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Abstract

The rigorous thesis deals with the advanced methods for estimating credit risk

parameters from market prices: probability of default (PD) and loss given

default (LGD). Precise evaluation of these parameters is important not only

for banks to calculate their regulatory capital but also for investors to price

risky bonds and credit derivatives.

We develop two forward looking reduced-form analytical methods for the

calculation of PD and LGD of the corporate defaultable bonds based on their

quoted market prices, prices of equivalent risk-free bonds and quoted senior and

subordinated credit default swap spreads of the issuer of these bonds. This is

reversed to the most of the studies on credit risk modeling, as the aim is not to

price instruments on the basis of the estimated credit risk parameters, but to

calculate these parameters based on the available market quotes. Furthermore,

compared to other studies, the LGD parameter is assumed to be endogenous

and we provide the method for its simultaneous calculation with the probability

of default. Finally, using the developed methods, we estimate implied PD and

LGD for nine European banks assuming that the risk is priced correctly by

other investors and the markets are efficient.
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Abstrakt

Táto rigorózna práca sa zaoberá pokročilými metódami odhadu parametrov

kreditného rizika na základe tržných cien. Týmito parametrami sú pravde-

podobnosť zlyhania (PD - probability of default) a strata v pŕıpade zlyha-

nia (LGD - loss given default). Ich presné ohodnotenie je dôležité nielen pre

bankové inštitúcie pri výpočte regulatórneho kapitálu, ale aj pre investorov pri

oceňovańı rizikových dlhopisov a kreditných derivátov.

Prezentujeme analytickú metódu výpočtu PD a LGD rizikových dlhopisov

použit́ım tržných cien týchto dlhopisov, cien ekvivalentných bezrizikových dl-

hopisov a kótovaných rizikových prémíı pŕıslušných credit default swap de-

rivátov. V porovnańı s väčšinou štúdíı v oblasti kreditného rizika je náš proces

výpočtu obrátený, keďže ciělom nie je ocenǐt rizikové inštrumenty na základe

odhadnutých rizikových parametrov, ale poč́ıtať tieto rizikové parametre z dos-

tupných tržných cien. Navyše, použit́ım tejto metódy je možné vypoč́ıtať LGD,

a to simultánne s pravdepodobnosťou zlyhania. Na záver, za predpokladu, že

ostatńı investori ocenili tržné riziko správne a trhy sú efekt́ıvne, aplikujeme

túto metódu na tržné dáta 9 Európskych bánk.

JEL Klasifikácia C02, C63, G13, G33
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Chapter 1

Introduction

Nowadays, measuring of credit risk is considered as an important issue for finan-

cial institutions as well as for non-financial companies. Due to Basel regulation,

banks are allowed to calculate their own estimates of the credit risk parameters

under the IRB approach and therefore to more precisely align their regulatory

capital with the underlying risk in a credit portfolio. Another possibility how

to cope with the credit risk is to hedge or to trade the risk. Financial markets

with credit derivatives significantly raised in the last decade and are more and

more used for speculation rather than hedging, for which they were primari-

ly designed. Both, the regulatory reason and the speculation on derivatives

market reason gave rise to new methods for the credit risk estimation.

Main components of the credit risk are the probability of default (PD) and

the loss given default (LGD). These are included in the credit spread, which

is the difference in market prices between defaultable and default-free bonds.

While much attention was paid to modeling of the probability of default, the

loss given default was often assumed to be constant and exogenously given.

Lack of studies on the LGD modeling is mainly due to the fact that the pro-

bability of default and the loss given default are difficult to separate based on

the price of single financial instrument.

Objective of this master thesis is to endogenously estimate loss given de-

fault. The focus was put on the explanation of different theories concerning

modeling of the credit risk parameters and possibilities of their interconnection

in order to gain more information and calculate the probability of default and

the loss given default parameters simultaneously. This approach is different to

other studies, as the aim is not to price risky instruments based on the econo-

metric estimation of credit risk parameters, but to extract these parameters
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from the available market prices.

In Chapter 2 we explain the basic motivation of the loss given default mod-

eling, we provide three approaches of its measuring and discuss main character-

istics of LGD. From Chapter 3 onwards, we use the implied market approach,

which is the forward-looking method of measurement of the credit risk pa-

rameters from prices of non-defaulted financial instruments. The goal of third

chapter is to explain main ideas behind two implied market approaches: struc-

tural and reduced-form approach. Using the later, under the assumption of

constant exogenous LGD, we show how the time-varying probability of default

estimates can be extracted from the market prices of risky and risk-free bonds.

Moreover, we describe relationship between LGD of bonds with different se-

niorities.

In Chapter 4, we describe reduced-form approach for pricing credit default

swaps, which include investor’s estimates on PD and LGD of the reference

entity. Market prices of CDS provide the additional information that is neces-

sary in order to calculate the loss given default and the probability of default

simultaneously. Based on the reduced-form models for pricing credit default

swaps and defaultable bonds, we introduce a method for the calculation of both

credit risk parameters. Secondly, modify the adjusted relative spread method

to show how LGD can be extracted from the market prices of subordinated

and senior CDS of the same reference firm.

Finally, in the last chapter we illustrate the empirical use of these methods.

Compared to the Master Thesis, for the first model we extend the analysis of

the method and explain the modification that provides us with better appli-

cability to market data. For the relative spread model, we slightly generalize

a methodology and enlarge the sample to nine European banks. We conclude

with comparison of these two methods and their findings.



Chapter 2

Loss Given Default in Credit Risk

2.1 Credit Risk Management

Banks and other financial institutions have been always facing various financial

risks. Many financial crisis, recent or experienced in the past, have shown how

important is to recognize and estimate risks correctly. In order to maintain

sustainability of business activities, banks need to manage risks and capture

potential losses. Banking risks can be divided into several categories. According

to the Bank for International Settlements (BIS) banking risks can be classified

as shown in Figure 2.1 into credit risk, market risk, operational risk and other

risks. Risk classification varies in the literature, the credit and the operational

risk can be thought as a part of the market risks. The classification in Figure 2.1

reveals the BIS opinion that special attention should paid to the credit and the

operational risks.

In this work, we will first examine the counterparty credit risk in bond

agreements and then the reference credit risk in derivative agreements. Terms

are adopted from Bielecki & Rutkowski (2002), who distinguishes these two

types of risk, where the former refers to the credit risk of the second player

involved in the agreement, while the latter refers to the third party credit risk

that is not directly involved in the agreement. The name “reference” is based

on the fact that the third party in the credit derivative agreements is called the

reference entity. According to Giesecke (2004), the counterparty credit risk can

be defined as a “distribution of financial losses due to unexpected changes in

the credit quality of a counterparty in a financial agreement”. It is important

to notice that the counterparty credit risk includes counterparty’s risk of insol-

vency, risk of decrease in creditworthiness and risk of delay in payment. The
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Figure 2.1: Financial Risk Classification

Source: Chernobai et al. (2007)

reference credit risk is defined in each derivative contract. In the standardized

contracts it includes risk of failure to pay and risk of bankruptcy. Even though

the counterparty credit risk is to some extent present also in derivative agree-

ments, we would assume it to be significantly smaller compared to the reference

credit risk.

In recent years, banks’ attitude to the credit risk has changed. First of all,

the main instruments to mitigate credit risk used in the past were collateral

and covenants, while nowadays the development of credit derivatives markets

and raise in securitization bring more opportunities for the banks’ credit risk

management. Secondly, due to the Basel Capital Accord published in 2004

(Basel II), banks were given more flexibility concerning the credit risk esti-

mation. While under Basel I banks had to use the standardized approach for

calculation of economic capital1, Basel II allows banks to employ their own

credit risk models, which helps to better differentiate risks and to include the

effect from diversification of bank’s portfolio.

Key parameters for the credit risk management recognized by BIS are the

1Basel I imposed minimal capital requirements for banks, which is calculated as ratio of
regulatory capital to total risk-weighted assets. Also it defined risk-weights for specific asset
classes. For example, loans collateralized by mortgages on residential property were risk-
weighted at 35%, whereas other exposures to individuals in the retail portfolio were weighted
at 75%. Furthermore, to estimate credit risk banks had to use credit ratings provided by
external rating agencies such as Standard & Poor’s, Moody’s, Fitch Ratings.
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probability of default PD, expressing the probability of the counterparty to

default within certain time period; the exposure at default EAD, representing

the amount of outstanding obligations at the time of default; and the loss given

default LGD, expressing the percentage loss incurred relative to exposure at

default. Besides the standardized approach, banks can use the internal rating

based approach (IRB) to estimate credit risk, either the foundation or the ad-

vanced IRB. The former allows banks to estimate internally the probabilities of

default, while the latter allows banks to employ their own models for LGD and

EAD estimation. However, these models must be first approved by national

regulator. See Roy (2005) or BCBS (2006) for more information about the

internal rating based approach, its requirements, methodology and implication

for banks.

Figure 2.2: Distribution of credit losses

 Unexpected loss  Stress loss Expected loss

 Normal costs covered by

 provisioning and pricing policies

Potential unexpected loss

for which capital shoul be hold

 Potential unexpected loss against 

 which it is too expensive to hold 

 capital. Unexpected losses of this

 extent lead to insolvency.

Aggregate Loss

Probability

Source: RBNZ (2005)

Under the IRB approach, banks need to estimate expected and unexpected

credit losses. Distribution of these losses is shown in Figure 2.2. According to

BCBS (2006), § 212, risk-weighted functions produce the capital requirements

only for the unexpected losses (UL) portion, while the expected losses (EL)

are considered to stand for ex-ante estimated average losses, therefore being

already incorporated into the price of the risky instrument. Generally, EL can

be calculated as the product of PD,LGD and EAD. Aim of this work will be

to investigate and estimate these credit risk parameters separately. While lot of

studies paid attention to PD modeling, LGD was often assumed to be constant,

as it is not straightforward to estimate. Also it was due to unavailability of
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historical data concerning LGD, as banks do not disclose them publicly. Only

lately LGD received a bit more attention, as it was realized it is important

for precise pricing of financial instruments. Furthermore, as mentioned above,

the accurate estimation of LGD can also help banks to effectively allocate

regulatory and economic capital. Following section explains different concepts

of the loss given default measurement.

2.2 LGD Measurement

Previous part briefly explained motivation to estimate LGD parameter. Before

discussing the loss given default measurement, the precise definition of default

is needed. Unfortunately, there is no consensus about the standard definition.

According to BIS, the reference definition is: “A default is considered to have

occurred with regard to a particular obligor when either one or both of the

following events have taken place:

� The bank considers that the obligor is unlikely to pay its credit obligations

to the banking group in full, without recourse by the bank to actions such

as realizing security (if held).

� The obligor is past due more than 90 days on any material credit obliga-

tion to the banking group. Overdrafts will be considered as being past

due once the customer has breached an advised limit or been advised of

a limit smaller than current outstandings.”2

Loss given default is usually defined as the percentage loss rate on the

exposure if the counterparty defaults. It is important to distinguish between

LGD and actual loss incurred, which can be computed as LGD×EAD. Given

the default of a counterparty, according to Seidler & Jakubik (2009), the total

loss consists of:

� The loss of principal

� The carrying costs of non-performing loans

� The workout expenses

However, the carrying costs and other expenses are very small relatively to the

principal loss, therefore it is reasonable to assume they will not significantly

2See BCBS (2006), p. 100, §452
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influence the loss given default rate. Following this assumption, recovery rate,

the percentage rate of exposure that lender receive after the obligor defaults

can be defined as a complement to LGD as

R = 1− LGD

LGD will eventually depend on the definition of default. The most con-

troversial are events of fully recovered exposure. In such situations, under BIS

definition, default occurs but there is no loss incurred. For example, the firm

that is more than 90 days delayed with its payments can possibly repay all its

obligations. Under BIS definition this event would be considered as a default

and LGD would be zero. However, many banks do not consider such events as

credit events and therefore full recoveries would not be included in their loss

data. This leads to underestimation of recoveries or in other words, pessimistic

view on overall bank’s loss given default.

Methods of loss given default measurement can be divided into the ex-

post default measurement and the ex-ante default estimation. According to

Schuermann (2004), there are three broadly recognized concepts of measuring

the loss given default:

� Market LGD - based on the market prices of defaulted bonds or loans,

� Workout LGD - based on the estimated cash flows resulting from the

workout process,

� Implied market LGD - derived from the market prices of non-defaulted

bonds or loans.

2.2.1 Market LGD

This methodology of measuring LGD ex-post is based on the idea that market

prices of defaulted bonds or marketable loans reflect the actual investors’ ex-

pectations about the recovery. The main advantage of this method compared

to other ex-post methods is that data can be observed immediately after the

default. Also, as it is a market price, it reflects the total expected present

value of the recovery, including recovered principal, missed interest payments

and costs associated with the restructuring process, all already properly dis-

counted. Actual prices on defaulted bond markets are based on par, thus can

be easily transformed into percentage of the recovery. As a result, the most
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rating agencies use the market LGD for the recovery estimation. On the other

hand, the main disadvantage is that market LGD is not observable for some

instruments, when there is either illiquid or no market for them. Traditionally,

defaulted bank loans are not further traded, thus application of the market

LGD is limited.

Another possible market approach is to estimate the recovery rate based on

the market value of newly issued bonds. This is based on the idea that firms

issue the emergence bonds after they reorganize and restructure the initial debt.

These bonds are valued by investors showing their expectation about the firm’s

value. As new bonds are not issued immediately after the default, price of new

bonds must be appropriately discounted to compute the recovery of defaulted

bonds. This market approach is called emergence LGD.

2.2.2 Workout LGD

Another ex-post methodology is based on the process of recovery workout. It

considers bank as an investor who invests into the defaulted asset. It takes

into account all cash flows from distressed asset related to the recovery. The

workout LGD at default of a single debt instrument would be computed as

follows

LGD(τ) =
EAD(τ)− PV

[∑T
t=τ R(t)

]
+ PV

[∑T
t=τ C(t)

]
EAD(τ)

where τ is the default time, T is the time when workout process is finished,

PV [C(t)] and PV [R(t)] denote present value of costs and recoveries throughout

recovery workout process. Even though this formula is mathematically simple,

compared to directly observed market LGD, it is actually much more difficult

to calculate. Firstly, because it is not unambiguous, how these cash flows should

be discounted. Not only the timing of cash flows but also the discount rate are

subject to discussion. Banks usually discount at hurdle rate3, but the risk-free

(Treasury) rate is not exceptional as well. Secondly, recoveries are often not in

form of cash, but in form of securities that might have illiquid or no secondary

market, therefore theirs price is not clear. For banks this would imply that

they cannot compute precise workout LGD until all recovered claims are sold

3Hurdle rate can be generally defined as the minimum return on investment that is re-
quired to cover all associated costs. It depends on the investor’s specific structure of the cost
of capital.
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which could take a long time. Instead of waiting, banks can use their expected

value of recovered securities. Then calculated loss given default will be also in

the form of its expected value.

Despite these difficulties, workout loss given default measure is considered

to precisely reflect the bank’s losses. For example, it incorporates specific cost

of bank during the workout process and compared to market LGD, it does not

include risk premium for unexpected losses. As the market LGD is observed

immediately after the default, not only after the workout process finishes, when

adjusted for mentioned differences, it can serve as good estimation of workout

LGD. Other way around, banks often use long time-taking workout LGD

approach for illiquid loans, when the market LGD is not observable at all.

2.2.3 Implied Market LGD

Different approach to the LGD estimation is ex-ante implied market approach.

Similarly to market LGD, this methodology is also based on the assumption

that the market prices reflect the precise valuation of the security. The implied

market LGD estimation, however, does not use the data from defaulted bonds

or loans, rather it examines the credit spreads of non-defaulted risky bonds

over the risk-free (government) bonds. This spread is equal to the risk premium

investors demand for buying risky bond instead of risk-free bond. The spread

is believed to express the investors’ expectation about the possible expected

loss. In order to estimate LGD, the expected loss needs to be broken into PD,

EAD and LGD component. However, as claimed by Jarrow (2001), the spread

can beside the expected credit loss reflect also the liquidity premium and other

risks.

This approach is not yet widely used in banks, but it provides an impor-

tant tools for pricing fixed-income securities and credit derivatives. One of the

limitations is the risk-neutral measurement used in the implied market models

which is not fully consistent with the physical measure. The implied market

models estimating the credit risk parameters can be further divided into struc-

tural models and reduced-form models. We will examine these models, their

advantages and disadvantages in more detail in next chapters.

In the following section, we provide the summary of the loss given default

characteristics, which are common, regardless the approach for its measure-

ment.
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Figure 2.3: Probability Distribution of Recoveries, 1987-2006
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2.3 Main characteristics of LGD

To estimate LGD properly, it is important to understand what drives the

differences in LGD among different default events. Generally, characteristics

such as seniority of the debt, industry of the issuer, stage of the business cycle

or collateral are believed to influence the recovery and consequently loss given

default rate [Schuermann (2004)]. We will have a closer look on each of these

characteristic. The basic understanding on how it influences LGD will be

expanded by review of empirical results.

Most significantly, empirical results about distribution of recoveries4 show

that recovery is either quite low or quite high. This is shown in Figure 2.3. High

recovery peak is much higher for loans whereas distribution of bond recoveries

is more significantly bimodal with low recoveries more probable than high ones.

This bimodality is believed to be mainly influenced by the collateral associated

with it, whether it is secured or unsecured debt.

4Distribution of recoveries can be easily transforemed into distribution of LGD, as it is
complement to each other.
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2.3.1 Seniority of Debt

Most persistent result in literature over years is that seniority of the debt has

the most significant impact on debt recovery. According to absolute priority

rule, in case of bankruptcy senior creditors must be fully satisfied before cap-

ital is distributed to junior creditors and those should be fully satisfied before

shareholders. The basic scheme of different types of the debt according to its

seniority is shown in Figure 2.4. However, this rule is often violated, either due

to higher bargaining power of specific debtholders, regardless seniority of their

debt, or simply because senior creditors are willing to give up part of the claim

in order to resolve bankruptcy process faster.

Figure 2.4: Capital structure of a firm

Source: Adopted and changed from Schuermann (2004)

Using data published in Moody’s (2007), we can see in Figure 2.5 significant

relationship between the seniority of the debt and the mean recovery rates

observed. Data include information on 3500 loans and bonds from over 720

U.S. non-financial corporate default events in period between 1987 and 2007.

Bank loans recovered on average at 82% at resolution on a discounted basis.

In contrast, senior secured bonds recovered on average at 65% and average

recovery rates on unsecured bonds vary from 38% for senior unsecured bonds

down to 15% for junior subordinated bonds.
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Figure 2.5: Recovery rates by seniority of debt instruments, 1987-
2006
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Furthermore, higher median recovery values than mean recovery for se-

cured loans and senior secured bonds in Figure 2.5 supports already mentioned

bimodality of recovery distribution with significant high recovery peak for se-

cured debt. On the other hand, for unsecured debt, low recovery peak is more

significant which is consistent with lower median than mean values.

This higher seniority - higher recovery relationship was supported by many

other studies on the European as well as the U.S. debt recoveries in the past.

Even though, as can be seen in Figure 2.6 based on Moody’s (2010), it is

not that straightforward for the European corporate recoveries. However, this

might be due to unavailability of data for the European recoveries, as the

market approach was used for gathering data and market with defaulted bonds

is not yet sufficiently developed in Europe.
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Figure 2.6: Recovery rates by seniority of European and U.S. debt
instruments, 1985-2009
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2.3.2 Business Cycle Impact on Recoveries

Apart from seniority, there is strong evidence that the business cycle has the

impact on recoveries. It can be observed from Figure 2.7 that average recovery

rates are significantly changing in time. Moreover, for different seniority they

follow cyclical variation, which is based also on macroeconomic conditions.

Also, it is interesting to notice that the U.S. mean recovery rates for all senior

bonds and loans are higher for period 1987-2006 (Figure 2.5) than for years

1985-2009 (Figure 2.6), where recent years of global financial crisis are included.
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Figure 2.7: Recovery rates during 1990-2010
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According to Moody’s data (1970-2003) is average recovery 32% in reces-

sions and 41% in expansions. Furthermore, as can be seen in Figure 2.8, left

peak is much higher during recessions, thus situations with very low recoveries

are more probable at that part of cycle. This can be intuitively a result of all

markets being less liquid during recession, therefore firm might have difficul-

ties when selling its assets during the liquidation process. During expansions,

recovery values are more equally distributed.

Figure 2.8: Probability Densities of Recoveries across the Business
Cycle, 1970-2003
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2.3.3 Industry Impact on Recoveries

Impact of industry of the issuer on recovery rates is not that straightforward

as the impact of seniority and business cycle. Generally, after the default

debtholders receive money according to the value of firm’s assets. However not

all types of assets can be sold easily at reasonable time and price. Each industry

has specific assets that comprise most of the firm’s values. Therefore industries

with mostly liquid and easy to sold assets should be performing with higher

recoveries. Intuitively, the capital structure of the firm has also an impact on

LGD, as in lower leveraged firm there is proportionally less debtholders to

share firm’s assets.

Figure 2.9: Recovery Rates by Industry, 1987-2006
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According to research by Moody’s (2007), certain industries may have fea-

tures that are correlated with higher or lower than average recovery rates. For

example, firms in quickly growing and highly competitive industries may ex-

perience higher than average recovery rates because assets can be easily sold

at the liquid market. Furthermore, lower average recovery rate is probable for

firm that defaults in a concentrated industry — with fewer potential buyers

for the defaulted firm’s assets. However, they did not find any statistically sig-
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nificant relationship. Most of industries have mean recovery rate between 40%

and 60%, see Figure 2.9. Those that are over 60% have very low number of

observations, therefore we cannot predict if recovery rate will be high in future

default cases within these industries.

Altman & Kishore (1996) claimed that some industries, especially utilities,

have significantly higher average recovery returns, which is consistent with

Moody’s (2007). However, this might be due to fact that utility industry

is still in many countries a regulated market. Summary of data from their

research on industry impact can be found in Table 2.1. Because definition of

certain industries is not clear, it is difficult to compare results between different

studies. It would need deeper analysis to decide to what extent the industry

has an impact on recovery or loss given default rates.

Table 2.1: Industry Impact on Recoveries, 1971-1995

Industry Avg. Recovery Industry Avg. Recovery
Utilities 70% Communication 37%
Services 46% Financial Institutions 36%
Food 45% Real Estate 35%
Trade 44% General Stores 33%
Manufacturing 42% Textil 32%
Building 39% Paper 30%
Transportation 38% Hospitals 26%

Source: Altman & Kishore (1996)

In this chapter we provided a brief overview of the loss given default prob-

lematics, its general characteristics, methods of calculation and motivation be-

hind them. Next we will continue with the implied market approach of LGD

measurement, focusing on reduced-form modeling.



Chapter 3

Implied Market Modeling Based on

Bonds

Credit risk measurement became lately more important for banks as well as for

corporate firms. New methods were developed in the academic research as well

as among banks. The importance of LGD modeling (LGD is complement to

recovery rate) became recognized only in the last decade. There are two main

approaches how to measure the implied market default probability: structural

and reduced-form models. These models differ in basic assumption whether

default time is predictable or not. Structural models assume predictability of

the default event which is based on the timing when firm’s asset value falls

below a certain barrier. This barrier can be represented by a firm’s value of

debt, which would mean that default occurs when firm’s equity is negative,

therefore firm is not able to pay all its obligation. These models are often

called Merton’s type models based on Merton (1974).

In contrast, reduced-form models treat the default as an unexpected event,

assuming only that default can occur. Default time is based on the default-

intensity process, which can be parametrized e.g. using macroeconomic infor-

mation. Some intensity processes have been modeled based on credit ratings,

where frequency of default for companies with the same rating is expected to

be the same. However, according to Duffie & Singleton (2003) this might be a

bit simplifying because ratings show other parameters than default probability

(EAD,LGD). Moreover, as claimed by Ederington & Yawitz (1987), credit

ratings remain more stable than default probabilities during different parts of

business cycle.

Another point of view on credit risk models based on implied market in-
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formation was by Jarrow & Protter (2004) who claimed that structural form

and reduced-form models are basically the same, but only based on different

assumptions about available information. Structural models can be seen from

managers point of view with full information (e.g. about asset value), whereas

reduced-form models are from point of view of investors with only partial in-

formation. This idea of common principle was further developed by Guo et al.

(2009) into extended reduced-form models which use information about firm’s

asset value under two different information sets: full and partial, thus combin-

ing structural and reduced-form approach in one model.

Goal of this chapter is to introduce the credit risk pricing models with

emphasis on different possibilities of implied market measurement of probability

of default (PD) and loss given default (LGD). Chronologically, we begin with

explanation of former Merton’s model and further improvements made on the

field of structural models, continuing with basic reduced-form models developed

mainly in last two decades. In order to understand reduced-form models that

focus on loss given default parameter, first we present analytical tools which

enable ex-ante measuring of default probability, assuming constant expected

LGD. This is thereafter followed by more sophisticated reduced-form model

for measuring LGD. In this chapter, all models are based on information

implied from market data of risky but not yet defaulted bonds.

3.1 Structural Models

The theory of option pricing introduced by Black & Scholes (1973) and their

suggestion that the technique could be used for pricing of corporate debts gave

rise to structural models for measuring the credit risk. This framework was

firstly developed by Merton (1974) with main focus on measuring probability

of default at maturity of a firm’s debt. Generally, in structural models, firm

defaults when is not able to meet its obligations. According to Merton (1974),

this happens when value of firm’s asset is lower than value of its liabilities when

these mature1. Hence, it is obvious that term “structural” comes from the fact

that credit risk parameters are dependent on structural characteristics of the

firm: asset volatility (business risk), and leverage structure (financial risk).

Merton’s model, even thought employing many simplifying assumptions,

introduced a new approach for credit risk pricing of corporate bonds, which is

1By asset value it is referred to its market value rather than accounting value.
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now widely used in theory as well as in practice. Business models for credit risk

measurement and estimation of PD and LGD developed and used by Moody’s

(KMV model) and J.P. Morgan (CreditMetrics TM) are both based on Merton

(1974).

Next, basic ideas of the model will be explained, followed by brief overview

how some of its assumptions have been relaxed. Figure 3.1 shows an example of

asset value evolution in the past and graphically explains how it can evolve in

the future so that there is no default. Probability of default in the figure is then

the probability that asset value will fall below “debt value”, which reflect the

face value that must be repaid at maturity T . Below see the list of assumptions

for Merton’s model. They are mostly based on traditional Black-Scholes option

pricing theory. Merton (1974) assumed:

� continuous-time trading of perfectly divisible assets with sufficient num-

ber of investors who have comparable level of wealth,

� no friction, no transaction cost, no taxes, no bid-ask spreads in markets,

� short-selling without any restrictions is allowed,

� term structure of risk-free interest rate is flat and known,

� value of a firm’s assets V is financed by equity E and one zero-coupon

bond with market price D, maturity at time T and face value F ,

� capital structure does not influence value of a firm (Modigliani-Miller

theorem holds),

� no dividend payout, no new issues of equity or debt,

� default can only occur at maturity of the debt,

� no reorganization or bankruptcy costs in case of default and absolute

priority rule holds.

In structural models, it is necessary to estimate evolution of firm’s value of

assets and liabilities (or other boundary process or value instead of debt’s value)

in order to be able to predict default probability. According to Merton (1974)

the asset value At follows diffusion type stochastic process with standard Gauss-

Wiener process2 and can be described through following stochastic differential

2See the definition of Gauss-Wiener process in Appendix A.
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Figure 3.1: Probability of default in Merton model

Source: Adapted from Crouhy et al. (2000).

equation
dAt
At

= (µA − γA)dt+ σAdW
A
t , (3.1)

where µA denotes expected rate of return on firm’s assets per unit time, σA

denotes volatility of return on firm’s assets per unit time, γA is total cash

outflow in means of dividends or coupons per unit time and WA
t is the standard

Gauss-Wiener process. Under Merton’s assumptions, default can only occur at

maturity of the bond T and if value of assets AT is not sufficient to repay face

value of the bond F . Therefore the probability of default under the stochastic

evolution of firm’s value is given by

PD = P [AT ≤ F ] (3.2)

At maturity, debtholder will receive either face value F in case of no default

(AT > F ) or whole value of the firm AT in case default occurs (AT ≤ F ). This

is based on assumption of absolute priority rule, so that bondholders have to

be fully paid before shareholders and therefore shareholders receive nothing

in case of default. Market value of firm’s debt is similarly to At assumed to

follow the diffusion type stochastic process with constant drift µD and standard

Gauss-Wiener process WD
t

dDt

Dt

= (µD − γD)dt+ σDdW
D
t (3.3)
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Merton (1974) expressed value of equity, as well as value of debt, as a

functions of the firm’s asset value At and the time to maturity t̄ = T − t, for

which holds

At = D(At, t̄) + E(At, t̄) (3.4)

Then by using Itô’s lemma3 and Equation 3.4 it is possible to deduce fun-

damental differential equation for equity value

∂Et
∂t

+ rAt
∂Et
∂At

+
1

2
σ2
AA

2
t

∂2Et
∂2At

− rEt = 0 (3.5)

To solve Equation 3.5 it is necessary to examine initial and bounding conditions.

The initial conditions are based on the time to maturity t̄ equal to zero. As

stated before, at the maturity of the debt, shareholders receive nothing in

cause of default, otherwise face value of bond is paid out and therefore initial

condition is E(AT , 0) = max(0, AT −F ). First bounding condition that applies

at any time is that if value of assets is zero, debt and equity must be zero as

well: D(0, t̄) = 0, E(0, t̄) = 0. Secondly, debt value cannot be higher than asset

value: D(A, t̄) ≤ A for any t̄. Equation 3.5 with defined initial and bounding

conditions is identical to Black & Scholes (1973) option pricing formula for

European call option. Therefore solution to Equation 3.5 is

E(A, t̄) = AΦ(d1)− Fe−rt̄Φ(d2) (3.6)

where Φ(.) stands for cumulative standard normal distribution function and

d1 =
lnA

F
+ rt̄+ 1

2
t̄σ2
A

σA
√
t̄

(3.7)

d2 = d1 − σA
√
t̄ =

lnA
F

+ rt̄− 1
2
t̄σ2
A

σA
√
t̄

According to Black & Scholes (1973), Φ(d2) stands for the probability that

option will be exercised, which would in this analogy of the model imply that

equity holders repaid the debt at its maturity and receive a positive value of

AT −F . Probability of default might than be computed as 1−Φ(d2), which is

equal to Φ(−d2) due to standard normal distribution characteristics. It must

be noted that this derivation of default probability was done under risk-neutral

measure.

3See the Appendix A for definition.
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Compared to risk-neutral default probability, according to Crouhy et al.

(2000), physical probability of default can be calculated according to Equa-

tion 3.2 assuming that physical asset value At has log-normal distribution, so

that expected value at time t is E[At] = A0e
µAt. Their empirical study based on

real data supported assumption of log-normality of assets. Thanks to charac-

teristics of normal logarithm, we get the distribution of lnAt from Equation 3.1,

which is

lnAT ∼ Φ(lnA0 + µAT −
1

2
σ2
AT, σ

2
AT ) (3.8)

Physical probability of default is then computed as

PD∗ = [lnAT ≤ lnF ] = Φ(−
lnA

F
+ µAT − 1

2
σ2
AT

σA
√
T

) = Φ(−d∗2) (3.9)

Risk-neutral and physical probabilities of default measurements differ only

in expectations about return on assets. In real world, investors demand higher

return on asset (µA) than the risk-free rate r, which imply d∗2 > d2, and from

properties of normal distribution Φ(−d∗2) < Φ(−d2). Risk-neutral probability

of default is thus higher than actual physical probability. This must be taken

into account when using risk-neutrality in structural models.

Few of Merton’s assumptions were considered as limitation to empirical

usage and have been relaxed in subsequent works by other authors. Black &

Cox (1976) introduced more complex capital structure; Geske (1977) introduced

interest paying debt; Vasicek (1984) brought an idea of distinction between

short term and long term debt. Moreover, all of the above mentioned extensions

of Merton’s model assumed that default can occur before maturity and relaxed

the condition of flat term structure of risk-free interest rate. The economic

interpretation of default that occurs before maturity lies in the default barrier

that represents a debt covenant and default time is the first time of its violation.

In next sections we will examine a reduced-form approach to modeling credit

risk.

3.2 Standard Reduced-Form Models

Reduced-form credit risk models has been firstly introduced by Jarrow & Turn-

bull (1995) as a reaction to structural form approach, especially trying to de-

crease informational difficulty when modeling credit risk. In order to achieve

this, assumption of predictability of default time, which is present in struc-
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tural models, was relaxed. On contrary, in reduced-form models default is not

conditioned by particular economic parameters of a company, but is simply ex-

pected to occur at any time with some intensity. This intensity is modeled by

a exogenous default process. Reduced-form approach belongs also to category

of market implied approaches, therefore market prices of defaultable instru-

ments are believed to disclose market expectation of credit parameters under

no-arbitrage. In this section, intensity with which default occurs will be consid-

ered firstly as a constant, then as a deterministic time-varying and thereafter a

stochastic variable, while recovery rate will be assumed to be constant or even

zero in order to better understand ideas behind reduced-form intensity based

modeling. Further simplification lies in using zero-coupon bonds in these mod-

els. Even though, this assumption is not always realistic, any coupon paying

bond can be easily stripped into coupons and face value payment at maturity,

each representing a zero-coupon bond with different maturity. Mechanism that

can be applied to prices of coupon bearing bonds to calculate theoretical mar-

ket value of zero-coupon bonds will be explained in empirical par of this work.

Until that time, we will automatically assume zero-coupon for both, risky and

risk-free, bonds.

3.2.1 Basic Model

As was already mentioned, default event in reduced-form models is not pre-

dictable. Only publicly available market information is used for its measure-

ment. In order to achieve this low information approach, few assumptions are

needed. Most important is the assumption about what leads the difference be-

tween prices of defaultable and default-free bonds, which are otherwise equal4.

In basic reduced-form models, e.g. Hull & White (2000), this spread is assumed

to be equal to expected loss in the case of default5. Therefore basic equation of

the model says that the difference between today’s market value of default-free

bond with maturity at time T (we denote as gT ) and today’s market value of

defaultable bond with same maturity (we denote as bT ) is equal to expected

4Defaultable and default-free bonds are considered to be equal if they have same maturity,
same face value and same coupon structure

5In some more complex reduced-form models, e.g. Jarrow (2001) the spread is believed
to disclose expected credit risk premium together with liquidity risk premium.
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value of loss incurred given default6

gT − bT = PV [PD × LGD × EAD] (3.10)

From market value of credit spread, given the assumption about LGD and

exposure, it is straightforward to calculate default probability of the risky bond.

This can be shown on simple example: assuming zero-coupon risky bond with

maturity 3 years from now, face value 100 and yield to maturity 4% and risk-

free bond with same maturity and face value yielding 3.5% to maturity. Using

continuous compounding, the price of risky bond is 100× e−0.04×3 = 88.69 and

price of risk-free bond is 100 × e−0.035×3 = 90.03, implying credit spread to

be 1.34, which is equal to present value of PD × LGD × EAD. Taking face

value of risky debt as exposure at default and zero recovery (LGD = 100%),

probability of default satisfies 1.34 = e−0.035×3 × PD × 1.00× 1007. Therefore

PD = 1.49%.

Figure 3.2 shows the implied default probability sensitivity to LGD. For

the given credit spread, which is calculated from risky and risk-free yields to

maturity, the higher assumed LGD implies lower probability of default and vice

versa, so that overall expected loss until maturity remains the same. Further-

more, intuitively we expect that greater difference between yields to maturity

is due to higher overall expected loss. This is also depicted in Figure 3.2, as

PD and LGD simultaneously increase as the yield to maturity of risky bond

increases. However, assumptions used in this example would be too simplifying

for the following reasons:

� probability of default of the bond can vary until maturity

� face value is only one of the possibilities for estimating exposure at default

in reduced-form models

� recovery rate does not need to be zero and even more, it can vary in time

All these limitations are discussed further in this work. Firstly, we start

with definition of probability of default parameter which can vary in time. In

reduced-form approach, often called intensity-based, default time is not condi-

tioned on financial situation of the company, rather it is set at the time equal

6Expected value of loss incurred given default is equal to the loss rate LGD times the
exposure at default EAD times the probability that default will occur PD.

7The first term stands for discounting of payoff at maturity into present value, PD denotes
the overall probability of default until maturity. These are multiplied by 1.00, that stands
for 100%LGD and by face value of 100.
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Figure 3.2: Sensitivity of default probability to LGD and yield y of
defaultable bond
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Source: Author’s computation. Risk-free rate is assumed to be 3.5%.

to first jump of discrete time homogeneous Poisson process N with intensity λ

[Jarrow & Turnbull (1995)], where

Nt =
∑

1Ti≤t

is count of Poisson process event arrivals Ti in the [0, t] interval8. Let’s denote

τ as the default time, which is equal to T1 of Poisson process (Ti) with intensity

λ. Probability of no default during interval [0,t] is the probability of Nt being

equal to zero, which is identical to τ being later time than t. We will denote

such probability as p(0, t), the survival probability until time t:

p(0, t) = P (Nt = 0) = P [τ > t] = 1− F (t) = e−λt (3.11)

In order to be able to determine continuous PD function, let’s denote the

survival probability until time t+ ∆, given that no default occurred until time

t as p(t, t + ∆). Probability of no default during interval [t, t + ∆] can be

then calculated as probability of Nt − Nt+∆ being equal to zero. In analogy

to forward interest rates, p(t, t+ ∆) is the forward survival probability, as it is

conditional on information at time t.

p(t, t+ ∆) = P (Nt −Nt+∆ = 0) = e−λ∆ (3.12)

8See Appendix A for definitions of discrete and continuous time homogeneous Poisson
processes.
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Note that survival probabilities can be easily transformed into probabilities

of default as complements to 1. Definition of PD(0, t) is then straightforward.

It is important to notice that if we would define PD(t, t+ ∆) as 1−p(t, t+ ∆),

this would refer to forward probability of default in the interval [t, t+∆], but it

would not be clear if there was any default before time t. Therefore it is more

convenient to define PD(t, t+∆) as probability of no default before time t and

default occurring in the specified interval.

PD(t, t+ ∆) = p(0, t)× (1− p(t, t+ ∆)) = e−λt(1− e−λ∆) (3.13)

To simulate continuous default probability, it is sufficient to decrease ∆ in

Equation 3.13 limitely to zero:

PD(t) = lim
∆→0

PD(t, t+ ∆) = p(0, t)× lim
∆→0

1− p(t, t+ ∆)

= e−λt lim
∆→0

1− e−λ×∆
(3.14)

This was often used in literature to parametrize probability of default and

calculate market price of risky bonds. Duffie (1998) provided the pricing model

under affine settings, so that risk free rate and intensity rate followed affine

state process. Then, he used Monte Carlo simulation to find solutions. We

would not go into detail on different parametrization models or econometric

estimation of parameters, as we will focus more on analytical solutions, rather

than statistical estimates.

Hull & White (2000) proposed simple analytical model for iterative calcu-

lating of time-varying probabilities of default. They did not employ continuous

PD(t) function, rather they assumed PD is constant in the certain intervals,

which simplifies the mathematical tractability. Assuming that a firm has N

bonds with maturities t1 ≤ t2 ≤ t3... ≤ tN , they set constant probability of

default for t ∈ (ti−1, ti). So that PD(ti) denotes the probability of default

occurring any time during the interval. These bonds, as issued by the same

reference entity, are assumed to have the same probability of default in each de-

fined time interval. Let’s denote PD(ti) as the probability that default occurs

during (ti−1, ti). We can easily adapt our basic Equation 3.10 for time-varying

probability of default and we get

gT − bT = PV

[
N∑
i=1

PD(ti)× LGD × EAD(ti)

]
(3.15)
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In order to calculate the default probability in different intervals Hull & White

(2000) used following data:

� today’s prices of firm’s bonds, denoted by btj for a bond with maturity

tj, for j = 1, 2, .., N so that t1 ≤ t2 ≤ ... ≤ tN

� today’s prices of equivalent government bonds, denoted by gtj for a bond

with maturity tj and the same face value as j’th risky bond, for j =

1, 2, .., N

� constant recovery rate R̂ (according to historical data provided by rating

agencies)

� constant risk-free interest rate r used for calculation of the discount factor

e−rt

� forward price Fj(t) of risk-free bond maturing at time t with the same

face value as j’th firm’s bond

� claim Cj(t) made by bondholder in case that j’th bond defaults at time t

Based on these data, they defined present value of the loss from a default of

j’th bond at time interval (ti−1, ti) as

βtij =

∫ ti

ti−1

e−rt[Fj(t)− R̂Cj(t)]dt (3.16)

which stands for difference the investor would get if he invested money into

risk-free bond maturing at time t ∈ (ti−1, ti) instead of investing money into

risky j’th bond which happens to default at t ∈ (ti−1, ti). βtij is already dis-

counted value of the possible loss. The basic reduced-form expression of the

market credit risk spread (Equation 3.15) can be then reformulated according

to definition of loss value βtij for j’th bond

gtj − btj =

j∑
i=1

PD(ti)× βtij (3.17)

Probabilities of default on time intervals determined by firm’s bonds matu-

rity dates as defined above, can be then calculated inductively (starting with

j = 1, then j = 2, etc.).

PD(tj) =
gtj − btj −

∑j−1
i=1 PD(ti)× βtij
β
tj
j

(3.18)
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Even though few simplifying assumptions were used in previous calculation,

this inductive formula for probabilities of default was successfully applied on

real data by Hull & White (2000). We intentionally skipped the definition of

claim Cj(t) that bondholder will make in case j’th bond defaults at time t. In

literature there is still lots of discussion concerning what price describes the

claims made by bondholders in the best possible way. Terms bond’s claim and

exposure at default can be used interchangeably. Also it can be referred to

as recovery assumptions. However this have nothing to do with the recovery

rate directly. Rather it is the assumption about the exposure at default from

which some percentage is recovered. We will stay with “exposure at default”

terminology as we find it more appropriate. The following part introduces three

main “EAD assumptions”, their implications, tractability and shortcomings.

3.2.2 Assumptions about Exposure at Default

In this part we will present assumptions about exposure at default used in

different reduced-form models. We will follow previous notation as well as

assumption of constant recovery rate to be R̂, face values of all bonds to be 1

and default-free interest rate r to be constant within all EAD approaches.

In general, the price of defaultable zero-coupon bonds with the constant

recovery rate can be calculated as the expected promised payment at matu-

rity (face value of the bond) in case of no default plus expected proportion of

exposure recovered in case of default. These possible payments must be prop-

erly discounted. We will use e−rT as the discount factor for present value of

payment at time T . Therefore the present value of default-free bond with face

value 1 is gT0 = e−rT . The Equation 3.19 shows general formula for defaultable

bond price, which will be further rearranged using different assumptions about

EAD,

bT0 = PV [P [τ > T ]× 1 + (1− P [τ > T ])× R̂× EAD] (3.19)

where τ stands for default time, T is maturity of the bond, P [] denotes prob-

ability measure under martingale Q and PV [] denotes present value of future

cash flows.

Firstly, as mentioned in the basic reduced-form example, exposure at default

can be equal to face value, therefore recovered value is a fraction of face value in

event of default. According to Giesecke (2004) this convention is called recovery

of face value. Under this convention it is further assumed that recovery is paid
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out at maturity T , thus both possible payments should be discounted with

e−rT . According to Equation 3.19 and definition of survival probability in

Equation 3.11 the value of the bond at time zero is

bT0 = PV [P [τ > T ]× 1 + R̂P [τ ≤ T ]× 1]

= e−rT (e−λT × 1 + R̂(1− e−λT )× 1)

= gT0 − e−rT × (1− R̂)× P [τ ≤ T ]

(3.20)

This shows that the credit spread between value of defaultable and default-

free zero bonds is the risk-neutral value of expected loss from default, which is

consistent with already explained basic reduced-form formula. Moreover, if we

assume zero recovery rate, the equation can be simplified into bT0 = e−(r+λ)T .

As stated by Jarrow (2001), defaultable bonds can be valued in the same way

as default-free, but using risk-adjusted interest rate r + λ for discounting. As

shown by Giesecke (2004), this holds for other than zero coupon bonds assuming

zero recovery. The recovery of the face value convention was first empirically

used in the study of Duffie (1998). He proposed the model with recovery as a

fraction of face value as he believed that the bondholders should receive fixed

payment proportional to the face value of their holdings, regardless time to

maturity and coupon rate of these bonds. He realized that such assumption

might not be very realistic, especially in case of reorganization at default, some

bondholders have higher bargaining power than others and recovery is not

proportional to face value. The main advantage of using recovery of face value

convention in reduced-form models lies in its mathematical tractability. Hull &

White (2000) presented model with extended recovery of face value convention

for coupon bonds. To calculate the exposure they added accrued interest since

last coupon payment to the face value of bond.

Secondly, exposure at default can be estimated as a value of otherwise equiv-

alent default-free bond with same maturity and coupon payments, from which

arises the name of this convention [Giesecke (2004)]. Under the equivalent re-

covery convention, recovery is calculated as a fraction of gTτ and it is paid out

at default time τ . Contrary to face value convention, the remaining maturity

affects the recovered amount. Value of bond is thus a sum of expected dis-

counted value of the bond if no default occur until maturity and discounted
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value of recovery at default time τ :

bT0 = PV [P [τ > T ]× 1] + PV [R̂× P [τ ≤ T ]× gTτ ]

= e−rT e−λT × 1 + e−rτ R̂× (1− e−λT )e−r(T−τ)

= e−(r+λ)T − R̂× e−(r+λ)T + R̂× e−rT

= (1− R̂)e−(r+λ)T + R̂e−rτgTτ

= (1− R̂)e−rTP [τ > T ] + R̂e−rτgTτ

(3.21)

Assuming equivalent recovery and its payment at default time, R̂e−rτgTτ is

the certain part, received even in case of default, while the (1− R̂) fraction of

default-free bond (see Equation 3.21) is additionally received only if no default

occurs until maturity. Based on Equation 3.21 it is obvious that using this

convention, pricing of bond cannot be easily transformed into the basic model

in Equation 3.15. Therefore difference between default-free and defaultable

bond prices can not be expressed as simply as with recovery of face value

convention.

Thirdly, if bondholders could have sold the bond at the market price just

before the default then pre-default market value can be considered as their

exposure. Under so called fractional recovery convention, recovery is a fraction

of pre-default market value of the bond bTτ− and is paid at default time τ . Value

of this bond is again sum of expected discounted value of the bond if no default

occurs until maturity and discounted value of recovery at default time τ .

bT0 = E[e−rTP [τ > T ]× 1] + E[R̂bTτ−P [τ ≤ T ]]

= e−rT e−λT + e−rτ R̂bTτ−(1− e−λT )

= e−(r+(1−R̂)λ)T

(3.22)

This imply that defaultable bond under fractional recovery convention can

be valued as if it was default-free, but using intensity and recovery-adjusted

interest rate r + (1 − R)λ for discounting, which is similar to result under

face value recovery convention. As Giesecke (2004) explained, there is simple

intuition behind Equation 3.22. Supposing that bond defaults with intensity λ

and in case of this default, bTτ− is paid out with probability R̂ and nothing is paid

out with probability 1− R̂ (this results into expected recovery value of R̂bTτ−).

Thus default with no loss can occur with intensity λR̂ and default with zero

recovery can occur with intensity λ(1− R̂). However using this convention for

modeling loss given default of not yet defaulted bonds is possible only in terms
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of expected LGD, because the market pre-default time value is not available

and can only be estimated.

Reduced-form models can be divided according to the manner in which the

exposure at default is estimated. There is no consensus about the best expo-

sure at default estimation in literature. Jarrow & Turnbull (1995) assumed

that bondholders receive fraction of market value of equivalent default-free

bond, while Duffie & Singleton (1999) preferred fractional recovery convention

which allows for closed-form solutions using risk adjusted rate for discounting

cash flows. As mentioned above, Duffie (1998) assumed recovery of face value

convention due to mathematical tractability. It would be correct to use this

convention if the absolute priority rule is strictly obeyed. Further on, we will

follow the recovery of face value convention, assuming that absolute priority

rule holds in a sense that bondholders of same seniority have equal rights re-

gardless coupon structure and time to maturity. However, as will be discussed

in next section, even under recovery of face value convention, it is possible to

allow violation of the absolute priority rule, so that junior bondholders can re-

cover some part of their exposure before more senior bondholders receive whole

exposures.

Given assumption about recovery rate and estimation of risk-free interest

rate, the default intensity of a bond can be calculated from its market price. In

most studies it is done other way around: estimating default intensity in order

to calculate the price of the bond. However, as noted by Giesecke (2004), using

constant intensity variable λ causes term structure of credit spreads to be flat.

For more realistic modeling of spreads, time-varying and stochastic intensities

are used. For a brief explanation and definitions of default probability under

stochastic intensity λ and definition of Cox process in reduced-form models

see the Appendix A. In the following part, we will conclude this section with

suggestions on extension of described reduced-form models under assumption

of constant recovery rate.

3.2.3 Possible Extensions of Standard Reduced Form Models

In standard reduced form models it is assumed that default automatically imply

insolvency, bankruptcy and liquidation. All these terms are usually merged

and default is used as a final state of a firm and recovery is paid at default

time. However, Jarrow & Purnanandam (2004) and Guo et al. (2009) brought

up a more realistic approach which distinguishes default from insolvency. Also
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liquidation is not the only possibility after bankruptcy. In the event of default9,

the maturity of debt is postponed to some random time, called resolution time,

and firm has two possible evolutions:

� firm’s asset value stays above some insolvency barrier until resolution

time and debt is paid back at full or at significantly high fraction and

thus stays solvent and continues to operate normally, or

� firm’s asset value falls below mentioned insolvency barrier before the res-

olution and it becomes insolvent and starts bankruptcy process. Then

a lower fraction of debt value is recovered10 and paid to investor. This

could be further specified to liquidation and restructuring processes.

Therefore, whole process consists of three parts: default intensity process,

bankruptcy intensity process conditional on default, and finally, recovery pro-

cess conditional on previous processes. See the structure of the process in

Figure 3.3. Firm defaults on particular obligation if default time τ is lower

than maturity T . Conditional on this, maturity of debt changes to resolution

time T̄ . Firm becomes insolvent and thus bankrupts if bankruptcy time τ̃ is

after default τ but before resolution at T̄ .

9It is important to remember that default includes situations such as late payment on any
debt or violation of debt’s covenants.

10Proof of recovery rate under bankruptcy being lower that recovery rate at resolution
time can be found in Appendix C of Guo et al. (2009).
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Figure 3.3: Time Scheme of Default, Bankruptcy and Recovery Pro-
cess

Source: Author’s construction, based on Guo et al. (2009)

Secondly, Guo et al. (2009) suggested to implement a basic idea from struc-

tural models but still retain within reduced-form information simplification.

Thus they took into account firm’s asset and liabilities processes and used this

in modeling default as well as bankruptcy time. They used regime switching

model and jump diffusion model to describe firm’s asset value process. Both

are based on continuous-time Markov chain process and models of asset value

dependent on drift and volatility variables. In the later one, asset value is

further dependent on random jump amplitude value.

Thirdly, Guo et al. (2009) quantified all processes under two different sets

of information:

� complete information: management of the firm has precise information

about actual asset value at any time,

� partial information: investors have delayed information about asset value.

Information are revealed to investors in repeated times ti, for example in

form of quarterly reports, and in random times Tn, when state of a firm

is changed, for example in form of newspaper articles.
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Such different sets of information cause different valuation of debt by manage-

ment and investors. This valuations are only same at time zero (when debt is

issued). Also when time is converging to any revealing time ti or Tn, the prices

of debt converge to same values.

Next section pays attention to modeling loss given default parameter. As

discussed in Duffie & Singleton (2003), the product of PD and LGD in the

bond’s credit spread is difficult to separate using the standard reduced-form

modeling approach. Therefore we will focus on the theory of adjusted relative

spread introduced by Unal et al. (2003), in which market prices of senior and

junior debts are used to estimate senior and junior LGD parameter. This

theory will be explained and modified so that it can be used for time-varying

LGD calculation.

3.3 Extracting LGD from Bonds with Different

Seniority

Most credit risk models use the constant expected LGD, as it was discussed

previously. We already reviewed further possibilities within reduced-form mod-

eling concerning probability of default and exposure at default. We described

a model, based on Hull & White (2000), to calculate time-varying probability

of default given an assumption on EAD and LGD. Thereafter, we discussed

three main conventions for exposure at default and decided to use recovery of

face value.

The last component of the credit spread, using the basic reduced-form rela-

tionship in Equation 3.15, not yet investigated is the loss given default rate11.

The importance of modeling time-varying recovery rate was lately emphasized

in few studies. See Bakshi et al. (2006) for the framework which shows im-

portance of stochastic recovery rate process. They furthermore parametrized

PD and LGD in a way that correlation between parameters can be modeled.

In this section, we will present the approach for pricing the risk of recovery

in default using market prices of bonds with different seniority based on Unal

et al. (2003).

Unal et al. (2003) claimed that recovery of bonds issued by the same com-

pany differ only if these bonds have different seniority. Furthermore, they sup-

11We still assume that recovery rate is complement to loss given default rate, so that
PD(t) + LGD(t) = 1 at any time.
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posed all bonds of one issuer to be exposed to the same arrival risk of default.

Similar characteristics were assumed by Jarrow (2001) who used market prices

of bonds and equity to parametrize default probability and constant recovery

rates for bonds and for equity and successfully overcame the problem of PD

and LGD separation.

It was already stated that different types of debt and equity can be put

into order based on its seniority (see Figure 2.5). Under absolute priority rule,

in case of default (bankruptcy or liquidation), more senior debt should be

repaid in full before any junior debt or shares are being repaid even partly.

Therefore, when default occurs, market value of firm’s assets would be evenly

divided between all senior bondholders, thus all senior bonds would be subject

to the same recovery rate, which is also referred to as pari-passu characteristic,

which can be usually found in bonds prospectus. If these are fully paid off,

then remaining value of firm’s assets would be evenly divided between junior

bondholders, so that same recovery rate would be applied among them. Same

would follow for shareholders if all senior and junior bondholders are fully paid

off. However APR rule is often violated in reality.

We would first describe a new statistic, the adjusted relative spread, intro-

duced by Unal et al. (2003), which is positively related to recovery rates and is

free of default timing consideration. This will be followed by discussion of rea-

sons of absolute priority rule violation and extension of the model for extracting

time-varying LGD of junior bonds relative to senior bonds of a firm.

3.3.1 Adjusted Relative Spread

According to Unal et al. (2003), senior and junior bonds of the same issuer face

the same probability of default and their relative prices are therefore highly

important in order to extract loss given default. In their study, the face value

convention was assumed, therefore the price of defaultable bond can be ex-

pressed as

bTi = e−rT
(
e−λT × 1 + E[Ri](1− e−λT )× 1

)
(3.23)

where E[Ri] denotes expected recovery rate for junior (i = J) or senior bonds

(i = S).

Unal et al. (2003) defined a new statistics, the relative spread RS, which

is equal to the ratio of difference between senior and junior debt prices over

difference between default-free and junior debt prices. They denoted the ratio

of sum of nominal of all senior bonds S to total issued nominal for all bonds
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S + J by pS. Then adjusted relative spread ARS can be defined as

ARS = pS ×RS = pS ×
bTS − bTJ
gT − bTJ

, (3.24)

where bTS denotes the market price of senior bond with maturity at T and

bTJ denotes market price of junior bond with the same maturity. ARS can

easily be calculated from market available data. The next aim is to express

the adjusted relative spread in terms of recovery rates and without impact of

the probability of default. This is done by substituting the formula for pricing

defaultable bonds (Equation 3.23) with the same maturities and with different

expected recovery rates for senior and junior bond. Therefore for ARS holds

following relation

ARS = pS ×
E[RS]− E[RJ ]

1− E[RJ ]
(3.25)

Because ARS is not dependent on probability of default, it is referred to as

pure recovery model. Consider a firm that issued senior bonds with the sum

of total nominal S and expected recovery rate E[RS] and junior bonds with

sum of total nominal J and expected recovery rate E[RJ ]. Expected aggregate

recovery rate E[R] to all outstanding bonds is then calculated as

E[R] =
S

S + J
E[RS] +

J

S + J
E[RJ ] = pSE[RS] + (1− pS)E[RJ ] (3.26)

Then, ARS can be expressed in terms of junior and aggregate expected loss

given default as

ARS = pS ×
E[RS]− E[RJ ]

1− E[RJ ]
=
E[R]− E[RJ ]

1− E[RJ ]
(3.27)

ARS = 1− E[LGD]

E[LGDJ ]

According to Unal et al. (2003), it is necessary to obtain risk-neutral recov-

ery density for RJ for better analysis of ARS dynamics. Then, based on the

estimated relationship between R and RJ , and on ARS calculated from mar-

ket prices spreads, it would be straightforward calculation to obtain market

implied recovery rates. They expected RJ to be function of aggregate recovery

R denoted as RJ = J(R). If we have a density function of possible aggregate
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recoveries f(R), then expected recovery of junior bonds can be calculated as

E[RJ ] =

∫ 1

0

J(R)f(R)dR (3.28)

Unal et al. (2003) claimed that the density f(R) can be assumed as logit

transformation of normally distributed variable x. Thus R = ex

1+ex
satisfies that

aggregate recovery rate should be in (0, 1) interval as it is describing percentage

value. Another advantage against normally distributed R is that mean and

variance are not related, while if assuming normal distribution, the variance

is approaching 0 for both, zero recovery and complete recovery. Assuming

x ∼ N(µ, σ2), the conditional aggregate recovery density is:

f(R) =
1

σ
√

2πR(1−R)
× e−

1
2σ2

(ln( R
1−R )−µ)

2

(3.29)

for R ∈ (0, 1). Given the density function, it is possible to express mean and

variance of the aggregate recovery in terms of µ and σ

E[R] = 1−
∫ 1

0

N

(
ln( R

1−R)− µ
σ

)
dR (3.30)

V ar[R] =

∫ 1

0

2(1−R)×N

(
ln( R

1−R)− µ
σ

)
dR−

(∫ 1

0

N

(
ln( R

1−R)− µ
σ

)
dR

)2

where N denotes probability distribution function of standard normal distri-

bution. See the Appendix in Unal et al. (2003) for derivation of the mean and

variance.

To define payoff function J(R), assumptions about absolute priority rule

must be made. Under strict APR, junior bondholders only receive payment

after all senior bondholders are fully paid off. As pS is the ratio of senior bonds

to all bonds issued by the company, aggregate recovery must be greater than

pS in order for junior recovery not to be zero. This payoff structure is the same

as for long position on a call option with strike price pS. See Figure 3.4 for

graphical understanding of the relationship between aggregate recovery rate

and junior and senior recovery rates. Number of corresponding units of call

option is equal to the slope of payoff function ( 1
1−pS

).
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Figure 3.4: Senior and Junior Recovery Rate Structure
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In analogy to E[RJ ], we can define the expected senior recovery rate E[RS]

as

E[RS] =

∫ 1

0

S(R)f(R)dR (3.31)

where f(R) is the density function of aggregate recovery and S(R) is a payoff

function for senior bonds in relation to the aggregate recovery. Assuming APR,

S(R) is the same as short position on a put option with strike price pS. This

can be graphically seen from Figure 3.4. Senior bondholders sell 1
pS

units of

the put option.

However, assumption that absolute priority rule strictly holds is quite over-

optimistic. Therefore we will next discuss how to estimate the extent of APR

violation and then include this parameter into payoff functions J(R) and S(R).

3.3.2 Absolute Priority Rule Violation

According to loan agreements and bond contracts, in case that borrower fails

to repay, lenders have a right to receive back their full or partial investment.

They can force borrower to bankruptcy and retrieve payments from liquidation
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of assets or they can take possession of these assets. Absolute priority rule is

the legal rule that should help to decide how much are bondholders entitled to

receive from value of the assets. It states that more senior debtholders have

priority over junior ones and over shareholders. Even though APR seems sim-

ple, it is not that easily implemented. Longhofer & Carlstrom (1995) provides

overview of empirical studies on frequency of APR violation. Most studies con-

cluded that absolute priority rule was violated to some extent in more than 70%

of cases. Reasons behind this high number might lie in the increasing efficiency

of bankruptcy process in cases when APR is not strictly followed. Some senior

bondholders agree to decrease their recovery in favour of junior bondholders or

shareholders if it fasten the reimbursment process.

It is important to notice that bankruptcy process in US and countries in

Europe is quite different. In most countries there are two bankruptcy processes:

liquidation of assets and reorganization of debts. According to Brouwer (2006),

bankruptcy followed by reorganization is more common in USA (around 5%

of cases) then it is in Europe (aroung 0.4% in Germany). She claimed it

is a consequence of legal origins. While in USA, UK and Ireland12 prevails

Common law, under which judges have more flexibility in their decisions, in

European countries legislation-driven Civil law is more widespread. In Europe

it can be further divided between Scandinavian law countries, German civil law

countries and France civil law countries. In general, in civil law countries, state

and legislation is putted above the courts and judges. Most significant findings

based on Brouwer (2006) are:

� in Germany, secured debtholder are always paid first

� in France, the protection of creditors is very low, employees are highly

protected by legislation

� in Common law countries, shareholders receive more protection from

courts than debtholders

� in Civil law countries, it is more difficult to decide about absolute priority

rule violation in courts as this would be against legislation

When modeling violation of absolute priority rule, it is necessary to define

type and extent of the violation. Following approach of Unal et al. (2003),

12From legal origin point of view, UK and Ireland are not considered as a European
countries, rather they are similar to USA and other Anglo-Saxon countries.
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violation can be represented by situation when senior bondholders are equally

paid up to ψ% of their claims, which represents the aggregate recovery level

at which violation of APR occurs. Afterwards, if possible, both senior and

junior bondholders are being repaid. This is distributed in the ratio of θ :

(1 − θ) for senior to junior bondholders. Schema in Figure 3.5 demonstrates

the relationship of senior and junior recovery rates to aggregate recovery rate.

Figure 3.5: Senior and Junior Recovery Rate Structure with Violation
of APR
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The first region represents aggregate recovery up to level pSψ when only
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senior bondholders receive payments and J(R) = 0. S(R) is equal to R
pS

. In

the second region all bondholders are sharing what is additionally recovered.

The increase of senior recovery rate function is reduced due to multiplication

by θ ≤ 1. Therefore starting at S(R) = ψ and increasing at rate θ
pS

up to full

recovery means that function for senior recovery rate in second region is

S(R) = ψ +
θ

pS
(R− ψpS) (3.32)

Junior bondholders are better off compared to APR as their payoff function

is equal to the long position on call option with lower strike price (ψpS). On the

other hand, senior bondholders are worse off, which can be seen from higher

aggregate recovery necessary for their full recovery (R∗ > pS). Aggregate

rate R∗ at which senior bondholders are fully paid off can be extracted from

Equation 3.32 as

R∗ = ψpS +
(1− ψ)pS

θ
(3.33)

Variable R∗ stands for a rate in percentage, thus must be within interval

〈0, 1〉. Therefore, the bounding condition on θ, using Equation 3.33 is follow-

ing13

ψpS +
(1− ψ)pS

θ
≤ 1 (3.34)

pS − ψpS
1− ψpS

≤ θ

Junior recovery rate is increasing at rate 1−θ
1−pS

in the second region, therefore

at the moment senior bondholders reached full recovery (aggregate recovery is

R∗) junior recovery rate is

J(R∗) =
(1− θ)(1− ψ)pS

(1− pS)θ
(3.35)

In the third region, if aggregate recovery is over R∗, all senior bondholders

are fully repaid and junior recovery is increasing from J(R∗) up to full recovery.

To summarize, in terms of ψ - the recovery level of senior bonds at which APR

is violated, θ - rate of reduction of senior recovery due to APR violation, pS -

ratio of senior bond, and R - aggregate recovery rate, payments recovered by

junior and senior bondholders can be expressed as

13In order to satisfy the bounding condition arising from R∗ ≥ 0, it is enough to assume
that θ ≥ 0.
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Table 3.1: Junior and Senior Recovery Rates under APR Violation

J(R) S(R) for R

0 R
pS

R ≤ ψpS

(1−θ)(R−ψpS)
1−pS

ψ + θ
pS

(R− ψpS) ψpS ≤ R ≤ R∗

R−pS
1−pS

1 R∗ ≤ R ≤ 1

We would now discuss how are junior and senior recovery rate structures

sensitive to ψ, θ and pS. This analysis is done in three scenarios. In each one

we fix two of these parameters at some non-extreme rate and choose one very

low and one very high rate for the last parameter. When choosing these rates

it is necessary to count for bounding conditions as these parameters all express

a percentage. Another bounding condition in Equation 3.34 is due to the

fact that senior bondholders must reach full recovery at least when aggregate

recovery rate is 1.

Firstly, if ψ is low, senior bondholders are exclusively paid only small frac-

tion of their investment before firm’s asset value is distributed between senior

and junior bondholders. This imply that senior recovery rate is significantly

lower for R ∈ (ψpS, R
∗), see schema on the right in Figure 3.6. Also the mini-

mum aggregate recovery rate when senior bondholders are fully repaid is much

higher for low ψ.

Secondly, structure of senior and junior recovery rates is most effected by θ.

It stands for the ratio in which proceeds are divided between senior and junior

holders when these should be repaid simultaneously. When θ is approaching 1,

structure looks very similar to strict absolute priority rule, regardless value of

ψ and pS. This can be seen in schema on the right in Figure 3.7. Similarly to ψ

sensitivity, the minimum aggregate recovery rate after which senior bondholders

are fully repaid is higher for low θ.

Finally, the structure of senior and junior recovery rates is also effected by

ratio of total nominal of senior bonds to all bonds. If this ratio is high, so

that total value all junior bondholders might recover is relatively small. From
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Figure 3.6: Sensitivity of Senior and Junior Recovery Rate Structure
to Recovery Level of Senior Bonds at which APR is Vio-
lated

Source: Computed from Table 3.1

Figure 3.7: Sensitivity of Senior and Junior Recovery Rate Structure
to Rate at which APR is Violated

Source: Computed from Table 3.1
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Figure 3.8: Sensitivity of Senior and Junior Recovery Rate Structure
to Ratio of Issued Senior Bonds

Source: Computed from Table 3.1

extreme point of view, even if junior bondholders are fully repaid before senior

ones, this would not have significant impact on value possibly recovered by

senior bondholders. Other way around, as can be seen in Figure 3.8, lower

aggregate recovery is necessary for the same senior recovery rate if pS is low.

As Unal et al. (2003) noticed, this relationship between aggregate and junior

recovery rate can be transformed into sum of two call options, which can also

be intuitively seen at Figure 3.5. First call option is in money if aggregate

recovery rate is greater than ψpS and slope of the payoff function in the second

region correspond to number of these call options. Second call option is in

money only if aggregate recovery rate is greater than R∗. In these cases, first

call option would always be in money as well, because it has lower strike price.

Therefore, to simulate payment received by junior bondholders if R ≥ R∗ we

must add payoffs from both call options. Thus the amount of second call option

that correspond together with first option to payoff to junior bondholders is the

difference between slope of payoff function in third and second region. Thus

junior recovery rate, written as sum to two call options, is equal to

J(R) =
1− θ
1− pS

Max[R− ψpS, 0] +
θ

1− pS
Max[R−R∗, 0] (3.36)

Similarly, senior payoff function correspond to sum of two put options in
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short position. Generally, writer of a put option with strike price k receive

premium payment from the buyer and expects that price will no fall below

strike price, when buyer would realize the put option and therefore payoff will

decrease. Writer of the second put option receives premium of 1 unless R ≤ R∗,

then the payoff falls at rate θ
pS

, which correspond to number of options. Due

to the first put option the payoff is decreased if R ≤ ψpS at rate 1−θ
pS

. The rate

stands for difference in slopes in second and first region. Thus senior recovery

rate, written as sum to two call options, is equal to

S(R) = 1− 1− θ
pS

Max[ψpS −R, 0]− θ

pS
Max[R∗ −R, 0] (3.37)

Then using derived density of aggregate recovery, the calculation of the

expected junior and senior recovery rates, based on Equation 3.28 and Equa-

tion 3.31, is straightforward. Parameters of recovery density, µ and σ can be

estimated following the ARS reduced-form model. Then E[RJ ] and E[RS] can

be calculated based estimated parameters of APR violation, θ and ψ. However,

as will be explained later together with other shortcomings of empirical appli-

cation of this model, junior or subordinated bonds are not used by all firms,

rather it is an attribute of financial institutions. Furthermore, finding junior

and senior bonds with the similar maturity is often not possible.

Therefore, in the next chapter we will present another financial instrument,

the credit default swap, and the reduced-form model for its pricing. In order to

estimate loss given default, we will introduce two theoretical methods. Firstly,

the simultaneous estimation of PD and LGD based on market prices of risky

and risk-free bonds together with market prices of credit default swaps. Sec-

ondly, due to better attributes for empirical usage, we will transform the ARS

model discussed in this section and apply it to senior and junior credit default

swaps.



Chapter 4

Reduced-form Modeling Based on

Credit Default Swaps

Guo et al. (2009) provide explanation why it has lately become more important

to model also recovery rate process, not only default intensity process as it has

been done by most authors so far. Moreover, they claim that nowadays, it

is more realistic to model recovery rates thanks to two changes in financial

markets in last few years. These are:

� the expansion of markets for defaulted debt,

� the expansion of credit derivatives markets1.

Higher efficiency and liquidity of these markets is significantly transfered

into more accurate pricing of credit derivatives on defaultable debt as well as

defaultable debt itself. Thus, it makes it easier to estimate default probability

of the debt and its recovery rate from market data. In this chapter, we will not

consider loss given default rate to be exogenously given and we will focus on

its calculation together with probability of default parameter. We continue to

assume face value convention, which is also consistent with credit default swap

method, where protection payment is equal to fraction of nominal value in case

of default.

Market with credit default swaps is the most developed market with credit

risk derivatives. Generally, trading with derivatives only started in late 1990’s,

and has rapidly increased since that time. According to data provided by In-

ternational Swaps and Derivatives Association (ISDA), the sum of underlying

1Introduction of recovery rate swaps is an important issue in pricing risky debt. In order
to price these derivatives correctly, it is necessary for investors to estimate recovery rates
based on other market information such as credit spread between risky and risk-free bonds.
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notional amount of credit default swaps was $0.92 billion in 2002, $62.17 billion

in 2007 and $26.30 billion in 2010. Slowdown in 2010 is associated with the

global financial crisis, but despite this fact, the expansion of the market com-

pared to the situation at the beginning of this century is enormous. Motivation

behind development of these derivatives was firstly to hedge against credit risk.

However, lately it has been more often used for speculation purposes. Many

investors are nowadays trading with credit derivatives without holding under-

lying securities. The liquidity significantly increased due to higher number of

participants and thus higher number of closed trades on the market, which

allows for better and more precise modeling of derivative prices.

Firstly, we will describe terms of the credit default swap contracts and

their standardization under ISDA, then the model for pricing CDS will be

presented and adjusted for further empirical use. Next, using this model, we

will introduce the method for PD and LGD calculation using market prices of

credit default swaps and defaultable bonds with different maturities. Finally,

the reduced-form model for pricing credit default swaps will be extended using

different LGD for CDS written on bonds with different seniorities. We will

show that this approach is more practical for empirical usage, compared to the

ARS model based on bond prices, as CDS contracts are standardized.

4.1 CDS Contractual Terms

Credit default swap (CDS) can be defined as a bilateral contract between two

counterparties, one of which is buying the guarantee (buyer of CDS) and the

other one is selling the guarantee for regular payments (seller of CDS). Risk is

transfered from the buyer of CDS to the seller. Credit default swap is issued

for underlying firm’s debt with some nominal value - it is referred to as notional

amount. The buyer pays regular fixed payments, known as CDS spread, most

usually annually, semi-annually or quarterly to the seller until the specified

end of the contract2 or until default of the underlying firm occurs. The seller

pays only in case of default and the payment depends on what is agreed in the

contract.

2In order to harmonize the CDS contracts, under ISDA Master Agreement, which is used
for most of the CDS contracts, maturity date as well as dates of payments by the buyer can
be only on March 20, June 20, September 20, December 20.
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Usually the settlement in case of default is done in one of the three following

possibilities:

� physical settlement: buyer of CDS delivers defaulted bonds with total

underlying nominal value equal to notional amount of CDS and is payed

the nominal value from seller3,

� cash settlement: seller of CDS pays the difference between nominal value

and the corresponding market price of defaulted bonds of the underlying

issuer,

� fixed settlement: fixed amount agreed in contract regardless of after-

default market price of bonds.

Apart from different types of settlement, as discussed in Packer & Zhu

(2005), there are two more issues in credit default swap contracts:

� definition of deliverable bonds within physical settlement or definition of

reference bond whose market price is used to calculate the amount of cash

settlement

� definition of credit default that triggers the payment from CDS seller

In the CDS contracts the underlying issuer is agreed upon, not specific

bonds. It is possible that only some type of bonds of the issuer are considered

as underlying. CDS can be defined for only senior or only subordinated bonds

of the issuer4. Then CDS buyer can deliver any bond of the issuer, which

has the specified seniority. However, it is not so straightforward within cash

settlement. As market prices of different bonds of the issuer can differ (even

for bonds having the same seniority), it is not clear how much CDS seller

should pay to CDS buyer when default occurs. Therefore, it has been generally

accepted to take the market price of the bond, which is referred to as cheapest

to deliver. Based on this rule and the fact that investors will always try to

deliver the cheapest bond under contract with physical settlement, value of

CDS is not dependent on the settlement method.

3Physical settlement is used mainly when credit default swap is actually bought for hedg-
ing credit risk. The buyer owns underlying bonds and these, if defaulted, are “sold” to CDS
seller for nominal price, so that CDS buyer does not incur any loss. Physical settlement was
mostly used until 2005 [Mengle (2007)].

4Apart from single entity CDS, there are also basket CDS, which underlie two to ten
reference entities, and index CDS underlying all entities included in specified market index.
See Mengle (2007) for more details on basket and index CDS. We will focus on credit default
swaps underlying single entity.
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Regarding the definition of default, it must be defined in CDS contract

which credit events are considered as default. Based on Mengle (2007), credit

events that can be included in CDS contracts fall into following categories:

� failure to pay

� bankruptcy - refers to the bankruptcy of a corporate reference entity

� restructuring - refers to events such as coupon change or maturity exten-

sion due to threat of bankruptcy

� repudiation, moratorium - refers to specified actions of government refer-

ence entities, usually it is relevant only to emerging markets

� obligation acceleration, obligation default - refers to technical a default

such as violation of bond covenants

According to Packer & Zhu (2005), in most of the CDS contracts, failure to

pay and bankruptcy events are considered as default, while repudiation, mora-

torium, obligation acceleration or obligation default are not. It is more com-

plicated with regards to restructuring, as in some cases bondholders do not

incur any loss, rather they profit from restructuring of the underlying firm. A

restructuring clause in CDS contract specifies which bonds can be delivered

in case of default. Under full restructuring any bond is eligible, under mod-

ified (or modified-modified) restructuring only bonds with maturities until 30

months (or 60 months) after the maturity of CDS contract can be delivered.

Also, there are CDS contracts with no restructuring clause, and so these events

are not considered as default. See Packer & Zhu (2005) for more information

on why different restructuring clauses have been developed and which of them

are actually used in various regions of the world.

The transfers of money and securities between buyer and seller is depicted

on the scheme below (Figure 4.1). The idea of credit default swap can be

compared to insurance contracts. In case of no default during the time of CDS

contract, buyer pays regular fixed payments to seller - like insurance premium

payments. These are defined in basis points of the underlying nominal. The

price of credit default swap is then quoted as the annual payment in bps of the

underlying notional amount. Usually, contracts are issued with maturity of 1,

2, 3, 4, 5, 7 and 10 years.

When the underlying firm defaults, the buyer of CDS must pay correspond-

ing accrued premium since the last premium payment to the default date. Then,
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Figure 4.1: Transfer of payments and securities between buyer and
seller of CDS contract

Source: Adopted and changed from O’Kane & Turnbull (2003).

depending on the settlement payment, the seller pays appropriate amount to

the buyer of CDS. Credit default swaps can be considered as insurance against

credit loss incurred in case of default of the underlying firm. Thus in order

to price CDS, investors must estimate the future evolution of credit risk pa-

rameters (PD, EAD and LGD), therefore, these are included in the market

prices of credit default swaps. We will not use the fixed settlement method in

the pricing model of CDS because it does not directly disclose the credit risk

parameters.

Risk is transfered in credit default swap trades. However, as discussed in

Mengle (2007), this risk is not symmetrical as it is in other derivatives (e.g.

interest rate swap). The buyer of CDS transfers credit risk of the reference

entity to the seller. Apart from this, the buyer takes on the risk that the

seller and the reference entity will simultaneously default. Furthermore, the

buyer bears a liquidity risk which arises due to a lower liquidity of some CDS

contracts, which imply that he cannot buy CDS with precise maturity that he

would need for hedging. Besides credit risk of reference entity, the seller of

CDS takes on the risk that the buyer will default and will not pay all promised

premiums. In our model, we would assume no counterparty credit risk (risk of

default of buyer or seller) and no liquidity credit risk. Therefore CDS spread is

assumed to disclose information about credit risk of the reference entity. This

assumption is based on Hull & White (2000).

The above described derivative is the plain vanilla credit default swap.

There are other, more complex, derivatives traded on financial markets, such

as total return swap, constant maturity CDS, first to default CDS, portfolio

CDS, secured loan CDS, CDS on asset-backed securities, credit default swap-
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tion, recovery lock transaction, credit spread option and different CDS index

products. Moreover, there are variations of plain vanilla CDS, underlying only

specific debt type, e.g. binary CDS, basket CDS. These derivatives have either

more complex structure or, more usually, are not traded in such high volumes

as plain vanilla CDS, thus liquidity risk would play a significant role in their

pricing. Therefore, we will focus on plain vanilla contracts.

4.2 Reduced-form Approach to Pricing CDS

Credit default swap contract follows the basic insurance rule: expected value

of premium payments gained by the insurer (CDS seller) must be equal to

expected loss that can be incurred by the seller of CDS contract5. According

to this rule, for calculation of CDS spread it is enough to evaluate what the

possible cash flows are and assign to them the probability with which they

might occur. Figure 4.1 shows these possible payments for physical recovery,

while the cash settlement method can substitute the transfer of defaulted bonds

from the buyer and the payment of nominal value from the seller by seller’s

payment of the difference between nominal value and market value of reference

bonds.

According to the reduced-form approach, market value of a defaulted bond

is equal to the fraction recovered from the exposure at default. We continue to

use the face value convention, as stated previously, therefore in case a default

occurs at time τ , market value of defaulted bonds with notional principle N is

(N×R(τ)). Amount to be payed within cash settlement is thenN−N×R(τ)) =

N ×LGD(τ). This payment must be properly discounted in order to calculate

the present value. Because timing of the default is not known when CDS is

issued, value of cash settlement is equal to the present value of losses that can

occur in case of possible future defaults during the life of the CDS contract. It

is referred to as the protection leg of the CDS contract.

PV (protection) =

∫ T

0

LGD(t)× PD(t)e−trtdt (4.1)

where T is the maturity of CDS. To simplify, based on Hull & White (2000),

5This general idea is widely used in literature of reduced-form modeling for pricing credit
default swaps. Models basically differ only in notation and assumptions about credit risk
parameters. Examples of valuation of CDS can be found in Hull & White (2000), Schlaefer
& Uhrig-Homburg (2010) or Doshi (2011).
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we assume probabilities of default and loss given default to be constant over

some intervals of time, as we did in the previous chapter when estimating PD

from the credit spread. If life of CDS contract is divided into k intervals so

that PD and LGD are constant on intervals (0, t1), (t1, t2), ..., (tk−1, tk = T ),

then LGD(ti) denotes percentage of loss incurred when default occurs within

interval (ti−1, ti) and PD(ti) denotes the probability that the default happens

in the interval (ti−1, ti). Also, we denote ri as risk free rate relevant for interval

(ti−1, ti). Adjusting Equation 4.1, present value of possible protection payments

from the CDS seller to the CDS buyer is following

PV (protection) =
N∑
i=1

LGD(ti)× PD(ti)e
−tiri (4.2)

Secondly, it is necessary to calculate present value of regular fees payed by

the buyer of CDS. Following Hull & White (2000), let’s denote u(t) the present

value of the sum of fixed payments from the beginning of the CDS contract to

time t if CDS spread is 1 bps. Apart from this, in case of default the buyer needs

to pay accrued fee since the last payment, let’s denote its present value by e(t).

How to calculate these variables will be more precisely defined in the empirical

part of this work, because it depends on the combination of frequency of fee

payments and intervals (ti−1, ti) and it is not necessary to go into such details

and complicate structure of the model at this point. Just for illustration, if

buyer’s fee of 1 bps of notional amount (in annual terms) is paid semiannually,

then

u(t = 3.3) =
3×2∑
i=1

N × 10−4

2
× e−

i
2
ri (4.3)

and

e(t = 3.3) = 0.3×N × 10−4 × e−3.3r6

Taking into account possibilities of default at any time up to the CDS matu-

rity and the possibility that no default occurs until the maturity so that all

premiums are paid, expected value of the buyer’s fixed premium payments is

following

PV (premiums) = s×
[∫ T

0

PD(t)× (u(t) + e(t))dt+ (1− PD(T ))u(T )

]
(4.4)

Credit default swaps are contracts with two legs of payment, the buyer’s

premium leg and the seller’s protection leg. Assuming no arbitrage, present
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values of these two legs must be the same, thus present value of protection

payment must be equal to the present value of premiums. Therefore, the price

of credit default swap defined as the annual buyer’s fee in bps of notional

amount, the CDS spread s, can be expressed as:

s =

∫ T
0
LGD(t)× PD(t)e−trtdt∫ T

0
PD(t)× (u(t) + e(t))dt+ (1− PD(T ))u(T )

(4.5)

Similarly, but a bit more illustrative, payments on the CDS contract can be

specified using the so called “probability model”. This is based on the binomial

tree diagram described in Jarrow & Turnbull (1995) as a general mechanism for

pricing derivatives or bonds. At each node of the tree there are two possibilities,

either the underlying instrument will default in the next period of time or not.

Probability of occurrence of the default needs to be specified for each leg, as well

as payments triggered within each leg. This is depicted in Figure 4.2 for credit

default swap with maturity of two years and semiannual premium payments.

As already defined, N is the notional amount of CDS, s is annual spread in

bps of N , thus s
2
N is the premium payed every half-year. PD(i) denotes the

probability that default will occur during the ith half-year interval and LGD(i)

is the loss given default rate at this interval. Because the reimbursement by

CDS seller in case of default is equal to the difference between face value of

bonds and its recovered value, payment triggered if default occurs in interval i

is thus N ×LGD(i). All these cash flows are assumed to be paid at the end of

the interval, therefore discount factor can be considered to be e−
i
2
ri .

After assigning probabilities and cash flows to edges, in order to calculate

the present value of the CDS contract it is sufficient to sum up the expected

cash flows from all final edges. For example, the probability that the default will

occur in the third interval is (1−PD1)×(1−PD2)×PD3 and the present value

of cash flow paid and received by the buyer until termination of the contract

(after the third interval) is N ×LGD3 × e−
3
2
r3 −N × s

2
(1× e− 1

2
r1 + 1× e− 2

2
r2).

Expected value is then calculated by multiplying with the probability that
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Figure 4.2: Binary Tree Mechanism of CDS contract

Source: Adopted and changed from O’Kane & Turnbull (2003) and Jarrow & Turnbull

(1995).

default occurs in the third period. Under the no arbitrage condition, total

expected value of the CDS contract should be equal to zero, so that the buyer

pays on premiums as much as is expected to receive from the seller in case of

default. In our example from Figure 4.2 this would imply that the following

equation must hold

0 =
(
N × LGD1 × e−

1
2
r1
)
PD1+

+
(
N × LGD2 × e−

2
2
r2 −N s

2
(e−

1
2
r1)
)

(1− PD1)PD2+

+
(
N × LGD3 × e−

3
2
r3 −N s

2
(e−

1
2
r1 + e−

2
2
r2)
)

(1− PD1)(1− PD2)PD3+

+
(
N × LGD4 × e−

4
2
r4 −N s

2
(e−

1
2
r1 + e−

2
2
r2 + e−

3
2
r3)
)

× (1− PD1)(1− PD2)(−1PD3)PD4+

−
(
N
s

2
(e−

1
2
r1 + e−

2
2
r2 + e−

3
2
r3 + e−

4
2
r4)
)

× (1− PD1)(1− PD2)(1− PD3)(1− PD4)

(4.6)
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4.3 PD and LGD Simultaneous Estimation

In the previous chapter we explained the reduced-form model for pricing a

risky bond. The same approach is used in this chapter to model credit default

swaps. Both market prices of bond and CDS disclose information about credit

risk expectations. Based on this, we will describe an analytical approach to

extract the credit risk parameters PD and LGD.

From the purely mathematical point of view, if we assume that parameters

PDi and LGDi are independent, the number of parameters that are included

in the equations must be no more than the number of explanatory equations.

If probability of default and loss given default are assumed to be constant, two

explanatory equations are needed to calculate these two variables. Model for

pricing the credit spread of bonds must be used together with the model for

pricing credit default swaps, so that information about one bond and one CDS

derivative is used.

More generally, based on the principle used in Hull & White (2000), pa-

rameters are assumed to be constant on some intervals of time. To calculate

the probabilities of default and the loss given default of the reference firm, we

suggest to use market prices of k CDS contracts, written on senior bonds of

the reference entity with maturities t1, t2, ..., tk, together with market prices of

k defaultable senior bonds issued by the firm, with maturity of the ith bond in

the interval (ti−1, ti), assuming PDi and LGDi to be constant between CDS

maturities. Example of possible outcome of the evolution of LGD is illus-

trated in Figure 4.3 for three bonds and credit default swaps that mature in

approximately 1, 2 and 4 years.

Figure 4.3: Example of time-varying LGD evolution in time

1st bond
maturity

2nd bond
maturity

 3rd bond
 maturity

Dec 20, 2012 Dec 20, 2013 Dec 20, 2015
Date

LGD

Source: Author’s construction
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The assumptions in Equation 4.6 are too simplifying due to long intervals

and protection payments are assumed to be paid only at the end of these inter-

vals which implies imprecise discounting of N × LGDi. Furthermore, accrued

premium payment since the last payment up to the time of the default that

should be paid by the buyer at default was neglected. In order to incorporate

the accrued premiums and enhance the discount factor of protection payment,

we can design a binary tree with one day intervals, so that it specifies the day

when the default occurs. Then the equation can be designed as follows

0 =
360×T∑
i=1

N × LGDi × e−
i

360
ri × PDi

i−1∏
k=1

(1− PDk)

− (
360×T∑
i=1

N ×
Div[i,90]∑
j=1

s

4
e−

j
4
r90j +

Mod[i, 90]

360
× s× e−

i
360

ri)× PDi

i−1∏
k=1

(1− PDk)

−N ×
4×T∑
n=1

s

4
e−

n
4
r90n ×

360×T∏
m=1

(1− PDm)

(4.7)

where T denotes time to maturity of credit default swap in years, first row

calculates the protection payment received by the buyer if default occurs at

the ith day, second row calculates the sum of quarterly paid premium payments

and the accrued premium payment since the last premium payment if default

occurs at the ith day6. This sum is multiplied by the probability that the default

occurs at ith day and not before. The last row calculates the present value of all

premiums paid in case that no default occurs before the CDS contract matures.

In the previous chapter we presented the reduced-form model for the credit

spread between prices of risk-free and risky bonds (see Equation 3.16 and Equa-

tion 3.17), which must be a bit modified so that it is compatible with Equa-

tion 4.7. LGD is assumed to be a time-varying variable, constant only during

the specified intervals, and we follow face value convention for EAD estima-

tion. Similarly to Equation 4.7, we try to model credit spreads as precisely as

possible. Although probability of default is constant on the intervals between

CDS maturities, we model that a default can occur on any day. For example,

probability that the default occurs on the kth day is PDk, which is the same

6Mod[x, y] stands for the modulo of x divided by y and Div[x, y] stands for the whole
part of such division.
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for any day in the interval. Note that the probability that a default occurs on

the kth day and not before is PDk ×
∏k−1

i=1 (1− PDi).

gt − bt =
360×t∑
i=1

N × LGDi × e−
i

360
ri × PDi

i−1∏
k=1

(1− PDk) (4.8)

Based on the idea of Hull & White (2000), credit risk parameters can be

then iteratively calculated from the spread between defaultable and default-

free bonds with maturity at t (Equation 4.8) and the CDS with maturity at T

(Equation 4.7). This means that for the first bonds and first CDS we extract

one day PD and LGD that are considered to be the same until T . These

values are then substituted into the equations for second bonds and second

CDS contract to extract credit parameters in the second interval, and so we

continue until the last pair of equations.

It is important to bear in mind that this approach is based on the following

simplifying assumptions:

� spread between prices of risky and risk-free bond is assumed to be in-

curred only by the credit risk, therefore differences in liquidity or market

risks are assumed to be insignificant,

� market prices of risky and risk-free bonds must be bootstrapped and

interpolated to achieve their comparability (the same coupon structure

and same maturity) for calculation of the spread,

� German government bonds will be considered as reference risk-free bonds,

although they are not completely risk-free,

� all senior bonds of one issuer are assumed to bear the same credit risk

regardless the maturity and coupon structure,

� pricing model for credit default swaps neglects counterparties credit risks

and liquidity risk of CDS contracts,

� probability of default and loss given default are constant on the intervals

between CDS maturities.

We will apply this approach in Chapter 5 on the market data and calculate

what credit risk parameters are expected by bonds and CDS investors. The

following section contains the last theoretical part of this work - the adjusted

relative spread based on credit default swaps.
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4.4 Extracting LGD from CDS with Different Se-

niority

In this section we show that the concept of adjusted relative spread introduced

by Unal et al. (2003) on bonds with different seniorities can be applied on

market prices of credit default swaps written on the debt with different senior-

ity. As far as we are informed, at the time of writing this work there was no

theoretical or empirical study combining ARS and credit default swaps.

The approach is very similar to the already explained ARS method. The

main advantage lies in the better empirical application. Note that to calculate

ARS it is necessary to group junior, senior and risk-free bonds with the same

maturity and zero coupons. However, in practice, this will not be possible for

most of the bonds. In theory, after few adjustments to market data7, ARS can

be calculated, but the precision is questionable. On the contrary, credit default

swap market prices are free from any consideration of coupon payments and

maturities are easily matched due to standardization of the CDS contracts by

ISDA.

To overcome these shortcomings, we transform the model of adjusted rela-

tive spread based on bonds with different seniority into the model of relative

spread based on credit default swaps with different seniority. Firstly, we define

the relative spreads (for swap) variable (RSS) as

RSS =
sTJ − sTS
sTJ

(4.9)

where sJ and sS denote prices of junior and senior CDS it the form of their

spreads that are quoted on the market. Based on the reduced-form model

explained in this chapter, junior and senior CDS spread for the contract with

maturity at T can be expressed as

sTi =

∑T
t=1 LGDi ×

∏t−1
k=1(1− PDk)PDte

−trt ×N∫ T
0
PD(t)× (u(t) + e(t))dt+ (1− PD(T ))u(T )

(4.10)

for i = J or i = S, assuming different LGD and the same probability of default

7Adjustments to bond prices at this point consist of two steps. Both will be explained
in more detail in the next, empirical, chapter. It is needed, firstly, to bootstrap the value
of coupon bond and calculate the equivalent zero bond value. Secondly, to interpolate zero
senior bonds and risk-free bonds to obtain theoretical value of senior and risk-free bond with
same maturity as junior bond.
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for senior and junior CDS. After substitution into Equation 4.9 we get pure

recovery model that is not dependent on default probabilities or timing.

RSS =
LGDJ − LGDS

LGDJ

= 1− LGDS

LGDJ

=
RS −RJ

1−RJ

(4.11)

RSS is independent from any maturity or default time considerations.

Therefore when calculating it from market spreads of credit default swaps with

maturity T1, then with maturity T2, etc., RSS should be the same, regardless

the maturity of chosen CDS. However, this holds only under the assumption

that the expectation about the loss given default is constant, so that expected

LGD in one year is the same as expected LGD in 5 or 10 years.

Expected values of junior and senior recoveries can be calculated as it was

shown in Equation 3.28, using density function of aggregate recovery from

Equation 3.29 and payoff functions described in Table 3.1. We assume the

aggregate recovery to be logit transformation of normally distributed variable

x with mean µ and standard deviation σ. Then, in order to calculate the

standard deviation of x and the mean of x based on the volatility of RSS and

expected value of RSS, it is necessary to estimate parameters ψ, θ and pS.

In this chapter, the reduced-form model for pricing plain vanilla CDS was

described, followed by the theoretical method to extract LGD and PD using

information from CDS market prices and credit spread between risk-free and

risky bonds. Then we introduced the method of RSS which can be used for

numerical estimation of LGD for both junior and senior bonds. Next, we

conclude this work with empirical application of the both explained methods.



Chapter 5

Extracting Loss Given Default

from Market Data

This chapter deals with the extraction of risk parameters from market prices

of selected risky instruments. At the beginning we briefly describe employed

data and how it needs to be modified in order to be applicable for the models.

Then we present results of the two described reduced-form approaches for LGD

calculation. Firstly, we discuss the empirical implementation and the calculated

results of the method for extracting loss given default and probability of default

simultaneously from the market prices of defaultable bonds and the market

spreads of credit default swaps. We analyze the sensitivity of these data on

implied credit risk parameters and model shortcomings. We conclude this part

with modification, which proves itself to enable better implementation of the

method. Secondly, we apply the model of relative spread for credit default

swaps written on bonds with different seniorities and discuss the results.

5.1 Data

Due to the fact that most empirical studies which estimate credit risk param-

eter(s) have been done for USA1, we decided to apply the model to European

bonds and their CDS. However, one reason why the U.S. bonds have been more

popular in empirical studies is their higher liquidity, hence they are believed

to be priced more precisely(see e.g. Biais & Declerck (2006)). Moreover, for

European companies it is still more common to increase capital by issuing new

1Even though few theoretical models for LGD estimation have been developed in the last
decade, empirical literature concerning loss given default estimation is still not very broad.



5. Extracting Loss Given Default from Market Data 61

loan rather then by issuing bonds and junior or subordinated bonds are rarely

used2. Also, the market with credit default swaps is more liquid for the U.S.

reference entities. Therefore, we tried to choose firms whose bonds as well as

credit default swaps are traded on the market. In order to overcome the prob-

lem with differences in average LGD for firms in different industries, we decided

to choose all issuers from the same industry. Among firms that have issued at

least one subordinated bond and have market data available for both senior

and subordinated CDS were mostly financial institutions. Based on this, our

bond and CDS data set contains nine European banks, each from a different

country:

� Zurich Finance

� Swedbank AB

� Allied Irish Banks

� HSH Nordbank AG

� Bayerische Landesbank

� Banco Financiero y de Ahorros S.A

� Banco Popolare Societa Cooperativa

� Lloyds TSB Bank

� Royal Bank of Scotland

All data were downloaded from the Bloomberg database. The first method

can be divided into two parts. In the first one, we use 3 bonds denominated

in EUR3 with time to maturities around 1, 2 and 4 years for Zurich Finance,

Swedbank AB, Allied Irish Banks, HSH Nordbank AG and Bayerische Lan-

desbank. For each bond, we use daily market closing prices from December 1,

2010 to May 9, 2011. See Table B.1 in Appendix B for summary about chosen

bonds, their maturities and coupons, together with basic characteristics of the

2James (2010) provides figures which support the fact that for most companies in Europe
loans were considered as the only way of financing. For example, in 2006, the sum of issued
corporate loans was ¿945.3 billion, while the sum of issued corporate bonds was ¿454.5
billion. However, James (2010) points out the increasing trend in issuing corporate bonds in
2009 and 2010.

3It is preferred to use only bonds denominated in the same currency, in order to eliminate
the exchange rate risk from the model.
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quoted market price (average, minimum, maximum and volatility) during the

interval from December 1, 2010 to May 9, 2011. In the second part, we modify

the methodology slightly and use weekly average market yields to maturity of

senior bonds. This is applied to two bonds of Bayerische Landesbank, Lloyds

TSB Bank and Royal Bank of Scotland with time to maturities around 2 and 4

years, again denominated in EUR. See Table B.2 in Appendix B for summary

about these bonds’ yields to maturity.

CDS data set contains quoted market spreads for derivatives with maturi-

ties on June 20 for years 2012, 2013, 2014, 2015, 2016, 2018 and 2021. Note

that traded credit default swaps follow the standardized contractual terms.

Necessary senior CDS data for the first model cover daily closing prices from

December 1, 2010 to May 9, 2011, while the second model uses senior and sub-

ordinated weekly spreads from January 1, 2011 to December 31, 2011. These

are then used in the RSS approach. See Table B.3 in Appendix B for basic

characteristics (average, minimum and maximum) of market quoted credit de-

fault swap spreads for different maturities and chosen issuers. Based on the

comparison of the average CDS spreads across issuers we can claim that the

bonds of Allied Irish Banks are considered to be significantly the most risky

ones. Investors evaluate credit default swaps spreads with reference entities

Swedbank AB and Zurich Finance to be between 50 and 200 bps, which imply

that they are exposed to a very small credit risk. Other banks are in the middle

in terms of credit risk.

The relationship between average credit default swap spread and the ma-

turity of the contract is increasing for all reference entities except the Allied

Irish Banks. Moreover, CDS spreads in time follow similar evolution in time for

different maturities. See Figure B.1 to Figure B.8 in Appendix B. A possible

explanation based on the reduced-form approach is that issuers are considered

to be of a very low risk and stable, thus expectations about credit risk pa-

rameters are the same for this year as for any other year in the future. CDS

spreads are then increasing with maturity due to a lower probability that no

default will occur until the end of the contract. On the contrary, for Allied

Irish Banks the average senior CDS spread decreases with time to maturity

and the average junior CDS spread does not follow any pattern. This is in line

with empirical findings in the Trueck et al. (2004). They showed that there

is ambiguous relationship between CDS spreads and maturity for speculative
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grade debt, while for investment grade debt the relationship is positive4.

Furthemore, it is important to notice, that there are constant spreads as of

May 2011 for Lloyds TSB Bank (Figure B.4), Roayal Bank of Scotland (??) and

Banco Popolare (Figure B.7), which imply that credit default swaps of these

banks were not traded since then. Another exception of positive relationship

between maturities and CDS spreads can be seen in Figure B.2. This is however

only due to significant rise of first and second-year CDS of Swedbank and no

trading of the other CDS. In order to take into account that certain CDS were

not traded, we will shorten the analyzed time accordingly.

Apart from defaultable bond prices and CDS spreads, the yields or prices

of a default-free bonds are necessary for our calculations. Due to the fact that

we deal with European bonds, we decided to consider the prices of German

government zero coupon bonds denominated in EUR with different maturities

as the benchmark for calculation of forward risk-free rates.

Before we implement the market data to the first model, few modifications

are necessary to meet the model assumptions. First of all, bonds should have

zero coupon, which is true for the risk-free German government bonds but

not for the risky bonds issued by Zurich Finance, Swedbank AB, Allied Irish

Banks, HSH Nordbank AG, nor Bayerische Landesbank. Bootstrapping method

is performed to get equivalent zero coupon prices of these bonds. Bootstrapping

is the analytical approach to calculate prices from zero coupon bonds based on

the prices of coupon bearing bonds. Based on Dedek (2010), we use the bond

stripping technique, so that coupons and the principal of a bond are considered

as separate securities with maturity equal to its payment date. Moreover, it

is necessary to adjust the technique to precise maturities and coupon payment

dates.

Secondly, default-free and defaultable bonds must have the same maturity

in order to have comparable prices or yields. Therefore, we need to calculate the

price of the equivalent risk-free bond for each risky bond. To solve this problem,

it is necessary to assume how prices of default-free bonds would evolve on a

specific day in relation to the remaining time to maturity. It is usual to assume

this relationship to be linear between two adjacent pairs of time to maturity and

price which are known. This method is referred to as linear interpolation. The

4The division between investment grade and speculative grade is usually done based on the
credit ratings. Debt with the rating above BBB- by Standard & Poor’s or Baa by Moody’s
is considered as investment grade, anything below as speculative grade. However, we can
assume, based on the average CDS spreads, that Zurich Finance, Swedbank AB, Nordbank
AG and Bayerische Landesbank debt is of invesment grade.
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calculation of the interpolated risk-free bond at time t consists of the following

three steps:

1. Find one risk-free bond with the closest maturity before t and one after

t. Denote these maturities as t1 and t2.

2. Find prices of risk-free bonds with maturities t1 and t2 and denote them

g1 and g2.

3. Calculate the interpolated price of risk-free bond with maturity at time

t as t2−t
t2−t1 × (g1 − g2) + g2.

See the example of calculated prices of risky and risk-free bonds after their

bootstrapping and linear interpolation for all banks, as of May 6, 2011, in

Table 5.1. The calculated figures satisfy our expectations that prices of boot-

strapped defaultable zero bonds are decreasing with time to maturity. Fur-

thermore, prices of defaultable zero bonds are always higher than prices of the

equivalent default-free bonds, where this difference is the credit spread that we

assume to be equal to the expected credit loss of a defaultable bond.

Table 5.1: Prices of Bootstrapped Defaultable Zero Bonds and Inter-
polated Default-free Bonds with the Same Maturities, May
6, 2011

Issuer Maturity Zero risky bond Risk-free eq.
Zurich Finance 14-Apr-2012 97.740 99.046

17-Sep-2014 87.122 92.965
14-Oct-2015 82.770 89.738

Swedbank AB 4-Oct-2011 97.583 99.594
4-Mar-2013 94.624 96.898
19-Aug-2014 85.748 93.204

Irish Allied Banks 30-Sep-2011 93.978 99.613
1-Oct-2012 97.791 81.650

12-Nov-2014 64.510 92.503
HSH Nordbank AG 10-Oct-2011 97.071 99.565

19-Oct-2012 94.309 97.692
13-Feb-2015 83.232 91.743

Bayerische Landebank 11-Nov-2011 96.501 99.421
11-Dec-2012 94.007 97.400
12-Dec-2014 86.907 92.255

Source: Bloomberg, author’s calculations.
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5.2 Methodology and Results

This section is divided into two parts based on the two models explained in

Chapter 4. Firstly, following the method of PD and LGD simultaneous esti-

mation based on the credit default swaps and on the credit spreads between

defaultable and default-free bonds, we find out that the model is not appli-

cable on daily market prices of bonds. We provide a detailed discussion on

the shortcomings of the model as well as possible shortcomings in the market

data. This methodology is than improved with modified data sample as we use

weekly average market yields to maturity and the results are discussed.

Secondly, following the method of relative spread for CDS, we calculate the

implied market loss given default rates for senior and subordinated bonds issued

by Zurich Finance, Swedbank AB, Allied Irish Banks, Bayerische Landesbank,

Banco Financiero, Banco Popolare Societa Cooperativa, Lloyds TSB Bank and

Royal Bank of Scotland. The software Mathematica 8.0 for Students was used

for calculations in both models.

5.2.1 PD and LGD Simultaneous Estimation

We present the process of implementation of the suggested reduced-form method

for extracting loss given default and probability of default from the data set

described above. This is then followed by a sensitivity analysis of credit risk

parameters and market data on bonds and derivatives. Most of the analysis is

done for daily market data5.

Maturities of bonds and credit default swaps satisfy the relationship sug-

gested in the previous chapter, namely that the maturity of the first bond is

before June 20, 2012, of the second bond between June 20, 2012 and June 20,

20136 and of the last bond between June 20, 2013 and June 20, 2015. Credit

risk parameters are assumed to be constant on the intervals (0, t1), (t1, t1 +360)

and (t1 + 360, t1 + 720), where t1 denotes the number of days from the refer-

ence date until June 20, 2012. We can think of these parameters as being

the short-term, the medium-term and the long-term estimates. Therefore we

denote them by LGDS, PDS, LGDM , PDM , LGDL and PDL.

The process of the calculation should be iterative. In the first step, we

5We used the 30/360 convention for the discounting of future cash flows.
6There is no bond denominated in EUR issued by Zurich Finance with the maturity

between June 20, 2012 and June 20, 2013, therefore choice of CDS derivatives was modified
according to the available bonds.
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substitute the first bonds spread and the first credit default swap spread into

Equation 4.7 and Equation 4.8 to express the implied LGDS and PDS param-

eters. In the second step, we repeat the process for the following bond spread

and CDS spread using the implied LGDS and PDS to calculate LGDM , PDM .

The same is done in the third step.

The main advantages of the model compared to other studies are:

� default can occur at any time, not only at maturities

� present value of premium payments is calculated according to real CDS

contractual terms, so that it is paid quarterly on specified days and in

case of default, accrued interest since the last premium is paid

However, despite the precise calculation, the implied market credit risk

parameters were often negative or greater then 1. To explain such results we

provide the analysis of Equation 4.7 and Equation 4.8 that can be divided into

the following two steps:

1. Calculation of market implied CDS spreads based on bond

spreads and assumption about LGD: for the first bonds of each issuer,

based on the Equation 4.8, we calculated the implied probability of default

given different values of loss given default (LGD = 0.1, 0.2, ..., 0.9). Then

we substituted these values into Equation 4.7 to express implied market CDS

spreads. Firstly, we would like to point out that implied CDS spreads are very

insensitive to change in LGD for all reference banks except for Allied Irish

Banks. For illustration, we provide an example of the implied and the market

CDS spreads as of May 6, 2011 in Table 5.2. There are only 5 bps differences

in implied spreads in case of the lowest and the highest LGD assumption.

Table 5.2: Example of Implied Market CDS and Market CDS
Spreads, 6 May 2011

Implied Market CDS Market CDS
LGD = 0.1 LGD = 0.5 LGD = 0.9

Zurich Finance 115.274 110.347 109.834 64.017
Swedbank AB 166.618 162.072 161.587 57.228
Allied Irish Banks 1331.252 1225.970 1198.885 1662.497
Nordbank AG 167.530 162.753 162.245 113.030
Bayerisch Lndbk 146.157 141.780 141.315 89.428

Source: Bloomberg, author’s calculations.
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Figure 5.1: Difference between Implied CDS Spread and Market CDS
Spread relative to the Market CDS Spread for Zurich Fi-
nance (on the left) and Swedbank AB (on the right), De-
cember 1, 2010 - May 9, 2011

Source: Bloomberg, author’s calculation based on Equation 4.7 and Equation 4.8

Figure 5.2: Difference between Implied CDS Spread and Market CDS
Spread relative to the Market CDS Spread for Allied Irish
Banks (on the left) and Nordbank AG (on the right), De-
cember 1, 2010 - May 9, 2011

Source: Bloomberg, author’s calculation based on Equation 4.7 and Equation 4.8

From another point of view, if we calculate the implied LGD, the estimates

will be very sensitive to small differences in CDS spread. Thus only a short

interval of CDS spreads would result in an implied LGD which is more than 0

and less than 1.

Secondly, it is important to notice that the market CDS spreads do not fit

into the intervals that can be built based on the bounding points of LGD = 0.1

and LGD = 0.9. To check if there is an exception on May 6, 2011, we compare

the implied CDS spreads and quoted CDS spreads in time. As can be seen on

Figure 5.1, the implied market CDS spreads of Zurich Finance and Swedbank

AB are always higher than the quoted spread.
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Figure 5.3: Difference between Implied CDS Spread and Market CDS
Spread relative to the Market CDS Spread for Bayerische
Landesbank, December 1, 2010 - May 9, 2011

Source: Bloomberg, author’s calculation based on Equation 4.7 and Equation 4.8

However, the implied CDS spreads for Nordbank are significantly lower only

until April 18, 2011, and then their relative difference jumps to positive values

so high that it cannot be depicted on Figure 5.2. Implied CDS spreads for

Bayerische Landesbank are below their market value until April 6,2011 and

then follow an increasing trend relatively to the market CDS (Figure 5.3). The

behavior of the implied spreads for Allied Irish Banks seems to be very volatile

and without any trend. As can be seen on Figure 5.2, there are few dates for

which the implied spread is equal to the market spread. However, in some

cases, more than 20% dispersion of LGD can satisfy that that the difference is

lower than 1%. Therefore, the estimated implied LGD based on the described

reduced-form models will be very sensitive to the market data.

The differences between the implied market CDS spread and the quoted

market CDS spread can be caused by:

� investors’ wrong expectations about the credit risk, which in case of

Zurich Finance and Swedbank AB would mean that investors on the

CDS market constantly underestimate the credit risk,

� strict assumptions of reduced-form approach to credit default swaps pric-

ing, especially the assumption that the counterparty credit risk can be

neglected. As sellers of a CDS contract are often low risk financial insti-

tutions similar to e.g. Swedbank AB or Zurich Finance, the counterparty

risk and reference risk is similar. However, we can neither calculate the

counterparty credit risk based on the market available data, nor estimate
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it precisely based on the evolution of differences between the implied CDS

and the market CDS that were presented previously.

2. Calculation of market implied defaultable bond prices based on

CDS spreads and assumption about LGD: for each reference entity and

their first CDS, we calculated the implied probability of default based on Equa-

tion 4.7, given different values of loss given default (LGD = 0.1, 0.2, ..., 0.9).

Then we substituted these values and prices of interpolated risk-free bonds into

Equation 4.8 to express the implied market price of a risky bond. The process

seems to be only the reversion of the previous step, but it is actually a com-

pletely different analysis. While in the previous step we assumed the market

bond spread to be the base of the calculation and CDS spreads to be mispriced,

here we reverse this assumption and extract the information about credit risk

from CDS spreads and assume that these are priced correctly. This leads to

different estimates of the implied market probability of default.

Table 5.3: Example of Implied Market Bond Prices and Quoted Mar-
ket Bond Prices, 6 May 2011

Implied Price Market Price
LGD = 0.1 LGD = 0.5 LGD = 0.9

Zurich Finance 98.459 98.445 98.443 98.014
Swedbank AB 99.358 99.356 99.356 98.923
Allied Irish Banks 94.558 93.156 92.968 94.733
Nordbank AG 99.087 99.078 99.077 98.865
Bayerisch Lndbk 98.966 98.957 98.956 98.688

Source: Bloomberg, author’s calculations.

Similarly to the previous step, the sensitivity of implied bond prices to a

change in LGD is very low. For example, on May 6, 2011, the differences

between the implied prices under the assumption of LGD equal to 0.1 and 0.9

are 0.016, 0.002, 0.01 and 0.01 for Zurich Finance, Swedbank AB, Nordbank

and Bayerische Landesbank (Table 5.3).

Next, we examine the evolution of differences between the implied market

prices and market prices. Results, which are graphically depicted in Figure 5.4,

Figure 5.5 and Figure 5.6, seem to be more consistent then those in the previous

step of our analysis. For all low risk issuers, the implied bond prices are always

higher regardless the assumed LGD. For Allied Irish Banks the opposite is true.

The average relative difference which is calculated as E[ bt(implied)−bt(market)
bt(market)

] is
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Figure 5.4: Difference between Implied Price of Risky Bond and Mar-
ket Price of Risky Bond relative to the Market Price for
Zurich Finance (on the left) and Swedbank AB (on the
right), December 1, 2010 - May 9, 2011

Source: Bloomberg, author’s calculation based on Equation 4.7 and Equation 4.8

equal to 0.0095 for Zurich Finanace, 0.0156 for Swedbank AB, 0.0108 for Nord-

bank AG and 0.0090 for Bayerische Landesbank.

These differences between the implied market prices and the quoted prices

can be caused by:

� investors’ wrong expectations about the credit risk, which in case of low-

risk issuers would mean that investors on the bonds market overestimate

the credit risk,

� wrong choice of the reference risk-free bonds, which is not a reasonable

explanation in case of low-risk issuers, because price of a risk-free bond

would need to be lower than price of then German government bonds to

decrease the bond spread,

� strict assumptions of reduced-form approach to defaultable bonds pricing,

especially the assumption that the bond spread can be explained only by

the credit risk, but there are other risks, such as liquidity risk which might

comprise significant part of the bond spread, especially for low-risk banks,

� market data transformation, during bootstrapping, interpolation or even

rounding, as credit risk parameters are very sensitive to small differences

of market prices.

To sum up, the above described empirical implementation of the method

of simultaneous PD and LGD estimation shows that loss given default rate
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Figure 5.5: Difference between Implied Price of Risky Bond and Mar-
ket Price of Risky Bond relative to the Market Price for
Allied Irish Banks (on the left) and Nordbank AG (on the
right), December 1, 2010 - May 9, 2011

Source: Bloomberg, author’s calculation based on Equation 4.7 and Equation 4.8

Figure 5.6: Difference between Implied Price of Risky Bond and Mar-
ket Price of Risky Bond relative to the Market Price for
Bayerische Landesbank, December 1, 2010 - May 9, 2011

Source: Bloomberg, author’s calculation based on Equation 4.7 and Equation 4.8
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is a very sensitive to small differences in market CDS and bond prices. If we

assume that investors on both markets have correct expectations about credit

risk, it is necessary to modify the model.

� First possibility is to extended the model for the liquidity consideration

in both instruments and for the counterparty credit risk in the CDS.

However, this is not possible to estimate liquidity and counterparty risk

from market available data and thus not feasible to include into provided

model.

� Second possibility is to use quoted bonds yields to maturity, which are

already free of coupon consideration, instead of market prices that need

to be bootstrapped. This should increase the precision of data we use in

the model.

� Third possibility is to slightly modify the assumption of the same credit

risk expectation by investors on bond and CDS market. We may assume,

that investors have access to the same information regarding the reference

firm, however at these are not revealed in market data at the same day.

Therefore, use of weekly average data instead of daily data would smooth

these timing differences.

As the first improvement is not possible using available market data, we

continue the analysis of the model with second and third modification. This is

applied to market data of two bonds for Bayerische Landesbank, Lloyds TSB

Banks and Royal Bank of Scotland. See the summary information about these

bonds in Table B.2. Similarly, the corresponding interpolated risk-free yields

must be calculated for these bonds. Again, we rather use quoted yield to matu-

rity instead of quoted closing price of German government bonds. Thereafter,

we follow the model of simultaneous PD and LGD calculation, using weekly

average risky and risk-free yields and weekly averages of credit default swaps.

Although, as can be seen in Table 5.4, results for some weeks are apparently

not corresponding to reality (e.g. first month for Royal Bank of Scotland), in

general, the weekly smoothing and use of yields have improved the applicability

of the model. Implied PD and LGD are compared to credit risk parameters

calculated based on RSS method using weekly data in Figure 5.7, Figure 5.8

and Figure 5.9.7 The time evolutions of loss given default parameter do not

7In order to preserve visibility of the rest of the data, we do not include values that exceed
100%
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Figure 5.7: Weekly PD and LGD Comparison across Two Models for
Bayerische Landesbank
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Figure 5.8: Weekly PD and LGD Comparison across Two Models for
Lloyds TSB Bank
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follow the same pattern. Furthermore, first method implies more volatile pa-

rameters, compared to almost stable results of second method, which could be

explained by market inconsistencies. In order to generalize the results, we ex-

clude the extraordinary high and low data and calculate overall average value.

We conclude the average loss given defaults for Bayerische Landesbank, Lloyds

TSB Bank and Royal Bank of Scotland are respectively 43.63$, 46.27$, 39.25$

and one-year probabilities of default are 4.98%, 3.96% and 2.91%. In the fol-

lowing section, we illustrate further application of the second method and its

results.

Table 5.4: Implied Market LGD at Weekly Basis from January 2011

1 2 3 4 5 6 7
B.L. 35.80% 51.70% 31.85% 37.15% 35.03% 27.74% 22.62%
RBS 125.74% 169.62% 287.06% 136.35% 36.19% 32.70% 40.00%
Lloyds 33.55% 42.23% 37.70% 27.34% 45.20% 26.72% 52.51%

8 9 10 11 12 13 14
B.L. 41.15% 59.33% 61.25% 68.14%
RBS 40.00% 39.17% 34.17% 41.30% 41.33% 43.36% 53.44%
Lloyds 52.51% 52.51% 31.89% 52.88% 57.96% 62.58% 56.04%

15 16 17 18 19 20
RBS 35.20% 40.96% 34.15% 34.60% 40.64% 40.78%
Llyods 62.38% 74.54% 73.14% 75.65% 85.61% 94.04%

Source: Bloomberg, author’s calculations.

5.2.2 Relative Spread for CDS

As discussed above, assumptions of the reduced-form models might be too strict

for the method of simultaneous estimation of credit risk parameters based on

the market data of defaultable bonds and the appropriate credit default swaps.

Credit risk seems to be priced differently on these two markets. Therefore, it

is necessary to decide what market data we take as the base for PD and LGD

estimation. Doshi (2011) claims that credit default swap spreads better disclose

expectations of investors about credit risk of the reference issuers. Moreover,

the availability of market data on subordinated CDS compared to market data

on subordinated bonds is another advantage8.

8Subordinated CDS with different maturities (1 year to 10 years) are traded for all chosen
banks, except of HSH Nordbank AG. Their prices are directly comparable to senior CDS
spreads with the same maturities. On the contrary, only very few subordinated bonds were
issued by the chosen banks with maturities less than 10 years.
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Figure 5.9: Weekly PD and LGD Comparison across Two Models for
Royal Bank of Scotland
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In order to follow the method of relative spread based on Equation 4.11

and Table 3.1, it is necessary to estimate parameter pS, the amount of issued

senior to all issued debt and parameters ψ and θ, that describe at what level

and to what extent is APR violated. To estimate pS, it is sufficient to look up

the data in the financial statements of a company. Based on annual reports for

2010 and half-year reports for 2011, where available, we calculated that pS is

equal to 70.5% for Zurich Finance, 96.2% for Swedbank AB, 78.3% for Allied

Irish Banks, 91.2% for Bayerische Landesbank, 81.9% for Banco Financiero y

de Ahorros S.A, 71% for Banco Popolare Societa Cooperativa, 88.7% for Lloyds

TSB Bank and 83.5% for Royal Bank of Scotland.

Due to the lack of empirical evidence about APR violation in Europe (except

for Germany), it is difficult to precisely estimate parameters ψ and θ. In

Germany, based on Brouwer (2006), we can estimate that the absolute priority

rule is always strictly kept, thus for Bayerische Landesbank is ψ equal to 1 and

θ is not applicable. For other 7 banks that are based on the Swiss, Swedish,

Irish, English, Scotish, Italianish and Spanish law, we provide a sensitivity

analysis of LGDJ and LGDS on parameters ψ and θ. Based on the bounding

condition about θ defined in Equation 3.34, we created the following scenarios

to investigate possible LGDJ and LGDS estimates.
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Table 5.5: Scenarios for LGDJ and LGDS estimation in RSS model

Zurich Fin. pS ψ θ pS ψ θ

Scenario 1 0.705 0.10 0.70 Scenario 7 0.705 0.70 0.50
Scenario 2 0.705 0.10 0.90 Scenario 8 0.705 0.70 0.90
Scenario 3 0.705 0.30 0.70 Scenario 9 0.705 0.90 0.30
Scenario 4 0.705 0.30 0.90 Scenario 10 0.705 0.90 0.90
Scenario 5 0.705 0.50 0.60 Scenario 11 0.705 1.00 N/A
Scenario 6 0.705 0.50 0.90
Swedbank pS ψ θ pS ψ θ

Scenario 1 0.962 0.10 0.98 Scenario 6 0.962 0.60 0.95
Scenario 2 0.962 0.20 0.98 Scenario 7 0.962 0.70 0.90
Scenario 3 0.962 0.30 0.98 Scenario 8 0.962 0.80 0.90
Scenario 4 0.962 0.40 0.98 Scenario 9 0.962 0.90 0.80
Scenario 5 0.962 0.50 0.95 Scenario 10 0.962 1.00 N/A
Allied Irish B. pS ψ θ pS ψ θ

Scenario 1 0.783 0.10 0.80 Scenario 7 0.783 0.70 0.60
Scenario 2 0.783 0.10 0.90 Scenario 8 0.783 0.70 0.90
Scenario 3 0.783 0.30 0.80 Scenario 9 0.783 0.90 0.30
Scenario 4 0.783 0.30 0.90 Scenario 10 0.783 0.90 0.90
Scenario 5 0.783 0.50 0.70 Scenario 11 0.783 1.00 N/A
Scenario 6 0.783 0.50 0.90
Bayerische Lndbk pS ψ θ

Scenario 1 0.911 1.00 N/A
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Table 5.6: Scenarios for LGDJ and LGDS estimation in RSS model

Fin. de Ahorros pS ψ θ pS ψ θ

Scenario 1 0.819 0.10 0.90 Scenario 6 0.819 0.70 0.90
Scenario 2 0.819 0.30 0.90 Scenario 7 0.819 0.90 0.60
Scenario 3 0.819 0.50 0.70 Scenario 8 0.819 0.90 0.90
Scenario 4 0.819 0.50 0.90 Scenario 9 0.819 1.00 N/A
Scenario 5 0.819 0.70 0.60
B. Popolare pS ψ θ pS ψ θ

Scenario 1 0.71 0.10 0.70 Scenario 7 0.221 0.70 0.50
Scenario 2 0.71 0.10 0.90 Scenario 8 0.221 0.70 0.90
Scenario 3 0.71 0.30 0.70 Scenario 9 0.221 0.90 0.20
Scenario 4 0.71 0.30 0.90 Scenario 10 0.221 0.90 0.90
Scenario 5 0.71 0.50 0.60 Scenario 11 0.221 1.00 N/A
Scenario 6 0.71 0.50 0.90
Lloyds TSB pS ψ θ pS ψ θ

Scenario 1 0.887 0.10 0.90 Scenario 6 0.887 0.70 0.90
Scenario 2 0.887 0.30 0.90 Scenario 7 0.887 0.90 0.50
Scenario 3 0.887 0.50 0.80 Scenario 8 0.887 0.90 0.90
Scenario 4 0.887 0.50 0.90 Scenario 9 0.887 1 N/A
Scenario 5 0.887 0.70 0.75
Royal Scotland pS ψ θ pS ψ θ

Scenario 1 0.835 0.10 0.90 Scenario 6 0.835 0.70 0.90
Scenario 2 0.835 0.30 0.90 Scenario 7 0.835 0.90 0.40
Scenario 3 0.835 0.50 0.80 Scenario 8 0.835 0.90 0.90
Scenario 4 0.835 0.50 0.90 Scenario 9 0.835 1.00 N/A
Scenario 5 0.835 0.70 0.65

However, it is possible to set some estimates based on the discussion about

the countries’ law origins in Chapter 3. In Switzerland, Sweden, Spain and

Italy, which can be included into common law countries, we would expect APR

violation to be quite low. On the contrary, in Ireland, England and Scotland

that can be included into civil law countries, we would expect the APR violation

to occur more often. Occurrence of the APR violation in USA [Longhofer &

Carlstrom (1995)] was empirically shown to be around 70%.

Next, we calculated the mean value, minimum and maximum value of RSS

(Equation 4.9) for all maturities based on the daily market spreads of senior

and subordinated CDS. The sample time was shorten for due no trading and

thus constant CDS spreads for Swedbank, Allied Irish Banks, Lloyds TSB

Bank, Roayal Bank of Scotland and Banco Popolare. For illustration, see the

distribution of one-year RSS for each bank in Figure 5.10. It represents lower
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Figure 5.10: Date Distribution of 1-year RSS
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and upper boundaries of calculated values, together with first and third quantile

and the mean value.

The spread of daily RSS values is quite significant, especially for Zurich

Finance, Allied Irish Banks and Banco Financiero y de Ahorros S.A, therefore

using only average RSS will not provide us with robust information about ex-

pected credit risk. In order to avoid calculation of too many combinations of

different scenarios, different dates, we use average RSS as a proxy to specify

the best scenario. This is then used for further claculation. For Swedbank, Bay-

erische Landesbank, Banco Popolare Societa Cooperativa, Lloyds TSB Bank

and Royal Bank of Scotland, we decided to use average RSS, as the first and

third quantiles of RSS fall into relatively short intervals.

For all scenarios described in Table 5.5, given the average value of RSS,

we numerically calculate the best µ and σ, which define the distribution of

the aggregate recovery rate R = 1 − LGD. Following the relationships ex-

plained in the previous chapters (Equation 3.28, Equation 3.31, Equation 3.29

and Table 3.1), we calculate the market implied values of E[RS] and E[RJ ].

Thereafter, according to the estimates of loss given default, we calculate the

appropriate probability of default.

It is important to notice that, when calculating RSS for different maturities



5. Extracting Loss Given Default from Market Data 79

we assumed that the loss given default is constant and 1-day probability of

default is the same on any day until the maturity of CDS contract. Therefore,

the calculated estimates e.g. PD2 and LGD2 from the RSS2 refer to the whole

two-year interval. For the expected probability of default, which refers only to

the second year (let’s denote by PD12) the relationship in Equation 5.1 must

hold, so that probability a default occurs until maturity of the second CDS

(T2) is equal to sum of the probability that it occurs until maturity T1 and the

probability that it occurs between T1 and T2.

T2∑
i=1

(1−PD2)i−1PD2 =

T1∑
i=1

(1−PD1)i−1PD1 +

T2−T1∑
i=1

(1−PD12)i−1PD12 (5.1)

Concerning the LGD, which refers only to the interval (T1, T2) (let’s denote

by LGD12), we assume that relationship in Equation 5.2 must hold, so that

LGD2 is a weighted average of loss given default rates in intervals (0, T1) and

(T1, T2). All other credit risk parameters regarding different maturities can be

calculated accordingly.

LGD2 =
T1

T2

LGD1 +
T2 − T1

T2

LGD12 (5.2)

Below, we present and analyze results of the model. First of all, in Appendix

B, we present results of different scenarios for parameters of APR violation

based on the average RSS - after modification according to Equation 5.2.

Figure B.9 up to Figure B.16 show that recovery rates remain the same since

certain scenario. More specifically, if RSS is lower than ψpS then subordinated

recovery RJ is implied to be zero (see Figure B.10, Figure B.12, Figure B.14

and Figure B.16) and senior recovery RS is at the level of RRS regardless the

ψ or θ.

The estimated value of pS is not changing over different scenarios, thus ψ

seems to have the most significant impact on the estimates. As discussed above,

we expected that for Swedbank and Banco Popolare the APR will be violated

only to small extent, which imply that ψ should be high. According to the

results in Figure B.9 and Figure B.11, implied recovery rate is the same for all

scenarios since ψ = 0.4 and ψ = 0.5, respectively, thus it is not necessary to

make a decision about precise values of ψ or θ. According to RSS method, the

implied market recoveries of senior bonds are for different maturities between

23% and 35% for Swedbank AB and between 48% and 67% for Banco Popo-
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lare. Based on this, the implied probabilities of default can be calculated from

Equation 4.7 a modified according to Equation 5.1. It is irrelevant whether we

calculate the probabilities of default from subordinated or senior CDS quotas.

The implied probabilities of default relevant in the intervals between CDS

maturities are around 1% for Swedbank and 5% for Banco Popolare. See the

complete results below in Table 5.7. For Swedbank, despite very low prob-

ability of default, the implied recoveries seem to be quite low for a low-risk

bank. However, this would not change significantly if we use daily (or other

frequency) CDS spreads instead of the average value. In comparison, implied

senior recoveries of Banco Popolare are significantly higher, but also probabil-

ity of default is much higher. We can conclude that investors consider Banco

Popolare more risky, but if default occurs, more than 47% would be recovered.

Table 5.7: Implied RS, RJ and PD Relevant for the Interval between
CDS Maturities, Estimated from RSS Model

Issuer 1Y 2Y 3Y 4Y 5Y 7Y 10Y
Swedbank 23.45% 26.76% 32.22% 34.53% 34.68% 34.84% 35.09%

0.05% 0.02% 0.12% 0.14% 0.03% 0.02% 0.20%
1.23% 1.45% 1.11% 1.19% 1.30% 1.38% 1.46%

Banco Pop. 66.88% 64.10% 56.45% 50.86% 49.97% 49.06% 47.90%
4.59% 3.84% 1.87% 0.53% 0.87% 0.77% 0.28%
5.02% 5.14% 4.62% 4.46% 4.67% 4.81% 4.91%

Source: Bloomberg, author’s computation

On the contrary, we expected quite high APR violation for Lloyds and Royal

Bank of Scotland. Therefore, we assume that the second scenario with ψ = 0.30

and θ = 0.90 could correspond to reality. 70% frequency of APR violation with

only very small extent of it is also in line with Longhofer & Carlstrom (1995).

According to the second scenario, the implied market recoveries of senior bonds

are between 51% and 64% for Lloyds and between 46% and 64% for Royal Bank

of Scotland. Based on this, the implied probabilities of default, as well as, senior

and subordinated recoveries are summarized in Table 5.8.
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Table 5.8: Implied RS, RJ and PD Relevant for the Interval between
CDS Maturities, Estimated from RSS Model

Issuer 1Y 2Y 3Y 4Y 5Y 7Y 10Y
Lloyds 63.93% N/A 62.60% N/A 57.62% 53.23% 51.14%

29.60% N/A 28.43% N/A 24.09% 20.26% 18.43%
3.02% N/A 3.83% N/A 4.36% 4.22% 4.29%

Scotland 64.01% 60.51% 55.73% 52.94% 50.32% 48.39% 46.87%
19.12% 17.15% 14.47% 12.90% 11.43% 10.34% 9.49%
2.49% 3.05% 3.29% 3.55% 3.75% 3.87% 3.99%

Source: Bloomberg, author’s computation

For Bayerische Landesbank, we expected no APR violation to occur, there-

fore ψ = 1.00. See below in Table 5.9 complete results of implied recovery

rates for senior and subordinated debt, together with implied probability of

default. For Bayerische Landesbank, Lloyds and Royal Bank of Scotland, the

expectations about overall credit risk are increasing throughout the year 2011,

as the probability of default is increasing and implied recovery is decreasing.

Table 5.9: Implied RS, RJ and PD Relevant for the Interval between
CDS Maturities, Estimated from RSS Model

Issuer 1Y 2Y 3Y 4Y 5Y 7Y 10Y
Bayer. L. 63.73% 63.15% 61.93% 60.34% 59.23% 58.81% 58.31%

0.00% 0.00% 0.19% 0.24% 0.05% 0.00% 0.02%
3.96% 4.28% 4.51% 4.67% 4.83% 4.98% 5.13%

Source: Bloomberg, author’s computation

We continue with the rest of the banks - Zurich Finance, Allied Irish Banks

and Banco Financiero y de Ahorros S.A. We firstly follow the same process. In

Appendix B, we present results of different scenarios for parameters of APR

violation based on the average RSS. Similarly, Figure B.17, Figure B.19 and

Figure B.21 show that recovery rates remain the same since certain scenario.

Thanks to that, and the expectation of low APR violation for Zurich Finance

and Banco Financiero, we can choose the proxy scenarios for further calculation.

For Zurich Finance we use scenario 7 and for Banco Financiero we use scenario

4, both with APR parameters ψ = 0.50 and θ = 0.90. On the contrary, we

expected quite high frequency of APR violation with low extent for Allied Irish

Banks, thus we chosen the scenario 4 with ψ = 0.30 and θ = 0.90. As the

implied recoveries are only slightly different from scenario 2 with ψ = 0.10 and

θ = 0.90, we believe that this scenario is a good proxy for further calculation.



5. Extracting Loss Given Default from Market Data 82

Figure 5.11: First-year Implied Recoveries and Probabilities of De-
fault for Zurich Finance
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Thereafter, we calculate implied recovery rates and probabilities of default

for weekly averages of RSS for the chosen scenario. The whole analysis is done

for 20, 24 and 51 weeks, respectively, for Zurich Finance, Allied Irish Banks

and Banco Financiero. This limitation stands from availability of market data,

as can be seen in Figure B.1 and Figure B.3. In Figure 5.11, Figure 5.12,

Figure 5.13 see the weekly timeline of first year implied recoveries for senior

and subordinated debt, as well as first year probabilities of default as they are

expected by investors.

We can conclude that weekly results for Zurich Finance do not follow any

trend or huge differences. The expected recoveries are quite low for the whole

analyzed period and these are compensated with very low probability of de-

fault of less than 1%, which is similar to the case of Swedbank AB. On the

contrary, expected credit risk parameters of Banco Financiero differ signifi-

cantly throughout the year. For this Spanish bank, the probability of default

has increased from 5.3% to 19.4%. However, also expected senior debt recover-

ies are increasing rapidly from the 21st week which is May 2011 (29.4%) until

end of the year(74.4%).

Lastly, according to Figure 5.13, credit risk of Allied Irish Banks was signif-

icantly increasing between week 15 and 24, as the recoveries have downgrade

trend and expected probability of default default rises to values of 80%. Results

can be supported with the actual default in mid June 2011. Moreover, accord-
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Figure 5.12: First-year Implied Recoveries and Probabilities of De-
fault for Banco Financiero y de Ahorros S.A.
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Figure 5.13: First-year Implied Recoveries and Probabilities of De-
fault for Allied Irish Banks
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ing to Creditex:9 ”‘According to initial data submitted to ISDA (for more on

the mechanics of CDS auctions read here) on behalf of buyers and sellers of

CDS into the auction, the AIB senior bonds will see a final recovery value of

about 71.375%, while the sub will barely recover 10%”’

In general, differences between implied market credit risk parameters and

real market credit risk parameters can be possibly explained either by investors’

mispricing the credit risk or by shortcomings of the model. For the following

discussion it is important firstly to note that in the model RSS is an increasing

function of junior CDS spread and decreasing function of senior CDS spread.

9Online article from 30th June 2011, http://www.zerohedge.com/article/initial-results-
allied-irish-cds-settlement-auction-senior-bonds-71375-subs-12
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Furthermore, if both spreads are increased by the same percentage then RSS

decreases, while if both spreads are decreased by the same percentage then RSS

increases. Secondly, note that implied recoveries have positive relationship to

RSS.

Finally, we can divide results into three parts:

1. The low implied recoveries in case of Zurich Finance and Swedbank AB

that are considered as low-risk can be caused by the following:

� investors underestimate the risk of subordinated CDS of low-risk

firms,

� investors overestimate the risk of senior CDS of low-risk firms,

� the model implies lower recovery rate, as liquidity risk and counter-

parties risk, that are neglected in RSS method, play a significant

role when pricing CDS,

� the expected recovery would be so low also in reality, however the

default is highly improbable.

2. Credit risk of Allied Irish Banks as the reference entity is significantly

higher than the counterparties credit risk, and liquidity risk is also proba-

bly relatively insignificant. Therefore, neglecting them should not impact

the implied credit risk parameters. Such high recoveries and as well as

probabilities of default are supported with the empirical findings.

3. In Table 5.9, Figure B.11, Figure B.13,Figure B.15 and Figure 5.12 we

provide the results for Bayerische Landesbank, Banco Popolare, Lloyds

TSB Bank, Royal Bank of Scotland and Banco Financiero. Implied first

year recoveries around 64%, 70%, 50%, 63% and 30 up to 70%,respectively,

seem to be reasonable for these firm. Compared to Zurich Finance and

Swedbank AB, these banks are, based on the average CDS spreads, a

bit more risky, which might explain why the neglected liquidity risk and

counterparties risks do not have such a significant effect on the recovery

rate underestimation.

To sum up, the results according to the RSS method can be seen in two

ways. Firstly, investors actually expect very low probability of default for low-

risk banks, but if a default occurs, the loss is expected to be high. On the

contrary, they expect high probability of default for a high-risk bank, but the

recovery in default is relatively high. Secondly, the results can be considered to
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imprecisely disclose the expected risk by investors on the senior CDS market.

For extremely low-risk banks the risk of senior bonds is overestimated, while

for extremely high-risk banks it is underestimated.



Chapter 6

Conclusion

The main aim of this master thesis is to investigate theoretical concepts of

the loss given default modeling (LGD). We focus mainly on the reduced-form

approach which we employ for theoretical derivation and further for empirical

estimation of implied market LGD. The reduced-form modeling is based on

the assumption that market prices of defaultable financial instruments disclose

the investors’ expectations about credit risk parameters. On the contrary to

structural models, timing of a default in reduced-form model is assumed to

be unpredictable and it can occur at any time until maturity of risky instru-

ment. The problem of the reduced-form approach is the separation of credit

risk parameters – the probability of default and the loss given default – from

the credit spread of risky instrument compared to its risk-free equivalent. In

this work, we describe the reduced-form approach for pricing of two financial

instruments: defaultable bonds and credit default swaps. These are then used

to introduce the two following theoretical methods for the separation of the

credit risk parameters:

1. Simultaneous PD and LGD estimation based on the market spread of the

credit default swap and the bond spread between defaultable and default-

free bonds: the model is based on the assumption that the market prices

of credit default swaps and bonds spreads disclose the same investors’ ex-

pectations about credit risk parameters. Equations for pricing the bonds

with maturities in between the credit default swap maturities are then

iteratively used to extract PD and LGD for each pair of CDS and bond

spread.

2. Calculation of LGD referring to the senior and junior bonds based on the

market CDS spreads with different seniorities: the main idea of the model
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is the assumption that a default event is common for bonds with different

seniorities, while only loss given default differs. Market implied senior

and junior LGD can be then calculated based on the relative spread of

junior and senior CDS spreads and on the assumption about the absolute

priority rule violation (APR) which defines the relationship between LGD

referring to a different seniority of the underlying bonds.

In the last chapter we provide an empirical application of the two described

methods on the market data of nine European banks. Following the first

method, we conclude that it is not possible to simultaneously extract PD

and LGD for daily prices, however, smoothing of data to weekly average yields

improves the applicability. This is thanks to two factors. Firstly, we believe

that expectation about credit risk changes are not revealed on bond and CDS

markets at the same time. Secondly, due to very high sensitivity of credit risk

parameters to market data, we removed the step of bootstrapping the prices of

risky coupon bonds and therefore increased the precision of data, which we use

in the model. On weekly basis, we calculated that expected loss given default

for Bayerische Landesbank, Lloyds TSB Bank and Royal Bank of Scotland is

on average, respectively, 43.63%, 46.27% and 39.25%.

Following the second method, we calculated the time-varying expected se-

nior and junior LGD for the assumed APR violation for eight banks. The

results are much more appealing, which could be thanks to the use of data only

from CDS market, not combining with bond market, as it was done previously.

Regarding the low implied recoveries of 27.6% and 23.45% in case of Zurich

Finance and Swedbank AB that are considered as extremely low-risk, we con-

clude that there are two probable explanations. Firstly, similarly as expected

with previous model, it can be caused by neglected counterparty and liquidity

risk when pricing CDS. Secondly, the expected recovery might be so low in

reality, however the default with probability around 1% is highly improbable.

For Bayerische Landesbank, Banco Popolare, Lloyds TSB Bank, Royal Bank of

Scotland and Banco Financiero are the implied first year recoveries on average

63.73%, 66.88%, 63.93%, 64.01% and 44.19%. Another significant finding are

the first year implied recoveries of Allied Irish Banks, which increased in May

2011 up to 71% for senior bonds and up 12% for subordinated bonds. This

results are in line with actual default in June 2011.

Finally, we compare results from both of the introduced models. In the

first model we calculated the expected loss given default based on the bonds
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with maturity up to 3 years and CDS with maturity on June 2014. These are

on average 43.63%, 46.27% and 39.25%, respectively for Bayerische Landes-

bank, Lloyds TSB Bank and Royal Bank of Scotland. The average LGD of

third-year CDS, that are calculated as the complement to recovery rates, are

39.07%, 38.40% and 45.27%. We conclude, that the results are very similar

and both methods can serve as very good credit risk aproximation, however

the sensitivity of credit risk parameters to market data is too high to calculate

the exact predictions.
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Appendix A

Definitions

Homogenous Poisson process

Process Ti is a homogenous Poisson process with intesity λ if time intervals

between subsequent arrivals are independent and exponentially distributed with

parameter λ. Density and distribution function of the process Ti are following:

f(T, λ) = λe−λT

F (T ) = P [t ≤ T ] = 1− e−λT

(See Hsu (1997).)

Discrete time homogenous Poisson process

Nt is discrete time homogenous Poisson process with intensity λ if incre-

ments Nt −Ns are independent and have Poisson distribution with parameter

λ(t− s). Probability distribution of process Nt is following:

P (Nt −Ns = k) =
1

k!
λk(t− s)kexp−λ(t−s)

(See Hsu (1997).)

Martingale In reduced-form models, processes are specified under the mar-

tingale measure Q. Martingale is a stochastic process where the conditional

expected value of next observation, conditional on all the past observations, is

equal to the last observation. (See Hurt et al. (2003).)

Stochastic Modeling with Time-varying Intensity λ

Deterministic intensity function λ(t) can be any discrete or continuous func-

tion known for t ≥ 0. E.g. it is possible to use piece by piece constant intensities

λ1, λ2, ... changing throughout intervals. This can be limitly generalized into

contituous intensity function. Then (Nt) is homogenous Poisson process where
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increments Nt −Ns are independent and have Poisson distribution.

P [Nt −Ns = k] =
1

k!
(

∫ t

s

λ(u)du)ke−
∫ t
s λ(u)du

Probability of survival until time T is calculated as follows:

P [τ > T ] = P [NT = 0] = e−
∫ T
0 λ(u)du

Valuation of bonds would be calculated similarly as with constant intensity.

(See Giesecke (2004) and references therein.)

Cox process

Cox process was used in reduced-form credit risk model by Jarrow & Turn-

bull (1995) to generate default timing. It is also called doubly stochastic Poisson

process, because of two stages of uncertainity: default intensity process λ and

Poisson arrival of default process conditional on λ. More mathematically said,

intensity parameter (λt) follows some stochastic process (e.g. mean-reverting

process with jumps, CIR process, affine processes, see Duffie & Singleton (2003)

for detailed descriptions) and N is conditionally on realization of λ an inho-

mogenous Poisson process with time-varying intensity λ :

P [τ ≤ T |(λt)0≤t≤T ] = 1− P [NT = 0|(λt)0≤t≤T ] = 1− e−
∫ T
0 λ(u)du

Due to law of iterated expectations, unconditional probability of default

can then be calculated as expected value of conditional probability.

P [τ ≤ T ] = 1− E[e−
∫ T
0 λ(u)du]

(See Hsu (1997) and references therein.)

Gauss-Wiener process

Standard Gauss-Wiener stochastic process is the continuous random vari-

able Wt on t ∈ (0, T ) for which following is true:

(i) W0 = 0

(ii) for any 0 ≤ s ≤ t ≤ T

Wt −Ws

√
t− sN(0, 1)
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where N(0, 1) denotes normal distribution with zero mean and unit vari-

ance

(iii) for any 0 ≤ s ≤ t ≤ u ≤ v ≤ T Wt −Ws and Wv −Wu are independent

(See Hurt et al. (2003).)

Itô’s lemma

Itô’s lemma is used to find the differential of a function of a particular

stochastic process. Let’s assume Xt follows Itô’s process (diffusion type stochas-

tic process with standard Gauss-Wiener process) in the form:

dXt = µtdt+ σtdWt

where µt is the drift term and σt is the volatility function and Wt is Gauss-

Wiener process. Then the differential of process f(t,Xt) is following:

df(t,Xt) =

(
µt
∂f

∂Xt

+
σ2
t

2

∂f 2

∂X2
t

+
∂f

∂t

)
dt+ σt

∂f

∂Xt

dWt

(See Hurt et al. (2003).)
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Empirical Data

Table B.1: Summary of Bonds Data, 1 December 2010 - 9 May 2011

Issuer Zurich Finance

Maturity 14 Apr 2012 17 Sep 2014 14 Oct 2015
ISIN code XS0423888824 XS0201168894 XS0423888667
Annual Coupon 4.875 4.500 6.500
Average Price 103.065 103.957 111.993
Minimum Price 102.416 102.965 110.823
Maximum Price 103.826 105.988 114.393
Volatility 0.146 0.640 0.838

Issuer Swedbank AB

Maturity 04 Oct 2011 04 Mar 2013 19 Aug 2014
ISIN code XS0455512888 XS0491438429 XS0445995896
Annual Coupon 2.340 3.125 5.000
Average Price 100.246 100.744 105.195
Minimum Price 99.816 100.121 103.505
Maximum Price 100.538 101.730 107.249
Volatility 0.036 0.184 0.912

Issuer Allied Irish Bank

Maturity 30 Sep 2011 01 Oct 2012 12 Nov 2014
ISIN code XS0264548917 XS0455308923 XS0465876349
Annual Coupon 1.486 4.500 5.625
Average Price 89.750 82.911 75.987
Minimum Price 82.563 70.343 68.000
Maximum Price 95.375 90.707 83.900
Volatility 12.113 23.119 24.084
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Issuer HSH Nordbank AG

Maturity 10 Oct 2011 19 Oct 2012 13 Feb 2015
ISIN code DE000HSH29N9 DE000HSH3B28 DE000HSH2BK5
Annual Coupon 3.250 3.250 3.250
Average Price 100.931 101.639 100.222
Minimum Price 100.196 100.347 97.581
Maximum Price 101.447 102.777 103.282
Volatility 0.123 0.429 2.045

Issuer Bayerische Lndbk

Maturity 11 Nov 2011 11 Dec 2012 12 Dec 2014
ISIN code DE000BLB5NA3 DE000BLB5M99 DE000BLB5HW9
Annual Coupon 4.750 4.750 4.750
Average Price 102.088 104.201 105.591
Minimum Price 101.068 102.831 103.685
Maximum Price 102.930 105.591 107.967
Volatility 0.279 0.571 1.220

Source: Bloomberg
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Table B.2: Summary of Bonds Yields, 1 January 2011 - 31 December
2011

Issuer Bayerische Landesbank

Maturity 11 Dec 2012 12 Dec 2014
ISIN code DE000BLB5M99 DE000BLB5HW9
Average Yield 2.396 3.209
Minimum Yield 1.909 2.802
Maximum Yield 2.864 3.560
Volatility 0.207 0.179

Issuer Lloyds TSB Banks

Maturity 20 Apr 2013 18 Jan 2015
ISIN code XS0579627984 XS0550541691
Average Yield 2.908 4.612
Minimum Yield 2.244 3.869
Maximum Yield 4.082 5.815
Volatility 0.535 0.406

Issuer Royal Bank of Scotland

Maturity 15 May 2013 15 Jul 2015
ISIN code XS0363669408 XS0526338693
Average Yield 4.184 4.925
Minimum Yield 3.234 4.186
Maximum Yield 6.098 6.634
Volatility 0.799 0.589
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Table B.3: Summary of CDS Spread Data (bps),1 January, 2011 - 31
December, 2011

Senior Junior
Maturity Average Min Max Average Min Max
Zurich Fin.

20 June 2012 62.333 51.596 67.898 86.835 64.457 97.830
20 June 2013 74.722 62.405 81.711 109.560 109.560 109.560
20 June 2014 85.600 71.005 96.095 126.071 98.927 139.214
20 June 2015 101.814 82.914 111.508 151.298 151.298 151.298
20 June 2016 117.252 92.750 129.535 168.530 130.825 192.533
20 June 2018 126.749 96.999 138.382 178.546 155.753 196.755
20 June 2021 134.018 102.679 145.383 181.807 138.298 203.900

Swedbank

20 June 2012 95.104 54.520 188.213 77.600 77.600 77.600
20 June 2013 107.057 60.250 197.199 92.561 92.561 92.561
20 June 2014 75.935 60.476 82.475 106.995 106.995 106.995
20 June 2015 78.225 69.326 87.283 119.980 119.980 119.980
20 June 2016 85.586 76.633 94.983 131.285 131.285 131.285
20 June 2018 89.020 80.205 97.778 137.216 137.216 137.216
20 June 2021 92.328 83.526 100.638 141.802 141.802 141.802

Allied Irish B.

20 June 2012 1726.243 954.566 4334.058 5500.795 3032.469 7707.754
20 June 2013 1443.007 885.548 3000.289 4377.156 3010.669 6331.243
20 June 2014 1312.903 862.001 1635.491 4291.554 3118.777 5497.896
20 June 2015 1222.365 868.230 2209.385 4558.232 3347.279 5768.916
20 June 2016 1195.673 838.923 1560.871 4479.430 3542.605 5007.604
20 June 2018 1127.987 794.506 1910.709 4132.383 3241.435 4941.143
20 June 2021 1076.902 737.773 1403.633 4108.365 3047.725 4746.405

Lloyds TSB Bank

20 June 2012 110.972 77.326 154.613 218.303 167.742 400.691
20 June 2014 146.416 120.186 194.198 276.360 226.210 452.036
20 June 2016 189.227 162.697 219.079 326.499 271.296 482.945
20 June 2018 198.480 171.020 231.105 337.031 278.224 485.990
20 June 2021 207.157 176.600 228.341 342.516 285.211 481.347
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Senior Junior
Maturity Average Min Max Average Min Max
Bayerische L.

20 June 2012 146.985 75.877 274.280 330.080 321.367 444.385
20 June 2013 161.297 90.548 287.670 360.595 352.541 474.110
20 June 2014 176.149 105.094 302.760 387.119 379.680 499.630
20 June 2015 190.060 120.140 313.193 412.900 405.429 526.347
20 June 2016 202.180 132.695 322.635 446.266 427.917 548.161
20 June 2018 206.995 137.186 326.911 449.398 431.152 549.680
20 June 2021 212.718 141.933 333.759 450.400 435.147 551.195

Royal B. Scotland

20 June 2012 91.077 59.978 171.386 205.107 160.013 444.836
20 June 2013 122.647 94.833 182.774 242.778 204.089 420.216
20 June 2014 148.528 121.180 203.993 282.709 243.000 475.125
20 June 2015 170.359 145.345 212.552 309.841 276.255 467.908
20 June 2016 190.170 169.833 236.680 335.440 302.053 499.592
20 June 2018 200.281 177.623 240.758 345.556 311.248 507.811
20 June 2021 209.265 187.552 257.356 354.864 322.424 511.745

Banco Popolare

20 June 2012 170.856 114.874 287.342 530.634 286.541 661.469
20 June 2013 189.640 133.538 303.188 481.617 298.815 656.187
20 June 2014 206.211 150.473 315.473 423.311 327.091 678.928
20 June 2015 224.383 168.549 329.910 448.337 353.865 699.970
20 June 2016 239.647 187.978 344.368 470.158 386.847 701.595
20 June 2018 247.385 191.478 344.253 478.062 385.450 721.821
20 June 2021 253.895 197.825 343.654 482.707 399.631 705.725

Banco Financiero

20 June 2012 231.354 155.170 362.303 441.396 237.227 738.728
20 June 2013 253.723 178.331 397.509 481.396 271.483 793.442
20 June 2014 268.572 196.210 419.134 522.123 306.425 845.124
20 June 2015 277.330 197.512 430.172 540.176 330.364 856.213
20 June 2016 285.812 196.921 440.717 553.194 348.807 862.622
20 June 2018 288.055 199.577 435.075 552.036 348.426 853.711
20 June 2021 291.221 203.464 431.627 551.484 349.074 845.316

Source: Bloomberg
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Figure B.1: Zurich Finance - Senior CDS spread for Different Matu-
rities, Jan 1, 2011 - Dec 31, 2011
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Figure B.2: Swedbank AB - Senior CDS spread for Different Maturi-
ties, Jan 1, 2011 - Dec 31, 2011
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B. Empirical Data X

Figure B.3: Allied Irish Banks - Senior CDS spread for Different Ma-
turities, Jan 1, 2011 - Dec 31, 2011
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Figure B.4: Lloyds TSB Bank - Senior CDS spread for Different Ma-
turities, Jan 1, 2011 - Dec 31, 2011

2011 Feb 2011 Apr 2011 Jun 2011 Aug 2011 Oct 2011 Dec
date

100

150

200

spread

June 2012

June 2014

June 2016

June 2018

June 2021

Source: Bloomberg



B. Empirical Data XI

Figure B.5: Bayerische Landesbank - Senior CDS spread for Different
Maturities, Jan 1, 2011 - Dec 31, 2011
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Figure B.6: Royal Bank of Scotland - Senior CDS spread for Different
Maturities, Jan 1, 2011 - Dec 31, 2011
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B. Empirical Data XII

Figure B.7: Banco Popolare Societa Cooperativa - Senior CDS spread
for Different Maturities, Jan 1, 2011 - Dec 31, 2011
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Figure B.8: Banco Financiero y de Ahorros S.A - Senior CDS spread
for Different Maturities, Jan 1, 2011 - Dec 31, 2011

2011 Feb 2011 Apr 2011 Jun 2011 Aug 2011 Oct 2011 Dec
date

150

200

250

300

350

400

spread

June 2012

June 2013

June 2014

June 2015

June 2016

June 2018

June 2021

Source: Bloomberg



B. Empirical Data XIII

Figure B.9: Swedbank AB - Implied Market Recovery Rates For Se-
nior Bonds Relevant at Intervals between CDS Maturities
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Figure B.10: Swedbank AB - Implied Market Recovery Rates For
Subordinated Bonds Relevant at Intervals between CDS
Maturities
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B. Empirical Data XIV

Figure B.11: Banco Popolare Societa Cooperativa - Implied Market
Recovery Rates For Senior Bonds Relevant at Intervals
between CDS Maturities
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Figure B.12: Banco Popolare Societa Cooperativa - Implied Market
Recovery Rates For Subordinated Bonds Relevant at In-
tervals between CDS Maturities
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B. Empirical Data XV

Figure B.13: Lloyds TSB Bank - Implied Market Recovery Rates For
Senior Bonds Relevant at Intervals between CDS Matu-
rities
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Figure B.14: Lloyds TSB Bank - Implied Market Recovery Rates For
Subordinated Bonds Relevant at Intervals between CDS
Maturities

Ψ=0.10

Θ=0.90

Ψ=0.30

Θ=0.90

Ψ=0.50

Θ=0.80

Ψ=0.50

Θ=0.90

Ψ=0.70

Θ=0.75

Ψ=0.70

Θ=0.90

Ψ=0.90

Θ=0.50

Ψ=0.90

Θ=0.90

Ψ=1.00

Θ=N�A

10%

20%

30%

40%

50%

60%

Recovery Rate

Source: Bloomberg, author’s computation



B. Empirical Data XVI

Figure B.15: Royal Bank of Scotland - Implied Market Recovery
Rates For Senior Bonds Relevant at Intervals between
CDS Maturities
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Figure B.16: Royal Bank of Scotland - Implied Market Recovery
Rates For Subordinated Bonds Relevant at Intervals be-
tween CDS Maturities
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B. Empirical Data XVII

Figure B.17: Zurich Finance - Implied Market Recovery Rates For
Senior Bonds Relevant at Intervals between CDS Matu-
rities
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Figure B.18: Zurich Finance - Implied Market Recovery Rates For
Subordinated Bonds Relevant at Intervals between CDS
Maturities
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B. Empirical Data XVIII

Figure B.19: Allied Irish Banks - Implied Market Recovery Rates For
Senior Bonds Relevant at Intervals between CDS Matu-
rities
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Figure B.20: Allied Irish Banks - Implied Market Recovery Rates For
Subordinated Bonds Relevant at Intervals between CDS
Maturities
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B. Empirical Data XIX

Figure B.21: Banco Financiero y de Ahorros S.A - Implied Market
Recovery Rates For Senior Bonds Relevant at Intervals
between CDS Maturities
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Figure B.22: Banco Financiero y de Ahorros S.A - Implied Market
Recovery Rates For Subordinated Bonds Relevant at In-
tervals between CDS Maturities
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