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Summary: 

The mechanisms of weight gain or behavioral and affective changes known to occur in patients 

with Parkinson’s disease (PD) treated with deep brain stimulation of the subthalamic nucleus 

(STN DBS) are incompletely understood. We hypothesize that some of these non-motor side-

effects may be related to changes in motivational processing due to STN DBS. Motivational 

processing to appetitive and aversive stimuli can be assessed using subjective evaluation of 

emotional relevance (i.e. incentive salience attribution) or affective modulation of the auditory 

blink reflex (ABR). The latter provides an objective measure of changes in emotional reactivity:  

ABRs are physiologically potentiated by unpleasant and inhibited by pleasant stimuli, reflecting 

activation of the aversive and appetitive motivational systems. 

Our aim was to assess the effects of STN DBS on motivational processing of pictures from 4 

categories, two representing primary rewards, erotica and food, one aversive fearful and one 

neutral, using the subjective evaluation of motivational relevance (Study 1.) and the modulation 

of the ABR reactivity (Study 2.) in off-medicated PD patients with DBS switched ON and OFF. 

The results were compared with those obtained in healthy controls using the same paradigms.  

Study 1.  Twenty PD patients in bilateral STN DBS switched ON and OFF conditions and 18 

matched controls rated total 84 selected pictures (21 from each category) according to emotional 

valence (unpleasantness / pleasantness) and arousal on two independent visual scales ranging 

from 1 to 9. The mean postoperative weight gain in PD group was 8.1±8kg. In STN DBS ON 

condition the PD patients attributed lower valence scores  to the aversive pictures (i.e. pictures 

were rated as more aversive) compared to OFF condition  and when compared to controls. The 

difference between OFF condition and controls was less pronounced. Furthermore, postoperative 

weight gain correlated with arousal ratings from the food pictures in STN DBS ON condition. 

Study 2. The ABR elicited during the viewing of 30% out of the 84 selected pictures was recorded 

together with the subjective ratings of affective valence and arousal in 11 off-medicated PD 

patients with the STN DBS switched ON and OFF, and in 11 control subjects. The mean 

postoperative weight gain in PD group was 5.6±7kg. Aversive stimuli caused a larger 

increase in the ABR in patients in ON condition than in controls. The ABR to erotic stimuli was 

larger in patients in ON condition compared to OFF condition and controls. No detectable 

differences in subjective ratings were found. In addition, the ABR magnitude to food pictures in 

ON condition showed a significant negative correlation with postoperative weight gain. 

Both subjective and objective measures of STN DBS effects on motivational processing indicated 

that STN DBS may increase activation of the aversive motivational system.  They also suggest 

that the postoperative weight gain may be related to changes in the processing of food cues due to 

STN DBS. In addition, STN DBS may disturb engagement of the appetitive motivational system 

by erotic cues, which is not reflected in subjective ratings. 
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Souhrn: 

Mechanismus nárůstu hmotnosti nebo afektivních a behaviorálních změn, které se vyskytují u 

pacientů s Parkinsonovou nemocí (PN) léčených hlubokou mozkovou stimulací subthalamického 

jádra (DBS STN) je nejasný.  Domnívali jsme se, že některé tyto nonmotorické vedlejší účinky 

mohou být způsobené ovlivněním motivačních procesů. Motivační procesy vyvolané příjemnými 

a nepříjemnými podněty mohou být subjektivně hodnoceny pomocí přisouzení motivační 

důležitosti podnětům nebo pomocí afektivní modulace úlekové reakce. Ta poskytuje objektivní 

míru změn v emoční reaktivitě: úleková reakce je fyziologicky zesílena nepříjemnými a oslabena 

příjemnými podněty, tyto změny odráží aktivaci averzivního a apetitivního motivačního systému. 

Cílem naší práce bylo hodnocení vlivu DBS STN na motivační procesy vyvolané obrázky ze 4 

různých kategorií: dvě zobrazující primární odměny erotiku a jídlo, averzivní podněty (hrozby a 

oběti) a neutrální pomocí subjektivních přisouzení motivační důležitosti prezentovaným 

podnětům (Studie 1.) a pomocí modulace akustického blink reflexu (ABR) (Studie 2.) u pacientů 

s PN po celonočním vysazení dopaminergní medikace ve stavu s se zapnutou (DBS ON) a 

vypnutou (DBS OFF) stimulací. Výsledky byly porovnány s výsledky získanými u kontrol.  

Studie 1. 20 pacientů s PN a 18 vázaných kontrol hodnotilo u celkem 84 obrázků (21 z každé 

kategorie) ve stavu  DBS  ON a DBS OFF emoční valenci (příjemnost/nepříjemnost) a arousal na 

dvou nezávislých vizuálních škálách v rozmezí od 1 do 9.  Průměrný pooperační nárůst hmotnosti 

byl u pacientů 8±8 kg. V ON  stavu pacienti přisoudili averzivním obrázkům nižší skóre valence 

(obrázky byly hodnoceny jako více averzivní) než v OFF stavu i než kontroly.  Rozdíl mezi OFF 

stavem a kontrolami byl méně vyjádřen.  Pooperační nárůst hmotnosti koreloval s hodnocením 

arousalu obrázků jídla v ON stavu.  

Studie 2.  ABR vyvolaný během prohlížení u 30% obrázků z celkem 84 obrázků (t.j. u 7 z každé 

kategorie) byl zaznamenán spolu s hodnoceními emoční valence a arousalu u 11 pacientů ve stavu 

DBS  ON a DBS OFF a u 11 kontrol. Průměrný pooperační nárůst hmotnosti pacientů byl 5.6± 

7kg. Averzivní podněty vyvolaly větší ABR u pacientů u ON stavu než u kontrol. V ON stavu 

byly ABR vyvolané během  prohlížení erotických obrázků větší než v OFF stavu a než u kontrol. 

Nebyly zaznamenány žádné změny v subjektivních hodnoceních valence a arousalu. Velikost 

ABR při prohlížení obrázků jídla v ON stavu významně negativně korelovala s pooperačním 

váhovým příbytkem po zavedení DBS STN. 

Výsledky subjektivních i objektivních hodnocení vlivu DBS STN na motivační procesy poukazují 

na možné zvýšení averzivní aktivace vlivem DBS. Dále tyto výsledky svědčí pro možnou 

souvislost pooperačního nárůstu hmotnosti se změnami v procesování podnětů spojených s jídlem 

(se zvýšenou motivací k jídlu) vlivem DBS STN. Zdá se také, že DBS STN může vést k poruše 

aktivace apetitivního motivačního systému erotickými podněty, která se nemusí odrazit v 

subjektivních hodnoceních.  
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I. INTRODUCTION 
 

1.1. Parkinson’s disease  

 

1.1.1. Parkinson’s disease: motor and non-motor symptoms 

 

Parkinson’s disease is a neurodegenerative disorder that leads to very specific disturbance 

of  movement, characterized by slowness of initiation of voluntary movement with a 

progressive reduction in speed and amplitude of sequential motor tasks.(Halliday et al., 

2011)  

Other cardinal signs of PD related to motor dysfunction are resting tremor, rigidity and 

postural instability not caused by primary visual, vestibular, cerebellar, or proprioceptive 

dysfunction. There is no diagnostic test for PD, and the diagnosis is made on clinical 

grounds. A set of well-validated criteria (the United Kingdom Parkinson’s disease Society 

Brain Bank Clinical Criteria) exists to assist in the clinical diagnosis of PD and have a 

specificity of 98.1% and sensitivity of  90.4%.(Hughes et al., 1992)  

The pathological confirmation of PD consists in finding of severe selective loss of the 

dopaminergic neurons of the pars compacta of the substantia nigra with the presence of 

Lewy bodies composed of aggregates of a-synuclein and Lewy neuritis in specific regions 

of the nervous system.(Dickson et al., 2009) 

Damage to the substantia nigra is recognized as a hallmark of PD and is probably the 

major cause of motor symptoms. The motor symptoms do not develop until about 50–

60% of the nigral neurons are lost and about 80–85% of the dopamine content of the 

striatum is depleted.(Marsden, 1996) 

However, in the last 25 years it has been confirmed that pathological lesions are much 

more extensive and involve a number of ascending projection pathways in the brainstem 

and areas of the neocortex that may precede the damage to the substantia nigra and have 

been related to a variety of non-motor manifestations. (Braak et al., 2002, Hawkes et al., 

2010, Jellinger, 2010) These include neuropsychiatric symptoms such anxiety, depression 

and apathy, and dysautonomic symptoms such as postural hypotension and constipation, 

sleep disturbances such as REM sleep behavior disorder and periodic limb movements of 

sleep, sensory symptoms such as paresthesias, cramps and other disorders such as 
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olfactory dysfunction, and seborrheic dermatitis. As the disease progresses, decreased 

cognitive ability may appear. (Chaudhuri and Schapira, 2009) 

Numerous studies have revealed that patients with PD lose weight and have a lower body 

weight when compared to matched control populations which can be ascribed, primarily, 

to a loss of fat tissue.(Bachmann and Trenkwalder, 2006) A recent large-scale prospective 

study showed that weight loss in PD patients is a continuous, progressive process, which 

commences years before a formal diagnosis is made, and cannot be ascribed to a 

decreased energy intake.(Chen et al., 2003) Treatment with levodopa also seems to affect 

the body weight.  The 2-year prospective study conducted by Palhagen and colleges 

showed a modest body weight loss before patients begin L-dopa treatment (1.1 kg versus 

control) that becomes significant after 2 years of L-dopa therapy (5.6 kg versus control).  

The mechanisms involved remain unknown.(Palhagen et al., 2005)   

  

1.1.2. Emotional and motivational changes in PD 

 

In addition  to mood  disturbances, changes in emotional processing such as  blunted 

facial expressivity and  mild deficits in appraising emotional prosody and facial 

expressions have  also been described. (Blonder et al., 1989, Borod et al., 1990, Dujardin 

et al., 2004, Jacobs et al., 1995, Suzuki et al., 2006) The precise mechanisms for these 

various emotional changes remain unknown, but they seem to be related to 

neurotransmitter-induced  alterations in limbic (amygdala, ventral striatum, anterior 

cingulate), cortical, and subcortical regions that are integral parts of the fronto-striatal and 

mesolimbic circuitry.(Alexander et al., 1986) Studies on affective modulation of the 

acoustic blink reflex showed blunted reactivity to aversive stimuli in PD patients on-

medication. This impairment seemed to be selective for mutilation pictures relative to 

other types of aversive stimuli as suggested another study in off-medicated PD 

patients.(Bowers et al., 2006, Miller et al., 2009)  

The abnormalities of motivational processes have been studies mainly in terms of apathy. 

It seems to be related to neuronal loss within the mesolimbic dopaminergic system and 

may preceed the development of the motor symptoms.(Chaudhuri et al., 2011) PD 

patients have also an impaired in explicit and implicit reinforcement associated learning 

and in „sensitivity to reward“ flexibility in comparison to the controls.(Czernecki et al., 

2002)   
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The dopamine dysregulation syndrom (addiction to the dopaminergic medication) and the 

impulse control disorder (such as pathological gambling) are can occur in PD patients 

with dopaminergic treatment. The disruption of the dopaminergic mesolimbic and 

mesocortical circuits in PD patients, along with premorbid personality profile and the 

persistently elevated dopaminergic stimulation due to replacement therapy seem to be the 

factors that interplay in the etiopathogenesis of these conditions.(Dagher and Robbins, 

2009)  

 

1.1.3. Pharmacological treatment in PD 

 

The hallmark of PD is the response of motor symptoms to dopaminergic drugs with 

levodopa being still the most effective treatment available. Most patients however will 

notice a gradual increase in symptoms over time despite treatment. As the disease 

progresses the dose increase is required and patients on long-term levodopa therapy 

develop fluctuations in motor symptom control throughout the day in response to 

medication. They experience an early return of symptoms before their next dose of 

medication is due, a delay in response to a dose of medication, a dose failure or a sudden 

disappearing of the effect of medication. Other motor complications following long-term 

levodopa treatment are involuntary choreiform or dystonic movements called dyskinesias. 

Dyskinesias are clearly related to the pulsatile nature of levodopa therapy. In the normal 

basal ganglia, there is constant low level activity at dopaminergic synapsis, with transient 

increases during particular tasks such as voluntary movements and learning. In advanced 

stages dyskinesias can be troublesome and treatment may be difficult.(Voon et al., 2009)    

For also non-motor symptoms are a common source of disability in PD and treatment can 

be difficult, management of PD should involve a multidisciplinary team that can respond 

quickly to the needs of a particular patient at a particular time. 

 

1.1.4. Deep brain stimulation  

 

Surgical treatment was described as early as 1940 and, until recently, had focused on 

ablative procedures of the thalamus and globus pallidus pars interna. They were rapidly 

replaced in the 
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late 1990s by chronic deep brain stimulation (DBS), mainly as a result of concerns for 

adverse effects resulting from bilateral lesions as well as the irreversible effects resulting 

from  poorly placed lesions. DBS has become a standard surgical treatment for 

medication-refractory movement disorders. In advanced stages of severe levodopa-

responsive forms of PD bilateral high-frequency stimulation of the STN can reduce motor 

disability and levodopa-related complication due to the levodopa dose reduction. 

DBS is based on the observation that high-frequency electrical stimulation of specific 

brain targets can mimic the effect of a lesion. For chronic stimulation a permanent lead is 

stereotactically implanted subcutaneously into the target area within the brain and 

connected to a fully implanted neurostimulation device. The stimulator settings can be 

adjusted telemetrically with respect to electrode configuration, current amplitude, pulse 

width and pulse frequency. DBS has replaced ablative stereotactic surgery in movement 

disorders due to several advantages: DBS does not require making a destructive lesion in 

the brain; it can be performed bilaterally with relative safety in contrast to most lesioning 

procedures, stimulation parameters can be adjusted postoperatively to improve efficacy, 

to reduce adverse effects and to adapt DBS to the course of disease; and DBS is in 

principle reversible and, finally, does not preclude the use of possible future therapies in 

Parkinson’s disease, which may require the integrity of the basal ganglia circuitry 

(Volkmann, 2007). 

The STN and the globus pallidus internus were identified to be effective targets, with 

STN being the most common site for DBS electrode placement. Since its approval by the 

Food and Drug Administration for PD in 2002, more than 70 000 patients have undergone 

DBS surgery, according to Medtronic Inc. (Bronstein et al., 2011). In Movement 

Disorders center of the Department of Neurology and Center of Clinical Neuroscience, 

Charles University in Prague  93 PD patients have undergone the DBS surgery for PD 

since 2001. 

 

1.1.4.1. Mechanism of deep brain stimulation 

 

Despite the remarkable therapeutic efficacy, the mechanisms of DBS effects are still not 

completely understood. Because DBS mimics the clinical effects of lesions it was thought 

it decreased the output from the stimulated structure and thus causing a physiologic 

ablation in the overactive structures, the STN and the globus pallidus internus, that have 
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become main targets for treatment of motor complications in advanced PD. (Benazzouz 

and Hallett, 2000, Dostrovsky et al., 2000). 

Recent studies have suggested that while somatic activity near the DBS electrode may 

exhibit substantial inhibition or complex modulation patterns, the output from the 

stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic 

activity is thus replaced by high frequency activity that is time-locked to the stimulus with 

more regular pattern. These changes in firing pattern are thought to prevent transmission 

of pathologic bursting and oscillatory activity resulting in the reduction of disease 

symptoms through compensatory processing of sensorimotor information. A further 

understanding these processes on a physiological level will be needed if we are to reach 

the full potential of this powerful tool. (Johnson et al., 2008)  

The effects of STN DBS can reach far beyond the motor system, as suggested our study 

on changes of the EEG spectral power and changes of visual evoked potentials (VEP) 

induced by STN DBS in PD patients. Changes of the EEG spectral power and VEP 

indicated STN DBS could influence the basic mechanisms of rhythmic cortical 

oscillations.(Jech et al., 2006) 

 

1.1.4.2. Non-motor complications of the STN DBS 

 

Beside the motor symptoms improvement, STN DBS treated patients can develop several 

neuropsychiatric side complications and also weight gain has been consistently reported. 

(Rieu et al., 2011, Voon et al., 2006, Witt et al., 2008) 

 

1.1.4.2.1. Cognitive complications 

 

In the assessment of cognitive functions in STN DBS treated PD patients the most 

consistent and  robust findings the decline in word fluency, although impairments in 

various other executive functions have been also reported.(Voon et al., 2006) 

 

1.1.4.2.2. Affective and behavioral complications in STN DBS 

 

The most common psychiatric symptoms following STN stimulation surgery are apathy, 

changes in emotional reactivity, depression, and hypomania. Individual episodes of 
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postoperative depression have been reported in up to 25% of patients; postoperative 

hypomania has been documented in 4% to 15% of patients, usually occurring within the 

first 3 postoperative months.(Voon et al., 2006) Changes in emotional reactivity, or 

excessive mood-congruent emotional responses to minor triggers, was identified in 75% 

of STN stimulation patients.(Houeto et al., 2002) Suicide attempts and/or suicides have 

been reported in uncontrolled series ranging from 0.5% to 2.9%.(Voon et al., 2006) 

Within the first 3 postoperative months, transient apathy occurs as part of the 

dopaminergic withdrawal syndrome. The incidence is not known, but according to a study 

on long-term outcome for apathy it increased from 8.7%  at baseline to 24.6 % at the third 

postoperative year.(Funkiewiez et al., 2004) 

In addition, despite motor improvement and improvements of activities of daily living 

and quality of life, the social adjustment does not improve affecting the patient`s relations 

with themselves and their social interactions. (Moro et al., 2010, Schupbach et al., 2006, 

Volkmann et al., 2009)  According to one study 25% of DBS STN treated patients had 

deterioration in marital relations following surgery.(Houeto et al., 2002)  

So far, little is known about the relationship between STN DBS and impulse control 

disorders and dopamine dysregulation syndrom. According to a review on the available 

studies, the STN DBS is associated with both favorable and negative outcome in terms of 

impulse control and related disorders. Preoperative disorders may resolve or improve 

after STN DBS (possibly due to reduction of the dopaminergic therapy), but these can 

also worsen or show no change at all. Moreover, STN DBS can also reveal or even induce 

new impulse control disorder.(Broen et al., 2011) 

 

1.1.4.2.3. Effects of STN DBS on emotional and motivational 

processing 

 

The effects of STN DBS on emotional processing have been studied mostly in terms of 

emotion recognition. There are several studies reporting that STN DBS induced impaired 

facial expression recognition selective for negative emotions (Biseul et al., 2005, Drapier 

et al., 2008, Dujardin et al., 2004, Schroeder et al., 2004) and reduced differentiation and 

self-reported intensity of negative feelings induced by film excerpts.(Vicente et al., 2009)  

With except of one study all these studies were based on preoperative versus 

postoperative performance comparison.(Schroeder et al., 2004) One study with on-off 
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study design using mood-induction procedure demonstrated that STN DBS may enhance 

emotional processing. (Schneider et al., 2003) Changes in brain activation during 

affective tasks have been also found in functional imaging studies.(Geday et al., 2006, Le 

Jeune et al., 2008) Changes in motivation of STN DBS treated PD patients however have 

been studied mainly with regard to apathy(Le Jeune et al., 2009, Thobois et al.) and 

motor learning(Sauleau et al., 2009) so far. 

 

1.1.4.2.4. Weight gain after STN DBS: epidemiology and 

mechanisms 

 

Weight gain has been also reported as common non-motor side effect of STN DBS. (Aziz 

et al., 2008, Barichella et al., 2003, Gironell et al., 2002, Macia et al., 2004, Montaurier 

et al., 2007, Moro et al., 1999, Novakova et al., 2007, Perlemoine et al., 2005, Tuite et 

al., 2005) The body weight gain has been observed in up to 30% of patients after DBS-

STN implantation, reaching close to 8% of pre-surgery body weight at 3 months post-

surgery. Certain patients have presented a weight gain of up to 20 kg within the first 12 

months post-surgery.(Montaurier et al., 2007) In our retrospective survey on weight 

changes in 23 PD patients treated with DBS STN there was a mean increase  9.4 kg (from 

1 to 25 kg) during 1 to 45 months after DBS, weight gain was found in all patients 

comparing to pre-DBS period. In the repeated survey one year later, in 12 of the patients 

body weight moderately decreased, 3 did not change, and 6 patients further increased 

their weight.(Novakova et al., 2007) Suggested explanations of body weight gain after 

DBS STN include a reduction of energy output related to elimination of dyskinesias, 

improved alimentation or direct influence on function of lateral hypothalamus by DBS 

STN.(Rieu et al., 2011) The decrease in daily energy expenditure(Barichella et al., 2003, 

Macia et al., 2004, Montaurier et al., 2007, Perlemoine et al., 2005, Tuite et al., 2005) 

and the reduction of motor complication such as motor fluctuations and levodopa –

induced dyskinesias (Gironell et al., 2002, Ondo et al., 2000) but correlation between the 

reduction of motor complications and the weight gain was not confirmed in other 

studies.(Barichella et al., 2003, Macia et al., 2004)  The daily energy intake was not 

altered after surgery in studies on weight gain after STN DBS mechanisms.(Barichella et 

al., 2003, Macia et al., 2004, Montaurier et al., 2007, Ondo et al., 2000, Perlemoine et al., 

2005, Tuite et al., 2005) However, inaccuracy inherent to self-reported food intake 
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measurement should prompt caution in the interpretation of the results.  There are no 

reports on changes in eating behavior except for the study by Volkmann et al., 2006. In 

this study on long-term effects of STN DBS on quality of life using the Sickness Impact 

Profile (SIP) questionnaire(Gilson et al., 1975) in PD a sustained improvement in the 

Eating category. However the items in this category were rather related to motor aspects 

of feeding.(Volkmann et al., 2009)   

The consequences of DBS therapy induced weight gain have not been assessed with 

accuracy, but there is clearly an increased incidence of metabolic and cardiovascular 

disorders. A recent study showed that DBS induced marked metabolic 

modifications.(Rieu et al., 2011) 

 

1.1.4.3. Possible mechanisms of non-motor complications of the STN 

DBS 

 

In general, the precise mechanisms of the non-motor complications still remain unclear. 

The STN DBS effects might not necessarily be direct effects on the associative and limbic 

circuits, as there are changes in medication after surgery.  Other factors that may play a 

role include preoperative vulnerability, surgical effects, underlying PD-related factors, 

and psychosocial effects. All these factors can possibly affect the results of studies based 

on pre versus postoperative comparisons. 

Moreover the precise mechanism of action of high frequency stimulation is not well 

defined. Another possible mechanisms involved could be changes in neural firing pattern, 

or the shift form a pulsatile to steady stimulation.(Voon et al., 2009)  

 

1.2. Emotion, motivation and action 

 

According to the theoretical model of emotion that is founded on basic experiments from 

both the animal and human research laboratories, emotions are products of Darwinian 

evolution. Expressed emotions developed from primitive actions that facilitated the 

survival of species and individuals. In man, the evolved emotions are best characterized 

as motivationally tuned states of readiness. They are constituted by a patterned collection 

of chemical and neural responses that the brain produces when it detects the presence of 

an emotionally competent stimulus (an object or a situation actually perceived or recalled 
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from memory). These responses alter the state of the internal milieu, the state of viscera 

and the musculoskeletal system and lead a body now prepared into carrying out varied 

actions or complex behaviors. The latter range from facial and postural expressions to the 

acts that define behaviors we associate with the notion of pleasure and reward to 

behaviors we associate with the notion of pain and punishment or aversion; from 

approach to withdrawal behaviors. The physiologic changes that occur during an emotion 

are mapped in the appropriate body-sensing regions of the brain. The mental events that 

are associated with this neural mapping of the body state are the essence of what we call 

feelings. Feelings are the mental representation of the physiologic changes that occur 

during an emotion. They also include the mapping of changes that occur in the cognitive 

processing style, as well as the evocation of the thoughts that are congruent with the 

feeling state.  They provide the organism with a mental alert for the significance of the 

stimulus that caused the emotion and for the thoughts consequent to responding 

emotionally. The adaptive value of feelings comes from amplifying the mental impact of 

a given situation and increasing the probabilities that comparable situation can be 

anticipated and planned for in the future so as to avert risk and take advantage of 

opportunities. The processing of the stimulus may be conscious or non-conscious, but in 

either case the responses are produced automatically(Damasio, 2004).  

Motivation for action is one of the key aspects of emotions. When motivation is aroused, 

action does or does not ensue, depending on emotion control or regulation, on the 

availability of resources and a meaningful action repertoire, on the acceptability of the 

available actions, and on the importance of the emotional event or its effects (the costs 

and benefits of action are considered).  Regulation is itself of an emotional nature, as it 

stems from the anticipated emotional consequences of actions for the individual`s many 

concerns. Those concerns include those about social censure, empathic distress, 

sympathy, interpersonal relationships, and social harmony. Emotions themselves consist 

of two separate processes: the changes in motivation and the appraisal processes that 

trigger them. The appraisal processes, pre-attentive (i.e. automatic, non-conscious) and 

cognitive (conscious), provide objects and events with emotional value or meaning. The 

processes causing motivational change are sensitive to the outcomes of the appraisal 

processes.(Fridja, 2004) 

A pleasant stimulus is often called a rewarding stimulus or reward. The actual reward, 

however, consists in active processes of the brain that reacts to a stimulus rather than the 
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stimulus itself.  Reward is a crucial component for driving incentive-based learning, 

appropriate responses to stimuli, and the development of goal directed behaviors. 

Adaptive behvior requires a combination of reward evaluation, associative learning, and 

the ability to develop appropriate action plans and inhibit inappropriate choices on the 

basis of earlier experience. Thus, integration of different aspects of reward processing and 

interaction of reward circuits and brain regions and interaction of reward circuits and 

brain regions involved in cognition and motor control are essential.(Haber and Knutson, 

2010) 

Beside the motivational aspects of emotions, emotions have also role in cognition 

(Zajonc, 1980), decision making (Damasio, 1994), perception (Anderson & Phelps, 2001) 

and even consciousness (Panskepp, 1998, Damasio, 1999).  

 

1.2.1. Patterns of emotional expression and emotion classification 

 

Patterns of emotional expression are highly varied and can be situated in a continuum of 

emotional response classification (Table 1.)  

Behavioral 

states 

Motivational 

states 

Basic 

emotions 

Moods, 

background 

emotions 

Social 

emotions 

Approach Reward Happiness Depression Pride 

Withdrawal Punishment Fear Anxiety Embarrassment 

  Anger Mania Guilt 

  Disgust Cheerfulness Shame 

  Sadness Contentment Maternal love 

  (Surprise) Worry Sexual love 

  (Contempt)  Infatuation 

    Admiration 

    Jealousy 

 

Table 1. Classification schemes for emotions 

 

The more primitive classes of emotions, (towards the left in the Table 1.), belong to 

emotional reactions, whereas the more complex classes, (towards the right in the Table 

1.), belong to social communication. Typically, researchers working on animals have 
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adopted a scheme relying on reward and punishment or appetitive and aversive 

motivational activation, whereas research in humans has often used so-called ‘basic’ 

emotions. Finally, psychiatric or social psychological studies have utilized even more 

complex constructs such as the ‘social’ emotions, whose neural underpinnings are at 

present very poorly understood.(Adolphs, 2002) 

Theories of how the functional neuroanatomy of emotion operates systematically range 

from single system models, in which the same neutral system underlies all emotions, to 

views that propose a combination of some common brain systems across all emotion, 

allied with separable regions that are dedicated more closely to the processing of certain 

individual emotions such as fear, anger or disgust (multiple-system models).(Dalgleish, 

2004)  

It has been also proposed, that the evolutionary foundation of emotion has a simpler, two-

factor motivational organization. That is, emotion is considered here to be fundamentally 

organized around two motivational systems, one appetitive and one defensive. The 

appetitive system is activated in contexts that promote survival, including sustenance, 

procreation, and nurturance, with a basic behavioral repertoire of ingestion, copulation, 

and caregiving.  Conversely, the defensive system is primarily activated in contexts 

involving threat, with a basic repertoire built on withdrawal, escape, and attack. These 

systems are implemented by neural circuits in the brain, presumably with common 

outputs to structures mediating the somatic and autonomic physiological systems 

involved in attention and action. (Bradley et al., 2001) This dual-system model of 

emotion has been proposed by many theorists using different terminology; for example, 

behavioral activation and behavioral inhibition systems(Cloninger, 1987), approach and 

withdrawal systems(Davidson et al., 1990). Emotions have been also conceptualized in 

terms of states elicited by positive (rewarding) and negative (punishing) instrumental 

reinforcers within a two-dimensional space(Rolls, 2004). This motivational view of 

human emotions has been supported by both psychophysiological and neuroscience 

research delineating the mediating neural structures and functional circuits and their 

autonomic and somatic output.(Lang and Bradley, 2010)  

Each of the two motivational systems can vary in terms of activation or arousal. That is, 

arousal is not viewed in this theory as having a separate substrate, but rather as 

representing intensity of activation (metabolic and neural) of either the appetitive or 

aversive system, or the coactivation of both systems. That is, the motivational system 
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determines the general behavioral strategy, defense or appetitive acquisition. The specific 

somatic and autonomic patterns of affective responding are tactical and adaptive, in that 

they are formed by the behavioral context. To give an example from the observation of 

animals, if a caged rat is subjected to electric shock on the foot pads, the defense system 

is engaged. It is then likely either to  flee if an exit is available (“fear”), or  attack a 

cagemate if one is present (“anger”). If shocks are repeated randomly and uncontrollably 

it will first cower helplessly and then become dull and unresponsive (“depression”). 

Emotions may come in many forms, shaped by genetics and learning to fit the demands of 

local context, however their fundamental organization is motivational. Thus, their 

primary description is in terms of affective valence (i.e. appetitive or aversive) and 

arousal (intensity of activation). Research on affective language and feeling is consistent 

with this view. The multivariate language studies demonstrated that the principal variance 

in emotional meaning is accounted for by two predominant factors, affective valence 

(ranging from attraction and pleasure to aversion and displeasure) and arousal (from calm 

to aroused). In the current view, these factors are seen as reflecting motivational 

activation.(Bradley et al., 2001)  

 

1.2.2. Neural substrates for emotion and motivation 

 

The neural systems involved in the production of emotion and motivation have been 

identified by functional neuroimaging and neurophysiologic studies and by studies in 

patients with focal brain lesions and pathology of the autonomic nervous system in 

humans. Furthermore research in experimental animals provided evidence for functional 

anatomic connectivity and neural circuits involved in emotions and motivation. Both the 

cortical and the subcortical regions participate in affective and motivational processes, but 

cortical and subcortical systems may play very different causal roles.  The cortex might 

mediate conscious experience of emotions and motivation and other psychological 

processes by hierarchically monitoring and re-representing lower core processes. Cortical 

causation might be restricted to cognitive aspects of emotion and motivation induction, 

cognitive decisions based on emotion and motivation, and to voluntary regulation of 

emotional state via modulation of lower brain structures that more directly cause affective 

reactions (Bechara et al., 2000, Damasio, 1999, Davidson et al., 2000, Rolls, 1999). By 

contrast to the damage in the cortical regions that typically does not abolished capacity 
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for an emotional reaction , the manipulations of subcortical brain structures are highly 

effective at causing basic affective reactions themselves. (Damasio, 1999, Davidson et al., 

2000, Rolls, 1999) (Berridge 1999, Damasio, 1999; LeDoux, 1996; Panskepp, 1998). A 

competent stimulus, actual or recalled, consciously or non-consciously appraised, is 

processed in sensory regions and results in the availability of neural signals from which 

emotions can be triggered. There is a large overlap between both the cortical and the 

subcortical regions forming a complex network that mediates different aspects of 

emotional and motivational or reward processes. However, the amygdala has been 

implicated primarily in emotional processing and the ventral striatum and the ventral 

tegmental area are the key structure of the reward circuit, which seems to be embedded 

within the cortico- ventral basal ganglia network (see Figure 1.).(Dalgleish, 2004, Haber 

and Knutson, 2010, Tamietto and de Gelder, 2010) Moreover, reward does not work in 

isolation, but its pathways interface with circuits that mediate cognitive function to affect 

motor planning.  

 

1.2.2.1. Cortical regions involved in the emotional and motivational 

processing 

 

1.2.2.1.1. The prefrontal cortex 

 

The prefrontal cortex has been implicated in emotion in many ways, but there is no 

consensus as to its exact functions.  It has been proposed that prefrontal cortex (the 

orbitofrontal region) is involved in learning the emotional and motivational value of 

stimuli and that prefrontal cortex regions work together with the amygdala to learn and 

represent relationships between new stimuli (secondary reinforcers) and primary 

reinforcers such as food, drink and sex. Neurons in the prefrontal cortex can also control 

and correct reward related and punishment related behavior(Rolls, 2004).  According to 

the somatic marker hypothesis, the prefrontal cortex (especially the ventromedial 

prefrontal cortex ) has been also implicated in processes of human reasoning and 

decision making based on physiological reactions, such as shifts in autonomic nervous 

system activity, that do not arise in the body proper but rather in the brain's 

representation of the body. These reactions provide a signal delineating those current 

events that have had emotion-related consequences in the past. They influence the 
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processes of response to stimuli, at multiple levels of operation, some of which occur 

consciously  and some of which occur non-consciously. Examples of the non-conscious 

action are the undeliberated inhibition of a response learned previously; the introduction 

of a bias in the selection of an aversive or appetitive mode of behavior, or in the 

otherwise deliberate evaluation of varied option-outcome scenarios. Examples of the 

conscious action include the conscious 'qualifying' of certain option-outcome scenarios 

as dangerous or advantageous.(Damasio, 1996) Patients with lesions of the ventromedial 

prefrontal cortex have difficulties with situations of uncertainty where the subtle 

emotional values of multiple stimuli need to be processed (e.g. social situations) 

(Bechara et al., 1994, Bechara et al., 2000). 

Finally, the prefrontal cortex along with the anterior cingulate cortex has been proposed 

a role in the top-down regulation i.e. that these regions send „bias signals“ to other parts 

of the brain to guide behavior towards the most adaptive current goals. Often behavioral 

choices are in danger of being heavily influenced by the immediate affective 

consequences of a situation (e.g. immediate reward), even though the most adaptive 

response might be, for example, to delay gratification. It has been suggested that the 

prefrontal cortex promotes adaptive goals in face of strong competition from behavioral 

alternatives that are linked to immediate emotional consequences.(Haber and Knutson, 

2010)  

 

1.2.2.1.2. Anterior cingulate cortex 

 

The anterior cingulate cortex is considered a key structure of integration of visceral, 

attentional and emotional information that is crucially involved in the regulation of affect 

and other forms of top-down control. It has been also suggested that the anterior cingulate 

cortex is an important neural substrate of conscious emotion experience and of the central 

representation of autonomic arousal.(Lane et al., 1998) The anterior cingulate cortex has 

generally been conceptualized in terms of a dorsal “cognitive” subdivision and a more 

rostral, ventral “affective” subdivision. The affective subdivision of the anterior cingulate 

cortex is routinely activated in functional imaging studies involving all types of emotional 

stimuli.(Murphy et al., 2003, Phan et al., 2002) It has been proposed role for monitoring 

conflicts between the functional state of the organism and any new information that has 

potential affective or motivation consequences. When such conflicts are detected, the 
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anterior cingulate cortex projects information about the conflict to areas of the prefrontal 

cortex where adjudications among response options can occur.(Bush et al., 2000) 

 

1.2.2.2. Subcortical areas involved in the emotional and motivational 

processing 

 

1.2.2.2.1. The ventral basal ganglia  

 

While the dorsal domain of the basal ganglia is involved in motoric control, the ventral 

domain appears to be a constellation of multiple functional systems critical for learning 

and selection of flexible behaviors and of behavioral strategies; for exploration and 

foraging; for stimulus evaluation; spatial navigation, planning and contingency and 

reward processing (Humphries and Prescott, 2010). The central concept governing the 

organization of both the ventral and the dorsal basal ganglia connectivity is the existence 

of parallel anatomical cortico-basal ganglia-thalamo-cortical loops. (Alexander et al., 

1986).   These loops –are closed, running in parallel, each originating from a different 

cortical area, passing through the basal ganglia, and returning to the originating cortical 

area via thalamus. These loops, however, are also open in the sense that projections from 

different, but related, cortical areas converge on the same locations in striatum (Alexander 

et al., 1986, Romanelli et al., 2005).  Microscopic channels are discrete parallel loops 

running within a macroscopic loop. Existing computational models, primarily concerned 

with dorsal striatum and its associated circuits, use such microscopic channels, each 

channel representing a different putative action or behavior(Humphries and Prescott, 

2010). Anatomically, the channels in striatum and STN are defined by the converging 

input from topographically related representations in cortex, and the channels in globus 

pallidus and the output nuclei by their corresponding striatal afferents. There is 

considerable evidence for extending the concept of these channels to the ventral striatum 

and its associated circuits.(Humphries and Prescott, 2010)  

In addition to the cortico-basal ganglia system, other structures including the amygdala, 

hippocampus, lateral habenular nucleus, a specific brainstem structures, such as the 

pedunculopontine nucleus and the raphe nuclei, are key components that regulate the 

reward circuit (Figure 1.).(Haber and Knutson, 2010, Humphries and Prescott, 2010)  
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Figure 1.  The functional connectivity of the key structures of the reward circuit. 

Three networks of integration through cortico-basal ganglia pathways: 

1.  Fibers from different prefrontal areas converge within subregions of the striatum. 

 2.  Through the organization of striato-nigrostriatal (SNS) projections, the VS can influence the 

dorsal striatum: Projections from the VTA to the nucleus accumbens shell form a closed 

reciprocal loop, but also project more laterally to impact on dopamine cells that project to the 

rest of the ventral striatum, forming the first part of a feed forward loop or spiral. The spiral 

continues through the striato-nigro-striatal projections through which the ventral striatum 

impacts cognitive and motor striatal areas through the midbrain dopamine cells. 

3.  The nonreciprocal cortico-thalamic projection carries information from reward- related 

regions, through cognitive and motor controls.  

Amy=amygdala; dACC=dorsal anterior cingulate cortex; dPFC=dorsal prefrontal cortex; 

Hipp=hippocampus; hypoth.=hypothalamus; LHb=lateral habenula; MD = medial dorsal 

nucleus thalami; OFC=orbital frontal cortex; PAG = periaqueductal grey, 

PPT=pedunculopontine nucleus; SNc=substantia nigra, pars compacta; STN=subthalamic 

nucleus.; vmPFC=ventral medial prefrontal cortex; VA = ventral anterior nucleus thalami; 

VP=ventral pallidum; VTA=ventral tegmental area;  Red=vmPFC pathways; dark orange=OFC 

pathways; light orange= dACC pathways; yellow=dPFC pathways; green=output to motor 

control areas. Adapted after Haber and Knutson, 2010 and Parent and Hazrati, 1995 
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1.2.2.2.1.1. The ventral striatum 

 

The ventral striatum has been implicated in reward processing and it is activated even by 

non-consciously perceived omission of expected rewards (Berns et al., 1997). While both 

the dorsal and ventral striatum receive input from the cortex, thalamus, and brainstem, the 

ventral striatum alone receives also a dense projection from the amygdala and the 

hippocampus. The afferent projections from cortical areas mediate different aspects of 

reward and emotional processing.  Around 40 neuron groups can be defined by unique 

sets of convergent inputs from hippocampal formation, amygdala and prefrontal region. 

Additionally, the limbic-related thalamic nuclei and the specific thalamic –basal ganglia 

relay nuclei also project to the ventral striatum. The ventral striatum is placed as a key 

entry port for processing emotional and motivational information that, in turn, drives 

basal ganglia action output.(Sesack and Grace, 2010) Although the topographic 

organization of cortico-striatal projections is well documented, there is also evidence for 

overlap of these inputs at the single neuron level suggesting functional integration. The 

striatal neurons form the efferent projections primarily to the ventral pallidum and 

midbrain (the ventral tegmental area and the substantia nigra).(Parent et al., 1997) In 

addition, the ventral striatum projects to the pedunculopontine nucleus.(Haber and 

Knutson, 2010) The nucleus accumbens, predominant part of the ventral striatum, has two 

major divisions into core and shell regions. The shell has a particularly important function 

in the circuitry underlying goal-directed behaviors, behavioral sensitization, and changes 

in affective states.  The core- and the shell- based basal ganglia circuits form separate 

cortico-basal ganglia-thalamo-cortical loops. The shell-based circuits are different from 

the striato-pallidal pathways in the rest of the basal ganglia. Their target regions of ventral 

pallidum in turn project widely outside the basal ganglia, to lateral hypothalamus, 

pedunculopontine nucleus, mediodorsal thalamus and also reciprocate the projection from 

the shell in a topographic fashion. Furthermore, the shell has direct outputs to structures 

outside the basal ganglia: to the lateral hypothalamus, to the periacqueductal gray and 

finally, to the cholinergic nucleus basalis.  Through this projection, the reward circuit may 

have access to a wider region of frontal cortex, than via more confined ventral cortico-

basal ganglia circuit.(Haber and Knutson, 2010, Humphries and Prescott, 2010) The 

activity within the ventral basal ganglia loops is modulated by brainstem dopamine. The 

striatum has the highest density of dopamine receptors of any  
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structures in the vertebrate brain and is the main target of the dopaminergic neurons in the 

ventral tegmental area and substantia nigra pars compacta (Richfield et al., 1989, 

Richtand et al., 1995).    

In humans, the functional imaging studies have shown recruitment of striatal regions 

during exposures to both primary (i.e., pleasant tastes and sounds) and secondary rewards 

(i.e., monetary gambles). The event-related fMRI studies demonstrated that different 

regions of the ventral striatum are recruited during different phases of reward processing. 

While the nucleus accumbens and medial caudate may respond more robustly during 

reward anticipation, but the rostroventral putamen in response to reward outcomes.(Haber 

and Knutson, 2010) 

 

1.2.2.2.1.2. Ventral pallidum 

 

The ventral pallidum is an important component of the reward circuit, its neurons respond 

specifically during the learning and performance of reward-incentive behaviors. The 

ventral pallidum receives primarily input from the ventral striatum.(Humphries and 

Prescott, 2010) In addition, the ventral pallidum also receives a glutamatergic input from 

the STN and a dopaminergic input from the midbrain. The ventral pallidum projects 

topographically to the STN, the hypothalamus and to the dopaminergic neurons in the 

midbrain. Moreover, the ventral pallidum also innervates the pedunculopontine nucleus, 

the MD thalamic nucleus and both the internal and external segments of the dorsal 

pallidum and the lateral habenular nucleus. Finally, part of the ventral pallidum projects 

back to the striatum.(Haber and Knutson, 2010)  

 

1.2.2.2.1.3. Midbrain dopamine neurons 

 

The dopamine neurons have a central function in the reward circuit.(Schultz, 2002) The 

midbrain dopamine neurons are classically divided into the substantia nigra pars 

compacta, the ventral tegmental area, and the retrorubral cell groups. The afferent 

projections involve the striatum, the ventral pallidum, the brainstem (the 

pedunculopontine nucleus) and the bed nucleus of the stria terminalis, the extended 

amygdala, the dorsal raphe nucleus. The projections from the colliculus superior suggest 

the dopamine cells receive a direct sensory projection. The dopamine cells project 
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massively to the striatum. Midbrain projections from the shell target both the ventral 

tegmental area and the ventromedial substantia nigra. Projections form the ventral 

tegmental area to the shell form a ‘closed’, reciprocal loop, but also project more laterally 

to impact on dopamine cells that project to the rest of the ventral striatum, forming the 

first part of a feed forward loop or spiral. The spiral continues through the striato-nigro-

striatal projections through which the ventral striatum impacts cognitive and motor 

striatal areas through the midbrain dopamine cells.(Haber and Knutson, 2010)  

The dopamine is released from the neurons in substantia nigra pars compacta and from 

the ventral tegmental area in tonic or phasic fashion. The functional correlates of 

dopamine are often considered separately for the phasic and the tonic components of 

dopaminergic neuron firing and corresponding changes in dopamine concentration. The 

phasic component`s effects are normally interpreted within the framework of dopamine`s 

role in modulating synaptic plasticity of the cortico-striatal synapses. There are three 

main hypotheses for the functional correlates of phasic bursts firing.(Humphries and 

Prescott, 2010) One is the reinforcement learning hypothesis with phasic dopamine 

signaling reward prediction.(Schultz, 2007) The second is the incentive salience theory 

(see chapter 1.3.), with phasic dopamine as an ‘incentive salience signal’ - the signal to 

keep maintaining or repeating the current action, as long as it is worthwhile the signal for 

‘wanting’.(Berridge, 2007)  The third theory proposed that the phasic dopamine signal 

acts as a time stamp for the occurrence of any salient stimulus, rewarding or otherwise, so 

that the conflux of motor commands from cortex and dopamine in the striatum will allow 

the association between that action and the outcome. The tonic component within the 

framework of dopamine`s role in modulating short-term excitability of the striatal 

neurons.(Redgrave and Gurney, 2006)  According to general proposals, the tonic 

dopamine is a controller for the frequency and ease of switching behaviors (Redgrave et 

al., 1999) or switching actions with regard to average reward rate. (Niv et al., 2007) 

In addition to striatal input, the dopamine cells also project widely throughout the cortex. 

Additionally, there are efferent projections to the hypothalamus, periaqueductal grey, the 

amygdala and the hippocampus, the STN, the ventral pallidum, the globus pallidus, and 

the substantia nigra pars reticularis and dopaminergic receptors receptors are found in all 

of them, including autoreceptors on dopaminergic cells in substantia nigra pars compacta 

and ventral tegmental area (Smith and Kieval, 2000).  
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The complexity of dopamine`s actions and receptor distribution in the striatum clearly 

point to multiple computational roles beyond the foregoing current ideas. Elucidating 

these roles is a prime area for computational modeling.(Humphries and Prescott, 2010)  

  

 

1.2.2.2.2. The subthalamic nucleus 

 

The STN forms beside the striatum other input structure of the basal ganglia, receiving 

input from cortical and thalamic sources. STN has been long considered to be a relay in 

the motor-related information processing and because of its dysregulation in PD, it has 

become a target for the surgical treatment of the disease in the 90s, the subthalamotomy 

and deep brain stimulation (DBS). The scrutiny of its anatomic connectivity later revealed 

an interesting position at the nexus of motor, associative, and limbic pathways and 

potentially integrative function of this nucleus is to be considered now. 

Evidence on processing of non-motor information within STN has been brought from 

studies on effects of STN lesions and high frequency DBS  in research animals and STN 

DBS treated  PD patients. STN appears to be involved  in attentional processes(Baunez 

and Robbins, 1997, Baunez and Robbins, 1999), an in the inhibitory control and 

compulsivity(Ballanger et al., 2009, Baunez et al., 1995), possibly via the hyperdirect 

pathway, which includes cortico-subthalamic connection.(Nambu et al., 2002) Working 

memory was also found to be impaired in rats after STN lesions and under STN high 

frequency in PD patients. (Baunez et al., 2001, Hershey et al., 2004)  

The STN receives massive afferents from the cortex, the external segment of the globus 

pallidus, the thalamus, the pedunculopontine nucleus and nucleus dorsalis raphe. The 

STN efferents project to the pallidal complex, the substantia nigra pars reticularis and to 

the striatum (the caudate nucleus and the putamen)(see Figure 1.). Anatomical data 

confirming that STN is part of the limbic loop involving the prefrontal cortex, the nucleus 

accumbens, and the ventral pallidum suggest that STN should be involved in the 

processing of motivational information.  The STN is reciprocally interconnected with the 

ventral pallidum and neurons in the medial tip of the subthalamic nucleus project to the 

limbic-related ventral tegmental area and adjacent portions of the substantia nigra pars 

compacta. Through their projection to the dopaminergic cells in the ventral tegmental 

area, neurons in the medial tip of the subthalamic nucleus could influence the ascending 
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mesolimbic dopaminergic pathway directed to the ventral striatum.(Parent and Hazrati, 

1995) In monkeys, the role of STN in motivational processing was demonstrated in 

neurophysiological studies.(Darbaky et al., 2005, Matsumura et al., 1992)  The 

motivation for food also seems to be modulated by the control of the STN, as both the 

subthalamotomy and the STN DBS increased motivation for food in experimental 

animals. (Baunez et al., 2002, Baunez et al., 2005, Baunez et al., 2007, Lardeux et al., 

2009, Rouaud et al., Uslaner et al., 2008)  

Although some emotional aspects are difficult to record in animals, several measurements 

of the emotional responses can be used  in animal experiments  such as skin conductance, 

cardiac frequency, anxiety, stress and fear conditioning , none of these have been  

reported after STN lesions or high frequency DBS so far.  

Observations from STN DBS treated PD patients suggest that STN is involved in 

emotional processing (see chapters 1.1.4.2.2. and 1.1.4.2.3.). Neurophysiological studies 

already gathered some evidence of human STN involvement in emotional processing. 

Local field potentials were recorded using macroelectrodes from the subthalamic region 

in patients with PD undergoing bilateral implantation of the STN for DBS while patients 

viewed pleasant and unpleasant emotionally arousing and neutral pictures. The event-

related desynchronization in the local alpha power (8 to 12 Hz) was found for all stimulus 

categories starting at about 0.5 s after stimulus presentation. A delayed modulation of 

alpha activity (1 to 2 seconds poststimulus) with larger event-related desynchronization in 

trials of pleasant and unpleasant stimuli compared with neutral stimuli was found, 

possibly reflecting the processing or transmission of information related to emotional 

stimuli.(Kuhn et al., 2005) A significant event-related desynchronization of STN alpha 

activity with pleasant stimuli that correlated with the individual valence rating of 

emotionally charged pictures suggested involvement of the human STN in valence-related 

emotional information processing.(Brucke et al., 2007) The alpha event-related 

desynchronization to unpleasant pictures correlated significantly with the Beck 

depression inventory score at 3 months after chronic DBS suggesting a mood –congruent 

(state-dependent) stimulus processing in the STN of PD patients.(Huebl et al., 2011)  

 

1.2.2.2.3. The brainstem 
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Several brainstem structures are involved in emotional and motivational 

processing.(Tamietto and de Gelder, 2010)  

Superior colliculus is the earliest post-retinal subcortical structure that responds to coarse 

emotional stimuli.   

The periaqueductal grey and locus coeruleus are implicated in relatively automatic and 

reflex-like defensive responses (Mobbs et al., 2007). The periaqueductal grey receives 

visual information from visual colliculus. The locus coeruleus regulates the activity in the 

anterior cingulate and ventral prefrontal regions by its noradrenergic projections, as well 

as the activity in the subcortical structures, such as the amygdala, pulvinar and superior 

colliculus, in response to non-consciously perceived stimuli(Liddell et al., 2005). 

 

1.2.2.2.4. Thalamus 

The thalamus has complex connectivity with multiple brain regions. The medial dorsal 

nucleus projects to the frontal cortex, and is the final link in the reward circuit. These 

connections are bidirectional, with cortical projections to these thalamic nuclei more 

extensive than their projections back to the cortex.  In addition, there is a nonreciprocal 

cortical input to the  nucleus that is derived from functionally distinct frontal cortical 

areas. The thalamic relay nuclei seem to integrate information flow from reward and 

higher cortical ‘association’ areas of the prefrontal cortex. Both the primary and 

secondary rewarding and non-rewarding stimuli increase thalamic activation, suggesting 

that dorsomedial thalamic activation reflects general arousal to a greater extent than 

value. (Haber and Knutson, 2010).  The pulvinar receives direct projections from retina 

and from the superior colliculus and it is monosynaptically connected to the amygdala. 

The pulvinar is involved in attentional mechanisms and in responses to salient visual 

targets and is active during non-conscious perception of emotional stimuli(Tamietto and 

de Gelder, 2010).  

 

1.2.2.2.5. The amygdala 

 

The amygdala is one of the most important brain regions for emotion, with a key role in 

processing of faces and other social signals of emotion (particularly involving fear), in 

emotional conditioning (both the appetitive and the fear conditioning, in which 

meaningless stimuli come to acquire emotion-inducing properties when they occur in 
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conjunction with a naturally appetitive or threatening event) and in the consolidation of 

long-term emotional memories(Dalgleish, 2004). Amygdala has been also associated 

with the modulation of other cognitive processes, such as visual perception. 

The amygdala is involved in both conscious and nonconscious  perception of emotional 

stimuli (unlike the superior colliculus and pulvinar)(Sergerie et al., 2008). This dual role 

is probably related to the fact that the amygdala is a complex system (it includes up to 

12 subnuclei) and receives visual information from different pathways — one 

originating in the sensory cortex and one originating in subcortical areas(Phelps and 

LeDoux, 2005). Evidence from functional imaging and behavioral studies demonstrated 

that the amygdala links the pre-perceptual or pre-attentive sensory processing with 

emotion (Breiter et al., 1996, Morris et al., 1996). Moreover, there is considerable 

evidence that the amygdala might be also involved in the process of highlighting of 

perceptual processing in relation to emotionally salient stimuli and has an important role 

in reward processing, in part though the interaction between it and ventral striatum form 

stimulus-reward associations.(Ramirez and Savage, 2007) Amygdalar activation has 

been observed in contexts involving potential rewards and punishment (Zald, 2003) and 

decreases with reward devaluation (Gottfried et al., 2003) 

 

1.2.2.2.6. The substantia innominata 

 

The substantia innominata is a sublenticular portion of the basal forebrain and comprises 

several intermingled neuronal groups that represent an extension of the dorsal amygdala 

and is activated in response to the arousal of consciously perceived emotional 

stimuli(Whalen et al., 1994, Whalen et al., 2001). 

 

1.2.2.2.7. The hippocampus 

 

The hippocampus is involved in the contextual evaluation of emotional stimuli and works 

together with the amygdala in mediating implicit learning and memory consolidation for 

consciously and non-consciously perceived stimuli (Morris et al., 1998). 
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1.2.2.2.8. Hypothalamic autonomic centers 

 

The hypothalamus has been implicated in consumptive behaviors and homeostasis 

(Nakamura and Ono, 1986). Numerous electrical stimulation studies in animals 

identified hypothalamus as a part of an extensive reward network in the brain, also 

involving prefrontal cortex, amygdala and ventral striatum (Dalgleish, 2004).  

 

1.3.  Reward processing and the incentive motivation concept 

 

K. Berridge and T.E. Robinson postulated an influential theory of drug addiction called 

incentive sensitization theory (Robinson and Berridge, 1993) According to this theory 

reward process contains three major psychological components that are mediated by 

partly dissociable brain neuroanatomical and neurochemical substrates.(Berridge and 

Kringelbach, 2008)  

These components are: 

1. Liking: the hedonic impact of a reward or sensory pleasure, it comprises the 

pleasure elicited reactions that are not necessarily conscious such as facial 

affective expressions and the conscious experience of pleasure or subjective 

feeling of niceness. 

2. Wanting: motivation for reward, which also includes both the nonconscious 

incentive salience wanting processes and conscious desires for incentives or 

cognitive goals. 

3. Learning: associations, representations, and predictions about future rewards, 

which is based on past experiences. Again it includes implicit knowledge as well 

as associative conditioning and explicit and cognitive predictions.  

Berridge and Robinson introduced the apostrophic terms “liking” and “wanting” to refer 

to non-conscious core processes of affect and motivation (=valenced good/bad reactions) 

generated by the brain, which influence behavior towards incentives – without necessarily 

being felt (Robinson and Berridge, 1993; Berridge, 1999). “Liking” and “wanting” are 

two distinguishable aspects of reward and both together are necessary for full reward and 

they usually happen together in human life, i.e. the normal reward is both “liked” and 

“wanted”. When incentive salience is attributed to a reward stimulus representation, it 

makes that stimulus attractive, attention grabbing, and that stimulus and its associated 
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reward suddenly become enhanced motivational targets, which are „wanted“ . Hedonic 

„liking“ by itself is simply a triggered affective state, there need be no object of desire or 

incentive target, and no motivation for further reward. It is the process of incentive 

salience attribution that makes a specific associated stimulus or action the object of desire 

that tags a specific behavior as the rewarded response, and that allows normal pleasure to 

spur desire for more.(Berridge, 2009) 

The mesolimbic dopamine system and its projections to ncl. accumbens and ventral 

pallidum have been demonstrated to mediate the core of the „wanting“ i.e. incentive 

salience attribution or attribution of emotional relevance to emotional stimulus such as 

rewards and their predictive cues but also to aversive stimuli. (Berridge, 2007, Faure et 

al., 2008, Horvitz, 2000)(Robinson and Berridge, 1998).  

The sensory pleasure “liking” seems to depend also especially on the ncl. accumbens and 

ventral pallidum, however using opioid and endocanabinoid neurotransmission.(Table 2.) 

The taste and smell of food and sex are among the most fundamental pleasures and there 

is evidence for overlap with higher order pleasures (e.g. monetary, artistic, musical, 

altruistic and transcendent pleasures). All pleasures seem to involve the same hedonic 

brain systems, even when linked to anticipation and memory.(Kringelbach and Berridge, 

2009)  The rewarding properties for all pleasures are generated by brain circuits that are 

distinct from the mediation of other features of the same events (e.g. sensory, cognitive).   

There is ample evidence showing the close relationship between the activation of the 

mesolimbic dopaminergic neurotransmission, motivational "wanting" for food rewards, 

increase in food intake, and obesity.(Beaver et al., 2006, Berridge, 2009, Davis et al., 

2007)  This dopamine mediated behavior seems to be also modulated by the control of the 

STN, as both the subthalamotomy and the STN DBS increased motivation for food in 

experimental animals.(Baunez et al., 2002, Rouaud et al., Uslaner et al., 2008) However, 

in STN DBS treated  PD patients this aspect of food intake control and weight gain has 

not been studied so far. 
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Major 

categories 

 Psychological 

components 

Examples of brain circuity 

Motivation Explicit Wanting 

Cognitive incentives 

OFC, ACC, insular 

Dopamine 

Implicit “Wanting” 

Incentive salience 

nAcc, VTA, hypothalamus 

Dopamine 

Pleasure Explicit Liking 

Conscious pleasure 

OFC, ACC, insular 

Opioids, cannabinoids 

Implicit “Liking”  

Hedonic impact 

Acc shell, VP, PAG, amygd. 

Opioids, cannabinoids 

Learning Explicit Learning 

Cognitive processing 

OFC, ACC, vmPFC, insular 

Ach, dopamine, serotonin 

Implicit Learning 

Associative learning 

Amygd., hippocampus 

Ach, dopamine 

 

 

Table 2. Reward is a complex psychological concept with at least three major 

subcomponents of motivation or wanting, pleasure liking or affect, and learning. Each of 

these contains explicit and implicit psychological components that constantly interact and 

require careful scientific experimentation to tease apart. Explicit processes are 

consciously experienced (e.g., explicit pleasure or desire), whereas implicit psychological 

processes are potentially unconscious in the sense that they can operate at a level not 

always directly accessible to conscious experience (implicit incentive salience, habits, 

and ‘liking’ reactions), and must be further translated by other mechanisms into 

subjective feelings.  

ACC = anterior cingulate cortex, amygd. = amygdala., nAcc= nucleus Accumbens, vm 

PFC = medial prefrontal cortex, OFC = orbitofrontal cortex,  PAG= periaqueductal 

grey,  VP = ventral pallidum.  

Adapted afterKringelbach and Berridge, 2009. 
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1.4. Emotion elicitation and assessment 

 

In the laboratory emotional functioning can be assessed by presenting the individual with 

a standardized or personally tailored emotion-eliciting stimulus and assessing the 

processes that are included in the emotional processing.  

 

1.4.1. Emotion elicitation 

 

Visually presented emotional material such emotionally evocative pictures have been 

perhaps most frequently used for emotion elicitation. The International Affective Picture 

System (IAPS) is a large set of standardized emotionally evocative color photographs, 

which has been proven to activate either appetitive or aversive motivational functions. It 

includes currently more than 1,000 exemplars of pictures (depicting joyful, sad, fearful, 

angry, threatening, attractive, dressed and undressed people; houses; objects, landscapes; 

sports events; photojournalism from wars and disasters; sick patients; mutilated bodies; 

animals etc.) along with the normative ratings of the pleasure and arousal associated with 

each picture, obtained from groups of naive subjects. Using these ratings, scientists can 

select and/or match pictures on the basis of the average reported emotional impact of that 

picture. Moreover, this collection facilitates the comparison of results across different 

studies conducted in the same or different laboratory. (Lang and Bradley, 2008) Other 

types of visually presented emotional stimuli involve standardized emotional film clips 

and emotional faces.(Ekman, 1976) However, there are other methodologies too. The use 

of behavioral manipulations of facial expressions and postures, gazing, speech and tone of 

voice is based on the idea that such voluntary actions can generate other emotional 

responses such as changes in autonomic nervous system, that are emotion specific or 

emotional behavior and can be measured. The elicitation of intense or “authentic” 

emotional responses by these methods in the laboratory is, in general, challenging, 

however, there are several other strategies that can be used. The dyadic interaction task 

offers the possibility of studying emotional processes in social contexts.  Use of primary 

reinforcers in the elicitation of emotion and motivational processes can be used to identify 

brain reward and punishment systems. 
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1.4.2. Emotion assessment 

 

There are three processes of emotion that can be assessed by different approaches:  1. 

emotional reactivity and 2. regulation, and 3. emotional understanding.  

 

1.4.2.1. Emotional reactivity  and regulation assessment 

 

Emotional reactivity refers to the type magnitude and duration of responses to changes in 

the internal and external environment that have significance for our goals and wellbeing. 

Emotional regulation refers to the adjustments in type magnitude, and duration of 

emotional responses that are made to meet personal, situational, and interpersonal 

demands. Emotion regulatory processes may be automatic or controlled, conscious or 

unconscious, and may have effects on the emotion generative process. The emotional 

reactivity and emotional regulation can be difficult to separate. For example, very small 

facial expressive and autonomic responses to a highly emotional stimulus in a patient 

could be caused either by a low level of emotional reactivity or a high level of emotional 

down-regulation.(Levenson, 2007)  

Emotional response can be quantified in terms of changes in emotional expressive 

behavior and peripheral physiology. There is number of indicators for different emotions 

that can be analyzed from emotional expressive behavior such as emotion specific facial 

expression, tone of voice and content of speech.  Peripheral physiology involves changes 

in cardiovascular, electrodermal, respiratory, and somatic systems that can be measures 

using several laboratory tests (Sequeira et al., 2009).  Changes in activation of these 

systems covary significantly with emotional valence (pleasure ratings) and arousal, as 

defined by subjective evaluations of the presented stimuli (i.e. pictures with emotional 

content). Facial muscle activity of the corrugator (“frown”) increases linearly with 

unpleasantness while activity of the zygomatic (“smile”) muscle increases linearly with 

pleasantness of the stimulus. Heart rate is also responsive to differences in affective 

valence with promt deceleration by unpleasant and acceleration by pleasant stimuli. Other 

evoked response vary with changes in rated arousal regardless of stimulus valence, such 

as skin conductance activity(Lang et al., 1998). 

The startle reflex is a defensive reflex that is elicited in mammals by an abrupt sensory 

event. It consists in a chained series of rapid flexor movements that cascade throughout 
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the body. The startle reflex has been used to indicate which of the separable motivational 

systems, the appetitive or the defensive, is engaged (Bradley et al., 2001, Lang et al., 

1990). When startle probes are administered in the context of picture perception, blink 

responses are reliably potentiated when viewing unpleasant pictures, and inhibited when 

viewing pleasant pictures, compared to neutral picture processing(Vrana et al., 1988). 

The startle modulation by food cues can be used to examine reactivity to food 

cues(Drobes et al., 2001) and food craving(Hawk et al., 2004), which is known to be 

relevant risk factor for weight gain.(Davis et al., 2007) 

 

1.4.2.2. Assessment of feelings and emotional understanding  

 

Emotional understanding refers to the recognition of emotions in oneself and others and 

the knowledge of the reasons they have occurred and their consequences. It takes a 

number of forms, ranging from the relatively simple (e.g. knowledge about whether or not 

we or others are experiencing emotion) to more differentiated (e.g., knowledge about the 

particular emotion or emotions being experienced) to highly complex (e.g., knowledge of 

cultural norms that apply to emotional expression in the current situation).(Levenson, 

2007) 

The self-reported emotional experience (feelings) can be measured in several ways.  The 

individuals can describe their emotional responses to the stimulus or rate their emotions. 

Using the IAPS stimuli, the relationship between evaluative judgments and specific 

physiological responses has been consistently demonstrated.  According to the two 

dimensional model of emotion, the appetitive and aversive (defensive) systems, that are 

implemented by neural circuits in the brain, presumably with common outputs to 

structures that mediate the somatic and autonomic physiological system, account for the  

hedonic valence. Judgments of hedonic valence indicate which motivational system is 

engaged. Motivational activation is associated with widespread brain cortical, autonomic, 

and behavioral activity that varies in its intensity. Judgments of arousal index the intensity 

of the emotional activation. (Lang and Bradley, 2008, Levenson, 2007)   

Changes in activation of the aversive or appetitive motivational system elicited by 

emotionally charged IAPS pictures and the incentive salience attribution to these stimuli 

can be expressed in subjective ratings.(Bradley et al., 2001, Phan et al., 2004)    
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A rating instrument called the self-assessment manikin has been developed for emotion 

quantification along the dimension of emotional valence (qualitative measure of emotion 

from pleasant to unpleasant, with neutral stimuli in the middle) and emotional arousal or 

intensity (quantitative measure of emotional intensity from calm to excited).  Each 

dimension is represented by five graphic figures, and participants select any of the figures 

or between any of the figures making a 9-point scale.(Lang and Bradley, 2008)  

 

 

 

II. HYPOTHESIS 
 

1. We hypothesized that STN DBS might alter the emotional and motivational 

processing of primary rewards and aversive stimuli in PD patients and that some of 

the non-motor side-effect known to occur in STN DBS treated PD patients such as 

emotional and behavioral disturbances and/or weight gain known to occur may be 

related to these motivational changes.  

 

2. We hypothesized that the human STN is involved in motivational processing of 

primary rewards and aversive stimuli. 
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III. AIMS OF THE STUDY 
 

In order to examine changes in activation of the appetitive motivational system we 

focused on the possible STN DBS-related effects on processing of pictures containing 

food or erotic material as they represent the two primary rewards and high sensitivity to 

rewards was found to be related to eating behaviors that contribute to excess body 

weight.(Davis et al., 2007)  Similarly, changes in activation of the aversive motivational 

system were analyzed from the perspective of two categories of aversive fearful stimuli – 

pictures of threats of aggression and pictures of victims of destructive or injurious actions.  

 

1. The aim of the first study was to examine effects of the STN DBS on incentive 

salience attribution (i.e. attribution of motivational relevance) to rewarding and 

aversive stimuli. We compared ratings of pictures representing primary rewards 

and aversive stimuli in a group of PD patients with DBS switched ON and OFF 

and in healthy controls.  

 

2. The aim of the second study was the objective assessment of behavior such as 

startle reflex modulation by emotional stimuli which can provide useful 

information about underlying emotional processes in ways that are relatively free 

of demand characteristics and reporting biases.  We compared the effects of STN 

DBS on modulation of the acoustic blink reflex (ABR) reactivity to pictures 

presenting rewarding and aversive stimuli in PD patients with DBS switched ON 

and OFF. The results were compared with those obtained in healthy controls using 

the same paradigm.  
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IV. STN DBS EFFECTS ON INCENTIVE SALIENCE 

ATTRIBUTION TO REWARDING AND AVERSIVE 

STIMULI  
 

4.1.  Materials and methods 

   

Subjects  

The study was approved by the local Ethics Committee and all participants gave their 

informed consent prior to being included in the study. Twenty PD patients treated with 

bilateral STN DBS for motor fluctuations and/or dyskinesias and eighteen matched 

controls, all males were included in the study. All the patients fulfilled the UK Brain 

Bank Criteria for diagnosis of PD. (Hughes et al., 1992) 

On the day of the study all participants were screened for cognitive and mood status using 

the Mini Mental State Examination (Folstein et al., 1975) and the Beck Depression 

inventory (BDI; Beck et al., 1996).(Beck et al., 1996) The patients and controls 

demographic variables and disease characteristics are summarized in Table 3.  No 

differences were found for age, MMSE, BDI or education duration between the patients 

and control group. In the PD group, the mean daily  dose of dopaminergic medications (in 

levodopa equivalents (Kleiner-Fisman et al., 2006) was 550.3±479 mg. Fourteen patients 

were on levodopa only, two were taking a combination of levodopa with dopamine 

agonists, two were on dopamine agonist therapy only and two patients were free of 

dopaminergic medication. Five of the patients were on antidepressant therapy (three on 

citalopram, one on mirtazapine, one on sertraline). One of the control subjects was on 

anxiolytic therapy with buspiron. No other psychotropic medication was taken. In 

addition, the preoperative and postoperative body weights were recorded in the PD group. 

Sixteen patients were chronically stimulated by bilateral monopolar STN DBS, 4 patients 

by bipolar on one side and monopolar on the other.  

The possible presence of impulse control disorder or repetitive behaviors in PD patients 

was screened using a modified version of the Minnesota Impulsive Disorders Interview 

(MIDI)(Christenson et al., 1994) and all patients who scored in MIDI were examined by a 

psychiatrist. Only one patient that presented signs of binge eating and punding met the 

criteria for obsessive-compulsive disorder.(Voon et al., 2009)  
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 PD Patients Controls 

Age (years) 58.3 ± 6 56.1±7  

Education duration (years) 13.8±3  16.9±3  

MMSE 28.6±1  29,4±1  

BDI  11.8±7  8.4±6  

Disease duration (years) 15.7±4   

Time interval after surgery (years) 2.8±2   

DBS STN 

Parameters 

Frequency (Hz) 130.8±3  

Puls width (us) 76.3±23   

Amplitude (V) 2.8±0  

 

Table 3. Parkinson’s disease patients and control group – demographic and disease 

characteristics 

Values are expressed as means ± SD 

MMSE, Mini Mental State Examination; BDI, Beck Depression Inventory; 

DBS STN, Deep Brain Stimulation of the Subthalamic nucleus 

 

Visual task and procedure 

Visual stimuli were selected from the International Affective Picture system (IAPS) in 

order to represent specific thematic appetitive and aversive contents.(Lang and Bradley, 

2008) Eighty-four pictures were selected consisting of: i) 21 erotica (erotic females and 

couples) and ii) 21 food, iii) 21 aversive – victims (mutilations) and threat (human or 

animal attacks, aimed guns) and iv) 21 neutral content (household objects, buildings, 

plants. Examples of pictures from different categories are given in Figure 2. Erotic and 

aversive pictures were valence- and arousal- matched according to their normative 

ratings. Three sets of pictures in different orders were compiled so that maximally two 

pictures with the same content followed.   
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Figure 2.  Examples of pictures from the different categories  

a. neutral picture; b. food picture; c. erotic picture; d. and e. aversive pictures: 

d. threat picture, e. victim picture 

Pictures are according to their normative ratings superimposed on the boomerang 

shaped figure that results when each picture of the IAPS is plotted in terms of its 

normative valence and arousal ratings.(Lang and Bradley, 2008) 
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The numbers of selected IAPS pictures were as follows:    

Erotic pictures: 4002, 4275, 4320, 4232, 4694, 4180, 4250, 4150, 4240, 4255, 4670, 

4235, 4310, 4225, 4311, 4220, 4006, 4659, 4141, 4001, 4142;  

Food pictures: 7402, 7481, 7230, 7320, 7482, 7200, 7350, 7330, 7487, 7220, 7286, 7488, 

7289, 7291, 7352, 7283, 7340, 7460, 7280, 7480, 7475;  

Neutral pictures: 7235, 7175, 7185, 7110, 7491, 7179, 7035, 7705, 5510, 7059, 7041, 

7010, 7090, 7950, 7080, 7000, 7187, 7006, 7050, 7020, 7004,  

Aversive pictures:  Threats: 1050, 1120, 1300, 3500, 3530, 6230, 6260, 6350, 6510, 6550, 

Victims:  3000, 3010, 3060, 3069, 3071, 3080, 3120, 3130, 3170, 3266, and 

threat/victim picture 9410 

 

Patients were tested after overnight withdrawal from dopaminergic medication. On the 

day of testing their stimulators were switched off for 2 hours starting at 8 a.m. Then they 

were tested in two conditions with STN DBS switched ON and OFF in counterbalanced 

orders. There was a 1-hour break between when the stimulators were switched into the 

particular condition and affective testing (thus stimulators had been switched OFF for 3 

hours in patients who were tested in the OFF condition first). For each patient a different 

set of pictures was used for DBS ON and DBS OFF conditions. In each condition prior to 

affective testing the UPDRS III rating was performed by a rater who was unaware of the 

DBS condition. 

The participants were comfortably seated in front of a touch sensitive screen. Each picture 

was presented on the screen for a period of 6s. Subjects were required to rate each picture 

separately along the dimension of emotional valence and arousal by self-paced touching 

the appropriate symbol on two independent visual scales that were presented on the 

screen after the picture offset.  The scales were designed according to the original IAPS 

scales.(Lang and Bradley, 2008) Valence was rated on a 1-9 scale, with 9 being the most 

pleasant and arousal on a 1-9 scale, with 9 being the most arousing. Before testing, 

patients were instructed how to rate valence and arousal of each picture according the 

IAPS manual. Then they were shown 8 representative pictures for training purposes. 
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Figure 3. Rating scales 

a) Valence (from the left to the right, ranging from most unpleasant to most  

pleasant) 

b)  Arousal  ( from the left to the right, ranging from calm to most arousing) 

1-9  scales were designed according to the original scales from the Self Assessment 

Manikin, which was deviced for emotional ratings of IAPS pictures.(Lang and 

Bradley, 2008) 
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4.2. Data analysis 

 

For statistical analysis the SPSS 14.0.1 software (Chicago, IL) was used. As several 

parameters did not follow the normal distribution, non-parametric tests were applied. For 

each category of pictures, the Kruskal-Wallis test was used to analyze differences in 

valence and arousal between conditions and groups of subjects. The significant results 

were then analyzed post hoc by the Mann-Whitney U test (to compare groups of subjects) 

and Wilcoxon signed-rank test (to compare DBS OFF and ON conditions).  Parameters 

with normal distribution were analyzed by Pearson correlation and partial correlation 

analysis. Bonferroni correction of multiple comparisons was used whenever appropriate. 

   

4.3.Results 

 

Clinical observations  

 

The UPDRS III score decreased from 40.4±11 in the DBS OFF condition to 17.5± 6 in 

the DBS ON condition (Z=3.9, P<0.0001). 

 

Affective ratings 

 

i) Between groups and condition comparison:  

 

The valence comparison for each of the four categories of the IAPS pictures revealed that 

only aversive pictures yielded significant differences among DBS conditions and/or 

groups of subjects (χ2=7.4, P<0.05 corrected). No differences in valence ratings were 

found for the other picture categories (Figure 4.).  

Post-hoc analyses disclosed that in the  DBS ON condition, patients rated the valence of 

aversive pictures significantly lower compared to the  DBS OFF condition (Z=2.7, 

P<0.01) and compared to the control group (Z=2.5, P<0.01). The difference in valence of 

aversive pictures between patients in the DBS OFF and control subjects was less 

pronounced but still significant (Z=2.0, P<0.05).  Between the two sub-categories of 

aversive pictures, the pictures of victims elicited stronger effects in the post-hoc tests 
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(conditions: Z=2.4, P<0.05; groups: Z=2.5, P<0.01) than the pictures of threats 

(conditions: n.s.; groups: Z=2.2, P<0.05) (Figure 5).  

The arousal elicited by aversive pictures was rated significantly higher by patients with 

the DBS switched ON than by control subjects (Z=2.7, P<0.01). No other differences in 

arousal were detected by post hoc tests.  

To test a confounding effect of therapy, all patients on antidepressants (N=5) were 

excluded and all analyses recalculated achieving similar results. Therefore, the original 

group of patients (N=20) did not have to be restricted.  

 

Effect of order on aversive pictures ratings: a post hoc analysis  

 

There were 12 patients tested in OFF condition first (i.e. with STN DBS washout for 3 

hours before testing in OFF condition) and 8 patients tested in ON condition first (STN 

DBS washout for 1 hour before testing in OFF condition). Within group post-hoc 

analyses demonstrated a significant effect of the order, as the changes in valence (Z=2.9, 

P<0.01) and arousal (Z=2.2, P<0.05) of aversive pictures were significant only for group 

of patients tested first in the OFF condition (N=12).  

 The results for aversive pictures ratings in patients tested in OFF and ON condition first 

are summarized in the table 4. 

For victims Picture the results were similar. There was a significant between OFF and ON 

condition difference only in patients tested in OFF condition first: for valence (Z=2.2, 

P<0.05) and for arousal (Z=2.1, P<0.05).  
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 AVERSIVE PICTURES 

VALENCE 

OFF 

(mean) 

VALENCE 

ON  

(mean) 

Statistics 

OFF vs ON 

difference 

AROUSAL 

OFF 

(mean) 

AROUSAL 

ON 

(mean) 

Statistics 

OFF vs ON 

difference 

OFF first       

(N=12) 

2.21 1.95 Z=2.9, 

P<0.01 

6.59 7.48 Z=2.2 

P<0.05 

ON first 

(N=8) 

2.15 2.05 Z=2.2, 

P<0.48 

6.98 6.82 

 

Z=0.5 

P<0.61 

 

Table 4. The results for aversive pictures valence and arousal ratings in patients tested in 

OFF and ON condition first. Significant results were found only in group of patients with 

larger DBS washout period (3 hours vs 1 hour) suggesting there was a DBS aftereffect. 

 

ii) Between picture category comparison: 

 

Mean valence and arousal ratings of aversive and erotic pictures were compared for each 

picture category in both groups of subjects. Pictures of victims always had the highest 

mean arousal scores (P<0.0001 corrected) and showed a higher difference of valence 

scores from the valence of neutral pictures (p<0.0001 corrected) than those in the other 

categories (erotica, threat). 
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Figure 4. Valence of selected IAPS pictures of four different categories (erotic, food, 

neutral, aversive content) as rated by control subjects (N=18) and PD patients (N=20) in 

conditions with the STN DBS switched OFF and ON.  The only difference between 

conditions/groups of subjects was found for valence of pictures with the aversive content 

(significance level of post hoc tests: *P<0.05, **P<0.01).  

The box-plot represents: median (horizontal line), interquartile range (length of the box-

plot), values within 1.5 interquartile range of the upper/lower quartile (whiskers), o – 

outliers  (within 1.5 and 3.0 interquartile range), ∆ - extreme values (>3.0 interquartile 

range); significance level of post hoc tests (*P<0.05, **P<0.01) 
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Figure 5. Valence of two sub-categories of the IAPS pictures with aversive content as 

rated by control subjects (N=18) and PD patients (N=20) in conditions with the STN 

DBS switched OFF and ON.  The pictures showing victims elicited more significant 

differences in valence between conditions/groups than the pictures of threats 

(significance level of post hoc tests:*P<0.05, **P<0.01) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 
 

iii) Body weight change and affective ratings: 

  

The mean body weight of patients increased postoperatively to 91.5±11 kg  from 

preoperative weight of 83.4±14 kg (Z=3.6, P<0.001).  

The weight change correlated positively with arousal ratings of appetitive stimuli in the 

DBS ON condition (erotic: r=0.66, P<0.01 corrected; food: r=0.69, P<0.01 corrected) and 

weakly in the DBS OFF condition (erotic: r=0.53, P<0.05 corrected; food: r=0.49, n.s.). 

For the ratings of food pictures, this positive correlation in the DBS ON condition 

remained significant for the food pictures even after suppression of the effect of DBS 

OFF condition by partial correlation analysis (r=0.59, P<0.05 corrected). (Figure 6.) No 

other correlations were found.  These correlations remained significant even after 

exclusion of patients in whom antidepressants (N=3) or dopamine agonists (N=2) might 

have influenced the body weight changes (see supplementary material). In addition, the 

effect of order was analyzed post hoc and the partial correlation was found significant 

(r=0.61, P<0.05) only in the group of patient tested in the DBS OFF condition first 

(N=12). 

From correlation analysis we excluded patients (N=5) in whom weight changes were 

present after introduction of the antidepressants or dopamine agonists before or after the 

surgery. This included remained  patients (N=15) with a well documented, stable body 

weight after the preoperative introduction of  the antidepressants or dopamine agonists 

and patients in whom this treatment was introduced shortly before testing and in whom no 

weight change has been detected since then. The positive body weight change correlated 

positively with arousal ratings of appetitive stimuli in the DBS ON condition (erotic: 

r=0.70, P <0.01 corrected; food: r=0.77, P<0.01 corrected) and not in the DBS OFF 

condition (erotic: r=0.55, n.s. corrected; food: r=0.57, n.s.). This positive correlation 

between arousal and the body weight change in the DBS ON condition remained 

significant for the food pictures even after suppression of the effect of DBS OFF 

condition by partial correlation analysis (r=0.64, P<0.05 corrected). 
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Figure 6. Correlation between the arousal of the pictures with the food content rated by 

Parkinson’s disease patients (N=20) with the STN DBS switched ON and the body weight 

change before/after STN DBS implantation.   

 

 

 

 

 

 

 

 



52 
 
 

4.4.Discussion 

 

This is the first study demonstrating STN DBS effects on motivational salience attribution 

(assigning relevance to a stimulus representation) in PD patients. Our findings support the 

hypothesis that STN DBS influences the incentive salience attribution (i.e. assigning 

relevance to a stimulus representation). 

According to the valence ratings, aversive stimuli were rated as more unpleasant in the 

STN DBS ON condition than when compared to OFF condition and to the controls. The 

change in valence ratings of aversive pictures due to STN DBS was demonstrated only 

for pictures of victims and not threats. Findings from several fMRI studies implicated the 

existence of  

distinct neural substrates of disgust-relevant categories such as contamination and 

mutilation.(Wright et al., 2004) Therefore one possible explanation could be a selective 

effect of DBS on structures involved in processing this content category. Nevertheless, 

other imaging and neurophysiological studies indicated the existence of a common 

subcortical network involved in the incentive salience attribution processing (Liberzon et 

al., 2003, Phan et al., 2004) and suggested the influence of arousal level on affective and 

motivational physiological responses.(Bernat et al., 2006, Miller et al., 2009) In the 

present study the pictures of victims were stronger stimuli than pictures from the other 

content categories according to the valence and arousal ratings in all groups and 

conditions and may represent the most salient pictures that signal threat to one’s own 

bodily integrity. This is in line with the finding that the mesolimbic dopamine system 

responds to both rewarding and aversive stimuli that are of high intensity.(Faure et al., 

2008, Horvitz, 2000)  Generally, this finding supports a threshold model in which highly 

arousing and valenced stimuli are needed to detect differences in physiological reactivity 

between controls and PD patients, whereas less arousing stimuli may not be sufficient to 

detect this difference. 

The difference between valence and arousal ratings of aversive pictures in control group 

and PD patients was more pronounced in the DBS ON than in the DBS OFF condition. 

The separate analyses involving patients tested first in the OFF or the ON conditions 

nevertheless suggested that a DBS aftereffect contributed to our results.  It seems that 

DBS switching-off for one hour is insufficiently short compared to 3 hours interruption. 

According to our results, we assume that the STN DBS may drive the aversive 



53 
 
 

motivational system in PD patients away from normal functioning and possibly interfere 

with social interactions.  Moreover, the increased motivational relevance attribution to 

aversive pictures in DBS OFF condition  in comparison to controls could not be easily 

attributed  to the neurodegenerative process itself or medication as there is of evidence for 

impaired incentive salience attribution by dopamine loss (Horvitz, 2002, Chinaglia et al., 

1992) or an inhibiting effect of antidepressants on aversive stimuli processing. (McCabe 

et al., 2009, Rawlings et al., 2010)    

For the appetitive stimuli the evidence of STN DBS influence on incentive salience 

attribution is rather indirect. While we could not find any conscious change in subjective 

ratings of appetitive stimuli due to the STN DBS, partial correlation analysis showed that 

patients with higher postoperative weight increase rated food stimuli as more intense 

under STN DBS.  Strictly speaking, a DBS-related increase by 1 point on the arousal 

scale of the food pictures was associated with an average postoperative body weight 

increase of 3.3 kg. We assume that this result is consistent with increased sensitivity to 

food reward cues due to STN DBS. This is in line with evidence from animal studies that 

STN DBS and STN lesions increased motivation for food but without eliciting binge 

eating.(Baunez et al., 2002, Rouaud et al.) Similarly in our patients, the increased weight 

gain did not appear related to binge eating.  We suggest that such STN DBS related 

sensitivity to food reward cues drives DBS treated patients to higher food intake and 

subsequent weight gain.  

We believe that our results support the hypothesis that STN DBS affects the incentive 

salience attribution in STN DBS treated patients. It has been suggested that DBS activates 

axons surrounding the active contact of the implanted electrodes and increases output 

from the stimulated nucleus.(Jech et al., 2001, Johnson et al., 2008, Vitek, 2008) The 

positron emission tomography (PET) studies failed to show substantial changes in striatal 

DA concentration due to STN DBS in humans.(Abosch et al., 2003, Hilker et al., 2003, 

Strafella et al., 2003) However, it has been objected that the small number of residual 

intact dopaminergic neurons is unable to provide relevant levels of striatal dopamine 

detectable by the PET scan in advanced PD patients.(Abosch et al., 2003) Recent animal 

studies using fast scan cyclic voltammetry and amperometry that overcome the analytical 

limitations of PET and the microdialysis studies found that STN DBS evoked striatal DA 

release.(Covey and Garris, 2009, Lee et al., 2006, Shon et al., 2010)  In animals,  STN 

DBS has been found to increase activity of the dopamine system (Lee et al., 2006, Shon 
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et al., 2010) STN DBS may therefore enhance the physiological function of the 

mesolimbic dopamine system either by an increased output from the STN to its 

mesolimbic target structures such as the ventral tegmental area (Groenewegen and 

Berendse, 1990, Parent and Hazrati, 1995) and ventral pallidum(Parent and Hazrati, 1995, 

Smith et al., 2009) or by activating directly the mesolimbic dopaminergic projections 

from ventral tegmental area to nucleus accumbens that are running within the adjacent 

medial forebrain bundle. (Vitek, 2008, Wise, 2005) 

There are several limitations of our study. We are lacking data on food intake, hunger or 

appetite and motivational salience attribution before surgery and we can hardly exclude 

the effect of medication (antidepressants, dopamine agonists, levodopa decrease) on 

between group comparison and on the body weight of PD patients. (Aronne and Segal, 

2003),(Kumru et al., 2006),(Palhagen et al., 2005) 

Despite its drawbacks, the present study suggests that STN DBS activates the aversive 

motivational system in a way that more emotional relevance is attributed to fearful 

aversive stimuli. Our results further suggest that body weight gain in PD patients treated 

by STN DBS might be related to increased sensitivity to food reward cues.  
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V. THE EFFECTS OF STN DBS ON MODULATION OF THE 

ACOUSTIC STARTLE RESPONSE BY REWARDING AND 

AVERSIVE STIMULI 
  

5.1.Materials and Methods 

¨ 

The study was approved by the local Ethics Committee and all participants provided 

informed consent prior to their inclusion. We recruited eleven male PD patients treated 

with bilateral STN DBS for motor fluctuations and/or dyskinesias. All patients fulfilled 

the UK Brain Bank Criteria for the diagnosis of PD(Hughes et al., 1992). The control 

group was composed of eleven healthy, age-matched subjects.  

Before recruitment, all participants were screened for cognitive and mood status using the 

Mini Mental State Examination (MMSE)(Folstein et al., 1975) and the Beck Depression 

Inventory (BDI)(Beck et al., 1996). We used a modified version of the Minnesota 

Impulsive Disorders Interview to rule out impulse control disorders and repetitive 

behaviors in patients and controls(Christenson et al., 1994).  

Demographic and disease-related characteristics of patients and healthy subjects are 

summarized in Table 5.  No differences were detected between patient and control groups 

in the MMSE-Mini Mental State Examination or BDI-Beck Depression Inventory. 

*Levodopa equivalent was calculated according Deuschl et al., 2006.  Eight patients 

received levodopa only, two patients received a combination of levodopa and dopamine 

agonists, one patient received dopamine agonist therapy only, and one patient did not 

receive dopaminergic medication. One of the control subjects received anxiolytic therapy 

with buspiron. No other psychotropic medications were taken. 

In addition, body weight in the PD group as measured within the last week before surgery 

was recorded from the documentation and again it was measured on the day of the study.  
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 PD Patients Controls 

Age (years) 56.3(5) 54.4(8) 

Education duration (years) 13.7(2) 16.6(2)  

MMSE 28.8(1)  29.2(1)  

BDI  10.0(6)  9.1(6)  

PD duration (years) 14.4(3)   

Time interval after surgery (years) 3.0(2)   

Levodopa equivalent (mg) 643.8±459.0  

STN DBS  

Parameters 

frequency (Hz) 
130 (10 patients),  

145 (1patient) 
 

pulse width (us) 

60 (N=9),  

90 (N=8),  

120 (N=5) 

 

amplitude (V) 2.8 (2.3-3.5)  

 

Table 5. Demographic and disease characteristics of Parkinson´s disease patients and 

control group 

Values expressed as mean (SD) or mean (interval). PD, Parkinson's disease; MMSE, 

Mini Mental State Examination; BDI, Beck Depression Inventory; STN DBS, deep brain 

stimulation of the subthalamic nucleus, N= number of electrodes. 

 

Procedure 

 

 We selected a total of 84 pictures from the IAPS.(Lang and Bradley, 2008) They were 

chosen from four categories (21 each): neutral (household objects, buildings, plants), 

erotic (females and couples), food (sweet and salty) and aversive (victims (mutilations) 

and threats (human/animal attacks, aimed guns)). Erotic and aversive pictures were 

valence- and arousal-matched according to normative ratings. (Lang and Bradley, 2008) 

Three different picture orders were created with maximally two pictures from the same 

category presented in sequence. 
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The numbers of IAPS pictures were as follows (the same set of pictures was used as in 

the first study described in Chapter IV.)    

 

Erotic pictures: 4002*, 4275, 4320, 4232*, 4694, 4180, 4250, 4150, 4240, 4255, 4670*, 

4235*, 4310*, 4225, 4311*, 4220, 4006, 4659, 4141, 4001, 4142*;  

Food pictures: 7402, 7481, 7230*, 7320, 7482*, 7200, 7350, 7330*, 7487, 7220, 7286*, 

7488*, 7289*, 7291*, 7352, 7283, 7340, 7460, 7280, 7480, 7475;  

Neutral pictures: 7235, 7175*, 7185, 7110, 7491, 7179, 7035*, 7705, 5510, 7059, 7041, 

7010*, 7090, 7950*, 7080, 7000, 7187*, 7006, 7050, 7020*, 7004*,  

Aversive pictures:  Threats: 1050, 1120, 1300, 3500, 3530, 6230*, 6260, 6350, 6510, 

6550*, Victims:  3000*, 3010*, 3060*, 3069, 3071, 3080, 3120, 3130, 3170*, 

3266, and threat/victim picture 9410* 

Pictures assigned with * were presented with startling acoustic stimulus in the 

study on ABR modulation 

 

Patients were tested after an overnight withdrawal from dopaminergic medication. On the 

day of testing, STN DBS was switched OFF at 8 a.m. for two hours in order to reduce 

some of the longer-lasting effects of stimulation. Patients were pseudorandomly tested in 

two conditions, STN DBS ON and STN DBS OFF using different picture order for each 

condition. The testing was performed one hour after the stimulators were switched OFF 

or ON. In each condition, prior to testing, motor subscore of the Unified Parkinson’s 

Disease Rating Scale (UPDRS-III)(Fahn et al., 1987) was performed by a rater blinded to 

the DBS condition. Healthy controls were tested once, using proportionally the same sets 

of picture order. Patients and controls were kept “normally satiated” during the 

examination; they were provided snacks and instructed to eat only lightly.  

The participants were comfortably seated in a dark, quiet room in front of a touch 

sensitive screen. They wore headphones and 2 surface electrodes were positioned at each 

lower lid to record electromyographic (EMG) activity from the orbicularis oculi muscles 

(Figure 7.). 
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The participants were instructed to look at each picture during the period it was displayed, 

and to rate each picture along the dimensions of emotional valence and arousal by self-

paced touching appropriate symbols on two independent visual scales presented on-screen 

after picture offset. The scales were designed according to the original IAPS scales.(Lang 

and Bradley, 2008) Valence was rated on scale of 1-9, with 9 being the most pleasant, and 

arousal on a scale of 1-9, with 9 being the most arousing. Prior to testing, patients were 

instructed how to perform the ratings according to the IAPS manual, and watched and 

rated 8 representative pictures with assistance in order to become familiar with the 

procedure. 

 

 
 

 

 

 Figure 7. An illustrative photograph of the experimental set up 

Series of pictures were presented on a touch sensitive screen. When startling acoustic 

stimulus (a 50 ms noise burst, 115 dB SPL) was delivered through the headphones (in 

30% of pictures from each category) the acoustic blink reflex was recorded from the 

orbicularis oculi muscles. 
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Each picture out of 84 was presented for a period of 6 seconds and consequently rated by 

the participant. Seven pictures of each content category (i.e. 28 in total) were presented 

with a startling acoustic stimulus (SAS) (single 50 ms noise burst, 115 dB SPL, <10 μs 

rise time). The SAS was delivered through headphones pseudo-randomly across the 

different picture categories at one of three time intervals (4200, 5000, 5800 ms) following 

picture onset to avoid habituation. Sixteen unprimed ABRs were elicited while watching 

a dark screen with white cross in the center, with the SAS presented at random intervals 

of 10-16 seconds, 12 of them prior to the beginning of the affective task and 3 additional 

were interspersed between the pictures presentation. Picture presentation and rating, 

variable SAS delivery and acquisition of physiologic data was performed by custom 

EVSENG software (J. Wackermann, T. Sieger, Prague, Czech Republic).  

Electromyographic (EMG) activity was recorded using Medelec Synergy (Oxford 

Instruments, Surrey, UK). Frequencies <50 and >1000 Hz were filtered from the raw 

EMG signal.   

 

The monopolar artifact removal. 

 

Several methods have been used for artifact removal, taking specific characteristics of 

different recordings (evoked potentials, electroencephalography) into account (Allen et 

al., 2010, Jech et al., 2006). In the present study, large artifacts related to monopolar STN 

DBS were removed by subtracting artifact templates in the spectral domain (Figure 8.).  

ABR signals were transformed into the spectral domain using the Fourier transform. 

Substantial spectral peaks located at multiples of DBS frequencies were considered 

potential artifacts, thus matched to artifact template in the form of 

)()sin( τβα
β
β +− tie
t

t
 

,where α, β and τ were scaling parameters fine tuning the amplitude, frequency and phase 

shift of each artifact, respectively. The values of α, β and τ were found by nonlinear least 

square optimization. A spectral peak that fitted the scaled artifact template well was 

considered a genuine artifact, and thus eliminated from the spectra by subtracting the 

fitted, scaled artifact template from the spectra. Finally, the resulting artifact-free ABR 

was obtained by taking the inverse Fourier transform of the altered spectra. 

 



60 
 
 

 
 

Figure 8. Recording of acoustic blink reflex from the orbicularis oculi muscle in DBS ON 

condition with an artifact related to monopolar deep brain stimulation of the subthalamic 

nucleus (top). The same recording after removal of the artifact by means of artifact 

template removal in spectral domain (bottom).  
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For off-line analysis of the waveforms, the EP analyzer 2.9 was used (A. Nebuželský & 

R. Jech, Prague, Czech Republic).  

Each EMG activity recording related to one SAS delivery was referred to as a trial. Data 

from each subject were visually examined by a task-blinded examiner, only trials in 

which the ABR had a latency of 40–80 ms from the stimulus were included (Brown et al., 

1991, Chokroverty et al., 1992, Kofler et al., 2001) and the ABR onset latency and 

duration were determined. The area under the curve (AUC) was calculated for each ABR 

as a measure of ABR magnitude. The average AUC from the right and left eye was 

calculated for each trial. When data from one side were invalid, only the valid data from 

the remaining side was used. As the first two unprimed ABR trials in many subjects had 

significantly larger magnitude, they were excluded from the analyses. Trials with clear 

artifacts or with a peak amplitude more than three standard deviations above or below the 

mean magnitude of each participant were also excluded. No more than one trial  from 

each picture category or two trials per subject were discarded.   

For further analyses, ABR magnitude from every trial was expressed in standardized t-

scores to remove effects of inter-subject variability (Bradley et al., 2001, Levenston et al., 

2000).  

 

t-scores equation: 

t-score = 50 + (z score*10); z score = (AUC from given trial – mean AUC from unprimed  

startle responses)/standard deviation of AUC from unprimed startle responses. This 

resulted in standardized scores with a mean of 50 and standard deviation of 10 
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5.2.Statistical analyses 

 

Statistical analyses were performed in the R language and environment for statistical 

computing (R Development Core Team, 2011). For inter-group comparisons in which 

repeated measurements were available (PD patients vs controls; DBS ON vs DBS OFF), 

linear mixed-effects models were used. For the evaluation of ABR response, a fixed 

effect of the group and random effects of individual subjects and pictures were used. To 

assess the fixed effect of DBS condition in the ABR model, random effects of subjects, 

pictures, and their interactions were utilized respecting the paired nature of data. In 

models of picture ratings, the fixed effect of picture category and random effects of 

subjects and pictures were used. For the purpose of accuracy, the significance of fixed 

effects of interest was computed by a parametric bootstrap approach. The quality of each 

model was validated by visual inspection of the residuals in the model. UPDRS-III scores 

and weight changes were compared using t-tests, and the differences between the two 

groups in age, years of education, MMSE and BDI using the Wilcoxon exact test. 

Parameters following normal distribution were subject to Pearson correlation and partial 

correlation analysis. The Bonferroni correction for multiple comparisons was used 

whenever appropriate to maintain the 5% significance level. 

 

5.3.Results  

 

Clinical observations:  

 

No differences were found for age, MMSE, BDI or education level between the patient 

and controls. The UPDRS-III score decreased from a mean of 43.7 (SD = 12.4) in the 

DBS OFF condition to 18.2 (SD = 7.3) in the DBS ON condition (T(10)=8.56, P<0.001).  

 

Affect modulated ABR magnitude: 

 

In comparison to controls, PD patients had larger ABR magnitude in both the DBS ON 

(P<0.01 corrected) and OFF condition (P<0.05 corrected). The inter-group (patients vs. 

controls) and condition (DBS ON/OFF) comparison for separate picture categories 

showed that PD patients had larger mean ABR to aversive pictures (P<0.05 corrected) in 
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the DBS ON condition than controls. They also showed larger mean ABR to neutral 

pictures (P<0.05 corrected) in the DBS OFF condition than controls. In the DBS ON 

condition they also had larger mean ABR magnitude to erotic pictures than in DBS OFF 

(P<0.01 corrected) and than controls (P<0.01 corrected) (Figure 9). Data on ABR size in 

all groups and picture categories are summarized in Table 6. The increase in ABR 

magnitude in the DBS ON relative to the DBS OFF condition was observed in 10 out of 

11 patients (Figure 10).  

 

  Neutral Erotic Food Aversive 

Healthy 

subjects 

t-scores 36.6 (5.8) 34.8 (4.5) 36.4 (4.8) 37.8 (4.89) 

%  96.2 (9.4) 100.5 (9.6) 104.6 (13.1) 

Patients OFF t-scores 42.4 (3) 39.1 (6.0) 41.1 (6.0) 43.0 (5.6) 

%  91.7 (13.3) 96.2 (12.6) 100.8 (13.9) 

Patients ON t-scores 41.1 (6.1) 45.0 (6.8) 41.2 (8.5) 45.1 (11.4) 

%  110.2 (10.4) 99.7 (9.9) 108.9 (14.3) 

 

Table 6 . Data on ABR size in all groups and picture categories 

%= percentage of the ABR at emotionally neutral picture presentation, 

 SD within parenthesis 

 

The relative change in ABR magnitude from different picture categories with 

respect to ABR magnitude to neutral pictures. 

 

In order to control for factors other than emotional and motivational that could contribute 

to ABR changes in different conditions (such as attention), we also compared the relative 

change in ABR magnitude from different picture categories with respect to ABR 

magnitude to neutral pictures.  

The relative change in ABR magnitude to erotic pictures with respect to neutral pictures 

was significant between DBS ON and controls (P<0.05 corrected) and between DBS ON 

and DBS OFF (P<0.01 corrected). No other relative changes in ABR magnitude to other 

picture categories or in other group-wise comparisons were significant.  
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Figure 9. Magnitude of the blink reflex to an acoustic startle probe (in t-scores) presented 

during viewing of erotic, food, neutral, and aversive pictures from control subjects 

(N=11) and Parkinson´s disese patients (N=11) in conditions with deep brain stimulation 

(DBS) of the subthalamic nucleus OFF and ON. In the DBS ON condition, the 

physiological pattern of acoustic blink reflex (ABR) modulation with pleasure inhibition 

to erotic pictures was lost and the ABR magnitude to erotic pictures were potentiated as if 

aversive. Corrected significance level *P<0.05, **P<0.01. 
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Figure 10. Relative magnitude of the acoustic blink reflex (ABR) in individual 

Parkinson´s disease patients (N=11) elicited during viewing of erotic pictures in 

subthalamic deep brain stimulation (STN DBS) OFF and ON conditions. In the STN DBS 

ON condition there was an increase in ABR magnitude in 10 out of 11 patients. The 

relative ABR magnitude is expressed as percentage of the magnitude elicited during 

viewing neutral pictures in the given condition.  
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Affective ratings: 

 

No significant differences in affective valence and intensity ratings were found in group 

and DBS ON/OFF comparisons.  

In all groups and conditions, the affective ratings of valence came in the same order: 

aversive pictures were rated the lowest, followed by neutral pictures, then food pictures, 

and finally erotic pictures ((all pairwise comparisons of categories P<0.001 corrected). 

Similarly, intensity ratings shared the same pattern in all groups and conditions, in which 

the neutral pictures were rated as the lowest intensity, followed by food pictures, then by 

erotic pictures, and finally with aversive pictures (P<0.001 corrected).   

Data on affective ratings in all groups and picture categories are summarized in  Table 7. 

 

 Neutral Erotic Food Aversive 

 valence arousal valence arousal valence arousal valence arousal 

Healthy 

subjects 

5.4 

(0.3) 

2.7 

(1.5) 

6.9 

(0.6) 

5.1 

(1.4) 

6.2 

(0.7) 

3.8 

(1.6) 

2.6 

(0.8) 

5.6 

(1.9) 

Patients 

OFF 

5.2 

(0.3) 

3.0 

(1.6) 

7.4 

(0.6) 

5.8 

(1.7) 

6.3 

(1.0) 

3.8 

(1.6) 

2.2 

(0.7) 

6.8 

(1.4) 

Patients 

ON 

5.2 

(0.3) 

3.0 

(1.6) 

7.4 

(0.7) 

5.1 

(2.0) 

6.2 

(0.9) 

3.4 

(1.6) 

2.1 

(0.6) 

6.9 

(1.3) 

 

Table 7. Data on valence and arousal ratings in all groups and picture categories 

mean absolute value, SD within parenthesis 

 

 

 

 

 

 

 

 

 

 



67 
 
 

Body weight change 

  

Compared to preoperative values, the mean body weight of patients increased 

postoperatively from 88.6 kg (SD = 15.2) to 94.2 kg (SD = 10.0). The difference value 

between means was 5.6 kg (95% CI 0.3 to 10.9 kg; T=-2.38, 10 df, P<0.05).  

Furthermore, postoperative weight gain was negatively correlated with ABR magnitude 

to food pictures in the DBS ON condition (r=-0.75, 9 df,  P<0.01). The correlation was 

significant even after suppressing the effect of the DBS OFF condition by partial 

correlation analysis, i.e., after adjusting with respect to ABR to food pictures in the DBS 

OFF condition Fr= -0.74, 9 df, P<0.01 ) (see figure 11). Postoperative weight gain 

correlated positively with the intensity rating of food pictures (r=0.70, 9 df, P<0.05). 

 

 

 
 

Figure 11. Partial correlation between acoustic blink reflex (ABR) magnitude to pictures 

of food in Parkinson´s disease patients (N=11) with deep brain stimulation of the 

subthalamic nucleus (STN DBS) ON, and body weight change after STN DBS 

implantation (kg), adjusted for ABR to pictures of food with STN DBS OFF. 
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5.4.Discussion 

 

In the present study we observed changes in the affective modulation of the ABR due to 

STN DBS, which suggests that STN DBS modifies the emotional and motivational 

processing of primary reward cues and aversive stimuli. In previous ABR studies carried 

out during STN DBS,(Potter et al., 2008)  artifacts were reduced by switching stimulation 

to bipolar mode, which could have caused a change in the efficacy of the stimulation. 

Instead, we were able to remove the artifact related to monopolar DBS and to study the 

patients in their long-term therapeutic setting. The finding of a larger ABR in PD patients 

than in controls, regardless of DBS condition can be explained by impaired attentional 

inhibition of the ABR in PD patients compared to normal subjects, as the ABR has been 

found to be attenuated by attentional processes during picture viewing.(Bradley et al., 

2006) The fact that larger ABR magnitudes were not reported in a previous study on 

affective modulation of the ABR in off-medicated PD patients,(Miller et al., 2009) may 

be due to a substantially shorter disease duration than in our patients (mean 5.5 (SD = 4) 

vs. 14.4 (SD = 3) years). Indeed, attentional deficits have been documented in PD 

patients, and there is evidence for their progression with disease duration.(Maetzler et al., 

2009) (Sampaio et al.)  

Affective modulation of the ABR becomes evident during viewing of affect-weighted 

pictures,(Bradley et al., 2006) with ABR facilitated by aversive and inhibited by 

appetitive picture contents.(Vrana et al., 1988) In our study the control subjects and PD 

patients in the OFF medication/OFF stimulation condition presented with the 

characteristic physiological pattern of modulation by aversive, appetitive and neutral 

stimuli, except in the DBS ON condition, in which the ABR was paradoxically 

potentiated by erotic stimuli. Similarly, ABR potentiation by pleasant pictures was 

reported in patients with severe depression(Allen et al., 1999) and in patients with 

psychogenic movement disorder.(Seignourel et al., 2007) Moreover, ABR potentiation 

was found in healthy individuals for adventure pictures depicting physically risky sports 

such as sky diving, which were rated as highly positive stimuli.(Bernat et al., 2006) The 

explanation for all these observations remains hypothetical, suggesting engagement of the 

aversive motivational system instead of the appetitive one. Furthermore, the ABR 

modulated by aversive stimuli was relatively larger in DBS ON than in controls, also 

suggesting an increased aversive engagement. Changes in motivational activation were 
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not reflected in subjective ratings of our patients.  The lack of significant difference might 

be a consequence of a relatively low number of subjects in our study. However, in our 

first study assessing changes in incentive salience attribution related to STN DBS in a 

larger group of PD patients, aversive pictures from the same sets were rated as more 

negative in the DBS ON than in the DBS OFF condition, thus also demonstrating 

increased aversive activation, but no change was detected for erotic or food picture 

ratings . We suggest that abnormalities in brain structures, their functional connectivity or 

changes in emotion regulation processes could account for disordered reactivity of the 

ABR to pleasant or aversive pictures in various conditions.(Leppanen, 2006, Voon et al., 

2010) Interestingly enough, the extent of ABR inhibition by food pictures and their 

arousal ratings correlated with postoperative weight gain, suggesting increased appetitive 

motivational engagement by food cues in the DBS ON condition. This finding is 

consistent with increased motivation for food found in experimental animals after STN 

DBS(Baunez et al., 2002, Baunez et al., 2005, Baunez et al., 2007, Lardeux et al., 2009, 

Rouaud et al., Uslaner et al., 2008) and suggests that postoperative weight gain may be 

related to changes in the processing of food cues. Otherwise no changes in ABR 

modulation were detected for food cues. According to the subjective rating, food pictures 

were less intense stimuli. ABR modulation is more pronounced in the context of highly 

arousing stimuli and is absent for low-arousing stimuli, which only activate these 

motivational systems weakly (Bernat et al., 2006). 

The affective modulation of ABR was caused by high frequency stimulation of the STN 

in PD patients who showed a normal pattern of startle reactivity when DBS was switched 

OFF. Recent studies on DBS mechanisms have suggested that while neuronal excitability 

near the DBS electrode is substantially inhibited, the axons surrounding the active contact 

of implanted electrodes are more likely excited. This leads to an increase in the output 

from the stimulated axons,(Jech et al., 2001, Vitek, 2008, Winter et al., 2008) which 

natural activity is replaced by a more regular, high frequency activity that is time-locked 

to the stimulus.(Johnson et al., 2008) These complex mechanisms may account  for 

interference of STN DBS with the emotional and motivational processing at the level of 

the STN or within the limbic and reward circuits that involve subcortical structures such 

as the amygdala and the ventral basal ganglia (the nucleus accumbens and the ventral 

pallidum) as well as the mesolimbic dopamine system. These structures have direct or 

indirect connections with both the STN(Ghashghaei et al., 2007, Groenewegen and 



70 
 
 

Berendse, 1990 , Parent and Hazrati, 1995, Turner et al., 2001, Winter et al., 2008) and 

the primary startle circuit, and are also known to mediate the affective modulation of the 

ABR.(Koch, 1999, Koch et al., 1996, Lang et al., 1998) It has been already demonstrated 

that STN DBS may modify activity of the amygdala during affective tasks in humans.(Le 

Jeune et al., 2008)   

Both appetitive and fearful motivation involve interaction between dopaminergic and 

different glutamatergic inputs (from the amygdala and the prefrontal cortex) that 

converge on nucleus accumbens in overlapping mesocorticolimbic circuits.(Humphries 

and Prescott, 2010) Neurochemical manipulations at different rostrocaudal points in 

medial shell of nucleus accumbens involving different sets of dopamine receptors 

generate many graded combinations of appetitive and/or defensive bahaviors including 

mixed bouts of both positive eating behavior and negative fearful trading in experimental 

animals.(Faure et al., 2008, O'Donnell et al., 1999, Pennartz et al., 1994, Reynolds and 

Berridge, 2002, Richard and Berridge, 2011) The STN DBS interactions with the ventral 

basal ganglia circuits including the non-physiological release of the mesolimbic 

dopamine(Lee et al., 2006, Shon et al., 2010) may be therefore one of the mechanisms 

contributing to both the increased aversive activation and the increased motivation for 

food. Another explanation for our findings could be a direct effect of electrical 

stimulation on the circuits linking the ventral basal ganglia with the pedunculo-pontine 

nucleus and the primary startle circuit as it was demonstrated for prepulse inhibition of 

the ABR.(Costa et al., 2006) 

Our results suggest that subthalamic stimulation may disturb engagement of the appetitive 

motivational system by erotic cues and increase activation of the aversive motivational 

system in PD patients. Additionally, they suggest that postoperative weight gain may be 

related to changes in the processing of food cues due to subthalamic stimulation. 
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VI. CONCLUSIONS 
 
This is the first study on effects of the STN DBS on emotional and motivational 

processing of primary reward cues and aversive stimuli in PD patients. In order to explore 

both aspects of the emotional and motivational processing, the subjective experience and 

the behavioral response, we examined STN DBS related changes in  

1. subjective evaluation of motivational relevance to emotional stimuli, i.e., the 

incentive salience attribution  

2. objective measure of motivational activation to emotional stimuli, i.e., the 

affective modulation of the startle response 

We used an on-off study design, which enables to assess the direct effects of the STN 

DBS, while controlling for other factors such as changes in postoperative medication, 

preoperative vulnerability, surgical effects, underlying PD-related factors, and 

psychosocial effects. Moreover, due to the successful removal of the monopolar DBS 

related artifact the patients could be studied neurophysiologically in their long-term DBS 

therapeutic setting, they were adapted to. 

 

1. The present results support our hypothesis that STN DBS modifies the emotional 

and motivational processing of primary reward cues and aversive stimuli in PD 

patients. 

Both subjective and objective measures suggest STN DBS increases activation of 

the aversive motivational system in a way that more emotional relevance is 

attributed to fearful aversive stimuli and the startle potentiation by aversive stimuli 

is increased.  Additionally, STN DBS likely disrupts physiological inhibition of 

ABR by appetitive (erotic) cues. These may be experienced as frustrative  non-

reward (Amsel, 1962) despite their positive subjective ratings. Further research is 

needed to determine whether changes in affective state and motivational 

processing can lead to difficulties in self-perception or account for problems in the 

social adjustment of patients treated by STN DBS,(Schupbach et al., 2006) mainly 

when they are in discrepancy with subjective evaluations.  

In addition, in patients with postoperative weight gain, we found an increased 

sensitivity to food cues reflected in subjective ratings and also an increased 

engagement of appetitive motivational system by food cues according to startle 

modulation measure. This suggests that STN DBS may increase motivation for 
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food cues, thereby contributing to postoperative weight gain. This may be of 

practical value for management of this side effect. 

2. Our results also support the second hypothesis that the human STN is involved in 

processing of primary rewards and aversive stimuli.  Some evidence for STN role 

in emotional processing has been already gathered from neurophysiological 

studies in PD patients, however, the STN involvement in processing of 

motivationally relevant signals such as food and erotic cues or threatening stimuli 

has not been studied so far. In line with findings from animal studies, our results 

suggest that the human STN forms part of the reward circuits and that the STN 

DBS may potentially influence biological behavior and social interactions.  
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VIII. Abbreviations 
ABR   Acoustic Blink Reflex 

AUC  Area under the Curve 

BDI  Beck Depression Inventory 

DBS   Deep Brain Stimulation 

EMG   Electromyography 

fMRI  functional Magnetic Resonance Imaging 

IAPS   International Affective Picture System 

MMSE  Mini-mental State Examination 

PD   Parkinson’s disease 

SAS   Startling Acoustic Stimulus 

STN   Subthalamic nucleus 

UPDRS  Unified Parkinson’s Disease Rating Scale  
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ABSTRACT: Deep brain stimulation (DBS) of the
subthalamic nucleus (STN) can induce nonmotor side
effects such as behavioral and mood disturbances or
body weight gain in Parkinson’s disease (PD) patients.
We hypothesized that some of these problems could be
related to an altered attribution of incentive salience (ie,
emotional relevance) to rewarding and aversive stimuli.
Twenty PD patients (all men; mean age 6 SD, 58.3 6 6
years) in bilateral STN DBS switched ON and OFF con-
ditions and 18 matched controls rated pictures selected
from the International Affective Picture System accord-
ing to emotional valence (unpleasantness/pleasantness)
and arousal on 2 independent visual scales ranging
from 1 to 9. Eighty-four pictures depicting primary
rewarding (erotica and food) and aversive fearful (vic-
tims and threat) and neutral stimuli were selected for
this study. In the STN DBS ON condition, the PD

patients attributed lower valence scores to the aversive
pictures compared with the OFF condition (P < .01) and
compared with controls (P < .01). The difference
between the OFF condition and controls was less pro-
nounced (P < .05). Furthermore, postoperative weight
gain correlated with arousal ratings from the food pic-
tures in the STN DBS ON condition (P < .05 compen-
sated for OFF condition). Our results suggest that STN
DBS increases activation of the aversive motivational
system so that more relevance is attributed to aversive
fearful stimuli. In addition, STN DBS–related sensitivity
to food reward stimuli cues might drive DBS-treated
patients to higher food intake and subsequent weight
gain. VC 2011 Movement Disorder Society

Key Words: STN DBS; emotion; affective; IAPS;
weight gain; motivation

Deep brain stimulation of the subthalamic nucleus
(STN DBS) has become a standard and highly effective
treatment in advanced Parkinson’s disease (PD).1 In
addition to motor symptom improvement, STN DBS–

treated patients can develop behavioral and mood dis-
turbances (impulsivity, irritability, mania, depres-
sion).2,3 In addition, weight gain has also been
reported as a common nonmotor side effect.4,5 How-
ever, the mechanisms of these complications still
remain unclear.

Changes in emotional and motivational processes
may be part of the side effects of STN DBS in PD.
Although 1 study using a mood-induction procedure
found that STN DBS may enhance emotional process-
ing,6 other studies reported that STN DBS induced
impaired facial expression recognition selective for
negative emotions,7–10 and reduced differentiation and
self-reported intensity of negative feelings induced by
film excerpts.11 Emotion recognition and differentia-
tion are adaptive skills important for social interac-
tions.12 However, a disturbance in these abilities can
only explain part of the emotional and behavioral
complications seen in STN DBS–treated patients.
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Moreover, appropriate decision making and adaptive
behavior are promoted by motivational processes. The
motivational process that assigns behavioral or emo-
tional relevance to a stimulus representation is referred
to as incentive salience attribution.13 It has been dem-
onstrated that incentive salience attribution to both
appetitive and aversive stimuli depends largely on the
mesolimbic dopaminergic system,13–15 and there is
ample evidence showing the close relationship between
activation of the mesolimbic dopaminergic neurotrans-
mission, motivational ‘‘wanting’’ for food rewards,
increase in food intake, and obesity.16–18 This dopa-
mine-mediated behavior also seems to be modulated
by the control of the STN, as both the subthalamot-
omy and the STN DBS increased motivation for food
in experimental animals.19–24 The role of STN in emo-
tional and motivational processing was also demon-
strated in neurophysiological studies in monkeys and
in PD patients.25,26

We used a computer-based visual test containing a
series of images chosen from the International Affec-
tive Picture System (IAPS), which has been proven to
activate either appetitive or aversive motivational
functions.27 At a conscious level, these activations can
be expressed in subjective ratings along the dimension
of emotional valence (qualitative measure of emotion
from pleasant to unpleasant, with neutral stimuli in
the middle) and emotional arousal or intensity (quan-
titative measure of emotional intensity from calm to
excited) as personal relevance appraisal (incentive sali-
ence attribution).28,29 To test our hypothesis, we com-
pared ratings of IAPS pictures in a group of PD
patients with DBS switched ON and OFF and in
healthy controls. To examine changes in activation of
the appetitive motivational system, we focused on the
possible STN DBS–related effects on incentive salience
of pictures containing food or erotic material, as they
represent the 2 primary rewards and high sensitivity
to rewards was found to be related to eating behaviors
that contribute to excess body weight.17 Similarly,
changes in activation of the aversive motivational sys-
tem were analyzed from the perspective of 2 categories
of aversive fearful stimuli—pictures of threats of
aggression and pictures of victims of destructive or in-
jurious actions.

Patients and Methods

Subjects

The study was approved by the local ethics commit-
tee, and all participants gave their informed consent
prior to inclusion in the study. Twenty PD patients
treated with bilateral STN DBS for motor fluctuations
and/or dyskinesias and 18 matched controls, all men,
were included in the study. All the patients fulfilled
the UK Brain Bank criteria for diagnosis of PD.30

On the day of the study all participants were
screened for cognitive and mood status using the Mini
Mental State Examination (MMSE)31 and the Beck
Depression inventory (BDI; Beck et al, 1996).32 The
demographic variables of the patients and controls
and disease characteristics are summarized in Table 1.
No differences were found for age, MMSE, BDI, or
education duration between the patients and the con-
trol group. In the PD group, the mean daily dose of
dopaminergic medications (in levodopa equivalents)33

was 550.3 6 479 mg. Fourteen patients were on levo-
dopa only, 2 were taking a combination of levodopa
with dopamine agonists, 2 were on dopamine agonist
therapy only, and 2 patients were free of dopaminer-
gic medication. Five of the patients were on antide-
pressant therapy (3 on citalopram, 1 on mirtazapine,
1 on sertraline). One of the control subjects was on
anxiolytic therapy with buspiron. No other psycho-
tropic medication was taken. In addition, the preoper-
ative and postoperative body weights were recorded in
the PD group. Sixteen patients were chronically stimu-
lated by bilateral monopolar STN DBS, 4 patients by
bipolar on 1 side and monopolar on the other.

The possible presence of impulse control disorder or
repetitive behaviors in PD patients was screened using
a modified version of the Minnesota Impulsive Disor-
ders Interview (MIDI),34 and all patients who scored
in the MIDI were examined by a psychiatrist. Only 1
patient, who presented signs of binge eating and pund-
ing, met the criteria for obsessive–compulsive
disorder.35

Visual Task and Procedure

Visual stimuli were selected from the International
Affective Picture system (IAPS) in order to represent
specific thematic appetitive and aversive contents.27

Eighty-four pictures were selected consisting of: (1) 21
with erotica content (erotic women and couples), (2)
21 with food content, (3) 21 with aversive content—
victims (mutilations) and threat (human or animal

TABLE 1. Parkinson’s disease patients and control
group—demographic and disease characteristics

PD patients Controls

Age (y) 58.3 6 6 56.1 6 7
Education duration (y) 13.8 6 3 16.9 6 3
MMSE 28.6 6 1 29,4 6 1
BDI 11.8 6 7 8.4 6 6
Disease duration (y) 15.7 6 4
Time interval after surgery (y) 2.8 6 2
DBS STN parameters Frequency (Hz) 130.8 6 3

Pulse width (ls) 76.3 6 23
Amplitude (V) 2.8 6 0.4

Values are expressed as means 6 SD.
MMSE, Mini Mental State Examination; BDI, Beck Depression Inventory;
DBS STN, deep brain stimulation of the subthalamic nucleus.
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attacks, aimed guns), and (4) 21 with neutral content
(household objects, buildings, plants). Erotic and aver-
sive pictures were valence- and arousal-matched
according to their normative ratings. Three sets of pic-
tures in different orders were compiled so that maxi-
mally 2 pictures with the same content followed.#

Patients were tested after overnight withdrawal
from dopaminergic medication. On the day of testing
their stimulators were switched off for 2 hours starting
at 8 AM. Then they were tested in 2 conditions with
STN DBS switched ON and OFF in counterbalanced
orders. There was a 1-hour break between when the
stimulators were switched into the particular condition
and affective testing (thus, stimulators had been
switched OFF for 3 hours in patients who were tested
in the OFF condition first). For each patient a different
set of pictures was used for DBS ON and DBS OFF
conditions. In each condition prior to affective testing,
the UPDRS III rating was performed by a rater who
was unaware of the DBS condition.

The participants were comfortably seated in front of
a touch-sensitive screen. Each picture was presented
on the screen for a period of 6 seconds. Subjects were
required to rate each picture separately along the
dimension of emotional valence and arousal by touch-
ing the appropriate symbol on 2 independent visual
scales that were presented on the screen after the pic-
ture offset. The scales were designed according to the
original IAPS scales.27 Valence was rated on a 1–9
scale, with 9 being the most pleasant, and arousal on
a 1–9 scale, with 9 being the most arousing. Before
testing, patients were instructed how to rate valence
and arousal of each picture according to the IAPS
manual. Then they were shown 8 representative pic-
tures for training purposes.

Data Analysis

For statistical analysis SPSS 14.0.1 software (Chicago,
IL) was used. As several parameters did not follow the
normal distribution, nonparametric tests were applied.
For each category of pictures, the Kruskal–Wallis test
was used to analyze differences in valence and arousal
between conditions and groups of subjects. The signifi-
cant results were then analyzed post hoc by the Mann–

Whitney U test (to compare groups of subjects) and the
Wilcoxon signed-rank test (to compare DBS OFF and
ON conditions). Parameters with normal distribution
were analyzed by Pearson correlation and partial corre-
lation analysis. Bonferroni correction of multiple com-
parisons was used whenever appropriate.

Results

Clinical Observations

The UPDRS III score decreased from 40.4 6 11 in
the DBS OFF condition to 17.5 6 6 in the DBS ON
condition (Z ¼ 3.9, P < .0001).

Affective Ratings

Between-Groups and Condition Comparison

The valence comparison for each of the 4 categories
of the IAPS pictures revealed that only aversive pictures
yielded significant differences among DBS conditions
and/or groups of subjects (v2 ¼ 7.4, P < .05 corrected).
No differences in valence ratings were found for the
other picture categories (Fig. 1). Post hoc analyses dis-
closed that in the DBS ON condition, patients rated the
valence of aversive pictures significantly lower com-
pared with the DBS OFF condition (Z ¼ 2.7, P < .01)
and compared with the control group (Z ¼ 2.5, P <
.01). The difference in valence of aversive pictures
between patients in the DBS OFF and control subjects
was less pronounced but still significant (Z ¼ 2.0, P <
.05). Of the 2 subcategories of aversive pictures, the pic-
tures of victims elicited stronger effects in the post hoc
tests (conditions: Z ¼ 2.4, P < .05; groups: Z ¼ 2.5, P

FIG. 1. Valence of selected IAPS pictures of 4 categories (erotic,
food, neutral, aversive content) as rated by control subjects (n 5 18)
and PD patients (n 5 20) in conditions with the STN DBS switched
OFF and ON. The only difference between conditions/groups of sub-
jects was found for the valence of pictures with aversive content (sig-
nificance level of post hoc tests: *P < .05, **P < .01). The box plot
represents the median (horizontal line), interquartile range (length of
box plot), values within 1.5 interquartile range of the upper/lower quar-
tile (whiskers), outliers—within 1.5 and 3.0 interquartile range (*),
extreme values—>3.0 interquartile range (D); significance level of post
hoc tests (*P < .05, **P < .01).

------------------------------------------------------------
#The numbers of IAPS pictures were as follows: erotic pictures—
4002, 4275, 4320, 4232, 4694, 4180, 4250, 4150, 4240, 4255,
4670, 4235, 4310, 4225, 4311, 4220, 4006, 4659, 4141, 4001,
4142; food pictures—sweet foods, 7200, 7220, 7283, 7286, 7320,
7330, 7340, 7402, 7487; salty foods, 7230, 7289, 7291, 7350,
7352, 7460, 7475, 7480, 7481, 7482, 7488; wines picture, 7280;
neutral pictures—7235, 7175, 7185, 7110, 7491, 7179, 7035, 7705,
5510, 7059, 7041, 7010, 7090, 7950, 7080, 7000, 7187, 7006,
7050, 7020, 7004; aversive pictures—threats, 1050, 1120, 1300,
3500, 3530, 6230, 6260, 6350, 6510, 6550; victims, 3000, 3010,
3060, 3069, 3071, 3080, 3120, 3130, 3170, 3266; threat/victim pic-
ture, 9410.
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< .01) than did the pictures of threats (conditions: n.s.;
groups: Z ¼ 2.2, P <.05); see Figure 2.

Similar to the effects on valence, the only significant
effect on arousal was found for pictures with aversive
content (v2 ¼ 7.8, P <.05 corrected). The arousal eli-
cited by aversive pictures was rated significantly higher
by patients with the DBS switched ON than by con-
trol subjects (Z ¼ 2.7, P < .01). No other differences
in arousal were detected by post hoc tests.

To test a confounding effect of therapy, all patients
on antidepressants (n ¼ 5) were excluded and all anal-
yses recalculated, achieving similar results. Therefore,
the original group of patients (n ¼ 20) did not have to
be restricted.

Within-group post hoc analyses demonstrated a sig-
nificant effect of the order, as the changes in valence
(Z ¼ 2.9, P < .01) and arousal (Z ¼ 2.2, P < .05) of
aversive pictures were significant only for group of
patients tested first in the OFF condition (n ¼ 12).

Between Picture Category Comparison

Mean valence and arousal ratings of aversive and
erotic pictures were compared for each picture cate-
gory in both groups of subjects. Pictures of victims
always had the highest mean arousal scores (P <
.0001 corrected) and showed a higher difference of va-
lence scores from the valence of neutral pictures (P <
.0001 corrected) than those in the other categories
(erotica, threat).

Body Weight Change and Affective Ratings

The mean body weight of patients increased postop-
eratively to 91.5 6 11 kg from a preoperative weight
of 83.4 6 14 kg (Z ¼ 3.6, P < .001).

The weight change correlated positively with arousal
ratings of appetitive stimuli in the DBS ON condition

(erotic: r ¼ 0.66, P < .01 corrected; food: r ¼ 0.69, P <
.01 corrected, see Figure 3) and weakly in the DBS OFF
condition (erotic: r ¼ 0.53, P <.05 corrected; food: r ¼
0.49, n.s.). For the ratings of food pictures, this positive
correlation in the DBS ON condition remained signifi-
cant for the food pictures even after suppression of the
effect of DBS OFF condition by partial correlation anal-
ysis (r ¼ 0.59, P < .05 corrected). No other correlations
were found. These correlations remained significant
even after exclusion of patients in whom antidepres-
sants (n ¼ 3) or dopamine agonists (n ¼ 2) might have
influenced body weight changes (see Supplementary
Material). In addition, the effect of order was analyzed
post hoc, and the partial correlation was found to be
significant (r ¼ 0.61, P < .05) only in the group of
patient tested in the DBS OFF condition first (n ¼ 12).

Discussion

This is the first study demonstrating STN DBS
effects on motivational salience attribution (assigning
relevance to a stimulus representation) in PD patients.
Our findings support the hypothesis that STN DBS
influences the incentive salience attribution (ie, assign-
ing relevance to a stimulus representation).

According to the valence ratings, aversive stimuli
were rated as more unpleasant in the STN DBS ON
condition than when compared with the OFF condi-
tion and with the controls. The change in valence rat-
ings of aversive pictures because of STN DBS was
demonstrated only for pictures of victims, not threats.
Findings from several fMRI studies implicated the ex-
istence of distinct neural substrates of disgust-relevant
categories such as contamination and mutilation.36

Therefore, one possible explanation could be a selec-
tive effect of DBS on structures involved in processing

FIG. 2. Valence of 2 subcategories of the IAPS pictures with aversive
content as rated by control subjects (n 5 18) and PD patients (n 5
20) in conditions with the STN DBS switched OFF and ON. The pic-
tures showing victims elicited more significant differences in valence
between conditions/groups than the pictures of threats (significance
level of post hoc tests: *P < .05, **P < .01).

FIG. 3. Correlation between the arousal of the pictures with the food
content rated by Parkinson’s disease patients (n 5 20) with the STN
DBS switched ON and body weight change after STN DBS implanta-
tion (kg).
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this content category. Nevertheless, other imaging and
neurophysiological studies indicated the existence of a
common subcortical network involved in the incentive
salience attribution processing29,37 and suggested the
influence of arousal level on affective and motivational
physiological responses.38,39 In the present study the
pictures of victims were stronger stimuli than pictures
from the other content categories according to the va-
lence and arousal ratings in all groups and conditions
and may represent the most salient pictures that signal
threat to one’s own bodily integrity. This is in line
with the finding that the mesolimbic dopamine system
responds to both rewarding and aversive stimuli that
are of high intensity.14,15

The difference between valence and arousal ratings
of aversive pictures in the control group and PD
patients was more pronounced in the DBS ON than in
the DBS OFF condition. The separate analyses involv-
ing patients tested first in the OFF or the ON condi-
tions nevertheless suggested that a DBS aftereffect
contributed to our results. It seems that DBS switch-
ing-off for 1 hour is insufficiently short compared
with a 3-hour interruption. According to our results,
we assume that the STN DBS may drive the aversive
motivational system in PD patients away from normal
functioning and possibly interfere with social interac-
tions. Moreover, the increased motivational relevance
attribution to aversive pictures in the DBS OFF condi-
tion compared with controls could not be easily attrib-
uted to the neurodegenerative process itself or
medication, as there is evidence for impaired incentive
salience attribution by dopamine loss40,41 or an inhibi-
ting effect of antidepressants on aversive stimuli
processing.42,43

For the appetitive stimuli, the evidence of STN
DBS influence on incentive salience attribution is
rather indirect. Although we could not find any con-
scious change in subjective ratings of appetitive stim-
uli because of the STN DBS, partial correlation
analysis showed that patients with the higher postop-
erative weight increase rated food stimuli as more
intense under STN DBS. Strictly speaking, a DBS-
related increase by 1 point on the arousal scale of the
food pictures was associated with an average postop-
erative body weight increase of 3.3 kg. We assume
that this result is consistent with increased sensitivity
to food reward cues because of STN DBS. This is in
line with evidence from animal studies that STN DBS
and STN lesions increased motivation for food but
without eliciting binge eating.21,44 Similarly in our
patients, the increased weight gain did not appear
related to binge eating. We suggest that such STN
DBS–related sensitivity to food reward cues drives
DBS-treated patients to higher food intake and subse-
quent weight gain.

We believe that our results support the hypothesis
that STN DBS affects the incentive salience attribution

in STN DBS–treated patients. It has been suggested
that DBS activates axons surrounding the active con-
tact of the implanted electrodes and increases output
from the stimulated nucleus.45–47 In animals, STN
DBS has been found to increase the activity of the DA
system.48,49 STN DBS may therefore enhance the
physiological function of the mesolimbic dopamine
system, either by an increased output from the STN to
its mesolimbic target structures such as the ventral teg-
mental area (VTA)50,51 and ventral pallidum50,52 or
by directly activating the mesolimbic dopaminergic
projections from the VTA to the nucleus accumbens
that are running within the adjacent medial forebrain
bundle.45,53

There are several limitations of our study. We are
lacking data on food intake, hunger, or appetite and
motivational salience attribution before surgery, and
we can hardly exclude the effect of medication (anti-
depressants, dopamine agonists, levodopa decrease) on
between-group comparisons and on the body weight
of PD patients.54–56

Despite its drawbacks, the present study suggests
that STN DBS activates the aversive motivational
system in a way that more emotional relevance is
attributed to fearful aversive stimuli. Our results fur-
ther suggest that body weight gain in PD patients
treated by STN DBS might be related to increased
sensitivity to food reward cues, which may be of
practical value for managing this side effect. In con-
clusion, this study further supports the role of the
STN in emotional and motivational processing which
may potentially influence food intake behavior and
social interactions.

Additional Analyses

From correlation analysis, we excluded patients (n
¼ 5) in whom weight changes were present after intro-
duction of the antidepressants (ADs) or dopamine ago-
nists (DAgs) before or after the surgery. This included
remaining patients (n ¼ 15) with a well-documented
stable body weight after the preoperative introduction
of ADs or DAgs and patients in whom this treatment
was introduced shortly before testing and in whom no
weight change has been detected since. The positive
body weight change correlated positively with arousal
ratings of appetitive stimuli in the DBS ON condition
(erotic: r ¼ 0.70, P < .01 corrected; food: r ¼ 0.77, P
< .01 corrected) and not in the DBS OFF condition
(erotic: r ¼ 0.55, n.s. corrected; food: r ¼ 0.57, n.s.).
This positive correlation between arousal and body
weight change in the DBS ON condition remained sig-
nificant for the food pictures even after suppression of
the effect of the DBS OFF condition by partial correla-
tion analysis (r ¼ 0.64, P < .05 corrected).

There was no difference found either for valence or
for arousal ratings from sweet and salty food pictures
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in the between group (PD patients in OFF condition
vs controls, patients in ON condition vs controls) and
the between condition (DBS OFF vs ON condition)
comparison. Postoperative body weight change corre-
lated positively with arousal ratings of salty (r ¼ 0.70,
P < .001, uncorrected) and sweet (r ¼ 0.69, P < .002
uncorrected) food pictures in the DBS ON condition.
In the DBS OFF condition these correlation were
weaker for both salty (r ¼ 0.46, P < .04 uncorrected,
n.s. corrected) and sweet (r ¼ 0.47, P < .04 uncor-
rected, n.s. corrected) food pictures. The partial corre-
lation analysis was also performed for salty food
pictures (r ¼ 0.63, P < .004 uncorrected) and for
sweet food pictures (r ¼ 0.47, P < .04 uncorrected).

Acknowledgments: We are grateful to Markéta Fialová for
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Abstract Deep brain stimulation of the subthalamic nucleus (DBS STN) is an effective treat-
ment method in advanced Parkinson’s disease (PD) providing marked improvement 
of its major motor symptoms. In addition, non-motor effects have been reported 
including weight gain in PD patients after DBS STN. Using retrospective survey, we 
aimed to evaluate weight changes in our patients with advanced PD treated with 
DBS STN. We inquired 25 PD patients (16 men, 9 women), of mean age 55 (42–65) 
years, mean PD duration 15 (9–21) years, who previously received bilateral DBS 
STN. We obtained valid data from 23 patients. In the first survey, 1 to 45 months 
after DBS, weight gain was found in all patients comparing to pre-DBS period. The 
mean increase was 9.4 kg (from 1 to 25 kg). The patients’ mean body mass index 
(BMI) increased from 23.7 to 27.0 kg/m2, i.e. by 3.3 kg/m2 (+2 to +6.1 kg/m2). In 
the repeated survey one year later, in 12 of the patients body weight moderately 
decreased, 3 did not change, and 6 patients further increased their weight. Possible 
explanations of body weight gain after DBS STN include a reduction of energy out-
put related to elimination of dyskinesias, improved alimentation or direct influence 
on function of lateral hypothalamus by DBS STN.

Abbreviations

DBS STN	 - Deep Brain Stimulation of the subthalamic nucleus
PD	 - Parkinson’s disease
BMI	 - Body Mass Index
UPDRS	 - Unified Parkinson Disease Rating Scale
MDS	 - Movement Disorder Society
LEDD	 - Levodopa Equivalent Daily Dose

Introduction 

Bilateral deep brain stimulation of the sub-
thalamic nucleus (DBS STN) is an effective treat-
ment method for selected patients with advanced 
Parkinson’s disease (PD), who can not be optimally 
controlled by pharmacotherapy. DBS is performed 
using a stimulating electrode stereotactically im-
planted into an exactly defined target within the 
brain, and connected to a stimulator generating 
high-frequency electrical pulses. It has been sug-
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gested that DBS modifies function of the brain nuclei 
and circuits and therefore influences motor symptoms 
of the disease. Beside the effects of DBS STN in PD [11], 
DBS of the internal segment of the globus pallidus was 
shown to alleviate both symptoms of PD and different 
dyskinesias, and DBS of the ventral intermedius thalamic 
nucleus reduces tremor of various origin [3].

DBS STN effectively influences main motor symp-
toms of PD (tremor, rigidity, bradykinesia) and as a main 
therapeutic advantage over pharmacotherapy, it improves 
late stage motor complications of PD. DBS STN directly 
alleviates motor fluctuations and indirectly, allowing for 
reduction of antiparkinsonian medication, suppresses 
dopaminergic induced dyskinesias.

Beside these largely beneficial outcomes, motor as 
well as non-motor side effects of DBS have been re-
ported. Non-motor effects include occasional behavioral 
changes, affective and cognitive disorders. In addition, 
weight gain has been recently reported as an unexpected 
consequence of DBS [13,2,9,21]. Also in our PD patients, 
we noticed weight gain following DBS STN [19]. There-
fore, the present study was performed in order to evaluate 
body weight changes in our patients with advanced PD 
that were treated with DBS STN.

Material and methods

All 25 patients who received DBS STN between 2000 
and 2003 in the Movement Disorders Center, Charles 
University, Prague, were included in the study. They were 
16 men and 9 women, mean age in the time of inter-
vention was 55 years (range 42–65), mean PD duration 
14 years (range 9–21). 

Repeated retrospective survey was used as a method. 
The mean interval between DBS implantation and the 
first survey was 19 months (range 1–45). The subjects 
were provided with a structured questionnaire (44 ques-
tions) regarding their family and personal history focus-
ing on potential presence of metabolic syndrome. Further 
specific questions concerned body weight changes in the 
period preceding PD, and in the course of PD, before and 
after the implantation of DBS. All addressed participants 
returned the questionnaire. 

Body mass index (BMI) was calculated from a person’s 
weight in kilograms divided by height in meters squared 
(BMI=kg/m2). Accordingly, patients were divided 
into 6 groups: underweight (BMI under 18.5), normal 
weight (BMI from 18.5 to 25), overweight (BMI 25–30), 
1st degree obesity (BMI 30–35), 2nd degree obesity (BMI 
35–40) and 3rd degree obesity (BMI over 40). 

We repeated the survey with the same group twelve 
months later focusing on body weight and metabolic 
syndrome signs.

All patients were neurologically evaluated using Uni-
fied Parkinson Disease Rating Scale (UPDRS) and MDS 
scale of dyskinesias within one week before and approxi-
mately 1 year after DBS STN implantation. Daily doses of 
dopaminergic medication were converted to Levodopa 

Equivalent Daily Dose, LEDD (100 mg of standard le-
vodopa equals 150 mg of CR levodopa, 1 mg pergolide or 
pramipexole, 10 mg bromocriptine, or 6 mg ropinirole).

Body weight values before and after DBS were 
compared using paired Student’s t-tests. Correlations 
between clinical parameters and body weight changes 
were calculated using Spearman’s rho coefficient. 

Results

Within one year from DBS implantation, 23 out of 25 
patients did experience motor improvement including al-
leviation of motor fluctuations and dyskinesias (detailed 
results of clinical evaluation were published in [19]). Two 
patients were excluded from the study of body weight 
changes. One because of discrepancies between the data 
provided in the patient’s questionnaire, our observation, 
and the data provided by family members. The other one 
has had DBS interrupted in the time of the first survey as 
the stimulator was temporarily withdrawn due to inflam-
matory complications. 

Body weight changes
All 23 patients reported body weight gain after DBS 

implantation (Table 1, Figure 1). In the first survey, we 
found an overall mean increase in weight of 9.4 kg (range 
1–25 kg), i.e. +13%, p<0.0001. In women, there was an 
average increase in weight of 12.8 kg (range 6–25 kg), i.e. 
+21%, p<0.01, and in men, weight increased by 7.6 kg 
(range 1–20 kg), i.e. +10%, p<0.0001. Comparing mean 
weight increases in men and women, there was a trend 
towards difference in genders (p=0.07), In the second 
survey, 14 subjects lost weight, 3 remained stable, and 
6 reported further weight gain compared to the first 
survey. The mean weight change compared to the first 
survey was –1.4 kg (range –6 to +11 kg) i.e. –2%, p=0.11; 
–2.4 kg in men (range –6 to +4 kg) i.e. –3%, p<0.01 and 
+0.5kg in women (range –6 to +11 kg) i.e. +1%, p=0.79. 
Comparing the second survey to the values before DBS, 
there was a mean weight gain of 8 kg (from –4 to +24 kg), 
p<0.0001. With regard to the information on weight 
preceding the onset of PD, following DBS, there was a 
mean change of +13 kg (from –4 to +33 kg) comparing 
to the lowest weight before PD onset and a mean change 
of +4 kg (from –9 to +25) comparing to the highest 
weight the patients ever had before PD onset. In this last 
comparison, body weight increased in 13, decreased in 
nine, and two patients were unable to state their highest 
weight before PD.

No significant correlation was found between changes 
in UPDRS and MDS scores of dyskinesias and weight 
changes. Nor did we find any significant correlation 
between weight changes and the changes in LEDD. 

After DBS, all patients increased their BMI. The mean 
BMI before DBS STN was 23.7 (±standard deviation 2.9). 
In the first survey, it increased to 27.0 kg/m2 (±3.6) and 
in the second survey, it remained nearly unchanged at 
26.6 (±3.5) kg/m . Shifts in BMI categories occurred, too. 
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Comparing to BMI values before DBS, in the first survey 
two patients increased by two BMI categories, 11 patients 
shifted by one BMI category (one patient increased from 
underweight to normal weight, 7 increased from normal 
weight to overweight, and 3 increased from overweight 
to the 1st degree of obesity). Ten patients did not change 
their BMI category. In the second survey, 17 patients 
did not demonstrate any further changes in their BMI 
category, 2 patients shifted down 1 category (from the 
1st degree of obesity to overweight), and 1 patient shifted 
up one category from the 1st degree of obesity to the 2nd 
degree of obesity (Figure 2).

Discussion

In this retrospective study, we found weight gain 
accompanying motor improvement in all 23 patients 
evaluated after DBS STN. Therefore, we confirm previous 

findings of weight increase after DBS STN. Similarly to 
other reports [13,2,9,21], average weight gain was nearly 
10 kg. Surprisingly, women in our study tended to gain 
more weight than men, while in none of the previous 
reports such difference between genders was found. 
Weight gain in our patients did not correlate with any of 
clinical variables reflecting motor improvement neither 
with reduction of dopaminergic treatment following 
DBS STN. 

We have to admit that due to the method used (retro-
spective questionnaire) and different intervals for each 
patient between the implantation and the time of the first 
survey, our results are not completely comparable with 
previous reports. However, in our study, we observed 
patients for a longer period of time and repeated the 
same survey on the study group one year later. Thanks 
to this, beside weight gain following DBS, we found out 
that at longer intervals, it is possible to observe weight 
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Table 1. Weight changes after DBS

Before DBS After DBS: 1st survey After DBS: 2nd survey

 

Mean weight  
(kg)

Range 
(kg)

Mean weight 
(kg)

Range 
(kg)

Mean weight change  
(1st survey – before DBS) 

(kg)

Mean weight 
(kg)

Range 
(kg)

Mean weight change  
(2nd survey – 1st survey) 

(kg)

All 71.0 50–96 80.4 58–105 9.4*** 79.0 60–100 –1.4

Men 75.9 60–96 83.5 70–105 7.6*** 81.1 66–100 –2.4

Women 61.9 50–79 74.6 58–90 12.8* 75.1 60–90 +0.5
***p<0.0001; *p<0.01

Figure 1. Individual weight changes of the patients before DBS, and after DBS in the first and second survey (kg)
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loss reversing the previous weight increase but rarely 
back to the same level as before DBS. It was unclear how 
long after the DBS implantation the trend change from 
increasing to decreasing weight occurred. Possibly, some 
patients could have already been in a decreasing weight 
trend when we surveyed them first time, however, they 
could still report an increase in weight compared to the 
time before DBS. The weight change interval seems to 
be very individual. In fact, within 12 months following 
the first survey, weight increased in three patients with 
the longest interval as well as in three patients with the 
shortest interval from the implantation. 

In brief, despite different observation methods, the 
findings from several centers agree in demonstrating 
weight gain in patients with PD after DBS STN. The 
mechanism of this weight gain is still unclear and various 
hypothetical explanations can be suggested.

Firstly, weight gain following DBS STN might reflect 
a reversal of previous weight loss in PD. Indeed, weight 
loss has been observed since the early stages of PD and 
it usually progresses during its course [4,8,15]. Accord-
ing to one study, weight loss in PD patients may begin 
2–4 years before the diagnosis is made [7]. One reason 
for weight loss starting from the beginning of PD may 
be worsened exploitation of energy from food due to 
gastrointestinal visceromotor impairment. Accordingly, 
recent pathologic findings showed involvements of bul-
bus olfactorius and visceromotor nuclei of the brainstem 
since the earliest stages of the disease [5]. Also, olfactory 
dysfunction and motor disability can lead to a decrease of 
appetite and, in consequence, to a decrease of energetic 
input [4,1]. However, several studies have reported equal 
or even higher intake of energy in PD patients compared 
to healthy subjects [7,20,8]. Surprisingly, according to 

these studies, energetic input starts to increase when 
weight begins to decline [4]. The fact that weight loss oc-
curs despite higher intake of energy could mean that it is 
caused by higher energetic output. This explanation was 
supported by a couple of studies, which proved that an 
increase of energetic output was related to severe muscle 
rigidity [14,10] or dyskinesias, where BMI was negatively 
correlated with severity of dyskinesias [17]. It was also 
found that weight loss correlates with the disease severity 
[4], the degree of hypokinesia [18] or with cognitive de-
cline [12]. Consequently, weight gain can be explained by 
motor improvement following DBS, especially owing to 
a reduction in exhausting dyskinesias. Subsequently, the 
energy output may be reduced, as it was demonstrated 
in one previous study [13]. Nevertheless, in agreement 
with our results, the study did not find any correlation 
between weight gain and the reduction of dyskinesias ac-
cording to detailed dyskinesia scales [13]. Another study 
that demonstrated a correlation between weight change 
and severity of dyskinesias, did so only according to raw 
UPDRS IV scores that are based on subjective patient 
evaluation [2]. 

Secondly, weight gain can be related to changes in 
medication, especially with regard to a reduction or 
withdrawal of dopaminergic therapy. It is well known 
that dopaminergic drugs can cause gastrointestinal dis-
comfort, nausea and vomiting. Therefore, a reduction of 
dopaminergic drugs might lead to improved alimentation 
due to an alleviation of the side effects. Nevertheless, nei-
ther in our group nor in a previous report [2] patients com-
plained of nausea and vomiting before or after DBS STN. 
There remains a possibility that dopaminergic therapy can 
directly influence metabolism and energy consumption. 
In fact, only a few studies investigated levodopa therapy 
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in relation to weight in PD patients [18,16]. Palhagen et 
al. found that patients with an early stage of PD were 
losing weight even before the initiation of dopaminergic 
treatment and the loss of weight progressed after levodo-
pa was given [18]. No correlation was found between 
levodopa dose and weight loss. It was hypothesized that 
motor improvement induced by levodopa led to changes 
in energetic input/output ratio. Possible lipolytic or 
other metabolic effects of levodopa were suggested as 
well [22]. Consequently, a reduction of levodopa doses 
would cause weight gain. However, our data do not sup-
port this assumption. In accordance to a previous work 
[2], weight gain did not correlate with LEDD reduction 
in our patients. In another study, despite a correlation 
found between LEDD reduction and weight gain, the 
decreases of LEDD did not correlate with changes in 
energy expenditure [13]. 

Finally, weight changes could reflect a direct influ-
ence of DBS on autonomous functions and metabolic 
regulation. The question then would be whether DBS 
STN specifically normalizes metabolic disturbances 
induced by PD or it is rather a general effect of stimula-
tion. Despite all the above-mentioned observations, it 
does not seem that the weight increases following DBS 
STN in patients with PD reflect just an indirect effect 
of stimulation related to an improvement of motor dis-
ability. In fact, as the patients tend to gain more weight 
than they ever had, it might reflect a direct metabolic 
influence of the stimulation rather than just a reversal 
of pathologic weight loss. In this context, the close 
anatomic relationship between the subthalamic nucleus 
and lateral hypothalamus should be taken into account. 
Hypothalamic pathways and connections of “chemical 
systems” traverse the medial forebrain bundle in close 
vicinity to the STN, together with STN connections to 
the brainstem. Consequently, DBS STN has a chance to 
influence these pathways as well as adjacent neurons in 
the lateral hypothalamic area that are involved in feed 
habits and energy expenditure regulation [6].

In conclusion, DBS STN in PD patients is frequently 
accompanied by body weight gain. The mechanisms 
that cause the weight gain are not fully understood. The 
decrease in energetic output appears as a major contrib-
uting factor and may reflect a direct influence of DBS 
STN on brain systems regulating metabolism and food 
intake. 
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Abstract

Objective: We studied changes of the EEG spectral power induced by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in

patients with Parkinson’s disease (PD). Also analyzed were changes of visual evoked potentials (VEP) with DBS on and off.

Methods: Eleven patients with advanced PD treated with bilateral DBS STN were examined after an overnight withdrawal of L-DOPA and

2 h after switching off the neurostimulators. All underwent clinical examination followed by resting EEG and VEP recordings, a procedure

repeated after DBS STN was switched on.

Results: With DBS switched on, the dominant EEG frequency increased from 9.44G1.3 to 9.71G1.3 Hz (P!0.01) while its relative spectral

power dropped by 11% on average (P!0.05). Switching on the neurostimulators caused a decrease in the N70/P100 amplitude of the VEP

(P!0.01), which inversely correlated with the intensity of DBS (black-and-white pattern: P!0.01; color pattern: P!0.05).

Conclusions: Despite artifacts generated by neurostimulators, the VEP and resting EEG were suitable for the detection of effects related to

DBS STN. The acceleration of dominant frequency in the alpha band may be evidence of DBS STN influence on speeding up of intracortical

oscillations. The spectral power decrease, seen mainly in the fronto-central region, might reflect a desynchronization in the premotor and

motor circuits, though no movement was executed. Similarly, desynchronization of the cortical activity recorded posteriorly may by

responsible for the VEP amplitude decrease implying DBS STN-related influence even on the visual system.

Significance: Changes in idling EEG activity observed diffusely over scalp together with involvement of the VEP suggest that the effects of

DBS STN reach far beyond the motor system influencing the basic mechanisms of rhythmic cortical oscillations.

q 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Keywords: Deep brain stimulation; DBS; Subthalamic nucleus; STN; EEG; VEP; Parkinson’s disease
1. Introduction

While the positive effects that deep brain stimulation

(DBS) of the subthalamic nucleus (STN) exerts on motor

functions in patients with Parkinson’s disease (PD) are well

known (see e.g. Krack et al., 2003), the mechanisms of DBS

are still poorly understood. DBS appears to inhibit the

STN’s spontaneous activity, thus directly or indirectly

influencing motor circuits and ultimately leading to
1388-2457/$30.00 q 2006 International Federation of Clinical Neurophysiology.

doi:10.1016/j.clinph.2006.01.009
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decrease of rigidity, resting tremor and hypokinesia

(Benabid, 2003—review; Lozano et al., 2002—review).

During DBS STN, the execution of movement is

accompanied by changes at the subcortical and cortical

levels. Beside local changes in the regional blood flow

(rCBF) (Ceballos-Baumann et al., 1999; Limousin et al.,

1997; Thobois et al., 2002), there are changes in the motor

cortex excitability (Cunic et al., 2002; Däuper et al., 2002;

Pierantozzi et al., 2002). Hence, DBS affects not only the

stimulated nucleus activity but also motor cortex function,

probably by involvement in cortico-subcortical oscillations

detected by means of event-related desynchronization and

synchronization (ERD/ERS) (Brown, 2003—review).
Clinical Neurophysiology 117 (2006) 1017–1028
www.elsevier.com/locate/clinph
Published by Elsevier Ireland Ltd. All rights reserved.
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These oscillations are similarly influenced by dopaminergic

medication as well as by DBS STN (Devos et al., 2003,

2004). All these studies have analyzed DBS STN effects

solely in relation to the execution of voluntary movements.

Quite likely, the cortico-subcortical and cortico-cortical

oscillations are also affected while no movement is

executed. This is in agreement with the results of a recent

study (Silberstein et al., 2005) proving, on the basis of a

coherence analysis, DBS STN impact on cortico-cortical

coupling of resting EEG activity among a number of brain

areas. Consequently, DBS STN may also affect idling

oscillations of motor circuits. If this is the case, then also

should be affected the m-rhythm, an equivalent of resting

EEG activity of the sensory-motor cortex (Niedermayer and

Lopes Da Silva, 1993).

It seems that DBS STN may affect non-motor cortical

areas as well. This is corroborated by the observations

suggesting that DBS STN cause discrete changes in

cognitive functions (Morrison et al., 2004), mood

(Herzog et al., 2003) and perhaps even changes in

somatosensory or visual perception (Pierantozzi et al.,

1999; Priori et al., 2001). If DBS does have such effects,

it can be presumed that cortico-subcortical oscillations

outside the motor system are affected too. This could

concern the visual cortex, which is supplied with an array

of rich cortico-subcortical connections (Goebel et al.,

2004) and shows an idling activity known as alpha-

rhythm. Although visual system involvement is not in the

forefront of clinical symptoms, there is considerable

evidence of its abnormalities in PD (Bodis-Wollner,

1990—review). Specific findings include prolonged

latencies of visual evoked potentials (VEP) elicited by

achromatic (Bodis-Wollner and Yahr, 1978; Calzetti

et al., 1990; Gottlob et al., 1987; Ikeda et al., 1994) as

well as chromatic (Barbato et al., 1994; Büttner et al.,

1996) pattern stimuli, usually normalizing in response to

dopaminergic treatment (Barbato et al., 1994; Bodis-

Wollner et al., 1982). However, it is still unclear whether

the mechanisms of visual perception are influenced by

DBS STN. For that reason, the resting EEG with DBS

bilaterally switched on and off was complemented with

VEP recordings in order to explore DBS-related effects

on the visual system.

With DBS switched on, EEG and VEP are markedly

contaminated with stimulation artifacts. Therefore, part of

our study was to learn more about the nature of DBS-

related noise and find ways of its elimination. For the

spectral power analysis of the DBS-related effects on

resting EEG, we chose the alpha band which was the least

susceptible to contamination, and in which we assessed

the highest peak (the dominant frequency). We also

compared DBS impact on the latency/amplitude of VEP

elicited by flash, by black-and-white and color pattern

reversal stimuli. Selected variables were subsequently

correlated with the clinical scores and stimulation

parameters.
2. Method
2.1. Patients and examination procedure

Included in the study were 12 patients (7 men, 5 women)

with advanced PD and with a 9.9 months history (variance

2–18 months) of bilateral implantation of Medtronic 3389

electrodes placed in the STN and connected to two

implanted neurostimulators (Itrel II in 7 patients or Soletra

in 5 patients; Medtronic, Minneapolis, MN). At the time of

implantation, the patients’ mean age was 57.3G6.3 years

(meanGSD). The patients underwent the surgery 13.8G4

years from the first signs of PD on average.

Chronic DBS was set to obtain the optimal clinical effects in

individual patients with following parameters: average voltage

2.44G0.7 V (2.38G0.8 V on the right electrode, 2.50G0.8 V

on the left). In 6 patients, a frequency of 130 Hz was used

bilaterally, in 4 patients 145 Hz was used to stimulate the left

STN, and 130 Hz to stimulate the right STN; two patients were

stimulated with 145 Hz on both sides. The pulse duration was

set at 60, 90, 120 or 150 ms. A description of the patients and

DBS parameters is given in Table 1. To serve the purpose of the

study, each patient had an average stimulation ‘intensity’

allocated, corresponding to the mean of arithmetic products of

all the parameters from both neurostimulators (I-intesity,

u-voltage,d-pulse duration, f-frequency): I=uL.dL.fLCuR.dR.fR

2

Before launching the examination, the patients received

detailed information about the study and then signed a

written informed consent. All were examined after an

overnight discontinuation of dopaminergic medication

(with the last dose of L-DOPA at 9 p.m. of the previous

day at the latest). On the day of the examination, both

stimulators were switched off at about 6 a.m. At 8:30

a.m., when clinical deterioration was markedly expressed

in all cases (medication OFF and DBS OFF condition),

motor scoring was performed using Unified Parkinson’s

disease rating scale, motor part—UPDRS III, whereupon a

subscore for tremor (sum of the score from items 20 and

21), a subscore for rigidity (sum of the score from item

22), and a subscore for hypokinesia (sum of the score

from items 23–27) were singled out. Approximately at

9:30 a.m., the first recordings of VEP and then EEG were

performed. Each patient was lying supine in a semidar-

kened room, able to follow the computer screen in a

mirror over his/her head during VEP, or lying at rest with

the eyes closed during EEG registration. Both stimulators

were switched on at about 11 a.m. and the recording of

the second VEP and EEG started from 11:30 a.m.

(medication OFF and DBS ON condition). At about

12:30 p.m., shortly after the end of EEG recording,

another UPDRS III examination followed, and finally the

patients were restored to their usual dopaminergic

treatment.



Table 1

Group of 12 patients with Parkinson’s disease (PD) treated by the bilateral DBS STN

Pat. Sex Age Dur. Preop.

complications

UPDRS III Right DBS STN Left DBS STN

DBS-OFF DBS-ON

1 F 54 19 w, OFF-d, s 22 19 BI 0.8 V 60 ms 130 Hz BI 0.8 V 60 ms 130 Hz

2 F 46 13 w, p-d, OFF-d, s 40 28 BI 1.0 V 60 ms 130 Hz PS 1.5 V 60 ms 145 Hz

3 F 68 18 w, p-d, s 41 21 PS 2.0 V 120 ms 130 Hz PS 2.0 V 120 ms 130 Hz

4 M 54 19 w, p-d, bi-d, s 41 35 BI 3.0 V 60 ms 145 Hz BI 2.0 V 60 ms 145 Hz

5 F 66 6 w, p-d, OFF-d, s 51 41 BI 2.6 V 60 ms 130 Hz BI 2.5 V 60 ms 130 Hz

6 F 54 12 w, p-d, s 59 11 PS 2.6 V 60 ms 130 Hz BI 3.0 V 60 ms 145 Hz

7 M 64 13 w, p-d, bi-D, OFF-d, s 30 22 PS 2.5 V 60 ms 130 Hz PS 2.5 V 60 ms 145 Hz

8 M 62 11 w, p-d, bi-D, OFF-d 28 12 PS 2.8 V 60 ms 145 Hz BI 3.3 V 150 ms 145 Hz

9 M 56 14 w, e-d, OFF-d, 43 11 PS 3.3 V 120 ms 130 Hz PS 3.3 V 90 ms 145 Hz

10 M 52 12 w, p-d 42 14 PS 2.2 V 60 ms 130 Hz BI 3.0 V 120 ms 130 Hz

11 M 52 8 w, bi-d, OFF-d 53 24 PS 2.2 V 60 ms 130 Hz PS 2.8 V 90 ms 130 Hz

12 M 60 21 w, p-d, be-d 76 24 PS 3.5 V 90 ms 130 Hz PS 3.3 V 90 ms 130 Hz

dur.—duration of the PD prior surgery; preoperative complications—wearing-off (w), OFF dystonia (OFF-d), sudden OFF/ON phenomenon (s), peak of dose dyskinesias

(p-d), biphasic dyskinesias (bi-d), beginning of dose dyskinesias (be-d), end of dose dyskinesias (e-d); UPDRS III—Clinical examination (DBS-OFF) followed at least

11.5 h after overnight withdrawal of dopaminergic medication, and 2.5 h after both neurostimulators were switched off. Clinical examination (DBS-ON) followed about

1.5 h after the two stimulators were switched on; right, left DBS STN—stimulation parameters: bipolar (BI) or pseudounipolar (PS) mode of stimulation, voltage, pulse

duration, stimulation frequency.
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2.2. Stimulator testing

In one stimulator Itrel II, the output parameters were

directly measured for the purpose of assessing the DBS-

generated contamination frequencies. The stimulator was

set at 2 V, 120 ms pulse duration and a frequency of 130 or

145 Hz. The measurement proceeded at 1 kO resistance

using an HP 34401 A digital multimeter (Hewlett-Packard,

Palo Alto, CA) with a declared accuracy of G3 mHz at

100 Hz.

2.3. EEG and VEP

An EEG system Brainscope (M&I, Czech Republic) was

employed for the recording. An electrode cap was used with

Ag/AgCl electrodes arranged in 10–20 system. To make

sure that there was no electrode displacement between the

first and second recordings, the electrode cap was left on the

patient’s head during all examinations.

EEG was sampled with a frequency of 250 Hz/channel

in the 0.015–75 Hz band in derivations Fp1, Fp2, F3, F4,

F7, F8, C3, C4, T3, T4, T5, T6, P3, P4, O1, O2, Fz, Cz and

Pz relative to the reference electrode placed on the left

mastoid. In each derivation, the signal was converted to the

common reference and subsequently transformed by

discrete fast Fourier transformation (fft) analysis in the

0–125 Hz band with a discrimination of 0.0119 Hz. An

84 s artifact-free segment of the recording was selected for

analysis. This was followed by an analysis of artifacts

resulting from DBS. In order to distinguish artifacts from

brain activity, the time-related development of the spectra

with a step of 2 s and a discrimination of 0.5 Hz was

established for each derivation. All contaminating fre-

quencies from DBS and the power mains were then

removed with notch-filters. Recordings made with DBS

switched off were filtered in the same way. For group
analysis, the absolute spectra were converted to relative

spectra: for each patient and each derivation of the

recording made with DBS off we first calculated the

normalization constant defined as mean absolute power in

the 4–16 Hz band. The absolute spectrum was then

transformed into the relative spectrum so as to make the

normalization constant of each derivation equal to 100%

relative power. To calculate the relative spectra with DBS

switched on, we used the same normalization constants as

with DBS off. The dominant frequency and its relative

power were measured in all derivations. In each derivation,

the highest peak in the alpha band was chosen as the

dominant frequency except in patient no. 11, whose

dominant peak was in the subalpha band (with DBS off:

7.2 Hz). For further analysis, the original EEG signal was

converted to longitudinal bipolar derivations C3–F3, C4–

F4, Cz–Fz, Pz–Cz, O1–P3 and O2–P4. This signal, too,

was transformed by means of discrete fft, notch-filtered

and converted to relative spectra. Here, too, the dominant

frequencies were assessed.

VEP was elicited using a monitor with a screen of a

relative size of 28!21 degrees of the visual field. Three

types of stimuli were used: (a) BW-VEP: stimulation with a

pattern reversal of black-and-white checkerboard stimulus

of 40 0 size and 1.3 Hz reversal frequency. The black/white

contrast reached 100% (white brightness 32 cd/m2, black

brightness 0 cd/m2); (b) C-VEP: stimulation with a pattern

reversal of color checkerboard stimulus of 40 0 size and

1.3 Hz reversal frequency with a blue square reversing into

a yellow one, a green square into a red one, and vice versa.

The color co-ordinates according to the 1931CIE chroma-

city diagram were as follows: yellow xZ0.406, yZ0.525;

blue xZ0.155, yZ0.078; red xZ0.607, yZ0.358; green

xZ0.290, yZ0.616. The color areas brightness was

isoluminant—14 cd/m2; (c) F-VEP: stimulation with a

white flash of 32 cd/m2 brightness, repeat frequency of
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1.3 Hz, and 5 ms flash duration. Parameters of visual stimuli

were measured with a LumaColor photometer (Tektronix,

OR) with J1803 and J1810 sensors.

VEP were sampled with a frequency of 1000 Hz/channel

in the 0.015–75 Hz band in derivations Fp1, Fp2, F3, F4, F7,

F8, C3, C4, T3, T4, T5, T6, O1, O2, Fz, Cz, Pz and Oz

relative to the left mastoid. Also related to this reference

were records from 4 Ag/AgCl electrodes placed above the

upper and below the lower eyelids and at the internal and

external canthi of the left eye. The signal from each

derivation was then recalculated to the common reference

and to the 3 bipolar derivations O1–Fz, Oz–Fz and O2–Fz.

Contamination of the signal from DBS was then checked on

using fft analysis in the 0–500 Hz band and 0.0091 Hz

discrimination in a record of 190 s duration. The time-

related development of the power spectra was rated at 1 s

intervals using 1 Hz frequency discrimination. The harmo-

nic multiples of contaminating frequencies were eliminated

by notch-filters, and the data was transformed back into

EEG signal. At least 120 epochs of the signal lasting 200 ms

before and 400 ms after the stimulus were averaged. Epochs

contaminated by motion artifacts were removed prior

averaging manually. For reproducibility check, each VEP

recording was performed twice. BW-VEPs and C-VEPs

were assessed in terms of the latencies of waves N70, P100,

N140 and of the inter-peak amplitude N70/P100. In the

F-VEP, a second positive peak was found in the interval of

90–190 ms. Its amplitude was rated relative to the previous

negative peak.

The EEG signal was processed by our own program

created in the MATLAB 6.13 environment (MathWorks,

Nattick, MA). VEP was processed using an EPanalyzer 2.7

(Nebuželský&Jech, Czech Republic). The EEG of patient

no. 6 was contaminated by a large DC-shift, and the VEP of

patient no. 4 by major oculomotor artifacts. Hence, both

were excluded from subsequent analyses so finally 11

patients were included in each of the separate EEG and VEP

analyses. Three-dimensional maps were displayed using the

EMSE 42 (Source Signal Imaging, San Diego, CA). For

statistical analysis, the SPSS 11.5 (SPSS Inc., Chicago, IL)

was used performing the Kolmogorov–Smirnov, general

linear model (GLM) with repetition, analysis of covariance

(ANCOVA), the Wilcoxon signed rank and Spearman’s or

Pearson’s correlation tests. The results of 1st-level statistics

were corrected for multiple comparisons using the

Bonferroni correction.
3. Results

3.1. Clinical parameters

After DBS was switched on, motor impairment was

markedly improved with the UPDRS III motor score

decreasing from 43.8G15 (meanGSD) to 23.3G12

(Wilcoxon, ZZ2.86, P!0.01) (see Table 1).
3.2. Stimulator frequency

Measurements revealed a discrepancy between the

frequencies set on stimulator Itrel II and those measured

at its output. With the frequency set at 130 Hz, the real

stimulation rate of 128.025 Hz was found. With the

frequency set at 145 Hz the real value was 146.314 Hz.

3.3. DBS artifacts

Interference due to artifacts when DBS was on was seen in

all patients. Regardless of the derivation, there were harmonic

multiples of the 18.29 Hz frequency expressed throughout the

band from 0 to 125 Hz (up to 6 peaks in the signal with a

sampling of 250 Hz), and 0 to 300 Hz (up to 16 peaks in the

signal with a sampling of 1000 Hz) (see Fig. 1a and b). Peaks

of 128.03 and 146.32 Hz were found in all records and, as a

rule, they reached the maximal power among all of the artifact

peaks. Harmonic multiples of the 69.79 frequency were also

seen all through the band in many records, reaching the

maximal power at 139.59 Hz. Another expected contami-

nation came from the mains frequency (50 Hz), though this

was seen in only some of the patients. Unlike DBS artifacts,

however, it was present already while the stimulation was off

(see Fig. 1c). In contrast to brain activity, artifacts arising from

DBS and the power mains were constant as evidenced by the

presence of vertical lines in the graph showing the time-related

development of the power spectra (see Fig. 1b). All the

harmonic multiples of frequencies 18.29, 67.79 and 50 Hz

were subsequently eliminated from the records by narrow-

band notch-filters (width G0.1 Hz).

3.4. EEG

With DBS switched on, the relative power of the

dominant frequency in all derivations decreased by an

average of 11% (DBS OFF: 2809G1420; DBS ON: 2508G
1310, GLM with repetition, factor ‘DBS’, FZ7.82,

P!0.05) (see Figs. 2 and 3). While the factor ‘derivation’

was significant (FZ2.63, P!0.001), the interaction

‘derivation!DBS’ was not (FZ0.86, P!0.63). Post-hoc

comparison of the relative power in each of the derivations

showed that with DBS ON there was a significant decrease

in derivations Fz, F4, F8, Cz, C4, P3, T5 (P!0.05

uncorrected) and T4 (P!0.01 uncorrected) (see Fig. 4a).

Further, with DBS switched on, the dominant frequency

increased non-significantly (DBS OFF: 9.48G1.1; DBS

ON: 9.58G1.1, GLM with repetition, factor ‘DBS’, FZ
2.30, P!0.16). After EEG conversion into bipolar

longitudinal derivations, the dominant frequency increase

reached the threshold of significance (DBS OFF: 9.44G1.3;

DBS ON: 9.71G1.3, GLM with repetition, factor ‘DBS’,

FZ13.4, P!0.01) (see Table 2). Neither the factor

‘derivation’ (FZ0.43, P!0.81) nor the interaction ‘deri-

vation!DBS’ (FZ0.48, P!0.78) were found significant.

Subsequent comparison of the dominant frequency in each
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Fig. 1. An example of contaminating artifacts from DBS STN in PD patient no. 9 in derivation P4-avg.ref. in EEG sampled at 1 kHz. Parameters of stimulation:

DBS STN on the right: 130 Hz, 120 ms, 3.3 V; DBS STN on the left: 145 Hz, 90 ms, 3,3 V; pseudounipolar setting: (a) absolute power spectrum with DBS STN

ON bilaterally. Beside brain activity dominant in the alpha band (left), artifacts were registered as harmonic multiples of the mains (50 Hz) and neurostimulator

frequencies (18.29 and 69.79 Hz), (graph discrimination: 0.0091 Hz); (b) time-related development of the power spectrum with DBS bilaterally OFF (lower

half of graph) and ON (upper half). Unlike the brain activity, which is distributed dispersely, artifacts give rise to vertical lines. While lines from

neurostimulation are present solely with DBS switched ON, the main frequency line (50 Hz) is present in both the ON and OFF states (time-related

development by 1 s, graph discrimination: 1 Hz); (c) absolute power spectrum with DBS STN switched OFF bilaterally. All that is noticeable throughout the

spectrum is the brain activity and the electric mains artifact (graph discrimination: 0.0091 Hz).
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of the bipolar derivations showed that with DBS on there

was a significant frequency increase in derivations Cz–Fz,

C4–F4, O2–P4 (P!0.05 uncorrected) and C3–F3, O1–P3

(P!0.01 uncorrected) (see Fig. 4b).

The average dominant frequency from all the pseudou-

nipolar derivations correlated inversely with the UPDRS III

subscore of rigidity (rZK0.50, P!0.05) regardless of

whether DBS was on or off (see Fig. 5). With respect to a

high inter-lead correlation of frequencies, an inverse

correlation between the dominant frequency and the score

of rigidity was found in 16 out of 19 derivations (P!0.05

uncorrected).

3.5. VEP

3.5.1. BW-VEP

With DBS switched on, 3 bipolar derivations (O1–Fz, Oz–

Fz and O2–Fz) showed no change of the N70, P100 or N140
latencies (multivariate GLM with repetition, factor ‘DBS’:

FZ1.2, P!0.36, factor ‘derivation’: FZ3.0, P!0.13) (see

Table 3). What was noted with DBS ON was a lowering of the

N70/P100 amplitude in all 3 bipolar derivations (ANCOVA,

factor ‘DBS’: FZ10.8, P!0.01, factor ‘derivation’: FZ0.1,

P!0.90) (see Fig. 6a, Table 4). The factor ‘intensity’ of DBS

(covariate) was found significant (FZ25.1, P!0.001) with

the N70/P100 amplitude decreasing in proportion to increas-

ing intensity (rZK0.84, P!0.01) (see Fig. 7).

3.5.2. C-VEP

As regards the latencies of N70, P100 or N140, no

significant difference was found between DBS ON and OFF

(multivariate GLM with repetition, factor ‘DBS’: FZ1.1,

P!0.39, factor ‘derivation’: FZ3.4, P!0.08) (see

Table 3). With DBS switched on, the bipolar derivations

showed a significant decrease of the N70/P100 amplitude

(ANCOVA, factor ‘DBS’: FZ9.4, P!0.01, factor
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‘derivation’: FZ0.1, P!0.89) (see Fig. 6b, Table 4). The

factor ‘intensity’ of DBS (covariate) was significant (FZ
16.9, P!0.001) and the N70/P100 amplitude inversely

correlated with the DBS intensity (rZK0.70, P!0.05).
3.5.3. F-VEP

The latencies of the N2 and P2 peaks were unaffected by

DBS (multivariate GLM with repetition, factor ‘DBS’:

FZ0.04, P!0.96, factor ‘derivation’: FZ2.0, P!0.19).

The same applied to the N2/P2 amplitude (ANCOVA, factor

‘DBS’: FZ0.03, P!0.86, factor ‘derivation’: FZ0.002,

P!0.99, factor ‘intensity’—covariate: FZ0.001, P!0.98)

(see Tables 2 and 3, Fig. 6c).
4. Discussion

DBS caused artifacts, which often exceeded the EEG

signal as such. While the power of artifacts differed between
derivations the share of contaminating frequencies was

the same in all the patients. The records showed a

predominance of the 18.29 Hz and 69.79 Hz frequencies

occurring in their harmonic multiples (see Fig. 1). However,

the stimulator was set at the frequencies of 130 and 145 Hz,

respectively. Surprisingly, these never appeared in any

EEG/VEP record. Independent measurements of the Itrel II

neurostimulator eventually revealed that the manufacturer-

declared frequencies differed from those recorded at the

output. Real frequencies were 128.025 and 146.314 Hz,

respectively, i.e. 7 or 8 times the contaminating frequency

of 18.29 Hz observed in all our EEG/VEP records. This is

because the neurostimulator design prevents changing the

frequency continuously, but only in frequency multiples of

the resonance circuits. This explains also why it was

impossible to tell from the record which of the patients had

been stimulated with which frequency, as all the harmonics

were present in the record simultaneously regardless of the

DBS frequency actually used.



Fig. 3. Average map of relative power at 9 Hz—group average of 11 patients examined with the DBS STN bilaterally switched OFF (left column) and ON

(right column). A map of relative power with a preponderance of higher power in the occipito-temporal and fronto-central regions viewed (a) from above, (b)

from the rear, and (c) from the right side. Reduction of relative power became apparent after DBS STN was switched ON.
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On the graphs showing time-related power spectra, the

stimulation artifacts—unlike the biological signal—were

well identifiable as vertical straight lines (see Fig. 1b) while

none of the contaminating frequency harmonics interfered

with the delta to alpha bands. All the signal changes

observed around the dominant frequency are then likely to

have been related to the DBS biological effects rather than

to some other kind of EEG artifacts.

The clinical effects of DBS STN were positive in all of

the patients as evidenced by the UPDRS III motor score

mean improvement by nearly one half, which is in

agreement with previous observations (Herzog et al.,

2003; Krack et al., 2003; Østergaard et al., 2002). Main

result of the present study is that the DBS STN induces

detectable changes in VEP and resting EEG. Against
expectations, the EEG activity was affected not only over

the motor regions; there were frequency and spectral power

changes over a large part of the scalp. This might suggest a

direct or indirect DBS influence over fundamental mech-

anisms of intracortical and cortico-subcortical oscillations.

Indeed, it appears that a functional projection between the

STN and the motor cortex does exist according to the studies

showing synchronous oscillations recorded by an implanted

electrode and scalp EEG in the beta, gamma and alpha

bands (Marsden et al., 2001; Williams et al., 2002). With

DBS switched on, we noted an acceleration of the dominant

frequency in the alpha band generated mainly temporo-

parieto-occipitally but also a faster m-rhythm generated

fronto-centrally (see Table 2). This was an increase

representing an average change of 0.27 Hz, albeit significant
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only in rating the signal in bipolar derivations as these

appear to be more susceptible to local changes than common

reference derivations (see Fig. 4b).

The physiological origin of acceleration in the dominant

frequency remains unclear, as does the relevance of the

rhythmic idling activity of the brain. Despite some

chronotopographical differences, the occipital alpha and

rolandic m-rhythm appear to share the same mechanisms

(multiple cortical generators with rich cortico-cortical and

subcortical afferentation) which are under strong impact of

sensory stimuli (Kuhlman, 1978). The alpha and m-rhythm

frequencies exhibit considerable interindividual and intrain-

dividual differences even in healthy subjects. While the

alpha-rhythm gradual acceleration is often associated with

brain maturation, short-term acceleration depends upon

vigilance, emotional tension and obviously also on the
Table 2

Mean dominant frequency (Hz) GSD in bipolar longitudinal derivations

with DBS STN bilaterally switched OFF and ON in 11 patients with PD

DBS OFF DBS ON F P

Frequency1 9.44G1.3 9.71G1.3 13.4 0.01

Frequency2 F–C 9.52G1.4 9.82G1.4 8.7 0.05

Frequency3 O–P 9.28G1.3 9.58G1.5 9.8 0.05

Frequency1—mean dominant frequency in derivations C3–F3, Cz–Fz, C4–

F4, Pz–Cz, O1–P3, O2–P4. Frequency2 F–C (m-rhythm)—mean dominant

frequency in fronto-central derivations C3–F3, Cz–Fz, C4–F4. Frequency3

O–P (alpha-rhythm)—mean dominant frequency in occipito-parietal

derivations O1–P3, O2–P4.
circadian or menstrual cycle phases (Niedermayer and

Lopes Da Silva, 1993). In advanced age, it tends to slow

down (Busse and Obrist, 1963), a feature uncorroborated by

other authors (Duffy et al., 1984). However, background

rhythm deceleration and occurrence of slow frequencies

have repeatedly been found in patients with PD (England

et al., 1959; Stephens et al., 1979; Yeager et al., 1966).

Beside PD patients with cognitive function involvement,

this slowing down was especially noted in those with
2 10 12 14
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Fig. 5. Dominant frequency and rigidity. Rigidity subscore increase

coincided with dominant frequency decline (average frequencies from

all derivations relative to avg. ref. recorded with DBS STN off and on)

(P!0.05).



Table 3

BW-VEP, C-VEP and F-VEP latencies with DBS STN switched OFF and

ON (11 patients with PD)

DBS OFF DBS ON DBS OFF/ON

F P

BW-VEP:

N70 77G8 75G7 4.1 0.071

P100 111G11 111G11 0.3 0.61

N140 142G17 144G17 0.4 0.52

C-VEP:

N70 74G12 73G15 0.0 0.99

P100 113G13 112G12 0.9 0.37

N140 150G21 149G21 0.9 0.37

F-VEP:

N2 120G31 120G32 0.08 0.78

P2 150G33 150G32 0.01 0.92

The mean latencies (ms)G(SD) from 3 bipolar derivations O1–Fz, Oz–Fz a

O2–Fz are given.
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a pronounced motor deficit (Neufeld et al., 1988). In our

study, we made similar conclusions since we found that in

patients with lesser rigidity there was a higher dominant

frequency than in those with greater rigidity (see Fig. 5).

Additionally, the improvement of rigidity induced by DBS

STN correlated with increase in dominant frequency. The

DBS STN-related acceleration in the alpha band followed

by clinical improvement might therefore reflect normal-

ization of the abnormally slowed idling activity of the

cortex. Although the pathophysiological mechanisms of

rigidity are not fully understood (Wichmann and DeLong,

2004), our observation may additionally suggest some

cortical involvement in its development. This is also in

agreement with changes in cortico-cortical coherences of

resting EEG as were found to correlate with the UPDRS III
Fig. 6. Group-averaged curves: (a) BW-VEP; (b) C-VEP; and (c) F-VEP from 11

OFF (blue line) and twice in the ON state (red line). (a) On stimulation with a black

all bipolar derivations O1–Fz, Oz–Fz and O2–Fz; (b) on stimulation with a color

stimulation with a flash, there was no apparent difference.
motor score in patients treated by DBS STN (Silberstein

et al., 2005).

Decrease in the dominant frequency power induced by

switching on DBS of the STN was found in both bipolar and

common reference derivations. The relative power dropped

diffusely all over the scalp by an average of 11% (see Fig. 4a).

This decrease was the most apparent in the fronto-central

region (see Fig. 3). The reason for the predominance of change

in this area may lie in the DBS STN priority impact on the

motor cortex function. This is supported by findings of DBS-

related increase in an initially decreased intracortical

inhibition (Cunic et al., 2002; Däuper et al., 2002; Pierantozzi

et al., 2002) and local reduction of regional blood flow in the

primary motor cortex (Ceballos-Baumann et al., 1999;

Limousin et al., 1997; Thobois et al., 2002).

However, our findings could be caused by the two

frontally located burr holes, through which the leads pass to

the electrodes. Defects in the cranium are often

accompanied by increased signal amplitude (Niedermayer

and Lopes Da Silva, 1993). Despite being covered with a

plastic lid, the holes may have caused local improvement in

the signal/noise ratio but they cannot have been responsible

for the decrease of the spectral power with the DBS

switched on. Obviously, the power decrease was not an

artifact caused by neurostimulation either. If that were the

case we would expect the power to rise and there would be

vertical lines in the graphs representing time-related

development of the spectral power (see Fig. 2c).

Nevertheless, the decrease itself in the dominant

frequency power can be interpreted differently. It may

have been a case of DBS inhibition effect on the cerebral

cortex as much as a case of stimulation effect interfering

with cortico-subcortical oscillation and thereby causing its

desynchronization and consequently a power decrease.
patients with Parkinson’s disease examined twice with DBS STN switched

-and-white pattern there was a distinctive difference in the VEP amplitude in

pattern the difference in the VEP amplitude was less expressed; and (c) on
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Table 4

BW-VEP, C-VEP and F-VEP amplitudes with DBS STN switched OFF and ON (11 patients with PD)

DBS OFF DBS ON DBS ON/OFF Intensity of DBS Derivation

F P F P F P

BW-VEP:

N70/P100 8.9G4.2 7.4G3.8 10.8 0.01 25.1 0.001 0.1 0.90

C-VEP:

N70/P100 6.2G3.6 5.6G3.2 9.4 0.01 16.9 0.001 0.1 0.89

F-VEP:

N2/P2 6.6G3.9 6.9G4.0 0.03 0.86 0.001 0.98 0.002 0.99

The mean amplitudes (mV)G(SD) from 3 bipolar derivations O1–Fz, Oz–Fz and O2–Fz are given.
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Alpha and m-rhythms are usually regarded as idling

activities known to become desynchronized during vision,

attention focusing or during the preparation and execution

of voluntary movements (Niedermayer and Lopes Da Silva,

1993). However, attenuation of those rhythms also depends

on dopaminergic mechanisms since withdrawal of anti-

parkinsonian medication was found to suppress the alpha

and beta-rhythms during the execution of movement to a

lesser degree than in response to L-DOPA (Brown and

Marsden, 1999; Wang et al., 1999). The DBS STN effect on

the dominant frequency power as we observed it was

similar.

There was a similarity between EEG and VEP results.

DBS STN caused an amplitude decrease in BW-VEP and

C-VEP similarly as it produced a decrease in the relative

power of the dominant EEG alpha-rhythm recorded over

posterior regions. Visual functions in PD, particularly VEP,

have been studied repeatedly (Bodis-Wollner, 1990—

review). Many authors described delay of the P100 latency

in VEP elicited by the black-and-white pattern reversal

using stimuli of a lower contrast and higher spatial

frequency (Bodis-Wollner and Yahr, 1978; Calzetti et al.,

1990; Delalande et al., 1998; Onofrj et al., 1986). Treatment

with L-DOPA usually leads to normalization, i.e. to VEP

latency shortening (Bodis-Wollner et al., 1982; Onofrj et al.,

1986). Its amplitude usually did not differ from that in

healthy persons, nor is it influenced by dopaminergic

treatment either (Bodis-Wollner, 1990—review), but with

the progression of PD, the P100 amplitude decreases (Ikeda

et al., 1994). P100 latency prolongation was also observed

in PD patients using color pattern reversal stimulation

(Büttner et al., 1996). Subsequent administration of

L-DOPA induced an even more pronounced shortening of

its latency than when a black-and-white stimulus was used

(Barbato et al., 1994).

However, with DBS switched on, we observed none of

the expected P100 latency shortening typical for dopamin-

ergic treatment. Latency shortening could also have been

expected because of the occipital acceleration of the alpha-

rhythm. As anticipated, the latency of N70 BW-VEP

tended to be shorter, but this change did not reach the

significance threshold perhaps due to higher variance or

relatively low number of subjects. Instead, with DBS
switched on, we found a significant lowering of the

N70/P100 amplitude (see Fig. 6). Using a stimulus 15 0 and

30 0 in size, Priori et al. (2001) made a similar conclusion;

1 day after DBS was switched off, they observed an

increase in the VEP amplitude despite they refrained from

discontinuing ordinary antiparkinsonian medication. It is

still questionable whether or not the amplitude lowering

was an artifact due to DBS, possibly accounting for the

signal/noise ratio decrease. That, however, would happen

only if the noise would contain frequencies interfering with

the band of VEP. As already mentioned, the noise from

DBS was regular and constant, which enabled us to

identify it and then to filter it out. Therefore, it seems then

that the VEP changes observed are not an artifact and that

DBS and dopaminergic medication may influence the

visual system by different mechanisms. Since DBS STN

does not enhance the synthesis of endogenous dopamine

(Hilker et al., 2003; Strafella et al., 2003), different VEP

changes in response to L-DOPA as distinct from DBS STN

are not surprising.

The observed decrease in the N70/P100 amplitude was

even more significant when the stimulation parameters of

both stimulators were taken into account. Higher amplitude

and longer pulse duration are known to lead to greater

clinical effects (Krack et al., 2002; Moro et al., 2002). The
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dependence on frequency is more complex, but within the

range of 50–185 Hz, raising the frequency also makes for

clinical improvement (Moro et al., 2002). While the voltage

on the two stimulators in our patients was within the range

of 0.8–3.5 V, only 4 different pulse lengths and two different

frequencies were used for stimulation (Table 1). This

prevented us from rating the effect on the VEP amplitude of

each of the parameters of stimulation separately. Hence, for

the purpose of our study the stimulation ‘intensity’ was

understood to mean the arithmetical product of all 3

parameters of the stimulator settings. In a simplified form,

the ‘intensity’ value expressed the voltage with regard to

pulse duration and stimulation frequency. A higher

‘intensity’ was accompanied by a lower N70/P100

amplitude, and vice versa (see Fig. 7). It was as if a higher

‘intensity’ inhibited or desynchronized the primary visual

cortex function more. A lesser though still significant

amplitude lowering, with the DBS on, was noted also in

response to stimulation with a color pattern of the same

temporal and spatial frequency. It was only when

stimulation with a flash was used that we failed to prove

DBS STN effects on VEP (see Fig. 6c). While this may have

been due to the different sensitivity of the visual system,

given different parameters of visual stimulation, it may also

have been related to a greater variability of the F-VEP

(Ikeda et al., 1994).

We proved that even major contamination with

stimulation artifacts was not an obstacle for assessment

EEG/VEP records because the problem can be solved by

selective filtration of the DBS harmonics. As we

hypothesized, DBS of the STN does influence cortical

activity. Moreover, DBS-related changes in the resting EEG

were observed not only over the motor areas as we had

expected but also over large areas of the scalp. Conse-

quently, beside the effects on stimulated nucleus and the

basal ganglia circuitry, DBS seems to affect basic

mechanisms of cortico-subcortical oscillations. Accelera-

tion of the dominant alpha frequency and decrease in its

spectral power, detected also over the visual areas, were

accompanied by VEP amplitude decreases. This supports

the notion that the effects of DBS STN may reach far

beyond the motor system.
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