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1. ABSTRACT 

OBJECTIVES:  
Standard blood flow rates for cardiopulmonary bypass have been assumed to be the same for 
awake cardiac surgery with thoracic epidural anesthesia as for general anesthesia. However, 
compared to general anesthesia, awake cardiac surgery with epidural anesthesia may be 
associated with higher oxygen consumption due to missing effect of general anesthetics. This 
may result in insufficient oxygen delivery and lactic acidosis when standard blood flow rates 
were used. The primary aim of our study was to investigate if standard blood flow rates are 
adequate in awake cardiac surgery. The secondary aim was to evaluate postoperative clinical 
outcomes of patients undergoing awake cardiac surgery. 
METHODS:   
Forty-seven patients undergoing elective on-pump cardiac surgery were assigned to receive 
either epidural (Group TEA, n=17), combined (Group TEA-GA, n=15) or general (Group GA, 
n=15) anesthesia. To monitor adequacy of standard blood flow rates, arterial lactate, acid base 
parameters, central venous and jugular bulb saturation were measured at six time points 
during in all groups. Blood flow rates were adjusted when needed.  Subsequently, early and 
late postoperative outcome data including hospital and 3-year mortality was recorded and 
compared among the study groups 
RESULTS:   
No lactic acidosis has developed in any group. TEA as compared to TEA-GA and GA groups 
had mildly lower central venous and jugular bulb oxygen saturations during cardiopulmonary 
bypass and during post cardiopulmonary bypass period. TEA group as compared to TEA-GA 
and GA groups had also mild hypercapnic respiratory acidosis and mild decrease of arterial 
oxygen saturation at the end of surgery without any clinical consequences. Thus, no additional 
blood flow rates adjustments in any study group and no ventilatory support in TEA group was 
required. There was also no major difference in  postoperative outcome data across all study 
groups, except for lower incidence of atrial fibrillation in the TEA group compared to GA 
group. TEA and TEA-GA group as compared to GA group had lower pain visual analogue 
scale scores at 24 hours postoperatively  and morphine requirements during the first 24 hours 
after surgery.  
CONCLUSIONS:  
Under careful monitoring, the use of standard blood flow rates is adequate for patients 
undergoing awake on-pump normothermic cardiac surgery. Additionaly, awake TEA showed 
no improvement in postoperative outcome, except for lower incidence of atrial fibrillation and 
superior pain relief.  
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ABSTRAKT 

CÍLE STUDIE: 
V minulosti se v kardiochirurgii předpokládalo, že standardní průtoky krevní pumpou 
mimotělního oběhu jsou stejné, jak pro pacienty podstupující výkon v epidurální anestezii při 
vědomí, tak pro pacienty v anestezii celkové. Nicméně, v porovnání s anestezií celkovou, 
mohou mít pacienti při vědomí z důvodu chybějícího vlivu celkových anestetik vyšší 
kyslíkovou spotřebu. To v případě  použití standardních krevních průtoků může vést k rozvoji 
metabolické laktátové acidózy. Primárním cílem naší studie bylo zjistit, zda-li jsou standardní 
krevní průtoky mimotělního oběhu adekvátní pro pacienty podstupující výkon při vědomí. 
Sekundárním cílem práce bylo klinické zhodnocení pooperačních komplikací u těchto 
pacientů. 
METODY:   
Čtyřicet sedm pacientů indikovaných k elektivnímu kardiochirurgickému výkonu s použitím 
mimotělního oběhu bylo rozděleno do tří skupin, a to podstupující výkon při vědomí v 
epidurální anestezií (Skupina TEA, n=17), v kombinované (skupina TEA-GA, n=15) a 
celkové (Skupina GA, n=15) anestezii. K monitoraci dostatečnosti krevních průtoků 
mimotělního oběhu bylo použito měření koncentrace laktátu v tepenné krvi, kyslíkové 
saturace centrální žilní krve a krve z bulbu vnitřní jugulární žíly a parametry acidobazické 
rovnováhy, a to šestkrát behěm výkonu u všech skupin pacientů. Následně byla analyzována 
data z časného a pozdního pooperačního průběhu, včetně nemocniční tříleté mortality, a 
srovnána mezi jednotlivými skupinami. 
VÝSLEDKY:   
K rozvoji laktátové acidózy nedošlo v žádné ze skupin. V porovnání se skupinami TEA-GA a 
GA byly ve skupině TEA mírně vyšší kyslíkové desaturace z centrální žilní krve a z krve 
jugulárního bulbu během mimotělního oběhu a v období po jeho ukončení. U skupiny TEA 
dále došlo na konci výkonu k rozvoji mírné respirační acidózy a mírnému poklesu arteriální 
kyslíkové saturace bez patrných klinických důsledků. Na základě těchto měření nebylo nutno 
ve skupině TEA přistoupit k navýšení krevních průtoků mimotělního oběhu. Taktéž jsme 
nezaznamenali významné rozdíly v pooperačních výsledcích mezi skupinami, vyjma nižší 
incidence fibrilace síní u pacientů skupiny TEA v porovnání se skupinou GA. Skupiny TEA a 
TEA-GA měly ve srovnání se skupinou GA nižší skóre bolesti hodnoceno VAS stupnicí a 
nižší celkovou dávku morfinu během prvních 24 hodin pooperačně.  
ZÁVĚR:  
Standardní průtoky mimotělniho oběhu byly adekvátní a poskytly dostatečnou dodávku 
kyslíku do tkání u pacientů podstupujících kardiochirurgický výkon při vědomí. Metoda 
výkonu provedeného v epidurální anestezii při vědomí neprokázala zlepšení pooperačních 
výsledků vyjma nižší incidence fibrilace síní a kvalitnějšího tlumení bolesti. 
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2. INTRODUCTION 
 

Awake cardiac surgery technique (AWCS) with the use of sole thoracic epidural 

anesthesia (TEA) has recently emerged as an alternative to classic general anesthesia (GA) 

and combined anesthesia (TEA-GA), following the introduction of minimally invasive cardiac 

surgical procedures. TEA alone has been used in low risk AWCS off-pump [1,2], and on-pump 
[3] procedures as well as in high risk on-pump procedures [4].  

TEA offers several advantages in comparison to sole GA including thoracic 

sympathicolysis, attenuated stress response and myocardial blood flow redistribution [5] and 

has been utilized as combined TEA-GA anesthesia. Moreover, TEA likely decreases 

incidence of postoperative myocardial infarction [6] and arrhythmias [5,7] , improves 

postoperative pain control [5] and pulmonary outcome [7,8]. Additionally, TEA awake patients 

may benefit from spontaneous ventilation, which is likely to be a significant advantage in 

comparison with tracheal intubation and mechanical ventilation in GA and TEA-GA patients 
[9].  

Contrary to awake TEA, anesthetics and muscle relaxants used for GA and TEA-GA 

decrease whole body oxygen consumption (VO2) [10]. However, usually only mild sedation or 

no anesthetics at all have been used in AWCS with TEA, therefore VO2 may be increased and 

standard blood flow rates (BFRs) during cardiopulmonary bypass (CPB) may not be sufficient 

enough for these patients. This could lead to inadequate oxygen delivery (DO2), increased 

tissue oxygen extraction with venous desaturation and eventually result in lactic metabolic 

acidosis which has been previously related to poor patient’s outcome [11]. Moreover, lower 

doses of anesthetics are used in TEA-GA as compared to GA which may affect VO2, tissue 

oxygen extraction and venous saturations.  

It has been assumed that the standard BFRs of CPB, which were validated only for  

GA [12], have been sufficient and have been used in all studies with patients undergoing 

AWCS with TEA [3,4] as well as TEA-GA. Nevertheless, it remains unknown, whether or not 

the use of standard BFRs in AWCS with TEA is associated with detrimental lactic acidosis 

and other possible consequences of inadequate BFRs mentioned above.     

Thus, in the first phase of our study, we evaluated the adequacy of standard blood flow 

rates during cardiopulmonary bypass in awake TEA patients undergoing cardiac sugery and 

made a comparison of this data to patients under GA and TEA-GA.  
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Subsequently, in the second phase of the study, we focused on clinical outcomes of 

awake cardiac surgical patients and  evaluated the impact of awake TEA technique on major 

parameters of postoperative complications with comparison to patients with GA and TEA-GA.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 12

3. REVIEW OF LITERATURE  
 

3.1 Epidural anesthesia in cardiac surgery  
 

The first description of thoracic epidural anesthesia and analgesia applied to cardiac 

surgical patients occurred in 1954 [13]. However, application of thoracic epidural anesthetic 

techniques to patients undergoing cardiac surgery during the modern surgical era was initially 

reported by Hoar et al. [14] in 1976. They described the use of thoracic epidural catheters 

during the early postoperative period to provide analgesia and effectively control hypertension. 

The report by El-Baz and Goldin in 1987 [15] was the first to describe the insertion of thoracic 

epidural catheters in patients before performance of cardiac surgery. Since this time, clinical 

investigators have subsequently applied thoracic epidural techniques to patients undergoing 

cardiac surgery [5,7,9]. Most investigators have used thoracic epidural local anesthetics in hopes 

of providing analgesia, stress response attenuation, or thoracic cardiac sympathectomy. Some 

investigators have used thoracic epidural opioids to provide intraoperative and postoperative 

analgesia. 

 

3.1.1 The principles of epidural anesthesia 

 The epidural anesthesia provides somatosensoric and vegetative neural blockade from 

distinct part of human body. This is achieved by administering a solution of local anesthetic 

with possible admixture of opioids into the epidural space, where it inhibits the transmission 

of action potentials in the present neural structures. 

Anatomically, the epidural space is the area between the dura mater and the ligaments 

and periosteum lining the vertebral canal and extending from the foramen magnum to the 

sacrococcygeal membrane. This has been described as a potential space, because it is 

normally completely filled with a loose type of adipose tissue, lymphatics, and blood vessels. 

It is particularly rich in venous plexi. No free fluid exists in the epidural space, in 

contradistinction to the cerebrospinal fluid, which is found in the subarachnoid space. 

However, solutions injected into the epidural space spread in all directions owing to the loose 

tissue structure that occupies this area. Epidural anesthesia is usually subdivided into 

the three categories, depending on the site of injection: thoracic epidural, lumbar epidural, and 

caudal anesthesia. Cervical epidural anesthesia is possible but rarely performed.  
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Thoracic epidural anesthesia is employed mainly for production of a segmented band 

of analgesia involving thoracic dermatomes. This technique has proved beneficial for relief of 

pain after thoracic, cardiac or upper abdominal surgery. Lumbar epidural anesthesia is useful 

as an adjunct to surgical procedures involving the lower abdomen, pelvis, perineum, and 

lower extremities, and for obstetric procedures. Caudal anesthesia is usually reserved for 

pelvic and perineal surgery and for vaginal deliveries. 

 A special, 18 Gauge, Touhy needle with the round tip is used for epidural puncture. 

There are two techniques used for the detection of epidural space. It is either a “hanging drop” 

or “loss of resistance” technique. The principle of both of these methods is the creation of the 

negative pressure in epidural space, caused by a motion of dura mater from ligamentum 

flavum. The administration of local anesthetic solution into the epidural space follows its 

puncture.  

The quality and extension of neural blockade is determined by the concentration and 

total volume of administered local anesthetic solution. The higher concentration of local 

anethetic blocks the neural transmission of faster-conducting myelinated fibers, such as the 

motor nerve fibers (type Ia) or sensory nerve fibers (type II).  In the opposite, low 

concentration of local anesthetics only blocks neural transimission in thin myelinezed fibers, 

such as preganglionary sympathetic fibers or fibers for pain and heat sensation (type III)  or 

slow-conducting unmyelinated C fibers (type IV). The blockade extension is influenced by 

the total volume of local anesthetic solution. One spinal segment is usually blocked by 1.0-1.5 

ml of local anesthetic solution.   

 

3.1.2 Physiological effects of thoracic epidural anesthesia 

The surgical procedures can be accomplished with satisfactory anesthesia and 

analgesia by epidural administration of local anesthetics. In addition, the sympathetic 

blockade can produce beneficial effects on several organ systems [16] including an increased 

gastrointestinal motility and perfusion or decreased myocardial ischemia and systemic stress 

response to surgery [16-19]. 

The cardiovascular effects of epidural anesthesia comprise of decreased determinants 

of myocardial oxygen demand [20], improvement of myocardial blood flow [21,22] and left 

ventricular function [23], and reduced thrombotic-related complications [24]. Furthermore, it has 

been shown that epidural anesthesia can reduce heart rate and occurrence of arrhythmias 

during manipulation of the heart [25,26]. 

http://en.wikipedia.org/wiki/Type_Ia_sensory_fiber
http://en.wikipedia.org/wiki/C_fiber
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 The impact of epidural anesthesia on lung function can be ambiguous. Satisfactory 

analgesia and the avoidance of mechanical irritation must be balanced against the possible 

alteration of lung function by epidural motor blockade of respiratory muscles and the 

potentially detrimental effects of sympathicolysis, leaving an unopposed vagal tone with 

potentially increased bronchial tone and reactivity [27]. The physiological effects of TEA on 

lung function are determined by the extension of the motor blockade depending on the height 

of the insertion of the catheter, the choice of local anesthetic, and its concentration [27].  

Early postoperative lung function is affected by residual muscular relaxation, the time of 

extubation, pain therapy, and vigilance. Early after an operation, the ability to cough 

represents one of the most important factors influencing lung function and is dependent, to a 

great extent, on the efficacy of diaphragmatic contraction and pain relief. On the other hand, 

with general anesthesia, reduced vigilance, muscular rest relaxation, and impaired 

diaphragmatic function may prolong mechanical ventilation, which is a risk factor for 

pulmonary complications and morbidity [9]. 

 

3.1.3 Evidence-based clinical outcomes of thoracic epidural anesthesia 

A meta-analysis published by Liu et al. [28] assessed effects of perioperative central 

neuraxial techniques on outcome after coronary artery bypass surgery. Fifteen trials enrolling 

1178 patients were included for thoracic epidural analysis, and 17 trials enrolling 668 patients 

were included for intrathecal analysis. Thoracic epidural techniques did not affect incidences 

of mortality or myocardial infarction yet seemed to reduce the risk of dysrhythmias (atrial 

fibrillation and tachycardia), pulmonary complications (pneumonia and atelectasis), the time 

to tracheal extubation, and analogue pain scores. These authors conclude that central 

neuraxial techniques do not affect rates of mortality or myocardial infarction after CABG yet 

may be associated with improvements in faster time to tracheal extubation, decreased 

pulmonary complications and cardiac dysrhythmias, and reduced pain scores.  

The most recent meta-analysis showed that the use of TEA in patients undergoing 

cardiac surgery reduces the risk of postoperative supraventricular arrhythmias and respiratory 

complications. However, the sparsity of events precluded conclusions about mortality, 

myocardial infarction, and stroke, but the estimates suggested a reduced risk after TEA [7]. 
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3.2 Awake cardiac surgery 
 

Procedures to minimize surgical, anesthesiologic, or cardiopulmonary bypass trauma 

during cardiac operations have been in continuous development in an effort to reduce 

perioperative mortality and morbidity. Awake cardiac surgery technique with the use of sole 

thoracic epidural anesthesia without endotracheal intubation  has recently emerged as an 

alternative to classic general anesthesia and combined anesthesia, following the introduction 

of minimally invasive cardiac surgical procedures. The use TEA alone has been initially 

published by Karagoz [1], desciribing the use of this method in patients undergoing mycoardial 

revascularization (CABG) without the use of cardiopulmonary bypass (off-pump CABG). 

More reports on awake cardiac surgery technique followed shortly, mostly including low-risk 

off-pump [2], and on-pump [3] procedures. Recently, this technique has been also used in high 

risk on-pump procedures [4].  

 The principle of awake technique is the use of high TEA without endotracheal 

intubation and mechanical ventilation in patients undergoing cardiac surgery. The anesthesia 

for the surgical field is only provided by TEA, covering dermatomes Th1-Th10. A slight 

sedation is often administered as an adjunct to TEA to yield more comfort to the patients, 

especially when the surgery lasts for a longer period of time.  

 Due to its nature, awake TEA may offer several advantages over general anesthesia 

including spontaneous ventilation without tracheal intubation [9], reduced stress response [5], 

reduced incidence of postoperative arrhythmias [5] and myocardial infarction [6] and improved 

pulmonary outcome [7,8].  All these factors may participate in the reduction of postoperative 

complications and morbidity [5,7,8]. 

With awake cardiac surgery risk of postoperative pulmonary failure and long-term 

ventilation may also be reduced because mechanical ventilation is avoided. This might have a 

clinical impact in patients with severe COPD, who represent very high-risk patient´s cohort 

with increased perioperative morbidity and mortality [29]. Some patients have hemodynamic 

compromise as a result of general anesthetic medication before intubation, which may 

increase the risk of preoperative myocardial ischemia in patients with severe coronary artery 

disease [30]. This also may be avoided in the conscious setting. In addition to these advantages, 

postoperative pain management is facilitated by continuous epidural application of analgesics. 

In comparison with clinical data of patients with combined anesthesia undergoing 

cardiac surgery, there is very limited evidence on detailed analysis of early and late 
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postoperative outcome in awake cardiac surgical patients. Studies published so far focused 

more on description of the awake technique and peroperative course with very sparse 

comments on postoperative results [1,3,4]. Except for one study [2], none of these reports used 

controlled study design [1,3,4].  

 

3.3 General anesthesia and oxygen consumption 
 

General anesthesia is a state of unconsciousness and loss of protective reflexes 

resulting from the administration of one or more general anesthetic agents. A variety of 

medications may be administered, with the overall aim to ensure hypnosis, amnesia, analgesia, 

relaxation of skeletal muscles, and loss of control of reflexes of the autonomic nervous system.  

There are basically three types of general anesthesia techniques. These include 

balanced anesthesia, solely inhalation aneshesia and  total intravenous anesthesia.The most 

commonly used technique is a balanced anesthesia, which is  based on the concept that 

administration of a mixture of different anesthetic components (including volatile anesthetics, 

intravenous anesthetics, opioids and muscle relaxants) summates the advantages but not the 

disadvantages of the individual components of the mixture. Every component of general 

anesthesia has its own effect on VO2, which is described in detail below. Also many other 

physiological parameters affect VO2 during general anaesthesia including body temperature 
[31], skeletal muscle activity [32] and passive hyperventilation [33]. 

 

3.3.1 Intravenous anesthetics and opioids 

It is believed that the effects of intravenous anesthetics on total VO2 are caused mainly 

by a decrease in cerebral oxygen consumption (cerebral metabolic rate – CMRO2) and in 

myocardial oxygen consumption, while the other organs are involved in contributing to the 

overall decrease in VO2  to a lesser extent. A decrease in CMRO2 with thiopental infusion in 

man has been reported by several investigators [34,35]. In these studies the decrease CMRO2  

following thiopental varied from 30 to 55 %  and was somewhat related to the total dose. As 

CMRO2 accounts for approximately 20 % of the total VO2 in man [36], 40 % fall in CMRO2 

results in 8% reduction in total VO2. Similar to thiopental, propofol reduces CMRO2 by 36% 
[37]. With a background of 0.5% enflurane, propofol still reduces CMRO2 by 18%, whereas 

lactate and glucose metabolism remains unchanged [37]. It has been also reported that opioids 

http://en.wikipedia.org/wiki/Unconsciousness
http://en.wikipedia.org/wiki/General_anaesthetic
http://en.wikipedia.org/wiki/Pharmaceutical_drug
http://en.wikipedia.org/wiki/Sleep
http://en.wikipedia.org/wiki/Amnesia
http://en.wikipedia.org/wiki/Analgesic
http://en.wikipedia.org/wiki/Skeletal_muscle
http://en.wikipedia.org/wiki/Reflex
http://en.wikipedia.org/wiki/Autonomic_nervous_system
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show the similar effects on VO2 as intravenous anesthetics.  The reduction of VO2  may be as 

high as 10%, dependent on the dose used [10].  

 

3.3.2 Volatile anesthetics 

Similar to intravenous general anesthetics, volatile anesthetics also decrease oxygen 

consumption predominantly by decreasing cerebral and myocardial metabolic rate. Volatile 

anesthetics decrease CMRO2 in a dosed dependent manner in animals and humans [38,39]  with 

the magnitude of CMRO2 reduction as high as 45%. In analogy to the effects of most other 

anesthetics, the reduction in CMRO2 is caused primarily by the reduction in cerebral activity 

associated with the anesthetic effect of volatile anesthetics. An intrinsic effect on cellular 

metabolism seems unlikely at commonly used concentrations of MAC 1-1.5. However, other 

studies show that volatile anesthetics do not additionally decrease CMRO2 when used as a 

supplement to deep intravenous anesthesia [40]. This observation was subsequently confirmed 

by Heath et al. [41], who found no decrease in VO2 during propofol anesthesia supplemented 

by 0.5 MAC sevoflurane but a reduction in the cerebral arterial-venous oxygen content 

difference of 25% by 1.5 MAC sevoflurane [41]. 

Hemodynamic effects of changes in CMRO2, which are represented by cerebral blood 

flow reduction, are partially counterbalanced by an intrinsic cerebral vasodilatory effect of 

volatile anesthetics [43]. Cerebrovascular CO2 reactivity is not impaired by the administration 

of commonly used concentrations of volatile anesthetics [42]. There are not significant 

differences in cerebral blood flow and CMRO2 between different volatile anesthetics [43]. A 

mild myorelaxant effect may also contribute to the decrease of whole body VO2 by reducing 

the basal muscle tone. 

 

3.3.3 Muscle relaxants 

It has been suggested that neuromuscular blockade reduces whole body VO2 by 

minimizing muscle activity and tone [44,45]. Study by Irish et al. demonstrated that in the 

unconscious and unmoving patient during CPB, administration of muscle relaxants to achieve 

complete neuromuscular blockade significantly reduced systemic VO2 by rate of 30% with a 

concomitant increase in mixed venous oxygen saturation from 73% ± 18% to 83% ± 14%. 

Choice of muscle relaxant did not influence the change in VO2 [46]. Subsequent studies also 

confirmed that neuromuscular blockade significantly reduces oxygen consumption and energy 

expenditure in critically ill patients who are sedated and mechanically ventilated [47]. However, 

another study provided contradictory results when neuromuscular blockade did not decrease 
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oxygen consumption. As authors speculated, this was possibly caused by sufficient anesthetic 

depth that prevented subclinical muscular activity [48].  

 
 
3.4 Cardiopulmonary bypass  

Cardiopulmonary bypass is indispensable to the current practice of cardiac surgery. 

Ideally, CPB should achieve several goals including maintaining systemic perfusion with 

oxygenation and carbon dioxide elimination, facilitating performance of the surgery and 

preserving systemic homeostasis during surgery.  

  

3.4.1 CPB blood flow rates and systemic oxygen delivery 

The CPB blood flow rates (BFR) required to provide adequate tissue perfusion are 

influenced by several variables including whole body oxygen consumption (VO2), depth of 

anesthesia and muscle relaxation, degree of hypothermia, oxygen content of blood and 

individual organ ischemia tolerance. 

 So called “standard” CPB BFRs of 2.2-2.5 l/min*m2 have been commonly used during 

normothermic CPB [49].  It has been recommended to set BFRs within this range for patients 

under general anesthesia [12], whose whole body VO2 is decreased by 15-30% depending on 

the type and amount of anesthetics and muscle relaxants used [10,36,38,46]. The original studies 

that calculated these values were conducted in 1950’ s  [12]  in cardiac surgical patients, who 

were deeply anesthetized using high doses of opioids in comparison with today’s low dose 

opioid anesthetic practice.  

 Systemic oxygen delivery has been identified as the more precise determinant of 

optimal perfusion during CPB [49]. DO2 is calculated by multiplying BFR by the arterial 

oxygen content:  
 

DO2 = BFR * ((hemoglobin concentration*hemoglobin oxyegen saturation* 1.36) + (0.003* arterial oxygen tension)).   
 

The DO2 calculation comprises of two significant perfusion parameters that determine 

tissue oxygenation: hematocrit values and BFR into a single measure. In the clinical setting, 

DO2 can be improved by increasing BFR, increasing hematocrit concentrations, or by 

increasing hemoglobin saturation and the amount of dissolved oxygen (increasing the inspired 

oxygen concentration [FiO2]).  

 DO2 values observed during CPB are typically less than those measured in awake and 

anesthetized subjects. During CPB, if BFRs of 2.2 to 2.4 l/min*m2 are maintained and 
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hemoglobin values decrease to 7 o 8 g/dL, DO2 will be reduced to 200–300 ml O2/ min*m2. 

The reduction in DO2 that is observed on CPB is due primarily to a decrease in arterial 

oxygen content that occurs from hemodilution at the onset of bypass. If whole-body VO2 is 

unchanged, an increase in the oxygen extraction ratio is required to compensate for the 

reduced DO2.  The minimal safe DO2 during bypass, termed the critical DO2, has been 

assessed in several investigations. As DO2 decreases, VO2 initially remains stable via 

increases in tissue oxygen extraction (“flow independent oxygen consumption”). At the point 

when maximal oxygen extraction is reached, whole body VO2 and tissue oxygenation begin to 

decrease and metabolic (lactic) acidosis begins to develop (“flow dependent oxygen 

consumption”) [49]. Hyperlactatemia is a well-recognized marker of tissue hypoxia and its 

severity has been associated with increased morbidity and mortality of patients undergoing 

CPB [11]. The critical DO2 in anesthetized humans without CPB has been claimed to be 

approximately 330 mL O2/min*m2 [50]. However, critical DO2 values during CPB have not 

been definitively established [49].  Studies in cardiac surgical patients, which examined the 

relationship between DO2 and VO2, have so far provided contradictory results [51,52].   

In addition, low BFR during CPB itself has been also identified as an independent risk 

factor for development of hyperlactatemia [53] due to inadequate oxygen delivery to peripheral 

tissues [54]. However, the optimal BFRs during normothermic CBP have not yet been 

established [49] as discussed above and institutional perfusion practices are largely based on 

empirical experience. 

 

3.4.2 Awake cardiac surgery and oxygen consumption/delivery during CPB 

Contrary to awake cardiac surgery, anesthetics and muscle relaxants used for GA and 

TEA-GA decrease whole body oxygen consumption [10,36,38,46]. However, usually only mild 

sedation or no anesthetics at all have been used in awake patients with TEA, therefore VO2 

may be increased and standard blood flow rates during CPB may not be sufficient enough for 

these patients. This could lead to inadequate oxygen delivery, increased tissue oxygen 

extraction with venous desaturation and eventually result in lactic metabolic acidosis which 

has been previously related to poor patient’s outcome [11]. Moreover, lower doses of 

anesthetics are used in TEA-GA as compared to GA which may affect VO2, tissue oxygen 

extraction and venous saturations.  

It has been assumed that the standard BFRs of CPB, which were validated only for  

GA [12], have been sufficient and have been used in all studies with awake patients with  
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TEA [3,4] as well as patients with combined anesthesia. Nevertheless, it remains unknown, 

whether or not the use of standard BFRs in awake patients with TEA is associated with 

detrimental lactic acidosis and other possible consequences of inadequate BFRs mentioned 

above.     
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6. HYPOTHESIS 
 

Our study comprised of two phases. The first phase focused on peroperative period 

with cardiopulmonary bypass and examined the impact of awake TEA technique on 

sufficiency of oxygen delivery. In the second phase, we evaluated clinical outcomes of these 

patients in postoperative period. Therefore, we stated two hypotheses: 

 

Study phase 1 – Oxygen consumption in awake cardiac surgical patients 

 

We hypothesized, that in awake patiens with TEA undergoing cardiac surgery, the use 

of standard blood flow rates of 2.4 L/min*m2 during cardiopulmonary bypass may lead to 

insufficiency of oxygen delivery with metabolic acidosis which would require a further 

increase of blood flow rates. 

 

Study phase 2 – Postoperative outcome in awake cardiac surgery 

 

We hypothesized, that awake technique with TEA reduces postoperative 

complications because of sympathetic blockade and avoidance of tracheal intubation with 

mechanical ventilation. 
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7. AIMS OF THE STUDY 
 

Study phase 1 – Oxygen consumption in awake cardiac surgical patients 

 In the first study, we tested the adequacy of standard blood flow rates of 2.4 l/min*m2 

in awake TEA patients during cardiac surgery with cardiopulmonary bypass by monitoring 

and comparing of lactate levels, acid-base parameters (pH, base excess, PaO2, PaCO2), DO2 

and venous desaturations with groups of patients under sole general anesthesia and with 

combined anesthesia at six time points (before, during and after CPB) during surgery.  

 

Study phase 2 – Postoperative outcome in awake cardiac surgery 

In the second study, we evaluated the impact of awake TEA technique on major 

parameters of postoperative outcome, including early and late three-year mortality in 

comparison with patients undergoing cardiac surgery under combined and sole general 

anesthesia.    
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8. MATERIALS AND METHODS 
 

The study included 47 consecutive patients undergoing on-pump cardiac surgery 

referred for aortic valve replacement, coronary artery bypass grafting or combined procedures 

after obtaining approval from the Local Ethics Committee and informed patient consent. 

Inclusion criteria were: planned on-pump cardiac surgery, age above 18 years. Exclusion 

criteria were: severe peripheral vascular disease, left ventricular systolic dysfunction (ejection 

fraction < 50%), allergy to local anesthetics, intraoperative conversion to GA, intraoperative 

myocardial infarction, stroke, pulmonary embolism, aortic dissection, pneumothorax. 

Ethical and medical considerations did not allow a randomized study design. All 

advantages and disadvantages of each type of anesthesia were discussed in detail with every 

patient. Patients freely chose the most comfortable type of anesthesia for themselves. There 

were three study groups. The first group (TEA group) comprised of 17 patients undergoing 

AWCS with only TEA supported by a light sedation. The second group (TEA-GA group) 

consisted of 15 patients undergoing combined TEA and GA. The third group consisted of 15 

patients undergoing sole GA (GA group). 

 

Premedication, cannulation sites and patient monitoring (TEA, TEA-GA, GA group) 

All patients received 7.5-15 mg of midazolam orally one hour prior to arrival at the 

operating room. Before the induction of anesthesia, hemodynamic monitoring was established 

via radial artery catheter (Arteriofix art.-Kath.-Set 22G/80mm, B.Braun, Melsungen, 

Germany). A central venous catheter (Central Venous Catheter Set with AMC 

THROMBOSIELD, Edwards Lifesciences, California, USA) was placed via right internal 

jugular vein into superior caval vein to measure central venous pressure (CVP) and to obtain 

blood samples. Another catheter (Arteriofix art.-Kath.-SET 22G/80mm, B.Braun, Melsungen, 

Germany) was inserted via internal jugular vein into right jugular bulb in order to obtain 

blood samples. An epidural space puncture was performed in the TEA group and the TEA-

GA group before induction of anesthesia. During cannulation, patients ventilated via face 

mask with fresh gas flow of 6 L/min. Monitoring of all patients included 5-lead 

electrocardiography, intra-arterial blood pressure, central venous pressure, pulse oximetry, 

capnography, diuresis, nasopharyngeal (not in group TEA) and rectal temperature. 
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Epidural puncture and thoracic epidural anesthesia (TEA and TEA-GA group) 

The epidural puncture was performed in the TEA and TEA-GA group at the level 

Th1/2 - Th2/3 using 18-gauge Tuohy epidural needle (Perican, B.Braun, Melsungen, 

Germany) under local anesthesia. Coagulation profiles of all patients were normal before 

epidural puncture. The epidural space was identified using hanging drop technique and 7 ml 

of 0.5% bupivacaine + 10 ug (2 ml) of sufentanil were administered as a bolus into the space. 

Afterwards, an epidural catheter (Perifix – Katheter, B.Braun, Melsungen, Germany) was 

inserted 2-4 cm into epidural space. The level of anesthesia was determined by loss of 

pinprick sensation (Th1-Th10). Then, continuous epidural infusion using mixture of 15 ml of 

0.5% bupivacaine + 50 μg of sufentanil (10 ml) and 15 ml of saline was applied with a rate of 

7-10 mL/hr till the end of surgery. 

 

Management of awake patients (TEA group) 

In awake patients group (TEA group), after epidural puncture, slight sedation was used 

by administering dexmedetomidine starting with 1 μg/kg dose infused over 10 minutes and 

continuing with infusion of 0.2-0.4 μg/kg/hr. Richmond agitation and sedation score scale was 

used targeting minus 1 grade in all patients (not fully alert, but with sustained awakening for 

more than 10 seconds, with eye contact, to voice) [37]. In order to monitor patients comfort and 

anesthesia sufficiency, patients were regularly questioned every 15 minutes about their status 

and sedation was adjusted if needed. Additional local anesthesia with 0.5% bupivacaine was 

used in patients in whom saphenous vein graft harvesting was required. 

 

General anesthesia (GA group) 

General anesthesia (GA group) was induced with intravenous bolus of thiopental (0.3-

0.5 mg/kg), sufentanil (0.5 μg/kg) and rocuronium (0.4-0.6 mg/kg). General anesthesia was 

maintained using isoflurane of minimal alveolar concentration 0.7-1.0 in a gas mixture of 

oxygen and air. Total amount of sufentanil was 2.5-5 μg/kg according to the individual pain 

response. No other myorelaxation was needed throughout the procedure. 

 

Combined thoracic epidural and general anesthesia (TEA-GA group) 

In combined anesthesia group (TEA-GA group), epidural puncture was performed as 

described above. Then general anesthesia was induced and maintained using isoflurane in the 

same dosage as in GA group. Two patients required additional administration of sufentanil 

(they received 25 and 60 μg as a bolus, respectively). 



 25

Pre and Post-CPB hemodynamic management (TEA, TEA-GA and GA group) 

Intraoperative hemodynamic management was identical for all groups and aimed to 

maintain mean arterial pressure (MAP) pre- and post-CPB between 65-80 mmHg. All patients 

received an infusion of 1000 ml of Ringer's solution, before CPB was commenced. Transient 

hypotension (defined as MAP < 65 mmHg) was managed with intravenous boluses of 

norepinephrine. Persistent hypotension required continuous infusion of norepinephrine. An 

infusion of more than 0.05 μg/kg/min of norepinephrine was considered as clinically 

significant vasopressor support. 

 

Surgery and CPB management (TEA, TEA-GA and GA group) 

Median sternotomy was used in all patients (TEA, TEA-GA and GA group). After 

administration of 300 IU/kg of unfractionated heparin to achieve activated clotting time > 480 

seconds, cannulation of the aorta (24F x 20 cm aortic perfusion cannula, Edwards 

Lifesciences, California, USA) and right atrium (36F/46F x 40 cm Thin-Flex TM  Dual Stage 

Venous Drainage Cannula , Edwards Lifesciences, California, USA) was performed and CPB 

was commenced. The time interval between epidural puncture and heparin administration was 

between 60 and 90 minutes. The CPB circuit was primed by 1500 ml of Hartmann’s solution 

and 200 ml of 20% mannitol. CPB BFRs were kept at 2.4 L/min * m2. Triggers for increasing 

BFRs were arterial lactate level >3 mmol/L or central venous oxygen saturations ScvO2 < 

55%. MAP was maintained between 45 and 70 mmHg with boluses or continuous infusion of 

norepinephrine. A Stockert roller pump CPB and hollow-fiber oxygenator (Medos Hilite 7000 

Rheoparin coated, MEDOS Medizintechnik, AG, Germany) was used. Fresh gas flow was 

initially set to 2 L/min and in-flow oxygen concentration to 60% and subsequently adjusted to 

maintain blood gases in physiological ranges (PaO2 above 100 mmHg, PaCO2 35-45 mmHg). 

During CPB, all patients were kept normothermic (36-37 degrees of Celsius) and received 

blood cardioplegia. Transfusion trigger was set to 70 g/L of hemoglobin concentration. In the 

TEA-GA and GA group, isoflurane concentrations were not changed and no other intravenous 

anesthetics including propofol were used during CPB. The time interval between aortic cross 

clamp release and CPB discontinuation was 30% of the total aortic cross clamp time. Before 

weaning from CPB epicardial stimulation was used when needed. The effects of heparin were 

reversed with 3 mg/kg of protamine after discontinuation of CPB. Then chest closure was 

performed and patients were transferred to postoperative intensive care unit. 
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Postoperative management (TEA, TEA-GA and GA group) 

After the transfer to ICU, patient´s monitoring included hemodynamic parameters (HR, 

MAP, and CVP), laboratory parameters (arterial and central venous acid base and blood gases 

parameters, hemoglobin concentration and glycemia in regular intervals), diuresis and blood 

loss. Patients in the TEA group breathed via face mask using fresh gas flow of 4-12 L/min 

according to their arterial oxygen parameters. Triggers for any kind of ventilatory support 

were PaO2 < 60 mmHg and PaCO2 > 60 mmHg. 

Intubated patients (TEA-GA and GA group) were weaned off the ventilator and 

extubated according to local extubation protocol. This included fully awake, cooperative 

patient with stable hemodynamic parameters, without significant blood loss (< 200 ml/2 Hr) 

and with acceptable arterial blood gases parameters (i.e. PaO2 > 60 mmHg and PaCO2 < 60 

mmHg) on non-aggressive ventilation (pressure support ventilation, PEEP ≤ 5 cm H20, FiO2 

≤ 0.4, pressure support ≤ 6 cm H20 and respiration frequency ≥ 10/min). In the GA group, 

postoperative pain management was conducted by a nurse-driven intravenous morphine 

protocol. Patients with visual analogue scale (VAS) scores < 50 received 1 mg of intravenous 

morphine and  2 mg of morphine were admininistered to patients with VAS scores >50. The 

minimal time interval between 2 morphine injections was 5 minutes and the maximal hourly 

dose was 10 mg. 

After 24 hours an analgesic therapy continued with oral morphine-sulphate. 

Postoperative analgesia in the TEA and TEA-GA group was provided by continuous infusion 

of local anesthetics to epidural catheter (a mixture of 15 ml of 0.5% bupivacaine  + 50 μg of 

sufentanil + 25 ml of saline infused by rate of 3-7 mL/hr), which was removed on the fourth 

postoperative day. In case of insuficciency of epidural analgesia, opioids were administered in 

the same way as in the GA group. 

 Criteria for intensive care unit discharge were as follows: fully alert and cooperative 

patient without significant neurological impairment, hemodynamic stability without inotropic 

or vasopressor therapy, no hemodynamically significant arrhytmias, spontaneous breathing 

with arterial oxygen saturation > 90% at FiO2 ≤50% via a facemask, urine output > 0.5 

ml/kg/hr, chest tube drainage < 20 ml/hr. Criteria for the hospital discharge were as follows: 

hemodynamically stable with controlled  arrhythmias, independent in ambulation and feeding, 

afebrile with no infections and clean wound , normal voiding and bowel movements, full oral 

diet, pain controlled on oral medication. 
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Study protocol (Group TEA, TEA-GA and GA) 

 

Phase 1 (Oxygen consumption in awake cardiac surgical patients): 

The study protocol consisted of hemodynamic measurements and blood samples draws 

performed at six consecutive time points throughout the study, before, during and after CPB. 

The time points (T) included T1 (early pre-CPB period; baseline prior to induction of 

anesthesia), T2 (late pre-CPB period; beginning of cardiac surgery after sternotomy), T3 

(early-CPB period; initiation of CPB, after aortic cross clamping and prior to cardiac surgery), 

T4 (late- CPB period; end of CPB, after the cardiac surgery procedure and release of aortic 

cross clamp), T5 (early post-CPB; 10 minutes after discontinuation of CPB and protamine 

sulfate administration) and T6 (late post-CPB period; after chest closure). 

Hemodynamic measurements consisted of heart rate, MAP and CVP. Blood samples 

from all 3 cannulation sites were drawn and analyzed in blood gas analyzer (ABL 700 Series, 

Radiometer Copenhagen, Denmark). Blood parameters included arterial oxygen saturation 

(SaO2), arterial partial pressure of carbon dioxide (PaCO2), arterial lactate, arterial pH, arterial 

base excess (BE), arterial hemoglobin concentration, central venous oxygen saturation (ScvO2) 

and jugular bulb oxygen saturation (SjbO2). 

Oxygen delivery was calculated only for CPB period (T3 and T4) using following 

formula: DO2 = 2.4 l/min*m2 x (1.36 x Hb x SaO2/100 + 0.003 x PaO2). 

 

Phase 2 (Postoperative outcome in awake cardiac surgery): 

We recorded and compared early postoperative outcome data including all major 

organ systems outcome parameters and early (ICU and hospital) mortality among the groups. 

The quality of analgesia was evaluated using VAS scoring that was recorded every 4 hours 

and compared at 24 hours postoperatively among the study groups. Additionally, morphine 

requirements during the first 24 hours postoperatively were compared among the study groups. 

Follow up data for each patient were collected after a three-year period via telephone 

interviews or correspondence and included an inquiry on overall satisfaction with 

perioperative course and anesthesia, mortality and cause of death. The response rate was 

100%. 

 

 

 

 



 28

Statistical analysis 

Data are presented as mean ± standard deviation. SPSS 13.0 software was used for 

statistical analysis. Chi-square test was used for comparisons of preoperative qualitative 

parameters. Normal distribution was tested for all quantitative parameters. Kruskal-Wallis 

non-parametric analyses with Mann-Whitney tests were used for comparisons of quantitative 

parameters among the study groups. Friedman non-parametric tests with Wilcoxon tests were 

used to assess the differences of quantitative parameters at different time points in a single 

study group. Bonferrroni corrections were used for the multiple comparisons. P values <0.05 

were considered statistically significant. 
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9.  RESULTS 
 

Forty-seven consecutive patients were enrolled in the study from 2005 to 2008. Two 

patients in the TEA group were excluded from the final analysis the phase 1 study (Oxygen 

consumption in wake cardiac surgical patients) because of conversion to GA. The first patient 

suffered from a severe embolic stroke after discontinuation of CPB. He had to be intubated 

and subsequently died on the third postoperative day due to cerebral edema.  The second 

patient suffered from aortic dissection after decannulation of aorta and had to be intubated. 

After surgical correction, he had an uneventful postoperative course. The rest of the patients 

had uneventful perioperative course and there were no serious complications, including those 

related to epidural puncture and use of epidural catheter (epidural hematoma, abscess, spinal 

cord or nerve injury, accidental dural puncture, high spread of epidural anesthesia). 

 

Demographic, preoperative and perioperative data 

There was no difference in demographic, preoperative and perioperative data across all 

study groups, except for lower weight in the TEA group as compared to the TEA-GA group 

(Table 1) and  a mildly longer aortic cross clamp time in TEA-GA group as compared to the 

TEA and the GA groups (Table 2). Other inotropes except for norepinephrine (Table 2) 

including dobutamine, dopamine and epinephrine were not needed during the procedures. 
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TABLE 1.    Demographic and preoperative data 

 TEA (n=15) TEA-GA (n=15) GA (n=15) P-value 

Age (years) 67 ± 10 64 ± 11 67 ± 7 0.451 

Weight (kg) 67 ± 7 82 ± 15* 79 ± 15 0.025 

Height (cm) 174 ± 9 173 ± 11 173 ± 9 0.948 

BMI (kg/m2) 26 ± 5 28 ± 5 27 ± 4 0.454 

BSA (m2) 1.9 ± 0.2 2 ± 0.2 2 ± 0.2 0.702 

Male (female) 9(6) 10(5) 10(5) 0.908 

CAD 6/15 8/15 7/15 0.765 

Hypertension 12/15 11/15 12/15 0.879 

LV EF (%) 63 ± 5 62 ± 7 58 ± 7 0.147 

COPD 4/15 4/15 2/15 0.598 

Diabetes mellitus 6/15 5/15 6/15 0.910 

Stroke/TIA 1/15 1/15 0/15 0.593 

NYHA:    0.624 

             I.  7%  0%   0%  

             II. 40% 47%  53%  

            III. 40 % 40%  47%  

            IV. 13% 13%   0%  

EUROSCORE ad.       4.7 ± 2.3 4.3 ± 1.5 4.4 ± 21 0.689 

Serum creatinine (umol/l) 95 ± 21 100± 26 99 ± 30 0.624 

Type of surgery:    0.914 

    AVR 67% 60%  60%  

    CABG 20% 33%  27%  

    AVR + CABG 13%  7%  13%  

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, general 

anesthesia group; CAD, coronary artery disease; LV EF, left ventricular ejection fraction; COPD, chronic obstructive pulmonary 

disease; TIA, transitory ischemic attack; NYHA, New York Heart Association heart failure classification; EUROSCORE ad., European 

System for Cardiac Operative Risk Evaluation, additive score; BMI, body mass index; BSA, body surface area; 

AVR, aortic valve replacement; CABG, coronary artery bypass grafting. *   P <0.05 vs. TEA, †  PP

 <0.05 vs. TEA-GA. 
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TABLE 2.    Peroperative data 

 TEA (n=15) TEA-GA (n=15) GA (n=15) P-value 

Blood loss (mL) 490 ± 90 560 ± 190 520 ± 160 0.408 

Transfusion (PRBC units) 1.5 ±1.4 2.3 ± 2.5 1.1 ± 1.8 0.248 

Duration of surgery (minutes) 280 ± 32 270 ± 42 263 ± 45 0.450 

Duration of CPB (minutes) 92 ± 11 87 ± 15  86 ± 19  0.167 

Aortic cross clamp time (minutes) 52 ± 10 61 ± 10 * 51 ± 18 † 0.048 

Surgical revision due to ischemia 0 0 0  

Surgical revision due to bleeding  0 1 0 0.406 

Norepinephrine > 0,05 μg/kg/min 20% 47% 53% 0.143 

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, general 

anesthesia group; CPB, cardiopulmonary bypass; PRBC, packed red blood cells. 

*   P <0.05 vs. TEA, †  PP

 <0.05 vs. TEA-GA. 
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Hemodynamics 

All the hemodynamic data are included in Table 3.  Heart rates in the post-CPB (T5 

and T6) period were higher then in the pre-CPB period (T1 and T2) in all groups. As 

compared to the TEA-GA and GA groups, the TEA group had significantly higher heart rates 

in the pre-CPB period. As expected, MAP significantly dropped during the CPB period (T3 

and T4)  in all groups. No significant difference in MAP was found among the groups at any 

time point except for T2 and T5 when MAP was or tended to be higher in the TEA group in 

comparison with the other two groups. CVP increased significantly in the post-CPB period in 

all groups. No significant difference in CVP was noted among the groups at any time point. 

 

TABLE 3.    Hemodynamic data 

 T1 T2 T3 T4 T5 T6 Fried-T 

HR (bpm)        

TEA  80 ± 9  75 ± 8  --- --- 86 ± 7 b 86 ± 6 b P=0.001 

TEA-GA 64 ± 7 * 63 ± 6 * --- --- 87 ± 5 ab 86 ± 5 ab P=0.001 

GA 68 ± 11 * 61 ± 8 * a --- --- 89 ± 3 ab 88 ± 4 ab P=0.001 

K-W test P=0.001 P=0.001 --- --- P=0.276 P=0.312  

MAP (mmHg) 

TEA  93 ± 7 88 ± 9 56 ± 5 ab 59 ± 4 ab 85 ± 6 cd 82 ± 8 cd P=0.001 

TEA-GA 89 ± 11 82 ± 8 63 ± 8 ab 62 ± 11 ab 78 ± 6 * acd 78 ± 4 acd P=0.001 

GA 86 ± 11 76 ± 7 * 61 ± 9 ab 61 ± 9 ab 76 ± 7 * acd 77 ± 8 cd P=0.001 

K-W test P=0.120 P=0.001 P=0.107 P=0.846 P=0.001 P=0.302  

CVP (mmHg) 

TEA  8 ± 4 9 ± 3 --- --- 10 ± 3  11 ± 4 ab P=0.001 

TEA-GA 8 ± 2 9 ± 2  --- --- 8 ± 3 11 ± 3 ae P=0.004 

GA 7 ± 3 8 ± 3  --- --- 9 ± 2  10 ± 3 ab P=0.001 

K-W test P=0.466 P=0.697 --- --- P=0.371 P=0.665  

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, 

general anesthesia group; HR, heart rate; MAP, mean arterial pressure; CVP, central venous pressure; bpm, beats per minute; 

K-W, Kruskal-Wallis analyses. Fried-T, Friedman non-parametric tests). 

*  P<0,0 vs. TEA, †  PP

 <0.05 vs. TEA-GA, a P <0,05 vs. T1,  b  P <0,05 vs. T2, c P <0,05 vs. T3,  d  P <0,05 vs. T4,  e P <0,05 vs. 

T5. 
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9.1 Oxygen consumption in awake cardiac sugerical patients (Phase 1 study) 

 

Arterial acid base parameters  

In all groups, arterial lactate level increased from baseline (T1 and T2), peaking during 

the CPB period at T3, and then slowly decreased at T4 and during the post CPB period 

(Figure 1). In the TEA group the lactate levels were comparable to baseline values, while in 

the TEA-GA and GA groups, arterial lactate levels remained higher at the end of the study 

(T6) as compared to baseline (T1). Arterial lactate levels varied among the groups and never 

exceeded 3 mmol/L. Arterial lactate levels were significantly lower in the TEA group as 

compared to the other two groups throughout the study (T1-T6), except for T1 (TEA vs. GA, 

P=NS) and T3 (TEA vs. GA, P=NS).   

 

Figure 1 

 
 

Figure 1: Arterial lactate concentration. The means are depicted as  rhomboids within boxes indicating standard 

errors. Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric 

tests .*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 

vs. T4. e P =0,05 vs. T5. 
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Arterial pH decreased significantly in the TEA group in the post CPB period (T5 and 

T6) as compared to the pre CPB and CPB periods (T1-T4) (Figure 2). In the other two groups, 

there was a trend towards a decrease in the post CPB periods. Arterial pH varied among the 

groups, being lower in the TEA group as compared to the other groups in the post CPB period 

(T5 and T6).  

 

 

Figure 2 

 
 

Figure 2: Arterial pH. The means are depicted as rhomboids within boxes indicating standard errors. Whiskers 

indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric tests.*  P < 0,05 

vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 vs. T4. e P =0,05 

vs. T5. 
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Arterial BE decreased significantly during the procedure in all groups, reaching the 

highest values in the post CBP period (T5 and T6) (Figure 3). There was no difference among 

the groups in arterial BE, except for T4 when BE was higher in group GA as compared to the 

TEA group.  

 

 

Figure 3 

 

 
 

Figure 3: Arterial base excess. The means are depicted as  rhomboids within boxes indicating standard errors. 

Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric tests . 
*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 vs. T4. 
e P =0,05 vs. T5. 
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Arterial oxygen saturation decreased significantly in the TEA group in the post CPB  

period (T5 and T6) as compared to baseline (T1) and the CPB period (T3 and T4), but not in 

the other groups. Arterial oxygen saturation varied among the groups, being lower in the TEA 

group as compared to the TEA-GA and GA groups in the post CPB (T5 and T6) period 

(Figure 4). 

 

 

Figure 4 

 

 
 

Figure 4: Arterial oxygen saturation. The means are depicted as  rhomboids within boxes indicating standard 

errors. Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric 

tests .*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 

vs. T4. e P =0,05 vs. T5. 
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Arterial PaCO2 increased significantly in the post CPB period (T5 and T6) in the TEA 

group (Figure 5).  In the TEA-GA group, PaCO2 continually decreased significantly from the 

baseline during the late pre CPB (T2) and early CPB periods (T3), then increased (T4) and 

remained stabile during the post CPB period (T5-6). In the GA group, PaCO2 did not change 

significantly during the procedure. PaCO2 varied significantly among the groups, being higher 

in the TEA group at all time points as compared to the GA group and higher at T2, 3, 5 and 6 

in comparison with the TEA-GA group.  

 

 

Figure 5 

 
 

Figure 5: Arterial partial CO2 pressure. The means are depicted as rhomboids within boxes indicating standard 

errors. Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric 

tests .*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 

vs. T4. e P =0,05 vs. T5. 
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Venous saturations  

ScvO2 did not change significantly during the procedure in the TEA and TEA-GA 

groups. In group GA, ScvO2 was significantly higher in the post CBP period (T5 and T6) as 

compared to the baseline (T6) (Figure 6). ScvO2 varied among the groups, being lower in the 

TEA group compared with the TEA-GA group at baseline (T1). ScvO2 was also lower in the 

TEA group compared with the GA group in the pre CPB period (T2), and compared with the 

TEA-GA and GA groups in the late CPB (T4) and post CPB periods (T5 and 6).  

 

 

Figure 6 

 
 

Figure 6: Central venous oxygen saturation. The means are depicted as rhomboids within boxes indicating 

standard errors. Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-

parametric tests .*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. 
d  P =0,05 vs. T4. e P =0,05 vs. T5. 
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SjbO2 did not change significantly during the procedure in any study group  

(Figure 7). SjbO2 varied among the groups, being lower in the TEA group compared with the 

TEA-GA or GA groups at the end of the CPB period (T4) and compared with the GA group at 

the CPB periods (T5 and T6).  

 

 

Figure 7 

 
 

Figure 7: Jugular bulb oxygen saturation. The means are depicted as rhomboids within boxes indicating standard 

errors. Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric 

tests .*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 

vs. T4. e P =0,05 vs. T5. 
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Arterial hemoglobin level and glycemia 

As expected, hemoglobin level decreased significantly during the CPB period (T3 and 

T4) and then the level tended to increase in the post CPB period (T5 and 6) in all study groups 

(Figure 8). Hemoglobin levels varied significantly among the groups, being lower in the TEA 

group compared with the GA group during the CPB and early post CPB periods (T3-5). 

Hemoglobin levels were lower at T3 in the TEA group compared with the TEA-GA group.  

 

 

Figure 8 

 
 

Figure 8: Hemoglobin concentration. The means are depicted as  rhomboids within boxes indicating standard 

errors. Whiskers indicate standard deviations. K-W, Kruskal-Wallis analyses, Fried-T, Friedman non-parametric 

tests .*  P < 0,05 vs. TEA. † P <0,05 vs. TEA-GA. a P =0,05 vs. T1. b  P =0,05 vs. T2. c P =0,05 vs. T3. d  P =0,05 

vs. T4. e P =0,05 vs. T5. 
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DO2 was calculated only during the CPB period. DO2 was higher in the TEA and TEA-

GA groups in the late CPB period (T4) as compared to the early CPB period (T3) and tended 

to increase in the GA group (Table 4). DO2 varied among the groups, being significantly 

lower in the TEA group than the GA group at T3 and the TEA than the TEA-GA group at T4.   

 

Arterial glucose level tended to mildly increase during the procedure in all groups, 

being significantly higher at T4 (as compared to T1,2 and 3) and T5 (as compared to T2 and 

T3) in the TEA-GA group and T4 (as compared to T3) in the GA group (Table 4). There was 

no difference in arterial glucose levels among the groups at any time point.  

 

 
TABLE 4.   Glycemia and oxygen delivery 

 T1 T2 T3 T4 T5 T6 Fried-T 

Arterial glucose level (mmol/l) 

TEA 6.5 ± 1,7 6.8 ± 1.0 7.3 ± 0.9 8.3 ± 1.7 7.6 ± 1.7 7.4 ± 1.8 P=0.001 

TEA-GA 6.7 ± 0,9 6.6 ± 0.9 6.6 ± 0.9 8.4 ± 1.5 a bc 8.0 ± 1.1 bc 7.4 ± 1.3 P=0.001 

GA 6.3 ± 1,3 6.6 ± 1.3 6.4 ± 0.8 7.7 ± 1.0 c 7.8 ± 1.3  6.9 ± 1.3 P=0.002 

Kruskal-Wallis P=0.286 P=0.705 P=0.061 P=0.319 P=0.564 P=0.390  

Oxygen delivery (ml O2/m2*min) 

TEA --- --- 254 ± 40 274 ± 32  --- --- P=0.061 

TEA-GA --- --- 281 ± 18 319 ± 38 * c --- --- P=0.02 

GA --- --- 292 ± 47* 303 ± 49 c --- --- P=0.027 

K-W test --- --- P=0.001 P=0.001 --- ---  

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, 

general anesthesia group; K-W, Kruskal-Wallis analyses. Fried-T, Friedman non-parametric tests). 

*  P<0,0 vs. TEA, †  PP

 <0.05 vs. TEA-GA, a P <0,05 vs. T1,  b  P <0,05 vs. T2, c P <0,05 vs. T3,  d  P <0,05 vs. T4,  e P <0,05 vs. 

T5. 

 

BFRs adjustments and ventilatory support 

As no lactic acidosis developed and no venous saturation fell below 55%, there was no 

need to increase BFRs in any study group. As PaCO2 increased mildly only in the TEA group 

resulting in post-CPB mild respiratory acidosis, no ventilatory support was necessary in TEA 

group.   
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9.2 Postoperative outcome in cardiac surgery (Phase 2 study) 

 

Postoperative outcome data 

All patients in the TEA group were included in this analysis. All postoperative 

outcome data are listed in tables 5, 6 and 7. There was no difference in postoperative outcome 

data except for higher pain VAS scores and higher morphine requirements in GA group as 

compared to TEA and TEA-GA group (Table 5). The incidence of atrial fibrillation was 

higher in the GA group as compared to TEA group (Table 5). Total dose of norepinephrine 

and duration of vasopressor support tended to be lower in TEA group compared to TEA-GA 

and GA group, but did not reach a statistical significance (Table 5). The overall satisfaction 

with perioperative course and type of anesthesia did not differ among the groups (86%, 91%, 

83%, respectively, P=0.864). The patients, who were satisfied on the inquiry, would choose 

the same type of anesthesia for the procedure again. 

 

TABLE 5.    Postoperative data - pain management, pulmonary and cardiovascular outcome data 

 TEA (n=17) TEA-GA (n=15) GA (n=15) P-value 

Pain VAS score - at 24 hours postoperatively 4 ± 7 6 ± 7  14.7 ± 11 *† 0.004 

Morphine requirements - first 24 hours (μg/kg) 30 ± 6 30 ± 6 250 ± 140 *† 0.001 

Pulmonary outcome     

        Reintubation 0  0 1 (6.7%) 0.360 

        Time to extubation (hours) 0.2 ± 1.2 7.3 ± 3.8 * 6,7 ± 3.5 * 0.001 

        Mechanical ventilation > 48 hours 1 (5.9%) 0 1 (6.7%) 0.609 

        Pneumonia 0 0 1 (6.7%) 0.406 

        Pneumothorax 0 0 0  

        Atelectasis 0 0 0  

Cardiovascular outcome     

        Myocadial infarction 0 0 0  

        Ionotropic support/IABP 0 0 0  

        Atrial fibrillation 4 (23.5%) 8 (53.3%) 10 (66.7%) * 0.028 

        Total norepinephrine dose (μg/kg) 36 ± 62 43 ± 85 69 ± 72 0.231 

        Norepinephrine support  > 48 hours 1 (5.9%) 3 (20%) 4 (26.7%) 0.111 

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, general 

anesthesia group; VAS, visual analogue scale (0-100) ; IABP, Intra-aortic balloon pump.  *   P <0.05 vs. TEA, †  PP

 <0.05 vs. TEA-GA. 
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Length of hospital stay and early mortality 

 There was no difference in either ICU or hospital length of stay across the study 

groups (Table 6). Also no difference in ICU, hospital or early 30-day mortality was noted 

across the study groups (Table 6).  

 

Late mortality 

 The overall three-year mortality did not differ among the study groups (Table 6).  

There was no difference in the incidence of deaths related to cardiovascular causes 

(myocardial infarction, heart failure and sudden cardiac death) in these patients (66.7%, 50% 

and 66.7%, respectively, P=0.678).  

 

 

TABLE 6.     Postoperative data -length of ICU/hospital stay and  mortality  

 TEA (n=17) TEA-GA (n=15) GA (n=15) P-value 

Length of stay (days)     

            ICU  5 ± 2 5 ± 2 8 ± 12 0.516 

            Hospital 10 ± 5 12 ± 6 16 ± 15 0.339 

Mortality     

            ICU  1 (5.9%) 0 0 0.406 

            Hospital  1 (5.9%) 0 0 0.406 

            30-day  1 (5.9%) 0 0 0.406 

            3-year  3 (17.6%) 4 (26.7 %) 3 (20%) 0.678 

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, general 

anesthesia group; ICU, intensive care unit. 

*   P <0.05 vs. TEA, †  PP

 <0.05 vs. TEA-GA. 
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TABLE 7.    Postoperative data - neurological, renal and infections outcome data 

 TEA (n=17) TEA-GA (n=15) GA (n=15) P-value 

Neurological outcome     

        ICU delirium 3 (17.6%) 4 (26.7%) 4 (26.7%) 0.887 

        Stroke/TIA  1 (5.9%) 1 (6.7%) 0  0.593 

Renal outcome     

        Peak postoperative serum creatinine (μmol/L) 124 ± 46 110 ± 33 102 ± 23 0.355 

        RIFLE risk 2 (11.8%) 2 (13.3%) 1 (6.7%) 0.799 

        RIFLE injury 0 0 0  

        RIFLE failure 0 0 0  

        CRRT  0 0 0  

Infection     

        Catheter-related 0 2 (13.3%) 0 0.483 

        Sternum dehiscence 0 1 (6.7%) 3 (20%) 0.598 

        Urinary tract 1 (5.9%) 0 0 0.406 

TEA, thoracic epidural anesthesia group; TEA-GA combined thoracic epidural anesthesia and general anesthesia group; GA, general 

anesthesia group; ICU, intensive care unit; TIA, transient ischemic attack; RIFLE – risk, injury, failure, loss, end stage renal disease 

(Acute Dialysis Quality Initiative workgroup classification system); CRRT, continuous renal replacement therapy.   

 *   P <0.05 vs. TEA, †  PP

 <0.05 vs. TEA-GA. 
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10. DISCUSSION 
 

10.1 Oxygen consumption in awake cardiac surgical patients (Phase 1 study) 

 

In our study, metabolic lactic acidosis did not develop in any study group at any time 

point. Moreover, jugular bulb and central venous desaturation did not fall bellow 55% in any 

study group at any time point either. Based on these results and our study protocol, an 

increase of BFRs was not required in any study group. As expected, however, PaCO2 

gradually increased in the TEA group, which resulted in post-CPB mild respiratory acidosis 

with concomitant slight decrease of SaO2 . Thus, no ventilatory support was necessary to use 

in the TEA group. These findings indicate that the use of standard BFRs is adequate for 

patients undergoing awake on-pump cardiac surgery.  

The CPB BFRs of 2.4 L/min*m2 used in all our patients were within the limits of  

“standard” blood flow rates of 2.2-2.5 L/min*m2 that have been commonly used during 

normothermic CPB [49].  It has been recommended to set BFRs within this range for patients 

under general anesthesia [12], whose whole body VO2 is decreased by 15-30% depending on 

the type and amount of anesthetics used [10,36,38,46].  However, BFRs as low as 1.2 L/min/m2 

have been used during hypothermic bypass with acceptable clinical outcomes [56]  but data for 

normothermic perfusion are not available. The potential advantages of lower than standard 

BFRs include improved intracardiac exposure due to less bronchial blood flow returning to 

the left heart, reduced warming of the myocardium via noncoronary collateral vessels and 

reduced destruction of blood elements [49]. On the other hand, low BFRs during CPB have 

been identified as an independent risk factor for development of hyperlactatemia [53] due to 

inadequate DO2 to peripheral tissues [54]. Hyperlactatemia is a well-recognized marker of 

circulatory failure with tissue hypoxia and its severity has been associated with increased 

morbidity and mortality of patients undergoing CPB [11,54]. However, the minimal safe or 

optimal BFRs during CPB have not yet been established [49]. 

It is conceivable that awake TEA patients as well as TEA-GA patients could require 

higher than standard BFRs compared with GA patients, as the awake TEA patients lack the 

decreasing effects of general anesthesia on oxygen consumption and the dose of  anesthetics 

used in TEA-GA patients is lower than in GA patients. Possible increases in oxygen 

consumption in the TEA patients could raise requirements for oxygen delivery above critical 

level associated with the development of metabolic lactic acidosis.  
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Nevertheless, to our knowledge, no study has been performed before to test the 

adequacy of standard BFRs in awake TEA patients or combined TEA-GA patients. In our 

study, for the first time, we show that despite significantly lower DO2 in TEA patients (254 

and 274 mL/m2*min) at the beginning and end of CPB as compared to TEA-GA (281 and 320 

mL/m2*min) and GA (290 and 302 mL/m2*min) patients, no metabolic acidosis has 

developed and lactate remained in the normal range in all groups at all time points. After 

initiation of CPB, DO2 values are typically reduced into the range of 200-300 mL/m2*min [49, 

52], which was observed also in our study (Table 4). The decrease of DO2 has been previously 

related to hemodilution and decreased hemoglobin level [49]. In our study, we observed 

hemodilution in all groups (Figure 8). However, the TEA group tended to have lower 

hemoglobin at baseline which was likely responsible for lower DO2 during the CPB period 

when compared with the other groups. The minimal safe DO2 value during CPB, below which 

metabolic lactic acidosis develops, has not yet been established [49]. We speculate that the 

critical level of DO2 was not reached in any of our patient because no lactic acidosis has 

developed in any group. Therefore, based on lactate monitoring no BFR adjustments were 

required in any study group.  

In clinical practice, BFRs are being adjusted according to actual lactate levels as well 

as to degree of venous desaturations, specifically CPB venous effluent, ScvO2, SjbO2 and 

potentially mixed venous oxygen saturation (SvO2). Measurements of SvO2 allow calculations 

of other parameters including of whole body oxygen consumption and oxygen extraction ratio, 

however, this requires an insertion of a pulmonary artery catheter. Pulmonary artery catheter 

placement bears substantial risks for the patient (including serious arrhythmias and pulmonary 

artery perforation) and its yield for patient anesthesia management remains highly 

controversial [57]. The benefits (measurements of VO2) for our patients would be very limited 

and would not outweigh the risks. Moreover, the measurement of precise value of oxygen 

consumption was not the primary aim of the study. 

On the other hand, SjbO2 level (which reflects the global brain oxygen metabolism) 

below 50% has been associated with adverse neurological outcome in patients undergoing 

normothermic CPB [58]. ScvO2 below 50% predicts poor outcome in patients in septic  

shock [59]. However, critical value of ScvO2 or SvO2 for patients undergoing CPB has not 

been identified yet. In our study, all values of ScvO2 and SjbO2 were above 50%. It is 

generally accepted that these values without lactic acidosis are well tolerated by patients and 

not harmful.  Therefore, no adjustments of BFRs were needed as there were no severe venous 

desaturations (below 50%).  



 47

Although all ScvO2 and SjbO2 values in the TEA group were above 50%, they were 

mildly but significantly lower at the end of CPB and after CPB as compared to patients with 

GA or TEA-GA. There are a few factors that might be related to this phenomenon.  

First, tissue oxygen extraction could be increased due to the increase of VO2 caused by 

the lack of effect of general anesthesia in the TEA group, which was stated in our hypothesis. 

However, venous oxygen desaturations in awake TEA patients were of a mild degree, without 

concomitant lactic acidosis, therefore the increase of  VO2 could have been of a lesser extent 

than we originally expected. On the other hand, we also must take into account a possibility 

that original studies calculated BFRs that provide luxurious DO2 during CPB. In this case, 

even significantly increased VO2 in awake TEA patients would not have to lead to profoundly 

increased oxygen extraction and severe venous oxygen desaturations.  

Second, we observed decreased DO2 level caused by lower level of hemoglobin in the 

TEA group, which could lead to higher oxygen extraction and subsequently to lower venous 

saturations.  

Additionally, two other factors including the use of dexmedetomidine and the effect of 

hypercapnia may have increased venous saturation either in the whole body or solely in the 

jugular bulb. The whole body venous saturations might have been affected by use of central 

sympathetic α2-agonist dexmedetomidine in the TEA group. Dexmedetomidine decreases 

whole body VO2 in a dose dependent manner [60] and could increase venous saturations in the 

TEA group. In our study, however, we used the lowest dose of dexmedetomidine sufficient 

for sedation to maximally diminish possible increase of venous saturations. We speculate that 

the effect of dexmedetomidine was minimal in our study, because, despite using the drug, we 

observed slightly but significantly lower values of venous saturations in awake TEA patients. 

Increased levels of PaCO2 observed in the TEA group could have an impact on SjbO2 values 

as well. It has been shown that hypercapnia-induced cerebral vasodilatation increases cerebral 

blood flow and decreases cerebral oxygen extraction [61]. Nevertheless, SjbO2 remained lower 

in the TEA group compared to other groups at the  end of CPB, thus the effect of PaCO2 was 

likely minimal. 

Therefore, based on these results, it is impossible to state, whether VO2  of awake TEA 

patients was potentially increased compared to the other groups, as several variables could 

have affected this parameter, as noted above. Nevertheless, standard BFRs provided sufficient 

DO2   in these patients, which was documented by lack of metabolic lactic acidosis and 

significant venous oxygen desaturations. It would certainly be beneficial to employ methods 

that measure the regional level of oxygen metabolism (i.e. tissue oximetry, near infrared 
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spectroscopy or microdialysis) to specifically assess oxygen consumption at organ level. 

More studies are warranted to elucidate this topic to a greater extent.  

Additionally, all the above mentioned parameters including DO2 did not differ 

between the GA and TEA-GA groups. We speculate that despite lower dosage of anesthetics 

used in TEA-GA as compared to GA group, the decrease of VO2 was similar in both groups 

and thus there was no requirement for further adjustment of BFRs in TEA-GA group either.  
In awake TEA patients, mild hypercapnia has been previously reported [1,2] which is 

consistent with our data. Hypercapnia may cause respiratory acidosis, arterial vasodilatation 

and induce tachycardia followed by impaired consciousness at high level CO2 [61]. In our 

study, the hypercapnia was only of mild degree and none of the detrimental effects of 

hypercapnia were observed. Hypercapnia in the TEA group was more obvious in the post- 

CPB period and was accompanied by mild respiratory acidosis. In the TEA group, MAPs in 

the post-CPB period were only mildly but non-significantly lower as compared to the pre- 

CPB period and tachycardia was not observed. Faster heart rates (but within normal range) in 

the TEA group in the pre-CPB period were likely induced by psychic stress of patients.  

We also observed mild SaO2 reductions (92-93%) in the post-CPB period in the TEA 

group but without concomitant metabolic lactic acidosis or excessive venous desaturations. 

Thus, no patient had to be intubated in the TEA group because of severe hypercapnia or 

arterial hypoxemia. The SaO2 reductions and increased PaCO2 levels in spontaneously 

breathing conscious patients during post-CPB period, likely correspond to a mild degree of 

hypoventilation due to paralysis of intercostal muscles. 

  Interestingly, twelve patients in the TEA group stopped breathing when CPB was 

commenced. They restored their respiratory effort when they were asked to. This 

phenomenon was observed in a previous study as well [3], however the etiopathogenesis  

remains unclear. 

  

10.2 Postoperative outcome in awake cardiac surgery (Phase 2 study) 

 

In the second phase of the study, focusing on clinical outcomes, we found out that 

there was not a major difference in early and late postoperative outcome data among the three 

study groups, except for a higher incidence of atrial fibrillation in the GA group compared to 

TEA group. Also pain relief was more efficient and analgesic requirements were lower in the 

TEA and TEA-GA group compared to GA group. 



 49

It has been reported that TEA improves coronary blood flow distribution, caused by 

thoracic sympathicolysis, and was proposed to decrease the incidence of postoperative 

myocardial infarction [6], however this is not supported by the most recent meta-analysis [7]. 

There were no cases of perioperative myocardial ischemia, and no inotropic support except 

for norepinephrine was used in any of the study groups. Postoperative myocardial ischemia is 

a relatively common complication after surgical coronary revascularization with the incidence 

as high as 10-25%, significantly affecting postoperative morbidity and mortality [62]. In the 

present study, myocardial revascularization procedures represented about 35-40% of 

operations in each group, which were relatively small-sized. Thus, our results are certainly 

influenced by this limitation.  

Atrial fibrillation is the most common arrhythmia after cardiac surgery that leads to 

increased risk for thromboembolism and excessive health care resource utilization [63]. In our 

study, there was a lower incidence of atrial fibrillation in the TEA group, which corresponds 

to previously reported effects of  TEA [7,62]. This effect is most likely a consequence of 

sympathetic blockade and blunted stress response. Catecholamine response, reflected by 

epinephrine and norepinephrine release, is abolished or attenuated under TEA [5]. It is well 

known that the incidence of atrial fibrillation increases with procedure complexity in cardiac 

surgery [63]. Although our patients underwent various types of on-pump surgical procedures, 

their incidence did not differ among the study groups (Table 5).  

Furthermore, the hypotensive effect of  TEA as a result of excessive sympathetic 

blockade with its possible consequences has been described in the literature [64]. However, our 

results  show the opposite findings compared to the published data (Table 5). There was a 

trend towards lower total dose of norepinephrine used and shorter time of vasopressor support 

in the TEA and TEA-GA group compared to GA group, but the statistical significance was 

not reach in any of these parameters. The etiology of this remains unknown. It has been 

shown that atrial fibrillation represents a risk factor for hypotension and increased use of 

iontropic medications after cardiac surgery [65]. Thus, we speculate that the higher incidence 

of atrial fibrillation in the GA group could prolong vasopressor support in these patients.  

Although there is a considerable body of evidence that TEA may improve pulmonary 

outcome in patients undergoing cardiothoracic or abdominal surgery [7,8], there was not a 

difference in pulmonary outcome data among the groups in our study.  The overall incidence 

of these complications was very low in all groups (Table 5).  

It has been proposed that awake TEA may be more beneficial and safer than GA in 

patients with chronic obstructive pulmonary disease (COPD) [4,66]. Patients with asthma or 



 50

COPD have a high incidence of bronchial hyperreactivity [67]. Therefore, general anesthesia 

with tracheal intubation can induce bronchospasm, which, in some cases, can be life-

threatening in these patiens [68]. Awake TEA providing superior analgesia, improved 

diaphragmatic function and preservation of spontaneous ventilation without mechanical 

ventilation may contribute to improved pulmonary outcome in these patients [4,9,66,69]. On the 

other hand, thoracic sympathicolysis may increase airway resistance, and motor blockade of 

intercostal muscles [27] could lead to respiratory insufficiency in COPD patients. However, 

currently published data support the safety of TEA in COPD patients, when none of the above 

mentioned risks have been proven to be of clinical significance [70,71]. 

Severe COPD patients represent a high risk surgical population with extremely high 

percentage of postoperative pulmonary complications [72]. Thus, severe COPD patients have 

been frequently contraindicated for cardiac surgery. In our study, two patients suffered from 

severe COPD (FEV1 < 30% of normal values). Both patients preferred sole TEA and had 

uneventful perioperative courses. These data support the hypothesis that the TEA method 

could represent an alternative to the GA or conservative approach in COPD patients. However, 

other specifically designed studies are warranted to confirm this hypothesis.  

The quality of analgesia was evaluated using visual analogue scale scores in our study. 

VAS scores and morphine requirements were significantly lower in patients with TEA (TEA 

and TEA-GA group). That corresponds to previously reported results of TEA and represents 

the beneficial effect of TEA that is supported by the largest body of evidence, compared to its 

other effects [5,9]. Inadequate analgesia during the postoperative period may increase 

morbidity by causing adverse hemodynamic, metabolic, immunologic,and hemostatic 

alterations [73]. Thus, aggressive pain control could have potential to improve outcome in these 

patients [5]. Additionally, avoidance of parenteral opioids in TEA patients reduces the 

incidence of opioid-related side-effects [5]. 

There has been a trend toward more rapid recovery after cardiac surgery, with earlier 

extubation and shorter stays in ICU and in hospital (fast-track anesthesia) [74]. TEA represents 

one of the methods of fast-track anesthesia and many studies reported shorter length of 

hospital stay when using TEA [5]. In contrast to this data, there was not a difference in 

duration of ICU or hospital stay among our study groups. Nevertheless, length of hospital stay 

is also influenced by other factors unrelated to anesthetic method used . The local protocol of 

patient discharge represents the crucial factor. We simply were unable to influence the final 

surgeons’ decisions regarding discharge from hospital. 
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On the whole, contrary to combined anesthesia technique there is still a lack of good 

quality evidence on postoperative outcome in awake cardiac surgical patients. Studies 

published so far concentrated more on description of the awake technique and actual 

perioperative course with sparse comments on postoperative outcome [1,3,4]. Moreover, only 

one of these studies used controlled study design [2]. Our current study for the first time 

examines the detailed postoperative outcome results of awake patients in controlled manner, 

however not randomized. Our study failed to prove an improvement in any of the major 

morbidity outcome measures except for lower incidence of postoperative atrial fibrillation and 

better pain relief. This corresponds to the results of latest meta-analysis of postoperative 

outcome in combined TEA-GA patients. [7]. However, we believe, that in specific high-risk 

cohorts of patients, especially those with COPD, avoidance of tracheal intubation and 

mechanical ventilation could improve postoperative morbidity as discussed above.  

 Also, only limited data exist on early in-hospital [1-4,9] or late mortality [4] of awake 

TEA patients, which seems to be low (~ 4%) [4]. This corresponds to our early in-hospital 

mortality 5.9%. There was only one study reporting two-year mortality of awake TEA 

patients [4]. This is the first study to date reporting long-term outcome of awake TEA patients 

compared to other types of anesthesia. In the present study, three-year mortality and the 

incidence of deaths related to cardiovascular causes (myocardial infarction, heart failure, 

sudden cardiac death), which represented 50-66.7%, did not differ among the study groups. 

However, it is still a matter of debate if the early or late mortality is related to type of 

anesthesia itself or the complications of surgery [4].   

The risk of epidural hematoma formation related to the use of TEA still represents the 

major argument against the wide-spread use of TEA technique. New cases of epidural 

hematoma related to epidural anesthesia in cardiac surgery have been reported recently [75,76]. 

Epidural hematoma formation may lead to catastrophic neurologic consequences. Prompt 

diagnosis and urgent decompressive laminectomy with hematoma evacuation are crucial in 

minimizing the neurological damage [77].  

However, the latest estimation of the risk of epidural hematoma formation in cardiac 

surgery was calculated to be 1:12000 [78].  Such a risk is similar to the risk of epidural 

hematoma in non-obstetrical surgery. On the other hand, this analysis contains data from on-

pump as well as off-pump procedures. Therefore, the risk for solely on-pump procedures may 

be increased due to higher level of heparinization. Although the overall risk is considered to 

be relatively low, all possible precautions must be undertaken to minimize it. Normal 

coagulation parameters and safe withdrawal intervals of antithrombotic drugs are mandatory 



 52

[60]. The time interval between epidural catheter placement and full heparinization in on-pump 

cardiac surgery should be at least one hour [5,79]. We did not experience any of the above 

described inadvertent effects in our TEA patients. 

We also did not have any other of previously described side effects of TEA, such as 

incomplete anesthesia, pneumothorax, phrenic nerve palsy or severe hemodynamic instability 

requiring intubation [2]. Two of our awake TEA patients had to be switched to GA because of 

embolic stroke and aortic dissection. However, these two complications are not caused by 

anesthetic technique but are typically related to surgical procedure [80].  

Awake cardiac surgery with TEA requires a perfect patient’s understanding and 

collaboration. Close collaboration between anesthetist and surgeon is necessary. Moreover, 

this technique is demanding for a surgeon, who needs to be experienced and able to promptly 

manage potential complications. Awake cardiac surgery also bears a certain amount of 

psychic stress for the patients, therefore it should be restricted to selected patients who have 

excellent compliance to the technique. The final decision as to which method should be 

chosen should be made on an individual basis after careful evaluation of the procedure risks 

and the advantages and disadvantages of each anesthetic technique with regard to the patient´s 

personality and cooperation.  

 

10.3 Study limitations 

Ethical and medical considerations did not allow a randomized study design. 

Therefore, after a thorough explanation of advantages and disadvantages of each anesthetic 

method, the patient chose the type of anesthesia on their own.  

As discussed above, we did not use pulmonary artery catheter in any of our patients to 

avoid all possible confounding factors [47], which would compromise our patient’s outcome. 

Thus, precise calculation of VO2 was not possible. Moreover, information about VO2 would 

not affect already clinically established management of BFRs, which is based on monitoring 

of lactate levels and venous saturations. 

We did not compare different levels of BFRs (higher or lower than the standard BFRs) 

and their effect on blood gasses and acid-base parameters. However, the main objective of the 

study was to evaluate adequacy of standard BFRs which have been used in awake patients. In 

our protocol, an increase of BFRs under conditions of lactic acidosis and severe decrease of 

venous saturations has been implemented, however, no adjustments were needed during the 

study. Future studies are warranted to test if other settings of BFRs in awake patients would 

be more favorable for the patient’s management than the use of standard BFRs values.  
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The transesophageal echocardiography was not used during CPB for evaluation of 

cardiac output because it would cause severe discomfort in the awake TEA patients.  
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11. CONCLUSIONS 
 

11.1 Oxygen consumption in awake cardiac surgical patients (Phase 1 study) 

In the first study, we tested the oxygen delivery sufficiency of standard blood flow 

rates of 2.4 l/min*m2 in awake TEA patients during cardiac surgery with cardiopulmonary 

bypass by monitoring and comparing of lactate levels, acid-base parameters and venous 

desaturations and compared these results with groups of patients under sole general anesthesia 

and with combined anesthesia. As original blood flow rates values during cardiopulmonary 

bypass were calculated for patients under general anesthesia, concerns about its sufficiency 

exist in awake TEA patients, who may have increased oxygen consumption due to the missing 

effect of general anesthesia. Our study showed that under careful monitoring the use of 

standard blood flow rates is adequate in patients undergoing awake on-pump normothermic 

cardiac surgery as well as is sufficient for combined anesthesia. Neither lactic acidosis nor 

severe venous desaturations were observed in awake TEA patients, thus no adjustments of 

BFRs were needed. Only a mild hypercapnia and a mild decrease of arterial oxygen saturation 

developed in the post-CPB period; therefore no conversion from awake TEA to GA was 

required due to anesthesiologic indications.  

 

11.2 Postoperative outcome in awake cardiac surgery (Phase 2 study) 

In the second study, we evaluated the impact of awake TEA technique on major 

parameters of postoperative outcome in comparison with patients undergoing cardiac surgery 

under combined and sole general anesthesia. The beneficial effect of thoracic epdiural 

anesthesia with sympathetic blockade and stress response attenuation has been proven to 

improve postoperative outcome in patients with combined anesthesia. However, very limited 

data exist on postoperative outcome in awake TEA patients, in whom avoidance of tracheal 

intubation and mechanical ventilation may represent another factor for reducing postoperative 

morbidity. In our study, there was no major difference in early and late postoperative outcome 

data including hospital and three-year mortality among the three study groups, except for the 

lower incidence of atrial fibrillation in awake TEA patients as compared to patients under 

general anesthesia. Also, methods using postoperative epidural analgesia provided superior 

pain relief. Future studies are warranted to elucidate the potential profit of awake technique in 

cardiac surgery in specific patient cohorts such as high risk patients with COPD. 
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