) satisfies assumption A3. Moreover,
function I{·} stands for an identifier function of the given event of interest.

For model
�

�

�

�3.2 we will assume the same set of assumptions as those required for the heteroscedastic

model26 (see p.35) except assumption A3 related to the (p+ 1)-order Lipschitz property, which is now
assumed to hold for function m0(·) rather than m(·).

26In case of chance-point models considered under the homoscedastic scenario one only needs to consider assumptions
derived for the homoscedastic model. Similarly, if we adopt a change-point model under the weak dependence concept
the corresponding weak dependence assumptions will be required for the results to hold.
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Given such model the point x0 ∈ (0, 1) is called the change-point (jump location respectively) and
∆ 6= 0 is some unknown size of a jump, which is a subject of the estimation process too. Under this
model scenario one can be interested in many different aspects of the model e.g. the estimation of
the unknown regression function, the estimation of the smooth function m0(·) or the estimation of the
size of the jump. One has to be aware of the fact that the jump location x0 ∈ (0, 1) is assumed to be
known in advance in this case therefore, there is no need to estimate the location of the change-point.
In this chapter we will however, rather focus on statistical procedures, which are used to “confirm” (or
reject) an existence of such change-point occurrence and we will discuss some important issues related
to the statistical hypothesis testing problems.

The idea is to propose a statistical test, which will be suitable to decide whether the jump at the
point x0 ∈ (0, 1) is statistically significant or not. We propose the following pair of hypothesis

H0 : ∆ = 0

H1 : ∆ 6= 0

}
for given x0 ∈ (0, 1)

�

�

�

�3.3

and we want to find an appropriate test statistic and the respective limit distribution of this test
statistic under the null hypothesis in order to draw critical values required for the test to decide. We
want the test statistic to be sensitive at possible jump locations therefore, we propose to use the
following quantity

TN(x0) =
√

NhN · |m̂+(x0)− m̂−(x0)|,
�

�

�

�3.4

where m̂+(x0) and m̂−(x0) respectively are just one-sided kernel estimates given by the minimization

problem
�

�

�

�2.1 where the original kernel function K(·) is replaced here by the corresponding one-sided
counterparts K+(·) = K(·)I{· ≥0} and K−(·) = K(·)I{· ≤0} respectively.

The idea behind introducing one-sided kernels is to produce one-sided M-smoothers estimates (the
left-hand side estimate and the right-hand side estimate) of the unknown regression function m(·) or
its derivatives respectively. Indeed, once we construct one-sided M-smoothers estimates and once we
prove their consistency we can easily use the difference between the left-hand side and the right-hand
side estimate (appropriately standardized) as the corresponding test statistic as it consistently estimates
the size of the jump, which is of interest.

However, unlike the M-smoothers estimator and the corresponding set of assumptions described
in Chapter 2, one sided kernels, which are introduced here are not symmetric any more. We will
firstly show that the asymptotic performance of the M-smoothers estimators based on one-sided kernel
functions K+(·) and K−(·) is actually the same as the performance based on the symmetric kernel K(·).

THEOREM 3.2 (Asymptotic normality for one sided estimates)

For model
�

�

�

�3.2 , the given point x ∈ (0, 1) such that x 6= x0 and assumptions A1 – A8, with A3
satisfied for m0(·) and A1, A2 and A5 replaced by A1∗, A2∗ and A5∗ it holds that

√
NhN ·

(
m̂

(ν)
+ (x)−m

(ν)
+ (x)−Bias

[
m̂

(ν)
+ (x)

])
D−→

N → ∞
N

(
0,

ν!E
[
ψ2(σ(x)ε1)

]

[λ′G(0, σ(x))]2 f (x)
e⊤ν S−1

1 S2S
−1
1 eν

)
,

where matrices S1 and S2 are the same as those in Theorem 2.8 just the kernel function K(·) is replaced
by the corresponding one-sided counterpart K+(·) and ν ∈ {0, . . . p} stands for the order of a derivative
of the regression function m(·) or its estimate respectively.
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Proof. The idea of the proof is the same as in the proof of Theorem 2.8 some minor differences
however, needs to be taken care of with respect to different, non-symmetric kernel function K+(·).

Firstly, one has to be aware of a different structure of the kernel function used here. Indeed, unlike
symmetric kernels where we had

∫
ukK(u)du = 0 for any odd k ∈ {1, . . . , p}, this is not the case for

one-sided kernels any more. Additionally, for a general kernel function K(·) we can not specify the mean
value

∫
uK+(u)du, which now also depends on the given kernel however, we would like to work with

standardized kernels in order to simplify further formulations. This can be nicely solved by introducing
a slightly modified assumption A6 where

A6† Let K+(·) = K(·)I{· ≥0}, where K(·) is a symmetric kernel from assumption A6. Moreover, we

assume that
∫

R
K+(u)du

∫
R

u2K+(u)du−
(∫

R
uK+(u)du

)2
= 1 and it holds that K+(0) 6= 0;

An analogous condition needs to be satisfied for the left-hand side kernel function K−(·) as well and
we also assume a mutual symmetric property where we have K+(u) = −K−(−u) for all u ∈ R.

Let us shortly motivate the assumption K+(0) 6= 0 6= K−(0): as we are primarily interested in
estimation of the unknown regression function m(·) or its derivatives respectively form the right-hand
side or the left-hand side respectively, it is important to assign some positive weights to points, which
are close from the right-hand side the left-hand side of the point of interest x ∈ (0, 1) where the kernel
function is seated on.

Under the modified assumption A6† the proof of Theorem 3.2 goes now along the lines of the proof
of Theorem 2.8 therefore, we will omit the rest.

�

Corollary 2

A quite analogous theorem can be also formulated and proved to state the asymptotic normality result
for the left-hand side M-smoothers estimates. The proof of such theorem is analogous to the proof of
Theorem 3.2.

We have shown that using one-sided kernels is not an issue here and that the results hold quite
analogously for one-sided estimates as well. This will be the key point in the next proofs related to the
testing problem defined by

�

�

�

�3.3 and based on the test statistic
�

�

�

�3.4 .

One can expect quantities m̂+(x0) and m̂−(x0) in
�

�

�

�3.4 to be nonparametric estimates of the
corresponding theoretical values m+(x0) = limyցx0

m(y) and m−(x0) = limyրx0
m(y) therefore,

such test statistics should be sensitive at a possible jump location and one would expect it to be large
if there is a change-point present at the given point x0 ∈ (0, 1) and it should be negligible if there is
not. Given this behaviour, large values of TN(x0) should cause rejection of the null hypothesis against
the alternative one and small values of the test statistic TN(x0) should not reject the null hypothesis.

A proper statistical criterion is given by the corresponding critical value tx0(α) where

iff |TN(x0)| > tx0(α) =⇒ reject H0,

where α ∈ (0, 1) is a given level of the test, which restricts the probability of the second type error in
the test. In order to know what distribution to use for drawing critical values let us now state the main
distributional results for this test based on the test statistic TN(x0).
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THEOREM 3.3 (Asymptotic distribution of the test statistics under the null hypothesis)
Let the assumptions of Theorem 3.2 are fulfilled. Then the asymptotic distribution of the test statistic

TN(x0) under the null hypothesis H0 from
�

�

�

�3.3 is given by

√
NhN · [m̂+(x0)− m̂−(x0)]

D−→
N → ∞

N

(
0,

2E
[
ψ2(σ(x0)ε1)

]

[λ′G(0, σ(x0))]2 f (x0)
e⊤0 S−1

1 S2S
−1
1 e0

)
,

where matrices S1 and S2 are the same as in Theorem 3.2 and e0 = (1, 0, . . . , 0)⊤ ∈ Rp+1.

Proof. Given Theorem 3.2 one just needs to realize that the same result holds also for an asymptotic
behaviour of the quantity

√
NhN · [m̂−(x)−m−(x)], where in turn the one-sided kernel function K+(·)

is replaced by its mirror version K−(·). Moreover, both estimates m̂+(x0) and m̂−(x0) are independent
of each other as they are computed from two separate parts of data therefore, one just needs to use
the generic property of the normal distribution and the result already follows directly.

�

THEOREM 3.4 (Consistency of the test)

For model
�

�

�

�3.2 , assumptions as in Theorem 3.3 and the alternative hypothesis H1 from
�

�

�

�3.3 the
following convergence in probability holds true

√
NhN · |m̂+(x0)− m̂−(x0)| P−→

N → ∞
∞.

Proof. Under the alternative hypothesis H1 it holds that [m̂+(x0)− m̂−(x0)]
P−→ ∆ 6= 0 so the

result holds under the assumption A8 as
√

NhN → ∞ for N → ∞.
�

Given these two theorems we are now fully competent to use the proposed statistical test in order
to decide if some expected change (jump) at some given point x0 ∈ (0, 1) in the unknown regression
function m(·) really occurs or if it does not.

Another question that could arise here is a capability of computing the limit distribution under the
null hypothesis given by Theorem 3.3, which should be use to obtain critical values, which are of the
key importance in making the test decisions. We already know that this distribution is normal however,
the variance term of this distribution depends on some unknown quantities. One will never know in
real situations how does the scale function σ(·) look like, or what is the true distribution function G(·)
of random errors or what is the real shape of the design density function f (·) either. One way to deal
with this problem is to use appropriate empirical estimates for these quantities based on the random
sample {(Xi, Yi); i = 1, . . . , N} and plugging them in to the variance expression in Theorem 3.3 we
should obtain a reasonable approximation of the true but unknown asymptotic distribution under the
null hypothesis H0. However, such plug-in approximations give rather slow convergence and mostly they
are also too much time expensive therefore, we will consider a bootstrap based simulations in Chapter
4, which can handle this situation in a much more convenient way.

3.2.2 Multiple change-point models

Let us now discuss a more complex generalizations of the model defined in
�

�

�

�3.2 especially, we will focus
on a model with multiple change-point occurrences and a model with jumps of different hierarchy levels.
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In order to implement multiple change-points into the model one just needs to understand the basic
structure of the model

�

�

�

�3.2 where x0 ∈ (0, 1) stands for a change-point location and ∆ 6= 0 stands for
the size of a jump. Let us define a sequence of change-point locations 0 < x1 < x2 < · · · < xn < 1,
for some n ∈ N such that |xi− xj| > 2hN for ∀i 6= j. This is assumed to assure that two neighbouring
change-points are not too much close to each other and to make sure that the unknown regression
function m(·), which is continuous between these jumps locations is still estimable using a local approach
given by the bandwidth parameter hN > 0. This will also allow us to consider a set of tests to be
mutually independent as each test statistic is actually computed from some other (unique) part of data.
We define a model with multiple change-points (in location) as follows:

Yi = m(Xi) + σ(Xi) · ε i, ε i ∼ G, i.i.d., for i = 1, . . . , N,
�

�

�

�3.5

where for the unknown regression function m(·) it holds that

m(Xi) = m0(Xi) +
n

∑
k=1

∆k · I{Xi>xk}, where ∆k ∈ R \ {0}, ∀k = 1, . . . , n, and n ∈ N,

where again function m0(·) is assumed to satisfy assumption A3. One can define even more general
models where there are jumps assumed in the regression function itself and also in its derivatives.
For simplicity, let us define a set of polynomial basis functions Rp = {ϕ0, . . . , ϕp}, where ϕj(x) = x j,
for j = 0, . . . , p and p ∈N being the order of the local polynomial approximation. Under this notation
we can formulate a very general change-point model using the following three steps:

➀ Yi = m(Xi) + σ(Xi) · ε i, where ε i ∼ G, are i.i.d., for i = 1, . . . , N;

➁ m(Xi) = m0(Xi) + ∑
n
k=1 ∆k · ϕk(Xi) · I{Xi>xk}, where m0 ∈ Lp+1(0, 1);

➂ ϕk ∈ Rp, and ∆k ∈ R \ {0} for ∀k = 1, . . . , n;

Under this model definition we implicitly allow all possible structural breaks – sudden changes to occur
in the model (jumps of different hierarchy level in the unknown regression function itself and all order
derivatives, up to the given order of the local polynomial approximation given by the value of p ∈N).

However, in all these models the jump locations (structural breaks) are given in advance and the
only common hypothesis testing problem for such model scenarios is to test if some jump at the given
location xk ∈ (0, 1) for some k ∈ {1, . . . , n} is significant or if it is not. The global hypothesis problem
can be introduced via a set of n pairs of hypothesis where

H
(k)
0 : ∆k = 0

H
(k)
1 : ∆k 6= 0

}
for k = 1, . . . , n,

�

�

�

�3.6

where one needs to use an appropriate test statistic and its corresponding asymptotic limit distribution
derived for the particular level of the discontinuity level he wants to test for.

As far as we have derived only a test for testing change-point occurrences in the regression function
itself it is still left to be shown that a similar approach also applies for statistical tests for testing
the significance of higher order structural breaks – jump occurrences in the corresponding derivatives
of the unknown regression function m(·). However, this can be easily derived using already known facts.

Indeed, from Theorems 2.8 and 3.3 one can easily obtain the asymptotic distributional property for
a general test statistic

T
(ν)
N (xk) =

√
Nh1+2ν

N ·
∣∣∣m̂(ν)

+ (xk)− m̂
(ν)
− (xk)

∣∣∣ , for any k = 1, . . . , n and ν = 0, . . . , p,
�

�

�

�3.7
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where quantities m̂
(ν)
+ (xk) and m̂

(ν)
− (xk) are just the corresponding one-sided estimates of one-sided

derivatives of the unknown regression function m(·), defined by an analogous minimization problem as�

�

�

�2.1 where the kernel function K(·) is replaced by its one-sided counterparts.

One naturally assumes that the quantity in
�

�

�

�3.7 will be sensitive at those points where some

change-points in the νth derivative of the unknown regression function really occur. The quantity in�

�

�

�3.7 is therefore e used as a suitable candidate for the test statistic. The next theorem follows just as
a straightforward extension of the previous assertions and conclusions.

THEOREM 3.5 (Distribution of the general test statistics under the null hypothesis)

Let the assumptions of Theorem 3.3 are fulfilled. Then the general test statistic T
(ν)
N (xk) follows

under the null hypothesis in limit in law a normal distribution given by

√
Nh1+2ν

N ·
(

m̂
(ν)
+ (xk)− m̂

(ν)
− (xk)

)
D−→

N → ∞
N

(
0,

2ν!E
[
ψ2(σ(xk)ε1)

]

[λ′G(0, σ(xk))]2 f (xk)
e⊤ν S

−1
1 S2S

−1
1 eν

)
,

for any ν = 0, . . . , p and some k ∈ {1, . . . , n}, where ν ∈ {0, . . . , p} stands for the corresponding
hierarchy level of the discontinuity point to be considered.

Proof of Theorem 3.5

The proof of this theorem follows easily as a straightforward generalization of the proof of Theorem 3.3
while the same argumentation as above holds here as well.

�

Considering now the set of n ∈ N pairs of hypothesis
�

�

�

�3.6 we need to be aware of the fact that by
providing a separate statistical test for each pair of the hypothesis for k = 1, . . . , n we introduce during
the processing a common problem related to the multiple testing procedures where the probability of
the second type error is not managed by the level of the test any more as it now also depends on the
total number of independent pairs of hypothesis to be tested.

We will however, not discuss this matter in this thesis in detail let us just mention that appropriate
statistical correction procedures have been proposed in order to deal with the multiple testing problems,
under the variety of different settings and scenarios. Probably the most common one is the Bonferroni
correction27 introduced by Dunn (1961).

27Perhaps, the Bonferroni correction is more accurately described as Dunn-Bonferroni correction as it was originally
proposed by Olive Jean Dunn as a generalization of the Boole inequality. Many alternatives to the Bonferroni correction
can be easily find in literature.
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3.3 Unknown change-points

Another, somehow more complex approach will arise when we have no a priori knowledge about any
change-point locations, which may or may not occur in a considered regression model. Under such
situations one is mostly interested in a statistical testing problem that the unknown regression function
m(·), which is of interest (or its derivatives up to the order p respectively) is continuous (or smooth of
some specific order) or if there is a jump (at least one) present along its domain28.

We will firstly discuss a situation where we want to test the continuity of the regression function
m(·) against an alternative that there is a jump present in m(·). Let us introduce a pair of statistical
hypothesis where

H0 : m(·) ∈ C1(0, 1);
H1 : m(·) 6∈ C1(0, 1);

�

�

�

�3.8

where C1(0, 1) stands for a set of continuous function of the first order defined on (0, 1) or analogously,

H0 : ∀x ∈ (0, 1) : m+(x)−m−(x) = 0;

H1 : ∃τ∈(0,1) :
∫ τ+ǫ

τ−ǫ (m+(x)−m−(x))2 dFX(x) > 0;

�

�

�

�3.9

for some arbitrarily small ǫ > 0 and FX(·) to be the marginal distribution function of the random

variable X. Instead of the L2 norm in
�

�

�

�3.9 we could also adopt a general loss function ρ(·) however,
we will not discuss such options in this thesis.

The idea of the test is to decide if there exists a statistically significant evidence for a jump to occur
in the unknown regression function and if the test is rejected one is then interested in specifying an
exact position where the discontinuity point should be located. Two steps of the same procedure are
involved: providing a statistically consistent decision and estimating the position of the jump.

There are actually two different approaches, which can be used to deal with such statistical tests.
The first one is based on cumulative sums statistic (CUSUM statistic) proposed by Page (1954) and
the second one, technically more advanced is based on maximum type of test statistics, which lead to
Extreme Value Theory. We will however, discuss only the first option here.

Let us partially base our approach on the one proposed by Gao et al. (2008) and all further details
can be found there as well. Let us propose an auxiliary statistic

T̃hN
(x)

def.
= (m̂+(x)− m̂−(x))2 ,

�

�

�

�3.10

which is again assumed to be sensitive with respect to a possible jump occurrence for any x ∈ (0, 1).
We already know from Theorem 3.3 that under the null hypothesis (if there is no jump located at the
given point x ∈ (0, 1)) the quantity (m̂+(x)− m̂−(x)) follows in limit in law a normal distribution
with a zero mean parameter and an appropriate variance term. As far as we are interested in the whole
domain of interest rather than one specific point only we need to account for this requirement, which
can be done by introducing the test statistic in the form

ThN
=

∫ 1
0 T̃hN

(x)dFX(x)−
∫ 1

0 ET̃hN
(x)dFX(x)

∫ 1
0 σ
(

T̃hN
(x)
)
dFX(x)

,
�

�

�

�3.11

28We are still staying focused on interval (0, 1) only to be the domain of interest for the random variable X. Adaptations
onto more general intervals (a, b), for −∞ < a < b < ∞ are quite straightforward.

DEPARTMENT OF PROBABILITY AND MATHEMATICAL STATISTICS, FACULTY OF MATHEMATICS AND PHYSICS 65



Change-point models

where σ
(

T̃hN
(x)
)
=
√

Var[T̃hN
(x)], for x ∈ (0, 1).

THEOREM 3.6 (Asymptotic distribution for the global test statistic)

Let us assume the hypothesis testing problem
�

�

�

�3.9 and the set of assumptions as in Theorem 3.2.
Then under the null hypothesis H0 the following convergence in distribution is achieved

ThN

D−→
N → ∞

N(0, 1).

Proof. The proof of this theorem can be shown as a generalization of the proof in Gao et al. (2008).

�

The decision about the hypothesis testing problem
�

�

�

�3.9 is again based on the corresponding critical
value of the limit distribution and it holds that

iff
∣∣ThN

∣∣ > uα =⇒ reject H0,

where uα ∈ R is the corresponding critical value of the standard normal distribution N(0, 1). In real
situations however, it is more common to consider a test statistic given by

T†
hN

=
∫ 1

0
T̃hN

(x)dFX(x),

which also follows in asymptotic a normal distributional law where for the variance parameter we have

that σ2
hN
(T†

hN
(x)) =

∫ 1
0 T̃hN

(x)dFX(x). The final decision can be based on bootstrap simulations where

we would mimic the unknown distribution of interest or on some plug-in techniques which, however,
mostly perform much more poorly.

Corollary 3

The result of Theorem 3.6 can be generalized into the α-mixing dependence concept as well. Moreover,
just a straightforward extension is needed to formulate the asymptotic distribution of the test statistic

T
(ν)
hN

used for an analogous test however, for testing continuity vs. discontinuity of some higher levels

of hierarchy, where T
(ν)
hN

is based on quantities
(

m̂
(ν)
+ (x)− m̂

(ν)
− (x)

)2
, for x ∈ (0, 1).

3.4 Discussion on Change-points

Change-point models represent a very popular area in a statistical research today unfortunately, just a
very small portion of the whole concept of models with discontinuities can be mentioned in this thesis.
We have only discussed some useful scenarios together with some common statistical approaches but
many other scenarios as well as statistical methods on this topic can be found in literature.

One interesting idea for a further research would be considering the M-smoothers estimators together
with maximum type test statistics and to test the continuity property of the whole regression function.
On the other hand, one could also possibly think of another generalizations of the proposed concept
and to introduce a model where discontinuities are allowed to be present in the scale function σ(·) or
its derivatives as well. Some nonparametric simultaneous testing procedures based on the L2 approach
were already introduced to handle such situations in practical cases.
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”Only a good detective can tell
you who is the murderer if nobody
saw anything, nobody heard and
nobody knows anything! That is
what the bootstrap is all about!”

Martin Marušic

(1986 – . . . )
4

Bootstrapping of M-smoothers

We already have a sufficient knowledge on the asymptotic performance of the proposed M-smoothers
estimates under the all three considered scenarios. However, focussing now on the limit distributions
stated in the theorems in Chapter 2 as well as Chapter 3 one can easily see that they all heavily depends
on some unknown quantities, which are in real applications not given explicitly and they rather remain
unknown.

One plausible way to deal with such unknown quantities is to use some additional estimation
approaches to estimate them firstly and to plug the estimates into the asymptotic normality expression
to get the final distribution of interest. Unfortunately, as we have already mentioned, using the plug-in
techniques could be considered to be quite straightforward in practice but their asymptotic performance
is rather poor no mention that some quantities may not be even so easily obtainable.

An alternative approach was introduced within a bootstrap idea. Since the bootstrap methods were
firstly introduced in statistic by Efron and Tibshirani (1993) (an extensive study on bootstrap methods
can be found in Davison and Hinkley (1997) and Bickel and Freedman (1981) where the second one
refers to the nonparametric regression especially) they have grown a huge attention and importance in
almost all areas of the modern statistic. In principle, the bootstrap approach works with the empirical
distribution function of some random sample to obtain a reasonable approximation of the unknown
distribution for some statistic, which is of interest. The main advantage of the bootstrap methods is
their simplicity and once a corresponding set of regularity conditions is derived the bootstrap methods
can be consistently used even for very complex problems and sophisticated statistical questions as well.

In order to apply the bootstrap idea in real data problems the bootstrap simulations are used instead.
They can be thought of as computer-based re-sampling approaches for assigning measures of accuracy
to some sample estimates. The idea of bootstrap simulations is to impose a well defined re-sampling in
order to replicate the quantity of interest (mostly some statistic) where the set of obtained replicates
can be effectively and consistently used to mimic the unknown distribution of the quantity of interest
(as well as all further properties coming from this distribution e.g. critical values).

On the other hand, the bootstrap approximation usually does not provide a general finite sample
guarantees and additionally, there is a tendency for slightly optimistic results to be expected however,
the bootstrap methods can provide very effectively in general. Moreover, using simulation methods
instead of plug-in techniques one can achieve both a reasonable asymptotic performance as well as a
quite straightforward application in real data cases. As far as the proper conditions required for the
bootstrap simulations to work are crucial we will separately discuss an appropriate bootstrap algorithm
for each of the three scenarios considered in Chapter 2 and a proper theoretical justification of the
bootstrapping idea will be given for each algorithm afterwards.
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4.1 Smooth residual bootstrap

Focusing now on different bootstrap adaptations proposed for regression models and nonparametric
ones especially, one has in hand a variety of different approaches each of them based on somehow
another principle. Three of them have however, mainly attached the most popularity in last years:

❏ Model based bootstrap - given the original random data sample {(Xi, Yi; i = 1, . . . , N} we
assume the data pairs (Xi, Yi) for i = 1, . . . , N to be fixed and bootstrap replicates come directly
when re-sampling from these data pairs.

❏ Residual based bootstrap - given the random sample {(Xi, Yi; i = 1, . . . , N} one firstly needs to
obtain a corresponding estimate for a functional regression relationship, which can be consequently
used to estimate the vector of residuals. The residual based bootstrap relies on re-sampling from
the set of these residuals.

❏ Blocks bootstrap - is technically based on re-sampling from the set of pre-specified blocks of
consecutive data pairs (Xi, Yi), for i = 1, . . . , N. This approach is especially suitable for most
cases under some data dependence concept.

We will discuss two principles here: a generalization of the residual based bootstrap, which will
be proposed for the homoscedastic and heteroscedastic model scenario with independent random error
terms and also a generalization of the blocks bootstrap approach, which we will used to handle the
model with the α-mixing dependence concept.

4.1.1 Homoscedastic model with independent random errors

Let us start with the simplest model scenario for the M-smoothers estimator and let us recall the
definition of model

�

�

�

�2.3 together with the set of assumptions A1 – A7. We will propose a residual
based bootstrap algorithm, which can be used to mimic the limit distribution stated in Theorem 2.5
and Theorem 3.2 both for ν = 0 and Theorem 3.3 respectively.

Algorithm: SMOOTH RESIDUAL BOOTSTRAP (homoscedasticity)

s t a r t

B1 Compute residuals {ε̂ i; i = 1, . . . , N}, where ε̂ i = Yi − m̂(Xi), where m̂(Xi) is a corresponding

M-smoothers estimate of m(Xi) at Xi defined by minimization
�

�

�

�2.1 ;

B2 Resample with replacement from the set of residuals {ε̂ i; i = 1, . . . , N} in order to obtain new
residuals ε̃ i, for i = 1, . . . , N;

B3 Define new bootstrap residuals ε⋆i = Vi · ε̃ i + aN · Zi, where P[Vi = −1] = P[Vi = 1] = 1
2 ,

and Zi ∼ N(0, 1) are i.i.d. standard normal random variables and aN = o(1) is a bootstrap

bandwidth parameter, such that NhNa2
N/ log h−1

N → ∞ and a2
N/h1+δ

N = o(1) as N → ∞, for
δ > 0 small enough;

B4 Define a new bootstrap data sample {(Xi, Y⋆
i ); i = 1, . . . , N}, where Y⋆

i = m̂(Xi) + ε⋆i ;

B5 Re-estimate the unknown function of interest m(x0) (or m+(x0) and m−(x0) respectively) based
on the new data sample {(Xi, Y⋆

i ); i = 1, . . . , N} → obtain m̂⋆(x0), m̂⋆
+(x0) and m̂⋆

−(x0);

B6 Repeat steps B2 → B3 → B4 → B5 to get the estimates m̂⋆
b(x0), m̂⋆

b+(x0) and m̂⋆
b−(x0), for

b = 1, . . . , B, where B ∈ N is sufficiently large;

B7 Use the quantities produced in step B6 to mimic the unknown distribution of interest;

e n d o f S R B
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The algorithm described above follows the idea of the smooth residual based bootstrap introduced
in Neumeyer (2006). The notion of the smooth bootstrap comes from the step B3, which is introduced
in the algorithm to ensure the right centering of bootstrapped residuals while the second part of this
step – the smoothing part aN Zi – ensures a proper convergence of the bootstrapped distribution to an
unknown distribution of the true random errors {ε1}N

i=1.

Using the smooth version of the bootstrap algorithm one can conveniently handle both, a proper
centering of bootstrapped residuals in order to eliminate the systematic bias and also preserving the
robust flavour of the whole procedure.

The basic principle is to withdraw a new set of residuals {ε̃ i; i = 1, . . . , N} from the set of orig-
inal residuals {ε̂ i; i = 1, . . . , N}. In order to correct for a systematic bias, which would be implicitly
involved in all further calculations one needs to make sure that the bootstrapped residuals {ε̃ i} are,
conditionally on {(Xi, Yi); i = 1, . . . , N} centered, which is mostly done by subtracting the average
(e.g. ε̃∗i = ε̃ i − 1

N ∑j ε̃ j). However, bearing in mind the robust flavour of the M-smoothers approach
where we allow for outlying observations and heavy-tailed distributions of random errors such centering
would be insane as it is not stable with respect to outliers moreover, it may not be even defined for
some heavy-tailed distributions.

On the other hand, when using the bootstrapping idea to mimic the unknown distribution of a test
statistic one has to be aware of the fact that such limit distribution is given under the null hypothesis
only. For the M-smoothers approach and change-point tests this would mean that the set of residuals
should be appropriately obtained using the data sample and the M-smoothers estimate both in a full
correspondence with the null hypothesis however, if there is a change-point really present in the model,
which we do not know yet this would not be the case.
Indeed, if the alternative hypothesis holds true we use a continuous M-smoothers estimate to compute
the residuals while the data points actually come from a discontinuous function instead.

The effect of such “imprecision” will be however, only reflected in a small artificial increase of
the variability (scale respectively) within the set of bootstrapped residuals {ε⋆i }N

i=1 conditioned on the
random sample (X ,Y), which will end up with a slightly more optimistic result than expected (which
is common for the bootstrap approaches in general).

However, given the fact that inappropriate residuals are produced in a small neighbourhood of the
jump location only while over the rest of the domain we assume to have consistent estimates of the
error terms this does not seriously effect the final result. Moreover, an artificial increase of variability
in the bootstrapped residuals is also cased by the centering part as well as the smoothness part in B3.
Asymptotically, all three variance increase factors are negligible therefore, we will not investigate these
issues in more details and we will focus on justifying the bootstrapping idea instead.

THEOREM 4.1 (Bootstrap consistency for homoscedastic model)

Let us assume model
�

�

�

�2.3 and assumptions A1 – A7 and let the bootstrap bandwidth parameter aN

satisfies all conditions in B3. Then the following convergence in probability is achieved

sup
z∈R

{
P⋆
[√

NhN (m̂⋆(x)− m̂(x)) ≤ z
]
− P

[√
NhN (m̂(x)−m(x)) ≤ z

]}
P−→

N → ∞
0,

where P⋆[ · ] stands for a conditional probability conditioned on the given random sample (X ,Y) =
{(Xi, Yi); i = 1, . . . , N ∈N} and x ∈ (0, 1) is a given point of interest.
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Proof. The proof of the bootstrap consistency result for the homoscedastic model scenario is given
in Section 4.2 below.

�

Corollary 4

An analogous theorem can be formulated and proved to justify the bootstrap consistency with respect
to the asymptotic distribution of one-sided M-smoothers as well as the asymptotic distributions of the
corresponding test statistics discussed in Chapter 3 (under the homoscedastic assumption of course).
Moreover, the assertion in Theorem 4.1 can be extended to cover the asymptotic distributions of the
corresponding M-smoothers estimates of all order derivatives for any ν ∈ {1, . . . , p}.

Given Theorem 4.1 one obtains a very powerful tool for a practical application of the M-smoothers
estimators under the homoscedastic model scenario as it nicely avoids estimating the unknown scale,
the distribution of random errors or the original density function of the design variable X. Instead, it
is sufficient to employ a quite straightforward simulation exercise and all required conclusions can be
consistently derived using the bootstrap distribution. This is useful especially for making decisions on
hypothesis testing problems or constructing confidence intervals for some quantity of interest.

Introducing the bootstrap algorithm is however, just one part of the whole bootstrapping concept,
which is used to avoid the plug-in techniques. Another important part relies on justifying the proposed
bootstrapping idea and showing that the algorithm as described above can be indeed effectively used
to mimic the unknown distribution of interest.

We will prove the consistency property for the proposed bootstrap algorithm and we will also com-
pare the asymptotic and the finite sample performance for this method however, let us firstly discuss
another model scenario, which can be also considered together with the smooth residual bootstrap –
the heteroscedastic model introduced in Section 2.3.

4.1.2 Heteroscedastic model with independent random errors

The idea of bootstrapping in heteroscedastic models remains very the same as in the homoscedastic
scenario already discussed. Indeed, the asymptotic distribution derived for the heteroscedastic model
(e.g Theorem 2.8) depends again on some unknown quantities. Beside the distribution function G(·)
and the density function f (·) there is in addition the scale function σ(·) incorporated into the variance
expression in Theorem 2.8 (analogously in Theorem 3.2 and Theorem 3.3 as well), which needs to be
properly taken care of by the heteroscedastic version of the bootstrap algorithm.

The heteroscedastic version of the bootstrap algorithm will mostly correspond with the algorithm
introduced for the homoscedastic model however, one modification is implemented in the first step B1,
where the set of residuals {ε̂ i; i = 1, . . . , N} needs to be standardized with respect to the scale function
σ(·) in order to fulfil the assumption A2∗ where the unit scale is assumed now.

It is obvious, that the special case of the heteroscedastic bootstrap algorithm where we have the
scale function to be constant over the whole domain of interest will lead back to the homoscedastic
version of the proposed algorithm.
Given this fact we will only assume one version of the bootstrap algorithm in the proofs and we will
justify the bootstrapping idea under the heteroscedastic model scenario only.
Let us however introduce the heteroscedastic version of the bootstrap algorithm firstly.
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Algorithm: SMOOTH RESIDUAL BOOTSTRAP (heteroscedasticity)

s t a r t

B1 Compute residuals {ε̂ i; i = 1, . . . , N}, where ε̂ i = Yi−m̂(Xi)
σ̂(Xi)

, where m̂(Xi) is an estimate of

m(Xi) at Xi defined by
�

�

�

�2.1 and σ̂(Xi) is the corresponding estimate29 of the scale function
σ(·) given at the point Xi as well;

B2 Resample with replacement from the set of residuals {ε̂ i; i = 1, . . . , N} in order to obtain new
residuals ε̃ i, for i = 1, . . . , N;

B3 Define new bootstrap residuals ε⋆i = Vi · ε̃ i + aN · Zi, where P[Vi = −1] = P[Vi = 1] = 1
2 , Zi ∼

N(0, 1) are i.i.d. standard normal random variables and aN = o(1) is an appropriate bootstrap

bandwidth parameter, such that NhNa2
N/ log h−1

N → ∞, Na
2(p+1)
N → 0 and a2

N/h1+δ
N = o(1) as

N → ∞, for some δ > 0 small enough;

B4 Define a new bootstrap data sample {(Xi, Y⋆
i ); i = 1, . . . , N}, where Y⋆

i = m̂(Xi) + σ̂(Xi) · ε⋆i ;
B5 Re-estimate the unknown functions m(x0) (or m+(x0) and m−(x0) respectively) based on new

data sample {(Xi, Y⋆
i ); i = 1, . . . , N} → obtain m̂⋆(x0) ( m̂⋆

+(x0) and m̂⋆
−(x0) respectively);

B6 Repeat steps B2 → B3 → B4 → B5 to get estimates m̂⋆
b(x0), m̂⋆

b+(x0) and m̂⋆
b−(x0), for

b = 1, . . . , B, for B ∈ N to be sufficiently large;

B7 Use the quantities produced in step B6 to mimic the unknown distribution of interest;

e n d o f S R B

THEOREM 4.2 (Bootstrap consistency for heteroscedastic model)

Let us assume model
�

�

�

�2.39 and the same assumptions as in Theorem 2.8. Moreover, let the
additional assumption posed on the bootstrap bandwidth parameter aN in B3 is satisfied as well. Then
the following convergence in probability is achieved

sup
z∈R

{
P⋆
[√

NhN (m̂⋆(x)− m̂(x)) ≤ z
]
− P

[√
NhN (m̂(x)−m(x)) ≤ z

]}
P−→

N→∞
0,

where P⋆[ · ] stands for a conditional probability given data (X ,Y) = {(Xi, Yi); i = 1, . . . , N}.
Proof. The proof of this theorem is given in Section 4.2 below.

�

Corollary 5

An analogous theorem can be formulated to state the consistency with respect to the asymptotic
distributions of one-sided M-smoothers as well as the asymptotic distributions stated in Theorem 3.2
and Theorem 3.3. Similarly, the result in Theorem 4.2 can be easily extended to cover the asymptotic
distributions of the corresponding M-smoothers estimates of all order derivatives for any ν ∈ {1, . . . , ν}.

Going now along the steps of both proposed versions of the smooth residual bootstrap algorithm
(homoscedastic and heteroscedastic) one can acknowledge their simplicity and intuitiveness. Using
the bootstrap techniques to investigate the asymptotic properties and providing statistical decisions is
far more convenient than using plug-in techniques and expressing the unknown distribution of interest
throughout its some additional finite sample estimates.

29One possible way to introduce an estimate of the scale function σ(·) is to run a minimization problem similar to
�

�

�

�2.1

where in turn one uses quantities ρ(Yi − m̂(Xi)) for i = 1, . . . , N instead of Yi’s and function σ(·) instead of m(·) while
using the same loss function ρ(·) and the local approach defined by the kernel function K(·). Some alternative estimation
approaches however, for the fixed design only are also shortly discussed in Chapter 5.
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4.2 Justification of the smooth residual bootstrap

In order to complete the discussion on bootstrapping of M-smoothers with independent random error
terms we just need to justify the proposed simulation algorithms and we should give theoretical proofs
for Theorems 4.1 and 4.2. However, as far as the homoscedastic scenario can be easily derived as a
special case of the heteroscedastic bootstrap principle where the scale function σ(·) is set to be constant
over the whole domain of interest we will prove Theorem 4.2 only and the proof of Theorem 4.1 will
follow analogously.

Firstly, we recall that P⋆[·] stands for a conditional probability conditioned on the given random
sample (X ,Y) = {(Xi, Yi); i = 1, . . . , N}, which we will bear in mind along the whole proof below.

Let {ε⋆i }N
i=1 be a sequence of the bootstrapped residuals obtained in step B3 of the smooth residual

bootstrap algorithm for the heteroscedastic model. Then the corresponding vector of the parameter

estimates β̂
⋆

x =
(

β̂⋆
0, . . . , β̂⋆

p

)⊤
= (m̂⋆(x), m̂⋆′(x), . . . ,

m̂⋆(p)(x)
p! )⊤ ∈ Rp+1 is given as a solution of the

/mboxminimization problem

β̂
⋆

x = Argmin
(b0, . . . , bp)⊤ ∈ Rp+1

N

∑
i=1

ρ

(
Y⋆

i −
p

∑
j=0

bj(Xi − x)j

)
· K
(

Xi − x

hN

)
,

�

�

�

�4.1

where Y⋆
i , for i = 1, . . . , N are defined in step B4 as

Y⋆
i

def.
= m̂N(Xi) + σ̂N(Xi)ε

⋆
i ,

where m̂N(·) is the M-smoothers estimate of the unknown regression function m(·) defined by
�

�

�

�2.41
given the finite sample data (X ,Y) and σ̂N(·) is a corresponding estimate of the scale function defined
in step B1 based on the finite data sample (X ,Y) again.

The idea of the proof is now the same as in the case of Theorem 2.8. Using a sequence of similar
steps we obtain an equivalent problem given by the set of equations

1√
NhN

N

∑
i=1

ψ

(
σ̂N (Xi) ε⋆i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
= 0,

�

�

�

�4.2

for l = 0, . . . , p,

which is solved for the vector of parameter estimates β̂
•
x = (β̂•0, . . . , β̂•p)

⊤, where the definition of the

vector β̂
•
x ∈ Rp+1 is analogous with the definition of β̂

◦
x ∈ Rp+1 in Chapter 2.

We want to find now a reasonable asymptotic representation for the vector of parameter estimates

β̂
•
x similarly, as we did for β̂

◦
x in

�

�

�

�2.46 . The idea of the three subsequent steps in Chapter 2 will be
therefore, applied again.

The first step of the proof, which in this case refers to the fact that P⋆
[
|β̂⋆

j | ≤ i⋆
N

]
P−→ 0, for any

j = 0, . . . , p and some sequence i⋆
N ≥ 0 such that i⋆

N → 0 as N → ∞ can be proved using the same
arguments as before and hence we will omit it here. We will rather focus on the rest of the proof and
we will formulate two important lemmas which will be used afterwards.
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Lemma 9
Let model

�

�

�

�2.39 holds and let the assumptions from Theorem 2.8 together with the assumption posed
on the bootstrap bandwidth parameter aN in step B3 are satisfied. Then it holds that

(i) supe∈R
|G⋆(e)− G(e)| = o(1), [P]− a.s.,

where G⋆(·) stands for a distribution function of the bootstrapped random errors {ε i}N
i=1 defined in B3

conditioned on the random sample (X ,Y). Additionally, if the corresponding density functions exist it
also holds that

(ii) supe∈R
|g⋆(e)− g(e)| = o(1), [P]− a.s..

Proof of Lemma 9

The proof of the lemma can be found in Neumeyer (2006) as a proof of Lemma 2.19. For the ho-
moscedastic scenario the proof follows from the proofs of Lemma 2.1 and 2.4 (Neumeyer (2006)). �

Lemma 10
For model

�

�

�

�2.39 and the same assumptions as in Lemma 9 the following convergence in probability
is achieved

P⋆


 sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

{
ψ

(
σ̂N(Xi)ε

⋆
i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
+

−E
⋆

[
ψ

(
σ̂N(Xi)ε

⋆
i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]}

·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≤ K
⋆

]
P−→

N→∞
0,

for any T > 0 and l ∈ {0, . . . , p} and some K⋆ > 0 where the expectation operator E⋆[·] stands
here for a conditional expectation conditioned on the random sample (X ,Y) given with respect to the
distribution function G⋆(·).

The distribution function G⋆(·) of the bootstrapped random errors {ε i}N
i=1 should be continuous

given the smoothness correction involved in the heteroscedastic algorithm in step B3. Moreover, it
is given conditionally on the random sample {(Xi, Yi); i = 1, . . . , N} therefore, it also depends on
N ∈N, which is however, not explicitly expressed in the notation for the function G⋆(·).

Proof of Lemma 10

Firstly, we will show that the distribution function G⋆(·) conditioned on (X ,Y) and given for the fixed
value of N ∈ N is indeed (even absolutely) continuous and symmetric. This will allow us to assume

function λG⋆(t) in sense of definition
�

�

�

�1.8 to be a bootstrap counterpart of λG(t) for t ∈ R (or at
least at some small neighbourhood of t = 0). We easily have that

G⋆(x) = P⋆ [ε⋆i ≤ x] = P⋆ [Vi · ε̃ i + aN · Zi ≤ x] =

=
∫

R

P⋆ [Vi · ε̃ i ≤ x− aNy] dΦ(y) =
1

2

∫

R

[GN(x− aNy)− GN(−x + aNy) + 1] dΦ(y) =

=
1

2N

N

∑
i=1

[
Φ

(
x− ε̂ i

aN

)
+ Φ

(
x + ε̂ i

aN

)]
,

DEPARTMENT OF PROBABILITY AND MATHEMATICAL STATISTICS, FACULTY OF MATHEMATICS AND PHYSICS 73



Bootstrapping of M-smoothers

where Φ(·) stands for a distribution function of a standardized and zero mean normal distribution. The
distribution function G⋆(·) is clearly given as a finite sum of absolutely continuous functions therefore,
it is continuous as well. To show the symmetric property we just need to use the same calculations
again and using the fact that Φ(x) = 1− Φ(−x) for any x ∈ R we can proceed backwards in the
expressions above to finally obtain that G⋆(x) = 1− G⋆(−x). Details are omitted here.

In order to proceed with the proof of Lemma 10 we can use the continuity property of the bootstrap
distribution function G⋆(·) and hence, we obtain that

E
⋆ψ

(
σ̂N(Xi)ε

⋆
i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)

=

=
∫

R

ψ

(
σ̂N(Xi)e−

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
d (G(e) + G⋆(e)− G(e)) =

= λG

(
p

∑
j=0

tjδN

(
Xi − x

hN

)j

, σ̂(Xi)

)
−
∫

R

ψ

(
σ̂N(Xi)e−

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
d(G− G⋆)(e),

and we will show that the last integral in the expression above is asymptotically negligible.

Given the assertion of Lemma 9, which holds true [P]-almost surely we can obviously assume that
we have such data sample (X ,Y) that it holds that limN→∞ supe∈R

|G⋆(e)−G(e)| = 0 and similarly
also limN→∞ supe∈R

|g⋆(e)− g(e)| = 0.

Moreover, it is quite obvious that the following inequality holds as well

(g− g⋆) ≤ |g− g⋆| = (g ∨ g⋆)− (g ∧ g⋆),

where also (g ∧ g⋆) ≤ g therefore, for an arbitrary function ψ̃(·) such that
∫

R
|ψ̃(e)|dG(e) ≤ ∞ we

have from the Dominated Convergence Theorem that

lim
N→∞

∫

R

ψ̃(e)d(G ∧ G⋆)(e) =
∫

R

ψ̃(e)dG(e).
�

�

�

�4.3

On the other hand, we also have that

lim
N→∞

∫

R

ψ̃(e)d(G ∨ G⋆)(e) = lim
N→∞

∫

R

ψ̃(e)d(G + G⋆ − (G ∧ G⋆))(e) =
∫

R

ψ̃(e)dG(e),
�

�

�

�4.4

therefore, combining
�

�

�

�4.3 and
�

�

�

�4.4 we obtain that

∫

R

ψ

(
σ̂N(Xi)e−

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
d(G− G⋆)(e) = oP(1).

Repeating the same argumentation over again one can also show that E⋆ [ψ(·)]2 → 0 in probability as
N → ∞, which is required to complete the proof of the lemma while the rest goes precisely along the
lines of the proof of Lemma 3 and therefore, it is omitted. �
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Lemma 11
For model

�

�

�

�2.39 and the same assumptions as in Lemma 9 the following convergence in probability is
achieved

P⋆


 sup
|tj|<T

j=0,...,p

1√
NhN

∣∣∣∣∣
N

∑
i=1

[
ψ

(
σ̂N(Xi)ε

⋆
i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)
− ψ (σ̂N(x)ε⋆i ) +

−E
⋆ψ

(
σ̂N(x)ε⋆i −

p

∑
j=0

tjδN

(
Xi − x

hN

)j
)]
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)∣∣∣∣∣ ≥ ǫ

]
P−→

N → ∞
0,

for any ǫ > 0 and T > 0 and l ∈ {0, . . . , p}. Additionally, the expectation operator E⋆[·] stands here
for a conditional expectation conditioned on the random sample (X ,Y) with respect to the bootstrap
distribution function G⋆(·) where δN = (NhN)

−1/2.

Proof of Lemma 11

The proof follows as an extension of the proof of Lemma 4, using the assertion of Lemma 9 and the
idea of the proof of Lemma 10 together with the fact that

|σ̂N(Xi)− σ̂N(x)| ≤ |σ̂N(Xi)− σ(Xi)|+ |σ(Xi)− σ(x)|+ |σ(x)− σ̂N(x)| ≤
≤ K|Xi − x|α + oP(1),

which follows from the assumptions posed on the scale function σ(·) and its finite sample estimate
σ̂N(·) respectively, where α > 0 is defined in assumption A5∗ (see p.35). �

Using now the assertions of Lemma 11 similarly as in the case of Lemma 4 we obtain the asymptotic

Bahadur representation for the bootstrapped estimates β̂
•
x ∈ Rp+1, which can be expressed as

P⋆

[√
NhN ·

∣∣∣∣β̂
•
x −

1

λ′G⋆(0, σ̂N(x))
·
(
X⊤NWNXN

)−1
· X⊤NWNψ(σ̂N(x)ε⋆)

∣∣∣∣ > ǫ

]
P−→

N → ∞
0,

�

�

�

�4.5

for any ǫ > 0 where in addition to the previous notation we have ε⋆ = (ε⋆1, . . . , ε⋆N)
⊤.

We need to show now that the vector of parameter estimates β̂
•
x ∈ Rp+1 converges conditionally

on the random sample (X ,Y) to the same limit distribution as the vector of parameter estimates

β̂
◦
x = (β̂◦0, . . . , β̂◦p), which converges in law to a limit distribution stated in Theorem 2.8.

Once we prove that we will be done with the whole bootstrap justification. Let therefore us
introduce a concept of a conditional weak convergence in probability and the Mallow metric idea30,
which metricates such convergence in probability.
We will need both statistical tools to complete the rest of the proof.

30The Mallow metric is also known in literature as the Wasserstein (Vasershtein respectively) metric where the name
was coined by a Soviet mathematician and probability theorist Roland Lvovich Dobrushin (see Dobrushin (1970)) in 1970
to honour another Soviet mathematician Leonid Nasonovich Vasershtein who introduced the concept of this metric in
1969. For more details on the Mallow metric we refer to Belyaev (1995) or Belyaev and Sjöstedt-de Luna (2000) or Bickel
and Freedman (1981).
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DEFINITION 2 (Conditional weak convergence in probability)

Let {TN , T
′
N}∞

N=1 be some random vectors. If for every real-valued and bounded continuous function
f (·) holds that

E[ f (T
′
N)|SN ]−E[ f (TN)]

P−→
N → ∞

0,

then T
′
N condition on SN and TN are said to be approaching (each other) in distribution in probability

along all sequences SN. In short we use the notation

T
′
N |SN

D(P)←→
N → ∞

TN .

DEFINITION 3 (Mallow’s metric)

For two random distributions DA and DB we define the Mallow metric as

dM,2 (DA, DB)
def.
= inf

DAB∈PAB

(
EDAB |XA − XB|2

) 1
2

,

where the infimum is taken over all joint distributions of some random variables XA and XB such that
their marginal distributions are DA and DB respectively. For short we will also use the notation

dM,2 (XA, XB) ≡ dM,2 (DA, DB) ,

where XA ∼ DA and XB ∼ DB.

We will use the concept of the weak conditional convergence in distribution in probability and some
theory developed for the Mallow metric and will now show that

(
X⊤NWNXN

)−1

λ′G⋆(0, σ̂N(x))
· X⊤NWNψ(σ̂N(x)ε⋆)

∣∣∣∣∣ (X ,Y) D(P)←→
N → ∞

(
X⊤NWNXN

)−1

λ′G(0, σ(x))
· X⊤NWNψ(σ(x)ε),

�

�

�

�4.6

which can be equivalently re-written using the second degree Mallow’s metric as

dM,2

( (
X⊤NWNXN

)−1

λ′G⋆(0, σ̂N(x))
· X⊤NWNψ(σ̂N(x)ε⋆)

∣∣∣∣∣ (X ,Y) ,

(
X⊤NWNXN

)−1

λ′G(0, σ(x))
· X⊤NWNψ(σ(x)ε)

)
P−→

N → ∞
0.

Let us however, firstly show that

dM,2

(
1√

NhN
· X⊤NWNψ(σ̂N(x)ε⋆)

∣∣∣∣ (X ,Y) ,
1√

NhN
· X⊤NWNψ(σ(x)ε)

)
P−→

N → ∞
0.

�

�

�

�4.7

The convergence in
�

�

�

�4.7 can be easily shown using the Central Limit Theorem for triangular arrays
where both terms converge in law to a normal distribution with the appropriate mean and variance
parameters. We only need to verify that E⋆ψ(σ̂N(x)ε⋆i ) and Eψ(σ(x)ε i) as well as E⋆ψ2(σ̂N(x)ε⋆i )

and E⋆ψ2(σ(x)ε i) are asymptotically equal.
However, both expressions follow from the assumption A5∗, the property of the scale function estimate
σ̂N(x) and the arguments used in the proof of Lemma 10.

Hence, we can use a common property of the Mallow metric to obtain

dM,2

(√
NhN S−1

N X⊤NWNψ(σ̂N(x)ε
⋆)
∣∣∣ (X ,Y) ,

√
NhNS

−1
N X⊤NWNψ(σ(x)ε)

)

︸ ︷︷ ︸
→֒dM,2(•, ◦)

≤

≤ NhN ·
∥∥∥S−1

N

∥∥∥
2
· dM,2

(
1√

NhN
X⊤NWNψ(σ̂N(x)ε⋆)

∣∣∣∣ (X ,Y) ,
1√

NhN
· X⊤NWNψ(σ(x)ε)

)
P−→

N → ∞
0,
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where S−1
N =

(
X⊤NWNXN

)−1
can be thought of as a random linear operator on the Euclidean Rp+1

space while the norm of this operator “converges” in probability to
‖S−1

1 ‖2

NhN f (x)
for S−1

1 = (S1)
−1 where

S1 is the matrix defined in Section 2.2.2. Moreover, its norm is finite and we also know that f (x) 6= 0
due to the assumption A1∗ (or A1 respectively).

Finally, we need to prove that λ′G⋆(0, σ̂N(x))
P−→ λ′G(0, σ(x)), for N → ∞. Let us firstly show

that following convergence holds true

sup
|t|≤T

|λG⋆(t)− λG(t)| = sup
|t|≤T

∣∣∣∣
∫

R

ψ(e− t)d(G⋆ − G)(e)

∣∣∣∣ = oP(1),
�

�

�

�4.8

for some T > 0 to be small enough. However, the limit term (G⋆ − G) where G⋆ depends on N ∈ N

and ψ(e− t) for e ∈ R and |t| ≤ T that the supremum in taken over are both independent of each

other and therefore, the expression
�

�

�

�4.8 holds due to (i) in Lemma 9 using a similar argumentation as
at the begining of the proof of Lemma 9.

Using now the triangular inequality we obtain

∣∣λ′G⋆(0, σ̂N(x))− λ′G(0, σ(x))
∣∣ ≤

≤
∣∣λ′G⋆(0, σ̂N(x))− λ′G⋆(0, σ(x))

∣∣+
∣∣λ′G⋆(0, σ(x))− λ′G(0, σ(x))

∣∣ P−→
N → ∞

0,

where the first term converges to zero in probability due to the continuity property of λG⋆(0, ·) in some

neighbourhood of σ(x) for x ∈ (0, 1) and the convergence of the second term is achieved due to
�

�

�

�4.8 .

In order to complete the whole proof we just need to put together both parts of the proof that we
have shown so far hence, we obtain

λ′G⋆(0, σ̂N(x))
P−→

N → ∞
λ′G(0, σ(x)), as well as dM,2(•, ◦) P−→

N → ∞
0,

and applying the Slutzsky theorem finishes now the whole bootstrap consistency proof.
�

We have shown the bootstrap consistency for the heteroscedastic model scenario and we have shown
that the bootstrap simulation can be consistently used to mimic the unknown distribution of interest.
We have also mentioned that the assertion of Theorem 4.2 can be extended to provide a complete
justification of the proposed bootstrap algorithm even when it is used to mimic the unknown limit
distributions of the M-smoothers estimates of any order derivatives of m(·) up to the order p ∈ N.
The arguments above hold as well for one-sided M-smoothers and the corresponding limit distribution
of the test statistic under the given null hypothesis.

However, an additional assumption needs to be posed on the kernel function K(·) when we want to
use the bootstrap approach to mimic the limit distribution for the estimates of derivatives rather than
the regression function itself. Indeed, in this case one also needs to consider the Lipschitz property to
be satisfied for the corresponding derivatives of the kernel function K(·).

Finally, the same conclusions can be made with respect to the homoscedastic scenario and the
corresponding bootstrap algorithm. A complete proof for the bootstrap consistency results under the
homoscedasticity follows as a special case of the heteroscedastic scenario discussed above.
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4.3 Block-bootstrap

Let us finally deal with the case where the M-smoothers estimator is considered under the α-mixing
dependence structure of the random error terms. Given the fact that the residual based bootstrap draws
new residuals independently, it is not suitable to be used for the α-mixing concept as it would definitely
break any dependence structure already existing within the given data sample.

In order to preserve the same dependence structure within bootstrapped re-samples we will use
the blocks bootstrap approach introduced by Politis and Romano (1992). The block-bootstrap can be
thought of as a generalization of the nonparametric bootstrap (case sampling with replacement) where
unlike the sampling individual pairs the whole blocks of consecutive pairs are re-sampled instead. It is
evident, that within all re-sampled blocks the same dependence structure is preserved while between the
blocks there is no further dependence assumed as the re-sampled blocks are drown independently. As
far as the weak dependence property is defined as an asymptotic independence this plays no important
role here however, the length of blocks is crucial similarly, as the choice of the smoothing parameter in
the nonparametric regression estimation.

There were many different adaptations of the block-bootstrap proposed (see a nice summary book
of Lahiri (2003) or Lahiri (1992)) however, we will only discuss one specific generalization – the Moving
block bootstrap approach.

4.3.1 Moving blocks bootstrap

The Moving Blocks Bootstrap (MBB) was independently introduced by Künsch (1989) and Liu and
Singh (1992) for the sample mean. Later on, the idea of MBB was extended by Lahiri (1992) and Politis
and Romano (1992) to cover strictly stationary processes as well. We will consider a generalization
proposed by Fitzenberger (1997) where he fitted MBB on non-stationary processes too.

The main difference between the classical block-bootstrap and the moving blocks bootstrap is
engaged within the composition of blocks. For the traditional blocks bootstrap one assumes a set of
non-overlapping blocks31 (see Carlstein (1986)), which are used for subsampling. In the case of the
MBB approach once constructs blocks of a fixed length where any observation (but some last ones) can
be used as a starting point for a new block. Such blocks are used for bootstrap resampling after that.
The set of re-sampled blocks is joint together to form one data sequence again, which is consequently
used for the estimation process and obtaining the bootstrap quantity of interest.

The idea behind the bootstrapping under the α-mixing dependence is the same as before: one tries
to use the bootstrap distribution instead of the asymptotic distribution, which is computationally quite
intensive to obtain. Using the bootstrap approach under the right regularity assumptions one effectively
avoids the plug-in techniques while the bootstrap distribution is consistent with the one, which is of
interest.

We will again firstly discuss the algorithm, which will be used to simulate the bootstrap distribution
and after that we will also provide a theoretical justification of the algorithm and we will prove that
the bootstrap distribution can be indeed used as an asymptotic replacement for the true distribution,
which is however unknown.

31The non-overlapping blocks bootstrap is slightly less effective than MBB as the blocks are more strictly defined and
observations within each block are fixed with no chance to occur in some other block.
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Algorithm: MOVING BLOCK BOOTSTRAP (α-mixing dependence)

s t a r t

B1b Given the data sequence (X ,Y) we define blocks Bk, for k = 1, . . . , (N− l + 1) of l consecutive
pairs of observations, such that Bk = {(Xk, Yk), . . . , (Xk+l−1, Yk+l−1)};

B2b Resample with replacement from the set of blocks {Bk; k = 1, . . . , (N − l + 1)} with equal
probabilities to obtain bootstrap data blocks B⋆

1 , . . . , B⋆
m, where ml ≍ N;

B3b Form a new data sequence by joining new blocks B⋆
1 , . . . , B⋆

m into one block only ⇒ obtain the
bootstrapped data sequence (X ⋆,Y⋆) = {(X⋆

i , Y⋆
i ); i = 1, . . . , ml};

B4b Use data (X ⋆,Y⋆) to re-estimate m(·) (or m+(·) and m−(·) respectively) at some given point
x ∈ (0, 1) ⇒ obtain the bootstrap estimate m̂⋆(x) (or m̂⋆

+(x) and m̂⋆
−(x) respectively);

B5b Repeat steps B2b → · · · → B4b to obtain new bootstrap estimates m̂⋆
b(x), m̂⋆

b+(x) and m̂⋆
b−(x)

for b = 1, . . . , B for B ∈N to be sufficiently large;

B6b Use the bootstrapped quantities m̂⋆
b(x), m̂⋆

b+(x) and m̂⋆
b−(x) for b = 1, . . . , B to mimic the

unknown distribution of interest;

e n d o f M B B

Comparing now the moving blocks bootstrap algorithm and the smooth residual bootstrap it seems
that MBB is somehow simpler and more data-driven. There is no estimation of the residuals involved as
well as any estimation of the unknown scale function σ(·) neither. We have already mentioned that the
block bootstrap procedure can be seen as a more complex generalization of the model based bootstrap
where one just resamples data pairs, which is more straightforward approach to use indeed.

THEOREM 4.3 (Moving blocks bootstrap consistency for α-mixing)

Let us assume model
�

�

�

�2.47 and the same assumptions as in Theorem 2.11. Moreover, let ml ≍ N.
Then the following convergence in probability is achieved

sup
z∈R

{
P⋆
[√

NhN (m̂⋆(x)− m̂(x)) ≤ z
]
− P

[√
NhN (m̂(x)−m(x)) ≤ z

]}
P−→

N→∞
0,

where P⋆[ · ] stands for a conditional probability conditioned on the given finite sample data sequence
(X ,Y) = {(Xi, Yi); i = 1, . . . , N}.

Proof. The proof of this theorem is given in Section 4.3.2 below.
�

Given Theorem 4.3 we again have a convenient property of MBB, which is that the moving blocks
bootstrap provides a consistent estimate of the unknown limit distribution function of interest at the
given point x ∈ (0, 1) and therefore, using the moving blocks bootstrap algorithm as defined in steps
B1b – B6b one can effectively approximate the bootstrapped distribution rather than using some plug-in
techniques and trying to express the distribution of interest directly.

Corollary 6

Similar theorems can be also formulated to show the bootstrap consistency with respect to the asymp-
totic distributions stated in Theorems 3.2 and 3.3 however, under the α-mixing dependence assumption.
Additionally, the assertion in Theorem 4.3 can be easily extended to cover the asymptotic distributions
of the M-smoothers estimates of the corresponding derivatives up to the order p ∈N.
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Assuming now the moving blocks bootstrap approach, there is one important issue, which should
be definitely addressed here. It relates to an appropriate choice of the length l ∈ N. Given the finite
data sample the length of blocks is fixed but once the sample size increases (N → ∞) we also need
to assure that l → ∞ however, sufficiently slow. This is due to the form of dependence within the
bootstrapped blocks where the dependence structure is fully preserved in each block but between blocks
the dependence is cancelled out by an independent re-sampling. This would also mean that under the
fixed length even for N → ∞ the variance-covariance structure would be consistently estimated up
to the (l − 1)-degree covariances Cov(Xi, Xi+l−1) at most. Therefore, in order to estimate the true
variance-covariance structure one needs to assume that that l → ∞ as N → ∞.

The role of this length parameter is crucial as it also directly affect the bootstrap estimate and its
empirical inference too. Given this fact we could refer to this parameter as to some tuning parameter
instead. The optimal value of this parameter needs to be however, still defined.

One way proposed to chose the optimal length of blocks is to minimize the Asymptotic Mean Square
Error (AMSE) term of the bootstrap estimate with respect to the length of blocks. It was shown in
Fitzenberger (1997) that the MBB approach for the sample mean yields an asymptotic optimal length
of blocks expressed as l ≍ N1/3 (see Theorem 3.4 in Fitzenberger (1997)). Given the fact that the
M-smoothers estimates can be also thought of in sense of some form-specific means, we could assume
that a similar condition will hold for MBB under the M-smoothers approach as well.

The question on the optimal length of blocks for a finite sample data is however, still left open.
There is a nice discussion on this matter presented in Fitzenberger (1997) but we will not discuss this
topic in further details. Let us focus our attention on justification of the MBB approach instead.

4.3.2 Justification of the MBB algorithm

Firstly, one needs to realize the main difference between the residual based bootstrap discussed in
Sections 4.1 and 4.2 and the moving blocks bootstrap discussed now. Indeed, the MBB algorithm is
based on the original data sequence (X ,Y) rather than the set of residuals and it does not requires
any estimation of the regression function m(·), the scale function σ(·) or the set of residuals either.

Unlike the minimization problem
�

�

�

�4.1 we have for MBB the minimization defined by

β̂
⋆⋆

x = Argmin
(b0, . . . , bp)⊤ ∈ Rp+1

Ñ

∑
i=1

ρ

(
Y⋆

i −
p

∑
j=0

bj(X⋆
i − x)j

)
· K
(

X⋆
i − x

hN

)
,

�

�

�

�4.9

where (X⋆
i , Y⋆

i ), for i = 1, . . . , Ñ = lm are just bootstrap data pairs given by joining m bootstrapped
blocks of length l into one big block only. This can be analogously expressed as the set of equations

1√
ÑhN

Ñ

∑
i=1

ψ

(
σ (X⋆

i ) ε⋆i −
p

∑
j=0

bj

(
X⋆

i − x

hN

)j
)
·
(

X⋆
i − x

hN

)l

K

(
X⋆

i − x

hN

)
= 0,

�

�

�

�4.10

for l = 0, . . . , p,

which is solved for the vector of parameter estimates β̂
••
x ∈ Rp+1 (the idea of the notation remains the

same as in the previous chapters). The random error quantities {ε⋆i }Ñ
i=1 are defined by an equivalent

model expression ε⋆i =
(
Y⋆

i −m(X⋆
i )
)

/σ(X⋆
i ), for i = 1, . . . , Ñ = lm.
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The idea of the proof is now very similar to the proof of Theorem 4.2 we just need to assume some
additional statistical machinery to correctly deal with the α-mixing dependence structure.

Let us firstly deal with the quantity E⋆

[
ψ

(
σ(X⋆

i )ε
⋆
i −∑

p
j=0 bj

(
X⋆

i −x
hN

)j
)
·
(

X⋆
i −x
hN

)l
K
(

X⋆
i −x
hN

)]
,

for some i ∈ 1, . . . , Ñ where E⋆[·] stands for a conditional expectation conditioned on (X ,Y). It holds
that

E
⋆

[
ψ

(
σ(X⋆

i )ε
⋆
i −

p

∑
j=0

bj

(
X⋆

i − x

hN

)j
)
·
(

X⋆
i − x

hN

)l

K

(
X⋆

i − x

hN

)]
=

=
1

N − l + 1

N−l+1

∑
i=1

1

l

i+l−1

∑
t=i

ψ

(
σ(Xt)εt −

p

∑
j=0

bj

(
Xt − x

hN

)j
)
·
(

Xt − x

hN

)l

K

(
Xt − x

hN

)
=

=
1

l(N− l + 1)

{
l

N

∑
i=1

ψ

(
σ(Xi)ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
+

+
[
(l − 1)ψ̃1 + (l− 2)ψ̃2 + · · ·+ ψ̃b−1 + (l− 1)ψ̃N + (l− 2)ψ̃N−1 + · · ·+ ψ̃N−l+2

]}
=

=
1

N

N

∑
i=1

ψ

(
σ(Xi)ε i −

p

∑
j=0

bj

(
Xi − x

hN

)j
)
·
(

Xi − x

hN

)l

K

(
Xi − x

hN

)
+ OP

(
l

N

)
,

�

�

�

�4.11

where for short we have adopted a notation ψ̃i = ψ

(
σ(Xi)ε i −∑

p
j=0 bj

(
Xi−x

hN

)j
)
·
(

Xi−x
hN

)l
K
(

Xi−x
hN

)
,

for i = 1, . . . , N. Moreover, given the assumption for l ∈ N we have that l/N → 0 as N → ∞.
Using now the strong law of large numbers for the α-mixing dependence we have that the sum in

�

�

�

�4.11
converges [P]-almost surely to its mean expectation for N → ∞.

An analogous expression can be also derived for the second moment E⋆[·]2 therefore, using now
both results one can analogously proceed along the lines of the proof of Theorem 4.2. To complete the
proof we will need one more theorem, which will be applied to show that

X⋆⊤
Ñ

W⋆
Ñ

ψ(σ(x)ε⋆)
∣∣∣ (X ,Y) D(P)←→

N → ∞

X⊤NWNψ(σ(x)ε),
�

�

�

�4.12

where ψ(σ(x)ε⋆) = (ψ(σ(x)ε⋆1), . . . , ψ(σ(x)ε⋆
Ñ
))⊤ and analogously also for ψ(σ(x)ε) ∈ RN .

THEOREM 4.4 (Bootstrap central limit theorem for α-mixing)
Let {ξn}∞

n=1 be a sequence of random variables with a zero mean parameter and the α-mixing
dependence coefficients α(n). Let the following conditions are satisfied:

(i) supn∈N
E|ξn|4+ω < ∞,

(ii) α(n) = O(1/n1+δ), as n→ ∞,

both for some ω > 0 and δ > 0, such that 4/ω < δ. Let moreover

ξ̂n =
1

n

n

∑
i=1

ξi, ξ̂⋆n =
1

n

n

∑
i=1

ξ⋆i and σ2
n =

1

n

n

∑
i,j=1

Cov(ξi, ξ j).

Then for l → ∞ and l = o(n1/2) and under the MBB algorithm for the mean it holds that

sup
z∈R

∣∣∣∣P
⋆

(
n

σn
(ξ̂⋆n − ξ̂n) ≤ z

)
− P

(
n

σn
ξ̂n ≤ z

)∣∣∣∣
P−→

N → ∞
0.
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Proof. The proof of Theorem 4.4 can be found in Fitzenberger (1997, Theorem 3.1).
�

Given the assertion of Theorem 4.4 we easily obtain that
�

�

�

�4.12 holds for N → ∞ however, we have

to additionally assume that E|ψ(ε1)|4+ω < ∞ for some ω > 0 in order to satisfy (i) in Theorem 4.4.
The rest of the proof follows the same idea as the proof of Theorem 4.2 and it can be easily completed
using the Mallow metric machinery all over again.

�

Having now the justification of the MBB algorithm completed we can conclude that the bootstrap
distribution can be again consistently used as an efficient replacement for the unknown limit distribu-
tion, which is mostly of the main interest (making test decisions or constructing confidence intervals).
In the proposed moving blocks bootstrap algorithm we have a straightforward and quite simple tool
in hand how to mimic some unknown distribution of interest while preserving the consistency property
required for the whole approach to work.

4.4 Discussion on bootstrap methods

The bootstrap simulation techniques are well known in statistics for many years now however, they were
never so intensively used before effective computers and simulation algorithms were available. Taking
into account the modern computer age we live in, the bootstrap methods become a very popular choice
in statistic (theoretically and practically as well) as they requires much less technical effort than the
classical plug-in techniques used instead.

We have discussed in detail mainly two different bootstrap algorithms, which are quite suitable for
the model scenarios we were dealing with in this thesis. One can however, propose and investigate
many other bootstrap modifications and adaptations as well. There is certainly a way to propose a
model based bootstrap for independent random errors and some blocks bootstrap modifications for the
weak dependence concept (e.g. a blocks of blocks bootstrap or a circular block bootstrap).

We have proved that under the right regularity conditions the bootstrap idea in the M-smoothers
estimation really works same for the model scenarios with independent random error terms (under the
both, homoscedastic and heteroscedastic assumption) as well as the model scenarios with the α-mixing
dependence concept. We have stated two important theorems, which clearly states that the bootstrap
distributions can be indeed used as suitable asymptotic replacements for the true but unknown limit
distributions, which are mostly of interest. Moreover, using the proposed bootstrap algorithms we
can effectively simulate from such bootstrap distributions and the results of such simulations can be
consistently used to mimic the distribution of interest.

Summarizing now all attributes of the proposed bootstrapping idea in the M-smoothers regression
approach we have to acknowledge their nice properties and many advantages therefore, we are convinced
that the bootstrap methods dominate the plug-in techniques, which may be used alternatively but
technically they are quite extensive with highly sophisticated proofs as well. On a final note, we want
to refer to Chapter 6 where we have studied the finite sample performance of the proposed bootstrap
methods through out an extensive simulation study and a real data example as well.
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Additions and miscellaneous

We have discussed the M-smoothers regression methods under the variety of different situations and
we have also derived and proved all their important statistical properties. We have also mentioned the
M-smoothers approach under some discontinuity assumptions and the proper statistical background was
derived. Similarly, the appropriate bootstrap algorithms were proposed in order to deal with situations
when the target distribution of interest is unknown but crucial for some further processing or statistical
decisions making. This can occur if one wants to construct confidence intervals or to come up with a
decision about some hypothesis testing problem regarding some change-point occurrences.

However, beside the theoretical results, which were already derived and proved one also needs to
work with some additional rather technical issues to be able to make practical and liable decisions and
conclusions. Using the M-smoothers approach one mostly meets a requirement to have a sufficient
knowledge on some additional quantities, which are mostly not directly specified by the M-smoothers
estimation approach itself. Indeed, the knowledge of the right value of the smoothing parameter hN

or the corresponding estimate of the scale function σ(·) in heteroscedatic scenarios is crucial and one
certainly needs to have good estimates for these quantities no matter what approach (plug-in techniques
or bootstrap simulations) he uses to successfully complete the whole task.

In this chapter we will focus on some additional issues related to nonparametric M-smoothers, which
are rather not crucial for the estimation method itself but they are also important in order to be able
to fully exploit all advantages of the proposed M-smoothers methods. We will discuss some robust ap-
proaches to the optimal bandwidth parameter selection and some robust methods for the scale function
estimation as well. Finally, we will shortly point our attention on some different choices of the loss
function ρ(·), which can be effectively used together with the minimization problem

�

�

�

�2.1 .

5.1 Robust bandwidth selection

It is a well known fact that once we use nonparametric regression approaches it is crucial for the final
performance of the proposed estimator to use a good choice for the smoothing parameter,32 which
controls the amount of smoothness in the final fit. However, a problem on a good choice of the band-
width parameter arises in statistical modelling since Nadaraya (1964) and Watson (1964) when they
firstly proposed to use the kernel methods for a curve estimation. The right choice of the bandwidth
parameter is essential especially with respect to the asymptotic properties of the estimator as it assures
an optimal convergence and all additional statistical properties nevertheless, it also plays a crucial role

32We will equivalently refer to the bandwidth parameter as to the smoothing parameter as well as it really takes a role
of controlling the amount of smoothness.
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in case of finite data samples where it effectively manages the bias and variance balance (bias-variance
trade-off) in the produced estimate.

Standard methods for the bandwidth selection are based on evaluating a quality of a statistical
estimate in order to determine how close to the true curve, which is of interest, the given estimate
really is. Some popular criteria used here are Integrated Squared Error, Mean Integrated Squared Error,
Average Squared Error and Mean Average Squared Error, which all heavily depend on the bandwidth
parameter itself. The optimal bandwidth parameter is then defined as the one that minimizes some of
the measure of error criterion above with respect to all possible bandwidth choices and given the finite
data sample under the consideration.

All of the criteria above can be thought to be asymptotically similar (see Härdle (1990)) however,
all of them were designed for models with normally distributed random error terms. It was shown in
simulations and some theoretical calculations as well that using such criteria with even a small amount
of outlying observations one can get an extremely biased bandwidth selection (e.g. see Leung et al.
(1993) or Leung (2005) for some brief overviews). Not to mention even some heavy-tailed random
error distributions. It is important to notice, that using the given criteria with outlying observations
or heavy-tailed distributions of random errors will fail in producing a proper estimate even in the case
the curve estimate is defined by a proper robust minimization. This is due to the fact that such
criteria do not produce reasonable estimates for random errors anymore therefore, one has to use some
appropriate robust equivalents for these criteria as well to get a fully consistent estimation machinery
for the M-smoothers estimation method.

We will base our approach on a suggestion proposed by Ronchetti et al. (1997) where the authors
used Cross-Validation (CV) method together with nonparametric regression to get an optimal bandwidth
parameter. The Cross-Validation quantity was shown to be an efficient estimate for the Asymptotic
Mean Squared Error term and the bandwidth parameter, which minimizes the CV function is said to
be an optimal choice under the given finite data sample.
Some further generalizations as General Cross-Validation (GCV) were proposed afterwards however,
we will rather stay focussed on the Cross-Validation methods only and we will discuss some of their
robust generalizations introduced to account for outlying observations and heavy-tailed distributions too.

Boente et al. (1997) introduced another bandwidth selection method for the robust nonparametric
regression estimation however, their method is not fully data-driven as a pivotal bandwidth parameter
is required to be given in advance. In our bandwidth selection approach we would like to stay fully
automatic therefore, we will adopt and we will further discuss the M-Cross-Validation method (Robust
Cross Validation (RCV) respectively) proposed by Lee and Cox (2010), which was shown to produce a
consistent estimate for the AMSE quantity, which we have already discussed in Chapter 2.

The original leave-one-out Cross-Validation is the most often used for the smoothing parameter
selection in statistic in general (for a nice summary book see Simonoff (1996)). It is defined as

CV(hN) =
1

N

N

∑
i=1

(
Yi − m̂

(−i)
hN

(Xi)
)2

,
�

�

�

�5.1

where m̂
(−i)
hN

(·) is a corresponding estimate of the unknown but true regression function m(·) given the

bandwidth parameter hN while leaving the ith observation out of data used for the estimation. Many
extensive discussions and examples can be found on this criterion in literature.
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To deal with some inconsistency issues involved in the smoothing parameter selection when using
classical criteria with outlying observations or heavy-tailed distributions Lee and Cox (2010) suggested

to replace the square loss function in
�

�

�

�5.1 with a more general loss function ρ(·) – the same one as we
have used for the estimation processes in Chapter 2. This gives us a general Cross-Validation expression

RCV(hN) =
1

N

N

∑
i=1

ρ
(

Yi − m̂
(−i)
hN

(Xi)
)

,
�

�

�

�5.2

where again m̂
(−i)
hN

(·) is the corresponding estimate of the unknown regression function m(·) given the

specific value of the bandwidth parameter hN however, calculated with respect to general loss function
ρ(·) instead. Function RCV(·) is called the Robust Cross-Validation function or M-Cross-Validation
respectively. The optimal value of the bandwidth parameter is of course again defined as the value,
which minimizes the RCV(hN) quantity

�

�

�

�5.2 .

One special case of the Robust Cross-Validation function we can get for the choice ρ(·) = | · |,
which gives us so called Absolute Cross-Validation (ACV) proposed by Wang and Scott (1994) and also
discussed in Yang (2006). Another special case of the RCV(·) function was studied by Boente et al.

(1997) where the authors plugged the Huber function into
�

�

�

�5.2 instead.

To conclude, Robust Cross-Validation approach as defined in
�

�

�

�5.2 can be effectively used together
with the proposed M-smoothers estimation techniques in order to present a complete and statistically
consistent nonparametric regression estimation machinery, which is capable of accounting for some
presence of outlying observations or heavy-tailed distributions of random errors as well. As far as the
robust bandwidth selection techniques have been already extensively discussed in many literature we
will not further discuss this topic in this thesis.

5.2 Robust scale estimation

Another important issue, which we also need to think of in case of the M-smoothers approaches (at least

those with heteroscedastic variance structure) is the scale function σ(·) involved in model
�

�

�

�2.39 . The
scale function σ(·) is same as function m(·) unknown and under some circumstances it also needs to
be estimated. Especially, once we consider the asymptotic distribution of the M-smoothers estimates
under the heteroscedastic model scenario we need to plug-in the estimate of the scale function σ(·) into
the variance expression in order to be able to construct confidence intervals or to draw any conclusions
regarding some hypothesis testing problems.

Of course, one could also avoid plugging-in the scale estimate into the variance expression and to
rather turn his attention to bootstrap methods discussed in Chapter 4 as the rate of convergence was
shown to be much faster for simulation methods than for plug-in techniques however, the scale function
σ(·) needs to be estimated in the case of bootstrap approximations anyway therefore, estimation of the
scale function within heteroscedastic model structures is an important issue by its own.

There was already one approach mentioned how to introduce a scale function estimate where the
estimator came directly from the simultaneous M-smoothers estimation problem where one estimates
the regression function and the scale at once. We have however, discussed a two-stage estimation
process where the scale function σ(·) was to be estimated separately. We will therefore focus on this
second stage of estimation – the estimation of the scale function – now.
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Let us start with a scale estimation approach, which comes as a generalization of a class of estimators
based on differences (see Hall et al. (1990)) defined by the expression

σ̂2 =
1

N − 1
·

N−k2

∑
i=k1+1

(
k2

∑
k=−k1

dkYi+k

)2

,
�

�

�

�5.3

which are commonly used for homoscedastic model scenarios with regressor quantities X1, . . . , XN

to be fixed constants. Here in
�

�

�

�5.3 the sequence {dk}k2
k=−k1

stands for a difference sequence, which

satisfies that ∑
k2
k=−k1

dk = 0 and ∑
k2
k=−k1

d2
k = 1, where d−k1

6= 0 6= dk2
for some k1 and k2 to be

non-negative integers. Referring now to the quantity k1 + k2 we have the order of the scale estimator�

�

�

�5.3 . The simplest class of this estimators comes for the order k1 + k2 = 1, which are well known scale
estimators proposed by Rice (1984) and they are defined as

σ̂2 =
1

2(N − 1)

N

∑
i=1

(Yi+1 −Yi)
2 ,

�

�

�

�5.4

for quantities X1, . . . , XN to be fixed again. Some additional extensions were proposed by Müller and
Stadtmüller (1987) and Brown and Levine (2007) in order to fit these estimators to heteroscedastic
regression cases as well as random design cases too.

The problem however, which comes with this class of estimators is similar to the problem related
to a bandwidth parameter selection in a classical nonparametric least squared regression, which means
that even a small presence of outliers can cause failing of these methods. Indeed, estimators based on
squared differences in general do lack a property of being robust with respect to outliers.

To avoid such problems one need to think of some alternative approaches or additional generaliza-
tions of classical methods, which could be plausible under the model with outlying observations or even
heavy tailed distributions of random errors. One possible generalization was proposed by Boente et al.
(2010) and it can be considered as a step towards heteroscedastic regression scenarios with outlying
observations and heavy-tailed distributions and it is defined as

σ̂(x) = inf

{
z > 0;

N−1

∑
i=1

wNi(x) · χ
(

Yi+1 − Yi

α1 · z

)
≤ α2

}
,

�

�

�

�5.5

where wNi(x) are weights (e.g. kernel weights) for i = 1, . . . N − 1 and function χ(·) is some score
function. The constants α1 > 0 and α2 ∈ (0, 1) are chosen such that they satisfy that Eχ(Z1) = α1

and Eχ
(

Z2−Z1
α1

)
= α2, where Z1 and Z2 are independent random variables with the distribution

function, which corresponds with the major distribution function or the random error terms33.
Moreover, for the score function χ(·) we assume it is continuous, bounded and also strictly increasing
moreover, such that χ(0) = 0 and 0 < supx∈R

χ(x).

The estimator
�

�

�

�5.5 is called the local M-estimator of the scale function σ(·) at the point x ∈ (0, 1)

based on successive differences of the response variable Yi, for i = 1, . . . , N. Obviously, for χ(x) = x2,

α1 =
√

2 and α2 = 1 the Boente estimator reduces to the classical Rice estimator
�

�

�

�5.4 .

33In case of outlying observations we can describe the distribution function of random errors as a kind of mixture of at
least two different distributions where the first one (where the majority of random error terms come from) is referred to
as a major distribution and all remaining distributions responsible for any outliers, which contribute with much smaller
weights are referred to as minor distributions.
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Under some regularity conditions (see Boente et al. (2010) for further details and exact proofs)

it was derived that the estimate of the scale function σ(·) defined by
�

�

�

�5.5 for some given point of
interest x ∈ (0, 1) yields a strong consistency and asymptotic normality property once the number of
the sample size N tends to infinity.

5.3 Robust loss functions

Finally, we will shortly mention some other choices of the loss function ρ(·), which can be possibly used

with the minimization problem
�

�

�

�2.1 . Until now we have mainly discussed three options here: the
L2 norm, which produces an estimate in sense of a conditional expectation, the L1, norm which leads
to an estimate in sense of a conditional median estimation and finally, the Huber function, which can
be thought of as a bridge between the L2 and L1 norm and it is in general considered to be the most
common representative used for the robust estimation procedures.

On the other hand, given the assumption A4 where the loss function ρ(·) is assumed to be symmetric,
convex and Lipschitz such that its derivative (or one-sided derivatives at least) exists one can possibly
think of many different choices of the loss function ρ(·). One just needs to make sure, that the given
choice of the loss function satisfies all necessary assumptions namely, the assumption A4 and together
with the distribution function G(·) the assumption A5 as well.

In Table 5.1 we present a small overview of some different loss functions, which are also commonly
used for the modern robust estimation procedures. Three of them have been already discussed in detail
in the previous chapters but the remaining functions can be also found in literature or statistical software
packages.

Finally, let us give a short note on different choices of the loss functions ρ(·). One has to be aware
of the fact that a different choice of the loss function ρ(·) brings also in hand a different interpretation
for the true model. Indeed, as we have already said, using the most common L2 norm we obtain an
estimate in sense of a conditional expectation, which is m(x) = E [Y|X = x]. Similarly, for the L1

norm we have an estimate in sense of a conditional median, which is m(x) = Med [Y|X = x].

Unlike this two cases the identification of the true but unknown regression function m(x) rapidly
changes once we use some other loss function ρ(·) to produce and estimate. Indeed, for a general loss
function ρ(·) the conditional mean (or conditional median respectively) interpretation does not hold
any more. Instead, we have to identify the unknown regression function m(·) in a more general way as

m(x) = Argmin E [ρ (Y − µ(X)) |X = x] ,
�

�

�

�5.6

where the minimization takes place with respect to all functions µ ∈ Lp+1(0, 1), where Lp+1(0, 1) is
a set of (p + 1)-times Lipschitz function defined over the interval (0, 1). Using now the identification�

�

�

�5.6 for some unknown regression function m(·) we can also correctly define the estimate of m(·)
in terms of the M-smoothers approach while considering any general loss function, which satisfies all
assumptions. The functional identification makes indeed an important aspect of the whole concept of
the robust M-smoothers regression approach and one needs to be fully aware of different interpretation
options, which originate in different loss functions, which can be used for the estimation process.

Referring in this thesis to the robust estimation approaches it is expected that the proposed methods
will be less sensitive with respect to outlying observations and heavy-tailed random error distributions
than their classical counterparts mostly based on the L2 norm. It is worth of mention here that
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Additions and miscellaneous

Loss function type Loss function expression Loss function derivative Domain
(common name) function ρ(·) function ψ(·) for x ∈ R

■ L2 norm x2

2 x x ∈ R

■ L1 norm |x| sgn(x) x ∈ R

■ [L1 − L2] norm 2

(√
1+x2

2 − 1

)
x√

1+x2
2

x ∈ R

■ Lp norm
|x|p

p sgn(x)|x|p−1 x ∈ R

■ “Fair” function c2
[
|x|
c − log

(
1 + |x|

c

)]
x

1+|x|/c
x ∈ R

■ Huber’s function

{
x2

2

k
(
|x| − k

2

)
{

x
k · sgn(x)

{
|x| ≤ k
|x| > k

■ Cauchy’s function c2

2 log
(

1 + x2

c2

)
x

1+(x/c)2 x ∈ R

■ Geman-McClure x2/2
1+x2

x
(1+x2)2 x ∈ R

■ Welsch’s function c2

2

[
1− exp

{
− x2

c2

}]
x exp

{
−(x/c)2

}
x ∈ R

■ Tuckey’s function

{
k2

6

[
1−

(
1− (x/k)2

)3
]

(k2)/6

{
x
[
1− (x/k)2

]2
0

{
|x| ≤ k
|x| > k

Figure 5.1: Some additional options for the loss function ρ(·), which can be also used for the proposed M-smoothers
estimation methods. Some loss functions are defined for the appropriate trimming constants k > 0 and c > 0.

robustness property or sensitivity with respect to outliers can be measured in a quite objective way,
using some measures of robustness. A popular measure of robustness at least for the location models is
a finite sample break-down point, which is defined as a proportion of outliers within the original finite
sample data such that this proportion can already cause a failure of the whole estimator. However, the
idea of the break-down points can be also extended to higher order models as well.
It is a well known fact that the finite sample break-down point for the estimators based on a classical
mean approach or squared differences is equal to 1/N, which is actually the smallest one possible
therefore, such methods are not consider to be robust34 at all.

On the other hand, estimators based on L1 norm – so called median estimators – yield the property of
being very robust with respect to outlying observations and even heavy-tailed distributions and the actual
finite sample break-down point for the L1 based methods is equal to 1/2, which is the maximal possible
proportion for all common estimation methods35. To investigate the final sample break-down points
for different choices of the loss function ρ(·) one needs to incorporate some additional computations.
If a reader is interested in more details we refer to Jurečková (2001).

34Finite sample break-down point equal to 1/N means that just one outlying observation out of N can cause that the
whole estimate produced by some non-robust procedure will fail.

35In this case the whole half of data points can be produced by some artificial system (e.g. outliers, or data errors) but
using the robust approach based on the L1 norm the final estimate will still have a property of being consistent.
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Charles University in Prague

”God does not care about
our mathematical difficulties.

He integrates empirically.”

Albert Einstein

(1879 – 1955) 6
Computational Aspects of M-smoothers

Until now, we have discussed the M-smoothers regression estimates and the corresponding statistical
tests from the theoretical point of view – asymptotically – as we have considered the sample size N to
tend to infinity. However, this is never the case in real data problems therefore, it is always important
to investigate some finite sample properties for a proposed statistical method as well.

We have derived all important statistical properties and qualities for the proposed M-smoothers
approach under the variety of different scenarios. We have proposed the estimation methods and
testing procedures as a complex statistical set of tools for dealing with models that will be flexible
with respect to the considered shape of the functional dependence, the variance-covariance structure
as well as the assumed dependence concept for the random error terms while also allowing for some
discontinuity points and structural breaks.

In this chapter we will focus on some computational aspects of the M-smoothers techniques and we
will investigate the effect of different model settings to the performance of the proposed estimator. We
will firstly discuss some results from an extensive simulation study, carefully designed to study the given
estimator and after that, we will also present some results obtained when applying these testing and
estimating procedures to a real data problem. All programming work was provided using the statistical
software R 2.11.1 and our own procedures.

6.1 Simulation study

For the simulation purposes we have proposed to use the following regression function defined by

m(x) = −8x sin(2πx) + 7.2x sin(2πx) · I{x>0.5}+ 0.2 · I{x>0.8},
�

�

�

�6.1

for x ∈ (0, 1) and I{·} to be an identifier function of the corresponding event of interest.
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Figure 6.1: Regression function used for simulations.

For function
�

�

�

�6.1 one can easily verify, that
function m(·) is continuous and even smooth up
to the third order at least at the point x1 = 0.2,
it has a first order discontinuity at the point
x2 = 0.5 (a jump in the first derivative) and
finally, it has a zero order jump at the point
x3 = 0.8 (a jump in the regression function itself)
with one-sided derivatives both to be equal (see
Figure 6.1 on the left for a brief overview of the
chosen function).
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We will carefully focus on the performance of the M-smoothers estimation approach for these three
specific points while assuming a variety of different regression options.
Firstly, we will deal with the M-smoothers estimator given for a symmetric kernel function and after
that we will also mention one-sided M-smoothers with the corresponding test statistics.
Similarly, we will also discuss the performance of the bootstrap algorithms when considered together
with the corresponding test statistics, which is of interest.

6.1.1 Simulation settings

Let us firstly state the list of different options we have proposed to use for the simulation study:

❒ RANDOM ERROR DISTRIBUTION (four different choices)

D1 : N(0, 1);
D2 : 0.90×N(0, 1) + 0.10× N(0, σ2 = 25);
D3 : 0.95×N(0, 1) + 0.05× N(0, σ2 = 225);
D4 : C(0, 1);

❒ LOSS FUNCTION (four different choices)

- classical L2 norm (squared loss function);
- robust L1 norm (absolute loss function);
- the Huber function;
- the Tuckey function;

❒ SAMPLE SIZE (three different choices)

N = 50;
N = 200;
N = 1000;

❒ APPROXIMATION ORDER (three different choices)

- local constant approximation (p = 0);
- local linear approximation (p = 1);
- local cubic approximation (p = 3);

Four different choices for the distribution function can be seen as a certain bridge coming from the
classical normality assumption required for the L2-based methods towards to the regression with some
robust flavour where we are firstly adding some outliers and finally, we go for a heavy-tailed distribution
at the end. The given four choices for the loss function are quite obvious as well at least for the first
three functions as all three of them were already discussed in this thesis for several times. Additionally,
we will also consider the Tuckey function, which is somehow the most common representative of robust
loss functions, which does not assign positive weights along the whole real line. All three functions
before does.

For the sample size we will consider N = 50, which is a common sample size for classical data
problems while N = 1000 is in our opinion already a quite sufficient sample size to show an asymptotic
behaviour of the proposed estimators while also managing the time costs and computational efficiency.
Finally, for the order of the local polynomial approximation, we have chosen the simplest scenario for
p = 0 however, in this case the estimates tend to be inconsistent in boundary regions. Given the same
reason we have not considered any even orders and given some interpretability options (which we have
already mentioned before) we did not consider any higher orders of approximation than p = 3.
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The tables with results are stated below: in Tables 1, 2 and 3 there are the corresponding re-
sults given for the point x1 = 0.2 (Table 1 for local constant M-smoothers, Table 2 for local linear
M-smoothers and finally, Table 3 for local cubic M-smoothers). Analogously, in Tables 4, 5 and 6 there
are again the corresponding results given for x2 = 0.5 and in Tables 7, 8 and 9 there are the results
stated for x3 = 0.8 (again for p = 0, 1 and 3).

Each of 9 tables consists of subtables (a), (b), (c) and (d). The first two always refer to the
performance of the M-smoothers estimator based on the symmetric Epanechnikov kernel function while
subtables (i) state the estimated values and subtables (ii) give the 95 % confidence interval coverage
based on the corresponding bootstrap algorithm. The whole estimation procedure is always repeated
independently for 1000 times for each regression setting in order to obtain mean estimates and their
standard errors as well. The remaining two subtables refer to the case where one-sided M-smoothers
(based on the Epanechnikov kernel) are used instead: subtables (c) give the values for the test statistics

T
(0)
N (x) and T

(1)
N (x) respectively, and subtables (d) state the average lengths of 95 % confidence

intervals for the true value of the corresponding test statistic. For subtables (b), (c) and (d) we have
considered the bootstrap algorithm with B = 1000 bootstrap re-samples where the whole bootstrap
simulation was independently repeated for 1000 times to get the interval coverage data and the mean
interval lengths as well. The results are briefly discussed in the section below.

6.1.2 Simulation results

There are a few important issues we would like to specifically highlight before going to the simulation

results36 below. Firstly, by T
(j)
N (xk) for j = 0, 1 and k = 1, 2, 3 we will understand the difference37 of

the corresponding one-sided estimates with no standardization with respect to the sample size as we
want to get a better insight on the asymptotic behaviour with respect to the variance as well.

Now, in Tables 1–9 one can nicely see the asymptotic performance of the M-smoothers methods,
which is reflected in gradually improving estimates (decreasing bias terms) and increasing precision
(lowering variance terms), which holds true for most of the considered scenarios. However, for the
Cauchy distribution and the classical L2-based regression this is not true anymore and moreover, the
variance term even increases with no restraints once the sample size N ∈ N tends to infinity. This
directly also effects the corresponding lengths of confidence intervals, which get wider for every larger
N ∈N while the lengths for the remaining scenarios evolve in a quite opposite direction.

Another important issue refers to the rate of convergence of the given estimates. Indeed, one can
clearly see an obvious difference in behaviour of the M-smoothers estimates of the unknown regression
function itself and its derivatives respectively, where the asymptotic performance of the M-smoothers
estimate for the derivative is evidently much slower however, always quite evident (except the Cauchy
distribution with the L2-based approach again).
Finally, we also need to keep in mind the specific shape of the function used for simulations and the
position of the points used for the estimation where x1 = 0.2 is located close to the global minimum
and therefore, some over-estimation (especially for small sample sizes) could be expected. Similarly,
x2 = 0.5 is the point where a quite extensive change in direction takes place and x3 = 0.8 is a jump
location by itself therefore, some small inconsistencies especially for small sample sizes are natural.

However, the proposed simulation study shows that the finite sample properties of the M-smoothers
estimates corresponds quite well with the asymptotic results derived before.

36A more detailed description of the tables stated below can be found in the List of Tables at the end the thesis (p.123).
37This difference corresponds with the test statistic defined by

�

�

�

�3.4 , up to the multiplicative constant
√

NhN .
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Table 1(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local constant estimates)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1)

p = 0 N = 50 D1
m

+
(x

1
)
=

m
−
(x

1
)
=
−

1.
52

17
m
′ +
(x

1
)
=

m
′ −
(x

1
)
=
−

10
.7

15
0

−1.441 – −1.442 – −1.443 – −1.444 –
(0.370) (0.000) (0.519) (0.000) (0.426) (0.000) (0.369) (0.000)

D2 −1.451 – −1.496 – −1.474 – −1.490 –
(0.484) (0.000) (0.453) (0.000) (0.377) (0.000) (0.370) (0.000)

D3 −1.402 – −1.472 – −1.484 – −1.480 –
(1.441) (0.000) (0.464) (0.000) (0.427) (0.000) (0.395) (0.000)

D4 −0.616 – −1.313 – −1.352 – −1.232 –
(4.747) (0.000) (0.816) (0.000) (0.870) (0.000) (0.852) (0.000)

N = 200 D1 −1.498 – −1.520 – −1.509 – −1.498 –
(0.186) (0.000) (0.264) (0.000) (0.201) (0.000) (0.188) (0.000)

D2 −1.458 – −1.482 – −1.471 – −1.473 –
(0.321) (0.000) (0.285) (0.000) (0.223) (0.000) (0.226) (0.000)

D3 −1.488 – −1.424 – −1.446 – −1.452 –
(1.050) (0.000) (0.277) (0.000) (0.225) (0.000) (0.211) (0.000)

D4 −1.084 – −1.511 – −1.508 – −1.513 –
(2.873) (0.000) (0.321) (0.000) (0.311) (0.000) (0.319) (0.000)

N = 1000 D1 −1.508 – −1.514 – −1.506 – −1.507 –
(0.113) (0.000) (0.137) (0.000) (0.120) (0.000) (0.114) (0.000)

D2 −1.512 – −1.537 – −1.534 – −1.522 –
(0.215) (0.000) (0.164) (0.000) (0.137) (0.000) (0.147) (0.000)

D3 −1.413 – −1.498 – −1.494 – −1.509 -
(0.461) (0.000) (0.147) (0.000) (0.119) (0.000) (0.109) (0.000)

D4 −1.034 – −1.510 – −1.504 – −1.510 –
(3.967) (0.000) (0.204) (0.000) (0.202) (0.000) (0.219) (0.000)

Table 1(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1)

p = 0 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

96.7 % – 96.0 % – 96.2 % – 96.5 % –
D2 94.9 % – 96.3 % – 95.8 % – 95.3 % –
D3 96.7 % – 95.8 % – 97.9 % – 95.3 % –
D4 97.2 % – 96.3 % – 96.5 % – 96.5 % –

N = 200 D1 97.3 % – 96.3 % – 97.9 % – 97.7 % –
D2 98.0 % – 96.0 % – 97.7 % – 98.2 % –
D3 97.4 % – 97.1 % – 97.9 % – 97.7 % –
D4 97.1 % – 95.9 % – 97.9 % – 97.6 % –

N = 1000 D1 95.3 % – 95.4 % – 95.9 % – 95.7 % –
D2 96.0 % – 96.1 % – 95.7 % – 95.5 % –
D3 95.4 % – 96.0 % – 95.9 % – 95.7 % -
D4 93.1 % – 95.6 % – 95.9 % – 95.6 % –
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Table 1(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1)

p = 0 N = 50 D1

T
(0
)

N
(x

1
)
=

(m
+
(x

1
)
−

m
−
(x

1
))

=
0

T
(1
)

N
(x

1
)
=

(m
′ +
(x

1
)
−

m
′ −
(x

1
))

=
0

−0.300 – −0.263 – −0.280 – −0.294 –
(0.596) (0.000) (0.708) (0.000) (0.610) (0.000) (0.597) (0.000)

D2 −0.241 – −0.272 – −0.279 – −0.275 –
(0.946) (0.000) (0.922) (0.000) (0.823) (0.000) (0.809) (0.000)

D3 −0.153 – −0.271 – −0.270 – −0.293 –
(2.211) (0.000) (1.201) (0.000) (1.156) (0.000) (0.673) (0.000)

D4 0.026 – −0.264 – −0.227 – −0.199 –
(4.099) (0.000) (1.707) (0.000) (1.548) (0.000) (1.169) (0.000)

N = 200 D1 −0.097 – −0.120 – −0.110 – −0.097 –
(0.363) (0.000) (0.420) (0.000) (0.373) (0.000) (0.363) (0.000)

D2 −0.186 – −0.137 – −0.147 – −0.156 –
(0.571) (0.000) (0.459) (0.000) (0.414) (0.000) (0.435) (0.000)

D3 −0.031 – −0.099 – −0.106 – −0.098 –
(1.389) (0.000) (0.456) (0.000) (0.408) (0.000) (0.381) (0.000)

D4 0.068 – −0.154 – −0.165 – −0.156 –
(4.331) (0.000) (0.607) (0.000) (0.581) (0.000) (0.605) (0.000)

N = 1000 D1 −0.068 – −0.080 – −0.075 – −0.068 –
(0.198) (0.000) (0.236) (0.000) (0.203) (0.000) (0.199) (0.000)

D2 −0.113 – −0.088 – −0.093 – −0.098 –
(0.315) (0.000) (0.307) (0.000) (0.274) (0.000) (0.269) (0.000)

D3 −0.035 – −0.069 – −0.073 – −0.069 -
(0.737) (0.000) (0.400) (0.000) (0.385) (0.000) (0.224) (0.000)

D4 0.104 – −0.097 – −0.102 – −0.098 –
(5.366) (0.000) (0.569) (0.000) (0.516) (0.000) (0.389) (0.000)

Table 1(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1)

p = 0 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.3397 – 2.7784 – 2.3916 – 2.3439 –
D2 3.7093 – 3.6156 – 3.2275 – 3.1735 –
D3 8.6680 – 4.7082 – 4.5315 – 2.6394 –
D4 16.071 – 6.6918 – 6.0685 – 4.5825 –

N = 200 D1 1.4235 – 1.6464 – 1.4639 – 1.4240 –
D2 2.2403 – 1.8004 – 1.6260 – 1.7087 –
D3 5.4464 – 1.7909 – 1.5997 – 1.4938 –
D4 16.980 – 2.3808 – 2.2801 – 2.3751 –

N = 1000 D1 0.7798 – 0.9261 – 0.7972 – 0.7813 –
D2 1.2364 – 1.2052 – 1.0758 – 1.0578 –
D3 2.8893 – 1.5694 – 1.5105 – 0.8798 –
D4 21.034 – 2.2306 – 2.0228 – 1.5275 –
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Table 2(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local linear estimates)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1)

p = 1 N = 50 D1

m
+
(x

1
)
=

m
−
(x

1
)
=
−

1.
52

17
m
′ +
(x

1
)
=

m
′ −
(x

1
)
=
−

10
.7

15
0

−1.457 −8.117 −1.419 −7.385 −1.453 −7.425 −1.457 −7.930
(0.344) (5.567) (0.436) (8.422) (0.396) (5.412) (0.344) (5.515)

D2 −1.439 −6.733 −1.484 −7.168 −1.475 −6.725 −1.474 −7.422
(0.484) (11.05) (0.423) (9.799) (0.352) (7.615) (0.350) (9.261)

D3 −1.385 −7.627 −1.466 −5.290 −1.480 −6.718 −1.465 −6.977
(1.499) (16.21) (0.431) (6.504) (0.387) (7.610) (0.374) (8.777)

D4 −0.582 2.959 −1.279 −6.859 −1.294 −5.320 −1.221 −6.080
(4.882) (45.84) (0.801) (9.980) (0.914) (18.53) (0.916) (15.15)

N = 200 D1 −1.492 −8.979 −1.509 −8.368 −1.492 −8.624 −1.491 −8.960
(0.178) (5.132) (0.238) (7.546) (0.182) (6.107) (0.178) (5.344)

D2 −1.448 −10.51 −1.493 −9.678 −1.469 −10.66 −1.463 −10.44
(0.324) (8.398) (0.263) (6.587) (0.220) (6.136) (0.227) (5.916)

D3 −1.468 −8.339 −1.429 −9.218 −1.446 −10.52 −1.456 −10.18
(1.057) (18.31) (0.267) (5.920) (0.226) (8.263) (0.215) (5.023)

D4 −1.073 −4.982 −1.474 −8.826 −1.489 −9.266 −1.501 −9.498
(2.885) (54.38) (0.293) (6.404) (0.285) (6.234) (0.315) (6.343)

N = 1000 D1 −1.507 −10.12 −1.509 −10.04 −1.506 −10.305 −1.507 −10.09
(0.112) (4.255) (0.135) (5.035) (0.117) (4.164) (0.112) (4.253)

D2 −1.516 −11.04 −1.541 −10.97 −1.538 −10.98 −1.527 −10.63
(0.214) (7.309) (0.155) (6.265) (0.130) (5.898) (0.143) (6.183)

D3 −1.416 −11.26 −1.494 −10.42 −1.495 −10.74 −1.511 −10.83
(0.461) (16.43) (0.140) (6.095) (0.115) (4.852) (0.108) (5.790)

D4 −1.030 10.51 −1.506 −9.644 −1.503 −10.03 −1.511 −9.665
(3.956) (74.92) (0.187) (6.722) (0.193) (5.945) (0.213) (6.460)

Table 2(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1)

p = 1 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

96.7 % 46.7 % 97.1 % 64.1 % 97.1 % 50.2 % 97.1 % 47.4 %

D2 98.8 % 52.4 % 97.4 % 62.2 % 98.5 % 51.4 % 98.7 % 48.3 %

D3 98.3 % 77.6 % 98.5 % 69.7 % 98.6 % 61.7 % 97.5 % 45.1 %

D4 98.3 % 91.9 % 97.7 % 84.1 % 98.2 % 77.5 % 98.8 % 66.7 %

N = 200 D1 95.0 % 52.9 % 95.1 % 67.5 % 96.4 % 53.0 % 95.1 % 52.9 %

D2 96.6 % 61.3 % 95.0 % 67.9 % 95.2 % 54.4 % 95.4 % 54.6 %

D3 98.3 % 94.3 % 94.7 % 66.5 % 95.3 % 54.7 % 94.3 % 51.9 %

D4 97.2 % 98.1 % 96.8 % 76.4 % 97.6 % 67.4 % 98.1 % 66.9 %

N = 1000 D1 95.3 % 61.0 % 95.8 % 76.8 % 95.3 % 60.2 % 95.3 % 60.0 %

D2 95.5 % 69.4 % 96.1 % 75.6 % 95.8 % 61.7 % 95.6 % 62.4 %

D3 96.1 % 91.3 % 96.0 % 74.1 % 96.0 % 62.3 % 95.6 % 61.4 %

D4 93.2 % 97.5 % 95.9 % 83.7 % 95.9 % 75.3 % 95.8 % 75.4 %
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6.1. SIMULATION STUDY

Table 2(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1)

p = 1 N = 50 D1

T
(0
)

N
(x

1
)
=

(m
+
(x

1
)
−

m
−
(x

1
))

=
0

T
(1
)

N
(x

1
)
=

(m
′ +
(x

1
)
−

m
′ −
(x

1
))

=
0

−0.225 0.415 −0.228 0.524 −0.211 0.605 −0.220 0.431
(0.671) (5.319) (0.829) (8.755) (0.694) (5.867) (0.673) (5.378)

D2 −0.218 0.523 −0.242 0.585 −0.223 0.530 −0.226 0.523
(1.079) (6.860) (1.070) (9.810) (0.943) (7.747) (0.930) (6.706)

D3 −0.218 0.784 −0.232 0.396 −0.206 0.467 −0.217 0.711
(2.520) (13.17) (1.357) (12.47) (1.271) (10.58) (0.761) (5.989)

D4 −0.054 −0.575 −0.253 0.489 −0.223 0.569 −0.197 1.001
(4.346) (27.02) (1.953) (15.67) (1.751) (13.12) (1.349) (8.722)

N = 200 D1 −0.130 0.343 −0.180 0.425 −0.139 0.407 −0.130 0.321
(0.426) (4.823) (0.500) (6.535) (0.439) (4.908) (0.426) (4.856)

D2 −0.202 0.713 −0.202 0.598 −0.172 0.433 −0.182 0.444
(0.672) (5.594) (0.546) (6.830) (0.489) (5.160) (0.515) (5.123)

D3 −0.207 1.369 −0.166 0.444 −0.138 0.552 −0.133 0.480
(1.626) (9.797) (0.543) (7.058) (0.478) (5.228) (0.448) (4.917)

D4 −0.264 −1.663 −0.191 0.748 −0.188 0.541 −0.183 0.748
(4.613) (32.01) (0.717) (8.273) (0.687) (6.489) (0.717) (6.174)

N = 1000 D1 −0.070 0.221 −0.120 0.316 −0.079 0.295 −0.070 0.221
(0.223) (4.446) (0.276) (5.828) (0.231) (4.495) (0.224) (4.401)

D2 −0.122 0.612 −0.112 0.495 −0.102 0.316 −0.112 0.333
(0.359) (5.216) (0.356) (6.419) (0.314) (4.813) (0.310) (4.664)

D3 −0.147 1.261 −0.106 0.333 −0.078 0.443 −0.073 0.375
(0.840) (9.368) (0.452) (6.284) (0.423) (4.794) (0.253) (4.533)

D4 −0.204 −1.764 −0.130 0.631 −0.100 0.429 −0.103 0.644
(6.448) (81.66) (0.651) (7.895) (0.583) (5.914) (0.449) (5.666)

Table 2(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1)

p = 1 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.6340 20.853 3.2515 34.322 2.7217 23.001 2.6419 21.083

D2 4.2319 26.893 4.1978 38.456 3.6966 30.369 3.6455 26.288

D3 9.8783 51.639 5.3232 48.903 4.9843 41.492 2.9852 23.478

D4 17.039 105.93 7.6586 61.450 6.8669 51.454 5.2899 34.192

N = 200 D1 1.6704 18.906 1.9600 25.617 1.7243 19.240 1.6736 19.035

D2 2.6359 21.931 2.1426 26.776 1.9181 20.229 2.0201 20.085

D3 6.3771 38.403 2.1317 27.667 1.8765 20.496 1.7574 19.278

D4 18.085 125.50 2.8109 32.433 2.6961 25.439 2.8132 24.201

N = 1000 D1 0.8780 17.428 1.0838 22.848 0.9072 17.623 0.8806 17.255

D2 1.4106 20.447 1.3992 25.164 1.2322 18.870 1.2151 18.286

D3 3.2927 36.723 1.7744 24.633 1.6614 18.793 0.9950 17.772

D4 25.279 320.13 2.5528 30.950 2.2889 23.184 1.7633 22.212
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Table 3(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local cubic estimates)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1)

p = 3 N = 50 D1
m

+
(x

1
)
=

m
−
(x

1
)
=
−

1.
52

17
m
′ +
(x

1
)
=

m
′ −
(x

1
)
=
−

10
.7

15
0

−1.496 −8.325 −1.476 −7.951 −1.478 −7.665 −1.498 −8.147
(0.394) (6.313) (0.521) (9.104) (0.446) (6.211) (0.394) (6.354)

D2 −1.524 −7.085 −1.516 −7.621 −1.514 −7.025 −1.523 −7.887
(0.537) (14.30) (0.474) (10.03) (0.400) (10.16) (0.410) (12.12)

D3 −1.413 −8.283 −1.520 −5.666 −1.522 −7.321 −1.498 −7.517
(1.675) (18.11) (0.464) (7.220) (0.452) (8.619) (0.415) (9.194)

D4 −0.667 2.832 −1.297 −6.770 −1.339 −5.754 −1.272 −5.951
(4.480) (48.99) (0.907) (9.105) (0.950) (18.98) (0.951) (21.17)

N = 200 D1 −1.499 −9.347 −1.531 −8.852 −1.511 −8.964 −1.501 −9.363
(0.205) (5.731) (0.265) (7.958) (0.220) (6.322) (0.206) (5.904)

D2 −1.459 −10.82 −1.500 −10.02 −1.479 −10.75 −1.472 −10.72
(0.371) (9.804) (0.284) (8.051) (0.238) (6.720) (0.258) (7.006)

D3 −1.530 −8.329 −1.441 −9.690 −1.461 −11.23 −1.465 −10.79
(1.211) (23.20) (0.274) (6.894) (0.244) (9.868) (0.235) (6.074)

D4 −1.204 −5.848 −1.513 −9.295 −1.532 −9.956 −1.538 −9.986
(3.157) (56.55) (0.343) (7.285) (0.340) (7.656) (0.376) (7.715)

N = 1000 D1 −1.511 −10.09 −1.515 −10.10 −1.510 −10.26 −1.511 −10.08
(0.126) (5.013) (0.151) (5.788) (0.131) (5.012) (0.126) (5.011)

D2 −1.521 −10.88 −1.550 −10.81 −1.541 −11.11 −1.528 −10.65
(0.244) (8.582) (0.175) (7.453) (0.154) (6.907) (0.170) (7.044)

D3 −1.413 −11.62 −1.499 −10.63 −1.494 −10.82 −1.513 −10.85
(0.531) (19.66) (0.153) (7.330) (0.141) (5.691) (0.133) (6.600)

D4 −1.043 11.62 −1.513 −9.700 −1.508 −9.911 −1.520 −9.607
(4.604) (76.05) (0.209) (7.611) (0.224) (7.236) (0.248) (8.022)

Table 3(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1) m̂(x1) m̂′(x1)

p = 3 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

97.5 % 45.9 % 96.5 % 54.4 % 97.3 % 47.8 % 97.4 % 47.6 %

D2 97.5 % 50.7 % 96.4 % 51.5 % 97.2 % 46.7 % 97.4 % 47.6 %

D3 97.0 % 75.6 % 96.5 % 55.6 % 97.1 % 54.0 % 96.9 % 41.7 %

D4 96.8 % 85.2 % 95.9 % 70.6 % 96.5 % 68.5 % 97.1 % 59.2 %

N = 200 D1 97.1 % 47.3 % 95.6 % 56.4 % 97.0 % 49.8 % 97.3 % 48.4 %

D2 97.6 % 57.0 % 96.3 % 56.8 % 96.8 % 48.1 % 96.9 % 51.6 %

D3 97.6 % 85.6 % 96.1 % 55.5 % 96.8 % 49.5 % 0.95.7 % 46.9 %

D4 96.4 % 84.3 % 96.5 % 75.2 % 97.6 % 72.5 % 97.9 % 70.4 %

N = 1000 D1 95.7 % 63.3 % 95.5 % 76.4 % 95.6 % 69.8 % 95.4 % 66.2 %

D2 96.0 % 70.7 % 95.6 % 71.8 % 95.9 % 69.2 % 96.0 % 66.6 %

D3 95.9 % 72.6 % 95.7 % 79.0 % 95.5 % 70.5 % 95.6 % 69.3 %

D4 93.4 % 85.2 % 96.0 % 78.7 % 95.9 % 72.5 % 95.8 % 70.4 %
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6.1. SIMULATION STUDY

Table 3(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1)

p = 3 N = 50 D1

T
(0
)

N
(x

1
)
=

(m
+
(x

1
)
−

m
−
(x

1
))

=
0

T
(1
)

N
(x

1
)
=

(m
′ +
(x

1
)
−

m
′ −
(x

1
))

=
0

−0.113 −0.512 −0.146 −0.211 −0.110 −0.814 −0.112 −0.998
(0.705) (5.246) (0.845) (7.438) (0.723) (5.430) (0.706) (5.273)

D2 −0.147 −0.463 −0.158 −0.146 −0.133 −0.633 −0.136 −0.609
(1.138) (6.777) (1.097) (7.896) (0.992) (6.997) (0.979) (6.540)

D3 −0.161 −0.069 −0.151 −0.008 −0.103 −0.629 −0.118 −0.620
(2.671) (12.27) (1.376) (9.782) (1.319) (8.633) (0.800) (5.901)

D4 −0.044 1.040 −0.182 −0.249 −0.168 −0.042 −0.156 0.244
(4.523) (22.19) (2.001) (12.67) (1.819) (10.83) (1.423) (8.372)

N = 200 D1 −0.109 −0.441 −0.107 −0.149 −0.102 −0.400 −0.100 −0.478
(0.454) (5.405) (0.513) (6.386) (0.465) (5.379) (0.455) (5.438)

D2 −0.133 −0.106 −0.109 −0.256 −0.106 −0.358 −0.107 −0.352
(0.718) (6.273) (0.562) (6.667) (0.518) (5.657) (0.551) (5.782)

D3 −0.156 −0.753 −0.106 −0.262 −0.102 −0.163 −0.101 −0.314
(1.741) (10.410) (0.553) (6.726) (0.503) (5.573) (0.477) (5.364)

D4 −0.255 1.078 −0.113 −0.291 −0.103 −0.058 −0.114 −0.374
(4.833) (27.33) (0.740) (7.972) (0.728) (6.980) (0.767) (6.876)

N = 1000 D1 −0.089 −0.311 −0.087 −0.220 −0.082 −0.370 −0.080 −0.448
(0.235) (4.702) (0.281) (4.371) (0.241) (4.463) (0.235) (4.111)

D2 −0.113 −0.136 −0.089 −0.186 −0.086 −0.228 −0.087 −0.422
(0.379) (5.473) (0.365) (5.098) (0.330) (5.348) (0.326) (4.633)

D3 −0.166 −1.683 −0.086 −0.192 −0.082 −0.133 −0.081 −0.384
(0.890) (9.621) (0.458) (5.322) (0.439) (4.338) (0.266) (5.064)

D4 −0.346 −2.008 −0.093 −0.121 −0.083 −0.111 −0.094 −0.204
(7.507) (41.40) (0.667) (6.912) (0.606) (5.402) (0.474) (6.256)

Table 3(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x1 = 0.2

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1) T

(0)
N (x1) T

(1)
N (x1)

p = 3 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.7655 20.566 3.3137 29.158 2.8352 21.288 2.7711 20.670

D2 4.4646 26.569 4.3018 30.952 3.8887 27.427 3.8406 25.638

D3 10.471 48.104 5.3970 38.348 5.1714 33.841 3.1374 23.134

D4 17.732 87.004 7.844 49.702 7.1314 42.469 5.5789 32.820

N = 200 D1 1.7811 21.189 2.0115 25.033 1.8265 21.086 1.7863 21.317

D2 2.8173 24.590 2.2057 26.136 2.0324 22.176 2.1606 22.668

D3 6.8260 40.808 2.1681 26.365 1.9737 21.849 1.8735 21.027

D4 18.947 107.13 2.9019 31.250 2.8566 27.364 3.0078 26.954

N = 1000 D1 0.9218 18.433 1.1045 17.135 0.9450 17.497 0.9237 16.117

D2 1.4882 21.455 1.4339 19.983 1.2962 20.964 1.2802 18.161

D3 3.4906 37.717 1.7990 20.862 1.7238 17.006 1.0458 19.850

D4 29.430 162.29 2.6147 27.095 2.3771 21.177 1.8596 24.524
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Table 4(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local constant estimates)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2)

p = 0 N = 50 D1
m

+
(x

2
)
=

m
−
(x

2
)
=

0
m
′ +
(x

2
)
=

2.
51

33
∧

m
′ −
(x

2
)
=

25
.1

32
7

−0.195 – −0.198 – −0.163 – −0.193 –
(0.410) (0.000) (0.507) (0.000) (0.430) (0.000) (0.414) (0.000)

D2 −0.291 – −0.280 – −0.238 – −0.315 –
(0.473) (0.000) (0.500) (0.000) (0.460) (0.000) (0.398) (0.000)

D3 −0.109 – −0.202 – −0.194 – −0.230 –
(1.131) (0.000) (0.542) (0.000) (0.482) (0.000) (0.417) (0.000)

D4 0.065 – −0.228 – −0.257 – −0.240 –
(1.402) (0.000) (0.614) (0.000) (0.544) (0.000) (0.576) (0.000)

N = 200 D1 −0.146 – −0.124 – −0.124 – −0.140 –
(0.244) (0.000) (0.314) (0.000) (0.267) (0.000) (0.244) (0.000)

D2 −0.149 – −0.128 – −0.142 – −0.156 –
(0.344) (0.000) (0.294) (0.000) (0.272) (0.000) (0.282) (0.000)

D3 −0.266 – −0.117 – −0.145 – −0.182 –
(0.805) (0.000) (0.300) (0.000) (0.265) (0.000) (0.234) (0.000)

D4 −0.253 – −0.180 – −0.221 – −0.203 –
(2.190) (0.000) (0.340) (0.000) (0.324) (0.000) (0.360) (0.000)

N = 1000 D1 −0.078 – −0.091 – −0.088 – −0.086 –
(0.131) (0.000) (0.149) (0.000) (0.129) (0.000) (0.129) (0.000)

D2 −0.081 – −0.098 – −0.091 – −0.086 –
(0.178) (0.000) (0.187) (0.000) (0.146) (0.000) (0.150) (0.000)

D3 −0.131 – −0.102 – −0.090 – −0.085 –
(0.478) (0.000) (0.165) (0.000) (0.136) (0.000) (0.130) (0.000)

D4 0.213 – −0.110 – −0.087 – −0.087 –
(4.205) (0.000) (0.179) (0.000) (0.147) (0.000) (0.177) (0.000)

Table 4(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2)

p = 0 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

90.8 % – 86.3 % – 88.8 % – 90.3 % –
D2 88.0 % – 87.9 % – 88.8 % – 89.9 % –
D3 78.6 % – 87.8 % – 88.7 % – 89.2 % –
D4 73.6 % – 87.5 % – 87.0 % – 87.0 % –

N = 200 D1 97.1 % – 96.9 % – 97.7 % – 96.9 % –
D2 98.1 % – 97.4 % – 98.0 % – 97.9 % –
D3 97.9 % – 95.5 % – 96.3 % – 97.1 % –
D4 98.0 % – 97.2 % – 98.6 % – 98.1 % –

N = 1000 D1 95.8 % – 95.6 % – 96.4 % – 95.6 % –
D2 96.8 % – 96.1 % – 96.7 % – 96.6 % –
D3 96.6 % – 95.4 % – 95.2 % – 95.8 % -
D4 94.7% – 95.9 % – 96.3 % – 96.8 % –
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6.1. SIMULATION STUDY

Table 4(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2)

p = 0 N = 50 D1

T
(0
)

N
(x

2
)
=

(m
+
(x

2
)
−

m
−
(x

2
))

=
0

T
(1
)

N
(x

2
)
=

(m
′ +
(x

2
)
−

m
′ −
(x

2
))

=
−

22
.6

19
4

0.255 – 0.244 – 0.257 – 0.255 –
(0.546) (0.000) (0.640) (0.000) (0.560) (0.000) (0.546) (0.000)

D2 0.264 – 0.280 – 0.295 – 0.298 –
(0.780) (0.000) (0.714) (0.000) (0.647) (0.000) (0.668) (0.000)

D3 0.156 – 0.259 – 0.264 – 0.251 –
(1.231) (0.000) (0.707) (0.000) (0.644) (0.000) (0.593) (0.000)

D4 −0.117 – 0.238 – 0.277 – 0.250 –
(1.554) (0.000) (0.987) (0.000) (0.918) (0.000) (0.898) (0.000)

N = 200 D1 0.094 – 0.114 – 0.088 – 0.095 –
(0.360) (0.000) (0.410) (0.000) (0.368) (0.000) (0.360) (0.000)

D2 0.103 – 0.135 – 0.125 – 0.117 –
(0.529) (0.000) (0.442) (0.000) (0.401) (0.000) (0.419) (0.000)

D3 0.081 – 0.116 – 0.107 – 0.110 –
(1.036) (0.000) (0.429) (0.000) (0.389) (0.000) (0.376) (0.000)

D4 −0.163 – 0.086 – 0.086 – 0.072 –
(1.620) (0.000) (0.549) (0.000) (0.528) (0.000) (0.558) (0.000)

N = 1000 D1 0.047 – 0.077 – 0.059 – 0.047 –
(0.182) (0.000) (0.213) (0.000) (0.186) (0.000) (0.182) (0.000)

D2 0.102 – 0.087 – 0.079 – 0.083 –
(0.260) (0.000) (0.238) (0.000) (0.215) (0.000) (0.222) (0.000)

D3 0.120 – 0.083 – 0.073 – 0.065 -
(0.410) (0.000) (0.235) (0.000) (0.214) (0.000) (0.197) (0.000)

D4 −0.181 – 0.093 – 0.77 – 0.076 –
(3.518) (0.000) (0.329) (0.000) (0.306) (0.000) (0.299) (0.000)

Table 4(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2)

p = 0 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.1409 – 2.5117 – 2.1968 – 2.1420 –
D2 3.0595 – 2.8012 – 2.5392 – 2.6211 –
D3 4.8287 – 2.7747 – 2.5275 – 2.3256 –
D4 6.0952 – 3.8714 – 3.5987 – 3.5211 –

N = 200 D1 1.4126 – 1.6099 – 1.4459 – 1.4146 –
D2 2.0740 – 1.7327 – 1.5754 – 1.6456 –
D3 4.0622 – 1.6822 – 1.5277 – 1.4764 –
D4 6.3516 – 2.1554 – 2.0724 – 2.1910 –

N = 1000 D1 0.7136 – 0.8372 – 0.7322 – 0.7140 –
D2 1.0198 – 0.9337 – 0.8464 – 0.8737 –
D3 1.6095 – 0.9249 – 0.8425 – 0.7752 –
D4 13.791 – 1.2904 – 1.1995 – 1.1737 –
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Table 5(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local linear estimates)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2)

p = 1 N = 50 D1
m

+
(x

2
)
=

m
−
(x

2
)
=

0
m
′ +
(x

2
)
=

2.
51

33
∧

m
′ −
(x

2
)
=

25
.1

32
7

−0.174 10.476 −0.185 8.734 −0.169 9.635 −0.171 10.274
(0.396) (6.840) (0.423) (6.651) (0.384) (7.252) (0.399) (6.690)

D2 −0.277 9.075 −0.272 9.639 −0.246 9.748 −0.309 10.752
(0.451) (7.039) (0.450) (8.305) (0.434) (7.365) (0.379) (5.828)

D3 −0.116 5.727 −0.218 10.178 −0.227 10.638 −0.221 12.627
(1.136) (16.64) (0.510) (8.781) (0.443) (8.148) (0.394) (12.47)

D4 0.087 3.165 −0.299 8.786 −0.305 10.601 −0.237 11.196
(1.390) (45.82) (0.553) (11.28) (0.472) (16.54) (0.539) (14.54)

N = 200 D1 −0.141 11.139 −0.153 10.079 −0.125 10.572 −0.138 11.118
(0.250) (4.280) (0.302) (5.289) (0.262) (5.425) (0.249) (4.444)

D2 −0.144 11.814 −0.141 12.097 −0.155 12.337 −0.145 12.898
(0.333) (5.966) (0.277) (7.320) (0.250) (7.966) (0.262) (9.475)

D3 −0.247 10.815 −0.105 10.384 −0.152 11.013 −0.169 11.488
(0.819) (22.76) (0.263) (8.231) (0.262) (7.801) (0.231) (6.989)

D4 0.169 25.444 −0.165 11.489 −0.212 11.263 −0.180 10.958
(2.176) (69.24) (0.306) (6.298) (0.300) (6.548) (0.352) (6.075)

N = 1000 D1 −0.041 13.151 −0.037 13.281 −0.051 13.063 −0.041 13.361
(0.127) (3.749) (0.137) (4.541) (0.126) (3.994) (0.126) (4.376)

D2 −0.056 13.360 −0.003 13.030 −0.037 12.864 −0.042 12.910
(0.175) (10.62) (0.169) (6.387) (0.143) (4.828) (0.146) (4.892)

D3 −0.013 11.918 −0.019 12.565 −0.043 12.379 −0.049 12.758
(0.477) (18.22) (0.165) (5.210) (0.131) (5.279) (0.128) (4.682)

D4 0.223 30.708 −0.020 11.592 −0.018 12.353 −0.010 13.262
(4.203) (82.71) (0.163) (9.371) (0.143) (7.576) (0.175) (6.575)

Table 5(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2)

p = 1 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

85.9 % 41.3 % 89.6 % 40.0 % 87.4 % 47.3 % 87.1 % 41.9 %

D2 95.9 % 59.1 % 91.5 % 55.4 % 91.2 % 56.6 % 93.9 % 55.2 %

D3 96.7 % 73.5 % 92.2 % 60.0 % 90.8 % 66.0 % 89.4 % 60.3 %

D4 98.9 % 91.7 % 97.1 % 72.2 % 97.3 % 64.1 % 97.7 % 54.3 %

N = 200 D1 97.8 % 49.5 % 96.7 % 48.0 % 98.0 % 56.7 % 97.5 % 50.2 %

D2 97.9 % 70.9 % 97.0 % 66.4 % 97.5 % 67.9 % 98.0 % 66.2 %

D3 96.8 % 88.2 % 95.8 % 72.0 % 96.8 % 79.2 % 97.1 % 72.3 %

D4 93.4 % 85.0 % 96.7 % 86.6 % 96.9 % 76.9 % 976 % 65.1 %

N = 1000 D1 96.6 % 71.4 % 95.5 % 67.6 % 96.8 % 68.1 % 96.3 % 70.3 %

D2 96.7 % 85.1 % 95.8 % 79.7 % 96.3 % 81.5 % 96.9 % 79.4 %

D3 94.6 % 90.5 % 95.2 % 86.4 % 95.8 % 65.9 % 95.9 % 86.8 %

D4 91.2 % 85.3 % 96.5 % 93.5 % 96.7 % 92.3 % 97.4 % 88.1 %
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Table 5(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
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(1)
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=
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4

0.108 −14.70 0.124 −14.97 0.100 −14.80 0.105 −14.70
(0.617) (5.695) (0.743) (9.721) (0.636) (6.507) (0.618) (5.688)

D2 0.086 −15.50 0.143 −15.09 0.120 −14.95 0.122 −15.02
(0.867) (8.361) (0.822) (11.522) (0.735) (8.937) (0.761) (7.909)

D3 −0.001 −18.36 0.130 −15.47 0.098 −15.26 0.099 −15.08
(1.258) (18.26) (0.814) (14.07) (0.730) (12.37) (0.670) (6.942)

D4 −0.241 −20.49 0.114 −16.65 0.097 −16.15 0.071 −15.83
(1.582) (38.83) (1.101) (18.01) (1.024) (14.92) (1.007) (10.97)

N = 200 D1 0.095 −15.66 0.108 −16.37 0.108 −15.08 0.095 −15.60
(0.424) (4.841) (0.493) (6.897) (0.435) (5.054) (0.425) (4.845)

D2 0.113 −16.81 0.111 −15.19 0.085 −15.92 0.097 −16.52
(0.621) (5.788) (0.528) (7.323) (0.475) (5.398) (0.499) (5.298)

D3 0.096 −17.06 0.120 −16.43 0.079 −15.96 0.070 −15.94
(1.144) (11.10) (0.513) (7.268) (0.461) (5.289) (0.444) (5.020)

D4 −0.109 −10.43 0.107 −18.52 0.115 −17.06 0.111 −18.51
(1.680) (43.98) (0.645) (8.632) (0.623) (6.879) (0.662) (6.581)

N = 1000 D1 0.065 −18.55 0.078 −18.12 0.078 −18.36 0.065 −18.53
(0.205) (1.898) (0.247) (3.240) (0.212) (2.169) (0.206) (1.896)

D2 0.067 −18.93 0.071 −18.39 0.055 −18.34 0.067 −18.17
(0.289) (2.787) (0.274) (3.840) (0.245) (2.979) (0.253) (2.636)

D3 0.066 −17.95 0.070 −18.14 0.049 −18.65 0.040 −18.31
(0.419) (6.088) (0.271) (4.691) (0.243) (4.125) (0.223) (2.314)

D4 −0.139 −8.472 0.077 −19.50 0.045 −19.22 0.051 −19.50
(3.727) (92.94) (0.367) (6.004) (0.341) (4.976) (0.335) (3.658)

Table 5(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2)

p = 1 N = 50 D1

B
=
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00

R
ep

ea
t:
×

10
00

2.4196 22.324 2.9143 38.107 2.4948 25.510 2.4244 22.297

D2 3.4021 32.777 3.2228 45.169 2.8812 35.034 2.9841 31.006

D3 4.9344 71.601 3.1928 55.165 2.8621 48.516 2.6270 27.213

D4 6.2052 152.21 4.3170 70.612 4.0146 58.519 3.9508 43.017

N = 200 D1 1.6655 18.978 1.9328 27.039 1.7063 19.814 1.6685 18.994

D2 2.4361 22.691 2.0715 28.706 1.8657 21.162 1.9563 20.767

D3 4.4878 43.533 2.0115 28.493 1.8090 20.735 1.7405 19.681

D4 6.5869 172.40 2.5304 33.839 2.4430 26.968 2.5953 25.799

N = 1000 D1 0.8065 7.4415 0.9714 12.702 0.8316 8.5033 0.8081 7.4325

D2 1.1340 10.925 1.0742 15.056 0.9604 11.678 0.9947 10.335

D3 1.6448 23.867 1.0642 18.388 0.9540 16.172 0.8756 9.0711

D4 14.612 364.33 1.4390 23.537 1.3382 19.506 1.3169 14.339
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Table 6(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local cubic estimates)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2)

p = 3 N = 50 D1
m
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)
=

25
.1

32
7

−0.153 11.196 −0.182 9.146 −0.140 10.081 −0.150 10.966
(0.458) (7.583) (0.488) (7.419) (0.459) (7.988) (0.462) (7.385)

D2 −0.298 9.605 −0.280 10.202 −0.233 10.492 −0.294 11.302
(0.571) (8.114) (0.485) (9.453) (0.486) (9.940) (0.456) (6.607)

D3 −0.100 6.072 −0.203 11.124 −0.193 11.929 −0.204 14.231
(1.478) (19.47) (0.542) (12.36) (0.475) (11.64) (0.476) (16.72)

D4 −0.608 8.161 −0.324 8.797 −0.263 11.889 −0.223 13.751
(2.370) (54.34) (0.702) (10.16) (0.607) (20.38) (0.739) (26.58)

N = 200 D1 −0.103 11.266 −0.131 10.526 −0.094 10.848 −0.099 11.244
(0.278) (5.365) (0.343) (5.946) (0.290) (5.995) (0.278) (5.512)

D2 −0.104 12.196 −0.101 12.714 0.102 13.154 −0.103 13.663
(0.395) (7.221) (0.311) (8.153) (0.288) (9.467) (0.305) (10.35)

D3 −0.377 11.512 −0.080 10.646 −0.103 11.600 −0.131 11.862
(1.382) (27.46) (0.313) (9.716) (0.288) (8.860) (0.249) (7.680)

D4 −0.658 22.852 −0.154 22.851 −0.172 11.666 −0.131 11.120
(3.956) (66.37) (0.311) (7.235) (0.340) (7.367) (0.413) (7.885)

N = 1000 D1 −0.029 13.406 −0.032 13.864 −0.037 13.390 −0.030 13.645
(0.143) (4.405) (0.153) (5.102) (0.141) (4.629) (0.144) (5.024)

D2 −0.038 13.547 −0.009 13.158 −0.031 13.083 −0.029 13.191
(0.207) (11.44) (0.198) (7.208) (0.162) (5.842) (0.163) (5.877)

D3 −0.016 10.838 −0.021 12.753 −0.031 12.521 −0.038 12.833
(0.556) (21.09) (0.185) (6.282) (0.154) (6.063) (0.142) (5.259)

D4 −0.172 34.250 −0.006 11.875 −0.006 12.449 0.005 13.476
(5.933) (86.15) (0.192) (10.04) (0.170) (8.672) (0.202) (7.698)

Table 6(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2) m̂(x2) m̂′(x2)

p = 3 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

90.8 % 65.3 % 90.3 % 68.7 % 90.0 % 65.2 % 90.7 % 65.6 %

D2 96.8 % 74.3 % 93.1 % 74.4 % 94.7 % 69.7 % 95.7 % 70.0 %

D3 97.9 % 76.3 % 93.2 % 74.8 % 94.2 % 71.4 % 92.9 % 68.1 %

D4 99.5 % 77.3 % 96.0 % 79.4 % 95.2 % 78.3 % 95.8 % 77.7 %

N = 200 D1 96.6 % 74.3 % 96.4 % 71.6 % 96.8 % 73.2 % 96.5 % 74.1 %

D2 97.0 % 77.2 % 96.7 % 73.7 % 96.6 % 74.4 % 96.8 % 75.8 %

D3 96.1 % 82.6 % 96.2 % 75.2 % 96.3 % 72.3 % 96.3 % 73.0 %

D4 94.1 % 82.5 % 96.1 % 77.6 % 77.6 % 97.5 % 78.4 % 97.6 %

N = 1000 D1 95.6 % 78.0 % 95.6 % 75.8 % 95.8 % 77.7 % 95.5 % 078.8 %

D2 95.0 % 82.9 % 95.7 % 78.6 % 95.7 % 78.7 % 95.8 % 80.5 %

D3 93.1 % 86.4 % 94.9 % 79.1 % 95.3 % 77.1 % 95.3 % 78.2 %

D4 92.1 % 82.9 % 95.7 % 83.9 % 96.5 % 83.2 % 96.6 % 821 %
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Table 6(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function
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(0)
N (x2) T

(1)
N (x2) T

(0)
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0.097 −16.48 0.144 −16.72 0.101 −16.46 0.096 −16.46
(0.650) (5.128) (0.758) (7.707) (0.660) (5.549) (0.648) (5.138)

D2 0.102 −17.14 0.170 −16.86 0.127 −16.67 0.123 −16.76
(0.913) (7.306) (0.836) (8.923) (0.767) (7.542) (0.801) (6.935)

D3 0.008 −17.89 0.139 −16.66 0.097 −16.47 0.092 −16.67
(1.325) (15.03) (0.833) (10.55) (0.761) (9.777) (0.705) (6.349)

D4 −0.216 −17.72 0.137 −17.23 0.116 −16.95 0.090 −16.98
(1.648) (28.40) (1.126) (13.77) (1.069) (11.81) (1.055) (9.185)

N = 200 D1 0.086 −19.63 0.115 −18.53 0.100 −17.4 0.088 −19.81
(0.452) (5.414) (0.506) (6.416) (0.460) (5.410) (0.452) (5.434)

D2 0.084 −19.48 0.090 −20.05 0.114 −19.46 0.108 −19.86
(0.665) (6.164) (0.544) (6.850) (0.503) (5.764) (0.532) (5.770)

D3 0.088 −19.80 0.082 −19.27 0.083 −18.94 0.088 −18.82
(1.206) (9.958) (0.527) (6.727) (0.488) (5.681) (0.474) (5.627)

D4 −0.056 0.046 0.110 −21.01 0.099 −18.94 0.087 −18.92
(2.757) (34.64) (0.670) (7.978) (0.663) (7.027) (0.707) (6.901)

N = 1000 D1 0.056 −23.67 0.065 −20.53 0.074 −23.44 0.058 −22.81
(0.216) (5.365) (0.252) (6.344) (0.220) (5.386) (0.216) (5.404)

D2 0.062 −21.48 0.060 −22.05 0.054 −23.46 0.058 −23.86
(0.304) (6.126) (0.278) (6.818) (0.255) (5.724) (0.267) (5.724)

D3 0.068 −21.80 0.052 −21.27 0.055 −25.04 0.058 −24.88
(0.441) (9.893) (0.277) (6.667) (0.253) (5.636) (0.235) (5.601)

D4 −0.186 2.681 0.063 −24.01 0.054 −22.94 0.049 −22.92
(5.549) (89.60) (0.375) (7.947) (0.356) (6.989) (0.351) (6.854)

Table 6(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x2 = 0.5

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2) T

(0)
N (x2) T

(1)
N (x2)

p = 3 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.5481 20.104 2.9723 30.212 2.5908 21.751 2.5431 20.142

D2 3.5825 28.641 3.2777 34.977 3.0089 29.564 3.1428 27.186

D3 5.1945 58.933 3.2667 41.387 2.9864 38.328 2.7638 24.888

D4 6.4623 111.33 4.4143 54.002 4.1936 46.323 4.1358 36.005

N = 200 D1 1.7735 21.224 1.9848 25.154 1.8056 21.206 1.7728 21.303

D2 2.6095 24.164 2.1341 26.853 1.9750 22.597 2.0881 22.621

D3 4.7302 39.034 2.0673 26.370 1.9152 22.272 1.8586 22.059

D4 10.807 135.8 2.6297 31.27 2.6008 27.54 2.773 27.05

N = 1000 D1 0.8493 21.033 0.9907 24.868 0.8636 21.112 0.8477 21.184

D2 1.1941 24.017 1.0925 26.727 1.0029 22.438 1.0476 22.440

D3 1.7315 38.780 1.0889 26.136 0.9954 22.096 0.9212 21.957

D4 21.753 351.24 1.4714 31.154 1.3978 27.398 1.3786 26.869
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Table 7(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local constant estimates)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3)

p = 0 N = 50 D1
m

+
(x

3
)
=

0.
80

87
∧

m
−
(x

3
)
=

0.
60

87
m
′ +
(x

3
)
=

m
′ −
(x

3
)
=
−

0.
48

18
0.681 – 0.657 – 0.694 – 0.684 –

(0.380) (0.000) (0.398) (0.000) (0.421) (0.000) (0.383) (0.000)

D2 0.618 – 0.616 – 0.616 – 0.605 –
(0.532) (0.000) (0.478) (0.000) (0.419) (0.000) (0.463) (0.000)

D3 0.400 – 0.630 – 0.658 – 0.679 –
(1.294) (0.000) (0.413) (0.000) (0.364) (0.000) (0.349) (0.000)

D4 0.570 – 0.587 – 0.572 – 0.623 –
(1.461) (0.000) (0.660) (0.000) (0.685) (0.000) (0.637) (0.000)

N = 200 D1 0.686 – 0.671 – 0.669 – 0.683 –
(0.175) (0.000) (0.249) (0.000) (0.199) (0.000) (0.176) (0.000)

D2 0.688 – 0.699 – 0.684 – 0.692 –
(0.324) (0.000) (0.259) (0.000) (0.216) (0.000) (0.226 (0.000)

D3 0.683 – 0.722 – 0.697 – 0.689 –
(0.901) (0.000) (0.267) (0.000) (0.237) (0.000) (0.232) (0.000)

D4 0.777 – 0.687 – 0.685 – 0.691 –
(2.306) (0.000) (0.302) (0.000) (0.287) (0.000) (0.340) (0.000)

N = 1000 D1 0.702 – 0.716 – 0.706 – 0.702 –
(0.101) (0.000) (0.133) (0.000) (0.102) (0.000) (0.100) (0.000)

D2 0.686 – 0.693 – 0.687 – 0.681 –
(0.201) (0.000) (0.155) (0.000) (0.127) (0.000) (0.128) (0.000)

D3 0.582 – 0.686 – 0.681 – 0.687 -
(0.597) (0.000) (0.158) (0.000) (0.134) (0.000) (0.115) (0.000)

D4 0.908 – 0.730 – 0.735 – 0.732 –
(3.996) (0.000) (0.185) (0.000) (0.163) (0.000) (0.193) (0.000)

Table 7(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3)

p = 0 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

98.5 % – 96.8 % – 97.8 % – 98.4 % –
D2 98.4 % – 96.6 % – 98.6 % – 98.6 % –
D3 96.0 % – 97.5 % – 98.2 % – 97.6 % –
D4 92.3 % – 96.2 % – 97.1 % – 98.6 % –

N = 200 D1 97.2 % – 96.5 % – 97.3 % – 96.8 % –
D2 97.9 % – 96.2 % – 97.0 % – 96.9 % –
D3 97.4 % – 96.2 % – 97.3 % – 97.0 % –
D4 93.0 % – 97.0 % – 97.0 % – 97.1 % –

N = 1000 D1 95.6 % – 95.5 % – 96.0 % – 95.9 % –
D2 96.1 % – 95.8 % – 95.9 % – 95.5 % –
D3 97.0 % – 96.1 % – 96.3 % – 95.0 % -
D4 99.0 % – 96.3 % – 95.9 % – 95.7 % –
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Table 7(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3)

p = 0 N = 50 D1

T
(0
)

N
(x

3
)
=

(m
+
(x

3
)
−

m
−
(x

3
))

=
0.

2
T
(1
)

N
(x

3
)
=

(m
′ +
(x

3
)
−

m
′ −
(x

3
))

=
0 0.134 – 0.145 – 0.140 – 0.133 –

(0.587) (0.000) (0.694) (0.000) (0.598) (0.000) (0.587) (0.000)

D2 0.170 – 0.139 – 0.141 – 0.148 –
(0.929) (0.000) (0.865) (0.000) (0.780) (0.000) (0.784) (0.000)

D3 0.157 – 0.116 – 0.122 – 0.136 –
(1.985) (0.000) (0.894) (0.000) (0.838) (0.000) (0.669) (0.000)

D4 0.099 – 0.111 – 0.125 – 0.128 –
(2.888) (0.000) (1.397) (0.000) (1.263) (0.000) (0.000) (1.133)

N = 200 D1 0.171 – 0.166 – 0.169 – 0.170 –
(0.365) (0.000) (0.412) (0.000) (0.371) (0.000) (0.364) (0.000)

D2 0.162 – 0.159 – 0.159 – 0.161 –
(0.567) (0.000) (0.442) (0.000) (0.408) (0.000) (0.433) (0.000)

D3 0.214 – 0.165 – 0.169 – 0.166 –
(1.377) (0.000) (0.435) (0.000) (0.397) (0.000) (0.380) (0.000)

D4 0.238 – 0.169 – 0.168 – 0.169 –
(3.135) (0.000) (0.581) (0.000) (0.570) (0.000) (0.607) (0.000)

N = 1000 D1 0.191 – 0.186 – 0.191 – 0.191 –
(0.195) (0.000) (0.231) (0.000) (0.199) (0.000) (0.000) (0.195)

D2 0.183 – 0.179 – 0.179 – 0.180 –
(0.320) (0.000) (0.288) (0.000) (0.260) (0.000) (0.000) (0.260)

D3 0.234 – 0.185 – 0.189 – 0.186 -
(0.863) (0.000) (0.298) (0.000) (0.279) (0.000) (0.223) (0.000)

D4 0.258 – 0.189 – 0.188 – 0.189 –
(4.962) (0.000) (0.465) (0.000) (0.421) (0.000) (0.377) (0.000)

Table 7(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3)

p = 0 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.3030 – 2.7216 – 2.3476 – 2.3016 –
D2 3.6443 – 3.3940 – 3.0597 – 3.0766 –
D3 7.7837 – 3.5076 – 3.2856 – 2.6236 –
D4 11.322 – 5.4798 – 4.9522 – 4.4422 –

N = 200 D1 1.4333 – 1.6181 – 1.4576 – 1.4304 –
D2 2.2258 – 1.7343 – 1.6013 – 1.6995 –
D3 5.3982 – 1.7051 – 1.559 – 1.4913 –
D4 12.292 – 2.2781 – 2.2347 – 2.3795 –

N = 1000 D1 0.7676 – 0.9072 – 0.7825 – 0.7672 –
D2 1.2539 – 1.1313 – 1.0199 – 1.0255 –
D3 3.3785 – 1.1692 – 1.0952 – 0.8745 –
D4 19.454 – 1.8266 – 1.6507 – 1.4807 –
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Table 8(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local linear estimates)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3)

p = 1 N = 50 D1
m

+
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)
=
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87
∧

m
−
(x

3
)
=

0.
60

87
m
′ +
(x

3
)
=

m
′ −
(x

3
)
=
−

0.
48

18
0.679 0.807 0.648 0.435 0.689 0.683 0.680 0.797

(0.377) (3.241) (0.401) (3.042) (0.412) (3.364) (0.379) (3.235)

D2 0.618 1.183 0.612 0.756 0.608 1.116 0.608 1.498
(0.527) (3.844) (0.476) (3.162) (0.426) (3.499) (0.469) (3.667)

D3 0.402 0.737 0.636 0.235 0.667 0.461 0.686 0.472
(1.305) (3.925) (0.414) (3.131) (0.382) (2.894) (0.368) (3.107)

D4 0.577 1.111 0.560 0.170 0.574 0.462 0.624 0.506
(2.448) (4.346) (0.660) (3.336) (0.661) (3.394) (0.630) (3.619)

N = 200 D1 0.685 0.869 0.671 0.886 0.669 0.968 0.682 0.967
(0.176) (3.139) (0.241) (3.171) (0.196) (3.284) (0.177) (3.162)

D2 0.683 1.656 0.693 1.786 0.683 1.856 0.691 1.435
(0.323) (3.588) (0.258) (3.470) (0.217) (3.357) (0.223) (3.203)

D3 0.690 1.426 0.719 1.680 0.696 1.753 0.689 1.847
(0.899) (4.622) (0.262) (3.353) (0.235) (3.419) (0.232) (3.332)

D4 0.784 1.992 0.695 1.437 0.685 3.639 0.692 1.334
(2.306) (4.687) (0.306) (3.435) (0.294) (3.684) (0.345) (3.898)

N = 1000 D1 0.704 2.541 0.717 2.364 0.707 2.535 0.704 2.551
(0.100) (2.806) (0.125) (3.384) (0.102) (2.953) (0.100) (2.825)

D2 0.686 1.424 0.695 1.764 0.688 1.979 0.681 1.965
(0.201) (3.704) (0.151) (3.548) (0.125) (2.736) (0.128) (2.865)

D3 0.581 2.572 0.678 2.959 0.681 2.958 0.686 2.979
(0.598) (4.658) (0.162) (3.253) (0.134) (2.879) (0.115) (2.913)

D4 0.910 2.676 0.727 2.514 0.734 2.686 0.732 2.838
(4.195) (5.062) (0.173) (3.435) (0.163) (3.616) (0.192) (3.694)

Table 8(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3)

p = 1 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

98.4 % 51.7 % 96.6 % 46.2 % 97.8 % 52.5 % 98.3 % 51.3 %

D2 98.1 % 52.2 % 96.6 % 49.1 % 97.8 % 51.8 % 97.6 % 52.7 %

D3 96.5 % 51.3 % 96.0 % 49.7 % 97.7 % 53.4 % 98.3 % 51.8 %

D4 92.6 % 46.8 % 95.9 % 47.3 % 96.3 % 55.8 % 97.6 % 50.6 %

N = 200 D1 97.2 % 54.9 % 96.2 % 52.9 % 96.7 % 56.1 % 99.9 % 55.1 %

D2 96.8 % 62.7 % 96.1 % 56.9 % 96.9 % 60.0 % 96.8 % 61.4 %

D3 96.1 % 55.4 % 95.8 % 56.3 % 96.6 % 60.2 % 96.9 % 60.0 %

D4 90.4 % 46.6 % 96.2 % 59.3 % 96.9 % 60.4 % 96.8 % 61.6 %

N = 1000 D1 96.0 % 72.0 % 95.6 % 71.8 % 95.7 % 72.1 % 96.0 % 72.1 %

D2 95.8 % 67.7 % 95.8 % 71.6 % 95.9 % 75.8 % 95.8 % 76.4 %

D3 95.1 % 55.4 % 96.2 % 71.3 % 95.6 % 75.2 % 95.8 % 75.0 %

D4 89.4 % 41.6 % 96.2 % 72.3 % 95.4 % 75.4 % 95.8 % 76.6 %

106 FLEXIBILITY, ROBUSTNESS AND DISCONTINUITY IN NONPARAMETRIC REGRESSION APPROACHES



6.1. SIMULATION STUDY

Table 8(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x3) T

(1)
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(1)
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=
0 0.140 −0.180 0.152 −0.136 0.145 −0.184 0.139 −0.183

(0.643) (3.487) (0.753) (3.426) (0.660) (3.493) (0.645) (3.484)

D2 0.147 −0.281 0.140 −0.172 0.140 −0.250 0.142 −0.259
(1.006) (3.822) (0.927) (3.590) (0.852) (3.683) (0.860) (3.738)

D3 0.089 −0.270 0.123 −0.152 0.128 −0.233 0.143 −0.198
(2.047) (4.361) (0.953) (3.544) (0.904) (3.658) (0.728) (3.527)

D4 0.103 −0.149 0.149 −0.134 0.144 −0.214 0.164 −0.234
(2.924) (4.937) (1.469) (4.030) (1.352) (4.195) (1.233) (4.187)

N = 200 D1 0.179 −0.157 0.177 −0.137 0.178 −0.183 0.178 −0.170
(0.415) (3.643) (0.461) (3.562) (0.423) (3.596) (0.415) (3.627)

D2 0.156 −0.257 0.169 −0.155 0.165 −0.190 0.165 −0.210
(0.635) (3.762) (0.493) (3.583) (0.465) (3.630) (0.494) (3.682)

D3 0.133 −0.214 0.175 −0.115 0.177 −0.157 0.173 −0.150
(1.470) (4.467) (0.485) (3.573) (0.452) (3.624) (0.434) (3.638)

D4 0.148 −0.141 0.170 −0.126 0.164 −0.156 0.160 −0.195
(3.169) (5.567) (0.640) (3.770) (0.639) (3.961) (0.682) (4.019)

N = 1000 D1 0.194 −0.112 0.192 −0.091 0.193 −0.122 0.193 −0.118
(0.214) (3.626) (0.251) (3.549) (0.220) (3.582) (0.215) (3.615)

D2 0.161 −0.179 0.184 −0.109 0.180 −0.147 0.180 −0.156
(0.355) (3.753) (0.309) (3.552) (0.284) (3.604) (0.286) (3.656)

D3 0.138 −0.161 0.190 −0.089 0.192 −0.130 0.188 −0.116
(0.782) (4.464) (0.317) (3.547) (0.301) (3.611) (0.242) (3.617)

D4 0.106 −0.256 0.185 −0.086 0.179 −0.123 0.175 −0.143
(6.9740) (7.055) (0.489) (3.745) (0.450) (3.945) (0.411) (4.006)

Table 8(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T
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N (x3) T
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(0)
N (x3) T
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p = 1 N = 50 D1
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00

R
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ea
t:
×

10
00

2.5232 13.671 2.9544 13.431 2.5906 13.695 2.5298 13.657

D2 3.9452 14.985 3.6343 14.074 14.439 3.3407 14.654 3.3733

D3 8.0251 17.097 3.7378 13.894 3.5446 14.339 2.8543 13.826

D4 11.462 19.355 5.7620 15.799 5.3000 16.447 4.8353 16.415

N = 200 D1 1.6289 14.283 1.8090 13.965 1.6602 14.099 1.6285 14.219

D2 2.4928 14.749 1.9331 14.045 1.8242 14.231 1.9385 14.434

D3 5.7633 17.514 1.9017 14.008 1.7733 14.209 1.7013 14.262

D4 12.424 21.824 2.5099 14.781 2.5085 15.530 2.6758 15.754

N = 1000 D1 0.8410 14.213 0.9848 13.914 0.8635 14.044 0.8432 14.171

D2 1.3150 14.711 1.2114 13.925 1.1135 14.130 1.1244 14.332

D3 2.6750 17.499 1.2459 13.907 1.1815 14.158 0.9514 14.179

D4 27.340 27.656 1.9206 14.681 1.7666 15.464 1.6117 15.706
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Table 9(a): FINITE SAMPLE PERFORMANCE OF M-SMOOTHERS (local cubic estimates)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3)

p = 3 N = 50 D1
m

+
(x

3
)
=

0.
80

87
∧

m
−
(x

3
)
=

0.
60

87
m
′ +
(x

3
)
=

m
′ −
(x

3
)
=
−

0.
48

18
0.691 0.858 0.653 0.541 0.702 0.613 0.692 0.854

(0.416) (6.577) (0.421) (6.035) (0.429) (7.071) (0.416) (6.606)

D2 0.668 2.364 0.622 0.758 0.649 1.800 0.629 2.376
(0.571) (9.744) (0.513) (7.518) (0.466) (7.965) (0.514) (8.350)

D3 0.338 1.136 0.663 0.167 0.691 0.637 0.721 0.253
(1.703) (11.13) (0.463) (5.100) (0.426) (5.781) (0.417) (5.701)

D4 0.311 1.345 0.595 0.112 0.593 0.620 0.668 0.761
(3.069) (12.99) (0.746) (7.714) (0.726) (8.191) (0.705) (9.062)

N = 200 D1 0.709 1.363 0.699 1.231 0.694 1.150 0.707 1.514
(0.217) (6.387) (0.279) (5.821) (0.240) (6.120) (0.218) (6.364)

D2 0.685 2.679 0.700 2.129 0.690 2.236 0.698 1.795
(0.377) (8.076) (0.284) (6.455) (0.248) (5.900) (0.248) (5.845)

D3 0.719 2.553 0.734 1.991 0.708 2.944 0.705 2.734
(1.061) (12.45) (0.281) (5.764) (0.266) (7.282) (0.267) (6.180)

D4 1.226 6.099 0.693 1.288 0.701 1.281 0.711 1.014
(4.183) (16.32) (0.357) (6.254) (0.340) (7.020) (0.406) (6.833)

N = 1000 D1 0.713 3.085 0.735 2.725 0.719 3.082 0.713 3.097
(0.124) (4.537) (0.151) (4.859) (0.125) (4.700) (0.123) (4.558)

D2 0.694 1.191 0.700 2.111 0.698 2.106 0.698 1.892
(0.228) (5.971) (0.171) (5.397) (0.143) (3.828) (0.150) (3.861)

D3 0.574 5.693 0.687 4.862 0.683 3.403 0.686 3.436
(0.668) (12.92) (0.176) (7.567) (0.151) (4.239) (0.128) (4.394)

D4 1.412 9.290 0.730 3.102 0.741 2.796 0.740 3.128
(4.845) (19.23) (0.191) (5.625) (0.183) (5.261) (0.214) (7.141)

Table 9(b): SMOOTH RESIDUAL BOOTSTRAP PERFORMANCE (95 % confidence interval coverage)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3)

p = 3 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

97.9 % 51.7 % 96.5 % 46.2 % 97.5 % 52.5 % 97.9 % 51.3 %

D2 97.7 % 51.0 % 96.2 % 51.2 % 97.5 % 51.8 % 97.4 % 52.7 %

D3 96.5 % 51.3 % 96.2 % 51.0 % 97.2 % 53.4 % 97.9 % 52.2 %

D4 92.8 % 46.8 % 95.6 % 50.9 % 96.3 % 55.6 % 97.3 % 52.6 %

N = 200 D1 96.7 % 54.9 % 96.1 % 52.9 % 96.5 % 56.1 % 96.6 % 5.51 %

D2 96.7 % 53.7 % 96.2 % 56.9 % 96.7 % 60.0 % 96.6 % 61.4 %

D3 96.2 % 55.4 % 95.9 % 56.3 % 96.4 % 60.2 % 96.7 % 60.1 %

D4 90.6 % 46.6 % 96.0 % 59.3 % 96.6 % 60.4 % 96.5 % 61.6 %

N = 1000 D1 95.9 % 71.8 % 95.3 % 69.7 % 95.6 % 71.3 % 95.9 % 71.5 %

D2 95.7 % 74.2 % 95.3 % 72.4 % 95.8 % 74.9 % 95.7 % 77.4 %

D3 92.0 % 66.1 % 95.4 % 72.5 % 95.5 % 76.1 % 95.7 % 75.5 %

D4 89.3 % 48.3 % 95.6 % 72.7 % 95.8 % 74.5 % 95.7 % 75.1 %
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Table 9(c): FINITE SAMPLE PERFORMANCE OF ONE-SIDED M-SMOOTHERS (test statistic value)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3) m̂(x3) m̂′(x3)

p = 3 N = 50 D1

T
(0
)

N
(x

3
)
=

(m
+
(x

3
)
−

m
−
(x

3
))

=
0.

2
T
(1
)

N
(x

3
)
=

(m
′ +
(x

3
)
−

m
′ −
(x

3
))

=
0 0.062 −0.123 0.059 −0.158 0.062 −0.159 0.059 −0.117

(0.687) (3.005) (0.786) (2.635) (0.700) (2.981) (0.688) (3.010)

D2 0.051 −0.124 0.054 −0.141 0.057 −0.177 0.053 −0.141
(1.098) (3.322) (0.971) (2.813) (0.904) (3.183) (0.932) (3.251)

D3 −0.034 −0.109 0.035 −0.130 0.039 −0.162 0.054 −0.096
(2.225) (3.868) (0.991) (2.761) (0.953) (3.168) (0.781) (3.048)

D4 −0.042 0.201 0.045 −0.008 0.035 −0.058 0.067 −0.090
(3.074) (4.345) (1.555) (3.272) (1.458) (3.707) 1.341) (3.685)

N = 200 D1 0.060 −0.013 0.053 −0.141 0.064 −0.055 0.061 −0.003
(0.449) (3.264) (0.482) (2.914) (0.456) (3.219) (0.448) (3.260)

D2 0.035 −0.145 0.039 −0.142 0.043 −0.121 0.045 −0.123
(0.698) (3.305) (0.518) (2.927) (0.501) (3.237) (0.538) (3.302)

D3 −0.001 0.120 0.047 −0.078 0.054 −0.017 0.054 −0.035
(1.649) (3.844) (0.508) (2.946) (0.486) (3.267) (0.470) (3.282)

D4 0.119 0.378 0.044 −0.066 0.048 −0.066 0.044 −0.034
(3.347) (4.816) (0.680) (3.105) (0.696) (3.477) (0.749) (3.517)

N = 1000 D1 0.050 −0.009 0.028 −0.064 0.054 −0.043 0.056 −0.006
(0.229) (2.998) (0.262) (2.608) (0.233) (2.964) (0.229) (3.004)

D2 0.034 −0.077 0.038 −0.082 0.031 −0.059 0.042 −0.072
(0.366) (3.313) (0.323) (2.810) (0.301) (3.167) (0.310) (3.245)

D3 −0.004 0.126 0.043 −0.068 0.040 −0.018 0.047 −0.043
(0.741) (3.867) (0.330) (2.760) (0.317) (3.167) (0.260) (3.045)

D4 0.043 0.385 0.027 −0.052 0.032 −0.013 0.028 −0.014
(6.024) (5.127) (0.518) (3.264) (0.486) (3.701) (0.447) (3.680)

Table 9(d): BOOTSTRAP LIMIT DISTRIBUTION FOR THE TEST STATISTIC (95 % confidence interval length)

simulation results for x3 = 0.8

SIMULATION L2 norm L1 norm Huber’s function Tuckey’s function

s e t t i n g s T
(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3) T

(0)
N (x3) T

(1)
N (x3)

p = 3 N = 50 D1

B
=

10
00

R
ep

ea
t:
×

10
00

2.6956 11.782 3.0814 10.332 2.7451 11.686 2.7001 11.798

D2 4.3068 13.022 3.8088 11.028 3.5453 12.480 3.6547 12.743

D3 8.7222 15.165 3.8864 10.824 3.7379 12.421 3.0628 11.949

D4 12.051 17.033 6.0977 12.828 5.7154 14.534 5.2605 14.448

N = 200 D1 1.6289 14.283 1.8090 13.965 1.6602 14.099 1.6285 14.219

D2 2.4928 14.749 1.9331 14.045 1.8242 14.231 1.9385 14.434

D3 5.7633 17.514 1.9017 14.008 1.7733 14.209 1.7013 14.262

D4 12.424 21.824 2.5099 14.781 2.5085 15.530 2.6758 15.754

N = 1000 D1 0.8985 11.754 1.0271 10.224 0.9150 11.621 0.9000 11.775

D2 1.4356 12.987 1.2696 11.016 1.1817 12.418 1.2182 12.723

D3 2.9074 15.159 1.2954 10.820 1.2459 12.416 1.0209 11.936

D4 23.616 20.101 2.0325 12.795 1.9051 14.509 1.7535 14.427
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6.2 Real data example

Simulation studies are commonly used to investigate the finite sample properties of some statistical
method (M-smoothers estimators in this case) and they are very useful tools as one can adaptively
control the initial setting parameters while managing almost all specific issues of whole the method,
which is currently under investigation.
In real situations however, one is mostly interested in the finite sample performance of the given
statistical method based on some real data sample – optionally a random sample data. We will
therefore also discuss a real data problem here but we will firstly give in short a motivation, which was
behind the experiment, which we will use to present the performance of M-smoothers with change-point
occurrences when applied to a real data exercise.

6.2.1 Motivation on European chub data

The European chub (Squallus cephalus; L., 1758), sometimes also called Round chub or Fat chub is a
freshwater fish of the family Cyprinidae and it possibly frequents in both, slow and moderate streams
mostly in Europe. We have considered an extensive experiment38 specifically designed to study the
behaviour of the European chub individuals within the given group environment.

Figure 6.2: European chub (Squallus cephalus; L., 1758)

The European chub fish usually yields a
length of 60 – 80 millimeters but the grow-
ing process is very slow and it usually takes
even more than 10 years to achieve just 50 mil-
limeters in the total length. The main idea
within the social behaviour of this fish is that
small individuals mostly behave quite different
than adult ones while the boundary between
immature and adult individuals is assumed to
be somewhere close to 50 millimeters with re-
spect to their length (given previous biological
researches).

There are two possible options here: if their habitat features with good ecological quality (clean
water, sufficient food sources, safe hideouts) than adult individuals have a tendency to find an ideal
location and to settle there, which of course brings their natural activity to a lower level while immature
fishes express much more hyperactive behaviour as they are mostly pushed away from ideal locations
by adult individuals already settled there.
On the other hand, if there is a lack of ideal conditions in the given environment then adult fishes be-
have much more active trying to find some spot while immature fishes move as well but their condition
factor39 is much lower therefore, they feature with some less activity in general.

During the experiment we have observed fish specific activities (using especially designed inside
body antennas) with a follow up period of a few days while preserving also an information about each
individual’s length and weight. The idea is to check if the length somewhere close to 50 millimeters can
be really assumed to be a kind of boundary, which distinguishes or separates two groups of individuals,
immature ones and adult ones or if it does not.

38The experiment took place at T.G. Masaryk Water Research Institute in Prague, Czech Republic in 2010.
39The condition factor is a numerical quantity computed mainly from the length and the weight of an individual and it

expresses the individual’s capability to behave hyperactive (something like a BMI for humans).
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6.2.2 Real data application

The design of the experiment suggests that there may be some dependence in behaviour as the nature of
the European chub fishes is to move within groups – they do preserve so called “social-based behaviour”
standards. On the other hand, given the technical limits of the experiment some outlying observations
could be recorded as well and moreover, it also seems from Figure 6.3 that some possible heteroscedastic
variance structure along the length axe could be present as well.

Given these issues it would be optimal to use the proposed M-smoothers estimation approach while
having in mind some possible form of the dependence structure in the observations while also assuming
a change in location located somewhere close to the length of 50 millimeters.
We will firstly propose an estimate for the functional relationship and after that we will use one-sided
kernel M-smoothers to find a candidate point, which would be treated as a possible jump. Finally,
a statistical test is invoked in order to obtain a consistent and statistically relevant decision on the
given change-point occurrence.
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Figure 6.3: The functional dependence of the fish specific behaviour given its length (in millimeters) in the upper plot
given for the local linear M-smoothers based on L2 as well as L1 norm and the indicator function for a jump occurrence
(change in location) in the lower plot given for one-sided local linear M-smoothers based on the L1 norm.

In Figure 6.3, there is a functional dependence given for the behaviour of a specific individual given
its length (in millimeters). Given a presence of outliers (in Figure 6.3 we have used a “censored” axe
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for the activity measurements as there is also a small amount of activity occurrences close to 100 units)
we have used the local linear M-smoothers based on the L1 norm however, in Figure 6.3 there is also
a local linear estimate based on the L2 norm plotted and the effect of outlying observations is quite
obvious as this estimate exhibits much more variability than we would like to. Additionally, we have also
provided a plot for an indicator function40 TN(x) = (m̂+(x)− m̂−(x)) where the maximum of this
function indicates a possible candidate for a jump occurrence. Just for completeness, let us mention
that both estimates in Figure 6.3 were computed using the optimal bandwidth parameters bioth defined
by the corresponding RCV and CV criterion.

In a correspondence with our expectation there is indeed a candidate for a jump occurrence found
by the indicator function TN(x) at the point x = 50.778 (in millimeters). Moreover, in Figure 6.4(a)
there is an evident fact that outlying (non-systematic) observations are really an issue in the given data
sample therefore, the estimation based on L1 norm is indeed a good choice to go in this case. We will
now use the proposed bootstrap algorithm in order to decide if the jump at this point really occurs or
if it does not.
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Figure 6.4: The histogram plots and the corresponding density plots for the vector of model’s residuals and the boot-
strapped distribution (density function) of the test statistic based on 10 000 bootstrap replicates.

The bootstrapped distribution of the test statistic TN(x0) = (m̂+(x0)− m̂−(x0)), for N = 1954
and x0 = 50.778 is given in Figure 6.4(b) together with a corresponding 95 % confidence interval for
the mean parameter of this distribution, which is µ̂(B) = 3.938 (for B = 10 000 bootstrap replicates).

The 95 % confidence interval as drawn in Figure 6.4(b) can be equivalently used as a critical region
for the statistical test to decide if the jump at the point x0 = 50.778 really occurs or if it does not.
Given the fact that the zero value is inside of this 95 % confidence interval (the zero value would be a
theoretical quantity for the test statistic under the null hypothesis) we do not reject the null hypothesis
given the 95 % confidence level of the test41.

40The indicator function corresponds with the test statistic defined in
�

�

�

�3.4 however, up the standardizing term
√

NhN ,
which is constant for the fixed value of N ∈N.

41The same result would also follow from the test with 90 % confidence level as the corresponding confidence interval
in this case would be equal to (−0.676, 8.333)

112 FLEXIBILITY, ROBUSTNESS AND DISCONTINUITY IN NONPARAMETRIC REGRESSION APPROACHES



6.3. DISCUSSION ON FINITE SAMPLE PERFORMANCE

To conclude, there is an obvious evidence for a jump to occur at the point X0 = 50.778 and the
size of the jump seems to be somewhere close to 4 units of the corresponding activity measure however,
given the result of the statistical test and the fixed sample size N = 1954 we can not sufficiently decide
if the jump really occur or it does not.

Unlike the theoretical expectation where we have assumed that there would be a jump in activity
measurements we did not statistically confirm such hypothesis. On the other hand, such behaviour
heavily depends on the natural habitat of the European chubs and we have already mentioned that
the experiment the data are from was designed inside the research facility with all simulated conditions
however, in a plastic water tank only.

The primary question of interest why the experiment took place was however slightly different and
the whole experiment was designed especially to correspond with the primary question of interest. The
data we have used to present the actual finite sample performance of M-smoothers on are just the
additional outcomes, which came from the experiment and we thought it might be nice to take a look
at it and to test the hypothesis, which is commonly referred to as a fact in biological scientific journals
and encyclopaedias.

6.3 Discussion on finite sample performance

Using both available tools in hand – the extensive simulation study and the real data example – we
have found the performance of the proposed local polynomial M-smoothers approach to be in a quite
nice correspondence with our expectations, which comes from the statistical theory derived before.

Especially, in the simulation results we have a nice opportunity to follow the asymptotic performance
of the M-smoothers estimators and the effect of an improving precision of the given estimate once the
sample size increases. Similarly, we can also see the effect of outlying observations and even more the
effect of heavy-tailed random error distributions. Indeed, for the Cauchy distribution and the L2 norm
it does not hold any more that the imprecision improves as the sample size increases as the variability
(as well as the length of confidence intervals) will exceed any given boundary. On the other hand, for
robust loss functions the imprecision stays within bounds and moreover, it even improves as the sample
size increases.

The rate of improvements seems to be much slower for the derivatives estimates however, we have
already expected such behaviour given the theoretical results in Chapter 2.

Unlike the designed simulation study, in the case of the European chub experiment we did not have
a chance to compare the performance of the M-smoothers method and the bootstrap algorithm with
the true outcome however, based on simulations the sample size N = 1954 seems to be quite sufficient
in order to obtain consistent and reliable results.

Using the M-smoothers approaches (as well as any other modelling techniques in statistics) one
has to be always aware of the fact that most of them provide perfect results with respect to the
asymptotic assumptions only, which is that the sample size N ∈ N tends to infinity. This of course
does not mean that such methods could not be used in real data cases or that they would perform
badly and their use would be impractical. Just in contrary, one just need to keep in mind the given
restrictions of the method and to use an appropriate interpretation at the end to present the final results.
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Finite sample data modelling is the only modelling approach a statistician can really meet in real
life situations. Modern statistical theories and analysis are widely used in everyday life even without
people being aware of it but there should always be a theoretical justification for an any used method
and the finite sample properties should be investigated as well.

We have successfully completed our study on the finite sample performance and we have found
them to be in a correspondence with the theoretical proves derived before. Given this fact, we think the
proposed robust M-smoothers approaches are also well capable of being adopted for real data situations
as well. Especially, when there really are many opportunities in practice where to use them.
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”To consult the statistician after
an experiment is finished is often
merely to ask him to conduct a
post mortem examination. He can
perhaps say what the experiment
died of.”

Ronald Fisher

(1890 – 1962)

7
Conclusion and final remarks

Robust regression approaches attract more and more interest and popularity in last decades, which could
be especially due to the fact that they do have a very nice and convenient property of being robust
with respect to outlying observations and even heavy-tailed distributions of random error terms. Given
this quality we would consider the M-smoothers regression methods to have in general a huge potential
to became popular and important modelling techniques in modern nonparametric regression approaches.

There are always good reasons in hand why to admit outlying observations in the model rather
than throwing them away. Indeed, deleting of outliers in data samples was mostly due to some further
simplicity rather than some logical or theoretical reasoning behind. There are also many data generating
systems, which we could consider where some non-systematic measurements or outlying observations
respectively, are implicitly produced by the system and therefore, they should be also taken into account
in a statistical analysis. Moreover, in last couple of years heavy-tailed distributions of random errors
increase their foundation within statistic and statistical modelling as well.

In order to cover such cases with proper statistical approaches one necessarily needs to consider
appropriate regression methods where the presence of outliers will not cause a total failure of the whole
estimation process. The M-smoothers approach discussed in this thesis will indeed do the right job here.

From another point of view, one of the most frequent issues related to statistical modelling in general
is the flexibility. The flexibility can be approached from many different angles however, a light-headed
dealing with it may easily cause a biased estimate or even a failure of the estimator. Therefore, one
needs to approach the flexibility issues always in a proper statistical way.

In this thesis we have discussed the flexibility options with respect to the unknown functional
relationship, which is supposed to be revealed and such flexibility was taken into account by adopting
some common local polynomial estimation procedures. Next, we have also treated some flexibility issues
with respect to the set of assumptions, which was required to assure that the given results hold.
We have weaken some important assumptions (e.g. distributional assumptions, continuity assumptions,
finite moment assumptions) and thereby, we have introduced even more flexibility into the final model.
Finally, we have also extended some flexibility with respect to the random sample assumptions as we
have allowed for some dependence structures to occur within data while still being able to give a proper
M-smoothers estimate and the corresponding statistical inference as well.

Each time we have tried to improve the flexibility of a given model we have done so using a proper
statistical argumentation and we have proved that such model generalization really holds.
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To conclude, there is actually one more aspect of the “flexibility” approach, which we have also
improved considering the M-smoothers regression approaches. This however, does not refer to any
statistical assumptions or properties but it rather refers to an “easy-to-use” approach introduced within
the proposed simulation algorithms. Indeed, even some quite complicated asymptotic distributional
expressions can be easily handled and effectively obtained by adopting a quite simple computer based
method and very precise bootstrap simulation algorithms.

Therefore, local polynomial M-smoothers together with the change-point concept can be successfully
considered to be an important nonparametric regression modelling technique with a robust flavour and
a huge flexibility (in different meanings) in hand.

Additionally, the M-smoothers methods and the change-point idea can both serve as an ideal starting
point for some further research and a theoretical development of new statistical approaches and theories
in order to introduce even better modelling techniques while always trying to improving their statistical
and practical qualities.

7.1 Further research...

At the very end, we would like to propose some additional ideas within the M-smoothers framework
with change-points, which could be further extended, developed and properly investigated under some
more flexible sets of assumptions.

➩ one could prove analogous results for some another dependence structures commonly used in
statistic specifically, the uniformly strong mixing dependence concept or some others as well;

➩ one could extend the proposed M-smoothers methods and the change-point theory on multivariate
cases as well (with respect to the random variable X as well as the response variable Y);

➩ one could implement a change-point problem into the scale function σ(·) and to develop a set of
proper statistical tools for testing and estimating under some common regularity conditions;

➩ one could also develop a proper statistical theory in order to handle estimation of the unknown
regression function and the scale function simultaneously at once;

➩ one could consider a supremum type test statistics for the hypothesis problems defined in Chap-
ter 3 and to develop a proper extreme value theory to fit the M-smoothers model scenarios as well;

➩ finally, one could also try to relax the set of assumptions we have proposed for our situations and
to give an afford to introduce a minimum set of required assumptions, which will be sufficient for
the proofs to hold;
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Notation

❏ a.e. – almost everywhere;

❏ a.s. – almost surely;

❏ α(n) – α-mixing dependence coefficients for n ∈ N;

❏ A,B,F – σ-fields;

❏ AMSE – Asymptotic Mean Squared Error quantity in general;

❏ AMSEx – Asymptotic Mean Squared Error quantity at the point x ∈ (0, 1);

❏ AR(k) – auto-regressive process of the order k ∈N;

❏ As.Bias – asymptotic bias term;

❏ As.Var – asymptotic variance term;

❏ β, e, µ – bold symbol for a column vector notation;

❏ Bias [X] – bias term of a random variable X in sense of a difference;

❏ iN,i⋆
N – /:beth:/ a Hebrew letter for constants which depend on N ∈ N ;

❏ C(0, 1) – the Cauchy distribution with the location parameter 0 and the scale 1;

❏ Cp(0, 1) – a set of continuous functions on (0,1) up to the order p ∈N ∪ {0};
(p = 1 stands a continuity of a function itself and its first derivative as well)

❏ CLT – Central Limit Theorem;

❏ Cov – covariance operator;

❏ CV(·) – Cross-Validation function for bandwidth selection;

❏ D , D1, · · · – a notation for some specified distribution functions;

❏ dm,2(·, ·) – the second order Mallow’s metric;

❏ ∆ ∈ R – the size of a jump in a change-point model;

❏ ∆(G) – dispersion measure of a random variable with G to be a distribution function;

❏ diag {·} – diagonal matrix consisting of elements in the brackets;

❏ E – conditional expectation operator conditioned on X;

❏ E⋆ – expectation operator with respect to bootstrapped distribution function G⋆(·);
❏ G(·) – distribution function of random errors;

❏ G−1(·) – the quantile function which corresponds with distribution G(·);
❏ G⋆(·) – distribution function of bootstrapped residuals;

❏ GCV(·) – Generalized Cross-Validation function for bandwidth selection;

❏ H0,H1 – the null hypothesis and the alternative hypothesis;

❏ hN , aN – nonparametric regression (bootstrap respectively) bandwidth parameter;
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❏ I{...} – identifier function;

❏ In – identity matrix of a type n× n for some n ∈ N;

❏ iff – if and only if;

❏ i.i.d. – independent and identically distributed;

❏ K,K0, . . . ,K∗ – general real constants bounded away from zero;

❏ K(·) – standardized kernel function defined over the interval (−1, 1);

❏ Lp(A ) – a collection of pth-order, A -measurable random variables, for p ∈N ∪ {0};
❏ Lp(0, 1) – a set of smooth (Lispchitz) functions of the order p ∈ N ∪ {0} on (0, 1);

(p = 1 stands a Lipschitz property of a function itself and its first derivative)

❏ m(·) – the unknown regression function;

❏ Med(X) – median value of a random variable X;

❏ N ∈N – the sample size (the total number of observations);

❏ N(µ, σ2) – normal distribution with the mean µ and variance σ2;

❏ R, (N) – a field of real (natural) numbers;

❏ ρ(·) – a general loss function used for minimization (estimation);

❏ ϕ(n) – ϕ-mixing dependence coefficients for n ∈ N;

❏ o(·), oP(·) – the Landau symbol - asymptotic negligibility (in probability);

❏ O(·), OP(·) – the Landau symbol - asymptotic equivalency (in probability);

❏ P – probability measure;

❏ P⋆ – conditional probability conditioned on the original random sample;

❏ Φ(·), φ(·) – distribution function and the corresponding density of N(0, 1) distribution;

❏ Rp – a set of basis functions – polynomial functions up to the order p ∈ N ∪ {0};
❏ RCV(·) – Robust Cross-Validation function for bandwidth selection;

❏ σ(·) – the unknown scale function;

❏ Var – variance operator;

❏ W(t) – standard Wiener process for t ∈ (0, 1);

❏ WIP – weak invariance principle;

❏ XN , WN – the design matrix and the matrix of weights for N ∈N;

❏ (X ,Y) – the random sample {(Xi, Yi); i = 1, . . . , N};
❏ (Ω,F , P) – probability space;

❏ ‖ · ‖∞ – supremum norm;

❏ ∧,∨ – minimum and maximum operators;
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❏
a.s.−→ – convergence almost surely, for N → ∞;

❏
D−→ – convergence in distribution, for N → ∞;

❏

D(P)←→ – approaching each other in limit in distribution in probability, for N → ∞;

❏
P−→ – convergence in probability, for N → ∞;

❏

as.≈,≍ – asymptotic equivalency;

❏
as.
= – asymptotic equality;

❏

def.
= – given by definition;

❏ � – end of proof of lemma;

❏ � – end of proof of theorem;
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