
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Ondřej Majerech

PNS for the game Arimaa

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the bachelor thesis: RNDr. Jan Hric

Study programme: Computer Science

Specialization: General Computer Science

Prague 2012

I would like to thank my thesis supervisor for his numerous remarks and invaluable
insight into the topic of Arimaa and artificial intelligence.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Libǐs date August 1, 2012 Ondřej Majerech

Title: PNS for the game Arimaa

Author: Ondřej Majerech

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jan Hric, Department of Theoretical Computer Science and
Mathematical Logic

Abstract: The game of Arimaa is a strategic board game that has proved to be a
challenge to computers. Not only because of its huge branching factor, but also
thanks to the difficulty in creating a good evaluation function to be used with
the Alpha-Beta algorithm. Proof-Number Search is an algorithm that does not
depend on a heuristic evaluation function and it has been successfully applied to
solving endgames of various other games. In this work, we adapt and implement
the Proof-Number Search method for the game of Arimaa.

Keywords: Proof-Number Search, Arimaa, endgames, artificial intelligence

Název práce: PNS for the game Arimaa

Autor: Ondřej Majerech

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı bakalářské práce: RNDr. Jan Hric, Katedra teoretické informatiky a
matematické logiky

Abstrakt: Arimaa je strategická desková hra, kterou se stále poč́ıtač̊um nepoved-
lo pokořit. Problematický je zejména velký větv́ıćı faktor stromu hry a celková
jej́ı charakteristika, d́ıky které je obt́ıžné sestrojit vhodnou ohodnocovaćı heuri-
stiku pro alfa-beta prohledáváńı. Proof-Number Search je algoritmus nezávislý
na dobré ohodnocovaćı heuristice, který byl již úspěšně použit na řešeńı koncovek
jiných deskových her. V této práci jsme adaptovali a implementovali algoritmus
Proof-Number Search pro hru Arimaa.

Kĺıčová slova: Proof-Number Search, Arimaa, koncovky her, umělá inteligence

Contents

1 Introduction 3

1.1 Research Objective . 3

2 The Game of Arimaa 4

2.1 Rules of Arimaa . 4
2.2 Difficulty for Computers . 5

3 Search Algorithm 7

3.1 Proof-Number Search . 7
3.1.1 Representing a Game with an AND-OR Tree 7
3.1.2 Proof and Disproof Numbers 8
3.1.3 Expansion of the Tree . 8

3.2 Depth-First PNS . 9
3.3 Adaptation of PNS for the game of Arimaa 10

3.3.1 Steps versus Moves . 10
3.3.2 Double Steps . 11
3.3.3 Lambda Vertices . 11
3.3.4 New Vertices . 12

4 Enhancements of the Algorithm 13

4.1 Zobrist Hashing . 13
4.2 Transposition and Proof Tables 14

4.2.1 Transposition Table . 15
4.2.2 Proof Table . 16

4.3 Step Ordering . 17
4.3.1 Static Step Ordering . 17
4.3.2 Killer-move Heuristics . 18

4.4 Garbage Collector . 18

5 Implementation 20

5.1 Program Structure . 20
5.2 Board Representation . 20

6 Experiments 22

6.1 Results . 22

7 Conclusion 26

7.1 Future Work . 26

Bibliography 28

Glossary 30

1

A User’s Manual 31

A.1 Supported Systems . 31
A.2 Running the Program . 31

A.2.1 Graphical Interface . 31
A.2.2 Batch Interface . 32

A.3 Building the Program . 33

Attachments 34

2

1. Introduction

Ever since the dawn of the field of artificial intelligence in the 1950’s, board
games such as Chess have been attracting the interest of computer scientists
and engineers. Due to the lack of processing power in the 1950’s, computers
struggled to reach even the level of amateur human players. [15, 6]. However, as
time progressed and the raw computing capacity of computers increased, game-
playing programs also became stronger. Finally, in 1997, a computer beat Garry
Kasparov, the reigning Chess champion at that time. After Kasparov’s defeat,
computers have gradually become capable of regularly beating human players in
Chess. [17]

With Chess beaten, the interest shifted to more challenging games, one of
which is the game of Go. The Alpha-Beta algorithm – commonly used for com-
puter Chess – is of little success in computer Go, because of the greater branching
factor and difficulty in constructing a fast and accurate positional evaluation func-
tion. So far, the Monte-Carlo Tree Search (MCTS) method has had more success
in computer Go than Alpha-Beta. [17, 9]

In June 2003, Omar Syed introduced a new challenging game: Arimaa. [14]
It is a game specifically designed to be hard for computers yet easy for human
players. It is a game similar to Chess but with much larger branching factor.

Because of the similarity with Chess, the Alpha-Beta method has been applied
to Arimaa – however, its application to Arimaa suffers similar problems as the
application to Go – the branching factor of Arimaa is even larger than that
of Go, and constructing a good and fast positional evaluation function is also
challenging. [7] In 2009, Tomáš Kozelek ([9]) brought the MCTS technique from
Go to Arimaa. While this technique does not depend on a good evaluation
function as heavily as Alpha-Beta, it is a statistical method that is unsuitable
for determining the game-theoretic value of a position, and it is weak for tactical
positions.

In our thesis we present an implementation of another method: An adaptation
of the Proof-Number Search algorithm. Like the Alpha-Beta algorithm, it can
determine the exact minimax value of a game tree. However, instead of relying
on a positional evaluation function, it creates non-symmetric trees and uses the
shape of the tree to guide the search in a best-first manner. Proof-Number Search
can be used for post-mortem analysis of a game position, solving whole games,
or tournament play. [2]

1.1 Research Objective

In this work we implement the Proof-Number Search method for solving Arimaa
endgame positions: Positions which can presumably be won by one of the players
in a small number of turns. We also adapt and implement some known techniques
for improving the performance of Proof-Number Search and observe their benefits
when used in application for the game of Arimaa. As a part of this work, we
develop a program that allows the user to execute the presented algorithm on a
given position and observe its behaviour, including the game tree created during
the course of the algorithm.

3

2. The Game of Arimaa

Arimaa is a two-player game with perfect information. [14] It was designed to be
playable on a standard Chess board with Chess pieces. At the same time, it was
designed to be difficult for computers to solve using the tree-search approach by
having a very large branching factor – the number of valid moves from a given
position is in the range of thousands and may even reach as high as 50,000. [14]
Furthermore, the game is designed to be more strategic than Chess, with more
emphasis on long-term goals and less emphasis on tactical situations.

Omar Syed announced a US $ 10,000 prize for the first person to develop a
computer program that can beat the best human player by 2020. With current
techniques supposedly inefficient against Arimaa, Syed believes this prize will
motivate the development of new approaches for computer game playing.

2.1 Rules of Arimaa

Arimaa can be played on a standard Chess board, however four special squares
need to be marked – these are the squares c3, f3, c6, f6 (using standard Chess
notation), called trap squares or just traps. The standard set of Chess pieces
can also be used with Arimaa, but the names are different from those in Chess.
Each player starts the game with the following pieces: One elephant, one camel,
two horses, two dogs, two cats, and eight rabbits. Instead of white and black, the
colours of pieces are gold and silver.

The starting position is not fixed; instead, at the start of the game, the gold
player places all of their pieces on the first two ranks of the board. Once the
gold player is done placing their pieces, the silver player then chooses the initial
placement of their pieces, placing them all on the last two ranks of the board (the
two ranks closest to the player).

The players then take turns moving their pieces, with gold player the first to
move. Except for rabbits, all pieces may move one square up, down, left or right;
rabbits may only move up or to the sides but not backwards. Pieces are allowed
to move only to empty squares. A player may make one to four steps per turn,
where each step is a movement of one piece. Each player’s turn must result in a
net change in the game position (other than letting the opponent play).

Each piece has an associated strength. Elephants are the strongest pieces,
followed by camels, horses, dogs, cats and finally rabbits who are the weakest.

There are three kinds of steps in Arimaa:

Single steps The movement of a piece to a neighbouring square.

Pushes If a current player’s piece is standing on a square next to a position
(horizontally or vertically) that is occupied by a weaker opponent’s piece,
this weaker piece may be pushed. First the weaker opponent’s piece is moved
to an empty adjacent square, and then the player’s stronger piece is moved
to the now-empty square which the weaker piece originally occupied.

Pulls Similar to push steps, these are only possible with pieces standing next
to weaker opponent’s pieces. First the stronger piece is moved to an unoc-

4

cupied neighbouring square, then the weaker piece is moved to the square
where the first piece originally stood.

Push and pull steps are called double steps in this work as they move two pieces.
They also count as two steps, so if a player makes a push or pull step at the
beginning of their turn, they only have two more steps available to them within
that turn. Both piece movements in a double step have to follow each other and
both have to be done within the same turn (which means that if a player has
already taken three steps, they may not make a push or pull step within their
current turn). Furthermore, rabbits may be pushed backwards even though they
may not move that way on their own. It is not allowed to push or pull one’s own
pieces, and neither is it allowed to simultaneously push and pull multiple pieces,
or to simultaneously pull multiple pieces.

If a piece is standing next to a position occupied by a stronger opponent’s piece
and there is no piece of the player’s colour on any of the remaining surrounding
squares, the piece is said to be frozen. (If there is such a piece of the same colour,
it is called a supporting piece or supporter.) A player is not allowed to move their
frozen pieces; however they may push or pull an opponent’s frozen piece. The
strength of the supporting piece plays no role here, and neither does the fact
whether it is frozen as well or not – merely its presence on a neighbouring square
is important. Pieces of the same strength but of opposite colours do not affect
each other.

If a piece happens to be standing on a trap square (c3, f3, c6, or f6) and
there is no supporter on any of the surrounding squares, the piece is captured : it
is removed from the board and never returns to the game. Just as with frozen
pieces, it does not matter whether the supporting piece is stronger or weaker, or
whether it is frozen – the only condition is that it belongs to the same player as
the piece standing on the trap and that it is positioned next to the trap.

The goal of the game is to get one’s rabbit to the last row of the board, called
the goal row. If a player’s rabbit reaches the goal row, the player wins.

The game also ends when a player’s last rabbit is captured in which case this
player is said to be eliminated and loses the game. Finally, if a player is on turn
but there is no allowed move they could make, that player is immobilized and
loses the game.

To guarantee that each game is finite, there is the so-called third-time repeti-
tion rule: If the same position occurs for the third time within a game, the player
who caused the third repetition loses the game.

Further details about the rules can be found in [3].

2.2 Difficulty for Computers

As we stated earlier, the main difficulty of Arimaa lies in its huge branching factor,
which means that brute-force methods (such as Alpha-Beta or Proof-Number
Search) have to explore many positions in order to fully explore the game tree to
some depth (and thus determine its minimax value). Another reason is Arimaa’s
emphasis on strategy rather than tactics. [14] Long-term goals are important in
Arimaa and captures can be postponed for longer than in Chess, leading to less
cut-offs in Alpha-Beta searches.

5

Furthermore, static position evaluation it is not easy. Material balance alone
is not sufficient to compare positions. Aspects such as trap control, mobility of
pieces or balance of forces need to be taken into account. The value of individual
pieces is not fixed, but rather changes as the game progresses. For instance,
the value of an individual rabbit initially low, but it increases as the number of
remaining rabbit lowers as the player needs rabbits to defend their own goal row,
make goals threats and even not to lose the game due to elimination.

Attacks in Arimaa are slower than in Chess in the sense that they span more
turns: A piece may move only at most 4 squares away from its starting square
during a player’s turn. For a program to compete with strong human players, it
needs to look ahead at least 5 moves. [7]

As the starting position of Arimaa is not fixed, opening databases like in Chess
are of little use. There are almost 65 million possible initial set-ups. [6] Likewise,
endgame databases are not effective because most games end with the board still
relatively crowded in comparison to Chess.

6

3. Search Algorithm

In this chapter we describe how a game can be represented by an AND-OR tree,
and the algorithm used to search the AND-OR tree to find a solution. We also
describe one of the variants of the algorithm, and our adaptation for the game of
Arimaa.

3.1 Proof-Number Search

The Proof-Number Search (PN Search or PNS) algorithm as described by Al-
lis ([1]) is a best-first algorithm that works by maintaining and expanding an
AND-OR tree – a tree with two types of nodes: AND and OR. The algorithm is
then guided by the shape of the tree.

3.1.1 Representing a Game with an AND-OR Tree

In an AND-OR tree, each vertex represents a possible state of the game. [15] OR
vertices represent steps (possibly) taken by the attacker – the player to make
the first turn. Conversely, AND vertices represent the defender ’s possible steps.
The root vertex is always of the OR type and represents a given initial state. All
other vertices represent states obtainable from their parent’s state by performing
a valid movement of the pieces as described by the Arimaa rules.

Each node of the tree can be evaluated to true, false or undecided. A leaf node
with value of true represents a forced win and is said to be proved. Similarly, leaf
nodes evaluated to false represent a forced loss and are disproved. Whether a
position is a forced win or forced loss is again determined by the Arimaa game
rules. If the state associated with a vertex is neither a forced win or a forced loss,
the vertex is undecided. To obtain a proof or disproof of an undecided vertex, its
successors have to be generated and then proved or disproved.

An interior OR node is proved if at least one of its children is proved, and
it is disproved if all its children are disproved; to prove an interior AND node,
it requires that all of its children be proved, and it takes one disproved child
for the AND node to be disproved as well. This corresponds to the fact that
for an attacker’s position (OR-type vertex), it suffices to find a single move that
guarantees a win for the attacker, while for defender’s positions (AND-type ver-
tices), all of the defender’s possible replies have to be analysed and determined
to guarantee a win for the attacker.

The goal of the Proof-Number Search algorithm is to prove the root vertex of
the tree, which is always of the OR type, and thus discover a winning strategy
for the attacker: If the root is proved, it is necessarily followed by another proved
vertex as its successor thanks to the way the tree is built. The attacking player
then can perform the step corresponding to the proved successor. This successor
either directly forces a win for the attacker or, if it is an OR vertex, describes
another step the attacker can choose in order to win. Proved AND vertices that
do not directly correspond to a forced win for the attacker are followed only by
proved vertices, which describe the possible ways for the attacker to force a win
after each of the defender’s possible replies.

7

A major disadvantage of the original Proof-Number Search algorithm is that
all nodes have to be kept in memory, necessitating a termination of the algorithm
once no more memory is available for its execution. [8] We have experimented
with two approaches to mitigate the memory requirements of PNS: A depth first
variant described in section 3.2, and an ad-hoc way of discarding parts of the tree
described in section 4.4.

3.1.2 Proof and Disproof Numbers

Two numbers are associated with each vertex in the tree: proof number (PN),
representing the minimum number of child nodes that have to be proved in or-
der to prove the node, and disproof number (DN), analogously representing the
minimum number of vertices to be disproved in order to disprove this node. [8]
Undecided leaf nodes receive initial PN and DN values both equal to 1 in our
current implementation. Decided nodes (leaf or interior) require no further ex-
pansion, proved nodes are therefore assigned proof number 0 and disproof number
∞, disproved nodes receive disproof number of 0 and proof number of ∞.

If n is an interior vertex of type OR, its PN and DN values are given by the
following formulae:

pnn := min {pnc : c ∈ children(n)} (3.1)

dnn :=
∑

c∈children(n)

dnc, (3.2)

in correspondence to the minimal work necessary to prove or disprove such a
vertex. If n is of type AND, the equations are analogous:

pnn :=
∑

c∈children(n)

pnc (3.3)

dnn := min {dnc : c ∈ children(c)} . (3.4)

Figure 3.1 shows an example part of an AND-OR tree with proof and disproof
numbers.

3.1.3 Expansion of the Tree

In each iteration of the algorithm, a most proving node is selected by a recursive
process: In an interior OR node the child with minimal PN value is selected,
and in an interior AND node the child with minimal DN value is selected. This
process starts at the root of the tree, and continues until a leaf vertex is finally
selected. [8] This leaf node is then expanded by generating its descendants and
evaluating them. Allis called this method immediate evaluation, and also pre-
sented an alternative one called delayed evaluation, where vertices are evaluated
only when selected for expansion. [1] In this work, we chose to implement only
the immediate evaluation method. After a node has been expanded, the tree is
traversed from this node back to root, updating the proof and disproof numbers
for each vertex on the path according to the formulae shown in the previous
section.

Algorithm 1 shows a high-level overview of PNS.

8

Figure 3.1: Possible part of a search tree. Squares represent OR nodes, circles
AND nodes. The two numbers next to a vertex are its proof and disproof numbers,
PN the top one, DN the bottom one.

Algorithm 1 PNS in Pseudocode

while root.pn > 0 ∧ root.dn > 0 do

v ← root

while v is not a leaf do

v ← choose successor(v)
end while

expand(v)
while v is not null do

update(v)
v ← v.parent

end while

end while

3.2 Depth-First PNS

Nagai ([11, 12]) introduced a variant of PNS called Df-PNS (Depth-First PNS).
In addition to proof and disproof numbers, Df-PNS maintains two other values for
each vertex: proof number threshold (pnt) and disproof number threshold(dnt).
The algorithm performs iterative deepening in each interior node, excluding the
root. The subtree rooted in a node is stopped to be searched once its proof number
exceeds the pnt threshold, or its disproof number exceeds the dnt threshold. [8]
Once the numbers of a vertex exceed its threshold, the search of the subtree
rooted therein is stopped, and the subtree can be removed from memory.

Root vertex is assigned the thresholds pnt = dnt = ∞. For all other interior
nodes, the thresholds are assigned as follows (assuming p is an OR node): Choose
node n, a successor of p, with the lowest proof number value. If there exists
another node, s, that is a successor of p and its proof number value is the second-

9

lowest of all of p’s successors, then let the thresholds for n be given as

pntn := min {pntp, ⌈pns(1 + ǫ)⌉} (3.5)

dntn := dntp − dnp + dnn, (3.6)

[8, 13] where ǫ > 0 is some real constant. If n is the only successor of p, we let
s = n, and assign the thresholds as given by the formulae above.

We are using the so-called 1 + ǫ Trick developed by Pawlewicz and Lew to
reduce the amount of multiple subtree re-creations. [13] In our implementation,
we settled on the value ǫ = 0.9. (See chapter 6.)

An overview of the depth-first variant is shown in algorithm 2.

Algorithm 2 Df-PNS in Pseudocode
current← root

while root.pn > 0 ∧ root.dn > 0 do

while current is not a leaf do

n← best successor(current)
s← second best successor(current)
assign thresholds(n, s, current)
current← n

end while

expand(current)
v ← current

while v is not null do

update(v)
v ← v.parent

end while

while current is not root ∧ current exceeds thresholds do

current← current.parent

Potentially remove children of current from memory
end while

end while

3.3 Adaptation of PNS for the game of Arimaa

3.3.1 Steps versus Moves

As Arimaa allows a player to use one to four steps in their turn, there are two
possible choices for representing its state space:

1. The direct approach: Each vertex represents a player’s turn. This would
lead to a rather classical AND-OR tree with each OR vertex succeeded ex-
clusively by AND vertices and vice-versa. Such a representation would make
it straightforward to attach only unique positions during vertex expansion;
however, the move generator itself would be non-trivial, possibly creating
a separate step-based tree. Furthermore, this approach would result in a
tree with large branching factor – one position may lead to thousands of
different moves. [14]

10

2. Step-based approach: Each vertex represents a single step that a player can
take. This reduces the branching factor to tens of successors at the expense
of making the tree deeper. Step generation is relatively straightforward and
does not require an exploration of any separate state space. However, there
is now the possibility of creating vertices in the tree that ultimately repre-
sent the same move. As an upside, not all moves have to be fully generated
using this method, allowing the algorithm to explore only promising ones.

In this work we chose the second approach because of the lesser branching
factor and possibility of not having to generate all applicable moves. Hash tables
(see subsection 4.2) are used to reduce the effect of duplicate moves represented
by different step sequences.

3.3.2 Double Steps

Another thing to consider was the representation of double steps: pushes and
pulls. Once again, two choices are obvious:

1. Each vertex represents exactly one step, whether it be a part of a push/pull
or not. Choosing this approach would allow for easy counting of the number
of steps taken by a player simply by counting the number of vertices on a
path. It would, however, introduce a dependency between certain pairs
of vertices: Both steps comprising a push or pull have to be made in the
same turn and they have to immediately follow each other. This would
pose an additional complication during the expansion of a vertex, as well
as complicate move ordering.

2. Vertices represent either single step that is not a part of a push or pull, or
they represent a pair of steps comprising push/pull. Counting the number
of steps taken (and, by extension, number of steps that a player is still
allowed to take) becomes more difficult with this approach: While traversing
a subtree, a counter needs to be maintained for keeping track of the number
of steps taken so far. An advantage to this approach is that move ordering
and hash tables are now enabled to treat pushes and pulls as separate from
ordinary steps without having to consider more than one vertex.

We chose the latter approach to better differentiate between single and double
steps. Double steps move an opponent’s piece, and thus are potentially more
offensive than single steps – a fact that can be exploited during step ordering.

3.3.3 Lambda Vertices

Thanks to the game rules allowing players to give up some of their four available
steps, directly representing merely the steps taken would mean that each player’s
turn could start at an arbitrary depth in the tree, and opponent’s replies to one-,
two-, or three-step turns could be analysed before analysing the replies to full
four-step turns.

Since it is often advantageous to use as many steps as possible, we wanted to
delay the exploration of replies to moves not using all four available steps. For
this reason, we introduced lambda vertices into the tree: vertices representing

11

that a step is left unused in a player’s turn. These are always taken to use up one
of the player’s available steps in their turn. During vertex expansion, one lambda
vertex is always generated among the successors.

3.3.4 New Vertices

The type of a generated successor of a vertex is decided as follows: If, after
playing the step represented by the successor (or giving up one step, in the case
of a lambda successor), the player is still allowed to make at least one more step
within their turn, the successor is assigned its parent’s type. Otherwise, it is
assigned the opposite type.

Within one move it is possible to move a piece in one step, and then move
it to its original position in a later step. This two-step combination leads to no
change on the board other than the player giving up two of their available steps.
To reduce the number of vertices generated, we check for such repetitions within
a move during step generation. If a generated step repeats a position already
encountered within the same move, it is not added to the list of successors.

12

4. Enhancements of the

Algorithm

To keep the search effective, we implemented several heuristics. Firstly in section
4.1 we introduce a well-known hashing method for game positions. In section 4.2
we describe methods to re-use information from previously-explored parts of the
tree while processing yet-unexplored parts. In section 4.3 we show two methods
to improve the selection of a good successor when there is no single one with the
lowest proof or disproof number. Finally, in section 4.4, a method to reduce the
memory requirements of the algorithm is described.

4.1 Zobrist Hashing

During the course of the algorithm, it is often necessary to determine whether two
vertices correspond to the same position. Another common need is to remember
information about explored subtrees, and later retrieve this information given the
root of a subtree. Both of these needs may be addressed by a hashing function
that assigns an integer to each position; this integral value then can be used in
comparisons and for indexing purposes.

An efficient method for position hashing was introduced by Zobrist. [20] Dur-
ing initialization, for each combination of colour, piece type and position a random
number is generated and stored in an array pieces[type][colour][position].
Furthermore, six more random numbers are generated: gold, silver, and an
array of four elements called remaining[n]. The first two values are used to en-
code the player on turn; the array remaining encodes how many steps the player
is still allowed to make within their turn.

Hash value for a position from which the given player is about to start their
turn is then computed as shown in algorithm 3; the symbol ⊕ stands for the
bitwise XOR operation.

Algorithm 3 Generating an initial Zobrist hash

function zobrist-initial(board, player to move)
H ← 0
for all (type, colour, position) ∈ board do

H ← H ⊕ pieces[type][colour][position]

end for

H ← H ⊕ player to move⊕ remaining[4]

return H

end function

Whenever a step is made, the hash value can easily be updated without hav-
ing to scan the whole board again. Assuming that a piece of a certain type

and colour has been been moved from old position into new position by
current player and the player to move after this step is next player, the new
Zobrist hash value can be calculated from the old value H using algorithm 4. In
the algorithm, an elementary step is either a displacement of a single piece or its

13

capture; a step is composed of one or more elementary steps. (For instance, the
step rg3w rf3x Dg4s consists of the elementary steps rg3w, rf3x, and Dg4s. 1)

Algorithm 4 Update of the Zobrist hash

function zobrist-update(H , step, current player, next player, remain-
ing steps)

H ← H ⊕ remaining[remaining steps]

for all elementary step ∈ step do

if elementary step is a displacement then

H ← H ⊕ pieces[type][colour][old position]

H ← H ⊕ pieces[type][colour][new position]

remaining steps← remaining steps - 1

else ⊲ elementary step is a capture
H ← H ⊕ pieces[type][colour][captured from]

end if

end for

H ← H ⊕ current player⊕ next player

if current player = next player then

H ← H ⊕ remaining[remaining steps]

else

H ← H ⊕ remaining[4]

end if

return H
end function

When two different board configurations receive the same Zobrist hash, a
type-1 error occurs. If the Zobrist hash consists of N bits and there are M

distinct positions, the probability of at least one type-1 error can be approximated
as follows: [6]

P (at least one error) ≈ 1− exp

(

−
M2

2 · 2N

)

. (4.1)

We use 64-bit Zobrist hashes in our implementation. If five million distinct posi-
tions are generated, the probability of a type-1 error according to formula 4.1 is
approximately 6.776× 10−7.

Since Zobrist hash values are used throughout the program to efficiently decide
whether two positions are the same, and to index transposition tables, a type-1
error could potentially result in an invalid solution of a subtree or even of the
root. However, since the probability of such collisions is low, we decided to ignore
that possibility.

4.2 Transposition and Proof Tables

During the expansion of a tree, a vertex may be created that ultimately represents
a position that has already been encountered and perhaps even explored to a
certain depth in the tree. To avoid re-expansions of such vertices, transposition

1See http://arimaa.com/arimaa/ for an explanation of the move notation used here.

14

http://arimaa.com/arimaa/

tables are used in Chess programs, [10] and this technique may be easily adapted
for the game of Arimaa.

4.2.1 Transposition Table

Transposition table is a hash table of a fixed size that stores information about
positions encountered earlier in the search. [10] As a key into the transposition
table we use Z mod N , where Z is the Zobrist hash of a position, and N is a
user-settable value which determines the size of the table.

With each key, the following information is stored:

• The proof and disproof number values of a vertex corresponding to the
position

• The Zobrist hash Z used for detecting key collisions.

• Size of the subtree rooted in the corresponding vertex at the time the record
was inserted into the transposition table. This value is used to implement
a replacement scheme (see below).

To fill the table with values, whenever a vertex’s PN or DN value is updated,
its new proof and disproof number values are inserted into the transposition table
with the corresponding key. Whenever a new vertex is created, the transposition
table is consulted whether it contains a record with the new vertex’s hash. If so,
the new vertex receives PN and DN values equal to those found in the transpo-
sition table. This way, information gathered from positions encountered earlier
in the search can be reused when the same positions are encountered again via
different path.

Since the size of the transposition table is fixed, generally to a value much less
than the number of all possible hash values, collisions in the key (called type-2
errors by Zobrist [20]) are to be expected. A replacement scheme is used to
determine when a new entry is to overwrite an older one. Because a retrieval
of a “good” value from the transposition table can prevent the expansion of
a potentially large subtree (and thus improve the overall performance of the
algorithm), it is advantageous to prefer “better” entries while deciding which
values to keep. Lazar [10] has identified a few replacement schemes usable with
transposition tables:

1. Prefer deeper keys. That is, prefer the record that has been searched to a
greater depth.

2. Prefer newer keys. This is a very simple replacement scheme where an
entry always overwrites any older one. This may be further combined with
ageing, where each entry is also associated with a time stamp identifying
the number of the iteration during which the entry was added. During
collision, the entry is then replaced only if it is “old” – that is, if it was
inserted during iteration number preceding c−A, with c being the current
iteration number, A some constant controlling the ageing scheme.

15

3. Prefer older keys. Complimentary to the previous scheme: always preserve
the pre-existing record in the transposition table, if any.

4. Prefer greater subtrees. Similarly to the “prefer deeper” scheme, except
using the real count of vertices in the explored subtree, instead of just the
depth.

5. Two-level replacement scheme. Each entry in the transposition table con-
tains two records, called first and second. Upon collision, if the new entry
has been searched to a greater depth than the first record, the second record
is replaced by the current first, and the new record becomes a new first.
Otherwise, the new entry is inserted as the second record. (In this case, the
deeper scheme is used for the first record; other schemes can be used, too.)

We have experimented with the “newer” scheme combined with ageing, “deeper”
and “greater subtrees”. We finally settled for the “greater subtrees” scheme as it
proved to give the best results in our implementation.

Usage of transposition tables introduces the graph-history interaction problem
(GHI). [4] Consider, for instance, a proved OR-type vertex v, that was expanded
to contain a proved vertex u as one of its successors, which constitutes v’s proof.
v is then stored into the transposition table with values pn = 0, dn =∞. Suppose
that at some later time, a vertex v′ is created, representing the same position as
v, but assume that the path from root to v′ already contains the position of u
twice.

If the algorithm were to naively use the stored values, it would potentially
return an incorrect result: The step leading from v′ into the position associated
with u may not be made thanks to the third-time repetition rule. Unless another
step can be made from v′ that guarantees a win for the attacker, v′ may not be
marked as proved.

For this reason, we do not store proved or disproved vertices’ values in the
transposition table. Retrieved values may thus be imprecise, but at least they
will not lead to incorrect results.

4.2.2 Proof Table

Our not storing of proved and disproved vertices’ values in the transposition table
means that some nodes have to be re-explored even though they could be easily
proved by a simple hash table lookup if their values were stored. To address this
problem, we implemented a second hash table called proof table. It is used in a
fashion similar to that of the transposition table, with the notable difference that
only the values of proved or disproved vertices are stored.

Proof table is again indexed by Z mod M , with Z being the Zobrist hash of
a position, M a user-settable value which determines the size of the proof table.
The proof table may be of a different size than the transposition table.

The following information is stored for each key:

• The Zobrist hash Z

• The player for whom the corresponding position is a forced win

16

• History of the source position at the time of insertion into the table. This is
a dynamically sized array of the Zobrist hashes of the positions on the path
from root to the corresponding vertex. Since the repetition rules only apply
to positions resulting from complete moves, only hashes of those positions
which represent the start of a player’s turn need to be stored.

The proof table uses the same replacement scheme as the transposition table.

Whenever a vertex is marked as proved, its values are inserted into the proof ta-
ble. Upon creation of a node, the proof table is also consulted for a proof/disproof
value. If a value is successfully retrieved, the stored history is compared with the
history of the new vertex – if no third-time repetition is detected, the entry is
used; otherwise it is ignored.

However, it should be noted that we only check the paths leading to the
vertices, and not the subtrees rooted in them. As such, it is still possible to
wrongly mark a node as proved when it should be disproved or vice-versa. For
instance, consider a situation where a step made from one position leads to a third-
time repetition, and all other steps from the same position become disproved –
this vertex is then inserted into the proof table as disproved. Later in search, the
same position is encountered again via different path, the stored value is used
and the position is again marked as disproved – even though it is possible that
the step that led to a third-time repetition from the original node is now good to
use and potentially even leads to a proof of the node.

We decided to ignore the problem scenario described in the previous paragraph
for performance reasons and because we never observed any invalid results as a
result of this effect during our testing. The described problem may be avoided in
our implementation at the cost of performance by disabling the proof table for a
selected run of the program.

4.3 Step Ordering

During the successor selection process, it can happen that there are multiple
successors with the same minimal PN or DN value, and no single best one. In
these cases it is still desirable to choose a successor that might easily prove or
disprove a subtree. To determine which successor to choose in such cases, we
introduced two heuristics into our implementation.

Once the successors of a vertex are generated, they are sorted according to
the heuristics. Later in search, whenever the choice of a successor is not unique,
the first successor with a minimal PN or DN value is selected.

4.3.1 Static Step Ordering

The first step-ordering heuristics uses game-dependent knowledge. Since our
focus is on endgames, we implemented a heuristic that prefers advancements of
rabbits, and captures and dislocations of opponent’s strong pieces.

Each type is assigned a cost value as shown in table 4.1. The cost of rabbits
depends on their distance to the goal rank after the step has been taken. If the
rabbit is in the player’s first half of the board (for gold player that means ranks 1

17

to 4, for silver ranks 8 to 5), the rabbit’s cost is 1. Otherwise, it is 2 · (rank− 1)
for gold rabbit, and 2 · (8− rank) for silver rabbit.

During the generation of possible steps from a position, each step is assigned
a score. Initially, this score is 0. For each piece that is captured as a result of
this step, 4 · cost(piece) is added to the score if the captured piece belongs to
the opponent, and subtracted if it is the moving player’s piece. For push and
pull steps, 2 · cost(pushed or pulled piece) is added. Finally, if the step moves
the current player’s rabbit, the rabbit’s cost is added; if it moves an opponent’s
rabbit, the cost of the rabbit is subtracted. This prefers advancements of one’s
own rabbits, and penalizes advancements of opponent’s rabbits.

Type Cost
Elephant 10

Camel 7
Horse 5

Dog 3
Cat 2

Rabbit varies

Table 4.1: Heuristic costs of Arimaa pieces

4.3.2 Killer-move Heuristics

The killer-move heuristics is a domain-independent technique that has been used
for dynamic move ordering in various games. [6] It is based on the assumption
that if a step has proved effective earlier in the search, there is a chance it will
be effective in other positions as well.

The killer-move heuristics maintains a list of at most k steps for each level of
the tree. If a vertex causes a cutoff2 in the tree, its step is inserted into the list
of killer steps for its parent’s level.

At some later time in the search we use this information to order new vertices:
If the step of a vertex is listed as a killer for its parent’s level, it is moved to the
front of the successors list. If this step is examined first and also causes a cutoff,
the other successors will not even have to be analysed.

Since the number of vertices on the path from the vertex to a node does not
necessarily have to correspond to the number of steps taken on that path, the
level of a vertex v is computed as 4·m+4−r, where m is the number of completed
moves on the path from root to v, r is the number of steps the respective player
is still allowed to make from v. This way each vertex is assigned a computed level
as if the tree contained two separate vertices for each push or pull step.

4.4 Garbage Collector

Allis [2] described two ways to reduce the memory requirements of the algorithm.

2A cutoff occurs when a single vertex proves or disproves its parent. After a cutoff has

occurred, no further successors of that same parent have to be explored.

18

Delete Solved Subtrees This way is based on the observation that the subtrees
rooted in proved or disproved vertices are no longer needed, and may be
discarded.

Delete Least Proving Called a “last resort” technique by Allis, this method
removes subtrees which are least likely to be needed. The technique origi-
nally presented by Allis sets both the proof and disproof numbers to ∞ for
non-proved vertices whose children have been removed. When the PN and
DN values of root both equal ∞, the search is terminated. This is so that
subtrees are not regenerated once removed.

Our garbage collector method is based on these two techniques. In our imple-
mentation, however, we decided not to change the proof and disproof numbers of
non-proved vertices while removing their successors, allowing repeated re-creation
of subtrees.

The garbage collector is controlled by two parameters, called gc low and
gc high. Once the number of vertices in the tree exceeds gc high, the GC
algorithm (see algorithm 5) is run on the root vertex of the whole tree until the
size of the tree drops below gc low or no further nodes can be removed.

Algorithm 5 The garbage collection algorithm

function GC(v)
for all p ∈ {c ∈ children(v) : pnc = 0 ∨ dnc = 0} do

remove children of(p)
end for

while v is not a leaf ∧ tree size > gc low do

w ← worst non-leaf successor of v
if w 6= null then

GC(v)
else

remove children of(v)
end if

end while

end function

As we stated in section 3.2, for the depth-first variant of the algorithm when
the numbers of a vertex exceed its thresholds, the subtree rooted therein may be
removed from memory. However, when GC is enabled we do not remove those
subtrees immediately but rather let the garbage collector do it at some later time.

19

5. Implementation

During the implementation of our program, we came across a few interesting
design decisions to make. In this chapter, we describe these decisions.

5.1 Program Structure

Our implementation consists of two parts: A C++ module which implements the
search algorithm and the data structures necessary for its operation, and a user
interface implemented in the Python programming language.

We wanted to provide a graphical interface that could visually represent the
created tree. However, we believed that implementing the whole program in
the C++ language could make the graphical user interface code unnecessarily
complicated. This is why we chose Python as the tool to create the user interface
part.

Therefore, we chose to use C++ only for the algorithm module because of
greater efficiency of native code, and the possibility to manage program’s mem-
ory in a more fine-grained manner. On the other hand, user interfaces are not
generally computationally intensive and therefore do not necessitate the raw pow-
er of native code. The Python platform ships with various useful libraries that
facilitate the creation of a user interface.

Another option would be to implement several independent programs: One
to analyse the positions, and one or more others to visualise the analysed output.
That way, no inter-language interface would be necessary, however at least two
implementations of some of the data structures (such as the search tree itself)
would have to be maintained – each for one used language. Furthermore, unless
some way of inter-process communication were implemented, there would be no
easy way for the graphical interface to display continuous information about the
running computation.

5.2 Board Representation

One of the basic data structures to implement is one that can efficiently hold the
state of the playing board and answer queries about it.

At the most basic level, such a structure could merely provide the put piece,
get piece, and remove piece operations. However, to efficiently implement the
step generator and goal-checker, it is advantageous to provide further operations,
such as get all rabbits or get all opponent’s pieces.

The direct option would be to represent a board by an 8×8 matrix of integers,
each integer encoding the type and colour of the piece on a given position, or a
special value indicating that the position is vacant. While this representation is
straightforward and allows for a fast implementation of the get piece, put piece
and remove piece operations, operations such as get all rabbits require iterating
over the whole structure.

Another option is using bitboards. [5] For each type we maintain a 64-bit
integer that encodes on which positions this type appears: If the n-th bit is set,

20

a piece of the respective type occupies the rank ⌊n
8
⌋+ 1 and file ‘a’ + (n mod 8).

Similarly, we maintain a 64-bit integer for the gold player indicating the positions
occupied by gold pieces, and an integer encoding the positions occupied by any
piece at all.

While the bitboard representation makes the get piece, put piece, remove piece
operations more complicated, it can be efficiently used to retrieve lists of pieces
of given type or colour. These lists may be combined using bitwise operations
to produce other lists of pieces. (For instance, a list of all gold rabbits can be
computed as all rabbits & gold pieces, where & represents the bitwise and
operation.) Since efficient computation of such lists is more important during
goal-checking and step-generation, we implemented the bitboard approach.

21

6. Experiments

To test the behaviour of our implementation, we used the collection of “Arimaa
‘Win in 2’ Puzzles” available from [3]. It is a collection of positions that occurred
in real games in the Arimaa gameroom. These positions can be won by the
attacker in two steps.

However, early into our testing we discovered that many of these positions were
too difficult for our implementation to solve within the 60-second limit we wanted
to use for the parameter tuning. In order to gather more data from successfully
solved positions we randomly picked 100 positions containing 15 pieces or less
from the puzzles collection and ran our parameter tuning on these.

The set of test positions is included on the attached CD.

6.1 Results

Our first goal was to test the various settable parameters of our implementation
and determine which ones give the most promising results. For each test we ran
our program on all 100 reduced endgame positions for a maximum of 60 seconds.
We observed the number of successfully solved positions and the average time to
solve them. Since for each set of parameters, some configurations were able to
solve less positions than others, we measured the average time over those positions
successfully solved by all runs within a parameter set.

All tests were carried on machines each equipped with eight-core Intel R©

Core
TM

i7 CPUs clocked at 2.67 GHz. Each machine had 6 GB of physical
memory installed, of which at least 3 GB was available when our tests started.

ǫ Value for Df-PNS First we wanted to find an optimal value of ǫ used in
the Df-PNS algorithm. The Df-PNS algorithm was run on all 100 positions for
a maximum of 60 seconds, it was given proof and transposition tables of 256
MB. Garbage collector was enabled with settings gc high of 5 million, gc low 3
million. The values of ǫ ranged from 0.1 to 1.1 with 0.2 stepping.

The plot 6.1 shows the average time necessary to solve each position that
could be solved, table 6.2 shows how many positions each configuration could
solve.

The most promising values appear to be 0.5, 0.7, and 0.9. While ǫ = 0.7 is
the fastest, curiously it solved the fewest positions. We decided to continue our
testing with the value ǫ = 0.9 as that appears to be a reasonable compromise
between speed and proving capability.

Transposition Table Size To test the effects of the transposition table, we
ran both the PNS and Df-PNS algorithms with transposition table size varying
from 32 MB to 512 MB. Proof table size was fixed at 32 MB, garbage collector
again ranged from 5 million to 3 million. The depth-first variant used ǫ = 0.9 as
determined by the previous test.

The plot 6.3 shows the average times needed to solve positions by each algo-
rithm. Table 6.4 contains the number of solved positions by each configuration.

22

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 0.1 0.3 0.5 0.7 0.9 1.1

av
er

ag
e

tim
e

(s
)

epsilon

Figure 6.1: Df-PNS Searching Time Depending on ǫ

ǫ Solved Positions
0.1 16
0.3 18
0.5 16
0.7 14
0.9 17
1.1 15

Figure 6.2: Number of Solved Positions Depending on ǫ

Based on these results, we have settled for the size of 256 MB for further
testing.

Proof Table Size Next we wanted to see how the algorithms perform with
various proof table sizes. We used the same configuration as for our previous
test, except that the transposition table size was fixed at 256 MB, and the size
of the proof table varied from 32 MB to 512 MB.

The running times are shown in plot 6.5. In all configurations, the PNS
algorithm was able to solve 18 positions. For the configuration with proof table
size of 64 MB, Df-PNS could solve 15 positions; in all other configurations, Df-
PNS could solve 16 positions.

Garbage Collector Next we measured the effect of the garbage collector on
the efficiency. Again we ran our program on all 100 positions and observed
the number of positions our implementation could successfully solve within 60
seconds and how fast it could find the solutions. We ran the PNS algorithm
with transposition table size of 256 MB, proof table size of 64 MB; the Df-PNS
algorithm was run with both tables sized at 256 MB. Furthermore, for the test

23

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 32 64 128 256 512

av
g

tim
e

(s
)

TT size (MB)

PNS
Df-PNS

Figure 6.3: Effects of the Transposition Table

TT Size (MB)
Solved Positions
PNS Df-PNS

32 17 14
64 18 16
128 18 16
256 18 16
512 18 15

Figure 6.4: Positions Solved for Each TT Size

with garbage collector disabled, the PNS variant was limited to use at most 1
GB of memory for its search tree. Table 6.6 contains the results.

It appears that higher GC thresholds do not yield a better performance. As
an explanation, we propose that some amount of subtree re-creation is actually
beneficial: During such re-creations, vertices are initialized with values stored in
the hash tables – these values could come from searches performed to a depth
greater than the depth of the original subtree. Thus, searching a tree with GC
enabled allows for a greater information sharing between subtrees, and to an
extent behaves like a search through a graph.

Long Runs Finally we ran the program with a 500-second time limit using GC
setting of gc high = 2 million, gc low = 1.6 million. The PNS algorithm used
64-megabyte proof table, while the depth-first variant had 256 MB of memory
allocated for the proof table; both variants used transposition table sized at 256
MB. Table 6.7 summarizes the results on the reduced positions. We also ran
the implementation on a collection of 100 randomly chosen positions from the
endgames database, this time without any limitation on the piece count of the
positions (“Big Positions”). The results from that run are in table 6.8.

24

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 32 64 128 256 512

av
g

tim
e

(s
)

PT size (MB)

PNS
Df-PNS

Figure 6.5: Effects of the Proof Table

gc high (million) gc low (million)
Solved positions Average time (s)
PNS Df-PNS PNS Df-PNS

disabled disabled 14 15 8.03 4.31
1 0.2 18 17 5.63 4.15
1 0.5 19 18 5.17 4.19
1 0.8 18 18 6.22 4.18
2 0.4 18 17 6.48 5.02
2 1 17 16 6.45 4.69
2 1.6 20 17 7.59 4.26
5 1 17 15 5.88 4.69
5 2.5 16 15 5.76 5.02
5 4 17 15 6.61 4.90
10 2 15 16 7.54 4.67
10 5 15 15 7.89 5.73
10 8 15 15 5.94 4.96

Figure 6.6: Effects of GC

Algorithm Solved Positions Average Time (s)
PNS 36 105.35

Df-PNS 18 21.81

Figure 6.7: Results of a 500-second Run on Positions with At Most 15 Pieces

Algorithm Solved Positions Average Time (s)
PNS 22 52.24

Df-PNS 11 87.26

Figure 6.8: Results of a 500-second Run on “Big” Positions

25

7. Conclusion

We have successfully implemented the Proof-Number Search algorithm for the
game of Arimaa. We have implemented both the original algorithm as described
by Allis, and a depth-first variant of the method.

During our testing on the reduced-size test positions, the depth-first variant
consistently proved less positions than the PNS algorithm, although when it did
manage to find a proof, it did so faster on average than PNS. Curiously, Df-PNS
appeared to be slower than PNS when applied to the set of “big” positions.

Even more surprising is the fact that increasing the garbage collector limits
seemed to impact performance in a negative way. As we stated earlier, we think
this is due to a positive interaction with the hash tables: During a subtree re-
creation, more accurate PN and DN values might be retrieved from the hash
tables than those originally associated with the original subtree. It might be
advantageous to implement a directed acyclic graph version of the PNS method
instead of relying on such garbage collector-hash tables interaction.

We have tried to apply the PNS method to Arimaa without relying on domain-
dependent heuristics. While such a “pure” application of PNS is capable of
solving some positions, we believe that some domain-dependent heuristics might
improve the performance of the method significantly.

PNS uses the number of opponent’s possible replies to a player’s turn to
explore those parts of the tree which appear to require the least amount of effort
to be proved or disproved. However, it appears that in Arimaa the number of
possible replies may not be the most suitable criterion. For example, a strong
attacking move may unfreeze one or more opponent’s pieces and thus leave the
opponent with more possible replies. The PNS algorithm could then choose to
first explore a weaker move that limits the opponent’s mobility more than the
hypothetical strong move.

7.1 Future Work

Our presented implementation can still be improved in many ways, including:

• Building a directed acyclic graph instead of a tree.

• Including a way to statically check whether a player can reach the goal from
a position, rather than having to search through a subtree until reaching a
goal position.

• Our way of solving the graph-history interaction problem is rather crude.
A better way using Zobrist hashes of paths could be implemented. We
would also like to include a check for repetitions while using entries from
the transposition table (rather than just the proof table), and test whether
such checking helps guide the search better.

Further research could focus on the following:

• Heuristic initialization of the PN and DN values of newly-created vertices.
Allis [1] proposed to use the minimal number of node evaluations neces-
sary to prove or disprove a vertex rather than the number of successors.

26

Winands [16] proposed a way to use heuristic evaluation functions from
alpha-beta-based solvers.

• Not considering all possible replies and instead focusing only on the first
few “best” ones. Yoshizoe [19] introduced a way called Dynamic Widening
to do so without sacrificing the completeness of the algorithm.

• Wu [18] elaborated on building a move-ordering heuristic for Arimaa. In-
cluding such a heuristic could be especially advantageous in combination
with Dynamic Widening or similar techniques.

• Application of the PNS method for achieving tactical goals during mid-game
rather than just forcing a win.

27

Bibliography

[1] L.Victor Allis: Searching for Solutions in Games and Artificial Intelligence.
PhD thesis, Rijksuniversiteit Limburg, Maastrich, The Netherlands, 1994.

[2] L.Victor Allis, Maarten van der Meulen, H. Jaap van den Herik: Proof-
number search. Artificial Intelligence, Volume 66, Issue 1, March 1994, Pages
91-124, ISSN 0004-3702, DOI: 10.1016/0004-3702(94)90004-3.

[3] Arimaa Homepage. http://arimaa.com/

[4] Murray Campbell: The Graph-History Interaction: On Ignoring Position
History. Proceedings of the 1985 ACM Annual Conference on The Range of
Computing, ACM NewYork, NY, USA, 1985, pp. 278-280, ISBN: 0-89791-
170-9

[5] Stefano Carlini: Arimaa: From Rules to Bitboard Analysys. Knowledge Rep-
resentation Thesis, University of Modena and Reggio Emilia, 2008

[6] Christ-Jan Cox: Analysis and Implementation of the Game Arimaa. Master’s
thesis, Universiteit Maastrich, Institute for Knowledge and Agent Technolo-
gy, 2006

[7] David Footland: Building a World-Champion Arimaa Program. Proceedings
of the 4th International Conference on Computers and Games (CG 04),
Springer-Verlag, Berlin, Heidelberg, 2006 LNCS, pp. 175-186. ISBN: 978-3-
540-32488-1.

[8] H. Jaap van den Herik, Mark Winands: Proof-Number Search and Its Vari-
ants. Oppositional Concepts in Computational Intelligence, Studies in Com-
putational Intelligence, 2008, Vol. 155/2008, Springer, pp. 91-118. DOI:
10.1007/978-3-540-70829-2 6

[9] Tomáš Kozelek: MCTS Methods in the Game of Arimaa. Master’s Thesis,
Charles University in Prague, 2009.

[10] Sashi Lazar: Analysis of Transposition Tables and Replacement Schemes.
University of Maryland Baltimore County, 1995

[11] Ayumi Nagai, Hiroshi Imai: Application of df-pn+ to Othello endgames. Pro-
ceedings of Game Programming Workshop in Japan 1999, Hakone, Japan,
1999, pp. 16-23

[12] Ayumi Nagai: Df-pn Algorithm for Searching AND/OR Trees and its Appli-
cations. PhD thesis, The University of Tokyo, Tokyo, Japan, 2002

[13] Jakub Pawlewicz, Lukasz Lew: Improving depth-first pn-search: 1 + ǫ trick.
Proceedings of the 5th International Conference on Computers and Games
(CG 06), Springer-Verlag, Berlin, Heidelberg, 2007 LNCS, pp. 160-171. IS-
BN: 978-3-540-75537-1.

28

http://arimaa.com/

[14] Omar Syed: Arimaa: A New Game Designed to be Difficult for Computers.
Journal of the International Computer Games Association 2003, Vol. 26, No.
2, pp. 138-139

[15] Stuart Russell, Peter Norvig: Artificial Intelligence: A Modern Approach.
3rd ed. Upper Saddle River: Prentice Hall, 2009. ISBN 978-0-13-604259-4.

[16] Mark H.M. Winands, Maarten P.D. Shadd: Evaluation-function Based
Proof-Number Search. Proceedings of the 7th International Conference on
Computers and Games (CG 10), Springer-Verlag, Berlin, Heidelberg, 2010.
pp. 23-35, ISBN: 978-3-642-17927-3

[17] Mark Winands, Yngvi Björnsson, Jahn-Takeshi Saito: Monte-Carlo Tree
Search Solver. Proceedings of the 6th International Conference on Comput-
ers and Games (CG 08), Springer-Verlag, Berlin, Heidelberg, 2008, LNCS,
pp. 25-36. ISBN: 978-3-540-87607-6

[18] David Jian Wu: Move Ranking and Evaluation in the Game of Arimaa.
Thesis on Harvard College, Cambridge, Massachusetts, USA, May 2011.

[19] Kazuki Yoshizoe: A New Proof-Number Calculation Technique for Proof-
Number Search. Proceedings of the 6th International Conference on Comput-
ers and Games (CG 08), Springer-Verlag, Berlin, Heidelberg, 2008. LNCS,
pp. 135-145. ISBN: 978-3-540-87607-6

[20] Albert L. Zobrist: A New Hashing Method with Applications for Game Play-
ing. Technical Report #88, Computer Science Department, The University
of Wisconsin, Madison, WI, USA. Reprinted (1990) in Journal of the Inter-
national Computer Games Association, 1970, Vol. 13, No. 2, pp. 69-73

29

Glossary

Branching Factor The average number of successors in a game tree; or the
exact number of successors of a given vertex.

Df-PNS Depth-First Proof-Number Search

DN Disproof number. Associated with each vertex in the tree; it is the lower
bound of the number of vertices that have to be disproved in order to
disprove the vertex this number is associated with.

Game Tree Tree whose vertices represent positions of a game, and edges repre-
sent valid moves that lead from one position to another.

GC Garbage Collector or Garbage Collection. Technique in which subtrees not
likely to be selected for expansion are removed from memory.

GHI Graph-History Interaction. A situation where naively reusing cached in-
formation about a position encountered earlier in the search can lead to
imprecise or incorrect results.

Minimax Tree Game tree where a value is associated with each of its vertices.
For leaves this value is given by an evaluation function and corresponds to
the outcome of the game for a given player; for interior nodes, this value is
computed either as the minimum or maximum (depending on the player to
move from the respective position) of the values of the children of the node.

MCTS Monte-Carlo Tree Search

PN Proof number. Associated with each vertex in the tree; it is the lower bound
of the number of vertices that have to be proved in order to prove the vertex
this number is associated with.

PNS Proof-Number Search

Position In the context of Arimaa game position, this refers to the configuration
of pieces on the playing board and the player to move.

PT Proof Table. Hash table that stores the winning player for positions proved
or disproved at some time during the search.

TT Transposition Table. Hash table that stores the PN and DN values of posi-
tions explored at some time during the search.

30

A. User’s Manual

Our implementation can be downloaded from https://github.com/Oxyd/APNS/

in its source code form; precompiled binaries for Windows are available in the
Downloads section on the same address. Both the source code and Windows
binaries can also be found on the attached CD.

A.1 Supported Systems

Our program has been tested to build and work on GNU/Linux and Windows op-
erating systems. Precompiled binaries are only made for the Windows platform;
GNU/Linux users have to build the program from source (see section A.3).

On both platforms, an implementation of the Python 2 programming lan-
guage1 is required to run the program. It has been tested to work with versions
2.6 and 2.7. Furthermore, the Tkinter library is necessary for the GUI version
(although not required if one wishes to run the batch version only.)

Both 32-bit and 64-bit systems are supported. Windows users who want to
use the precompiled binary version need to download the appropriate distribution
archive.

A.2 Running the Program

The program can be run in two modes: Graphical (GUI) mode, and batch (com-
mand line) mode. The former is recommended for users who wish to experiment
with the program.

Having extracted the binary distribution archive or having built the program
from source, the GUI version can be launched by double-clicking the gui.pyw file
or executing ./gui.pyw from a shell in the program’s directory. The program’s
main window should appear on screen thereafter.

The batch version can be run by using the command python batch.py or
just ./batch.py in the program’s top-level directory. When run without any
arguments, the program will print a summary of the options available. The
program can be run as ./batch.py --help to print a more detailed description
of the available arguments.

A.2.1 Graphical Interface

The GUI of the program is divided into three panes: The topmost one contains
a toolbar with buttons used to execute the program’s functions; the left pane
displays the built search tree (once one has been created); the right pane then
displays the position corresponding to the vertex selected in the tree pane.

Initially, only two buttons are enabled: New Initial Position which allows the
user to load or create a position that is to be analysed, and Load Search that can
be used to load a previously saved search tree.

1Visit http://python.org/.

31

https://github.com/Oxyd/APNS/
http://python.org/

Clicking the New Initial Position button will bring up a dialog window with
a simple Arimaa position editor that can be used to specify one manually. One
may also use the Load button to use a pre-existing position saved in a file.

Once a starting position is specified, the algorithm can be launched by using
the Run Search button. It will display a dialog window that allows various
parameters of the algorithm to be set, and that allows to start the search. If the
search is started, a dialog window with information about its progress and an
option to interrupt the algorithm will be shown.

Once the algorithm has stopped (whether by proving or disproving the root
vertex or otherwise), the left pane of the main window will be updated to contain
the current tree created so far. Each vertex is displayed on its own line, which
contains the following information:

Step The step that leads from the vertex’s parent to the given one, or the word
lambda for lambda vertices.

Type The word OR or AND denoting the type of the vertex.

PN, DN Proof and disproof number values.

* or ** The vertex that is currently considered to be the best one among its
siblings is marked with an asterisk. Two asterisks mark those vertices that
lie on the path from the root to the most-proving node.

If the root vertex is neither proved nor disproved, the Run Search button can
be used again to continue running the search, possibly with different parameters.
The generated tree can be saved to a file by using the Save Search button. If one
wishes to start a search of the same initial position again from the beginning, the
Reset Search button can be used to discard everything but the initial position
and search preferences. Finally, when a vertex of the tree is selected, the position
it represents can be saved to a file using the Save Position button.

A.2.2 Batch Interface

The batch interface offers the same options of running the program as the GUI
version. It can be used to run the program to see how fast it can solve a position.
The tree created from a run of the batch version can also be saved to a file and
at some later time loaded and examined in the graphical interface.

Most important options controlling the program’s behaviour are the following:

-p position Specifies a file containing the position to be analysed.

-s search file Specifies a file containing the tree created during a previous
search. If specified, the search will start with the given tree and contin-
ue its analysis. This option is mutually exclusive with the -p option.

-d tree file Gives the file name where the tree is to be saved once the algorithm
stops.

-a algorithm Can be either pns or dfpns. Specifies which algorithm to use.
Default value is pns.

32

-t limit Limits the search to the given number of seconds.

-r size Specifies the size, in megabytes, of the transposition table.

-o size Similar to -r, controls the size of the proof table.

-k count Specifies the number of killer steps to be remembered for each level.

-G gc high Sets the gc high threshold.

-g gc low Sets the gc low threshold.

-Q When given, the program will not print any information about its progress,
only a summary at the end.

-q With this option, the program will not print anything except possible errors.

-w If specified and if the root is proved when the program terminates, the best
move will be printed at the end of the program’s execution.

For example, the program can be run with the following command to analyse
a position stored in the file pos.txt for a maximum of 60 seconds, using 128 MB
proof and transposition tables, gc high of 2 million and gc low of 1 million:

./batch.py -t 60 -r 128 -o 128 -G 2000000 -g 1000000 -p pos.txt

A.3 Building the Program

To build the program the following prerequisites have to be installed:

GCC Compiler Collection Version 4.6 or later.

Boost Library Collection Version 1.48 or later, including development libraries.

Python Version 2.6 or 2.7, also including development libraries.

SConstruct

If all prerequisites are met, the program can be built using the command
scons. If some of the libraries are in an unusual location or the user wishes to
use some special build configuration, the file config/linux.py will have to be
modified accordingly. Further information about building the program can be
found on the attached CD in the Programmer’s Manual.

33

Attachments

The attached CD contains the following:

thesis.pdf This text in PDF format.

programmer-manual.pdf Programmer’s manual for the program.

APNS The program in its source code form.

apns-windows-32bit-v1.5.4-bc.zip Precompiled binary distribution for 32-
bit Windows systems.

apns-windows-64bit-v1.5.4-bc.zip Precompiled binary distribution for 64-
bit Windows systems.

python-2.7.3.msi Python installer for 32-bit Windows systems.

python-2.7.3.amd64.msi Python installer for 64-bit Windows systems.

reduced-results Files generated during the testing on reduced positions.

big-results Files generated during the testing on “big” positions.

Both the source code and binary distributions contain a subdirectory named
example-positions containing the positions used in our testing.

34

	Introduction
	Research Objective

	The Game of Arimaa
	Rules of Arimaa
	Difficulty for Computers

	Search Algorithm
	Proof-Number Search
	Representing a Game with an AND-OR Tree
	Proof and Disproof Numbers
	Expansion of the Tree

	Depth-First PNS
	Adaptation of PNS for the game of Arimaa
	Steps versus Moves
	Double Steps
	Lambda Vertices
	New Vertices

	Enhancements of the Algorithm
	Zobrist Hashing
	Transposition and Proof Tables
	Transposition Table
	Proof Table

	Step Ordering
	Static Step Ordering
	Killer-move Heuristics

	Garbage Collector

	Implementation
	Program Structure
	Board Representation

	Experiments
	Results

	Conclusion
	Future Work

	Bibliography
	Glossary
	User's Manual
	Supported Systems
	Running the Program
	Graphical Interface
	Batch Interface

	Building the Program

	Attachments

