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1. INTRODUCTION 

Magnesium and calcium play an essential role in human and animal health and are 

provided in the case of deficiency syndromes and other diseases. Also aluminium (in the 

form of various salts, complexes or hydroxides) is commonly used as pharmaceutical 

substance. Their compounds are described in pharmacopoeias and are provided in 

pharmaceutical or/and food supplement formulations (mainly tablets, chewing tablets, 

suspension or solutions), alone or in combination, in relatively high amounts. In several cases 

a combination of these official compounds is formulated, for example magnesia, alumina and 

calcium carbonate tablets and suspensions. 

Evaporative Light Scattering Detection (ELSD) has been recently used in many 

chromatographic applications as a quasi-universal detector, especially in the case of the 

absence of chromophoric groups in the analytes molecules. Despite the wide use of ELSD in 

organic analysis (drugs, natural products, polymers), very few inorganic analytes have been 

determined using LC-ELSD methods [sulfate (as counter-ion of aminoglycoside antibiotics), 

sodium carbonate (in a drug substance)].  

In this paper an LC-ELSD method has been developed and validated for the 

simultaneous, simple, low operational costs and reliable determination of the main metals of 

pharmaceutical use (magnesium, calcium and aluminium) and its application in 

pharmaceutical and food supplement formulations. Using ion-exchange column and volatile 

acids as mobile phase the separation of the three metal ions is successful and the detection by 

ELSD is achieved at the µg ml-1 concentration level. 
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2. THEORETICAL PART 

2.1. MAGNESIUM, CALCIUM AND ALUMINIUM 

2 . 1 . 1 .  Magn e s i um  

Magnesium is an essential mineral for human nutrition mainly found in foods like 

cereals, nuts, cacao, meat, milk and vegetables. Magnesium has several important functions. It 

is involved in energy metabolism, acting as a metal activator or co-factor for enzymes 

requiring adenosine triphosphate (ATP), in replication of DNA and in the synthesis of RNA 

and proteins; it appears to be essential for all phosphate transferring systems. Together with 

calcium, magnesium is involved in muscle contraction and blood clotting [1][2]. Its deficiency 

occurs, in general as complications of other diseases like alcoholism, diabetes, and kidney 

failure and in some post-operative periods. Magnesium deficiency can be treated by oral or 

parental administration of some magnesium salts (magnesium supplement tablets). 

Oversupply in severe cases lead to coma and death [1]. 

 Pharmaceutically is magnesium used in the form of acetate, aspartate, carbonate, 

chloride, citrate, gluconate, glycerophosphate, hydroxide, oxide, phosphate, pidolate, 

salicylate, stearate, sulfate, trisilicate, etc. [3][4][5]. 

2 . 1 . 2 .  Ca l c i um  

Calcium is the most common mineral in the human body (approximately 99% of 

total body calcium is in the skeleton and teeth and 1% in blood and soft tissues) where it is 

present in almost the same relative abundance as in the earth’s crust. Dairy products are the 

most concentrated, well absorbed sources of calcium. Other foods which can contribute to 

dietary calcium include firm tofu (chemically set with calcium), dried beans, kale, broccoli, 

and bok choy. Calcium has four major biological functions: (1) structural as stores in the 

skeleton, (2) electrophysiological - carries charge during an action potential across 

membranes, (3) intracellular regulator, and (4) as a cofactor for extracellular enzymes and 

regulatory proteins. In this way it regulates heart rhythm; eases insomnia; helps regulate the 
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passage of nutrients in & out of the cell walls; assists in normal blood clotting; helps maintain 

proper nerve and muscle function; lowers blood pressure; important to normal kidney 

function [6] and in current medical research reduces the incidence of colon cancer [7], and 

reduces blood cholesterol levels [8]. Deficiency syndromes may result in arm and leg muscles 

spasms, softening of bones, back and leg cramps, brittle bones, rickets, poor growth, 

osteoporosis, tooth decay, depression. Dietary calcium deficiency also has been associated 

with increased risk of hypertension, preeclampsia, and colon cancer [6]. 

Pharmaceutically is calcium used in the form of carbonate, chloride, glubionate, 

gluceptate, gluconate, hydroxide, lactate, lactobionate, levulinate, pantothenate, phosphate, 

saccharate, etc. [3][4][5]. 

2 . 1 . 3 .  Alumin i um  

Aluminium is a trivalent cation found in its ionic form in most kinds of animal and 

plant tissues and in natural waters everywhere. It is the third most prevalent element and the 

most abundant metal in the earth’s crust. Dietary aluminium is ubiquitous, but in such small 

quantities that it is not a significant source of concern in persons with normal elimination 

capacity. If a significant load exceeds the body’s excretory capacity, the excess is deposited in 

various tissues, including bone, brain, liver, heart, spleen, and muscle. Lactate, citrate, and 

ascorbate all facilitate gastrointestinal absorption. No known physiologic need exists for 

aluminum; however, it is sometimes a competitive inhibitor of several essential elements of 

similar characteristics, such as magnesium, calcium, and iron. Mechanisms of toxicity include 

inhibition of enzyme activity and protein synthesis, alterations in nucleic acid function, and 

changes in cell membrane permeability. Aluminium toxicity is usually found in patients with 

impaired renal function. In aluminium-related disease, the predominant features are defective 

mineralization and osteomalacia with a closely associated dialysis encephalopathy, which is 

thought to be caused by aluminium deposition in the brain. Aluminium causes an oxidative 

stress within brain tissue, leading to the formation of Alzheimerlike neurofibrillary tangles 

[9][10]. Aluminium also has a direct effect on hematopoiesis [11]. 

Pharmaceutically is aluminium used in the form of hydroxide, acetate, 

chlorohydrate, phosphate, subacetate, etc. [3][4][5]. 
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2.2. DETERMINATION OF MAGNESIUM, CALCIUM AND 
ALUMINIUM 

The pharmacopoeial analytical methods [3][4][5] for the assay of the 

aforementioned metals in starting materials and formulations are complexometric titrations 

with disodium edetate (direct or back-titrations). In the case of combination of two metal 

compounds (e.g. magnesium and aluminium) different pH adjustments are used in separate 

titrations to obtain specificity. Atomic absorption spectrometry (AAS) is also widely used. 

For example in the alumina, magnesia and calcium carbonate combination, aluminium is 

determined  with edetate by back-titration at acidic buffer, calcium with edetate at very 

alkaline buffer and magnesium with  AAS at wavelength of 282.5 nm. 

From the above described official methods it is clear that in the case of metal 

combinations separate assay experiments are required, very often using different analytical 

techniques (titrimetry and AAS). Therefore an analytical method enabling the simultaneous 

determination of all metals in the formulation is very desirable. 

Several chromatographic techniques have been developed for the simultaneous 

determination of trace metal elements, metals of specific groups and metal speciation. These 

include gas chromatography (GC), HPLC interfaced to AAS, atomic emission (AES) and 

atomic fluorescence (AFS) spectrometry. Recent tandem analytical systems are based on 

HPLC – inductively coupled plasma mass spectrometry (ICP-MS) and HPLC – 

thermochemical hydride generation – AAS system [12]. 

Several reviews have been published on ion-pair chromatography of metal ions [13], 

directly coupled chromatography – atomic spectroscopy [14], ion-exchange HPLC of metal 

complexes [15], determination of metal ions by HPLC-photometry [16], ion-pair reversed-

phase chromatography of metal chelates [17], metal determination and metal speciation by 

LC [18], analysis of metal ions by HPLC [19],  HPLC-AAS hybrid technique for the 

speciation of trace metals in biological fluids [20], trace-elemental speciation by HPLC using 

microbore columns hyphenated to AAS [21],  chromatographic and hyphenated methods for 

elemental speciation analysis in environmental media [22], the coupling of size-exclusion 

HPLC with ICP MS in bio-inorganic analysis [23], chemical modification of analytes in 

speciation analysis by CE, LC and GC [24], HPLC-isotope dilution ICP-MS for speciation 
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studies [25],  bio-inorganic speciation analysis by hyphenated techniques [26], and separation 

and quantisation of low-molecular mass organic acid – metal complexes using HPLC and 

CZE for speciation purposes [27]. 

2 . 2 . 1 .  De t e rm ina t i o n  o f  Magn e s i um  

Out of Czech pharmacopoeia analytical method (complexometric titrations with 

disodium edetate at alkalic buffer [5]), several articles describing alternative determinations of 

magnesium in pharmaceutical preparations were published. These include AAS [1] sequential 

injection analysis (SIA) [1] and recently a multi-commutation-based flow system for multi-

element analysis also suitable for determination of calcium [28]. 

A variety of other instrumental methods is used for magnesium analysis in non-

pharmaceutical samples as beverages, food or body fluids. These include UV-VIS 

spectrophotometry [29], ion chromatography with a piezoelectric detector [30], ICP-AES 

[31], ICP-MS [32] and ion selective electrode [33]. Other methods used for magnesium 

analysis are based on flow based procedures, e.g. continuous on-line feedback based flow 

titration [34], FIA based on magnesium ion-selective electrode [35] and a multi-component 

flow injection based analysis with diode array detection [36]. Nevertheless, these methods 

have not been applied on determination of magnesium in pharmaceuticals. 

2 . 2 . 2 .  De t e rm ina t i o n  o f  Ca l c i um  

Czech officinal analytical method is complexometric titrations with disodium 

edetate in strongly alkalic contitions [5]. 

Other methods used for determination of calcium in pharmaceutical formulations 

and/or pharmaceutical raw materials ICP-MS and electrothermal atomic absorption 

spectrometry (ET AAS) [37], SIA [1], multi-commutation-based flow system for multi-

element analysis [28][38] and capillary isotachophoresis [39]. 

2 . 2 . 3 .  De t e rm ina t i o n  o f  A lum in i um  

Czech pharmacopoeia determination of Aluminium is based on back-titration of 

disodium edentate at acidic conditions [5]. 
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The commonly used analytical methods for the quantitative determination of 

aluminium are fluorimetry, AAS, AES, GC and induced plasma atomic emission 

spectrometry (ICP-AES). Although most of these are high precision methods, they 

necessitate pre-treatment steps, special and expensive instruments, large volumes of sample 

solution and a long period of analysis. Electrogravimetry and coulometric methods generally 

have moderate selectivity, sensitivity and speed. Strong buffering of some fixed pH is 

necessary to obtain reproducible data in polarography and voltammetric methods. Since the 

reduction of aluminium at the electrode in aqueous solutions is difficult, it cannot be easily 

determined by conventional voltammetry. Thermo gravimetric methods are largely limited to 

decomposition and oxidation reactions and such physical processes as vaporization, 

sublimation, and desorption. UV–VIS spectrophotometry is used due to its accuracy and 

good precision, associated with the low cost and widespread diffusion of equipment [40]. 

2.3. EVAPORATIVE LIGHT SCATTERING DETECTION 

2 . 3 . 1 .  I n t r o du c t i o n  

About twenty years have been past since the introduction of the first commercially 

available Evaporative Light Scattering Detector (ELSD) in early 1980s (Mass Detector, 

Applied Chromatography System Limited, Macclesfield, Cheshire, UK), and nowadays 

ELSDs have moved into the mainstream of HPLC detection techniques. The inherent 

advantage of ELSD to detect any analyte, regardless of the optical (i.e. UV absorptivity), 

electrochemical or other analyte properties, is the main reason for ELSD expanded 

applicability. ELSD is considered to be a quasi-universal rather than a fully universal detector, 

since analytes with higher volatility than the mobile phase can not be detected. It is mainly 

considered to be an LC detector. However it also appears compatibility with countercurrent 

(CCC) and supercritical fluid chromatography (SFC) [41]. 

Beyond the common usefulness, which any universal detector appear [e.g. refractive 

index detector (RID) and mass spectrometers (MS)], the increasing interest for ELSD is 

additionally attributed to some special characteristics: (a) compatibility with gradient elution 

and insensibility to temperature variation (unlike RID), (b) much better detectability than 

RID for most molecular classes, similar to conventional LC detectors (regular detection limit 

is in the nanogram range, depending on analyte volatility and relative molecular mass) and (c) 
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low cost and easy operation (unlike MS). However, it should be clarified that until now, 

ELSD is mainly considered to be a good alternative or supplemental detector rather than a 

substitute for the conventional HPLC detectors (UV-VIS, fluorimeters etc.), while it lacks the 

huge identification potential of the wide range of LC-MS techniques [41]. 

The operation principle of ELSD mainly consists of three successive processes 

depicted in Figure 2.1 (a) nebulization of the chromatographic effluent, (b) evaporation of 

the mobile phase, and (c) detection of the non-volatile residual particles, by means of the 

measurement of the scattered light [41]. 

 
Figure 2.1  Depiction of the main steps of the ELSD design type B operation. 

2 . 3 . 2 .  Nebu l i z a t i o n  

In the first step of ELSD detection mechanism, the effluent from a 

chromatographic column enters a Venturi-type nebulizer, where it is transformed into an 

aerosol. These nebulizers create a high flow of carrier gas (air or inert gas, such as nitrogen, 

carbon dioxide, argon or helium) over the liquid surface producing a high amount of droplets 

with remarkably uniform size [41].  

Distribution and mean values of droplets diameter are considered to be very critical 

parameters, which strongly influence the analytical characteristics (i.e. detectability, sensitivity 

and repeatability) of the ELSD methods. The formation of uniform, reproducible and stable 

aerosols depends on the relation of the nozzle diameter and the flow rates of mobile phase 

and nebulizing gas. For constant diameter of the nozzle, stable aerosols are formed only for a 
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limited range of flow rates, and further, the flow rate of the nebulizer gas must be adjusted in 

relation to the flow rate of the mobile phase. For a mobile phase flow rate of 1 ml min-1, the 

usual consumption of the nebulizing gas must be in the range of 2-5 l min-1 [41]. 

Furthermore, it has been indicated that mean diameter of aerosol droplets strongly 

influences ELSD response and in fact an increase of the mean diameter of aerosol droplets 

results in ELSD response enhancement [41].  

If the gas flow rate is too low, mobile phase would not be completely nebulized 

and/or it would not be completely vaporized, which would result in an excessive noise or 

baseline with spiked sharp peaks [41]. 

ELSDs are classified in two types according to their structure after the nebulization 

unit. In ELSD of type A (non aerosol splitting), the entire aerosol immediately enters the 

heated evaporation tube (drift tube), where the evaporation process begins. In ELSD of type 

B (aerosol splitting, Figure 2.1), the aerosol, before the evaporation step, enters a glass 

chamber or a focusing cone (nebulization chamber), in which the droplets of high size are 

condensed on the walls of the chamber and diverted to waste. The proportion of the wasted 

aerosol depends on mobile phase volatility and varies from > 90% (aqueous mobile phase) to 

< 10% (highly volatile organic solvents). Each type appears its own benefits, while the 

appropriate choice depends on the nature of the analyte and the composition of the mobile 

phase. ELSD of type B requires lower evaporation temperature than type A and thus it is 

more sensitive for volatile, semi-volatile or thermo-sensitive analytes. On the other hand, for 

non-volatile analytes, ELSD of type A appears to be more sensitive, since the entire quantity 

of analyte reaches the optical cell. Considering the composition and flow rate of the mobile 

phase, ELSD of type A is incompatible with gradient elution and requires low flow rates and 

highly volatile mobile phases (non-aqueous or low water portion), while ELSD of type B 

appears wider compatibility [41]. 

2 . 3 . 3 .  Evapo r a t i o n  o f  Mob i l e  Pha s e  

In this stage, the size of the aerosol droplets is reduced, due to the evaporation of 

the mobile phase, which is performed in a heated drift tube. Ideally, the purpose of this stage 

is to completely vaporise the mobile phase, without any analyte loss (due to evaporation or 
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thermal decomposition). The completeness of the mobile phase evaporation and the extent 

of loss of analyte is mainly determined by the evaporation temperature, which should be 

selected in accordance to the mobile phase and analyte volatility, to the mobile phase flow 

rate and to the ELSD type (A or B). Inappropriate selection of the evaporation temperature 

results, in case of low temperature, in an excessive noise or baseline with spiked sharp peaks, 

or in case of high temperature, in reduced sensitivity. Apart from the analyte loss, high 

evaporation temperature causes rigorous solvent evaporation, which destroys uniformity of 

particle size, and favours the formation of liquid rather than solid particles. Both effects 

result in decrease of ELSD sensitivity. The evaporation temperature is usually set between 30 

and 100°C. Decrease of the required evaporation temperature can be obtained with 

nebulizing gas of high thermal conductivity (helium was found to require at least 30°C lower 

evaporation temperature than carbon dioxide), which in cases of volatile and thermosensitive 

compounds results in enhancement of detector sensitivity. On the other hand, for stable and 

non volatile compounds, the ELSD response factor has been found to be independent of the 

nature of the nebulizing gas [41]. 

2 . 3 . 4 .  Li gh t  S c a t t e r i n g  

The aerosol, after the evaporation process, ideally composed by solid particles of 

analyte, enters the optical cell and passes through a light beam. The scattered light is 

measured by a photomultiplier or a photo diode, providing the output signal [41]. 

Light scattering processes are classified in two types: elastic scattering, in which the 

scattered radiation is of the same frequency as the incident radiation, and inelastic scattering, 

in which the scattered radiation is of a different frequency. In ELSDs, inelastic scattering is 

considered to be negligible and it is not further examined. Elastic scattering is classified in 

three types: Rayleigh, Debye and Mie. Refraction-reflection mechanism, which has its origin 

in the induced secondary emission of particles in the path of the incident beam, has also been 

reported as a potential mechanism of scattering in the ELSD optical cell [41].  

Since scattering and not absorbing phenomenon is intended to occur when the light 

interacts with the analyte particles, a tungsten filament or halogen lamp that produces a 

continuous spectrum of wavelengths, rather than a monochromatic laser-emitting diode, is 

favoured as a light source. In some instruments a secondary gas, independent of the 
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nebulizing gas, is used to concentrate the particles in the centre of the detection cell and to 

prevent the deposition on the cell inner surfaces [41]. 

The power of scattered light is controlled by the particle diameter, the light 

wavelength and the angle of scattered light. It has been observed that the ELSDs sensitivity 

is higher, but the dynamic range narrower, for low detection angle, with wide angular 

acceptance and the use of vertically polarized or unpolarized light [41]. 

2 . 3 . 5 .  Lim i t a t i o n s  

Apart from the fact that ELSDs appear nearly no selectivity, an inherent 

characteristic of most ‘universal’ detectors, some additional requirements may limit their 

applicability. The main difficulty for the development of LC-ELSD analytical methods is the 

restriction on the mobile phase volatility. Non-volatile modifiers, ion-pairing reagents, acids, 

bases and buffers cannot be used with ELSD. Therefore, a very useful part of the mobile 

phase chemistry is not compatible with ELSD, making quite difficult to convert an LC-UV 

method to an LC-ELSD method or to achieve efficient chromatographic separations for 

some type of analytes. Some acceptable volatile reagents are trifluoroacetic (TFA), 

heptafluorobutyric, nonafluoropentanoic (NFPA), acetic and formic acid and their 

ammonium salts in low concentrations (< 0.1 M) [41]. 

ELSD is a destructive detector, therefore it must be last in line if it is used in series 

with other detectors. In cases that it is used in line with another destructive detector (e.g. 

MS), a line splitter should be added and the flow rate of the nebulizating gas should be 

accordingly adjusted [41]. 

Generally, it appears relatively low detectability, inadequate for the direct analysis of 

compounds (e.g. impurities, residues) at ng ml-1 concentration level (quantitation limit is 

usually above 0.1 µg ml-1). In these cases, preconcentration steps should be developed, in 

order to enrich the under analysis samples. However, development of a preconcentration 

procedure is quite difficult, mainly for two reasons: firstly, non-volatile reagents can not be 

applied (e.g. precipitation reagents and buffers) and secondly, preconcentration procedure 

may simultaneously enrich some of the matrix components resulting in excessive 

interferences due to the low ELSD selectivity [41]. 
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2 . 3 . 6 .  App l i c a t i o n s  

ELSD has been effectively used for the determination of a wide variety of 

compounds in various synthetic or natural matrices. The main application areas of ELSD 

concern pharmaceuticals, foods and beverages, natural products and biological samples and 

polymers. A wide range of column types and mobile phase polarity have been utilized and 

various procedures for sample preparation have been developed depending on the analyte 

nature and the sample matrix. Beyond the differences of analyte and matrix nature, a 

common characteristic of all ELSD methods is the conformity with the following rule: “non 

volatile analytes are determined utilizing a volatile mobile phase” [41]. 
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3. EXPERIMENTAL PART 

3.1. CHEMICALS AND REAGENTS 

All chemicals were of analytical reagent grade. 

3 . 1 . 1 .  Wat e r  

HPLC grade water was prepared in three steps: (a) deionization, (b) distillation and 

(c) purification of HPLC grade. Tap water passed deionizating column Zalion 2.004 

purchased from IONEL A.E.B.E. company (N. Irakleio Attikis, Greece), then it  was 

distilled in “Mega-Pure automatic” distilling instrument manufactured by CORNING (New 

York, USA). Purification of HPLC grade was performed by Milli-Q R6 system made by 

MILLIPORE Corporation (Billerica, MA, USA). HPLC water was prepared within 15 days 

before use.   

3 . 1 . 2 .  Mob i l e  Pha s e  

Trifluoracetic acid (TFA) in purity > 98% (Sigma-Aldrich, St. Louis, USA) and 

nonafluoropentanoic acid (NFPA) in purity > 97% (Aldrich, Steinheim, Germany) were used 

for preparation of aqueous mobile phase. 

The examined mobile phases were prepared directly in HLPC system trough the 

medium of flown-channel selection valve diluting stock solutions by HPLC grade water in 

appropriate ratio. The following stock solutions were commonly used TFA 3.1 ml l-1 

(isocratic elution) 8.0 ml l-1 (gradient elution) and NFPA 6.2 ml l-1. 

For the reason that TFA and NFPA are highly volatile substances, their stock 

solutions were prepared by adding appropriate volume of acid to the volumetric flask 

(250 ml) almost full of already degassed HPLC grade water and filled with the same diluent 

to the punch mark. All stock solutions were kept in refrigerator in airtight container.  

3 . 1 . 3 .  S tanda r d s  

The standard solutions of metals were prepared from Magnesium acetate 

tetrahydrate in purity > 99% (Hopkin&Williams LTD, Chadwell Health, Essex, England), 
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Calcium hydroxide in purity > 96% and Aluminium Nitrate nonahydrat in purity > 98.5% 

(both from Merck, Darmstadt, Germany). Organic anion standards were prepared from 

L-Ascorbic acid in purity > 99%; DL-Aspartic acid in purity > 99% and Citric acid, 

monohydrate in purity > 98% (all three by Sigma-Aldrich, Steinheim, Germany). 

Magnesium (isocratic elution) 

Accurately weighted amount 0.0892 g of Magnesium acetate chemical was dissolved 

in mobile phase (TFA 11 mM l-1) and sonicated few minutes till complete dissolution, 

forming 100.1 µg ml-1 solution of Mg2+. From this stock solution, volumes of 0.8 ml, 1.0 ml, 

1.4 ml, 1.6 ml and 2.4 ml were taken by automatic pipette to 10 ml volumetric flasks, in order 

to gain working standard solutions of 8.0 µg ml-1; 10.0 µg ml-1; 14.0 µg ml-1; 16.0 µg ml-1 and 

24.0 µg ml-1 of magnesium. From these five dilutions the calibration curve for isocratic 

elution was constructed. 

Calcium 

The precise amount of Calcium hydroxide substance (0.1847 g) dissolved by mobile 

phase (TFA 11 mM l-1) in 100 ml volumetric flask and sonicated few minutes till complete 

dissolution for 959.2 µg ml-1 solution of Ca2+. From this stock solution, volumes of 0.375 ml, 

0.8 ml, 1.125 ml, 1.5 ml were taken by automatic pipette to 25 ml volumetric flasks and 

0.75 ml was taken by automatic pipette to 10 ml volumetric flasks, in order to gain working 

standard solutions of 14.4 µg ml-1; 28.8 µg ml-1; 43.2 µg ml-1; 57.6 µg ml-1 and 71.9 µg ml-1 of 

calcium cations. From these five dilutions the calibration curve was constructed. 

Magnesium and Aluminium (linear gradient elution) 

Standards substances of Magnesium acetate (0.0886 g) and Aluminium nitrate 

(0.2084 g) were weighted into two different 100 ml volumetric flasks and completely 

dissolved in mobile phase (TFA 12 mM l-1), using sonication,  forming 99.4 µg ml-1 of Mg2+ 

and 147.6 µg ml-1 of Al3+ stock solutions. From magnesium stock solution volumes of 0.6 ml, 

1.2 ml, 1.8 ml, 2.4 ml; 3.0 ml were taken by automatic pipette into 10 ml volumetric flasks 

and from aluminium stock solution volumes of 0.67 ml; 1.3 ml; 2 ml; 2.67 ml; 3.33 ml were 

taken by automatic pipette to the same 10 ml volumetric flasks, in order to gain mixed 



 23

working standard solutions of magnesium 6.0 µg ml-1; 11.9 µg ml-1; 17.9 µg ml-1; 23.9 µg ml-1; 

29.8 µg ml-1 and aluminium 9.9 µg ml-1; 19.6 µg ml-1; 29.5 µg ml-1; 39.4 µg ml-1; 49.2 µg ml-1. 

From these five dilutions the calibration curve for linear gradient elution was constructed. 

Organic acids 

Accurate amounts of organic acids (0.0149 g of DL-Aspartic acid; 0.0148 g of 

L-Ascorbic acid; 0.0168 g of Citric acid) were dissolved in HPLC grade water separately in 

three 100 ml volumetric flasks forming three stock solutions in concentrations 147.5 µg ml-1 

of Aspartic acid; 146.5 µg ml-1 of Ascorbic acid and 150.5 µg ml-1 of Citric acid. From stock 

solution of each acid was taken volume of 3.3 ml by automatic pipette into 10 ml volumetric 

flask, in order to gain mixed working standard solutions of Aspartic acid 49.2 µg ml-1; 

Ascorbic acid 48.8 µg ml-1 and Citric acid 50.2 µg ml-1. These solutions were used to observe 

retention times and separation of organic acids. 

3 . 1 . 4 .  Oth e r  Ch em i c a l s   

Calcium lactate (Mallinckrodt Chemical Works) during development of method. 

Hydrochloric acid fuming 37%; Formic acid 98 - 100% and Acetic acid in purity > 99.5% (all 

three from Merck, Darmstadt, Germany) were used to improve separation of metals from 

drug matrix. 

3.2. INSTRUMENTATION 

3 . 2 . 1 .  HPLC Sy s t em  

Modular Shimadzu HPLC system (Tokyo, Japan) consisting of a LC-10AD VP 

pump; a FCV-10AD VP flow-channel selection valve and a RHEODYNE 7725i by Perkin 

Elmer (Wellesley, MA, USA) manual injector with a built-in position sensing switch, which 

provided the chromatograph start signal. The complete filling method with 20 µl loop was 

used. Syringe containing excess of sample was required to completely flush mobile phase 

from the loop and the volume of the loop was injected. 
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3 . 2 . 2 .  Chr oma t o g r aph i c  Co l umn  

IONPAC® CS – 14 analytical column by DIONEX® is a moderately hydrophilic, 

carboxylate-functionalized cation exchanger. Its packing is an 8.0 µm diameter macroporous 

particle consisting of ethylvinylbenzene crosslinked with 55% divinylbenzene. The substrate 

is functionalized with hydrophilic carboxylic acid, which permits the elution of monovalent 

and divalent cations. Dimensions are 4 × 250 mm with 1300 µeq capacity. 

3 . 2 . 3 .  ELSD De t e c t o r  

Evaporative Light Scattering Detector (ELSD) was SEDEX 75 (S.E.D.E.R.E., 

Alfortville Cedex, France). The nebulizing gas was nitrogen. Appropriate pressure drop was 

applied at the end of the flow line in order to ensure the complete removal of the gas wastes. 

3 . 2 . 4 .  So f twa r e  

The data from HPLC system were compiled by Class VP Chromatography Data 

System, version 4.3; (Shimadzu, Germany). 

Statistics were performed by StatMost Analysis and Graphics, version 2.50 

(DataMost Corporation, Dataxiom Software Inc., LA, USA). 

3.3. PROCEDURES 

3 . 3 . 1 .  Gen e r a l  P r o c e du r e s  

Analytical column, which was utilized, is polymeric one, resistant to strongly acidic 

environment. After the measuring day column was carefully washed with mobile phase for 20 

minutes, flow rate 1.5 ml min-1 and it was stored in the same medium, since the applied 

mobile phase contained a strong acid (TFA). Before measurements, flow path was rinsed 

with mobile phase for about 15 min, until baseline noise became negligible (less than 5 mV at 

detector gain 11). 

In case of linear gradient elution, equilibration of the analytical column was required 

between runs. Equilibration was performed at a flow rate of 2.0 ml min-1 in two successive 

steps: (a) HPLC grade water for 15 minutes and (b) mobile phase for 15 minutes with 

composition identical to the composition of gradient program start.  
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Degassing was carried using Helium air-leak tube of another HPLC system for five 

minutes. 

The detector was necessary to switch on at least two hours before measurements, 

due to lamp aging, in order to stabilise the light intensity. When measuring sooner, there was 

a higher response of the detector which caused bigger areas of peaks and significant 

inaccuracy of results.  

3 . 3 . 2 .  Opt ima l  Mob i l e  Pha s e  and  Ch r oma t o g r aph i c  Pa r ame t e r s  

The optimum composition of mobile phase was aqueous solution of 0.85 ml l-1 

TFA for the analysis of Milk of Magnesia® and Tums® by the means of isocratic elution. For 

the analysis of Aludrox® linear gradient elution was used; from 0 min to 6th using TFA 

0.96 ml l-1 as mobile phase, from 6th min to 7th min linear gradient to aqueous TFA 6.4 ml l-1. 

Flow rate of mobile phase during the analyses was 1.0 ml min-1, corresponding to a 

back pressure of 1330 psi. Column was operating at laboratory temperature. 

Gain of the detector was set on 11. It was the best compromise between sensitivity 

and baseline noise occurrence. Its working temperature was 70 centigrade for the reason that 

mobile phase used contains a high portion of water which is not as volatile as organic 

solvents and analytes were not declinable to decomposing. Pressure of the nebulizing gas was 

3.5 Bars. 

3 . 3 . 3 .  Val i da t i o n  P r o c e du r e s  

The LC-ELSD analytical method was validated in terms of resolution and 

symmetry of chromatographic peaks, precision (repeatability and reproducibility), 

concentration range, correlation coefficient of calibration curve, detectability and accuracy.  

Since ELSD is not a linear detector, double logarithmic relations were established 

and correlation coefficients were determined for magnesium, calcium and aluminium by 

triplicate measurements of the corresponding chromatographic peaks of five standard 

solutions. 
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Repeatability of the method was evaluated by replicate measurements of standard 

solutions (n=3) and repeated analyses of pharmaceutical formulations (3 independent sub-

samples × 3 measurements). 

Reproducibility of the method was evaluated by the estimation of %RSD of the 

peak area of standard solutions and the slope of calibration curves obtained at three different 

days within a week, with 3 replicates per day. 

Detection limit was determined as the analyte concentration for which the area of 

the chromatographic peak was equal to 3.3 times the standard deviation of the most dilute 

standard and was practically equal to the concentration having S/N ratio equal to 3.3. 

Quantification limit was determined as the analyte concentration for which the 

area of the chromatographic peak was equal to 10 times the standard deviation of the most 

dilute standard and was practically equal to the concentration having S/N ratio equal to 10. 

Accuracy was evaluated by recovery experiments. Formulation samples were 

fortified by standard solutions at three concentration levels, with three samples being 

prepared at each level and measured in triplicate. Mean recovery and range of recovery values 

were calculated. Accuracy was also evaluated by comparison of the results for magnesium, 

calcium and aluminium analyzed by the Pharmacopoeia [3][5] and the proposed method. 

3 . 3 . 4 .  Pha rma c e u t i c a l  Fo rmu l a t i o n s  

Following pharmaceutical formulations were submitted to trials; Milk of Magnesia® 

and Tums® (both by GlaxoSmithKline) and Aludrox® (Wyeth Hellas AEBE). All three 

pharmaceutical formulations have registration in Greece. 

Milk of Magnesia® 

active substance: Magnesium Hydroxide 425 mg  in 5 ml 
excipients: Water 
 Calcium Hypochloride 
manufacturer: GlaxoSmithKline 
dosage form: Suspension 
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Since this is higher density suspension, the representative volume (15.0 ml) was 

required for sampling. This volume, containing 531.3 mg of Mg2+ (according to label 

content), was added by pipette into 250 ml volumetric flask with mobile phase in addition 

acidified by 3.5 ml of TFA in order to neutralize concentrated solution of Magnesium 

Hydroxide. Volumetric flask was put into ultrasonic bath for five minutes and after filled to 

punch mark in with mobile phase setting in 2125.1 µg ml-1 solution of Mg2+. Still very 

concentrated solution had to been diluted by mobile phase again. Volume of 10.0 ml was 

pipetted into 100 ml volumetric flask and was prepared 212.5 µg ml-1 solution of Mg2+ used 

for further particular runs dilutions. The volumes of 0.375 ml; 0.47 ml and 0.75 ml were 

taken by automatic pipette into 10 ml volumetric flasks, in order to gain run solutions of 

Mg2+ in concentrations 8.0 µg ml-1; 10.0 µg ml-1 and 15.9 µg ml-1. 

For every day, a new two-point calibration curve was constructed 

Tums® 

active substance: Calcium Carbonate 600 mg in 1 tablet 
 Magnesium Carbonate 125 mg in 1 tablet 
excipients: Sodium Bicarbonate 
 Malic Acid 
 Microtal DCE Sugar 
 Saccharin Sodium 
 Magnesium Stearate 
 Orange Flavour 
 Talc 
manufacturer: GlaxoSmithKline 
dosage form: chewing tablets 

 

Pre-treatment of sample started with weighting of 10 tablets. From this quantity, 

mean tablet was found (1.4974 g), after that were tablets finely pulverized in ceramic bowl. 

Calcium and magnesium were quantified separately in different days, because of greatly 

different content in formulation. 0.9996 g (for calcium trial) and 1.0004 g (for magnesium 

trial) of powder was dissolved in 100 ml volumetric flask by mobile phase (TFA 10 mM l-1) 

and additionally acidified by 0.80 ml of TFA according to calculations. This extra amount of 

acid was used in order to neutralize basic solution of carbonates. Generated stock solutions 

in concentration of 1603.9 µg ml-1 Ca2+ and 240.8 µg ml-1 Mg2+ (according to label content) 
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were sonicated for 15 min to release ions from insoluble excipients into solution. Turbidity of 

insoluble excipients was removed by centrifuging for 15 min with consequent membrane 

filtration (Millipore, 0.45 µm). Further dilutions of filtrated solutions were made taking 

0.1 ml; 0.25 ml; 0.4 ml for calcium and 0.4 ml; 0.65 ml; 0.9 ml for magnesium into 10 ml 

volumetric flasks for individual runs. Concentrations of 16.0 µg ml-1; 40.1 µg ml-1; 

64.2 µg ml­1 for calcium and 9.6 µg ml-1; 15.7 µg ml-1; 21.7 µg ml-1 for magnesium. 

For every day, a new two-point calibration curve was constructed. 

Aludrox® 

active substance: Aluminium Hydroxide 233.00mg in 1 tablet 
 Magnesium Hydroxide 83.46mg in 1 tablet 
excipients: Confectioner’s Sugar 
 Starch Maze 
 Talc 
 Calcium Stearate 
 Saccharin Sodium 
 Hydrogenated Vegetable Oil 
 Peppermint Oil 
 Flavour compound 
manufacturer: Wyeth Hellas AEBE 
dosage form: chewing tablets 

 

Ten tablets were weighed on analytical scales, mean tablet weight was found 

(0.9170 g) and after that were tablets finely pulverized in a ceramic bowl. Accurately 0.7036 g 

and 0.7005 g of the powder was added into 100 ml volumetric flasks for pre-treatment of 

two samples in different days. The tablet powder was dissolved in HPLC grade water with 

addition of 3.0 ml of hydrochloric acid 37%, in order to obtain entire quantity of ions from 

matrix. Gained solutions in concentration of 618.4 µg ml-1 respectively 615.7 µg ml-1 of Al3+ 

and 376.1 µg ml-1 respectively 374.5 µg ml-1 of Mg2+ were sonicated in ultrasonic bath for 

15 min in order to discorporate the aggregates. The volumetric flasks were filled with HPLC 

grade water up to the punch mark. The suspension was filtered through a membrane filter 

(Millipore, 0.45 µm) in order to get rid of insoluble particles of excipients and to gain the 

clear stock solutions of ions. The filtrate volume of 0.5 ml for each sample was taken by 

automatic pipette into 10 ml volumetric flask and diluted by mobile phase, in order to gain 
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solutions of 30.9 µg ml-1 and 30.8 µg ml-1 for aluminium; 18.8 µg ml-1 and 18.7 µg ml-1 for 

magnesium. 

For every day, a new two-point calibration curve was constructed. 



 30

4. RESULTS AND DISCUSSION 

4.1. METHOD OPTIMALIZATION 

4 . 1 . 1 .  Sepa r a t i o n  o f  Mg 2 +  and  Ca 2 +   

Standard solutions of magnesium acetate and calcium lactate were analysed in order 

to determinate the retention time of magnesium and calcium and their corresponding 

resolution in various TFA mobile phases (Table 4.1). The best result was achieved with TFA 

0.085 % (v/v) aqueous mobile phase, resulting sufficient difference in retention times 

(magnesium 7.0 min, calcium 7.9 min), good resolution (1.7) and symmetry (magnesium 0.9, 

calcium 0.9) was obtained. Lower concentration of TFA in mobile phase means extension of 

retention time, cut-down of peak area and downgrade of peak symmetry. Reversely higher 

concentration gives shorter time and much superior response with better symmetry, but 

unfortunately defies coincidental magnesium and calcium quantification. 

Improvement of separation was examined using an eluting ion of higher molecular 

weight (NFPA). In this case, a double separation mechanism was able to be performed: (a) 

cation exchange between metal cations and protons and (b) reversed phase chromatography 

due to the adsorption of the lipophilic complexes of [metal(NFPA)n]2-n to the polymeric 

stationary phase. Addition of NFPA increased retention time, but had undesirable influence 

on the peak symmetry (Table 4.1). Best results were obtained with TFA-NFPA mixed mobile 

phase, TFA 0.100 % (v/v) and NFPA 0.015 % (v/v), in which the NFPA was responsible 

for the adsorption procedure, while TFA provided the adequate mobile phase acidity for the 

cation exchange mechanism. 

Table 4.1 Influence of mobile phase composition on retention time, resolution and 
asymmetry factor for magnesium and calcium 

Retention time (min) Asymmetry Factor Mobile Phase 
Composition 

(% v/v) Magnesium Calcium 
Resolution 

Magnesium Calcium 

7.2 8.3 1.9 0.9 1.0 
7.0 7.9 1.7 0.9 0.9 

TFA 0.077 
0.085 
0.100 6.4 7.2 1.6 0.9 1.0 

TFA 
NFPA 

0.100 
0.015 6.8 7.7 1.8 1.0 1.0 
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Retention time (min) Asymmetry Factor Mobile Phase 
Composition 

(% v/v) Magnesium Calcium 
Resolution 

Magnesium Calcium 

TFA 
NFPA 

0.100 
0.031 9.2 10.7 1.7 0.8 1.0 

 

 
Figure 4.1 Typical chromatogram of magnesium (Rt=7.0 min); calcium (Rt=7.9 min) and 

noise peak in void volume using DIONEX® IONPAC® CS – 14 analytical column and aqueous 
mobile phase containing 0.085% (v/v) TFA. 

4 . 1 . 2 .  Sepa r a t i o n  o f  Or g an i c  An i on s  ( c i t r i c ,  a s c o r b i c ,  a s p a r t i c )  

Since occurrence of organic anions in pharmaceutical formulations is common, 

their separation was examined, by analysing standard stock solutions of ascorbic, aspartic and 

citric acid. Different concentrations of TFA, acetic acid and formic acid were examined, but 

separation of organic anions peaks was never adequate for ascorbate and aspartate. On the 

other hand, citrate was completely separated from ascorbate and aspartate. Organic anions 

are keeping similar retention time, practically independently on concentration of TFA, due to 

cation-exchange character of the column. Best separation was observed for mobile phase 

containing acetic acid 0.077 % (v/v). 
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Table 4.2  Influence of mobile phase composition on retention time for ascorbic, aspartic 
and citric acid 

Retention time (min) Mobile Phase 
Composition 

(% v/v) Ascorbate Aspartate Citrate 

2.5 2.9 3.2 
2.5 2.8 3.2 
2.6 2.8 3.4 

TFA 0.062 
0.077 
0.087 
0.092 2.5 2.7 3.2 

Formic Acid 0.077 2.6 2.9 3.5 
2.1 2.4 3.3 Acetic Acid 0.077 

0.092 2.2 2.4 3.4 

Table 4.3 Influence of mobile phase composition on resolution and asymmetry factor for 
ascorbic, aspartic and citric acid 

Resolution Asymmetry Factor Mobile Phase 
Composition 

(% v/v) Asc/Asp Asp/Cit Ascorbate Aspartate Citrate 

1.3 1.1 0.9 0.9 1.3 
1.2 1.3 1.0 0.9 1.1 
1.1 1.8 0.8 1.3 1.2 

TFA 0.062 
0.077 
0.087 
0.092 0.7 1.9 1.3 - 1.1 

Formic Acid 0.077 1.1 1.7 0.9 1.2 1.1 
1.2 3.6 1.0 1.4 1.0 Acetic Acid 0.077 

0.092 1.1 3.8 1.0 1.3 1.1 

 
Figure 4.2 Typical chromatogram of ascorbic acid (Rt=2.5 min), aspartic acid (Rt=2.7 min) 

and citric acid (Rt=3.2 min) using DIONEX® IONPAC® CS – 14 analytical column and aqueous 
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mobile phase containing 0.092% v/v TFA. There is not analyzed noise peak after the peaks of 
organic acid. 

4 . 1 . 3 .  Sepa r a t i o n  o f  Mg 2 + ;  Ca 2 +  and  A l 3 +  b y  L in e a r  Grad i e n t  
E lu t i o n  

The standard solutions of Magnesium acetate, Calcium hydroxide and Aluminium 

nitrate, dissolved in TFA 0.085 % (v/v) mobile phase, were used for experiments. Mixed run 

dilution of standards was injected in conditions, which were searched out as ideal for 

magnesium and calcium separation, aqueous TFA around 0.085 % (v/v), to observe 

separation of aluminium, but it was not eluted from the column. It was needed a gradient 

elution using high concentration of TFA, in order to suppress retention of aluminium in the 

column. Examination of several linear gradients (Table 4.4 and Table 4.5) led to optimal one: 

from 0 min to 6th min aqueous TFA 0.096 % (v/v) mobile phase, between 6th min and 

7th min was performed the linear gradient change to aqueous TFA 0.640 % (v/v). Resulting 

retention times were 6.2 min for magnesium, 7.1 min for calcium and 11.4 min for 

aluminium. Resolution was magnesium/calcium (1.8), calcium/aluminium (8.8) and 

asymmetry factors were magnesium (1.0), calcium (1.2) and aluminium (1.6). This linear 

gradient setting had sufficiently separated three metals in one run. Disadvantage was high 

retention time instability of magnesium and calcium, in the course of even slightly 

modification of TFA concentration. On the other hand retention time of aluminium was 

robust and method provided good detector response for all metals. 

Table 4.4 Influence of mobile phase composition and different linear gradient settings on 
retention times for magnesium, calcium and aluminium 

Retention time (min) Time 
(min) 

Mobile Phase Composition 
(% v/v) Magnesium Calcium Aluminium 

0-6 
6-7 

TFA 0.085 
TFA 0.310 6.9 7.8 13.7 

0-5.5 
5.5-7 

TFA 0.085 
TFA 0.462 7.9 9.1 11.7 

0-6.5 
6.5-8 

TFA 0.085 
TFA 0.462 7.2 8.3 12.7 

0-6 
6-7 

TFA 0.096 
TFA 0.640 6.2 7.1 11.4 
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Table 4.5 Influence of mobile phase composition and different linear gradient settings on 
resolution and asymmetry factor for magnesium, calcium and aluminium 

Resolution Asymmetry Factor Time 
(min) 

Mobile Phase Composition 
(% v/v) Mg2+/Ca2+ Ca2+/Al3+ Mg2+ Ca2+ Al3+ 

0-6 
6-7 

TFA 0.085 
TFA 0.310 1.7 5.4 0.9 1.2 1.4 

0-5.5 
5.5-7 

TFA 0.085 
TFA 0.462 1.9 3.6 1.0 1.1 1.5 

0-6.5 
6.5-8 

TFA 0.085 
TFA 0.462 1.9 6.2 1.0 1.1 1.3 

0-6 
6-7 

TFA 0.096 
TFA 0.640 1.8 8.8 1.0 1.2 1.6 

 

 
Figure 4.3 Typical chromatogram of magnesium(Rt=6.2 min), calcium (Rt=7.1 min) and 

aluminium (Rt=11.4 min) using DIONEX® IONPAC® CS – 14 analytical column and gradient 
elution program: from 0 min to 6 min 0.096% (v/v) TFA aqueous mobile phase and from 6 min to 
7 min linear gradient to aqueous 0.640% (v/v) TFA aqueous mobile phase. Small peak of TFA is 
visible (Rt=10.8 min) due to the gradient procedure. 

4 . 1 . 4 .  I nn e r  S t anda r d  Me th od  

Addition of calcium inner standard was used for Aludrox® formulation, since 

difficulties with quantification of magnesium appeared. It was used to prove that magnesium 

complexes with TFA are not adsorbing on lipophilic excipients of formulation, because 
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calcium forms similar complexes and should be adsorbed by the same mechanism. Recovery 

of calcium standard addition was 100%. 

4.2. VALIDATION 

4 . 2 . 1 .  Re s o l u t i o n  and  As ymme t r y  

Resolution ( R ) of two neighbouring peaks was studied on standard solutions, 

according to the Equation 4.1, 

Equation 4.1 
21
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where 1Rt  and 2Rt  are the retention time of the peaks and 1w  and 2w  the 

corresponding peak width at 10% of the peak height. 

Asymmetry factor ( sA ) determined according to the Equation 4.2 in 0.1 high ( h ) 

of the peak, 

Equation 4.2 
b
aAs =  

where a is the front part and b is the tail path of the peak width in 0.1 high, splitted 

by the middle line of the peak.  

Results are presented on Table 4.6 and Table 4.7 There is a lower resolution, than 

optimal 2.0, between magnesium and calcium. However the time difference is still sufficient 

for simultaneous quantification of both metals. The standards for isocratic elution were 

measured in different days, that causing nuances in chromatographic conditions (especially 

composition of mobile phase). Asymmetry factors values are in the optimal range (0.9 – 1.2) 

except of aluminium (1.6). This is probably caused by the aging of chromatographic column. 

Table 4.6 Resolution and asymmetry for magnesium and calcium; isocratic elution 

 Magnesium Calcium 

Concentration (µg ml-1) 7.8 14.4 
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 Magnesium Calcium 

Mobile phase (% v/v) TFA 0.085 TFA 0.085 

Retention time (min) 7.0 7.9 

Width 10% 0.52 0.53 

Resolution 1.7 

Asymmetry 0.9 0.9 

Table 4.7 Resolution and asymmetry factors for magnesium, calcium and aluminium; linear 
gradient elution 

 Magnesium  Calcium  Aluminium 

Concentration (µg ml-1) 9.9  14.4  14.9 

Mobile phase (% v/v) *  *  * 

Retention time (min) 6.2  7.1  11.4 

Width 10% 0.46  0.53  0.44 

Resolution  1.8  8.8  

Asymmetry 1.0  1.2  1.6 

* gradient elution program: from 0 min to 6 min 0.096% (v/v) TFA aqueous mobile 

phase and from 6 min to 7 min linear gradient to aqueous 0.640% (v/v) TFA aqueous 

mobile phase 

4 . 2 . 2 .  Lin ea r i t y  and  Ran g e  

Very good correlation was achieved with the well-established exponential 

relationship between peak area ( A ) and analyte mass (m ) (Equation 4.3). The linearity of the 

method was calculated by using the linear least squares regression technique of the logarithm 

of peak area ( A ) versus the logarithm of analyte concentration ( c ) (Equation 4.4), 

Equation 4.3 bmaA ×=     

Equation 4.4 acbA logloglog +=  

where a and b are coefficients depending on the ELSD instrumentation and on 

nebulizative and evaporative processes (flow rates of the nebulization gas, flow rate of mobile 

phase, composition of the mobile phase, evaporation temperature, etc.). 
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Standard solutions were measured in triplicate. The regression data are presented in 

Table 4.8. The calibration curve of magnesium using linear gradient elution is depicted in 

Figure 4.4. 

Table 4.8 Regression data of magnesium, calcium and aluminium 
 Concentration Range

(µg ml-1) 
Intercept 

(±SD) 
Slope 
(±SD) 

Correlation 
Coefficient 

Magnesium 
(isocratic elution) 

8.0 - 24.0 4.922 
(±0.035) 

1.470 
(±0.031) 0.9993 

Magnesium 
(gradient elution) 

6.0 - 29.8 4.855 
(±0.032) 

1.554 
(±0.026) 0.9995 

Calcium 14.4 - 71.9 4.291 
(±0.053) 

1.584 
(±0.033) 0.9993 

Aluminium 9.9 - 49.2 5.247 
(±0.027) 

1.148 
(±0.019) 0.9996 

 

log A = 4.855 + 1.554 log c
R2 = 0.9995
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Figure 4.4 Calibration curve of  magnesium; linear gradient elution 

4 . 2 . 3 .  Pr e c i s i o n  

Repeatability of the method was evaluated by replicate measurements of standard 

solutions, n=3-5 (Table 4.9). Reproducibility of the method was evaluated by the estimation 

of % RSD of the slope of calibration curves obtained at three different days within a week, 

with 3 replicates per day (Table 4.10). 
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Table 4.9 Precision of HPLC-ELSD determination of magnesium, calcium and aluminium 
 Concentration Level 

(µg ml-1) 
% RSD n 

Magnesium   8.0 2.01 4 
Calcium 14.4 2.42 5 
Aluminium   9.9 5.73 3 

Table 4.10 Slope % RSD of HPLC-ELSD calibration curves of magnesium, calcium and 
aluminium 

 Day 1 Day 2 Day 3 % RSD 
Magnesium 
(isocratic elution) 

1.466 1.596 1.605 4.99 

Magnesium 
(gradient elution) 

1.554 1.646 1.544 3.55 

Calcium 1.585 1.601 1.499 3.50 
Aluminium 1.148 1.259 1.197 4.65 

4 . 2 . 4 .  De t e c t a b i l i t y  

Detection and quantification limits, with statement about number of replication, are 
presented in Table 4.11. 

Table 4.11 Detectability of HPLC-ELSD determination of magnesium, calcium and 
aluminium 

 LOD (µg ml-1) LOQ (µg ml-1) n 
Magnesium 
(isocratic elution) 

1.25 2.65 4 

Magnesium 
(gradient elution) 

0.58 1.18 3 

Calcium 2.86 5.76 5 
Aluminium 2.03 5.45 3 

 

Owing to good properties of the detector, all of the assessed ions can be 

determined very sensitively with ELS detection.  
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4.3. RESULTS OF ANALYSES 

4 . 3 . 1 .  Mi lk  o f  Magn e s i a ®  

The formulation was analysed according to the new HPLC-ELSD method. The 

results obtained from the assay of magnesium revealed conformance to the European 

Pharmacopoeia [3]. The general chapter of pharmacopoeia is requiring the active substance 

content in formulation within the range of 95.0 – 105.0 % of the labelled content. Individual 

values are presented Table 4.12. Typical chromatogram of the analysis is depicted on Figure 

4.7. 

Table 4.12 Comparison of the HPLC-ELSD assay results to the label content; Milk of 
Magnesia® 

Analyte Content in 
Formulation 

Sample Run 
Concentration  

(µg ml-1) 

Content in 
Five ml 

(mg) 

Percentage of Label 
Concentration 

(%) 

n

Magnesium 
(177.1 mg in 5 ml) 

 8.0 
10.0 
15.9 

169.2 
177.9 
179.8 

 95.55 
100.48 
101.53 

3 
3 
3

 

The accuracy of the new HPLC-ELSD method was evaluated by recovery 

experiments. Samples were fortified by adding known amounts of magnesium standard. Five 

spiked samples were prepared. The good accuracy of the proposed method was confirmed 

since the individual recovery values are within the range of 95 – 105 % (except of one 

measurement, which is minutely outstanding) (Table 4.13). 

Table 4.13 Spiked samples recovery; Milk of Magnesia® 
 Formulation 

Concentration 
(µg ml-1) 

Standard 
Concentration 

(µg ml-1) 

Recovery 
 

(%) 

Mean Recovery
 

 (%) 

n
 

Magnesium  4.0 
10.0 
18.0 
  4.0 
  4.0 

  4.0 
  4.0 
  4.0 
10.0 
18.0 

 98.68 
101.03 
100.25 
105.01 
103.41 

101.68 

3 
3 
3 
3 
2

 

Further study of the matrix effect on the determination was carried out by dilution 

experiments (determination of magnesium content using a varying dilution factor D 
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(Vinitial/Vfinal) at three different levels). The correlation curve of the concentration found (in 

the diluted solution) versus D was linear (r > 0.95) with a slope equal to the content of the 

formulation and a statistically (proven by t-test) zero intercept. Similarly, the correlation curve 

of formulation content found versus D was very linear with statistically (proven by t-test) 

zero slopes. These results confirmed the absence of any constant or proportional determinate 

error due to matrix (excipients) effect (Table 4.14; Table 4.15 and Table 4.16). 

Table 4.14 Dependence of run concentration and formulation concentration on dilution 
factor; Milk of Magnesia® 

 1/Dilution Factor Run Concentration 
(µg ml-1) 

Formulation Concentration 
(µg ml-1) 

Magnesium 0.00375 
0.00470 
0.00750 

  7.6 
10.0 
16.2 

33842.5 
35588.3 
35961.0 

Table 4.15 Dependence of run concentration on dilution factor; Milk of Magnesia® 
 Parameter 

a 
Std.Dev. 

a 
ta

* Parameter 
b 

Std.Dev. 
b 

Correlation 
Coefficient

Magnesium 0.76 0.41 1.862 2264.33 73.75 0.9994 
* For a 3-point curve, the limit of t-test value is 4.303 with the confidence 95%. 

 
Figure 4.5 Dependence of run concentration on dilution factor; Milk of Magnesia® 
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Table 4.16 Dependence of formulation concentration on dilution factor; Milk of Magnesia® 
 Parameter a Std. Dev. a Parameter b Std.Dev. b tb

* 

Magnesium 32648.53 1911.22 466846.96 344372.79 1.356 
* For a 3-point curve, the limit of t-test value is 4.303 with the confidence 95%. 

 
Figure 4.6 Dependence of formulation concentration on dilution factor; Milk of Magnesia® 

 
Figure 4.7 Typical chromatogram of Milk of Magnesia® trial using DIONEX® IONPAC® 

CS – 14 analytical column and isocratic elution 0.085% (v/v) TFA aqueous mobile phase. 
Magnesium (Rt=6.6 min) and not analyzed noise peak ahead of magnesium peak. 
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4 . 3 . 2 .  Tums  ®  

The formulation was analysed according to the new HPLC-ELSD method. The 

results obtained from the assay of calcium and magnesium revealed conformance to the 

European Pharmacopoeia [3]. The general chapter of pharmacopoeia is requiring the active 

substance content in one tablet within the range of 95.0 – 105.0 % of the labelled content, 

for tables its weight is greater than 250 mg. Individual values are presented in Table 4.17. A 

typical chromatogram of the analysis is depicted on Figure 4.10. 

Table 4.17 Comparison of the HPLC-ELSD assay results to the label content; Tums® 
Analyte Content in 

Formulation 
Sample Run 

Concentration  
(µg ml-1) 

Content in 
One tablet 

(mg) 

Percentage of Label 
Concentration 

(%) 

n

Calcium 
(240.3 mg in 1 tablet) 

16.0 
40.1 
64.2 

240.7 
251.9 
242.3 

100.16 
104.83 
100.86 

3 
3 
2

Magnesium 
(36.0 mg in 1 tablet) 

  9.6 
15.7 
21.7 

36.3 
37.2 
36.1 

100.67 
103.22 
100.23 

4 
2 
2

 

The accuracy of the new HPLC-ELSD method was evaluated by recovery 

experiments. Samples were fortified by adding known standard amounts of calcium and 

magnesium. For each component, five spiked samples were prepared. An excellent accuracy 

of the proposed method was confirmed since the individual recovery values are within the 

range of 97 – 103 % (Table 4.18). 

Table 4.18 Spiked samples recovery; Tums® 
 Formulation 

Concentration 
(µg ml-1) 

Standard 
Concentration 

(µg ml-1) 

Recovery
 

(%) 

Mean Recovery 
 

(%) 

n
 

Calcium  16.0 
16.0 
16.0 
32.1 
48.1 

14.4 
28.8 
43.2 
14.4 
14.4 

102.67 
101.89 
  99.43 
100.38 
101.86 

101.25 

3 
2 
2 
3 
2

Magnesium  4.0 
10.0 
18.0 
  4.0 
  4.0 

 4.0 
 4.0 
 4.0 
10.0 
18.0 

102.28 
101.94 
  97.63 
  98.09 
101.59 

100.31 

2 
2 
2 
2 
2



 43

 

Further study of the matrix effect on the determination was carried out by dilution 

experiments (determination of calcium and magnesium content using a varying dilution 

factor D (Vinitial/Vfinal) at three different levels). The correlation curve of the concentration 

found (in the diluted solution) versus D was linear (r > 0.95) with a slope equal to the 

content of the formulation and a statistically (proven by t-test) zero intercept. Similarly, the 

correlation curve of formulation content found versus D was very linear with statistically 

(proven by t-test) zero slopes. These results confirmed the absence of any constant or 

proportional determinate error due to matrix (excipients) effect (Table 4.19; Table 4.20 and 

Table 4.21). 

Table 4.19 Dependence of run concentration and formulation concentration on dilution 
factor; Tums® 

 1/Dilution 
Factor 

Run Concentration 
(µg ml-1) 

Formulation Concentration 
(µg ml-1) 

Calcium 0.010 
0.025 
0.040 

16.1 
42.0 
64.7 

160713.0 
168208.7 
161836.6 

Magnesium 0.040 
0.065 
0.090 

  9.7 
16.2 
21.7 

  24229.0 
  24842.1 
  24123.6 

 

Table 4.20 Dependence of run concentration on dilution factor; Tums® 
 Parameter 

a 
Std. Dev. 

a 
ta

*
 Parameter 

b 
Std. Dev. 

b 
Corelation 
Coefficient 

Calcium 0.40 1.77 0.2227 1621.67 63.70 0.9992 
Magnesium 0.23 0.69 0.3332   240.40 10.16 0.9991 

* For a 3-point curve, the limit of t-test value is 4.303 with the confidence 95%. 
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Figure 4.8 Dependence of run concentration on dilution factor; Tums® 

Table 4.21 Dependence of formulation concentration on dilution factor; Tums® 
 Parameter a Std. Dev. a Parameter b Std. Dev. B tb

*
 

Calcium 162649.67 7429.90 37466.67 266889.78 0.1404 
Magnesium   24534.83 1047.09   2100.00   15369.06 0.1366 

* For a 3-point curve, the limit of t-test value is 4.303 with the confidence 95%. 

      
Figure 4.9 Dependence of formulation concentration on dilution factor; Tums® 
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Figure 4.10 Typical chromatogram of Tums® trial using DIONEX® IONPAC® CS – 14 

analytical column and isocratic elution 0.085% (v/v) TFA aqueous mobile phase. Magnesium 
(Rt=6.8 min); calcium (Rt=7.7 min); peaks of excipients (Rt=2.0 min and Rt=3.0 min) and not 
analyzed noise peak between peaks of second excipient and magnesium.  

4 . 3 . 3 .  Alud r ox ®  

The formulation was analysed according to the new HPLC-ELSD method. The 

results obtained from the assay of aluminium revealed conformance to the European 

Pharmacopoeia [3]. The general chapter of pharmacopoeia is requiring the active substance 

content in one tablet within the range of 95.0 – 105.0 % of the labelled content, for tables its 

weight is greater than 250 mg. 

Detected quantity of magnesium was lower than was declared. Despite of maximal 

effort to find the reason for low gain of magnesium from the formulation, it was not 

successful. The supposition that magnesium complexes with TFA may be retented in 

lipophilic excipients and removed by centrifuging was not confirmed. Calcium inner standard 

technique was used, but calcium standard recovery from sample was 100%. The most 

probable explication is the lower magnesium content or magnesium occurrence in different 

form, than is declared on the formulation label. It’s not possible to discover the truth reason 

without the detailed date about formulation composition from the producer or confrontation 
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with another analytical method. Individual values are presented in Table 4.22. A typical 

chromatogram of the analysis is depicted on Figure 4.11. 

Table 4.22 Comparison of the HPLC-ELSD assay results to the label content; Aludrox® 
Analyte Content in 

Formulation 
Sample Run 

Concentration  
(µg ml-1) 

Content in 
One Tablet 

(mg) 

Percentage of Label 
Concentration 

(%) 

n

Aluminium 
(80.6 mg in 1 tablet) 

29.7 
30.3 

77.4 
79.4 

96.03 
98.54 

1 
1

Magnesium 
(49.0 mg in 1 tablet) 

11.9 
12.3 

31.1 
32.3 

63.50 
65.93 

1 
1

 

The accuracy of the new HPLC-ELSD method was evaluated by recovery 

experiments. Samples were fortified by adding known standard amounts of aluminium and 

magnesium. For each component, four spiked samples were prepared. A good accuracy of 

the proposed method was confirmed since the individual recovery values for aluminium are 

within the range of 95 – 105 % (except of one measurement) Recovery values of magnesium 

were out of the range (Table 4.18). 

Table 4.23 Spiked samples recovery; Aludrox® 
 Formulation 

Concentration 
(µg ml-1) 

Standard 
Concentration 

(µg ml-1) 

Recovery
 

(%) 

Mean Recovery 
 

(%) 

n
 

Aluminium 32.0 
18.5 
12.3 
12.3 

  4.9 
  7.5 
  7.5 
15.0 

101.02 
  98.82 
  94.69 
  98.99 

98.38 

1 
1 
1 
1

Magnesium 19.5 
11.2 
  7.5 
  7.5 

  3.2 
  5.0 
  5.0 
  5.0 

  71.48 
  72.88 
  69.03 
  70.92 

71.08 

1 
1 
1 
1
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Figure 4.11 Typical chromatogram of Aludrox® trial using DIONEX® IONPAC® CS – 14 

analytical column and gradient elution program: from 0 min to 6 min 0.096% (v/v) TFA aqueous 
mobile phase and from 6 min to 7 min linear gradient to aqueous 0.640% (v/v) TFA aqueous 
mobile phase. Magnesium (Rt=6.2 min); aluminium (Rt=11.3 min); peaks of excipients 
(Rt=2.0 min; Rt=7.2 min and Rt=4.7 min); peak of TFA (Rt=10.8 min) and not analyzed noise 
around 9. min. 

 
Figure 4.12 Typical chromatogram of Aludrox® with addition of calcium inner standard using 

DIONEX® IONPAC® CS – 14 analytical column and gradient elution program: from 0 min to 6 
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min 0.096% (v/v) TFA aqueous mobile phase and from 6 min to 7 min linear gradient to aqueous 
0.640% (v/v) TFA aqueous mobile phase. Magnesium (Rt=6.2 min); calcium (Rt=7.1 min); 
aluminium (Rt=11.4 min); peaks of excipients (Rt=2.0 min and Rt=4.8 min); peak of TFA 
(Rt=10.8 min). 
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5. CONCLUSIONS 

According to pharmacopoeia two or more individual methods are required for 

simultaneous determination of metal cations. Cation exchange HPLC-ELSD isocratic and 

linear gradient methods developed and validated in this paper shows, that simultaneous 

determination of magnesium and calcium (isocratic method) or magnesium, calcium and 

aluminium (linear gradient) can be reliably achieved. Also standards of organic acids were 

examined in order to observe separation abilities of cation exchange analytical column in this 

application, because metal cations in form of organic salts or inorganic salt with certain 

organic component are commonly contained in pharmaceutical formulations. Nevertheless 

no method simultaneously determining both inorganic cation and organic anion had been 

published. This paper reveals strong advantage of this method-potential efficiency to 

determine metal cations and organic anions in one injection. However this utilization of 

HPLC-ELSD methods must be further investigated and validated before its application on 

pharmaceutical formulations. HPLC-ELSD methods are able to determine several analytes in 

one step, simply, rapidly and for low cost. They have very easy sample pretreatment, 

requiring no derivatization of analyte as it is common for spectrometric methods. Direct 

determination saves the time and lowers the expenses for analyses. HPLC-ELSD method 

validation data are fully acceptable for active substance analysis of pharmaceutical 

formulations.  



 50

6. SOUHRN 

Magnesium a kalcium hrají esenciální roli v existenci živých organismů. Magnesium, 

se účastní kolem 300 základních enzymatických reakcí, je důležité pro energetický 

metabolismus, zastává klíčovou roli v neurotransmisi, při imunitních funkcích a regulaci 

neuromuskulární aktivity srdce. Kalcium kromě strukturální, elektrofyziologické a 

intracelulárně regulační funkce je také kofaktorem extracelulárních enzymů a regulačních 

proteinů. Rovnováha těchto minerálů v těle naplňuje důležitou podmínku potřebnou 

k udržení zdraví. Jejich nedostatek nebo naopak nadbytek v organismu je spojen s řadou 

vážných syndromů a onemocnění. Aluminium neplní žádnou fyziologickou funkci, důležité je 

z hlediska jeho toxikologie. Magnesium, kalcium a aluminium jsou využívány samostatně 

nebo v kombinaci ve formě různých solí, oxidů, hydroxidů nebo komplexů při výrobě 

mnoha farmaceutických přípravků nebo potravinových doplňků. 

Český lékopis 2005 používá ke stanovení magnesia, kalcia a aluminia 

chelatometrickou titraci edetanem disodným (přímou nebo zpětnou). Další metody užívané 

k detekci magnesia, kalcia nebo aluminia jsou například ASS, ET-AAS, SIA s UV-VIS 

detekcí, multikomponentní FIA s detekcí diodovým polem, FIA za iontově selektivní 

elektrodové detekce, iontově selektivní elektrody, iontová chromatografie s piezoelektrickou 

detekcí, ICP-AES nebo MS, kapilární isotachoforéza a jiné elektrogravimetrické, 

coulometrické, polarografické, voltmetrické nebo thermogravimetrické metody. Používané 

metody bývají často spojeny s řadou nevýhod. Vzorky kovových kationů je například nutné 

před stanovením náročně a zdlouhavě upravovat nebo metoda vyžaduje drahé vybavení, 

proto bylo jedním z cílů této práce vyvinout a validovat jednoduchou a rychlou přímou 

metodu bez vysokých nároků na vybavení. 

Metoda je založena na spojení iontově výměnné HPLC s ELSD (Evaporative Light 

Scattering Detector). ELS detektor je quasi-univerzální detektor, který v současné době 

nachází stále širší uplatnění, a to především u analytů, které nemají ve své molekule 

chromoforové skupiny a nemohou být tudíž bez derivatizace detekovány 

spektrofotometricky. Oproti ostatním univerzálním detektorům, jako např. refraktometrický 

(RID) nebo MS, vykazuje určité přednosti: a) kompatibilita s gradientovou elucí (na rozdíl od 
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RID); b) podstatně lepší detektabilitu ve srovnání s RID (běžný limit detekce se pohybuje 

v nanogramových množstvích, v závislosti na těkavosti a molekulové hmotnosti); c) nízké 

náklady a snadná obsluha (na rozdíl od hmotnostního spektrometru). Nicméně ELSD 

vykazuje také určité nevýhody. Tou hlavní je požadavek na těkavost mobilní fáze. Nesmí být 

použity netěkavé reagenty, pufry ani jiné složky mobilní fáze. Výběr vhodných kyselin a bazí 

se tím značně omezuje; mezi často používané patří kyselina octová, mravenčí, triflouroctová, 

pentaflouropropionová a heptaflouromáselná a jejich amonné soli v nízkých koncentracích 

(<0,1 M). ELSD je destruktivní detektor, proto musí být poslední v řadě, pokud je použit 

v sérii s jinými detektory. Vykazuje také nedostatečnou detektabilitu pro analýzu např. 

nečistot a reziduí, které se vyskytují v množstvích ng ml-1 (LOQ je obvykle vyšší než 

0,1 µg ml-1). Tyto vzorky je obvykle třeba upravit prekoncentrací, což bývá obtížné, neboť 

není možné použít netěkavé reagencie. Základní princip detektoru sestává ze tří následných 

kroků: a) nebulizace chomatografického eluentu; b) vypaření mobilní fáze a c) detekce 

netěkavých částic na základě rozptylu světla. 

Pro separaci byla použita kationtově výměnná analytická kolona IONPAC® CS – 14 

od firmy DIONEX® s karboxylovými funkčními skupinami. 

Dobré rozlišení píků hořčíku a vápníku bylo kritickou podmínkou při hledání 

optimálního složení mobilní fáze. Nejlépe se osvědčila vodná mobilní fáze s TFA 

v koncentraci 0,085 % (v/v). Vyzkoušena byla také kombinace TFA/NFPA, ale rozdíly 

v retenčních časech a rozlišení byly minimální (Table 4.1). Předmětem výzkumu byly i 

organické aniony, proto proběhlo testování separační schopnosti metody v případě 

organických kyselin (Table 4.2, Table 4.3). Používaná analytická kolona je primárně určena 

k analýze jednomocných a dvojmocných kationů, přesto se podařilo užitím lineárního 

gradientu stanovit hliník. Program lineárního gradientu začínal s koncentrací 0,096% (v/v) 

TFA ve vodné mobilní fázi a mezi 6. – 7. minutou od nástřiku se koncentrace plynule 

změnila na 0,640% (v/v) TFA. V jednom měření je takto možné stanovit hořčík, vápník i 

hliník (Table 4.4, Table 4.5). 

Vyvinuté metody se podařilo úspěšně validovat pro užití v analýze léčivých 

přípravků. Přípravky obsahující hořčík a/nebo vápník (Milk of Magnesia®, Tums®) byly 

analyzovány metodou isokratickou, k analýze léčivých přípravku obsahujícího hliník 
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(Aludrox®) byla použita lineárně gradientová metoda. Pro obě metody byly určeny validační 

parametry rozlišení a asymetrie (Table 4.6, Table 4.7), linearita a rozsah (Table 4.8), přesnost 

z hlediska opakovatelnosti (Table 4.9) a reprodukovatelnosti (Table 4.10), limity detekce a 

kvantifikace (Table 4.11). 

Validované metody byly použity k analýze tří léčivých přípravků registrovaných 

v Řecku. Jednalo se o suspenzi Milk of Magnesia®, účinná látka: hydroxid hořečnatý 425 mg 

v 5 ml suspenze; žvýkací tablety Tums®, účinné látky: uhličitan vápenatý 600 mg a uhličitan 

hořečnatý 125 mg v 1 tabletě; žvýkací tablety Aludrox®, účinné látky: hydroxid hlinitý 233 mg 

a hydroxid horečnatý 83 mg v 1 tabletě (viz 3.3.4 Pharmaceutical Formulations). Při analýze 

se porovnávaly naměřené koncentrace iontů v přípravku s údajem od výrobce. Podle 

požadavků řeckých norem pro registrované léčivé přípravky musí být údaje ve shodě 

v rozmezí 95 - 105% obsahu. Tři vzorky z každého léčivých přípravků ve třech různých 

koncentracích byly změřeny většinou ve třech replikacích. Obsahovému kritériu odpovídaly 

všechny kovové kationy (Table 4.12 a Table 4.17) s výjimkou hořčíku u přípravku Aludrox® 

(Table 4.22). Důvod nižšího naměřeného obsahu v léčivém přípravku se nepodařilo zjistit. 

Poté co byla vyloučena adsorpce komplexů hořečnatých kationů s TFA na lipofilní excipienty 

léčivého přípravku změnou úpravy vzorku a použitím vnitřního standardu vápníku, je možné 

uvažovat o nepřesnosti v udání složení ze strany výrobce. Případně by bylo nutné pokusit se 

stanovit hořečnaté kationy jinou metodou a porovnat zjištěné výsledky. Dalším předmětem 

analýzy bylo měření pěti vzorků s přídavkem standardu příslušného kationu. Stanovení 

proběhlo většinou ve třech replikacích a opět vyhovovaly všechny vzorky kromě hořčíku u 

přípravku Aludrox® (Table 4.13, Table 4.18 a Table 4.23). Z naměřených údajů (Table 4.14, 

Table 4.19) byla pomocí t-testu hodnocena významnost odchylky u parametru a od nulové 

hodnoty pro závislost koncentrace vzorku na obrácené hodnotě jeho zředění (Table 4.15, 

Table 4.20) a významnost odchylky u parametru b od nulové hodnoty pro závislost 

koncentrace formulace na obrácené hodnotě jeho zředění (Table 4.16, Table 4.21). Všechny 

hodnoty byly menší než 4,303; což je maximální hodnota předepsaná pro tři měření 

zajišťující konfidenční interval 95%. 

Přestože hořčík a vápník se v léčivých přípravcích často vyskytují ve 

formě organických solí nebo přípravek s anorganicky vázaným kovem obsahuje navíc 

organický anion, nebyla dosud publikovaná žádná metoda stanovující anorganický kation i 
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organický anion současně. Každý z iontů bylo potřeba kvantifikovat odděleně. Tato práce 

poskytuje údaje pro další výzkum v oblasti, tak aby bylo možno s nenáročným vybavením 

stanovit v jednom nástřiku kationický i anionický komponent, metodu validovat a v další fázi 

ji aplikovat na farmaceutické přípravky. Prezentovaná metoda dokazuje, že hořčík, vápník a 

hliník lze, volbou správných podmínek, spolehlivě separovat a kvantifikovat využitím iontově 

výměnné chromatografie, za současného výskytu anorganického anionu. Měření standardů 

organických kyselin (aspartát, askorbát, citrát) teoreticky dokazuje, že by ani výskyt 

organického anionu v přípravku neměl bránit současnému stanovení kationické i anionické 

složky účinné látky léčivého přípravku. Hlavní výhodou metody je rychlost, snadná úprava 

vzorků, značná přesnost, dostatečná citlivost a nízké náklady na přístrojové vybavení. 



 54

7. REFERENCES 

[1] A. Abarca, E. Canfranc, I. Sierra, M.L. Marina, J. Pharm. Biomed. Anal. 25 (2001) 941-

945. 

[2] E.N. Whitney, S.R. Rolfes, Understanding Nutrition, 9th ed., Wadsworth Thomson 

Learning, Australia, 2002. 

[3] European Pharmacopoeia, 5th Edition, Council of Europe, Strasbourg, France. 

[4] United Pharmacopoeia, United States Pharmacopeial Convention, Inc. Rockville, MD, 

20852, USA. 

[5] Czech Pharmacopoeia 2005, 1st Edition, Czech Ministry of Health, Prague, Czech 

Republic. 

[6] NIH Consensus Conference, Optimal Calcium Intake, JAMA 272(24) (1994) 1942-

1948. 

[7] C.F. Garland, F.C. Garland, E.D. Gorham, Am. J. Clin. Nutr., 54(1 Suppl.) (1991) 193S-

201S.  

[8] G.J. Buonopane, A. Kilara, J.S. Smith, R.D. McCarthy, J. Am. Coll. Nutr., 11 (1992) 56-

67. 

[9] B. Nehru, P. Anand, J. Trace Elem. Med. Biol. 19 (2005) 203-208. 

[10] M. Kawahara., J. Alzheimers Dis., 8 (2005) 171-182, discussion 209-15.  

[11] A. Becaria, A. Campbell, S.C. Bondy, Toxicol. Ind. Health., 18 (2002) 309-320. 

[12] Y.K. Chau, Analyst, 117 (1992) 571-575. 

[13] R.M. Smith, Anal. Proc. (London), 21 (1984) 73-75. 

[14] L. Ebdon, S. Hill, R.W. Ward, Analyst, 112 (1987) 1-16. 

[15] G. Schmuckler, J. Liq. Chromatogr., 10 (1987) 1887-1901. 

[16] J. Cheng, X. Shang, Fenxi-Huaxue, 18  (1990) 878-886.  

[17] A.R. Timerbaev, O.M. Petrukhim, Zh. Anal. Khim., 46  (1991) 213-224.  

[18] K. Robards, P. Starr, E. Patsalides, Analyst, 116 (1991) 1247-1273.  

[19] Z. Yi, G.S. Zhuang, P.R. Brown, J. Liq. Chromatogr., 16  (1993) 3133-3170. 

[20] P.C. d’Haese, G.F. Landeghem, L.V. Lamberts, M.E. De-Broe, Mikrochim. Acta, 120 

(1995) 83-90.  

[21] H. Garraud, A. Woller, P. Fodor, O.F.X. Donard, Analusis, 25 (1997) 25-31.  



 55

[22] L.A. Ellis, D.J. Roberts, J. Chromatogr. A., 774 (1997) 3-19. 

[23] A. Makarov, J. Szpunar, Analusis, 26 (1998) M44-M48. 

[24] W. Liu, H.K. Lee, J. Chromatogr. A., 834 (1999) 45-63. 

[25] S.J. Hill, L.J. Pitts, A.S. Fischer, Trends Anal. Chem., 19 (2000) 120-126. 

[26] J. Szpunar, Analyst, 125 (2000) 963-988.  

[27] R.N. Collins, J. Chromatogr. A., 1059 (2004) 1-12. 

[28] F.R.P. Rocha, P.B. Martelli, B.F. Reis, Talanta, 55 (2001) 861. 

[29] K.A. Idriss, H. Sedaira, H.M. Ahmed, Talanta, 54 (2001) 369. 

[30] B.-S. Yu, Q.-G. Yuan, L.-H. Nie, S.-Z. Yao, J. Pharm. Biomed. Anal., 25 (2001) 1027. 

[31] Z. Yang, X. Hou, B.T. Jones, D.C. Sane, M.J. Thomas, D.C. Schwenke, Microchim. J., 

72 (2002) 49. 

[32] J. Dombovari, J.S. Becker, H.-J. Dietze, Int. J. M. Spectro., 202 (2000) 231. 

[33] V.K. Gupta, S. Chandra, R. Mangla, Sens. Actuators B, 86 (2002) 235. 

[34] K.D. Jo, P.K. Dasgupta, Talanta, 60 (2003) 131. 

[35] N.A. Chaniotakis, J.K. Tsagatakis, E.A. Moschou, S.J. West, X. Wen, Anal. Chim. Acta, 

356 (1997) 105. 

[36] O. Hernandez, F. Jimenez, A.I. Jimenez, J.J. Arias, J. Havel, Anal. Chim. Acta, 320 

(1996) 177. 

[37] K. Soltyk, A. Lozak, P. Ostapczuk, Z. Fijalek, J. Pharm. Biomed. Anal. 32 (2003) 425-

432. 

[38] J.F. van Staden, R.E. Taljaard, Anal. Chim. Acta 323 (1996) 75-85. 

[39] S. Fanali, M. Cristalli, M. G. Quaglia, J. Chromatogr., 472 (1989) 441-444. 

[40] T. Guray, Ü.D. Uysal, T. Gedikbey, A.A. Huseyinli, Anal. Chim. Acta 545 (2005) 107–

112. 

[41] N.C. Megoulas, M.A. Koupparis, Critical Rev. Anal. Chem., 35 (2005) 301-316. 


