
Univerzita Karlova v Praze 
2. lékařská fakulta 

 
 

Studijní program: Biomedicína 
Studijní obor: Neurovědy 

 
 

       
 
 
 

RNDr. Jan Svoboda 
 
 
 

Prostorové chování potkana v nestacionárních 
prostředích: úloha posteriorní parietální kůry 

 
 

Spatial behavior of the rat in non-stationary 
environments: role of the posterior parietal cortex 

 
 
 

Disertační práce 
 
 
 

Školitelé: RNDr. Aleš Stuchlík, PhD.; MUDr. Jan Bureš, DrSc., prof. emer. 
 
 
 
 

Praha, 2011 
 

 



 2 

Prohlášení: 

 

Prohlašuji, že jsem záverečnou práci zpracoval samostatně a že jsem řádně uvedl a citoval všechny použité 

prameny a literaturu. Současně prohlašuji, že práce nebyla využita k získání jiného nebo stejného titulu. 

Souhlasím s trvalým uložením elektronické verze mé práce v databázi systému meziuniverzitního projektu 

Theses.cz za účelem soustavné kontroly podobnosti kvalifikačních prací. 

 

V Praze, 7.3. 2011 

 

Podpis 



 3 

 

List of abbreviations 
 

AAPA  Active allothetic place avoidance 

AF  Arena frame 

CA  Cornu Ammonis 

HD  Head direction 

MEC  Medial entorhinal cortex 

mPFC  Medial prefrontal cortex 

PPC  Posterior parietal cortex 

RF  Room frame 

RSC  Retrosplenial cortex 

TTX  Tetrodotoxin 

 



 4 

 

Acknowledgements: 

 

I would like to express my gratitude to both my supervisors, MUDr. Jan Bureš, 

DrSc., and RNDr. Aleš Stuchlík, PhD for their enthusiastic leadership. I also thank to 

Vanessa Doulames and Radek Pelc for a language check of the manuscript, to colleagues 

in Department of Neurophysiology of Memory for their help and stimulating discussions, 

as well as my family and friends for their long-term support; in breif, to all who provided 

me cues on my tortuous idiothesis finally pointing to a goal. 



 5 

Preface 

 

Better understanding of cognitive functions and their underlying neural 

substrate requires appropriate behavioral testing paradigms. For a laboratory rat, a 

model organism in studies of spatial cognition, plethora of tests have been employed. 

They usually examine spatial capabilities in stationary environments. However, this 

approach largely neglects a common feature of our daily lives – dynamic elements that 

may be relevant for navigation (such as conspecifics, predators or moving parts of the 

environment). Examining spatial abilities of the rat in such non-stationary environments 

represented a challenge when I and my colleagues joined the team of dr. Bureš who 

provided us with the possibility to attend a newly established branch of behavioral 

research which he conceptualized as navigation in dissociated environments. 

Four articles published in journals with the impact factor are inserted into the 

body of the thesis. The work has been done in collaboration with my colleagues Mgr. 

Petr Telenský and MUDr. Karel Blahna. I therefore find it important to declare the 

specific contributions of the authors. 

First article provides a methodological background for avoidance of a single, 

moving stimulus: Telensky P, Svoboda J, Pastalkova E, Blahna K, Bures J, Stuchlik A., 

2009. Enemy avoidance task: a novel behavioral paradigm for assessing spatial 

avoidance of a moving subject. J Neurosci Meth 180 (1), 29-33. Contribution of 

authors: Petr Telenský and Jan Svoboda – writing the article, analyzing data, performing 

the experiments; Eva Pašťálková – initiation of the pilot experiments and development 

of the maze apparatus; Karel Blahna – analyzing data; Jan Bureš – conceptualization of 

the experimental approach, scientific leadership; Aleš Stuchlík – scientific leadership and 

writing the article. 

The second article extends the methodology further by introducing a 

programmable robot. Moreover, a role of dorsal hippocampus during mobile cue 

avoidance is assessed by temporal inactivations of the hippocampus by tetrodotoxin: 

Telensky P, Svoboda J, Blahna K, Kubik S, Bures J, Stuchlik A, 2011. Functional 
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inactivation of the rat hippocampus disrupts avoidance of a moving object. Proc Natl 

Acad Sci USA, accepted. Contribution of authors: Petr Telenský and Jan Svoboda – 

writing the article, analyzing data, performing the experiments; Karel Blahna – 

performing the experiments; Štěpán Kubík – writing the article, elaboration of main 

hypotheses; Jan Bureš – elaboration of the concept of the experiment, scientific 

leadership; Aleš Stuchlík – writing the article, analyzing data, scientific leadership. 

The third article reveals an interesting phenomenon of inertial stimuli 

contribution in acquisition of avoidance behavior on a rotating arena: Blahna K, 

Svoboda J, Telensky P, Klement D, 2010. Inertial stimuli generated by arena rotation 

are important for acquisition of the active place avoidance task. Behav Brain Res 216 

(1), 207-213. 

Contribution of authors: Karel Blahna – writing the article, performing 

experiments, analyzing data; promoting the main idea of experiment; Jan Svoboda – 

performing experiments, analyzing data, elaboration of the main idea; Petr Telenský – 

writing the article; Daniel Klement – writing the article, analyzing data, scientific 

supervision.  

The fourth article evaluates contribution of posterior parietal cortex in two 

variants of place avoidance task: Svoboda J, Telensky P, Blahna K, Zach P, Bures J, 

Stuchlik A, 2008. Lesion of posterior parietal cortex in rats does not disrupt place 

avoidance based on either distal or proximal orienting cues. Neurosci Lett 445 (1), 73-

7. Contribution of authors: Jan Svoboda – writing the article, performing experiments 

and operations, analyzing data, initialization of the experiment; Petr Telenský – writing 

the article, analyzing data, assistance with operations; Karel Blahna – assistance with 

operations; Petr Zach – histological verification of the lesion sites; Jan Bureš – scientific 

leadership; Aleš Stuchlík – providing theoretical background and scientific leadership.
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1  Navigation 
 

All mobile organisms must be able to adequately organize their individual spatial 

behavior. The resulting navigational capabilities that have evolved in response to this 

strong pressure are sometimes quite astonishing despite often being as simple as 

approaching/avoiding a single stimulus or moving along the axis of a concentration 

gradient. Although concern is usually centered on "higher" navigational capabilities, 

basic spatial behavior is an inherent, common feature of any organism makeup and 

should not be overlooked. The theory maintained in the scientific field for a surprisingly 

long period of time suggested that an organism’s memory of a place in an environment 

required the storage of its position as a result of a set of stimulus-response mechanisms.  

This at its core is an example of associative learning in which a guiding stimulus (e.g. 

turning right at an oak tree) is used to make simple movements. The stimulus (oak tree) 

elicits a directional response (the right turn). Chaining up associations such as these 

together can potentially lead to an efficient and rapid route-following behavior even if 

the individual route is very complex. Despite the obvious logic in these observations, it 

has been found that associative learning is not the only means by which mobile animals 

organize spatial behavior. 

Against popular opinion at the time, in the 1940s Tolman suggested (Tolman, 

1948) that animals (and therefore humans) possess an internal representation of the 

environment in a map-like form termed a “cognitive map”. It was not until decades later 

that Nadel and O'Keefe (1978) formulated a comprehensive and quite influential 

support for Tolman’s mapping hypothesis. A sharp distinction was made between 

response-based navigation (“taxon system”, in their terms) and map-based navigation 

(locale system).  
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1.1  Cognitive mapping hypothesis 
 

The purpose of the cognitive map is to store relevant relationships among spatial 

cues in a given environment. These cues can be used interchangeably; no specific cues 

are essential, but some minimal subset is necessary. The cognitive map allows the usage 

of shortcuts even in places never before visited. Its flexibility is thus substantial. 

However, it is compromised by increased computational and memory demands. When 

new cues are added to familiar situations, the environmental change will provoke a 

curiosity-driven exploration and subjects will learn about the new spatial layout. 

Exploration serves to incorporate new spatial and contextual components into the 

cognitive map through a “remapping” mechanism. 

However, associative learning might still occur in spatial domain, i.e. during 

localization of a goal based on multiple discrete landmarks. Blocking and overshadowing 

have been demonstrated. Blocking occurs when a second landmark is added near the 

first one that governs navigation. If the first landmark is removed, the animal will get 

lost despite the presence of the second landmark (Stahlman and Blaisdell (2009); also 

documented in humans (Hamilton and Sutherland, 1999)). Overshadowing is similar in 

that it occurs when the memorization of a goal location is based on a compound cue 

(AB). When one element (A) of the array is missing, the remaining cue (B) exerts hardly 

any influence over the spatial behavior (Sanchez-Moreno et al., 1999).  

Hardt and Nadel (2009) argue that these experiments do not convincingly 

demonstrate that associative learning also takes place in situations in which we would 

expect cognitive mapping (i.e. in localization based on an array of cues). Instead, in 

these situations a map was unlikely to be constructed because not all the cues gained an 

equal attention. If subjects are provided with the possibility to sufficiently explore the 

cues, no blocking or overshadowing takes place (but see Stahlman and Blaisdell, 2009). 
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1.2  Categorization of navigation 

 

Egocentric vs. allocentric 

The spatial relationships we perceive may be encoded within two principal 

frameworks. Egocentric coding relates the cue position to a certain body part. This is 

usually the retina, but can also refer to the head, trunk or hand. On the contrary, if a 

spatial relationship is represented independently of body position then it is referred to 

as an allocentric coding.  

 

Idiothetic vs. allothetic 

The aforementioned categorization should not be confused with idiothesis and 

allothesis, since these refer to the source of the spatial information, not how it is 

represented.  

Idiothesis processes information produced by the animal’s active or passive 

movement. The vestibular signals from semicircular canals (registering angular 

accelerations) and from otholitic receptors (registering linear accelerations), sometimes 

supported by optic and/or auditory flow, allow the detection and computation of animal 

displacement or rotation with respect to an inertial (geo-based) reference frame. This is 

referred to as inertial idiothesis. Similarly, signals from proprioceptors (muscular, 

juncture or ligament receptors) and efference copies react by relating the subject’s 

locomotion to the ground (substratal idiothesis). Integration of the above signals 

enables the animal to determine its position relative to the previous path (path 

integration). Inertial and substratal idiothesis coincide with each other when the animal 

moves over a stable substrate, but becomes dissociated when the animal passes over a 

moving ground or is passively transported. It has however been found that rodents are 

able to compensate for passive rotations during path integration (Mittelstaedt and 

Mittelstaedt, 1980).  

Navigation based on self-motion generated cues (idiothetic navigation) is 

considered one of the main modes of way finding, although functionally and 
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anatomically distinct from allothetic navigation. The precision of this navigation method 

is prone to degradation in the presence of more complex paths. Recalibration requires 

reliable positional information provided by an allothetic cue (Etienne et al., 1996; 

Etienne and Jeffery, 2004). Unless rats are given such a positional fix, they fail to 

properly monitor their track for paths longer than ca 5 meters (Stuchlik and Bures, 

2002).  

Allothesis, on the other hand, processes external signals, thus informing the 

animal about spatial relationships between environmental cues, as outlined in the 

following section. 

 

1.3  Types of landmarks 
 

Allothetic cues are widely available in any environment and may vary in saliency, 

stability, relevancy or proximity to a desired goal or route. 

 

Beacons 

A beacon refers to a cue that is in close proximity to (or directly indicates) a goal 

so that the subject animal may be simply guided to the target. As a navigational 

strategy, guidance only requires the association of the beacon and the goal. An off-

beacon is when the cue is not quite spatially identical with the goal, but further away 

(Mackintosh, 2002). An off-beacon does not prevent the animal from using non-

mapping solutions since it can use guidance to off-beacon and then perform a random 

search. Off-beacons permit a reliable estimation of distance (Collett et al., 1986).  

 

Directional (polarizing, compass) cues 

 Directional cues contrast beacons in that they do not allow for any distance 

estimation but instead provide a means of alignment and calibration for an internal 

sense of direction in the cognitive map (Taube, 2007). The egocentric bearing (angle 



 13 

between head direction and directional cue) changes very little as the animal moves 

since the directional cues are the most distal cues available. 

 

Surface (barrier) cues 

 A salient object that blocks and therefore prevents passage represents a highly 

relevant kind of cue due to its significant impact on the behavior of several types of 

neural correlates of spatial representation (O'Keefe and Burgess, 1996; Muller and 

Kubie, 1987; Solstad et al., 2008). It defines a border of accessible space and allows (as a 

beacon cue does) a means to estimate distance. Barrier cues are especially emphasized 

in laboratory conditions in experiments utilizing mazes. Mazes are built up from walls 

and provide a complete separation of inner space from the outside world, a feature 

rarely found in nature. 

 

Geometric cues 

An array of discrete landmarks or barriers themselves may constitute a 

geometrical object. If present, geometrical features are readily incorporated into 

navigation (Cheng, 1986) since they represent salient and easily computable frame of 

reference. In fact, geometry can overshadow landmark learning under certain 

circumstances, giving rise to an idea that navigation can be built upon "geometrical 

modules" (see Cheng (2008) for a review).  

 

1.4  Behavioral tests studying navigation in stationary 
environments 

 

The cognitive map theory implied that animals use higher ordered mental 

functions. This consideration stimulated an accelerated development of various types of 

spatial mazes designed to target particular aspects of spatial cognition. These mazes 

now provide powerful tools in studying spatial cognition, learning and memory, and 

their underlying mechanisms using lesions, pharmacological or genetic interventions, as 
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well as electrophysiological approaches. Unlike the "old-fashioned" complex sets of 

intertwined corridors, the modern apparatuses usually do not have shapes of mazes and 

consist of small enclosures or elevated tables, quite dissimilar to its ancestors.  

 

Water maze  

In attempt to examine cognitive mapping, Morris (1981) introduced a water 

maze task (fig. 1A) based on remembering spatial relationships of cues far away from a 

target. Water maze consists of a smooth and cue-less circular tank (diameter = 1-2 m) 

filled with water for the most part and containing a shallowly submerged platform 

which provides a swimming rat the only way how to escape from the water. The rat, 

even if released into the maze from various starting points will rapidly acquire the 

platform location (if fixed throughout training) and will swim to it with remarkable 

accuracy. The target invisibility and absence of any visual, olfactory, tactile or acoustic 

intramaze cues encourage the animal to utilize landmarks present in the experimental 

room (i.e. extramaze allothetic cues) to localize the platform. Idiothetic cues play only a 

minor role that, however, can be emphasized in darkness (e.g. Moghaddam and Bures 

(1996); Save and Moghaddam (1996)). The place memory is convincingly demonstrated 

in a "probe trial" in which, despite the platform being no longer present, well-trained 

animals persevere in searching for the target in the correct location. The water maze 

takes advantage of its simplicity to distinguish procedural from navigational deficit: A rat 

unable to locate the submerged platform but able to reach a visible one implies 

preserved motivational and motor competencies while displaying impaired navigation 

(Morris, 1981). 

 

“Dry” mazes  

Another widely used method in testing spatial behavior is the radial arm maze 

(Olton and Samuelson, 1976), a device with an elevated central platform, symmetrically 

surrounded by centrifugally extended arms, each with a hidden piece of food at its end 

(fig. 1B). Number of the arms varies greatly; its simplest form is a „Y“ maze but more 
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frequently there are eight arms. The rat must remember, using intramaze or extramaze 

cues, which arms it has already visited and therefore contains no food, and which arms 

are still baited (a working memory task). Another variant involves arms that are never 

baited (a reference memory task). The baited arms may also be determined 

egocentrically (entry the left adjacent arm). 

If we block one corridor in the four arm (= cross-shaped) maze without a central 

platform present, we get a specific kind of T-maze (fig 1C). This setup allows for an easy 

assessment of the mutual contribution of (motor) response and place learning (Packard 

and McGaugh, 1996). First, a rat is trained to run through the starting corridor and make 

a specific body turn (e.g. left) at its end to enter the correct (baited) arm. In a probe 

trial, the rat is forced to start from an opposite, unblocked starting corridor. A rat 

turning left at the crossroad applies a response strategy while a rat turning right displays 

a place strategy because it moves to a location spatially identical to the one in training. 

Unlike in the water maze, the rat has only a limited number of spatial choices 

(equal to the number of arms) in these types of mazes, so they are better suited for 

testing spatial learning and memory rather than for investigating how animals find their 

way around. As a dry analogue of the water maze, a hole board is often utilized (Kesner 

et al., 1989): A featureless circular arena is covered with an array of several tens of small 

food holes, with only one of them baited. Its position is therefore hard to deduce from 

intramaze cues and must be determined with respect to landmarks outside the arena.  

As a test of idiothesis, adapted variants of Barnes maze (Barnes, 1979) are 

usually selected (Save et al., 2001; Whishaw et al., 2001). A rat, having a home base 

under one of the multiple holes circumferencing a featureless smooth table, searches on 

its outbound journey for a randomly placed food-pellet under one of multiple cups on 

the arena (fig 1D). Once the reward found, the rat naturally runs directly to the home 

base to eat it in safety. While the utilization of allothetic cues is restricted by darkness or 

by a uniform curtain in the background and by uniformity of arena surface, the homing 

vector must be computed exclusively on the basis of idiothetic input.  
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To examine location-specificity of various neural correlates of spatial behavior 

during recordings of their activity, it is required that the animal locomotes over a 

surface in a homogenous way. This is achieved by the random scattering of small pellets 

over the arena surface so that the animal searches for them, finally covering the arena 

with its tracks. Since this “task” does not involve any goal-directed feature that would 

have a great impact on neural correlates, a place preference task has been introduced 

(Rossier et al., 2000). Rats are trained to enter a particular part of the environment in 

order to release a pellet which subsequently lands at a random place on the arena. 

Thus, a randomness of tracks in the “searching” phase is preserved. 

 

Fig. 1. Examples of mazes used in neuroscience research. (A) Morris water maze. (B) Eight­arm radial maze 

with central platform. (C) Cross-maze used as T-maze with blockable starting corridors. (D) Adaptation of 

Barnes maze for testing of idiothesis. From Save et al. (2001). 
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2  Neuroanatomy of spatial behavior 

 

2.1  Hippocampal formation 

 

In a strict sense, the hippocampus proper consists only of fields of Ammon's horn 

(cornu ammonis - CA1, CA2, CA3). Together with the dentate gyrus and subiculum they 

form a complex termed hippocampal formation (according to Witter and Amaral 

(2004)), revealing a characteristic shape of two interlocking and mutually reversed "Cs" 

when cross-sectioned. Since all of these structures are three layered, they are usually 

classified as an allocortex. The adjacent entorhinal cortex (sometimes considered as part 

of a hippocampal formation) provides a reciprocal connection with neocortex, and 

conveys the main cortical input to hippocampus. 

The basic hippocampal circuitry represents the trisynaptic circuit (fig. 2B). In this 

unidirectional excitatory loop, the entorhinal cortex sends via a perforant path efferents 

to the granule cells of the dentate gyrus, from which its mossy fibers project to 

pyramidal cells of CA3. These in turn, through the Schaffer collaterals, connect to the 

CA1. The signal from there may return to entorhinal cortex either directly or through the 

subiculum. Due to the character of its projections, dentate gyrus is believed to play a 

role during pattern separation, i.e. in separating two similar input patterns into two 

distinct representations (O’Reilly and McClelland, 1994). The opposite process, a pattern 

completion, i.e. full retrieval of a representation when only a partial input is available, 

takes place in CA3 recurrent collaterals considered to be an auto-associating network 

(Nakazawa et al., 2002).  

The rat hippocampal formation may be further subdivided along its longitudinal 

axis into the dorsal, intermediate and ventral hippocampus, reflecting both their 

different function and connectivity (Moser et al., 1993; Moser and Moser, 1998). 
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Fig. 2. (A) Localization of hippocampal formation (Hip.) in the rat brain. The overlaying neocortex was 

fenestrated to reveal position of the hippocampus. (B) Schematic diagram of the trisynaptic circuit, with 

major components numbered. Adapted from Bischofberger et al. (2006). 

 

2.2 Function of the hippocamus 

 

The first observations of a hippocampal function came from human patients. A 

notorious case is that of patient H.M. who underwent a bilateral medial temporal 

removal in order to relieve medically unresponsive epilepsy (Scoville and Milner, 1957). 

He suffered post-operatively from severe anterograde and limited retrograde amnesia, 

implying the role of the hippocampus and adjacent structures in mnemonic processes. 

Later, based on studies in human patients and controlled experiments with monkeys, 
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such a deficit was explained in terms of disabled encoding of long-term declarative 

memory (Squire, 1986).  

However, studies in rats systematically pointed out a hippocampal involvement 

in spatial learning and memory, eventually leading to identification of hippocampus with 

cognitive maps (Nadel and O'Keefe, 1978). The idea that the exclusive role of the rodent 

hippocampus subsists in spatial cognition seemed too radical to be widely accepted at 

that time. Instead, several theories attempting to describe hippocampal functioning in 

more abstract terms rendering both spatial and general mnemonic processes have been 

proposed, such as multiple-trace (Nadel and Moscovitch, 1997), dual process (Rugg and 

Yonelinas, 2003) or relational theory (Eichenbaum et al., 1994). The common feature of 

the current view of hippocampal processing usually points to its implication in episodic 

(-like) memory (Bird and Burgess, 2008). 

 

2.3  Functional interventions to hippocampus and spatial 
learning and memory 

 

Lesioning hippocampal formation severely impairs various forms of allothetic 

navigation as demonstrated, for example, by disrupted ability to locate a submerged 

platform in a water maze (Morris et al., 1982; Sutherland et al., 1983; Dimattia and 

Kesner, 1988). Furthermore, it also affects both reference and working spatial memory 

in a radial arm maze (Bouffard and Jarrard, 1988; Jarrard, 1993). The impact of lesions 

appears to be less devastating when axon-sparing ibotenate lesions are used (Whishaw 

and Jarrard, 1995). In the plus (cross-shaped) maze procedures, inactivation of the 

hippocampus disrupts place learning, contrasting with impaired response learning after 

striatal lesions (Packard and McGaugh, 1996). Idiothetic navigation, tested usually in 

homing behaviors, seems to be also hippocampus-dependent (Maaswinkel et al., 1999; 

Whishaw et al., 2001; Save et al., 2001). Restriction of a cortical input by damaging the 

subiculum and entorhinal cortex does not produce as severe spatial deficits as a 
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transection of fimbria-fornix, a bundle connecting hippocampus with septum and 

subcortical structures (Jarrard, 1993; Whishaw and Jarrard, 1995).  

On the other hand, the basic procedural and spatial competencies are spared 

after hippocampectomies. Rats are able to estimate the egocentric distance (Long and 

Kesner, 1998), swim towards a cued platform (Morris et al., 1982; Dimattia and Kesner, 

1988; Sutherland et al., 1983), or locate a hidden platform provided that off-beacon and 

compass cue are present (Pearce et al., 1998). They even master locating a platform if 

released from the same start location (Eichenbaum et al., 1990). However, such spatial 

representation is rather rigid, qualitatively quite different from the proposed flexibility 

of cognitive mapping.  

The participation in spatial processing varies along the septum-caudal axis, with 

more prominent contribution found in the septal part, i.e. dorsal hippocampus 

(Fanselow and Dong, 2010; Moser et al., 1993; Moser and Moser, 1998). Interventions 

aimed at particular subfields of hippocampal formation underlined the requirement of 

its functional integrity as a whole. Allothetic navigation remains disrupted after a 

selective, colchicine lesion of dentate gyrus (Jeltsch et al., 2001), or after transection of 

longitudinally oriented axons of CA3 pyramidal cells (Steffenach et al., 2002). 

Investigations focused on particular stages of spatial memory trace formation 

revealed that temporal inactivation of dorsal hippocampus by AMPA/kainate receptor 

antagonist LY326325 blocks both encoding and retrieval of the engram (Riedel et al., 

1999). However, the exclusive role of the hippocampus in acquiring the allothetic 

memory has been challenged: Inactivations made by a transient sodium channel blocker 

lidocaine showed that animals may not acquire the allothetic information during the 

inactivation per se while possessing the correct engram when tested one day after 

(Parron et al., 2001). Authors of this study hypothesize that an unknown brain structure 

latently substitutes the hippocampus in acquiring knowledge about allothetic space; the 

proper encoding occurs “off-line” after a hippocampal recovery.  
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2.4 Place cells 

 

Electrophysiological approach led to the discovery of several classes of neural 

correlates of rat spatial behavior. O'Keefe and Dostrovsky (1971) first found pyramidal 

neurons in CA3 field that fired whenever the animal occupied a specific part of its 

environment. Each “place cell” responded to a different place, its “firing field”. Such 

location-dependent activity has also been shown in pyramidal cells in the CA1, and 

granule cells in the dentate gyrus. The CA3-CA1 firing fields tend to cover uniformly the 

environment uniformly. Unlike sensory neurons in the brain, discharge of place cells is 

not directly governed by a single stimulus. Instead, it can be modulated by various 

signals of various modalities. The firing fields may occasionally appear, disappear or 

change its position or size, but in a stable environment they can persevere from many 

weeks to several months (Thompson and Best, 1990). Under light conditions, the visual 

cues seem to exert much of the control over place cells firings as their firing fields follow 

rotations of cue cards attached to the wall of the experimental chamber (Muller and 

Kubie, 1987; fig 3A). However, when the lights are subsequently switched off the firing 

remains preserved, indicating that the input from idiothesis is sufficient for the rat to 

self-localize. Place activity does not require any visual information as witnessed by 

unaltered place cells firing in blind rats (Save et al., 1998). Place cell's discharge is 

substantially determined by geometric features of the recording apparatus. Firing fields 

were reported to extend along a wall in line with an extension of a rectangle enclosure 

(O'Keefe and Burgess, 1996). Place cells can be modulated by many other factors, even 

non-spatial, including the task requirements (exploration vs. purposeful navigation; 

Markus et al. (1995)), or the ongoing behavior (Wood et al., 2000). These findings show 

that place cells receive information about spatial location as well as highly processed 

information pertaining to the current context. Therefore, they likely provide the animal 

rather with the notion about the present situation (when, what, where) than exclusively 

about space (Jeffery, 2007a). 
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In accordance with the cognitive map theory, change in the experimental 

environment, or context, usually causes “remapping”, i.e. gaining, losing, or shifting 

position of the place field. The remapping might be partial. For instance, traversing from 

one into another visually identically enclosure seems to yield both preserved and 

remapped place fields (Skaggs and McNaughton, 1998). This suggests that a cognitive 

map is not necessarily a rigid unitary chart. Rather, its subcomponents are autonomous 

and reflect various consistent features of the environment. Rhythmic slow activity, or 

theta rhythm, in the CA1 field of the hippocampus is associated with walking; its 

amplitude increases with speed. The theta activity appears to be linked with place cells. 

When restrained animals are moved passively through the environment, the activity of 

place cells at a given location in the unrestrained condition is practically abolished 

(Foster et al., 1989). Under self-motion attenuated, the hippocampus behaves as if the 

rat were moving more slowly, over a smaller distance, making firing fields appear 

substantially larger (Terrazas et al., 2005). There is still some controversy as to what 

extent place cells reflect internal awareness of localization. For instance, change in place 

cell behavior might not be always accompanied by a corresponding change in the spatial 

behavior of the rat (Jeffery et al., 2003).  

 

2.5  Head-direction (HD) cells  

 

A quite different class of spatially tuned neurons was discovered some 15 years 

after the discovery of place cells. These neurons fire within a narrow (approx. 90 

degrees) range of angular direction of the head relative to world centered coordinates, 

hence they are referred to as head-direction cells (fig. 3B). Though first described in the 

subiculum (Taube et al., 1990; Taube et al., 1990), they have been also recorded from 

the anterior and the lateral dorsal thalamic nuclei, lateral mamillary nucleus, striatum, 

and entorhinal cortex (Taube, 2007). They are usually coupled with place cells, so that 

their activity also depends predominantly on the visual cues; especially the most distant 

ones (Zugaro et al., 2001; Yoganarasimha et al., 2006). However, evidence has 
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accumulated that the head-direction discharge is primarily derived from an idiothetic 

input. For example, dysfunction of the vestibular apparatus severely disrupts direction-

specific firing of HD cells (Stackman et al., 2002) even in the presence of a familiar 

directional cue. HD signal seems to stem from the dorsal tegmental nucleus, in which 

neurons sensitive to angular velocity are found. There it propagates via the lateral 

mammillary nucleus, anterodorsal thalamus and post-subiculum, finally reaching the 

entorhinal cortex where it provides the grid cells with information about spatial 

orientation. 

 

Fig. 3. (A) A color-coded firing rate within an arena of a single place cell. Note that the firing field follows 

the cue rotation (Muller and Kubie, 1987). (B) Firing rate of a single head direction cell as a function of 

direction of the animal’s head, and the effect of cue rotation (Taube, 2007). (C) Superimposition of sites 

where a single grid cell generated action potentials (red points) on the track (black line) of an animal 

placed in a square box, revealing the triangular pattern of firing activity (Moser et al., 2008).  
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2.6  Grid cells 

  

Finally, a neural substrate that may underlie the internal “sense of metrics” 

(Jeffery and Burgess, 2006) has been found in the medial entorhinal cortex (MEC) 

(Hafting et al., 2005). Firing fields of a grid cell constitute a pattern of regularly spaced 

pinnacles of equilateral triangles (fig. 3C). This grid covers the entire floor of the 

environment and can extend (while preserving its scale) if the walls of the environment 

are removed and the animal allowed to explore outside the original boundaries. 

Anatomically adjacent neurons display grids at similar scales and orientations although 

their firing may be mutually phase-shifted. The grid orientation changes among sites 

located a bit further apart. Thus a small region of the MEC contains grid cells that cover 

the entire maze surface at a particular scale and orientation. Furthermore, the spacing 

of the grid becomes larger down the dorsocaudal to ventral axis of the MEC. Altogether, 

grid cells system provides animal with the information as to when it travelled a certain 

“aerial” distance from a previous spot, suggesting they form a principal element of the 

path integration system (McNaughton et al., 2006).  

The length of an integrated path is determined by angular and linear velocity. 

Whereas the angular self-motion inputs may reach MEC from the head direction system, 

the circuitry that convey linear self-motion into the entorhinal cortex has not been 

determined yet (Jeffery, 2007b). However, linear speed of the animal apparently 

modulates some of the head-direction cells, grid cells, and their conjunctive cells found 

in deeper layers of the MEC (Sargolini et al., 2006).  
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Fig. 4. A diagrammatic representation of inputs leading to generation of signal by grid cells and place cells. 

Reproduced from Jeffery (2007b). 

 

2.7  Cortical areas 

 

Studies from cellular correlates of spatial behavior suggest that construction of 

internal spatial representation of the environment is not limited to the hippocampus, or 

hippocampal formation. The multi-staged cooperation with both subcortical and cortical 

structures likely occurs. Contribution of these areas is, however, still poorly understood. 

Much of the theoretical work focused on how and where is the spatial memory stored, 

proposing a distributed network involving neocortical areas (Frankland and Bontempi, 

2005). While a brief sketch of cortical involvement in spatial processing will be provided 
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here, a detailed review of role of posterior parietal cortex will be given in the last 

section. 

 

Perirhinal and postrhinal cortex 

Perirhinal and postrhinal cortices provide a major source of cortical input to the 

hippocampal complex. Perirhinal cortex projects preferentially to the lateral entorhinal 

cortex and postrhinal cortex projects preferentially to the MEC (Burwell and Amaral, 

1998). Surprisingly, perirhinal lesions usually produce no spatial deficits. They do not 

affect delayed alternation in a T-maze (Ennaceur et al., 1996), working memory variant 

of radial arm maze (Ennaceur and Aggleton, 1997), and reference memory in water 

maze (Burwell et al., 2004). If occasionally reported, the spatial deficits are mild and 

transient (Liu and Bilkey, 1998; Liu and Bilkey, 2001; Aggleton et al., 2004), probably 

reflecting general working memory rather than a specific spatial impairment (Jarrard et 

al., 2004). The contribution of postrhinal cortex to allothetic processing appears to be 

more significant (Liu and Bilkey, 2002) as would be predicted from its connection to 

MEC. However, combined post- and peri-rhinal cortex lesions also largely fail to affect 

spatial processing (Bussey et al., 1999). Furthermore, though postrhinal lesion may 

reduce coherence of CA1 firing fields they do not alter their location specificity (Nerad 

et al., 2009). 

 

Retrosplenial cortex (RSC) 

RSC (misleadingly also referred to as posterior cingulate) is quite large and 

cytoarchitecturally heterogenous neocortical area along the cerebral midline. It either 

receives direct projections from hippocampal formation (subicular complex) or is 

connected indirectly, via reciprocal fibers from postrhinal cortex. Thalamic projections 

include both afferents from and efferents to the lateral dorsal thalamic nucleus and the 

anterior thalamic nuclei known to contain HD cells. Furthermore, RSC receives input 

from visual areas and connects reciprocally to posterior parietal cortex and anterior 

cingulate (Vann et al., 2009). RSC lesions impair performance in standard spatial 
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memory tasks, including learning the fixed (Vann and Aggleton, 2002; Whishaw et al., 

2001) or daily-changing (Whishaw et al., 2001) location of a platform in a water maze, 

and performance in working memory tasks in a radial-arm maze (Vann and Aggleton, 

2002). Lesion-induced impairments have also been reported in tasks designed to tax the 

use of directional information (Pothuizen et al., 2008) or the use of idiothetic 

information for path integration (Whishaw et al., 2001). However, idiothetic navigation 

may be spared after RSC lesion (Zheng et al., 2003; Wesierska et al., 2009). RSC contains 

HD cells (estimated 10% of total number) with properties quite similar to the others 

found in the head-direction cell network (Cho and Sharp, 2001). Thus, RSC plays an 

important yet still not fully understood role in combining the idiothetic and allothetic 

signal and planning goal-directed motion, a role complementing or parallel to that of 

posterior parietal cortex.  

 

Prefrontal cortices 

The prefrontal cortices are considered to be central for cognitive and executive 

functions as well as for mediating a working memory. In the rat, medial prefrontal 

cortex (mPFC, a putative analogue of primate dorsolateral cortex (Uylings et al., 2003)) 

appears to be associated with spatial processes under certain conditions. Beside 

multiple cortical and subcortical projections, mPFC densely communicate with 

hippocampus (Ferino et al., 1987). Animals with lesions centered to mPFC, however, 

perform well in allothetic navigation in a water maze (Lacroix et al., 2002; Rawson et al., 

2010; Jo et al., 2007) unless they face pattern a completion challenge (a partial cue 

removal) (Jo et al., 2007). Instead, lesioned animals completely fail to locate platform by 

idiothetic means (de Bruin et al., 2001).  

Inactivation of mPFC does not permit an adaptation to an “extra dimensional 

shift”, i.e. when cues of one modality (e.g. space) became irrelevant and rat must follow 

cues of another modality (e.g. odor) (Ragozzino, 2007). On the contrary, 

intradimensional shift (a change of a goal within one modality) does not require mPFC. 

That is in agreement with findings that lesioned rats are only mildly impaired during a 
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“reversal” in water maze (Lacroix et al., 2002). Unit recordings from mPFC revealed 

neurons of similar characteristics as place cells. They fired during place preference task, 

with most of the firing fields located at the goal area (Hok et al., 2005). Prefrontal area 

provides an important source of signal for hippocampal place cells; ablation of mPFC 

results in disrupted place cells activity (Kyd and Bilkey, 2003). It is hypothesized that 

mPFC may participate in spatial processes by goal-directed planning, a process that 

apparently recruits both working memory and a selection of relevant strategy. However, 

as mPFC and hippocampus may work in parallel, mPFC lesions do not necessarily yield 

spatial deficits.  
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3  Non-stationary environments 

 

As we experience on a daily basis space around us is not a rigid scene and 

undergoes both short- and long-term changes, so the brain must cope with two 

antagonistic demands. First, the perceived changes might be considered minor and/or 

irrelevant for ongoing spatial behavior and hence should be suppressed or excluded 

from the corresponding spatial representation. Second, they might be considered 

relevant enough to bring about a reorganization of the initial spatial representation. The 

first is likely accomplished by process of pattern completion, the second by pattern 

separation. 

These assumptions are firmly embedded in the cognitive map hypothesis (Nadel 

and O'Keefe, 1978), predicting that a disappearance of a cue yields no effect on a map-

based navigation. Conversely, adding a salient cue, or changing context elicits a 

substantial change in map-like representation.  

However, an animal is not only confronted with a particular change in the 

environment (whether spatial or non-spatial) but occasionally also with fractionating its 

environment into independent and coherent subsets which move relative to each other 

and deserve to be spatially attended (e.g. a duck on a floating island vs. a stationary 

beacon). These coherent subsets may be regarded as individual reference frames. Such 

dissociating situations are even more frequently encountered in modern life of humans 

(e.g. travelling in a train vs. stable surroundings). Even a single moving object within a 

stable environment may be conceptualized as a distinct reference frame. But do these 

assumptions correspond to brain representations of fractionated environments or single 

moving objects? Although the reference frame dissociating situations are not 

uncommon in neuroscience research, assessment of spatial representation with respect 

to a single moving object is somehow neglected, partially due to a lack of appropriate 

behavioral test.  
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3.1  Discrete reference-frame dissociating manipulations 

 

Distinct manipulations with environmental features leading to dissociation of 

reference frames, such as various cue or maze rotations, translations or shape 

modifications are widely used to examine as to how these features exert control over 

the rat's spatial behavior and/or its cellular correlates. These manipulations usually 

occur discontinuously as discrete events, without the possibility for the animal to 

experience them. Therefore, the animal typically faces a sudden conflict between a 

current spatial configuration and the expected one.  

 

Manipulations with a single object or an array of objects 

Rotation a single distal cue in a symmetrical environment is readily followed by 

corresponding rotation of firing fields (Muller and Kubie, 1987) even if it does not match 

with idiothetic information (Jeffery, 1998). However, if the rotating cue is directly 

experienced as unstable, i.e. is moving in sight of the animal, its control over spatial 

behavior entirely ceases. This can be reverted if the animal first experience the cue 

stability for several sessions. Then the firing field will follow the cue rotation even if the 

cue is visibly mobile (Jeffery, 1998). 

The proximal cues (except for beacons), however, do not display as strong 

control as distal ones (Save and Poucet, 2000; Shapiro et al., 1997). An array of proximal 

cues providing the only correct reference frame for locating the reward will govern the 

spatial behavior only after intensive training (Collett et al., 1986; Biegler and Morris, 

1996; Save and Poucet, 2000). The subtle control is even more suppressed if rats can 

directly experience that location of an array of proximal cues changes relative to the rest 

of the environment from trial to trial (Biegler and Morris, 1993; Biegler and Morris, 

1996). It is not then surprising that in rats performing goal-undirected chasing for 

randomly scattered pellets on an arena with centrally placed objects, a single rotation of 

them does not evoke corresponding rotation of recorded firing fields (Cressant et al., 

1997). Yet, animals do not neglect proximal landmarks. For example they respond by 
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increased exploration to an inter-trial change in spatial configuration or displacement of 

the objects (Goodrich-Hunsaker et al., 2005; Save et al., 1992a, b). Furthermore, 

Gothard et al. (1996a) even managed to reliably record place cells’ firing as coupled to 

unstable (moving from trial to trial) intramaze landmarks. Rats were intensively trained 

to shuttle between a variably placed box and two variably placed landmarks inside a 

large arena, some cells fired in stable spatial relationships to the box, whereas others 

fired in relation to the landmarks.  

The capacity of intramaze objects to exert control over place fields grows as the 

objects ar brought closer to the maze periphery (Cressant et al., 1997). Such peripheral 

landmarks may even surpass distal cues. In a double rotation study, Renaudineau et al. 

(2007) reported that 25% of the recorded place cells followed a clockwise proximal cues 

rotation while only 9% followed a counter-clockwise distal cue rotation. Most of the 

cells, however, remapped. Subsequent restoration of the original maze layout was 

accompanied by a re-establishment of the previous place fields locations. 

 

Maze position manipulations 

The maze itself may also constitute a distinct frame of reference delimited by the 

walls which are also strong determinants of either navigational behavior or place cells 

discharging (Hamilton et al., 2007; Hamilton et al., 2008; O'Keefe and Burgess, 1996). 

However, it should be noted here that many authors describe maze walls in terms of 

proximal cues, making the terminology rather confusing. The genuine proximal 

(=intramaze) objects are such that they may be approached from any direction. The 

number of spatial views experienced is therefore substantially higher than in the case 

of, e.g. apparatus walls. Therefore the brain “computations” considered to determine 

the location appear to be quite demanding (Benhamou and Poucet, 1998). These are the 

likely reasons why the intramaze objects hardly exert any control over the rat’s 

navigation and why a rat prefers navigation based on landmarks that cannot be viewed 

from the other side. Nevertheless, quite distant object do not provide accurate distance 

information because of minimal paralax. Therefore maze walls represent near-ideal tool 
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for determining a target location: they are close enough to enable distance estimation, 

yet impassable, i.e. preventing from an abundance of views.  

In principle, two basic spatial manipulations with the maze can be made, 

translation or rotation. 

If a maze is repeatedly translated within a room so that some of its parts may 

overlap across sessions (for one such an instance see fig. 5-1), place cells usually 

maintain their firing according to reference frame of the maze (Knierim and Rao, 2003; 

Siegel et al., 2008) while HD cells retain their alignment bound to the room coordinates 

(Yoganarasimha and Knierim, 2005). This is particularly true for corridor-like mazes. On 

arenas, few place cells' discharge may remain determined by extramaze cues. However, 

most of place cells respond to translation, regardless of the maze type, by remapping.  

Behavioral studies conducted in water maze confirmed dissociability of maze-

derived and room-derived spatial information. If a water maze tank is shifted in a probe 

trial within a room so as the target location occurs in the opposite quadrant of the pool, 

the well-trained rats search for the platform in a place corresponding to the pool 

reference frame (Hamilton et al., 2007; fig. 5-2), indicating the distal cues provide 

directional information but the accurate platform location is derived from distance to 

the maze wall (Hamilton et al., 2007). If the tank is filled up almost to the rim, rats 

demonstrate navigation exclusively by distal cues. Interestingly, this is also true when 

the maze manipulation is performed during early acquisition, suggesting the dominance 

of maze reference frame evolves gradually (Hamilton et al., 2009).  

The pattern of results encountered after maze rotations is more complex. 

Rotation of background cues in a symmetrical environment results in corresponding and 

conjunctive rotation of place cells and HD cells (Muller and Kubie, 1987; Knierim and 

Rao, 2003; Yoganarasimha and Knierim, 2005). Provided that the local cues are 

enhanced, a subset of place cells tend to be tied to the maze frame (Shapiro et al., 1997; 

Cressant et al., 1997; Yoganarasimha et al., 2006) while HD cells almost exclusively keep 

firing in line with distal cues (Yoganarasimha et al., 2006). If a rat is present on arena 

during the rotations, inertial stimuli play an important role in determining both place 
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cells and HD cells discharge. Inertial stimuli may compensate for the rotation so that a 

place cell can keep its signal according to a pre-rotational reference frame (Wiener et 

al., 1995) which is in accord with behavioral evidence that gerbils are able to 

compensate for rotation while path integrating (Mittelstaedt and Mittelstaedt, 1980).  

 

Fig. 5. Effect of maze translation on place cells activity (1) and navigation in water maze (2). Rats were 

trained in a modified version of a place preference task (1A) to run to an unmarked place on the arena (red 

square) after a beep, and pause there, in order to let release a food pellet scattering randomly over arena. 

In probe trials (at an early [SHIFT1] and late [SHIFT2] stage of acquisition) the maze was translated to 

either right or left side, with no reward delivered during unit recordings. Typical examples of firing fields 

(black parts of the gray track area) from probe trials are shown in (1B) (upper part=before, lower 
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part=after translation). Three illustrations on the left show arena-based place cells, two illustration on the 

right display room-based place cells. Panel (1C) shows proportions and numbers of place cells types before 

and during learning the task. In another experiment (2A), rats were intensively trained to locate an 

underwater platform (black square) in water maze (large black circle). In a probe trial with no platform 

present, the maze was translated towards the centre of the room (large gray circle). An illustrative path 

(2B) of the probe-trial rat indicates that upon release the animal accurately headed to a location defined 

by water maze walls (gray square), rather than searching for the platform in its original location, as 

defined by room coordinates (black square). Compiled from Siegel et al. (2008) and Hamilton et al. (2007). 

 

In most situations, the perceived conflict between a previously concordant 

reference frame and a novel dissociated environment results in remapping of place 

cells. Noteworthy, if rats are exposed to spatial dissociations of maze and its 

surroundings repeatedly, their place cells tend to develop and maintain quite new 

representational layout allowing to pursuit both room-based and maze-based 

references frame independently (Shapiro et al., 1997; Siegel et al., 2008). 

 

Conflict between allothesis and idiothesis 

A distinct reference frame can be built upon idiothetic input. Gothard et al. 

(1996b) examined the effect of repetitive discrepancy between idiothetic and allothetic 

information. Rats shuttled on a narrow linear track between two rewarded ends - a 

fixed and a movable slide box (fig. 6). When a rat ran towards the fixed end, a slide box 

was displaced a bit closer along the track, making the returning rat a mismatch between 

expected and actual distance of the track. Again, one class of place cells retained their 

firing relative to the starting point (hence idiothesis) while numerous place cells fired in 

relation to the moving box. The authors also computed a population vector analysis to 

construct a “mapping” from each full-length track to the shortened track. For small 

mismatches, the vector moved smoothly through intervening coordinates until the 

mismatch was corrected. For large mismatches, it jumped abruptly to the new 

coordinate, indicating a switch from a room reference frame to a reference frame based 

on idiothesis.  

 



 35 

 

 

Fig. 6. The allothesis and idiothesis dissociating task employed by Gothard et al (1996b). 

 

3.2 Continuous dissociating of the environment 

 

Although the study of Gothard et al. (1996b) investigated a repeated yet discrete 

mismatch between idiothetic input and exteroceptive cues, there had been still an 

apparent lack of experiments investigating continuous separation of the spatial 

representational framework. Nevertheless, the above mentioned experiments yielded 

three principal findings: 1) the initial dissociation of the environment causes partial 

remapping; however, this event-related disruption stabilizes as the dissociation is 

experienced repeatedly, 2) representation can be likely bound to any arbitrary reference 

frame, 3) rarely yet distinctly, a place cell can respond to two reference frames 

simultaneously.  

To shed light on these issues, an assay enabling a continuous dissociation of 

maze-related and room-related reference frame has been introduced (Bures et al., 

1997a, b). Foraging rats were at first exposed to a stable arena. Under this circumstance, 

the idiothetic (or arena-based) cues are in a good agreement with the cues provided by 

the space outside the maze. However, a subsequent continuous rotation of the arena 

puts the two sources of spatial information in conflict. Place cells recordings revealed 

that most of the cells disintegrated their firing after the onset of rotation. Few of them 

followed the arena rotation, few of them retained stable place field according to room 

coordinates. The rotation itself did not account for the disruptive effect on place cells 

because if the onset of the rotation was followed by switching off the lights most of the 

place cells preserved their firing, reliably anchored to the arena surface. The minority of 
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cells that fired in reference frame either of the arena or the room provided a clue about 

possibly independent spatial representations: one following the rotation of the arena 

surface, the other anchoring its coordinates to the stable room environment. Such dual 

representation can be further emphasized in a relevant navigational task (Zinyuk et al., 

2000), i.e. during performance of place preference task (Rossier et al., 2000). Place cells 

of the “navigators” were less sensitive to the onset of the rotation, so that only about 

one fourth had their firing fields disrupted. Their discharge was tightly anchored to 

stationary room frame representing the relevant frame of reference. At the same time, 

slightly fewer place cells fired according to navigation-irrelevant arena frame. 

Importantly, there was a near-equal number of cells that had their place field bound to 

both arena and room frames. 

 

Place avoidance paradigms 

Though initially devoted to neurophysiology recordings (Bures et al., 1997b), the 

place avoidance task has been standardized as to methodological procedures and 

eventually expanded to various behavioral, pharmacological and lesion experiments. 

Generally, it requires a rat to avoid a directly unperceivable, sector-shaped place on a 

elevated circular arena, since entering the sector is punished by a mild electrical foot-

shock. The principal feature of the task is represented by the fact that the arena disc can 

be continuously rotated relative to its central vertical axis. Rotating the arena produces 

a segregation of previously concordant spatial information into two different frames of 

reference – the arena frame (AF) of reference that slowly rotates, and room frame (RF) 

of reference which remains fixed relative to the room. Then, we can choose as to which 

reference frame the punished sector will be defined in. In most cases, the sector is fixed 

to RF. This variant is called Active Allothetic Place Avoidance (AAPA) since a rat must 

compensate for the arena rotation otherwise it would be passively transported into the 

(fixed) punished region. To solve this task, a rat must navigate using extramaze 

allothetic cues such as doors, shelves, windows etc. and abandon navigation based on 

intramaze allothetic cues (scent marks, tactile cues) and/or idiothesis. In other words, 
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rat must first segregate previously concordant spatial information into two independent 

coherent representations, arena- and room- based. Subsequently, the arena-bound cues 

must be considered as navigation-irrelevant. Such process is formally framed in concept 

of cognitive coordination (Wesierska et al., 2005; Kubik and Fenton, 2005; Phillips and 

Silverstein, 2003).  

Since cognitive coordination belongs to one of the processes significantly 

impaired in schizophrenic patients, AAPA provides a convenient behavioral tool to 

assess the effects of various antipsychotics in a rat model of schizophrenia-like 

symptoms (Bubenikova-Valesova et al., 2008; Vales et al., 2006; Vales et al., 2010).  

In healthy animals, the presence of two segregated, independent spatial 

representations can be demonstrated in several ways. If rats trained to avoid a sector on 

a stable arena are subjected to an extinction session (no shocks) on a rotating arena in 

darkness, they subsequently display apparent avoidance as if it continued in the arena 

frame. However, the avoidance in the absence of the reinforcer gradually ceases. If the 

lights are subsequently switched on, rats instantly avoid a putative sector according to 

room cues. Thus, although arena frame memory extinguished, the room frame memory 

remained intact (Bures et al., 1997a). Even more explicit demonstration is provided by a 

“double avoidance” task (Fenton et al., 1998; Kelemen and Fenton, 2010). In these 

situations rats are required to simultaneously avoid both arena-bound and room-bound 

sectors. Despite the obvious considerable demands on coordination of the 

representations, attention, and proper timing of the escape behavior, rats confidently 

master this task within few sessions (Kelemen and Fenton, 2010).  

The double avoidance and AAPA tasks are critically dependent on functional 

integrity of the hippocampus (Wesierska et al., 2005; Cimadevilla et al., 2000; Kubik and 

Fenton, 2005; Kelemen and Fenton, 2010). Even unilateral inactivation of dorsal 

hippocampus can prevent the rat successfully performing AAPA (Cimadevilla et al., 

2001), a result hypothesized to reflect the inability to segregate rather than inability to 

maintain multiple representations of space (Kubik and Fenton, 2005). Ensemble 

recordings from CA1 neurons in animals performing the double avoidance task revealed 
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that, as a whole, the system switches from room frame to arena frame representation in 

few seconds intervals with higher probability to attend to a given representation if its 

corresponding sector is closely approaching (Kelemen and Fenton, 2010). Variants of 

place avoidance that do not tax cognitive coordination (e.g. AF+ in darkness) seem to be 

unaffected by disrupted function of hippocampus (Wesierska et al., 2005).  
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Fig. 7. Examples of the most commonly used variants of place avoidance task. (A) Arena rotates from the 

beginning of the experiment, with a shock sector (red) anchored to room coordinates. Thus the rats must 

treat cues (illustrated as putative odor traces) bound to AF as irrelevant and navigate solely according to 

RF (RF+&AF-). This setup is referred to as Active Allothetic Place Avoidance. (B) The same as A except that 

the arena surface is covered by shallow water to reduce availability of odor or tactile cues, hence no 

arena-bound cues to be suppressed are present (except for idiothesis) (RF+). (C) The arena rotates in 

darkness; the sector is anchored to the arena. Rats navigate according to AF (AF+). Due to the darkness, 

there is no requirement to suppress RF-based cues. (D) Rats are at first trained on stable arena. They can 

navigate using both AF or RF bound cues since both reference frames overlap [(AF&RF)+]. The arena then 

begins to rotate, with one sector left anchored to the RF (red) and the other to AF (green). Rats must 

simultaneously use both AF and RF bound cues but in separate, mutually discordant navigations (AF+ RF+). 

This is referred to as double avoidance. To make the escape accomplishable, central parts of the shock 

sectors are withdrawn. (E) Standard place avoidance apparatus, photo courtesy of Ms. Lenka Řezáčová. 
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4  Posterior parietal cortex (PPC) of the rat 
 

4.1  PPC anatomy 
 

 

Fig. 8. Illustration of PPC extent relative to the brain surface in human, monkey, and rat. Compiled from 

Reep and Corwin (2009).  

 

The PPC lies between the rostral primary somatosensory areas (which are also 

overlaying PPC laterally) and the caudal secondary visual areas, while the retrosplenial 

cortex adjoins medially (figs. 8, 9). As multimodal information converges in the PPC 

region con, it is often referred to as associative (Thinus-Blanc et al., 1996). It had not 

been long determined as to which part (if any) of the rat parietal cortex is analogous to 

primate PPC, since its cytoarchitecture in rodents makes it difficult to clearly distinguish 

it from adjoining cortices, especially at caudal part. PPC has thus been traditionally 

regarded as the most rostral part of secondary visual cortex and labeled OC2M and 

OC2L in neuroanatomy atlas of Paxinos. However, using retrograde tracers to examine 

thalamo-parietal connections, a putative analogue of primate PPC was delineated in late 

1980s.  

This area, like primate PPC, receives thalamic input exclusively from the 

posterior, lateral dorsal and lateral posterior nuclei (Kolb and Walkey, 1987; Reep et al., 

1994; Chandler et al., 1992) but not from the somatosensory ventrobasal nucleus and 

visual dorsal lateral geniculate nucleus. The associative nature of PPC is reflected in its 

numerous cortical projections. It receives afferents from striate, extrastriate, and 
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somatosensory cortex, while input from posterior cingulate and medial frontal cortex 

(anterior cingulate, frontal eye fields) seems to be reciprocal (Kolb and Walkey, 1987). 

Also auditory area sends substantial number of afferents to PPC. Noteworthy, there is a 

direct afferentation from cerebellum, emphasizing the possible role of PPC in motoric 

processes (Giannetti and Molinari, 2002). Although PPC does not directly connect to 

hippocampus (fig. 10), it is widely accepted that hippocampo-parietal communications 

are crucial for some aspects of spatial information processing. The signal into 

hippocampus can pass via retrosplenial cortex or postrhinal cortex. A small parietal 

projection also reaches medial part of entorhinal cortex (Burwell and Amaral, 1998).  

 

Fig. 9. Dorsal (A) and lateral view (B) of the left hemisphere of a rat brain with depicted parcellation of the 

neocortex. Fr – frontal, Oc – occipital, Par – parietal, Te – temporal cortex, RSA – retrosplenial area. C – 

bregma level, D – PPC level. AP – anteroposterior distance from bregma. Reproduced from Reep and 

Corwin (2009). 

 

The cytoarchitectonics of PPC can be identified by the presence of thin layers II 

and III, a small but well-defined layer IV, and densely packed layers V and VI (Kolb and 

Walkey, 1987). The PPC lacks rich neurotransmitter heterogeneity. Beside glutamatergic 

(kainate, NMDA, AMPA) and GABAergic (A and B) receptors, cholinergic (M1, M2, 

nicotinic), 5-HT (1A, 2) and adrenergic (α2h) receptors have been also detected in low 

densities (Palomero-Gallagher and Zilles, 2004). Cholinergic efferents thought to play 

some roles in attention stem from the nucleus basalis magnocellularis of the basal 

forebrain.  

Despite detailed anatomical studies, the exact extent of the PPC region is still a 

matter of debate. Early anatomical attempts demarcated an area ranging 2-6 mm 
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posterior to bregma and 1.5-5.5 mm laterally to midline (Kolb and Walkey, 1987), which 

soon became a “gold standard” in the majority of studies employing PPC lesions. 

However, a comprehensive inspection of the parieto-thalamic connectivity resulted in 

confining PPC area into a strip 3.4-4.4 mm posterior to bregma and extending 1.5-

4.5 mm laterally (Reep et al., 1994; Reep and Corwin, 2009; fig. 9A). It is possible to 

further divide PPC into at least two subregions since its medial part communicates with 

agranular medial frontal cortex and dorsocentral striatum, while its lateral part is 

connected with dorsal periphery of the dorsocentral striatum (Palomero-Gallagher and 

Zilles, 2004; Reep and Corwin, 2009). However, no systematic study has examined their 

potentially different functions yet. 

 

 

Fig. 10. Scheme of main connections of PPC and structures containing neural correlates of spatial 

representation. Reproduced from Calton and Taube (2009). 

 
 

PPC 
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4.2  PPC function in humans and primates 

 

In a neurological context, the PPC is often associated with the phenomenon of 

hemispatial neglect (Halligan et al., 2003; Husain and Nachev, 2007). Patients sustaining 

damage in the area of the right parietal-temporal–occipital junction demonstrate a 

remarkable deficit in directed attention. In the most severe cases, the patients shave 

only the right (ipsilesional) side of their face or attempt to dress only the right side of 

the body. The deficit is not just a lack of responsiveness to sensory stimulation but also a 

deficit in the cognitive representation of space. When asked to describe a mental 

representation of a well-known scene, neglect patients describe objects only in the right 

side of space. When asked to reverse the spatial perspective, they now describe objects 

on the right side of the reversed perspective and cannot describe the previously 

described objects (Bisiach and Luzzatti, 1978).  

Bilateral PPC lesions are obviously rare, yet well characterized. The Balint 

syndrome (Balint, 1909) is associated with the inability to attend and/or to perceive 

more than one object at a time (simultagnosia) and inability to accurately reach toward 

an object (optic ataxia).  

Though the neglect syndrome can be induced in primates by lesioning or 

otherwise injuring their PPC (Valenstein et al., 1982; Crowne and Mah, 1998), much of 

the work illuminating the role of PPC took advantage of electrophysiological recordings: 

typically performed on head- or trunk-restrained animal attending a visual stimulus on a 

computer screen. Numerous studies have demonstrated that neuronal firing in the PPC 

area can be related to various reference frames, either egocentric (retina, head, hand, 

or trunk) or allocentric (Snyder et al., 1998; Cohen and Andersen, 2002), suggesting that 

PPC acts as "translator" between various frames, providing a computational framework 

for motor actions (Cohen and Andersen, 2002).  

Human and primate PPC data combined suggest that PPC participates in what 

has been collectively referred to as "vision for action", a dorsal stream in neocortex that 

is engaged in visual attention and transforms visual-spatial information into a code 
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applicable in construction of motor plans (Goodale and Milner, 1992). PPC has been 

proposed to participate in at least three distinct functional systems: grasping, reaching, 

and eye movements planning (Culham and Valyear, 2006; Andersen and Buneo, 2002). 

Recently, an issue of mnemonic contribution of PPC has been raised as, in spite of only 

mild memory deficits seen after PPC injury, this cortical region repeatedly displays its 

significance in brain imaging studies involving both short-term and long-term memory, 

particularly of episodic type (Olson and Berryhill, 2009; Cabeza et al., 2008). Directly 

addressing the issue of PPC role in spatial cognition, Burgess (2008) proposed that PPC 

provides a “window” performing spatial updating of egocentric location which is further 

transformed into an allocentric representation residing in medial temporal lobe.  

 

4.3  PPC function in rodents 

 

The function of PPC is still poorly understood in rodents as many experiments 

have yielded contradictory results. This might be partially due to the fact that PPC was 

not defined until late 1980s which resulted in using different coordinates of lesion 

among laboratories. Surprisingly, this practise hase persevered to these days. However, 

there is currently a general consensus that rat PPC plays two principal, though rather 

vaguely defined roles: it is part of a network mediating directed attention and 

represents one of the principal brain sites contributing to spatial learning and memory. 

 

4.3.1  Attention 

 

As a logical consequence of the neglect phenomenon, several research groups 

sought to establish if unilateral neglect can be replicated in rodents as this would 

provide a tool in modeling such a debilitating brain dysfunction (Reep et al., 2004). 

Indeed, rats with injuries aimed to PPC in one hemisphere or with controlled unilateral 

lesions of this site do not respond to multimodal stimuli (King and Corwin, 1992; King 

and Corwin, 1993). However, the attention deficit seems to be mild and transient, and 
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not always inducible. Follow-up studies revealed that PPC represents only one element 

of a distributed network mediating directed attention. This network comprises of PPC 

agranular medial cortex (a putative analogoue of primate frontal eye fields), 

dorsocentral striatum and lateral posterior thalamic nucleus (Reep and Corwin, 2009). 

This is consistent with human studies because injuries to the aforementioned brain sites 

may also produce a hemispatial neglect. The cholinergic afferentation in rodent PPC 

seems to be important in surprise-induced attention enhancement (Bucci et al., 1998) or 

in modulating attention for new learning (Maddux et al., 2007). 

 

4.3.2  Allocentric and egocentric processing 

 

Early attempts to identify the role of PPC led to its implication in spatial 

processes. Specifically, impaired allocentric navigation contrasted with egocentric 

spatial processing left unaffected after a bilateral PPC lesion (Kesner et al., 1989). It was 

repeatedly found that lesioned rats cannot find submerged platform in watermaze (Kolb 

et al., 1994; Kolb and Walkey, 1987; Dimattia and Kesner, 1988), or locate the correct 

hole in the cheese-board task (Kesner et al., 1989) as efficiently as control rats. The 

observed deficit correlates with the lesion extent. If the affected area involves, in 

addition to PPC, much of the somatosensory cortex both rostrally and laterally (Dimattia 

and Kesner, 1988) the impairment is even pronounced compared to the 

hippocampectomized animals. However, lesions limited to the currently defined PPC 

area yield only a moderate disruption of allocentric navigation (Kolb and Walkey, 1987). 

Detailed analysis of the swimming paths revealed that operated rats do retain some 

allocentric capabilities. They look to swim to the correct quadrant but fail to accurately 

direct their path towards a goal. Motor disturbances do not account for the deficit since 

lesioned rats have no difficulty to swim to a visible platform. PPC plays a role in both 

acquisition and retention of allocentric information (Save and Moghaddam, 1996). 

However, evidence has accumulated that PPC lesions do not always lead to detectable 

allocentric impairment in water maze (Save and Poucet, 2000; Mogensen et al., 1995; 
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Compton et al., 1997). The purely allocentric theory of PPC function hence did not stand 

on a solid ground, disproved also by the fact that PPC lesions were later reported to 

affect egocentric processing. 

In a two experiments, Save and colleagues demonstrated PPC’s involvement in 

path integration on a dry arena. They trained rats to forage for food pellets placed 

randomly inside one of seventeen holes on a clean circular arena (Save et al., 2001; 

Parron and Save, 2004; see also fig 1D). Once the animal found the pellet, it ran 

immediately and directly to its home-base cage, located at the arena circumference. 

Since the cage was underneath the arena surface (hence invisible for the animal) and a 

black curtain beyond the arena space provided no extramaze cues, rats were 

encouraged to follow the path integration-based homing vector while navigating on the 

inbound trip. PPC lesion impaired efficient homing even though not severely. 

Specifically, heading angles during the onset of the return trips were not as accurate as 

that of control rats. Likewise, animals often erroneously tried to jump into “dummy” 

cages attached regularly spaced around the arena to mask the home cage position. The 

inaccuracy of the return runs increased with complexity of the outbound trips (Save et 

al., 2001). Navigation based on self-motion cues is also disabled in the corresponding 

variant of water maze. Save and Moghaddam (1996) trained rats to reach a platform in 

darkness, with a start-goal relative position fixed. Lesioning the PPC again resulted in 

inaccurate trajectories so that lesioned rats could not even learn the task. The path 

integration is not the only manifestation of egocentric coding of space. However, as 

noted earlier, behavioral tests based on a simple egocentric response, such as the 

egocentric version of the radial maze (Kolb et al., 1994; Kesner et al., 1989) or 

memorizing the egocentric distance (Long and Kesner, 1998) have not proved PPC 

involvement at all. On the contrary, more egocentric information-demanding test as 

memorizing the route in Hebb-Williams maze led to a significant impairment (Rogers 

and Kesner, 2006).  

The results discussed above give somewhat ambiguous results leading to a 

general and rather trivial suggestion that PPC plays a role in demanding spatial 
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calculations needed for execution of accurate spatial response. Can its role be 

conceptualized more specifically? Or the scarcity in rodent literature does not allow for 

formulating a more specific hypothesis? 

Save and Poucet (1998, 2000) put forward the idea originally conceived in 

primate experiments that PPC transforms egocentric into allocentric coding and vice 

versa. They noticed that PPC lesioned rats did not properly respond especially to spatial 

cues occuring in the proximity to their body (eg., Save et al., 1992a; Save and Poucet, 

2000). For example, lesioned rats experience difficulties in locating submerged platform 

in water maze when only intramaze landmarks are available to them. Conversely, if they 

can use extramaze landmarks, their performance is equal to that of control rats (Save 

and Poucet, 2000). Save and Poucet hypothesize that PPC associates idiothetic and 

visuospatial information in order to translate egocentrically perceived spatial 

relationships into allocentric representations. In turn, PPC also accomplishes an inverse 

task: translation of allocentric spatial representations into body-centered coordinates 

required for planning of the goal-directed movement. The "translator" is busier when it 

“calculates” near-space relationships since proximal objects provide greater variability 

of spatial views than distal landmarks; their parallax changes only little as the animal 

locomotes.  

 

4.3.3  Electrophysiological studies 

 

A greater insight into the allocentric/egocentric transformational role of PPC 

would be provided by unit recordings from parietal neurons. However, 

electrophysiological studies are rare, partially due to the technical difficulties in 

recording from parietal cortex. Both allocentrically and egocentrically responding 

neurons have been identified in rodent PPC. Surprisingly, allocentric neurons were 

detected using auditory stimuli (Nakamura, 1999). They responded to one of six 

speakers placed around a restrained animal performing a delayed-match to sample task. 
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The specific speaker-preferred firing remained preserved in spite of rotating the body 

axis of the restrained animal.  

In radial maze, PPC neurons have been shown to fire in conjunction with specific 

locomotor actions, such as turns, and a particular place (Chen et al., 1994a, b); few 

neurons displayed head-direction-like specificity which was furthermore retained in 

darkness. A significant number of neurons was modulated by passive rotations, 

suggesting PPC’s role in integration of angular displacement, i.e. path integration (Chen 

and Nakamura, 1998). Recent recordings demonstrated quite a remarkable behavior; 

they signaled a position according to progression on a well-known route (Nitz, 2006). 

For example, one neuron fired whenever a rat, just after the onset, occurred before a 

first right turn, during both outbound and return journey. Thus a set of PPC neurons 

seems to inform the rat about its location within a given route according to body spatial 

responses, which may serve as “intrinsic landmarks”. Importantly, this route position 

firing is not anchored to any allothetic cue which makes it distinct from place cells.  

 

4.3.4  PPC function outlined 

 

Though extracellular recordings from PPC neurons did not substantially 

accelerate progress on revealing the role of PPC, several theories attempting to 

characterize PPC functioning in some detail have been recently proposed.  

Whitlock et al. (2008) elaborated on the translation between egocentric and 

allocentric reference frame and emphasized the position of PPC just before a route plan 

is going to be developed. They suggested that signals generated by place cells and grid 

cells, inherently allocentric, reach PPC through postrhinal and retrosplenial cortices, 

with an alternative - via mPFC. Then it undergoes translation into the body-based 

coordinates necessary for planning the next movement in a navigational sequence.  

Calton and Taube (2009) went even further. According to them, PPC may 

manipulate with space as we manipulate with objects. PPC integrates the perception of 

space in the immediate vicinity (i.e. spatial orientation) with more distant spatial 
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representations, both of them provided by place cells and the path integration system. 

Thus, a part of the cognitive mapping system resides in PPC. Then the signal may be 

combined with neocortically generated signals (both spatial and non-spatial) in order to 

accurately formulate a route to the goal (so-called route planning), or at least the 

heading of immediate path (trajectory planning).  

On the contrary, Nitz (2009) underscored the ability of PPC to code information 

in any arbitrary frame of reference. Since rodents often limit their locomotion to several 

regularly visited routes only, PPC allows for constructing route-centered representation 

(Nitz, 2006). The hippocampus may then restrict utilization of behavioral sequences 

linked to such route-based representation to relevant places only. Projections to 

secondary sensory and motor cortices as well as superior colliculus could serve as a 

unifying framework for activity within these structures so that the detection of 

navigation-relevant cues and the timing of locomotor actions are optimized. As a result, 

PPC activity would have a great impact on an animal’s ability to quickly move in an 

uninterrupted fashion along a complex path. 

In more general terms, Kesner (2009) defines the role of PPC as a structure 

involved in perceptual and long-term spatial memory. 

 

4.3.5  Parieto-hippocampal dialogues 

 

Since a mutual relationship between the hippocampal complex and PPC is the 

critical point in most of the assumptions, the cooperation of these brain sites has been 

tested in more detail. In the most parsimonious view, both structures might contribute 

to spatial knowledge in parallel, or they may work in series. To test this hypothesis, 

Rogers and Kesner (2007) made unilateral lesions of hippocampus and PPC, located 

either ipsilaterally or contralaterally to each other, and examined their impact on an 

array of spatial tasks known to be dependent on functional integrity of both structures. 

An assumption made is that the right and left hemispheres operate in parallel. If the 

cooperation between hippocampus and PPC does take place, then disrupted 
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performance after contralateral (but much less severe after ipsilateral) ablations should 

occur. Indeed, in the majority of tasks (object-place paired-associate learning, dry-land 

water maze task) the crossed lesions produced significant spatial deficits while 

processes known to be independent on PPC or hippocampus such as single 

discriminations of places or objects were unaffected. This ruled out a non-specific 

impairment due to the lesion.  

Another approach employed by Save et al. (2005) examined an effect of bilateral 

thermocoagulation lesions on place cell activity. On a circular arena with a curtain 

obscuring distal visual cues, and with three salient objects placed intra-maze at the 

periphery, they found near-identical place cell characteristics in control and lesioned 

rats. Nevertheless, firing fields of lesioned rats (unlike that of controls) did not follow 

the ninety-degrees rotation (carried out in the absence of the rat) of the arena. 

Furthermore, removal of the objects (in the presence of the rat) was not accompanied 

by preserved position of firing fields controlled by idiothetic input; rather they became 

aligned according to unintentional distal cues. This study thus confirmed a close 

cooperation between PPC and hippocampus, and emphasized the role of PPC in 

processing of proximal space-related spatial information.  

 

4.3.6  PPC and head-direction cells 

 

As it is reasonable to expect that lesions to PPC may also affect the HD system, 

neurons from anterodorsal thalamic nucleus were recorded in case of bilateral PPC 

lesions (Calton et al., 2008). Likewise, their electrophysiological characteristics (peak and 

background firing rate, signal-to-noise ratio, directional firing range, directional 

information content and anticipatory time intervals) remained unaffected. Moreover, 

despite the lesions, they could still be controlled by a directional visual landmark (a cue 

card attached to a wall). Likewise, they preserved heading while the animal locomoted 

from a familiar into an unknown enclosure, suggesting unimpaired control by idiothesis.  
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4.4  Role of rodent PPC in dissociated environments 

 

Despite many theories suggested, their common feature in both primates and 

rats points to the fact that PPC acts as a translator between various reference frames 

(Save et al., 1998; Save and Poucet, 2009; Nitz, 2009; Calton and Taube, 2009; Cohen 

and Andersen, 2002). In non-stationary environments, this function might even be 

emphasized. Since healthy rats are capable to simultaneously maintain two separate 

spatial representations, each anchored to a different reference frame, a role of PPC 

during this process (besides the well-known hippocampal-dependence) is just 

prompting. The failure of rotating the intramaze objects to elicit a corresponding 

rotation of firing fields in rats with bilateral PPC lesion (Save et al., 2005) suggests the 

involvement of PPC in modulating the proximal space-based reference frame. 

Unfortunately, this is the only observation made in dissociated environments.  

Since retrosplenial cortex (RSC) receives dense input from PPC, and is believed to 

act as a switch for a PPC signal being conveyed towards hippocampus (and vice versa), a 

study of (Wesierska et al., 2009) provides some clues on the putative PPC function in 

dealing with non-stationary environments. They used several variants of place 

avoidance task to examine RSC lesion. The operated rats performed well on the arena 

frame task, suggesting they had no difficulty to represent proximal space. Furthermore, 

they displayed no impairment in the room frame task variant, when they were 

presented with distal room cues only. They were, however, impaired, when both 

proximal and distal spatial information was brought into conflict by rotating the arena in 

light, and only distal information become relevant for solving the task (= AAPA variant), 

indicating RSC plays a role in cognitive segregation. These results suggest that RSC is 

incorporated into a network segregating spatial information into independent coherent 

representations and assessing their relevance according to a given task. Therefore, at 

least this process would also occur in PPC. Moreover, a failure to detect deficit in arena 

frame does not necessarily imply that PPC does not carry that kind of representation. 

Instead, PPC might be the principal site feeding the intramaze relationship information 
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into the overall representation of the environment, as suggested in other experiments 

(Save and Poucet, 2000; Save et al., 1992; Rogers and Kesner, 2006; Save et al., 2005). 

The hippocampus itself, although arena-frame representation is reflected in it, is not 

crucial for performing the arena frame task, hence the putative structure must be 

located elsewhere in the brain.  
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Part II 

Aims of the thesis 
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To develop a moving object-related spatial task 

Rats have been demonstrated to maintain two mutually discordant yet coherent 

spatial representations, each anchored to a different frame of reference. However, 

substantially easier and more natural situations such as those representing spatial 

representations towards a moving object (predator, conspecific) have not been modeled 

yet under controlled laboratory conditions. This is rather surprising in the context of 

more than thirty years of intense research in the field of spatial learning and memory. 

We therefore attempted to modify the aversively-motivated place avoidance task so 

that the to-be-avoided sector will be centered onto a mobile “landmark” represented by 

another rat. Will a rat be able to continuously avoid a mobile object, represented by its 

conspecific? Such novel behavioral task would then allow for testing brain structures 

and mechanisms underlying the object-based avoidance behavior.  

 

To assess the role of rotation (inertial stimuli) on place 

avoidance performance 

The AAPA task has been employed in numerous pharmacological, genetical, 

lesion, or electrophysiological studies in the past decade. However, it remains unclear as 

to what specific spatial processes occur while solving the task. We addressed the 

question whether inertial stimuli arising from arena rotation represent a key component 

in the acquisition. We hence plan to compare an acquisition in a cue-controlled AAPA 

with a modified task in which the controlled extramaze cues will be rotating around a 

stationary arena with the punished sector defined with respect to the cues. 

 

Role of posterior parietal cortex in a place avoidance task 

The PPC has been proposed to participate in the transformation of spatial 

information between various reference frames in order to formulate a goal-directed 

locomotion. Thus, it is reasonable to expect its crucial involvement in constructing and 

maintaining an appropriate spatial representation according to any arbitrary frame of 

reference. Since PPC has been suggested to be crucial for path integration and 
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processing information from near space, we will examine the effect of PPC bilateral 

lesions on acquisition of the arena frame variant of the place avoidance task. 

Furthermore, the AAPA variant encompasses segregation of spatial information into 

irrelevant arena-based and relevant room-based. This segregation might be also 

reasonably expected to be processed in PPC. Thus, the PPC lesion of PPC will also be 

examined in the AAPA variant. 
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Part IV 

General discussion 
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Studies of spatial cognition in rodents have become a fruitful branch in 

neuroscience, providing insights into fundamental processes of spatial learning and 

memory and their neuronal substrate. A spatial layout of the environment is reflected in 

internal representations, formed by organized discharging of the neurons. In non-

stationary environments, where coherent subsets of cues may move with respect to 

each other, rats are able to create multiple representations, each anchored to a 

reference frame formed by a particular stimuli subset (Siegel et al., 2008; Shapiro et al., 

1997; Renaudineau et al., 2007; Gothard et al., 1996a, b). These multiple 

representations can be expressed even simultaneously, e.g. on a continuously rotating 

arena (Zinyuk et al., 2000; Kelemen and Fenton, 2010; Fenton et al., 1998).  

In the present thesis, we demonstrated that rats are capable to organize their 

spatial behavior with respect to a single non-stationary object. We introduced a novel 

behavioral task (Telensky et al., 2009) in which a rat was foraging for pasta pellets on a 

circular arena while continuously maintaining a safety distance from the other rat 

(“enemy”); whenever the mutual distance between the two rats dropped below 25cm, 

the subject rat was punished by a mild electric foot-shock. We found that, in spite of 

considerable unpredictability of the enemy's locomotion, the subject rats significantly 

reduced number of entrances into the punished zone from approximately 65 to 15, after 

16 training sessions. A detailed analysis of the avoidance behavior revealed that the 

subjects adopted a strategy to stay close to the apparatus wall (thigmotaxis), thus 

minimizing the probability of the enemy encounter. However, when the enemy 

approached close enough, the subjects chose a spatially appropriate escape route. The 

situations leading to shocks were caused by an active locomotion of the enemy, not by 

the subject. In particular, they occurred when the enemy rapidly approached the 

subject.  

This experiment clearly demonstrates that a continuously moving navigationally 

relevant intramaze object may gain control over the subject's spatial behavior. Thus, we 

do not confirm data that unstable proximal yet navigationally relevant landmarks cannot 

gain such a control (Biegler and Morris, 1993), or that the control is only possible after 
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an intense training (Collett et al., 1986; Biegler and Morris, 1996). The essential issue 

concerns the way the moving object is represented in the brain with respect to the 

environment. Both electrophysiological evidence from monkeys and observation of 

neglect patients demonstrate that the brain possess the capability to build and retain 

object-centered spatial representations (Olson and Gettner, 1995; Olson and Gettner, 

1996). Up to date, the only attempt to find such a neural correlate in rat hippocampus, a 

structure implicated in spatial representational processes in rodents (Nadel and 

O'Keefe, 1978), failed to identify a coherently framed object-related activity recorded 

from CA1 neurons; the rats were trained to maintain a certain distance from a mobile 

remote-controlled toy (car) in order to get reward delivered by intracranial stimulation 

(Ho et al., 2008). This study may have inadvertently stressed the important issue of the 

task motivations. Whereas the above experiments used intramaze cues associated with 

a positive reinforcement, our task is aversive in nature. As we can imagine, most natural 

situations in which an animal encounters moving stimuli is rather aversive (predator 

attack), particularly in rodents. We can thus expect that a brain is pre-wired to be 

employed preferentially in representations of moving objects that act as threatening 

stimuli (predator silhouettes, odors) or are associated with an aversive stimulus. In 

laboratory conditions, presentation of moving intramaze threatening object reliably 

elicits a properly oriented escape reaction (Ellard and Eller, 2009).  

To make our task more feasible, we replaced the enemy rat with a 

programmable robot which allowed making the path of the “enemy” object more 

predictable. We found that within the same experimental design, the rats displayed a 

faster decrease of the shocks received and reached the asymptotic level of learning 

already after five 20min sessions (Telensky et al, 2011). Although this setup led to a 

rapid acquisition, suggesting only moderate requirements on the continuous avoidance 

behavior, bilateral inactivation of dorsal hippocampus by sodium channel blocker 

tetrodotoxin severely disrupted the performance which was restored next day when 

only saline was injected into the hippocampi. This demonstrated that the process of 

maintaining a safety distance, and both temporary and spatially organizing the escape 
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route when the "enemy" object is approaching substantially depends on functional 

integrity of dorsal hippocampus. Such a finding is in contrast with a failure to detect in 

this brain site any neural correlates of representation to a moving, navigationally-

relevant intramaze object (Ho et al., 2008). Furthermore, this experiment revealed that 

avoidance of a stationary object is hippocampus-independent, a finding that is in accord 

with other experiments that demonstrated preserved egocentric distance estimation 

after hippocampal damage (Long and Kesner, 1998). This finding is even more 

convincing if we take into an account the fact that the object was experienced as non-

stationary throughout the training (its position was changing in the middle of each 

training session) and was even dislocated once during the TTX session. Taken together, 

these data suggest that a spatially relevant (at least aversively-associated) moving 

object should be encoded within hippocampal representational system. It therefore 

remains questionable and so far highly speculative as to to whether moving object 

indeed constitutes its own reference frame or is incorporated as a dynamic cue within 

the framework of inertial (geo-based) reference frame. Several studies have 

demonstrated that hippocampus possesses the capability of encoding position of the 

animal with respect to an object that moves from trial to trial besides the 

representation of the stationary world (Gothard et al., 1996a, b). 

Other parts of the thesis dealt with a different type of non-stationary 

environment. If a substantial part of the environment moves with relative to the rest, a 

previously concordant spatial layout is dissociated into separate reference frames. This 

situation is for example modeled in the AAPA task (Fenton et al., 1998). One of the aims 

of the thesis was to determine whether perceiving an inertial instability supports 

navigation in AAPA. In the standard version of the task, the rats placed on a slowly 

rotating arena must avoid a sector which remains stable relative to stationary 

surroundings. In the modified version, the situation is inversed. Rats are placed on a 

stationary arena and must avoid a sector bound to surrounding cues slowly rotating 

around the arena. Rats were not able (except for one) to solve the modified version 

unless they were pre-trained in the standard version of the task (Blahna et al., 2011).  
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Contrary to the first set of experiments, we report that rats are not readily able 

to avoid an unmarked place defined by moving cues. However, in this case, the cues 

were represented by extramaze cue cards attached to a curtain beyond the arena 

perimeter. This is an important finding as many studies have shown that distal cues 

control firing of both HD cells and place cells (Muller and Kubie, 1987; Taube et al., 

1990). However, the orienting system is primarily based on the idiothetic input (Taube, 

1998; Taube, 2007). Thus a rat may be continuously assessing to as which cues are 

unstable relative to the inertial reference frame. If they are evaluated as unstable, their 

control over the representational alignment disappears (Jeffery, 1998). Furthermore, 

the inertial stimuli may keep the animal attentive (Smith et al., 2010). Attention is a 

prerequisite for a proper implementation of perceived cues into a map-like 

representation (Hardt and Nadel, 2009). In order to specify the relative contribution of 

inertial stimuli, additional experiments must be carried out. The observed distinction 

between standard and modified AAPA task provides a promising tool for clarifying the 

role of perceived instability on rat's spatial behavior or its neural correlates. So far, 

studies in this field have not examined the effect of continuous rotating either the distal 

cue or the arena itself (Sharp et al., 1995; Jeffery, 1998). 

Next aim of the thesis focused on elucidating the role of the PPC in arena-based 

or room-based reference frame navigation. Rats were first trained in AF+ variant of the 

place avoidance task. Both lesioned and control rats successfully learned to avoid the 

prohibited sector in darkness while searching for randomly scattered barley grains 

(Svoboda et al., 2008). PPC lesions usually disrupt idiothetic navigation (Save et al., 

2001; Moghaddam and Bures, 1996) or allothetic navigation based on intramaze cues 

(Save and Poucet, 2000), both of which are crucial in solving AF+ task. In most of the 

cases, however, the authors claim that instead of the overall inability to locate a goal 

the parietal operates displayed inaccurate trajectories towards it. The to-be-avoided 

sector in place avoidance occupies a substantial amount of arena surface, so the rat 

does not have to be so precise to locate it. Thus, consistently with other studies (Kesner 

et al., 1989; Long and Kesner, 1996; Long and Kesner, 1998), we provide an evidence 



 62 

that PPC dysfunction does not disable simple allocentric or egocentric processing that 

do not tax accurate goal-directed behavior (Svoboda et al., 2008). Furthermore, we 

demonstrated that parietal rats can even acquire AAPA version as well as control, a 

surprising finding in context of disrupted cognitive coordination in retrosplenial cortex 

lesioned rats (Wesierska et al., 2009). Thus it appears that cognitive coordination, a 

process dependent on functionality of both hippocampi (Cimadevilla et al., 2001), is 

mediated only up to one synapse before PPC. 
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Fig. 11. Differences in occupancy of a previously punished area in parietal and control rats during an 

extinction session in a “preferential challenge” session. Control rats stopped avoiding a sector defined in 

arena frame and spent in it an amount of time approx. corresponding to chance value (0.25) while still 

displaying avoidance in the room frame. PPC lesioned rats, however, were displaying preserved avoidance 

in both frames, stronger in the arena frame. 

 

To further investigate the role of PPC we assessed its contribution during a 

"preferential challenge". We trained both sham operated (n=8) and PPC lesioned (n=8) 

rats to search for barley grains in seven 20min session on a stable arena in light. The 
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punished sector remained stationary and both arena frame and room frame constituted 

one concordant frame of reference. Both groups displayed an equally rapid acquisition 

of the task. In session 8, after ten minutes of standard avoidance, the arena started to 

rotate and the shock-delivery device was switched off. The previously overlapping 

reference frames therefore dissociated, leaving the rat with no feedback for the rat as 

to which reference frame it should expect to be the prohibited sector. We measured the 

time a rat spent in arena- or room-related places to which the putative sector 

dissociated (fig. 11). Control rats demonstrated preserved avoidance in room frame but 

not in arena frame, which is in accord with a long-held notion that distal cues dominate 

over proximal ones in spatial representations (Save and Poucet, 2000; Zugaro et al., 

2001; Cressant et al., 1997). To the contrary, parietal rats rather maintained their 

avoidance behavior in both frames simultaneously. These results support our previous 

finding that a PPC lesion does not prevent the rat from locating a goal either in relation 

to arena cues or room cues. However, they clearly demonstrate that PPC modulates the 

relative weight assigned to the room reference frame. To sum up, although PPC is 

implicated in translations between egocentric and allocentric coordinates, and 

presumably also in other coordinate systems (Save et al., 1998; Burgess, 2008; Nitz, 

2006; Nitz, 2009) we found that it is not necessary for encoding and maintaining a 

spatial representation related to arena frame or room frame. Rather it plays a marginal 

role during their coordination, minor enough to be insignificant in AAPA where arena 

frame navigation is be suppressed.  

Although lesioning techniques were found to be a useful tool for elucidating the 

contribution of a particular brain structure or pathway to spatial learning and memory, 

their utilization is limited. The results should be interpreted with care as standard 

procedures do not examine in detail a secondary degeneration around the lesion site 

itself. Likewise, we are completely unaware as to what reorganization processes might 

occur in impacted networks. 

Also one ought to note that, as already discussed in the Introduction, the 

lesioning techniques and PPC lesion sites vary greatly between research groups despite 
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the fact that PPC area has been delineated quite rigorously (Reep et al., 1994; Reep and 

Corwin, 2009). Our approach was to lesion an area which is common for nearly all of the 

PPC experiments found so far in literature. However, the lesion is apparently not limited 

to PPC and extends beyond its borders, particularly in the rostral direction. In spite of 

that, for the sake of a nomenclature, we keep labeling it “PPC lesion”. 
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Part V 

Conclusion 
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Rats are capable of organizing their spatial behavior in non-stationary environments 

with regard to multiple reference frames, specifically: 

 

1. We developed a behavioral task that introduces a navigationally relevant moving 

object as a potential source of a new reference frame. Rats demonstrated their 

capability to adopt a successful distance-based avoidance behavior, with learning 

becoming more rapid when the trajectory of the moving object was more predictable. 

This capability, however, requires intact dorsal hippocampus.  

 

2. Although we demonstrated that rats do utilize continuously moving cues for locating 

a directly unperceivable "punished" area, we furthermore revealed that, surprisingly, 

such cues exert hardly any control over navigation in place avoidance paradigm, unless 

the rats are provided with inertial stimuli during acquisition, indicative of instability of 

their environment. Once acquired, the cues controlled the spatial behavior reliably, in 

spite of restored stability of the inner environment.  

 

3. The posterior parietal cortex (PPC) plays neither a significant role in navigation based 

on non-visual intramaze cues, nor in the process of cognitive segregation leading to 

navigation by extramaze allothetic cues. However, PPC appears to be important for the 

development of preference for distal cues in navigation, a process quite common in 

healthy rats. 
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