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Prace se zabyva aproximaci rovnic popisujicich proudéni jedné tiidy ne-
newtonovskych tekutin metodou konec¢nych prvki. Zaméruje se zejména na
nestlacitelné tekutiny, jejichz vazkost zavisi nelinedrné na rychlosti smyku a na
tlaku. Rovnice popisujici proudéni jsou diskretizovany d-linedrnimi kone¢nymi
prvky stejného radu, jez nesplnuji podminku inf-sup stability. Prace navrhuje
stabilizaci v gradientu tlaku zaloZenou na zndmé metodé lokalni projekce (LPS).
V pripadé vazkosti zavisejici pouze na rychlosti smyku jsou ukazany existence
a jednoznacnost feSeni stabilizované diskrétni dlohy a rovnéz apriorni odhady
chyby kvantifikujici konvergenci metody. Pokud vazkost s rychlosti smyku kles4,
dévaji odvozené odhady rad konvergence optimélni vzledem k regularité reseni.
Jak znamo, Galerkinova metoda konec¢nych prvka miize vykazovat nestabilitu
nejen nasledkem poruseni diskrétni inf-sup podminky, ale také diky dominujici
konvekci. Navrzena stabilizace je proto vhodné rozsitena, aby se vyporadala s
obéma puvodci nestability. Na konec je uvazovana vazkost zdvisejici na rychlosti
smyku a na tlaku. Prislusna Galerkinova diskretizace je analyzovana a konvergence
diskrétnich feseni je kvantifikovina optimalnimi odhady chyby.

nenewtonovské tekutiny, vazkost zavisld na tlaku a rychlosti smyku, metoda
konecnych prvki, apriorni odhady chyby
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This dissertation is devoted to the finite element (FE) approximation of equations
describing the motion of a class of non-Newtonian fluids. The main focus is on
incompressible fluids whose viscosity nonlinearly depends on the shear rate and
pressure. The equations of motion are discretized with equal-order d-linear finite
elements, which fail to satisfy the inf-sup stability condition. In this thesis a
stabilization technique for the pressure-gradient is proposed that is based on the
well-known local projection stabilization (LPS) method. If the viscosity solely
depends on the shear rate, the well-posedness of the stabilized discrete systems is
shown and a priori error estimates quantifying the convergence of the method are
proven. In the shear thinning case, the derived error estimates provide optimal rates
of convergence with respect to the regularity of the solution. As is well-known, the
Galerkin FE method may suffer from instabilities resulting not only from lacking
inf-sup stability but also from dominating convection. The proposed LPS approach
is then extended in order to cope with both instability phenomena. Finally, shear-
rate- and pressure-dependent viscosities are considered. The Galerkin discretization
of the governing equations is analyzed and the convergence of discrete solutions is

quantified by optimal error estimates.
Non-Newtonian fluids, shear-rate- and pressure-dependent viscosity, finite element

method, a priori error estimates






Contents

(1__Introductionl

[2__Theoretical Results|
[2.1 Notation and function spaces| . . . . .. . ... .. .. ...
2.2 Non-Newtonian fluid models|. . . . . ... ... ... . ...
[2.3  Assumptions on the extra stress tensor|. . . . . . . ... ..
[2.4  Properties of the extra stress tensor| . . .. ... ... ...
2.5 'The p-Stokes equations|. . . . . . . ... .. ... ... ...
2.6 The p-Navier-Stokes equations| . . . . ... ... ... ...
[3.1 Finite element (FE) discretization| . . . ... ... .. ...
3.2 Stabilization]. . . . . . ... oo
[3.3 Interpolation in Orlicz-Sobolev spaces| . . . . . .. .. ...

B4

Implementational aspects| . . . . ... ... ... ... ...

[4  Finite Element Approximation of the p-Stokes Equations|
4.1 LPS in the context of p-Stokes systems|. . . . . . . . . ...
4.2 Properties of the stabilization term| . . . . . . . .. .. ...
4.3 Modified interpolation operator| . . . . . . . . ... ... ..
4.4 Well-posedness of the stabilized systems| . . . . . . . . ...
4.5  Error estimates for the proposed stabilization scheme|. . . .

4.7

Non-steady p-Stokes equations| . . . . . . .. ... ... ..

4.8 Numerical experiments|. . . . . . ... ... ... .. ....

4.9 Final remarkson LPSI . . . . .. .. ...

(o

Approximation of the p-Navier-Stokes Equations|

B.I

LP5 in the context of p-Oseen systems| . . . . . . ... ...

5.2

Properties of the stabilization schemel . . . . ... ... ..

5.3

Error estimates for the stabilized p-Oseen system| . . . . . .

5.4

The non-steady p-Navier-Stokes equations| . . . . . . . . ..

55

Numerical experiments|. . . . . .. ... ... ... ... ..

5.6

A posteriori error estimation and adaptive mesh refinement|

[b.7

Application to the p-Navier-Stokes equations| . . . . . . . .

[6 Finite Element Approximation of Singular Power-Law Systems|

15
19
25
32

39
39
45
48
54

59
60
61
63
67
71
81
89
97
111

113
113
115
119
127
128
138
145

155



Contents

I!i.l l l!!t!ls:lll l!!lllll]l“!li!!lll ................
6.2 Stability of Newton’s method| . . . . . . . .. ..
6.3  Approximation of singular power-law systems| . .
6.4 Numerical experiments|. . . . . . . .. ... ...

|7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity|
(7.1 Galerkin formulation| . . . . . ... ... ... ..
[7.2  Galerkin discretization and its well-posedness| . .
[7.3  Convergence of the discrete solutions| . . . . . . .
7.4 A priori error estimates| . . . ... ... .. ...
[7.5 Finite element approximation| . . . . . . . . . ..
7.6 Numerical experiments|. . . . . .. ... ... ..
[7.7  Verification of |(A1)H(A2)|for particular models|

8 Conclusion and Qutlook|

List of Tables

[Cist of Figures|

G F Abbreviations

ii

171
172
173
176
179
182
187
192

195
199
201
203

205



1 Introduction

The present thesis deals with the finite element approximation of equations describing the
steady motion of incompressible fluids whose viscosity nonlinearly depends on the shear
rate and pressure. Since the early formation of fluid mechanics it has been known that
there is a large class of fluids which cannot adequately be described by the Navier-Stokes
theory. Such fluids are referred to as non-Newtonian fluids. An important subclass of
non-Newtonian fluids consists of those whose viscosity depends on the shear rate and/or the
pressure. These fluids play an important role in various areas of application, for instance,
in chemical engineering, blood rheology, and geology. Pressure-dependent viscosities appear
in many industrial applications, such as in elastohydrodynamic lubrication, where very
high pressures occur. The mathematical theory concerned with the self-consistency of the
governing equations still is not fully developed but it has made good progress in recent years.
Numerical simulations are frequently employed in engineering practice since real-world
experiments of industrial processes can be complex, cost-intensive, and time-consuming.
The finite element method (FEM) is often used for engineering simulations. Due to the
complicated structure of the viscosity, the mathematical analysis of FEM is sophisticated
and it offers many open questions. This thesis aims at closing the gap between mathematical
theory and engineering simulations. It is devoted to the finite element (FE) approximation
of the equations of motion and its mathematical analysis including error estimation.

First of all, we consider fluids whose viscosity solely depends on the shear rate. In particular,
we focus on fluid models with p-structure that include the popular power-law and Carreau
model. The parameter p > 1 stands for the power-law exponent. Such models are the most
commonly used non-Newtonian fluid models and they capture typical non-Newtonian flow
characteristics such as shear thinning or shear thickening behavior, which corresponds to
exponents p < 2 or p > 2. The mathematical theory concerned with the self-consistency
of the governing equations has been studied intensively since the 1960’s, as the theory
of monotone operators had developed. Details can be found in [MRR95, [FMS03]. For
p-structure models, the governing equations are referred to as the p-Navier-Stokes equations.
In this thesis, we initially consider the p-Stokes system complemented with homogeneous
Dirichlet boundary conditions and we analyze its finite element approximation. In contrast
to the p-Navier-Stokes system, the p-Stokes system neglects inertial forces and, hence,
we avoid mathematical difficulties caused by the convective term. Its FE approximation
has been studied intensively in recent years and a priori error estimates quantifying the
convergence of FEM have been proven (see [BN90|, BL93bl [BL.94]). However, the existing
results in literature are suboptimal in the sense that either the order of the error estimate
is not optimal or the assumed regularity of the solution is too high and not realistic for
general solutions. Optimal error estimates have been proven for the p-Laplace equation
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in Diening/Ruzicka [DRO7]. In this thesis, we will derive a priori error estimates for
p-Stokes systems that are optimal at least in the shear thinning case and that improve the
error estimates established in [BN90, BLI3b, [BL94]. Related to the development of the
present thesis, at the same time Belenki et al. have independently derived similar results
which will be published in [BBDR10]. While their approach is based on finite elements
satisfying the inf-sup (stability) condition of Babuska-Brezzi, in this thesis we analyze
the approximation of the p-Stokes equations with equal-order finite elements that take
advantage of a convenient implementation but that fail to fulfill the inf-sup condition.
Due to the limited regularity of the solution, we mainly consider the low-order Q;/Q
finite element which uses continuous isoparametric d-linear shape functions for both the
velocity and pressure approximation. Since this equal-order discretization is not inf-sup
stable, the pressure gradient needs to be stabilized. A popular stabilization technique
is the local projection stabilization (LPS) method that was introduced for the Stokes
problem in Becker/Braack [BBO1]. The LPS method achieves stabilization of the pressure
by adding appropriate stabilization terms to the standard Galerkin formulation which
give a weighted L?-control over the fluctuations of the pressure gradient (see [BBOI]). For
p-Stokes systems a priori error estimates have only been established for inf-sup stable
elements so far because optimal error estimates have not yet been available and their
derivation significantly complicates if additional stabilization is involved. In particular, the
LPS method has not been studied in the context of p-Stokes systems up to now. If LPS
is applied to problems with p-structure, the known LPS theory ensuring convergence for
Stokes systems cannot simply be transferred to the p-Stokes problem due to its nonlinear
nature. In this connection, the crucial question arises whether the solutions of the stabilized
discrete equations actually converge to the exact solution of the p-Stokes system.

In this thesis, we analyze the LPS method applied to p-Stokes systems. We will propose a
nonlinear stabilization term that is based on the known LPS method but that is adjusted
to the p-structure of the problem: Since the pressure naturally belongs to the Lebesgue
space L (£2) for p/ := p/(p — 1), our idea consists in choosing a stabilization that controls
fluctuations of the pressure gradient not in L?(£2) (as suggested for Stokes systems) but
rather in L¥ (£2). Our proposed stabilization term yields a weighted L -control over
fluctuations and it coincides with the well-known stabilization term used for Stokes systems
in the case p = 2 (see [BB01]). We will show that the stabilized FE systems are well-posed.
Let v and 7 be the exact velocity and pressure, and let vy, and 7, be the corresponding
discrete approximations. As usual, h represents the maximum mesh size. For instance if
p < 2, then we will establish the following a priori error estimates,

2
lo—wnllip <ch,  lfm—mly <, (L1)

provided that the solution (v, ) is sufficiently smooth, see Theorem Actually, the
constants in depend on the solution (v, 7) through quantities that express the “natural
regularity” of (v, 7) which is available for sufficiently smooth data (cf. Ebmeyer [Ebm06]).
It is well-known that, in order to derive sharp error bounds, one shall prove error estimates
in terms of quasi-norms which naturally arise in degenerate problems of this type (cf.
Barrett/Liu [BL94]). In order to derive (1.1)), we combine both the quasi-norm technique
and the well-known analysis of LPS for Stokes systems. Numerical experiments indicate



that is optimal with respect to the supposed regularity of the solution. The error
estimates (|1.1) remain valid for the classical power-law model. For p > 2 we will establish
analog a priori error estimates (see Theorem that, however, may be suboptimal
concerning the order of convergence for the pressure. If the standard LPS method of
[BBO1] is applied to p-Stokes systems, we will only be able to derive (suboptimal) a priori
error estimates which provide rates of convergence depending on the space dimension d. In
contrast, our proposed stabilization allows error estimates independent of d, see .

It is well-known that for Navier-Stokes systems numerical instabilities result not only from
lacking inf-sup stability of the FE ansatz but also from locally dominating convection in
case of high Reynolds numbers. In Becker/Braack [BB04] it has been shown that the LPS
approach of [BB01] can be extended to Navier-Stokes systems in order to cope with both
instability phenomena. So far our studies have dealt with LPS for p-Stokes systems only. As
the thesis continues, we will perform an analysis of LPS in the context of p-Navier-Stokes
systems. We will extend the established LPS-theory for p-Stokes systems in order to
properly treat dominating convection. For p-Oseen systems, we will prove optimal a priori
error estimates that are similar to (|1.1)).

In the shear thinning case the classical power-law predicts an unbounded viscosity in the
limit of zero shear rate. The corresponding equations of motion are then called singular
power-law systems. The power-law is frequently used (see, e.g., [BCH75, [SE86]). Since
the extra stress tensor related to the singular power-law is not differentiable, numerical
instabilities usually arise when the discrete power-law systems are solved via Newton’s
method (cf. [Deu04]). In this thesis, we will present a numerical method which enables the
stable approximation of singular power-law systems. The proposed method is based on a
simple regularization of the power-law viscosity. We will estimate the error resulting from
regularization. The underlying regularization parameter is then coupled with the mesh size
so that the error caused by regularization is of same order as the discretization error at
least. Finally, we will demonstrate numerically that our regularized approximation method
surpasses the non-regularized one regarding accuracy and numerical efficiency.

In this thesis, we also consider fluid models which are both shear thinning and pressure
thickening. Similarly to Mélek et al. [MNRO2], the proposed structure of the viscosity
allows a restricted sub-linear dependence on the pressure. The mathematical theory
concerned with the self-consistency of the governing equations has emerged recently, see e.g.
[FEMRO5, BMRO7, Lan09, BMR09, [LS11a]. The FE method has been studied extensively
in the context of power-law/Carreau-type fluids whose viscosity only depends on the shear
rate, but no FE analysis is available when the fluid’s viscosity also depends on the pressure.
In this thesis, we will extend the FE analysis performed for p-structure models in the
sense that we will allow shear-rate- and pressure-dependent viscosities and that we will
consider more general boundary conditions such as inhomogeneous Dirichlet or natural
inflow /outflow boundary conditions. Due to the complex structure of the problem, we will
restrict the mathematical analysis to inf-sup stable discretizations. We will show that the
FE solutions (v, 7y,) exist, that they are determined uniquely, and that they converge
to the weak solution (v, 7) strongly in W'P(2) x L¥ (), p € (1,2), for diminishing
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mesh size h. Finally, we will derive optimal a priori error estimates similar to (1.1)), see
Corollary Note that Carreau-type models are covered as a special case.

Below we summarize all chapters of the thesis:

Theoretical Results: In Chapter [2| we formulate the incompressible p-(Navier-)Stokes
equations. Instead of focusing on particular flow models, we state structural assumptions
on the extra stress tensor (p-structure) that contain a large class of flow models. We
discuss resulting properties of the extra stress tensor which play an important role in the
FE analysis. Finally, we introduce the variational formulation of the p-(Navier-)Stokes
equations, and we recall well-known theoretical results that ensure the existence and
uniqueness of weak solutions and that deal with the regularity of weak solutions.

Finite Element Discretization: Chapter [3| deals with the FE discretization of the p-
Navier-Stokes equations. Since we use an equal-order discretization, we need to stabilize
the discrete Galerkin systems. We recall well-known stabilization methods such as local
projection stabilization (LPS). Approximation properties of FE spaces can be characterized
by estimates for interpolation errors. For the FE analysis of p-Stokes systems it is convenient
to transfer the interpolation theory from Sobolev spaces to Orlicz-Sobolev spaces. In this
chapter, we summarize important results on interpolation in Orlicz-Sobolev spaces that
have been derived in [DR07]. Finally, we discuss implementational aspects.

Finite Element Approximation of the p-Stokes Equations: In Chapter [4, we rigorously
analyze the discretization of the p-Stokes problem with equal-order bi- or tri-linear finite
elements. First of all, we propose our stabilization method that is based on the LPS
method and that is adjusted to the p-structure of the problem. Within the LPS framework,
the pressure gradient is projected into an appropriate (possibly discontinuous) FE space
that is supposed to satisfy a certain local inf-sup condition with respect to the original
FE space. We show that there exists an interpolation operator of Scott-Zhang type that
additionally features an orthogonality property with respect to the projection space and
that satisfies an interpolation property in terms of quasi-norms. This modified interpolation
operator enables us to prove a discrete analogon of the continuous inf-sup condition and,
consequently, the well-posedness of the discrete stabilized systems. Then we derive a priori
error estimates that quantify the convergence of the method. We confirm numerically that,
at least in the shear thinning case, the derived error estimates are optimal with respect to
the expected regularity of the solution. Furthermore, we establish a priori error estimates
if the classical LPS scheme proposed in [BBO01] is applied to p-Stokes systems. We also
analyze the fully time-space discretization of non-steady p-Stokes systems. Finally, we
present particular projection spaces that satisfy the abstract assumptions.



Approximation of the p-Navier-Stokes Equations: Chapter [5] is devoted to the finite
element approximation of p-Navier-Stokes systems. First of all, we investigate the LPS
method applied to the p-Oseen equations. The p-Oseen system appears within the solution
of the non-steady p-Navier-Stokes system as an auxiliary problem if an A-stable time step
method is employed. For it we are able to prove optimal a priori error estimates using
methods from Chapter [l Finally, we deal with a posteriori error estimation and adaptive
mesh refinement. Generally, the numerical solution of the highly nonlinear p-Navier-Stokes
equations can be cost-intensive and time-consuming. Hence adaptive methods are important
since they enable us to reduce numerical costs without loss of accuracy. In the context of
p-Navier-Stokes systems we discuss the well-known dual weighted residual (DWR) method
(see [BRO1]), which allows for both the quantitative assessment of the discretization errors
and the adaptive refinement of the underlying meshes. In particular, we apply the DWR
method to the p-Navier-Stokes equations for the computation of the drag coefficient.

Approximation of Singular Power-Law Systems: Chapter [6] deals with so-called singular
power-law models which feature an unbounded viscosity in the limit of zero shear rate. We
present a numerical method that enables the stable approximation of singular power-law
systems. Finally, we prove a priori error estimates and we numerically validate them.

Fluids with Shear-Rate- and Pressure-Dependent Viscosity: Chapter [7]is dedicated to
fluids whose viscosity depends on the shear rate and pressure. We analyze the Galerkin
discretization of the governing equations. In particular, we show the well-posedness of
the discrete systems. We prove that the discrete solutions converge to the solution of the
original problem without any additional assumption on its regularity. We then derive
a priori error estimates that provide optimal rates of convergence with respect to the
supposed regularity. Finally, we illustrate the achieved results by numerical experiments.

Conclusion and Outlook: In Chapter [8] we summarize the derived results.

To sum up, the present thesis pursues the following aims:
e analyze the LPS-method in the context of p-Stokes systems
e derive optimal a priori estimates for the approximation error
o extend the established LPS-theory to p-Navier-Stokes systems
e apply the DWR method to the p-Navier-Stokes equations
e develop a stable approximation method for singular power-law systems

e analyze FEM for fluids with shear-rate- and pressure-dependent viscosity
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e study general boundary conditions describing, e.g., a free outflow

Several results of the present thesis have already been published in (or have currently been
submitted to) peer-reviewed journals while composing the thesis:

o Adrian Hirn, Approximation of the p-Stokes equations with equal-order finite elements,
accepted for publication in J. Math. Fluid Mech. (2011), [Hir10].

e Adrian Hirn, Martin Lanzendorfer and Jan Stebel, Finite element approzimation of
flow of fluids with shear rate and pressure dependent viscosity, accepted for publication
in IMA J. Numer. Anal. (2011), [HLSI0].



2 Theoretical Results

In this chapter, we formulate the fundamental equations describing the motion of certain
non-Newtonian fluids, and we deal with known theoretical results concerned with their
well-posedness. First of all, in Section we introduce our basic notation which is used
throughout the thesis. Section is dedicated to the derivation of the governing equations.
Moreover, the practical relevance of the considered fluids is discussed. Instead of focusing on
particular flow models, in Section we state general structural assumptions on the extra
stress tensor (p-structure) that allow for a large class of flow models. In Section [2.4 we derive
resulting properties of the extra stress tensor that will be of relevance for the FE analysis
of p-Stokes systems. In Sections we introduce the variational formulation of the p-
(Navier-)Stokes equations which represents the basis for the FE discretization. Additionally,
we recall well-known theoretical results that ensure the existence and uniqueness of weak
solutions. In Section we also discuss the regularity of weak solutions.

2.1 Notation and function spaces

The set of all positive real numbers is denoted by R*. Let R{ := R™ U {0}. For the
Euclidean scalar product of two vectors p, g € R¢ we use the notation p - g. The scalar
product of P, Q € R**“ is defined by P : Q := Zﬁjzl P;jQij. We set |Q| = (Q : Q)I/Q.
Often we use ¢ as a generic constant, i.e., its value may change from line to line but does
not depend on the important variables. We write a ~ b if there exist positive constants ¢
and C' independent of all relevant quantities such that cb < a < Cb. Moreover, the notation
a < b is used for a < Cb with a suitable constant C' > 0.

Below we introduce function spaces, which will be used later on, and we recall their
basic properties. Details and proofs can be found in the standard literature, e.g., in
[Ada75, KIJF77, Rfz04]. Throughout the thesis let 2 ¢ R?, d € {2,3}, be a bounded
domain with boundary 9f2. If we do not provide further information, we will assume that
042 is Lipschitz. The outer unit normal vector to 3f2 is denoted by n. For measurable
w C {2, the d-dimensional Lebesgue measure of w is denoted by |w|. For v € [1, 0] we use
the standard notations L”(w) for the Lebesgue space and W""(w) for the Sobolev space
of order m: The Lebesgue space L”(w) consists of all measurable functions u on w, for
which

(f, lul da) if v € [1,00)

[elluse = Nl oy )y = _ ,
ess sup, |u| == inf|y=o SUPge, N u(T)]  if v =00
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is finite. We identify two functions, u and v, that satisfy ||u — v||,,, = 0. For v € [1, ]
the functional |-||,, is a norm, and (L”(w), ||-||sw) is a Banach space. Let m € INy :=
{0,1,2,...}, v € [1,00], and let w C {2 be open. Then the Sobolev space W™ (w)
contains all u € L"(w) whose distributional derivatives 0%u € L (w) exist for any o with
0 < |a| < m. Here, @ = (aq,...,qq) is a multi-index (each «; is a nonnegative integer),
la| :== ¢ a;, and 9% := I ... 97 with O 1= 9% /92, The symbols §* are used for
both the partial and distributional derivatives. Further synonyms for derivatives are given
by Vu := (8jui)§l7 j=1 and V™u. The latter one denotes the tensor of all partial derivatives
of w up to the order m. The Sobolev space W (w) is a Banach space with the norm

1/v .
(@) — (Z|a\§m“aau‘|zy(w)> if 1 <v<<oo '

[l = llullwm .
2 a|<m €SS Sup,[0%ul if v =00

Similarly, we define seminorms, |ty . = (Z|a|:m||8°‘u\|z;w) 1/V. For functions u € L'(w)
with |w| > 0, we denote the mean value of u over w by (u), = f udx = ﬁfwudw.
The symbol L{j(w) stands for the subspace of L”(w) whose elements meet trivial mean-
value, i.e., L§(w) := {u € L”(w); (u), = 0}. For scalar functions u, v with uv € L*(w),
the notation (u,v),, is used for the integral [ uvdx. Spaces of R?-valued functions are
denoted with boldface type, though no distinction is made in the notation of norms
and inner products. Thus, the norm in W™ (w) = [W™¥(w)]¢ is given by || w||mw =
(ZISiSd Zoga\gmﬂaawi”;w)l/y. For vector-valued functions w, v with u;v; € L' (w), we
set (u,v), = [ u-vdx. Analogously, for tensor-valued functions U, V' with U;;Vj; €
LY(w), we define (U,V),, := [ U : Vdz. In case of w = §2, we usually omit the index
Q. For v € [1,00) the notation W, (£2) is used for the Sobolev space with vanishing

traces on 0f2. It is well-known that for v € [1,00) there exists a continuous trace operator
v WH(02) — LY(002) with u|gg = v(u). The space WOI’V(Q) is then characterized by

Wy (2) := {u € WH(2); ulgn = 0}.

We recall the Poincaré and generalized Korn inequality (see, e.g., Mélek et al. [MNRR96]):

For any v € (1, 00) there exist constants ¢1, co > 0 only depending on v and {2 such that
clwlly < [Vl < e Dwl, YV € Wo"(52). (2.1)

By virtue of (2.1), the seminorm [|V-||, represents a norm on Wy (£2) which is equivalent

to the usual W*-norm. The space WO1 "(£2) is a closed subset of W¥(£2). The dual space
of Wy (£2) is denoted by W1+ (2) = [W, " (£2)]*. Tt is a Banach space with the norm

g/l -1 :=" sup

Here, (-,-) represents the duality pairing between W~1*'(£2) and WO1 Y(£2). As usual, v/
stands for the dual exponent to v defined by 1/v + 1/v/ = 1. The space C™(£2), m € I,
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denotes the space of all m-times differentiable functions on {2 whose derivatives up to order
m are continuous. We set C(£2) := CY(£2) and we define

C®(0):= () C™(9).
meN

The space C™({2) consists of all functions from C™(f2) whose derivatives up to order m
can be extended continuously onto 2. It is a Banach space with the norm

l[ull gm gy = lmgx sup |0%u(z)|.

al<m xel?

As usual, D(£2) := C3°(12) denotes the set of all C*>°-functions with compact support in (2.
Its dual space is denoted by D’'(£2). If 912 is Lipschitz, then WO1 Y (£2) can be characterized
as the closure of C§°(f2) with respect to the I/VO1 *-norm. The following interpolation
inequality is well-known: Let f € W15(02) N LY(£2) with 1 < ¢ < co. If s < d, then
fe L () withr < % and for g < r < % there exists C' = C(§2,d, s, q,r) > 0 so that

N . 1 11 1
171 < CIFIEIAE . el S=a(f-g)+(-a). @2

If s=d (If s > d), then (2.2]) holds true for ¢ < r < oo (for ¢ < r < c0).

Let (X, ||-]|x) be a Banach space. For T' > 0 let I := (0,7) be a bounded interval. The
space L9(I; X) denotes the space of all Bochner measurable functions u : I — X such that

u(t dt if ge[1,00
||u||L‘I(I;X) — (fo [u(®) ) . q €| ) (2.3)
esssup;crllu(t)||lx  if g = o0

is finite. It is well-known that (L?(I; X), |||/ e(s;x)) is a Banach space. The space C(I; X)
consists of functions from I into X that are continuous on I. This is a Banach space with
the norm lul| 7, x) := supsefllu(®)l|x-

Let X, Y be Banach spaces. If a mapping J : X — Y is Gateaux differentiable in z € X,
then J'(x)(h) is referred to as the Gateaux-derivative of J at x € X in direction h € X,

J'(2)(h) = %J(:ﬁ +th) L:o = lin % (@ +th) = J ().

Similarly, if a(x)(y) is a semi-linear form, a’(x)(h,y) denotes its directional derivative.

2.2 Non-Newtonian fluid models

Following the literature [MNRO2, IMRO06], in this section we discuss several non-Newtonian
fluid models, their physical properties and practical relevance. We introduce the governing
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equations that describe the motion of such fluids. Their derivation is based on physical
conservation laws. The conservation of mass is equivalent to the continuity equation

0o+ V- (pv)=0 (2.4)

where the vector field v = (vy,...,vq) is the velocity and ¢ denotes the density of the fluid.
The balance of linear and angular momentum leads to the momentum equations

00w + olv - Vo =V -TT = of, and T=T". (2.5)

Here, T = (ﬂj)gjzl is the Cauchy stress tensor, 7' denotes its transpose, and f =
(f1,- .., fa) describes an external body force. In case of incompressible fluids, the volume of
subregions occupied by the fluid does not change in time. By means of Reynold’s transport
theorem, this leads to the incompressibility condition

divve=V.-v=0. (2.6)

The fluid is called homogeneous if the density o is constant in space. If the fluid under

consideration is homogeneous and incompressible, then the density is also constant in time
because of (2.4)). For such fluids the equation (2.4) is automatically fulfilled.

The Cauchy stress tensor T is expressed by a constitutive law. In classical fluid mechanics,
it is usually assumed that the Cauchy stress tensor 7~ depends on the velocity gradient
Vv and the density p. It follows from the principle of material frame-indifference that the
stress tensor T~ depends on the velocity gradient Vv only through its symmetric part

(2.7)

D := Dv:= %(Vu + VvT) with  Djj = ;(a”i 3%’)_

ij * 8:@
We consider the following constitutive equation that relates the Cauchy stress T to D:
T = —nI + u(n,|D|*)D. (2.8)

Since tr D = V - v = 0, it follows from ([2.8)) that —7 = %tr T, i.e., 7 is the mean normal
stress. Following [BMM10], we show that the constitutive equation (2.8]) is consistent with
the basic principles of continuum mechanics if an implicit relation between 7~ and D,

F(T,D)=0,
is assumed. The principle of material frame-indifference implies that F' satisfies
F(QTQ",QDQ")=QF(T,D)Q"T VvQe{QecR™;QQ"=Q'Q=1}
(F' is an isotropic second-order tensor). A representation theorem for such tensors yields

aol + a1 T + asD + a3T? + ayD*+a5(DT + T D) + a(T°D + DT?)
+ a7 (TD? + D*T) + ag(T?°D?* + D*T?) =0

10
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where the functions oy, i = 0,...,8, depend on the invariants
tr T, tr D, tr 72, tr D?, tr T3, tr D?, tr(T D), tr(T2D), tr(TD?), tr(T>D?).

Note that tr D* = |D[?. If we set ag = —2tr T, oy = 1, ap = —pu(—3 tr T, |D|?), and
a; =0 for ¢ > 3, we arrive at . In particular, if p = const, then the fluid belongs to
the class of Newtonian fluids. Otherwise, the fluid is referred to as a non-Newtonian fluid.
The extra stress tensor S = (Sij)?’jzl relates to the Cauchy stress tensor T through

T = —nlI + 8(m, Dv). (2.9)
It represents the viscous part of the Cauchy stress tensor which, e.g., describes shear stress.

An important subclass of fluids is derived from (2.8)) with p = (| D|?). Typical examples
are the power-law model (2.11af) and the Carreau model (2.11b)): Here, S takes the form

S(Dv) = u(|Dv|*)Dv (2.10)
where, e.g., for fixed pp > 0, p € (1,00), and ¢ € [0,00) the function y is given by
w(|Dvl|?) : = po|Dv|P~2 “Power-law model” or (2.11a)
p—2
(| Dvl?) : = po (52 + ]Dv|2) : “Carreau model”. (2.11b)

If two-dimensional simple shear flows are considered, i.e., v = (vi(z2),0)T, then the
quantity |[v](z2)| (= 2|Dwv|) is referred to as the shear rate. The function p represents the
generalized viscosity of the fluid. Thus, fluids constituted by are also named fluids
with shear rate dependent viscosity. Models of type are by far the most commonly
used non-Newtonian fluid models (see [MNRO2]). Such models describe a plethora of
materials in various areas of application: colloids and suspensions, biological fluids such as
blood and synovial fluids, and lubricants. For an extensive discussion of such models we
refer to [MRRO5, MNRRI6, (GRRT08], and the references therein. If 1 < p < 2, we observe
lower apparent viscosities at higher shear rates. This property is called shear thinning.
Most real fluids, which can be modeled by a constitutive law of type , show shear
thinning behavior that corresponds to exponents 1 < p < 2. The case p > 2 is less common,
although there are some fluids with shear thickening behavior. For p = 2 the generalized
viscosity p is constant, and the fluid belongs to the class of Newtonian fluids.

Besides the class of models , we are interested in the wider class of models
itself. For many fluids, the variations in the fluid density are small whereas the variations
in its viscosity may differ by many orders of magnitude due to significant changes in the
pressure (see [MNRO02]). Such fluids can effectively be modeled as incompressible fluids
with pressure-dependent viscosity. Here we consider extra stress tensors of the form

S(w, Dv) = p(n, |Dv|*)Dw, (2.12)

i.e., we deal with fluids whose viscosity depends on both the pressure and shear rate. The
fluid models under consideration appear in various areas of application, for instance in elas-
tohydrodynamic lubrication, geology and glaciology (see, e.g., [Hin98, BG06| [SHHO6, [Sch07,
Szel0]). Concerning the class of models , many details and extensive discussions can
be found in Malek et al. [MR06, MRO7].

11
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Governing equations: Throughout this thesis the density g of the fluid is assumed to

be constant, o = gp. Inserting (2.9) into ({2.5)), dividing the result by gp, and taking into

account the incompressibility constraint (2.6]), we arrive at the equations of motion
(9tU—QO_1V'8(DU,7T)+[U'V]U—i-QO_lV’/T:f, V-v=0. (2.13)

We relabel 8§/gp and 7/0¢ again as S and 7. Hence, we always consider system (2.13)) using
the convention gg = 1. The isothermal flow of an homogeneous incompressible viscous fluid
in a bounded domain 2 C R4, d € {2,3} is then governed by the system of PDEs

Oov—V - -S(m,Dv)+[v-Vjv+Vr=Ff

V-’U:O} in (0,7) x £2. (2.14a)

Let © be a given divergenceless initial velocity field. The relevant initial condition reads
v(0,z) = v(x) for almost all x € 2. (2.14b)

When the flow field does not change over time, then the flow is considered to be a steady
flow. Steady flows occur in many situations. For instance, in industrial application,
investigators are often interested in fully developed flows regardless of the flow history. If
the flow is steady, then the system reduces to the following system of PDEs:

—V-S(ﬁ,DU)+[U-V]U+V7r:f} w0

2.15
V-v=0 ( )

Remark 2.1. For models (2.10)), we easily derive the identity

d d
> 0:iSij(Dv) = % > 0 (1| Dv ) 0505 + vj0i])
=1

i=1

1
= §u(|Dvl2) Z 8i0yv; + Bjui] + 1 (| Dwl?) Z Di;0;| Dol

1
= §M(|D'v|2)(A'Uj + ajv . 'v) + 2,[1,(‘D’U|2) Z DijDklaiakvl.
i,k,l

Here, we have assumed that v is sufficiently smooth. Hence, if 4 = const and V - v = 0,
then we recover the well-known Navier-Stokes model.

Often we neglect inertial forces in (2.15)); and, hence, we avoid mathematical difficulties
related to the convective term. In this case, we arrive at the simplified system of PDEs

V. 8(n,Dv) + Vi =
(m Do)+ Vr=F1 o (2.16)
V-v=0

The following system ([2.17)) typically appears within the solution of problem (2.14)) as an
auxiliary problem if an A-stable implicit time step method is applied:

-V -8, D b-V V=
(m, Dv) + | ]v+crv+V T (J)‘} 0 (2.17)
L=

where the parameter o € R and the flow field b: 2 — R are given.

12



2.2 Non-Newtonian fluid models

Similarity transformation: All quantities in (2.13) feature a physical dimension. In
order to simulate real-life processes in practical applications, we have to employ a non-
dimensionalized version of ([2.13)) which we derive below for the simple Carreau model
(2.10) & ([2.11b)). To this end, we introduce the dimensionless variables

T v - U us

T = — U= — t:=—t =
rer YT Lo 7T U2y

where L and U are characteristic length and bulk velocity respectively. Consequently,
ov 000t L ov ~ - L
- = = - v~ = V D U = 7D .
ol otoi  Uot b Tt

Hence, in view of (2.11b)) the momentum equations transform as follows

U2 9% - SN ] U o UR
UMy [(52 +U2L72|Do?) ? UL_lDfJ] + [0 Vo + - Vi=f.

The right-hand side f can be interpreted as given acceleration such as gravitational

acceleration. Setting }(i) = % f(Lx), we conclude the transformed equations of motion

p—2

‘?;tf —Re, ' V- {(52 + \Df;\?)Qi)@} +[@-Vo+Vi=f, V-o=0 (2.18)

where € := %6 and the Reynolds number Re, is given by

ooU*PLr~!

Re, =
v Ho

(2.19)

Multiplying the momentum equation (2.18) with Re,, relabeling Re, 7 and Re, ]~° again as
7 and f, in the steady case we finally arrive at the transformed equations of motion

- N p=2 _ - N -
5. {(52 + Do) Di)} +Re Vo +Vi=F, V-95=0. (2.20)

Boundary conditions:  We complement systems ([2.14)) — (2.17]) by appropriate boundary
conditions which are formulated below for the case of steady flows only. If the evolutionary
model (2.14) is studied, then these boundary conditions are considered on [0,7] x 0f2.

o Homogeneous Dirichlet boundary conditions: Internal flows meet the condition
v-n=0 on 0f2. (2.21)
Usually, such flows are subjected to no-slip boundary conditions

vp=v—(v-n)n=20 on 0f2. (2.22)

If (2.21)) holds, then v; = v. Combining (2.21)) and (2.22)), we arrive at the condition

v=0 on 0f2. (2.23)

13
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¢ Space periodic boundary conditions: We assume that {2 is a d-dimensional cube with
sides of length L > 0, £2 := (0, L)%, and that v, 7 are periodic with period L in each
spatial variable z;: for I'; = 02 N {x; = 0}, [j1q = 02N {x; = L} we require that

v|Fj:v|Fj+d7 ﬂ"pj:ﬂ'|pj+d, jZl,...,d, /’wazo.
0

e Mixed boundary conditions: We assume that the boundary consists of two parts,
02 =TUS, |S| > 0. Then, we prescribe the boundary conditions

v =1vp on I, (2.24a)
—S(m,Dv)n+mn=> on S. (2.24b)

The function vp represents a given velocity field on the boundary (non-homogeneous
Dirichlet data) whereas the function b reflects a given force that acts on the boundary.

Constraint on the pressure: For the subsequent discussion we follow Hirn et al. [HLS10].
The absolute value of the pressure is naturally determined up to a constant. Taking into
account the boundary conditions (2.24]), we distinguish two cases:

(a) If we prescribe Dirichlet boundary conditions on the whole boundary, 92 = I, then
we additionally fix the level of pressure by requiring

][wdm =7 € R. (2.25)
Q

In case of evolutionary problems, for m : (0,7) — R we incorporate the condition

][W(t, x)dx = mo(t) for all t € (0,7). (2.26)
[0}

(b) If |S| > 0, then (2.24b]) suffices to fix the level of pressure, i.e., it implicitly normalizes
the pressure. In particular, the pressure is already uniquely determined without the
mean value constraint. For models of class (2.12)), this was shown in [LS11bl [LS11a].

The constraint requires some remarks: When the viscosity does not depend on the
pressure, the constant my that fixes the pressure is irrelevant. In this case, we may set
mo = 0. However, it is a special feature of piezoviscous fluids that the number 7 affects
the whole solution through &(m, Dv), including the velocity field. Hence, the non-physical
constraint (2.25) comprises an important input parameter undeterminable by practical
applications. By contrast, b in (2.24b)) represents the force acting on the domain boundary
and, hence, it reflects physically reasonable input data. Nevertheless, with no loss of
generality we may assume that my = 0. Indeed, since the structural assumptions on S,
which will be formulated in Assumption below, impose no constraint on the value of

14
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the pressure (they only control the derivative of & with respect to the pressure), they are
satisfied for S(m — m, -) with arbitrary mo provided that they are fulfilled for S(r,-).

Models such as belong to the class of p-structure models (see Assumption . If
the extra stress tensor & exhibits p-structure, then the system is referred to as the
non-steady p-Navier-Stokes equations. For p-structure models the system represents
the steady p-Stokes equations whereas the system is called the p-Oseen system.

In this thesis, we will analyze the finite element (FE) approximation of system (2.16)). In
doing so, we will distinguish between the following two cases:

(1) The fluid viscosity only depends on the shear rate.
(2) The viscosity depends on both the shear rate and pressure.

In case of (1), we complement system by homogeneous Dirichlet boundary conditions.
General boundary conditions of type are discussed in the context of (2). Since
we use equal-order discretizations (see Section , we violate the well-known discrete
compatibility (or inf-sup stability) condition of Babuska-Brezzi. In order to overcome the
instability of this discretization, we will propose a stabilization method based on local
projections (see Section . For the analysis of our method, we will restrict ourselves to
case (1). In Section we will show a priori error estimates that quantify the convergence
of the method. Then, in Chapter [5] we will extend our approach to the generalized p-
Oseen problem whose FE approximation may additionally suffer from dominating
convection in case of high Reynolds numbers Re,. Finally, in Chapter [7] we will investigate
the FE approximation of problem related to case (2). Due to the complex structure
of the viscosity, here we will carry out the analysis for stable discretizations only.

2.3 Assumptions on the extra stress tensor

In this section we state structural assumptions on the extra stress tensor & and we
indicate how S relates to N-functions. For this, we follow Section 2.1 in [BDR10]. We

set RIxd .= {P € R4, p = PT} and P¥™ = %(P + PT). Due to the principle

Sym
of objectivity, & depends on the velocity gradient Vv only through its symmetric part
Dv = %(V'v + VvT). Therefore, the extra stress tensor S : R¥¢ — R%4X? shall satisfy

Sym

S(0) =0 and S(P) = S(P¥™). Moreover, it is supposed to satisfy the following

Assumption 2.1 (extra stress tensor). We assume that the extra stress tensor S :
RIxd — ngxrff belongs to C’O(RdXd,Rg;rff) N CHR*\ {0},1&?;&%) and satisfies S(Q) =
S(Q¥™) and §(0) = 0. Furthermore, we assume that S possesses (p,e)-structure, i.e.,

15
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there exist p € (1,00), € € [0,00), and constants oy, 01 > 0 such that the inequalitieﬂ

d
> OuSi(Q)Piy Py > aole + QY™ )P 2| PY™ 2, (2.27)
i gkl=1

0015:;(Q)| < a1(e + |Q¥™|)P—2 (2.28)
are satisfied for all Q, P € R with Q%™ # 0 and all i,j,k,l € {1,...,d}.

Remark 2.2. Relevant examples satisfying Assumption are the power-law model
and the Carreau model . For such models, the extra stress tensor 8 is derived
from a potential: Let us assume that there exists a convex function @ : IR(J{ — Rg with
® € CYRY) N C?(RT) and ¢(0) = ¢/'(0) = 0 such that fori,j =1,...,d

Q"
’ stm |

For many fluid models such as (2.11af) and (2.11b)), the potential ¢ exhibits (p, £)-structure.
This means that there exist p € (1,00), € € [0,00), and ¢, ¢; > 0 such that

54(Q) = 2, 8(Q™) = #(1Q™™)) vQ e R\ {0} (2.29)

cole FP 2 <P '(t) <er(e +t)P2 Ve RY. (2.30)

From ([2.30)) it follows (cf. [RDOT], Section 6) that uniformly in ¢ > 0 there hold
d'(t) ~ D" (1), D(t) ~ P (t)t (2.31)

where the constants only depend on p, ¢, and ¢;. In view of (2.29)) — (2.31]), it can be
shown similarly to Lemma 21 in [DEOS] that Assumption is satisfied.
Below we depict how the stress tensor relates to N-functions which are standard in the
theory of Orlicz spaces. Details on Orlicz spaces can be found in [KR61] or [RDOT].
Definition 2.1. A continuous convex function v : ]Rg — Rar is called N -function if (0) =
0, ¥(t) >0 fort >0, limo4 ¥(t)/t =0 and limy_,o, P(t)/t = 00.
Let 7 be as in Definition Consequently, there exists the right derivative 1) of v, which
is non-decreasing and satisfies ¢'(0) = 0, ¢/(¢) > 0 for ¢ > 0, and lim;_, ¢/ (t) = .

Definition 2.2. Let ¢ be an N-function. We define (¢/)~1: Ry — R§ by (¢)71(t) :=
sup{u € R{; ¢/(u) < t}. Then, the complementary function ¢* : Ry — Ry is defined by

P*(t) = /(1//)_1(5) ds := /sup{u € RJ; ¥/ (u) < s}ds.
0 0

'For functions g : R4*? — R we use the notation dg(Q) := %%Z).
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If ¢’ is strictly increasing, then (v’)~! is the inverse function of ¢/. In this case, ¥* is
again an N-function and (1*)'(t) = (') ~1(t) for all ¢+ > 0. The complementary function
¥* can be characterized by ¥*(t) = supy>o(st —(s)) for all ¢ > 0.

An important subclass of N-functions consists of those that satisfy the As-condition:

Definition 2.3. An N-function v satisfies the As-condition if there exists C' > 0 such
that 1 (2t) < C(t) for all t > 0. Here, As(1)) denotes the smallest such constant.

Let 1 be an N-function. Since ¢(t) < 1(2t) for all t > 0, the As-condition is equivalent
to ¥(2t) ~ ¢(t) uniformly in ¢t > 0. If Aa(y)) < oo, then it holds 1(t) ~ ¢ (ct) uniformly
in t > 0 for any fixed ¢ > 0. For a family {1} of N-functions we define Ay({¢)r}) :=
supy A2(1y). Next we introduce the notion of shifted N -functions.

Definition 2.4. Let 1) be an N-function with Ay({1,v*}) < 0o. For all a > 0 we define
the family of shifted functions {1 }a>0 by

t

Valt) = / Wis)ds  with  dl(t) = w’(mt)@%f. (2.32)
0

The following lemma ensures that {i,},>0 are again N-functions and satisfy the Aa-
condition uniformly in a > 0 with As-constants only depending on Ag(v)), Ag(1p*):

Lemma 2.1. Let ¢ and ¢, be as in Definition[2.f} Then, for all a > 0 the shifted functions
e and (Yq)* are again N -functions and they satisfy As({ta, (¥a)*}a>0) < 00. The families
Yo and (1q)* satisfy the Ag-condition uniformly in a > 0 where the constants only depend
on Ax({¢),¥*}). Moreover, it holds (o) (t) ~ (V*)yr(a)(t) uniformly in a,t > 0.

Proof. See Lemma 23 in [DEOSg]. O

The following lemma provides Young-type inequalities, which will be a useful tool for the
finite element analysis of (2.16)):

Lemma 2.2 (Young-type inequalities). Let ¢ be an N-function with Ay({1,9*}) <
oo. Then, for all § > 0 there exists a constant cs > 0, so that for all t,u > 0 there hold

tu < d(t) + csi™ (u), (2.33)
t' (u) + 4" (t)u < 99(t) + cstp(u). (2.34)

The constant cs only depends on & and Ay({,¢*}). Let v and v, be given as in Lemmal[2.1]
Then, for all § > 0 there exists a constant cs > 0, so that for all a,t,u > 0 there hold

tu < 59)a(t) + cs(a)* (u), (2.35)
th(u) + Yo (t)u < 09a(t) + cstha(u). (2.36)
Proof. See Lemma 32 in [DEOSg]. O
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The subsequent lemma depicts further properties of shifted N-functions.

Lemma 2.3 (change of shift). Let ¢ be an N-function with Ay({¢,¢¥*}) < co. Then

Up(IP = Q) ~viq(IP ~ Q) and  Y{p(|P ~Q|) ~vig(lP-Q)) VP, QeR™

where the constants only depend on As(vy). For each § > 0 there exists ¢(6) > 0, which
only depends on § and Ax(v), such that for all P, Q € R¥? and t > 0 there holds

Yip|(t) < c(0)Y)q|(t) + 0 (| P — Q).

Proof. The first statement is proven in Lemma 28 of Diening/Ettwein [DE0S8]. The second
one is shown in Corollary 26 of Diening/Kreuzer [DKO0S]. O

Let us consider the following simple example: For p > 1 we introduce the convex functions

1 1
pp" €CRERG), ()=t ()= Gt (2.37)
with p’ = p/(p — 1). Clearly, ¢ is an N-function and ¢* is the complementary function of
¢. The shifted N-functions ¢, are then given by ¢, (t) = fé(a + 5)P72sds. Note that the
family {p,}a>0 belongs to C*(Rg) N C?(RT) and that it satisfies

min{1,p — 1}(a +t)P~2 < () < max{l,p — 1}(a + )P 2. (2.38)
Hence, the inequalities (2.27)) and (2.28)) defining the (p, £)-structure of & can be expressed

equivalently in terms of the shifted N-functions ¢.. In Remark we summarize further
properties of the shifted N-functions ¢,:

Remark 2.3. Let ¢ be given by and let ¢, be defined as in . It can be shown
easily that ¢/, (t) ~ @l(t)t, wa(t) ~ @L(t)t, and @q(2t) ~ @a(t) uniformly in ¢, a > 0
where all constants only depend on p. Since ¢, satisfies the As-condition, it follows
that 0u(t +5) < 0a(E2) < @alt) + pa(s) uniformly in ¢, s, a € R due to the convexity
of ¢,. Later we will apply the above Lemmas to the N-function ¢ := ¢.. In
view of Definition we realize that ¢ (t) = oL, ,(t) for all ¢, a > 0 and, consequently,
Ya(t) = petq(t) for all t, a > 0. Therefore, from Lemma [2.3| we can infer the relation

0erp|([P = Q) ~ ¢erjg(IP - Q) VP, Qe R™.

As mentioned above, we also consider fluids with pressure dependent viscosities. The fluid
models under consideration are similar to models with p-structure described in Assumption
2.1} Additionally, it is allowed that the viscosity depends on the pressure sublinearly.

Assumption 2.2. We suppose that the extra stress tensor 8 belongs to the class (2.12))
and satisfies the structural assumptions:
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2.4 Properties of the extra stress tensor

(A1) There exist constants ag, 01 > 0 such that for all P,Q € R%XY ¢ € R there holds

sym

p—2 S(q, P p—2
oo(e® +|P*) 2 |Qf < ag(?qp) H(QeQ) <o+ PP 7 |QP,

where REX4 := {P € R P = P"} and (Q ® Q)ijr1 = Qij Q-

Sym

(A2) Forall P € ngxrg and g € R there holds
‘03(% P)

< y0(e2 +|P]D) T
2| < s+ PP)

The following remark has already been formulated in Hirn et al. [HLS10]:

Remark 2.4. Models satisfying Assumptions [(A1)H(A2)|can approximate some real world
liquids in a certain range of shear rates and pressures, see [MNR02, MR06, MRO7| for
examples and applications; see also Remark [7.7] Note that both assumptions are rather
restrictive concerning the dependence of the viscosity on the pressure, which is usually
considered as p ~ exp(am) in practical applications. The well-posedness for problems with
super-linear dependence on the pressure is, however, an open problem, similarly as the
limiting case € = 0. For possible generalizations to unbounded viscosities see [BMR09]. An

exemplary model that satisfies [(A1)H(A2)| with p = 2 can be found in [MRO7].

Note that Assumption [(A1)|is equivalent to Assumption [2.1]if fluid models of class (2.12))

are considered. Throughout this thesis, we suppose that the extra stress tensor S satisfies
either Assumption[2.1]in case of fluids with pressure-independent viscosity or Assumption[2.2]
in case of fluids with pressure-dependent viscosity.

2.4 Properties of the extra stress tensor

Below we express several consequences of Assumptions [2.1) and [2:2] that will play a crucial

role in the FE analysis. To this end, we define a nonlinear function F : R4*¢ — ngxrff by

F(P):= (e +|P¥m]) 7 pom (2.39)

where p and ¢ are the same as in Assumption The function F is closely related to
the extra stress tensor & with (p, €)-structure as depicted by the following lemma:
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2 Theoretical Results

Lemma 2.4. Forp € (1,00) and ¢ € [0,00) let 8 satisfy Assumption[2.1], let F be defined
by ([2.39), and let ¢ be defined by ([2.37). Then, uniformly for all P, Q € R¥*? there hold

(8(P)=8(Q)) : (P— Q) ~ (e + [P +]Q¥" )2 PP — Q™2
~ (P 4 Q) [P - QY
~ esipoem (| PO — Q™)
~|F(P) - F@QFP,
S(P) = 8(Q)| ~ (e + |P¥™| +|QV™" %P — @™
~ Pl povm (| P — Q™))

where the constants only depend on og, 01 and p. In particular, the constants are independent
of ¢ > 0. Because of S(0) = F(0) = 0, we observe that S(Q) : Q ~ |F(Q)|> ~ o-(|Q*™)).

Proof. The lemma is proven in Diening/Ettwein [DE0S]. O

Since below we will only insert symmetric tensors into 8 and JF, we drop the superscript
“Sym?” in the above formulas and we restrict the admitted tensors to symmetric ones.

Remark 2.5. From Lemma it easily follows that for all Q € Rg;rfll there hold:

S@Q):Qz(QF-¢€") and [S@Q)<IQF it pe(L,2; (2.40)
S(Q):Qz QP and  [S(Q)| S (e +[QIFT  if  pe(200). (241)

All constants in (2.40)) and (2.41]) only depend on g, o1, p.
As a further consequence of Lemma [2.4] we obtain the following result:
Lemma 2.5. Under the assumptions of Lemmafor all u,v € WHP(0) there holds

/ (S(Du) ~ 8(Dv)) : (Du — Dv) dz ~ | F(Du) — F(Dv)3
kp]

~ /¢E+\Du|(|Du - DUD dx
o}
where the constants only depend on oo, o1 and p. In particular, they are independent of ¢.

Lemma [2.5 highlights how the distance defined by F connects to the quasi-norm introduced
by Barrett/Liu [BLI3a, BLIY4]. For v,w € WP(£2) the quasi-norm is defined by

)= [ (c+ D] + | Dl ? Dwl da.
2
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2.4 Properties of the extra stress tensor

The distance ||, ) is called quasi-norm, since ||, satisfies all properties of a norm
except homogeneity. By means of Lemma, [2.5 H for all v,u € WHP(£2) the equivalence

|F(Dv) = F(Dw ~ [ ¢ipy(1Dv - Dul) da
0
N/SD’E+|DU‘(|DU—Du|)\D'vau|dm (2.42)

|Dv — Du|*dx ~ |v —

/cp e + |Dv| + |Dv — Dul)

£+ |Dv| + |Dv — Dul ulip0)

follows, where all constants only depend on og, o1 and p. This relation ensures that all
results below can also be expressed in terms of quasi-norms. The following lemma shows
the connection between the quasi-norms and Sobolev norms:

Lemma 2.6. Forp € (1,00) and ¢ € (0,00) let S satisfy Assumption[2.1], and let F be
defined by (2.39)).

(i) Let p € (1,2]. For functions V, U € LP(w)™? and for v € [1,2] there holds
IV = Ul SIFWV) = FO) 3l + [VI+UD Pl (2.43)

provided that all terms are finite where the constant only depends on p, og and o1. If v = 2,
then 5% = 0o. Moreover, for all V, U € LP(w)¥*4 there holds

IF(V) = FO) 3, S IV - Ul (2.44)

where the constant only depends on og, o1 and p.

i) Let p € [2,00). Then, for all V., U € LP(w)**9 there holds
(ii) Let p € [2,00)

IV -Ulp, SIFWV) = FO)3. S lle + VI + U2V = Ul (2.45)
where the constants only depend on oy, o1 and p.
Proof. From Lemmait follows that |F(V) — F(U)|" (e + |V |+ |U|)(2_p) ~ |V -UJ.

Integrating this and applying Hélder’s inequality with § + 2% = 1, we easily derive ([2.43):

/|V—U\”dw§(/|}'(V) \Qdaz> (/5+\V\+\U!) = da:)Q_zy.

w w w

For the proof of ([2.44)) we mention the following trivial inequalities

1

S(P1[+|Paf) < [P1| +|Py = Po| S2(|Py|+|Paf) VP, Py e R (2.46)
Using Lemma (2.46)), and the fact p < 2, we infer (2.44]) as follows:

/|.7-' )|2da:~/e+yvy+|v U2V — U\de</\V UP da.

w
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2 Theoretical Results

Finally, using the fact p > 2, and Hélder’s inequality with % + p% = 1, we conclude that

/\V _UPdx < /(a+ V||V - U2V - UP de

w

S (/(a—i-\V + ]U!)pdx)ppg</]V—U|pda:>;.

In view of Lemma this proves (2.45)). O

Lemma 2.7. Forp € (1,00) and ¢ € (0,00) let S satisfy Assumption[2.1], and let F be
defined by ([2.39).
(i) Let p € (1,2]. For all V, U € LP(w)¥4 there hold

—2
IS(V) = 8(U) g < ™7 | F(V) = F(U) |20 (2.47)
2
18(V) =SU)llpw < c| F(V) = FU)l3,, (2.48)
where the constants only depend on g, o1 and p.
(ii) Let p € [2,00). For all V, U € LP(w)®™*? there hold
p—2
I8(V) =SU)llpw < | F(V) = FU)l2wlle + V] + [Ulllp (2.49)
IS(V) = S(U)llyw < eV = Ullawlle + V| + Ul (2.50)

where the constants only depend on oy, o1 and p.

Proof. From Lemma it follows that for p € (1,00) and v € {2,p'} it holds
1
IS0V) = Sl ~ ( [+ VI+0NE Y —vraz)”. 25y

If v = 2 and p < 2, we immediately obtain inequality (2.47]) using Lemma Ifv=yp
and p <2< p > 2, from (2.51]) we easily deduce the following estimates:

1
Y

IS(V) = @)l ~ ([l VI + V= U2V - U da)

w
L
P/

< (/(5+ V|4V -T2V - U|2da:)

In view of Lemma we arrive at (2.48)). Finally, if p > 2, (2.51)) with v = p/ implies

1
@=2)p’

ISV) = S@) o~ [+ 1VI+ 0D e 4+ V] + U F |V - U de )

w

’
-Pp
2p’

< (/(g+ V| + \U!)pdx) (/(€+ V| + \U\)p_glV—UPdmf.
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2.4 Properties of the extra stress tensor

Here, we have used Hoélder’s inequality with %/ + 2_Tp/ = 1. By virtue of Lemma the
latter inequality yields the desired estimate (2.49)). Similarly, (2.50|) follows from (2.51))

/

This completes the proof. O

Note that gjp% =(p-1) pz—

Below we focus on fluids whose viscosity depends on the shear rate and pressure. We
express several consequences of Assumptions [(A1l)land [(A2)} The first lemma includes
similar statements as presented by Lemma

Lemma 2.8. For given p € (1,00) and ¢ € [0,00) let S satisfy[(AL)] let F be defined by
(2.39), and let ¢ be defined by (2.37)). Then, for all P, Q € ngxrff, q € R, there hold
(8(a.P)=8(a,Q)) : (P = Q) ~ (e +|P|+|Q))"*|P - QP
~ ¢eyip|(|P = Q) ~ |[F(P) = F(Q)%,
S(q, P) — S(q: Q)| ~ ¢y p(I1P = Ql),

where the constants only depend on oy, 01 and p. In particular, they are independent of
€ > 0. Moreover, the following estimates hold:

$@:Q):Q=3(Qr <)  end [S,Q) < T

(2.52)

Proof. See Lemma The proof of (2.52) can be found in Mélek et al. [MNRRO6]. I

As a straightforward consequence of Assumptions (A1)l and |[(A2)|we also obtain

Lemma 2.9. For given p € (1,00), € € (0,00) and g € [0,00) let S satisfy|(A1)], [(A2)]
Then, for all Py, Py € R¥4 and 7, q € R, denoting P, := Py + s(Py — Py), there hold

Sym

1
2
(X -2
B [+ 1P [Py = Pofds < (S(r. P1) = S(q. Po)) : (Pr = Po) + 7 n =g
0

1 1
S(r,P1) ~ S0, Po) o1 [(+P2)'Z [Py~ Polds +20 [+ [P, al s,
0 0
Proof. See, e.g., Buli¢ek et al. [BMROT], Lemma 1.4. O

In view of Lemma [2.9] we define the distance
1
d(v, w)? // 2 4 |Du+ s(Dv — Du)*)*3" |Dv — Dul? ds da (2.53)
0

for all v,u € WHP(£2). We arrive at
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2 Theoretical Results

Corollary 2.10. Forp € (1,00), € € (0,00) and v € [0,00) let S satisfy|(A1)] [(A2)|
Let d(-,-) be defined by ([2.53). Then, for all v,w € WYP(£2) and 7t,q € L*(£2) there holds:

?d(v, w)? < (8(w, Dv) — S(q, Dw), Dv — Dw)g + ;(iHﬂ —ql3. (2.54)

For each § > 0 there exists a positive constant cs only depending on o1 and § such that
(8(m, Dv) — 8(q, Dw), Dv — Dw) g < csd(v, w)? + 03 || — q||3. (2.55)
If p < 2, then for all v,w € WYP(2) and all sufficiently smooth functions m,q there hold
I8 (r, Dv) — 8(q, Dw)|l2 < 516”7 d(v,w) + Y07 ||7 — g2, (2.56)
|S(, D) = S(q. Dw)|y < cd(v,w)7 +0"% |7 = gl (2.57)

where ¢ = ¢(p,01) is a positive constant.

Proof. Clearly, (2.54) and (2.55) directly follow from Lemma and Young’s inequality.
Setting Dy := Dw + s(Dv — Dw), for v > 1 we infer from Lemma that

da:)u
0
1 - . 1
+70</’/(62+|D3|2) Y m — qlds d:c) :
2 0

We immediately deduce (2.56)) from (2.58) with v = 2 and Jensen’s inequality. In order to
derive ([2.57)), we recall the following well-known result (see [AF89], Lemma 2.1)

1
(2 + (1P1] + |P2))?) ~/(52+]P2+5(P1—P2)]2) ds VP, Py e R, (250

Sym -’
0

which holds for each o > —1/2 provided that e + |P1| + | P2| > 0. The constants in (2.59))
only depend on «. Using (2.59)), (2.46)), the fact p < 2, we conclude from (2.58) that

=

! p=2
|S(x, Dv) — S(g, Dw)], < 01(/‘/(52—1— D)7 |Dv - Dwlds
° (2.58)

=

P

p=2_ ,
|S(r, Dv) — S(¢, Dw)|y < c</ (2 + (IDw| + |Dv — Dw|)?) * " |Dv — Dwl? dm)

1

0]
p=2
#r0( [| [ (& +1DaR) T I - glas
)

0

i o
dw)
1
7

p=2
< c(/ (82 + (|Dw| + |Dv — D'w|)2) > |Dv — D’w|2dm> !
9

1
+7051)52(/\7T—Q|p/ dw>p :
9]

where the constant ¢ only depends on p and oy. This yields (2.57]). ]
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2.5 The p-Stokes equations

The following lemma indicates that d(-,-) is equivalent to the natural distance:

Lemma 2.11. For p € (1,00), € € (0,00) let S satisfy (A1) Let d(-,-) be defined by
[2.53), and let F be defined by [2-39). For all v,u € WP(Q) and 7 € L?(2) there holds:

d(v,u)* ~ | F(Dv) — F(Du)|3 ~ (S(n, Dv) — 8(r, Du), Dv — Du)q,. (2.60)
All constants only depend on p,oq,01.

Proof. In view of (2.59)) and (2.46|), the assertion follows from Lemma O

2.5 The p-Stokes equations

In this section, we introduce the variational formulation of the p-Stokes equations which
makes up the basis for the finite element discretization. Moreover we present well-known
theoretical results that ensure the existence and uniqueness of weak solutions. We deal
with incompressible fluids whose viscosity depends on the shear rate only. If not stated
otherwise, we assume that for p € (1,00) and € € [0, 00) the extra stress tensor S satisfies
Assumption Here, we may think of the stress tensors (2.11al) and (2.11b]) as prototypes.
We consider the p-Stokes equations complemented with homogeneous Dirichlet boundary
conditions. As usual, D(§2) := C§°({2) denotes the set of all smooth functions with compact
support in 2. We set Dgiy(£2) := {w € D(2)%; V- w = 0}. Below we define the natural
spaces for the velocity and pressure that are used throughout the thesis:

H: = {weLq(Q)d; V-w=0, 'w-n:00n69} :m“'”q
AP = WP () = WHV-Hp
V= {we WP(Q)% V- w =0} = Dgio(2)

Q" = If () == {q € L (12); (¢, 1) = 0}

V-l

with 1/p+ 1/p’ = 1. The variational formulation of the p-Stokes equations represents the
model problem of the thesis. Basic concepts of the thesis including error estimation will be
explained on the basis of this model problem, see Chapter

The steady case:  Let us consider the steady p-Stokes system (2.16) with homogeneous
Dirichlet boundary conditions. The weak formulation of the p-Stokes system reads:

(P1) For f € (XP)* = WY () find (v,7) € XP x QP such that

(8(Dv), Dw)p — (7, V -w)p = (f,w) Yw € XP (2.61a)
(V-v,9)o=0 Vg e QP. (2.61Db)
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2 Theoretical Results

The subsequent discussion is addressed to the well-posedness of Problem |(P1)l Although
we recall only known results, we sketch some proofs for sake of completeness. As is common
practice in analysis, we reformulate Problem [(P1)| “hiding” the pressure:

(P2) For f € (XP)* find v € VP such that

(S(Dv), Dw)g = (f,w)  Vw € VP. (2.62)

It is well-known that the two formulations are equivalent and that they are well-posed. In
particular, it is well-established that there exists a unique solution to [(P2)l One can infer
the well-posedness of [(P2)| using the theory of monotone operators (see, e.g., [R1z04]).

Lemma 2.12. There exists a unique solution v € VP to Problem|(P2)| which satisfies

1
lollip < 1 (I£170 + eo2) (2.63)
where c1 > 0 only depends on §2, p, 0g, 01 and ca =1 if p < 2 and co = 0 otherwise.

Proof. In view of Lemma it is easy to see that the operator v — —V - §(Dwv) from
XP to (XP)* is strictly monotone, continuous and coercive. Since VP is a closed subset
of XP and the operator is also strictly monotone and coercive on VP, the Theorem of
Browder&Minty implies (see, e.g., [R11z04]) that there exists a unique v € VP that satisfies
. It remains to show that the solution v is bounded by a constant only depending on
the data. Such an a priori estimate will play a crucial role in the finite element analysis of
Problem We restrict ourselves to the proof of for p < 2 since we can derive
2.63)) for p > 2 using exactly the same arguments. Setting w := v in and taking
2.40)) into account, for p < 2 we conclude that for some ¢ = ¢(p, 09, 01) > 0

1fl -1y lwllp > (f,0) = (S(Dv), Dv)o > (|| Dol - £7|02]).
Using (2.1) and Young’s inequality, we immediately arrive at (2.63)). O

If 8 is derived from a potential ¢ with (p, e)-structure (see Remark , we can introduce
a functional J : XP — R associated with &:

J(u) = /@(\Du\)daz —(f,u) Vu € XP. (2.64)
9]

It is easy to check that [J is Gateaux differentiable on X? and that its derivative is
given by J'(u)(w) = (S(Du), Dw)g — (f,w) for all u,w € XP. Since the operator
u +— —V-8(Dwu) is strictly monotone on XP J' is strictly monotone on X? and, hence, J
is strictly convex on X?. In addition, J is coercive on X”, i.e., J(u) — oo for || Dul|, — oco.
Because VP is a closed convex subset of XP, it follows that there exists a unique solution
to the minimization problem:

(P3) For f € (XP)* find v € VP such that

J(v) < J(w) Yw € VP, (2.65)
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2.5 The p-Stokes equations

Furthermore, |(P3)|is equivalent to [(P2)| its Euler equation.

Problem |[(P2)|is sometimes referred to as the direct weak formulation whereas [(P1)|is
called the mixed weak formulation. The question arises whether the weak formulation
(P2)|still keeps the information on the pressure. In fact, we will see that the mixed weak

formulation [(P1)|is equivalent to [(P2)E(P3)} Below, we focus on the reconstruction of
the pressure which is based on De Rahm’s Theorem (see [Rah60]):

Lemma 2.13 (De Rahm). Let 2 be any open subset of R® and let F be a distribution
of D'(2) that satisfies (F,w) =0 for all w € Dgiy(12). Then, there exists a distribution
7w € D'(2) such that F = V.

In connection with De Rahm’s Theorem, an important role is also played by

Lemma 2.14 (Neéas). Let £2 be an open bounded subset of RY with 02 € C%'. Let
FeD(Q). IfF, 3£ e W=L4(Q2) = (WyU(2))* for some q € (1,00) and all i =1,...,d,
then there exists a function & € Lq/(Q); ¢ = qqu; such that

(Fowy= [ éwdx  Yw € D'(2).
/

Moreover, there exists a constant cy > 0 such that
l€lly < ex(I1Fll-1g + IVFll-1)-

Proof. We refer to Necas [Nec66]. O

De Rahm’s Theorem deals with arbitrary distributions whereas the p-Stokes problem
involves distributions for which more information is known. As a result of Lemma
the pressure is then not only a distribution but also belongs to a Lebesgue space. The
following lemma, is a consequence of Lemma Its proof can be found in [AG94].

Lemma 2.15. Let 2 be a bounded domain of R% with Lipschitz boundary. Let v be any
real number with 1 < v < oo. The gradient opemtoﬁ grad € L(LY(2); W= (0Q)) is
defined by (gradm,w) = (7m,—V - w)q for all w € Wé’”/(ﬁ). Then, the range space
of grad is a closed subspace of W1 (). If in addition £2 is connected, there exists a
constant ¢ > 0, which only depends on {2 and v, such that for all 7 € L¥(£2)/R there holds

17l v (2)/r < el Vallw-10(0)- (2.66)

Remark 2.6. Note that there exists a constant ¢ > 0 such that for all 7 € LY(£2)/R the
representative m with [, 7 dz = 0 (mean-value zero) satisfies: |||z (2) < el Ly (2)/R-

*For normed vector spaces X, Y we define £L(X;Y) :={F : X — Y; F is continuous and linear}.
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Clearly, the operator — grad € L(L”' (£2); W5 (12)) is just the dual operator of div €
E(Wé’”(()); L”(£2)). Since the range space of the gradient operator, R(grad), is a closed
subspace of W~1*'(2), the Closed Range Theorem implies that R(grad) = (Ker(div))° =
(V¥)° where (V¥)° := {v* € W1 (2); (v*,v) = 0 for all v € V*}. Thus, we arrive at

Lemma 2.16. Let 2 be a bounded domain of R* with Lipschitz boundary. Let v be any
real number with 1 < v < co. A distribution F € W5 () satisfies

(F,w)=0 Yw € VY
if and only if there exists a m € L (2) such that F = V, i.e.,
(F,w) = (Vm,w) = —(m,V-w)o  Yw e Wy"(9).

If in addition, the set {2 is connected, then w is defined uniquely by F up to an additive
constant, and it exists a positive constant 5, which only depends on v and §2, such that

|(m, V- w)q

(2.67)
IVwll,

Bl @ym < NVAlly-r0r(@y = sup
weW " (2)

Proof. We refer to [AG94]. O

Lemma 2.17. Let (X, || x), (@, |I|lq) be two reflexive Banach spaces and let (X*, ||-|| x+),
(Q*,|I-llg) be their corresponding dual spaces. Let B : X — Q* be a linear continuous
operator and let B' : Q — X* be the dual operator of B. Let V := Ker(B) be the kernel of
B. By V° C X* we denote the polar set of V, i.e., V° :={a* € X*; (z*,v) = 0Vv € V'}.
By B: (X/V) = Q" we denote the quotient operator associated with B.

Then, the following statements (i)—(iii) are equivalent:

(i) there exists B > 0, such that

: (Bw, g)
inf sup ———— > .
gequex llallollwllx

(ii) B' is an isomorphism from Q onto V° and

I1Bqllx+ = Bllalq Vg e Q.

(ii) B is an isomorphism from (X/V) onto Q* and

1B|

@ 2 Blwllxyvy Vo e (X/V).

Proof. See [GRS6]. O
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2.5 The p-Stokes equations

Let us define an operator B € L(W " (2); L5(2)*) by (Bv,q) := JoaV - vdz for all
ve Wy () and g € L§(2)* = L§ (2). By virtue of Lemma the dual operator B’
defined by (B'q,v) = (Bv, ¢) for all v € W(l)’l’(Q) and ¢ € LY (£2) is an isomorphism from
L' (22) to (V¥)° which additionally is continuous. Lemma implies that the statement
of Lemma is equivalent to an “inf-sup” condition for the spaces Wé’”(!)) x Ly (12)
which will play an important role for the subsequent analysis:

Lemma 2.18 (“Inf-sup inequality”). Let {2 be a bounded connected domain of RY with
Lipschitz boundary. Let v be any real number with 1 < v < oo and let V' be its conjugate.
Then, there exists a positive constant 3(v) such that

inf sup @ T
qeLy (2) weW L (2) ”(JHV’HU’HLV

> B(v). (2.68)

Let us return to the p-Stokes problem. The following lemma is well-known:

Lemma 2.19. There exists a unique solution (v,m) € XP x QP to Problem|(P1)| The
velocity v satisfies the a priori estimate (2.63)).

Proof. There exists a unique solution v € VP to Problem |(P2) m It follows from taking
w € VP C XP in equation (2.61a)) that v, the solution to is the unique v that solves
(P1)| Since v € XP, there holds S( ) € LV (£2)%4 and, hence, —V-8(Dv) € W17 (2).
The force f satisfies f € (XP)* = W1 (£2) as well. This implies that the operator F =
—V - 8(Dv) — f belongs to W5 (£2) and fulfills (F,w) = (8§(Dv), Dw)g — (f,w) =0
for all w € VP. By virtue of Lemma there exists 7 € LV (£2) with F = Vr, i.e.,
there holds —V - §(Dwv) + V7 = f in (XP)*. The pressure 7 is unique in L” (£2) up to a
constant and therefore unique in QP. O

The non-steady case:  For 7" > 0 let [ = (0,7"). Before introducing the variational
problem, we state two technical lemmas that deal with derivatives of functions u: I — X
with values in a Banach space X. Their proofs can be found in [TemO01].

Lemma 2.20. Let X be a Banach space and let u, g be two functions that belong to
LY(I; X). Then the following three conditions are equivalent:

(i) For each test function w € D(I) it holds

d
/u@twdt /gwdt ie., gz@m(z d?:)

0

(ii) w is a.e. equal to a primitive function of g, i.e.,

t
u(t) =&+ /g(s) ds, £e X, a.a. t €[0,7T].
0
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(iii) For each n € X* it holds L(u,n) = (g,n) on (0,T) in the sense of distributions.

If (i)-(iii) are satisfied, u is a.e. equal to a continuous function from [0,T] to X.

Let X be a reflexive Banach space and let H be a Hilbert space such that X —qengy H.
Then, H* can be identified with a dense subspace of X*. Due to the Riesz representation

theorem we can identify H and H*. Hence, there hold the inclusions X < gensly H =
H* < gensty X*. In this case the triple (X, H, X*) is referred to as a Gelfand-triple.

Lemma 2.21. Let (X, H,X"*) be a Gelfand-triple. For 1 < p < oo let us define the

space W :={u € LP(I; X); ‘3;; € LY (I; X*)}. Then, there holds the continuous embedding

W < CO(I; H). Moreover, for all u € W there holds
d
EHUH%{ =200, u)x~ x  inD'(0,T).

For the weak formulation stated below we assume that the right-hand side f belongs to
the space L¥ (I; (XP)*) and that the initial data ® is an element of 2.

(P4) Find v € L™(I;H?) N LP(I; VP) with dv € L¥' (I; (VP)*) that satisfies
(O, w) + (S(Dv), Dw)g = (f,w) Yw € VP (2.69)
for almost all t € I and ||v(t) — Dl — 0 fort \, 0.
The triple (VP, 12, (VP)*) is a Gelfand triple for p > d +2 since the continuous embedding

WP(§2) — L?(£2) holds for p > d%fQ due to Sobolev’s embedding theorem. Conse-

quently, the space W = {u € LP(I;VP); % e LP/(I;(VP)*)} is continuously embedded in
C(I; H2(2)). In particular, a function u € W is almost everywhere equal in (0,7) to a
continuous function from [0, 7] to H?2. Hence, the initial condition stated in Problem |(P4)
i.e., the expression v(0), makes sense for functions v € LP(I; V?) with CC%’ e L¥(I; (VP)*).

The following result is well-known (cf. |[GGZT74, Ruz04)):

Lemma 2.22. Forp > d+2 there exists a unique solution v to Problemﬂ that satisfies

ol rszaon + 121nqremy < (1F 1 g omyey + 191B)- (2.70)

Proof. We only recall that the proof of uniqueness does not require the strict monotonicity.
Indeed, if v1, v9 are two solutions to Problem they satisfy the identity

(Opv1 — Opwg, w) + (S(Dvy) — 8(Dwvs), Dw)o =0 Yw € VP.
Setting w := v; — v9, using the monotonicity of §, and applying Lemma we conclude
(v — Opwa,v1 — v2) < 0 & ——|lvi(t) — wa()|3 < 0.
Integrating this inequality over (0,t), we finally arrive at
[v1(t) = v2(t)[I3 < v1(0) — v2(0)]3 = 0.
Hence, we deduce that vq(t) = va(t) for each t € [0,T]. O
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Reconstruction of the pressure: Concerning the introduction of the pressure, there
are significant differences between the steady and non-steady problem in case of no-slip
boundary conditions. In general, time derivatives do not represent distributions and, hence,
the pressure cannot simply be identified by means of De Rahm’s theorem. In fact, time
derivatives dyv are elements of L¥ (I; (VP)*), i.e., they belong to a dual space of divergence-
free functions only. No information about dyv is known in the space L (I; (XP)*).

Lemma 2.23. There exists a distribution m on Qp := 2 x (0,T) such that the distribution
m and the function v given by Lemma satisfy V- v =0 and

ov—V-8(Dv)+Vr=f (2.71)
in the distribution sense in Qr. It holds v(t) — ¥ in L*(2) ast \, 0.

Proof. In [Tem0O1] the proof is carried out for Stokes systems. Here, we can follow the
same line of arguments. In order to introduce the pressure, we define

t t
3(t) ::/S(Dv(s))ds, F(t) ::/f(s) ds.
0 0

In view of Lemma [2.20, there holds & € C([0,T]; L¥' (£2)?*%) and F € C([0,T]; (XP)*).
Integrating (2.69) over (0,t) and using Lemma we conclude that

(v(t) — 9, w) + (S(Dv), Dw), = (F(t), w) vt € 10,71, Vw € VP,
This identity is equivalent to
(v(t)— -V -S(Dv)(t)— F(t),w) =0 vt € (0,77, Yw € VP.

Note that V-S(Dw) € C([0,T]; (X?)*). From Lemma we infer that for each ¢ € [0, 7]
there exists a function I7(t) € L¥ (£2) such that

v(t)— -V -8Dv)(t)+ VII(t)=F() Vte|0,T]. (2.72)

Since VII = F + V - S(Dv) — v + ® and the right-hand side of this identity belongs to
([0, T); W=7 (£2)), we deduce that VII € C([0,T]; W1 (£2)) and, consequently,
I € C([0,T]; L (£2)) (2.73)

due to Lemma This enables us to differentiate (2.72]) with respect to the variable ¢ in
the distribution sense in Qr = §2 x (0,T). Setting

o1l
ot’
we just get (2.71)). O

(2.74)

m =

In general, we do not gain any information about 7 better than (2.73|) — (2.74). We obtain
higher regularity on 7 after assuming higher regularity on the data f, ¥ and proving higher
regularity for v.

31



2 Theoretical Results

2.6 The p-Navier-Stokes equations

Besides Carreau-type models, we consider p-structure models that meet Assumption
In this section, we deal with the p-Navier-Stokes equations which, related to the p-Stokes
system, come up with additional mathematical difficulties due to the convective term.

The steady case:  Let us consider the steady p-Navier-Stokes system (2.15]) complemented
by homogeneous Dirichlet boundary conditions. The weak formulation of (2.15)) reads:

(P5) For f € (XP)* find (v,7) € XP x QP such that
(8(Dv), Dw)g + ([v- V]v,w)o — (7,V - w)o = (f,w) Yw € XP  (2.75)
(V-v,9)p=0 Vg e QP.  (2.76)
Remark 2.7. Clearly, Problem [(P5)|is not well-posed for the full range of p > 1. From

Sobolev’s embedding theorem we deduce that the continuous embedding WP(£2) «
L?'(2),1/p+1/p =1, holds true for p > 3d/(d + 2). Hence, we realize that

([u- V]v,w)o < ullap [Vollpllwlzy < cldp, Q)|ulliplvliplwl, (2.77)

provided that p > 3d/(d + 2). This means that for v,w € X? the term ([v - V]v,w)g is
well-defined only if p > 3d/(d + 2). However, later we will suppose that v, the solution to
(P5)], belongs to better spaces so that the condition on p can be relaxed.

Remark 2.8. We state further properties of the convective term. Let w, v, w : 2 — R¢ be
sufficiently smooth functions so that all subsequent integrals are well-defined. We assume
that V- u = 0 a.e. and that w possesses zero traces. Integration by parts yields

(u ® v, Vw ) =— Z i(uivj), wj)e = —([u- V]v,w)n. (2.78)

Here, (u ® v);; := u;v;. Using V- u = 0 a.e. and integration by parts, we observe that
([u- Vw,v)o = Z/”ﬂ (uswy) Z/u,wja vj = —([u-V]v,w)p (2.79)
“ 0 B0

and, hence, ([u- V]v,v)n = 0. This property is referred to as the skew symmetry.

The following lemma ensures the existence of weak solutions to Problem (2.15)):

Lemma 2.24. Let 2 C R%, d > 2, be an open bounded set with 92 € CY'. Let us
consider the steady p-Navier-Stokes equations (2.15) complemented with homogeneous
Dirichlet boundary conditions. For p > d+2 and € € [0,00) let the extra stress tensor 8

satisfy Assumption E We assume that f belongs to W_l”’/(Q). Then, there exists a
weak solution v € VP to system (2.15)) in the sense that v satisfies

(8(Dv), Dw)g — (v © v, Dw)o = (f,w) Y € Daw(2). (2.80)
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2.6 The p-Navier-Stokes equations

Proof. We refer to [FMS03]. O

Remark 2.9. Note that (v ® v);; = viv; € LY(R2) for p > d+2 due to Sobolev’s embedding
theorem. Lemma is proven by means of the Lipschitz truncation method which allows
to find a subsequence (v™) C (v"™) of conveniently introduced approximations v" such
that Dv™ converge almost everywhere to their weak limit Dwv.

Remark 2.10. Note that v;0;v; € L*(2) for allv € WLP(Q) provided that p > 2% Hence,

d+1°
in the case p > the function v given by Lemma [2.24] solves

d+1
(8(Dv), Dw)g + ([v- V]v,w)o = (f,w) Vw € Dyiv(12).

Reconstruction of the pressure: Let p > d:idQ It is well-known (cf. Lemma |2 that

there exists a velocity field v € VP satisfying
(S(Dv),Dw)o + ([v- Viv,w)o = (f,w)  Yw € VP, (2.81)
Using ([v - V]v,w)n = —(v ® v, Dw) g, we can rewrite (2.81) as

/(S(Dv)—v@v) Dwdz — (f,w) =0  Yaw € V.
2

Clearly, there holds S;;(Dv) € L¥'(£2). Since p > 3%
there holds (v ® v);; = vv; € LP' (2) as well. Consequently, the mapping

due to Sobolev’s embedding theorem

WP(12) 9w»—>/(S(Dv)—U®v) : Dwdx — (f,w)

is a linear continuous functional on X? = W(l)’p (£2) that vanishes on VP. By virtue of
Lemma there exists 7 € L” (2)/R such that for any 7 € 7

/(8(Dv)—v®v):Dwd:c—(f,w>:/7rv-'wdm Yw € XP.
2 2
Hence, the pairing (v, ) is a solution to Problem [(P5)]

Regularity:  The question arises whether weak solutions v to are smoother as
suggested by the variational formulation (provided that the data are more regular).
Below, we state theoretical results that deal with higher regularity of v, i.e., that ensure
the (local) existence of second derivatives of v. If there exist second derivatives of v a.e.,
then it can usually be shown that there exist first derivatives of 7 a.e.. Higher regularity
plays an essential role when, e.g., numerical methods such as finite element methods are
analyzed since it allows us to quantify the convergence of the approximation. The following
quantity is naturally involved with the derivation of higher regularity,

T(v) = /(e+ \Do|)?2|V Do da, (2.82)
2
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where p and ¢ are the same as in the assumption on the extra stress tensor. Roughly
speaking, the term Z(v) occurs when the term —V - S(Dw) is tested with —Awv. The
finiteness of Z(v) is the main device that allows us to prove regularity concerning the
existence of second-order derivatives of v. We remark that due to the algebraic identity

O%v; 0D (v) N 9D;j(v)  ODji(v)
afL‘jaﬂik N 8£Cj al‘k 8:CZ

one can estimate |V2v| ~ |V Dwv| with constants only depending on d. The following lemma
indicates that locally there exist second derivatives of the solution to (2.81)).

Lemma 2.25 (Interior regularity). Let 2 C R? be an open set. Forp € (%,2] and

e =1 let the extra stress tensor satisfy Assumption . Letv € W%OIZ(Q) satisfy
(S(Dv), Dw)n + ([v- V]v,w)go =0 VYw € {u € WH(2); supp(u) CC 2, V- u = 0}
and V -v =0 a.e. in 2. Then, v satisfies

/(1 4 Do) VDo de < 0o W2 CC 0.
20

In particular, there holds (cf. Lemma

2,3
veWRI(R)  VYge(,2)  ifd=2  and weW ()  ifd=3.

ocC

Proof. The proof can be found in [NWO05]. O

For d = 3 and smooth (2, global regularity (i.e., regularity up to the boundary) has been
studied in Ebmeyer [Ebm06]. There, no-stick boundary conditions,

v-n=0 ond, n-[S(Dv)-nllt=0 ondR Vtc{tcR>t -n=0},

have been considered. For p € (1,2) and € € {0, 1} let S satisfy (p, £)-structure (Assumption
and let f belong to L¥ (£2). For the p-Navier-Stokes problem it is proven in [EbmQ6]
that Z(v) defined in is finite provided that p € (2,2). As in Lemma , the
restriction on p stems from the low regularity of the convective term. By contrast, for the
p-Stokes system Z(v) is finite for each p € (1,2), see [Ebm06]. In case of no-slip boundary
conditions, global regularity results have been derived in [dV0§|]. Nevertheless, for such

boundary conditions the regularity of weak solutions is a topic of current research.

Below we introduce the velocity space VI adjusted to the setting of space-periodic
functions. Let Dper(§2) be the space of C°°(§2)-functions which are divergence-free and

space-periodic with zero mean value. Then, the velocity space Vﬁer is defined by

VP = {closure of Dper(£2)? in Wl’p(Q)}.

The following lemma ensures the existence of strong solutions to system ([2.15)) provided
that space-periodic boundary conditions are considered:
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2.6 The p-Navier-Stokes equations

Lemma 2.26. Let d = 3. Let us consider the steady system complemented with
space-periodic boundary conditions. Let the extra stress tensor 8 satisfy Assumption [2.]]
with p € (%, 2] and ¢ € [0, 0] for some g9 > 0. We assume that f € W2(£2). Then, there
exists a strong solution v € V¥ . to system in the sense that v satisfies

per
(S(D’U), Dw)Q + ([’U ’ V]’U, w)Q = (fa w)Q Vw € v:ger (283)

and
[F(Dv)l1,2 < C = Cleo,p, || fll1,2,£2). (2.84)

Moreover, for e > 0 there exists a pressure m which satisfies
TeWH(2), e <O =C'ep I flh2, 2).
The constant C' may explode as € — 0T.

Proof. We refer to [BDRI0]. O

It is well-known that the regularity (2.84) is equivalent to Z(v) < co as depicted by

Lemma 2.27. Letp € (1,00), € € (0,00) and let Z(v) be defined by (2.82). Then for all
sufficiently smooth v there holds

IVF(Do)l5 ~ Z(v), (2.85)
where the constants only depend on p. In particular, they are independent of ¢.

Proof. We refer to [BDRI0]. O

The problem of Holder-regularity has been studied, e.g., by Kaplicky et al. [KMS97].
The authors considered stress tensors & which for p > 1 and € > 0 are derived from a
potential with (p, €)-structure, and they studied the two-dimensional space-periodic problem.
They proved the following result: If d = 2, p € (1,2), and f € Lp,(_Q), then there exists
a solution (v, 7) to the p-Navier-Stokes system complemented with space-periodic
boundary conditions such that v € Wi;ﬁ/(]RQ) NCH*(2) and 7 € VVﬁ)’f/ (R?).

The unique global Holder-regularity of solutions has been established for a two-dimensional
Dirichlet boundary value problem by the same authors in [KMS02]. For d = 2 and {2 of class
C?, a global C**-solution v to Problem has been constructed. If £ € LP'(£2), then
it is shown in [KMS02] that for p > ¢ there is a number ¢ > 2 and a strong solution (v, )
to Problem |[(P5)| such that v € VPN W24(£2) and 7 € Wli)g(ﬁ) Moreover, there exist
a number ¢ > 2 and a strong solution to such that v € W4(2) and 7 € Wh4(£2)
provided that p > % In particular, there holds the global regularity result v € CH® (02)
and m € C%*(£2) for some a > 0. Finally, it is proven in [KMS02] that for p > 3 the
Ch“_solution is unique in the class of weak solutions provided that the data are small: If
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v and u are strong and weak solutions to [(P5)] respectively, then v and u coincide a.e.
provided that || f||_1,, < ¢ for sufficiently small §.

In higher dimensions d > 3 Hélder-regularity up to the boundary has been proven by
Crispo/Grisanti [CGO§|] for small data. The authors showed that if p € (1,2), ¢ > d,
2 € CY% with ag = 1 — d/q and if the L4(£2)-norm of f is bounded by a small constant,
then there exists a unique weak solution (v,7) to the p-Navier-Stokes system (2.15])
equipped with homogeneous Dirichlet boundary conditions such that v € C1® () and
7 € CY(£2) for all @ < ag. Note that, in the case d > 3, global Hélder-regularity for
arbitrary data has not yet been resolved and remains an open problem.

The p-Oseen equations:  Let us consider the steady p-Oseen system (2.17)) complemented
with homogeneous Dirichlet boundary conditions. The study of system (]2__1—7[) is motivated
by the fact that it is needed for the error analysis of the time-discretized p-Navier-Stokes
equations performed in [BDR09|. The weak formulation of the p-Oseen system reads:

(P6) For f € (XP)* find (v, m) € XP x QP such that for all (w,q) € XP x QP

(8(Dv), Dw)gn + ([b- Vv, w)o + o(v,w)o — (7, V- w)n = (f,w) (2.86a)
(V-v,9)0=0. (2.86b)

Here, we assume that the flow field b belongs to W1°(£2) and satisfies V-b =0 a.e..

Later we will require the existence of a strong solution to |[(P6)}, i.e., we will assume that
there exists (v, ) € [XPNW29(2)] x QP with ¢ = min{2, p} satisfying . If v € W24
with ¢ = min{2, p}, then the term ([b- V]v, w), is well-defined for p > d2 due to Sobolev’s
embedding theorem. The next lemma deals with the existence of strong solutions:

Lemma 2.28. Let d = 3. Let us consider the steady system (2.17)) complemented with
space-periodic boundary conditions. Let the extra stress tensor 8 satisfy Assumption [2.1
with p € (£,2] and e € [0,e¢] for some g9 > 0. Assume that f € WH2(2) and b € VI, are

per

given. Then, there exists a strong solution v € Vger to (2.17) in the sense that v satisfies
(S(Dv),Dw)o + ([b- V]v,w)o +o(v,w)o = (f,w)n Yw e VP, (2.87)

and
IVoll2 + | F(Dv)[l12 < C = C(e0,p, b, || fll1,2, £2). (2.88)

This solution is unique within the class VY. for p > % and it is unique within the class
Vg@r forp > g Moreover, for e > 0 there exists a pressure ™ which satisfies

LIS WLQ(“Q% ||7TH172 < ¢ = C/(E’p) b, Hf||1,2a Q)
The constant C' may explode as € — 0.

Proof. We refer to [BDRI10]. O
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The non-steady case: Let us introduce the weak formulation of the non-steady p-Navier-
Stokes problem ([2.14). For T' > 0 let us set I := (0,7") and Qp := I x 2. We assume that
the right-hand side f € L? (I; W5 (£2)) and the initial data © € H? are given.

(P7) Find v € L=(I; L*(2)) N LP(I; VP) with ;v € L¥ (I; (VP)*) such that v satisfies
(O, w) + (S(Dv), Dw)o + ([v - V]v,w)n = (f,w) Yw € VP (2.89)
for almost all t € I and v(0) = ¥ in L*(12).

Remark 2.11. For v,w € VP we observe that the mapping 2 3 = — (v;[0;v;]w;)(x) belongs

to L'(£2) if and only if p > d‘%fl?. Choosing w € LP(I; V?P) and noting v € LP(I; V?), we

realize that the mapping Qr 2 (,t) — (vj[0jvi]w;)(z,t) belongs to LY(Qr) if and only if
p>1+ %. Setting w := v in (2.89) and using ([v - V]v,v)n = 0, we conclude that

1d

ga/|v|2daz+(3(pv),Dv)g = (f.v).

2
Integrating this equation over (0,t), we arrive at

t t

;/|v(.,t)|2dw+c/(8(Dv),Dv)th:/(f,'v>dt+;/\@Qdm.
(9} 0

0 2

In view of (2.40) and (2.1)), this demonstrates the a priori estimate

]| Lo (1;22(02)) + [Vl o (rvry < C = C(f,0, £2,p, €0).

We are interested in strong solutions to [(P7)l This means that we look for a function

v e L®(LVP)N LY, W) with ¢ = min{2, p}, % € L*(I; L*(2)),

satisfying (2.89)). The next lemma ensures the existence of strong solutions for p > 1+ %.

Lemma 2.29. Let us consider system (2.14) complemented with space-periodic boundary
conditions. Forp > 1 ande =1 let S satisfy Assumption. We assume that & € WH2(12)

and that f € Lp'(I; Lp/(Q)) ifp <2, and f € L2(I; L*(2)) ifp > 2. Ifp > %, then

there exists a solution v € Vb of Problem|(P7)| with VP replaced by Vb, If p> 1+ %,
then v is unique and reqular, i.e., v € L=(I; W12(2)) N L*(I; W22(12)).
Proof. The lemma is proven in [MNR93]. O

The following lemma shows the local in time existence of strong solutions:
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Lemma 2.30. Let d = 3. Let us consider system complemented with space-periodic
boundary conditions. For p € (7/5,2] and ¢ € [0,20] let S satisfy Assumption 2.1 Let
b e W2(0), V-8(Dd) € L*(2), and f € L®(I; W2(2))nW2(I; L*(£2)). Then there
exist a time T" = T'(eo,p, f,0,T,2) with 0 <T' < T and a function v € LP(I'; V) with
I' =[0,T'] that solves Problem with VP replaced by VP... The solution v satisfies

per-

100l 12260 + 1Dy + IFDO) s <O (290)

where the constant C only depends on g, p, f,0,T, 2. In particular, there holaﬁ
5p—6 3
ve P37 (I W21 () N eI, Wh(2)), 1<s<6(p—1), (2.91)
oo/l T2 5P 6) / 1,32
vy € L°(I; L*(2)) N LG=2-1 (['; W p+1({2)). (2.92)

Due to (2.91) and p > 7/5, it follows that v € C(I'; Wl%(ﬁ)) The solution v is unique
within the class C(I'; Wl%(ﬂ)) For e > 0 there exists a pressure w that satisfies

5p—6
r e PENIG L), IVl g LSO Cen £0.T,9),

The constant C' may explode as ¢ — 0.

Proof. Lemma is proven in Berselli et al. [BDR10]. O

3See Diening et al. [DPR0Z, [DR05] and cf. Lemma m

38



3 Finite Element Discretization

In this chapter, we introduce the finite element (FE) discretization of the p-Navier-Stokes
equations. Since we use an equal-order discretization, we need to stabilize the discrete
Galerkin systems. In Section we recall well-known stabilization methods such as local
projection stabilization that are frequently used in computational fluid dynamics. In
Section we deal with interpolation in Orlicz-Sobolev spaces that will be crucial in the
further course of the thesis. For it we basically follow the article [DR07]. Finally, Section
is dedicated to implementational aspects.

3.1 Finite element (FE) discretization

For ease of exposition, we assume that (2 is a polygonal (d = 2) or polyhedral (d = 3)
domain. The finite element (FE) discretization is based on a decomposition of 2. The
domain {2 is subdivided into disjoint, open quadrilaterals or hexahedra K with diameter
hx = diam(K). All elements K together make up the triangulation T) = {K} so that
2= KeT, K. The mesh parameter h represents the maximum diameter of the cells,
ie., h:= max{hg; K € T}}. The symbol h also denotes the cell-wise constant function
h|x = hx. Following the literature such as [Cia80], we formulate the definition of regular

meshes: The mesh Ty, = {K} is called regular if it satisfies the following conditions:
(Ml) ﬁ = UKGT;L F
(M2) KNK'=0 for all K, K’ € T}, with K # K'.

(M3) Each face of a cell K € T}, is either a face of another cell K’ € T}, or subset of the
boundary 0f2.

Sometimes the condition (M3) is weakened for two reasons (see [Schl0]): Firstly, we allow
so-called hanging nodes in order to facilitate adaptive mesh refinement. Elements are
allowed to possess nodes that are located in midpoints of faces or edges of neighboring cells.
At most one hanging node is allowed on each face or edge. Secondly, we weaken condition
(M3) in order to treat the case of non-polyhedral boundaries. In this case, we require
that, instead of boundary-faces, only the vertices of such faces (and possibly some inner
points) are subsets of the boundary. For the subsequent simulations we employ meshes
that are organized in a patch-wise manner: We assume that the mesh T} is generated
by one uniform refinement of a coarser mesh M, := Tsg;,. In particular, four (d = 2) or
eight (d = 3) adjacent elements of T}, can be grouped together to form one element of IMy,.
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Such macro-elements are called patches. This construction is of importance for particular
stabilization methods and a posteriori error estimation, see Sections [3.2] and [5.6]

In case of quadrilaterals (or hexahedra), the finite elements are first defined on a reference
element K , and after they are transformed into functions (generally, no polynomials)
defined on a physical element K. More precisely, on the reference element K = (—1,1)?
we introduce the spaces QT(K ) of tensor product polynomials up to degree r € INy:

d
Q(K) := span{H@o‘i, a; € {0,...,r}, fcef(}. (3.1)
i=1

In case of r = 1, this space consists of all bi-linear (d = 2) or tri-linear (d = 3) functions.
The mapping F i : K — K denotes the transformation, which maps the reference cell K
to the computational cell K € T},. The local finite element space Q,(K) is defined by

Q- (K) = {w:K%R;woFKGQT(IA()}. (3.2)

In case of quadrilaterals (hexahedra), the mapping F'i is not affine linear in general. If the
transformation F'f itself belongs to the space Q,(K), the resulting finite element ansatz is
called isoparametric. The finite element space X}, is characterized by

Xy = Xpo(Th) = {w € C(2); wlkg € Q. (K) for all K € Th}. (3.3)

Remark 3.1. The subsequent numerical analysis, which will be performed within the next
chapters, also includes the case of finite elements based on d-simplices. For r € INg the
space P,.(K) denotes the space of polynomials on K of degree less than or equal to 7, i.e.,

d d
P, (K) := span{Hw?i, 0 < ay, OSZO@‘ST, a:EK}. (3.4)

i=1 i=1
If T}, is based on d-simplices, then the finite element space Xj, , is defined by with
Q,(K) replaced by P, (K). Note that, in this case, the finite element space X}, need not
to be defined by means of the reference mapping F'i although, in practice, polynomial
spaces are usually defined on the reference element due to implementational aspects. Our
software, which was employed for our numerical experiments, uses d-linear or d-quadratic
finite elements based on quadrilateral meshes. Hence, in the present thesis we will mainly
speak of Q1 or Qs finite elements. However, we always keep in mind that the theoretical
results, which will be derived below, remain valid for linear and higher-order (r > 2) finite
elements based on d-simplices as defined above. For ease of exposition, we do not consider

finite element spaces which are generated by local enrichment with bubble functions.

Let us briefly discuss the case of non-polygonal boundaries. Details can be found in
[Sch10]. Regarding higher order elements (r > 1), there are degrees of freedom that are
associated with points on edges or faces. In case of r > 1, the use of bi- or tri-linear
transformations F i may lead to a reduced accuracy along the boundary. In contrast, the
use of isoparametric finite elements allows us to choose the transformation appropriately
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3.1 Finite element (FE) discretization

in the sense that the degrees of freedom related to nodes on edges or faces are located on
the real boundary 9f2. In this thesis, we only employ isoparametric finite elements. In
particular, if 7 = 1, the mapping Ff is multilinear, i.e., Fr € Qi (K)%

In order to ensure approximation properties of the finite element spaces, we require
additional conditions on the geometry of the elements. Following the literature (see Braess
[Bra07] and Brenner/Scott [BS94]), we formulate the definition of nondegeneracy:

(M4) For K € Ty let Bg be the biggest ball inscribed in K. The family of meshes
{Tp; h 0} is called nondegenerate if there exists a constant ko > 0 such that

hi
- < VK Ty,. .
diam(Bg) — o < hL>Jo h (3:5)

Beyond that, the family of meshes {T; h 0} is called quasi-uniform if it holds

min{diam(Bg); K € Ty} > ;{i Vh € (0,1]. (3.6)
0

If the family is quasi-uniform, then it is nondegenerate, but not conversely. For general
non-affine families of quadrilateral (or hexahedral) meshes, the usual shape regularity
assumption is not sufficient in order to ensure that the mapping F'i is bijective.
Therefore, we suppose the shape regularity assumption given in [MT02, [HS04]. Below we
describe this assumption in detail. To this end, let Fp : T — T be the multilinear reference
mapping that maps the reference hyper-cube 7= (-1, 1)d onto an arbitrary quadrilateral
(hexahedra) T, i.e., let Fr € Qi(T)% In [MT02, [HS04], multilinear transformations Fr
have been investigated only. A Taylor expansion of Fr yields the representation

Fr(%) =br + Br& + gr(&) (3.7)

where by := Fp(0), By := VF7(0), and gy (&) := Fr(z) — Fp(0) — VF7(0)&. Let
Z c T denote the d-simplex with vertices 0,...,0), (1,...,0), ..., (0,...,1). Let =7 be
the image of = under the affine mapping & — Br@ + by. For the simplices {Ep: T e Ty},
we assume the usual shape regularity assumption :

hz=,
—T < VT € T, 3.8
diam(Bz,) — o 4 (38)
We recall that |-| also denotes the matrix norm induced by the Euclidean vector norm in
RY. Then, for each element T, the distortion parameter vz is defined by

yr = sup| B;'VFp(2) — 1. (3.9)
el

The distortion parameter measures the deviation of 7" from a parallelogram (parallelepiped).
For a parallelogram (parallelepiped) T, the reference mapping F'r is affine and v = 0.
For a family of uniformly refined meshes, there holds v — 0 as h — 0. The definition of
shape regularity can be formulated as follows:
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3 Finite Element Discretization

(M5) The mesh T}, consisting of quadrilateral (or hexahedral) elements is called shape-
regular if the conditions (3.8]) and yp <~y < 1 for all T' € T}, are satisfied.

The shape regularity assumption (M5) imposes that the distortion of the quadrilateral (or
hexahedral) elements from a parallelogram (or parallelepiped) is uniformly bounded. This
guarantees that the mapping F'r : T —Tis bijective. Moreover, it is shown in Lemma 2
in Matthies/Tobiska [MT02] that there exist ¢, C' > 0 independent of hr such that

cd!(1 — yr)*h < |det(VFp(2))| < Cdl(1+r)*hf Vi eT,
sup|VFr(2)] < (1 +vr)hr,  sup|VF (a)| < C(1 — ) "hyl. (3.10)
zeT xzeT

From ([3.10) we can derive corresponding inequalities for the inverse F}l using basic tools
of analysis and linear algebra: For & = F.'(z) it holds

det(VF7 (x)) = det([VFr(2)]™!) = [det(VF7(2))] " (3.11)

Throughout the thesis we assume that Assumptions (M 1) — (M3), (M5) are satisfied.

Interpolation operators: The approximation properties of finite element spaces can
be characterized by estimates for interpolation errors. Throughout the thesis, we use
two types of interpolation operators: The point-wise Lagrange interpolation operator
i+ C(£2) — Xp, and the Scott-Zhang interpolation operator jj : WP(£2) — X, .. For
their precise definitions we refer to [BS94, [SZ90]. The Lagrange interpolation operator is
only defined for continuous functions. By contrast, the Scott-Zhang interpolation operator
also interpolates non-smooth functions in W1P(£2). Below we state important properties of
the Scott-Zhang interpolation operator. To this end, we introduce some further notation.
For K € T}, we define the set of neighboring elements Nk and the neighborhood Sk by

Nk :={K' €T, : K'nK # 0}, Sk := interior of U K’ (3.12)
K'eNg

The sets Sk are connected and open. Furthermore, the non-degeneracy (3.5)) of the mesh
T}, implies the following two properties: For all K € T}, there hold

#Ngk < Ny for some Ny € N, |Sk| ~ | K| with constants independent of h. (3.13)

Below let v € Wl’p((Z) with [ > 1 be arbitrary. For 1 < ¢ < oo, m € Ny, and for all
K € Ty, the stability of the Scott-Zhang interpolation operator,

+4_d

l
. k—m+<-2
7]l < € Z b * Pl s (3.14)

k=0

is proven in Scott/Zhang [SZ90]. Using the stability result (3.14]) and the Bramble-Hilbert
Lemma, for all K € T, we can conclude the local interpolation inequality (see [SZ90])

lo = jnvlmpr < C(d,r,k0)hg " Wlps,c  (0<m <T<r+1). (3.15)
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3.1 Finite element (FE) discretization

In view of (3.13 - from we easily deduce the global estimate
lo = jnvllmp < Cld.r.m0) D [0l (0<m<I<7+1). (3.16)

The results of [SZ90] are derived for finite element spaces Xj,, based on d-simplices,
see Remark However, the Scott-Zhang interpolation operator can be generalized to
quadrilateral (hexahedral) meshes (see [HS04]). Note that the Lagrange interpolation
operator 7y satisfies an interpolation estimate which is similar to .

Remark 3.2. From (3.10)), (3.11)) it follows that for any w € W™4(K), & (&) := w(F g (Z)),

1
_ ! R mtd
IV g S IVFRErlldet(VER) 2 o IV™ @l 4 S VB,

(3.17)
V™ol x S IVFEk], Hdet(VF;}l)HZO,KHVmeq;K S hg q IV wllg;x

Let m,l > 0, v, € [1,00). Assume that m — % >1— g and m > [ so that Wm“(f() —
whv (R' ). Then (3.17)) and (3.15)) imply the following generalized interpolation inequality:

l
. —k+d o —
lw = Gnwllwr S D e IV = Gaw)ll,z S Z hy R - )l .k

+=0 L L (3.18)
k—l+d-d , m—i+4-4d
< ZhK “NIVE(w = jrw)|l e S by w58 -

Inverse estimates: Below we discuss the relations among various norms on a finite element
space. Let v, pu € [1,00] and 0 < m < [. Then, there holds (see [BS94])

_jad_d
wnllix < CH™ v i |wpllmpx Ywn € Xp, VK €Ty, (3.19)

for some C' = C(I,v, u,v9) > 0. Next we state the global version of (3.19)). If the family
{T}} is quasi-uniform, then for v,y € [1,00] and 0 < m <[ there exists C' > 0 such that

lwn iy < CR™ BT =Dy L Vg € X (3.20)

Galerkin discretization: We discuss the FE discretization of the p-Navier-Stokes equations.
Let X}, and Qj, be appropriate FE spaces defined on T}, which satisfy X; C W1°(£2) and
Qn C L>®(£2). Note that the inclusions X; C WH°(£2), Q) C L®(£2) hold for all practical
choices of X}, QQy. Then the FE spaces for the velocity and pressure are given by

A= XN AP, X, = [X,]9, and b= QN QP (3.21)

The Galerkin approximation of [(P5)| consists in replacing the Banach spaces X? and QP
by the finite dimensional spaces X} and QF: Find uy, = (v, m,) € X} x QF such that

A(uh)(wh) = (f,wh) Ywy, = (wh,qh) S XZ X QZ (3.22)
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3 Finite Element Discretization

where for all u = (v, 7) and w = (w, q) the semi-linear form A is defined by
A(u)(w) == (S(Dv), Dw)n + ([v- V]v,w)g — (7, V-w)o + (V- v,q) 0. (3.23)

This discretization does not lead to a stable discretization unless the spaces X} and OF
satisfy the inf-sup (Babuska-Brezzi) condition. This condition can be stated as follows:

(IS) For any v € (1,00) there exists a positive constant 5(v) not depending on h such that

V- -
inf  sup {4, V- wi)o > B(v) > 0. (3.24)
anear wyext [|anllu [wnll1

It is well-known that for Taylor-Hood elements (i.e., Xj, := X} 2, Qp := Xp 1) the inf-sup
condition is fulfilled. Mixed finite elements are extensively discussed in Brezzi&Fortin
[BE91] and Girault&Raviart [GR86]. An equal-order discretization corresponds to the case
when both the velocity and pressure are discretized with finite elements of same order (i.e.,
Qp = Xp). Compared to Taylor-Hood elements, the equal-order discretization benefits
from implementational advantages. However, for equal-order elements the discretization
is not stable. In particular, the discrete pressure may exhibit oscillations which do
not reflect the physical objectivity. The instability is caused by the violation of the discrete
inf-sup condition for the pair X’ IZ X QZ. In addition, the Galerkin formulation may
suffer from dominating convection in case of high Reynolds numbers.

The main focus of the thesis is on the equal-order discretization of the p-Navier-Stokes
equations. In order to overcome the instabilities mentioned above, one may introduce
appropriate stabilization terms s, (up)(wy) depending on the discrete solution uy, and trial
function wy, that are added to the standard Galerkin discretization . Many different
stabilization methods such as local projection stabilization (LPS) have been proposed
and investigated in the context of the Navier-Stokes equations (see Section . In this
thesis, we aim at analyzing stabilization methods in the context of the p-Navier-Stokes
equations. For p-Stokes systems we will propose a nonlinear stabilization term s, based
on the well-known LPS method that is adjusted to the p-structure of the problem and
that leads to optimal convergence results (see Chapter . The stabilized discrete problem
reads: Find up, = (v, 1) € X} x Q) (the discrete solution) such that

Alup)(wp) + sp(up)(wp) = (f, wp) Vwy, = (wp, qn) € X4 x QF. (3.25)

In order to be able to quantify the convergence of FEM, we need to know higher regularity
of the exact solution (v, 7). The availability of higher regularity usually requires that f
belongs to a better space than (X?)*. For the remainder of the thesis we therefore assume
that f € L (£2). Since the available regularity of (v, ) is limited, we restrict ourselves
to the case of low-order finite elements. If not stated otherwise, we consider the case

Xn=Qn=Xp1.
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3.2 Stabilization

As mentioned above, the standard Galerkin formulation may suffer from instabilities
resulting from violation of the discrete inf-sup condition and dominating advection in
case of high Reynolds numbers. In this section, we present two stabilization methods, which
are frequently used in the context of Navier-Stokes equations: Residual based stabilization
and local projection stabilization methods. For this we follow the survey article Braack et
al. [BBJLOT] which gives an overview of different stabilization methods.

Residual based stabilization: In the context of Navier-Stokes equations, Brooks/Hughes
[BH82] and Hughes/Franca/Balestra [HFB86] modified the standard Galerkin formulation
(3.22) adding mesh-dependent residual terms. They include streamline-upwind stabilization
for dominating convection, as well as pressure stabilization due to missing inf-sup stability.
Hence, this method is referred to as the streamline-upwind Petrov-Galerkin (SUPG) /
pressure-stabilization Petrov-Galerkin (PSPG) method. For p = 2 the Galerkin formulation
is modified by addition of

Shot % (up) (wh) =Y ( — HoAvp + [vp - Vv + Vm, — f,
KeTy, (326)
agxVa + oxlvp - V]wh)K

with up, = (vp, ) and wy, = (wp, qy). Here, the parameters ax and gx are cell-wise
parameters that depend on the local mesh size and on the particular choice of finite element
spaces. In case of X} = Q) = X}, 1, the parameters o and gx are chosen as

M

hi
%]
6110 + hic||vn ook

= 00
6110 + hic||Vn | oos K

Qi = and 0K (3.27)

with positive constants ag and gg. Concerning the choice of parameters, extensive dis-
cussions can be found in Braack et al. [BBJLO7]. The method simultaneously stabilizes
spurious oscillations that come from dominating convection and missing inf-sup stability.
In particular, the term (V7y,, axVqp)k represents pressure stabilization whereas the term
([vn - V]vp, ok [v - V]wy) g reflects streamline diffusion. The remaining terms are present
due to consistency of the method: If the continuous weak solution u = (v, 7) is smooth
enough to be a strong solution, the stabilization part s7YF%(u)(wy) vanishes for all wy,.

Although the classical SUPG/PSPG method has successfully been applied to flow problems,
it has been evaluated critically in recent years. Several drawbacks of the stabilization
scheme (3.26]) are well-known (cf. [BBJLOT], [Sch10)]):

e Boundary layers of the discrete pressure are introduced since the stabilized finite
element system is equipped with the artificial Neumann boundary condition, 9,7, = 0
on 0f2, that arises from the stabilization term. This leads to a reduced accuracy near
the boundary.
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3 Finite Element Discretization

e The stabilization term exhibits a complicated algebraic structure: Artificial non-
symmetric terms are introduced and artificial couplings between velocity and pressure
are imposed.

e The evaluation of the stabilization term requires the computation of second derivatives,
Awp|k, since for higher order trial functions (r > 1) the terms Avp|x do not vanish.
In case of r = 1, the terms Awvp|x vanish only if the reference mapping F'i is affine
linear. The second derivatives are only needed for consistency. Their computation is
cost-intensive because second derivatives of F;(l are needed. However, the neglect of
the terms Awy, |k generally results in a decreased accuracy.

In case of non-Newtonian fluids (p # 2), the expression poAvy, in has to be replaced
by V-8 (Dwvy,). But then, in case of d-linear finite elements the terms V- S(Dwy,)|x do not
vanish even for affine linear reference mappings F'ix. However, the computation of second
derivatives is cost-intensive. Due to the apparent drawbacks of the SUPG/PSPG-scheme,
we do not analyze this classical stabilization method in the context of non-Newtonian fluids.
By contrast, we deal with an alternative stabilization scheme based on local projections.

Local projection stabilization: In Becker/Braack [BB01], a stabilization technique was
proposed that is based on local projections. The local projection stabilization (LPS) is
designed for equal-order discretization of velocities and pressure (X} = Q) = X}, ), and
for stabilization of convective terms. It can also be applied to inf-sup stable discretizations
(see Lube et al. [LRLO7]). For its formulation we follow the lines of Braack/Lube [BLO09].
Let us restrict ourselves to a certain class of meshes: We assume that the mesh T}, results
from a coarser mesh MM, by one global refinement, i.e., My := Tg,. Hence, the mesh T}y
consists of patches of elements. For instance in case of d = 2, four quadrilaterals can be
grouped together in order to form one element of IMy. There are variants of the LPS
method for which this restriction can be omitted. Let M := (—1,1)¢ be the reference
hyper-cube, and let Fp; : M — M be the multilinear reference mapping. We introduce
the space of patch-wise discontinuous finite elements of degree r — 1:

Xgpe ) i={w e L*(2); wly o Foy € Q1 (M) VM € My, = Ty} (3.28)
The L2-projection Pap,r—1 @ L*(2) — Xg,if’fn_l is characterized by
(u—Pypyroqu,w)o =0  VueL*(2) VYweXHe . (3.29)
Regarding Pop, —1, we define the fluctuation operator 6, : L*(£2) — L*(£2) by
9h =id — Pgh’rfl (330)

where id stands for the identity mapping. The operators Py, ,—1 and ¢, are applied to
vector-valued functions in a component-wise manner: @,u = (fpus,...,0,uq). For the
Navier-Stokes system, it was proposed in [BB04] that the stabilization term

iP5 (up)(wn) = Y {(thFh,OéMOhVQh)M + (ah(['vh - Vl]vg), om0n([v, - V]wh))M}
MeMy,
(3.31)
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should be added to the standard Galerkin ansatz (3.22) in order to obtain a stable
discretization. Similarly to the SUPG/PSPG method, this stabilization contains patch-wise

parameters {ays} and {oar}. They are chosen as in (3.27)).

Remark 3.3. In case of Navier-Stokes systems (p = 2), it is well-known that an element-
wise stabilization of the incompressibility constraint, V - v = 0, can be important for the
robustness of the discretization as soon as 0 < po < 1. The so-called grad-div stabilization
can be achieved by addition of (6;(V - vy), v0,(V - wp)) e to (3.22). Here, v is a patch-wise
constant parameter that depends on the local mesh size: v|y ~ h?w Jon for all M € My,

In case of the Navier-Stokes equations, it is well-known that the stabilization leads
to a stable approximation of the continuous problem. A general convergence theory of
local projection schemes is well-established. In particular, for the Oseen equations a priori
error estimates providing optimal order of convergence have been proven, e.g., in [MSTQ7].
However, no results are available in the context of non-Newtonian fluids. In this thesis,
we study the local projection stabilization applied to p-Stokes/p-Oseen systems. This will
be done in a more general framework in which the space Xg,ifyjifl will be replaced by an
appropriate finite element space Y}, so that the pairing X},/Y} satisfies a certain local
inf-sup condition (see Section . In the context of p-Stokes/p-Oseen systems, we do
not only investigate the stabilization method but also we propose a new modified

version of the scheme (3.31)) which is adjusted to the p-structure of the problem.

Let us discuss important variants of the LPS-scheme. For the first variant of (3.31]), we
introduce the global Lagrange interpolant onto the coarser mesh My, = Toy, igp, @ Xp, —
Xop,r C Xp,r. Instead of the fluctuation operator 6y, the following filter can be used:

éh : Xh,r — Xh,Ta éh =1id — igh?r. (332)

When we apply such filters, we achieve stabilization using the gradients of the fluctuations.
The stabilization term, which is added to (3.22), reads (apys, ops are chosen as in (3.27)):

shoM(up) (wp) == > {(VéhﬂhyaMVéth)M+([Uh‘v]éhvh,QM[Uh'V]éhwh)M}-
MeMy,
(3.33)

For the second variant of , we restrict ourselves to the case of high-order finite
elements (r > 2). Instead of using two different meshes T}, and Ty, we only employ the
principal mesh T}, i.e., My, := T},. Similarly as above, we introduce the global Lagrange
interpolant iy, ,—1 : Xp, — Xp 1 C X}, . Then, the following filter can be used:

éh : Xh,r — Xhﬂ«, éh = id — /ih,r—l- (334)

The stabilization term is given by when 6, is replaced by 0, and M, = T}, is
used. This variant is very attractive from practical point of view. For Stokes systems
this stabilization admits optimal a priori error estimates. However, for Oseen systems it
becomes suboptimal because the term, which is responsible for stabilization of convection,
ensures the convergence order of the space Xj,,_1 only (see [BBJLOT]).
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Remark 3.4. The stabilization represents an important variant of the LPS scheme
(3.31)) which is based on subgrid modeling, see Section 5 in Matthies et al. [MSTOT7]. The
LPS method uses fluctuations of gradients 8V, whereas the subgrid modeling approach
is based on gradients of fluctuations V@, 7y,. Subgrid modeling and LPS are closely related:
Let us consider triangulations T}, made of d-simplices, and let X}, 1 and Xy, 1 denote the
space of continuous, piecewise linear finite elements associated with Tj, and My, := Ty,
respectively. Let 49,1 : Xp1 — Xo,,1 be the Lagrange interpolant, and let Py, o be the
L2-projection onto the space of piecewise constant functions on My,. It is shown in [MSTO7]
that it holds Papo(Vwp)|m = Viap 1 (wn|ar) for all wy, € Xp, 1 and M € M. Hence, the
LPS method and the subgrid modeling approach coincide in this particular
case. However, they may differ for Q;/Q; finite elements in general.

Compared to the SUPG/PSPG-scheme, the algebraic structure of the LPS-term is easier:
No artificial couplings between velocity and pressure are introduced. The computation of
second derivatives is not necessary. However, the local projection stabilization is not fully
consistent: The stabilization term does not vanish if the continuous solution is inserted. The
LPS-schemes (3.31)) and (3.33)) have been designed taking into account that the consistency
error is of same order as the discretization error.

3.3 Interpolation in Orlicz-Sobolev spaces

In context of the p-Laplace equation, optimal error estimates are well-known (see [DRO7]).
Their derivation is based on error estimation with respect to quasi-norms such as
which handle the non-degeneracy of the problem (see [ELO05|). In this connection, interpo-
lation errors occur with respect to quasi-norms. For their estimation it is convenient to
transfer the interpolation theory from Sobolev spaces W¥P?(£2) to Orlicz-Sobolev spaces
WHEY(£2). In particular, for 1 < j < k the integral [ |V7ul? is replaced by [ (|V7u|) for
some N-function ¢ (see Definition [2.1)). It is well-known that functions in Sobolev spaces
can be approximated by “piecewise polynomials”. In [DROT], the classical estimates for the
interpolation error are generalized in the context of Orlicz-Sobolev spaces W ¥ (£2). As in
[DROT], we require the existence of an interpolation operator of Scott-Zhang type:

Assumption 3.1. Letlg,r € INg. Let there exist an interpolation operator j, Wlo’l(()) —
X, that satisfies the following properties: For |l > lo and m € INg there holds

m l
Z][ W5V gpo|dae < c(m, 1) h’;(f |VFo|dx (3.35)
J=0j¢ k=0 &,

uniformly for all K € Ty, and v € WHH(02). Furthermore there holds
Jrv =1 Vv € P,.(02). (3.36)

Here, the set Sk denotes a local neighborhood of K. For its definition see (3.12)).
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Remark 3.5. As mentioned in [DRO7], the Clément interpolation operator satisfies Assump-
tion [3.1] However, it does not preserve boundary values and, hence, it is not useful for our
subsequent analysis. The Scott-Zhang interpolation operator fulfills Assumption It is
defined in such a way that it preserves homogeneous Dirichlet boundary conditions, i.e.

e Wol’l(Q) —= Xpr N Wol’l(ﬂ). In this case, we have to choose [ = 1 in Assumption

The following lemma generalizes the well-known interpolation estimates for Sobolev func-
tions to the setting of Orlicz-Sobolev Spacesﬂ Wh¥(0):

Lemma 3.1. Let ¢ be an N-function that satisfies the Ay-condition. Let 3, and l be as
in Assumption . Then, uniformly in K € Ty, and v € W1’¢(Q) there hold the following
relations: (i) Orlicz-stability: There exists a constant ¢ = c¢(m, 1, As(v))) > 0 such that

Z][¢ W V7 ,0]) de < CZ 7[ (k| VEu]) d (3.37)

]OK kOS

(ii) Orlicz-approzimability: Let ko be the constant in (3.5). If in addition | < r+ 1, then
there exists a positive constant ¢ = c(l, Ay(v), ko) such that

Z][zp (W |V (v — §po)]) dz < c][ Y(hh|Vio|) dee (3.38)

JOK

(iit) Orlicz-continuity: If in addition | < r+1, then there exists a constant ¢ = c(l, Aa(1)), Ko):

F oIVl d < of (kI V'o]) de. (3.39)
K Sk

Proof. See [DRO7]. Note that Lemma is proven in [DRO7] for finite element spaces
based on simplices, X, , = {v € L'(£2); v|x € Xp,(K)} with P.(K) C X, (K) C Ps(K)
for r < s € Ny. Since X}, ,(K) C P4(K), there exists a constant ¢ = ¢(s) such that

sup |[Viwy(x)| < of |[VVwy(y)|dy  YVwy € Xp,, VKT,  jeNy (3.40)

rzeK
K

As depicted in [DRO7], the Orlicz-stability l) follows from (3.40), (3-35)), and the
properties of ¢. The Orlicz-approximability (3.38) results from P,.(K) C X}, (K), property
, the Orlicz-stability , and Corollary 3.3 in [DRO7] which generalizes the classical
polynomial approximation theory in Sobolev spaces to the setting of Orlicz-Sobolev spaces
(and whose proof is based on averaged Taylor polynomials, the non-degeneracy of T}, and
the properties of 1, see [DR07]). Clearly, directly follows from with j = [ and
the triangle inequality (cf. Remark . O

'For an N-function 1) the classical Orlicz space Lw((}) and Orlicz-Sobolev space W 11’( ), k € WNo,
are defined as follows: g € L¥(12) iff fQ (lg]) dz < oo, and g € WH¥ () iff 9*g € LY () for any
multi-index a with 0 < |a| < k.
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Remark 3.6. The question arises whether Lemma remains valid for tensor product
Q,-elements: The proof of Lemma only requires the properties P,.(K) C X} ,(K) and
(3-40). In particular, if is required, then the assumption X}, ,(K) C Py(K), that in
general is not satisfied for Q,-elements, can be relaxed. In case of Q,-elements, the space
X, (K) is given by Xj,(K) = Q,(K), see (3.2). In this case, the property remains
valid. Moreover, it holds P, (K) C X} ,(K) for all K € T}, provided that the reference
mapping Fr : K — K belongs to the space Q;(K)? This can be seen by the following
argument: Let P € P, (K) be given. Since Fi is d-linear, P(F i (&)) is a polynomial of
degree at most r in each variable 1, ...,z separately, i.e., Po F € Qr(K ). This implies
P e X}, ,(K). Hence, Lemma holds for Q,-elements as long as F'i is d-linear.

Lemma holds true for any fixed N-function 1. All constants occurring in the local
estimates of Lemma depend on the As-constant of v, but they do not depend on the
particular N-function . This enables us to apply Lemma to shifted N-functions 1):

Corollary 3.2. Let 1) and 1, be given as in Definition[2.4 Let j; satisfy Assumption [3.]]
with { = 1. Then, for alla >0, v € W1’¢(Q), and K € T}, there holds

fvulVirel) da < of va(9ol) da (3.41)
K Sk

where the constant ¢ only depends on Az(v) and kKo.

Proof. See [DRO7]. Due to Lemma the Ag-constants of the shifted N-functions v, are
uniformly bounded with respect to a > 0. Then, the desired estimate follows from ([3.39))
with { = 1 applied to the function h~'w for the family of shifted N-functions 1. O

The well-known Corollary [3.2] will play an important role for the subsequent analysis. It
will enable us to derive an interpolation inequality with respect to the natural distance.

Application to problems with p-structure: By means of Corollary [3.2] it is proven in
[DRO7] that interpolation operators of Scott-Zhang type satisfy the following local best
approximation result: Let F be defined by with P®™ replaced by P. Let j; satisfy
Assumption [3.1] with [ = 1 and 7 > 1. Then for all K € T}, there holds

][|}'(Vv) — F(Vj,v)*de < g inf d][ | F(Vv) - F(Q)*dx VYo e WP(Q)
€ X
K Sk

where the constant ¢ only depends on p and kg. From this result one can conclude

][ F (Vo) — F(Vipw)|?de < ch%q[ VF(Vo)? de (3.42)
K Sk
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3.3 Interpolation in Orlicz-Sobolev spaces

provided that F (Vo) € WH2(2)%4, Summing (3.42)) over all K € T}, and recalling the
properties of the mesh ([3.13]), one can derive the following global version of (3.42):

|F (Vo) = F(Vipv)l2 < ch[[VF (V)2 (3.43)

Later we will show that remains valid if the velocity gradient Vv is replaced by
its symmetric part Dv. Note that also holds for higher order finite elements
(r > 2) provided that the reference mapping F'i belongs to the space Ql(K )4 (so that
P,(K) C Q,(K), see Remark [3.6)). In the case 7 > 2, the convergence order of is
suboptimal. This can be easily observed if, e.g., the special case p = 2 is considered.

Following [DRO7], with the help of (3.43)) we can now derive a priori error estimates for
equations with p-structure. Exemplarily, let us study the following p-Laplace system,

p—2

~V-8(Vv)=f inf, S(Vv) = (52 + \VU\Q)TVU, (3.44)

v=wvp on 0f2,

and its discretization with Q, finite elements. We assume that vp is given as the trace of
a globally defined function vg € WHP(£2). Tt is well-known (cf. [DRO7]) that a conforming
finite element discretization of allows the following best approximation result: Let
v E vy + Wé’p(ﬁ) be the weak solution to , and let vy, € vop + X%r be its finite
element approximation, where vg ; denotes an appropriate approximation of the Dirichlet

data, and X} is defined by X} = X, N W (£2). Then there holds

|F(Vv) = F(Vop)|a <e¢  inf | F(Vov) — F(Vuy)l2 (3.45)

up€vo p+X} |

for some ¢ = ¢(p) > 0. Let j,;, be an interpolation operator as in Assumption Setting
Vo4 = J,Vo, and combining (3.45) with (3.43), we arrive at the a priori error estimate

|F (Vo) = F(Vop)ll2 < ch[ VF (V)2 (3.46)

that is optimal for r = 1 but suboptimal for » > 2. The derivation of optimal a priori error
estimates for r > 2 is subject of current research of Prof. Lars Diening and the author.

Remark 3.7. For solutions v to the p-Laplace problem, the regularity F(Vv) € W12 (£2)4xd
is well-established. Formally, the term [ |VF(Vw)|? dz arises if the weak formulation is
tested with —Awv. Hence, the “natural” regularity for solutions of p-Laplace systems can
be expressed via the quantity F. Note that the question about still higher regularity
(existence of third derivatives) remains an open problem. In this connection the question
arises which quantity (e.g., F or 8) is suitable to express still higher regularity.

For higher order finite elements (r > 1) we conjecture the following interpolation estimate
(3.47)), which can be seen as the straightforward extension of (3.43)):

|F (Vo) — F(Vip)lz $ RO VAF(V) |2, B> 0. (3.47)
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3 Finite Element Discretization

In the case 8 # 1, estimate (3.47)) is understood only formally and it is not justified from
analytical point of view at all. Similarly to the derivation of (3.46)), we would then obtain

| F (Vo) — F(Vop) |2 < R8I F(Vo)||s, B> 0. (3.48)

For 3 # 1 the error estimate (3.48|) represents a pure hypothesis. By means of the
subsequent numerical simulations, we intend to shed some light on the hypothesis (3.48)).

Numerical experiments: We would like to support our hypothesis for 8 > 1 by
numerical simulations. For 8 < 1, we will numerically validate in Section
The following two experiments numerically demonstrate which convergence rates can be
expected for Qg finite elements (r = 2). They were accomplished by means of the software
package Gascoigne [GAS]. The numerical algorithm solving the finite element systems and
implementational aspects will be discussed in the forthcoming Section [3.4]

Example 1: For the approximation of (3.44)) with Q2 elements, the obtained discretization
errors and corresponding convergence rates are presented in Table In this example, on
the square (2 := (—0.5,0.5)? the exact solution v : 2 — R? to (3.44) was given by

_ (l=” N
v(ac)-( o | p'_p—l'

The discrete problem was then solved for f := —V-8(Vw) and vp := v|yp. The parameter
e was set to ¢ = 1073, It is easy to check that, in the case ¢ = 0, §(Vw) is linear in
x. As a result the right-hand side f reduces to a constant. In view of Table we
observe that the error measured in terms of S behaves as O(h'*/?) for p > 3/2. We
realize that the experimental order of convergence obtained for the F-distance amounts to
min{p/TJrl, 2}. In particular the error measured in terms of F converges to zero with less
than quadratic order as soon as p > 3/2. In contrast to S(Vwv), the quantity F(Vv) is
not smooth. An easy computation shows that |[VZF(Vv(z))| ~ |z1[?/?>~#. We may ask
for which values of 3 > 0 the requirement |VSF (V)| € L?(12) is satisfied. It turns out
that this condition is fulfilled if and only if 8 < (p’ + 1)/2. Hence, Table [3.1] indicates that,
for this particular example, the hypothesis (3.48)) with 8 =~ (p’ + 1)/2 seems to be true.
Note that the observed convergence rates for the error in W1(£2) can be deduced from
the ones for the F-distance taking into account Lemma [2.6] Finally we note that for p = 2
we observed quadratic convergence for all considered error quantities (which, for p = 2,
actually coincide), but as soon as p # 2 we lost quadratic convergence.

Example 2: This example is in the same spirit as Example 1. In Table we present
convergence rates for the approximation of (3.44) with Qs finite elements. The following
experimental setup was considered: The analytical solution v : 2 — R? was given by

v(x) = |z|o! ( 2 ) ., acR.
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3.3 Interpolation in Orlicz-Sobolev spaces

Table 3.1. Approximation of (3.44) with Q2 elements: 8(Vw) is smooth

|F (Vo) = F(Vop)ll2 [[8(Vo) = S(Vup)lly  [[Vo— Vol
P Fcells error conv. error conv. error conv.

1.1 16384  5.26e-05 2.00 2.84e-03 2.19 3.82e-06  1.99
65536  1.32e-05 2.00 6.89e-04 2.05 9.56e-07  2.00
262144  3.29e-06 2.00 1.71e-04 2.01 2.39e-07  2.00

1.3 16384  9.20e-05 2.00 2.03e-03 1.88 5.05e-05  2.00
65536  2.30e-05 2.00 6.50e-04 1.64 1.26e-05  2.00
262144  5.75e-06 2.00 1.64e-04 1.96 3.16e-06  2.00

1.5 16384  1.37e-04 1.62 1.45e-03 1.11 6.09e-05 1.81
65536  4.26e-05 1.68 6.68e-04 1.12 1.62e-06 1.91
262144 1.06e-05 2.01 2.64e-04 1.33 4.08e-06  1.99

1.7 16384  1.20e-04 1.70 4.63e-04 1.41 5.38e-05  1.90
65536  3.68e-05 1.71 1.74e-04 1.41 1.43e-056 191
262144 1.13e-05 1.71 6.52e-05 1.41 3.77e-06 1.92

1.8 16384  9.17e-05 1.62 1.84e-04 1.45 5.28e-05  1.77
65536  2.98e-05 1.62 6.76e-05 1.44 1.54e-05 1.78
262144  9.68e-06 1.62 2.48e-05 1.44 4.47¢-06 1.78

1.9 16384  5.08e-05 1.55 6.81e-05 1.47 3.88e-05 1.63
65536  1.73e-05 1.55 2.45e-05 1.47 1.25e-05 1.63
262144  5.90e-06 1.55 8.83e-06 1.47 4.04e-06 1.63

1.999 16384  5.49e-07 1.50 5.51e-07 1.50 5.48e-07  1.50
65536  1.94e-07 1.50 1.95e-07 1.50 1.94e-07 1.50
262144 6.87e-08 1.50 6.90e-08 1.50 6.85e-08  1.50

2.1 16384  5.82e-05 1.45 4.61e-05 1.52 7.44e-05 1.38
65536  2.12e-05 1.45 1.61e-05 1.52 2.85e-05 1.38
262144  7.75e-06 1.45 5.59e-06 1.52 1.09e-05 1.39

2.3 16384 1.87e-04 1.38 1.04e-04 1.56 3.63e-04  1.20
65536  7.15e-05 1.38 3.53e-05 1.56 1.57e-04 1.20
262144  2.74e-05 1.38 1.20e-05 1.56 6.83e-05  1.20

2.5 16384  3.20e-04 1.33 1.38e-04 1.59 8.69e-04 1.07
65536 1.27e-04 1.33 4.60e-05 1.59 4.15e-04 1.07
262144  5.03e-05 1.33 1.52e-05 1.59 1.98e-04 1.07

3.0 16384  6.30e-04 1.25 1.82e-04 1.64 3.09e-03  0.83
65536  2.65e-04 1.25 5.83e-05 1.65 1.73e-03  0.83
262144 1.11e-04 1.25 1.85e-05 1.65 9.73e-04  0.83
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3 Finite Element Discretization

All data were chosen as in Example 1. It is easy to check that F(Vv) € W22(£2)%*4 if and
only if a > % + 1. In this example we set a = % + 1.01. By means of Table we observe
that the discretization error measured in terms of F behaves as O(h?). Hence, Table
indicates that, for this particular example, the hypothesis with 8 = 2 seems to be
true. To sum up, we have numerically validated the hypothesis .

Table 3.2. Approximation of (3.44) with Q2 elements: F(Vv) is regular

|F (Vo) = F(Vop)llz - [[8(V0) = S(Von)lly Vo = Vo,

p  Fcells error conv. error conv. error conv.
1.1 16384 1.73e-04 1.89 1.95e-01 0.40 6.96e-05  2.00
65536  4.62e-05 1.91 1.46e-01 0.41 1.74e-05  2.00

262144 1.22e-05 1.92 1.04e-01 0.48 4.35e-06  2.00

1.3 16384 1.45e-04 1.89 7.89e-03 0.93 6.76e-05  2.00
65536  3.88e-05 1.90 4.15e-03 0.93 1.69e-05  2.00
262144  1.03e-05 1.91 2.17e-03 0.93 4.22e-06  2.00

1.6 16384 1.21e-04 1.88 4.19e-04 1.50 7.33e-05 1.98
65536  3.26e-05 1.90 1.48e-04 1.50 1.85e-05 1.99
262144  8.66e-06 1.91 5.20e-05 1.51 4.63e-06 1.99

2.5 16384 1.05e-04 1.87 7.27e-05 1.97 2.34e-04 1.60
65536  2.84e-05 1.89 1.84e-05 1.98 7.70e-05 1.60
262144 7.56e-06 1.91 4.65e-06 1.99 2.53e-05 1.61

3.0 16384 1.08e-04 1.87 7.10e-05 1.98 5.09e-04 1.35
65536  2.92e-05 1.89 1.78e-05 1.99 2.00e-04 1.35
262144 7.76e-06 1.91 4.47e-06 2.00 7.87e-05 1.3

3.4 Implementational aspects

For the equal-order Q;1/Q; (or Q2/Q2) element we describe the numerical algorithm which
solves the discrete system , and we discuss implementational aspects. The algorithm
presented below has been employed within the software package Gascoigne |[GAS] in order
to generate our numerical simulations appearing throughout the thesis.

Linearization of the discrete problems: We deal with the numerical solution of the
algebraic systems. Due to its nonlinear nature, system (3.25) needs to be linearized.
Here, we apply Newton’s method for linearization. In order to describe the algorithm, let
B(-)(-) be any semi-linear form. In the context of p-Navier-Stokes systems, the semi-linear
form B is given by B(u)(w) := A(u)(w) + sp(u)(w) for all u, w € XP x QP where A is
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defined in (3.23) and s, stands for a stabilization term. In order to determine a solution
up, € (vo, + X7) x QF of the discrete system

B(uh)(wh) — <f,wh> =0 Ywy, € XI;L X Qp, (349)

we carry out Algorithm (Newton’s algorithm with step-size control). Here, v, stands
for an approximation (e.g., the Lagrange interpolant) of non-homogeneous Dirichlet data.

Algorithm 3.1. Newton’s algorithm with step-size control

1: Choose an initial guess uj) € (v, + X%) x QF.
2: Compute zf € XY x Q' k=0,1,..., from the linear equations

B'(uf) (=, wr) = ~Bluf)(wn) + (fwn)  Vwn € X0 x Q) (3.50)

where the directional derivative is given by

B'(u)(z,w) := %B(u + 6z)(w)’6_0 = }i_r)% %{B(u +02)(w) — B(u)(w)}

3: For given A € (0, 1) determine minimal [ = 0,1, ... for which
R(uﬁtl) < R(u}), u;ﬁl = ul + \2F,
and denote it by [* where the nonlinear residual R(-) is defined by
R(up) == max {B(un)(W;) — (F.9;) ) Van € X x Q. (3.51)

Here, {1),;} denotes the nodal basis of X% x QF.

) k+1 . k+1
4: Set w, " 1= -

Step [3] of Algorithm includes the step-size control which is crucial when highly nonlinear
p-structure problems are solved via Newton’s method. In general, the Newton update zﬁ
is weighted by the relaxation parameter A!. The step-size control enables the globalization
of Newton’s method, i.e., the independence of the convergence with respect to the choice
of u%. If I* = 0, then Algorithm performs one full Newton cycle.

If B(u)(w) := A(u)(w) + sp(u)(w), then the directional derivative B'(u)(z, w) looks like
B'(u)(z,w) = A (u)(z,w) + s}, (u)(z,w). (3.52)

If the popular Carreau-type model (2.10)) & (2.11Db)) is considered, then for u = (v, 7), z =
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3 Finite Element Discretization

(&,m), w = (w, q) the directional derivative A’(u)(z,w) is formally given by

Allu)(z,w) = ((5 + |Dv| ) D£ Dw)
+ (- 2)(( +]Dv|) = (Dv : D¢) Do, Dw)Q
+ (- Vigw)  + (€ VIv,w) =0,V -w)o+(V-&aa. (3.53)

In view of we observe that in the case p < 2 and € = 0 the directional derivative
A'(up)(zh, wp) is not well-defined in general for all wp, = (vp,, ), 24, wp € X5 x OF if the
critical set £2. := {x € 2; Vv (x) ~ 0} is not empty. For (2. # () Algorithm generally
suffers from instabilities. Note that the set {2, is not empty for typical solutions to (3.49).
Hence, we often choose € > 0 in order to stabilize Newton’s method. The stabilization
term sy, is given either by or by the nonlinear variant

Sh(’th)(Wh) = Z ((T—l— |V§h7rh‘)p/72vgh77h,aMV§th)M
MeMy,

+ > ([vn- VI0pon, omlon - V]0pwp) p
MeMy,

(3.54)

Here, the fluctuation operator @ is given by in case of Q1/Q1-elements and by
in case of Q2/Q2-elements. The patch-wise parameters as and oy can be chosen, e.g., as
in (3.27). The LPS-based stabilization is particularly adjusted to the p-structure of
the problem and it represents a novel approach for the approximation of the p-Navier-Stokes
equations with equal-order finite elements. Note that the stabilization is similar to
the one proposed in Section .1 and analyzed in Sections [4.4] [£.5]

Solution of the linear subproblems: We deal with the solution of the linear systems
of equations arising in each Newton step. The solution approach formulated below has
already been described in [Schl0]. Let {¢;i = 1,..., N} be the nodal basis of X,
with N = dim(X},). Since the finite element spaces X} and QF stem from an equal-order

discretization, a basis of the space X% x O} is given by {@bz(-ﬂ), 1/)5-”1), . ,w(vd) i=1,. N}

7

with ™ := (14;,0,...,0), %" := (0,4;,0,...,0), and ¥{"") := (0,...,0,7;) when the
boundary condition on the velocity and the zero mean value constraint on the pressure are
ignored (they are actually incorporated later). By virtue of the representation

N
Z (C(ﬂ' ,w(ﬂ' Ul ’(/)z(vl)? . CZ.(Ud),(pZ(Ud)),

56



3.4 Implementational aspects

Newton’s system (3.50) is equivalent to an algebraic system B¢ = c for the unknowns
¢=(C,...,n)T e RNEHD ¢, = (Q(ﬂ)? CZ.(UI), . ,{i(vd)) The vector ¢ is given by

‘ ~B(u) (" ; éfv¢<”)>

(v1) (v1)
c —Blu : P,
c= .2 with entries c; = ( h) (1/)1 ) ke > ,
g o))+ (190
and the matrix B € RN@+DxN(d+1) exhibits the following block structure
By -+ Bin
B = : :
Bn1 -+ Bnw
Each block B;; represents a (d + 1) x (d + 1) matrix given by

+
B/( ) (,(p(rr 7r)) (uz) ( (v1) ,w(rr ) o B/(’ui) (’(,b(pd),’lﬂgﬂ))
B/( h) (ij),wgvl ) B/( k) (’lp(vl),’lb v1 ) B/<uz> (¢§vd),¢§“1))

B(u )(W $(29) B,(uﬁ)(%m)wd)) () (9, )

The Dirichlet boundary conditions are enforced as follows: The degrees of freedom Ci(vj ) on
the boundary are eliminated by replacing the corresponding entries within the right-hand
side ¢ by zero and substituting the corresponding rows and columns within the matrix B by
zero or one so that as a result (Z.(vj ) = 0. Hence, all Newton updates z* satisfy homogeneous
Dirichlet boundary conditions. Consequently, the correct boundary conditions are recovered
even in the case of non-homogeneous Dirichlet boundary conditions since the initial guess

u% already satisfies the prescribed boundary conditions.

BZ] =

We solve the linear preconditioned subproblems M B¢ = M c applying the Generalized
Minimal Residual Method (GMRES), see Saad [Saa03]. As preconditioner M, we use
the multigrid method. The smoother, which is used in the multigrid iteration, consists
of a fix-point iteration based on a block ILU decomposition of B. The incomplete LU
factorization of B is based on the decomposition B = LU + H where L is a lower and U is
an upper triangle matrix. If H = 0, then B = LU corresponds to a full LU decomposition.
In this case, B and U are dense matrices. By contrast, in the incomplete version B and U
exhibit the same structure as B so that as a result H # 0. However, within the fixed-point
iteration the matrix H is neglected. Thus, the fix-point iteration reads:

¢t=1-Uv'L'B)*+U 'L e
Compared to the classical ILU decomposition, the block ILU factorization is more cost-
intensive but it leads to more robust smoother, see Hackbusch [Hac93].

In each iteration step of the linear solver we re-establish the zero mean value constraint on
the pressure subtracting the mean value from the current pressure approximation.
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4 Finite Element Approximation of the
p-Stokes Equations

This chapter is dedicated to the finite element (FE) approximation of the p-Stokes problem
We discretize problem with equal-order d-linear finite elements (X, = Qp =
Xh,1). Since this discretization is not inf-sup stable, we stabilize the Galerkin formulation
by the local projection stabilization (LPS) method (see Becker/Braack [BBO1]). Within
the LPS framework for Stokes systems, one adds an appropriate linear stabilization term
to the Galerkin formulation that gives a weighted L?-control over the fluctuations of the
pressure gradient. In contrast, we propose a nonlinear stabilization term of p’-Laplace
type that yields a weighted L¥ -control over the fluctuations of the pressure gradient for
p' == p/(p —1). Our proposed stabilization term is adjusted to the p-structure of the
problem since the pressure naturally belongs to Lp/(_Q). In this chapter, we perform a
convergence analysis of LPS if either the classical stabilization (see [BBO1]) or our modified
version is used. In the latter case, for p € (1,2] we establish the a priori error estimates

2
HF(D’U) —.F(D'Uh)HQ S Ch, H7T—7Tth/ S ChP/, (4.1)

provided that the solution (v, ) satisfies the regularity assumption
F(Dv) e W)™ 7 e Wb (), (4.2)

where F is defined by (2.39), see Theorem [4.11] For p € [2,00) we establish analog a
priori error estimates, see Theorem Note that Theorems & represent main
results of the thesis. Numerical experiments indicate that, at least in the case p < 2, the
derived a priori error estimates provide optimal rates of convergence with respect to the
regularity. In contrast to its nonlinear counterpart, the classical LPS scheme of [BB01]
does not allow an optimal convergence analysis meaning that, e.g. if p < 2, it does not lead
to , unless slightly higher regularity than , such as v € WQ’Q(_Q), is assumed. For
stable discretizations, the FE approximation of p-Stokes systems has been studied, e.g., by
Barrett/Liu [BL93b, BL94]. However, their results are suboptimal in the sense that either
the order of the error estimate is not optimal or the assumed regularity for the solution is
too high and not realistic for general solutions. Hence, this thesis improves existing results
in literature and, besides, it provides the first analytical investigation of LPS in the context
of p-Stokes systems. The theoretical results of Sections - as well as the numerical
experiments 1, 4, 5 in Section have already been published in Hirn [Hir10].

In Section we introduce our novel modified LPS method and, in Section we study
the structure of the proposed stabilization. In Section we present a modified Scott-
Zhang interpolation operator which enables the analysis of the stabilized FE method. As
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depicted in Section this interpolation operator allows us to prove a discrete analogon of
the continuous inf-sup condition. As a result, we show the well-posedness of the stabilized
discrete systems. In Sections and we prove a priori error estimates quantifying the
convergence of the LPS method. While in Section [£.5 we analyze the proposed nonlinear
stabilization scheme, in Section we focus on the classical LPS scheme (see Section |3.2))
applied to p-Stokes systems. Section [£.7] deals with the time-space discretization of the
non-steady p-Stokes problem In Section the derived a priori error estimates are
illustrated by numerical experiments. Finally, in Section 1.9 we present some particular
projection spaces satisfying the abstract assumptions of Section

4.1 LPS in the context of p-Stokes systems

In this section we introduce the local projection stabilization (LPS) method following the
literature (cf. Matthies et al. [MSTOT7]). In contrast to Section we study the LPS
method in a general framework in which we do not specify the projection spaces. Within
the LPS framework, we propose a stabilization term that is adjusted to the p-structure of
the problem and that differs from the one introduced in [MSTOT].

In order to explain the stabilization method, we start with some additional notation. Let
M;, be a non-overlapping, shape-regular decomposition of {2 constructed by coarsening
T}, such that each M € M, with diameter hj; consists of one or more neighboring cells
K € Ty, with hg ~ hys for all K C M. For instance, one can imagine a two-level variant
in which T}, results from the coarser mesh IM;, by one global refinement: M, = Ty,. We
introduce the space Y}, as a finite element space defined on the macro partition My, such
that the pair X} /Y}, satisfies the local inf-sup condition (Assumption below. We
denote the restriction of the space Y}, to M € My, by Yi(M) := {qn|rs; qn € Yr} and we
define the auxiliary space X (M) by X(M) := {wp|a; wp € Xp, wp, =0 on 2\ M}.

Assumption 4.1. For v > 1 there exists § > 0 independent of h such that

inf sup _ (waw >B>0 (4.3)
V;MHQHI/;M

4€Ys (M) wex9(ar) 1]

for all h >0 and all M € My, where v/ :==v/(v —1). If v =1, then V' := co.

Remark 4.1. Assumption is similar to Assumption A3 in Matthies et al. [MSTOQT7].
However we changed the L2-setting of [MST07] into an L"-setting with v > 1. For instance,
one possible choice of Y}, is the discontinuous finite element space consisting of all piecewise
constant functions on the coarser mesh IM;, = T4qy,. For such Y3, is shown in [MSTOT]
in case of ¥ = 2. We can easily prove (4.3 in the general case v > 1 by adjusting the proof
of Lemma 3.2 in [MST07], see Section We only have to replace the L2-setting by an
L”-setting. Further choices of X},/Y}, are discussed in [MSTO7].

Let Py be a local projection Py : LY (M) — Y, (M). Clearly, Pys defines a global projection
P LY(2) — Yy, by (Prq)|ar := Pau(q|ar) for all M € My,. Denoting the identity on L”((2)
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4.2 Properties of the stabilization term

by id, we define the associated fluctuation operator 6, : L”(£2) — L”(§2) by 0}, :=id — Py,
These operators are applied to vector-valued functions in a component-wise manner, e.g.,
Py : LY () - Y}, with Ppq := (Prqi,- .., Prgq). The following assumption on 6}, will
ensure that the consistency error is small enough:

Assumption 4.2. For v > 1 let the fluctuation operator 0y, satisfy

10ngllvinr S Nlallvsar - VM € My, Vg € L7(£2).

Remark 4.2. For instance, 6, satisfies Assumption if P, is the L?-projection onto Y},
and Y} (M) contains the space of constant functions, see [MSTQT].

Then we modify the discrete problem (3.22)) by adding the stabilization term

sn(m)(@) = 3 aM((T+|ohv7r|)p’—20hw,eth)M with  aar = aphly, (4.4)
MelMy,

where ap > 0, s, 7 > 0, and p is the same as in Assumption For p # 2 the stabilization
term sp is nonlinear in its first argument. The appropriate choice of s will be determined
by the convergence analysis of the method. The stabilized discrete system reads:

(P1y) Find (vp,mp) € XY x QF such that

(S(Dvh), th)g — (7rh, V- ’wh)g = (f,’wh)g Ywy, € XZ;; (4.5&)
sn(mn)(qn) + (V- vn,qn)2 =0 Vg, € OF. (4.5D)

Note that our proposed method recovers the standard LPS scheme for Stokes systems in
the particular case p = 2. In fact, the semilinear form sj defined in (4.4) coincides with
the classical LPS term introduced in Becker/Braack [BBO1] for Stokes systems in the case
p =2 and s = 2. Below we always assume that Assumptions and [£.2] are satisfied. The
following sections will show stability and convergence of the method.

Remark 4.3. 1f the standard stabilization proposed in [BB01] is applied to p-Stokes systems,
convergence of the method can also be expected and will be quantified in Section (.6
However, for the classical LPS method we will only be able to establish suboptimal a priori

error estimates whose order depends on the space dimension d, see Corollaries
In contrast, our modified stabilization (4.4)) will enable us to derive optimal a priori
error estimates independent of d, see Theorem [4.11]

4.2 Properties of the stabilization term

Below let sp, be defined by (4.4). In this section, we highlight the structure of s, and we
show some resulting properties. To this end, we introduce a nonlinear function G : R — R,

/

Glg):=(r+ld)"> ¢ (¢#0), G(0):=0, (4.6)
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4 Finite Element Approximation of the p-Stokes Equations

where p’ and 7 are the same as in (4.4). The following two lemmas can easily be proven by
adapting the results of Section [2.4] Their proofs are based on a vector-valued version of
Lemma [2.4] (see [DE0S]). Lemma [4.1] depicts how the distance induced by G relates to the
standard Lp/—norrn7 whereas Lemma clarifies the connection between G and s;,.

Lemma 4.1. Let U C {2 be a measurable subset of {2 and let g,q € Lp/(Q). Ifpe(1,2],
then there exist constants ¢, C > 0 only depending on p such that

/ /9
clg = allyy <119(9) = G(@)l50 < Clle + gl + lally o llg — allyo- (4.7)

If p € [2,00), then there exist constants ¢, C' > 0 only depending on p such that

/

lg — gl < clG(g) — G(@lzw T + gl + lalll, 2 | (4.8)
IG(9) - G(@)|3.r < Cllg — all%y- (4.9)

Proof. The proof is similar to the one of Lemma [2.6] A vector-valued version of Lemma
2.4 (see Diening/Ettwein [DE0S]) shows that for p € (1,00) there holds

G(9) — G(@)* ~ |g — q|*(t + |g| + |q|)" 2 (4.10)

a.e. in U where the constants only depend on p. First of all let p € (1,2], i.e., p' € [2,00).
Since p’ > 2 and |g| + |g| > 5(|g| +|g — gl), we realize that |g — q|"' < |G(g) — G(q)|* a.c.
in U. Integrating this over U, we arrive at (4.7));. Integrating (4.10)) over U, and using

Holder’s inequality with z%+ p;;z =1, we obtain (4.7))2. Now let p € [2,00), i.e., p’ € (1,2].

The relation (&.10)) implies that |g — q[* ~ |G(g) — G(@)|”' (7 +|g| + |q|)®P¥/? ae. in U.
Integrating this over U and applying Holder’s inequality with %/ + %ﬂ = ll, we easily deduce
(4.8). From (4.10) and p’ < 2 it follows that |G(g) — G(q)|* < |g — q|” a.e.. Integrating
this over U, we finally get (4.9). This completes the proof. O

Lemma 4.2. Let p* be defined by (2.37). For all m,q € W' () there holds

sp(m)(m —q) = sn(@)(m —q) ~ D aumllG(0xV7) — G(0,Va)3n

MEMh
~ 3 au [(¢)r4i0,9x(8577 — 6,Vg) de
MeMy, M

where the constants only depend on p.

Proof. Using the definition of s; and a vector-valued version of Lemma [2.4 with p, ¢, F,
o replaced by p/, 7, G, ©*, we obtain the equivalence stated in the assertion. O

Lemma 4.3. Forp € (1,00) let sy be defined by (4.4). For all 6 > 0 there exists a constant
¢ =c(d,p,a0) > 0 such that for all m,q € WP (£2) there holds

[sn(m)(m = q)| < bl + |Vl o +3 D anllG(O.VT) — GOV [30r  (4.11)
MeMy,
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4.3 Modified interpolation operator

Proof. Let ¢ and ¢* be given by ([2.37). Using the vector-valued version of Lemma
(with p, €, ¢ replaced by p/, 7, ©*), we estimate

_ — p'—2 _
lsp(m)(m — q)| ‘ M%l%d aM((T + |0, V|) 0, Vr,0,Vr Hth>M‘
h

S Y an [()rsi0,9x(10 97104V — 6,V de.
MeMy, M

Applying Young’s inequality (2.36]), Lemma the change-of-shift Lemma and the
stability of 8, (Assumption [4.2), for arbitrary § > 0 we obtain

s =l Ses S an [(©)r110,95(64V7]) da

MeMy, M
£6 % aw [(#)rrio,vn(80V7 ~ 6,70]) da
MeMy, M
N Cahs/(w*)r+le,Lv7r|(’9hV7T\)d$ +6 Y anl|G(6,VT) — GO,V |5.0s
Q MEM}L
S Cahs/(w*)(T +10,Vr))dz+6 Y anl|G(0,VT) — G0,V |50
N MEMh
Sesh|lT+[Vallh +0 > amllG(0hVT) — G(8:V )3
MelMy,
where ¢s only depends on p, ag and 9. O

Remark 4.4. Let p € [2,00). Then, we may modify the proof of Lemma as follows:

CIGICEIEED DRy [ ARTA 2 A B AIEE
MeMy, M

Sesh® S 0nVT|Lar+0 > anlG(0nVT) — G(0rV) |3
MeMy, MeMy,

Hence, for p € [2,00) in (4.11]) the expression |7 + ]Vﬁ]”ijn can be replaced by HV?TH?;,Q.

4.3 Moadified interpolation operator

The key idea in the error analysis consists in the construction of an interpolant into X}
which exhibits an additional orthogonality property with respect to the space Y},. This
interpolant shall also feature appropriate approximation properties with respect to the
quasi-norm. The subsequent lemma generalizes Theorem 2.2 in Matthies et al. [MSTQ7]
and Theorem 5.7 in Diening/Ruzicka [DRO7]. In the latter one, the interpolation estimate

][|f(v1;) _ F(Vjv)de < ch?wf VF(Vo)|? de (4.12)
M Sm
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4 Finite Element Approximation of the p-Stokes Equations

has been proven for finite elements based on simplices provided that the interpolation
operator j, satisfies Assumption with 79 > 1. Below we will prove (4.12) with V
replaced by D for d-linear finite elements.

Le{nma 4.4. Let v > 1 and let X,,/Yy satisfy Assumption . We set X} = Xp N
WY (2) and Yy, = [Y3]%. Then, there exist interpolation operators j : Wh(£2) — X,
and gy, Wé’”(()) — X%, which satisfy the following properties:

(i) Orthogonality with respect to Yy, Y : For all w € WH(2) and w € Wé”(())

(w—jhw,qn)2 =0 Vqn € Y, (4.13)
(w—Jrpw,qp)o=0 Vg, €Yp. (4.14)

(ii) Let 1 <1< 2. Then for all M € My, w € W (£2) and w € W (02) N W5 (£2):

o = gnwllvsar + harllV (w = jpw)lluiar S Riyllwllss, (4.15)

lw = Grwllvar +har||V(w = Gpw) v S Blgllwlliss,, - (4.16)

(i4i) For p € (1,00) and ¢ € [0,00) let F be defined by ([2.39). If F(Dw) € [WhH2(£2)]%x4,
then for all M € My, there holds

|F(Dw) = F(Djpw)lzm < ha||VF(Dw)|25y- (4.17)

Here, Sy denotes a local neighborhood of M as defined in (3.12|) which appears in the
definition of interpolation operators for non-smooth functions (cf. Brenner/Scott [BS9/)).

Proof. The construction of an interpolant satisfying the properties (i) and (ii) with v = 2 is
well-known and was accomplished for the analysis of the LPS method in the context of the
Stokes/Oseen equations. For this we refer to Matthies et al. [MST07]. Here we construct
the interpolant similarly utilizing Assumption We show the additional interpolation
property following the arguments of Diening/Ruzicka [DEOS].

(i)+(ii): We follow the proof of Theorem 2.2 in Matthies et al. [MST07]. First of all
we note that the Scott-Zhang interpolation operator i, can be extended to vector-valued
functions (in a component-wise manner) and to quadrilateral meshes. Furthermore, i, is
defined in such a way that it preserves homogeneous Dirichlet boundary conditions. Hence,
in s WH(02) — X, and iy, : W(l)’V(Q) — X} with tpw = (ipwi, ..., inwe). Let Y (M)*
denote the dual space of Y, (M), Z,(M) = {w, € X)(M); (wp,qn)m = 0Yg, € Yi(M)},
and let Z,(M)* be the L%orthogonal complement of Z;(M) in X)(M). The linear
continuous operator By, : Xp (M) — Y;,(M)* defined by

(Bhwn, qn) = (wp,qu)r Vwp € Xp(M),  Vgu € Yi(M),
is an isomorphism from Z, (M)~ onto Y (M)* with

Bllwnllvins < |1 Brwnllys, s Ywn € Zp(M)*F
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4.3 Modified interpolation operator

(note Z (M) = Ker(By,)) if and only if (4.3]) holds true (see Lemma [2.17]). Consequently,
for each w € W1¥(£2) there exists a unique z;(w) € Z;,(M)* such that

(Brzn(w), qn) = (2n(w), qn)m = (W —ipw, qn)m Van € Yo(M), (4.18)

1 .
l[2n(w)lvsnr < E”w — inw|lv;n, (4.19)
where iy is the Scott-Zhang interpolation operator. We set jpw|as := ipw|ns + zxn(w) for
all M € My. Due to @yrem, Zn(M)*+ c Drrem, Xp(M) C X, this defines a global
interpolant jj, : W¥(§2) — Xj,. The orthogonality property (4.13) follows from (#.18)),

whereas the interpolation property (4.15)) results from (4.19) and the properties of i, (cf.
Theorem 2.2 in [MSTO07]). Indeed, recalling (3.15)), we deduce that

) 1 .
lw = jrwlln < <1 + B) lw = inwllvinr S Basllwliisy (4.20)

for all w € WH(£2) and 1 < I < 2 where Sy; denotes a local neighborhood of M which
appears in the definition of the Scott-Zhang operator. In order to show the approximation
property in the W1¥-semi-norm, we use the inverse inequality (3.19) and (4.19):

IV2n(w)llviar < Chyflzn(w)llviar < Chiyfllw — inwllvir S Bt lwls,-

Consequently, using the triangle inequality, we conclude that
IV (w = jrw)lvipr < IV (w = inw) v + [ Van(@)lluar S iyt lwllss,,-
Using the definition j,w := ¢pw + zh( ), the mappmg property p, : W0 (2) - X}, and

zp(w)]sn = 0, we deduce j, : Wo Y(2) = &%, (4.14), and (4.16).

(iii): For w E LY(U) with |U| > 0 we denote the mean value of w over U by (w)y :=
fwda = |U‘ Jy w(z) de. The interpolation estimate (4.16) with » = 1 implies

/\Jh'w|d:n</|]hw w|d:1:+/|'w]da:< Z/hk |VFw|dz

k= OSM
/hM]Vghw|d:c < /hM]V Jrw —w |d:c+/hM\Vw|daz < Z / hE | VEw]| de.
k=0g,

Since the mesh is non-degenerate, there holds |M| ~ |Sjs| with constants independent of
M. Thus, the interpolation operator j, satisfies the following W '!-stability,

][hf V7 jw|de < CZ f hE | VFw|de  Yw € WHH(). (4.21)
=04y k=0g,
We recall that the Scott-Zhang operator #; is a projection: 2w, = wy, for all w, € Xy,
Consequently, the interpolation operator j; is a projection as well,

JpWh = 1wy + zh(wh) = wy Ywy, € Xy, (4.22)
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4 Finite Element Approximation of the p-Stokes Equations

since zp(wp) = 0 due to ([4.19). Next, we observe (cf. Remark [3.6) that P1(K) C X, (K)
for all K € T}, where P1(K) is the space of linear polynomials and X (K) := {w: K —
R; wo F € Q1(K)}. This implies P1(£2) C X},. Recalling (4.22)), we realize that

jaw=w  Yw e P(2)% (4.23)

For p € (1,00) and € € [0, 00) let F be defined by (2.39)), and let ¢ be given by ([2.37). For
a > 0 let the shifted N-functions ¢, be defined by (2.32)). Since j, satisfies (4.21]) and
(4.23)), by virtue of Corollary m 3.2 there exists ¢ > 0 only depending on p such that

][% IV, w|) da < cf co(Vw)de  Yw € WHP(0) (4.24)

Sm

foralla >0, M € My, It is crucial that the constant in does not depend on the shift
a > 0. In order to derive (4.17)), we exploit some arguments of [DEOS] Let q € P1(£2)¢
be an arbitrary linear polynomlal Using Lemma [2.4] Lemma [2.3] adding the identity
Dj,q — Dq = 0 and recalling Remark [2.3] we estimate

FIF(Dw) - FDjw) dz ~ f ot ipui(IDw ~ Djjw]) da
M

< # ¢2uipal(1Dw = Djywl) dw + f ¢ py (Dw — Da)) de
M M

S f #eipa (Din(a — w))dz + f pojpg(IDw — Dal)do = I + L. (4.25)
M M

Applying (4.24]) to the term I, we conclude that

1% f eerpa(Vina = w)) de S f ¢eiipg (Ve - Va)) de
M

Since q is an arbitrary linear polynomial, we can choose Vq := (Vw)g,, € R4*?. This
particular choice of Vq allows us to apply the N-function-version of Korn’s inequality
whose proof can be found in Diening et al. [DRS10]. Hence, we obtain the estimate

15 eeipal(Vw — (Vw)s, )4z S f ¢oiipg(|Dw — (Dw)s, Dde.  (4:26)
SZVI S]\/[
Noting the identity Dg = 3(Vq + (V@)") = 3((Vw)s,, + (Vw)T)s,) = (Dw)s,,,
combining (4.25) and (4.26]), and applying Lemma we arrive at

][\]—'(Dw) _ F(Dj,w)[da < f F(Dw) — F((Dw)s,,)|? da =: T, (4.27)
Sm

where we have also used the estimate Is < I3. By means of Lemma the equivalence

Iy~ o (S(Dw) - S({Dw)s,,)) : (Dw ~ (Dw)s,,) dz

Sm
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4.4 Well-posedness of the stabilized systems

follows where 8 is given as in Assumption Since fg, Dw — (Dw)g, dz = 0 and
S({(Dw)g,,) as well as S(F 1 ((F(Dw))s,,)) are constant, we conclude that

I~ (8(Dw) ~ SF(F(Dw))s,) : (Dw = (Dw)s,,) da.

Applying Lemma [2.4] and Young’s inequality (2.36]), for arbitrary § > 0 we obtain

13 5 Ly (IDw = F - (F(Dw))s, )| Dw - (Dw)s, | do

Sm
S 6% (P5+\Dw|‘Dw - <Dw>sM‘ dx + C5f ‘ps+|Dw|(‘Dw - fﬁl(<f(Dw)>5M)D de
Sm Sm
~ 615 + C5f | F(Dw) — (F(Dw))s,,|* dz

Sy
where ¢5 > 0 only depends on p and §. Choosing d > 0 sufficiently small, we deduce that
{1F(Dw) - F(Dw)s, ) do $ | |F(Dw) — (F(Dw))s, Fdz. (425)
Sm
Combining (4.27)) and (4.28)), we arrive at

FIF(Dw) - F(Djw)f da 5  |F(Dw) - (F(Dw))s, [ de.
Sm

Then the assertion follows from Poincaré’s inequality applied to F(Dw) € L?(Sy;)%*4.00
Remark 4.5. (i) From (4.16) we deduce that the interpolation operator j, is W1¥-stable:
||J'hw||1 vt S wliwsy — Yw € WH (). (4.29)

(ii) By setting g5, = 1 in we conclude that jj, : QP N W' (2) — QF. Consequently,
jn is also an appropriate mterpolatlon operator for the pressure.

4.4 Well-posedness of the stabilized systems

In this section we show that solutions to|[(P1y,)|exist and that they are uniquely determined.
We prove that the solutions to [(P1j)|are uniformly bounded with respect to their natural
norms. The well-posedness of |(P1},)|is based on the following lemma that can be seen as
the discrete analogon of the inf-sup stability condition (2.68]):

Lemma 4.5. Let v € (1,00) and v :=v/(v —1). Then for all g5, € Q}, there holds

1
o7

~ V - wy,
B arle < sup B (S e V)T @0
wpexy  |[Vwnlly Mel,

where B(v) > 0 is a constant independent of h.
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4 Finite Element Approximation of the p-Stokes Equations

Proof. We know that the pair W 3" (£2) x L4 (£2) satisfies the inf-sup condition (2.68):
there exists a positive constant §(v) such that

(v T w, Q)Q

Vg € LY (02).
Vwl], °

BW)llall,, < sup
weW 5" (12)

Since QY C L¥ (£2) it follows that for all ¢;, € QY there holds

5(V)HQhHV’ < sup (vjhwﬂq}l)QHVJthV + sup (V (w—]hw),Qh)_Q7
weWw L (2) IVipwl,||Vwl, weWw L (2) |Vwl],

(4.31)

where 7, : W(l)’l'(Q) — X} is the interpolation operator of Lemma Using integration

by parts, the orthogonality of j, with respect to Y, (note P,Vg, € Y},), and Holder’s

inequality, we deduce that

(V- (w—jpw), qn)e| = |(w— jrw,Vay)o| = |(w — jow, Vg, — PyVa) ol

< > hlw = dywloarhas|95(Va)
MEMh
: .
<o X matlw-giwlia) (X Hl6n(Ta) )
MeMy MeM,
Due to the interpolation property of j,, the inequality
i’
(V- (0= pw)aal < Vel 5 wlonValta)” @)

MeMy,

follows. Using the stability of the interpolation operator (4.29)), we conclude that the first
term on the right-hand side of (4.31)) can be estimated by

sup (V 'Jh'l.U7Qh)QHV.7thV <e¢ sup (V- whn, qn)e (4.33)
v IVawLIVwl, =y [V,
Combining (4.31)), (4.32), (4.33)), we get the desired estimate (4.30]). O

Now, we are in a position to show the well-posedness of the discrete system. In the case
of stable discretizations (s, = 0), the existence of unique solutions to the finite element
equations can be proven similarly as in the continuous case. In our situation however, the
proof of existence requires a different approach since it is not possible to decouple the
nonlinear finite element system by restricting to discrete divergence-free test functions.

Lemma 4.6. Forp € (1,00) and ¢ € [0,e¢] let S satisfy Assumption . Let sy, be defined
by (@.4) with s € [0,p] and 7 € [0,79]. Then there exists a solution to|(P1y)l Any such
solution (vp,mp) € Xfl X QZ satisfies the a priori estimate

thHZl),p + HS(‘DU/’L)Hg’ + sh(wh)(ﬂh) < 01(97197507 00,01, f)a

; (4.34)
B(p)HTthp/ < 02(Qap7507007017 f,Oé(],T()),
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4.4 Well-posedness of the stabilized systems

where B(p) > 0 is the constant appearing in (4.30). The constants C1 and Cs only depend
on the data quoted within the brackets. If p < 2 then the constant Cy does not depend on
70, whereas if p > 2 the constant Cy does not depend on &.

Proof. In order to show the existence of a solution we consider the following auxiliary
problem: for § > 0 find (v9,79) € X x QF such that

(S(Dv)), Dwp)g — (79, V -wy) o = (f,wn)o Vwy, € X7

o 5 S } ) (4.35)
(V-vy,qn)0 + sn(mh)(qn) + 6(mh, an)e = 0 Va, € Q.

The additional term ¢ (71'2, qn)q ensures that the nonlinear operator associated with the
left-hand side of is coercive in X Z X QZ. Due to Lemma and Lemma this
operator is strictly monotone and continuous in X% x QF. Applying the theory of monotone
operators, we conclude the existence of a unique solution (’Ug, 71'2) € XV x QF to for
each > 0. Next we show that this solution satisfies an a priori bound independent of 9.
We begin with the case p < 2. Setting wy, = vz and g, := 71',6I in , summing both
equations, using ([2.40)), Holder’s, Poincaré’s, Korn’s and Young’s inequality, we conclude

[0Rl17, + IIS(Dwy) Iy + su(m) () +8llmhll3 < C1 = C1(82,p, 00, 01,0, ). (4.36)

Utilizing the discrete inf-sup inequality (4.30]), equation (4.35))1, the condition p’ > 2, we
can estimate the discrete pressure 772 with respect to the LP (§2)-norm as follows:

1

5 1
~ 5 (V s Wh, T )_Q / snp’ P
wreXY ” wth MeMy,

~|

< sup (S(DvY), Dwy)qo — (f,wi)e
w,EXT vath

1
Y

4 chl‘i’( 3 aM/(T + |ehv7rg|)p’—2|0hwg|2dm>
MeMy, M

1-5 o
< C(IS@Oly + 1 Flly + ' s ) ).
where C' = C(£2,p, 09,01, ). Since we have assumed s < p/, the a priori LP/(Q)—bound

B(p)Hﬂ—?ZHP’ S CQ - CQ(vav 00,01,¢0, f7a0) (437)

follows. The constants C; and Cy do not depend on ¢. In the case p € (2,00), the proof of
(4.36)) is similar whereas the proof of (4.37)) requires slightly different arguments. Below
we depict the proof of (4.37) for p > 2. Using Lemma and Holder’s inequality with

69



4 Finite Element Approximation of the p-Stokes Equations

%/ + 2_Tp/ =1, we deduce that for all g, € OF

1

A= (X w0 Tala)”
MeMy,

P's o p'(2=s) 1 2*2 p L/
S(X i 16O Ta)Eatn T (0lMI7 + 10 anlar) * )’
MeMy,

2—3) 2-p

(81041 + 10nTan .0,

[thg 6,V ||2M] [Zh

Since s <p' < B ( ) > p/, in view of Lemma we arrive at

/
Z—p

A < sh(qh)(qh) (th‘Q‘P +A> 2 Yaqy € QZ

IfA> h7-0|(2|i’ then A < sh(qh)(qh)% = and, hence, A < sh(Qh)(qh)i’ As a result, we
conclude that there exists a constant ¢ = ¢(p, ag) > 0 such that
o 1
(X WenTall )" < csnlan)(a)? +hml2l” (4.39

MeMy,

for all ¢, € Q). Using (4.30), (4.38), (4.35), Lemma the Holder and Poincaré inequality,
we can estimate the discrete pressure 772 as follows:

=

S8 (V ’wh,ﬂ' P
Blmplly < sup W ( > ”9hV7Th||p/M>
wpeX? Wh{lp MeM,

1
7

< C(lleo + IDORIE + 11l + s (xh) ()7 +70)

for some C = C(£2,p,ap) > 0. We finally arrive at (4.37)) for p > 2. We note that the
constant Cy in (4.37) additionally depends on 79 in this case.

For {0y }ken Wlth (5k N O let ('vh ,7rh *) be the solutions to (4.35). Due to the uniform a
priori estimates and (4.37)) there exists (v, m,) € XF x QF such that a subsequence

(which is again denoted by ('vh ,772 )) converges to (vp,mp) strongly:
D'vi’C — Dvy, in LP(£2) and wi’“ — mp, in LP' () for k — oo.

By passing to the limit in ( , we show that (vp, ) is the solution ofm We can
pass to the limit in the nonhnear term (S (Dv +¥), Dwy) o using the followmg arguments:

first of all, we observe that we can find a further subsequence of {v w} (for simplicity we
do not change the notation) such that D'vh — Dwy, almost everywhere in {2 for & — oo.

Thus, S (D'vi’“) — 8(Dwy,) almost everywhere in {2 for k — oo since S is continuous. In
view of (2.40))2, Vitali’s theorem then implies that

/S(Dvik):thdw - /S(Dvh):thda: (k — o).
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4.5 Error estimates for the proposed stabilization scheme

In the stabilization term sh(wi’“)(qh) we can pass to the limit using exactly the same
arguments. This is possible since the inverse inequality implies sz’“ v — V| in
LP' (M) and, consequently, Oh(Vﬂ'ik”M — 0, (V) ar in LY (M) (k — oo) for all M € M,
due to the continuity of the fluctuation operator 8y. In the remaining terms we can pass
to the limit using standard arguments. Consequently, the limit (vj, 7,) € X5 x QF solves

system (4.5)). As a result, (vp,7p) is a solution to and it satisfies (4.34). O

Lemma 4.7 (Uniqueness). For p € (1,00) and € € [0,&¢] let S satisfy Assumption[2.]]
and let sy, be defined by (£.4). If a solution (vy, ) € X% x QF to Problem |(P1y,)| exists,

then (vp, ) is uniquely determined.

Proof. Assume that (v}, m}) € XY x QF i € {1,2}, are two solutions to Problem |(P1)|

Setting &), := (vi —v?) and 7y, := (7} — 72), we observe that

(8(Dv}) — 8(Dvi), Dwp) o — (mn, V- wi) o + (V- &, )2
+ su(m) (an) — sn(mh)(qn) = 0
for all (wp, qn) € X% x QF. Testing ([4.39) with wy, := &), and ¢, := np, we conclude that

(8(Dwy) — S(Dvj), Déy)e =0 and  sp(m,)(m) — sn(m) (mn) = 0,

(4.39)

and, hence, 'v,lZ = 'v,zl and OhVﬂ'}Z = OhVﬂ'}QL due to the strict monotonicity. Utilizing Lemma
4.5 (with gn, = np), (#39), v}, = v, and 0, V), = 0, we arrive at 7} = 7. O

4.5 Error estimates for the proposed stabilization scheme

In this section we derive a priori error estimates such as (4.1)) which quantify the convergence
of the LPS method. Numerical experiments will indicate that the derived error estimates
are optimal at least in the shear thinning case. Note that for p-Laplace systems optimal
error estimates have been proven in Diening/Ruzicka [DROT7]. The key idea in the analysis
is to estimate the approximation error with respect to quasi-norms that naturally arise in
degenerate problems of this type (cf. Barrett/Liu [BL94]). In order to derive our sharp
error estimates, we combine both the quasi-norm technique and the well-known analysis
of LPS for Stokes systems. For derivation of error estimates, we distinguish between the
cases p < 2 (Theorem and p > 2 (Theorem due to technical reasons.

Remarks on the regularity of the solution: In order to derive a priori error estimates,
we need to require additional regularity of the solution. In particular, we will assume
the natural regularity F(Dv) € W2(2)%?% and 7 € W' (£2) which is available for
sufficiently smooth data. The question arises which information on the second derivatives
of v can be extracted from the first derivatives of F(Dwv)? This will be answered by the
following known lemmas. Although we do not need all of the following results for the
purpose of this section, we will use them in the further course of the thesis and, hence, we
will present them here for sake of completeness.
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4 Finite Element Approximation of the p-Stokes Equations

Lemma 4.8. For p € (1,2] and ¢ € (0,00) let Z be defined by (2.82). Then, for all
q € [1,2] and for all sufficiently smooth v there holds

2
1920l < cZ(0) (= + Do) 7| 2 (.40)
—q
where 22qu = oo for g = 2. The constant c only depends on p.
Proof. We refer to [DR0O5] and [BDRI0J. O

Lemma 4.9. Let p € (1,2) and ¢ € (0,00). There exists ¢ = c(p) > 0 such that

V205 < ([ VF(Dw)|} + e + [Do][}). (4.41)
Proof. Cf. [DRO5]. Setting 2y := {a: € 2; (e+ |Dv(x)|) < \VQU(:B)\} , we estimate

/|V2fv|pdm = / V20 |P~2| V20| dx + / IV20|P da
Q 20 22
< /(5+ |Dv|)P2| V202 da + / (e + | Do) dz < cZ(v) + |le + | Do||I%.
29 2\

Then, (4.41) follows from Lemma [2.27] O

Lemma 4.10. Letp € (1,2) and € € (0,00). Then for all sufficiently smooth v there holds
loli3,, < c(IVF(D)3 + [Vl + &), (4.42)
where ¢ =2 — § for arbitrary 6 € (0,2 —p| ifd =2 and q = 3P if d = 3. The constant c

p+1
only depends on p and (2. In particular, it is independent of €.

Proof. We refer to [DRO5|]. There, the assertion is proven for d = 3, ¢ = 1, and for all v
with (v,1)p = 0. For the proof of (4.42) we apply Lemma

1 2-p 1 2=p
IV20llg < cZ(v)?%||(e + | Dvl) = H;qu = cZ(v)z||(e + | DY)l 5 p)q -

2—q

1 G ; d d(2—q) :
In order to ensure W9(£2) < L 24 (2), we have to require that 1 — ¢ > —Gp)q Lhis
condition is satisfied if g =2 — ¢ (d =2) and ¢ = z% (d = 3). For such ¢, we get

2—p 2—p

1 5 1 =£
IV%0lly < cZ(0)? (e + Dol o) * < Z(0)7 (e + [ Dolly + VDo) * .
—q

If |[VDvllq > £ 4 || Dvl|, the latter inequality implies || V2v|[? < ¢Z(v). Otherwise, due to
Sobolev’s embedding theorem, for g =2 — ¢ (d =2) and ¢ = 1% (d = 3) we conclude that
|V D, < = + | Dol < (= + [ Doll, + VDol

1
< c(c+ I1Dvll, +e(Z(v) + [l + [Dol[})? ).
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4.5 Error estimates for the proposed stabilization scheme

For the latter estimate we have used (4.41)). Summing up we arrive at
V208 < ¢e” + Z(v) + || + | Dol |).

This proves the lemma. O

Since all constants appearing in Lemmas - do not depend on ¢ € (0,00), one can
show that the inequalities (4.40) — (4.42) remain true for € = 0.

A priori error estimates - case p < 2: In the shear thinning case the following theorem
provides a priori error estimates which improve previous results concerning the rate of
convergence or the assumed regularity of the solution (cf. Barrett/Liu [BLI3b|] and [BL94]).
Numerical experiments indicate that these error estimates are optimal.

Theorem 4.11. For p € (1,2] and € € [0,e0] let S satisfy Assumption and let F

be defined by (2.39)). Let (v,m) € XP x QP be the unique solution to |(P1)| and let
(vp, ™) € XY x QF be the unique solution to |(P1y)| where the stabilization term sy,

is defined by [@4). We assume the additional regularity F(Dv) € W12(02)¥4 and
T € WY () with 1/p+ 1/p' = 1. Then, for ay = aph’, with ag > 0 and s = 2 the
error of approrimation is estimated in terms of h := max{hy;; M € My} as follows:

|F(Dv) = F(Dop)ll2 < Coh, v —wpll1p < G, (4.43)
2
|7 — 7|y < Crh?'. (4.44)

The constants C, Cy, Cr > 0 only depend on p, o, 00, 01, 2, f, ag, 7o, [[VF (D)2,
| 7||1,pr, and Cr additionally depends on [(p).

Proof. Let j, and j; be the interpolation operators of Lemma We begin with the
proof of (4.43)). We split the error (v — vj) in an interpolation part and a projection part:

|F(Dv) = F(Dup)|3 S || F(Dv) = F(Djyo)|3 + | F(Djpv) — F(Doy)|3-
According to Lemma the desired estimate holds for the interpolation error:
|F(Dv) — F(Djyo)l3 < h2(IVF(Dv)|3. (4.45)

Thus it is sufficient to estimate the projection error &, := (3,v — vp,) and ny, = (jpm — )
with respect to the following quantity,

(€ mn) s = |1 F(Dgpv) = F(Don)l3 + D amllG(0nVinm) = G(O4V ) 301,
MeMy,
(4.46)

where G is defined by (4.6)). Applying Lemma and Lemma we conclude

(&m0 s ~ (8(Dgv) — S(Dwvy), DE) o + sn(inm) (n) — su(mh) ()
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4 Finite Element Approximation of the p-Stokes Equations

Adding the following trivial identity
0=—(m =7,V -&la+ (V- (v—vn),m)e— (rmt =7V -&)a+ (V- (Grv —v),m)e
and using the disturbed Galerkin orthogonality

(8(Dv) — 8(Dvp), Dwp)o — (1 —7p, V- wp)o + (V- (v = vn), qn) 2 = sa(mh)(qn)
for all wy, € X% and ¢, € O}, we obtain

(&) s ~ 1 (Ga) () + (S(Dgjv) — S(Dv), D)o — (jam — 7,V - €) 0

, (4.47)
+ (V- (gpv—v),mn)o =1L+ I+ I3+ 1.

We consider the terms of (4.47)) separately. Applying Lemma and the stability of the
interpolation operator jp, for arbitrary ; > 0 we can bound the first term [; by

I < s, BT + (Vg5 + 61 Y. anl| G0 Vi) — G(0rVA) B
MeMy,

< e, [ 1921+ 1wl ) + 011 € n) os (4.48)
where ¢5, only depends on p, o and d;. Let ¢ and ¢, be defined by (2.37) and (2.32)).

Applying Lemma twice, using the Young-type inequality (2.36)) and interpolation
inequality (4.45)), for arbitrary d, > 0 we estimate the second term I in (4.47)) as follows,

1< ¢ [ ¢Liipj,u (1D — Do))|Djyo — Doyl da
2

< 526/<P5+\Djhv\(\DjhU — Dvy|) dz + c5, /905+|Djhv|(’DjhU — Dv|)dz
19 1)

~ 62| F (D) — F(Do)l3 + cs, | F(Djyv) — F(Dv)ll3
< b2¢| (s ) Iibs + cs,h? [ VF (D)I3 (4.49)

where cs5, only depends on p, 0g, 01 and d2. Next we estimate 3. Using Holder’s and
Young’s inequality, we deduce that for each d3 > 0 there exists a constant cs, such that

Iy < |(m = um, V - )| < I = unlly | VEll < 85V (Gav = va)ll3 + csqllm = [
Utilizing Korn’s inequality, Lemma (i) and Lemma we conclude that
1 . 2-p . .
Iy < dsc[eol @7 + Dol + 1Dvil,)” " IF (D) — FDw)B + ca,lm — sl

From (4.29), (2.63)), and (4.34) it follows that the expression within the square brackets is
uniformly bounded by a constant ¢ = ¢(£2, p, £¢, f). Consequently, we get the estimate

Ty < 83l (E ) s + s, P2 (4.50)
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4.5 Error estimates for the proposed stabilization scheme

In order to estimate the term I, we use integration by parts (the discrete pressure is
continuous), the orthogonality property of j;, with respect to Y, Holder’s inequality,
Young’s inequality with d4 > 0, Lemma and the interpolation property of j;, such that

I < |(V- (Gpo = v),m)a| = (540 — v, V)| = |(G40 =, 04(Vm))o|
- 3
< Y an/ 3n = vlparaf 10 (V) e

MeMy,
(p—1) . . /
< ¢, Z Oéj\/[(p )H]hU_UHZ;M+54 Z aMHOh(vnh)”g’;M
MeMy, MeMy
2p—s(p—1 .
<es S h T llh s, Foae S anllGOx Vi) — G0V m) |30
MeMy, MeM,
< e, PSPV [o]B 4 Gacl (€ ) s, (4.51)

where the constant ¢;, only depends on p, oy and d4. Combining (4.47)) — (4.51)), choosing
d1,...,04 sufficiently small, and absorbing the involved terms into the left-hand side of
(4.47), we conclude that there exists a constant ¢ = ¢(p, €o, f, 00, 01, g, £2) > 0 such that

[(€mn)fos < c(P2[VF (Do) |3+ 12~ ®=Do|lf

o 1 . . (4.52)
+ 12w, + b [ 2]+ e ]).
According to (4.41)), the LP-norm of Vv can be estimated by the L?-norm of V.JF(Dwv).
In order to ensure the optimal rate of convergence, we have to choose s = 2. This proves

4.43))1. Using Poincaré’s and Korn’s inequality, Lemma the uniform a priori estimates
2.63) and (4.34)), we finally arrive at

v = vnll1p < ellD(v —vi)llp < ¢f| F(Dv) — F(Dup)2

for some ¢ = ¢(p, e, 2, f) > 0. In view of (4.43]); this implies (4.43))s.

It remains to prove the pressure-estimate (4.44]). We split the discretization error (7 — 7,)
in an interpolation part and a projection part:

I = mnllp < Ml = Gnmllpr + ldnm — 7l

Because the desired result holds for the interpolation error, it is sufficient to estimate the
projection error 7y := (jpm — 7). From Lemma the inequality

1

~ V- w R / / o

Blnnlly < sup IV wn, ) +< > hmgh(vnh)ng,M)p = Ji+Jy (4.53)
wpeX) ||th||p MeM, ’

follows. Firstly we estimate J;. From [(P1)]and [(P1,)| we conclude the identity

(Jnm =70, V - wp) o = (S(Dv) — S(Dvy), Dwp) o + (jnm — 7,V - wp)o
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4 Finite Element Approximation of the p-Stokes Equations

for all w, € X z. Consequently, we obtain the inequality

Dv) - S(D D BT — .
5 < sup (SDPv)=SDwn), Dwn)gl - |Gnm =V - wh)ol
w,eX? IVawn||p w,eX? IVawp|l,

(4.54)

Using Holder’s inequality, (2.48)), and the interpolation property of j;, we deduce that

2 2
N1 S IF(Dv) = F(Dop)lly + ljnm = 7lly S 1F(Dv) = F(Dop)llz + |y (4.55)

Next we estimate Jo. Recalling inequality (4.52)) (s = 2), we observe that |(&},, nh)\%ps =
O(h?). Consequently, by means of Lemma we obtain the estimate

1 1
7

/ / ol _ 2 i /
J2—< > hﬁ’wllé’hvnhllﬁgM)p <ch' p'( > “MHOhVJh”_GhV”h”i’;M)p

MeMy, MeMy
_z2 7 _2 Z
<o 7 (X aul6@nVium) - Gonvm)lEar)” < ok F (€ mlf, < ch.
MEMh
(4.56)
Combining (4.53)), (4.55)), (4.56)), and (4.43), we get the desired estimate (4.44)). O

A priori error estimates - case p > 2: In this paragraph we derive related a priori error
estimates for p € (2,00). Actually, the case p € (2,00) differs from the case p € (1,2] only
slightly. Hence, we restrict ourselves to highlight the differences between the two cases.

Theorem 4.12. For p € [2,00) and ¢ € [0,e0] let 8 satisfy Assumption and let

F be defined by . Let (v,m) € XP x QP be the unique solution of and let
(vp, ™) € Xﬁ X Qfl be the unique solution of where the stabilization term sy, is
defined by ([E.4). We assume the additional regularity F(Dv) € W12(2)¥*4 v € WP(02),
TE Wl’p/(Q) where 1/p+1/p' = 1. Then, for ap := aphy; with ag >0 and s =p':

|F(Dv) — F(Dvp)|la < Coh,  |lv — vallip < CLh7 T, (4.57)
|7 — 7nlly < CrhZ. (4.58)

The constants C, Cy, Cr > 0 only depend on p, o, 00, 01, 2, f, ao, To, [|[VF(Dv)|2,
|vll2,p, |71, and Cr additionally depends on [(p).

Proof. The proof of Theorem differs from the proof of Theorem only slightly.
Hence, we restrict ourselves to clarify the differences. Again it is sufficient to estimate the

quantity [(&},, 77h)|12ps defined by (4.46]). As above, we obtain (&, nh)|12ps ~Ii+ L+ 13+ 1y
where I, ..., I are defined by (4.47). In view of Remark for arbitrary 6; > 0 and
09 > 0 the terms I; and I are estimated analogously to the proof of Theorem [4.11

I < célhs”ﬂ-H]l),p/ + 51‘(£hanh)‘12psa I < 052h2”v.F(D’U)”% + 52‘(£hanh)‘12ps'
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4.5 Error estimates for the proposed stabilization scheme

Using Holder’s and Young’s inequality, for any d3 > 0 we estimate the term I3 by
Iy < |(x — wm, V- €n)a| < lIm — dumly[V€aly < es,lm — il + 8519 G — wn)|.
Applying Korn’s inequality, Lemma (ii) and the interpolation property of jj, we conclude
Iy S cs,llm — jumllZ + 83| F (Do) = F(Don)3 < cssh? Il + 551(€p ) e

Using integration by parts, the orthogonality of j; with respect to Y, Holder’s inequality,
(4.8), Young’s inequality, and the stability of 8, and jj, for arbitrary d4 > 0 we estimate

I <|(Gpv — v, Vi) ol = [(Grv — 0,0, V)0l < Y 13,0 = 0llpr 06 Vsl

MeM,,
1y - 2 2—p/
<es, 3 antlline — vl (TIMI7 + [ mlipisa + [ Vn )
MeM,,
+61 Y amllG(O,VinT) — GO,V T)|[5.0s
MeM,,

where the constant cs, only depends on p and 4. Using the local inverse estimate (3.19)),
the interpolation property of j;, and Holder’s inequality with % + 1%2 =1, we arrive at

/

d—stp'—2 = -
Li<cs, 30 K 20l pusa, (FIMIF + Inllupsy + I loar)

MelM,,
+6s Y amlG(0nVinT) — GOV )3,

MeM,,

=
4—s+p'—2 o P P
< cayh S ol ) (3 (M + Il + Il
MeMy, MeM,

+604 Y amllG(0,Vinm) — GO,V |I50r

MelM,,

_ ’ 1 2—p’
< 064h4 stp 2“”"%,;1(70“9‘?/ + HWHLP' + Hﬂ-hHP') + 54|(€h777h)|12ps

(we note that 2 —p’ = p/(p — 2)/p). Combining all estimates above and choosing 41, ..., d4
sufficiently small, we easily deduce that there exists ¢ = ¢(p, 09, 01, g, £2) > 0 such that

(€ Bs < c(B N7, + B2V F (D)3 + b =7,
2—p’
v+ lmally) )

Due to ([#.34), 7, is uniformly bounded in L?'(£2). In order to ensure the optimal rate of
convergence, we have to choose s = p’. This proves (4.57)1. Using Poincaré’s and Korn’s
inequality, Lemma (ii), we finally arrive at

/ ) (4.59)
+ W2 o3, (vl 217 + 7

2
v = vnllip < cl|D(w —va)llp < ¢l F(Dv) = F(Du)l3
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4 Finite Element Approximation of the p-Stokes Equations

for some ¢ = ¢(p) > 0. By virtue of (4.57)1, this implies (4.57))2.

In order to verify (4.58)), we use similar arguments as in the derivation of (4.44)). Again it
is sufficient to estimate the terms .J; and Jo defined by (4.53). From (4.54) and (2.49) we
deduce that the term J; can be estimated by

1 < [l + Dol + [ Dwall] T | F(Dv) - F(Dv)z +

From (2.63)) and (4.34]) it follows that the expression within the square brackets is uniformly
bounded by a constant ¢ = ¢(£2, p, ¢, f). We estimate the term Jy as follows: Employing
estimate (4.8]), the stability of 85 and jj, and the inverse estimate (3.19)), we realize that

/ 2;17/ ’
< N W16V nm) — G0,V TH) 0 I + 105V jnr] + 105V 7Al |2
ME]Mh
’ 1 z%plpl
S S nE1G0nTium) - GOV mE 0 (TIM 17 + 17l + Il
MEMh
2—p

Raising this to the power 1/p’, using Holder’s inequality with %l + = | = 1, the uniform a
priori bound for ||7||,/, and recalling (4.59) with s = p’, we finally conclude that

1

( > 5 IIG (0, V) — g(ehvwh)ug;M)Q
MeMy,

27;7/

P\ 2
(X (M + el + o))
MeMy,

2-p /

p_
<10, ) hos (701217 + lwllagr + [lmnll) * S A%
Summing up, we obtain (4.58) in view of (4.57)). This completes the proof. O

Remark 4.6. Since p > 2, by means of Lemma we conclude the useful inequality

|Du — D)3 < 52_7’/(5 + |Du| + |Dv|)P"?|Du — Dv|? dz
Q
< ce¥P|| F(Du) — F(Dv)|?3 Vu,v € WHP(0) (4.60)

provided that e > 0. Inequality (4.60)) implies an a priori error estimate for the velocity in
W1L2(§2) that is of same order as the related error estimate expressed by the F-distance.

Remark 4.7. The regularity assumption F(Dwv) € W2(£2)?*? of Theorem is redun-
dant, since v € W2P(2) already implies F(Dv) € WH2(2)%*4 for p > 2. In order to
see this, we define the measurable set 2 := {x € £2; (¢ + |Dv(=x)|) < |V?v(x)|} and we
recall the definition of Z in (2.82)). According to |[VF(Dv)||3 ~ Z(v) (see Lemma it
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suffices to prove Z(v) < co. Using [VDv| ~ |V2v|, for p > 2 we estimate

I(v):/(5+\Dv\)p_2]VDv|2da:+ /(5+1Dv|)p—2|vm|2dx

2 2\ 02
S/\V%\pdw—i— / (c + |Do|)? da < oo,
2 2\ 2

since v € W2P(£2) and 2 is bounded. Consequently, we get F(Dwv) € Wh2(£2)%x,

Remark 4.8. Considering the proof of Theorem [£.12], we observe that the regularity as-
sumption v € W2P(£2) is only needed for the estimation of the term Iy. Hence, we may
attempt to estimate I, differently: First of all we recall that

< > /hﬁ|jhv*”|hM|9hV77h|dﬂ3-
MeMy pr

Lemma [2.2] implies that for each d4 > 0 there exists a constant ¢s, > 0 such that

L<es, > [ (6)rowim) (iflive - o)) da
MEMhM

#6105 [@)rsio9iun (e V] da
MEMhM

From the properties of shifted N-functions we deduce that ¢, (t) ~ (a + t)P~2t? uniformly
in a,t > 0. As a consequence, for p € (1,00) and any h € [0, 1] the inequality ¢, (ht) <
Rmin{P:2} e (1) can be shown. Applying this and Lemma m we arrive at

IiSes, Y, / ey (r+10ninrl) (B T pv — v]) dae
MGIMhM

#6030 W [0, winm (104 Vm]) da
MelM,, M

Sesy Y /¢(<p*)’(7+|0thh7r\)(h]T/[1 7pv — ) d@ + 64](0,18) [1ps =: 15 + 64/(0, 1n)[1ps-
MEM}—LM

Using ¢, (t) ~ (a +t)P~2t? and Holder’s inequality with % + % =1, we conclude that

p—2

—9 " ) 1. j2

BSes S ifline = vl ( [ (@ +18nVinrl) + i liw — o) da) ©
MeMy, M

p—2

— . . / —_ .
Se Y hatlldnv — ’UHg;M(HT +10nNVnTl 12y s + Rt 13 nv — UH%M) "
MeMy,

Compared to the proof of Theorem I5 does not allow a better convergence order with
respect to the supposed regularity. In fact, I5 leads to the same convergence rate. However,
the estimation of I5 does not require an inverse estimate for finite element functions.
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Remark 4.9. The question arises whether the regularity assumption v € W2? (2) stated
in Theorem may be relaxed and confined to the requirement F(Dwv) € W12(£2)4xd
which seems to be more natural. In order to shed some light on that issue, first of all we
introduce the Nikol’skil spaces NP (§2) (see, e.g., Kufner et al. [KJET7T]): Let m > 0 be an
integer, 0 < 0 <1, s =m+ o0, z € RY, 25 := {x € £2; dist(x,02) > 6}, and 1 < p < 0.
The space N*P(§2) consists of all functions g : 2 — R for which the norm

=

lollvosiey = (ol + X sup (4.61)

la|=m >0, 0<|z|<d

[sas - rater )
25

z|°

is finite. Below we suppose that the velocity v belongs to the Nikol’skif space N +2/P» (£2).
The regularity assumption v € N1F2/PP (§2) seems to be reasonable because it is well-
established (see [DERO7]) that F(Vov) € Wh2(£2)%*4 implies v € NF2/PP(2).

The regularity assumption v € W2P(82) stated in Theorem can be relazed to F(Dwv) €
Wh2(Q2)™d gnd v € N'F2PP(Q) provided that Vy, is uniformly bounded in LV (£2).
This can be seen as follows: From an embedding theorem (see [KJE77]) we deduce that
v € N'PP(Q) implies v € W'H2/P=02(0) for all § > 0. Reminding the proof of
Theorem and assuming that hys ~ h for all M € My, we then estimate term Iy by

sy 2—p
11 < a2 o — ol (r+ IV ally + [Vmnly) " + dacl (€ m)
—s+2(1+2-6
< cs, 0TS >|yv||§+%_5’p + 84¢| (€1 mn) T (4.62)
due to ||V |,y < C. Although 1+2—4 is not an integer in general, the stated approximation

property of j;, holds true according to the real method of interpolation for Sobolev spaces
(see [BS94]). The error estimate (4.57) remains valid provided that —s + 2(1 4+ % —0)>p.

Since s := p’ and ¢ is arbitrarily small, the latter condition amounts to 1 + % > &
p+2>p+p < p>2 Finally, we remark that Jo = O(h) because of our assumption.

If the pressure belongs to W2’p/( 2), then the estimates of Theorem can be improved:

Corollary 4.13. Let the assumptions of Theorem be satisfied. For v > 1 and
k € {0,1} let the fluctuation operator 0, satisfy the property ||Opwl|,.ar < CRE|IVFw| b0s
for all w € WEY(2) and M € My, where C > 0 is a constant independent of h. If

additionally T € WP (), then for ays = aph’, with s € [1,p'] the error of approzimation
is estimated by (the choice s := 1 is asymptotically optimal)

2
|F(Dv) = F(Dop)llz + |7 = 7allyy < Chy, v —wpll1p < Chr.

Proof. In the proof of Theorem [4.12] we estimate the terms I; and I3 as follows: Using
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4.6 Error estimates for the classical LPS method

Remark [£.4] the stability of 6, the approximation property of ), and j,, we obtain

LiSesh® Y 100Vinmllyas +61 Y amlG(0rVin) — G(0nV )15

MEM}L MEM}L
Seah® > (106VGnm =m0 + 102V 701 ) + 611(Ens O) s
MeMy,

S C5lhs+p Hﬂ-”g,p/ + 51|(0a nh)‘lst'
Similarly as in the proof of Theorem we conclude that
I3 S e, || 7|15 0 + 031 (€ O) s

Following the proof of Theorem for s € [1,p'] we hence arrive at [(€,,7)|ips = O(h).
As a result, we get Jy = O(h) and we can easily complete the proof. O

4.6 Error estimates for the classical LPS method

Theorems and can be seen as generalizations of the LPS method to fluid models
with p-structure. Note that in the context of linear Stokes systems (p = 2) the LPS method
is well studied, see Becker/Braack [BBO1]. For Stokes systems the bilinear form

sp(m)(q) == Z an (0,7, 0,V q) M (4.63)
MM,

has been used in order to stabilize the discretized equations of motion. Stabilization
methods such as (4.63)) can also be applied to p-Stokes systems as depicted below.

Case p < 2: The next Corollary is motivated by our subsequent numerical experiments:

Corollary 4.14. Let d = 2. For p € (1,2] and € € [0,e¢] let S satisfy Assumption
and let F be defined by (2.39)). Suppose that My, is quasi-uniform. Let (v,7) be the

solution to|(P1)| and let (vp,mp) be the solution to|(P1y)|, where sy, is defined by (4.63))
with ay = apgh3;. Assume that (v,T) satisfies the reqularity F(Dv) € WhH2(£2)4x4,
v e WL () and 7 € WH2(2). Then the approzimation error is estimated by

|F(Dv) — F(Dvp)ll2 < Cohy, v —wpllipy < L, (4.64)
I — Tally < Crh? . (4.65)

The constants Cy, Cy, Cx only depend on p, €o, 2, ag, [[VF(Dv)ll2, |[7[1.2, [|[v]1,00, and
Cr additionally depends on B(p).

Remark 4.10. Compared to Theorem Corollary avoids the Wl’p/—regularity

assumption on the pressure and confines it to m € W12(£2) provided that the velocity
additionally satisfies v € W1°°(£2). Note that, in case of d = 2, C1*regularity of the
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4 Finite Element Approximation of the p-Stokes Equations

velocity is well-established: For space-periodic boundary conditions C1:®-regularity has
been proven in [KMS97], whereas for homogeneous Dirichlet boundary conditions it has
been shown in [KMS02]. Corollary provides the same order of convergence as Theorem
.11} Note that Corollary [£.14] includes the singular case & = 0.

Proof of Corollary[{.14, The proof differs from the proof of Theorem only slightly.
Once again it is sufficient to estimate the projection errors §;, := j,v —vp, and n := jpm—7p,.
Since sy, is linear in both arguments, we may replace the distance |-|i,s defined in (4.46)) by

(€ n)[3ps = | F (D) — F (D)3 + snm) () (4.66)

We have to estimate the terms Iy, ..., I4 which arise in (4.47). The term I; is bounded by

. . Nt 1
I == sp(jnm) (1) < sn(Gnm) (Gnm) 2 sn(mm) ()2 < cs, 2|V xl[3 + 61(0, 1) -
Similarly to the proof of Theorem we estimate the term I by
Iy < c5,h*[VF(Dv)|[3 + 2| (€, 0)fs-

Before we proceed with I3, we depict that j, is W1 >-stable: We know from that
gy is locally Wl stable, i.e., there holds |j,wl11.0 < ||wlli1.s,, for all w € Whi(02)
and M € My,. Moreover, since X (M) is finite dimensional, there holds |Vj,w(y)| <
fu IV pw| de, i € {0,1}, for all y € M and M € M;. Due to the non-degeneracy of My,
it follows that ||5,w]|1.00.s < |w]|1,00:5,, for all w € WH(02). This yields

o Yw € WE(0), (4.67)

17hwll1,00:2 S flw
Using ([2.43) with v = 2 and the W1 ®-stability of j,, we modify estimate (4.50) as follows:
I3:= (7 = jnm, V- &p) 2 < [|1D(Gpv — on)l2llm — jarll2
. 2-p . .
< (e + [IVipvlloo + IVUnlloo) 2 | F(Dgpv) — F(Dop)ll2]w — jnrlla
< 831(&n, 0)lins + 5,1 (20 + [[Vll1.00 + [IVOR]lo0) Pl 2-

Since p < 2 and v € Wh®(0), F(Dv) € Wh2(02)¥4 implies v € W22(§2) by virtue of

/]V2v\2dw <(e+ ||DUHOO)2’p/(€+|Dv|)p’2\v2v|2da:
(P4 (93

< cle+ ||DUHOO)2_7’/ V(Do) da < .
(0]

Using integration by parts, the orthogonality of j;, with respect to Y, Holder’s and
Young’s inequality, and the approximation property of j;, we estimate the term Iy by

L= (V- (o —v)m)e < 3 dno = vllzar0nVmllzn
MeMy,

<ecs, y, anlldne —vll3ar + 01 Y amllOnVimlZa < csh®lvl3 2 + 64 (0,74) s
MeMy MeMy
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4.6 Error estimates for the classical LPS method

(cf. [MSTQT]). Collecting all estimates above and choosing 41, ..., d4 sufficiently small, we
easily deduce that the projection error |(&;,,1n)|ips is bounded by (w.l.o.g. g9 > 1)

2
(€ny ) lips < Ch(eo + || Vloo + [Vorllee) 2 (4.68)

where the constant C' > 0 only depends on |[VF(Dv)ll2, |7]l1.2, ||v|1,00, P, €0, 2. We
depict that vy, is uniformly bounded in W°°(£2). Using the inverse inequality ([3.20)) with
d = 2, the W1>_stability of j,, Korn’s inequality, Lemma (i) with v = 2, we estimate

[onl < [0n = Gpvlsce + vl
< e[ o~ golha +0loe]

< c|h™Y|Dvy, — Dj,v|2 + Hvlll,oo}

- 2—p
< e[ F (Do) - F Do) o (20 + [Vonlle + Vo)) T + ol oo
' (4.69)
Combining (4.69) and (4.68)), we conclude that
[onlli00 < C = C(IVF(DD) |, [7ll1,2, [0]]1,00)- (4.70)

The constant C' in (4.70)) also depends on p, o, 09, 01, 2. However, C is independent
of h. In view of (4.70), (4.68) yields the desired error estimate (4.64);. Clearly, (4.64),

follows from (2.43) and (4.64));. It remains to prove the error estimate for the pressure. In
order to derive (4.65)), we consult Lemma which applied to the projection error 7 reads

1

~ V- -w , ’ ’ 'Y

Bl < sup 20l (52 3y, ) =i 1+
wpeX? || whHP MeM,

Interpolating L (£2) between L2(£2) and W12(£2), and recalling the interpolation property

([£.15), and the W2-stability of jj,, for p > dz—_ﬁg and A\ = % — z% we obtain the estimate

. . . _ 144 _d
7 = jnmlly < cllm — gumlltollm — gumlls™ < eh TP 2 ||ml1e. (4.71)

Now the term J; can be estimated as follows: Using similar arguments as in the proof of
Theorem and the interpolation property (4.71]) with d = 2, we conclude that

2 2
Ji < |8(Dv) = S(Dwp)|ly + [linm — 7lly < c| F(Dv) — F(Dvp)|l5 + ch[|712.

Finally the term Jy can be estimated by means of the inverse inequality (3.19)),

1
: O\ (S ,
= (X wenmla ) <o X w10 m )

=

MeMy MeMy
1
@—d 2 i/_d
(177X RO mlBar ) < b0, (4.72)
MeMy
Recalling |(&,,74)1ips = O(h), we easily complete the proof of (4.65]). O
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Corollary 4.15. Let d > 2. Forp € (1,2], € € [0,e0] let S satisfy Assumption and let

F be defined by (2.39). Let (v, 7) be the solution to|(P1)|, and let (vp, ) be the solution
to|[(P1y,)|, where s, is defined by ([4.63)) with s := aph?;. Assume that (v, ) satisfies the
reqularity F(Dv) € WH2(2)%4, v € W22(Q) and 7 € WY (). Then there hold

| F(Dv) = F(Duvp)ll2 < Coh,  |lv —wpl1p < Cih, (4.73)
I — mally < Ceh' 5. (4.74)

The constants C, Cy, Cr only depend on p, €, 2, ap, |[VF(Dv)ll2, [[7ll12, [|vl22, and
Cr additionally depends on and B(p).

Proof. The proof combines the proofs of Theorem and Corollary Once again it is
sufficient to estimate the projection errors &, := j,v — vy, and n := jpm — 7, with respect
to the distance |(&,,7,)|ips defined in ({.66). Similarly to the proofs of Theorem and
Corollary we can estimate the terms Iy,..., I; that arise in as follows:

Iy < 5, 12| V]|3 + 61](0, 1) [, Iy < ¢5,h* | VF (D) |3 + 82/ (€, 0) s,
Is < cs, 2|71 + 33 (En, 0)ips, Iy < c5,h?||v]13 5 + 841(0,70) [is-

Combining (4.47) with the above estimates for I,. .., I4 and choosing d1, ..., d4 sufficiently
small, we easily conclude (4.73]);. The estimate (4.73[)2 follows from (2.43)), (4.73))1, (2.63)

and (4.34);. Note that (4.34]); also holds for s as in (4.63]). Finally, the pressure-error
estimate (4.74)) follows from the combination of (4.53)), (4.55)), (4.72)), and (4.73));. O

Remark 4.11. If we relax the assumption v € W22(£2) in Corollary 4.15], then we would
obtain a priori error estimates for the velocity that, compared to (4.73|), provide lower
rates of convergence which additionally depend on the space dimension d. In contrast, the
stabilization scheme, which has been proposed in Section allows an order of convergence
independent of d since it is adjusted to the p-structure of the problem.

Case p > 2: In this paragraph we prove related error estimates for p > 2. First of all we
restrict ourselves to the nondegenerate case € > 0. The requirement € > 0 enables us to
derive an a priori error estimate for the pressure with respect to the L?(£2)-norm. If the
pressure belongs to W12(§2), then the application of the method is justified by

Corollary 4.16. Let d = 2. For p € [2,00) and € € (0,&0] let S satisfy Assumption
and let F be defined by (2.39). We suppose that My, is quasi-uniform. Let (v,7) be the
solution to|(P1)|, and let (vp, ) be the solution to|(P1y)|, where sy, is defined by (4.63))

with ayr == agh3,. Assume that the solution (v, ) satisfies F(Dv) € Wh2(02)44 and
7w € WY2(2). Then, the velocity-error is estimated by

2
|F(Dv) — F(Dwvp)l|l2 < Cyh, v —vpll1p < Clhr. (4.75)

If additionally v € W1°(02), then the pressure-error in L?(£2) is estimated by
|m — mphll2 < Crh. (4.76)

The constants Cy, Cy,, Cx > 0 only depend on p, €, 2, ag, [[VF(Dv)|2, |72, and Cx
additionally depends on ||v||1,00 and 5(2).
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4.6 Error estimates for the classical LPS method

Remark 4.12. The velocity-error estimate holds for arbitrary space dimension d > 2.
Compared to , estimate provides better rates of convergence. Its proof requires
higher regularity of 7 but less regularity of v. The pressure-error estimate (4.76)) predicts a
better convergence order than . Its proof requires the extra assumption v € Wl’OO(Q)
which, in general, is satisfied for d = 2 (see [KMS02]). Note that Corollary does not
include the case e = 0. Estimate does not represent a “surprising” result since, due
to e > 0 and v € WH(2), the generalized viscosity remains bounded from below and
above and, hence, can basically be interpreted as a Stokes system.

Proof of Corollary[{.16. The proof is based on the proofs of Theorem and Corol-
lary [£.14] Once again it is sufficient to estimate the projection errors &, := j,v — vy,
and 1 := j,m — m, with respect to the distance |(&,75)|ips given by ([£.66). As above we
estimate the terms Iy, ..., I4 that arise in . Recalling the proofs of Corollary
and Theorem [{.T1] we observe that the terms I; and Iy are bounded by

I < e, 2|V + 610, m) s, T2 < e, || VF (D)3 + 82/(€5, 0)[fos-
Since p > 2 and € > 0, by virtue of (4.60) the estimate (4.50) can be modified as follows:

Iy = (7 — jum,V - &p) e < [D(Gpv — vn)ll2llm — jur]2
< 83| F(Djjyv) = F(Don)lls + ceollm = nrl3 < 8a1(En, 0) s + cogah®[I7l17 -

In case of p > 2 and € > 0, F(Dwv) € WH2(2)?? implies v € W22(£2) because of

/|V2v]2dac < 52_7’/(5 + |Dv|)P" Y V20|? da < 052_”/ |VF(Dv)*dx < cc.
n n 9]

Thus we can estimate the term I just like in the proof of Corollary
Iy < 654h2H’UH%72 + 54‘(07 nh)’lst'

Collecting all estimates above and choosing 41, ..., d4 sufficiently small, we easily deduce
that [(&5,,71)|ips = O(h). As a result we arrive at (4.75));. Estimate ([4.75))2 follows from
(2.45) and 1. It remains to prove the error estimate for the pressure. First of all,
we depict that vy, is uniformly bounded in W1*°(£2) provided that v € W1°°(£2). Using
the inverse inequality with d = 2, the W™ _stability of j n, Korn’s inequality and
, we may estimate the W5*-norm of v;, as follows

lonll100 < 1340 = wallLoc + 140100
<[ M gpv = vnllz + [0ll1.00]

< c[h*1||Djhv — Duyl2 + HUHLoo]

2
< e[n 1 | F(Djyw) — F(Dow) 2 + [v]1,00].

Recalling |(&,, mn) |1ps = O(h), we realize that the right-hand side can be estimated inde-
pendently of i and, hence, vy, is uniformly bounded in W1°°(£2). In order to derive (4.76)),
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4 Finite Element Approximation of the p-Stokes Equations

we consult Lemma that applied to the projection error n; reads

1

~ vru) R 2

Bl < sup 2l (052 42 0,0l ) " =i
wpEX? Vw2 MelM,

Similarly to the proof of Theorem [.11] we deduce that the term .J; can be bounded by
J1 < ||8(Dv) — S(Dvp)ll2 + ||jnm — 7|2 (4.77)
Using Lemma [2.4] and the fact p > 2, we conclude that
1
|S(Dv) — S(Dv )2 < (/(5 4 | Dol + | Doy ))**2| Do — Doy ? d:z:) :
9]
p—2
S (e +1IV0)los + [Vonlloe)” 1 F (Do) = F(Dvp)o. (4.78)

We recall that v, is uniformly bounded in W1°(£2). Inserting ([.78) into ({#.77), we get
J1 < ¢| F(Dv) — F(Dwvy,)l|l2 + b7

1,2-

Since Jy = sh(nh)(nh)%/,/ao and |(§5, 1) |1ps = O(h), we easily infer estimate (4.76]). [

Compared to Theorem Corollary leads to improved a priori error estimates with
respect to the order of convergence. Note that Corollary requires different assumptions
on the regularity and that it only includes the nondegenerate case € > 0. The subsequent
Corollary depicts that we can get rid of the condition € > 0 without losing convergence
rate if we employ the following stabilization term suggested in [BBJLO7, MSTO07],

sh<(v, ’R’)) ((w, q)) = Z (on(OhVW, 0,V ) v + var (0, - v, 0,V - w)M). (4.79)
MeEM,

The patch-wise constants aj; and vy; are specified in Corollary below. For the
remainder of this section we assume that the fluctuation operator 6, does not only
satisfy stability as in Assumption but also approximability: We suppose that for v > 1,
k € {0,1}, it holds ||0pw||p.ar < hE | VEW]|yar for all w € WFY(£2) and M € My, The term
stabilizes not only the pressure gradient but also the incompressibility constraint.

Corollary 4.17. Letd > 2. Forp € [2,00) and ¢ € [0, 0] let S satisfy Assumption[2.1] and
let F be defined by (2.39)). Let (v, ) be the solution to|(P1)|, and let (v, m) be the solution

to|(P1y,)| where the stabilization s, is defined by [4.79) with aps := aph?; and vay == vp > 0
for all M € My,. We assume that the solution (v, =) satisfies F(Dv) € WhH2(0)*d,
v e W23(2), and 7 € WH2(£2). Then, the error of approzimation is estimated by

|F(Dv) — F(Dvp)la < Cohy v —villipy < CLh7, (4.80)
I — mally < Ch. (4.81)

The constants C,, Cl, Cr only depend on p, {2, ag, 1, IVF(Dv)l2, [|v]2z, |7
Cr additionally depends on B(p).

1,2, and
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Remark 4.13. If p > 2 and € > 0, F(Dv) € WH2(£2)%4 implies v € W22(£2) due to

/|V2'v|2dw < 52_p/(5 + |Dv|)P7 V30| dx < 052_”/ |VF(Dv)|*dx < cc.
Q Q 0

Hence, the assumptions of Corollary are more restrictive than the ones of Corollary

Proof. The proof is based on the proofs of Theorem [{.11] and Corollary [£.16] It is sufficient
to estimate the projection errors &, := j,v — vy and n := jpm — 7, with respect to

€l = |F (Do) = F(Dw) |3 + s ((Enomn)) (€rom)). (482)
Similarly to the proof of Theorem we obtain the equivalence

[€omn) s ~ 51 (G0, 30m)) (€10 ) ) + (S(Djpv) — S(Dv), D€y
—Unm =7,V -&p)a + (V- ([Gpv —vn)smm)e = ,..., L1

(4.83)

We estimate the terms I, ..., I separately. Using the stability of 85, and the approximation
property of ;, and j;, for arbitrary §; > 0 we estimate the term I; by (cf. [MST07])

I < Calsh((jh%jhﬂ)) ((jh%jhﬂ)) + 518h((€ha Uh)) ((ﬁha Uh))

< ¢, Z |:aMijh7TH§,M + VM”V ’ (jhv - v)”%,M + VM”ghv ’ UH%,M} + 61’(£h7nh)’12ps
M

< cs, (W mll} 2 + B2I[0I32) + 611 (€nr ) s
where ¢5, only depends on g, v, d1. Recalling the proof of Thm. [£.11], we observe that
Iy < ¢, 2| VF (D) |[3 + d2/(€5, 0) [is-
Using the orthogonality property of jj, we estimate the term I3 as follows (cf. [MSTQT)):

I3 = (1= jam, V- &) = (7 = jam, 0,V - &) 2

<ecs, Y, vitlm—gnmliar+0s > vmllOnV - Enllz
MEMh Mth

< 653h2H7r||i2 + 53|(£h> O)‘Ist
As in the proof of Corollary for arbitrary 64 > 0 the term I is bounded by
I < 5, W% |[0]13 5 + 04 (0, 71) [

Collecting all estimates above and choosing 61, .. ., d4 sufficiently small, we easily deduce

that |(§,, 1) |1ps = O(h). As a result we arrive at (4.80));. Estimate (4.80))2 follows from

(2.45)) and (4.80)1. It remains to prove the pressure-estimate (4.81)). To this end, we consult
Lemma [4.5] that applied to the projection error ny, reads

=

~ V - wyp, ’ ’
Bllmly < s SR (57 w0, iy )" =+
wpeX? vahHP MeM, ’
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Similarly to the proof of Thm. it follows that for some ¢ = ¢(£2,p,e0, f) > 0

J1 < (|| F(Dv) = F(Dwp)l[2 + hli7ll12). (4.84)

Using Holder’s inequality with %/ + 2771’/ = 1 twice, we conclude that

27pl
2

(% )

MeMy,

1
/ / 2—p' \ o/
J2S( > hlz)uHthﬁhHg;M‘M\fy S( > h?wH@hV"?hHg;M)
MeMy, MeM,

and, hence, Jy < [(0,74) s 2 7 //@0. Since |(€,,7m)lips = O(h), we arrive at (I81). 0

Refinement of Corollary Using the stabilization ([£.79), for p € (1,2] we can
also confine Corollary in the sense that we can replace the regularity assumption
v € Wh(02) by the less restrictive one v € W22(£2). Note that, indeed, for p € (1, 2]
the conditions v € W1°(£2) and F(Dv) € W2(2)4*? imply v € W22(£2) due to

/\Vszdaz < (e+ HDUHOO)Q_p/(EHDU\)”_Q]VQU\Qd:B < 00
N 9]
(see Lemma [2.27). We end up with the following version of Corollary

Corollary 4.18. Let d > 2. Forp € (1,2] and € € [0,£0] let S satisfy Assumption[2.1) and
let F be defined by . Suppose that My, is quasi-uniform. Let (v, ) be the solution
to[(P1)], and let (vy, ) be the solution to[(P1y)|, where the stabilization s, is defined by
(4.79) with apr = aoh%J and vy == vy > 0 for all M € My,. Assume that (v, ) satisfies
the regularity F(Dv) € WH2(2)4%4, v € W22(02) and m € WH2(02). Then there hold

|F(Dv) — F(Duwp)ll2 < Coh, v —wplhp < Cih, (4.85)
d d
I — mhly < Cah' 772 (4.86)
If additionally € > 0, then the pressure-error in L?({2) is estimated by
I — mall < CLh. (4.87)

The constants C,, C!, Cr only dgpend on p, €0, 12, ag, vo, |[VF(D)|l2, ||7]l1,2, [|V]l2:2,
and Cr additionally depends on B(p). The constant CL only depends on p, e, 2, o, vy,
B(2), |[VF(Dv)ll2, ||vll2,2, |7ll1,2, and it may explode as e — 0.

Remark 4.14. Note that for d = 2 the condition F(Dv) € W12(2)™4 implies v €
W2279(0) for all § > 0 due Lemma

Proof of Corollary[{.18 The proof combines the proofs of Corollaries [£.17| and [£.14] Once
again we have to estimate the terms Iy, ..., I; that arise in . We estimate the terms
I, I5 as in Corollary [£.17) whereas we estimate the terms I, Iy just like in Corollary [£.14]
Following the proof of Corollary we consequently arrive at 1. We derive (4.86)
recapitulating the proof of for d > 2. Finally, we obtain if we follow the proof
of while carrying out all arguments in an L?-setting and using fore>0. O
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4.7 Non-steady p-Stokes equations

In this section we investigate the time-space discretization of non-steady p-Stokes systems.
Concerning time discretization, optimal a priori error estimates have recently been derived
in [BDR09], in which a semi-implicit Euler scheme applied to the p-Navier-Stokes system
has been considered. In order to assess the approximation error caused by temporal
and spatial discretization, we generalize previous results established in Sections [4.6]

Time discretization:  For 7' > 0 let I := [0,7] be a time interval. We discretize [(P4)]
in time. To this end, for N € IN we introduce the time step size k := T//N > 0 and the
corresponding net Iy := {tn}ﬁf:o with ¢, := nk. We consider the implicit Euler scheme:

(P4*) Let v':=%. Forn=1,...,N find (v",7") € XP x QP such that
(div", w)o + (S(Dv"), Dw)g — (1", V- w)g = (f,w)e  Vwe X”

4.88
(V-v".q)o=0 Vg e QP (4.88)
where the discrete time derivative is defined by
n _ ,n—1
dyo" =2 k” (4.89)
Remark 4.15. Testing (4.88); with w := v™ and using (2.40)), we observe that
N
2 D _ A~
s o8 4k D07, < € = 0.0, 2), (1.90)

The time discretization of p-structure systems has been studied intensively in recent years
(cf. [DPRO2, DPROG]). In [BDRO9|, Berselli et al. analyzed the p-Navier-Stokes equations
(2.14]) complemented with space-periodic boundary conditions and its time discretization
with a semi-implicit Euler scheme. They derived optimal error estimates as depicted by

Lemma 4.19. For d = 3 let us consider system complemented with space-periodic
boundary conditions. For p € (3/2,2] and € € [0,¢¢] let the extra stress tensor 8 satisfy
Assumption . We assume that f € C(I;WY2(2)) n WL2(I; L*(2)) and that © €
thi(ﬁ) with V - S(Dv) € L*(£2). Let v be the strong solution to Problem with VP
replaced by Viger as in Lemma . In particular, v satisfies the reqularity . We set

v):=9. Forn=1,2,... let v" be the solution to the system
dpv"™ — V- S(Dv"™) + [v" - Vo™ + V" = f(t,
1 (Dv™) + [v v o " (J:< )} in (4.91)
-V —

endowed with space-periodic boundary conditions. Here, dyv™ is defined as in (4.89). Then
there exists a time-step size ko > 0 such that for k € (0, ko) there holds

N
n|2 n\112 2
Og%XNHv(tn) — "5+ k:n;OHJ-'(Dv(tn)) — F(Dv")|j3 < Ck (4.92)

where the constant C and kg only depend on gy, p, f, 0, T, (2.
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4 Finite Element Approximation of the p-Stokes Equations

In [BDR09], Berselli et al. proved additional regularity of the semi-discrete solutions:

Lemma 4.20. Let d = 3. For p € (3/2,2] and ¢ € [0,¢0] let S satisfy Assumption
. We assume that f € C(I; WY2(2)) and that ¥ € W(Qif,((?) Then there exists
K =K (p,eo, f,0,T,2) such that for k € (0,k") the solution v™ to system (4.91) satisfies

N 5p—6 N
95p=6
OgﬂXNHdtv”H% +EY VD), 7 +k Y |dF(Do")|3 < C (4.93)
- = n=0 n=0

where the constant C only depends on p, g9, f, 0, T, £2. Moreover, Va™ belongs to the

5p—6
space 1 = (Iy; L*(£2)) and its corresponding norm is bounded by a constant that only
depends on p, e, f, 0, T, 2 and that may explode as € — 0.

As a consequence of , Berselli et al. showed in [BDR09] that the strong solution
v" to system even belongs to [ (Iy; W17 (£2)) with 1 <r < 6(p — 1) and that its
corresponding norm is bounded by a constant which only depends on p, ¢, f, ¥, T, {2. This
result follows from the following well-known inequality (see Diening et al. [DPR02,[BDR09)):
For 1 <r < 6(p — 1) there exists a constant ¢ = ¢(p, £2,7) such that

N 5p—6
2 - n
e [Vo" 2 < C(f”’fZO(HVHDv%uf S HlaFDOB)). @

Note that (5p — 6)/(2 — p) > 1 in (4.93) for the considered range of p. The following
well-known lemma depicts that, consequently, the strong solution v" to system (4.91)

belongs to 12(Iy; W2ﬁ(!2)) and its norm is bounded independently of k.
Lemma 4.21. Let p < 2. For all sufficiently smooth w™ € I ({t,,}"™_;; L>(U)) there holds
- n ny|2— S n
BNy < e sup [l [Vl (kYD IVE(Dw) 3y
n=l o I<n=m n=l

where the constant ¢ > 0 only depends on p.

Proof. See Lemma 4.2 in [DERO7]. Actually, the desired estimate appears within the proof
of Lemma 4.2 in [DERO07] and it is shown with D replaced by V. The proof of Lemma
follows the same arguments. Note that the assertion holds for arbitrary d > 2. O

Knowledge about the regularity of (v™, ™), as provided by Lemma enables the deriva-
tion of error estimates for the space discretization, as depicted in the next paragraph.

Space-time discretization: = The semi-discrete Problem is discretized in space by
equal-order d-linear Q;/Q; finite elements. For pressure-stabilization, we apply the LPS
method introduced in Section The fully discretized problem reads:
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4.7 Non-steady p-Stokes equations

(P4F) Let o) := §,0° Forn=1,....N find u}) = (v}, 77) € XY x QF such that

(dyvi, wy) o+(S(Dvy), Dwy) o — (7, V - wp) o + (V- 03, qn) 0
+ sp(up)(wn) = (f,wr)o  Vwi, = (wp, qp) € XY x QF (4.95)

where sy, stands for a stabilization term such as (4.79)).

Remark 4.16. Testing (4.95) with wy, := (v}, 7}}) and using (2.40]), we observe that

N
max, loil3 + & Y _llvRll7, < C = C(f,9,p,e0, 2). (4.96)
n=1

The following theorem measures the error between the solution v” of the semi-discrete
Problem |(P4")[and the solution v} of the fully-discrete Problem |(P4;)| For its proof we
combine methods from [DER07| and Section

Theorem 4.22. Forp € (1,2] and € € [0,e0] let the extra stress tensor S satisfy Assump-
tion|2.1. Let (v™, 7") be the solution to Problem and let (v}, ) be the solution to
Problem |(P45})|, where the stabilization term sy, is deﬁned by @.79). Forv>1, ke {0,1}
let the fluctuation operator Oy satisfy ||0pw|lv.nr S A5 IVEW|pas for all w € WE($2),

~

M € My. We assume that there exists a constant C' > 0 independent of k so that

sup V0" 13 +kZHV}" (Dv")|I5 + k Z||V7Tn||2 <C. (4.97)

1<n<

R _d(2-p) .
Moreover, we suppose that v° = o € W(l)’Q(Q). If h?~ == - < ck with some ¢ > 0, then for

an = agh® and vy == vy the error of approximation is estimated by

Sup [o" —vh||2+/€ZH}' Dv") — F(Dwy)ll3

n=1

ﬁ: n (&) (&R < el (4.98)

Here, &), = jpv" — v} and n; = jpn" — 7y, where jp, is the interpolation operator of
Lemma @ The constant C' > 0 only depends on C, v, f, p, €0, £2, ag, vp.

Remark 4.17. The smallness-assumption on the mesh-size is less restrictive than the
Courant-Friedrichs-Lewy (CFL) condition. It also appears in the article [DERO7] in
which the temporal and spatial discretization of parabolic p-structure systems is analyzed.
Such p-structure systems correspond to our p-Stokes systems if the pressure and the incom-
pressibility constraint are omitted. Concerning the time-space discretization of p-structure
systems, Diening et al. [DERO07| established the optimal a priori error estimate

N
{SlupN}llv(tn) —hl[3 + kY IF(Volta)) — F(Vop)3 < e(h® + k%) (4.99)
nel,..., n=1
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4 Finite Element Approximation of the p-Stokes Equations

—p)

provided that h2_ < ck. Hence, the error estimate seems to be suboptimal
with respect to the convergence order. Compared to (| -, the reduced convergence rate
of results from the low regularity of the semi-discrete pressure 7. In particular,
in Theorem it is only assumed that 7" belongs to I2(Iy; W12(£2)) and that its norm
is uniformly bounded. In order to derive an optimal error estimate similar to , we
need to assume that 7 remains uniformly bounded in ' (Iy; W' (£2)) (see Corollary
below). However, we are not able to show this stronger regularity of 7. Note that
the regularity-assumption is satisfied at least in the case of space periodic boundary
conditions (see Lemma and its subsequent discussion).

Proof of Theorem[{.23. We proceed similarly to the article [DERO7], in which parabolic p-
structure systems and their time-space discretizations are studied. We define e} := v" —v}.
Taking the difference between (4.88)) and (4.95)), we observe that

(diey,wp) 0 + (S(Dv") — S(Dv}), Dwy)o — (7" — 7, V - wp) 0
+(V-efan)o = sn((Wf, 7)) (wh, ) ¥(wn,an) € X5 x Q5. (4.100)
Setting &) 1= j,v" — vz and np 1= jpm" — ', we define the quantity
1

E:= 2 Z”dtehHQ +k Z S(Dwvy), Dey)q
(4.101)

£ 15 Lo (Gav™ inr) (€5 — s (o 7)) (&) -
n=1
We notice that (die}, e})o = (die}, jren) o + (dief, v™ — j,v™) o due to j,v} = v} and

kY (die.ep)o = {lleplls — (ep " em)n}
n=1 n=1

1 u _ 1 1

= 5 2l 5 Dol = - (ei e~ gl + gleR
n=1 n=1

1

l\D

o 1
3 - lleh — eI~ SleRl3 + 5 lefr I3
n=1

??‘

Ui 1 1
=3 Z IdueR 3 - 5llehll3 + 5 ler 3.

Using this, we can rewrite F as follows:

hE

E=FkY (die},v" — v} Q+kz S(Dv}), Dv" — Dv})g

1

k:z -7,V (v”—vﬁ))g—i—kZ(V-(v"—vﬁ),w"—w,’f)g

n=

i Lo (o™ ina™) (i€ n) — sn (cop nt)) (&)} + 5 3

n

—
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4.7 Non-steady p-Stokes equations

Using the disturbed Galerkin orthogonality (4.100]), we consequently arrive at

E=k) (de},v"—j,v")o+k > (S(Dv") — S(Dvy), Dv" — Dj,v")g
n=1 n=1

—kZ(ﬂ”—jhﬂ",V-(v"—jhv Q_kz g =7, Ve (0" = ") e

. . 1
+k Z v = Gun) + kS s (e ) (€570 + Sleli

n=1

=: F1—|—F2—|—F3—|—F4—|—F5—|—F6—|—F7. (4102)

By means of Lemma for some ¢ = ¢(p) > 0 we estimate the quantity £ from below by

H eI+ ZHdtethJrck ZH}" (Dv") — F(Dv})ll3

n=1 n=1

i (€m) (Rm).

Below we estimate the terms F},..., 7 defined in (4.102)) separately. Using Young’s
inequality, we conclude that for each ¢; > 0 there exists c¢5, > 0 such that

m m
FL <01k ) lldiep |3 +cs ) [[o" — 3n0" 13

n=1 n=1

Using the properties of j,, and applying Lemma we deduce that

m Cdd—p) |
FL <0k Y [ldiehl3 + e, b= 75 Y o3 u

n=1

m n _d(2-p) nin2— Ui n
< B S [dieff+ T sup e Vo |\|3P[Z||W<Dv I

n=1 neql,...,m n=1

d(2—p)
2

Assuming h?~ < ck, we obtain h*~ = h2h2_ < ¢h?k and, hence,

Fi <0k Y [dref+ ek sup e+ Vo3 {k S IVFDO3].

n—1 ne{l,....m} n—1

Using Lemma [2.4] and Lemma [2.2] for arbitrary d2 > 0 we easily derive the inequality

Fy < e,k Y | F(Dv") = F(Djpv")|3 + 62k Y| F(Dv") — F(Dwy)|l3

n=1 n=1

< e, h’k Y_IIVF (D)3 + 62k Y| F(Dv") — F(Dvp)|3

n=1 n=1
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4 Finite Element Approximation of the p-Stokes Equations

where cs, only depends on p and d2. Using the orthogonality of j; with respect to Y},
Young’s inequality, we deduce that for arbitrary ds > 0 the term F3 + Fj5 is estimated by

B+ Fs=kYy ("= jum",V-&a=kY (7" — jnm™", 00V - €})0
n=1 n=1

m m
<k Y Y vatllmt —nm s + 03k > D vmllOnV - €115

n=1MeM,, n=1 MeM,
< o5,k 1725+ sk Y sn (€5 0)) ((€5,0)).
n=1 n=1

Using integration by parts (functions in Qf, are continuous and v™, j,v" belong to W(l)’p (12)),
the orthogonality of j; with respect to Y, Young’s inequality, the interpolation property
of 75, and Lemma we conclude that for each d4 > 0 there exists ¢5, > 0 such that

m m
Fy=k) (" =", Vo =kY_ (v" —j 0", 0,Vni)a
n=1 n=1
m m
<es kY Y ap v —gpvt G+ 0ak Y > anmll0nVnplla
n=1 MeM,, n=1 MelMy,
¢ —1 4_d(47p)+d ni2 < n n
Senkd) Y apthy 7 U g, dak S s ((0,7) ((0,77))
n=1 MeM, o n—1

_d2-p) 2= n - n n
Seah?™T0 s et [VolI3TR 3|V (D )3+ 34k > sn((0,75)) ((0,71)).

netl,..,m n=1 n=1

Using Young’s inequality, the interpolation property of 6, 7, and Lemma we realize
that for each d5 > 0 there exists a constant c;, > 0 only depending on p and d5 such that

Fo<csk > - {anllOnVinm" s +var(106Y - Grv" = v")3as + 160V - 0" [3.0r) }

n=1 MecM,
m
+05k > Y {anllOnVuRBar + varlOnV - 51130 }
n=1 MecM,,
& ni2 2_d(2_p) ni2
ek Y {amlm Bas, +vahy 2 03 o g )
n=1 MclMj, iop

a5k Y sn (&) (€. m)
n=1

> IV FDo)

n=1

< d(2—p) -
<o (Wh LI+ B s ek (VORI R

n=1 ne .,m

sk Y (€ ) ((€0nm)-

n=1
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4.7 Non-steady p-Stokes equations

Finally, since v° = ® and & € WH2(£2), the term Fy can be estimated by

1 . N
Iy = 5!\00 — 30’3 < ch?|9]F .

Collecting all estimates above, choosing 91, ..., d5 sufficiently small, absorbing the terms
with 01,...,d5 into the left-hand side, taking the supremum over m = 1,..., N, and
recalling (4.97)), we can easily complete the proof. O

Since the regularity assumption is satisfied (see Lemma , we can combine
Theorem and Lemma so that we arrive at an a priori estimate for the overall
discretization error v(t,) — v} which provides an optimal convergence order with respect
to k but a suboptimal convergence rate with respect to h. (We believe that an estimate for
v(t,) — v™ similar to remains valid for the simplified p-Stokes system at least in the
case of space-periodic boundary conditions.) Note that in Theorem we would obtain
an optimal a priori error estimate with respect to the convergence order if we suppose
the following stronger regularity of the semi-discrete velocity: [[v"([2(w22(0) < C.
Alternatively, the following Corollary shows that we obtain an optimal a priori error
estimate if we assume stronger regularity of the semi-discrete pressure 7”. In particular,
we require that 7™ remains uniformly bounded in P’ (Iy; W' (£2)) with p/ > 2. However,
we are not able to show the supposed regularity and, hence, we are not allowed to state it
as an assumption since we are considering an approximative system which is discretized in
time. As a result, the following Corollary can only be understood in a formal sense.

Corollary 4.23. Forp € (1,2] and € € [0,eq] let the extra stress tensor S satisfy Assump-
tion|2.1. Let (v™, 7") be the solution to Problem and let (v}, ) be the solution to
Problem |(P45)| where the stabilization term sy, is defined by . We assume that there
exists a constant C > 0 independent of k so that

N N
1<su£)N||V'v”||% +k Z |VF(Dv™)|3 + & Z ||V7r”||g, <C. (4.103)

n=1 n=1

N _d(2—-p)
Moreover, we suppose that v° = ¥ € W[l)’2(_(2). If h? T < ¢k for some ¢ > 0 and

apr = agh® with s = 2, then the error of approrimation can be estimated by

N
sup [[v" —vjl[5+ kY| F(Dv") — F(Dvp)l3
1<n<N

n=1

N
+EY . Y aullG0nVint") — G(6,Vmy)|l3 < C'R
n=1 McM

where jy, is the interpolation operator of Lemma @ The constant C' > 0 only depends on
Ca /137 f7 D, €o, ‘97 Q.

Proof of Corollary[4.23. We modify the proof of Theorem [4.22] appropriately. Following
the proof of Theorem we similarly arrive at (4.102) and we aim at estimating the
terms E, F1, ..., F5 defined in (4.101)) and (4.102)).
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4 Finite Element Approximation of the p-Stokes Equations

By means of Lemma and Lemma we estimate the quantity E from below by

B n
E> *Heh 13+ = Z!\dtethJrClkZH}' (Dv") — F(Dvp)|3
n=1 n=1
+eok > > amlG(0,VinT™) — GO,V |15:0r
n=1 MM,

where the constants ¢; and co only depend on p. The terms F) and F5 are estimated exactly
as in the proof of Theorem Using Holder’s inequality, the interpolation property of
Jn, Young’s inequality, and applying Lemma we estimate the term F3 as follows:

m m
F3 <k Y _|In" = jun" ]| Vo™ = Vil < ch?k Y ln" |1y ]lo”

n=1 n=1

< ch?k Y |I7"5, + ch®k Y IVF(Du")|5 4 ch®k Y _|le + | Do"|||p.

n=1 n=1 n=1

‘2,13

Applying integration by parts (v", j,v" belong to W(l)’p (£2)), using the orthogonality
property of j; with respect to Y, we estimate the term Fy by

m

Fy = k‘Z( —]hU Vnh Z _jhvnaahvnﬁ)ﬂ

m 1 1
Z S a0 = 30" sy 1057l
n=1 th
Applying Young’s inequality, we deduce that for each d3 > 0 there exists ¢s, > 0 such that

m
F4<653/fz DRVl A TRV RV 120 Sy SOV I8 v [

n=1 MeM, n=1 MecMy
Scak Y D an Rt s, 05k Y0 D amllG(0aVinT") — G0,V )3
n=1 MeM,, n=1MecM,
S s hPUPRY B, +0sk Y D] anml|G(ORViaT") — G604V )13
n=1 n=1 MecMy,

Using (2.43)) and Young’s inequality, for any d4 > 0 we estimate the term Fj as follows:

m 2—p
F5 <cky_|[n" = jun"|lylle + [Do"| + |Dvj|[,2 | F(Dv") — F(Dvp)|la

n=1

m m
< ek Y7 = nm"lly e + | Do + D[P + 84k || F(Dv") — F(Dvp)|3.

n=1 n=1
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Using the properties of j; and Young’s inequality (with 1% + 2%” = 1), we arrive at

Fs < e, 1%k Y |73 plle + Do | + [Dp |37 + dak Y _[|F (Do) — F(Dvp)l3

n=1 n=1

< es,h%k Y {1, + e + Do + [Dopl[p} + dak || F (Do) — F(Dw})|3.

n=1 n=1

Applying Lemma and the W1 -stability of j,, we realize that for each d5 > 0 there
exists a constant cs5, > 0 only depending on p and d5 such that the term Fg is bounded by

Fs <cs,h°k ) _|lm + \Vﬂnm; +05k Y D amlG(6rVinT") — GO,V T30
n=1 n=1 MecM,

As in the proof of Thm. we obtain Fry = O(h?). In view of s = 2 we can complete the
proof following the proof of Thm. and taking into account (4.90)), (4.96)), (4.103). O

If we suppose that we are allowed to combine Theorem [£.22] and Lemma then we
would arrive at an a priori estimate for the discretization error v(t,) — v} which would
provide an optimal convergence order with respect to k and h.

4.8 Numerical experiments

In this section we present numerical experiments which illustrate the established a priori
error estimates. All computations were performed for the Carreau-type model ,
(2115). If not stated otherwise, the parameters were set to pug := 1 and ¢ := 107,
Problem was discretized with equal-order d-linear (Q;/Q;) finite elements based
on quadrilateral meshes. Since the considered discretization is not stable, the LPS-based
stabilization methods of Sections and were applied. The algebraic equations were
solved by Newton’s method, the linear subproblems by the GMRES method. The multigrid
method was applied as a preconditioner. Details on the numerical solver and information
about its realization within the software package Gascoigne |[GAS]| can be found in Section
-4l In the following experiments we measure the error of approximation for the quantities

E = ||F(Dv) = F(Dop)l2, By =V —vi)lv, Ey:=|v—vnl,

B ’ (4.104)
Ey = ||8(Dv) = S(Dwvp)lly,  EY:= |7 —mally,

and we depict the experimental order of convergence (EOC) with respect to the number
of elements (under global mesh refinement). As usual, (v, 7) denotes the (continuous)
solution to and (vp, m) is referred to as the (discrete) solution to The order
of convergence is determined by the standard formula log(E(h)/E(h/2))/log(2) where
E(h) stands for one of the quantities in (4.104)). In this section, we aim at answering the
question whether the order of convergence predicted by our theoretical results coincides
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4 Finite Element Approximation of the p-Stokes Equations

with the rate of convergence observed by numerical experiments. First of all, by means
of Examples 1-3 we numerically confirm the a priori error estimates of Theorem
for different values of p < 2. Then, in Example 4 we demonstrate the optimality of the
error estimates and with respect to the supposed regularity of (v, 7). Via
Examples 5-6 we numerically validate Theorem for different values of p > 2. In
Example 7 we discuss super-approximation effects that usually occur for Q;/Q; elements
provided that a smooth solution is approximated on a sequence of regular meshes. By means
of Example 8 we illustrate the a priori error estimates of Corollaries and which
deal with the standard LPS method proposed in [BB01] and its application to p-Stokes
systems. Note that the above experiments are performed in two space dimensions. Finally,
via Example 9 we verify the derived a priori error estimates in three space dimensions.

Table 4.1. Numerical verification of Theorem for p < 2

(a) p=1.1 (b)) p=1.2

/ /

EP ELp EP ELp

#cells error conv. error conv. #cells error conv. error conv.

1024 4.28e-03 0.15 5.61le-04 1.05 1024 1.84e-03 0.34 5.67e-04 1.02
4096 3.85e-03  0.15 2.74e-04 1.03 4096 1.47e-03 0.32 2.81le-04 1.01
16384 3.42e-03  0.17  1.36e-04 1.02 16384 1.17e-03  0.33 1.40e-04 1.01
65536 3.02e-03  0.18 6.73e-05 1.01 65536 9.29e-04 0.33  6.99¢-05 1.00
262144  2.66e-03  0.18  3.35e-05 1.01 262144  7.36e-04 0.34 3.49e-05 1.00

expected 0.18 1.00  expected 0.33 1.00
(c)p=1.3 (d)p=15
By Ey? By Ey?
#cells error conv. error conv. #cells error conv. error conv.

1024 8.58e-04 0.50  5.85e-04 1.00 1024 2.20e-04 0.80 6.36e-04 0.97
4096 6.25e-04 0.46  2.93e-04 1.00 4096 1.37e-04  0.69 3.22e-04 0.98
16384 4.54e-04 0.46 1.46e-04 1.00 16384 8.58e-05 0.67 1.62e-04 0.99
65536 3.29¢-04 046 7.32¢-05 1.00 65536 5.38e-05 0.67 8.17e-05 0.99
262144  2.38e-04 0.46  3.66e-05  1.00 262144  3.38e-05 0.67 4.10e-05  0.99

expected 0.46 1.00  expected 0.67 1.00

Example 1: First of all we deal with the shear thinning case. We numerically validate
Theorem (.11} see Table As a first designed experiment, we chose the computational
domain 2 := (—0.5,0.5) x (—0.5,0.5) and we prescribed the exact solution to [(P1)|by

T2

v(x) = |z ( ) and m(x) = 120 + (2172)3. (4.105)

Problem |(P1;)| was solved for the following data: The right-hand side f was given by
f = —=V-8(Dv)+Vnr, and Dirichlet boundary conditions with vp := v|ss, were prescribed
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on the whole boundary 0f2. The stabilization term s, was chosen similarly to the one in
(4.4) with ay = aohﬂ and 7 = 1. However, instead of 8,V as in , the gradient of
fluctuations V8,7, was used where the filter 6}, is defined by . Although we analyzed
LPS schemes based on fluctuations of gradients 8,V only and we have 8,V # \I%
in general, we believe that the choice VO, allows a similar convergence analysis and the
same a priori error estimates (cf. Remark [BBO1, MSTOT7]). The stabilization parameter
g was set to ag = 0.3. Note that in all examples the stabilization method was less sensitive
with respect to ag. Clearly, the regularity of v is controlled by the choice of a € R. We
easily compute that V-v = 0, |Vo(x)| ~ |2|*!, and |VF(Dv(x))| ~ || CSE for e — 0,
Hence, it holds F(Dv) € WH2(£2)4*? provided that @ —1>—-1<4 a>1. Inthis
example we set a = 1.01. According to and we expect the convergence rates 1
for the velocity in WP(£2) and ]% for the pressure in L¥ (£2). Considering Table , we
realize that the numerical results agree with the theoretical ones very well. In particular,
Examples - reflect that the order of convergence for the pressure depends on

the choice of p as predicted by (4.44)).
Table 4.2. Numerical verification of Theorem for p < 2

(a) p=1.1 (byp=1.2

#elements EL?  EP  ES  EY  E2  4eclements EL? Er  ES EP  E2

v

1024 1.08 190 0.18 0.19 0.95 1024 1.02 194 034 036 1.01
4096 1.05 195 0.18 0.17 0.99 4096 1.02 197 034 032 1.00
16384 1.03 198 0.18 0.17 1.01 16384 1.01 198 034 033 1.01
65536 1.01 199 0.18 0.17 1.01 65536 1.01 199 034 033 1.01
262144 1.01 199 0.18 0.17 1.01 262144 1.00 199 0.34 033 1.01

expected  1.00 0.18 1.00 expected 1.00 0.33 1.00

(c)p=13 (d)p=1.5

S » 2 delements EL»  EP  ES EP E2

1024 1.00 195 046 059 1.11 1024 097 195 0.66 142 1.51
4096 1.00 197 046 046 1.03 4096 098 1.96 0.67 0.80 1.22
16384 1.00 198 0.46 046 1.02 16384 0.99 198 0.67 0.68 1.08
65536 1.00 199 046 046 1.01 65536 0.99 198 0.67 0.67 1.03
262144 1.00 199 046 046 1.01 262144 0.99 199 0.67 0.67 1.01

expected  1.00 0.46 1.00 expected 1.00 0.67 1.00

#elements ELP EP  ES EP 2

Example 2: The following experiments are in the same spirit as the ones in Example 1.
Here we do not only demonstrate Theorem [£.11]but also we determine the experimental order
of convergence with respect to further quantities such as E5. We chose the computational
domain {2 as in Example 1 and we prescribed the exact solution to by

x2

v(x) = |z|*! ( ) and m(x) := |z’ z 122, a,b e R. (4.106)
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4 Finite Element Approximation of the p-Stokes Equations

The data f and vp, for which Problem was solved, were chosen similarly as in
Example 1. There the patch-wise constant «js, that arises in the stabilization term
sp, was given by ans := aph3;/po. In view of the LPS-theory for Stokes systems, the
choice ays := agh3;/u(|Dvp|?) would however be more natural where pu(|Dwvy|?) is the
generalized viscosity defined in (2.11b)). Numerical experiments indicate that both forms
of a;ps influence neither the stability of the discrete pressure nor the order of convergence
(see Example 3). In this example the stabilization term s, is chosen as in Example
1 but its patch-wise constant ayy is set to ay = agh3;/u(|Dvy|?). The requirement
F(Dv) € Wh2(02)®4 and m € W' (£2) amounts to the condition a > 1 and b > —I% —1.
Table depicts the rates of convergence that were obtained for a = 1.01 and b = 2.
Since 7 is smooth, in the interpolation error (7w — jp) is of higher order than the
quantity ES. Consequently, in view of f the order of convergence for Eﬁl
should basically be determined by the one for ES. Studying Table we observe that
EP is exactly of same order as ES. Recalling Theorem we realize that the numerical
results agree with the theoretical ones very well. In particular, the rate of convergence for
E;'?/ depends on the parameter p as predicted by Theorem We also observe that EJ
behaves as O(h?). Hence we are allowed to conjecture that a duality argument, which is
similar to the one described in [BS94], may be applicable here.

Table 4.3. Numerical verification of Theorem p=11,a=1.01,b=-1.17

#elements EL?  EP  ES EY  E?

1024 1.08 190 0.18 1.01 1.54
4096 1.05 195 0.18 0.92 1.33
16384 1.03 198 0.18 0.33 1.16
65536 1.02 199 0.18 0.19 1.07
262144 1.01 199 0.18 0.18 1.03

expected  1.00 0.18 1.00

Table 4.3 shows the experimental rates of convergence that were obtained for a = 1.01 and
b= _z% —0.99. In contrast to the previous experiment, neither the velocity v nor the

pressure m were smooth functions but they satisfy the condition F(Dwv) € W12(02)?*4 and
€ W' (). In view of Table the experimental order of convergence coincides with
the theoretical rate of convergence predicted by Theorem It should be pointed out
that E2 ~ O(h) is expected as long as ¢ > 0, cf. (4.87), . To sum up, the numerical
observations agree with Theorem . The quantities 2 and ES converge with same
order. Since E} behaves as O(h?), a duality argument seems to be applicable here.

Example 3: In Examples 1-2 we observed that both patch-wise stabilization parameters
ans = aoh?d; /o and apy == aph?; /(| Doy ?) lead to the same convergence order. However
the second choice seems to be more suitable from numerical point of view as depicted
by the following experiment (see Table . The analytical solution (v, ) was given by
with @ = 1.01 and b = 2. Hence, the velocity v satisfies F(Dv) € WH2(£2)?*4 and
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Table 4.4. Validation of Theorem for p = 1.2 and different versions of ayy

(a) an = aohir/po

ELP Eﬁl E? Numerical costs
#cells error conv. error conv. error conv. #Newt.-It. #GMRES-It.
256 1.16e-03 - 2.58e-03 - 1.44e-03 - 7(2) 1;1;1:151;151
1024  5.72¢-04 1.02 2.01e-03 0.36 7.14e-04 1.01 7(2) 1;1;1;1:15151
4096  2.83e-04 1.02 1.61le-03 0.32 3.57e-04 1.00 6 (2) Rk 35;29;17
16384  1.41e-04 1.01 1.28e-03 0.33 1.78¢-04 1.00 6 (2) **%.39:33;21
65536  7.00e-05 1.01 1.01e-03 0.33  8.90e-05 1.00 6 (2) kKK 37:23
262144 3.49e-05 1.00 8.04e-04 0.33 4.44e-05 1.00 6 (2) kK K:39:23
(b) an = aohly/u(|Donl?)
ET Eﬁl E2? Numerical costs
#cells error conv. error conv. error conv. #Newt.-It. #GMRES-It.
256 1.16e-03 - 2.53e-03 - 1.49e-03 - 7(2) 1;1;1;1;1;151
1024 5.72e-04 1.02 1.96e-03 0.36 7.37e-04 1.01 7(2) 1;1;1;1;1;151
4096  2.83e-04 1.02 1.57e¢-03 0.32 3.68e-04 1.00 6 (2) 8;8;7;7:6;4
16384 1.41e-04 1.01 1.25e-03 0.33 1.83e-04 1.01 6 (2) 8;9;8;7:6;4
65536  7.00e-05 1.01 9.92e-04 0.33 9.10e-05 1.01 6 (2) 8;9;8;7:6;5
262144 3.49e-05 1.00 7.90e-04 0.33 4.51e-05 1.01 6 (2) 8;15;12;9;7;6

the pressure 7 is smooth. In Table [4.4] we depict the absolute errors and corresponding
convergence rates. We also compare the numerical complexity. The discrete nonlinear
problem was solved by means of Newton’s method with step-size control, see Algorithm
The numerical costs were measured by the number of iterations that were performed
by Newton’s algorithm in order to reduce the (nonlinear) residual up to the prescribed
tolerance TOL = 1071, Here, the number within the brackets exhibits the total number
of iterations performed by the step-size control. The linear system of equations, that arises
in each Newton step, was solved by the GMRES method. As a preconditioner, we applied
2 iterations of the multigrid method with W-cycle. Within the W-cycle, we performed
4 pre-smoothing/post-smoothing steps. In case of grids with less than 2000 elements,
the linear systems of equations were solved directly. In Table for each Newton step
we depict the number of iterations that were performed by the GMRES algorithm in
order to reduce the (linear) residual up to the prescribed tolerance TOL = 10~'2. The
symbol “*” indicates that the tolerance was not reached within 40 iterations of GMRES.
In view of Table the two versions of as lead to similar order of convergence for the
pressure. If we compare the number of iterations performed by GMRES, we realize that
the choice apr = aph?;/u(|Dvp|?) requires less iterations of GMRES and, hence, it allows
less computational effort than an; = aph3;/po. As a result, if ay = agh3,/u(|Dvg)?)
is used, then the linear systems of equations arising from Newton iteration seem to be
better-conditioned. Hence, we use as := agh3,/u(|Dvpy)?) for the following simulations.
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4 Finite Element Approximation of the p-Stokes Equations

Table 4.5. Optimality of the a priori error estimates: Case p = 1.4

a=099 a=070 a=040 a=0.10
#eells EF EY EF EY EF EY EF EY

1024 0.88 095 0.75 0.56 0.57 045 037 0.34
4096 0.90 059 0.76 045 0.57 033 037 0.21
16384 091 057 0.77 045 058 0.33 037 0.21
65536 092 057 0.77 045 0.58 0.33 037 0.20
262144 093 0.57 0.8 045 0.58 033 0.37 0.20

expected 0.99 0.57 0.79 045 058 033 037 0.21

Example 4: The numerical results shown in Table indicate that the a priori estimates
, are optimal with respect to the required regularity of the solution. Once
again, the exact solution (v,7) was given by with ¢ € R and fixed b = 2. In
this example we investigated the convergence of the method regarding the regularity of
v. Table depicts the EOC for EF and E?'. As expected, in case of EJ we lose linear
convergence as soon as F(Dwv) no more belongs to W12(£2)4*?. More precisely, we observe
that Ef ~ ch?|| VP F(Dv)|s with 8 ~ (a — 1)% + 1 noting that VA F(Dwv)| € L*(2) iff
B < (a—1)8 + 1. Moreover, we realize that E2 is of order {(a — 1)2 + 1}}%. In view of
(4.55)), the numerical observations agree with our expectations.

Table 4.6. Numerical verification of Theorem for p > 2

(a) p=3.0,a =134, b= —0.32 (b) p=35,a=144, b= —0.42
E? ELp EY ELp
#cells error conv. error conv. #cells error conv. error conv.

1024 1.02e-02 1.02  8.55e-02 0.52 1024 1.65e-02 1.00 1.78e-01 0.42
4096 5.04e-03  1.01 5.97e-02  0.52 4096 8.21e-03 1.01 1.34e-01 041
16384 2.49e-03 1.01 4.18e-02 0.52 16384 4.09e-03 1.01 1.00e-01 0.41
65536 1.24e-03 1.01 2.93e-02 0.51 65536 2.03e-03 1.01  7.54e-02 041
262144  6.12e-04 1.01  2.06e-02  0.51 262144  1.01e-03 1.01 5.67e-02 0.41

expected 0.75 0.50  expected 0.70 0.40

Example 5: For the proposed LPS-based stabilization scheme we numerically verify
the derived a priori error estimates of Theorem in the case p > 2, see Table
Here the exact velocity v was given by 1 and the exact pressure m was prescribed
by m(z) = |z|® — f, |x|’de. The data f, v|p and the stabilization s, were chosen as
in Example 1 but the patch-wise constant a,;, which appears in the definition of sy,
was set to ay = aohﬁ; /u(|Dvy|?). The availability of the error estimates and
[@.58) requires the regularity v € W2P(£2) and = € W' (£2), which is equivalent to the
conditions a > 2 —2/p and b > 1 —2/p’. Considering Tables 4.6(a)| and |4.6(b)| we realize
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that the error Ey? behaves as O(hY/®=1)) and, hence, it converges as predicted by Theorem
However, we observe linear convergence for the pressure in LPI(Q) although we would
expect the rate of convergence p’/2. Hence, the a priori estimate (4.58)) may be suboptimal
or the observed convergence rate for E};/ may be caused by super-approximation effects
which, however, generally occur in case of smooth solutions only. Further investigations
are necessary, and they are carried out in Examples 6 and 7.

Table 4.7. Numerical verification of Theorem for p > 2

(a) p=12.5;b=-2.19

#elements EF EM  EP  ES EY  E2

1024 0.83 0.67 1.66 1.00 1.00 0.80
4096 0.84 0.67 1.67 1.00 1.00 0.81
16384 0.84 0.67 1.67 1.01 1.01 0.81
65536 0.84 0.67 1.67 1.01 1.01 0.81
262144 0.84 0.67 1.67 1.01 1.01 0.81

expected 0.83 0.67 0.83

(b) p=3; b= —2.32

#elements EF EL» Er ES EY B2

v

1024 0.75 0.50 1.46 1.00 0.99 0.67
4096 0.75 0.50 1.45 1.00 1.00 0.67
16384 0.76 0.50 1.50 1.01 1.01 0.68
65536 0.76 0.51 1.51 1.01 1.01 0.68
262144 0.76 0.51 1.51 1.01 1.01 0.68

expected  0.75 0.50 0.75

(¢) p=3.5;b=—-242

#elements EF EL» Ep  ES EY B2

v

1024 0.69 040 136 0.99 099 0.57
4096 0.70 040 1.29 1.00 1.00 0.58
16384 0.70 040 1.13 1.00 1.00 0.58
65536 0.70 040 135 1.01 1.01 0.58
262144 0.71 040 139 1.01 1.01 0.58

expected 0.70 0.40 0.70

Example 6: We illustrate the a priori error estimates & for less regular
velocity as required in Theorem and we determine the EOC with respect to further
quantities such as ES, see Tabl Here, the analytical solution was given by
with @ = 1.01 and b = —2/p’ — 0.99 so that F(Dwv) € Wh2(2)%? and 7 € W' () is
fulfilled. The data f, v|p and the stabilization s, were chosen as in Example 5. In view
of Tables - we realize that EF = O(h?/2) and Ey? = O(hY®~1) although
v ¢ W2P((2). Note that Theorem predicts the observed convergence provided that
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4 Finite Element Approximation of the p-Stokes Equations

v € W2P(2). Hence, for this particular example the assumption F(Dv) € Wh2(£2)?x4
and 7 € W' (2) seems to be sufficient to ensure (.57). According to Remark we can
expect convergence as in & if Vry, is uniformly bounded in L” (£2). Indeed,
we numerically observed that the LP -norm of V(7w — ) behaves as O(1). Concerning
the pressure convergence, Tables [4.7(a)| — [4.7(b)| indicate that, similarly to Example 5,
EY ~ O(h) in the case p > 2. Although we have not been able to verify EF' = O(h)
analytically, by virtue of and we may explain this convergence behavior
referring to the apparent EOC for ES. Using the inverse inequality , the interpolation
inequality , we can easily derive the following relation between Eﬁ’ and E2:

d d d d
I = malle S BT E g+ T -l (02 2).

Hence, for d = 2 we deduce from E? = O(h) that the pressure error in L2({2) converges
with order 2 — 2/p/ = 2/p. By Tables [4.7(a)| - |4.7(b)| the behavior E2 = O(h?/?) is well
reflected. To sum up, we observed that the experimental convergence order for the velocity
agrees with the theoretical one. The pressure converges linearly in Lp/(Q) for all considered
p > 2 and, hence, its convergence is better than expected from . As a result the error
estimate may be suboptimal. If we compare the experimental order of convergence
for ES and EP'| we realize that both quantities are of same order. We recall that we made
the same observation in the case p < 2. Consequently we conjecture that, in order to
derive sharp pressure-error estimates in the case p > 2, we should estimate the quantity
E$ directly and we should not relate it to the natural distance E7, see Lemma

Table 4.8. Verification of Corollary m for a smooth solution: Case p =3

(a) Q1/Q1 elements
#elements EF E» Er  ES EY  E2?

1280 094 099 212 094 0.87 0.60
5120 0.99 1.00 204 099 159 1.44
20480 1.00 1.00 2.00 1.00 1.73 1.63
81920 1.00 1.00 2.00 1.00 1.76 1.62
327680 1.00 1.00 2.00 1.00 1.76 1.58
1310720 1.00 1.00 2.00 1.00 1.75 1.55

expected 1.00 0.67 1.00

(b) Q2/Q2 elements
#elements EF EL» Er  ES EY  E2

1280 1.96 2.04 3.14 195 204 2.03
5120 1.98 2.02 3.056 198 201 201
20480 1.99 2,01 3.01 199 201 2.00
81920 2.00 2.00 3.00 2.00 2.00 2.00
327680 2.00 2.00 3.00 2.00 2.00 2.00

supposed  2.00 1.33 2.00
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Example 7: In the context of Q1/Q; elements, we numerically investigate the role of
super-approximation. For low-order elements, super-approximation effects are well-studied
(see [BLR86]). They may occur if, e.g., uniform triangulations are employed and the
solution is sufficiently smooth. In this example a smooth solution (v, 7) was prescribed by
with a = 3 and b = 2. The data f, v|p were chosen accordingly as in Example 1,
and the stabilization s;, was given by with aps := aph3;/u(|Dv|?) and gpr := 0. In
view of Corollary we expect that EF = O(h), Eg* = O(h?/P) and EF = O(h). The
numerical results of Table were obtained for the Q;/Q-discretization, whereas the
results of Table were generated with Q2/Q2 finite elements. In Table the
pressure converges better than predicted by Corollary The convergence rates for Eﬁl
are even better than the ones for ES. Note that in all previous examples EP was of same
order as E;,s Here, the convergence rates for Eﬁl cannot be explained by the apparent
convergence rates for £S. By contrast, as depicted in Table the Q2/Qo-discretization
yields convergence rates for Eﬁl which rather agree with our expectations. At least Eﬁl
converges with same order as E5. Hence, in Tablethe improved convergence order for
Eﬁl seems to be a special feature of the Q1 /Q;-discretization. For both discretizations, the
velocity-error EL? behaves better than predicted by Corollary Below we numerically
investigate whether the improved convergence is caused by super-approximation.

Table 4.9. Super approximation for a smooth solution: Case p =3

(a) Regular meshes (b) Distorted meshes
1,p ' 1,p '
E’U’ Eﬂ' E’U, Eﬂ'
#cells error conv. error conv. #cells error conv. error conv.

320 7.68e-02 - 2.39e-03 - 320 7.85e-02 - 2.52e-03 -

1280 3.88¢-02  0.99 1.31e-03 0.87 1280 4.01e-02  0.97 1.42e-03 0.83

5120 1.94e-02 1.00 4.36e-04 1.59 5120 1.99¢-02  1.01 5.13e-04 1.47
20480 9.71e-03  1.00 1.31e-04 1.73 20480 1.00e-02 0.99 1.82e-04 1.49
81920 4.85e-03  1.00 3.88e-05 1.76 81920 5.00e-03 1.00 7.02e-05 1.37
327680  2.43e-03 1.00 1.14e-05 1.76 327680  2.50e-03  1.00  3.06e-05 1.19
1310720 1.21e-03 1.00  3.40e-06  1.75 1310720  1.25e-03  1.00 1.43e-05 1.10

expected 0.67 1.00  expected 0.67 1.00
o :
(a) Regular initial mesh (b) Distorted initial mesh (¢) Distorted mesh with 320 el.

Figure 4.1. Distorted mesh (c) with apparent patch-structure based on (b)

In all previous examples, the mesh was refined uniformly. In particular, in each refinement
step one quadrilateral is uniformly subdivided in four quadrilaterals of same size. By
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contrast, in Table we numerically solved the same problem as in Table for
disturbed grids: On each refinement level every inner node of the grid, which is not located
next to the boundary, was randomly displaced up to 0 < §, < 0.15h in z-direction and
0 < 0, < 0.15h in y-direction (see Figure . Table indicates a similar convergence of
the velocity for both regular and distorted meshes. As a result, this observation does not
allow us to state whether the improved convergence order for ELP can be explained by
super-approximation effects. By contrast, Table reveals a reduced convergence rate
for the pressure on distorted meshes. In fact, in view of Table we realize that E;’/
almost behaves as O(h). Hence, super-approximation seems to be involved.

Table 4.10. Super approximation for a smooth solution: Case p =2

(a) Discretization errors (b) Projection errors
EL? E2 IVE, 2 7612
#cells error conv. error conv.  #cells error conv. error conv.
256 4.66e-02 - 2.67e-03 - 256 2.26e-03 - 2.69e-03 -

1024 2.33e-02  1.00 9.33e-04 1.52 1024  8.04e-04 1.49 9.36e-04 1.52
4096 1.16e-02 1.00 3.23e-04 1.53 4096  2.81e-04 1.51 3.24e-04 1.53
16384 0.82e-03 1.00 1.13e-04 1.52 16384  9.84e-05 1.52 1.13e-04 1.52
65536 2.91e-03 1.00 3.94e-05 1.52 65536  3.45e-05 1.51 3.94e-05 1.52
262144  1.46e-03 1.00 1.38e-05 1.51 262144 1.21e-05 1.51 1.38e-05 1.51

expected 1.00 1.00

In Table we observed an improved convergence rate for Eﬁl (and FE2) larger than one
although we would expect from (4.53) and (4.54) that the convergence rate for E?' (and
E?) is restricted to one for @ elements. The improved convergence order for E? is not
related to the p-structure of the problem but it is rather caused by super-approximation in
the context of Q1/Q; elements. This statement is supported by Table which shows
a computation for p = 2. Note that the case p = 2 corresponds to the linear Stokes

equations. In Table r we solved the above problem for p = 2 using a sequence of regular

meshes. Table 4.10(a)| depicts the obtained discretization errors E%’Q and E?r We expect
linear convergence for E2 but we observe the improved convergence rate 3/2. In this
connection, we also measured the projection errors. Table presents the projection
errors &, 1= (J,v — vp,) and ny, := (jp7m — 7). Comparing Tables [4.10(a){and [4.10(b)| we
realize that the convergence rates for ny, agree with the ones for (m — 7). The velocity
error &;, in W12(£2) converges with same order as the the pressure error 7, in L?(£2). For
p = 2 the pressure-estimates and can be expressed as follows:

1
= Vv —-Vj,v,V VE,, VvV 2
Bllmnlla < sup (Vo = Vijpv, Vwn)o | sup (V& Vwn)o  sn(mm)(0n)2 + oM.
wheX? Vw2 wrex?  [Vwnll Vo

The first term on the right-hand side is known to be of quadratic order (see Blum [Blu91])
whereas the second one is estimated by the quantity ||V&}||2 whose behavior is numerically
illustrated in Table [4.10(b)l The convergence order for 7y, is basically determined by the
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one for V§;. In fact, both quantities converge with same order. We believe that this
observation can be shown analytically at least in the case p = 2 by means of the following
procedure: Similarly to the derivation of (4.47)), we easily obtain the identity

IVELS + sn(mm)(nn) ~ (Vi — Vo, VE€) 0 — (jar — 7,V - &) 0
+ (V- (gpv —v),mn)0 + sp(gnm — m)(nr) + sp(m)(np).

One has to show that the terms on the right-hand side are of higher order. Since the
theory of super-approximation is not topic of the thesis, we do not proceed further in this
direction. To sum up, we conjecture that the improved convergence of Eﬁl, which was

observed in Table is caused by super-approximation due to the smoothness of (v, 7).

Table 4.11. Stabilization by classical LPS. Verification of Corollary

(a) p=1.1

#elements EF EL» Er  ES EY  E2?

v v

1024 091 106 190 0.18 0.19 1.02
4096 092 104 197 0.18 0.19 1.02
16384 093 1.03 192 0.18 0.19 1.01
65536 094 1.02 168 0.18 0.19 1.01
262144 094 101 140 0.18 0.19 1.01

expected  1.00 1.00 0.18 1.00

(b)y p=1.3

#elements FEF ELP EP ES EP

v v ™ ™

1024 097 122 185 047 047 1.01
4096 098 1.17 1.65 047 047 1.01
16384 098 1.12 1.51 047 047 1.01
65536 0.98 1.09 144 047 047 1.01
262144 0.98 1.06 142 047 047 1.01

expected 1.00 1.00 0.46 1.00

Example 8: We numerically verify the a priori error estimates of Corollaries [£.14] and
which quantify the convergence of the standard LPS method proposed in [BBO1] in
the context of p-Stokes systems. The exact solution (v, 7) to Problem was prescribed
by with a = 1.01 and b = —1.99 so that F(Dwv) € Wh2(2)*% and 7 € W12(£2) is
satisfied as required in Corollaries and The data f, v|p were chosen accordingly
as in Example 1. The stabilization s;, was given by with ay = agh3,;/u(|Dv|?),
but in the fluctuation of the gradient 8V, was replaced by the gradient of the
fluctuation V0,7, and the filter 6, was chosen as in . First of all, by means of Table
[4.11] we numerically confirm the a priori error estimates of Corollary in the case p < 2.
Since v € W1>(02) for a > 1, Corollary predicts that EX = O(h), Ey* = O(h),
and EY = O(h?/?"). Considering Table 4.11] we observe that the experimental order of
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convergence agrees with the expected one very well. By means of Table we illustrate
the a priori error estimates of Corollary [£.16]in the case p > 2. Compared to Example 6 and
Table [1.7] the better regularity of 7 should lead to improved convergence rates for both
the velocity and pressure. Theoretically we expect that EF = O(h), Ey” = O(h?/?), and
E2 = O(h). In view of Table we realize good agreement of the numerical results with
the theoretical ones. Once again we observe that Eﬁl is of same order as ES.

Table 4.12. Stabilization by classical LPS. Verification of Corollary

(a) p=12.5;b=-1.99

#elements EF EL» Er  ES EP  EZ2

s

1024 1.01 081 1.79 1.21 1.20 1.01
4096 1.01 081 180 1.21 1.21 1.01
16384 1.01 081 1.81 121 121 1.01
65536 1.01 081 1.81 121 121 1.01
262144 1.01 081 1.81 1.21 121 1.01

expected  1.00 0.80 1.00

(b) p=3;b=-1.99

#elements EF ELP EP ES Eﬁl E?

1024 1.01 0.67 156 134 133 1.01
4096 1.01 0.67 157 134 134 1.01
16384 1.01 0.67 166 134 134 1.01
65536 1.01 0.67 1.67 134 134 1.01
262144 1.01 0.67 1.67 134 134 1.01

expected 1.00 0.67 1.00

Example 9: We perform some numerical experiments in three space dimensions which
are in the same spirit as the previous two-dimensional experiments. In Tables [{.13] [£.14]

we demonstrate Theorems for d = 3 and in Table we validate Corollary
for d = 3. Here, on the cube 2 := (—0.5,0.5)3 the exact solution of was given by

o
—0.5z123 and 7(x) = |z’ z 1 z0ms. (4.107)
—0.5.%'1332

v(x) = |x|??

In Table the parameters a and b have been chosen so that F(Dwv) € Wh2(£2)9*? and
m € WP (). We easily compute that V- v = 0 and |Vv(z)| ~ |2|"L. For e = 0 we
(a—1)

observe |VF(Dv(z))| ~ |z|~ 2 . Hence, it holds F(Dv) € W12(£2)33 if and only
if (a —1)p —2 > —3. This condition is equivalent to a > %. For Table we set

a= % +0.01 and b = 2. Due to Theorem - we expect that EF = O(h), E,* = O(h),

and EY' = O(h¥?"). In view of Table [4.13] we realize that for all considered quantities
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the experimental order of convergence agrees with the theoretical one predicted by the
a priori error estimates. In Table [£.14] the parameters a and b have been chosen so that

Table 4.13. Numerical verification of Theorem ford=3 and p <2

(a) p=1.1,a=0.10 (b)y p=1.2,a=0.17

#elements EF El» EP ES Eﬁl #elements EF EL» ER  ES EP

v

4096 084 099 1.72 0.18 1.12 4096 0.84 098 182 034 1.72
32768 088 1.02 1.84 0.18 0.20 32768 0.87 1.00 191 0.33 0.64
262144 0.90 1.02 191 0.18 0.18 262144 0.89 1.00 195 0.33 0.34

expected  1.00 1.00 0.18 expected 1.00 1.00 0.33

v e W2P(2) and m € WH¥'(£2). Note that these requirements are equivalent to the
conditions @ > —3/p 42 and b > —3(p — 1)/p — 2. For Table [f.14 we set a = —3/p + 2.01
and b = —3(p —1)/p — 1.99. By virtue of Theorem we expect that EF = O(h?'/?),
Ey? = OhY®=D) and EP = O(h¥'/2). In view of Table we realize that the
experimental convergence order for the velocity agrees with the theoretical one. But we
observe linear convergence for the pressure although we expect the convergence rate p'/2
only. Note that we made similar observations in the case d = 2 (see Examples 5 and 6).
As in the above examples, the quantity Ef converges with same order as Ef’rl and the
apparent convergence rate for Eﬁl may be explained by the one for ES. We mention that
if we prescribe the regularity F(Dwv) € W12(£2)9*4 instead of v € W2P(£2) only, then
we observe similar convergence rates as in Table [£.14] Hence we conjecture that for this
particular example the regularity assumption F(Dwv) € Wh2(2)?*? and 7 € W' () is
sufficient to ensure the availability of the error estimates stated in Theorem [£.12]

Table 4.14. Numerical verification of Theorem ford=3 and p > 2

(a) p=3.0, a =101, b= —3.99 (b) p=3.5,a=1.15b=—4.13

#elements EF EL? EP  ES EY  #clements EF EM EP  ES EP

™

4096 0.66 0.36 0.99 093 1.02 4096 0.62 028 080 094 1.03
32768 0.72 042 126 1.00 1.01 32768 0.69 037 124 1.02 1.01
262144 0.74 046 138 1.01 1.01 262144 0.70 040 135 1.02 1.01

expected  0.75 0.50 0.75 expected 0.70 0.40 0.70

In Example the parameters a and b have been chosen so that v € W22(£2) and
m € WH2(§2). Note that the assumptions v € W>?(2) and 7 € WH2(£2) amount to
the conditions a > 0.5 and b > —3.5. In Example we set a = 0.51 and b = —3.49.
According to Corollary we expect that Eg” = O(h) and E2 = O(h). Moreover,
Corollary @ predicts the convergence rate 1% — % for Eﬁl. Considering Table we
observe a good agreement of the numerical results with the theoretical ones.
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4 Finite Element Approximation of the p-Stokes Equations

Table 4.15. Numerical verification of Corollary ford=3 and p < 2

(a) p=1.1 (byp=1.2
#elements ELP EP  ES E,’ﬁl E2  #elements EMP EP  ES E};/ E?
512 099 1.81 0.21 -0.21 1.13 512 098 183 037 013 1.11

4096 1.02 1.86 0.22 -0.22 1.05 4096 1.02 1.89 039 0.01 1.04
32768 1.02 194 021 -0.22 1.01 32768 1.01 195 038 0.01 1.01
262144 1.01 197 0.20 -0.22 1.00 262144 1.01 197 037 0.01 1.01

expected  1.00 -0.22  1.00 expected  1.00 0.00 1.00
(c)p=13 (d)p=15
#elements EL?»  Ep ES  EP  E2  4clements EL?» EP ES EF E2
512 0.97 1.84 0.50 045 1.09 512 0.93 186 0.65 0.78 1.06

4096 1.01 191 0.52 020 1.04 4096 098 191 070 0.51 1.03
32768 1.01 196 052 0.20 1.01 32768 099 195 0.71 0.51 1.01
262144 1.01 197 051 0.20 1.01 262144 1.00 197 0.72 0.51 1.01

expected  1.00 0.19 1.00 expected 1.00 0.50 1.00

Conclusion: In this chapter we proposed the novel LPS-based stabilization which
was particularly designed for the approximation of p-Stokes systems with equal-order finite
elements. For low-order d-linear elements, we derived a priori error estimates which quantify
the convergence of the method (see Theorems and . In the case p < 2 the derived
error estimates provide optimal rates of convergence with respect to the supposed regularity
of the solution. They improve existing results in literature, see [BN90, BL93b, BL94]. Note
that the results of [BN90, [BLI3D, [BL94] are suboptimal in the sense that either the rate
of convergence is not optimal or the assumed regularity of the solution is too high and
not realistic for general solutions. In the case p > 2 our a priori error estimates yield an
optimal convergence rate for the velocity and a possibly suboptimal convergence order for
the pressure provided that the velocity satisfies slightly more regularity than its natural one.
Our numerical experiments indicate that the pressure error Eﬁl converges with same order
as ES. This observation was also made in Belenki et al. [BBDRI0]. In order to obtain
sharp error estimates for Eﬁl in the case p > 2, one should therefore attempt to estimate
ES directly, and one should not relate it to the natural distance E via Lemma Note
that in the proof of Theorem the quantity E;,S was estimated by E7 as suggested by
Lemma If the pressure gradient is stabilized with the standard LPS method for Stokes
systems as introduced in [BBO01], then similar a priori error estimates were derived (see
Corollaries and . They are optimal with respect to the rate of convergence in
case of d = 2, but their derivation requires either additional regularity assumptions on the
solution (v, ) or the restriction to the case € > 0. Their rate of convergence depends on
the space dimension d. By contrast, the LPS-based stabilization proposed in allows
a priori error estimates which, at least for p < 2, provide optimal rates of convergence
for arbitrary space dimension d > 2. Moreover we observed super approximation for the
pressure whenever we approximated a smooth solution on a sequence of uniformly refined
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4.9 Final remarks on LPS

meshes. This improved convergence supports the usage of LPS-based stabilization: If the
pressure is smooth, artificial terms such as h* 3 e, ||9hV7TH£:;M (see, e.g., Remark
resulting from stabilization are usually of higher order than s since they involve fluctuations
0y, satisfying |0, V7| .0 < har|| V27| p.0r. In contrast let us imagine a simplified version
of for which the fluctuations of gradients 8,V are replaced by gradients Va. For
such simplified stabilization, the order of convergence would be restricted to s so that an
improved convergence due to super approximation would not be possible.

4.9 Final remarks on LPS

We close the chapter with some remarks on the LPS scheme proposed in Section In
Assumption we required that the pairing Xy /Y}, between the original FE space X}, and
the projection space Y}, satisfies a certain local inf-sup condition. In fact Assumption [4.1]
can be satisfied for several choices of Y. In this section we exemplarily verify Assumption
for particular pairings Xj,/Y; following the literature [MSTO7]. Let M := (—1,1)%

be the reference hyper-cube with vertices d;, i = 1,...,2% and the barycenter dg and let
Fy : M — M be the multilinear reference mapping. Let M be refined into 2¢ congruent
cubes K;, i = 1,...,2% This induces a refinement of M into 2¢ cells. The union of all

these cells forms the principal mesh T}, = UMEm,L{FM(Ki); i=1,... ,Zd}. We define

Xyt ={we C(Q2);w|xoFg € Q. (K) VK € Ty},
X%y o ={w € L*(2);w|p 0 Fay € Qr_1(M) VM € My, = Tap}.

Actually the spaces Xj,, and Xg,‘ff, ; have already been introduced in and (| -

Lemma 4.24 (Local inf-sup condition). Let My, satisfy the mesh-property (M5), i.e
let the distortion parameter vy defined in fulfill ypr < v < 1. Let the local projection
scheme be defined for the pair Xp, /Yy = Xhm/Xg,if;_l with a fized polynomial degree r € IN.
As in Section[4.1, we set Yi,(M) := {qn|m; an € Y} and

XP(M) = {wp|nr; wp € Xp, wyp, =0 on 2\ M}.
Then for v > 1 there exists f = (7o) > 0 independent of h such that

(w7Q)M 2

inf sup >6>0

q€Y;, (M) weX ) (M) HwHV;MHQHV’;M

for all h >0 and all M € My, where V' :=v/(v —1). Ifv =1, then V' := 0. If y0 — 1,
then the constant 8 may degenerate, i.e., B — 0.

Proof. We follow the proof of Lemma 3.2 in [MSTO07]. There the desired result has been
proven in a Hilbert space setting. Here we can use the same arguments. First of all let

€ (1,00). From (3.10) it follows that (note & = F (&), §(&) := q(x))

lallzsar = /!q ) det(VFu(#))|d& < Cal(L +yar) R 117, (4.108)
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4 Finite Element Approximation of the p-Stokes Equations

for all ¢ € Y,(M). Let b: M — R be the piecewise multilinear hat function associated
with ao, i.e., let IA)((?L()) =1, b(a;) =0 for i = 0,...,2% For arbitrary ¢ € Y;,(M) we choose
w(x) = (§-b) o Fy} (x ) Note that § € Q,—1(M ) Because q-b is continuous on the closure
of M, (G- IA))\KZ S QT( K;)fori=1,...,2% and b\aM = 0, we can conclude that

() := §(2)b(@) € {@ € C(closure of N); i,y =0, 4l z, € Qu(Ki),i=1,...,2%}.

Hence, we realize that w € XP(M) (note that x € OM = F;/(x) € OM = w(x) =
W(Fy} (z)) = 0). Recalling (3.10]), we observe that

(-0 = [ (@hw@)de = [ 4(@)0@)|det(VFu (@))] di

M N
/q:@q:ﬁé ) det(VF (&) d& > Cdl(1 — var)?hd, / (2)%b(&
M

Since the space Q,—1(M ) is finite dimensional, all norms on Q,_ 1(M ) are equivalent. Hence

A 7L ~ ~
q-b2 > Clldllyy V4 € Qra(M)

2M

for some C' > 0. As a result, we arrive at
(g, w)ar = Cdl(L =) 01415 (4.109)

For all & € M it holds |b(&)| < 1. Consequently, in view of (3.10) we obtain the estimate

< / (&))" det(VF(#)]dé < Ca(l + ) B lall . (4110)

Using (4.108]), (4.110)), and the equivalence of norms on Qr_l(M ), we conclude that

v /v
lewllvallallrn < (A0 +var) hs,) "l Hy;M(d!uﬂM)dh%) lal, .z
< Cdl(1 + yar) 112 (4.111)

If v =1, then v/ = 0o and ||q||loc;ps < ||| .- Therefore, for v = 1 we obtain an analog

)

estimate that is similar to (4.111)). Combmlng (4.109) and (4.111)), we deduce that for all
v > 1 and for all g € Y;,(M) there exists w € X (M) such that

_ d oNd
(q,w) 20(1 '7M> 20(1 70) _. 3
wllu;nrll gl ar T+vm 1+

This yields the assertion. O
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5 Approximation of the p-Navier-Stokes
Equations

This chapter is devoted to the finite element (FE) discretization of the p-Navier-Stokes
problem The standard Galerkin finite element method (FEM) may suffer from
numerical instabilities resulting not only from violation of the inf-sup stability condition but
also from dominating advection in case of high Reynolds numbers (cf. [BL09|). The local
projection stabilization (LPS) method can be applied to handle both instability phenomena.
In this chapter, we will extend the LPS approach proposed in Section to the generalized
p-Oseen problem Such p-Oseen problems usually appear as an auxiliary problem
when the non-steady p-Navier-Stokes system is discretized with an implicit A-stable time
step method (cf. [BDR09, BL09]). In the shear thinning case, we will show optimal a
priori error estimates that ensure the convergence of the method and that are similar
to those established in Theorem Finally, we will study the FE approximation of
In this connection we will discuss a posteriori error estimation. From practical
point of view, a posteriori error estimation plays an important role since it allows to assess
the actual discretization error numerically. In contrast, a priori error estimation yields
upper bounds for the discretization error that depend on the unknown exact solution and
that cannot be evaluated numerically. The dual weighted residual (DWR) method has
been developed particularly for goal-oriented a posteriori error estimation. It also allows
adaptive mesh refinement which enables to reduce numerical costs without loss of accuracy.
In this chapter, we will apply the DWR method to the p-Navier-Stokes equations.

In Section we introduce the LPS method in the context of p-Oseen systems. In
Section we summarize resulting properties of the stabilization term and we discuss
the well-posedness of the stabilized discrete systems. In Section we analyze the LPS
method applied to the p-Oseen equations. In particular, we derive a priori error estimates
by extending the basic concepts of Chapter [d] The established results are motivated by
the time-discretization of the p-Navier-Stokes equations in Section whereas they are
numerically validated in Section Following the literature [BRO03], in Section we
introduce the DWR method. Finally, in Section we apply the DWR method to the
steady p-Navier-Stokes equations for the computation of the drag coefficient.

5.1 LPS in the context of p-Oseen systems

In this section, we consider the p-Oseen system ([2.17)) complemented with homogeneous
Dirichlet boundary conditions and we study its discretization with equal-order @;/Q; finite
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5 Approximation of the p-Navier-Stokes Equations

elements. The investigation of system is motivated by the fact that it is needed for the
error analysis of the time-discretized non-steady p-Navier-Stokes equations if an A-stable
semi-implicit Euler scheme is applied (see Section |5.4] or Berselli et al. [BDRQ9]). System
corresponds to the steady (¢ = 0) and the non-steady (¢ > 0) time-discretized
p-Navier-Stokes-system with linearized convective term. For ease of presentation, for all
u = (v, 7) and w = (w, ¢) we introduce the semi-linear form

A(u)(w) := (S(Dv), Dw)o + ((b-V)v,w>Q+a(v,w)g —(m,V-w)o+(V-v,q9)o (5.1)

so that we can equivalently write the p-Oseen Problemas follows: For given f € L”' (£2)
find u = (v, 7m) € AP x QP (the continuous solution) such that

A(u)(w) = (f,w)qn Vw = (w,q) € XP x QF. (5.2)

Below, we always assume that the vector field b belongs to W°°(£2) and satisfies V-b = 0
a.e.. The Galerkin discretization of |((P6)|reads: Find uj, = (vp,, ) € X% x QF such that

A(uh)(wh) = (f,’wh)_() Ywy, = (wh,qh) S XZ X Q];L (5.3)

As mentioned in Section the formulation may suffer from violation of the discrete
inf-sup condition and locally dominating advection. Both instability phenomena can be
handled by the local projection stabilization method. In particular, the stabilization of the
pressure gradient can be carried out as described for p-Stokes systems in Section [4.1]

Following the literature [MSST07] or Section we introduce the coarse mesh IM;, = {M}
constructed by coarsening the basic mesh T}, such that each macro element M € M, with
diameter hj; is the union of one or more neighboring elements K € T}. We assume that
the decomposition IMy, of {2 is non-overlapping and shape-regular. The interior elements
are supposed to be of similar size as the macro element, i.e., 3C > 0: hys < Chg for all
K €Ty, and M € My, with K C M. Since we deal with equal-order discretizations, we
do not need to assign separate projection spaces for the velocity and pressure. Similarly
as in Section we introduce the space Y}, as a (possibly discontinuous) finite element
space defined on the macro partition M, so that the pairing X} /Y}, satisfies the local
inf-sup condition Assumption The restriction of Y3 on a patch M € My, is denoted
by Yi(M) = {wp|p; wp € Yi}. Let Py o LY(M) — Yi(M) be a local projection. The
global projection Py, : L”(§2) — Y}, is then given by (Prw)|ar := Py(w|ar) for all M € My,
The associated fluctuation operator 6y, : L¥(§2) — L”(§2) is defined by 0}, :=id — P,. We
modify the discrete problem by adding the stabilization term

Sh(uh)(wh) = Z OéM((T—i- ‘OhVWh’)p/_QOhVWh,thQh)M
MeMy,

+ 3 ou(6u(b-V)vn, 04(b- V)ws) .
MeMy,

(5.4)

Later the patch-wise constants aps and s will depend on the local mesh size hps. Their
dependence on hjs will be determined by the convergence analysis of the method. The
stabilized finite element system reads as follows:
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(P61) Find up = (v, m,) € X5 x QF (the discrete solution) such that

A(up)(wn) + Sp(un)(wn) = (f,wn)e Ywp = (wh,qn) € X, x Q). (5.5)

Note that in the particular case p = 2 the stabilization scheme , coincides with
the standard LPS scheme for Oseen systems presented in Matthies et al. [MSTO07]. In
order to control the consistency error caused by the @,-dependent stabilization terms, the
space Y}, has to be rich enough or, in other words, it should satisfy the following

Assumption 5.1. Let v > 1. We assume that the fluctuation operator 0, satisfies
10nw|lpar < CRE VR0 |ppr Yw e WRY(2),  YMeM,,  ke{0,1},

where C' > 0 does not depend on the local mesh size.

Below we always assume that Assumption [5.1] is satisfied.

5.2 Properties of the stabilization scheme

In this section, we summarize important properties of the proposed stabilization term ([5.4))
and we discuss the well-posedness of Problem [(P65) We proceed similarly as in Section
Let G be defined by (4.6). For u = (v, 7) and w = (w, q) we define the distance

lu—wlie:= D omllOn(b-V)v = 04(b- V)wll3,,

MeMy, (5 6)
+ > anlG(0xVT) — GO,V Q)50
MeMy,
This definition is justified by the following observation:
Lemma 5.1. For p € (1,00) let Sy, be defined by (5.4)). There holds
Sp(u)(u —w) — Sp(w)(u —w) ~ |u— w|12ps Yu,w € Wl’Z(Q) X Wl’pl(Q).
Proof. The assertion follows from the vector-valued version of Lemma O

Lemma 5.2. Let p € (1,2]. For all (v, ), (w,q) € WH2(2) x WP () there holds

(v —w,m—q)lfs < > omll(b-V)(v—w)|3y
MeMy,
2

e+ 9a+ 191 F gV - o)
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5 Approximation of the p-Navier-Stokes Equations

Proof. We can easily derive the desired estimate using Lemma [1. [4.1], Assumption and
Hoélder’s inequality with 2 + p —2 — 1. More precisely,

|(v_w77T_Q)|l2ps§ Z QMHeh(bv)v_Bh(bv)wH%,M

MeMy,
+ Y anllr+ 102w + 05 Val 57105V T — 0, Va0
MeM,,
> oml(b-V)(v— w3

MeMy
P -2 o 2
’ p’ P / p’
H (S e iva + Vall) T (X aklIvE- ol

MeMy MeMy

This yields the assertion. O

Lemma 5.3. For p € (1,00) let Sy, be defined by (5.4). For all § > 0 there ezists a
constant ¢ = ¢(8,p) such that for all u,w,w € WH2(2) x W' () there holds

Sh(u’)(u - w) - Sh(’a‘)(u - w) < C5"u’ - ’a“l2ps + 5’“’ - w‘Ist'

Proof. Let ¢ and ¢* be given by ([2.37). Using the vector-valued version of Lemma
(with p, €, ¢ replaced by p/, 7, ¢*), for u = (v,7), u = (v,7), w = (w, ¢) we conclude that

Sp(u)(u — w) — Sp(v)(u — w)
S S aur [ (¢ Vsio,95(180V7 — 6,V 7)[6,V T — 6,V | da

+ Y QM/\ah b- V) — 04(b-V)5||04(b- V)v — 04(b - V)w| da
MeMy, M

=11 + Is.
Lemma Lemma and Young’s inequality imply that for arbitrary § > 0

Li<es Y, an|G(0nVm) —GOWVT)30 +0 > anl|G(0rVT) —G(0rVa) s,

MeMy, MeMy,

L<cs Y omlOn(b-V)o—04(b-V)3|30 +0 D oml|0n(b-V)v—6,(b-V)w|3 .
MeMy MeMy,

Recalling (5.6)), we easily complete the proof. O

Lemma 5.4. Let p € (1,2] and q > d+1 Then, for each § > 0 there exists cs > 0 such
that for all w = (v,7) € W29(Q) x W (@), k € 0,1}, @ € WH2(0) x W' ()

q q
s X [oratlolE ] "lol )

MeMy,

Sn(u)(u —w) < ¢;v]

/

/I £z /
+esllr + [Vl 2( > [anhif] 2\|v’f+17r||§,;M>p +6lu — wli,.
MeMy,

AN
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Proof. Setting 4 = 0 in Lemma we observe that for each § > 0 there exists ¢5 > 0:
Sh(“)(“’ - w) < 05‘u|12ps + 5’“ - w|12ps'

Applying Lemma noting the fact p’ > 2, using Holder’s inequality and Assumption
for k € {0,1} we can estimate the term |u]12ps by

ulis = D omllOn(b-VIolin + Y anmllG(0rV)5

MeMy MeM,
< D om0 V)vllgll0n(b - V)vllgns
MeM,,
/-2
+ 3 anllr +10nV7|[5 10,V T2
MeM,
S D oml(®-V)ollgarharll(b- V)l g
MeMy,
=2 2k 1k
+ Y ol + | VA||E R IV w2
MeMy,

Using Holder’s inequality twice (with z% + plp_,2 = 1 in the second sum), we arrive at

1
q q
ioo;M} ||VU||({,(1;M)

1

/ q’

af £ (5 1900 ) (S ol
MGM}L MEM}L

/

4 % E 7
k12 k / p / P
+< S Janhi] T IV +1w\g,;M) ( ) HTHWHQ;M)

MeMy, MeMy

Since ¢ > %, the embedding W24(£2) < W (£2) holds. This implies the assertion. [J

The following lemma represents a simple modification of Lemma [5.4}

Lemma 5.5. Let p € (1,2] and q € [%, ]. Assume that the fluctuation operator 0Oy,
additionally satisfies the approzimation property ||0pw|2.ar < Ch}\;d/ﬁdﬂ\\wﬂl,q;]\/[ for all

M € My, and w € WH4(2) < L?(£2). Then, for each § > 0 there exists c5 > 0 such that
foru = (v,7) € WH(Q) x WP (2), k€ {0,1}, w € WI2(2) x WP (2) there holds

2-2d 1474 q q
S —w) < es( 3 [auty IOVl )
MeMy,
/ 2
b v
) 5 ’ P
+05\|T+]V7T|HZ, (Z [aMh?\f[}QHVkHﬂHg,;M) +(5|u—w\12ps.
MeMy,

Proof. Setting u = 0 in Lemma we realize that for each § > 0 there exists ¢5 > 0:

Sh(u)(u - w) < 05‘u|l2ps + 6’“’ - w|12ps'
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Using Lemma the assumption on 6y, and Holder’s inequality with z% + p/p_,Q =1, and

noting ¢ € [d2—f2, 2], p' > 2, for k € {0,1} we can estimate

|’u"l2ps: Z QMHOh(bv)v”%,M+ Z O‘MHg(OhVﬂ.)H%,M

MeMy MeM,y,
< hQ—%ﬂLd b. V)l Vol 1P -2 2k k|2
S > omhy -Vl g+ Y anllT + VAl R |-y,
MEMh MEMh
2-2d 4474 i
S(X [ewtin e D0l )
MeMy,
p/ 2 p/—2
k — k 7 p/ 7 p/
(O fanrtd] 197100 ) (X M 19l )
MeMy MeMy
This completes the proof. ]

Remark 5.1. If the fluctuation operator 6, satisfies Assumption then it also fulfills the
assumption of Lemma cf. the homogeneity argument in (3.18]).

Using similar arguments as in the proofs of Lemmas and taking into account the
properties of b and S}, we can easily conclude the well-posedness of Problem |(P6},)|

Lemma 5.6. Forp € (1,00) and e € [0,£0] let S satisfy Assumption[2.1 Let S), be defined
by (5.4) with apr := aohly, s € [0,p], 7 € [0,70], om := oohar. Then for p > % there
exists a unique solution u, = (vp, ) € X} x QF to Problem |(P6y,)| satisfying

lonlly , + ollvnl3 + IS(Dvn)lly + Sh(un)(un) < C1(2,p,€0,00, 01, f),

: (5.7)
ﬁ(p>||7Tth/ S 02(07]9750) 00,01, 0, .fa «p, 70, QO)a

where B(p) > 0 is the constant appearing in . The restriction on p solely comes from
the availability of the LY _pressure-estimate 2. The constants C1 and Co only depend
on the data quoted within the brackets. If p < 2 then the constant Cy does not depend on
T, whereas if p > 2 the constant C1 does not depend on €.

Proof. Due to ([b- V]vp,vp)n = 0, the well-posedness of [(P6},)| follows along the lines of
Lemmas and The restriction on p, p > ﬁdl, results from the continuous embedding
WhP(£2) < L¥ (£2) which is needed for the derivation of (5.7)2. More precisely, the discrete

pressure 7y, is estimated by (cf. the proof of Lemma |4.6)

=

~ V. wp,m / /
Bl < sup SLRENE L (5 jo,9m, )

wp X vahHP MeM,
1
D D — / / v
< sup ’(S( Uh)a 'th)_Q (fawh)9| +< Z hﬁJHOhVﬂ-hHg’-M)p
wy, €XP [Vwsl|, MeM,, 7
(b V)vn, wi)a + o(vn,wh)a + Su((vr,0)) ((wn,0))]
+ sup .
g 2 Vwnl,
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5.3 Error estimates for the stabilized p-Oseen system

The first two terms on the right-hand side also appear in the proof of Lemma and they
are estimated similarly as there. Compared to the proof of Lemma [4.6] we additionally

need to control the latter term. Using WP (02) < L¥'(£2), for p > % we conclude that

([b- VIvn, wi)o < [[bllco | Vonllplwhlly < [1blloolvnll1p

o(vn, wh)o < ollvall2|wallz S ollvallipllwnlp

whHLpa

Using Assumption the local inverse inequality (3.19)), for p > % we arrive at

1

Sn((00:0) ((wn0) < (X a0t Vywalar) (X earlOn(b- Dyl )’
MeM, MeMy,

1
2 —2d_ g 2
%,p;M) < Z QMhMp HwhHip;M>

MeMy,

) —2d4q
SIBIE( X et o
MelMy,

1 1
p P
Vo) (3 Tl s S 11l

MeMy,

SBIE( Y o

MeMy,

1pllwall1p-

We note that o ~ hps and 1 — %d +d>0<p> %. We easily complete the proof. [

5.3 Error estimates for the stabilized p-Oseen system

In this section we derive a priori error estimates which quantify the convergence of the
method. We restrict ourselves to the case p < 2 since we may perform a similar analysis in
the case p > 2. The following theorem extends Theorem to p-Oseen systems. Its a
priori error estimates represent one of the main results of the thesis. They provide optimal
rates of convergence with respect to the supposed regularity of the solution.

Theorem 5.7. Let p € (1,2] and € € [0,00). Let (v,7) € XP x QP be the unique solution
of and let (v, ) € XY x OF be the unique solution of where the stabilization
term Sy is defined by . We assume that (v, ) satisfies the additional regularity
F(Dv) € Wh2(2)™? and 7 € WFLP'(Q) with k € {0,1} and 1/p+1/p' = 1. Let the
stabilization parameters oy, apr be chosen as follows:

hor

on = o, . omi=aohd, if k=0, and oni=aoh’ if k=1

’bHLOO;M

Then, the error of approximation can be estimated in terms of the mazximum mesh size
h:=max{hpy; M € My} as follows: There exist constants Cy,, Cy > 0 such that

|F(Dv) = F(Dvp)ll2 < Coh,  [lv —wpfl1p < Cyh. (5-8)

2d

711 then there exists a constant Cr > 0 such that

Moreover, if p >

2
7 — mally < Crh’, (5.9)
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5 Approximation of the p-Navier-Stokes Equations

The constants Cy, Cl,, Cr > 0 only depend on |VF(Dv)||2, |7llk+1p5 Ps €05 00, 01, T, §2,
f, 00, o, 10, and Cy additionally depends on the constant B(p) appearing in (4.30)).

Assume additionally that My, is quasi-uniform. Then, there exists Cl. > 0 such that
in{o— 24 2
I — mnllyy < CRR™MET ) (5.10)
The constant C. > 0 depends on the same quantities as Cy.

Remark 5.2. If My, is quasi-uniform, then (5.10)) improves (5.9) concerning the admissible
2

range of p. In particular, it holds min{2 — ¢ 4 d, ]%} = 1% provided that p > 2{7_2. Hence,

if d =2, (5.10) yields an O(h*/?") bound for the pressure error in L (£2) provided that
p > 1, whereas ([5.9) ensures the same convergence rate for p > % only. If d = 3, (/5.10)
predicts the convergence rate 1% for p > %.

Proof of Theorem[5.7. Let jj, and j; be interpolation operators as in Lemma [£.4] It is
sufficient to estimate the projection error &, := (j,v — vp) and n, = (jpm — 73,) with
respect to the distance ||(&§,7n)||1ps defined by

1(€n ) Ifps = I F (Dgpv) — F(Dop)|13 + oll€nl3 + (& 1) fps- (5.11)

Using Lemma |2.5| and Lemma [5.1] we observe the equivalence

1(€n: 1) I ~ (S(DJpv) — S(Dvn), DEy) e + oll€l13
+ S ((Grvsgnm) ) ((€nsmn) ) = Sn (@) ((€nmn)).
Adding the following trivial identities to the right-hand side,
0=((b-V)&n &), = (b-V)w—vn) &) + (b V)GHv —v).64)
0=—(m =7V -&)o+ (V- (v—on),m)e— (rr =7V -&)o + (V- (4,0 = v),m)e,
and using the disturbed Galerkin orthogonality, which reads

A(u)(wh) — A(uh)(wh) = Sh(uh)(wh) Ywy, € Xﬁ X Qz
for u = (v, ) and wp, = (vp, 73), we arrive at

1€ m) s ~ (S(Djyv) = S(Dw), DE)o + 0 (i — v,€4) + (b V) (v — ).&,)
— (um =7,V - &) + (V- (G40 = 0),m) e + Sn (350, 3am) ) (€rs )
=L+ I+ I3+ 14+ Is + I. (512)

We estimate the terms I, ..., I in (5.12)) separately. Similarly to the proof of Theorem
for arbitrary é; > 0 the term I; can be bounded by

Iy < ¢, | F(Djyw) — F(Dv)|[3 + 61| F (Djpv) = F(Dwy)|l3

, ) (5.13)
< s, W[V F (D)l + 611 (€55 7m) l1ps-
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5.3 Error estimates for the stabilized p-Oseen system

Lemma implies that v € W29(£2) with ¢ := 2 — § for arbitrary ¢ € (0, 1] in the case

d=2and q := % in the case d = 3. Hence, by means of Young’s inequality and the

approximation property of j;, for arbitrary d2 > 0 the term I3 can be estimated by

. 4-2d 4
Iy < c5,0|5,0 — vlf3 + 020 [1€4 115 < cs,oh™ 0 ][5, + S20l| (€ ma) e (5.14)

Using integration by parts (V - b = 0), and the interpolation properties of j,, we conclude
that for arbitrary d3 > 0 there exists a constant cs, > 0 such that

Iy = ((b-V)(Gav = v),&) , = = (G40 — v,00(b- V)&, )

<cs, > ontlldn—vl3ar+03 > omllOn(b-V)EL3
MEIMh MEM}L

_q.4-2%4g
<es, Do ol T vBgsy, F05 Y omllOn(b- V&30
MeMy, MeM,
2

42444 q
<an( X [eattn ] ol gy ) Bl ) B (5.15)
MeMy,

Applying Lemma recalling the W P-stability of j,,, using the uniform a priori W1?-
bounds for vy, v as (5.7]), we deduce that for each d4 > 0 there exists ¢s, > 0 so that

2-p
Iy < |7 = juwllplle + |Djpol + [Doplllp* | F(Dgpv) — F(Dop)ll2
< csille + | D] + [ Dopllly Pllm = jnxlly + 84l F(Dgpv) — F(Dop)|3
< s, W27 Rr g+ Sl (€ ) s (5.16)

The constant c¢s, only depends on 2,p, ¢, 00,01, f,04. The term I5 can be estimated
similarly to (4.51). Using integration by parts (the discrete pressure is continuous), the
orthogonality of j; with respect to Y, Holder’s and Young’s inequality, Lemma with
p' > 2, and the approximation property of j,, for arbitrary d5 > 0 we estimate

I; < |(V- (Gav = v).m)e| = |Gyw = 0. Vin)e| = |(ine = v,04(Vm))e|

—(p—1) 1 . . /
<cs, S an Vlgpo vl +8 > anll0nVinm — 0,9m

MeMy, MeMy,
1-py 2
<esy Y, o byl s, + Oscll(€ns ) Iis, (5.17)
MeMy,

where the constant cs, only depends on p, o, d5. Finally, the term s can be estimated
by means of Lemmas We need to check that the assumptions of Lemma

are satisfied: If d = 2, the condition ¢ > % is clearly satisfied. If d = 3, the requirement
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5 Approximation of the p-Navier-Stokes Equations

3p

i1 > % is equivalent to p > 1. Hence, for each ds > 0 there exists cs; > 0 such that

Is = Su((0,m)) (€ mn)) + {Sn (Gnv230m) ) (€nsmn) ) = S (0, 1)) ((€nsmn) ) }
< 83 ((v,m) ((€nsm) ) + csal (v = 0307 = ) + T (€0 s
< 056||v||2,q;9( > [QMhMHb”ioo;M}q||v||g,q;M> !

MeMy,

/

’ b ,
el + Va2 (5 [antd] IV, )
MEM}L

AN

/ 2
7

: p'—2 5 ; P’ v
+ cso T+ [Vin| + [Vll[}; > VT =)l
MeMy,

+ Cég Z QMH(b ’ v)(]hv - v)”%,M + 562H(£h777h)H12ps'
MeMy,

Using the properties of j7; and j, we can hence estimate the term Ig as follows:

q q
Io < cs ol X [erhar bR sone] Tl g )

MeMy,
1 s . 2
& - K77 P
+es [r907 + ] (X [onrtd] Il )
MeMy,
9 2244472 : 2
e X Joulblintn ol s, ) Se2Enmlte (518)
MeMy,
Combining (5.12]) — (5.18)), choosing 41, .. ., d¢ sufficiently small, we easily arrive at
2 2 2 4-2d4qy o S R LT :
1€nm) 2 S B2IVF(DO)E+ oh ™ w3, + (> [ontbar © | lI0lS s,
MeMy,
242 |2 1-p; 2
+ R mlE ey + D an PRI sy,

MeMy,

q q
+||’v||2,q( Z [QMhMHbH%,oo,M] Hng,q;M)

MelMy,

/ 2
/ ol

) & /
k p
(5 o] * 1t 1,

MeMy,

+[Fl21 + Il

2

2—2d g 4 a
(X [onlolat ] 0l s, ) (5.19)
MeMy,

We equilibrate the terms in (5.19)) involving ¢as and «js through

2
o

h
M ay~RY i k=0, ay~hY if k=1 (5.20)

OM ~ T
[1B]]1,00501
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5.3 Error estimates for the stabilized p-Oseen system

As a result, we easily derive the first inequality in (5.8) combining (5.19) with (5.20]) and
noting that 1 — 2d + d > 0 for q as defined above. In fact, the condition 1 — %d +d>0

amounts to g > d +1 which is satisfied for ¢ as defined above. Hence, we obtain

| F(Dv) = F(Dwp)|2 < | F(Dv) = F(Djpv)ll2 + [1(§x: 10 ) 1ps < Coh. (5.21)
The second inequality in (5.8)) follows from ([5.21]) and the estimate
v —wnllip S [Dv = Dopllp < | F(Dv) — F(Dws)|2, (5.22)

which is a simple consequence of the Poincaré & Korn inequality, Lemma (i), and the
uniform W'P-bounds on v and wvj,. Next we prove the pressure-estimate (5.9)). For this, it
is sufficient to estimate the projection error 7. From [(P6) and [(P6})] we conclude that

(Jpm — 7, V- wp) o = (S(Dv) — 8S(Dwvy), Dwy) g + (jpr — 7,V - wp) o
+ ((b -V)(v —vp), 'wh)ﬁ +o(v — vy, wp)0 — Sh(('vha 0)) ((’wh, 0))

for all wy, € X%. Hence, by means of Lemma we deduce that 7, is bounded by

L

3 (V- wp,mn) 0 v
Blmlly < sup AT
P wyeX ||V'wth Mgﬁh M

(8(Dv) = 8(Dwy), Dwi)a + (nm =7,V -wi)g|

~|

A

< sup

2 IVl
((b -V)(v — vh),wh>9 +o(v— vh,wh)g’
+ sup
g 2 [Vl
S nrent, 0n (On(b - V)[o =04, 04(b - V)wy) |
+ sup
g 2 [Vl
S arenw, 001 (On(b - V)0, 04 (b V)w) |
+ sup
g 2 [Vl
1
( Z At Heh VT]}L)Hp/ M) — Ji+Jo+ I3+ Jy+ Js. (5.23)
MeMy

Using Holder’s inequality, Lemma (i), and the properties of jp, j;, we estimate J; by

2
J1 S | F(Dv) = F(Dup)llz + hllwlry- (5.24)

For 2 > p > 7% there holds the continuous embedding W?(2) — L¥ () — L*(02).
Therefore, by means of we conclude that the term Jz is bounded by

Jy < sup {I1BloolI V(@ = ) [plwnllyy + oo = v ll2]lwnll2}
wne? Hv lp
S ([bllos + )| F(Dv) = F(Dwy) > (5.25)
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5 Approximation of the p-Navier-Stokes Equations

Before we estimate J3, we firstly derive an upper bound for |(wp, 0)|ips. Noting the fact
p < 2, recalling the stability of 8;, and the local inverse inequality (3.19)), we observe that

D=

[(wn, 0)ips = (Y oarl|On(b- V)wn30r)

MeMy,
—24q £l 1 d d
(X omlblZarns wnl} par) P S BETEE B fwllny (5.26)
MeMy,

provided that p > % and oar ~ har/||bl|1 0001 Taking into account (5.26]), we conclude

| Saren, 00184 (b V)€ On(b - V)wn) ]

J3 < sup

e [Vl
| Sarent, 0n(0n(b- V)[v = 5], 04(b - V)wy) |
+ sup
e [Vl
o Ol Ol (0= 50,0l (01,0
N 7 P VN |
1
1_d d . 2
< BB €0 O+ (3 earlblu V(o = Gio)lBar )|
MeMy

3
Since v € W2Tf1((2) and opr ~ har/||bl|1,00;01, We arrive at

1

Jo < chE 58 1pl11/2 0 b hQ—%jlw 9 >
5 < ch? p 2Bl 1€ Ops + | D harbllocinrhag [0ll5 2p g
MeM, YpF1’ M
1d,d 3_dp+) | d
< et FHEIBIL2 ) s+ 25 S0 L2l | (5.27)

Similarly we may estimate the term Jy. Using Holder’s inequality with % + 215—;1 =1,
the approximation property of 85, and the local inverse inequality (3.19)), we deduce that

1

Jy < sup —— oM ||0n(b- V)Vl 50, [|0k(b- V)wp| sp
wreXY vah”P Mgﬂ%/[h e -1 M
1 Z 9 _d d(2§771)
< sup omhum |BlT conrllvlly 30 a7 llwnllips
’whEXZ vath MeM,, % 27P+1’M M P
1_d.,d 3_dp+l)  d
< ch? 2 blech? S 2]l s (5.28)

We observe that % _ derl) % > 1 for p > 1. Hence, the convergence order of the

3p
stabilization part Js3+Jy is restricted to %—%—I—% by virtue of (5.27) and ||(&,, 7n) ||ips = O(h).
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5.3 Error estimates for the stabilized p-Oseen system

We remark that % — % + g > 1% for p > 1. Finally, Lemma implies that

1

2 , =
MEM}L
_2 7 _2 2
Sh'w ( S G0V g<ehvﬂh>||%;M) DS m)life (5:29)
MeMy,

Combining (5.23), (5.24), (5.25)), (5.27)—(5.29), in view of we get the desired estimate
. It remains to prove (5.10)). If the triangulation IM;, is quasi-uniform, then we can
make use of the global inverse inequality in order to better estimate the term Js.
Since the case p > is already treated above, for the remainder of the proof we may

suppose that p < d+1 We recall the embedding WLP(§2) < L9 (02) with ¢* = -2 Since
q* <p for p< d +1’ the inverse estimate 0) yields

d+1

-4+4 -4+4
lwhllpr S b= 7 Jwnllgr S h- 77 [lwpl]1p-

Using the latter estimate, Poincaré’s inequality, and (5.8)), we obtain the upper bound

d

T+ -4y
T W (1Bl V(0 — om0~ vily) < (bl + )b

e

(5.30)

We easily compute that 1 — q% + ]% =2- %d + d. The remaining terms are estimated just

as above Besides, we remark that the exponent 5 i 4 + 3 4 in - ) becomes negative for

p < d+1 Combining (5.23), (5.24]), (5. 30|) (5.27)—(5. 29h and taking into account (| -7
we finally obtain the desired estimate . This completes the proof.

Remark 5.3. We briefly discuss in which sense in the case p = 2 we recover the well-known
results for Oseen systems. Note that the LPS method was proposed and studied for Oseen
systems in Matthies et al. [MSTO07]. In view of Lemma in ((5.19) the term

2,q< > {QMhMHbHiOO;M}q||’ng7q;M>q

MeMy,

can be replaced by the following one

_2d4 g4 2
(X [ewtin e Vol )"

MeMy,

In doing so, we observe that for p = ¢ = 2 the a priori error estimate ([5.19)) coincides with
the well-known error estimate for Oseen systems presented in [MSTO7].

Remark 5.4. Usually the function b is given as a finite element solution to system ,
cf. [BL09]. Consequently b satisfies (V - b, q) = 0 for all g5, € Q) but it does not fulfill
V - b = 0 pointwise as required by Theorem If we recall the proof of Theorem we
realize that the assumption V - b = 0 a.e. is only needed for the estimation of the term
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5 Approximation of the p-Navier-Stokes Equations

I3. We can relax the assumption V - b =0 a.e. if, in (5.5]), we replace the convective term
([b- V]vp, wp) o by the skew-symmetric tri-linear form B(b, vy, wy,) defined by

B(u,v,w) := ;(([u -V]v,w)o — ([u- V]w,v);;) Vu,v,w € XP, (5.31)

cf. [BL0O9]. The tri-linear form B(u,v,w) naturally extends the term ([u - V]v, w)p for
u € VP and v, w € XP, cf. [PRO2]. Indeed, B preserves the skew-symmetry property, i.e.,
B(u,v,v) = 0. By virtue of the definition of B is compatible in the sense that there
holds B(u,v,w) = (Ju- V]v,w)q for all u € VP and v, w € XP.

Corollary 5.8. Forp € (d 5,2] and k = 0 let the assumptions of Theorem be satisfied.
Assume additionally that € > 0. Then there exists a constant C' > 0 such that

v — wallip + B@) 7 — malla < Ch. (5.32)
The constant C only depends on ||VF(Dwv)|2, ||7|l1p, p, €, 00, 01, 0, £2, f, 00, 0, To.

Proof. In view of Theorem it is sufficient to prove the error estimate for the pressure.
The starting point is estimate with p and p’ replaced by 2. Using the identity
([b- V(v —vp),wp)e = —(b® (v —vp), Vw] ), Lemma (i), Holder’s and Poincaré’s
inequality, for € > 0 we estimate the expression Ji + Jo as follows:

—2
Ji+Jy ST | F(Dv) = F(Dow)|lz + ||jnm = 72 + ([Blloc + o) v — val2.

Because of p > d2+d2 it holds W1P(§2) — L?(£2). Using this and (5.22)), we arrive at

-2
T+ 72 5 (7 + bl + ) |F(Dv) = F(Dvy)|2 + Al . (5.33)

Along the lines of (5.27)), we can estimate the term J3 by

[SIE

1 .
To < bt 04216000l + (3 enllbln V(@ = G103 |
MEIMh

1 ,7
S (RO e S A (5.34)

Note that 3 (p +1) + > 1 for p > 1. Similarly to (5.28)), we conclude that

Jy < sup Y omllon(d-V)v| 2o 100 (b V)wnl| sy
whe){% ”V’U?h” MeM,
2+d(2§_1)
SUp > omhar|bl scnelloll,, 2y wnlham
wheX%L || ’LUhH MeM,
1 3_d(pt1 )+
< ch2||bll1eoh? 3 T2 o]y sp - (5.35)

Sp+1
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5.4 The non-steady p-Navier-Stokes equations

Using Holder’s inequality with 1% + p/p—/2 =1 and Lemma we bound the term J5 by

2
I

- > hM/roh Vi) d < 1Y hp(/reh (Ta)l” dz) " v

MeM, MeM,
A
<t (5 wdowmiy) (5 )7
MeMy MeMy,
< 2_% . % < 2_% ﬁ
ShV( Y amllG(8nVinT) — G605V ) |50r Wlp S BT [(Ehs ) |l s-

MeMy,
(5.36)

Inserting (5.33)—(5.36)) into the L2-norm version of ([5.23)), and recalling the error estimate
(5.21), we can easily complete the proof. O

5.4 The non-steady p-Navier-Stokes equations

We depict how the results of Section are applied in the numerical analysis of non-steady
p-Navier-Stokes systems . Although in this section we only deal with well-known
results from [BL09] and [BDR09], we state them for sake of completeness in order to provide
a motivation for the analysis of p-Oseen systems performed in Section A standard
numerical approach which is frequently used for the approximation of the Navier-Stokes
problem can be stated as follows (cf. [BL09]): Firstly, discretize the continuous problem
in time with an A-stable implicit time-step scheme and, secondly, discretize the resulting
quasi-steady problem in space with finite elements. Following the literature [BDR09], we
present a semi-implicit Euler scheme for the approximation of a transient flow. For N € IN
let us introduce the time step size k := T/N > 0 and the corresponding net t, := nk,
n=1,...,N. System is discretized in time as in Algorithm

Algorithm 5.1. Semi-implicit Euler scheme

1: Set v° = .
2: For n =1, 2,... determine the solution v™ to the system

(5.37)

div" — V- S(Dv"™) 4 [v" - Vo' + V" = f(t) | . o
1n
V-v"=0

endowed with homogeneous Dirichlet boundary conditions, where

dt’Un =
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5 Approximation of the p-Navier-Stokes Equations

The weak formulation of (5.37) reads: For n =1,2,... find (v",7") € AP x QP such that

(div", w) g + (S(Dv"), Dw)g + ([v" ! - V]v", w)g

_ (W”,V . w)Q + (v . ’Un,q)g _ (f,'LU)_Q v(qu) € XP x O, (538)

We define (F,w) = (f,w)g + (cv" !, w)g for all w € XP. Setting ¢ := k= and
b:=v" !, we observe that problem (5.38) is equivalent to the p-Oseen problem

(S(Dv"), Dw)g + (cv™,w)n + ([b- V]v",w)g — (7", V- w)o + (V- v",¢)n = (F,w)

for all w € X? and ¢ € OP. Next, we discretize this p-Oseen problem in space and we
apply the LPS technique discussed in Section In particular, the numerical analysis
performed in Section [5.3| can be applied for each time step.

For the time-discretization of system , the Algorithm was proposed and analyzed
in [BDR09| in the case of space-periodic boundary conditions. It can be interpreted as
a semi-implicit Euler scheme since the convective term is treated semi-implicitly while
the nonlinear extra stress tensor is treated implicitly. The semi-implicit treatment of
the convective term allows to prove the uniqueness of the solutions to system , see
[BDR09]. For regular initial values & € W22(2) it is shown in [BDR10, BDR09 that
there exists a unique strong solution v™ to system satisfying the weak formulation
and the regularity F(Dv") € W12(02)%*4  see Lemma If the initial value
belongs to WQ’Q(Q), then the semi-implicit Euler scheme also allows for an optimal a
priori error estimate with respect to the convergence order, see [BDR09| or Lemma

5.5 Numerical experiments

In this section we present numerical experiments for p-Navier-Stokes systems. On the basis
of more natural flow configurations we demonstrate the convergence of the (stabilized)
FEM, see Section [5.3] As illustrative examples, we consider steady channel flows such
as a planar flow in a channel with a sudden expansion. Note that the observed order of
convergence may provide hints on the smoothness of the solution. In case of Dirichlet
boundary conditions, the regularity of (weak) solutions up to the boundary is subject of
current research (cf. [Ebm06]). Numerical experiments may support analytical studies.

Let us consider the steady p-Navier-Stokes equations . We restrict ourselves to fluid
models of class (2.10). We consider planar flows driven by the difference of the pressure
between inlet and outlet. We assume that {2 is a 2d channel and that its boundary 942
consists of a solid part I" (upper and lower edge), of an inflow boundary S; (left), and of a
free outflow boundary Sy (right), see e.g. Figure . On the solid part we prescribe
homogeneous Dirichlet boundary conditions: v = 0 on I'. On the inlet and outlet we
prescribe the following natural inflow and outflow boundary conditions

_ (| Dvf?)

5 Opv +7n =bn on S; i€ {1,2}, (5.39)
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5.5 Numerical experiments

for given b; € R. Here, n denotes the outer normal on 0f2, and 9,v is the corresponding
directional derivative. We recall that Vv = (8jv,-)§{j:1 and Opv = (n - V)v = [Vuln.
The boundary conditions arise from the variational formulation and they implicitly
normalize the pressure which is initially determined up to a constant only, compare Remarks
and below. Related to boundary conditions of type (5.39)), extensive discussions
can be found in Heywood et al. [HRT96] in the context of Navier-Stokes equations.

Remark 5.5. Alternatively, we can prescribe the boundary conditions (see [LS11b])

S(Dvjn-n+m="b } onS;, ief{1,2). (5.40)
v=(v-n)n

In case of simple channel flows, the boundary conditions and lead to the same
flow behavior as depicted below. In a simple channel 2 = (0, L) x (0, H), the condition
v = (v-n)n on 5; ensures that stream lines are orthogonal to the inflow and outflow
boundary, i.e., that v = (v1,0)T on S;. We note that n|g, is a constant vector and that
v = (v -n)n implies 0;,v1 = V-v = 0. Hence, we conclude that v; = v;(z2) and,
consequently, [Vv]n = 0 on S;. Let v, = (v - n) be the normal component of v. Let ¢t be
the tangential vector on 0f2, and v; the corresponding tangential component of v. Using
[Vv]n = 0 on S; and [Vv]"n = Vo, we equivalently write the condition as follows:

D 2
—M@nvn = on S;.
Integrating this over S; and observing 0pv, = —0v¢ due to V - v = 0, we finally arrive at
1
/Wdo — 1;[b; — 5/#(’D’U|2)3tvt do, ie{1,2). (5.41)
Si Si

Multiplying by n and integrating the result over S;, we obtain the condition
as well. As a result, both (5.39) and (5.40) lead to (5.41). If v = (v-n)n on S, i.e., if
v; = 0 on S;, then dyvy = 0 and, hence, fSi mdo = |S;|b;. We realize that the prescribed
value b; can be interpreted as the mean-value of the pressure over .S;.

The variational formulation |(P5)| has to be adapted to the current flow configuration.
Since Dirichlet boundary conditions are prescribed on I" only, the used function spaces
have to be modified. We define the velocity and pressure space as follows:

AP = fwe WYP(Q); trw=0onI'}, Qb :=LF (1) (5.42)

Let the semi-linear form A(-)(-) be defined by (3.23). Then the weak pressure-drop problem
reads: Find a velocity v and pressure m, u = (v, ) € X7, x Q. that solve the system
#(|Dvl?)

Au)(w) =) (Q[V'U]Tn — bin,'w> Vw = (w,q) € X x QF. (5.43)

i Si

(f = 0). The weak formulation ([5.43)) implicitly contains natural boundary conditions on
the free inflow and outflow boundaries as depicted by Remark
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5 Approximation of the p-Navier-Stokes Equations

Remark 5.6. Below we derive the free inflow and outflow boundary conditions which are
implicitly hidden in the weak formulation . We assume that there exists a solution
(v, ) to problem which is smooth enough in order to be a classical solution. Using
(8(Dv), Dw)g = (S(Dv), Vw)q, and integration by parts, from we deduce that

M(|Dv|2) vITn — b.n. w = v): Vw—7V-w v-V|v) wdx
;(2 Vol bz,)si—!sw)-v V-w+ ([v- Vo) wd

:/(—V-S(Dv)+V7r+[v-V]v)-wdw

0
+ / (S(D'u)n - 7rn> -wdo
S1US2
since the test functions w € X 1} do not vanish on the boundary part S; U .S where no
Dirichlet boundary condition is prescribed. Consequently, the inflow/outflow conditions

D 2
Z/ (M[VD]” —n 4+ bin> cwdo=0  Ywe XY, (5.44)
7 S;

follow. The natural inflow/outflow conditions (5.44]) lead to the boundary conditions (|5.39)).

Remark 5.7. Problem is not well-posed in general since, unless the velocity v is
sufficiently smooth, the boundary integral (u(|Dv|?)[Vv] ™n,w)s, is not well-defined. Up
to now, for p # 2 an existence theory is only established for pressure-drop problems of the
following type (cf. [LS11D]): Find u = (v, 7) € X% x Q. such that

Au)(w) = = (bn, w)g, Vw = (w,q) € X x QF. (5.45)

%

Similarly to Remark from ([5.45]) we derive the natural inflow/outflow conditions

Z /(S(Dv)n —mm+bn) - wdo=0 Vw € X7.. (5.46)
i g

Note that the natural inflow/outflow conditions @[} lead to the following boundary
conditions: with b := bin on S1, and @ with b := bam on S3. Although the
boundary condition is popular from analytical point of view (it allows an existence
theory such as in [LS11D]), it is less suitable from practical point of view since it is not
satisfied even for simple flows such as Poiseuille flows. In particular, if the boundary
condition is required on S;, then the stream lines of simple flows are generally
curved inwards or outwards on S; (see [HRT96]). Such flow behavior is not desirable since
it does not reflect the physical objectivity. In contrast, the boundary condition ([5.39))
seems to be the proper choice since it well recovers simple Poiseuille flows.

In order to guarantee that stream lines are orthogonal to the boundary S;, we can require
the additional condition v = (v - n)v on S; which we can incorporate into the weak
formulation (5.45)) by altering the velocity space as follows (cf. [LS11Db]):

Xl = {w EWMW(2); trw=0onT, trw= (trw-n)nonsS;, i€ {1,2}}. (5.47)
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5.5 Numerical experiments

For a 2d channel (2 as in Remark , functions w from X7 satisfy w = (w - n)n on S;
and, hence, they take the form w = (wy,0)T on S;. If the trial space X% in is
replaced by the modified one X%, then the natural inflow /outflow conditions lead
to inflow/outflow boundary conditions that are equivalent to . More details on free
inflow /outflow boundary conditions can be found in [HRT96].

Problem was discretized with equal-order d-linear Q;/Q; finite elements, see Sec-
tion The used FE spaces are given by X?;h = X, N XY and Q?;h = X, N QY. with
Xp, := Xp,1 defined in . Since this discretization is not “inf-sup” stable, the following
stabilized discrete problem was solved: Find uj, = (v, ) € X %; B X QI}; , such that

o |2
Aup)(wp) + Sp(up)(wy) = Z <“(|D2h|)[Vvh]Tn —bin, 'wh)s_ (5.48)

Vwy, = (wha Qh) € X}Il;h X Q?;h'

In the subsequent simulations, we used the Carreau model (2.10) & (2.11bf). The stabiliza-
tion term S} was always chosen as in (3.54). We determined the experimental order of
convergence (EOC) with respect to the quantities Ey”, E2, EP'| E2 defined in (£.104).

Table 5.1. Numerical verification of Theorem

(a) p=1.3 (b)y p=1.5

#eells  EF  EyY Eb ES  #cells EF ELY E ES

v

512 099 0.99 1.98 1.00 512 1.00 1.00 2.00 1.00
2048 1.00 1.00 2.00 1.00 2048 1.00 1.00 2.00 1.00
8192 1.00 1.00 2.00 1.00 8192 1.00 1.00 2.00 1.00
32768 1.00 1.00 2.00 1.00 32768 1.00 1.00 2.00 1.00
131072 1.00 1.00 2.00 1.00 131072 1.00 1.00 2.00 1.00

expected 1 1 2 expected 1 1 2

Example 1: First of all, let 2 := (0,L) x (0, H) be a simple channel. Below, we set
by = L/2 and by = 0. In the case under consideration, it can easily be verified that for
e = 0 the unique (strong) solution (v, ) to (5.43) is given by

oo =((3)7

1 -2
where ¢, = ,ug F\/i% %H 7T, We briefly motivate why we consider this particular
simple pressure-drop example here: The data such as f are independent of p. The function
(v, ) defined in captures the typical flow behavior of a shear thinning fluid. For
1 < p < 2 sharp boundary layers occur near I', and the measure of the critical set
2. = {x € 2; Vv(x) ~ 0} becomes large. In this example we set L = 1.64, H = 0.41,

.%'Q—H/Q

o (@)=0, (@)= o+ oL, (5.49)
i , va(x) = 0, 7T$——l’1—|—2, .

2
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Figure 5.1. Comparison of analytical and numerical velocity profiles

b1 = 0.82, b = 0, pg = 0.15. Due to Theorem we expect linear convergence for the
quantities Ey? and EZT. The observed convergence rates are presented in Table We
realize that the experimental order of convergence agrees with the theoretical one very well.
Obviously, convergence rates for the pressure are not presented. This is due to the fact that
the pressure 7 belongs to the finite element space Q’}, 5, and, hence, m was resolved exactly
up to machine accuracy. It is worth mentioning that we were not able to determine the
solutions to numerically for a smaller range of p using Newton’s method (Algorithm
3.1). For instance, if p = 1.2, then the Newton iteration did not reach the prescribed
tolerance TOL = 107! for the nonlinear residual on the grid with 32768 elements. The
reason is simple: Since [{2.| is large for 1 < p < 2, in view of the Newton matrices
arising in Algorithm become singular. This usually causes numerical instabilities, and
Newton’s method does not converge. As a result, system can generally be solved for
€ > 0 only. Then the parameter € > 0 plays the role of a regularization parameter. The
question arises how solutions to can properly be approximated in the case p < 2 and
e = 0. This will be the topic of Chapter [f] Figure [5.1] depicts the analytical velocity profiles
and it shows the solutions to for small € > 0 which apparently represent good
approximations to the exact solution. In Chapter [6] we will analytically show that for € N\, 0
the (discrete) solutions to indeed approximate the solution to with € = 0.

In Table we solved for p = 1.1 and € = 10~7. Clearly, the overall approxi-
mation error (v — vp,) can be splitted into two contributions: The first one results from
discretization, while the second one is caused by regularization of with € > 0. Here,
the regularization parameter € was chosen sufficiently small so that the discretization error
dominates the regularization error on the considered meshes by several orders of magnitude.
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5.5 Numerical experiments

For instance, on the grid with 128 elements we obtained a W P-error of about 4.55e-02 for
e = 0, which agrees with the corresponding value for EL? in Table Considering
Table we realize that Ep? behaves as O(h). This agrees with Theorem

Table 5.2. Global vs. local mesh refinement: Case p = 1.1

(a) Global mesh refinement  (b) Local mesh refinement

ELv ELv
#cells error conv.  Fcells error conv.
128 4.55e-02 128  4.55e-02 -

512 2.50e-02  0.87 320 2.50e-02  0.87
2048  1.28e-02  0.97 704 1.33e-02  0.91
8192  6.44e-03  0.99 2816  6.73e-03  0.99
32768  3.22e-03  1.00 9728  3.42e-03  0.98

131072 1.61e-03 1.00 35840 1.80e-03  0.93

-9.332-16 0.137 0273 0.410 0547 0683 0.620 0.00 0.00312 0.00623 0.00935 0.0125 0.0156 0.0187

(a) Coarse grid (128 elements) (b) Locally refined grid (9728 elements)

Figure 5.2. Pressure (left) and velocity (right) profile on different meshes

Local mesh refinement: Considering , for diminishing values of p we observe sharp
boundary layers near the Dirichlet boundary I'" and we realize that the measure of (2.
increases. In {2, the velocity is almost constant. Hence, a good refinement strategy consists
in the following one which, in each refinement cycle, refines elements along the Dirichlet
boundary I" only: After covering {2 with a coarse mesh, we refine all elements that are
located in a neighborhood of I'. Since the velocity is almost constant in (2., we do not
refine the mesh within {2.. As is common practice, the local mesh refinement is performed
by bisection of edges (cf. Algorithm below): Each quadrilateral is subdivided into four
subelements. Here, the neighborhood of I, in which elements are refined, was chosen as the
set {x € £2; dist(x, I') < 0.05}. In Table [5.2| we compared the global refinement strategy
with the described local one for p = 1.1, while in Table we applied the same refinement
strategies for p = 1.03. Table indicates that local mesh refinement is more efficient than
global mesh refinement: On globally refined meshes the approximation error E&? behaves
as O(h). Similar values of Ey® were obtained if the mesh is refined along I' only (sce Figure
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5 Approximation of the p-Navier-Stokes Equations

. In view of Table we realize even better agreement of the approximation errors for
the two different refinement strategies. The reason is that, compared to the case p = 1.1,
sharper boundary layers occur. Hence, we could further reduce the complexity by choosing
a smaller refinement area without losing accuracy. For such simple flows, the smaller the
power-law exponent p is, the more efficient local mesh refinement works. To sum up, we
benefit from local mesh refinement since we obtain the same accuracy as in the case of
global mesh refinement while saving random access memory. Since the numerical solution
of power-law flows becomes more complex and more cost-intensive for diminishing p, we
should make use of local mesh refinement in order to counter the increasing complexity
and to efficiently approximate power-law flows.

Table 5.3. Global vs. local mesh refinement: Case p = 1.03

(a) Global mesh refinement (b) Local mesh refinement
F 1, F 1,
E’U E’U P E’U E’U P
#cells error conv. error conv.  #cells error conv. error conv.

128 6.41e-02 - 9.48e-03 - 128 6.41e-02 - 9.48e-03 -
512 4.24e-02  0.60 7.82e-03 0.28 320 4.24e-02  0.60 7.82e-03 0.28
2048  2.35e-02  0.85 4.86e-03  0.69 704 2.35e-02  0.85 4.86e-03 0.69
8192  1.21e-02 0.96 2.59e-03 0.91 2816  1.21e-02 0.96 2.59¢-03 0.91
32768  6.10e-03  0.99 1.32e-03 0.98 9728  6.10e-03  0.99 1.32¢e-03 0.98
131072  3.06e-03 1.00 6.62e-04 0.99 35840  3.06e-03 1.00 6.62e-04 0.99
137216 1.53e-03 1.00 3.31e-04 1.00

Example 2: We consider a steady flow in a channel with sudden expansion driven by the
difference of the pressure between inlet (left) and outlet (right), see Figure [5.3(d)} For
p=1.3=10"", o = 0.15, by = 1 the observed convergence rates are presented in Table
£.4l Note that the exact solution is unknown. As the reference solution we took an accurate
FE solution that was determined on a fine grid with 7340032 elements (cf. the subsequent
discussion). In Table we discover almost linear convergence for ELP. Apparently, the
experimental convergence rate for Eﬁl is less than the one stated in Theorem To sum
up, the observed convergence does not agree with the a priori error estimates of Theorem
As a result we conclude that the regularity of the solution is not sufficient to ensure
the optimal order of convergence. Note that the pressure and the velocity gradient exhibit
a singular behavior in the corner, see Figure |5.3

Reference solution: For general flow configurations, the exact solution (v, ) to is
generally not available. Hence, a finite element solution (vg, 7 ), that is computed on a
very fine grid with mesh size H, is employed as the reference solution (vg,7g) ~ (v, 7).
Let us reconsider Example 2. In Table we compare the approximation errors and
convergence rates obtained for the reference solution (v, mg) with those obtained for the
“better” reference solution (vg/s, mg/2). Here, H corresponds to the grid with 1835008
elements, which results from the finest grid in Table by double refinement. In view
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5.5 Numerical experiments

Table 5.4. Experimental order of convergence: Case p = 1.3

#cells Ey? EL  EY  E2
448 089 1.66 027 1.11
1792 092 1.56 0.24 0.88
7168 0.92 143 0.24 0.83
28672  0.91 1.31 0.24 0.80
114688 0.91 1.27 0.26 0.79
458752 0.92 1.31 0.38 0.81

= o

-4.90e-08 00147 0.0294 0.0442 0.0589 0.0736 0.0883

(a) First velocity component

-0.0337

-0.0279 -0.0221

-0.0163 -0.0105 -0.00466 0.00114

(b) Second velocity component

(c) Pressure with singularity

0H#—

0-38—

-0-26—

-0-30—

-0-406—

-0:5¢

TTTTTITTT ITTTTIT T TTTITTTT T TTITTT
a0 o5 10 15

(d) Coarse mesh (112 elements)

TTTTTTTI I ITTITTTITT I TTTTT
200 25 3.0

Figure 5.3. Steady flow in a channel with sudden expansion
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5 Approximation of the p-Navier-Stokes Equations

of Table the approximation errors for (vy, 7y ) differ from the ones for (v o, Tr/2)
on the finer grids. As a result, the observed convergence rates are reliable only in their
first significant digit. Throughout the thesis, we use the following convention: If the exact
solution (v, 7) is unknown, then the finite element solution (v, wgr) is set as the reference
solution and the fine grid with mesh size H is chosen as the grid that is obtained after
second refinement of the finest grid stated in the table.

Table 5.5. Comparison of different reference solutions

(a) Reference solution (v, 7m) (b) Reference solution (vg/2, T/2)
v — vallp e — 7|2 lvm/2 —vnllip  7E/2 — T2
#cells error conv. error conv.  #cells error conv. error conv.

112 1.75e-01 - 2.34e-02 - 112 1.75e-01 - 2.34e-02 -
448 9.48e-02 0.89 1.09e-02 1.11 448 9.45e-02  0.89 1.08e-02 1.11
1792 5.00e-02 0.92 5.89e-03 0.88 1792 5.01e-02 092 5.88e-03 0.88
7168  2.65e-02  0.92 3.32¢-03 0.83 7168  2.66e-02  0.92 3.32e-03 0.83
28672 1.40e-02 0.92 1.89e-03 0.81 28672 1.41e-02 091 1.90e-03  0.80
114688 7.33e-03  0.93 1.07e-03 0.82 114688 7.48e-03 0.91 1.10e-03 0.79
458752 3.95e-03 0.92 6.25e-04 0.81

I

I\I\I\I\IJ\HHHH RERRRRRRPRERRRRA R R RRRR RN HHHH\JHI\I
5 10 15 210 2.5 0

Figure 5.4. Stream lines in a channel with expansion: case p = 1.5, by = 2.5

Example 3: We consider a steady flow in a channel with stenosis driven by pressure drop,
see Figure 5.5l The parameters were given as in Example 2. The experimental convergence
rates are depicted in Table We realize that E},’p behaves as O(h). The apparent
convergence is in agreement with Theorem For Eﬁl the observed rates of convergence
are better than expected from Theorem [5.71 We believe that the improved order of
convergence for the pressure can be explained by super approximation (cf. Example 7 in
Section . The velocity converges in LP({2) quadratically. As a result, we conclude that
the solution is smooth and that, hence, a duality argument (similar to the one described in
[BS94]) seems to be applicable here.
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5.5 Numerical experiments

Conclusion: We extended the LPS-based approach of Chapter 4] to p-Oseen equations
in order to cope with dominating advection. For p-Oseen systems we established optimal
a priori error estimates that quantify the convergence of the method, see Theorem At
least for 1 < p < 2 a convergence analysis of stabilized p-Navier-Stokes systems remain
an open problem. If p is sufficiently large and the Reynolds number is small enough, we
can easily generalize Theorem [5.7] to p-Navier-Stokes systems using the skew-symmetric
tri-linear form for approximation of the convective term. We performed several
numerical experiments on p-Navier-Stokes systems. They indicate that the proposed
stabilization leads to a stable discretization. Furthermore, the experimental order of
convergence agrees with the expected one for p-Oseen systems (Theorem . Hence we
conjecture that for the considered experiments Theorem [5.7] remains valid in the context
of p-Navier-Stokes systems.

Table 5.6. Numerical verification of Theorem Case p=1.3

#cells Ey?  Eb  EY E2

384  0.87 148 0.48 1.04
1536 096 1.71 0.65 1.18
6144 1.00 187 1.57 1.63
24576 1.01 197 1.66 1.80
98304 1.01 195 1.53 1.80

0 i 002‘5‘ 0.05 111 0‘0‘7‘5‘ [ 0.1

[

24227269 0.104701

(a) Velocity (b) Pressure

[T/ 777 AAVL T

[J7/] AV

/7] AV

[ // A

= [117// AN
= I/ AV
= i A
= 1 WY

ST Ay

(c) Coarse mesh (384 elements)

Figure 5.5. Steady flow in channel with stenosis

137



5 Approximation of the p-Navier-Stokes Equations

5.6 A posteriori error estimation and adaptive mesh refinement

This section deals with a posteriori error estimation and adaptive mesh refinement. The
adaptive finite element method (AFEM) consists of a loop (see [DK0S]): First of all the FE
problem is solved on the current mesh, then the a posteriori error estimator is evaluated,
and finally elements are marked for refinement with the help of the estimator:

SOLVE — ESTIMATE — MARK — REFINE.

In this section we introduce the well-known dual weighted residual (DWR) method following
the literature [BR0O3| and [Sch10]. Later we will apply the DWR method to the steady p-
Navier-Stokes equations. If u represents the unknown exact solution, wjy the corresponding
approximation and J an output functional such as the drag force, then the goal-oriented
DWR estimator aims at assessing the error between J(u) and J(up). The DWR method
yields weighted a posteriori error bounds such as

[J(u) = J(un)| < > oxwk
KET),

where the weights wg are determined by means of approximative solutions to a linearized
dual problem and the quantities px represent computable residuals. We briefly recall the
DWR method within an abstract framework. For details on the DWR method we refer to
[BRO3|] and [Sch10]. Let Y be a function space. In the context of p-Navier-Stokes systems,
the space Y will be chosen as a subspace of WP(£2) x L¥ (2). For given F € Y* we seek
a solution w € ug +Y to the abstract variational problem

B(u)(w) = F(w) YVweY. (5.50)

Here, ug stands for non-homogeneous Dirichlet data, and the semi-linear form B is
supposed to be three-times differentiable on Y x Y. The problem ([5.50) is approximated
by conforming finite elements, i.e., the finite dimensional spaces Y, satisfy Y, C Y. The
discrete problem reads: Find uj, € ugp + Y, such that

B(uh)(wh) = F(wh) Ywp, € Yy, (551)

Here, ug; denotes an approximation of ug and the semi-linear form B stands for an
approximation of B. In the context of p-Navier-Stokes systems, the discrete approximation
B will include stabilization terms such as (5.4). We introduce the Lagrangians

L(u;z) :=J(u) + F(z) — B(u)(2) (5.52)
=J

L(un; zn) == J(up) + F(zn) — B(un)(25)- (5.53)

Let w and uy, be the solutions to (5.50) and (5.51)) (the primal solutions). Hence,

J(u) = L(u; z), J(up) = L(up, 21). (5.54)
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5.6 A posteriori error estimation and adaptive mesh refinement

Below we proceed as in [Sch10]. We observe that the solutions w and wy, can be interpreted
as the first component of the stationary points of the corresponding Lagrangians:

L (u;2)(w) = F(w) — B(u)(w) =0 VweyY (5.55)
I:'z(uh; zh)(wh) = F(wh) — B(uh)(wh) =0 Ywp, €Y. (556)

Let z € Y be the solution of the so-called dual problem:
B,(u)(w,2) = J,(u)(w) VYweY & L,(u;z)(w)=0 VYweY. (5.57)
Its Galerkin approximation reads: Find zj € Y, such that

By (up)(wh, z1) = Jp,(up)(wp) Vwp, €Y,

- 5.58
& Ly (un; zp)(wn) =0 Vwp € Y. (5:58)

We define e} := u — uj, and e} := z — z;,. The main theorem of calculus implies that

L(u; z) — L(up; z1,) = L(u; 2) — L(up; 25) + (L — L) (un; 25)

1 .
3 Llun + sefi: 2 + sef) ds + (L — L) (un; 1)
Ly (up, + sey; zn + sej;) (ef) ds

+ | L (up + selt; z, + sei)(ei)ds + (L — L) (up; zn).

I
O\H O\H O\H

For approximation of the integrals we use the trapezoidal rule,

O/If(s)ds:;f(o) 0/1 s(s — 1)ds,

so that we arrive at

L\D\»—t

- 1 1
L(u; z) — L(up; zp) = 5%(’%; zn)(ep) + §le(uh; zn)(er)

1 1
t3 Ly, (u; z)(ej) +5 L (u; z)(ef) +(L — L)(up; zn) + R
=0 =0

1 1 -
= 5 Luluns zn)(el) + S L (uns z)(ef) + (L — L) (uni zp) + R

where for e, := (e}, ef) the remainder term R is given by

1
1
R:= 5 / L" (up, + sej; zn, + sei)(en, en, en)s(s — 1) ds. (5.59)
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5 Approximation of the p-Navier-Stokes Equations

This simple argument needs the assumption e}’ € Y which requires exact representation of
boundary data, i.e., ug = g . Let @), € Y, be arbitrary. Using (5.58)), we conclude

Ly (up; zp)(efy) = Ly (wn; zn)(w — @p) + Ly, (wn; 25) (@, — up)
= L, (wn; z1) (w — @) + (L — L)), (wn; 21) (@n — wp).

Let zj, be an arbitrary element of Y,. Similarly as above, in view of (5.56) we deduce
L (un; zn)(€f) = L, (un; z1)(z — 2n) + (L — L), (wn; 21) (20 — 21).

Collecting all results above, we finally get the following error representation

T(uw) = I (un) = 3L uni 20) (= ) + 5 Lo 20) (2 = 22)

(L= Yol 20) i — an) + 3 (L = DY 20) (31— =)

+ (L — L)(up; z3) + R. (5.60)
Introducing the primal and dual residual,
o(u)(w) = Li(u;z)(w),  0"(u;2)(w) = Ly(u; 2)(w),

the above identity may be rewritten as

Tu) = J(un) == So(un)(z — 2) + S0 (wnz)u— @) (561)
for all @y, 2, € Y, provided that the remainder term R and the additional terms involving
(L — L) can be neglected. Note that in many cases the remainder term R is of higher order
in the errors w — uy, and z — z. If a priori information on w — uj, and z — z;, is known,
then the neglect of R can often be justified. Concerning the practical realization of the
DWR method, we study Algorithm [5.2] and the subsequent discussion. For details we refer
Bangerth/Rannacher [BRO3| and the literature cited therein.

Practical aspects and adaptive mesh refinement: Below we deal with the practical
evaluation of ny in and we discuss adaptive mesh refinement within the DWR
framework. Since w, and z, are arbitrary, the weights w — @, and z — 2, appearing in
basically represent interpolation errors. Because the weights uw—, and z—2;, depend
on the unknown primal and dual solution, they cannot be evaluated numerically and in case

of Q1/Q; elements they are replaced by i%)uh — uy, and igl)zh — z5,. Here, the operator

zgi) : Xp1 — Xopo denotes the nodal interpolant into the space of d-quadratic finite
elements. (It can be constructed easily since the underlying mesh exhibits patch structure.)
Details on this approach can be found in Becker/Rannacher [BR0O1]. The presented error
estimator 7y also enables adaptive mesh refinement which plays an important role when
the accuracy should be improved efficiently. The aim of adaptivity is to compute the
functional value J(u) up to a prescribed accuracy TOL > 0 and to refine the meshes only

locally in order to get along with the available random access memory. In order to achieve
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5.6 A posteriori error estimation and adaptive mesh refinement

an adaptive method, the information of 7y, is localized to element-wise contributions via
the representation ny, = > gep, nx. The quantities nx are called local error indicators.
Note that different representations of nx are possible: For instance, the error estimator
7, can simply be splitted into its cell-wise contributions, or cell-wise integration by parts
can be applied to the cell-wise contributions so that the resulting local error indicators
Nk involve strong cell-wise residuals of the equation and jumps of the discrete solution
over faces of elements (see [BRO3, Ran09]). For an extensive discussion on localization we
refer to [Sch1(]. Adaptive mesh refinement can be carried out on the basis of standard
strategies such as: successive “error balancing” or “fixed fraction” strategy. In case of the
first strategy we balance the values of nx until we achieve ng ~ TOL/(#T},), while in
case of the second strategy we refine a certain fraction, say 20 — 30 %, of the elements
with the largest value of g . An alternative approach, which was used for the subsequent
computations, is described in Richter [Ric05].

Algorithm 5.2. Adaptive finite element method (AFEM)

1: Choose a tolerance TTOL > 0 and an initial discretization T}, .

2: Set L :=0.

3: On the grid T}, determine the solution uy, to the discrete primal problem
(5.51) and compute the solution zj, to the discrete dual problem .

4: Compute the local error indicators ng = nx(un, ,zn, ) for all K € T}, on the
basis of and take into account the following conventions (see [Ran09]):

 Neglect the higher-order remainder term R and all terms involving
(L — L) in (5.60)).

o Approximate the weights in (5.61)) by higher-order interpolation

- .(2
(z—2p,)| =~ (zgh) zZh, — ZhL)’ ,
K L K

where igi)LzhL denotes the d-quadratic nodal interpolant on patches of
the current mesh T}, applied to the computed d-linear approximation
zp, - Use a similar replacement for the weights involving u.

5. If g, = ZKEThL nx < TOL then STOP.

6: For mesh adaptation choose a subset of T}, on the basis of the local error
indicators ng by an appropriate strategy such as successive “error balancing”
or “fixed fraction” strategy. Mark the elements for refinement.

7: Perform a refinement of T}, using bisection of edges. Each marked element
K is subdivided in 2¢ subelements. Since quadrilateral meshes are involved,
the refinement process leads to hanging nodes. The degrees of freedom, that
correspond to hanging nodes, are eliminated using interpolation between
neighboring degrees of freedom (see, e.g., [AOOQ]).

8: Increment L and go to step
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5 Approximation of the p-Navier-Stokes Equations

Numerical example: As a simple test we considered the p-Laplace system provided
with 2 := (0,1)2, f = (2,0)T, vp =0, = 107, and p = 1.1. We applied the dual weighted
residual (DWR) method, which serves for two purposes: the quantitative assessment of the
discretization error and the adaptive refinement of the underlying meshes. The quality of
the a posteriori error estimation was measured by the effectivity index I.g,

eﬁ = T
Mh

where J(u) — J(uyp) is the true error and n, is the estimated error. In Table we
chose the output functional J(u) = 1/p' [, |VuPdx. We used the reference value
J(u) = 0.082979144 which was obtained by Richardson extrapolation of approxima-
tions {J(wq; H)};;:o- Here the functions @, denote the d-quadratic FE solutions computed
on uniformly refined meshes and H corresponds to the mesh with 1048576 elements. In
view of Table we observe that the estimated errors agree with the actual errors
very well and, in particular, I, ~ 1 on finer grids. Apparently local mesh refinement is
more efficient than uniform mesh refinement, even though only marginally for this example.
More significant differences of the two refinement strategies usually occur when the involved
quantities are not smooth as exemplarily depicted by the subsequent experiment.

Table 5.7. A posteriori estimation of the energy

(a) Local mesh refinement (b) Uniform mesh refinement

#cells s J(u) — J(up) g #cells Mh J(u) — J(up) g

64 2.15e-02 4.79e-02 2.23 64 2.15e-02 4.79e-02 2.23
160 1.41e-02 2.53e-02 1.80 256 1.11e-02 1.59e-02 1.44
640 5.70e-03 7.21e-03 1.26 1024 3.79e-03 4.36e-03 1.15
1600  1.78e-03 1.98e-03 1.11 4096  1.07e-03 1.12e-03 1.05
4480  5.63e-04 5.91e-04 1.05 16384  2.78e-04 2.83e-04 1.01
14656  1.65e-04 1.68e-04 1.02 65536  7.05e-05 7.08e-05 1.00
52672  4.57e-05 4.64e-05 1.02 262144 1.77e-05 1.77e-05 1.00
200464 1.21e-05 1.22e-05 1.01

Remark 5.8. For ¢ = 0 let u be the primal weak solution to (3.44)), and let J(u) :=
1% Jo |IVulPde. If € = 0, then obviously z = w is a solution to the dual problem ([5.57). In
the case under consideration, the dual equation (5.57) formally takes the form

/\Vu|p’2Vw :Vzdx + (p— 2) / |VulP™(Vu : Vw)(Vu : Vz)dx
2 Q

= B, (u)(w, 2) = J,(u)(w) = (p—1) / VulP2Vu:Vwdzr VYweY = WiP(0Q).
9]

Below we show that for € = 0 the solution z = w is uniquely determined within the class
{veY; B, (u)(w,v) < oo for all w € Y}. To this end, we suppose that there is a further
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5.6 A posteriori error estimation and adaptive mesh refinement

solution z with Z # z. This implies that B),(u)(w,z — 2) = 0 for all w € Y. Using the
latter identity with w := z — 2, Lemma [2.4) with € = 0, for p < 2 we conclude that

0=0B,(u)(u—2u—2)

- / VP2V (u— 2)2 da + (p— 2) / VP (Va : V(- 2))(Va : Viu— 3)) do
02 (%

> (p-1) [ IVul V(- D) de > (p- 1) [(Vul+ V)2V - 2)P de
(9] (]

~(p—1) / (§(Vu) — S(V2)) : (Vu — V3) da.
k0]

Since § is monotone and Z # u, the last term is strictly positive. This yields the desired
contradiction. As a result, the solution z = w is uniquely determined.

In Table we estimated the error at some point xy € 2. Since the point functional
J(u) := uy(xp) is not well-defined on the trial space Y := Wé’p(ﬁ), for By == {x €
R?; |z — xo| < §} the regularized functional Js(u) := |Bs|™* /B, w1 dz is employed within
the DWR method. It is well-known that for small ¢ it holds Js(u) = u1(x0) + O(62). Here,
for g := (0.8,0.8) the reference value J(u) = 0.082979144 was used. It was obtained
analogously to the previous experiment by extrapolation of approximations computed on
uniformly refined meshes. Considering Table we observe that the estimated errors
agree with the actual errors very well. In particular we realize that I.¢ ~ 1 on finer grids.

Table 5.8. A posteriori estimation of a point value

(a) Local mesh refinement (b) Uniform mesh refinement

#cells Mh J(u) — J(up)  Lg  #cells Mh Ju) — J(up) g

64 1.58e-02 4.20e-02 2.66 64 1.58e-02 4.20e-02 2.66
172 9.38e-03 1.96e-02 2.09 256 8.45e-03 1.70e-02 2.01
484 4.95e-03 5.80e-03 1.17 1024  4.22e-03 4.78e-03 1.13
1348  1.66e-03 1.79e-03 1.08 4096  1.22e-03 1.25e-03 1.03
4300  4.91e-04 5.00e-04 1.02 16384 3.12e-04 3.02e-04 0.97
14260 1.40e-04 1.47e-04 1.05 65536 7.64e-05 7.90e-05 1.03
50788  3.94e-05 3.95e-05 1.00

Lemma 5.9. Forp € (1,2] let us consider the p-Laplace problem (3.44), i.e., let B= B

be given by B(u)(w) = [,(e® + |Vu|2)p772Vu : Vwde. If for some constant C > 0 the
functional J satisfies J;,(up)(wp) < Cllwp|1p for all wy, € XY, then for each h > 0 there
exists a unique solution zp € Y = Xﬁ to problem (5.58)) satisfying

[2hl[1p < C = C(p, 0, 2, ). (5.62)
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5.7 Application to the p-Navier-Stokes equations

Proof. First of all we prove that if there exists a solution zj to problem (/5.58)), then zj
is determined uniquely. For this we assume that z}L and z,% are two functions satisfying

(5.58). Setting &), := 2z} — 27, we observe that
By (up)(wp,&,) =0 Vwy, € X7,

Using Hélder’s inequality with 2;” + £ =1 and taking into account p < 2, we conclude

2 2 2 @p 2 2 (ng)p %
o= VIVwl2 = o= D( [ (2 +1Vwl?) (V) TVl de)
(%

p—2
< (= Dlle +[Vunll7 [ (24 1Vual?) 7 (Ve
2
p—2
<|le + \Vuth,p{/ (52+ \Vuh|2) * | Vwy,|? dae
(0]
p—4
Ho-2) [ (24 1Vwl) 7 [V de]
9]
< |le + [Vun|[l7 7 By, (wn) (wn, wh) (5.63)

for all wy, € X% . We recall that wy, is uniformly bounded in WLP(£2) by a constant only
depending on the data. Hence, we deduce that there exists a constant ¢ = ¢(p, €, §2, f):

0 = By (un)(€n,€r) = || V&5 (5.64)

We infer that £, = 0 and, hence, 2}, = z2. Since system (5.58) is linear and the space X%
is finite dimensional, we can conclude that there exists a solution zj to system (5.58)). In

order to show ([5.62]), we test (5.58)) with wy, := zj and we apply (5.63) so that

Cllznllip = Jo(un)(zn) = By(up)(zh: 2) > (p = 1lle + [Van||[572Vzalf5-
This completes the proof. O
For instance, the assumptions of Lemma are satisfied for the functional J(u) =
1/p" [, |Vu|P de since the primal solution wy, of the discrete p-Laplace problem is uniformly
bounded in WP(£2) by a constant only depending on the data. Discrete dual solutions zj,

usually exist. In contrast the well-posedness of the continuous dual problem ([5.57)) cannot
be established in general, even for the simple p-Laplace equation.

5.7 Application to the p-Navier-Stokes equations

In this section we apply the well-known DWR method to the p-Navier-Stokes equations
(2.15). As an illustrative example, we compute the drag coefficient of an obstacle immersed
into a fluid of class (2.10)). We consider the planar flow around an obstacle between two
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5 Approximation of the p-Navier-Stokes Equations

steady parallel plates driven by an inflow profile for the velocity. We assume that (2 is
a simple channel whose boundary consists of a solid part I's (upper and lower edge), of
an inflow boundary I (left), and of a free outflow boundary S (right), see Figure [5.8(b)]
In addition we suppose that an obstacle with surface I, is immersed into the fluid. On
I' := I's U I, UI; we prescribe boundary conditions of Dirichlet type: v|r,ur, = 0 and
v|r, = vp. Here, vp is given by the trace of a globally defined function v € WP ().
On S we prescribe the natural outflow boundary condition

_u(|Dvl?)

5 Opv+1m =0 on S. (5.65)

As above, n denotes the outer normal on 92, and d,v is the corresponding directional
derivative. Note that dpv = (n - V)v = [Vu]n. If the boundary condition is
prescribed, then the pressure is uniquely determined without an additional constraint on
the pressure mean value. More details can be found in [HRT96], Remarks and

Remark 5.9. Let t be the tangential vector on 0f2 and let v; = v - t be the corresponding
tangential component of v. Multiplying (5.65) by n, integrating the result over S, and

observing Opv, = —0svy due to V - v = 0, we obtain the condition
1
/ﬂdo =5 /#(\Dm?)aﬂ;t do. (5.66)
S S

For instance, for unidirectional flows (Poiseuille flows) the stream lines are orthogonal to
the outflow boundary S. In this case, the tangential component v; is identically zero. As a
result, we conclude that dyv; = 0 and, hence, [¢7do = 0.

The variational formulation has to be adjusted to the current flow configuration.
Let the semi-linear form A(-)(-) be defined by (3.23). As above, X% and QF. denote the
velocity and pressure space, and they are defined as in . Then the weak formulation
reads: Find a velocity v and pressure 7, u = (v, 7) € (v + X}.) x QF., such that

(IDvf?)

A(u)(w) = (f,w)n + (,u 5 [Vv]Tn,w) Vw = (w,q) € X x Q. (5.67)

S

Similarly to Remark [5.6] we can derive the so-called “do-nothing” boundary condition

(5.65) by applying integration by parts to ([5.67]).

Drag computation: Below we introduce the drag and lift force following the literature
Giles et al. [GLLS97]. For u = (v, 7) the weighted boundary flux Jy(u) is defined by

d
Jp(u) =3 / ni(Sij(Dw) — 67 do. (5.68)
Li=190

If 1) is a unit vector parallel to the direction of the flow, then Jgyag := Jy is called the drag
on 0f2. If 1) is a unit vector perpendicular to the direction of the flow, then Jjif := Jy is
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5.7 Application to the p-Navier-Stokes equations

referred to as the lift on 9f2. If only a part I, of the boundary 042 is of concern, then )
can be taken to have its support in I,. As above, I, is a closed surface which represents
the boundary of an object immersed into the fluid. The space of all w € WP(£2), which
satisfy the Dirichlet boundary condition w|sq = 1, is denoted by Wllp’p (£2). Let u = (v, )
be a weak solution to that is smooth enough in order to be a classical solution. Then
it follows from integration by parts that for any w = (w,q) € Wllz;p(Q) x LV (2)

i=1 i=1

d d d
A(u)(w) — (f, w)Q = Z/ ( — Z&)ZSU(DU) + 8]'71' + Zviaﬂ}j — fj) W dx
Jj=1g

=0

d d
+ Z / Z niSij(D'v)wj — N;TW; do = J¢,(’U,)

Clearly, the left-hand side is independent of the choice of w & W,b;p (2) x LP(£2). Here,
we choose the particular test functions wdrag = (Wdrag, 0) and wiig = (W, 0) which fulfill
'wdrag|8(2 - wdrag and wlift|89 = Yy, where wdrag’Fo = (1?0)T7 wdrag’@Q\Fo =0, and
Yugelr, = (0,17, Yugloor, = 0. As a result, we obtain the identities

Jdrag(u) — A(u)(wdrag) - (fa wdrag)(lv Jlift (u) - A(u) (wlift) - (f) wlift)(l- (569)

However, such identities are not true on the discrete level. The finite element space X7, 4
consists of all wy, € X, with wp|sn = 1 where 1) is given by ¢ = g, |0 for some g, € X,.
Motivated by (5.69), we define approximations J(’frag(uh) to Jarag(u) by

Jgrag(uh) = A(uh) ((wdrag,hy O)) - (,fu wdrag,h)(h Wdrag,h S Xhﬂ/’drag'

As usual, up, = (vp, m,) denotes the finite element solution. If the boundary is sufficiently
smooth and if the used FE spaces are based on d-simplices and are inf-sup stable, then
Giles et al. showed in [GLLS97] in the case p = 2 that the order of convergence for
Jgrag(uh) — Jdrag(®) amounts t 2r. However, for the direct approximation Jyrag(up) the
order of convergence is typically only r (see [GLLS97]). To sum up, for p = 2 there hold

|Jdrag(uh) - Jdrag(u)| = O(hr)v ‘Jgrag(uh) - Jdrag(u)‘ = O(hQT)' (5'70)

Similar results hold true for Jj;g and J{i‘ft.

The DWR method applied to p-Navier-Stokes systems: As above, let A()(-) be defined
by . The p-Navier-Stokes problem can be expressed equivalently by
if the product space Y := X%, x QF is used, and for u = (v,7), w = (w,q) € Y the
right-hand side is given by F(w) := (f,w)q and the semi-linear form B is defined by

(| Dv]?)

Bu)(w) = A(u)(w)—( - [VU]TTL,’w> . (5.71)

S

'Here, the variable r denotes the underlying polynomial degree of the velocity space.
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5 Approximation of the p-Navier-Stokes Equations

We discretize the p-Navier-Stokes system ([5.67)) with equal-order Q;/Q; finite elements.
This discretization requires stabilization of the finite element equations. The stabilized
discrete problem reads: Find wj, = (vy,, m) € (vo, + XT.,) x Q. such that

B(up)(wn) + Su(un)(wn) = (f,wn)e  Ywn = (wn,qn) € Xy, x Qpye (5.72)

The used stabilization term S} is chosen as in . The semi-linear form B, that
was introduced in , is given by the left-hand side of . We only consider the
popular Carreau-type model & (2.11D)). The directional derivative A'(u)(w, z) is
then formally given by . As already mentioned, the directional derivative is not
well-defined for ¢ = 0 and p < 2 since the functions w, w, z naturally belong to the space
WLP(02) x L¥ only. If additional regularity on the primal solution u such as u € Wb (0)
is not available, then the existence of a unique solution z to the dual problem is not
ensured. The additional terms in ([5.60)) caused by stabilization are given by

- 1 -
(L= L)(un; zn) = Su(un)(zn),  5(L = L)z (un; z0)(Zn = 2n) = 5 S(un)(Zn = 21),
They are supposed to be neglectable. This may be justified by the fact that they include
stabilization parameters which vanish for diminishing mesh size (see [Sch10]).

Example 1: For the Carreau model & we reconsider the benchmark problem
2D-1 in Schéafer/Turek [TS96]. As in [T'S96], the parabolic inflow profile vp(x,y) =
(4v,y(H — y)/H?,0)T was prescribed on I}. Here, the variable H denotes the height of
the channel and it was given by H = 0.41. The parameters were set to p = 1.2, ¢ = 1073,
to = 0.15, vy, = 0.3. For Q2/Q2 elements on uniformly refined meshes the computation of
the drag-coefficient yielded the values listed in Table [5.9]

Table 5.9. Drag-coefficient (Q2/Q2 elements, uniform refinement): Case p = 1.2

#cells S g (Un)

10240 0.1655069473366795
40960 0.1650880440829428
163840 0.1650477143604138
655360 0.1650447725137632

extrapolated 0.1650445410360044

Since the exact drag coefficient Jyrag(w) is unknown, the extrapolated value was used as
the reference value Jyrag(u) = 0.16504454. We applied the DWR method which enables
the quantitative assessment of the discretization error and the adaptive refinement of
the underlying meshes. As above, Jgrag(u) — Jgrag(uh) represents the actual error and
1y, denotes the estimated error. The quality of the error estimation is measured by the
effectivity index leg := (Jarag(u) — J(’frag(uh)) /nn. Using adaptively refined meshes, we
obtained the results shown in Table Particularly on finer grids we observe a good
agreement of the estimated and the actual errors. This is illustrated by l.g ~ 1. The
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Figure 5.8. FE solution on an adaptively refined mesh: case p = 1.2
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(a) 1048 elements

(b) 2560 elements

(c) 5836 elements

(d) 17308 elements

Figure 5.9. Adaptively refined meshes in case of Example 1
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5.7 Application to the p-Navier-Stokes equations

number of elements, which is needed to reach a relative error of one percent, is indicated
by bold face. Figure depicts the behavior of the discretization error for different
refinement strategies. As expected, adaptive mesh refinement is more efficient than uniform
mesh refinement.

Table 5.10. Drag-coefficient: case p = 1.2, ¢ = 1073

#cells Mh Jarag(u) — J(}frag(uh) Ieg

160  -1.35e-02 -3.08e-02 2.28

412 -4.85e-03 -1.15e-02 2.36

1048 -2.03e-03 -3.89e-03 1.91
2560 -9.13e-04 -1.22e-03 1.34

5836  -3.90e-04 -4.14e-04 1.06
17308  -1.34e-04 -1.33e-04 0.99
54760  -4.17e-05 -4.14e-05 0.99

0.1 T
adaptive ---e---

uniform —+—

0.01

0.001

Marag(U)-Jarag(Un)!

0.0001

16-05 ‘ ‘ ‘
100 1000 10000 100000

Number of elements

Figure 5.10. |Jgrag(u) — Jc}frag(uh)] for different refinement strategies: p = 1.2

Example 2: We consider the laminar flow around an obstacle with square cross-section,
see Figure Here the parameters were set to p = 1.5, ¢ = 1073, pg = 0.15. Considering
Figure 5.12] we observe singularities of the pressure and velocity-gradient caused by the
obstacle. The lack of regularity leads to a reduction of the convergence-rate for Jélrag(uh)
with respect to uniform refinement. As a reference value for the drag-coefficient, we
used the estimated value Jqyag(u) = 0.31244827. We established this value by comparing
the approximations obtained for bi-linear and bi-quadratic finite elements by means of
adaptive and uniform refinement. Considering Table [5.11] we discover over-estimation
which is indicated by I.g > 1. The measured effectivity indices I, are worse than those
in Example 1. The reason is that neither the primal nor the dual solution is regular. In

151



5 Approximation of the p-Navier-Stokes Equations

view of Figure adaptive mesh refinement is more efficient than uniform refinement.

Compared to Example 1, the efficiency of adaptivity is greater.

Table 5.11. Drag-coefficient: case p = 1.5, e = 1073

#cells Nh Jarag(uw) — Jc'{mg(uh) Teq
160 -2.37e-02 -3.93e-02 1.66
412 -7.26e-03 -1.54e-02 2.13
868 -4.13e-03 -8.16e-03 1.97
1828 -2.22e-03 -4.15e-03 1.87

3976  -1.12e-03 -2.08e-03 1.86
6244 -7.65e-04 -1.25e-03 1.64

13840  -3.78e-04 -6.23e-04 1.64

23644  -2.20e-04 -3.39e-04 1.54

42736  -1.27e-04 -1.88e-04 1.48

79192  -7.02e-05 -9.95e-05 1.42

142204 -3.92e-05 -5.38e-05 1.37

0.1 T
adaptive ---e---

uniform —+—

0.001

h
‘Jdrag(“)“]dragmh)‘

0.0001

Il Il Il
00 1000 10000 100000
Number of elements

1e-05
1

Figure 5.11. |Jgrag(u) — Jc}{rag(uh)\ for different refinement strategies: p = 1.5

Conclusion: For a posteriori error estimation we applied the DWR method to p-Navier-
Stokes systems. Our numerical experiments demonstrate that the DWR method works well
in the context of p-Navier-Stokes systems: It quantitatively assesses the discretization error
and it enables efficient adaptive mesh refinement. Despite its practical success, the DWR
method offers many open questions when it is applied to p-Navier-Stokes systems. In fact,
from theoretical point of view it has not yet been understood at all: For p < 2 the dual
problem is not well-posed in general even in the case € > 0. Moreover the analysis
performed in Section does not include the limiting case € 0. The remainder term
generally does not remain bounded as € \, 0 for fixed A > 0. At least numerical
experiments indicate that the DWR method works reasonably in the case 0 < ¢ < 1.
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Figure 5.12. FE solution on an adaptively refined mesh: case p = 1.5

153



5 Approximation of the p-Navier-Stokes Equations

(a) 868 elements

(b) 1828 elements
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(c) 3976 elements
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Figure 5.13. Adaptively refined meshes in case of Example 2
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6 Finite Element Approximation of Singular
Power-Law Systems

Non-Newtonian fluid motions are often modeled by a power-law ansatz. In this chapter, we
consider the power-law model & with p < 2 which features an unbounded
viscosity in the limit of zero shear rate, and we study the finite element (FE) discretization
of the corresponding equations of motion (the singular power-law systems). In the case
under consideration, numerical instabilities usually arise when the finite element equations
are solved via Newton’s method. In this chapter, we aim at developing a numerical
method that enables the stable approximation of singular power-law systems. First of
all we identify the arising difficulties connected with the numerical solution. Then we
propose an approximation method for singular power-law systems that is based on a simple
regularization of the power-law model . Our proposed method generates a sequence
of discrete functions that is computable in practice via Newton’s method and that converges
to the power-law solution for diminishing mesh size. We derive a priori error estimates that
quantify the convergence of our method, see Corollary Furthermore, we demonstrate
numerically that our regularized approximation method surpasses the non-regularized one
regarding accuracy and numerical efficiency.

In Section [6.1], we recall the weak formulation and we introduce its discretization. For
ease of presentation, we restrict ourselves to stable discretizations that satisfy the inf-sup
stability condition Section deals with Newton’s method and its stability. For the
regularized model we show the stability of Newton’s method in the sense that we derive an
upper bound for the condition number of the Newton matrix. In Section we present
our regularized approximation scheme and we derive a priori error estimates for it. In
Section we illustrate the a priori error estimates by numerical experiments.

6.1 Problem formulation

For ease of presentation, we only study power-law/Carreau-type models (2.10)—(2.11b)).

Such models are derived from a potential. For p € (1,00) and £ > 0, we define the extra
stress tensor S. by means of a convex function @, : R§ — R{ as follows:

Q

S:(Q) = ¢2(!Q!)|Q|

Sym ?

¢
vQ € RIXd Dc(t) 1= /(82 + sz)pT_Qsds. (6.1)
0

The subscript . highlights the dependence on € which will be of relevance below.
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6 Finite Element Approximation of Singular Power-Law Systems

Weak formulation: The weak formulation of system (2.16) & (6.1)) reads:
(P¢) For given f € (XP)* find (v¢,n%) € XP x QP such that
(Se(Dv®), Dw)p — (7°,V -w)p = (f,w) Yw € XP (6.2)
(V-v*,¢)p=0 Vg € QF. (6.3)

The well-posedness of Problem |[(P¢)| has been established in Section There exists a
unique solution (v®,7¢) € XP x QP to Problem |(P¢)| that satisfies the a priori estimate

_1
ol < c(I1F175 +e) (6.4)

where ¢ > 0 only depends on 2, p (see Lemma [2.19). Since S; is derived from the potential
@., we can introduce the functional 7. : XP — R associated with &.:

To(uw) = /@E(]Du\)da: “(fou)  Vue AP (6.5)
N
In Section [2.5( we have shown that Problem |(P¢)|is equivalent to the minimization problem

(M®) For given f € (XP)* find v¢ € VP such that
T (v°) < T (w) Yw € VP. (6.6)

Finite element discretization: Let X} and Q} be two appropriate finite element spaces
as in (3.21]). Their precise definition is not important for the purpose of the following
sections. The Galerkin approximation of [(P¢)|reads as follows:

(P5) Find (v5,m5) € XY x QF such that

(So(Dv5,), Dwy) g — (75, V - wp) o = (f, wp) Ywy, € XY (6.7)
(V- vk, an)e =0 Yan € Q. (6.8)

For ease of presentation, throughout the chapter we require that the discrete inf-sup
condition |(IS)|is satisfied. We may easily verify the well-posedness of the discrete Problem
using the same arguments as in the continuous case (see Lemma [2.19)).

Lemma 6.1. Let|(IS)|be satisfied. Then, there exists a unique solution (v5,75) € X5 x OF
to Problem that satisfies the a priori bound (6.4) with v° replaced by vj,.

Remark 6.1. It is well-known that equal-order finite elements (such as Q1/Q1) lead to an
unstable discretization, i.e., they do not fulfill the inf-sup stability condition If the
pairing X} x OF does not satisfy we need to stabilize the Galerkin discretization
Stabilization methods, that are frequently used, are the local projection stabilization (LPS)
and the pressure-stabilization Petrov-Galerkin (PSPG) method (see Section [3.2). If we
discretize With the unstable Q1 /Q; elements, we can apply the LPS-based stabilization
method proposed in Section One adds an appropriate stabilization term sp(7,)(gn) to
which gives a weighted L” -control over the fluctuations of the pressure-gradient.
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6.2 Stability of Newton’s method

In order to ensure approximation properties, one clearly needs to specify the choice of the
discrete spaces. Since approximation properties are not important for the purpose of the
forthcoming section, we will discuss particular choices of the discrete spaces later on.

6.2 Stability of Newton’s method

Nonlinear FE systems are frequently solved via Newton’s method, see Algorithm This
section is dedicated to computational aspects: We discuss Newton’s method and its stability
in the context of power-law/Carreau-type models. In particular, we derive an upper bound
for the condition number of the matrix resulting from linearization of the viscous part.

Solution of the discrete problems: Below we investigate the numerical scheme that
solves the FE systems & . Due to their nonlinear nature, the discrete equations
need to be linearized. For linearization we apply Newton’s method, see Algorithm For
ease of presentation, we introduce a semi-linear form a.(-)(-) associated with S:

a:(v)(w) := (Se(Dv), Dw)p Vo, w € XP.

Formally, we may compute the Gateaux-derivative of a-(-)(+):

al(v)(&,w) = / (62 + ’D’UP)%Dﬁ : Dwdx

“ " (6.9)

+(p- 2)/ (2 +|DvP) 7 (Dv: DE)(Dv : Dw)da
2

for v, &, w € XP. We recall Newton’s method applied to (6.7) & (6.8)), see Algorithm
Choose an initial guess (v}, 7%). For k = 0,1,2,... compute (&5, 7F) € &% x QF from

al(vp) (€, wn) — (0, V - wi)e + (V- €5, an) e = —ac(vy) (wh)

k k » » (6.10)
+ (ﬂ-ha v . wh)Q - (v : vh7q}L)Q + <f7wh> V(wh,Qh) S Xh X Qh

and set (Ui+1,ﬂ}]z+1) 1= (vF, 7F) + (&}, nF). For p < 2 and ¢ = 0 the Gateaux-derivative

al(vF)(&F, wy) does not exist in general when the critical set 2, = {z € 2; Vol (z) ~ 0}
is not empty. Since Newton’s method requires the existence of first derivatives, for ¢ = 0
its convergence is not ensured in the case 2. # (). Hence, for £ = 0 the solution to Problem
cannot (approximatively) be determined by means of Newton’s method in general.
However, if € > 0, it can easily be shown that a. is Gateaux differentiable on X% x A%.

Stability of Newton’s method: First of all we discuss the algebraic structure of Newton’s
algorithm. For simplicity, we assume that Problem is discretized with inf-sup stable
finite elements. In this case, the Galerkin discretization , does not need to be
modified by additional stabilization terms. If equal-order discretizations are considered
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6 Finite Element Approximation of Singular Power-Law Systems

(cf. Remark , then the forthcoming investigations can easily be generalized. Let
{;,5=1,...,N :=dim(X})} and {x;, j = 1,..., M := dim(Q})} be the nodal basis of
the finite element space X’ I;L and Qz, respectively. In view of the representations

N M
k k k k
€h:Z%¢j, 77h225ij7 (6.11)
Jj=1 j=1

Newton’s system (/6.10|) is equivalent to the linear system of equations

(5 2)6)-0

for the unknowns af € RN and g* € RM where

N

b= (@)W, 8)). . B=—(06V $)a) (613)
b= (= acol)@) + (R Ve + () = (= (T vhwa),

The following theorem provides an upper bound for the condition number of A*.

Theorem 6.2. Let p € (1,2] and € € (0,00). Then, the matriz A* defined in (6.13)) is
symmetric and positive definite for all k € IN. Consequently, A* is reqular for all k € IN.
Furthermore, the condition number condy(AF) of the matriz A can be estimated by

)\max (Ak)

condy (AF) := —y

2—
<c(p-17"! (E + HD’UZHOO) Per=2p,-2 (6.14)

Here, )\maX(Ak) and )\min(Ak) denotes the largest and smallest eigenvalue of the matriz
A¥. The constant ¢ only depends on 2 and on the shape-reqularity of the grid T},

Proof. In the context of the regularized p-Laplace equation, an estimate similar to (6.14)
has been proven by Hirn [Hir(8]. Here, we similarly derive estimate following the
arguments in [Hir08]. Clearly, the matrix A* defined in is symmetric. Let wy, € X%
be an arbitrary finite element function with corresponding nodal vector ¢ = (C,-)Z-]\Ll e RV,
ie., wy = Zfil Cit;. Then, there holds true the following identity:

CLIE(’UZ wh7wh Z Cz ,(l)Z?'lpj Z Cz

3,j=1 1,=1

In view of , we observe that

p—2
(o) (wnywn) = [ (24 [Dui) 7 |Dwyf da
2
- (6.15)
+(p— 2)/ (52 + ]vaf) * |Dv¥ : Dwy,|? d.
2
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6.2 Stability of Newton’s method

Taking into account p < 2, applying the Cauchy-Schwarz inequality, we deduce from ([6.15)):

p—2
aL (o) (wh,wp) > (p— 1) (e + | Dvf]loc) || Dwil3. (6.16)

Using Korn’s and Poincaré’s inequality, for some ¢ = ¢(£2) > 0 we arrive at the estimate

N
p—2
> GAlG > ep—1) (e + [ Dvk]s)” llwn
ij=1

‘2
1,2+

As a result, the matrix A¥ is positive definite. Let M be the mass matrix associated with
X ie, let M e RN*N be defined by M;j := (;,%;)q. Then, it is well-known that

N
lwhlls = Y GMi;¢, condz(M) = O(1). (6.17)

ij=1
The smallest eigenvalue )\min(Ak ) is bounded from below by

N k
SN GARC
)\min(Ak) = min M

CERN C[?
N k N N k
> min 2=t GGG L D GMG L S GGG
- - min .
¢CerN SN (i M;i(; CeRN I¢I? ¢erN SN (MG

Using (6.16[), Poincaré’s and Korn’s inequality, we conclude that for some ¢ = ¢(£2) > 0:

/o
Amin(A*) > min as(vh)(w’g'wh
wyEX? w2

Dhin(M) = ep = 1) (= + [ D0 l10)” ™ Auin(M).

Similarly, we get an upper bound for the largest eigenvalue /\maX(Ak):

Ao (AF) = max =L GAGG < max 2ii=1 GALG
max - —_
ceRN  [¢]? CeRN N1 GiMi¢;

In view of p < 2, it easily follows from (6.15]) that

Amax (M).

p—2
o wh)wnwn) < [ (24 1Dvk) T |Dwy P de < 2| D .
(0]

Using the global inverse estimate ([3.20]), we can estimate the largest eigenvalue of A" by

! (ayk
)\max(Ak) < max Qe (Ivh)(wh2, UJh)
wreXY HwhH2

2| Dw

w13

)\max (M)

max(M) < C5p72h72)\max(M)7
where C' > 0 only depends on the shape-regularity of T}. To sum up, we have proven that
—2
lp = 1) (e + 1D ) Anin (M) < A (4°) < A (4F) < O 2020 (M).

Using (6.17)), we easily complete the proof. O
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6 Finite Element Approximation of Singular Power-Law Systems

Remark 6.2. Finally, we comment on Theorem

o For p = 2, the result (6.14) is well-known in the context of Stokes systems. If the
elasticity problem is studied, i.e., if the pressure term and the constraint V-v =0
are omitted, then the Newton matrix stated in (6.12]) only consists of the bloc AF.

e Theorem only yields an upper bound for the condition number of the matrix A*.
However, numerical experiments indicate that, indeed, the condition number of A*
can behave as the expression on the right-hand side of . This means that for
diminishing € > 0 and p > 1 the condition number of A* increases.

o Since A” is regular for all k € IN, one can eliminate the variable  in the system of
equations (6.12) so that 8% and a® can be determined from

BT (A" 'BBF = "+ BT(AM)7F, of = (A7 (bF-BBY).  (6.18)

The matrix BT(A*)~'B is referred to as the “Schur complement”. For its compu-
tation, one needs to determine the inverse matrix of A*. According to (6.14), the
condition number of A* can be large for 0 < ¢ < 1 and p < 2. Hence, one has to
construct appropriate preconditioning methods in order to solve numerically.

6.3 Approximation of singular power-law systems

This section is dedicated to the finite element approximation of power-law solutions (¢ = 0).
As already mentioned, the nonlinear operator related to S is not differentiable for € = 0 in
the shear thinning case. The lack of differentiability may cause numerical instabilities when
the nonlinear discrete systems are solved via Newton’s method. In this section, we propose
a numerical method that enables the stable approximation of singular power-law systems.
The proposed method generates a sequence of discrete functions which is computable in
practice via Newton’s method and which converges to the exact solution of the power-law
system. It is based on a simple regularization of the power-law model. Clearly, the Carreau
model with € > 0 can be interpreted as a regularized power-law model. Let the
quantities S., ®., J- be defined as in Section [6.1] In order to highlight the dependence on
e, we also relabel F introduced in (2.39)) as

p—2

FAQ:=(+1QF) T Q@ vQeRy (6.19)

Let usset § := Sy, @ := &g, F := Fo, and J := Jo. As depicted by the following theorem,
the solutions to the Carreau systems (¢ > 0) approximate the solution to the power-law
system (e = 0) for diminishing ¢ N\ 0.

Theorem 6.3. Forp € (1,2) and € € [0,&0] let the extra stress tensor 8. be given by (6.1)
and let F. be defined by (6.19). For each € € [0,eq] let (v¢,7%) € XP x QP be the unique
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6.3 Approximation of singular power-law systems

solution to . Let us define (v,7) := (v°,70). Then, there hold the a priori estimates

| F=(Dv°) — Fe(Dv)ll2 < clp, 2)eP’? (6.20)
| Dv® — Dvl|, < c(p, €0, {2, f)ep/2 (6.21)
I7° — 7l < c(B(p),p, 2)eP7 1, (6.22)

where the constants only depend on the quantities quoted within the brackets. In particular,
(ve, %) converge to the power-law solution (v,m) in XP x QP strongly for e — 0.

Proof. Since v° is the unique solution to [(P¢)| for € > 0, it can be characterized as the
unique minimizer of the functional J; in VP, i.e., it satisfies

Je(v%) < Je(u)  VueV?
for each € > 0. Using the trivial inequality
A2 2\ Ly_ +
@E(t)_p{(a Tt ) s } <t =d(t) VteR],

we conclude that J.(u) < J(u) for all u € VP. We recall that v € VP is the unique
minimizer of J. Consequently, we arrive at the inequalities

J-(v) < J(v) < J(v). (6.23)

From the main theorem of calculus we deduce that

Je(v) = Te(v°) = [ TH(v" + s(v — v%))(v — v")ds

O O

[js'(vs + s(v — v%))([v° + s(v — v°)] — %)

~ T + 5w — )] — )|+ T (o - )

=: I + J.(v°)(v — v°).

Since v¢ is the minimizer of J¢, the last term equals zero: J/(v®)(v — v®) = 0. Let us
estimate the term /. On the one hand, inequality (6.23]) implies that

I =J(v) = Je(v°) < J(v°) = Je(v°)
— /1|D'v€|p dx — / 1 {(62 + |D'v€|2)p/2 — 5p] dz
p p
0 0
= 11)/ [|D'v5|p — (52 + |Dv‘€]2>p/2} dx + |;2|8p < @sp. (6.24)

p
2
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6 Finite Element Approximation of Singular Power-Law Systems

On the other hand, Lemma and ([2.46)) imply that

1
d
I= / (SE(DU‘S + s(Dv — Dv%)) — S.(Dv®), [Dv® 4+ s(Dv — Dv)| — D’UE)Q ;8
0
: 2
~ // (6 + |Dv® + sD(v — v°)| + ]Dva\)p s|D(v — v°)|* deds
0 N
1
p—2 2
~ // (= + |Dv"| + 5| D(v = v7)| )" "s|D(v — v°)[* dads
0 N
p—2
~ [ (e +1Dv |+ D@~ v)])"|D(w - v°) de ~ | Fo(Dv) ~ Fo (Do),
(9}

where the constants only depend on p. This inequality together with the upper bound
(6.24]) yields the desired estimate (6.20). Using (2.43) and (6.20]), we conclude that

. 2—p
| Dv® = Do, < e(c0l 217 + | Dol + [ DvF,) * /2
for some ¢ = ¢(p) > 0. Due to the a priori bound ((6.4)), the expression within the brackets
is uniformly bounded by a constant only depending on p, o, {2 and f. This proves (6.21)).
In order to show (6.22)), we recall that the functions (v, 7) and (v®, 7%) satisfy
(S(D’U), D’lU)_Q - (7'[', V- w).Q = <.f7w>
(S€(Dv€)7 D’l,U)_Q - (7767 V. 'LU)_Q = <f7w>
for all w € XP. Subtracting these equations, we immediately conclude that
(m—7%, V- -w)g = (S(Dv) — S:(Dv°), Dw) Vw € XP. (6.25)
Using the inf-sup inequality (2.68) for X? x QP and the identity (6.25)), we deduce that
(m =75, V-w)q (8(Dv) — 8:(Dv®), Dw)q

Bllm — 7|y < sup = sup
P wexr wliy wexr llwl[1,p (6.26)

< [|[8(Dv) = 8:(Dv)|y + [|S:(Dv) = S(Dv°) ||y = J1 + Ja.

In order to estimate Jj, we have to control |@'(t) — ®L(t)|. We recall that there holds
\\aw - |b\q] ~(la|+ B ja—b] Va,beR (6.27)
for each ¢ > 0 (cf. Lemma . Applying (6.27) with ¢ := (2 — p)/2, we conclude that

2—p P
2 2 2 p—2 2 2\ 2.2
g + t 2 2 T2 3 + t &
1—-< 5 ) ~ (2417 t<1+ =

t2 t2

p—2

BL(t) — ()] = (2 +2) T

g2+ ¢2
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6.3 Approximation of singular power-law systems

uniformly in ¢ € IRS’ where we have used €2 + t? ~ 2 + 2¢2. In particular, (6.28)) implies
—3
that |, (t) — & (t)| < (€2 +12)"Z €2 < e~ uniformly in t € R Consequently, we obtain

=

P

5 = |S(Dv) = S.(Dv)ly < ([ W(|De]) - @ (Del)p da )" < 2! (629)
2

where the constant ¢ only depends on p. It remains to estimate the term Jy. Using Lemma

and inequality (6.20)), we deduce that for some ¢ = ¢(p, £2) > 0:

2 2
Jo < | Fo(Dv) — Fo(Dv)||} < ce? = ceP L, (6.30)

Combining (6.26)), (6.29), and (6.30)), we arrive at the desired result (6.22]). O

Remark 6.3. One can also derive similar error estimates as stated in Theorem [6.3] without
using the minimization property of the energy functional. Since v® are the solutions of
for € > 0, they satisfy (S(Dv), Dw)g = (f,w) for all w € VP and (S.(Dv®), Dw)g, =
(f,w) for all w € VP. Subtracting the latter equations, we immediately conclude that
(8:(Dv®) — 8(Dv), Dw)g =0 for all w € VP. By means of we deduce that

|F(Dv*) = F(Dw)f5 ~

—~

S(Dv®) — 8(Dv), Dv® — Dv)g
S(Dv®) — S.(Dv"), Dv® — Dv)g
Dv®

—~

_ / (@ (1Dv|) - @;(’D’UED]W . (Dv* — Do) da
2
3—pD e|lp—1 Dv¢
-1 [ FIDY Y . (Dv — Dv)d 6.31
© /52+\Dv5|2 Doe| (DY~ Dvjda. - (631)

837ptp71

o UE R, is bounded by one:

The real function g(t) :=

g2 .

> ft<e

g(t) < {éﬂtﬂ ;t ; _ = g(t) <1Vt e R,
2z

Therefore, the integral in (6.31]) is well-defined. Using the continuous embedding LP({2) —
LY(£2), Lemma and the uniform a priori bound (6.4) for v, we finally arrive at

| F(Dv®) — F(Dv)l||z < ceP!
where the constant ¢ only depends on p, g, {2, f.
Application to the FE approximation: On the basis of Theorem we now construct
our approximation scheme for singular power-law equations. For it, we require certain
approximation properties of the finite element method. For particular finite elements, the

following result is known (cf. Theorem {4.11)): For p € (1,2] and ¢ € [0, &¢] let (v, n¢) be
the solution to and let (v5,7}) be the solution to Assume that the solution
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6 Finite Element Approximation of Singular Power-Law Systems

(v, m°) satisfies F.(Dv®) € W2(02)44(2) and 7° € W' (£2). Then, the discretization
error can be estimated in terms of the maximum mesh size h as follows:

| Fo(Dv*) — Fo(Dvj)[l2 < Coh, fl|n° — milly < Coh?. (6.32)

The constants C; and Cy depend on ||VF.(Dv®)|2, ||7°||1,p, s €0, 2, and f. In particular,
they do not depend on ¢ explicitely. The error estimates (6.32]) remain valid for e = 0.

Remark 6.4. The error estimates have been proven for various finite elements by
[BBDR10|, [Hirl0] or Thm. (Note that Thm. has recently been published in
[Hir10].) In [BBDRI0], they were derived for inf-sup stable finite elements based on
d-simplices such as: Py/Py, Crouzeix-Raviart (P2 plus bubble / discontinuous P;), MINI-
element (IP; plus bubble / Py). In [Hirl0] or Thm. [6.3] the error estimates were
proven for equal-order d-linear finite elements (Q;/Q;) based on quadrilateral meshes
provided that the LPS-based stabilization proposed in Section is used. Note that
provides optimal convergence rates with respect to the supposed regularity of the solution.

The following corollary is a simple consequence of Theorem It yields the desired ap-
proximation scheme for singular power-law systems. Our approximation method generates
a sequence of discrete functions vj which is computable in practice via Newton’s method
and which converges to the power-law solution.

Corollary 6.4. Let p € (1,2) and € € [0,e9]. For each € let (v, 7%) € XP x QP be the
unique solution to and let (v5,75) € X% x QF be the unique solution to|(P5)| Let
us define (v,m) = (v0,7°) and (vp,m) = (V9,70). We assume that is satisfied.
Furthermore, we suppose that F(Dv) € WH2(02)? and 7 € WH'(2), and that
holds true for e = 0. Then, the solution (v, ) to the power-law problem can be approximated
by the discrete functions (v, ;) for e,h \, 0 in the following sense:

lo=williy < Ca("2+h), i —milly < Co(e 4 127). (6.33)

The constants Ct, Cy only depend on |VF (Dv)|l2, (7|14, p, €0, £2, F, and Cy additionally
depends on B(p). As a result, for € := h?/? it follows from (6.33) that

ip S2C1h,  |lm =y < 2C2h%7

lv = vj,

Proof. Since is fulfilled, the discrete mixed formulation is equivalent to a discrete
version of In particular, for each € > 0 the discrete solution v§ can be characterized
as the unique minimizer of the functional J; in V¥, i.e., v} satisfies

J=(v5,) = inf T (wy), V)= {w, € XV; (V- wp,qn)0 =0Vg, € Q1 }.

whEVi
Hence, we can adjust the proof of Theorem to the discrete setting. We conclude that
|Dvy — Dl < ea??, lmn = [y < coc?

where ¢; = ¢1(p, €0, 2, f) and ¢z = ¢2(p, B(p), 2). Using the latter inequalities, (6.32) with
€ = 0, Poincaré’s and Korn’s inequality, we easily deduce the desired estimates (6.33)). [
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Remark 6.5. When we choose finite element pairings X} x QF which do not satisfy the
discrete inf-sup condition then we need to stabilize the Galerkin discretization
If standard stabilization methods such as LPS or PSPG are applied (cf. [BBJLOT]), then
the discrete velocity v§ cannot be interpreted as the minimizer of J. in V) any more.
Hence, we cannot apply Theorem to the discrete setting as carried out in Corollary
However, Theorem yields an upper bound of (v — v®) in terms of € so that

p
[v = vhllip < [l =v[1p +[[v° = vhl1p < ce> + [[v° = Vi1, (6.34)

In order to derive an estimate similar to , the discretization error (v® — vj}) needs to
be estimated. For this, the error estimate is available. Note that the constant in
6.32) depends on |[VF.(Dv®)||2 and ||7°||; . In order to be able to deduce from
6.34]), we have to assume that there exist constants C, C’ > 0 independent of ¢ € [0, o]

IVF(Dvo)|la <C,  ||Va®|ly <C. (6.35)

The question is whether it is allowed to assume . In fact, the assumption (6.35))1
is satisfied at least in the case of space-periodic boundary conditions, see Lemma [2.28]
However assumption 2 seems to be rather sophisticated. In particular, Lemma
does not enable us to make any statement: According to Lemma the pressure-gradient
V7€ is only bounded in L2(§2) by a constant which might explode as £ \, 0. Alternatively,
in Corollary we can avoid assumption if we employ on the discrete level
instead of using a discrete version of Theorem [6.3] But then the order of the resulting
error estimates is less than the one of .

6.4 Numerical experiments

For p < 2 and € > 0 let the generalized viscosity p be given by and let the extra
stress tensor S be given by S.(Dwv) = u(|Dv|?)Dv. From mathematical point of view,
the singular power-law model (¢ = 0) is more interesting and more challenging than its
regularized counterpart (¢ > 0). In particular, the discrete power-law systems cannot
numerically be solved in general without regularization. In this section, we numerically
justify the regularized approximation method proposed by Corollary

We reconsider the pressure-drop problem described in Section [5.5} Find a velocity field
v® € X2 = {w € WP(Q2); w|r = 0} and a pressure 7° € QY. = LP'(£2) such that

(8:(Dv°),Dw)p — (75, V- w)o + (V-v°,q)n
(| Dv°[?)

-2 (M b))  Vw.g) € 2 x 0.

(6.36)

Let {2 be a rectangular channel with length L and height H, and let b := L/2 and
by := 0. This simple pressure-drop problem seems to be a proper example due to the
following two reasons: Firstly, the data such as f are independent of p, and for ¢ = 0
the exact solution (v, ) is known and it is given by (5.49). Secondly, the solution (v, )
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6 Finite Element Approximation of Singular Power-Law Systems

captures the typical flow behavior of a shear thinning fluid: For 1 < p <« 2 sharp
boundary layers occur along the Dirichlet boundary I', and the measure of the critical
set 2. = {x € 2; Vv(x) = 0} becomes large, see Figure The nonlinear operator
associated with S is not differentiable on (2. so that the convergence of Newton’s method
is not ensured in general. Hence, numerical problems related to the stability of the solver
may be expected when the algebraic equations arising from the FE discretization of
with € = 0 are solved directly by means of Newton’s method. For 1 < p < 2 our numerical
simulations will indicate that the solution (v, ) cannot numerically be approximated via
the direct application of the FEM-Newton algorithm but it can be approximated with help
of the method proposed by Corollary

Remark 6.6. Below we highlight the structure of the functions that solve the pressure-drop
problem under consideration of € > 0. Here, we assume that pg = 1. Let &, be defined in
(6.1). We introduce a function ©°: (0,L) x (—H/2,+H/2) — R? by

¢
(@) = VIHE05) - B2(mal/H)), #:0) = [@) M), =0
0
If e = 0, then &((t) = ﬁtp/ and, hence, 9° coincides with v given by (5.49) up to scaling.
Note that (®F)'(t) = (@.)71(¢) for t > 0. Consequently, the derivative of 5 equals

= —V2(®L) N (|wal/H) 2

(69) (w2) = —V2H(®) (Jwal  H) 572 ml

As a result, the symmetric part of the velocity gradient takes the form

IS 0 @) sl B
PrE = (—(@;>-1<|x2|/H>|§;| 0 )

Since |Dv| := v Dv : Dv, we conclude that |D®°| = (¥.)"!(|z|/H). Hence, we obtain

- - Dv* |.%'2| 22 -1 0 )
S.(D%°) = ¢.(|D%" LI ——— .
(D7) = (| DID%EI V2H (|m2| 0 V2H \z2 0

Clearly, V - S.(D%°) is constant. If ©° represents the velocity field solving the momentum
equations —V - S (Do) + Vn€ = 0, then the pressure 7° necessarily needs to be a linear
function satisfying 0,7 = 0.

Problem (6.36)) was discretized with equal-order Q;/Q; finite elements, i.e., both the
velocity and pressure were discretized with bilinear finite elements based on quadrilateral
meshes. Since this discretization is not “inf-sup” stable, the stabilized discrete system

(Se(Dvy,), Dwp) g — (75, V - wn) o + sn(my) (qn) + (V- vy, qn) e

(|Dv
- Z ( u(IDvR[*) Vvh]Tn — bin,wh>s V(wp, qn) € X’};h X Q’l’ﬂ;h

(6.37)
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6.4 Numerical experiments

was solved. The stabilization term sp(7})(qn) was chosen as in with opy = 0.
The algebraic equations were solved by Newton’s method, the linear subproblems by the
GMRES method (see Section . The subsequent computations were performed with the
following parameters: L = 1.64, H = 0.41, by = 0.82, by = 0, pp = 0.15. In our numerical
experiments, we measured the approximation errors ||V(v — v})||, and ||7 — 7 ||,y and
corresponding convergence rates under global mesh refinement.

Table 6.1. Development of ||V(v — v5)||,: Case e =0

p=1.1 p=12 p=13 p=15

#cells error conv. error conv. error conv. error conv.

256 4.55e-02 - 6.29¢-02 — 6.96¢-02 — 7.48¢-02 -
1024 - - 3.22e-02 0.97 3.51e-02 0.99 3.75¢-02 1.00
4096 — - 1.62e-02 0.99 1.76e-02 1.00 1.88e-02 1.00
16384 - - 8.10e-03 1.00 8.80e-03 1.00 9.38¢-03 1.00
65536 - - - - 4.40e-03 1.00 4.69e-03 1.00
262144 - - - - 2.20e-03 1.00 2.34e-03 1.00
expected 1.00 1.00 1.00 1.00

Example 1: In this example, we did not regularize the singular power-law model and we
directly solved the discrete system with € = 0 applying Newton’s method. Table
depicts the discretization errors (v — vy) with respect to the W1?(2)-norm and
corresponding convergence rates for different values of p. Note that the pressure m belongs
to the finite element space Q’}‘h and, hence, m was resolved exactly up to machine accuracy.
Thus convergence rates for the pressure are not presented. For p > 1.3 we observe that the
discretization error behaves as O(h). This agrees with Theorem For p < 1.3 we were
not able to determine vy numerically using Newton’s method. For instance, if p = 1.2,
then the Newton iteration did not reach the prescribed tolerance TOL = 10~'! for the
residual in case of the mesh with 65536 elements.

Table 6.2. Development of |V (v — v5)||, for € = 50h%: Case p=1.1

g0 =0 g =1 g0 = 10?
F#cells error conv. error conv. error conv.
256 4.55e-02 - 4.64e-02 - 6.06e-02 -
1024 - - 2.52e-02  0.88 2.92e-02 1.05
4096 — — 1.29e-02  0.97 1.39e-02 1.07
16384 - - 6.46e-03 0.99 6.73e-03 1.05
65536 - - 3.23e-03 1.00 3.30e-03 1.03
262144 - - 1.61e-03 1.00 1.63e-03 1.02
expected 1.00 1.00 1.00

Below we intend to illustrate the approximation scheme proposed by Corollary Instead
of solving system (6.37) with ¢ = 0, we determine the solution v} to system (6.37)) for
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6 Finite Element Approximation of Singular Power-Law Systems

small € > 0. For diminishing mesh size h \, 0, the error caused by regularization of the
power-law model with € > 0 dominates the discretization error. In order to obtain a
convergent method for h N\ 0, we couple the parameter £ with the mesh size h so that we
preserve the convergence rate of the discretization error. The choice € = £oh?/P implies
that the regularization error is of same order as the discretization error at least.

Table 6.3. Development of ||V (v — v})||, for e = soh%: Case p=1.2

g0 =0 go=1 g0 = 102
#cells error conv. error conv. error conv.
256 6.29e-02 - 6.33e-02 - 7.61e-02 -
1024 3.22e-02  0.97 3.23e-02 0.97 3.59e-02 1.09
4096 1.62e-02 099 1.62e-02 0.99 1.71e-02 1.07
16384 8.10e-03 1.00 8.11e-03 1.00 8.34e-03 1.04
65536 - - 4.06e-03 1.00 4.11e-03  1.02
262144 - - 2.03e-03 1.00 2.04e-03 1.01
expected 1.00 1.00 1.00

Example 2: We solved the regularized discrete system with € = ggh?/P. Tt is easy
to see that n° coincides with 7 from for all € > 0. Indeed, #¢ is a linear function
that satisfies 9;,7° = 0, cf. Remark (6.6, Hence, the condition [g 7do = |S;[b; actually
fixes the absolute value of the pressure on the inlet and outlet: 7¢(x) = b; for = € S;.
Consequently, there holds 7° = 7 for all € > 0. Since = is linear and, hence, 7 € Q.
holds true, the pressure was resolved exactly up to machine accuracy: 7} = m. Tables )
- depict the errors of approximation (v — v5) in W1P(£2) with & = £9h?/P. Since the
pressure was resolved exactly, only velocity errors are presented. Independently of the
value of €9, we expect that the error (v —v5) in W2 (£2) behaves as O(h) due to Corollary
[6-4] Considering Tables [6.2] — [6.3] we realize that the numerical results agree with the
theoretical ones very well. In case of g = 0, the numerical results coincide with those from
Example 1. The missing numbers indicate that Newton’s method did not converge. More
precisely, the Newton iteration did not reach the prescribed tolerance TOL = 107! for
the residual. Comparing the absolute errors for g = 0 with those for g9 # 0 depicted in
Tables [6.2] - [6.3] we finally observe that despite the additional regularization errors the
proposed approximation scheme leads to better approximation results and higher accuracy
compared to the non-regularized FE approximation of singular power-law systems.

Example 3: In this example, we considered another flow configuration which is less
realistic from a physical point of view but which exhibits a non-smooth analytical solution.
Here, we chose the computational domain £2 := (—0.5,0.5)% and we defined

v(x) = |x|” <_:E;;2> and m(x) = |x|’rizs.
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6.4 Numerical experiments

Table 6.4. Development of ||V(v — v5)||, for e = 50h%: Case p=1.3

80:0 50:1 50:20

F£cells error conv. error conv. error conv.

256 1.12e-02 - 1.47e-02 - 3.52e-02 -
1024 5.54e-03  1.02 6.47e-03 1.18 1.37e-02 1.37
4096 2.76e-03  1.01  2.99e-03 1.11 5.05e-03 1.44
16384 1.37e-03 1.00 1.43e-03 1.06 1.95e-03 1.37
65536 6.87e-04 1.00 7.00e-04 1.03 8.27e-04 1.24

262144  3.43e-04 1.00 3.46e-04 1.02 3.76e-04 1.14

expected 1.00 1.00 1.00

The right-hand side f was chosen accordingly as f := —V - §(Dv) + V7, and system
was complemented with non-homogeneous Dirichlet boundary conditions: On 942 the
boundary values vy were prescribed. The parameter b was chosen so that = € W7 (£2).
This condition is ensured for b > _z% — 1. We approximatively solved the corresponding
weak boundary value problem for the following parameters: p = 1.3, yg = 1, and b = —1.45.
Table depicts the approximation errors (v — vj) and corresponding convergence rates
for € = egh?/?. We realize that v5 converges to v in W1P(£2) with order one at least. The
numerical results for the pressure are presented in Table We observe that the error
(7 — m5) measured in LP (£2) behaves as O(h). In view of Tables 6.4/ and the numerical
results agree with the theoretical ones stated in Corollary

2
Table 6.5. Development of |7 — 7} ||,y for ¢ = ggh?: Case p =1.3

50:0 50:1 50:20

#cells error conv. error conv. error conv.

256 2.84e-02 - 2.66e-02 - 3.63e-02 -
1024 1.28e-02 1.45 1.14e-02 1.22 1.17e-02 1.63
4096 6.37e-03 1.01 5.47e-03 1.06 5.19e-03 1.17
16384 3.22e-03  0.98 2.67e-03 1.03 2.53e-03 1.04
65536 1.60e-03 1.01 1.31e-03 1.02 1.24e-03 1.03
262144  7.96e-04 1.01 6.46e-04 1.02 6.08e-04 1.03

expected 0.46 0.46 0.46

Numerical complexity: Finally, for Examples 1-3 we compare the proposed regularized
approximation scheme with the non-regularized one regarding numerical complexity. The
numerical costs were measured by the number of iterations carried out by Newton’s
algorithm, see Algorithm In Table [6.6] we depict the number of Newton iterations that
were performed in order to reduce the residual up to the prescribed tolerance TOL = 10~11
for each refinement level [. Here, Il = 1 corresponds to the mesh with 256 cells. The number
within the brackets represents the total number of iterations performed by the step-size
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6 Finite Element Approximation of Singular Power-Law Systems

control and it equals the number [* that appears in Algorithm with A = 3/4. As initial
guess for Newton’s method on level I, we chose the FE solution corresponding to level [ — 1.
In particular, as initial guess for Newton’s method on level [ = 1, we took the discrete
solution on the mesh with 64 cells. Comparing the number of iterations for eg = 0 with
those for g9 # 0 depicted in Table we observe that the solution of the non-regularized
systems (¢p = 0) requires more iterations of the Newton algorithm and step-size control
than the solution of the regularized systems (g9 # 0). We recall that in view of Tables
— we achieved higher accuracy for reasonable values of £g > 0. Hence, we realize
that the regularized approximation method proposed by Corollary is more efficient
than the non-regularized FE approximation of singular power-law equations. To sum up,
we conclude that the regularized FE approximation surpasses the non-regularized one
regarding accuracy and numerical efficiency.

Table 6.6. Number of Newton iterations (TOL = 10~!!) w.r.t. refinement level

(a) Ex. withp=1.1 (b) Ex. with p=1.2 (c) Ex. withp=1.3
E 80:0 50:1 50:102 i 60:() 80:1 60:102 i 60:0 50:1 60:20
1 8(11) 6(2) 5(3) 1 6(4) 5(2) 5(1) 1 12(6) 7(0)  6(0)
2 - 5(2)  6(2) 2 6(4) 5(1) 5(1) 2 17(11) 5(0)  7(0)
3~ 5(2 52 3 6(4) 5(1) 5(1) 3 16(13) 5(0)  6(0)
4 - 5(2)  5(2) 4 7)) 5(1) 5(1) 4 19(16) 5(0) 5 (0)
5 - 5(02) 52 5 - 5()  5(1) 5 21(18) 5(0)  5(0)
6 - 6(2 5(2) 6 - 4(1)  4(1) 6 16(17) 5(0)  5(0)

Conclusion: In this chapter we studied singular power-law systems and their numerical
approximation. The application of Newton’s method usually suffers from instabilities.
We proposed an approximation scheme that is based on a regularization of the singular
power-law model and that enables the stable approximation of singular power-law systems
via Newton’s method. In Corollary we derived a priori error estimates that quantify
the convergence of the proposed method. We practically validated them by numerical
experiments. The numerical examples indicate that our regularized approximation scheme
surpasses the non-regularized one regarding accuracy and numerical efficiency.
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7 Fluids with Shear-Rate- and
Pressure-Dependent Viscosity

In this chapter, we extend the finite element analysis performed so far to a wider class of
fluid models and more general boundary conditions such as . We consider a class
of incompressible viscous fluids whose viscosity depends on the shear rate and pressure.
We restrict ourselves to shear thinning fluid models that are similar to the Carreau model,
but we allow a restricted sub-linear dependence of the viscosity on the pressure (see
Assumption . The fluid models under consideration appear in many practical problems,
for instance, in elasto-hydrodynamic lubrication where very high pressures occur. We
deal with the isothermal steady flow under various boundary conditions. First of all, we
analyze the Galerkin discretization of the governing equations: We discuss the existence
and uniqueness of discrete solutions, and their convergence to the solution of the original
problem. Note that the mathematical theory concerned with the self-consistency of the
governing equations has emerged recently, see [MNRO2, [FMRO05, BMRO7, Lan09]. We
adopt the established theory in the context of discrete approximations. As before, our
aim is to quantify the convergence if a finite element (FE) discretization is applied. Since
the considered equations come up with additional difficulties due to the complicated
structure of the viscosity, only inf-sup stable elements are considered so that no additional
pressure-stabilization is needed. We derive a priori error estimates similar to , which
provide optimal rates of convergence with respect to the supposed regularity of the solution,
see Corollary Finally, we demonstrate the established error estimates by numerical
experiments. To the best of my knowledge, there is no further literature presenting
a rigorous FE analysis for fluids with pressure-dependent viscosity. The derived error
estimates coincide with the optimal error estimates for Carreau-type models established in
Theorem which are covered as a special case. The results of this chapter have already
been published in Hirn et al. [Hirl0].

The chapter is organized as follows: Section deals with the weak formulation. In
Section we introduce the Galerkin discretization and we discuss its well-posedness,
while in Section we show that the discrete solutions converge to a weak solution. Many
estimates of Sections are also employed in Section [7.4] in which a priori error estimates
are derived in the form of best approximation results. In Section we apply the abstract
error estimates of Section [7Z.4] to finite element discretizations. Section [7.6] is dedicated to
numerical experiments. Finally, in Section we verify Assumption for a particular
fluid model.
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

7.1 Galerkin formulation

Throughout the chapter, we assume that for p € (1,00) and € € (0, &¢] the extra stress &
satisfies Assumption We consider system (2.16|) complemented with mixed boundary
conditions ([2.24]). The natural spaces for the velocity and pressure are given by

XL = {we W'P(Q); trw =0 on I'},

QP .= {q € LP'(£2); if |S| =0 then [,,qdx = 0}.

As usual, p’ := p/(p — 1). The following Korn inequality holds in X% as long as |I'| > 0:

Lemma 7.1 (Korn’s inequality). Let v € (1,00), let 2 C R? be a bounded domain with
092, I € C%, where I' C 012 has nonzero (d — 1)-dimensional measure. Then there exists
a constant cx = cx(2,,v) > 0 such that

ckllwliy < [[Dwl,  Vw € XT.

Proof. The result can be found e.g. in [MNRR96, Theorem 1.10 on p. 196]; although it is
formulated for I" = 02 there, its proof covers the case |I'| > 0. O

Let us summarize the general assumptions that will be used in the following sections.

Assumption 7.1. We suppose that
e 2 CRY d>2,is a bounded domain, 02 =T'US and 02,T",S € C%, |I'| > 0;
o Let gy > 0 be arbitrary. The extra stress tensor 8 belongs to the class (2.12) and for

p€(1,2), e € (0,e0], 70 € (0,00) it satisfies[(AL)| -[(A2)] see Assumption[2.4
e The following data are given:
vo € WHP(0), V-wy=0a.e inf, wvy=wvp onl,

FEL’(2) and be LPV(S), with (p*) = 1.

Remark 7.1. In Assumption p* is given by p# = @=Dp o5 that tr(WiP(02)) —

d—p
LP" (892). Indeed, it holds tr(W'P(02)) — Wl_%’p(&(?) due to the trace theorem, and
1
Wl_ﬁ’p(aﬂ) < " (092) for % — % = —% due to Sobolev’s embedding theorem.
The condition on p# is equivalent to pp%d = —C;;#l and, hence, p# = %.

The weak formulation of system ([2.16)), (2.24])), (2.25) reads:
(P8) Find (v,m) € (vo+ X%.) x O (the weak solution) such that

(8(m,Dv),Dw)p — (7,V-w)p = (f,w)o — (b,w)s Vwe XY (7.1)
(V- v,q)a=0 Vge QF.  (72)
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7.2 Galerkin discretization and its well-posedness

The following observation plays an essential role in the analysis of

Lemma 7.2. Let Assumption be satisfied. For any v € (1,00) there exists a constant
B(v) (depending on v, 2 and I'p) such that

V-
0<pB(v) < inf sup M (7.3)
geor. wexy. |lqllv w1
In particular, there exists a constant Bo(v) depending on v and 2 such that
V.
0<Bo(v)< inf qup &V wa (7.4)
qeLY (2) weW " (2) HQHV’HwHLV

Proof. We refer to Haslinger/Stebel [HS11] and Hirn et al. [HLS10]. O

Remark 7.2 (See Remark 2.3 in [HLS10]). Lemma [7.2|reveals, in terms of the spaces X%,
Oh., why the additional constraint (2.25)) is requisite to fix the level of pressure if 92 = I'.
Note that (1,V-w)p =0 for all w € W(l)’”(Q) and, consequently,

nf sp  &V-wae
qELz/(Q)wEW(l)vV(Q) HqHV’HwHLV

7.2 Galerkin discretization and its well-posedness

For given h > 0, let X, @y be finite-dimensional spaces and
XY = XN AT, Q. = Qn N QF,
V?;h = {wh c X?;h; (V . wh,qh)g =0 for all qn € Q?;h}‘

We will specify the spaces X, and @, in the context of finite elements in Section As
before, the symbol A will then stand for the mesh parameter. At this stage, we only require
that X%, and Q. approximate X%, and QY. in the following sense

lim inf ||lw—w = lim inf — r =0 Yw € XY, Vg e O.. 7.5
P wheX’};hH rllLp ] thQ?;th Qth V4 r (7.5)

The pure Galerkin approximation of Problem consists in replacing the Banach spaces
X", and QY. by their finite dimensional subspaces X%., and QF.,:

(P8r) Find (vp,m) € (von + X%;h) X Qz};h (the discrete solution) such that
(S(?Th,DUh), th)g — (ﬂ'h, V- ’wh)Q = (f, ’wh)g — (b, wh)s Ywy, € le)ﬂ;h, (7.6)
(V- vn,qn)0 =0 Yan € QF. (T.7)
Here, vgp, is angﬂ appropriate approximation of the Dirichlet data which satisfies

lip=0. (7.8)

(V-von,qn)o=0 Vg, € Q?;h and }lli{%Hvo — Vo

'In the context of finite elements vo 5 typically belongs to X .
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Since we have to cope with additional difficulties due to the complex structure of the
viscosity, here we restrict ourselves to inf-sup stable discrete spaces X}, @1 so that we avoid
any further term in ((7.7), which would be necessary for pressure stabilization. For shear
rate dependent viscosities, local projection stabilization has been analyzed in Chapter [
Below, we require that for v € (1,00) the pair X7, Qf.j, satisfies the inf-sup condition:

(ISY.) For given v € (1,00), there exists a constant B(v) independent of h such that

- V-
0<p(v) < inf  sup M
9€QY, wEXY,, gl [Jwll1,0

The availability of (IS}.) and the value of B(v) depend on the choice of the spaces X,
and Qj,. For the purposes of Thm. we also require the following modification of (IS%.).
(ISY) There exists a constant Bo(v), independent of h, such that

~ ’v .
0 < Bo(v) < inf sup w
4€EQRNLY (2) weX ,NW " (£2) lallllwll1,

Below we will use (IS2) in conjunction with the following observation:

Remark 7.3. Let (IS2) hold, let |S| > 0 and p € (1,2). For arbitrary q € Ql};h, we write
q=qo+f,qde, Wher qo € QN L3(£2). Since ||q|l2 < ||qoll2 + |!2|1/2|f9qd:n|, we obtain

Bo@) (llall2 = 1212 qdz]) < sup

2
wGXF;h

) Vq € Q?;h‘ (79)

Below, in Thm. [7.3| we show the existence of solutions to[(P8})] and in Thm.[7.4] we discuss
the conditions that guarantee the uniqueness of solutions to both [(P8})] and [(P8)]

Theorem 7.3 (Existence of discrete solutions). Let Assumption hold. Let X',

and Q’};h fulfill (ISY.) with B(p) > O arbitrary. Then there exists a solution to |(P8,)|
Moreover, any such solution (v, 7) satisfies the a priori estimate

lonll1p + IS (h, Don) [ + BD)Imnlly < K. (7.10)
The constant K only depends on §2,I',p, 0, 00,01, || s 1bll#y,s and [[vonlli,p-

Proof. The proof is similar to the proof of Lemma For any § > 0 (small), we consider

the quasi-compressible problem (P89): find (v}, 79) € (v + X7.,) x QF, such that

(S(WzaDvi)7th)Q B (ﬂ-fw V-wp)o = (f,wn)o — (b,wp)s Vwy, € X?";h? (7.11)
S(mh an) 2 + (g, V- ) = 0 Van € Qe (7.12)

2Here we assume that constants belong to Qp.
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The inserted term § (7‘(2, qn)q ensures the coercivity of the equations with respect to the
pressure and allows to use the Brouwer fixed-point theorem to establish the solution
to (PSi). Indeed, setting wy = vz —vo, and qp = 71'2, summing the equ:tions and
using Holder’s and Korn’s inequality, (7.8)1, the embedding tr(W'P(£2)) — LP" (912), the
following estimate (which can be derived from (2.52)) and Hoélder’s inequality)

01
p—1

) ) ) 90 ) 5 p— 00
(S(mp, Dvy), Dvy, — Dvop)o > %HD%Hg - 1D} |[2~ | Dvg - %|9|€p>

and Young’s inequality, we obtain the a priori bound

5 5
8[| I3 + l|v),

L+ IS, Do)l < €,

Where C > 0 depends on Qa Fapa €0,00,01, Hf”p’a HbH(p#)"S and HUO,hHI,p' In partiCUIa‘r’ C
is independent of § and h. Therefore, using (IS?) and (7.11)), we observe that

(Wg,v -’LUh)_Q < C,

B(p)Hﬂ'in/S sup
wpext,  llwnllip

with C > 0 and 3 (p) > 0 independent of § and h. The same arguments applied to
prove ((7.10). Since X ?; p, and Q?; ,, are of finite dimension, the uniform bounds above imply
that there exists (vp,m1) € (von + X%;h) X Ql};h such that (for some sequence d, N\, 0)

vi" — vy in WP (),
Wz” — T, in ¥ (02),
S(n", DvS") — S(mp, Duy) in LV (£2)%4.
Consequently, (vp, ) is a solution to [(P8)] O

The constant K in does not depend on h since ||vopll1,p < 2||vgll1p for b < hg. For
the subsequent analysis we recall the natural distance d(-,-) defined in . According
to Thm. discrete solutions exist regardless of However, uniqueness of a solution
can only be shown by means of under a smallness assumption on 7y as depicted by

Theorem 7.4 (Uniqueness). Provided that (IS%) is satisfied and

= 2—p o)
< B(2)e 2 ,
" ﬂ( ) oo + 01

(7.13)

the solution to[(P8y,)| in Theorem (7.3 is uniquely determined.

Similarly, there is at most one solution to|(P8)| if Assumption is satisfied and

2-p oo

Y < B(2)e 2

Uo—l—O’l'
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Proof. We prove the uniqueness of a solution to [(P8,)l The second statement can be
proven analogously. Let (v}, 7},), i = 1,2, be two solutions to [(P8,)} Then we realize that

(8(n}, Dvi) — S(n3, Dv?), Dwy)o = (1} — 72,V -wp)o  Vwy, € XY

In particular, choosing wy, := v} — v? we observe
p ; g wp, h h

(S(nt, Dv}) — S(r2, Dv}), Dvi — Dv3)o =0
and we thus obtain from (2.54) that

2
d(vh,0})* < 25|}, — 1. (7.14)
0
Hence, (IS%) and (2.56) yield the following estimate

~ L_ 22 vy.
B@nt =2l < sup b=V Wh)e

wLeXT. ), [wnl[1,2
< HS(W}levllz) - S(Wl%?DUin)HQ
—2 —2
<017 d(v),v3) +v0e T || — 7|2, (7.15)

which together with (7.14) and (7.13)) leads to 7} = 77 a.e. in £2 and to d(v},v?) = 0. But

this completes the proof, because (2.60)), (2.43]) and the a priori bound (7.10) ensure that
|Dv}, — Dvj2 < Cd(vy,v3)* = 0. Since |I'] > 0, Lemma yields v}, = v a.e. in £2.0J

7.3 Convergence of the discrete solutions

In this section, we show that the discrete solutions generated by converge to a weak
solution solving the original problem In particular, we establish the existence of
a solution to as the limit of the discrete solutions. Note that the well-posedness
of has already been resolved: For I" = 9f2 this was published in [FMRO05, Lan09],
while the case |S| > 0 was conducted in [LS1la]. In these works, the proof was carried
out in a different way than here: First a quasi-compressible approximation to was
established (by the Galerkin method), and later it was shown that this approximation
converges (on the continuous level) to the “incompressible” solution to Here, since
our concern lies with the finite element discretization, the weak solution is established
directly as a limit of discrete solutions satisfying the incompressibility constraint .

Theorem 7.5 (Convergence of discrete solutions). Let the assumptions of Theorem

hold, let the discrete spaces {(X?;h, ?;h)}h>0 satisfy (7.5), and let {voptnrso sat-
isfy (7.8)). In addition, let (IS3) hold and let o fulfill

~ 2—p
< 2)e7 2 .
" 60( ) oo + 01

Then, the solutions to [(P8)| converge to a solution to as follows,
(vp,,mh,) — (v,7)  strongly in WYP(2) x LY (),  for some hy \, 0. (7.17)
If the solution to is unique, then the whole sequence {(vn, )} >0 tends to (v, ).

a0

(7.16)
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7.3 Convergence of the discrete solutions

Remark 7.4. Note that 3y(2) appears in (7.16) even in the case |S| > 0.

Proof of Theorem 7.5, Theoremensures that solutions (v, m) € (vop + X?;h) X Q?;h

to [(P8),)| exist and satisfy the a priori estimate (7.10). Hence, there exist (v,m) €
(vo + X)) x QF. and S € L (£2)*¢ such that for a sequence h,, N\, 0 there hold

vp, — U weakly in WP (£2), (7.18)
Th, — T weakly in LP'(£2), (7.19)
S(mp,, Dvy,) = S weakly in LY (£2)?%4, (7.20)

Obviously, the weak limits satisfy equation ([7.2]) and

(§,Dw)p — (7,V-w)o = (f,w)p — (byw)s  Ywe X (7.21)
Here, we have used the density (7.5). Subtracting (7.21) and (7.6]), we observe
(S(ﬂ'hn,D’Uhn)—g,D’whn)Q = (mp, — ™,V -wp, )0 Ywy,, € X%;hn' (7.22)

Then, (7.22) with wy, := vy, — vop, implies

(S(?Thn,D’Uhn> — S(T(, D’U),D’Uhn — D’U)_Q = (7Thn — TI',V . (’Uhn - UO,hn))Q
+ (8, Dvy,, — Dvop, )0 + (S(mh,, Doy, ), Dvgj, — Dv)g — (S(7, Dv), Dvy,, — Dv)g.

Using ([7.8)), (7.7), and (7.2)), we realize that

(8(mh,,, Dvy,)) — S(m, Dv), Dvy, — Dv)g = (7,V - (v —wyp,))o + (7,V - (v, —v0))o
+ (8, Dvy, — Dv)g + (S — 8(mp,,, Dvy,), Dv)g
+ (8(mp,, Dvp,) — 8, Dvgp, )0 — (S(m, Dv), Dvy, — Dv)q,.

Recalling (7.18)—(7.20) and using (7.8), we conclude that
(8(mp,,, Dvy,) — S(w, Dv), Dvy, — Dv)go = o(1), hn N\ 0, (7.23)

where o(1) denotes an arbitrary sequence that tends to zero for h, \, 0. Furthermore,

from (2.43)), (7.10), (2.54), and (7.23]) we deduce (cf. (7.14))

2
C|[Doy,, = Dol < d(wn,. 0 < X, — x] +o(1) (7.24)
0
for some C' > 0 independent of h,. We suppose for a while that
Bo(2)|lmh, — w2 < |8 (mh,, Dvn,) — 8(x, Dv)|l2 + o(1). (7.25)

Then, combining ([7.25) and (2.56]), we arrive at

-2

~ p=2 P
/80(2)”7%” — 7(H2 < o1 2 d(vhn,’u) +")/06 2 Hﬂ-hn — ﬂ'HQ + 0(1), hn \( 0.

177



7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Using ([7.24) and assumption (7.16)), we conclude that |7, — 7|2 < o(1). Consequently,
(7.24) also yields ||Dwvy,, — Dv||, < o(1), which finally implies that

Th, — ma.e. in 2 and Dwvy, — Dv a.e. in (2.

This allows us to apply Vitali’s lemma and to identify S,

/S(ﬂ'hn,D’Uhn) : Dwdx — /S(W,D’U) : Dwdx = /3 : Dwdx Vw € X7
9] N n

Therefore, it only remains to show (7.25)). Define wy, € X %§hn7 |wp, |l12 = 1, such that

—m, V- -w -
sup (th, — 7 ha )2 = (mp, — ™,V - Wy, )0

wh EX., [wn,[[1,2

Then, there exists w € X% such that (for a not-relabelled subsequence) wy, — @ — 0
weakly in X% andﬂ |wp,, — wl1,2 < 1. Hence, using (7.22) and (7.20]), we obtain:

(mp, — 7,V - wp, )0 =(8(mh,, Dvy,) — S, Dy, — D)o + o(1)
Z(S(ﬂ'hn, D'Uhn) — S(ﬂ', D’U), Dw,,, — Dﬁ))_(z + 0(1)
<||8(mp,, Dvp, ) — S(7, Dv)||2 + o(1), hy, N\ 0.

Recalling (7.9)) and using that §, 75, — 7dx — 0, we deduce that for any gy, € Q’}; I

(Thy = Qhns V - Wh, ) 0

Bo@)lmn, — anllo < sup + B2 | mn, — an, da

whnex%;hn ||,l'vhn||172 9]
Th, — T V . whn 0
< sp el RVORE g el fm, i, do
whnex%;hn ”whn||172 9]

< [|8(mh,,, Dop,) = S(m, D)2+ Cllm = gn,[l2+o(1),  ha N0,
with C' > 0 independent of h,. Using the density of {Q}.,, } in O, we finally assert (7.25):

Bo(2)|I7n, — 7ll2 < Bo(2) inf, {I7n,, = an,ll2 + llan, — 2}

dhn €Lrn,,

< |8(7h,,, Dvp,) = 8(m, Dv)|l2 +o(1),  hyn 0.

n

This completes the proof. O

Theorem 7.5 guarantees the existence of a solution to provided that there is a suitable
family of discrete spaces {X 7}; o Q%; nth>0- The proper existence result is formulated in
Corollary For its proof one constructs an appropriate family of discrete spaces that
approximates the Banach spaces {X 1, Qr} and that satisfies the inf-sup condition (IS3)
with a constant (y(2) which is almost equal to Go(2). To any discrete pressure space one
assigns a rich enough discrete velocity space. The construction of such spaces, which is
carried out in [Hirl0], is based on the fact that the used Banach spaces are separable.

*Indeed, ||@||7 2 < 2(@h,,, W)1,20 for n large enough, which implies ||@n, — @||1 2 < ||[@h, |12 (= 1).

n
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7.4 A priori error estimates

Corollary 7.6 (Existence of solutions). Let Assumption [7.1] hold and
a0
oo+ o1

Then there exists a weak solution to . Any solution to fulfills the a priori

estimate

Y0 < Bo(2)e 7 (7.26)

[oll1p + 1S, Do)l + Bp)lI7ly < K- (7.27)
The constant K only depends on §2,I',p,e0, 00,01, || flly, [[bll p#).s and |lvo

Lp-

Proof. The proof follows from Theorems and if the family of discrete spaces
{1, Q% }rso is chosen appropriately. Details can be found in [Hir10)]. d

7.4 A priori error estimates

In this section we aim to derive a priori estimates for the error of approximation v — vy and
7 — mp,. For the remainder of this chapter, let us use the convention that (v, 7) and (vp, 7)
denote the solutions to [(P8)] and [(P8})] respectively. Their existence and uniqueness was

shown in Sections [7.2]and The main results are given by Corollaries [7.9|and which
state a priori error estimates in the form of a best approximation result.

Lemma 7.7. Let Assumption[7.1] hold, let d(-,-) be defined by (2.53)). For each § > 0 there
exists a constant cs > 0 such that for all uy, € (vo + V’};h), rp € QI};h there holds

1
d(v,vp) < Cé<d('v7uh) + [|Dv — Duy|lp + |7 — Tth/) + (UO + 5>WO||7T — Thll2,

where the constant cs also depends on p, o, 0o, o1, Iy 2, | flp, 1bllp#y,s and [[vol|1,p-

Proof. Let (up,7h) € (von +VT.,) x QF,, be arbitrary. From [(P8)] [(P8},)|it follows that
(S(W,D’U) - S(TFh,Dvh),th)Q = (71' - Fh,v : 'wh)g = (71' - Th,v . 'wh)g
for all wy, € V%;h. This, with wy, := (up —vy) € V%;h, implies

(8(m, Dv) — 8(my, Dvy,), Dv — Dvy)g = (S(m, Dv) — 8(7p,, Dvy), Dv — Duy,)g
+(r—7n, V- (up —vp))o =1 + L.
Applying (2.54)), we conclude that

0

2
(v, 0n) < L+ 1o+ %uw — 2 (7.28)

It remains to estimate I; and I5. First of all, we split the term I; in the following way,

Il = (S(?T,D’U) — S(ﬂh,Duh),Dv — Duh)g
+ (S(mh, Dup) — S(mp, Dvy), Dv — Duy,) o =: I3 + 1.
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Due to (2.55)), for each §; > 0 there exists ¢5, > 0 such that

I3 < C(Sld(vv Uh)2 + 517(%”71- - ﬂ-hH%'
Let ¢ be defined by (2.37) and let ¢, be given as in Deﬁnition In order to get an upper
bound of I, we apply Lemma and Young’s inequality (2.36|) with 1, := ¢, taking into

account that the Ag-constants of ¢, (p4)* only depend on p and do not depend on the
shift-parameter a > 0. Hence, for each d2 > 0 there is a constant cs, > 0 so that

I < c/go;HquDuh _ Duy|)|Dv — Duy| da
2

< 52/@EHDuh\(‘Duh_Dvh|)dw+652/§0€+|Duh|(’DU_Duhde
2 2

~ 0| F(Duy) — F(Dvp)|l3 + cs, | F(Dv) — F(Duy)|3
< dacd(v,vp)? + csyd(v,up)?.
Here, we have also used Lemma Collecting the estimates above, we arrive at
Iy < ey 5,0, up)? + Sacd(v,04)? + 6173w — w3, (7.29)

Next, we estimate the term I». Using Korn’s and Young’s inequality, applying Lemma
2.6] (i) with v = p and Lemma and recalling the uniform a priori bounds (|7.10) and
(7.27)), we deduce that for each d3 > 0 there exists a constant c¢s, > 0 such that

I < ‘(77 —7p, V- (up — Uh))rz‘ < cllm = rally | Dun — Dol
< 3 (IIDv — Duy |} + | Dv — Donl2) + esq | = 1%

< 43||Dv — DuhHIQ, + d3cd(v,vp)?||e 4+ | Dv| + | Dvy,| Hf,fp + ¢, || — Th||z2,/
< d3]|[Dv — Duth + d3cd(v,vp)? + cs,||T — rh||12)/. (7.30)

Combining the estimates (7.28)), (7.29) and ((7.30]), we conclude that

%d(v, vp)? < Sacd(v,vp)? + d3cd(v,vp)? + c5, 5,d(v, up)? + 03] Dv — Duth7

1
+ syl = rnlly + (5= + 81 ) odllr = mal3

Multiplying this with 2/0¢, taking the square root, we easily complete the proof. O

Lemma enables us to estimate the pressure error in the L2-norm.

Theorem 7.8. Let Assumption hold. Let the discrete spaces fulfill (IS%) and let the
parameters meet the condition (7.13)): vo < 3(2)52%1) 90 Then, there exists a constant

oo+o1

¢ > 0, which only depends on p,e,70,00,01,8(2), I, 2, || £, [|bll p#).s: lvoll1,p and which
may explode as € \, 0, such that the pressure error is bounded in L*(£2) by

Im=milla<e it (||F(Dv) — F(Dwp)lls + | Dv — Duyll,) + ¢ inf, 7= 7.
T

P
uhevo,h‘i'vp;h h€ T;h
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7.4 A priori error estimates

Proof. Let (up,rp) € (vo,n + Vfﬂ;h) X Q’l’ﬂ;h be arbitrary. Then, [(P8)|and |(P8)|imply

(Th —mp, V- wh)g = (S(?T, D’U) - S(ﬂh,Dvh),th)Q + (T'h —m, V- wh)g (731)

for all wy, € X7, Using (IS}) and (7.31]), we deduce, cf. (7.15),

(rp, — m, V - wp)

= 2
B2 rn — mhlla < sup < ||S(7, Dv) — S(mp, Dvy)|l2 + ||rn — 7|2

weX?,, lwnll12

Applying (2.56]) & Lemma we conclude that for each § > 0 there exists c¢5 > 0 so that

= p=2 p=2
Blrn = mnlla < o162 d(v,v4) + 08 > |7 = Tnll2 + [lra — 72

p—2

< 015T05<d(v,uh) + [[Dv — Dup|lp + |7 — ThHﬂ)

=21 p=2
+ o01€ 2 ;04-5 ’y()”ﬂ'—ﬂ'hHQ + Y€ 2 ||7T—7Th||2+||7”h—7'r||2.

Using Minkowski’s inequality, Lemma and LP' (2) < L?(2) for p < 2, we arrive at
7 = mulla < es (| F(Dv) = F(Duwi) 2 + |1 Dv = Dugy + 17 = 12l )
~ _ p—2 1 ~ _ p—2
+ 8@ oe5 ( 6)le — mula + 5@ 0" m = o

Recalling (|7.13)), and choosing § > 0 sufficiently small, we can absorb all terms, which
include the pressure error, into the left-hand side. Hence, we get the desired result. O

Corollary 7.9. Let the assumptions of Theorem[7.8 be satisfied. Then, the approzimation
error of the velocity field is bounded with respect to the natural distance as follows

|F(Dv) = F(Duop)p <e ot (IF(Dv) = F(Dwy)|2 + | Dv ~ D)

uhe(vo,h—‘rv?‘;h

+c¢ inf ||m—rpllp- 7.32
Jnt lm=nl, 7:32)
Proof. The estimate follows from Lemma Lemma [7.7, and Theorem O

Corollary 7.10. Let the assumptions of Thm. hold. In addition, let (IS%.) hold and

Yo < B(p)e . (7.33)

Then, the approximation error of the pressure field is bounded in Lp,(!?) by

2
|7 = mallp < ¢l F(Dv) = F(Dun)lly +¢ nf, [l = - (7.34)

h€ I';h
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Proof. The estimate is again based on the inf-sup inequality (IS7.). Using (IS}.), Holder’s
inequality, (7.31)), (2.57) and (2.60)), for arbitrary rj, € QY. we obtain the estimate

(rn —mh, V- wp) o

B)|rn — mally < sup
weXb,, lwnl[1p
< ||S(m, Dv) — S(7mh, Dvp) |l + |lrn — 7l
2

= p=2
< c|F(Dv) = F(Dop)ll5 + 508" ||lm = mnlly + [l — 7l

Due to assumption ([7.33)), this completes the proof. O

In practice, one never obtains the solution (vp,m) to Problem |[(P8},)| exactly. Instead,
one obtains its approximation (o, 7) € (vos + Vi,,) x OQF.,, satisfying

(8(7n, Do), Dwp)o — (7n, V- wh)o = (f,wn)o — (b,wn)s + (e,wy)  Ywy, € X7,
(V- On,qn)2 = (9, qn) Yan € QF s

where e € (X7.,)*, g € (QF.,)*, and the brackets (-,-) denote the corresponding duality
pairings. Here; e = e(’bh,fr;l) and g = g(vp,7) represent some additional error which
includes, e.g., the residual associated with the approximative solution of the nonlinear
algebraic problem, or the error due to numerical integration. However, provided that one
is able to estimate e and g, then one can derive estimates for v — ¥y, and 7 — 7}, similar
to those derived above by following the same procedure. For instance, assuming that
|(e,wp)| < El|lwy|1p and |(g,qn)| < G||qn||2 for E, G independent of h (say, E,G < 1,
such that |[D®y||, remains reasonably bounded), one can show (cf. (7.32)), (7.34)):

|F(Dv) = F(Do)la e inf (| F(Dv) = F(Dw)l2 + [ Dv ~ Dunll)

uhe(voyh—‘rv?;h

+e inf fr—rylly +c(E+G)

ThE I';h

2
|7 = Fully < el F(Dv) = FDwF +c_int | =l +cE.
Th

I';h

7.5 Finite element approximation

In this section, we consider some finite element approximations of that satisfy the
abstract theory of the previous sections. We assume that, for ease of exposition, {2 is
a polygonal/polyhedral domain and that T}, is a shape-regular decomposition of (2 into
quadrilaterals /hexahedra (or d-dimensional simplices) so that 2 = Uger, K, see Section
As usual, the symbol hx denotes the diameter of an element K € Tj. The mesh
parameter h represents the maximum diameter of the elements, i.e., h := max{hy; K € T}}.
As mentioned in Section [3.1] the neighborhood Sk of K € T}, which denotes the union
of all elements in T}, touching K, fulfills |K| ~ |Sk| with constants independent of h.
Furthermore, the number of elements in Sk is uniformly bounded with respect to K € T},.
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7.5 Finite element approximation

Let X}, Qp be appropriate finite element spaces defined on T}, that satisfy X; C W5h*°(£2),
Qn C L*>®(£2). We recall that the FE spaces for the velocity and pressure are given by
P, =X, NXY, X, =[Xp)4 and QF, := QN QY. In order to ensure approximation
proi)erties and the discrete inf-sup condifions, we need to specify the choice of spaces:

Assumption 7.2 (Approximation property of X; and Q). We assume that X}, con-
tains the set of linear polynomials on (2. Moreover, we suppose that there exist a linear
projection §j, : WHH(2) — X, and an interpolation operator iy, : W () — Qy, so that

(1) jj, preserves zero boundary values on I', such that j,(X") C X’};h.

(2) 3y is locally Wht-stable in the sense that there exists ¢ > 0 independent of h:

][|jh'w\ de < c][|wydm +c][hK|Vw|d:c vw e Wh(2), VK € Ty, (7.35)
K Sk Sk

where Sk denotes a local neighborhood of K (as defined above).
(3) 3, preserves divergencﬂ in the Q} -sense, i.e.,

(V-w,qn)o =V jrw,qn)e  Ywe WH(Q), Vg, € Q. (7.36)

(4) in preserves mean values, i.e., iy,(Q}) C QF.,, and, for any v > 1, i), satisfies

lg —inally < chllgll, Vg€ WH(2). (7.37)
Later we will suppose that functions in X, satisfy the following global inverse inequality:

Assumption 7.3 (Inverse property of X;). For v, u € [1,00] and 0 < m <1 it holds

. d d
lwall, < CH™ PO Ny e Yoy € X (7.38)

Assumption usually requires that the mesh is quasi-uniform, see (3.6). Assumption
is similar to Assumption 2.21 in [BBDRI10]. Clearly, the existence of j, and i as in
Assumption depends on the choice of the finite element pairing X, /Qp:

o The construction of an operator j;, that satisfies Assumptions (1) — (3), is
well-known for some particular finite elements, including the Crouzeix-Raviart and
MINT element, see [BBDR10]. If I" # 02, Assumption (1) requires that the
triangulation matches I" appropriately, cf. [SZ90].

“In case of |S| > 0 this implies fs w-ndr = fs (j,w)-n dx which requires that T} matches S appropriately.
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

o Assumption (2) is standard in the context of interpolation in Orlicz-Sobolev
spaces, see Section (3.3 or [DRO7]. For standard finite elements, it is well-known that
the Scott-Zhang interpolation operator satisfies , see [SZ90Q]. It is crucial that
from one can derive the local stability result (see Lemma or [DRO7])

][w(]thwD da < c]f H(Vw|)dz vYwe WY (Q) VKeT, (7.39)
K Sk

which is valid for arbitrary N-functions ¥ with Ay(¢)) < co. Here, WH¥(£2) is the
classical Orlicz-Sobolev space and the constant ¢ only depends on Ay(1)).

« For standard finite elements, i, may be chosen as the L?-projection onto Qp,:

(ing;an)0 = (¢.an)e  Van €Qn Vg€ L'(02). (7.40)

Indeed, it is shown in Crouzeix/Thomée [CT8T7] that the L?-projection is L”-stable
and even W1¥-stable for any v € [1,00] and that, consequently, it fulfills (7.37).
The results of |[CT87] are derived for finite element spaces @ based on simplices,

Qn :={w € C(2); w|g € P, (K) for all K € Ty}, where P,(K) denotes the space
of polynomials on K of degree less than or equal to r. Moreover, setting ¢, = 1 in
(7.40), we deduce that i), preserves mean values. Hence, i, (Q}) C QF.,.

Next, we depict important consequences of Assumption [7.2}

Lemma 7.11. Let there exist a linear projection j; that satisfies Assumption (2).
Then, for all K € T}, and w € WHP(82) there holds

][ F(Dw) — F(Djyw)?dae < ch%(f VF(Dw)[? da (7.41)
K Sk

provided that F(Dw) € WY2(£2)4%4. The constant ¢ only depends on p.

Proof. The proof is based on the Orlicz-stability and it is identical to the proof of
Lemma (iii). Note that in Lemma the interpolation estimate was especially
proven for the isoparametric d-linear Q; finite elements. Under Assumption estimate
follows analogously. We also refer to [BBDR10, [Hir10]. O

Moreover, the assumptions on j; imply the discrete version of the inf-sup inequality:

Lemma 7.12. Let there exist a linear projection j,, that satisfies Assumption[7.9 (1)-(3).
Then, for v € (1,00) the discrete inf-sup inequality (ISY.) is satisfied.

Proof. Since T}, is nondegenerate, the local stability result (7.39)) (with v (¢) := t¥) leads
to the global Wl¥-stability inequality, ||7,w|i, < Cs||w|i, for all w € XY, where
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7.5 Finite element approximation

v € (1,00) and the stability constant Cs does not depend on h. Thus, the continuous
inf-sup inequality ([7.3) and Assumption imply that for arbitrary g, € Qf., C QF

- qn, V- w)g _ qn, V- Jpw)e
lanlls < B0)~" sup @Y 02 gyt gy @0V Ina
wexy,  |wlliy wexy.  |lwlip
S ﬁ(y)—lcs sup (th'v Jhw)_Q S B(V)—l sup (Qh,v : wh)Q
wexy  Fpwlliy wiexy,  llwnlliy
where 3(v) := B(v)/Cy is independent of h. O

Remark 7.5. Let us briefly discuss the case of unstable discretizations. For instance, one
can consider the equal-order d-linear Q;/Q; element, which uses continuous isoparametric
d-linear shape functions for both the velocity and pressure approximation, see Section [3.1
In this case, the discrete inf-sup condition is violated. For p-Stokes systems & ,
a stabilization technique based on the local projection stabilization (LPS) method was
proposed in Chapter [} that leads to optimal convergence results. Whether LPS can be
applied to the equal-order discretization of is subject of current research.

Below we state our a priori error estimates that quantify the convergence of the finite
element method. For this, the regularity F(Dwv) € W12(£2)?*? of the solution v is required.
According to Lemma [2.27] this condition is equivalent to Z(v) < oo, where the quantity Z(v)
is defined in (2.82)). We mention that the regularity Z(v) < oo is available for sufficiently
smooth data at least in the setting of space-periodic boundary conditions in two space
dimensions, see Bulicek/Kaplicky [BKOS].

Corollary 7.13. Let the assumptions of Theorem[7.8 hold. We suppose that there exist
operators j, and iy satisfying Assumption[7.3. Moreover, we assume the reqularity

F(Dv) € Wh2(02)?xd and e WY (Q)

and we set vop = jpvo. Then, the error of approximation is bounded in terms of the
mazimum mesh size h as follows:

|F(Dv) — F(Dvp)l|l2 < Cyh, |7 — 7|2 < Crh. (7.42)
If additionally ~o < /S’(p)sg%p, then the pressure error in LP (£2) is bounded by

2
|7 —7mhly < CLhv . (7.43)

The constants Cy, Cr, Cr. > 0 only depend on p, €, Yo, 00, o1, B(2), I", 2, || fll/ ||bH(p#),;S,
lvoll1,p, IVF(Dw)||2, ||7]l1,, and C additionally depends on B(p).

Proof. According to Lemma the discrete inf-sup inequalities (IS%), (IS%.) hold true.
Hence, the desired error estimates follow from Theorem Corollaries and and
the interpolation properties of j; and ;. More precisely, the velocity is given by v = vg+v
for some ® € X%.. Since ¥ is divergence-free, the interpolant 7, fulfills (V- 5,9, qn)0 =0

185
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for all ¢, € QZ};h' Hence, 5,0 € Vz};h and J,v = J,v0+7,0 € (vo,h—l-vl};h). Consequently,
we can set uy, := j,v and 7, := i, in Theorem [7.8 and Corollary [7.9] Using Lemma [2.6]
(i), the global WlP_stability of j, (which follows from (7.39) with v (t) = t” and the non-

degeneracy of T}), the a priori bound ([7.27)), the interpolation properties ([7.41)), (7.37)),
we easily conclude (7.42). Finally, ((7.43) follows from Corollary and (7.42)). O

Remark 7.6. Using (2.43)), (7.10)), and (7.27)), we deduce from Corollary that
|Dv — Doyl < ¢||F(Dv) — F(Dwy,)l2 < ch. (7.44)

Hence, we also obtain an a priori error estimate in W1P(2).

If d = 2, then the Wb -regularity assumption for the pressure 7 can be avoided and
confined to 7 € WH2(£2) provided that the velocity v additionally satisfies v € W1°(12).
Note that from analytical point of view we are not able to show the regularity = € Wh#' (£2)
but we can expect the regularity @ € WhH2(2), see Buli¢ek/Kaplicky [BK0S]. Moreover
note that, in case of space-periodic boundary conditions, global C'“-regularity of v is
well-established, see [BKO§|. The following Corollary represents a variant of Corollary
that is motivated by our subsequent numerical experiments.

Corollary 7.14. Let d = 2. Let the hypothesis of Theorem[7.§ hold true and let Assump-
tion[7.3 be satisfied. We suppose that there exist operators j, and iy as in Assumption [7.3
Moreover, we assume that the solution (v, ) satisfies the additional reqularity

F(Dv) € WhH2(02)x4, ve Wh™(2), and T e WH(0).
We set vg p, := jpvo. Then, the error of approzimation is bounded as follows:
|F(Dv) — F(Dvp)l||2 < Cyh, |7 — mhll2 < Crh. (7.45)
Assume additionally and the W2 -stability of i5,. Then, there holds

2
|m—7h||py < CLhv . (7.46)

The constants Cy, Cr, CL > 0 only depend on P, €, Y0, 00, 01, B(2), I', 12, |VF(Dv)l2,
I7]l1,2, |v]l1,00, and CL additionally depends on B(p).

Proof. Under the supposed regularity, and are not surprising: due to v €
Wl’OO(Q) and € > 0 the generalized viscosity p remains bounded from below and above so
that system can basically be interpreted as a Stokes system. We only need to show
that v, is uniformly bounded in W1°°(£2): Similarly to [SZ90] it can be shown that j,
is locally Whl-stable, i.e., there holds ||j,w|11.x < ||wl|11.5, for all w € WH(£2) and
K € Ty. As in the proof of Corollary we then conclude that Whl-stability implies
W _stability, i.e., that j, actually satisfies (#.67). Using the inverse inequality
with d = 2, the W1>-stability of j,, — , Korn’s Lemma and Lemma (i) with
v = 2, exactly as in we can estimate the W5*-norm of v, by

2

p
[onllico < ¢|h~H | F(Dvy) = F(Djyv)2(20 + [Vonlloo + [ Vo]lc) 7 + ||v\|1,oo}
(7.47)
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Similarly to the derivation of ([7.32]), via Lemma [2.6| with v = 2 we can infer the estimate

|F(Dv) = F(Dup)l2 + |7 = mll2 S [|F(Dv) = F(Djpo)|2
2-p
+ (20 + [Vinolloo + [ Vonlloo) 7 7w = inrlo.
Using the properties of j, and iy, we consequently arrive at (w.l.o.g. €9 > 1)
2-p
|F(Dv) = F(Do)l|2 + |7 = mll> < Ch(o + [|V0]loo + | Vonlloo) 2 (7.48)
where C' depends on ||VF(Dw)||2 and ||7]/1,2. Combining (7.47) and (7.48)), we conclude

[onll100 < C = C(IIVF (D), ||

12, [9]l1.00)-

The constant C' also depends on p, ¢, €9, Y0, 00, 01, 5(2), {2, but it is independent of h.
Thus, (7.48)) yields the desired error estimates ([7.45)). It remains to prove the pressure
estimate in L¥ (£2). Interpolating L¥ (£2) between L2(£2) and W12(£2), using (7.37) and

the W12-stability of iy, for p > (f—fQ and A := % — ]% we obtain the estimate
. A SSNTI 14+4 -4
| —inmlly < cllm —inml|follm —inmly™" < ch T 2wl (7.49)

For d = 2 the estimate (|7.46)) follows from the combination of ([7.34)), (7.45)), (7.49). O

7.6 Numerical experiments

In this section we present some numerical examples, which illustrate the a priori error
estimates of Corollary Here we use the following model that goes back to [MNR02]:

p—2

(| D) = o (81 + 6 (33 + explam)) ™ + 04 | Dvf?) 7, (7.50)
where s, a,d1,...,04 > 0.

Remark 7.7. Similarly to (e.g.) [MNRO2], it can be shown that model (7.50) satisfies
Assumptions|(A1)H(A2)} e.g., with €2 := 61 /d4, 00 = ,u054(1p72)/2(p—l)(1+626§s/51)(p_2)/2,

o1 = MO(SZ(,LP_Q)/2’ and g := uodip_4)/4sa2%p5§/463_5p/4, see Section

Problem was discretized with bilinear Q;/Q; finite elements based on quadrilateral
meshes. Since the considered discretization is not inf-sup stable, we used the LPS-type
stabilization . Note that in all examples the stabilization method was less sensitive
with respect to the stabilization parameter. As described in Section the algebraic
equations were solved by Newton’s method, the linear subproblems by the GMRES method.
In the following numerical examples we depict the experimental order of convergence (EOC)

with respect to the quantities E,f, E},’”, £}, EY defined in (4.104).
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Table 7.1. Numerical verification of Corollary

(a) p=1.7 (by p=1.5

#cells EF Er E? E};/ #cells EF Er E2 FEP

1024 1.00 2.17 1.00 0.83 1024 1.01 233 1.01 0.68
4096 1.00 2.17 1.00 0.83 4096 1.01 233 1.01 0.67
16384 1.00 2.17 1.00 0.82 16384 1.00 232 1.01 0.67
65536 1.00 2.16 1.00 0.83 65536 1.00 231 1.01 0.67
262144 1.00 2.16 1.00 0.83 262144 1.00 2.29 1.01 0.67

expected 1 1 0.82  expected 1 1 0.67

(¢)p=13 (d)yp=11
#eels EF ER E2  EP 4cels EF Er  E: EY

1024 0.99 249 1.00 0.46 1024 0.99 270 099 0.19
4096 0.99 248 1.00 0.46 4096 0.99 266 1.00 0.19
16384 0.99 245 1.00 0.46 16384 0.99 256 1.00 0.19
65536 1.00 2.41 1.00 0.47 65536 1.00 244 1.00 0.19
262144 1.00 2.36 1.00 047 262144 1.00 2.30 1.01 0.19

expected 1 1 0.46  expected 1 1 0.18

Example 1: 1In a square domain {2 := (—0.5,0.5) x (—0.5,0.5), the exact solution to [(P8)
was given by v(x) := |x|* (29, —21)" and 7(x) := |z|’z125 for a,b € R. Here, the case
S = ) was considered. Problemwas then solved for the data f := —V-S(m, Dv)+V~
and vy := v. The parameters a and b were chosen so that F(Dwv) € W12(2)?*? and
7w € WH2(£2). This requirement amounts to the conditions a > 1 and b > —2. Since
|Vv||~ is bounded for a > 1, according to Corollary the requirement m € W12(£2)
is sufficient to ensure the optimal rate of convergence (note that Corollary would
require ™ € Wl’p/(Q) with p’ > 2). We set a = 1.01 and b = —1.99. Hence, as soon
as is satisfied, we expect Y = O(h), E2 = O(h), and EP' = O(h*/?"), for finite
elements satisfying Assumption Note that our considered Q;/Q; discretization does
not fulfill Assumption [7.2] By virtue of Chapter [f] we however believe that Corollaries [7.13]
and can be extended to Q1/Q; finite elements if the Galerkin system — is
stabilized by or . The parameters of the model were set to 61 := 1078,
s:=2/(2—p) and py = d2 = 93 = d4 := 1. Then, Remark implies 79 = « and, hence,
is ensured at least for a < 5(2)59_}7)/4 (p-DA1/00) T2 _ 5 by virtue of §; < 1

(p—1)(1+1/61) =2 /2417 =+ ’
is satisfied for @ <« 1. In this particular example, for the stated parameters we
have numerically observed the expected convergence rates for o € [0, 8] approximately.
For greater a, Newton’s method did not converge any more. One may ask, whether the
assumption could be relaxedﬂ In particular, one may ask whether the estimates
and remain valid in the degenerate case € \, 0. Note that in case of Carreau-

SHowever, the above observations do not allow us to claim that assumption (7.13)) could be relaxed. We
note that, in this example, the solution (v, ) always exists, whatever the values of a and 7o are.
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type models (i.e., 79 = 0), error estimates similar to and actually hold true
and are numerically validated also for ¢ = 0, see Chapter [l For fluids with pressure
dependent viscosity, though, the behavior for € \ 0 remains an open question. In what
follows, we set o := 1. In Tables [7.1(a)H7.1(d), we present the observed convergence rates
for different values of p € (1,2). We realize that the numerical results agree with the
theoretical ones very well. In particular, the example reflects that the rate of convergence
for Eﬁl depends on the choice of p as predicted by the estimate . Apart from that, we
observed that the experimental order of convergence declines as soon as a < 1 or b < —2.
This indicates that the derived a priori error estimates are optimal with respect to the
regularity of the solution. We also observe that the error E} behaves like O(h?). This
observation raises hope that a duality argument (see [BS94]) may be applicable here.

Table 7.2. EOC: Pressure drop problem for the model ([7.50)

(a) p=1.5 and d4 = 107° (b) p=1.2 and 6, = 1072
#cells ELP  EP  E2 #cells ELP  EP EZ2

1024 1.00 197 1.94 1024 099 1.96 1.97
4096 1.00 2.00 2.04 4096 1.00 198 1.98
16384 1.01 201 1.98 16384 1.00 199 1.92
65536 1.02 206 1.89 65536 1.01 203 1.90

expected 1 1 expected 1 1

Example 2: Pressure drop problem. In order to confirm the results in a realistic flow
configuration, we consider a planar flow between two steady parallel plates, driven by the
difference of pressure between inlet and outlet, cf. Section[5.5] Here, 2 = (0,1.64)x (0, 0.41).
We prescribe homogeneous Dirichlet boundary conditions on the upper and lower edge,
while we set b := 0.8 n on the inflow (left) boundary, and b := 0 on the outflow (right)
boundary. Moreover, we additionally requiréﬂ there that v = (v - n)n, i.e., the stream
lines are orthogonal to the inflow and outflow boundary. Note that if the viscosity did not
vary with the pressure, this setting would lead to a unidirectional flow (Poiseuille flow)
of the form v = (v1(22),0)" and m = 7(x1). Since the viscosity depends on the pressure,
however, this needs not be the case; e.g., there is no such unidirectional solution for the
Barus model u = pg exp(am), as was shown in [HMRO1]. Here we consider the model
provided with pg 1= 0.01, s := %_p, 81 :=5%107%, 8 = 05 := 1 and « := 10. The resulting
velocity and pressure fields are shown in Figure [7.I] For moderate and low pressures
(in the middle-length and the right-hand part of the domain) this model approximates
the Barus model, while for higher pressures (in the domain left-hand part) the behavior
is that of the Carreau model. In Table [7.2] we present the observed convergence rates
for different values of p. Since the exact solution is unknown, we have used the finite

®This requirement is achieved by altering the definition of the space X%, see, e.g., [LSI1H].
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————

—

0.00 0.0507 0.101 0.152 0.203 0.254 0.304 -6.42e-09 0.133 0.267 0.400 0533 0.667 0.500
(a) Velocity v1 (b) Pressure 7

-0.0115 -0.00768  -0.00384 0.00 0.00384 000768 00115

(c) Velocity v

Figure 7.1. Pressure drop problem for the model ((7.50): Case p = 1.2

element approximation computed on a grid with 410 cells as the reference solution (cf.
Example 4). In view of Table the velocity error Ey? behaves as O(h). For the velocity
the experimental convergence rate agrees with the theoretical one. However we observe
that E2 behaves almost as O(h?) and, hence, it converges better than expected. In [HLSI0]
we discretized the considered problem with p = 1.5 not only with Q;/Q; elements, but also
with the inf-sup stable Q2/Q1 and Q2/Qp elements. While for the Q2/Q; discretization
we discovered E2 ~ O(h?), for the Q2/Qq elements we observed E2 ~ O(h) which agrees
with the derived a priori error estimate. Hence we believe that for the Q1/Q; elements the
improved convergence rates are caused by super-approximation effects.

Table 7.3. EOC: Pressure drop problem for the Barus model

#cells Ey?  E2

1024 116 1.21
4096 1.06 1.07
16384 1.03 0.88
65536 1.04 0.89

Example 3: We considered the Barus model p := pg exp(ar) that corresponds to model
(7.50) in the limiting case §; = 03 = d4 = 0. As in Example 2, we set po := 0.01 and
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« = 10. Once again, a FE solution on a fine grid was employed as the reference solution.
Table [7.3] depicts the observed convergence rates. We realize almost linear convergence for
E2. In contrast to Example 2, super-approximation for E2 does apparently not occur.

Table 7.4. Discretization errors for different reference solutions: p = 1.2

(a) analytical reference solution (b) approximative reference solution
1,2 2 1,2 2
E'U ETK' EU E‘IT
#cells error conv. error conv. #cells error conv. error  conv.

256 1.69e-2  0.98 5.56e-2 1.01 256 1.69e-2 098 5.55e-2 1.01
1024 8.38e-3 1.01 2.76e-2 1.01 1024 8.39%-3 1.01 2.76e-2 1.01
4096 4.17¢-3  1.01 1.38e-2 1.01 4096 4.18e-3 1.01 1.37e-2 1.01
16384  2.08e-3 1.01 6.84e-3 1.01 16384 2.09e-3 1.00 6.79¢-3 1.01
65536 1.03e-3 1.01 3.4le-3 1.01 65536 1.04e-3 1.00 3.32¢-3 1.03

262144  5.15e-4 1.01 1.70e-3 1.01
1048576 2.56e-4  1.01 8.43e-4 1.01

Example 4: Finally, we numerically confirm that, even if the exact solution (v,7) is
unknown, we are able to determine reliable convergence rates using an accurate finite
element element solution (vg, ) as the reference solution (v, 7). In Table we depict
the discretization errors that are obtained (a) if the analytical solution is known and (b)
if the analytical solution is not known. In this example, the model was used and
its parameters were chosen as in Example 1. The (non-smooth) analytical solution was
given by v(x) := |x|* ' (z2, —21)" and 7(x) := |x|’x122 with a = 1.01 and b = —1.99 so
that the assumptions of Corollary are satisfied. In Table [7.4(b)| we employed the
finite element approximation (vg, 7y ) as the reference solution (v, 7) ~ (vy, 7y ), where
H corresponds to the grid with 1048576 cells. Comparing Tables [7.4(a)| and [7.4(b), we
observe that the discretization errors and rates of convergence agree reasonable well.

Conclusion: We have shown the convergence of the finite element method in the context
of fluids with shear rate and pressure dependent viscosity. The convergence of the method
has been quantified by the a priori error estimates of Corollary [7.13] These error estimates
have been demonstrated practically by numerical experiments. The numerical examples
indicate that the problems are well posed for a wider class of models than required by
the assumptions. This is encouraging for further investigation, since the assumptions are
rather restrictive from the point of view of practical applications. To my best knowledge,
the error estimates of Corollary are the first of their kind for fluids with pressure
dependent viscosity. All results of this chapter also cover the case of Carreau-type models.
In this case, the error estimates of Corollary coincide with the optimal error estimates
for Carreau-type models which have been established in Theorem
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7.7 Verification of |(A1)-(AZ2)| for particular models

As stated in Remark the model (7.50)) satisfies Assumptions|(A1)H(A2)| e.g., with
2= 61 /84, 00 = pod§ D P(p— 1)(1 + 5253_5/51)(”_2)/2, o1 = pody D", and yg =
uoéip /g 2_p &b / 45; /1 Below we prove Remark following Malek et al. [MNRO02].
Note that in [MNR02] Remark - Was shown for pug = 02 = 03 = d4 = 1. Setting

v(q) == (53 + exp(aq))~% and &% = 6 , for all P,Q € REX4 we observe that
— 5 1 (RQ®Q)= Z —y—QijQnu
oP e O0PF;;
=2 (5, N\
= > (p—2)ud,> (54 +7(q) + |P| > P;; Qi PiQm
ik
p—2
2
+ ) M054 ( +7(q) + \P’2> 0ij k1 Qi Qri
i,9,k,1

p—2 p—4
= (p—2)nod,? (2 +7(g) +|P) 7 |P: QP
p—2 p=2
+p08y® (2 +9(a) + |P12) * 1QP

Since p < 2 and 0 < v(q) < 52:;75 = g2 62:;13_ , on the one hand we get the lower bound

0S(q, P P2
WP Qoa) = —1M054 (240 + 1PR) 7 QP
p—2
> 108y (p— 1)(2(1+ 8235 /61) + [PP) 7 QP
p=2
2#05 e (1+52 3°/01) (€2+|P\2)) “ QP

p—2
= 100,” (p—D)(1+6:55°/61)"% (2 + | P[*) 7 Q.
On the other hand, we easily obtain the upper bound

08(q, P)

P Q@ Q) < iy (244 +IPP) 7 1QP < mosi™ (24 PF) 7 QP

Hence, the model (7.50) satisfies Assumption |(A1l)| with o1 = ,LAO@(f —2/2

1o 5(17 2)/2( —1)(1 + 8985 °/61)P~2/2. Moreover, there holds

and o9 =

1

v(q) = —82(53 + exp(agq)) " aexp(ag)
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and, hence, |7/(q)] < say(q). As a result, we conclude that

0S8 (q, P =22 —p p_4
BN s 22 (2 0 +1PR) T P )
b22-p p—d —1(_2 N
<mdy* (@) 7 (1457 (&2 +1PP)) 7 |Plasy(g)
_5¥ 2—-p L -1(_2 2\ 7 _1p2]2
= 10dy” as=2y(@) 7T (1447 (&2 +1PP)) T [y PP
p=2 2 — p—1 _ p—3
< o8y ? as=(@)"7 (L49(0) 7 (2 +|PP)) 7.

Since 3%1’ > ?, we finally arrive at

8S(q, P) P2 2—p o pa (2 2\ T
‘(aq‘éuoch as——=(q) 2 (1+7(q) (6 + | P| ))

p—2 2

p=2 2—p P p—=
< o8y as= (@) f (2 + [PP) T

To sum up, due to v(q) < % the model ([7.50]) satisfies Assumption |[(A2)|with

p=4 2 —p B _sP
Yo = podyt s

6505 1. (7.51)

In particular, vq is independent of ;.
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8 Conclusion and Outlook

In this thesis, we analyzed the finite element (FE) approximation of nonlinear equations
describing the steady motion of incompressible non-Newtonian fluids whose viscosity
depends on the shear rate and pressure through a general power-law with exponent
p € (1,00), see Assumption The studied models include the popular power-law and
Carreau model. To a certain degree, the thesis closes the gap between the widely developed
mathematical theory concerned with the self-consistency of the governing equations and
engineering simulations performed in industrial applications.

In Chapter {4} we considered viscosities that solely depend on the shear rate. We discretized
the p-Stokes equations with equal-order d-linear Q;/Q; elements which uses continuous
isoparametric d-linear shape functions for both the velocity and pressure approximation.
Since this discretization fails to satisfy the inf-sup stability condition, we proposed a
stabilization method for the pressure gradient that is based on the well-known local
projection stabilization (LPS) method introduced for Stokes systems in Becker/Braack
[BBOI]. Our proposed stabilization scheme is adjusted to the p-structure of the problem,
and it coincides with the classical LPS scheme of [BBO01] in the particular case p = 2. We
established the well-posedness of the stabilized discrete problems, and we derived a priori
error estimates which quantify the convergence of the method (see Theorems & .
Our a priori error estimates improve the ones derived in the literature so far regarding the
order of convergence or the assumed regularity of the solution (cf. [BN90, [BL93bl [BI.94]).
Numerical experiments indicate that, at least in the shear thinning case, our derived a priori
error estimates provide optimal rates of convergence with respect to the supposed regularity.
In the shear thickening case, the derived error estimates may be suboptimal. A priori error
estimates were also derived for both the steady and non-steady p-Stokes equations if the
classical LPS method of [BB01] is applied. They provide rates of convergence depending
on the space dimension d. In contrast, our modified stabilization with p-structure enabled
us to establish error estimates that do not depend on d, see Theorem

In Chapter [5| we studied the FE approximation of p-Oseen systems which may suffer
from numerical instabilities resulting from lacking inf-sup stability and locally dominating
advection. We extended the LPS approach of Chapter [4] to p-Oseen systems in order to
cope with both instability phenomena (see Theorem . Note that the derived a priori
error estimates remain valid for the classical power-law model which, in the case p < 2,
features an unbounded viscosity in the limit of zero shear rate.

Chapter @] deals with singular power-law models (p < 2). We identified the numerical
difficulties which usually arise when the algebraic systems are solved via Newton’s method.
By means of Corollary we suggested a numerical method that is based on a simple
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regularization of the power-law model and that enables the stable approximation of singular
power-law systems. We demonstrated numerically that our regularized approximation
method surpasses the non-regularized one regarding accuracy and numerical efficiency.

In Chapter [7] we considered viscosities which do not only depend on the shear rate but
also on the pressure. The proposed structure of the viscosity allows a restricted sublinear
dependence on the pressure measured by the parameter 7y, see Assumption Since the
equations of motion come up with additional difficulties due to the complicated structure
of the viscosity, we restricted ourselves to inf-sup stable discretizations so that we avoided
stabilization of the pressure. We analyzed the Galerkin discretization of the governing
equations and we showed that the discrete solutions converge to the solution of the original
problem provided that g is small enough. Then we established a priori error estimates (see
Corollary which provide optimal rates of convergence with respect to the expected
regularity. Note that Carreau-type models are covered as a special case. For such models,
the derived error estimates agree with those established in Theorem [4.11]

Regarding the achieved results of the present thesis, the following topics represent possible
extensions and they can be considered as encouraging future work:

Improved interpolation estimates

In order to be able to derive optimal a priori error estimates for Taylor-Hood elements,
we need to generalize the interpolation inequalities expressed in quasi-norms to quadratic
elements. From analytical point of view it still is not known if interpolation inequalities
such as hold for higher polynomial degree r > 1.

Optimal version of Theorem [4.12]

The a priori error estimates of Theorem [4.12] quantify the convergence of the proposed sta-
bilized finite element method in the shear thickening case. However, numerical experiments
indicated that they are possibly suboptimal.

Optimal error estimates for the space-time discretization

Theorem provides a priori error estimates for the non-steady p-Stokes problem if the
temporal discretization is performed before the spatial one. But the restricted regularity
of the time-discretized pressure has led to a suboptimal order of convergence in space. A
future project can consist in deriving error estimates if the non-steady p-Stokes system is
firstly discretized in space and afterwards an A-stable time-step method is applied.

Numerical solution on anisotropic meshes

Since typical velocity profiles of shear thinning fluids often exhibit sharp boundary layers,
anisotropic meshes can be used in order to efficiently resolve sharp velocity gradients
perpendicular to the boundary. The numerical solution on anisotropic meshes becomes
important for an efficient solution of problems with boundary layers. For linear Oseen
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systems, M. Braack studied the LPS method on anisotropic meshes in [Bra0g§]. One may
ask whether the LPS analysis of Chapter [4] can be extended to anisotropic meshes.

Refinement of the results of Chapter [7]

In Chapter [7] we considered viscosities 1 which depend on both the shear rate and pressure.
Assumption allows a restricted sublinear dependence on the pressure and, hence, it is
rather restrictive since the relation between viscosity and pressure is usually considered as
u ~ exp(am). Concerning a super-linear dependence on the pressure, the well-posedness
of the governing equations and the convergence of discrete solutions are however open
problems. Similarly, the singular case € = 0 is not included in our analysis and the behavior
for € N\, 0 remains an open question. Our numerical experiments indicated that assumption
relating € to g can possibly be relaxed. In further studies one could investigate
whether the results of Chapter [7] can be extended to a wider class of models.
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