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nestlačitelné tekutiny, jejichž vazkost závisí nelineárně na rychlosti smyku a na
tlaku. Rovnice popisující proudění jsou diskretizovány d-lineárními konečnými
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stabilizaci v gradientu tlaku založenou na známé metodě lokální projekce (LPS).
V případě vazkosti závisející pouze na rychlosti smyku jsou ukázány existence
a jednoznačnost řešení stabilizované diskrétní úlohy a rovněž apriorní odhady
chyby kvantifikující konvergenci metody. Pokud vazkost s rychlostí smyku klesá,
dávají odvozené odhady řád konvergence optimální vzledem k regularitě řešení.
Jak známo, Galerkinova metoda konečných prvků může vykazovat nestabilitu
nejen následkem porušení diskrétní inf-sup podmínky, ale také díky dominující
konvekci. Navržená stabilizace je proto vhodně rozšířena, aby se vypořádala s
oběma původci nestability. Na konec je uvažována vazkost závisející na rychlosti
smyku a na tlaku. Příslušná Galerkinova diskretizace je analyzována a konvergence
diskrétních řešení je kvantifikována optimálními odhady chyby.
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Abstract: This dissertation is devoted to the finite element (FE) approximation of equations

describing the motion of a class of non-Newtonian fluids. The main focus is on
incompressible fluids whose viscosity nonlinearly depends on the shear rate and
pressure. The equations of motion are discretized with equal-order d-linear finite
elements, which fail to satisfy the inf-sup stability condition. In this thesis a
stabilization technique for the pressure-gradient is proposed that is based on the
well-known local projection stabilization (LPS) method. If the viscosity solely
depends on the shear rate, the well-posedness of the stabilized discrete systems is
shown and a priori error estimates quantifying the convergence of the method are
proven. In the shear thinning case, the derived error estimates provide optimal rates
of convergence with respect to the regularity of the solution. As is well-known, the
Galerkin FE method may suffer from instabilities resulting not only from lacking
inf-sup stability but also from dominating convection. The proposed LPS approach
is then extended in order to cope with both instability phenomena. Finally, shear-
rate- and pressure-dependent viscosities are considered. The Galerkin discretization
of the governing equations is analyzed and the convergence of discrete solutions is
quantified by optimal error estimates.
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1 Introduction

The present thesis deals with the finite element approximation of equations describing the
steady motion of incompressible fluids whose viscosity nonlinearly depends on the shear
rate and pressure. Since the early formation of fluid mechanics it has been known that
there is a large class of fluids which cannot adequately be described by the Navier-Stokes
theory. Such fluids are referred to as non-Newtonian fluids. An important subclass of
non-Newtonian fluids consists of those whose viscosity depends on the shear rate and/or the
pressure. These fluids play an important role in various areas of application, for instance,
in chemical engineering, blood rheology, and geology. Pressure-dependent viscosities appear
in many industrial applications, such as in elastohydrodynamic lubrication, where very
high pressures occur. The mathematical theory concerned with the self-consistency of the
governing equations still is not fully developed but it has made good progress in recent years.
Numerical simulations are frequently employed in engineering practice since real-world
experiments of industrial processes can be complex, cost-intensive, and time-consuming.
The finite element method (FEM) is often used for engineering simulations. Due to the
complicated structure of the viscosity, the mathematical analysis of FEM is sophisticated
and it offers many open questions. This thesis aims at closing the gap between mathematical
theory and engineering simulations. It is devoted to the finite element (FE) approximation
of the equations of motion and its mathematical analysis including error estimation.

First of all, we consider fluids whose viscosity solely depends on the shear rate. In particular,
we focus on fluid models with p-structure that include the popular power-law and Carreau
model. The parameter p > 1 stands for the power-law exponent. Such models are the most
commonly used non-Newtonian fluid models and they capture typical non-Newtonian flow
characteristics such as shear thinning or shear thickening behavior, which corresponds to
exponents p < 2 or p > 2. The mathematical theory concerned with the self-consistency
of the governing equations has been studied intensively since the 1960’s, as the theory
of monotone operators had developed. Details can be found in [MRR95, FMS03]. For
p-structure models, the governing equations are referred to as the p-Navier-Stokes equations.
In this thesis, we initially consider the p-Stokes system complemented with homogeneous
Dirichlet boundary conditions and we analyze its finite element approximation. In contrast
to the p-Navier-Stokes system, the p-Stokes system neglects inertial forces and, hence,
we avoid mathematical difficulties caused by the convective term. Its FE approximation
has been studied intensively in recent years and a priori error estimates quantifying the
convergence of FEM have been proven (see [BN90, BL93b, BL94]). However, the existing
results in literature are suboptimal in the sense that either the order of the error estimate
is not optimal or the assumed regularity of the solution is too high and not realistic for
general solutions. Optimal error estimates have been proven for the p-Laplace equation
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1 Introduction

in Diening/Růžička [DR07]. In this thesis, we will derive a priori error estimates for
p-Stokes systems that are optimal at least in the shear thinning case and that improve the
error estimates established in [BN90, BL93b, BL94]. Related to the development of the
present thesis, at the same time Belenki et al. have independently derived similar results
which will be published in [BBDR10]. While their approach is based on finite elements
satisfying the inf-sup (stability) condition of Babuška-Brezzi, in this thesis we analyze
the approximation of the p-Stokes equations with equal-order finite elements that take
advantage of a convenient implementation but that fail to fulfill the inf-sup condition.
Due to the limited regularity of the solution, we mainly consider the low-order Q1/Q1
finite element which uses continuous isoparametric d-linear shape functions for both the
velocity and pressure approximation. Since this equal-order discretization is not inf-sup
stable, the pressure gradient needs to be stabilized. A popular stabilization technique
is the local projection stabilization (LPS) method that was introduced for the Stokes
problem in Becker/Braack [BB01]. The LPS method achieves stabilization of the pressure
by adding appropriate stabilization terms to the standard Galerkin formulation which
give a weighted L2-control over the fluctuations of the pressure gradient (see [BB01]). For
p-Stokes systems a priori error estimates have only been established for inf-sup stable
elements so far because optimal error estimates have not yet been available and their
derivation significantly complicates if additional stabilization is involved. In particular, the
LPS method has not been studied in the context of p-Stokes systems up to now. If LPS
is applied to problems with p-structure, the known LPS theory ensuring convergence for
Stokes systems cannot simply be transferred to the p-Stokes problem due to its nonlinear
nature. In this connection, the crucial question arises whether the solutions of the stabilized
discrete equations actually converge to the exact solution of the p-Stokes system.

In this thesis, we analyze the LPS method applied to p-Stokes systems. We will propose a
nonlinear stabilization term that is based on the known LPS method but that is adjusted
to the p-structure of the problem: Since the pressure naturally belongs to the Lebesgue
space Lp′(Ω) for p′ := p/(p− 1), our idea consists in choosing a stabilization that controls
fluctuations of the pressure gradient not in L2(Ω) (as suggested for Stokes systems) but
rather in Lp

′(Ω). Our proposed stabilization term yields a weighted Lp
′-control over

fluctuations and it coincides with the well-known stabilization term used for Stokes systems
in the case p = 2 (see [BB01]). We will show that the stabilized FE systems are well-posed.
Let v and π be the exact velocity and pressure, and let vh and πh be the corresponding
discrete approximations. As usual, h represents the maximum mesh size. For instance if
p ≤ 2, then we will establish the following a priori error estimates,

‖v − vh‖1,p ≤ ch, ‖π − πh‖p′ ≤ ch
2
p′ , (1.1)

provided that the solution (v, π) is sufficiently smooth, see Theorem 4.11. Actually, the
constants in (1.1) depend on the solution (v, π) through quantities that express the “natural
regularity” of (v, π) which is available for sufficiently smooth data (cf. Ebmeyer [Ebm06]).
It is well-known that, in order to derive sharp error bounds, one shall prove error estimates
in terms of quasi-norms which naturally arise in degenerate problems of this type (cf.
Barrett/Liu [BL94]). In order to derive (1.1), we combine both the quasi-norm technique
and the well-known analysis of LPS for Stokes systems. Numerical experiments indicate
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that (1.1) is optimal with respect to the supposed regularity of the solution. The error
estimates (1.1) remain valid for the classical power-law model. For p > 2 we will establish
analog a priori error estimates (see Theorem 4.12) that, however, may be suboptimal
concerning the order of convergence for the pressure. If the standard LPS method of
[BB01] is applied to p-Stokes systems, we will only be able to derive (suboptimal) a priori
error estimates which provide rates of convergence depending on the space dimension d. In
contrast, our proposed stabilization allows error estimates independent of d, see (1.1).

It is well-known that for Navier-Stokes systems numerical instabilities result not only from
lacking inf-sup stability of the FE ansatz but also from locally dominating convection in
case of high Reynolds numbers. In Becker/Braack [BB04] it has been shown that the LPS
approach of [BB01] can be extended to Navier-Stokes systems in order to cope with both
instability phenomena. So far our studies have dealt with LPS for p-Stokes systems only. As
the thesis continues, we will perform an analysis of LPS in the context of p-Navier-Stokes
systems. We will extend the established LPS-theory for p-Stokes systems in order to
properly treat dominating convection. For p-Oseen systems, we will prove optimal a priori
error estimates that are similar to (1.1).

In the shear thinning case the classical power-law predicts an unbounded viscosity in the
limit of zero shear rate. The corresponding equations of motion are then called singular
power-law systems. The power-law is frequently used (see, e.g., [BCH75, SE86]). Since
the extra stress tensor related to the singular power-law is not differentiable, numerical
instabilities usually arise when the discrete power-law systems are solved via Newton’s
method (cf. [Deu04]). In this thesis, we will present a numerical method which enables the
stable approximation of singular power-law systems. The proposed method is based on a
simple regularization of the power-law viscosity. We will estimate the error resulting from
regularization. The underlying regularization parameter is then coupled with the mesh size
so that the error caused by regularization is of same order as the discretization error at
least. Finally, we will demonstrate numerically that our regularized approximation method
surpasses the non-regularized one regarding accuracy and numerical efficiency.

In this thesis, we also consider fluid models which are both shear thinning and pressure
thickening. Similarly to Málek et al. [MNR02], the proposed structure of the viscosity
allows a restricted sub-linear dependence on the pressure. The mathematical theory
concerned with the self-consistency of the governing equations has emerged recently, see e.g.
[FMR05, BMR07, Lan09, BMR09, LS11a]. The FE method has been studied extensively
in the context of power-law/Carreau-type fluids whose viscosity only depends on the shear
rate, but no FE analysis is available when the fluid’s viscosity also depends on the pressure.
In this thesis, we will extend the FE analysis performed for p-structure models in the
sense that we will allow shear-rate- and pressure-dependent viscosities and that we will
consider more general boundary conditions such as inhomogeneous Dirichlet or natural
inflow/outflow boundary conditions. Due to the complex structure of the problem, we will
restrict the mathematical analysis to inf-sup stable discretizations. We will show that the
FE solutions (vh, πh) exist, that they are determined uniquely, and that they converge
to the weak solution (v, π) strongly in W 1,p(Ω) × Lp′(Ω), p ∈ (1, 2), for diminishing
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1 Introduction

mesh size h. Finally, we will derive optimal a priori error estimates similar to (1.1), see
Corollary 7.13. Note that Carreau-type models are covered as a special case.

Below we summarize all chapters of the thesis:

Theoretical Results: In Chapter 2 we formulate the incompressible p-(Navier-)Stokes
equations. Instead of focusing on particular flow models, we state structural assumptions
on the extra stress tensor (p-structure) that contain a large class of flow models. We
discuss resulting properties of the extra stress tensor which play an important role in the
FE analysis. Finally, we introduce the variational formulation of the p-(Navier-)Stokes
equations, and we recall well-known theoretical results that ensure the existence and
uniqueness of weak solutions and that deal with the regularity of weak solutions.

Finite Element Discretization: Chapter 3 deals with the FE discretization of the p-
Navier-Stokes equations. Since we use an equal-order discretization, we need to stabilize
the discrete Galerkin systems. We recall well-known stabilization methods such as local
projection stabilization (LPS). Approximation properties of FE spaces can be characterized
by estimates for interpolation errors. For the FE analysis of p-Stokes systems it is convenient
to transfer the interpolation theory from Sobolev spaces to Orlicz-Sobolev spaces. In this
chapter, we summarize important results on interpolation in Orlicz-Sobolev spaces that
have been derived in [DR07]. Finally, we discuss implementational aspects.

Finite Element Approximation of the p-Stokes Equations: In Chapter 4, we rigorously
analyze the discretization of the p-Stokes problem with equal-order bi- or tri-linear finite
elements. First of all, we propose our stabilization method that is based on the LPS
method and that is adjusted to the p-structure of the problem. Within the LPS framework,
the pressure gradient is projected into an appropriate (possibly discontinuous) FE space
that is supposed to satisfy a certain local inf-sup condition with respect to the original
FE space. We show that there exists an interpolation operator of Scott-Zhang type that
additionally features an orthogonality property with respect to the projection space and
that satisfies an interpolation property in terms of quasi-norms. This modified interpolation
operator enables us to prove a discrete analogon of the continuous inf-sup condition and,
consequently, the well-posedness of the discrete stabilized systems. Then we derive a priori
error estimates that quantify the convergence of the method. We confirm numerically that,
at least in the shear thinning case, the derived error estimates are optimal with respect to
the expected regularity of the solution. Furthermore, we establish a priori error estimates
if the classical LPS scheme proposed in [BB01] is applied to p-Stokes systems. We also
analyze the fully time-space discretization of non-steady p-Stokes systems. Finally, we
present particular projection spaces that satisfy the abstract assumptions.
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Approximation of the p-Navier-Stokes Equations: Chapter 5 is devoted to the finite
element approximation of p-Navier-Stokes systems. First of all, we investigate the LPS
method applied to the p-Oseen equations. The p-Oseen system appears within the solution
of the non-steady p-Navier-Stokes system as an auxiliary problem if an A-stable time step
method is employed. For it we are able to prove optimal a priori error estimates using
methods from Chapter 4. Finally, we deal with a posteriori error estimation and adaptive
mesh refinement. Generally, the numerical solution of the highly nonlinear p-Navier-Stokes
equations can be cost-intensive and time-consuming. Hence adaptive methods are important
since they enable us to reduce numerical costs without loss of accuracy. In the context of
p-Navier-Stokes systems we discuss the well-known dual weighted residual (DWR) method
(see [BR01]), which allows for both the quantitative assessment of the discretization errors
and the adaptive refinement of the underlying meshes. In particular, we apply the DWR
method to the p-Navier-Stokes equations for the computation of the drag coefficient.

Approximation of Singular Power-Law Systems: Chapter 6 deals with so-called singular
power-law models which feature an unbounded viscosity in the limit of zero shear rate. We
present a numerical method that enables the stable approximation of singular power-law
systems. Finally, we prove a priori error estimates and we numerically validate them.

Fluids with Shear-Rate- and Pressure-Dependent Viscosity: Chapter 7 is dedicated to
fluids whose viscosity depends on the shear rate and pressure. We analyze the Galerkin
discretization of the governing equations. In particular, we show the well-posedness of
the discrete systems. We prove that the discrete solutions converge to the solution of the
original problem without any additional assumption on its regularity. We then derive
a priori error estimates that provide optimal rates of convergence with respect to the
supposed regularity. Finally, we illustrate the achieved results by numerical experiments.

Conclusion and Outlook: In Chapter 8, we summarize the derived results.

To sum up, the present thesis pursues the following aims:

• analyze the LPS-method in the context of p-Stokes systems

• derive optimal a priori estimates for the approximation error

• extend the established LPS-theory to p-Navier-Stokes systems

• apply the DWR method to the p-Navier-Stokes equations

• develop a stable approximation method for singular power-law systems

• analyze FEM for fluids with shear-rate- and pressure-dependent viscosity

5



1 Introduction

• study general boundary conditions describing, e.g., a free outflow

Several results of the present thesis have already been published in (or have currently been
submitted to) peer-reviewed journals while composing the thesis:

• Adrian Hirn, Approximation of the p-Stokes equations with equal-order finite elements,
accepted for publication in J. Math. Fluid Mech. (2011), [Hir10].

• Adrian Hirn, Martin Lanzendörfer and Jan Stebel, Finite element approximation of
flow of fluids with shear rate and pressure dependent viscosity, accepted for publication
in IMA J. Numer. Anal. (2011), [HLS10].
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2 Theoretical Results

In this chapter, we formulate the fundamental equations describing the motion of certain
non-Newtonian fluids, and we deal with known theoretical results concerned with their
well-posedness. First of all, in Section 2.1 we introduce our basic notation which is used
throughout the thesis. Section 2.2 is dedicated to the derivation of the governing equations.
Moreover, the practical relevance of the considered fluids is discussed. Instead of focusing on
particular flow models, in Section 2.3 we state general structural assumptions on the extra
stress tensor (p-structure) that allow for a large class of flow models. In Section 2.4 we derive
resulting properties of the extra stress tensor that will be of relevance for the FE analysis
of p-Stokes systems. In Sections 2.5, 2.6 we introduce the variational formulation of the p-
(Navier-)Stokes equations which represents the basis for the FE discretization. Additionally,
we recall well-known theoretical results that ensure the existence and uniqueness of weak
solutions. In Section 2.6 we also discuss the regularity of weak solutions.

2.1 Notation and function spaces

The set of all positive real numbers is denoted by R+. Let R+
0 := R+ ∪ {0}. For the

Euclidean scalar product of two vectors p, q ∈ Rd we use the notation p · q. The scalar
product of P , Q ∈ Rd×d is defined by P : Q := ∑d

i,j=1 PijQij . We set |Q| := (Q : Q)1/2.
Often we use c as a generic constant, i.e., its value may change from line to line but does
not depend on the important variables. We write a ∼ b if there exist positive constants c
and C independent of all relevant quantities such that cb ≤ a ≤ Cb. Moreover, the notation
a . b is used for a ≤ Cb with a suitable constant C > 0.

Below we introduce function spaces, which will be used later on, and we recall their
basic properties. Details and proofs can be found in the standard literature, e.g., in
[Ada75, KJF77, Růž04]. Throughout the thesis let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded
domain with boundary ∂Ω. If we do not provide further information, we will assume that
∂Ω is Lipschitz. The outer unit normal vector to ∂Ω is denoted by n. For measurable
ω ⊂ Ω, the d-dimensional Lebesgue measure of ω is denoted by |ω|. For ν ∈ [1,∞] we use
the standard notations Lν(ω) for the Lebesgue space and Wm,ν(ω) for the Sobolev space
of order m: The Lebesgue space Lν(ω) consists of all measurable functions u on ω, for
which

‖u‖ν;ω := ‖u‖Lν(ω) :=


( ∫

ω |u|ν dx
)1/ν

if ν ∈ [1,∞)
ess supω|u| := inf |N |=0 supx∈ω\N |u(x)| if ν =∞

7



2 Theoretical Results

is finite. We identify two functions, u and v, that satisfy ‖u− v‖ν;ω = 0. For ν ∈ [1,∞]
the functional ‖·‖ν;ω is a norm, and (Lν(ω), ‖·‖ν;ω) is a Banach space. Let m ∈ N0 :=
{0, 1, 2, . . .}, ν ∈ [1,∞], and let ω ⊂ Ω be open. Then the Sobolev space Wm,ν(ω)
contains all u ∈ Lν(ω) whose distributional derivatives ∂αu ∈ Lν(ω) exist for any α with
0 ≤ |α| ≤ m. Here, α = (α1, . . . , αd) is a multi-index (each αi is a nonnegative integer),
|α| := ∑d

i=1 αi, and ∂α := ∂α1
1 . . . ∂αdd with ∂αii := ∂αi/∂xαii . The symbols ∂α are used for

both the partial and distributional derivatives. Further synonyms for derivatives are given
by ∇u := (∂jui)di,j=1 and ∇mu. The latter one denotes the tensor of all partial derivatives
of u up to the order m. The Sobolev space Wm,ν(ω) is a Banach space with the norm

‖u‖m,ν;ω := ‖u‖Wm,ν(ω) :=


(∑

|α|≤m‖∂αu‖νLν(ω)

)1/ν
if 1 ≤ ν <∞∑

|α|≤m ess supω|∂αu| if ν =∞
.

Similarly, we define seminorms, |u|m,ν;ω :=
(∑

|α|=m‖∂αu‖νν;ω

)1/ν
. For functions u ∈ L1(ω)

with |ω| > 0, we denote the mean value of u over ω by 〈u〉ω := −
∫
ω udx := 1

|ω|
∫
ω udx.

The symbol Lν0(ω) stands for the subspace of Lν(ω) whose elements meet trivial mean-
value, i.e., Lν0(ω) := {u ∈ Lν(ω); 〈u〉ω = 0}. For scalar functions u, v with uv ∈ L1(ω),
the notation (u, v)ω is used for the integral

∫
ωuv dx. Spaces of Rd-valued functions are

denoted with boldface type, though no distinction is made in the notation of norms
and inner products. Thus, the norm in Wm,ν(ω) ≡ [Wm,ν(ω)]d is given by ‖w‖m,ν;ω =(∑

1≤i≤d
∑

0≤|α|≤m‖∂αwi‖νν;ω

)1/ν
. For vector-valued functions u, v with uivi ∈ L1(ω), we

set (u,v)ω :=
∫
ω u · v dx. Analogously, for tensor-valued functions U , V with UijVij ∈

L1(ω), we define (U ,V )ω :=
∫
ωU : V dx. In case of ω = Ω, we usually omit the index

Ω. For ν ∈ [1,∞) the notation W 1,ν
0 (Ω) is used for the Sobolev space with vanishing

traces on ∂Ω. It is well-known that for ν ∈ [1,∞) there exists a continuous trace operator
γ : W 1,ν(Ω)→ Lν(∂Ω) with u|∂Ω := γ(u). The space W 1,ν

0 (Ω) is then characterized by

W 1,ν
0 (Ω) := {u ∈W 1,ν(Ω); u|∂Ω = 0}.

We recall the Poincaré and generalized Korn inequality (see, e.g., Málek et al. [MNRR96]):
For any ν ∈ (1,∞) there exist constants c1, c2 > 0 only depending on ν and Ω such that

c1‖w‖1,ν ≤ ‖∇w‖ν ≤ c2‖Dw‖ν ∀w ∈W 1,ν
0 (Ω). (2.1)

By virtue of (2.1), the seminorm ‖∇·‖ν represents a norm on W 1,ν
0 (Ω) which is equivalent

to the usual W 1,ν-norm. The space W 1,ν
0 (Ω) is a closed subset of W 1,ν(Ω). The dual space

of W 1,ν
0 (Ω) is denoted by W−1,ν′(Ω) ≡ [W 1,ν

0 (Ω)]∗. It is a Banach space with the norm

‖g‖−1,ν′ := sup
w∈W 1,ν

0 (Ω)

〈g, w〉
|w|1,ν

.

Here, 〈·, ·〉 represents the duality pairing between W−1,ν′(Ω) and W 1,ν
0 (Ω). As usual, ν ′

stands for the dual exponent to ν defined by 1/ν + 1/ν ′ = 1. The space Cm(Ω), m ∈ N,

8



2.2 Non-Newtonian fluid models

denotes the space of all m-times differentiable functions on Ω whose derivatives up to order
m are continuous. We set C(Ω) := C0(Ω) and we define

C∞(Ω) :=
⋂
m∈N

Cm(Ω).

The space Cm(Ω) consists of all functions from Cm(Ω) whose derivatives up to order m
can be extended continuously onto Ω. It is a Banach space with the norm

‖u‖Cm(Ω) := max
|α|≤m

sup
x∈Ω
|∂αu(x)|.

As usual, D(Ω) := C∞0 (Ω) denotes the set of all C∞-functions with compact support in Ω.
Its dual space is denoted by D′(Ω). If ∂Ω is Lipschitz, then W 1,ν

0 (Ω) can be characterized
as the closure of C∞0 (Ω) with respect to the W 1,ν

0 -norm. The following interpolation
inequality is well-known: Let f ∈ W 1,s(Ω) ∩ Lq(Ω) with 1 ≤ q < ∞. If s < d, then
f ∈ Lr(Ω) with r ≤ ds

d−s and for q ≤ r ≤ ds
d−s there exists C = C(Ω, d, s, q, r) > 0 so that

‖f‖r ≤ C‖f‖α1,s‖f‖1−αq , α ∈ [0, 1], 1
r

= α
(1
s
− 1
d

)
+ (1− α)1

q
. (2.2)

If s = d (If s > d), then (2.2) holds true for q ≤ r <∞ (for q ≤ r ≤ ∞).

Let (X, ‖·‖X) be a Banach space. For T > 0 let I := (0, T ) be a bounded interval. The
space Lq(I;X) denotes the space of all Bochner measurable functions u : I → X such that

‖u‖Lq(I;X) :=


( ∫ T

0 ‖u(t)‖qX dt
)1/q

if q ∈ [1,∞)
ess supt∈I‖u(t)‖X if q =∞

(2.3)

is finite. It is well-known that (Lq(I;X), ‖·‖Lq(I;X)) is a Banach space. The space C(Ī;X)
consists of functions from Ī into X that are continuous on Ī. This is a Banach space with
the norm ‖u‖C(Ī;X) := supt∈Ī‖u(t)‖X .

Let X, Y be Banach spaces. If a mapping J : X → Y is Gâteaux differentiable in x ∈ X,
then J ′(x)(h) is referred to as the Gâteaux-derivative of J at x ∈ X in direction h ∈ X,

J ′(x)(h) := d
dtJ(x+ th)

∣∣∣
t=0

:= lim
t↘0

1
t

[
J(x+ th)− J(x)

]
.

Similarly, if a(x)(y) is a semi-linear form, a′(x)(h, y) denotes its directional derivative.

2.2 Non-Newtonian fluid models

Following the literature [MNR02, MR06], in this section we discuss several non-Newtonian
fluid models, their physical properties and practical relevance. We introduce the governing

9
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equations that describe the motion of such fluids. Their derivation is based on physical
conservation laws. The conservation of mass is equivalent to the continuity equation

∂t%+∇ · (%v) = 0 (2.4)

where the vector field v = (v1, . . . , vd) is the velocity and % denotes the density of the fluid.
The balance of linear and angular momentum leads to the momentum equations

%∂tv + %[v · ∇]v −∇ · T T = %f , and T = T T. (2.5)

Here, T = (Tij)di,j=1 is the Cauchy stress tensor, T T denotes its transpose, and f =
(f1, . . . , fd) describes an external body force. In case of incompressible fluids, the volume of
subregions occupied by the fluid does not change in time. By means of Reynold’s transport
theorem, this leads to the incompressibility condition

div v ≡ ∇ · v = 0. (2.6)

The fluid is called homogeneous if the density % is constant in space. If the fluid under
consideration is homogeneous and incompressible, then the density is also constant in time
because of (2.4). For such fluids the equation (2.4) is automatically fulfilled.

The Cauchy stress tensor T is expressed by a constitutive law. In classical fluid mechanics,
it is usually assumed that the Cauchy stress tensor T depends on the velocity gradient
∇v and the density %. It follows from the principle of material frame-indifference that the
stress tensor T depends on the velocity gradient ∇v only through its symmetric part

D := Dv := 1
2
(
∇v +∇vT

)
with Dij := 1

2

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (2.7)

We consider the following constitutive equation that relates the Cauchy stress T to D:

T = −πI + µ(π, |D|2)D. (2.8)

Since trD = ∇ · v = 0, it follows from (2.8) that −π = 1
3 trT , i.e., π is the mean normal

stress. Following [BMM10], we show that the constitutive equation (2.8) is consistent with
the basic principles of continuum mechanics if an implicit relation between T and D,

F (T ,D) = 0,

is assumed. The principle of material frame-indifference implies that F satisfies

F (QT QT,QDQT) = QF (T ,D)QT ∀Q ∈ {Q ∈ Rd×d; QQT = QTQ = I}

(F is an isotropic second-order tensor). A representation theorem for such tensors yields

α0I + α1T + α2D + α3T 2 + α4D
2+α5(DT + TD) + α6(T 2D +DT 2)

+ α7(TD2 +D2T ) + α8(T 2D2 +D2T 2) = 0

10



2.2 Non-Newtonian fluid models

where the functions αi, i = 0, . . . , 8, depend on the invariants

trT , trD, trT 2, trD2, trT 3, trD3, tr(TD), tr(T 2D), tr(TD2), tr(T 2D2).

Note that trD2 = |D|2. If we set α0 = −1
3 trT , α1 = 1, α2 = −µ(−1

3 trT , |D|2), and
αi = 0 for i ≥ 3, we arrive at (2.8). In particular, if µ ≡ const, then the fluid belongs to
the class of Newtonian fluids. Otherwise, the fluid is referred to as a non-Newtonian fluid.
The extra stress tensor S = (Sij)di,j=1 relates to the Cauchy stress tensor T through

T = −πI + S(π,Dv). (2.9)

It represents the viscous part of the Cauchy stress tensor which, e.g., describes shear stress.
An important subclass of fluids is derived from (2.8) with µ = µ(|D|2). Typical examples
are the power-law model (2.11a) and the Carreau model (2.11b): Here, S takes the form

S(Dv) = µ(|Dv|2)Dv (2.10)

where, e.g., for fixed µ0 > 0, p ∈ (1,∞), and ε ∈ [0,∞) the function µ is given by

µ(|Dv|2) : = µ0|Dv|p−2 “Power-law model” or (2.11a)

µ(|Dv|2) : = µ0
(
ε2 + |Dv|2

) p−2
2 “Carreau model”. (2.11b)

If two-dimensional simple shear flows are considered, i.e., v = (v1(x2), 0)T, then the
quantity |v′1(x2)| (= 2|Dv|) is referred to as the shear rate. The function µ represents the
generalized viscosity of the fluid. Thus, fluids constituted by (2.10) are also named fluids
with shear rate dependent viscosity. Models of type (2.11) are by far the most commonly
used non-Newtonian fluid models (see [MNR02]). Such models describe a plethora of
materials in various areas of application: colloids and suspensions, biological fluids such as
blood and synovial fluids, and lubricants. For an extensive discussion of such models we
refer to [MRR95, MNRR96, GRRT08], and the references therein. If 1 < p < 2, we observe
lower apparent viscosities at higher shear rates. This property is called shear thinning.
Most real fluids, which can be modeled by a constitutive law of type (2.11), show shear
thinning behavior that corresponds to exponents 1 < p < 2. The case p > 2 is less common,
although there are some fluids with shear thickening behavior. For p = 2 the generalized
viscosity µ is constant, and the fluid belongs to the class of Newtonian fluids.

Besides the class of models (2.10), we are interested in the wider class of models (2.8)
itself. For many fluids, the variations in the fluid density are small whereas the variations
in its viscosity may differ by many orders of magnitude due to significant changes in the
pressure (see [MNR02]). Such fluids can effectively be modeled as incompressible fluids
with pressure-dependent viscosity. Here we consider extra stress tensors of the form

S(π,Dv) = µ(π, |Dv|2)Dv, (2.12)

i.e., we deal with fluids whose viscosity depends on both the pressure and shear rate. The
fluid models under consideration appear in various areas of application, for instance in elas-
tohydrodynamic lubrication, geology and glaciology (see, e.g., [Hin98, BG06, SHH06, Sch07,
Sze10]). Concerning the class of models (2.12), many details and extensive discussions can
be found in Málek et al. [MR06, MR07].
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Governing equations: Throughout this thesis the density % of the fluid is assumed to
be constant, % ≡ %0. Inserting (2.9) into (2.5), dividing the result by %0, and taking into
account the incompressibility constraint (2.6), we arrive at the equations of motion

∂tv − %−1
0 ∇ · S(Dv, π) + [v · ∇]v + %−1

0 ∇π = f , ∇ · v = 0. (2.13)
We relabel S/%0 and π/%0 again as S and π. Hence, we always consider system (2.13) using
the convention %0 = 1. The isothermal flow of an homogeneous incompressible viscous fluid
in a bounded domain Ω ⊂ Rd, d ∈ {2, 3} is then governed by the system of PDEs

∂tv −∇ · S(π,Dv) + [v · ∇]v +∇π = f

∇ · v = 0

 in (0, T )×Ω. (2.14a)

Let v̂ be a given divergenceless initial velocity field. The relevant initial condition reads
v(0,x) = v̂(x) for almost all x ∈ Ω. (2.14b)

When the flow field does not change over time, then the flow is considered to be a steady
flow. Steady flows occur in many situations. For instance, in industrial application,
investigators are often interested in fully developed flows regardless of the flow history. If
the flow is steady, then the system (2.14) reduces to the following system of PDEs:

−∇ · S(π,Dv) + [v · ∇]v +∇π = f

∇ · v = 0

 in Ω. (2.15)

Remark 2.1. For models (2.10), we easily derive the identity
d∑
i=1

∂iSij(Dv) = 1
2

d∑
i=1

∂i
(
µ(|Dv|2)[∂ivj + vjvi]

)
= 1

2µ(|Dv|2)
∑
i

∂i[∂ivj + ∂jvi] + µ′(|Dv|2)
∑
i

Dij∂i|Dv|2

= 1
2µ(|Dv|2)(∆vj + ∂j∇ · v) + 2µ′(|Dv|2)

∑
i,k,l

DijDkl∂i∂kvl.

Here, we have assumed that v is sufficiently smooth. Hence, if µ ≡ const and ∇ · v = 0,
then we recover the well-known Navier-Stokes model.

Often we neglect inertial forces in (2.15)1 and, hence, we avoid mathematical difficulties
related to the convective term. In this case, we arrive at the simplified system of PDEs

−∇ · S(π,Dv) +∇π = f

∇ · v = 0

 in Ω. (2.16)

The following system (2.17) typically appears within the solution of problem (2.14) as an
auxiliary problem if an A-stable implicit time step method is applied:

−∇ · S(π,Dv) + [b · ∇]v + σv +∇π = f

∇ · v = 0

 in Ω, (2.17)

where the parameter σ ∈ R+
0 and the flow field b : Ω → Rd are given.
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Similarity transformation: All quantities in (2.13) feature a physical dimension. In
order to simulate real-life processes in practical applications, we have to employ a non-
dimensionalized version of (2.13) which we derive below for the simple Carreau model
(2.10) & (2.11b). To this end, we introduce the dimensionless variables

x̃ := x

L
, ṽ := v

U
, t̃ := U

L
t, π̃ := π

U2%0

where L and U are characteristic length and bulk velocity respectively. Consequently,

∂ṽ

∂t̃
= ∂ṽ

∂t

∂t

∂t̃
= L

U2
∂v

∂t
, ∇̃ṽ = L

U
∇v, D̃ṽ = L

U
Dv.

Hence, in view of (2.11b) the momentum equations transform as follows

U2

L

∂ṽ

∂t̃
− µ0
%0L
∇̃ ·

[(
ε2 + U2L−2|D̃ṽ|2

) p−2
2 UL−1D̃ṽ

]
+ U2

L
[ṽ · ∇̃]ṽ + U2

L
∇̃π̃ = f .

The right-hand side f can be interpreted as given acceleration such as gravitational
acceleration. Setting f̃(x̃) := L

U2f(Lx̃), we conclude the transformed equations of motion

∂ṽ

∂t̃
− Re−1

p ∇̃ ·
[(
ε̃2 + |D̃ṽ|2

) p−2
2 D̃ṽ

]
+ [ṽ · ∇̃]ṽ + ∇̃π̃ = f̃ , ∇̃ · ṽ = 0 (2.18)

where ε̃ := L
U ε and the Reynolds number Rep is given by

Rep := %0U
3−pLp−1

µ0
. (2.19)

Multiplying the momentum equation (2.18) with Rep, relabeling Rep π̃ and Rep f̃ again as
π̃ and f̃ , in the steady case we finally arrive at the transformed equations of motion

−∇̃ ·
[(
ε̃2 + |D̃ṽ|2

) p−2
2 D̃ṽ

]
+ Rep[ṽ · ∇̃]ṽ + ∇̃π̃ = f̃ , ∇̃ · ṽ = 0. (2.20)

Boundary conditions: We complement systems (2.14) – (2.17) by appropriate boundary
conditions which are formulated below for the case of steady flows only. If the evolutionary
model (2.14) is studied, then these boundary conditions are considered on [0, T ]× ∂Ω.

• Homogeneous Dirichlet boundary conditions: Internal flows meet the condition

v · n = 0 on ∂Ω. (2.21)

Usually, such flows are subjected to no-slip boundary conditions

vt := v − (v · n)n = 0 on ∂Ω. (2.22)

If (2.21) holds, then vt = v. Combining (2.21) and (2.22), we arrive at the condition

v = 0 on ∂Ω. (2.23)

13
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• Space periodic boundary conditions: We assume that Ω is a d-dimensional cube with
sides of length L > 0, Ω := (0, L)d, and that v, π are periodic with period L in each
spatial variable xj : for Γj = ∂Ω ∩ {xj = 0}, Γj+d = ∂Ω ∩ {xj = L} we require that

v|Γj = v|Γj+d , π|Γj = π|Γj+d , j = 1, . . . , d,
∫
Ω

v dx = 0.

• Mixed boundary conditions: We assume that the boundary consists of two parts,
∂Ω = Γ ∪ S, |S| > 0. Then, we prescribe the boundary conditions

v = vD on Γ, (2.24a)
−S(π,Dv)n+ πn = b on S. (2.24b)

The function vD represents a given velocity field on the boundary (non-homogeneous
Dirichlet data) whereas the function b reflects a given force that acts on the boundary.

Constraint on the pressure: For the subsequent discussion we follow Hirn et al. [HLS10].
The absolute value of the pressure is naturally determined up to a constant. Taking into
account the boundary conditions (2.24), we distinguish two cases:

(a) If we prescribe Dirichlet boundary conditions on the whole boundary, ∂Ω = Γ , then
we additionally fix the level of pressure by requiring

−
∫
Ω

π dx = π0 ∈ R. (2.25)

In case of evolutionary problems, for π0 : (0, T )→ R we incorporate the condition

−
∫
Ω

π(t,x) dx = π0(t) for all t ∈ (0, T ). (2.26)

(b) If |S| > 0, then (2.24b) suffices to fix the level of pressure, i.e., it implicitly normalizes
the pressure. In particular, the pressure is already uniquely determined without the
mean value constraint. For models of class (2.12), this was shown in [LS11b, LS11a].

The constraint (2.25) requires some remarks: When the viscosity does not depend on the
pressure, the constant π0 that fixes the pressure is irrelevant. In this case, we may set
π0 = 0. However, it is a special feature of piezoviscous fluids that the number π0 affects
the whole solution through S(π,Dv), including the velocity field. Hence, the non-physical
constraint (2.25) comprises an important input parameter undeterminable by practical
applications. By contrast, b in (2.24b) represents the force acting on the domain boundary
and, hence, it reflects physically reasonable input data. Nevertheless, with no loss of
generality we may assume that π0 = 0. Indeed, since the structural assumptions on S,
which will be formulated in Assumption 2.2 below, impose no constraint on the value of
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the pressure (they only control the derivative of S with respect to the pressure), they are
satisfied for S(π − π0, ·) with arbitrary π0 provided that they are fulfilled for S(π, ·).

Models such as (2.11) belong to the class of p-structure models (see Assumption 2.1). If
the extra stress tensor S exhibits p-structure, then the system (2.14) is referred to as the
non-steady p-Navier-Stokes equations. For p-structure models the system (2.16) represents
the steady p-Stokes equations whereas the system (2.17) is called the p-Oseen system.

In this thesis, we will analyze the finite element (FE) approximation of system (2.16). In
doing so, we will distinguish between the following two cases:

(1) The fluid viscosity only depends on the shear rate.

(2) The viscosity depends on both the shear rate and pressure.

In case of (1), we complement system (2.16) by homogeneous Dirichlet boundary conditions.
General boundary conditions of type (2.24) are discussed in the context of (2). Since
we use equal-order discretizations (see Section 3.1), we violate the well-known discrete
compatibility (or inf-sup stability) condition of Babuška-Brezzi. In order to overcome the
instability of this discretization, we will propose a stabilization method based on local
projections (see Section 4.1). For the analysis of our method, we will restrict ourselves to
case (1). In Section 4.5 we will show a priori error estimates that quantify the convergence
of the method. Then, in Chapter 5 we will extend our approach to the generalized p-
Oseen problem (2.17) whose FE approximation may additionally suffer from dominating
convection in case of high Reynolds numbers Rep. Finally, in Chapter 7 we will investigate
the FE approximation of problem (2.16) related to case (2). Due to the complex structure
of the viscosity, here we will carry out the analysis for stable discretizations only.

2.3 Assumptions on the extra stress tensor

In this section we state structural assumptions on the extra stress tensor S and we
indicate how S relates to N -functions. For this, we follow Section 2.1 in [BDR10]. We
set Rd×dsym :=

{
P ∈ Rd×d; P = P T

}
and P sym := 1

2

(
P + P T

)
. Due to the principle

of objectivity, S depends on the velocity gradient ∇v only through its symmetric part
Dv := 1

2

(
∇v +∇vT

)
. Therefore, the extra stress tensor S : Rd×d → Rd×dsym shall satisfy

S(0) = 0 and S(P ) = S(P sym). Moreover, it is supposed to satisfy the following

Assumption 2.1 (extra stress tensor). We assume that the extra stress tensor S :
Rd×d → Rd×dsym belongs to C0(Rd×d,Rd×dsym) ∩ C1(Rd×d \ {0},Rd×dsym) and satisfies S(Q) =
S(Qsym) and S(0) = 0. Furthermore, we assume that S possesses (p, ε)-structure, i.e.,

15



2 Theoretical Results

there exist p ∈ (1,∞), ε ∈ [0,∞), and constants σ0, σ1 > 0 such that the inequalities1

d∑
i,j,k,l=1

∂klSij(Q)PijPkl ≥ σ0(ε+ |Qsym|)p−2|P sym|2, (2.27)

|∂klSij(Q)| ≤ σ1(ε+ |Qsym|)p−2 (2.28)

are satisfied for all Q, P ∈ Rd×d with Qsym 6= 0 and all i, j, k, l ∈ {1, . . . , d}.

Remark 2.2. Relevant examples satisfying Assumption 2.1 are the power-law model (2.11a)
and the Carreau model (2.11b). For such models, the extra stress tensor S is derived
from a potential: Let us assume that there exists a convex function Φ : R+

0 → R+
0 with

Φ ∈ C1(R+
0 ) ∩ C2(R+) and Φ(0) = Φ′(0) = 0 such that for i, j = 1, . . . , d

Sij(Q) = ∂ijΦ(|Qsym|) = Φ′(|Qsym|)
Qsym
ij

|Qsym|
∀Q ∈ Rd×d \ {0}. (2.29)

For many fluid models such as (2.11a) and (2.11b), the potential Φ exhibits (p, ε)-structure.
This means that there exist p ∈ (1,∞), ε ∈ [0,∞), and c0, c1 > 0 such that

c0(ε+ t)p−2 ≤ Φ′′(t) ≤ c1(ε+ t)p−2 ∀t ∈ R+. (2.30)

From (2.30) it follows (cf. [RD07], Section 6) that uniformly in t ≥ 0 there hold

Φ′(t) ∼ Φ′′(t)t, Φ(t) ∼ Φ′(t)t (2.31)

where the constants only depend on p, c0, and c1. In view of (2.29) – (2.31), it can be
shown similarly to Lemma 21 in [DE08] that Assumption 2.1 is satisfied.

Below we depict how the stress tensor relates to N -functions which are standard in the
theory of Orlicz spaces. Details on Orlicz spaces can be found in [KR61] or [RD07].

Definition 2.1. A continuous convex function ψ : R+
0 → R+

0 is called N -function if ψ(0) =
0, ψ(t) > 0 for t > 0, limt→0+ ψ(t)/t = 0 and limt→∞ ψ(t)/t =∞.

Let ψ be as in Definition 2.1. Consequently, there exists the right derivative ψ′ of ψ, which
is non-decreasing and satisfies ψ′(0) = 0, ψ′(t) > 0 for t > 0, and limt→∞ ψ

′(t) =∞.

Definition 2.2. Let ψ be an N-function. We define (ψ′)−1 : R+
0 → R+

0 by (ψ′)−1(t) :=
sup{u ∈ R+

0 ; ψ′(u) ≤ t}. Then, the complementary function ψ∗ : R+
0 → R+

0 is defined by

ψ∗(t) :=
t∫

0

(ψ′)−1(s) ds :=
t∫

0

sup{u ∈ R+
0 ; ψ′(u) ≤ s} ds.

1For functions g : Rd×d → R we use the notation ∂klg(Q) := ∂g(Q)
∂Qkl

.
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2.3 Assumptions on the extra stress tensor

If ψ′ is strictly increasing, then (ψ′)−1 is the inverse function of ψ′. In this case, ψ∗ is
again an N -function and (ψ∗)′(t) = (ψ′)−1(t) for all t > 0. The complementary function
ψ∗ can be characterized by ψ∗(t) ≡ sups≥0(st− ψ(s)) for all t ≥ 0.

An important subclass of N -functions consists of those that satisfy the ∆2-condition:

Definition 2.3. An N-function ψ satisfies the ∆2-condition if there exists C > 0 such
that ψ(2t) ≤ Cψ(t) for all t ≥ 0. Here, ∆2(ψ) denotes the smallest such constant.

Let ψ be an N -function. Since ψ(t) ≤ ψ(2t) for all t ≥ 0, the ∆2-condition is equivalent
to ψ(2t) ∼ ψ(t) uniformly in t ≥ 0. If ∆2(ψ) < ∞, then it holds ψ(t) ∼ ψ(ct) uniformly
in t ≥ 0 for any fixed c > 0. For a family {ψλ} of N -functions we define ∆2({ψλ}) :=
supλ∆2(ψλ). Next we introduce the notion of shifted N -functions.

Definition 2.4. Let ψ be an N -function with ∆2({ψ,ψ∗}) <∞. For all a ≥ 0 we define
the family of shifted functions {ψa}a≥0 by

ψa(t) :=
t∫

0

ψ′a(s) ds with ψ′a(t) := ψ′(a+ t) t

a+ t
. (2.32)

The following lemma ensures that {ψa}a≥0 are again N -functions and satisfy the ∆2-
condition uniformly in a ≥ 0 with ∆2-constants only depending on ∆2(ψ), ∆2(ψ∗):

Lemma 2.1. Let ψ and ψa be as in Definition 2.4. Then, for all a ≥ 0 the shifted functions
ψa and (ψa)∗ are again N -functions and they satisfy ∆2({ψa, (ψa)∗}a≥0) <∞. The families
ψa and (ψa)∗ satisfy the ∆2-condition uniformly in a ≥ 0 where the constants only depend
on ∆2({ψ,ψ∗}). Moreover, it holds (ψa)∗(t) ∼ (ψ∗)ψ′(a)(t) uniformly in a, t ≥ 0.

Proof. See Lemma 23 in [DE08].

The following lemma provides Young-type inequalities, which will be a useful tool for the
finite element analysis of (2.16):

Lemma 2.2 (Young-type inequalities). Let ψ be an N-function with ∆2({ψ,ψ∗}) <
∞. Then, for all δ > 0 there exists a constant cδ > 0, so that for all t, u ≥ 0 there hold

tu ≤ δψ(t) + cδψ
∗(u), (2.33)

tψ′(u) + ψ′(t)u ≤ δψ(t) + cδψ(u). (2.34)

The constant cδ only depends on δ and ∆2({ψ,ψ∗}). Let ψ and ψa be given as in Lemma 2.1.
Then, for all δ > 0 there exists a constant cδ > 0, so that for all a, t, u ≥ 0 there hold

tu ≤ δψa(t) + cδ(ψa)∗(u), (2.35)
tψ′a(u) + ψ′a(t)u ≤ δψa(t) + cδψa(u). (2.36)

Proof. See Lemma 32 in [DE08].
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2 Theoretical Results

The subsequent lemma depicts further properties of shifted N -functions.

Lemma 2.3 (change of shift). Let ψ be an N-function with ∆2({ψ,ψ∗}) <∞. Then

ψ|P |(|P −Q|) ∼ ψ|Q|(|P −Q|) and ψ′|P |(|P −Q|) ∼ ψ′|Q|(|P −Q|) ∀P , Q ∈ Rd×d

where the constants only depend on ∆2(ψ). For each δ > 0 there exists c(δ) > 0, which
only depends on δ and ∆2(ψ), such that for all P , Q ∈ Rd×d and t ≥ 0 there holds

ψ|P |(t) ≤ c(δ)ψ|Q|(t) + δψ|Q|(|P −Q|).

Proof. The first statement is proven in Lemma 28 of Diening/Ettwein [DE08]. The second
one is shown in Corollary 26 of Diening/Kreuzer [DK08].

Let us consider the following simple example: For p > 1 we introduce the convex functions

ϕ,ϕ∗ ∈ C(R+
0 ,R

+
0 ), ϕ(t) := 1

p
tp, ϕ∗(t) := 1

p′
tp
′ (2.37)

with p′ = p/(p− 1). Clearly, ϕ is an N -function and ϕ∗ is the complementary function of
ϕ. The shifted N -functions ϕa are then given by ϕa(t) =

∫ t
0(a+ s)p−2sds. Note that the

family {ϕa}a≥0 belongs to C1(R+
0 ) ∩ C2(R+) and that it satisfies

min{1, p− 1}(a+ t)p−2 ≤ ϕ′′a(t) ≤ max{1, p− 1}(a+ t)p−2. (2.38)

Hence, the inequalities (2.27) and (2.28) defining the (p, ε)-structure of S can be expressed
equivalently in terms of the shifted N -functions ϕε. In Remark 2.3 we summarize further
properties of the shifted N -functions ϕa:

Remark 2.3. Let ϕ be given by (2.37) and let ϕa be defined as in (2.32). It can be shown
easily that ϕ′a(t) ∼ ϕ′′a(t)t, ϕa(t) ∼ ϕ′a(t)t, and ϕa(2t) ∼ ϕa(t) uniformly in t, a ≥ 0
where all constants only depend on p. Since ϕa satisfies the ∆2-condition, it follows
that ϕa(t+ s) . ϕa( t+s2 ) . ϕa(t) + ϕa(s) uniformly in t, s, a ∈ R+

0 due to the convexity
of ϕa. Later we will apply the above Lemmas 2.1–2.3 to the N -function ψ := ϕε. In
view of Definition 2.4 we realize that ψ′a(t) = ϕ′ε+a(t) for all t, a ≥ 0 and, consequently,
ψa(t) = ϕε+a(t) for all t, a ≥ 0. Therefore, from Lemma 2.3 we can infer the relation

ϕε+|P |(|P −Q|) ∼ ϕε+|Q|(|P −Q|) ∀P , Q ∈ Rd×d.

As mentioned above, we also consider fluids with pressure dependent viscosities. The fluid
models under consideration are similar to models with p-structure described in Assumption
2.1. Additionally, it is allowed that the viscosity depends on the pressure sublinearly.

Assumption 2.2. We suppose that the extra stress tensor S belongs to the class (2.12)
and satisfies the structural assumptions:
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2.4 Properties of the extra stress tensor

(A1) There exist constants σ0, σ1 > 0 such that for all P ,Q ∈ Rd×dsym, q ∈ R there holds

σ0(ε2 + |P |2)
p−2

2 |Q|2 ≤ ∂S(q,P )
∂P

: (Q⊗Q) ≤ σ1(ε2 + |P |2)
p−2

2 |Q|2,

where Rd×dsym := {P ∈ Rd×d; P = P T} and (Q⊗Q)ijkl = QijQkl.

(A2) For all P ∈ Rd×dsym and q ∈ R there holds

∣∣∣∣∂S(q,P )
∂q

∣∣∣∣ ≤ γ0(ε2 + |P |2)
p−2

4 .

The following remark has already been formulated in Hirn et al. [HLS10]:

Remark 2.4. Models satisfying Assumptions (A1)–(A2) can approximate some real world
liquids in a certain range of shear rates and pressures, see [MNR02, MR06, MR07] for
examples and applications; see also Remark 7.7. Note that both assumptions are rather
restrictive concerning the dependence of the viscosity on the pressure, which is usually
considered as µ ∼ exp(απ) in practical applications. The well-posedness for problems with
super-linear dependence on the pressure is, however, an open problem, similarly as the
limiting case ε = 0. For possible generalizations to unbounded viscosities see [BMR09]. An
exemplary model that satisfies (A1)–(A2) with p = 2 can be found in [MR07].

Note that Assumption (A1) is equivalent to Assumption 2.1 if fluid models of class (2.12)
are considered. Throughout this thesis, we suppose that the extra stress tensor S satisfies
either Assumption 2.1 in case of fluids with pressure-independent viscosity or Assumption 2.2
in case of fluids with pressure-dependent viscosity.

2.4 Properties of the extra stress tensor

Below we express several consequences of Assumptions 2.1 and 2.2 that will play a crucial
role in the FE analysis. To this end, we define a nonlinear function F : Rd×d → Rd×dsym by

F(P ) :=
(
ε+ |P sym|

) p−2
2 P sym (2.39)

where p and ε are the same as in Assumption 2.1/2.2. The function F is closely related to
the extra stress tensor S with (p, ε)-structure as depicted by the following lemma:
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2 Theoretical Results

Lemma 2.4. For p ∈ (1,∞) and ε ∈ [0,∞) let S satisfy Assumption 2.1, let F be defined
by (2.39), and let ϕ be defined by (2.37). Then, uniformly for all P , Q ∈ Rd×d there hold(

S(P )− S(Q)
)

: (P −Q) ∼ (ε+ |P sym|+ |Qsym|)p−2|P sym −Qsym|2

∼ ϕ′′ε(|P sym|+ |Qsym|)|P sym −Qsym|2

∼ ϕε+|P sym|(|P sym −Qsym|)
∼ |F(P )−F(Q)|2,

|S(P )− S(Q)| ∼ (ε+ |P sym|+ |Qsym|)p−2|P sym −Qsym|
∼ ϕ′ε+|P sym|(|P sym −Qsym|),

where the constants only depend on σ0, σ1 and p. In particular, the constants are independent
of ε ≥ 0. Because of S(0) = F(0) = 0, we observe that S(Q) : Q ∼ |F(Q)|2 ∼ ϕε(|Qsym|).

Proof. The lemma is proven in Diening/Ettwein [DE08].

Since below we will only insert symmetric tensors into S and F , we drop the superscript
“sym” in the above formulas and we restrict the admitted tensors to symmetric ones.

Remark 2.5. From Lemma 2.4 it easily follows that for all Q ∈ Rd×dsym there hold:

S(Q) : Q & (|Q|p − εp) and |S(Q)| . |Q|p−1 if p ∈ (1, 2]; (2.40)
S(Q) : Q & |Q|p and |S(Q)| . (ε+ |Q|)p−1 if p ∈ [2,∞). (2.41)

All constants in (2.40) and (2.41) only depend on σ0, σ1, p.

As a further consequence of Lemma 2.4, we obtain the following result:

Lemma 2.5. Under the assumptions of Lemma 2.4 for all u,v ∈W 1,p(Ω) there holds∫
Ω

(
S(Du)− S(Dv)

)
: (Du−Dv) dx ∼ ‖F(Du)−F(Dv)‖22

∼
∫
Ω

ϕε+|Du|(|Du−Dv|) dx

where the constants only depend on σ0, σ1 and p. In particular, they are independent of ε.

Lemma 2.5 highlights how the distance defined by F connects to the quasi-norm introduced
by Barrett/Liu [BL93a, BL94]. For v,w ∈W 1,p(Ω) the quasi-norm is defined by

|w|2(p,v) :=
∫
Ω

(ε+ |Dv|+ |Dw|)p−2|Dw|2 dx.
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2.4 Properties of the extra stress tensor

The distance |·|(p,v) is called quasi-norm, since |·|(p,v) satisfies all properties of a norm
except homogeneity. By means of Lemma 2.5, for all v,u ∈W 1,p(Ω) the equivalence

‖F(Dv)−F(Du)‖22 ∼
∫
Ω

ϕε+|Dv|(|Dv −Du|) dx

∼
∫
Ω

ϕ′ε+|Dv|(|Dv −Du|)|Dv −Du| dx

∼
∫
Ω

ϕ′(ε+ |Dv|+ |Dv −Du|)
ε+ |Dv|+ |Dv −Du| |Dv −Du|

2 dx ∼ |v − u|2(p,v)

(2.42)

follows, where all constants only depend on σ0, σ1 and p. This relation ensures that all
results below can also be expressed in terms of quasi-norms. The following lemma shows
the connection between the quasi-norms and Sobolev norms:

Lemma 2.6. For p ∈ (1,∞) and ε ∈ (0,∞) let S satisfy Assumption 2.1, and let F be
defined by (2.39).

(i) Let p ∈ (1, 2]. For functions V , U ∈ Lp(ω)d×d and for ν ∈ [1, 2] there holds

‖V −U‖2ν;ω . ‖F(V )−F(U)‖22;ω‖(ε+ |V |+ |U |)2−p‖ ν
2−ν ;ω (2.43)

provided that all terms are finite where the constant only depends on p, σ0 and σ1. If ν = 2,
then ν

2−ν =∞. Moreover, for all V , U ∈ Lp(ω)d×d there holds

‖F(V )−F(U)‖22;ω . ‖V −U‖pp;ω, (2.44)

where the constant only depends on σ0, σ1 and p.

(ii) Let p ∈ [2,∞). Then, for all V , U ∈ Lp(ω)d×d there holds

‖V −U‖pp;ω . ‖F(V )−F(U)‖22;ω . ‖ε+ |V | + |U |‖p−2
p;ω ‖V −U‖2p;ω, (2.45)

where the constants only depend on σ0, σ1 and p.

Proof. From Lemma 2.4 it follows that |F(V )−F(U)|ν(ε+ |V |+ |U |)
(2−p)ν

2 ∼ |V −U |ν .
Integrating this and applying Hölder’s inequality with ν

2 + 2−ν
2 = 1, we easily derive (2.43):

∫
ω

|V −U |ν dx .
(∫
ω

|F(V )−F(U)|2 dx
) ν

2
(∫
ω

(ε+ |V |+ |U |)
(2−p)ν

2−ν dx
) 2−ν

2
.

For the proof of (2.44) we mention the following trivial inequalities

1
2(|P 1|+ |P 2|) ≤ |P 1|+ |P 1 − P 2| ≤ 2(|P 1|+ |P 2|) ∀P 1,P 2 ∈ Rd×d. (2.46)

Using Lemma 2.4, (2.46), and the fact p ≤ 2, we infer (2.44) as follows:∫
ω

|F(V )−F(U)|2 dx ∼
∫
ω

(ε+ |V |+ |V −U |)p−2|V −U |2 dx .
∫
ω

|V −U |p dx.
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2 Theoretical Results

Finally, using the fact p ≥ 2, and Hölder’s inequality with 2
p + p−2

p = 1, we conclude that∫
ω

|V −U |p dx ≤
∫
ω

(ε+ |V |+ |V −U |)p−2|V −U |2 dx

.
(∫
ω

(ε+ |V |+ |U |)p dx
) p−2

p
(∫
ω

|V −U |p dx
) 2
p

.

In view of Lemma 2.4, this proves (2.45).

Lemma 2.7. For p ∈ (1,∞) and ε ∈ (0,∞) let S satisfy Assumption 2.1, and let F be
defined by (2.39).

(i) Let p ∈ (1, 2]. For all V , U ∈ Lp(ω)d×d there hold

‖S(V )− S(U)‖2;ω ≤ cε
p−2

2 ‖F(V )−F(U)‖2;ω, (2.47)

‖S(V )− S(U)‖p′;ω ≤ c‖F(V )−F(U)‖
2
p′
2;ω (2.48)

where the constants only depend on σ0, σ1 and p.

(ii) Let p ∈ [2,∞). For all V , U ∈ Lp(ω)d×d there hold

‖S(V )− S(U)‖p′;ω ≤ c‖F(V )−F(U)‖2;ω‖ε+ |V |+ |U |‖
p−2

2
p;ω , (2.49)

‖S(V )− S(U)‖p′;ω ≤ c‖V −U‖2;ω‖ε+ |V |+ |U |‖p−2
2p;ω (2.50)

where the constants only depend on σ0, σ1 and p.

Proof. From Lemma 2.4 it follows that for p ∈ (1,∞) and ν ∈ {2, p′} it holds

‖S(V )− S(U)‖ν;ω ∼
(∫
ω

(ε+ |V |+ |U |)(p−2)ν |V −U |ν dx
) 1
ν

. (2.51)

If ν = 2 and p ≤ 2, we immediately obtain inequality (2.47) using Lemma 2.4. If ν = p′

and p ≤ 2⇔ p′ ≥ 2, from (2.51) we easily deduce the following estimates:

‖S(V )− S(U)‖p′;ω ∼
(∫
ω

(ε+ |V |+ |V −U |)(p−2)p′ |V −U |p′ dx
) 1
p′

.
(∫
ω

(ε+ |V |+ |V −U |)p−2|V −U |2 dx
) 1
p′
.

In view of Lemma 2.4, we arrive at (2.48). Finally, if p ≥ 2, (2.51) with ν = p′ implies

‖S(V )− S(U)‖p′;ω ∼
(∫
ω

(ε+ |V |+ |U |)
(p−2)p′

2 (ε+ |V |+ |U |)
(p−2)p′

2 |V −U |p′ dx
) 1
p′

.
(∫
ω

(ε+ |V |+ |U |)pdx
) 2−p′

2p′
(∫
ω

(ε+ |V |+ |U |)p−2|V −U |2dx
) 1

2
.
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2.4 Properties of the extra stress tensor

Here, we have used Hölder’s inequality with p′

2 + 2−p′
2 = 1. By virtue of Lemma 2.4, the

latter inequality yields the desired estimate (2.49). Similarly, (2.50) follows from (2.51):

‖S(V )− S(U)‖p′;ω .
(∫
ω

(ε+ |V |+ |U |)
p−2
2−p′ 2p

′
dx
) 2−p′

2p′
(∫
ω

|V −U |2 dx
) 1

2
.

Note that p−2
2−p′ = (p− 1) and 2−p′

2p′ = p−2
2p . This completes the proof.

Below we focus on fluids whose viscosity depends on the shear rate and pressure. We
express several consequences of Assumptions (A1) and (A2). The first lemma includes
similar statements as presented by Lemma 2.4.

Lemma 2.8. For given p ∈ (1,∞) and ε ∈ [0,∞) let S satisfy (A1), let F be defined by
(2.39), and let ϕ be defined by (2.37). Then, for all P , Q ∈ Rd×dsym, q ∈ R, there hold(

S(q,P )− S(q,Q)
)

: (P −Q) ∼ (ε+ |P |+ |Q|)p−2|P −Q|2

∼ ϕε+|P |(|P −Q|) ∼ |F(P )−F(Q)|2,
|S(q,P )− S(q,Q)| ∼ ϕ′ε+|P |(|P −Q|),

where the constants only depend on σ0, σ1 and p. In particular, they are independent of
ε ≥ 0. Moreover, the following estimates hold:

S(q,Q) : Q ≥ σ0
2p(|Q|p − εp) and |S(q,Q)| ≤ σ1

p− 1 |Q|
p−1. (2.52)

Proof. See Lemma 2.4. The proof of (2.52) can be found in Málek et al. [MNRR96].

As a straightforward consequence of Assumptions (A1) and (A2) we also obtain

Lemma 2.9. For given p ∈ (1,∞), ε ∈ (0,∞) and γ0 ∈ [0,∞) let S satisfy (A1), (A2).
Then, for all P 0, P 1 ∈ Rd×dsym and π, q ∈ R, denoting P s := P 0 + s(P 1 − P 0), there hold

σ0
2

1∫
0

(ε2 + |P s|2)
p−2

2 |P 1 − P 0|2ds ≤ (S(π,P 1)− S(q,P 0)) : (P 1 − P 0) + γ2
0

2σ0
|π − q|2,

|S(π,P 1)− S(q,P 0)| ≤ σ1

1∫
0

(ε2 + |P s|2)
p−2

2 |P 1 − P 0| ds+ γ0

1∫
0

(ε2 + |P s|2)
p−2

4 |π − q| ds.

Proof. See, e.g., Bulíček et al. [BMR07], Lemma 1.4.

In view of Lemma 2.9 we define the distance

d(v,u)2 :=
∫
Ω

1∫
0

(ε2 + |Du+ s(Dv −Du)|2)
p−2

2 |Dv −Du|2 dsdx (2.53)

for all v,u ∈W 1,p(Ω). We arrive at
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2 Theoretical Results

Corollary 2.10. For p ∈ (1,∞), ε ∈ (0,∞) and γ0 ∈ [0,∞) let S satisfy (A1), (A2).
Let d(·, ·) be defined by (2.53). Then, for all v,w ∈W 1,p(Ω) and π, q ∈ L2(Ω) there holds:

σ0
2 d(v,w)2 ≤ (S(π,Dv)− S(q,Dw),Dv −Dw)Ω + γ2

0
2σ0
‖π − q‖22. (2.54)

For each δ > 0 there exists a positive constant cδ only depending on σ1 and δ such that

(S(π,Dv)− S(q,Dw),Dv −Dw)Ω ≤ cδd(v,w)2 + δγ2
0‖π − q‖22. (2.55)

If p < 2, then for all v,w ∈W 1,p(Ω) and all sufficiently smooth functions π, q there hold

‖S(π,Dv)− S(q,Dw)‖2 ≤ σ1ε
p−2

2 d(v,w) + γ0ε
p−2

2 ‖π − q‖2, (2.56)

‖S(π,Dv)− S(q,Dw)‖p′ ≤ cd(v,w)
2
p′ + γ0ε

p−2
2 ‖π − q‖p′ , (2.57)

where c = c(p, σ1) is a positive constant.

Proof. Clearly, (2.54) and (2.55) directly follow from Lemma 2.9 and Young’s inequality.
Setting Ds := Dw + s(Dv −Dw), for ν ≥ 1 we infer from Lemma 2.9 that

‖S(π,Dv)− S(q,Dw)‖ν ≤ σ1

(∫
Ω

∣∣∣∣
1∫

0

(
ε2 + |Ds|2

) p−2
2 |Dv −Dw|ds

∣∣∣∣ν dx
) 1
ν

+ γ0

(∫
Ω

∣∣∣∣
1∫

0

(
ε2 + |Ds|2

) p−2
4 |π − q|ds

∣∣∣∣ν dx
) 1
ν

.

(2.58)

We immediately deduce (2.56) from (2.58) with ν = 2 and Jensen’s inequality. In order to
derive (2.57), we recall the following well-known result (see [AF89], Lemma 2.1)

(
ε2 + (|P 1|+ |P 2|)2

)α
∼

1∫
0

(
ε2 + |P 2 + s(P 1 − P 2)|2

)α
ds ∀P 1,P 2 ∈ Rd×dsym , (2.59)

which holds for each α > −1/2 provided that ε+ |P 1|+ |P 2| > 0. The constants in (2.59)
only depend on α. Using (2.59), (2.46), the fact p < 2, we conclude from (2.58) that

‖S(π,Dv)− S(q,Dw)‖p′ ≤ c
(∫
Ω

(
ε2 + (|Dw|+ |Dv −Dw|)2

) p−2
2 p′

|Dv −Dw|p′ dx
) 1
p′

+ γ0

(∫
Ω

∣∣∣∣
1∫

0

(
ε2 + |Ds|2

) p−2
4 |π − q|ds

∣∣∣∣p′ dx) 1
p′

≤ c
(∫
Ω

(
ε2 + (|Dw|+ |Dv −Dw|)2

) p−2
2 |Dv −Dw|2 dx

) 1
p′

+ γ0ε
p−2

2

(∫
Ω

|π − q|p′ dx
) 1
p′
,

where the constant c only depends on p and σ1. This yields (2.57).
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2.5 The p-Stokes equations

The following lemma indicates that d(·, ·) is equivalent to the natural distance:

Lemma 2.11. For p ∈ (1,∞), ε ∈ (0,∞) let S satisfy (A1). Let d(·, ·) be defined by
(2.53), and let F be defined by (2.39). For all v,u ∈W 1,p(Ω) and π ∈ L2(Ω) there holds:

d(v,u)2 ∼ ‖F(Dv)−F(Du)‖22 ∼ (S(π,Dv)− S(π,Du),Dv −Du)Ω. (2.60)

All constants only depend on p, σ0, σ1.

Proof. In view of (2.59) and (2.46), the assertion follows from Lemma 2.8.

2.5 The p-Stokes equations

In this section, we introduce the variational formulation of the p-Stokes equations which
makes up the basis for the finite element discretization. Moreover we present well-known
theoretical results that ensure the existence and uniqueness of weak solutions. We deal
with incompressible fluids whose viscosity depends on the shear rate only. If not stated
otherwise, we assume that for p ∈ (1,∞) and ε ∈ [0,∞) the extra stress tensor S satisfies
Assumption 2.1. Here, we may think of the stress tensors (2.11a) and (2.11b) as prototypes.
We consider the p-Stokes equations complemented with homogeneous Dirichlet boundary
conditions. As usual, D(Ω) := C∞0 (Ω) denotes the set of all smooth functions with compact
support in Ω. We set Ddiv(Ω) := {w ∈ D(Ω)d; ∇ ·w = 0}. Below we define the natural
spaces for the velocity and pressure that are used throughout the thesis:

Hq : =
{
w ∈ Lq(Ω)d; ∇ ·w = 0, w · n = 0 on ∂Ω

}
= Ddiv(Ω)‖·‖q

X p : = W 1,p
0 (Ω)d = D(Ω)d‖∇·‖p

Vp : =
{
w ∈W 1,p

0 (Ω)d; ∇ ·w = 0
}

= Ddiv(Ω)‖∇·‖p

Qp : = Lp
′

0 (Ω) :=
{
q ∈ Lp′(Ω); (q, 1)Ω = 0

}
with 1/p+ 1/p′ = 1. The variational formulation of the p-Stokes equations represents the
model problem of the thesis. Basic concepts of the thesis including error estimation will be
explained on the basis of this model problem, see Chapter 4.

The steady case: Let us consider the steady p-Stokes system (2.16) with homogeneous
Dirichlet boundary conditions. The weak formulation of the p-Stokes system reads:

(P1) For f ∈ (X p)∗ ≡W−1,p′(Ω) find (v, π) ∈ X p ×Qp such that

(S(Dv),Dw)Ω − (π,∇ ·w)Ω = 〈f ,w〉 ∀w ∈ X p (2.61a)
(∇ · v, q)Ω = 0 ∀q ∈ Qp. (2.61b)
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2 Theoretical Results

The subsequent discussion is addressed to the well-posedness of Problem (P1). Although
we recall only known results, we sketch some proofs for sake of completeness. As is common
practice in analysis, we reformulate Problem (P1) “hiding” the pressure:

(P2) For f ∈ (X p)∗ find v ∈ Vp such that

(S(Dv),Dw)Ω = 〈f ,w〉 ∀w ∈ Vp. (2.62)

It is well-known that the two formulations are equivalent and that they are well-posed. In
particular, it is well-established that there exists a unique solution to (P2). One can infer
the well-posedness of (P2) using the theory of monotone operators (see, e.g., [Růž04]).

Lemma 2.12. There exists a unique solution v ∈ Vp to Problem (P2) which satisfies

‖v‖1,p ≤ c1
(
‖f‖

1
p−1
−1,p′ + c2ε

)
(2.63)

where c1 > 0 only depends on Ω, p, σ0, σ1 and c2 = 1 if p < 2 and c2 = 0 otherwise.

Proof. In view of Lemma 2.4 it is easy to see that the operator v 7→ −∇ · S(Dv) from
X p to (X p)∗ is strictly monotone, continuous and coercive. Since Vp is a closed subset
of X p and the operator is also strictly monotone and coercive on Vp, the Theorem of
Browder&Minty implies (see, e.g., [Růž04]) that there exists a unique v ∈ Vp that satisfies
(2.62). It remains to show that the solution v is bounded by a constant only depending on
the data. Such an a priori estimate will play a crucial role in the finite element analysis of
Problem (P1). We restrict ourselves to the proof of (2.63) for p < 2 since we can derive
(2.63) for p ≥ 2 using exactly the same arguments. Setting w := v in (2.62) and taking
(2.40) into account, for p < 2 we conclude that for some c = c(p, σ0, σ1) > 0

‖f‖−1,p′‖v‖1,p ≥ 〈f ,v〉 = (S(Dv),Dv)Ω ≥ c
(
‖Dv‖pp − εp|Ω|

)
.

Using (2.1) and Young’s inequality, we immediately arrive at (2.63).

If S is derived from a potential Φ with (p, ε)-structure (see Remark 2.2), we can introduce
a functional J : X p → R associated with Φ:

J (u) :=
∫
Ω

Φ(|Du|) dx− 〈f ,u〉 ∀u ∈ X p. (2.64)

It is easy to check that J is Gâteaux differentiable on X p and that its derivative is
given by J ′(u)(w) = (S(Du),Dw)Ω − 〈f ,w〉 for all u,w ∈ X p. Since the operator
u 7→ −∇·S(Du) is strictly monotone on X p, J ′ is strictly monotone on X p and, hence, J
is strictly convex on X p. In addition, J is coercive on X p, i.e., J (u)→∞ for ‖Du‖p →∞.
Because Vp is a closed convex subset of X p, it follows that there exists a unique solution
to the minimization problem:

(P3) For f ∈ (X p)∗ find v ∈ Vp such that

J (v) ≤ J (w) ∀w ∈ Vp. (2.65)
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Furthermore, (P3) is equivalent to (P2), its Euler equation.

Problem (P2) is sometimes referred to as the direct weak formulation whereas (P1) is
called the mixed weak formulation. The question arises whether the weak formulation
(P2) still keeps the information on the pressure. In fact, we will see that the mixed weak
formulation (P1) is equivalent to (P2)≡(P3). Below, we focus on the reconstruction of
the pressure which is based on De Rahm’s Theorem (see [Rah60]):

Lemma 2.13 (De Rahm). Let Ω be any open subset of Rd and let F be a distribution
of D′(Ω) that satisfies 〈F ,w〉 = 0 for all w ∈ Ddiv(Ω). Then, there exists a distribution
π ∈ D′(Ω) such that F = ∇π.

In connection with De Rahm’s Theorem, an important role is also played by

Lemma 2.14 (Nečas). Let Ω be an open bounded subset of Rd with ∂Ω ∈ C0,1. Let
F ∈ D′(Ω). If F, ∂F∂xi ∈W

−1,q′(Ω) ≡ (W 1,q
0 (Ω))∗ for some q ∈ (1,∞) and all i = 1, . . . , d,

then there exists a function ξ ∈ Lq′(Ω), q′ = q
q−1 , such that

〈F,w〉 =
∫
Ω

ξw dx ∀w ∈ D′(Ω).

Moreover, there exists a constant cN > 0 such that

‖ξ‖q′ ≤ cN
(
‖F‖−1,q′ + ‖∇F‖−1,q′

)
.

Proof. We refer to Nečas [Neč66].

De Rahm’s Theorem deals with arbitrary distributions whereas the p-Stokes problem
involves distributions for which more information is known. As a result of Lemma 2.14,
the pressure is then not only a distribution but also belongs to a Lebesgue space. The
following lemma is a consequence of Lemma 2.14. Its proof can be found in [AG94].

Lemma 2.15. Let Ω be a bounded domain of Rd with Lipschitz boundary. Let ν be any
real number with 1 < ν < ∞. The gradient operator2 grad ∈ L(Lν(Ω);W−1,ν(Ω)) is
defined by 〈gradπ,w〉 := (π,−∇ · w)Ω for all w ∈ W 1,ν′

0 (Ω). Then, the range space
of grad is a closed subspace of W−1,ν(Ω). If in addition Ω is connected, there exists a
constant c > 0, which only depends on Ω and ν, such that for all π̇ ∈ Lν(Ω)/R there holds

‖π̇‖Lν(Ω)/R ≤ c‖∇π‖W−1,ν(Ω). (2.66)

Remark 2.6. Note that there exists a constant c > 0 such that for all π̇ ∈ Lν(Ω)/R the
representative π with

∫
Ω π dx = 0 (mean-value zero) satisfies: ‖π‖Lν(Ω) ≤ c‖π̇‖Lν(Ω)/R.

2For normed vector spaces X, Y we define L(X;Y ) := {F : X → Y ; F is continuous and linear}.
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Clearly, the operator − grad ∈ L(Lν′(Ω);W−1,ν′(Ω)) is just the dual operator of div ∈
L(W 1,ν

0 (Ω);Lν(Ω)). Since the range space of the gradient operator, R(grad), is a closed
subspace of W−1,ν′(Ω), the Closed Range Theorem implies that R(grad) = (Ker(div))◦ =
(Vν)◦ where (Vν)◦ := {v∗ ∈W−1,ν′(Ω); 〈v∗,v〉 = 0 for all v ∈ Vν}. Thus, we arrive at

Lemma 2.16. Let Ω be a bounded domain of Rd with Lipschitz boundary. Let ν be any
real number with 1 < ν <∞. A distribution F ∈W−1,ν′(Ω) satisfies

〈F ,w〉 = 0 ∀w ∈ Vν

if and only if there exists a π ∈ Lν′(Ω) such that F = ∇π, i.e.,

〈F ,w〉 = 〈∇π,w〉 = −(π,∇ ·w)Ω ∀w ∈W 1,ν
0 (Ω).

If in addition, the set Ω is connected, then π is defined uniquely by F up to an additive
constant, and it exists a positive constant β, which only depends on ν and Ω, such that

β‖π̇‖Lν′ (Ω)/R ≤ ‖∇π‖W−1,ν′ (Ω) = sup
w∈W 1,ν

0 (Ω)

|(π,∇ ·w)Ω|
‖∇w‖ν

. (2.67)

Proof. We refer to [AG94].

Lemma 2.17. Let (X, ‖·‖X), (Q, ‖·‖Q) be two reflexive Banach spaces and let (X∗, ‖·‖X∗),
(Q∗, ‖·‖Q∗) be their corresponding dual spaces. Let B : X → Q∗ be a linear continuous
operator and let B′ : Q→ X∗ be the dual operator of B. Let V := Ker(B) be the kernel of
B. By V ◦ ⊂ X∗ we denote the polar set of V , i.e., V ◦ := {x∗ ∈ X∗; 〈x∗, v〉 = 0∀v ∈ V }.
By B̃ : (X/V )→ Q∗ we denote the quotient operator associated with B.

Then, the following statements (i)–(iii) are equivalent:

(i) there exists β > 0, such that

inf
q∈Q

sup
w∈X

〈Bw, q〉
‖q‖Q‖w‖X

≥ β.

(ii) B′ is an isomorphism from Q onto V ◦ and

‖B′q‖X∗ ≥ β‖q‖Q ∀q ∈ Q.

(iii) B̃ is an isomorphism from (X/V ) onto Q∗ and

‖B̃w̃‖Q∗ ≥ β‖w̃‖(X/V ) ∀w̃ ∈ (X/V ).

Proof. See [GR86].
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2.5 The p-Stokes equations

Let us define an operator B ∈ L(W 1,ν
0 (Ω);Lν0(Ω)∗) by 〈Bv, q〉 :=

∫
Ω q∇ · v dx for all

v ∈W 1,ν
0 (Ω) and q ∈ Lν0(Ω)∗ ≡ Lν′0 (Ω). By virtue of Lemma 2.16, the dual operator B′

defined by 〈B′q,v〉 = 〈Bv, q〉 for all v ∈W 1,ν
0 (Ω) and q ∈ Lν′0 (Ω) is an isomorphism from

Lν
′

0 (Ω) to (Vν)◦ which additionally is continuous. Lemma 2.17 implies that the statement
of Lemma 2.16 is equivalent to an “inf-sup” condition for the spaces W 1,ν

0 (Ω) × Lν′0 (Ω)
which will play an important role for the subsequent analysis:

Lemma 2.18 (“Inf-sup inequality”). Let Ω be a bounded connected domain of Rd with
Lipschitz boundary. Let ν be any real number with 1 < ν <∞ and let ν ′ be its conjugate.
Then, there exists a positive constant β(ν) such that

inf
q∈Lν′0 (Ω)

sup
w∈W 1,ν

0 (Ω)

(q,∇ ·w)Ω
‖q‖ν′‖w‖1,ν

≥ β(ν). (2.68)

Let us return to the p-Stokes problem. The following lemma is well-known:

Lemma 2.19. There exists a unique solution (v, π) ∈ X p × Qp to Problem (P1). The
velocity v satisfies the a priori estimate (2.63).

Proof. There exists a unique solution v ∈ Vp to Problem (P2). It follows from taking
w ∈ Vp ⊂ X p in equation (2.61a) that v, the solution to (P2), is the unique v that solves
(P1). Since v ∈ X p, there holds S(Dv) ∈ Lp′(Ω)d×d and, hence, −∇·S(Dv) ∈W−1,p′(Ω).
The force f satisfies f ∈ (X p)∗ ≡W−1,p′(Ω) as well. This implies that the operator F ≡
−∇ ·S(Dv)− f belongs to W−1,p′(Ω) and fulfills 〈F ,w〉 ≡ (S(Dv),Dw)Ω − 〈f ,w〉 = 0
for all w ∈ Vp. By virtue of Lemma 2.16, there exists π ∈ Lp′(Ω) with F = ∇π, i.e.,
there holds −∇ · S(Dv) +∇π = f in (X p)∗. The pressure π is unique in Lp′(Ω) up to a
constant and therefore unique in Qp.

The non-steady case: For T > 0 let I = (0, T ). Before introducing the variational
problem, we state two technical lemmas that deal with derivatives of functions u : I → X
with values in a Banach space X. Their proofs can be found in [Tem01].

Lemma 2.20. Let X be a Banach space and let u, g be two functions that belong to
L1(I;X). Then the following three conditions are equivalent:

(i) For each test function w ∈ D(I) it holds

T∫
0

u∂tw dt = −
T∫

0

gw dt, i.e., g = ∂tu

(
= du

dt

)
.

(ii) u is a.e. equal to a primitive function of g, i.e.,

u(t) = ξ +
t∫

0

g(s) ds, ξ ∈ X, a.a. t ∈ [0, T ].
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(iii) For each η ∈ X∗ it holds d
dt〈u, η〉 = 〈g, η〉 on (0, T ) in the sense of distributions.

If (i)–(iii) are satisfied, u is a.e. equal to a continuous function from [0, T ] to X.

Let X be a reflexive Banach space and let H be a Hilbert space such that X ↪→densly H.
Then, H∗ can be identified with a dense subspace of X∗. Due to the Riesz representation
theorem we can identify H and H∗. Hence, there hold the inclusions X ↪→densly H =
H∗ ↪→densly X

∗. In this case the triple (X,H,X∗) is referred to as a Gelfand-triple.

Lemma 2.21. Let (X,H,X∗) be a Gelfand-triple. For 1 < p < ∞ let us define the
space W := {u ∈ Lp(I;X); du

dt ∈ L
p′(I;X∗)}. Then, there holds the continuous embedding

W ↪→ C(Ī;H). Moreover, for all u ∈W there holds
d
dt‖u‖

2
H = 2〈∂tu, u〉X∗, X in D′(0, T ).

For the weak formulation stated below we assume that the right-hand side f belongs to
the space Lp′(I; (X p)∗) and that the initial data v̂ is an element of H2.

(P4) Find v ∈ L∞(I;H2) ∩ Lp(I;Vp) with ∂tv ∈ Lp
′(I; (Vp)∗) that satisfies

〈∂tv,w〉+ (S(Dv),Dw)Ω = 〈f ,w〉 ∀w ∈ Vp (2.69)

for almost all t ∈ I and ‖v(t)− v̂‖2 → 0 for t↘ 0.

The triple (Vp,H2, (Vp)∗) is a Gelfand triple for p ≥ 2d
d+2 since the continuous embedding

W 1,p(Ω) ↪→ L2(Ω) holds for p ≥ 2d
d+2 due to Sobolev’s embedding theorem. Conse-

quently, the space W ≡ {u ∈ Lp(I;Vp); du
dt ∈ L

p′(I; (Vp)∗)} is continuously embedded in
C(Ī;H2(Ω)). In particular, a function u ∈W is almost everywhere equal in (0, T ) to a
continuous function from [0, T ] toH2. Hence, the initial condition stated in Problem (P4),
i.e., the expression v(0), makes sense for functions v ∈ Lp(I;Vp) with dv

dt ∈ L
p′(I; (Vp)∗).

The following result is well-known (cf. [GGZ74, Růž04]):

Lemma 2.22. For p ≥ 2d
d+2 there exists a unique solution v to Problem (P4) that satisfies

‖v‖2L∞(I;L2(Ω)) + ‖v‖pLp(I;X p) ≤ c
(
‖f‖p

′

Lp′ (I;(X p)∗) + ‖v̂‖22
)
. (2.70)

Proof. We only recall that the proof of uniqueness does not require the strict monotonicity.
Indeed, if v1, v2 are two solutions to Problem (P4), they satisfy the identity

〈∂tv1 − ∂tv2,w〉+ (S(Dv1)− S(Dv2),Dw)Ω = 0 ∀w ∈ Vp.

Setting w := v1− v2, using the monotonicity of S, and applying Lemma 2.21, we conclude

〈∂tv1 − ∂tv2,v1 − v2〉 ≤ 0 ⇔ 1
2

d
dt‖v1(t)− v2(t)‖22 ≤ 0.

Integrating this inequality over (0, t), we finally arrive at

‖v1(t)− v2(t)‖22 ≤ ‖v1(0)− v2(0)‖22 = 0.

Hence, we deduce that v1(t) = v2(t) for each t ∈ [0, T ].
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Reconstruction of the pressure: Concerning the introduction of the pressure, there
are significant differences between the steady and non-steady problem in case of no-slip
boundary conditions. In general, time derivatives do not represent distributions and, hence,
the pressure cannot simply be identified by means of De Rahm’s theorem. In fact, time
derivatives ∂tv are elements of Lp′(I; (Vp)∗), i.e., they belong to a dual space of divergence-
free functions only. No information about ∂tv is known in the space Lp′(I; (X p)∗).

Lemma 2.23. There exists a distribution π on QT := Ω× (0, T ) such that the distribution
π and the function v given by Lemma 2.22 satisfy ∇ · v = 0 and

∂tv −∇ · S(Dv) +∇π = f (2.71)

in the distribution sense in QT . It holds v(t)→ v̂ in L2(Ω) as t↘ 0.

Proof. In [Tem01] the proof is carried out for Stokes systems. Here, we can follow the
same line of arguments. In order to introduce the pressure, we define

S(t) :=
t∫

0

S(Dv(s)) ds, F (t) :=
t∫

0

f(s) ds.

In view of Lemma 2.20, there holds S ∈ C([0, T ];Lp′(Ω)d×d) and F ∈ C([0, T ]; (X p)∗).
Integrating (2.69) over (0, t) and using Lemma 2.20, we conclude that

〈v(t)− v̂,w〉+ (S(Dv),Dw)Ω = 〈F (t),w〉 ∀t ∈ [0, T ], ∀w ∈ Vp.

This identity is equivalent to

〈v(t)− v̂ −∇ · S(Dv)(t)− F (t),w〉 = 0 ∀t ∈ [0, T ], ∀w ∈ Vp.

Note that ∇·S(Dv) ∈ C([0, T ]; (X p)∗). From Lemma 2.16 we infer that for each t ∈ [0, T ]
there exists a function Π(t) ∈ Lp′(Ω) such that

v(t)− v̂ −∇ · S(Dv)(t) +∇Π(t) = F (t) ∀t ∈ [0, T ]. (2.72)

Since ∇Π = F +∇ · S(Dv)− v + v̂ and the right-hand side of this identity belongs to
C([0, T ];W−1,p′(Ω)), we deduce that ∇Π ∈ C([0, T ];W−1,p′(Ω)) and, consequently,

Π ∈ C([0, T ];Lp′(Ω)) (2.73)

due to Lemma 2.15. This enables us to differentiate (2.72) with respect to the variable t in
the distribution sense in QT = Ω × (0, T ). Setting

π = ∂Π

∂t
, (2.74)

we just get (2.71).

In general, we do not gain any information about π better than (2.73) – (2.74). We obtain
higher regularity on π after assuming higher regularity on the data f , v̂ and proving higher
regularity for v.
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2.6 The p-Navier-Stokes equations

Besides Carreau-type models, we consider p-structure models that meet Assumption 2.1.
In this section, we deal with the p-Navier-Stokes equations which, related to the p-Stokes
system, come up with additional mathematical difficulties due to the convective term.

The steady case: Let us consider the steady p-Navier-Stokes system (2.15) complemented
by homogeneous Dirichlet boundary conditions. The weak formulation of (2.15) reads:

(P5) For f ∈ (X p)∗ find (v, π) ∈ X p ×Qp such that

(S(Dv),Dw)Ω + ([v · ∇]v,w)Ω − (π,∇ ·w)Ω = 〈f ,w〉 ∀w ∈ X p (2.75)
(∇ · v, q)Ω = 0 ∀q ∈ Qp. (2.76)

Remark 2.7. Clearly, Problem (P5) is not well-posed for the full range of p > 1. From
Sobolev’s embedding theorem we deduce that the continuous embedding W 1,p(Ω) ↪→
L2p′(Ω), 1/p+ 1/p′ = 1, holds true for p ≥ 3d/(d+ 2). Hence, we realize that

([u · ∇]v,w)Ω ≤ ‖u‖2p′‖∇v‖p‖w‖2p′ ≤ c(d, p,Ω)‖u‖1,p‖v‖1,p‖w‖1,p (2.77)

provided that p ≥ 3d/(d+ 2). This means that for v,w ∈ X p the term ([v · ∇]v,w)Ω is
well-defined only if p ≥ 3d/(d+ 2). However, later we will suppose that v, the solution to
(P5), belongs to better spaces so that the condition on p can be relaxed.

Remark 2.8. We state further properties of the convective term. Let u,v,w : Ω → Rd be
sufficiently smooth functions so that all subsequent integrals are well-defined. We assume
that ∇ · u = 0 a.e. and that w possesses zero traces. Integration by parts yields

(
u⊗ v,∇wT

)
Ω

= −
d∑

i,j=1
(∂i(uivj), wj)Ω = −([u · ∇]v,w)Ω. (2.78)

Here, (u⊗ v)ij := uivj . Using ∇ · u = 0 a.e. and integration by parts, we observe that

([u · ∇]w,v)Ω =
∑
i,j

∫
Ω

vj∂i(uiwj) = −
∑
i,j

∫
Ω

uiwj∂ivj = −([u · ∇]v,w)Ω (2.79)

and, hence, ([u · ∇]v,v)Ω = 0. This property is referred to as the skew symmetry.

The following lemma ensures the existence of weak solutions to Problem (2.15):

Lemma 2.24. Let Ω ⊂ Rd, d ≥ 2, be an open bounded set with ∂Ω ∈ C1,1. Let us
consider the steady p-Navier-Stokes equations (2.15) complemented with homogeneous
Dirichlet boundary conditions. For p > 2d

d+2 and ε ∈ [0,∞) let the extra stress tensor S
satisfy Assumption 2.1. We assume that f belongs to W−1,p′(Ω). Then, there exists a
weak solution v ∈ Vp to system (2.15) in the sense that v satisfies

(S(Dv),Dw)Ω − (v ⊗ v,Dw)Ω = 〈f ,w〉 ∀w ∈ Ddiv(Ω). (2.80)
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2.6 The p-Navier-Stokes equations

Proof. We refer to [FMS03].

Remark 2.9. Note that (v ⊗ v)ij ≡ vivj ∈ L1(Ω) for p ≥ 2d
d+2 due to Sobolev’s embedding

theorem. Lemma 2.24 is proven by means of the Lipschitz truncation method which allows
to find a subsequence (vnk) ⊂ (vn) of conveniently introduced approximations vn such
that Dvnk converge almost everywhere to their weak limit Dv.

Remark 2.10. Note that vi∂ivj ∈ L1(Ω) for all v ∈W 1,p(Ω) provided that p ≥ 2d
d+1 . Hence,

in the case p ≥ 2d
d+1 the function v given by Lemma 2.24 solves

(S(Dv),Dw)Ω + ([v · ∇]v,w)Ω = 〈f ,w〉 ∀w ∈ Ddiv(Ω).

Reconstruction of the pressure: Let p ≥ 3d
d+2 . It is well-known (cf. Lemma 2.24) that

there exists a velocity field v ∈ Vp satisfying

(S(Dv),Dw)Ω + ([v · ∇]v,w)Ω = 〈f ,w〉 ∀w ∈ Vp. (2.81)

Using ([v · ∇]v,w)Ω = −(v ⊗ v,Dw)Ω, we can rewrite (2.81) as∫
Ω

(S(Dv)− v ⊗ v) : Dw dx− 〈f ,w〉 = 0 ∀w ∈ Vp.

Clearly, there holds Sij(Dv) ∈ Lp′(Ω). Since p ≥ 3d
d+2 , due to Sobolev’s embedding theorem

there holds (v ⊗ v)ij ≡ vivj ∈ Lp
′(Ω) as well. Consequently, the mapping

W 1,p
0 (Ω) 3 w 7→

∫
Ω

(S(Dv)− v ⊗ v) : Dw dx− 〈f ,w〉

is a linear continuous functional on X p ≡ W 1,p
0 (Ω) that vanishes on Vp. By virtue of

Lemma 2.16, there exists π̇ ∈ Lp′(Ω)/R such that for any π ∈ π̇∫
Ω

(S(Dv)− v ⊗ v) : Dw dx− 〈f ,w〉 =
∫
Ω

π∇ ·w dx ∀w ∈ X p.

Hence, the pairing (v, π) is a solution to Problem (P5).

Regularity: The question arises whether weak solutions v to (2.15) are smoother as
suggested by the variational formulation (2.81) (provided that the data are more regular).
Below, we state theoretical results that deal with higher regularity of v, i.e., that ensure
the (local) existence of second derivatives of v. If there exist second derivatives of v a.e.,
then it can usually be shown that there exist first derivatives of π a.e.. Higher regularity
plays an essential role when, e.g., numerical methods such as finite element methods are
analyzed since it allows us to quantify the convergence of the approximation. The following
quantity is naturally involved with the derivation of higher regularity,

I(v) :=
∫
Ω

(ε+ |Dv|)p−2|∇Dv|2 dx, (2.82)
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2 Theoretical Results

where p and ε are the same as in the assumption on the extra stress tensor. Roughly
speaking, the term I(v) occurs when the term −∇ · S(Dv) is tested with −∆v. The
finiteness of I(v) is the main device that allows us to prove regularity concerning the
existence of second-order derivatives of v. We remark that due to the algebraic identity

∂2vi
∂xj∂xk

= ∂Dik(v)
∂xj

+ ∂Dij(v)
∂xk

− ∂Djk(v)
∂xi

one can estimate |∇2v| ∼ |∇Dv| with constants only depending on d. The following lemma
indicates that locally there exist second derivatives of the solution to (2.81).

Lemma 2.25 (Interior regularity). Let Ω ⊂ Rd be an open set. For p ∈ ( 3d
d+2 , 2] and

ε = 1 let the extra stress tensor satisfy Assumption 2.1. Let v ∈W 1,p
loc(Ω) satisfy

(S(Dv),Dw)Ω + ([v · ∇]v,w)Ω = 0 ∀w ∈ {u ∈W 1,p(Ω); supp(u) ⊂⊂ Ω, ∇ · u = 0}

and ∇ · v = 0 a.e. in Ω. Then, v satisfies∫
Ω0

(1 + |Dv|)p−2|∇Dv|2 dx <∞ ∀Ω0 ⊂⊂ Ω.

In particular, there holds (cf. Lemma 4.10)

v ∈W 2,q
loc(Ω) ∀q ∈ [1, 2) if d = 2, and v ∈W

2, 3p
p+1

loc (Ω) if d = 3.

Proof. The proof can be found in [NW05].

For d = 3 and smooth Ω, global regularity (i.e., regularity up to the boundary) has been
studied in Ebmeyer [Ebm06]. There, no-stick boundary conditions,

v · n = 0 on ∂Ω, n · [S(Dv)− πI]t = 0 on ∂Ω ∀t ∈ {t ∈ R3; t · n = 0},

have been considered. For p ∈ (1, 2) and ε ∈ {0, 1} let S satisfy (p, ε)-structure (Assumption
2.1) and let f belong to Lp′(Ω). For the p-Navier-Stokes problem it is proven in [Ebm06]
that I(v) defined in (2.82) is finite provided that p ∈ (9

5 , 2). As in Lemma 2.25, the
restriction on p stems from the low regularity of the convective term. By contrast, for the
p-Stokes system I(v) is finite for each p ∈ (1, 2), see [Ebm06]. In case of no-slip boundary
conditions, global regularity results have been derived in [dV08]. Nevertheless, for such
boundary conditions the regularity of weak solutions is a topic of current research.

Below we introduce the velocity space Vpper adjusted to the setting of space-periodic
functions. Let Dper(Ω) be the space of C∞(Ω)-functions which are divergence-free and
space-periodic with zero mean value. Then, the velocity space Vpper is defined by

Vpper :=
{
closure of Dper(Ω)d in W 1,p(Ω)

}
.

The following lemma ensures the existence of strong solutions to system (2.15) provided
that space-periodic boundary conditions are considered:
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2.6 The p-Navier-Stokes equations

Lemma 2.26. Let d = 3. Let us consider the steady system (2.15) complemented with
space-periodic boundary conditions. Let the extra stress tensor S satisfy Assumption 2.1
with p ∈ (9

5 , 2] and ε ∈ [0, ε0] for some ε0 > 0. We assume that f ∈W 1,2(Ω). Then, there
exists a strong solution v ∈ Vpper to system (2.15) in the sense that v satisfies

(S(Dv),Dw)Ω + ([v · ∇]v,w)Ω = (f ,w)Ω ∀w ∈ Vpper (2.83)

and

‖F(Dv)‖1,2 ≤ C = C(ε0, p, ‖f‖1,2, Ω). (2.84)

Moreover, for ε > 0 there exists a pressure π which satisfies

π ∈W 1,2(Ω), ‖π‖1,2 ≤ C ′ = C ′(ε, p, ‖f‖1,2, Ω).

The constant C ′ may explode as ε→ 0+.

Proof. We refer to [BDR10].

It is well-known that the regularity (2.84) is equivalent to I(v) <∞ as depicted by

Lemma 2.27. Let p ∈ (1,∞), ε ∈ (0,∞) and let I(v) be defined by (2.82). Then for all
sufficiently smooth v there holds

‖∇F(Dv)‖22 ∼ I(v), (2.85)

where the constants only depend on p. In particular, they are independent of ε.

Proof. We refer to [BDR10].

The problem of Hölder-regularity has been studied, e.g., by Kaplický et al. [KMS97].
The authors considered stress tensors S which for p > 1 and ε > 0 are derived from a
potential with (p, ε)-structure, and they studied the two-dimensional space-periodic problem.
They proved the following result: If d = 2, p ∈ (1, 2), and f ∈ Lp′(Ω), then there exists
a solution (v, π) to the p-Navier-Stokes system (2.15) complemented with space-periodic
boundary conditions such that v ∈W 2,p′

loc (R2) ∩C1,α(Ω) and π ∈W 1,p′
loc (R2).

The unique global Hölder-regularity of solutions has been established for a two-dimensional
Dirichlet boundary value problem by the same authors in [KMS02]. For d = 2 and Ω of class
C2, a global C1,α-solution v to Problem (P5) has been constructed. If f ∈ Lp′(Ω), then
it is shown in [KMS02] that for p > 6

5 there is a number q > 2 and a strong solution (v, π)
to Problem (P5) such that v ∈ Vp ∩W 2,q

loc(Ω) and π ∈ W 1,q
loc (Ω). Moreover, there exist

a number q > 2 and a strong solution to (P5) such that v ∈W 2,q(Ω) and π ∈ W 1,q(Ω)
provided that p > 3

2 . In particular, there holds the global regularity result v ∈ C1,α(Ω)
and π ∈ C0,α(Ω) for some α > 0. Finally, it is proven in [KMS02] that for p ≥ 3

2 the
C1,α-solution is unique in the class of weak solutions provided that the data are small: If
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v and u are strong and weak solutions to (P5), respectively, then v and u coincide a.e.
provided that ‖f‖−1,p′ < δ for sufficiently small δ.

In higher dimensions d ≥ 3 Hölder-regularity up to the boundary has been proven by
Crispo/Grisanti [CG08] for small data. The authors showed that if p ∈ (1, 2), q > d,
Ω ∈ C0,α0 with α0 = 1− d/q and if the Lq(Ω)-norm of f is bounded by a small constant,
then there exists a unique weak solution (v, π) to the p-Navier-Stokes system (2.15)
equipped with homogeneous Dirichlet boundary conditions such that v ∈ C1,α(Ω) and
π ∈ C0,α(Ω) for all α < α0. Note that, in the case d ≥ 3, global Hölder-regularity for
arbitrary data has not yet been resolved and remains an open problem.

The p-Oseen equations: Let us consider the steady p-Oseen system (2.17) complemented
with homogeneous Dirichlet boundary conditions. The study of system (2.17) is motivated
by the fact that it is needed for the error analysis of the time-discretized p-Navier-Stokes
equations performed in [BDR09]. The weak formulation of the p-Oseen system (2.17) reads:

(P6) For f ∈ (X p)∗ find (v, π) ∈ X p ×Qp such that for all (w, q) ∈ X p ×Qp

(S(Dv),Dw)Ω + ([b · ∇]v,w)Ω + σ(v,w)Ω − (π,∇ ·w)Ω = 〈f ,w〉 (2.86a)
(∇ · v, q)Ω = 0. (2.86b)

Here, we assume that the flow field b belongs to W 1,∞(Ω) and satisfies ∇ · b = 0 a.e..

Later we will require the existence of a strong solution to (P6), i.e., we will assume that
there exists (v, π) ∈ [X p∩W 2,q(Ω)]×Qp with q = min{2, p} satisfying (2.86). If v ∈W 2,q

with q = min{2, p}, then the term ([b ·∇]v,w)Ω is well-defined for p ≥ 2d
d+2 due to Sobolev’s

embedding theorem. The next lemma deals with the existence of strong solutions:

Lemma 2.28. Let d = 3. Let us consider the steady system (2.17) complemented with
space-periodic boundary conditions. Let the extra stress tensor S satisfy Assumption 2.1
with p ∈ (7

5 , 2] and ε ∈ [0, ε0] for some ε0 > 0. Assume that f ∈W 1,2(Ω) and b ∈ V3p
per are

given. Then, there exists a strong solution v ∈ Vpper to (2.17) in the sense that v satisfies

(S(Dv),Dw)Ω + ([b · ∇]v,w)Ω + σ(v,w)Ω = (f ,w)Ω ∀w ∈ Vpper (2.87)

and

‖∇v‖2 + ‖F(Dv)‖1,2 ≤ C = C(ε0, p, b, ‖f‖1,2, Ω). (2.88)

This solution is unique within the class Vpper for p > 3
2 and it is unique within the class

V3p
per for p ≥ 7

5 . Moreover, for ε > 0 there exists a pressure π which satisfies

π ∈W 1,2(Ω), ‖π‖1,2 ≤ C ′ = C ′(ε, p, b, ‖f‖1,2, Ω).

The constant C ′ may explode as ε→ 0+.

Proof. We refer to [BDR10].
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2.6 The p-Navier-Stokes equations

The non-steady case: Let us introduce the weak formulation of the non-steady p-Navier-
Stokes problem (2.14). For T > 0 let us set I := (0, T ) and QT := I ×Ω. We assume that
the right-hand side f ∈ Lp′(I;W−1,p′(Ω)) and the initial data v̂ ∈H2 are given.

(P7) Find v ∈ L∞(I;L2(Ω)) ∩ Lp(I;Vp) with ∂tv ∈ Lp
′(I; (Vp)∗) such that v satisfies

〈∂tv,w〉+ (S(Dv),Dw)Ω + ([v · ∇]v,w)Ω = 〈f ,w〉 ∀w ∈ Vp (2.89)

for almost all t ∈ I and v(0) = v̂ in L2(Ω).

Remark 2.11. For v,w ∈ Vp we observe that the mapping Ω 3 x 7→ (vj [∂jvi]wi)(x) belongs
to L1(Ω) if and only if p ≥ 3d

d+2 . Choosing w ∈ Lp(I;Vp) and noting v ∈ Lp(I;Vp), we
realize that the mapping QT 3 (x, t) 7→ (vj [∂jvi]wi)(x, t) belongs to L1(QT ) if and only if
p ≥ 1 + 2d

d+2 . Setting w := v in (2.89) and using ([v · ∇]v,v)Ω = 0, we conclude that

1
2

d
dt

∫
Ω

|v|2 dx+ (S(Dv),Dv)Ω = 〈f ,v〉.

Integrating this equation over (0, t), we arrive at

1
2

∫
Ω

|v(., t)|2 dx+ c

t∫
0

(S(Dv),Dv)Ω dt =
t∫

0

〈f ,v〉 dt+ 1
2

∫
Ω

|v̂|2 dx.

In view of (2.40) and (2.1), this demonstrates the a priori estimate

‖v‖L∞(I;L2(Ω)) + ‖v‖Lp(I;Vp) ≤ C = C(f , v̂, Ω, p, ε0).

We are interested in strong solutions to (P7). This means that we look for a function

v ∈ L∞(I;Vp) ∩ Lq(I;W 2,q(Ω)) with q = min{2, p}, dv
dt ∈ L

2(I;L2(Ω)),

satisfying (2.89). The next lemma ensures the existence of strong solutions for p ≥ 1+ 2d
d+2 .

Lemma 2.29. Let us consider system (2.14) complemented with space-periodic boundary
conditions. For p > 1 and ε = 1 let S satisfy Assumption 2.1. We assume that v̂ ∈W 1,2(Ω)
and that f ∈ Lp′(I;Lp′(Ω)) if p < 2, and f ∈ L2(I;L2(Ω)) if p ≥ 2. If p > 3d

d+2 , then
there exists a solution v ∈ Vpper of Problem (P7) with Vp replaced by Vpper. If p ≥ 1 + 2d

d+2 ,
then v is unique and regular, i.e., v ∈ L∞(I;W 1,2(Ω)) ∩ L2(I;W 2,2(Ω)).

Proof. The lemma is proven in [MNR93].

The following lemma shows the local in time existence of strong solutions:
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Lemma 2.30. Let d = 3. Let us consider system (2.14) complemented with space-periodic
boundary conditions. For p ∈ (7/5, 2] and ε ∈ [0, ε0] let S satisfy Assumption 2.1. Let
v̂ ∈W 2,2

div(Ω), ∇·S(Dv̂) ∈ L2(Ω), and f ∈ L∞(I;W 1,2(Ω))∩W 1,2(I;L2(Ω)). Then there
exist a time T ′ = T ′(ε0, p,f , v̂, T,Ω) with 0 < T ′ ≤ T and a function v ∈ Lp(I ′;Vpper) with
I ′ = [0, T ′] that solves Problem (P7) with Vp replaced by Vpper. The solution v satisfies

‖∂tv‖L∞(I′;L2(Ω)) + ‖F(Dv)‖W 1,2(I′×Ω) + ‖F(Dv)‖
L

2 5p−6
2−p (I′;W 1,2(Ω))

≤ C (2.90)

where the constant C only depends on ε0, p,f , v̂, T,Ω. In particular, there hold3

v ∈ Lp
5p−6
2−p (I ′;W 2, 3p

p+1 (Ω)) ∩ C(I ′;W 1,s(Ω)), 1 ≤ s < 6(p− 1), (2.91)

vt ∈ L∞(I ′;L2(Ω)) ∩ L
p(5p−6)

(3p−2)(p−1) (I ′;W 1, 3p
p+1 (Ω)). (2.92)

Due to (2.91) and p > 7/5, it follows that v ∈ C(I ′;W 1, 12
5 (Ω)). The solution v is unique

within the class C(I ′;W 1, 12
5 (Ω)). For ε > 0 there exists a pressure π that satisfies

∇π ∈ L2 5p−6
2−p (I ′;L2(Ω)), ‖∇π‖

L
2 5p−6

2−p (I′;L2(Ω))
≤ C ′ = C ′(ε, p,f , v̂, T,Ω).

The constant C ′ may explode as ε→ 0+.

Proof. Lemma 2.30 is proven in Berselli et al. [BDR10].

3See Diening et al. [DPR02, DR05] and cf. Lemma 4.10.
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3 Finite Element Discretization

In this chapter, we introduce the finite element (FE) discretization of the p-Navier-Stokes
equations. Since we use an equal-order discretization, we need to stabilize the discrete
Galerkin systems. In Section 3.2 we recall well-known stabilization methods such as local
projection stabilization that are frequently used in computational fluid dynamics. In
Section 3.3 we deal with interpolation in Orlicz-Sobolev spaces that will be crucial in the
further course of the thesis. For it we basically follow the article [DR07]. Finally, Section
3.4 is dedicated to implementational aspects.

3.1 Finite element (FE) discretization

For ease of exposition, we assume that Ω is a polygonal (d = 2) or polyhedral (d = 3)
domain. The finite element (FE) discretization is based on a decomposition of Ω. The
domain Ω is subdivided into disjoint, open quadrilaterals or hexahedra K with diameter
hK = diam(K). All elements K together make up the triangulation Th = {K} so that
Ω = ⋃

K∈Th K. The mesh parameter h represents the maximum diameter of the cells,
i.e., h := max{hK ; K ∈ Th}. The symbol h also denotes the cell-wise constant function
h|K = hK . Following the literature such as [Cia80], we formulate the definition of regular
meshes: The mesh Th = {K} is called regular if it satisfies the following conditions:

(M1) Ω = ⋃
K∈Th K.

(M2) K ∩K ′ = ∅ for all K, K ′ ∈ Th with K 6= K ′.

(M3) Each face of a cell K ∈ Th is either a face of another cell K ′ ∈ Th or subset of the
boundary ∂Ω.

Sometimes the condition (M3) is weakened for two reasons (see [Sch10]): Firstly, we allow
so-called hanging nodes in order to facilitate adaptive mesh refinement. Elements are
allowed to possess nodes that are located in midpoints of faces or edges of neighboring cells.
At most one hanging node is allowed on each face or edge. Secondly, we weaken condition
(M3) in order to treat the case of non-polyhedral boundaries. In this case, we require
that, instead of boundary-faces, only the vertices of such faces (and possibly some inner
points) are subsets of the boundary. For the subsequent simulations we employ meshes
that are organized in a patch-wise manner: We assume that the mesh Th is generated
by one uniform refinement of a coarser mesh Mh := T2h. In particular, four (d = 2) or
eight (d = 3) adjacent elements of Th can be grouped together to form one element of Mh.
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3 Finite Element Discretization

Such macro-elements are called patches. This construction is of importance for particular
stabilization methods and a posteriori error estimation, see Sections 3.2 and 5.6.

In case of quadrilaterals (or hexahedra), the finite elements are first defined on a reference
element K̂, and after they are transformed into functions (generally, no polynomials)
defined on a physical element K. More precisely, on the reference element K̂ := (−1, 1)d
we introduce the spaces Q̂r(K̂) of tensor product polynomials up to degree r ∈ N0:

Q̂r(K̂) := span
{ d∏
i=1

x̂αii , αi ∈ {0, . . . , r}, x̂ ∈ K̂
}
. (3.1)

In case of r = 1, this space consists of all bi-linear (d = 2) or tri-linear (d = 3) functions.
The mapping FK : K̂ → K denotes the transformation, which maps the reference cell K̂
to the computational cell K ∈ Th. The local finite element space Qr(K) is defined by

Qr(K) :=
{
w : K → R; w ◦ FK ∈ Q̂r(K̂)

}
. (3.2)

In case of quadrilaterals (hexahedra), the mapping FK is not affine linear in general. If the
transformation FK itself belongs to the space Q̂r(K̂), the resulting finite element ansatz is
called isoparametric. The finite element space Xh,r is characterized by

Xh,r := Xh,r(Th) :=
{
w ∈ C(Ω); w|K ∈ Qr(K) for all K ∈ Th

}
. (3.3)

Remark 3.1. The subsequent numerical analysis, which will be performed within the next
chapters, also includes the case of finite elements based on d-simplices. For r ∈ N0 the
space Pr(K) denotes the space of polynomials on K of degree less than or equal to r, i.e.,

Pr(K) := span
{ d∏
i=1

xαii , 0 ≤ αi, 0 ≤
d∑
i=1

αi ≤ r, x ∈ K
}
. (3.4)

If Th is based on d-simplices, then the finite element space Xh,r is defined by (3.3) with
Qr(K) replaced by Pr(K). Note that, in this case, the finite element space Xh,r need not
to be defined by means of the reference mapping FK although, in practice, polynomial
spaces are usually defined on the reference element due to implementational aspects. Our
software, which was employed for our numerical experiments, uses d-linear or d-quadratic
finite elements based on quadrilateral meshes. Hence, in the present thesis we will mainly
speak of Q1 or Q2 finite elements. However, we always keep in mind that the theoretical
results, which will be derived below, remain valid for linear and higher-order (r ≥ 2) finite
elements based on d-simplices as defined above. For ease of exposition, we do not consider
finite element spaces which are generated by local enrichment with bubble functions.

Let us briefly discuss the case of non-polygonal boundaries. Details can be found in
[Sch10]. Regarding higher order elements (r > 1), there are degrees of freedom that are
associated with points on edges or faces. In case of r > 1, the use of bi- or tri-linear
transformations FK may lead to a reduced accuracy along the boundary. In contrast, the
use of isoparametric finite elements allows us to choose the transformation appropriately
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in the sense that the degrees of freedom related to nodes on edges or faces are located on
the real boundary ∂Ω. In this thesis, we only employ isoparametric finite elements. In
particular, if r = 1, the mapping FK is multilinear, i.e., FK ∈ Q1(K̂)d.

In order to ensure approximation properties of the finite element spaces, we require
additional conditions on the geometry of the elements. Following the literature (see Braess
[Bra07] and Brenner/Scott [BS94]), we formulate the definition of nondegeneracy:

(M4) For K ∈ Th let BK be the biggest ball inscribed in K. The family of meshes
{Th; h↘ 0} is called nondegenerate if there exists a constant κ0 > 0 such that

hK
diam(BK) ≤ κ0 ∀K ∈

⋃
h>0

Th. (3.5)

Beyond that, the family of meshes {Th; h↘ 0} is called quasi-uniform if it holds

min{diam(BK); K ∈ Th} ≥
h

κ0
∀h ∈ (0, 1]. (3.6)

If the family is quasi-uniform, then it is nondegenerate, but not conversely. For general
non-affine families of quadrilateral (or hexahedral) meshes, the usual shape regularity
assumption (3.5) is not sufficient in order to ensure that the mapping FK is bijective.
Therefore, we suppose the shape regularity assumption given in [MT02, HS04]. Below we
describe this assumption in detail. To this end, let F T : T̂ → T be the multilinear reference
mapping that maps the reference hyper-cube T̂ := (−1, 1)d onto an arbitrary quadrilateral
(hexahedra) T , i.e., let F T ∈ Q1(T̂ )d. In [MT02, HS04], multilinear transformations F T

have been investigated only. A Taylor expansion of F T yields the representation

F T (x̂) = bT +BT x̂+ gT (x̂) (3.7)

where bT := F T (0), BT := ∇F T (0), and gT (x̂) := F T (x̂) − F T (0) − ∇F T (0)x̂. Let
Ξ̂ ⊂ T̂ denote the d-simplex with vertices (0, . . . , 0), (1, . . . , 0), . . . , (0, . . . , 1). Let ΞT be
the image of Ξ̂ under the affine mapping x̂ 7→ BT x̂+bT . For the simplices {ΞT : T ∈ Th},
we assume the usual shape regularity assumption (3.5):

hΞT
diam(BΞT ) ≤ κ0 ∀T ∈ Th. (3.8)

We recall that |·| also denotes the matrix norm induced by the Euclidean vector norm in
Rd. Then, for each element T , the distortion parameter γT is defined by

γT := sup
x̂∈T̂
|B−1

T ∇F T (x̂)− I|. (3.9)

The distortion parameter measures the deviation of T from a parallelogram (parallelepiped).
For a parallelogram (parallelepiped) T , the reference mapping F T is affine and γT = 0.
For a family of uniformly refined meshes, there holds γT → 0 as h→ 0. The definition of
shape regularity can be formulated as follows:
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3 Finite Element Discretization

(M5) The mesh Th consisting of quadrilateral (or hexahedral) elements is called shape-
regular if the conditions (3.8) and γT ≤ γ0 < 1 for all T ∈ Th are satisfied.

The shape regularity assumption (M5) imposes that the distortion of the quadrilateral (or
hexahedral) elements from a parallelogram (or parallelepiped) is uniformly bounded. This
guarantees that the mapping F T : T̂ → T is bijective. Moreover, it is shown in Lemma 2
in Matthies/Tobiska [MT02] that there exist c, C > 0 independent of hT such that

cd!(1− γT )dhdT ≤ |det(∇F T (x̂))| ≤ Cd!(1 + γT )dhdT ∀x̂ ∈ T̂ ,
sup
x̂∈T̂
|∇F T (x̂)| ≤ c(1 + γT )hT , sup

x∈T
|∇F−1

T (x)| ≤ C(1− γT )−1h−1
T . (3.10)

From (3.10) we can derive corresponding inequalities for the inverse F−1
T using basic tools

of analysis and linear algebra: For x̂ = F−1
T (x) it holds

det(∇F−1
T (x)) = det([∇F T (x̂)]−1) = [det(∇F T (x̂))]−1. (3.11)

Throughout the thesis we assume that Assumptions (M1) – (M3), (M5) are satisfied.

Interpolation operators: The approximation properties of finite element spaces can
be characterized by estimates for interpolation errors. Throughout the thesis, we use
two types of interpolation operators: The point-wise Lagrange interpolation operator
ih : C(Ω)→ Xh,r and the Scott-Zhang interpolation operator jh : W 1,p(Ω)→ Xh,r. For
their precise definitions we refer to [BS94, SZ90]. The Lagrange interpolation operator is
only defined for continuous functions. By contrast, the Scott-Zhang interpolation operator
also interpolates non-smooth functions in W 1,p(Ω). Below we state important properties of
the Scott-Zhang interpolation operator. To this end, we introduce some further notation.
For K ∈ Th we define the set of neighboring elements NK and the neighborhood SK by

NK := {K ′ ∈ Th : K ′ ∩K 6= ∅}, SK := interior of
⋃

K′∈NK

K ′. (3.12)

The sets SK are connected and open. Furthermore, the non-degeneracy (3.5) of the mesh
Th implies the following two properties: For all K ∈ Th there hold

#NK ≤ N0 for some N0 ∈ N, |SK | ∼ |K| with constants independent of h. (3.13)

Below let v ∈ W l,p(Ω) with l ≥ 1 be arbitrary. For 1 ≤ q ≤ ∞, m ∈ N0, and for all
K ∈ Th the stability of the Scott-Zhang interpolation operator,

‖jhv‖m,q;K ≤ c
l∑

k=0
h
k−m+ d

q
− d
p

K |v|k,p;SK , (3.14)

is proven in Scott/Zhang [SZ90]. Using the stability result (3.14) and the Bramble-Hilbert
Lemma, for all K ∈ Th we can conclude the local interpolation inequality (see [SZ90])

‖v − jhv‖m,p;K ≤ C(d, r, κ0)hl−mK |v|l,p;SK (0 ≤ m ≤ l ≤ r + 1). (3.15)
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3.1 Finite element (FE) discretization

In view of (3.13), from (3.15) we easily deduce the global estimate

‖v − jhv‖m,p ≤ C(d, r, κ0)hl−m‖v‖l,p (0 ≤ m ≤ l ≤ r + 1). (3.16)

The results of [SZ90] are derived for finite element spaces Xh,r based on d-simplices,
see Remark 3.1. However, the Scott-Zhang interpolation operator can be generalized to
quadrilateral (hexahedral) meshes (see [HS04]). Note that the Lagrange interpolation
operator ih satisfies an interpolation estimate which is similar to (3.16).

Remark 3.2. From (3.10), (3.11) it follows that for any w ∈Wm,q(K), ŵ(x̂) := w(FK(x̂)),

‖∇mw‖q;K . ‖∇F−1
K ‖

m
∞;K‖det(∇FK)‖

1
q

∞,K̂‖∇̂
mŵ‖q;K̂ . h

−m+ d
q

K ‖∇̂mŵ‖q;K̂ ,

‖∇̂mŵ‖q;K̂ . ‖∇FK‖m∞;K̂‖det(∇F−1
K )‖

1
q

∞,K‖∇
mw‖q;K . h

m− d
q

K ‖∇mw‖q;K .
(3.17)

Let m, l ≥ 0, ν, µ ∈ [1,∞). Assume that m− d
µ ≥ l − d

ν and m ≥ l so that Wm,µ(K̂) ↪→
W l,ν(K̂). Then (3.17) and (3.15) imply the following generalized interpolation inequality:

‖w − jhw‖l,ν;K .
l∑

k=0
h
−k+ d

ν
K ‖∇̂k(ŵ − ĵhw)‖ν;K̂ .

m∑
k=0

h
−l+ d

ν
K ‖∇̂k(ŵ − ĵhw)‖µ;K̂

.
m∑
k=0

h
k−l+ d

ν
− d
µ

K ‖∇k(w − jhw)‖µ;K . h
m−l+ d

ν
− d
µ

K ‖w‖m,µ;SK .

(3.18)

Inverse estimates: Below we discuss the relations among various norms on a finite element
space. Let ν, µ ∈ [1,∞] and 0 ≤ m ≤ l. Then, there holds (see [BS94])

‖wh‖l,ν;K ≤ Chm−l+
d
ν
− d
µ ‖wh‖m,µ;K ∀wh ∈ Xh,r ∀K ∈ Th (3.19)

for some C = C(l, ν, µ, γ0) > 0. Next we state the global version of (3.19). If the family
{Th} is quasi-uniform, then for ν, µ ∈ [1,∞] and 0 ≤ m ≤ l there exists C > 0 such that

‖wh‖l,ν ≤ Chm−l+min(0, d
ν
− d
µ

)‖wh‖m,µ ∀wh ∈ Xh,r. (3.20)

Galerkin discretization: We discuss the FE discretization of the p-Navier-Stokes equations.
Let Xh and Qh be appropriate FE spaces defined on Th which satisfy Xh ⊂W 1,∞(Ω) and
Qh ⊂ L∞(Ω). Note that the inclusions Xh ⊂W 1,∞(Ω), Qh ⊂ L∞(Ω) hold for all practical
choices of Xh, Qh. Then the FE spaces for the velocity and pressure are given by

X p
h := Xh ∩X p, Xh = [Xh]d, and Qph := Qh ∩Qp. (3.21)

The Galerkin approximation of (P5) consists in replacing the Banach spaces X p and Qp
by the finite dimensional spaces X p

h and Qph: Find uh ≡ (vh, πh) ∈ X p
h ×Q

p
h such that

A(uh)(ωh) = 〈f ,wh〉 ∀ωh ≡ (wh, qh) ∈ X p
h ×Q

p
h (3.22)
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3 Finite Element Discretization

where for all u ≡ (v, π) and ω ≡ (w, q) the semi-linear form A is defined by

A(u)(ω) := (S(Dv),Dw)Ω + ([v · ∇]v,w)Ω − (π,∇ ·w)Ω + (∇ · v, q)Ω. (3.23)

This discretization does not lead to a stable discretization unless the spaces X p
h and Qph

satisfy the inf-sup (Babuška-Brezzi) condition. This condition can be stated as follows:

(IS) For any ν ∈ (1,∞) there exists a positive constant β̃(ν) not depending on h such that

inf
qh∈Qνh

sup
wh∈X νh

(qh,∇ ·wh)Ω
‖qh‖ν′‖wh‖1,ν

≥ β̃(ν) > 0. (3.24)

It is well-known that for Taylor-Hood elements (i.e., Xh := Xh,2, Qh := Xh,1) the inf-sup
condition (IS) is fulfilled. Mixed finite elements are extensively discussed in Brezzi&Fortin
[BF91] and Girault&Raviart [GR86]. An equal-order discretization corresponds to the case
when both the velocity and pressure are discretized with finite elements of same order (i.e.,
Qh := Xh). Compared to Taylor-Hood elements, the equal-order discretization benefits
from implementational advantages. However, for equal-order elements the discretization
(3.22) is not stable. In particular, the discrete pressure may exhibit oscillations which do
not reflect the physical objectivity. The instability is caused by the violation of the discrete
inf-sup condition for the pair X p

h ×Q
p
h. In addition, the Galerkin formulation (3.22) may

suffer from dominating convection in case of high Reynolds numbers.

The main focus of the thesis is on the equal-order discretization of the p-Navier-Stokes
equations. In order to overcome the instabilities mentioned above, one may introduce
appropriate stabilization terms sh(uh)(ωh) depending on the discrete solution uh and trial
function ωh that are added to the standard Galerkin discretization (3.22). Many different
stabilization methods such as local projection stabilization (LPS) have been proposed
and investigated in the context of the Navier-Stokes equations (see Section 3.2). In this
thesis, we aim at analyzing stabilization methods in the context of the p-Navier-Stokes
equations. For p-Stokes systems we will propose a nonlinear stabilization term sh based
on the well-known LPS method that is adjusted to the p-structure of the problem and
that leads to optimal convergence results (see Chapter 4). The stabilized discrete problem
reads: Find uh ≡ (vh, πh) ∈ X p

h ×Q
p
h (the discrete solution) such that

A(uh)(ωh) + sh(uh)(ωh) = 〈f ,wh〉 ∀ωh ≡ (wh, qh) ∈ X p
h ×Q

p
h. (3.25)

In order to be able to quantify the convergence of FEM, we need to know higher regularity
of the exact solution (v, π). The availability of higher regularity usually requires that f
belongs to a better space than (X p)∗. For the remainder of the thesis we therefore assume
that f ∈ Lp′(Ω). Since the available regularity of (v, π) is limited, we restrict ourselves
to the case of low-order finite elements. If not stated otherwise, we consider the case
Xh = Qh = Xh,1.
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3.2 Stabilization

As mentioned above, the standard Galerkin formulation (3.22) may suffer from instabilities
resulting from violation of the discrete inf-sup condition (3.24) and dominating advection in
case of high Reynolds numbers. In this section, we present two stabilization methods, which
are frequently used in the context of Navier-Stokes equations: Residual based stabilization
and local projection stabilization methods. For this we follow the survey article Braack et
al. [BBJL07] which gives an overview of different stabilization methods.

Residual based stabilization: In the context of Navier-Stokes equations, Brooks/Hughes
[BH82] and Hughes/Franca/Balestra [HFB86] modified the standard Galerkin formulation
(3.22) adding mesh-dependent residual terms. They include streamline-upwind stabilization
for dominating convection, as well as pressure stabilization due to missing inf-sup stability.
Hence, this method is referred to as the streamline-upwind Petrov-Galerkin (SUPG) /
pressure-stabilization Petrov-Galerkin (PSPG) method. For p = 2 the Galerkin formulation
(3.22) is modified by addition of

sSUPGh (uh)(ωh) :=
∑
K∈Th

(
− µ0∆vh + [vh · ∇]vh +∇πh − f ,

αK∇qh + %K [vh · ∇]wh

)
K

(3.26)

with uh = (vh, πh) and ωh = (wh, qh). Here, the parameters αK and %K are cell-wise
parameters that depend on the local mesh size and on the particular choice of finite element
spaces. In case of Xh = Qh = Xh,1, the parameters αK and %K are chosen as

αK := α0
h2
K

6µ0 + hK‖vh‖∞;K
and %K := %0

h2
K

6µ0 + hK‖vh‖∞;K
(3.27)

with positive constants α0 and %0. Concerning the choice of parameters, extensive dis-
cussions can be found in Braack et al. [BBJL07]. The method simultaneously stabilizes
spurious oscillations that come from dominating convection and missing inf-sup stability.
In particular, the term (∇πh, αK∇qh)K represents pressure stabilization whereas the term
([vh · ∇]vh, %K [vh · ∇]wh)K reflects streamline diffusion. The remaining terms are present
due to consistency of the method: If the continuous weak solution u = (v, π) is smooth
enough to be a strong solution, the stabilization part sSUPGh (u)(ωh) vanishes for all ωh.

Although the classical SUPG/PSPG method has successfully been applied to flow problems,
it has been evaluated critically in recent years. Several drawbacks of the stabilization
scheme (3.26) are well-known (cf. [BBJL07], [Sch10]):

• Boundary layers of the discrete pressure are introduced since the stabilized finite
element system is equipped with the artificial Neumann boundary condition, ∂nπh = 0
on ∂Ω, that arises from the stabilization term. This leads to a reduced accuracy near
the boundary.
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3 Finite Element Discretization

• The stabilization term exhibits a complicated algebraic structure: Artificial non-
symmetric terms are introduced and artificial couplings between velocity and pressure
are imposed.

• The evaluation of the stabilization term requires the computation of second derivatives,
∆vh|K , since for higher order trial functions (r > 1) the terms ∆vh|K do not vanish.
In case of r = 1, the terms ∆vh|K vanish only if the reference mapping FK is affine
linear. The second derivatives are only needed for consistency. Their computation is
cost-intensive because second derivatives of F−1

K are needed. However, the neglect of
the terms ∆vh|K generally results in a decreased accuracy.

In case of non-Newtonian fluids (p 6= 2), the expression µ0∆vh in (3.26) has to be replaced
by ∇·S(Dvh). But then, in case of d-linear finite elements the terms ∇·S(Dvh)|K do not
vanish even for affine linear reference mappings FK . However, the computation of second
derivatives is cost-intensive. Due to the apparent drawbacks of the SUPG/PSPG-scheme,
we do not analyze this classical stabilization method in the context of non-Newtonian fluids.
By contrast, we deal with an alternative stabilization scheme based on local projections.

Local projection stabilization: In Becker/Braack [BB01], a stabilization technique was
proposed that is based on local projections. The local projection stabilization (LPS) is
designed for equal-order discretization of velocities and pressure (Xh = Qh = Xh,r), and
for stabilization of convective terms. It can also be applied to inf-sup stable discretizations
(see Lube et al. [LRL07]). For its formulation we follow the lines of Braack/Lube [BL09].
Let us restrict ourselves to a certain class of meshes: We assume that the mesh Th results
from a coarser mesh Mh by one global refinement, i.e., Mh := T2h. Hence, the mesh Th
consists of patches of elements. For instance in case of d = 2, four quadrilaterals can be
grouped together in order to form one element of Mh. There are variants of the LPS
method for which this restriction can be omitted. Let M̂ := (−1, 1)d be the reference
hyper-cube, and let FM : M̂ →M be the multilinear reference mapping. We introduce
the space of patch-wise discontinuous finite elements of degree r − 1:

Xdisc
2h,r−1 := {w ∈ L2(Ω); w|M ◦ FM ∈ Q̂r−1(M̂) ∀M ∈Mh = T2h}. (3.28)

The L2-projection P2h,r−1 : L2(Ω)→ Xdisc
2h,r−1 is characterized by

(u− P2h,r−1u,w)Ω = 0 ∀u ∈ L2(Ω) ∀w ∈ Xdisc
2h,r−1. (3.29)

Regarding P2h,r−1, we define the fluctuation operator θh : L2(Ω)→ L2(Ω) by

θh := id− P2h,r−1 (3.30)

where id stands for the identity mapping. The operators P2h,r−1 and θh are applied to
vector-valued functions in a component-wise manner: θhu := (θhu1, . . . , θhud). For the
Navier-Stokes system, it was proposed in [BB04] that the stabilization term

sLPSh (uh)(ωh) :=
∑

M∈Mh

{
(θh∇πh, αMθh∇qh)M +

(
θh([vh · ∇]vh), %Mθh([vh · ∇]wh)

)
M

}
(3.31)
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should be added to the standard Galerkin ansatz (3.22) in order to obtain a stable
discretization. Similarly to the SUPG/PSPG method, this stabilization contains patch-wise
parameters {αM} and {%M}. They are chosen as in (3.27).

Remark 3.3. In case of Navier-Stokes systems (p = 2), it is well-known that an element-
wise stabilization of the incompressibility constraint, ∇ · v = 0, can be important for the
robustness of the discretization as soon as 0 < µ0 � 1. The so-called grad-div stabilization
can be achieved by addition of (θh(∇ ·vh), νθh(∇ ·wh))Ω to (3.22). Here, ν is a patch-wise
constant parameter that depends on the local mesh size: ν|M ∼ h2

M/%M for all M ∈Mh.

In case of the Navier-Stokes equations, it is well-known that the stabilization (3.31) leads
to a stable approximation of the continuous problem. A general convergence theory of
local projection schemes is well-established. In particular, for the Oseen equations a priori
error estimates providing optimal order of convergence have been proven, e.g., in [MST07].
However, no results are available in the context of non-Newtonian fluids. In this thesis,
we study the local projection stabilization applied to p-Stokes/p-Oseen systems. This will
be done in a more general framework in which the space Xdisc

2h,r−1 will be replaced by an
appropriate finite element space Yh so that the pairing Xh/Yh satisfies a certain local
inf-sup condition (see Section 4.1). In the context of p-Stokes/p-Oseen systems, we do
not only investigate the stabilization method (3.31) but also we propose a new modified
version of the scheme (3.31) which is adjusted to the p-structure of the problem.

Let us discuss important variants of the LPS-scheme. For the first variant of (3.31), we
introduce the global Lagrange interpolant onto the coarser mesh Mh = T2h, i2h,r : Xh,r →
X2h,r ⊂ Xh,r. Instead of the fluctuation operator θh, the following filter can be used:

θ̄h : Xh,r → Xh,r, θ̄h := id− i2h,r. (3.32)

When we apply such filters, we achieve stabilization using the gradients of the fluctuations.
The stabilization term, which is added to (3.22), reads (αM , %M are chosen as in (3.27)):

sSGM
h (uh)(ωh) :=

∑
M∈Mh

{
(∇θ̄hπh, αM∇θ̄hqh)M + ([vh · ∇]θ̄hvh, %M [vh · ∇]θ̄hwh)M

}
.

(3.33)

For the second variant of (3.31), we restrict ourselves to the case of high-order finite
elements (r ≥ 2). Instead of using two different meshes Th and T2h, we only employ the
principal mesh Th, i.e., Mh := Th. Similarly as above, we introduce the global Lagrange
interpolant ih,r−1 : Xh,r → Xh,r−1 ⊂ Xh,r. Then, the following filter can be used:

θ̃h : Xh,r → Xh,r, θ̃h := id− ih,r−1. (3.34)

The stabilization term is given by (3.33) when θ̄h is replaced by θ̃h and Mh = Th is
used. This variant is very attractive from practical point of view. For Stokes systems
this stabilization admits optimal a priori error estimates. However, for Oseen systems it
becomes suboptimal because the term, which is responsible for stabilization of convection,
ensures the convergence order of the space Xh,r−1 only (see [BBJL07]).
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Remark 3.4. The stabilization (3.33) represents an important variant of the LPS scheme
(3.31) which is based on subgrid modeling, see Section 5 in Matthies et al. [MST07]. The
LPS method uses fluctuations of gradients θh∇πh, whereas the subgrid modeling approach
is based on gradients of fluctuations ∇θ̄hπh. Subgrid modeling and LPS are closely related:
Let us consider triangulations Th made of d-simplices, and let Xh,1 and X2h,1 denote the
space of continuous, piecewise linear finite elements associated with Th and Mh := T2h,
respectively. Let i2h,1 : Xh,1 → X2h,1 be the Lagrange interpolant, and let P2h,0 be the
L2-projection onto the space of piecewise constant functions onMh. It is shown in [MST07]
that it holds P2h,0(∇wh)|M = ∇i2h,1(wh|M ) for all wh ∈ Xh,1 and M ∈ Mh. Hence, the
LPS method (3.31) and the subgrid modeling approach (3.33) coincide in this particular
case. However, they may differ for Q1/Q1 finite elements in general.

Compared to the SUPG/PSPG-scheme, the algebraic structure of the LPS-term is easier:
No artificial couplings between velocity and pressure are introduced. The computation of
second derivatives is not necessary. However, the local projection stabilization is not fully
consistent: The stabilization term does not vanish if the continuous solution is inserted. The
LPS-schemes (3.31) and (3.33) have been designed taking into account that the consistency
error is of same order as the discretization error.

3.3 Interpolation in Orlicz-Sobolev spaces

In context of the p-Laplace equation, optimal error estimates are well-known (see [DR07]).
Their derivation is based on error estimation with respect to quasi-norms such as (2.42)
which handle the non-degeneracy of the problem (see [EL05]). In this connection, interpo-
lation errors occur with respect to quasi-norms. For their estimation it is convenient to
transfer the interpolation theory from Sobolev spaces W k,p(Ω) to Orlicz-Sobolev spaces
W k,ψ(Ω). In particular, for 1 ≤ j ≤ k the integral

∫
|∇ju|p is replaced by

∫
ψ(|∇ju|) for

some N -function ψ (see Definition 2.1). It is well-known that functions in Sobolev spaces
can be approximated by “piecewise polynomials”. In [DR07], the classical estimates for the
interpolation error are generalized in the context of Orlicz-Sobolev spaces W k,ψ(Ω). As in
[DR07], we require the existence of an interpolation operator of Scott-Zhang type:

Assumption 3.1. Let l0, r ∈ N0. Let there exist an interpolation operator jh : W l0,1(Ω)→
Xh,r that satisfies the following properties: For l ≥ l0 and m ∈ N0 there holds

m∑
j=0
−
∫
K

|hjK∇
jjhv|dx ≤ c(m, l)

l∑
k=0

hkK−
∫
SK

|∇kv|dx (3.35)

uniformly for all K ∈ Th and v ∈W l,1(Ω). Furthermore there holds

jhv = v ∀v ∈ Pr(Ω). (3.36)

Here, the set SK denotes a local neighborhood of K. For its definition see (3.12).
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Remark 3.5. As mentioned in [DR07], the Clément interpolation operator satisfies Assump-
tion 3.1. However, it does not preserve boundary values and, hence, it is not useful for our
subsequent analysis. The Scott-Zhang interpolation operator fulfills Assumption 3.1. It is
defined in such a way that it preserves homogeneous Dirichlet boundary conditions, i.e.,
jh : W 1,1

0 (Ω)→ Xh,r ∩W 1,1
0 (Ω). In this case, we have to choose l0 = 1 in Assumption 3.1.

The following lemma generalizes the well-known interpolation estimates for Sobolev func-
tions to the setting of Orlicz-Sobolev spaces1 W 1,ψ(Ω):

Lemma 3.1. Let ψ be an N-function that satisfies the ∆2-condition. Let jh and l be as
in Assumption 3.1. Then, uniformly in K ∈ Th and v ∈W 1,ψ(Ω) there hold the following
relations: (i) Orlicz-stability: There exists a constant c = c(m, l,∆2(ψ)) > 0 such that

m∑
j=0
−
∫
K

ψ(hjK |∇
jjhv|) dx ≤ c

l∑
k=0
−
∫
SK

ψ(hkK |∇kv|) dx. (3.37)

(ii) Orlicz-approximability: Let κ0 be the constant in (3.5). If in addition l ≤ r + 1, then
there exists a positive constant c = c(l,∆2(ψ), κ0) such that

l∑
j=0
−
∫
K

ψ(hjK |∇
j(v − jhv)|) dx ≤ c−

∫
SK

ψ(hlK |∇lv|) dx. (3.38)

(iii) Orlicz-continuity: If in addition l ≤ r+1, then there exists a constant c = c(l,∆2(ψ), κ0):

−
∫
K

ψ(hlK |∇ljhv|) dx ≤ c−
∫
SK

ψ(hlK |∇lv|) dx. (3.39)

Proof. See [DR07]. Note that Lemma 3.1 is proven in [DR07] for finite element spaces
based on simplices, Xh,r = {v ∈ L1(Ω); v|K ∈ Xh,r(K)} with Pr(K) ⊂ Xh,r(K) ⊂ Ps(K)
for r ≤ s ∈ N0. Since Xh,r(K) ⊂ Ps(K), there exists a constant c = c(s) such that

sup
x∈K
|∇jwh(x)| ≤ c−

∫
K

|∇jwh(y)| dy ∀wh ∈Xh,r, ∀K ∈ Th, j ∈ N0. (3.40)

As depicted in [DR07], the Orlicz-stability (3.37) follows from (3.40), (3.35), and the
properties of ψ. The Orlicz-approximability (3.38) results from Pr(K) ⊂ Xh,r(K), property
(3.36), the Orlicz-stability (3.37), and Corollary 3.3 in [DR07] which generalizes the classical
polynomial approximation theory in Sobolev spaces to the setting of Orlicz-Sobolev spaces
(and whose proof is based on averaged Taylor polynomials, the non-degeneracy of Th and
the properties of ψ, see [DR07]). Clearly, (3.39) directly follows from (3.38) with j = l and
the triangle inequality (cf. Remark 2.3).

1For an N -function ψ the classical Orlicz space Lψ(Ω) and Orlicz-Sobolev space W k,ψ(Ω), k ∈ N0,
are defined as follows: g ∈ Lψ(Ω) iff

∫
Ω
ψ(|g|) dx < ∞, and g ∈ W k,ψ(Ω) iff ∂αg ∈ Lψ(Ω) for any

multi-index α with 0 ≤ |α| ≤ k.
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Remark 3.6. The question arises whether Lemma 3.1 remains valid for tensor product
Qr-elements: The proof of Lemma 3.1 only requires the properties Pr(K) ⊂ Xh,r(K) and
(3.40). In particular, if (3.40) is required, then the assumption Xh,r(K) ⊂ Ps(K), that in
general is not satisfied for Qr-elements, can be relaxed. In case of Qr-elements, the space
Xh,r(K) is given by Xh,r(K) ≡ Qr(K), see (3.2). In this case, the property (3.40) remains
valid. Moreover, it holds Pr(K) ⊂ Xh,r(K) for all K ∈ Th provided that the reference
mapping FK : K̂ → K belongs to the space Q1(K̂)d. This can be seen by the following
argument: Let P ∈ Pr(K) be given. Since FK is d-linear, P (FK(x̂)) is a polynomial of
degree at most r in each variable x̂1, . . . , x̂d separately, i.e., P ◦FK ∈ Qr(K̂). This implies
P ∈ Xh,r(K). Hence, Lemma 3.1 holds for Qr-elements as long as FK is d-linear.

Lemma 3.1 holds true for any fixed N -function ψ. All constants occurring in the local
estimates of Lemma 3.1 depend on the ∆2-constant of ψ, but they do not depend on the
particular N -function ψ. This enables us to apply Lemma 3.1 to shifted N -functions ψa:

Corollary 3.2. Let ψ and ψa be given as in Definition 2.4. Let jh satisfy Assumption 3.1
with l = 1. Then, for all a ≥ 0, v ∈W 1,ψ(Ω), and K ∈ Th there holds

−
∫
K

ψa(|∇jhv|) dx ≤ c−
∫
SK

ψa(|∇v|) dx (3.41)

where the constant c only depends on ∆2(ψ) and κ0.

Proof. See [DR07]. Due to Lemma 2.1, the ∆2-constants of the shifted N -functions ψa are
uniformly bounded with respect to a ≥ 0. Then, the desired estimate follows from (3.39)
with l = 1 applied to the function h−1v for the family of shifted N -functions ψa.

The well-known Corollary 3.2 will play an important role for the subsequent analysis. It
will enable us to derive an interpolation inequality with respect to the natural distance.

Application to problems with p-structure: By means of Corollary 3.2 it is proven in
[DR07] that interpolation operators of Scott-Zhang type satisfy the following local best
approximation result: Let F be defined by (2.39) with P sym replaced by P . Let jh satisfy
Assumption 3.1 with l = 1 and r ≥ 1. Then for all K ∈ Th there holds

−
∫
K

|F(∇v)−F(∇jhv)|2 dx ≤ c inf
Q∈Rd×d

−
∫
SK

|F(∇v)−F(Q)|2 dx ∀v ∈W 1,p(Ω)

where the constant c only depends on p and κ0. From this result one can conclude

−
∫
K

|F(∇v)−F(∇jhv)|2 dx ≤ ch2
K−
∫
SK

|∇F(∇v)|2 dx (3.42)
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provided that F(∇v) ∈ W 1,2(Ω)d×d. Summing (3.42) over all K ∈ Th and recalling the
properties of the mesh (3.13), one can derive the following global version of (3.42):

‖F(∇v)−F(∇jhv)‖2 ≤ ch‖∇F(∇v)‖2. (3.43)

Later we will show that (3.43) remains valid if the velocity gradient ∇v is replaced by
its symmetric part Dv. Note that (3.43) also holds for higher order finite elements
(r ≥ 2) provided that the reference mapping FK belongs to the space Q1(K̂)d (so that
Pr(K) ⊂ Qr(K), see Remark 3.6). In the case r ≥ 2, the convergence order of (3.43) is
suboptimal. This can be easily observed if, e.g., the special case p = 2 is considered.

Following [DR07], with the help of (3.43) we can now derive a priori error estimates for
equations with p-structure. Exemplarily, let us study the following p-Laplace system,

−∇ · S(∇v) = f in Ω, S(∇v) :=
(
ε2 + |∇v|2

) p−2
2 ∇v,

v = vD on ∂Ω,
(3.44)

and its discretization with Qr finite elements. We assume that vD is given as the trace of
a globally defined function v0 ∈W 1,p(Ω). It is well-known (cf. [DR07]) that a conforming
finite element discretization of (3.44) allows the following best approximation result: Let
v ∈ v0 +W 1,p

0 (Ω) be the weak solution to (3.44), and let vh ∈ v0,h +X p
h,r be its finite

element approximation, where v0,h denotes an appropriate approximation of the Dirichlet
data, and X p

h,r is defined by X p
h,r := Xh,r ∩W 1,p

0 (Ω). Then there holds

‖F(∇v)−F(∇vh)‖2 ≤ c inf
uh∈v0,h+X p

h,r

‖F(∇v)−F(∇uh)‖2 (3.45)

for some c = c(p) > 0. Let jh be an interpolation operator as in Assumption 3.1. Setting
v0,h := jhv0, and combining (3.45) with (3.43), we arrive at the a priori error estimate

‖F(∇v)−F(∇vh)‖2 ≤ ch‖∇F(∇v)‖2, (3.46)

that is optimal for r = 1 but suboptimal for r ≥ 2. The derivation of optimal a priori error
estimates for r ≥ 2 is subject of current research of Prof. Lars Diening and the author.

Remark 3.7. For solutions v to the p-Laplace problem, the regularity F(∇v) ∈W 1,2(Ω)d×d
is well-established. Formally, the term

∫
|∇F(∇v)|2 dx arises if the weak formulation is

tested with −∆v. Hence, the “natural” regularity for solutions of p-Laplace systems can
be expressed via the quantity F . Note that the question about still higher regularity
(existence of third derivatives) remains an open problem. In this connection the question
arises which quantity (e.g., F or S) is suitable to express still higher regularity.

For higher order finite elements (r > 1) we conjecture the following interpolation estimate
(3.47), which can be seen as the straightforward extension of (3.43):

‖F(∇v)−F(∇jhv)‖2 . hmin{β,r}‖∇βF(∇v)‖2, β > 0. (3.47)
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3 Finite Element Discretization

In the case β 6= 1, estimate (3.47) is understood only formally and it is not justified from
analytical point of view at all. Similarly to the derivation of (3.46), we would then obtain

‖F(∇v)−F(∇vh)‖2 . hmin{β,r}‖∇βF(∇v)‖2, β > 0. (3.48)

For β 6= 1 the error estimate (3.48) represents a pure hypothesis. By means of the
subsequent numerical simulations, we intend to shed some light on the hypothesis (3.48).

Numerical experiments: We would like to support our hypothesis (3.48) for β > 1 by
numerical simulations. For β ≤ 1, we will numerically validate (3.48) in Section 4.8.
The following two experiments numerically demonstrate which convergence rates can be
expected for Q2 finite elements (r = 2). They were accomplished by means of the software
package Gascoigne [GAS]. The numerical algorithm solving the finite element systems and
implementational aspects will be discussed in the forthcoming Section 3.4.

Example 1: For the approximation of (3.44) with Q2 elements, the obtained discretization
errors and corresponding convergence rates are presented in Table 3.1. In this example, on
the square Ω := (−0.5, 0.5)2 the exact solution v : Ω → R2 to (3.44) was given by

v(x) =
(
|x1|p

′

0

)
, p′ := p

p− 1 .

The discrete problem was then solved for f := −∇·S(∇v) and vD := v|∂Ω . The parameter
ε was set to ε = 10−3. It is easy to check that, in the case ε = 0, S(∇v) is linear in
x. As a result the right-hand side f reduces to a constant. In view of Table 3.1, we
observe that the error measured in terms of S behaves as O(h1+1/p′) for p ≥ 3/2. We
realize that the experimental order of convergence obtained for the F -distance amounts to
min{p′+1

2 , 2}. In particular the error measured in terms of F converges to zero with less
than quadratic order as soon as p > 3/2. In contrast to S(∇v), the quantity F(∇v) is
not smooth. An easy computation shows that |∇βF(∇v(x))| ∼ |x1|p

′/2−β. We may ask
for which values of β > 0 the requirement |∇βF(∇v)| ∈ L2(Ω) is satisfied. It turns out
that this condition is fulfilled if and only if β < (p′ + 1)/2. Hence, Table 3.1 indicates that,
for this particular example, the hypothesis (3.48) with β ≈ (p′ + 1)/2 seems to be true.
Note that the observed convergence rates for the error in W 1,p(Ω) can be deduced from
the ones for the F -distance taking into account Lemma 2.6. Finally we note that for p = 2
we observed quadratic convergence for all considered error quantities (which, for p = 2,
actually coincide), but as soon as p 6= 2 we lost quadratic convergence.

Example 2: This example is in the same spirit as Example 1. In Table 3.2 we present
convergence rates for the approximation of (3.44) with Q2 finite elements. The following
experimental setup was considered: The analytical solution v : Ω → R2 was given by

v(x) := |x|a−1
(
x2
−x1

)
, a ∈ R.
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Table 3.1. Approximation of (3.44) with Q2 elements: S(∇v) is smooth

‖F(∇v)−F(∇vh)‖2 ‖S(∇v)− S(∇vh)‖p′ ‖∇v −∇vh‖p
p #cells error conv. error conv. error conv.
1.1 16384 5.26e-05 2.00 2.84e-03 2.19 3.82e-06 1.99

65536 1.32e-05 2.00 6.89e-04 2.05 9.56e-07 2.00
262144 3.29e-06 2.00 1.71e-04 2.01 2.39e-07 2.00

1.3 16384 9.20e-05 2.00 2.03e-03 1.88 5.05e-05 2.00
65536 2.30e-05 2.00 6.50e-04 1.64 1.26e-05 2.00
262144 5.75e-06 2.00 1.64e-04 1.96 3.16e-06 2.00

1.5 16384 1.37e-04 1.62 1.45e-03 1.11 6.09e-05 1.81
65536 4.26e-05 1.68 6.68e-04 1.12 1.62e-05 1.91
262144 1.06e-05 2.01 2.64e-04 1.33 4.08e-06 1.99

1.7 16384 1.20e-04 1.70 4.63e-04 1.41 5.38e-05 1.90
65536 3.68e-05 1.71 1.74e-04 1.41 1.43e-05 1.91
262144 1.13e-05 1.71 6.52e-05 1.41 3.77e-06 1.92

1.8 16384 9.17e-05 1.62 1.84e-04 1.45 5.28e-05 1.77
65536 2.98e-05 1.62 6.76e-05 1.44 1.54e-05 1.78
262144 9.68e-06 1.62 2.48e-05 1.44 4.47e-06 1.78

1.9 16384 5.08e-05 1.55 6.81e-05 1.47 3.88e-05 1.63
65536 1.73e-05 1.55 2.45e-05 1.47 1.25e-05 1.63
262144 5.90e-06 1.55 8.83e-06 1.47 4.04e-06 1.63

1.999 16384 5.49e-07 1.50 5.51e-07 1.50 5.48e-07 1.50
65536 1.94e-07 1.50 1.95e-07 1.50 1.94e-07 1.50
262144 6.87e-08 1.50 6.90e-08 1.50 6.85e-08 1.50

2.1 16384 5.82e-05 1.45 4.61e-05 1.52 7.44e-05 1.38
65536 2.12e-05 1.45 1.61e-05 1.52 2.85e-05 1.38
262144 7.75e-06 1.45 5.59e-06 1.52 1.09e-05 1.39

2.3 16384 1.87e-04 1.38 1.04e-04 1.56 3.63e-04 1.20
65536 7.15e-05 1.38 3.53e-05 1.56 1.57e-04 1.20
262144 2.74e-05 1.38 1.20e-05 1.56 6.83e-05 1.20

2.5 16384 3.20e-04 1.33 1.38e-04 1.59 8.69e-04 1.07
65536 1.27e-04 1.33 4.60e-05 1.59 4.15e-04 1.07
262144 5.03e-05 1.33 1.52e-05 1.59 1.98e-04 1.07

3.0 16384 6.30e-04 1.25 1.82e-04 1.64 3.09e-03 0.83
65536 2.65e-04 1.25 5.83e-05 1.65 1.73e-03 0.83
262144 1.11e-04 1.25 1.85e-05 1.65 9.73e-04 0.83
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All data were chosen as in Example 1. It is easy to check that F(∇v) ∈W 2,2(Ω)d×d if and
only if a > 2

p + 1. In this example we set a = 2
p + 1.01. By means of Table 3.2 we observe

that the discretization error measured in terms of F behaves as O(h2). Hence, Table 3.2
indicates that, for this particular example, the hypothesis (3.48) with β = 2 seems to be
true. To sum up, we have numerically validated the hypothesis (3.48).

Table 3.2. Approximation of (3.44) with Q2 elements: F(∇v) is regular

‖F(∇v)−F(∇vh)‖2 ‖S(∇v)− S(∇vh)‖p′ ‖∇v −∇vh‖p
p #cells error conv. error conv. error conv.
1.1 16384 1.73e-04 1.89 1.95e-01 0.40 6.96e-05 2.00

65536 4.62e-05 1.91 1.46e-01 0.41 1.74e-05 2.00
262144 1.22e-05 1.92 1.04e-01 0.48 4.35e-06 2.00

1.3 16384 1.45e-04 1.89 7.89e-03 0.93 6.76e-05 2.00
65536 3.88e-05 1.90 4.15e-03 0.93 1.69e-05 2.00
262144 1.03e-05 1.91 2.17e-03 0.93 4.22e-06 2.00

1.6 16384 1.21e-04 1.88 4.19e-04 1.50 7.33e-05 1.98
65536 3.26e-05 1.90 1.48e-04 1.50 1.85e-05 1.99
262144 8.66e-06 1.91 5.20e-05 1.51 4.63e-06 1.99

2.5 16384 1.05e-04 1.87 7.27e-05 1.97 2.34e-04 1.60
65536 2.84e-05 1.89 1.84e-05 1.98 7.70e-05 1.60
262144 7.56e-06 1.91 4.65e-06 1.99 2.53e-05 1.61

3.0 16384 1.08e-04 1.87 7.10e-05 1.98 5.09e-04 1.35
65536 2.92e-05 1.89 1.78e-05 1.99 2.00e-04 1.35
262144 7.76e-06 1.91 4.47e-06 2.00 7.87e-05 1.35

3.4 Implementational aspects

For the equal-order Q1/Q1 (or Q2/Q2) element we describe the numerical algorithm which
solves the discrete system (3.25), and we discuss implementational aspects. The algorithm
presented below has been employed within the software package Gascoigne [GAS] in order
to generate our numerical simulations appearing throughout the thesis.

Linearization of the discrete problems: We deal with the numerical solution of the
algebraic systems. Due to its nonlinear nature, system (3.25) needs to be linearized.
Here, we apply Newton’s method for linearization. In order to describe the algorithm, let
B(·)(·) be any semi-linear form. In the context of p-Navier-Stokes systems, the semi-linear
form B is given by B(u)(ω) := A(u)(ω) + sh(u)(ω) for all u, ω ∈ X p ×Qp where A is
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defined in (3.23) and sh stands for a stabilization term. In order to determine a solution
uh ∈ (v0,h +X p

h)×Qph of the discrete system

B(uh)(ωh)− 〈f ,ωh〉 = 0 ∀ωh ∈ X p
h ×Q

p
h, (3.49)

we carry out Algorithm 3.1 (Newton’s algorithm with step-size control). Here, v0,h stands
for an approximation (e.g., the Lagrange interpolant) of non-homogeneous Dirichlet data.

Algorithm 3.1. Newton’s algorithm with step-size control

1: Choose an initial guess u0
h ∈ (v0,h +X p

h)×Qph.
2: Compute zkh ∈ X

p
h ×Q

p
h, k = 0, 1, . . ., from the linear equations

B′(ukh)(zkh,ωh) = −B(ukh)(ωh) + 〈f ,ωh〉 ∀ωh ∈ X p
h ×Q

p
h (3.50)

where the directional derivative is given by

B′(u)(z,ω) := d
dδB(u+ δz)(ω)

∣∣∣∣
δ=0

:= lim
δ→0

1
δ

{
B(u+ δz)(ω)−B(u)(ω)

}
.

3: For given λ ∈ (0, 1) determine minimal l = 0, 1, . . . for which

R(uk+1
h,l ) < R(ukh), uk+1

h,l := ukh + λlzkh,

and denote it by l∗ where the nonlinear residual R(·) is defined by

R(uh) := max
i

{
B(uh)(ψi)− 〈f ,ψi〉

}
∀uh ∈ X p

h ×Q
p
h. (3.51)

Here, {ψi} denotes the nodal basis of X p
h ×Q

p
h.

4: Set uk+1
h := uk+1

h,l∗ .

Step 3 of Algorithm 3.1 includes the step-size control which is crucial when highly nonlinear
p-structure problems are solved via Newton’s method. In general, the Newton update zkh
is weighted by the relaxation parameter λl. The step-size control enables the globalization
of Newton’s method, i.e., the independence of the convergence with respect to the choice
of u0

h. If l∗ = 0, then Algorithm 3.1 performs one full Newton cycle.

If B(u)(ω) := A(u)(ω) +sh(u)(ω), then the directional derivative B′(u)(z,ω) looks like

B′(u)(z,ω) = A′(u)(z,ω) + s′h(u)(z,ω). (3.52)

If the popular Carreau-type model (2.10) & (2.11b) is considered, then for u ≡ (v, π), z ≡
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(ξ, η), ω ≡ (w, q) the directional derivative A′(u)(z,ω) is formally given by

A′(u)(z,ω) =
((
ε2 + |Dv|2

) p−2
2 Dξ,Dw

)
Ω

+ (p− 2)
((
ε2 + |Dv|2

) p−4
2 (Dv : Dξ)Dv,Dw

)
Ω

+
(
(v · ∇)ξ,w

)
Ω

+
(
(ξ · ∇)v,w

)
Ω
− (η,∇ ·w)Ω + (∇ · ξ, q)Ω. (3.53)

In view of (3.53) we observe that in the case p < 2 and ε = 0 the directional derivative
A′(uh)(zh,ωh) is not well-defined in general for all uh ≡ (vh, πh), zh, ωh ∈ X p

h×Q
p
h if the

critical set Ωc := {x ∈ Ω; ∇vh(x) ≈ 0} is not empty. For Ωc 6= ∅ Algorithm 3.1 generally
suffers from instabilities. Note that the set Ωc is not empty for typical solutions to (3.49).
Hence, we often choose ε > 0 in order to stabilize Newton’s method. The stabilization
term sh is given either by (3.33) or by the nonlinear variant

sh(uh)(ωh) :=
∑

M∈Mh

(
(τ + |∇θ̄hπh|)p

′−2∇θ̄hπh, αM∇θ̄hqh
)
M

+
∑

M∈Mh

([vh · ∇]θ̄hvh, %M [vh · ∇]θ̄hwh)M .
(3.54)

Here, the fluctuation operator θ̄ is given by (3.32) in case of Q1/Q1-elements and by (3.34)
in case of Q2/Q2-elements. The patch-wise parameters αM and %M can be chosen, e.g., as
in (3.27). The LPS-based stabilization (3.54) is particularly adjusted to the p-structure of
the problem and it represents a novel approach for the approximation of the p-Navier-Stokes
equations with equal-order finite elements. Note that the stabilization (3.54) is similar to
the one proposed in Section 4.1 and analyzed in Sections 4.4, 4.5.

Solution of the linear subproblems: We deal with the solution of the linear systems
of equations arising in each Newton step. The solution approach formulated below has
already been described in [Sch10]. Let {ψi; i = 1, . . . , N} be the nodal basis of Xh

with N = dim(Xh). Since the finite element spaces X p
h and Qph stem from an equal-order

discretization, a basis of the space X p
h×Q

p
h is given by

{
ψ

(π)
i ,ψ

(v1)
i , . . . ,ψ

(vd)
i ; i = 1, . . . N

}
with ψ(π)

i := (ψi, 0, . . . , 0), ψ(v1)
i := (0, ψi, 0, . . . , 0), and ψ(vd)

i := (0, . . . , 0, ψi) when the
boundary condition on the velocity and the zero mean value constraint on the pressure are
ignored (they are actually incorporated later). By virtue of the representation

zkh =
N∑
i=1

(
ζ

(π)
i ψ

(π)
i , ζ

(v1)
i ψ

(v1)
i , . . . , ζ

(vd)
i ψ

(vd)
i

)
,
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Newton’s system (3.50) is equivalent to an algebraic system Bζ = c for the unknowns
ζ = (ζ1, . . . , ζN )T ∈ RN(d+1), ζi =

(
ζ

(π)
i , ζ

(v1)
i , . . . , ζ

(vd)
i

)
. The vector c is given by

c =


c1
c2
...
cN

 with entries ci =


−B

(
ukh

)(
ψ

(π)
i

)
+
〈
f ,ψ

(π)
i

〉
−B

(
ukh

)(
ψ

(v1)
i

)
+
〈
f ,ψ

(v1)
i

〉
...

−B
(
ukh

)(
ψ

(vd)
i

)
+
〈
f ,ψ

(vd)
i

〉


,

and the matrix B ∈ RN(d+1)×N(d+1) exhibits the following block structure

B :=


B11 · · · B1N
... . . . ...

BN1 · · · BNN

 .
Each block Bij represents a (d+ 1)× (d+ 1) matrix given by

Bij :=


B′
(
ukh

)(
ψ

(π)
j ,ψ

(π)
i

)
B′
(
ukh

)(
ψ

(v1)
j ,ψ

(π)
i

)
· · · B′

(
ukh

)(
ψ

(vd)
j ,ψ

(π)
i

)
B′
(
ukh

)(
ψ

(π)
j ,ψ

(v1)
i

)
B′
(
ukh

)(
ψ

(v1)
j ,ψ

(v1)
i

)
· · · B′

(
ukh

)(
ψ

(vd)
j ,ψ

(v1)
i

)
...

... . . . ...
B′
(
ukh

)(
ψ

(π)
j ,ψ

(vd)
i

)
B′
(
ukh

)(
ψ

(v1)
j ,ψ

(vd)
i

)
· · · B′

(
ukh

)(
ψ

(vd)
j ,ψ

(vd)
i

)


.

The Dirichlet boundary conditions are enforced as follows: The degrees of freedom ζ
(vj)
i on

the boundary are eliminated by replacing the corresponding entries within the right-hand
side c by zero and substituting the corresponding rows and columns within the matrix B by
zero or one so that as a result ζ(vj)

i = 0. Hence, all Newton updates zk satisfy homogeneous
Dirichlet boundary conditions. Consequently, the correct boundary conditions are recovered
even in the case of non-homogeneous Dirichlet boundary conditions since the initial guess
u0
h already satisfies the prescribed boundary conditions.

We solve the linear preconditioned subproblems MBζ = Mc applying the Generalized
Minimal Residual Method (GMRES), see Saad [Saa03]. As preconditioner M , we use
the multigrid method. The smoother, which is used in the multigrid iteration, consists
of a fix-point iteration based on a block ILU decomposition of B. The incomplete LU
factorization of B is based on the decomposition B = LU +H where L is a lower and U is
an upper triangle matrix. If H = 0, then B = LU corresponds to a full LU decomposition.
In this case, B and U are dense matrices. By contrast, in the incomplete version B and U
exhibit the same structure as B so that as a result H 6= 0. However, within the fixed-point
iteration the matrix H is neglected. Thus, the fix-point iteration reads:

ζk+1 = (I −U−1L−1B)ζk +U−1L−1c.

Compared to the classical ILU decomposition, the block ILU factorization is more cost-
intensive but it leads to more robust smoother, see Hackbusch [Hac93].

In each iteration step of the linear solver we re-establish the zero mean value constraint on
the pressure subtracting the mean value from the current pressure approximation.
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4 Finite Element Approximation of the
p-Stokes Equations

This chapter is dedicated to the finite element (FE) approximation of the p-Stokes problem
(P1). We discretize problem (P1) with equal-order d-linear finite elements (Xh = Qh =
Xh,1). Since this discretization is not inf-sup stable, we stabilize the Galerkin formulation
by the local projection stabilization (LPS) method (see Becker/Braack [BB01]). Within
the LPS framework for Stokes systems, one adds an appropriate linear stabilization term
to the Galerkin formulation that gives a weighted L2-control over the fluctuations of the
pressure gradient. In contrast, we propose a nonlinear stabilization term of p′-Laplace
type that yields a weighted Lp′-control over the fluctuations of the pressure gradient for
p′ := p/(p − 1). Our proposed stabilization term is adjusted to the p-structure of the
problem since the pressure naturally belongs to Lp′(Ω). In this chapter, we perform a
convergence analysis of LPS if either the classical stabilization (see [BB01]) or our modified
version is used. In the latter case, for p ∈ (1, 2] we establish the a priori error estimates

‖F(Dv)−F(Dvh)‖2 ≤ ch, ‖π − πh‖p′ ≤ ch
2
p′ , (4.1)

provided that the solution (v, π) satisfies the regularity assumption

F(Dv) ∈W 1,2(Ω)d×d, π ∈W 1,p′(Ω), (4.2)

where F is defined by (2.39), see Theorem 4.11. For p ∈ [2,∞) we establish analog a
priori error estimates, see Theorem 4.12. Note that Theorems 4.11 & 4.12 represent main
results of the thesis. Numerical experiments indicate that, at least in the case p ≤ 2, the
derived a priori error estimates provide optimal rates of convergence with respect to the
regularity. In contrast to its nonlinear counterpart, the classical LPS scheme of [BB01]
does not allow an optimal convergence analysis meaning that, e.g. if p < 2, it does not lead
to (4.1), unless slightly higher regularity than (4.2), such as v ∈W 2,2(Ω), is assumed. For
stable discretizations, the FE approximation of p-Stokes systems has been studied, e.g., by
Barrett/Liu [BL93b, BL94]. However, their results are suboptimal in the sense that either
the order of the error estimate is not optimal or the assumed regularity for the solution is
too high and not realistic for general solutions. Hence, this thesis improves existing results
in literature and, besides, it provides the first analytical investigation of LPS in the context
of p-Stokes systems. The theoretical results of Sections 4.1 – 4.5 as well as the numerical
experiments 1, 4, 5 in Section 4.8 have already been published in Hirn [Hir10].

In Section 4.1, we introduce our novel modified LPS method and, in Section 4.2, we study
the structure of the proposed stabilization. In Section 4.3, we present a modified Scott-
Zhang interpolation operator which enables the analysis of the stabilized FE method. As
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depicted in Section 4.4, this interpolation operator allows us to prove a discrete analogon of
the continuous inf-sup condition. As a result, we show the well-posedness of the stabilized
discrete systems. In Sections 4.5 and 4.6 we prove a priori error estimates quantifying the
convergence of the LPS method. While in Section 4.5 we analyze the proposed nonlinear
stabilization scheme, in Section 4.6 we focus on the classical LPS scheme (see Section 3.2)
applied to p-Stokes systems. Section 4.7 deals with the time-space discretization of the
non-steady p-Stokes problem (P4). In Section 4.8, the derived a priori error estimates are
illustrated by numerical experiments. Finally, in Section 4.9 we present some particular
projection spaces satisfying the abstract assumptions of Section 4.1.

4.1 LPS in the context of p-Stokes systems

In this section we introduce the local projection stabilization (LPS) method following the
literature (cf. Matthies et al. [MST07]). In contrast to Section 3.2, we study the LPS
method in a general framework in which we do not specify the projection spaces. Within
the LPS framework, we propose a stabilization term that is adjusted to the p-structure of
the problem and that differs from the one introduced in [MST07].

In order to explain the stabilization method, we start with some additional notation. Let
Mh be a non-overlapping, shape-regular decomposition of Ω constructed by coarsening
Th such that each M ∈Mh with diameter hM consists of one or more neighboring cells
K ∈ Th with hK ∼ hM for all K ⊂M . For instance, one can imagine a two-level variant
in which Th results from the coarser mesh Mh by one global refinement: Mh = T2h. We
introduce the space Yh as a finite element space defined on the macro partition Mh, such
that the pair Xh/Yh satisfies the local inf-sup condition (Assumption 4.1) below. We
denote the restriction of the space Yh to M ∈Mh by Yh(M) := {qh|M ; qh ∈ Yh} and we
define the auxiliary space X0

h(M) by X0
h(M) := {wh|M ; wh ∈ Xh, wh = 0 on Ω \M}.

Assumption 4.1. For ν ≥ 1 there exists β̄ > 0 independent of h such that

inf
q∈Yh(M)

sup
w∈X0

h
(M)

(w, q)M
‖w‖ν;M‖q‖ν′;M

≥ β̄ > 0 (4.3)

for all h > 0 and all M ∈Mh, where ν ′ := ν/(ν − 1). If ν = 1, then ν ′ :=∞.

Remark 4.1. Assumption 4.1 is similar to Assumption A3 in Matthies et al. [MST07].
However we changed the L2-setting of [MST07] into an Lν-setting with ν ≥ 1. For instance,
one possible choice of Yh is the discontinuous finite element space consisting of all piecewise
constant functions on the coarser mesh Mh = T2h. For such Yh, (4.3) is shown in [MST07]
in case of ν = 2. We can easily prove (4.3) in the general case ν ≥ 1 by adjusting the proof
of Lemma 3.2 in [MST07], see Section 4.9. We only have to replace the L2-setting by an
Lν-setting. Further choices of Xh/Yh are discussed in [MST07].

Let PM be a local projection PM : Lν(M)→ Yh(M). Clearly, PM defines a global projection
Ph : Lν(Ω)→ Yh by (Phq)|M := PM (q|M ) for allM ∈Mh. Denoting the identity on Lν(Ω)
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4.2 Properties of the stabilization term

by id, we define the associated fluctuation operator θh : Lν(Ω)→ Lν(Ω) by θh := id− Ph.
These operators are applied to vector-valued functions in a component-wise manner, e.g.,
P h : Lν(Ω) → Y h with P hq := (Phq1, . . . , Phqd). The following assumption on θh will
ensure that the consistency error is small enough:

Assumption 4.2. For ν > 1 let the fluctuation operator θh satisfy

‖θhq‖ν;M . ‖q‖ν;M ∀M ∈Mh, ∀q ∈ Lν(Ω).

Remark 4.2. For instance, θh satisfies Assumption 4.2 if Ph is the L2-projection onto Yh
and Yh(M) contains the space of constant functions, see [MST07].

Then we modify the discrete problem (3.22) by adding the stabilization term

sh(π)(q) :=
∑

M∈Mh

αM
(
(τ + |θh∇π|)p

′−2θh∇π,θh∇q
)
M

with αM := α0h
s
M , (4.4)

where α0 > 0, s, τ ≥ 0, and p is the same as in Assumption 2.1. For p 6= 2 the stabilization
term sh is nonlinear in its first argument. The appropriate choice of s will be determined
by the convergence analysis of the method. The stabilized discrete system reads:

(P1h) Find (vh, πh) ∈ X p
h ×Q

p
h such that

(S(Dvh),Dwh)Ω − (πh,∇ ·wh)Ω = (f ,wh)Ω ∀wh ∈ X p
h (4.5a)

sh(πh)(qh) + (∇ · vh, qh)Ω = 0 ∀qh ∈ Qph. (4.5b)

Note that our proposed method recovers the standard LPS scheme for Stokes systems in
the particular case p = 2. In fact, the semilinear form sh defined in (4.4) coincides with
the classical LPS term introduced in Becker/Braack [BB01] for Stokes systems in the case
p = 2 and s = 2. Below we always assume that Assumptions 4.1 and 4.2 are satisfied. The
following sections will show stability and convergence of the method.

Remark 4.3. If the standard stabilization proposed in [BB01] is applied to p-Stokes systems,
convergence of the method can also be expected and will be quantified in Section 4.6.
However, for the classical LPS method we will only be able to establish suboptimal a priori
error estimates whose order depends on the space dimension d, see Corollaries 4.14, 4.15,
4.18. In contrast, our modified stabilization (4.4) will enable us to derive optimal a priori
error estimates independent of d, see Theorem 4.11.

4.2 Properties of the stabilization term

Below let sh be defined by (4.4). In this section, we highlight the structure of sh and we
show some resulting properties. To this end, we introduce a nonlinear function G : Rd → Rd,

G(q) := (τ + |q|)
p′−2

2 q (q 6= 0), G(0) := 0, (4.6)
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4 Finite Element Approximation of the p-Stokes Equations

where p′ and τ are the same as in (4.4). The following two lemmas can easily be proven by
adapting the results of Section 2.4. Their proofs are based on a vector-valued version of
Lemma 2.4 (see [DE08]). Lemma 4.1 depicts how the distance induced by G relates to the
standard Lp′-norm, whereas Lemma 4.2 clarifies the connection between G and sh.

Lemma 4.1. Let U ⊂ Ω be a measurable subset of Ω and let g, q ∈ Lp′(Ω). If p ∈ (1, 2],
then there exist constants c, C > 0 only depending on p such that

c‖g − q‖p
′

p′;U ≤ ‖G(g)− G(q)‖22;U ≤ C‖ε+ |g|+ |q|‖p
′−2
p′;U ‖g − q‖

2
p′;U . (4.7)

If p ∈ [2,∞), then there exist constants c, C > 0 only depending on p such that

‖g − q‖p′;U ≤ c‖G(g)− G(q)‖2;U‖τ + |g|+ |q|‖
2−p′

2
p′;U , (4.8)

‖G(g)− G(q)‖22;U ≤ C‖g − q‖
p′

p′;U . (4.9)

Proof. The proof is similar to the one of Lemma 2.6. A vector-valued version of Lemma
2.4 (see Diening/Ettwein [DE08]) shows that for p ∈ (1,∞) there holds

|G(g)− G(q)|2 ∼ |g − q|2(τ + |g|+ |q|)p′−2 (4.10)

a.e. in U where the constants only depend on p. First of all let p ∈ (1, 2], i.e., p′ ∈ [2,∞).
Since p′ ≥ 2 and |g|+ |q| ≥ 1

2(|g|+ |g − q|), we realize that |g − q|p′ . |G(g)− G(q)|2 a.e.
in U . Integrating this over U , we arrive at (4.7)1. Integrating (4.10) over U , and using
Hölder’s inequality with 2

p′ + p′−2
p′ = 1, we obtain (4.7)2. Now let p ∈ [2,∞), i.e., p′ ∈ (1, 2].

The relation (4.10) implies that |g − q|p′ ∼ |G(g)− G(q)|p′(τ + |g|+ |q|)(2−p′)p′/2 a.e. in U .
Integrating this over U and applying Hölder’s inequality with p′

2 + 2−p′
2 = 1, we easily deduce

(4.8). From (4.10) and p′ ≤ 2 it follows that |G(g)− G(q)|2 . |g − q|p′ a.e.. Integrating
this over U , we finally get (4.9). This completes the proof.

Lemma 4.2. Let ϕ∗ be defined by (2.37). For all π, q ∈W 1,p′(Ω) there holds

sh(π)(π − q)− sh(q)(π − q) ∼
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M

∼
∑

M∈Mh

αM

∫
M

(ϕ∗)τ+|θh∇π|(|θh∇π − θh∇q|) dx

where the constants only depend on p.

Proof. Using the definition of sh and a vector-valued version of Lemma 2.4 with p, ε, F ,
ϕ replaced by p′, τ , G, ϕ∗, we obtain the equivalence stated in the assertion.

Lemma 4.3. For p ∈ (1,∞) let sh be defined by (4.4). For all δ > 0 there exists a constant
c = c(δ, p, α0) > 0 such that for all π, q ∈W 1,p′(Ω) there holds

|sh(π)(π − q)| ≤ chs‖τ + |∇π|‖p
′

p′;Ω + δ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M . (4.11)
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4.3 Modified interpolation operator

Proof. Let ϕ and ϕ∗ be given by (2.37). Using the vector-valued version of Lemma 2.4
(with p, ε, ϕ replaced by p′, τ , ϕ∗), we estimate

|sh(π)(π − q)| =
∣∣∣∣ ∑
M∈Mh

αM
(
(τ + |θh∇π|)p

′−2θh∇π,θh∇π − θh∇q
)
M

∣∣∣∣
.

∑
M∈Mh

αM

∫
M

(ϕ∗)′τ+|θh∇π|(|θh∇π|)|θh∇π − θh∇q|dx.

Applying Young’s inequality (2.36), Lemma 4.2, the change-of-shift Lemma 2.3, and the
stability of θh (Assumption 4.2), for arbitrary δ > 0 we obtain

|sh(π)(π − q)| . cδ
∑

M∈Mh

αM

∫
M

(ϕ∗)τ+|θh∇π|(|θh∇π|) dx

+ δ
∑

M∈Mh

αM

∫
M

(ϕ∗)τ+|θh∇π|(|θh∇π − θh∇q|) dx

. cδh
s
∫
Ω

(ϕ∗)τ+|θh∇π|(|θh∇π|) dx+ δ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M

. cδh
s
∫
Ω

(ϕ∗)(τ + |θh∇π|) dx+ δ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M

. cδh
s‖τ + |∇π|‖p

′

p′ + δ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M

where cδ only depends on p, α0 and δ.

Remark 4.4. Let p ∈ [2,∞). Then, we may modify the proof of Lemma 4.3 as follows:

|sh(π)(π − q)| .
∑

M∈Mh

αM

∫
M

(ϕ∗)′|θh∇π|(|θh∇π|)|θh∇π − θh∇q|dx

. cδh
s
∑

M∈Mh

‖θh∇π‖p
′

p′;M + δ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M .

Hence, for p ∈ [2,∞) in (4.11) the expression ‖τ + |∇π|‖p
′

p′;Ω can be replaced by ‖∇π‖p
′

p′;Ω.

4.3 Modified interpolation operator

The key idea in the error analysis consists in the construction of an interpolant into Xh

which exhibits an additional orthogonality property with respect to the space Yh. This
interpolant shall also feature appropriate approximation properties with respect to the
quasi-norm. The subsequent lemma generalizes Theorem 2.2 in Matthies et al. [MST07]
and Theorem 5.7 in Diening/Růžička [DR07]. In the latter one, the interpolation estimate

−
∫
M

|F(∇v)−F(∇jhv)|2 dx ≤ ch2
M−
∫
SM

|∇F(∇v)|2 dx (4.12)
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4 Finite Element Approximation of the p-Stokes Equations

has been proven for finite elements based on simplices provided that the interpolation
operator jh satisfies Assumption 3.1 with r0 ≥ 1. Below we will prove (4.12) with ∇
replaced by D for d-linear finite elements.

Lemma 4.4. Let ν ≥ 1 and let Xh/Yh satisfy Assumption 4.1. We set X ν
h := Xh ∩

W 1,ν
0 (Ω) and Y h = [Yh]d. Then, there exist interpolation operators jh : W 1,ν(Ω)→ Xh

and jh : W 1,ν
0 (Ω)→ X ν

h, which satisfy the following properties:
(i) Orthogonality with respect to Yh, Y h: For all w ∈W 1,ν(Ω) and w ∈W 1,ν

0 (Ω):

(w − jhw, qh)Ω = 0 ∀qh ∈ Yh, (4.13)
(w − jhw, qh)Ω = 0 ∀qh ∈ Y h. (4.14)

(ii) Let 1 ≤ l ≤ 2. Then for all M ∈Mh, w ∈W l,ν(Ω) and w ∈W l,ν(Ω) ∩W 1,ν
0 (Ω):

‖w − jhw‖ν;M + hM‖∇(w − jhw)‖ν;M . hlM‖w‖l,ν;SM , (4.15)
‖w − jhw‖ν;M + hM‖∇(w − jhw)‖ν;M . hlM‖w‖l,ν;SM . (4.16)

(iii) For p ∈ (1,∞) and ε ∈ [0,∞) let F be defined by (2.39). If F(Dw) ∈ [W 1,2(Ω)]d×d,
then for all M ∈Mh there holds

‖F(Dw)−F(Djhw)‖2;M . hM‖∇F(Dw)‖2;SM . (4.17)

Here, SM denotes a local neighborhood of M as defined in (3.12) which appears in the
definition of interpolation operators for non-smooth functions (cf. Brenner/Scott [BS94]).

Proof. The construction of an interpolant satisfying the properties (i) and (ii) with ν = 2 is
well-known and was accomplished for the analysis of the LPS method in the context of the
Stokes/Oseen equations. For this we refer to Matthies et al. [MST07]. Here we construct
the interpolant similarly utilizing Assumption 4.1. We show the additional interpolation
property (4.17) following the arguments of Diening/Růžička [DE08].

(i)+(ii): We follow the proof of Theorem 2.2 in Matthies et al. [MST07]. First of all
we note that the Scott-Zhang interpolation operator ih can be extended to vector-valued
functions (in a component-wise manner) and to quadrilateral meshes. Furthermore, ih is
defined in such a way that it preserves homogeneous Dirichlet boundary conditions. Hence,
ih : W 1,ν(Ω) → Xh and ih : W 1,ν

0 (Ω) → X ν
h with ihw := (ihw1, . . . , ihwd). Let Yh(M)∗

denote the dual space of Yh(M), Zh(M) := {wh ∈ X0
h(M); (wh, qh)M = 0 ∀qh ∈ Yh(M)},

and let Zh(M)⊥ be the L2-orthogonal complement of Zh(M) in X0
h(M). The linear

continuous operator Bh : X0
h(M)→ Yh(M)∗ defined by

〈Bhwh, qh〉 := (wh, qh)M ∀wh ∈ X0
h(M), ∀qh ∈ Yh(M),

is an isomorphism from Zh(M)⊥ onto Yh(M)∗ with

β̄‖wh‖ν;M ≤ ‖Bhwh‖Yh(M)∗ ∀wh ∈ Zh(M)⊥
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4.3 Modified interpolation operator

(note Zh(M) = Ker(Bh)) if and only if (4.3) holds true (see Lemma 2.17). Consequently,
for each w ∈W 1,ν(Ω) there exists a unique zh(w) ∈ Zh(M)⊥ such that

〈Bhzh(w), qh〉 = (zh(w), qh)M = (w − ihw, qh)M ∀qh ∈ Yh(M), (4.18)

‖zh(w)‖ν;M ≤
1
β̄
‖w − ihw‖ν;M , (4.19)

where ih is the Scott-Zhang interpolation operator. We set jhw|M := ihw|M + zh(w) for
all M ∈ Mh. Due to ⊕M∈Mh

Zh(M)⊥ ⊂ ⊕
M∈Mh

X0
h(M) ⊂ Xh, this defines a global

interpolant jh : W 1,ν(Ω) → Xh. The orthogonality property (4.13) follows from (4.18),
whereas the interpolation property (4.15) results from (4.19) and the properties of ih (cf.
Theorem 2.2 in [MST07]). Indeed, recalling (3.15), we deduce that

‖w − jhw‖ν;M ≤
(

1 + 1
β̄

)
‖w − ihw‖ν;M . hlM‖w‖l,ν;SM (4.20)

for all w ∈ W l,ν(Ω) and 1 ≤ l ≤ 2 where SM denotes a local neighborhood of M which
appears in the definition of the Scott-Zhang operator. In order to show the approximation
property in the W 1,ν-semi-norm, we use the inverse inequality (3.19) and (4.19):

‖∇zh(w)‖ν;M ≤ Ch−1
M ‖zh(w)‖ν;M ≤ Ch−1

M ‖w − ihw‖ν;M . hl−1
M ‖w‖l,ν;SM .

Consequently, using the triangle inequality, we conclude that

‖∇(w − jhw)‖ν;M ≤ ‖∇(w − ihw)‖ν;M + ‖∇zh(w)‖ν;M . hl−1
M ‖w‖l,ν;SM .

Using the definition jhw := ihw+zh(w), the mapping property ih : W 1,ν
0 (Ω)→ X ν

h, and
zh(w)|∂Ω = 0, we deduce jh : W 1,ν

0 (Ω)→ X ν
h, (4.14), and (4.16).

(iii): For w ∈ L1(U) with |U | > 0 we denote the mean value of w over U by 〈w〉U :=
−
∫
U w dx := 1

|U |
∫
U w(x) dx. The interpolation estimate (4.16) with ν = 1 implies

∫
M

|jhw| dx ≤
∫
M

|jhw −w|dx+
∫
M

|w| dx .
1∑

k=0

∫
SM

hkM |∇kw|dx

∫
M

hM |∇jhw| dx ≤
∫
M

hM |∇(jhw −w)|dx+
∫
M

hM |∇w|dx .
1∑

k=0

∫
SM

hkM |∇kw|dx.

Since the mesh is non-degenerate, there holds |M | ∼ |SM | with constants independent of
M . Thus, the interpolation operator jh satisfies the following W 1,1-stability,

1∑
j=0
−
∫
M

hjM |∇
jjhw| dx ≤ c

1∑
k=0
−
∫
SM

hkM |∇kw| dx ∀w ∈W 1,1(Ω). (4.21)

We recall that the Scott-Zhang operator ih is a projection: ihwh = wh for all wh ∈Xh.
Consequently, the interpolation operator jh is a projection as well,

jhwh = ihwh + zh(wh) = wh ∀wh ∈Xh, (4.22)
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4 Finite Element Approximation of the p-Stokes Equations

since zh(wh) = 0 due to (4.19). Next, we observe (cf. Remark 3.6) that P1(K) ⊂ Xh(K)
for all K ∈ Th, where P1(K) is the space of linear polynomials and Xh(K) := {w : K →
R; w ◦ FK ∈ Q1(K̂)}. This implies P1(Ω) ⊂ Xh. Recalling (4.22), we realize that

jhw = w ∀w ∈ P1(Ω)d. (4.23)

For p ∈ (1,∞) and ε ∈ [0,∞) let F be defined by (2.39), and let ϕ be given by (2.37). For
a ≥ 0 let the shifted N -functions ϕa be defined by (2.32). Since jh satisfies (4.21) and
(4.23), by virtue of Corollary 3.2 there exists c > 0 only depending on p such that

−
∫
M

ϕa(|∇jhw|) dx ≤ c−
∫
SM

ϕa(|∇w|) dx ∀w ∈W 1,p(Ω) (4.24)

for all a ≥ 0, M ∈Mh. It is crucial that the constant in (4.24) does not depend on the shift
a ≥ 0. In order to derive (4.17), we exploit some arguments of [DE08]. Let q ∈ P1(Ω)d
be an arbitrary linear polynomial. Using Lemma 2.4, Lemma 2.3, adding the identity
Djhq −Dq = 0 and recalling Remark 2.3, we estimate

−
∫
M

|F(Dw)−F(Djhw)|2 dx ∼ −
∫
M

ϕε+|Dw|(|Dw −Djhw|) dx

. −
∫
M

ϕε+|Dq|(|Dw −Djhw|) dx+−
∫
M

ϕε+|Dq|(|Dw −Dq|) dx

. −
∫
M

ϕε+|Dq|(|Djh(q −w)|) dx+−
∫
M

ϕε+|Dq|(|Dw −Dq|) dx =: I1 + I2. (4.25)

Applying (4.24) to the term I1, we conclude that

I1 . −
∫
M

ϕε+|Dq|(|∇jh(q −w)|) dx . −
∫
SM

ϕε+|Dq|(|∇w −∇q|) dx.

Since q is an arbitrary linear polynomial, we can choose ∇q := 〈∇w〉SM ∈ Rd×d. This
particular choice of ∇q allows us to apply the N -function-version of Korn’s inequality
whose proof can be found in Diening et al. [DRS10]. Hence, we obtain the estimate

I1 . −
∫
SM

ϕε+|Dq|(|∇w − 〈∇w〉SM |) dx . −
∫
SM

ϕε+|Dq|(|Dw − 〈Dw〉SM |) dx. (4.26)

Noting the identity Dq = 1
2(∇q + (∇q)T) = 1

2(〈∇w〉SM + 〈(∇w)T〉SM ) = 〈Dw〉SM ,
combining (4.25) and (4.26), and applying Lemma 2.4, we arrive at

−
∫
M

|F(Dw)−F(Djhw)|2 dx . −
∫
SM

|F(Dw)−F(〈Dw〉SM )|2 dx =: I3, (4.27)

where we have also used the estimate I2 . I3. By means of Lemma 2.4 the equivalence

I3 ∼ −
∫
SM

(
S(Dw)− S(〈Dw〉SM )

)
: (Dw − 〈Dw〉SM ) dx
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follows where S is given as in Assumption 2.1. Since −
∫
SM
Dw − 〈Dw〉SMdx = 0 and

S(〈Dw〉SM ) as well as S(F−1(〈F(Dw)〉SM )) are constant, we conclude that

I3 ∼ −
∫
SM

(
S(Dw)− S(F−1(〈F(Dw)〉SM ))

)
: (Dw − 〈Dw〉SM ) dx.

Applying Lemma 2.4 and Young’s inequality (2.36), for arbitrary δ > 0 we obtain

I3 . −
∫
SM

ϕ′ε+|Dw|(|Dw −F−1(〈F(Dw)〉SM )|)|Dw − 〈Dw〉SM |dx

. δ−
∫
SM

ϕε+|Dw||Dw − 〈Dw〉SM | dx+ cδ−
∫
SM

ϕε+|Dw|(|Dw −F−1(〈F(Dw)〉SM )|) dx

∼ δI3 + cδ−
∫
SM

|F(Dw)− 〈F(Dw)〉SM |2 dx

where cδ > 0 only depends on p and δ. Choosing δ > 0 sufficiently small, we deduce that

−
∫
SM

|F(Dw)−F(〈Dw〉SM )|2 dx . −
∫
SM

|F(Dw)− 〈F(Dw)〉SM |2 dx. (4.28)

Combining (4.27) and (4.28), we arrive at

−
∫
M

|F(Dw)−F(Djhw)|2 dx . −
∫
SM

|F(Dw)− 〈F(Dw)〉SM |2 dx.

Then the assertion follows from Poincaré’s inequality applied to F(Dw) ∈ L2(SM )d×d.

Remark 4.5. (i) From (4.16) we deduce that the interpolation operator jh is W 1,ν-stable:

‖jhw‖1,ν;M . ‖w‖1,ν;SM ∀w ∈W 1,ν(Ω). (4.29)

(ii) By setting qh = 1 in (4.13) we conclude that jh : Qp ∩W 1,p′(Ω)→ Qph. Consequently,
jh is also an appropriate interpolation operator for the pressure.

4.4 Well-posedness of the stabilized systems

In this section we show that solutions to (P1h) exist and that they are uniquely determined.
We prove that the solutions to (P1h) are uniformly bounded with respect to their natural
norms. The well-posedness of (P1h) is based on the following lemma that can be seen as
the discrete analogon of the inf-sup stability condition (2.68):

Lemma 4.5. Let ν ∈ (1,∞) and ν ′ := ν/(ν − 1). Then for all qh ∈ Qνh there holds

β̃(ν)‖qh‖ν′ ≤ sup
wh∈X νh

(∇ ·wh, qh)Ω
‖∇wh‖ν

+
( ∑
M∈Mh

hν
′
M‖θh(∇qh)‖ν′ν′;M

) 1
ν′
, (4.30)

where β̃(ν) > 0 is a constant independent of h.
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4 Finite Element Approximation of the p-Stokes Equations

Proof. We know that the pair W 1,ν
0 (Ω) × Lν′0 (Ω) satisfies the inf-sup condition (2.68):

there exists a positive constant β(ν) such that

β(ν)‖q‖ν′ ≤ sup
w∈W 1,ν

0 (Ω)

(∇ ·w, q)Ω
‖∇w‖ν

∀q ∈ Lν′0 (Ω).

Since Qνh ⊂ Lν
′

0 (Ω) it follows that for all qh ∈ Qνh there holds

β(ν)‖qh‖ν′ ≤ sup
w∈W 1,ν

0 (Ω)

(∇ · jhw, qh)Ω‖∇jhw‖ν
‖∇jhw‖ν‖∇w‖ν

+ sup
w∈W 1,ν

0 (Ω)

(∇ · (w − jhw), qh)Ω
‖∇w‖ν

,

(4.31)
where jh : W 1,ν

0 (Ω)→ X ν
h is the interpolation operator of Lemma 4.4. Using integration

by parts, the orthogonality of jh with respect to Y h (note P h∇qh ∈ Y h), and Hölder’s
inequality, we deduce that

|(∇ · (w − jhw), qh)Ω| = |(w − jhw,∇qh)Ω| = |(w − jhw,∇qh − P h∇qh)Ω|
≤

∑
M∈Mh

h−1
M ‖w − jhw‖ν;MhM‖θh(∇qh)‖ν′;M

≤ c
( ∑
M∈Mh

h−νM ‖w − jhw‖
ν
ν;M

) 1
ν
( ∑
M∈Mh

hν
′
M‖θh(∇qh)‖ν′ν′;M

) 1
ν′
.

Due to the interpolation property of jh, the inequality

|(∇ · (w − jhw), qh)Ω| ≤ c‖∇w‖ν
( ∑
M∈Mh

hν
′
M‖θh(∇qh)‖ν′ν′;M

) 1
ν′

(4.32)

follows. Using the stability of the interpolation operator (4.29), we conclude that the first
term on the right-hand side of (4.31) can be estimated by

sup
w∈W 1,ν

0 (Ω)

(∇ · jhw, qh)Ω‖∇jhw‖ν
‖∇jhw‖ν‖∇w‖ν

≤ c sup
wh∈X νh

(∇ ·wh, qh)Ω
‖∇wh‖ν

. (4.33)

Combining (4.31), (4.32), (4.33), we get the desired estimate (4.30).

Now, we are in a position to show the well-posedness of the discrete system. In the case
of stable discretizations (sh ≡ 0), the existence of unique solutions to the finite element
equations can be proven similarly as in the continuous case. In our situation however, the
proof of existence requires a different approach since it is not possible to decouple the
nonlinear finite element system by restricting to discrete divergence-free test functions.

Lemma 4.6. For p ∈ (1,∞) and ε ∈ [0, ε0] let S satisfy Assumption 2.1. Let sh be defined
by (4.4) with s ∈ [0, p′] and τ ∈ [0, τ0]. Then there exists a solution to (P1h). Any such
solution (vh, πh) ∈ X p

h ×Q
p
h satisfies the a priori estimate

‖vh‖p1,p + ‖S(Dvh)‖p
′

p′ + sh(πh)(πh) ≤ C1(Ω, p, ε0, σ0, σ1,f),
β̃(p)‖πh‖p′ ≤ C2(Ω, p, ε0, σ0, σ1,f , α0, τ0),

(4.34)
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where β̃(p) > 0 is the constant appearing in (4.30). The constants C1 and C2 only depend
on the data quoted within the brackets. If p ≤ 2 then the constant C2 does not depend on
τ0, whereas if p > 2 the constant C1 does not depend on ε0.

Proof. In order to show the existence of a solution we consider the following auxiliary
problem: for δ > 0 find (vδh, πδh) ∈ X p

h ×Q
p
h such that

(S(Dvδh),Dwh)Ω − (πδh,∇ ·wh)Ω = (f ,wh)Ω ∀wh ∈ X p
h

(∇ · vδh, qh)Ω + sh(πδh)(qh) + δ(πδh, qh)Ω = 0 ∀qh ∈ Qph.
(4.35)

The additional term δ(πδh, qh)Ω ensures that the nonlinear operator associated with the
left-hand side of (4.35) is coercive in X p

h ×Q
p
h. Due to Lemma 2.4 and Lemma 4.2, this

operator is strictly monotone and continuous in X p
h×Q

p
h. Applying the theory of monotone

operators, we conclude the existence of a unique solution (vδh, πδh) ∈ X p
h ×Q

p
h to (4.35) for

each δ > 0. Next we show that this solution satisfies an a priori bound independent of δ.
We begin with the case p ≤ 2. Setting wh := vδh and qh := πδh in (4.35), summing both
equations, using (2.40), Hölder’s, Poincaré’s, Korn’s and Young’s inequality, we conclude

‖vδh‖
p
1,p + ‖S(Dvδh)‖p

′

p′ + sh(πδh)(πδh) + δ‖πδh‖22 ≤ C1 = C1(Ω, p, σ0, σ1, ε0,f). (4.36)

Utilizing the discrete inf-sup inequality (4.30), equation (4.35)1, the condition p′ ≥ 2, we
can estimate the discrete pressure πδh with respect to the Lp′(Ω)-norm as follows:

β̃(p)‖πδh‖p′ ≤ sup
wh∈X ph

(∇ ·wh, π
δ
h)Ω

‖∇wh‖p
+
( ∑
M∈Mh

hp
′

M‖θh∇π
δ
h‖
p′

p′;M

) 1
p′

≤ sup
wh∈X ph

(S(Dvδh),Dwh)Ω − (f ,wh)Ω
‖∇wh‖p

+ Ch
1− s

p′

( ∑
M∈Mh

αM

∫
M

(τ + |θh∇πδh|)p
′−2|θh∇πδh|2 dx

) 1
p′

≤ C
(
‖S(Dvδh)‖p′ + ‖f‖p′ + h

1− s
p′ sh(πδh)(πδh)

1
p′

)
,

where C = C(Ω, p, σ0, σ1, α0). Since we have assumed s ≤ p′, the a priori Lp′(Ω)-bound

β̃(p)‖πδh‖p′ ≤ C2 = C2(Ω, p, σ0, σ1, ε0,f , α0) (4.37)

follows. The constants C1 and C2 do not depend on δ. In the case p ∈ (2,∞), the proof of
(4.36) is similar whereas the proof of (4.37) requires slightly different arguments. Below
we depict the proof of (4.37) for p > 2. Using Lemma 4.1 and Hölder’s inequality with
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p′

2 + 2−p′
2 = 1, we deduce that for all qh ∈ Qph

A :=
( ∑
M∈Mh

hp
′

M‖θh(∇qh)‖p
′

p′;M

) 1
p′

.
( ∑
M∈Mh

h
p′s
2
M ‖G(θh∇qh)‖p

′

2;Mh
p′(2−s)

2
M

(
τ0|M |

1
p′ + ‖θh∇qh‖p′;M

) 2−p′
2 p′

) 1
p′

.
[∑
M

hsM‖G(θh∇qh)‖22;M

] 1
2
[∑
M

h
p′(2−s)

2−p′
M

(
τp
′

0 |M |+ ‖θh∇qh‖
p′

p′;M

)] 2−p′
2p′

.

Since s ≤ p′ ⇔ p′(2−s)
2−p′ ≥ p

′, in view of Lemma 4.2 we arrive at

A . sh(qh)(qh)
1
2
(
hτ0|Ω|

1
p′ +A

) 2−p′
2 ∀qh ∈ Qph.

If A ≥ hτ0|Ω|
1
p′ , then A . sh(qh)(qh) 1

2A
2−p′

2 and, hence, A . sh(qh)(qh)
1
p′ . As a result, we

conclude that there exists a constant c = c(p, α0) > 0 such that( ∑
M∈Mh

hp
′

M‖θh(∇qh)‖p
′

p′;M

) 1
p′
≤ csh(qh)(qh)

1
p′ + hτ0|Ω|

1
p′ (4.38)

for all qh ∈ Qph. Using (4.30), (4.38), (4.35), Lemma 2.4, the Hölder and Poincaré inequality,
we can estimate the discrete pressure πδh as follows:

β̃‖πδh‖p′ ≤ sup
wh∈X ph

(∇ ·wh, π
δ
h)Ω

‖∇wh‖p
+
( ∑
M∈Mh

hp
′

M‖θh∇π
δ
h‖
p′

p′;M

) 1
p′

≤ C
(
‖ε0 + |Dvδh|‖p−1

p + ‖f‖p′ + sh(πδh)(πδh)
1
p′ + τ0

)
for some C = C(Ω, p, α0) > 0. We finally arrive at (4.37) for p > 2. We note that the
constant C2 in (4.37) additionally depends on τ0 in this case.

For {δk}k∈N with δk ↘ 0 let (vδkh , π
δk
h ) be the solutions to (4.35). Due to the uniform a

priori estimates (4.36) and (4.37) there exists (vh, πh) ∈ X p
h ×Q

p
h such that a subsequence

(which is again denoted by (vδkh , π
δk
h )) converges to (vh, πh) strongly:

Dvδkh →Dvh in Lp(Ω) and πδkh → πh in Lp′(Ω) for k →∞.

By passing to the limit in (4.35), we show that (vh, πh) is the solution of (P1h). We can
pass to the limit in the nonlinear term (S(Dvδkh ),Dwh)Ω using the following arguments:
first of all, we observe that we can find a further subsequence of {vδkh } (for simplicity we
do not change the notation) such that Dvδkh →Dvh almost everywhere in Ω for k →∞.
Thus, S(Dvδkh )→ S(Dvh) almost everywhere in Ω for k →∞ since S is continuous. In
view of (2.40)2, Vitali’s theorem then implies that∫

Ω

S(Dvδkh ) : Dwh dx →
∫
Ω

S(Dvh) : Dwh dx (k →∞).
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In the stabilization term sh(πδkh )(qh) we can pass to the limit using exactly the same
arguments. This is possible since the inverse inequality (3.19) implies ∇πδkh |M → ∇πh|M in
Lp
′(M) and, consequently, θh(∇πδkh )|M → θh(∇πh)|M in Lp′(M) (k →∞) for all M ∈Mh

due to the continuity of the fluctuation operator θh. In the remaining terms we can pass
to the limit using standard arguments. Consequently, the limit (vh, πh) ∈ X p

h ×Q
p
h solves

system (4.5). As a result, (vh, πh) is a solution to (P1h) and it satisfies (4.34).

Lemma 4.7 (Uniqueness). For p ∈ (1,∞) and ε ∈ [0, ε0] let S satisfy Assumption 2.1
and let sh be defined by (4.4). If a solution (vh, πh) ∈ X p

h ×Q
p
h to Problem (P1h) exists,

then (vh, πh) is uniquely determined.

Proof. Assume that (vih, πih) ∈ X p
h ×Q

p
h, i ∈ {1, 2}, are two solutions to Problem (P1h).

Setting ξh := (v1
h − v2

h) and ηh := (π1
h − π2

h), we observe that

(S(Dv1
h)− S(Dv2

h),Dwh)Ω − (ηh,∇ ·wh)Ω + (∇ · ξh, qh)Ω
+ sh(π1

h)(qh)− sh(π2
h)(qh) = 0

(4.39)

for all (wh, qh) ∈ X p
h ×Q

p
h. Testing (4.39) with wh := ξh and qh := ηh, we conclude that

(S(Dv1
h)− S(Dv2

h),Dξh)Ω = 0 and sh(π1
h)(ηh)− sh(π2

h)(ηh) = 0,

and, hence, v1
h = v2

h and θh∇π1
h = θh∇π2

h due to the strict monotonicity. Utilizing Lemma
4.5 (with qh = ηh), (4.39), v1

h = v2
h, and θh∇ηh = 0, we arrive at π1

h = π2
h.

4.5 Error estimates for the proposed stabilization scheme

In this section we derive a priori error estimates such as (4.1) which quantify the convergence
of the LPS method. Numerical experiments will indicate that the derived error estimates
are optimal at least in the shear thinning case. Note that for p-Laplace systems optimal
error estimates have been proven in Diening/Růžička [DR07]. The key idea in the analysis
is to estimate the approximation error with respect to quasi-norms that naturally arise in
degenerate problems of this type (cf. Barrett/Liu [BL94]). In order to derive our sharp
error estimates, we combine both the quasi-norm technique and the well-known analysis
of LPS for Stokes systems. For derivation of error estimates, we distinguish between the
cases p ≤ 2 (Theorem 4.11) and p ≥ 2 (Theorem 4.12) due to technical reasons.

Remarks on the regularity of the solution: In order to derive a priori error estimates,
we need to require additional regularity of the solution. In particular, we will assume
the natural regularity F(Dv) ∈ W 1,2(Ω)d×d and π ∈ W 1,p′(Ω) which is available for
sufficiently smooth data. The question arises which information on the second derivatives
of v can be extracted from the first derivatives of F(Dv)? This will be answered by the
following known lemmas. Although we do not need all of the following results for the
purpose of this section, we will use them in the further course of the thesis and, hence, we
will present them here for sake of completeness.
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Lemma 4.8. For p ∈ (1, 2] and ε ∈ (0,∞) let I be defined by (2.82). Then, for all
q ∈ [1, 2] and for all sufficiently smooth v there holds

‖∇2v‖q ≤ cI(v)
1
2 ‖(ε+ |Dv|)

2−p
2 ‖ 2q

2−q
(4.40)

where 2q
2−q =∞ for q = 2. The constant c only depends on p.

Proof. We refer to [DR05] and [BDR10].

Lemma 4.9. Let p ∈ (1, 2) and ε ∈ (0,∞). There exists c = c(p) > 0 such that

‖∇2v‖pp ≤ c
(
‖∇F(Dv)‖22 + ‖ε+ |Dv|‖pp

)
. (4.41)

Proof. Cf. [DR05]. Setting Ω0 :=
{
x ∈ Ω; (ε+ |Dv(x)|) ≤ |∇2v(x)|

}
, we estimate∫

Ω

|∇2v|p dx =
∫
Ω0

|∇2v|p−2|∇2v|2 dx+
∫

Ω\Ω0

|∇2v|p dx

≤
∫
Ω0

(ε+ |Dv|)p−2|∇2v|2 dx+
∫

Ω\Ω0

(ε+ |Dv|)p dx ≤ cI(v) + ‖ε+ |Dv|‖pp.

Then, (4.41) follows from Lemma 2.27.

Lemma 4.10. Let p ∈ (1, 2) and ε ∈ (0,∞). Then for all sufficiently smooth v there holds

‖v‖p2,q ≤ c
(
‖∇F(Dv)‖22 + ‖∇v‖pp + εp

)
, (4.42)

where q = 2− δ for arbitrary δ ∈ (0, 2− p] if d = 2 and q = 3p
p+1 if d = 3. The constant c

only depends on p and Ω. In particular, it is independent of ε.

Proof. We refer to [DR05]. There, the assertion is proven for d = 3, ε = 1, and for all v
with (v, 1)Ω = 0. For the proof of (4.42) we apply Lemma 4.8:

‖∇2v‖q ≤ cI(v)
1
2 ‖(ε+ |Dv|)

2−p
2 ‖ 2q

2−q
= cI(v)

1
2 ‖(ε+ |Dv|)‖

2−p
2

(2−p)q
2−q

.

In order to ensure W 1,q(Ω) ↪→ L
(2−p)q

2−q (Ω), we have to require that 1− d
q ≥ −

d(2−q)
(2−p)q . This

condition is satisfied if q = 2− δ (d = 2) and q = 3p
p+1 (d = 3). For such q, we get

‖∇2v‖q ≤ cI(v)
1
2
(
ε+ ‖Dv‖ (2−p)q

2−q

) 2−p
2 ≤ cI(v)

1
2
(
ε+ ‖Dv‖q + ‖∇Dv‖q

) 2−p
2 .

If ‖∇Dv‖q ≥ ε+ ‖Dv‖q, the latter inequality implies ‖∇2v‖pq ≤ cI(v). Otherwise, due to
Sobolev’s embedding theorem, for q = 2− δ (d = 2) and q = 3p

p+1 (d = 3) we conclude that

‖∇Dv‖q ≤ ε+ ‖Dv‖q ≤ c
(
ε+ ‖Dv‖p + ‖∇Dv‖p

)
≤ c

(
ε+ ‖Dv‖p + c(I(v) + ‖ε+ |Dv|‖pp)

1
p

)
.
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For the latter estimate we have used (4.41). Summing up we arrive at

‖∇2v‖pq ≤ c
(
εp + I(v) + ‖ε+ |Dv|‖pp

)
.

This proves the lemma.

Since all constants appearing in Lemmas 4.8 – 4.10 do not depend on ε ∈ (0,∞), one can
show that the inequalities (4.40) – (4.42) remain true for ε = 0.

A priori error estimates - case p < 2: In the shear thinning case the following theorem
provides a priori error estimates which improve previous results concerning the rate of
convergence or the assumed regularity of the solution (cf. Barrett/Liu [BL93b] and [BL94]).
Numerical experiments indicate that these error estimates are optimal.

Theorem 4.11. For p ∈ (1, 2] and ε ∈ [0, ε0] let S satisfy Assumption 2.1 and let F
be defined by (2.39). Let (v, π) ∈ X p × Qp be the unique solution to (P1) and let
(vh, πh) ∈ X p

h × Q
p
h be the unique solution to (P1h) where the stabilization term sh

is defined by (4.4). We assume the additional regularity F(Dv) ∈ W 1,2(Ω)d×d and
π ∈ W 1,p′(Ω) with 1/p + 1/p′ = 1. Then, for αM := α0h

s
M with α0 > 0 and s = 2 the

error of approximation is estimated in terms of h := max{hM ; M ∈Mh} as follows:

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh, (4.43)

‖π − πh‖p′ ≤ Cπh
2
p′ . (4.44)

The constants Cv, C ′v, Cπ > 0 only depend on p, ε0, σ0, σ1, Ω, f , α0, τ0, ‖∇F(Dv)‖2,
‖π‖1,p′, and Cπ additionally depends on β̃(p).

Proof. Let jh and jh be the interpolation operators of Lemma 4.4. We begin with the
proof of (4.43). We split the error (v − vh) in an interpolation part and a projection part:

‖F(Dv)−F(Dvh)‖22 . ‖F(Dv)−F(Djhv)‖22 + ‖F(Djhv)−F(Dvh)‖22.

According to Lemma 4.4 the desired estimate holds for the interpolation error:

‖F(Dv)−F(Djhv)‖22 . h2‖∇F(Dv)‖22. (4.45)

Thus it is sufficient to estimate the projection error ξh := (jhv − vh) and ηh := (jhπ − πh)
with respect to the following quantity,

|(ξh, ηh)|2lps := ‖F(Djhv)−F(Dvh)‖22 +
∑

M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M ,

(4.46)

where G is defined by (4.6). Applying Lemma 2.4 and Lemma 4.2, we conclude

|(ξh, ηh)|2lps ∼ (S(Djhv)− S(Dvh),Dξh)Ω + sh(jhπ)(ηh)− sh(πh)(ηh).
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Adding the following trivial identity

0 = −(π − πh,∇ · ξh)Ω + (∇ · (v − vh), ηh)Ω − (jhπ − π,∇ · ξh)Ω + (∇ · (jhv − v), ηh)Ω

and using the disturbed Galerkin orthogonality

(S(Dv)− S(Dvh),Dwh)Ω − (π − πh,∇ ·wh)Ω + (∇ · (v − vh), qh)Ω = sh(πh)(qh)

for all wh ∈ X p
h and qh ∈ Qph, we obtain

|(ξh, ηh)|2lps ∼ sh(jhπ)(ηh) + (S(Djhv)− S(Dv),Dξh)Ω − (jhπ − π,∇ · ξh)Ω
+ (∇ · (jhv − v), ηh)Ω =: I1 + I2 + I3 + I4.

(4.47)

We consider the terms of (4.47) separately. Applying Lemma 4.3, and the stability of the
interpolation operator jh, for arbitrary δ1 > 0 we can bound the first term I1 by

I1 ≤ cδ1h
s‖τ + |∇jhπ|‖p

′

p′ + δ1
∑

M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

≤ cδ1h
s
[
τp
′

0 |Ω|+ ‖π‖
p′

1,p′
]

+ δ1|(ξh, ηh)|2lps (4.48)

where cδ1 only depends on p, α0 and δ1. Let ϕ and ϕa be defined by (2.37) and (2.32).
Applying Lemma 2.4 twice, using the Young-type inequality (2.36) and interpolation
inequality (4.45), for arbitrary δ2 > 0 we estimate the second term I2 in (4.47) as follows,

I2 ≤ c
∫
Ω

ϕ′ε+|Djhv|(|Djhv −Dv|)|Djhv −Dvh| dx

≤ δ2c

∫
Ω

ϕε+|Djhv|(|Djhv −Dvh|) dx+ cδ2

∫
Ω

ϕε+|Djhv|(|Djhv −Dv|) dx

∼ δ2c‖F(Djhv)−F(Dvh)‖22 + cδ2‖F(Djhv)−F(Dv)‖22
≤ δ2c|(ξh, ηh)|2lps + cδ2h

2‖∇F(Dv)‖22 (4.49)

where cδ2 only depends on p, σ0, σ1 and δ2. Next we estimate I3. Using Hölder’s and
Young’s inequality, we deduce that for each δ3 > 0 there exists a constant cδ3 such that

I3 ≤
∣∣∣(π − jhπ,∇ · ξh)Ω

∣∣∣ ≤ ‖π − jhπ‖p′‖∇ξh‖p ≤ δ3‖∇(jhv − vh)‖2p + cδ3‖π − jhπ‖2p′ .

Utilizing Korn’s inequality, Lemma 2.6 (i) and Lemma 2.4, we conclude that

I3 ≤ δ3c
[
ε0|Ω|

1
p + ‖Djhv‖p + ‖Dvh‖p

]2−p
‖F(Djhv)−F(Dvh)‖22 + cδ3‖π − jhπ‖2p′ .

From (4.29), (2.63), and (4.34) it follows that the expression within the square brackets is
uniformly bounded by a constant c = c(Ω, p, ε0,f). Consequently, we get the estimate

I3 ≤ δ3c|(ξh, ηh)|2lps + cδ3h
2‖π‖21,p′ . (4.50)
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In order to estimate the term I4, we use integration by parts (the discrete pressure is
continuous), the orthogonality property of jh with respect to Y h, Hölder’s inequality,
Young’s inequality with δ4 > 0, Lemma 4.1, and the interpolation property of jh, such that

I4 ≤
∣∣∣(∇ · (jhv − v), ηh)Ω

∣∣∣ =
∣∣∣(jhv − v,∇ηh)Ω

∣∣∣ =
∣∣∣(jhv − v,θh(∇ηh))Ω

∣∣∣
≤

∑
M∈Mh

α
− 1
p′

M ‖jhv − v‖p;Mα
1
p′
M‖θh(∇ηh)‖p′;M

≤ cδ4

∑
M∈Mh

α
−(p−1)
M ‖jhv − v‖

p
p;M + δ4

∑
M∈Mh

αM‖θh(∇ηh)‖p
′

p′;M

≤ cδ4

∑
M∈Mh

h
2p−s(p−1)
M ‖v‖p2,p;SM + δ4c

∑
M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

≤ cδ4h
2p−s(p−1)‖v‖p2,p + δ4c|(ξh, ηh)|2lps, (4.51)

where the constant cδ4 only depends on p, α0 and δ4. Combining (4.47) – (4.51), choosing
δ1, . . . , δ4 sufficiently small, and absorbing the involved terms into the left-hand side of
(4.47), we conclude that there exists a constant c = c(p, ε0,f , σ0, σ1, α0, Ω) > 0 such that

|(ξh, ηh)|2lps ≤ c
(
h2‖∇F(Dv)‖22 + h2p−s(p−1)‖v‖p2,p

+ h2‖π‖21,p′ + hs
[
τp
′

0 |Ω|+ ‖π‖
p′

1,p′
])
.

(4.52)

According to (4.41), the Lp-norm of ∇2v can be estimated by the L2-norm of ∇F(Dv).
In order to ensure the optimal rate of convergence, we have to choose s = 2. This proves
(4.43)1. Using Poincaré’s and Korn’s inequality, Lemma 2.6, the uniform a priori estimates
(2.63) and (4.34), we finally arrive at

‖v − vh‖1,p ≤ c‖D(v − vh)‖p ≤ c‖F(Dv)−F(Dvh)‖2

for some c = c(p, ε0, Ω,f) > 0. In view of (4.43)1 this implies (4.43)2.

It remains to prove the pressure-estimate (4.44). We split the discretization error (π − πh)
in an interpolation part and a projection part:

‖π − πh‖p′ ≤ ‖π − jhπ‖p′ + ‖jhπ − πh‖p′ .

Because the desired result holds for the interpolation error, it is sufficient to estimate the
projection error ηh := (jhπ − πh). From Lemma 4.5 the inequality

β̃‖ηh‖p′ ≤ sup
wh∈X ph

|(∇ ·wh, ηh)Ω|
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh(∇ηh)‖p
′

p′;M

) 1
p′

=: J1 + J2 (4.53)

follows. Firstly we estimate J1. From (P1) and (P1h) we conclude the identity

(jhπ − πh,∇ ·wh)Ω = (S(Dv)− S(Dvh),Dwh)Ω + (jhπ − π,∇ ·wh)Ω
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for all wh ∈ X p
h. Consequently, we obtain the inequality

J1 ≤ sup
wh∈X ph

|(S(Dv)− S(Dvh),Dwh)Ω|
‖∇wh‖p

+ sup
wh∈X ph

|(jhπ − π,∇ ·wh)Ω|
‖∇wh‖p

. (4.54)

Using Hölder’s inequality, (2.48), and the interpolation property of jh, we deduce that

J1 . ‖F(Dv)−F(Dvh)‖
2
p′
2 + ‖jhπ − π‖p′ . ‖F(Dv)−F(Dvh)‖

2
p′
2 + h‖π‖1,p′ . (4.55)

Next we estimate J2. Recalling inequality (4.52) (s = 2), we observe that |(ξh, ηh)|2lps =
O(h2). Consequently, by means of Lemma 4.1 we obtain the estimate

J2 =
( ∑
M∈Mh

hp
′

M‖θh∇ηh‖
p′

p′;M

) 1
p′
≤ ch1− 2

p′

( ∑
M∈Mh

αM‖θh∇jhπ − θh∇πh‖p
′

p′;M

) 1
p′

≤ ch1− 2
p′

( ∑
M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

) 1
p′
≤ ch1− 2

p′ |(ξh, ηh)|
2
p′
lps ≤ ch.

(4.56)

Combining (4.53), (4.55), (4.56), and (4.43), we get the desired estimate (4.44).

A priori error estimates - case p > 2: In this paragraph we derive related a priori error
estimates for p ∈ (2,∞). Actually, the case p ∈ (2,∞) differs from the case p ∈ (1, 2] only
slightly. Hence, we restrict ourselves to highlight the differences between the two cases.

Theorem 4.12. For p ∈ [2,∞) and ε ∈ [0, ε0] let S satisfy Assumption 2.1 and let
F be defined by (2.39). Let (v, π) ∈ X p × Qp be the unique solution of (P1) and let
(vh, πh) ∈ X p

h × Q
p
h be the unique solution of (P1h), where the stabilization term sh is

defined by (4.4). We assume the additional regularity F(Dv) ∈W 1,2(Ω)d×d, v ∈W 2,p(Ω),
π ∈W 1,p′(Ω) where 1/p+ 1/p′ = 1. Then, for αM := α0h

s
M with α0 > 0 and s = p′:

‖F(Dv)−F(Dvh)‖2 ≤ Cvh
p′
2 , ‖v − vh‖1,p ≤ C ′vh

1
p−1 , (4.57)

‖π − πh‖p′ ≤ Cπh
p′
2 . (4.58)

The constants Cv, C ′v, Cπ > 0 only depend on p, ε0, σ0, σ1, Ω, f , α0, τ0, ‖∇F(Dv)‖2,
‖v‖2,p, ‖π‖1,p′, and Cπ additionally depends on β̃(p).

Proof. The proof of Theorem 4.12 differs from the proof of Theorem 4.11 only slightly.
Hence, we restrict ourselves to clarify the differences. Again it is sufficient to estimate the
quantity |(ξh, ηh)|2lps defined by (4.46). As above, we obtain |(ξh, ηh)|2lps ∼ I1 + I2 + I3 + I4
where I1, . . . , I4 are defined by (4.47). In view of Remark 4.4, for arbitrary δ1 > 0 and
δ2 > 0 the terms I1 and I2 are estimated analogously to the proof of Theorem 4.11:

I1 ≤ cδ1h
s‖π‖p

′

1,p′ + δ1|(ξh, ηh)|2lps, I2 ≤ cδ2h
2‖∇F(Dv)‖22 + δ2|(ξh, ηh)|2lps.
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Using Hölder’s and Young’s inequality, for any δ3 > 0 we estimate the term I3 by

I3 ≤
∣∣∣(π − jhπ,∇ · ξh)Ω

∣∣∣ ≤ ‖π − jhπ‖p′‖∇ξh‖p ≤ cδ3‖π − jhπ‖
p′

p′ + δ3‖∇(jhv − vh)‖pp.

Applying Korn’s inequality, Lemma 2.6 (ii) and the interpolation property of jh, we conclude

I3 . cδ3‖π − jhπ‖
p′

p′ + δ3‖F(Djhv)−F(Dvh)‖22 . cδ3h
p′‖π‖p

′

1,p′ + δ3|(ξh, ηh)|2lps.

Using integration by parts, the orthogonality of jh with respect to Y h, Hölder’s inequality,
(4.8), Young’s inequality, and the stability of θh and jh, for arbitrary δ4 > 0 we estimate

I4 ≤ |(jhv − v,∇ηh)Ω| = |(jhv − v,θh∇ηh)Ω| ≤
∑

M∈Mh

‖jhv − v‖p;M‖θh∇ηh‖p′;M

≤ cδ4

∑
M∈Mh

α−1
M ‖jhv − v‖

2
p;M

(
τ |M |

1
p′ + ‖π‖1,p′;SM + ‖∇πh‖p′;M

)2−p′

+ δ4
∑

M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

where the constant cδ4 only depends on p and δ4. Using the local inverse estimate (3.19),
the interpolation property of jh, and Hölder’s inequality with 2

p + p−2
p = 1, we arrive at

I4 ≤ cδ4

∑
M∈Mh

h4−s+p′−2
M ‖v‖22,p;SM

(
τ |M |

1
p′ + ‖π‖1,p′;SM + ‖πh‖p′;M

)2−p′

+ δ4
∑

M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

≤ cδ4h
4−s+p′−2

( ∑
M∈Mh

‖v‖p2,p;SM

) 2
p
( ∑
M∈Mh

(
τ |M |

1
p′ + ‖π‖1,p′;SM + ‖πh‖p′;M

)p′) p−2
p

+ δ4
∑

M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

≤ cδ4h
4−s+p′−2‖v‖22,p

(
τ0|Ω|

1
p′ + ‖π‖1,p′ + ‖πh‖p′

)2−p′
+ δ4|(ξh, ηh)|2lps

(we note that 2− p′ = p′(p− 2)/p). Combining all estimates above and choosing δ1, . . . , δ4
sufficiently small, we easily deduce that there exists c = c(p, σ0, σ1, α0, Ω) > 0 such that

|(ξh, ηh)|2lps ≤ c
(
hs‖π‖p

′

1,p′ + h2‖∇F(Dv)‖22 + hp
′‖π‖p

′

1,p′

+ h2−s+p′‖v‖22,p
(
τ0|Ω|

1
p′ + ‖π‖1,p′ + ‖πh‖p′

)2−p′)
.

(4.59)

Due to (4.34), πh is uniformly bounded in Lp′(Ω). In order to ensure the optimal rate of
convergence, we have to choose s = p′. This proves (4.57)1. Using Poincaré’s and Korn’s
inequality, Lemma 2.6 (ii), we finally arrive at

‖v − vh‖1,p ≤ c‖D(v − vh)‖p ≤ c‖F(Dv)−F(Dvh)‖
2
p

2
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for some c = c(p) > 0. By virtue of (4.57)1, this implies (4.57)2.

In order to verify (4.58), we use similar arguments as in the derivation of (4.44). Again it
is sufficient to estimate the terms J1 and J2 defined by (4.53). From (4.54) and (2.49) we
deduce that the term J1 can be estimated by

J1 .
[
ε|Ω|

1
p + ‖Dv‖p + ‖Dvh‖p

] p−2
2 ‖F(Dv)−F(Dvh)‖2 + h‖π‖1,p′ .

From (2.63) and (4.34) it follows that the expression within the square brackets is uniformly
bounded by a constant c = c(Ω, p, ε0,f). We estimate the term J2 as follows: Employing
estimate (4.8), the stability of θh and jh, and the inverse estimate (3.19), we realize that

Jp
′

2 .
∑

M∈Mh

hp
′

M‖G(θh∇jhπ)− G(θh∇πh)‖p
′

2;M‖τ + |θh∇jhπ|+ |θh∇πh|‖
2−p′

2 p′

p′;M

.
∑

M∈Mh

h
p′
2 p
′

M ‖G(θh∇jhπ)− G(θh∇πh)‖p
′

2;M

(
τ |M |

1
p′ + ‖π‖1,p′;SM + ‖πh‖p′;M

) 2−p′
2 p′

.

Raising this to the power 1/p′, using Hölder’s inequality with p′

2 + 2−p′
2 = 1, the uniform a

priori bound for ‖πh‖p′ , and recalling (4.59) with s = p′, we finally conclude that

J2 .
( ∑
M∈Mh

hp
′

M‖G(θh∇jhπ)− G(θh∇πh)‖22;M

) 1
2

×
( ∑
M∈Mh

(
τ |M |

1
p′ + ‖π‖1,p′;SM + ‖πh‖p′;M

)p′) 2−p′
2p′

. |(0, ηh)|lps
(
τ0|Ω|

1
p′ + ‖π‖1,p′ + ‖πh‖p′

) 2−p′
2 . h

p′
2 .

Summing up, we obtain (4.58) in view of (4.57). This completes the proof.

Remark 4.6. Since p > 2, by means of Lemma 2.4 we conclude the useful inequality

‖Du−Dv‖22 ≤ ε2−p
∫
Ω

(ε+ |Du|+ |Dv|)p−2|Du−Dv|2 dx

≤ cε2−p‖F(Du)−F(Dv)‖22 ∀u,v ∈W 1,p(Ω) (4.60)

provided that ε > 0. Inequality (4.60) implies an a priori error estimate for the velocity in
W 1,2(Ω) that is of same order as the related error estimate expressed by the F -distance.

Remark 4.7. The regularity assumption F(Dv) ∈W 1,2(Ω)d×d of Theorem 4.12 is redun-
dant, since v ∈ W 2,p(Ω) already implies F(Dv) ∈ W 1,2(Ω)d×d for p ≥ 2. In order to
see this, we define the measurable set Ω0 := {x ∈ Ω; (ε+ |Dv(x)|) ≤ |∇2v(x)|} and we
recall the definition of I in (2.82). According to ‖∇F(Dv)‖22 ∼ I(v) (see Lemma 2.27) it
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suffices to prove I(v) <∞. Using |∇Dv| ∼ |∇2v|, for p ≥ 2 we estimate

I(v) =
∫
Ω0

(ε+ |Dv|)p−2|∇Dv|2 dx+
∫

Ω\Ω0

(ε+ |Dv|)p−2|∇Dv|2 dx

.
∫
Ω0

|∇2v|p dx+
∫

Ω\Ω0

(ε+ |Dv|)p dx <∞,

since v ∈W 2,p(Ω) and Ω is bounded. Consequently, we get F(Dv) ∈W 1,2(Ω)d×d.

Remark 4.8. Considering the proof of Theorem 4.12, we observe that the regularity as-
sumption v ∈W 2,p(Ω) is only needed for the estimation of the term I4. Hence, we may
attempt to estimate I4 differently: First of all we recall that

I4 ≤
∑

M∈Mh

∫
M

h−1
M |jhv − v|hM |θh∇ηh|dx.

Lemma 2.2 implies that for each δ4 > 0 there exists a constant cδ4 > 0 such that

I4 ≤ cδ4

∑
M∈Mh

∫
M

(
(ϕ∗)τ+|θh∇jhπ|

)∗
(h−1
M |jhv − v|) dx

+ δ4
∑

M∈Mh

∫
M

(ϕ∗)τ+|θh∇jhπ|(hM |θh∇ηh|) dx.

From the properties of shifted N -functions we deduce that ϕa(t) ∼ (a+ t)p−2t2 uniformly
in a, t ≥ 0. As a consequence, for p ∈ (1,∞) and any h ∈ [0, 1] the inequality ϕa(ht) .
hmin{p,2}ϕa(t) can be shown. Applying this and Lemma 2.1, we arrive at

I4 . cδ4

∑
M∈Mh

∫
M

ϕ(ϕ∗)′(τ+|θh∇jhπ|)(h
−1
M |jhv − v|) dx

+ δ4
∑

M∈Mh

hp
′

M

∫
M

(ϕ∗)τ+|θh∇jhπ|(|θh∇ηh|) dx

. cδ4

∑
M∈Mh

∫
M

ϕ(ϕ∗)′(τ+|θh∇jhπ|)(h
−1
M |jhv − v|) dx+ δ4|(0, ηh)|lps =: I5 + δ4|(0, ηh)|lps.

Using ϕa(t) ∼ (a+ t)p−2t2 and Hölder’s inequality with 2
p + p−2

p = 1, we conclude that

I5 . cδ4

∑
M∈Mh

h−2
M ‖jhv − v‖

2
p;M

(∫
M

(
(ϕ∗)′(τ + |θh∇jhπ|) + h−1

M |jhv − v|
)p

dx
) p−2

p

. cδ4

∑
M∈Mh

h−2
M ‖jhv − v‖

2
p;M

(
‖τ + |θh∇jhπ|‖p

′

p′;M + h−pM ‖jhv − v‖
p
p;M

) p−2
p .

Compared to the proof of Theorem 4.12, I5 does not allow a better convergence order with
respect to the supposed regularity. In fact, I5 leads to the same convergence rate. However,
the estimation of I5 does not require an inverse estimate for finite element functions.
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Remark 4.9. The question arises whether the regularity assumption v ∈W 2,p(Ω) stated
in Theorem 4.12 may be relaxed and confined to the requirement F(Dv) ∈W 1,2(Ω)d×d
which seems to be more natural. In order to shed some light on that issue, first of all we
introduce the Nikol’skĭı spaces N s,p(Ω) (see, e.g., Kufner et al. [KJF77]): Let m ≥ 0 be an
integer, 0 < σ < 1, s = m+ σ, z ∈ Rd, Ωδ := {x ∈ Ω; dist(x, ∂Ω) ≥ δ}, and 1 ≤ p <∞.
The space N s,p(Ω) consists of all functions g : Ω → R for which the norm

‖g‖N s,p(Ω) =
(
‖g‖pLp(Ω) +

∑
|α|=m

sup
δ>0, 0<|z|<δ

∫
Ωδ

|∂αg(x+ z)− ∂αg(x)|p
|z|σp

dx
) 1
p

(4.61)

is finite. Below we suppose that the velocity v belongs to the Nikol’skĭı space N 1+2/p,p(Ω).
The regularity assumption v ∈ N 1+2/p,p(Ω) seems to be reasonable because it is well-
established (see [DER07]) that F(∇v) ∈W 1,2(Ω)d×d implies v ∈N 1+2/p,p(Ω).

The regularity assumption v ∈W 2,p(Ω) stated in Theorem 4.12 can be relaxed to F(Dv) ∈
W 1,2(Ω)d×d and v ∈ N 1+2/p,p(Ω) provided that ∇πh is uniformly bounded in Lp

′(Ω).
This can be seen as follows: From an embedding theorem (see [KJF77]) we deduce that
v ∈ N 1+2/p,p(Ω) implies v ∈ W 1+2/p−δ,p(Ω) for all δ > 0. Reminding the proof of
Theorem 4.12, and assuming that hM ∼ h for all M ∈Mh, we then estimate term I4 by

I4 ≤ cδ4h
−s‖jhv − v‖2p

(
τ + ‖∇π‖p′ + ‖∇πh‖p′

)2−p′
+ δ4c|(ξh, ηh)|2lps

≤ cδ4h
−s+2(1+ 2

p
−δ)‖v‖21+ 2

p
−δ,p + δ4c|(ξh, ηh)|2lps (4.62)

due to ‖∇πh‖p′ ≤ C. Although 1+2
p−δ is not an integer in general, the stated approximation

property of jh holds true according to the real method of interpolation for Sobolev spaces
(see [BS94]). The error estimate (4.57) remains valid provided that −s+ 2(1 + 2

p − δ) ≥ p′.
Since s := p′ and δ is arbitrarily small, the latter condition amounts to 1 + 2

p > p′ ⇔
p+ 2 > p+ p′ ⇔ p > 2. Finally, we remark that J2 = O(h) because of our assumption.

If the pressure belongs to W 2,p′(Ω), then the estimates of Theorem 4.12 can be improved:

Corollary 4.13. Let the assumptions of Theorem 4.12 be satisfied. For ν > 1 and
k ∈ {0, 1} let the fluctuation operator θh satisfy the property ‖θhw‖ν;M ≤ ChkM‖∇kw‖ν;M
for all w ∈ W k,ν(Ω) and M ∈ Mh, where C > 0 is a constant independent of h. If
additionally π ∈W 2,p′(Ω), then for αM := α0h

s
M with s ∈ [1, p′] the error of approximation

is estimated by (the choice s := 1 is asymptotically optimal)

‖F(Dv)−F(Dvh)‖2 + ‖π − πh‖p′ ≤ Ch, ‖v − vh‖1,p ≤ C ′h
2
p .

Proof. In the proof of Theorem 4.12 we estimate the terms I1 and I3 as follows: Using
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Remark 4.4, the stability of θh, the approximation property of θh and jh, we obtain

I1 . cδ1h
s
∑

M∈Mh

‖θh∇jhπ‖p
′

p′;M + δ1
∑

M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

. cδ1h
s
∑

M∈Mh

(
‖θh∇(jhπ − π)‖p

′

p′;M + ‖θh∇π‖p
′

p′;M

)
+ δ1|(ξh, 0)|2lps

. cδ1h
s+p′‖π‖p

′

2,p′ + δ1|(0, ηh)|2lps.

Similarly as in the proof of Theorem 4.12, we conclude that

I3 . cδ3h
2p′‖π‖p

′

2,p′ + δ3|(ξh, 0)|2lps.

Following the proof of Theorem 4.12, for s ∈ [1, p′] we hence arrive at |(ξh, ηh)|lps = O(h).
As a result, we get J2 = O(h) and we can easily complete the proof.

4.6 Error estimates for the classical LPS method

Theorems 4.11 and 4.12 can be seen as generalizations of the LPS method to fluid models
with p-structure. Note that in the context of linear Stokes systems (p = 2) the LPS method
is well studied, see Becker/Braack [BB01]. For Stokes systems the bilinear form

sh(π)(q) :=
∑

M∈Mh

αM (θh∇π,θh∇q)M (4.63)

has been used in order to stabilize the discretized equations of motion. Stabilization
methods such as (4.63) can also be applied to p-Stokes systems as depicted below.

Case p ≤ 2: The next Corollary is motivated by our subsequent numerical experiments:

Corollary 4.14. Let d = 2. For p ∈ (1, 2] and ε ∈ [0, ε0] let S satisfy Assumption 2.1
and let F be defined by (2.39). Suppose that Mh is quasi-uniform. Let (v, π) be the
solution to (P1), and let (vh, πh) be the solution to (P1h), where sh is defined by (4.63)
with αM := α0h

2
M . Assume that (v, π) satisfies the regularity F(Dv) ∈ W 1,2(Ω)d×d,

v ∈W 1,∞(Ω) and π ∈W 1,2(Ω). Then the approximation error is estimated by

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh, (4.64)

‖π − πh‖p′ ≤ Cπh
2
p′ . (4.65)

The constants Cv, C ′v, Cπ only depend on p, ε0, Ω, α0, ‖∇F(Dv)‖2, ‖π‖1,2, ‖v‖1,∞, and
Cπ additionally depends on β̃(p).

Remark 4.10. Compared to Theorem 4.11, Corollary 4.14 avoids the W 1,p′-regularity
assumption on the pressure and confines it to π ∈ W 1,2(Ω) provided that the velocity
additionally satisfies v ∈ W 1,∞(Ω). Note that, in case of d = 2, C1,α-regularity of the
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velocity is well-established: For space-periodic boundary conditions C1,α-regularity has
been proven in [KMS97], whereas for homogeneous Dirichlet boundary conditions it has
been shown in [KMS02]. Corollary 4.14 provides the same order of convergence as Theorem
4.11. Note that Corollary 4.14 includes the singular case ε = 0.

Proof of Corollary 4.14. The proof differs from the proof of Theorem 4.11 only slightly.
Once again it is sufficient to estimate the projection errors ξh := jhv−vh and η := jhπ−πh.
Since sh is linear in both arguments, we may replace the distance |·|lps defined in (4.46) by

|(ξh, ηh)|2lps := ‖F(Djhv)−F(Dvh)‖22 + sh(ηh)(ηh). (4.66)

We have to estimate the terms I1, . . . , I4 which arise in (4.47). The term I1 is bounded by

I1 := sh(jhπ)(ηh) ≤ sh(jhπ)(jhπ)
1
2 sh(ηh)(ηh)

1
2 ≤ cδ1h

2‖∇π‖22 + δ1|(0, ηh)|2lps.

Similarly to the proof of Theorem 4.11, we estimate the term I2 by

I2 ≤ cδ2h
2‖∇F(Dv)‖22 + δ2|(ξh, 0)|2lps.

Before we proceed with I3, we depict that jh is W 1,∞-stable: We know from (4.29) that
jh is locally W 1,1-stable, i.e., there holds ‖jhw‖1,1;M . ‖w‖1,1;SM for all w ∈ W 1,1(Ω)
and M ∈ Mh. Moreover, since Xh(M) is finite dimensional, there holds |∇ijhw(y)| .
−
∫
M |∇ijhw| dx, i ∈ {0, 1}, for all y ∈M and M ∈Mh. Due to the non-degeneracy of Mh

it follows that ‖jhw‖1,∞;M . ‖w‖1,∞;SM for all w ∈W 1,∞(Ω). This yields

‖jhw‖1,∞;Ω . ‖w‖1,∞;Ω ∀w ∈W 1,∞(Ω). (4.67)

Using (2.43) with ν = 2 and theW 1,∞-stability of jh, we modify estimate (4.50) as follows:

I3 := (π − jhπ,∇ · ξh)Ω ≤ ‖D(jhv − vh)‖2‖π − jhπ‖2
≤ (ε+ ‖∇jhv‖∞ + ‖∇vh‖∞)

2−p
2 ‖F(Djhv)−F(Dvh)‖2‖π − jhπ‖2

≤ δ3|(ξh, 0)|2lps + cδ3h
2(ε0 + ‖v‖1,∞ + ‖∇vh‖∞)2−p‖π‖21,2.

Since p < 2 and v ∈W 1,∞(Ω), F(Dv) ∈W 1,2(Ω)d×d implies v ∈W 2,2(Ω) by virtue of∫
Ω

|∇2v|2 dx ≤ (ε+ ‖Dv‖∞)2−p
∫
Ω

(ε+|Dv|)p−2|∇2v|2 dx

≤ c(ε+ ‖Dv‖∞)2−p
∫
Ω

|∇F(Dv)|2 dx <∞.

Using integration by parts, the orthogonality of jh with respect to Y h, Hölder’s and
Young’s inequality, and the approximation property of jh, we estimate the term I4 by

I4 := (∇ · (jhv − v), ηh)Ω ≤
∑

M∈Mh

‖jhv − v‖2;M‖θh∇ηh‖2;M

≤ cδ4

∑
M∈Mh

α−1
M ‖jhv − v‖

2
2;M + δ4

∑
M∈Mh

αM‖θh∇ηh‖22;M ≤ cδ4h
2‖v‖22,2 + δ4|(0, ηh)|2lps
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(cf. [MST07]). Collecting all estimates above and choosing δ1, . . . , δ4 sufficiently small, we
easily deduce that the projection error |(ξh, ηh)|lps is bounded by (w.l.o.g. ε0 ≥ 1)

|(ξh, ηh)|lps ≤ Ch(ε0 + ‖∇v‖∞ + ‖∇vh‖∞)
2−p

2 , (4.68)

where the constant C > 0 only depends on ‖∇F(Dv)‖2, ‖π‖1,2, ‖v‖1,∞, p, ε0, Ω. We
depict that vh is uniformly bounded in W 1,∞(Ω). Using the inverse inequality (3.20) with
d = 2, the W 1,∞-stability of jh, Korn’s inequality, Lemma 2.6 (i) with ν = 2, we estimate

‖vh‖1,∞ ≤ ‖vh − jhv‖1,∞ + ‖jhv‖1,∞

≤ c
[
h−1‖vh − jhv‖1,2 + ‖v‖1,∞

]
≤ c

[
h−1‖Dvh −Djhv‖2 + ‖v‖1,∞

]
≤ c

[
h−1‖F(Dvh)−F(Djhv)‖2

(
ε0 + ‖∇vh‖∞ + ‖∇v‖∞

) 2−p
2 + ‖v‖1,∞

]
.

(4.69)

Combining (4.69) and (4.68), we conclude that

‖vh‖1,∞ ≤ C = C
(
‖∇F(Dv)‖2, ‖π‖1,2, ‖v‖1,∞

)
. (4.70)

The constant C in (4.70) also depends on p, ε0, σ0, σ1, Ω. However, C is independent
of h. In view of (4.70), (4.68) yields the desired error estimate (4.64)1. Clearly, (4.64)2
follows from (2.43) and (4.64)1. It remains to prove the error estimate for the pressure. In
order to derive (4.65), we consult Lemma 4.5 which applied to the projection error ηh reads

β̃(p)‖ηh‖p′ ≤ sup
wh∈X ph

|(∇ ·wh, ηh)Ω|
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh∇ηh‖
p′

p′;M

) 1
p′

=: J1 + J2.

Interpolating Lp′(Ω) between L2(Ω) and W 1,2(Ω), and recalling the interpolation property
(4.15), and the W 1,2-stability of jh, for p > 2d

d+2 and λ := d
2 −

d
p′ we obtain the estimate

‖π − jhπ‖p′ ≤ c ‖π − jhπ‖λ1,2‖π − jhπ‖1−λ2 ≤ ch1+ d
p′−

d
2 ‖π‖1,2. (4.71)

Now the term J1 can be estimated as follows: Using similar arguments as in the proof of
Theorem 4.11 and the interpolation property (4.71) with d = 2, we conclude that

J1 ≤ ‖S(Dv)− S(Dvh)‖p′ + ‖jhπ − π‖p′ ≤ c‖F(Dv)−F(Dvh)‖
2
p′
2 + ch

2
p′ ‖π‖1,2.

Finally the term J2 can be estimated by means of the inverse inequality (3.19),

J2 ≡
( ∑
M∈Mh

hp
′

M‖θh∇ηh‖
p′

p′;M

) 1
p′
≤ c

( ∑
M∈Mh

hp
′

Mh
( d
p′−

d
2 )p′

M ‖θh∇ηh‖p
′

2;M

) 1
p′

≤ c
(
h

2d
p′ −d

∑
M∈Mh

h2
M‖θh∇ηh‖22;M

) 1
2
≤ ch

d
p′−

d
2 |(0, ηh)|lps. (4.72)

Recalling |(ξh, ηh)|lps = O(h), we easily complete the proof of (4.65).
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Corollary 4.15. Let d ≥ 2. For p ∈ (1, 2], ε ∈ [0, ε0] let S satisfy Assumption 2.1 and let
F be defined by (2.39). Let (v, π) be the solution to (P1), and let (vh, πh) be the solution
to (P1h), where sh is defined by (4.63) with αM := α0h

2
M . Assume that (v, π) satisfies the

regularity F(Dv) ∈W 1,2(Ω)d×d, v ∈W 2,2(Ω) and π ∈W 1,p′(Ω). Then there hold

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh, (4.73)

‖π − πh‖p′ ≤ Cπh
1+ d

p′−
d
2 . (4.74)

The constants Cv, C ′v, Cπ only depend on p, ε, Ω, α0, ‖∇F(Dv)‖2, ‖π‖1,2, ‖v‖2,2, and
Cπ additionally depends on and β̃(p).

Proof. The proof combines the proofs of Theorem 4.11 and Corollary 4.14. Once again it is
sufficient to estimate the projection errors ξh := jhv − vh and η := jhπ − πh with respect
to the distance |(ξh, ηh)|lps defined in (4.66). Similarly to the proofs of Theorem 4.11 and
Corollary 4.14, we can estimate the terms I1, . . . , I4 that arise in (4.47) as follows:

I1 ≤ cδ1h
2‖∇π‖22 + δ1|(0, ηh)|2lps, I2 ≤ cδ2h

2‖∇F(Dv)‖22 + δ2|(ξh, 0)|2lps,

I3 ≤ cδ3h
2‖π‖21,p′ + δ3|(ξh, 0)|lps, I4 ≤ cδ4h

2‖v‖22,2 + δ4|(0, ηh)|2lps.

Combining (4.47) with the above estimates for I1, . . . , I4 and choosing δ1, . . . , δ4 sufficiently
small, we easily conclude (4.73)1. The estimate (4.73)2 follows from (2.43), (4.73)1, (2.63)
and (4.34)1. Note that (4.34)1 also holds for sh as in (4.63). Finally, the pressure-error
estimate (4.74) follows from the combination of (4.53), (4.55), (4.72), and (4.73)1.

Remark 4.11. If we relax the assumption v ∈W 2,2(Ω) in Corollary 4.15, then we would
obtain a priori error estimates for the velocity that, compared to (4.73), provide lower
rates of convergence which additionally depend on the space dimension d. In contrast, the
stabilization scheme, which has been proposed in Section 4.1, allows an order of convergence
independent of d since it is adjusted to the p-structure of the problem.

Case p ≥ 2: In this paragraph we prove related error estimates for p ≥ 2. First of all we
restrict ourselves to the nondegenerate case ε > 0. The requirement ε > 0 enables us to
derive an a priori error estimate for the pressure with respect to the L2(Ω)-norm. If the
pressure belongs to W 1,2(Ω), then the application of the method (4.63) is justified by
Corollary 4.16. Let d = 2. For p ∈ [2,∞) and ε ∈ (0, ε0] let S satisfy Assumption 2.1
and let F be defined by (2.39). We suppose that Mh is quasi-uniform. Let (v, π) be the
solution to (P1), and let (vh, πh) be the solution to (P1h), where sh is defined by (4.63)
with αM := α0h

2
M . Assume that the solution (v, π) satisfies F(Dv) ∈ W 1,2(Ω)d×d and

π ∈W 1,2(Ω). Then, the velocity-error is estimated by

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh
2
p . (4.75)

If additionally v ∈W 1,∞(Ω), then the pressure-error in L2(Ω) is estimated by

‖π − πh‖2 ≤ Cπh. (4.76)

The constants Cv, C ′v, Cπ > 0 only depend on p, ε, Ω, α0, ‖∇F(Dv)‖2, ‖π‖1,2, and Cπ
additionally depends on ‖v‖1,∞ and β̃(2).
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Remark 4.12. The velocity-error estimate (4.75) holds for arbitrary space dimension d ≥ 2.
Compared to (4.57), estimate (4.75) provides better rates of convergence. Its proof requires
higher regularity of π but less regularity of v. The pressure-error estimate (4.76) predicts a
better convergence order than (4.58). Its proof requires the extra assumption v ∈W 1,∞(Ω)
which, in general, is satisfied for d = 2 (see [KMS02]). Note that Corollary 4.16 does not
include the case ε = 0. Estimate (4.76) does not represent a “surprising” result since, due
to ε > 0 and v ∈W 1,∞(Ω), the generalized viscosity remains bounded from below and
above and, hence, (2.16) can basically be interpreted as a Stokes system.

Proof of Corollary 4.16. The proof is based on the proofs of Theorem 4.11 and Corol-
lary 4.14. Once again it is sufficient to estimate the projection errors ξh := jhv − vh
and η := jhπ − πh with respect to the distance |(ξh, ηh)|lps given by (4.66). As above we
estimate the terms I1, . . . , I4 that arise in (4.47). Recalling the proofs of Corollary 4.14
and Theorem 4.11, we observe that the terms I1 and I2 are bounded by

I1 ≤ cδ1h
2‖∇π‖22 + δ1|(0, ηh)|2lps, I2 ≤ cδ2h

2‖∇F(Dv)‖22 + δ2|(ξh, 0)|2lps.

Since p > 2 and ε > 0, by virtue of (4.60) the estimate (4.50) can be modified as follows:

I3 := (π − jhπ,∇ · ξh)Ω ≤ ‖D(jhv − vh)‖2‖π − jhπ‖2
≤ δ3‖F(Djhv)−F(Dvh)‖22 + cε,δ3‖π − jhπ‖22 ≤ δ3|(ξh, 0)|2lps + cε,δ3h

2‖π‖21,2.

In case of p > 2 and ε > 0, F(Dv) ∈W 1,2(Ω)d×d implies v ∈W 2,2(Ω) because of∫
Ω

|∇2v|2 dx ≤ ε2−p
∫
Ω

(ε+ |Dv|)p−2|∇2v|2 dx ≤ cε2−p
∫
Ω

|∇F(Dv)|2 dx <∞.

Thus we can estimate the term I4 just like in the proof of Corollary 4.14:

I4 ≤ cδ4h
2‖v‖22,2 + δ4|(0, ηh)|2lps.

Collecting all estimates above and choosing δ1, . . . , δ4 sufficiently small, we easily deduce
that |(ξh, ηh)|lps = O(h). As a result we arrive at (4.75)1. Estimate (4.75)2 follows from
(2.45) and (4.75)1. It remains to prove the error estimate for the pressure. First of all,
we depict that vh is uniformly bounded in W 1,∞(Ω) provided that v ∈W 1,∞(Ω). Using
the inverse inequality (3.20) with d = 2, the W 1,∞-stability of jh, Korn’s inequality and
(4.60), we may estimate the W 1,∞-norm of vh as follows

‖vh‖1,∞ ≤ ‖jhv − vh‖1,∞ + ‖jhv‖1,∞
≤ c

[
h−1‖jhv − vh‖1,2 + ‖v‖1,∞

]
≤ c

[
h−1‖Djhv −Dvh‖2 + ‖v‖1,∞

]
≤ c

[
h−1ε

2−p
2 ‖F(Djhv)−F(Dvh)‖2 + ‖v‖1,∞

]
.

Recalling |(ξh, ηh)|lps = O(h), we realize that the right-hand side can be estimated inde-
pendently of h and, hence, vh is uniformly bounded inW 1,∞(Ω). In order to derive (4.76),
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we consult Lemma 4.5 that applied to the projection error ηh reads

β̃(2)‖ηh‖2 ≤ sup
wh∈X 2

h

|(∇ ·wh, ηh)Ω|
‖∇wh‖2

+
( ∑
M∈Mh

h2
M‖θh∇ηh‖22;M

) 1
2

=: J1 + J2.

Similarly to the proof of Theorem 4.11 we deduce that the term J1 can be bounded by

J1 ≤ ‖S(Dv)− S(Dvh)‖2 + ‖jhπ − π‖2. (4.77)

Using Lemma 2.4 and the fact p ≥ 2, we conclude that

‖S(Dv)− S(Dvh)‖2 .
(∫
Ω

(ε+ |Dv|+ |Dvh|)2(p−2)|Dv −Dvh|2 dx
) 1

2

.
(
ε+ ‖∇v‖∞ + ‖∇vh‖∞

)p−2
‖F(Dv)−F(Dvh)‖2. (4.78)

We recall that vh is uniformly bounded in W 1,∞(Ω). Inserting (4.78) into (4.77), we get

J1 ≤ c‖F(Dv)−F(Dvh)‖2 + h‖π‖1,2.

Since J2 ≡ sh(ηh)(ηh) 1
2 /
√
α0 and |(ξh, ηh)|lps = O(h), we easily infer estimate (4.76).

Compared to Theorem 4.12, Corollary 4.16 leads to improved a priori error estimates with
respect to the order of convergence. Note that Corollary 4.16 requires different assumptions
on the regularity and that it only includes the nondegenerate case ε > 0. The subsequent
Corollary 4.17 depicts that we can get rid of the condition ε > 0 without losing convergence
rate if we employ the following stabilization term suggested in [BBJL07, MST07],

sh
(
(v, π)

)(
(w, q)

)
:=

∑
M∈Mh

(
αM (θh∇π,θh∇q)M + νM (θh∇ · v, θh∇ ·w)M

)
. (4.79)

The patch-wise constants αM and νM are specified in Corollary 4.17 below. For the
remainder of this section we assume that the fluctuation operator θh does not only
satisfy stability as in Assumption 4.2 but also approximability: We suppose that for ν > 1,
k ∈ {0, 1}, it holds ‖θhw‖ν;M . hkM‖∇kw‖ν;M for all w ∈W k,ν(Ω) andM ∈Mh. The term
(4.79) stabilizes not only the pressure gradient but also the incompressibility constraint.

Corollary 4.17. Let d ≥ 2. For p ∈ [2,∞) and ε ∈ [0, ε0] let S satisfy Assumption 2.1 and
let F be defined by (2.39). Let (v, π) be the solution to (P1), and let (vh, πh) be the solution
to (P1h) where the stabilization sh is defined by (4.79) with αM := α0h

2
M and νM := ν0 > 0

for all M ∈ Mh. We assume that the solution (v, π) satisfies F(Dv) ∈ W 1,2(Ω)d×d,
v ∈W 2,2(Ω), and π ∈W 1,2(Ω). Then, the error of approximation is estimated by

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh
2
p , (4.80)

‖π − πh‖p′ ≤ Cπh. (4.81)

The constants Cv, C ′v, Cπ only depend on p, Ω, α0, ν0, ‖∇F(Dv)‖2, ‖v‖2,2, ‖π‖1,2, and
Cπ additionally depends on β̃(p).
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Remark 4.13. If p > 2 and ε > 0, F(Dv) ∈W 1,2(Ω)d×d implies v ∈W 2,2(Ω) due to∫
Ω

|∇2v|2 dx ≤ ε2−p
∫
Ω

(ε+ |Dv|)p−2|∇2v|2 dx ≤ cε2−p
∫
Ω

|∇F(Dv)|2 dx <∞.

Hence, the assumptions of Corollary 4.16 are more restrictive than the ones of Corollary 4.17.

Proof. The proof is based on the proofs of Theorem 4.11 and Corollary 4.16. It is sufficient
to estimate the projection errors ξh := jhv − vh and η := jhπ − πh with respect to

|(ξh, ηh)|2lps := ‖F(Djhv)−F(Dvh)‖22 + sh
(
(ξh, ηh)

)(
(ξh, ηh)

)
. (4.82)

Similarly to the proof of Theorem 4.11, we obtain the equivalence

|(ξh, ηh)|2lps ∼ sh
(
(jhv, jhπ)

)(
(ξh, ηh)

)
+ (S(Djhv)− S(Dv),Dξh)Ω

− (jhπ − π,∇ · ξh)Ω + (∇ · (jhv − vh), ηh)Ω =: I1, . . . , I4.
(4.83)

We estimate the terms I1, . . . , I4 separately. Using the stability of θh and the approximation
property of θh and jh, for arbitrary δ1 > 0 we estimate the term I1 by (cf. [MST07])

I1 ≤ cδ1sh
(
(jhv, jhπ)

)(
(jhv, jhπ)

)
+ δ1sh

(
(ξh, ηh)

)(
(ξh, ηh)

)
≤ cδ1

∑
M

[
αM‖∇jhπ‖22;M + νM‖∇ · (jhv − v)‖22;M + νM‖θh∇ · v‖22;M

]
+ δ1|(ξh, ηh)|2lps

≤ cδ1

(
h2‖π‖21,2 + h2‖v‖22,2

)
+ δ1|(ξh, ηh)|2lps

where cδ1 only depends on α0, ν0, δ1. Recalling the proof of Thm. 4.11, we observe that

I2 ≤ cδ2h
2‖∇F(Dv)‖22 + δ2|(ξh, 0)|2lps.

Using the orthogonality property of jh, we estimate the term I3 as follows (cf. [MST07]):

I3 := (π − jhπ,∇ · ξh)Ω = (π − jhπ, θh∇ · ξh)Ω
≤ cδ3

∑
M∈Mh

ν−1
M ‖π − jhπ‖

2
2;M + δ3

∑
M∈Mh

νM‖θh∇ · ξh‖22;M

≤ cδ3h
2‖π‖21,2 + δ3|(ξh, 0)|2lps.

As in the proof of Corollary 4.14, for arbitrary δ4 > 0 the term I4 is bounded by

I4 ≤ cδ4h
2‖v‖22,2 + δ4|(0, ηh)|2lps.

Collecting all estimates above and choosing δ1, . . . , δ4 sufficiently small, we easily deduce
that |(ξh, ηh)|lps = O(h). As a result we arrive at (4.80)1. Estimate (4.80)2 follows from
(2.45) and (4.80)1. It remains to prove the pressure-estimate (4.81). To this end, we consult
Lemma 4.5 that applied to the projection error ηh reads

β̃(p)‖ηh‖p′ ≤ sup
wh∈X ph

|(∇ ·wh, ηh)Ω|
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh∇ηh‖
p′

p′;M

) 1
p′

=: J1 + J2.
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Similarly to the proof of Thm. 4.12 it follows that for some c = c(Ω, p, ε0,f) > 0

J1 ≤ c(‖F(Dv)−F(Dvh)‖2 + h‖π‖1,2). (4.84)

Using Hölder’s inequality with p′

2 + 2−p′
2 = 1 twice, we conclude that

J2 ≤
( ∑
M∈Mh

hp
′

M‖θh∇ηh‖
p′

2;M |M |
2−p′

2

) 1
p′
≤
( ∑
M∈Mh

h2
M‖θh∇ηh‖22;M

) 1
2
( ∑
M∈Mh

|M |
) 2−p′

2

and, hence, J2 ≤ |(0, ηh)|lps|Ω|
2−p′

2 /
√
α0. Since |(ξh, ηh)|lps = O(h), we arrive at (4.81).

Refinement of Corollary 4.14: Using the stabilization (4.79), for p ∈ (1, 2] we can
also confine Corollary 4.14 in the sense that we can replace the regularity assumption
v ∈W 1,∞(Ω) by the less restrictive one v ∈W 2,2(Ω). Note that, indeed, for p ∈ (1, 2]
the conditions v ∈W 1,∞(Ω) and F(Dv) ∈W 1,2(Ω)d×d imply v ∈W 2,2(Ω) due to∫

Ω

|∇2v|2 dx ≤ (ε+ ‖Dv‖∞)2−p
∫
Ω

(ε+|Dv|)p−2|∇2v|2 dx <∞

(see Lemma 2.27). We end up with the following version of Corollary 4.14:

Corollary 4.18. Let d ≥ 2. For p ∈ (1, 2] and ε ∈ [0, ε0] let S satisfy Assumption 2.1 and
let F be defined by (2.39). Suppose that Mh is quasi-uniform. Let (v, π) be the solution
to (P1), and let (vh, πh) be the solution to (P1h), where the stabilization sh is defined by
(4.79) with αM := α0h

2
M and νM := ν0 > 0 for all M ∈Mh. Assume that (v, π) satisfies

the regularity F(Dv) ∈W 1,2(Ω)d×d, v ∈W 2,2(Ω) and π ∈W 1,2(Ω). Then there hold

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh, (4.85)

‖π − πh‖p′ ≤ Cπh
1+ d

p′−
d
2 . (4.86)

If additionally ε > 0, then the pressure-error in L2(Ω) is estimated by

‖π − πh‖2 ≤ C ′πh. (4.87)

The constants Cv, C ′v, Cπ only depend on p, ε0, Ω, α0, ν0, ‖∇F(Dv)‖2, ‖π‖1,2, ‖v‖2,2,
and Cπ additionally depends on β̃(p). The constant C ′π only depends on p, ε, Ω, α0, ν0,
β̃(2), ‖∇F(Dv)‖2, ‖v‖2,2, ‖π‖1,2, and it may explode as ε→ 0+.

Remark 4.14. Note that for d = 2 the condition F(Dv) ∈ W 1,2(Ω)d×d implies v ∈
W 2,2−δ(Ω) for all δ > 0 due Lemma 4.10.

Proof of Corollary 4.18. The proof combines the proofs of Corollaries 4.17 and 4.14. Once
again we have to estimate the terms I1, . . . , I4 that arise in (4.83). We estimate the terms
I1, I3 as in Corollary 4.17 whereas we estimate the terms I2, I4 just like in Corollary 4.14.
Following the proof of Corollary 4.17, we consequently arrive at (4.85)1. We derive (4.86)
recapitulating the proof of (4.65) for d ≥ 2. Finally, we obtain (4.87) if we follow the proof
of (4.65) while carrying out all arguments in an L2-setting and using (2.47) for ε > 0.
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4.7 Non-steady p-Stokes equations

In this section we investigate the time-space discretization of non-steady p-Stokes systems.
Concerning time discretization, optimal a priori error estimates have recently been derived
in [BDR09], in which a semi-implicit Euler scheme applied to the p-Navier-Stokes system
(2.14) has been considered. In order to assess the approximation error caused by temporal
and spatial discretization, we generalize previous results established in Sections 4.5, 4.6.

Time discretization: For T > 0 let I := [0, T ] be a time interval. We discretize (P4)
in time. To this end, for N ∈ N we introduce the time step size k := T/N > 0 and the
corresponding net IN := {tn}Nn=0 with tn := nk. We consider the implicit Euler scheme:

(P4k) Let v0 := v̂. For n = 1, . . . , N find (vn, πn) ∈ X p ×Qp such that

(dtvn,w)Ω + (S(Dvn),Dw)Ω − (πn,∇ ·w)Ω = (f ,w)Ω ∀w ∈ X p

(∇ · vn, q)Ω = 0 ∀q ∈ Qp
(4.88)

where the discrete time derivative is defined by

dtv
n := vn − vn−1

k
. (4.89)

Remark 4.15. Testing (4.88)1 with w := vn and using (2.40), we observe that

max
1≤n≤N

‖vn‖22 + k
N∑
n=1
‖vn‖p1,p ≤ C = C(f , v̂, p, ε0, Ω). (4.90)

The time discretization of p-structure systems has been studied intensively in recent years
(cf. [DPR02, DPR06]). In [BDR09], Berselli et al. analyzed the p-Navier-Stokes equations
(2.14) complemented with space-periodic boundary conditions and its time discretization
with a semi-implicit Euler scheme. They derived optimal error estimates as depicted by
Lemma 4.19. For d = 3 let us consider system (2.14) complemented with space-periodic
boundary conditions. For p ∈ (3/2, 2] and ε ∈ [0, ε0] let the extra stress tensor S satisfy
Assumption 2.1. We assume that f ∈ C(I;W 1,2(Ω)) ∩ W 1,2(I;L2(Ω)) and that v̂ ∈
W 2,2

div(Ω) with ∇ · S(Dv̂) ∈ L2(Ω). Let v be the strong solution to Problem (P7) with Vp
replaced by Vpper as in Lemma 2.30. In particular, v satisfies the regularity (2.90). We set
v0 := v̂. For n = 1, 2, . . . let vn be the solution to the system

dtv
n −∇ · S(Dvn) + [vn−1 · ∇]vn +∇πn = f(tn)

∇ · vn = 0

 in Ω (4.91)

endowed with space-periodic boundary conditions. Here, dtvn is defined as in (4.89). Then
there exists a time-step size k0 > 0 such that for k ∈ (0, k0) there holds

max
0≤n≤N

‖v(tn)− vn‖22 + k
N∑
n=0
‖F(Dv(tn))−F(Dvn)‖22 ≤ Ck2 (4.92)

where the constant C and k0 only depend on ε0, p, f , v̂, T, Ω.
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In [BDR09], Berselli et al. proved additional regularity of the semi-discrete solutions:

Lemma 4.20. Let d = 3. For p ∈ (3/2, 2] and ε ∈ [0, ε0] let S satisfy Assumption
2.1. We assume that f ∈ C(I;W 1,2(Ω)) and that v̂ ∈ W 2,2

div(Ω). Then there exists
k′ = k′(p, ε0,f , v̂, T,Ω) such that for k ∈ (0, k′) the solution vn to system (4.91) satisfies

max
0≤n≤N

‖dtvn‖22 + k
N∑
n=0
‖∇F(Dvn)‖

2 5p−6
2−p

2 + k
N∑
n=0
‖dtF(Dvn)‖22 ≤ C (4.93)

where the constant C only depends on p, ε0, f , v̂, T, Ω. Moreover, ∇πn belongs to the
space l2

5p−6
2−p (IN ;L2(Ω)) and its corresponding norm is bounded by a constant that only

depends on p, ε, f , v̂, T, Ω and that may explode as ε→ 0+.

As a consequence of (4.93), Berselli et al. showed in [BDR09] that the strong solution
vn to system (4.91) even belongs to l∞(IN ;W 1,r(Ω)) with 1 ≤ r < 6(p− 1) and that its
corresponding norm is bounded by a constant which only depends on p, ε0, f , v̂, T, Ω. This
result follows from the following well-known inequality (see Diening et al. [DPR02, BDR09]):
For 1 ≤ r < 6(p− 1) there exists a constant c = c(p,Ω, r) such that

max
0≤n≤N

‖∇vn‖pr ≤ c
(
εp + k

N∑
n=0

(
‖∇F(Dvn)‖

2 5p−6
2−p

2 + ‖dtF(Dvn)‖22
))
. (4.94)

Note that (5p − 6)/(2 − p) > 1 in (4.93) for the considered range of p. The following
well-known lemma depicts that, consequently, the strong solution vn to system (4.91)
belongs to l2(IN ;W 2, 4

4−p (Ω)) and its norm is bounded independently of k.

Lemma 4.21. Let p ≤ 2. For all sufficiently smooth wn ∈ l∞({tn}mn=l;L2(U)) there holds

k
m∑
n=l
‖wn‖22, 4

4−p ;U ≤ c sup
l≤n≤m

‖ε+ |∇wn|‖2−p2;U

[
k

m∑
n=l
‖∇F(Dwn)‖22;U

]

where the constant c > 0 only depends on p.

Proof. See Lemma 4.2 in [DER07]. Actually, the desired estimate appears within the proof
of Lemma 4.2 in [DER07] and it is shown with D replaced by ∇. The proof of Lemma
4.21 follows the same arguments. Note that the assertion holds for arbitrary d ≥ 2.

Knowledge about the regularity of (vn, πn), as provided by Lemma 4.20, enables the deriva-
tion of error estimates for the space discretization, as depicted in the next paragraph.

Space-time discretization: The semi-discrete Problem (P4k) is discretized in space by
equal-order d-linear Q1/Q1 finite elements. For pressure-stabilization, we apply the LPS
method introduced in Section 3.2. The fully discretized problem reads:
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(P4kh) Let v0
h := jhv

0. For n = 1, . . . , N find unh ≡ (vnh, πnh) ∈ X p
h ×Q

p
h such that

(dtvnh,wh)Ω+(S(Dvnh),Dwh)Ω − (πnh ,∇ ·wh)Ω + (∇ · vnh, qh)Ω
+ sh(unh)(ωh) = (f ,wh)Ω ∀ωh ≡ (wh, qh) ∈ X p

h ×Q
p
h (4.95)

where sh stands for a stabilization term such as (4.79).

Remark 4.16. Testing (4.95) with ωh := (vnh, πnh) and using (2.40), we observe that

max
1≤n≤N

‖vnh‖22 + k
N∑
n=1
‖vnh‖

p
1,p ≤ C = C(f , v̂, p, ε0, Ω). (4.96)

The following theorem measures the error between the solution vn of the semi-discrete
Problem (P4k) and the solution vnh of the fully-discrete Problem (P4kh). For its proof we
combine methods from [DER07] and Section 4.6.

Theorem 4.22. For p ∈ (1, 2] and ε ∈ [0, ε0] let the extra stress tensor S satisfy Assump-
tion 2.1. Let (vn, πn) be the solution to Problem (P4k), and let (vnh, πnh) be the solution to
Problem (P4kh), where the stabilization term sh is defined by (4.79). For ν > 1, k ∈ {0, 1}
let the fluctuation operator θh satisfy ‖θhw‖ν;M . hkM‖∇kw‖ν;M for all w ∈ W k,ν(Ω),
M ∈Mh. We assume that there exists a constant C > 0 independent of k so that

sup
1≤n≤N

‖∇vn‖22 + k
N∑
n=1
‖∇F(Dvn)‖22 + k

N∑
n=1
‖∇πn‖22 ≤ C. (4.97)

Moreover, we suppose that v0 = v̂ ∈W 1,2
0 (Ω). If h2− d(2−p)

2 ≤ ck with some c > 0, then for
αM := α0h

2 and νM := ν0 the error of approximation is estimated by

sup
1≤n≤N

‖vn − vnh‖22 + k
N∑
n=1
‖F(Dvn)−F(Dvnh)‖22

+ k
N∑
n=1

sh
(
(ξnh, ηnh)

)(
(ξnh, ηnh)

)
≤ C ′h2− d(2−p)

2 . (4.98)

Here, ξnh := jhv
n − vnh and ηnh := jhπ

n − πnh , where jh is the interpolation operator of
Lemma 4.4. The constant C ′ > 0 only depends on C, v̂, f , p, ε0, Ω, α0, ν0.

Remark 4.17. The smallness-assumption on the mesh-size is less restrictive than the
Courant-Friedrichs-Lewy (CFL) condition. It also appears in the article [DER07] in
which the temporal and spatial discretization of parabolic p-structure systems is analyzed.
Such p-structure systems correspond to our p-Stokes systems if the pressure and the incom-
pressibility constraint are omitted. Concerning the time-space discretization of p-structure
systems, Diening et al. [DER07] established the optimal a priori error estimate

sup
n∈{1,...,N}

‖v(tn)− vnh‖22 + k
N∑
n=1
‖F(∇v(tn))−F(∇vnh)‖22 ≤ c(h2 + k2) (4.99)
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provided that h2− d(2−p)
2 ≤ ck. Hence, the error estimate (4.98) seems to be suboptimal

with respect to the convergence order. Compared to (4.99), the reduced convergence rate
of (4.98) results from the low regularity of the semi-discrete pressure πn. In particular,
in Theorem 4.22 it is only assumed that πn belongs to l2(IN ;W 1,2(Ω)) and that its norm
is uniformly bounded. In order to derive an optimal error estimate similar to (4.99), we
need to assume that πn remains uniformly bounded in lp

′(IN ;W 1,p′(Ω)) (see Corollary
4.23 below). However, we are not able to show this stronger regularity of πn. Note that
the regularity-assumption (4.97) is satisfied at least in the case of space periodic boundary
conditions (see Lemma 4.20 and its subsequent discussion).

Proof of Theorem 4.22. We proceed similarly to the article [DER07], in which parabolic p-
structure systems and their time-space discretizations are studied. We define enh := vn−vnh.
Taking the difference between (4.88) and (4.95), we observe that

(dtenh,wh)Ω + (S(Dvn)− S(Dvnh),Dwh)Ω − (πn − πnh ,∇ ·wh)Ω
+ (∇ · enh, qh)Ω = sh

(
(vnh, πnh)

)(
(wh, qh)

)
∀(wh, qh) ∈ X p

h ×Q
p
h. (4.100)

Setting ξnh := jhv
n − vnh and ηnh := jhπ

n − πnh , we define the quantity

E : = 1
2‖e

m
h ‖22 + k2

2

m∑
n=1
‖dtenh‖22 + k

m∑
n=1

(S(Dvn)− S(Dvnh),Denh)Ω

+ k
m∑
n=1

{
sh
(
(jhvn, jhπn)

)(
(ξnh, ηnh)

)
− sh

(
(vnh, πnh)

)(
(ξnh, ηnh)

)}
.

(4.101)

We notice that (dtenh, enh)Ω = (dtenh, jhenh)Ω + (dtenh,vn − jhvn)Ω due to jhvnh = vnh and

k
m∑
n=1

(dtenh, enh)Ω =
m∑
n=1
{‖enh‖22 − (en−1

h , enh)Ω}

= 1
2

m∑
n=1
‖enh‖22 + 1

2

m∑
n=1
‖en−1

h ‖22 −
m∑
n=1

(en−1
h , enh)Ω −

1
2‖e

0
h‖22 + 1

2‖e
m
h ‖22

= 1
2

m∑
n=1
‖enh − en−1

h ‖22 −
1
2‖e

0
h‖22 + 1

2‖e
m
h ‖22

= k2

2

m∑
n=1
‖dtenh‖22 −

1
2‖e

0
h‖22 + 1

2‖e
m
h ‖22.

Using this, we can rewrite E as follows:

E = k
m∑
n=1

(dtenh,vn − vnh)Ω + k
m∑
n=1

(S(Dvn)− S(Dvnh),Dvn −Dvnh)Ω

− k
m∑
n=1

(πn − πnh ,∇ · (vn − vnh))Ω + k
m∑
n=1

(∇ · (vn − vnh), πn − πnh)Ω

+ k
m∑
n=1

{
sh
(
(jhvn, jhπn)

)(
(ξnh, ηnh)

)
− sh

(
(vnh, πnh)

)(
(ξnh, ηnh)

)}
+ 1

2‖e
0
h‖22.
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Using the disturbed Galerkin orthogonality (4.100), we consequently arrive at

E = k
m∑
n=1

(dtenh,vn − jhvn)Ω + k
m∑
n=1

(S(Dvn)− S(Dvnh),Dvn −Djhvn)Ω

− k
m∑
n=1

(πn − jhπn,∇ · (vn − jhvn))Ω − k
m∑
n=1

(jhπn − πnh ,∇ · (vn − jhvn))Ω

+ k
m∑
n=1

(∇ · (vn − vnh), πn − jhπn)Ω + k
m∑
n=1

sh
(
(jhvn, jhπn)

)(
(ξnh, ηnh)

)
+ 1

2‖e
0
h‖22

=: F1 + F2 + F3 + F4 + F5 + F6 + F7. (4.102)

By means of Lemma 2.4, for some c = c(p) > 0 we estimate the quantity E from below by

E ≥ 1
2‖e

m
h ‖22 + k2

2

m∑
n=1
‖dtenh‖22 + ck

m∑
n=1
‖F(Dvn)−F(Dvnh)‖22

+ k
m∑
n=1

sh
(
(ξnh, ηnh)

)(
(ξnh, ηnh)

)
.

Below we estimate the terms F1, . . . , F7 defined in (4.102) separately. Using Young’s
inequality, we conclude that for each δ1 > 0 there exists cδ1 > 0 such that

F1 ≤ δ1k
2
m∑
n=1
‖dtenh‖22 + cδ1

m∑
n=1
‖vn − jhvn‖22.

Using the properties of jh, and applying Lemma 4.21, we deduce that

F1 ≤ δ1k
2
m∑
n=1
‖dtenh‖22 + cδ1h

4− d(4−p)
2 +d

m∑
n=1
‖vn‖22, 4

4−p

≤ δ1k
2
m∑
n=1
‖dtenh‖22 + cδ1h

4− d(2−p)
2 sup

n∈{1,...,m}
‖ε+ |∇vn|‖2−p2

[ m∑
n=1
‖∇F(Dvn)‖22

]
.

Assuming h2− d(2−p)
2 ≤ ck, we obtain h4− d(2−p)

2 = h2h2− d(2−p)
2 ≤ ch2k and, hence,

F1 ≤ δ1k
2
m∑
n=1
‖dtenh‖22 + cδ1h

2 sup
n∈{1,...,m}

‖ε+ |∇vn|‖2−p2

[
k

m∑
n=1
‖∇F(Dvn)‖22

]
.

Using Lemma 2.4 and Lemma 2.2, for arbitrary δ2 > 0 we easily derive the inequality

F2 ≤ cδ2k
m∑
n=1
‖F(Dvn)−F(Djhvn)‖22 + δ2k

m∑
n=1
‖F(Dvn)−F(Dvnh)‖22

≤ cδ2h
2k

m∑
n=1
‖∇F(Dvn)‖22 + δ2k

m∑
n=1
‖F(Dvn)−F(Dvnh)‖22
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where cδ2 only depends on p and δ2. Using the orthogonality of jh with respect to Yh,
Young’s inequality, we deduce that for arbitrary δ3 > 0 the term F3 + F5 is estimated by

F3 + F5 = k
m∑
n=1

(πn − jhπn,∇ · ξnh)Ω = k
m∑
n=1

(πn − jhπn, θh∇ · ξnh)Ω

≤ cδ3k
m∑
n=1

∑
M∈Mh

ν−1
M ‖π

n − jhπn‖22;M + δ3k
m∑
n=1

∑
M∈Mh

νM‖θh∇ · ξnh‖22;M

≤ cδ3h
2k

m∑
n=1
‖πn‖21,2 + δ3k

m∑
n=1

sh
(
(ξnh, 0)

)(
(ξnh, 0)

)
.

Using integration by parts (functions inQph are continuous and vn, jhvn belong toW 1,p
0 (Ω)),

the orthogonality of jh with respect to Y h, Young’s inequality, the interpolation property
of jh, and Lemma 4.21, we conclude that for each δ4 > 0 there exists cδ4 > 0 such that

F4 = k
m∑
n=1

(vn − jhvn,∇ηnh)Ω = k
m∑
n=1

(vn − jhvn,θh∇ηnh)Ω

≤ cδ4k
m∑
n=1

∑
M∈Mh

α−1
M ‖v

n − jhvn‖22;M + δ4k
m∑
n=1

∑
M∈Mh

αM‖θh∇ηnh‖22;M

. cδ4k
m∑
n=1

∑
M∈Mh

α−1
M h

4− d(4−p)
2 +d

M ‖vn‖22, 4
4−p ;SM

+ δ4k
m∑
n=1

sh
(
(0, ηnh)

)(
(0, ηnh)

)

. cδ4h
2− d(2−p)

2 sup
n∈{1,...,m}

‖ε+ |∇vn|‖2−p2 k
m∑
n=1
‖∇F(Dvn)‖22 + δ4k

m∑
n=1

sh
(
(0, ηnh)

)(
(0, ηnh)

)
.

Using Young’s inequality, the interpolation property of θh, jh, and Lemma 4.21, we realize
that for each δ5 > 0 there exists a constant cδ5 > 0 only depending on p and δ5 such that

F6 ≤ cδ5k
m∑
n=1

∑
M∈Mh

{
αM‖θh∇jhπn‖22;M + νM

(
‖θh∇ · (jhvn − vn)‖22;M + ‖θh∇ · vn‖22;M

)}

+ δ5k
m∑
n=1

∑
M∈Mh

{
αM‖θh∇ηnh‖22;M + νM‖θh∇ · ξnh‖22;M

}

≤ cδ5k
m∑
n=1

∑
M∈Mh

{
αM‖πn‖21,2;SM + νMh

2− d(2−p)
2

M ‖vn‖22, 4
4−p ;SM

}

+ δ5k
m∑
n=1

sh
(
(ξnh, ηnh)

)(
(ξnh, ηnh)

)
≤ cδ5

(
h2k

m∑
n=1
‖πn‖21,2 + h2− d(2−p)

2 sup
n∈{1,...,m}

‖ε+ |∇vn|‖2−p2 k
m∑
n=1
‖∇F(Dvn)‖22

)

+ δ5k
m∑
n=1

sh
(
(ξnh, ηnh)

)(
(ξnh, ηnh)

)
.
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Finally, since v0 = v̂ and v̂ ∈W 1,2(Ω), the term F7 can be estimated by

F7 ≡
1
2‖v

0 − jhv0‖22 ≤ ch2‖v̂‖21,2.

Collecting all estimates above, choosing δ1, . . . , δ5 sufficiently small, absorbing the terms
with δ1, . . . , δ5 into the left-hand side, taking the supremum over m = 1, . . . , N , and
recalling (4.97), we can easily complete the proof.

Since the regularity assumption (4.97) is satisfied (see Lemma 4.20), we can combine
Theorem 4.22 and Lemma 4.19 so that we arrive at an a priori estimate for the overall
discretization error v(tn)− vnh which provides an optimal convergence order with respect
to k but a suboptimal convergence rate with respect to h. (We believe that an estimate for
v(tn)− vn similar to (4.92) remains valid for the simplified p-Stokes system at least in the
case of space-periodic boundary conditions.) Note that in Theorem 4.22 we would obtain
an optimal a priori error estimate with respect to the convergence order if we suppose
the following stronger regularity of the semi-discrete velocity: ‖vn‖l2(IN ;W 2,2(Ω)) ≤ C.
Alternatively, the following Corollary 4.23 shows that we obtain an optimal a priori error
estimate if we assume stronger regularity of the semi-discrete pressure πn. In particular,
we require that πn remains uniformly bounded in lp′(IN ;W 1,p′(Ω)) with p′ ≥ 2. However,
we are not able to show the supposed regularity and, hence, we are not allowed to state it
as an assumption since we are considering an approximative system which is discretized in
time. As a result, the following Corollary can only be understood in a formal sense.

Corollary 4.23. For p ∈ (1, 2] and ε ∈ [0, ε0] let the extra stress tensor S satisfy Assump-
tion 2.1. Let (vn, πn) be the solution to Problem (P4k), and let (vnh, πnh) be the solution to
Problem (P4kh) where the stabilization term sh is defined by (4.4). We assume that there
exists a constant C > 0 independent of k so that

sup
1≤n≤N

‖∇vn‖22 + k
N∑
n=1
‖∇F(Dvn)‖22 + k

N∑
n=1
‖∇πn‖p

′

p′ ≤ C. (4.103)

Moreover, we suppose that v0 = v̂ ∈ W 1,2
0 (Ω). If h2− d(2−p)

2 ≤ ck for some c > 0 and
αM := α0h

s with s = 2, then the error of approximation can be estimated by

sup
1≤n≤N

‖vn − vnh‖22 + k
N∑
n=1
‖F(Dvn)−F(Dvnh)‖22

+ k
N∑
n=1

∑
M∈Mh

αM‖G(θh∇jhπn)− G(θh∇πnh)‖22;M ≤ C ′h2

where jh is the interpolation operator of Lemma 4.4. The constant C ′ > 0 only depends on
C, v̂, f , p, ε0, Ω, α0.

Proof of Corollary 4.23. We modify the proof of Theorem 4.22 appropriately. Following
the proof of Theorem 4.22, we similarly arrive at (4.102) and we aim at estimating the
terms E,F1, . . . , F5 defined in (4.101) and (4.102).
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By means of Lemma 2.4 and Lemma 4.2, we estimate the quantity E from below by

E ≥ 1
2‖e

m
h ‖22 + k2

2

m∑
n=1
‖dtenh‖22 + c1k

m∑
n=1
‖F(Dvn)−F(Dvnh)‖22

+ c2k
m∑
n=1

∑
M∈Mh

αM‖G(θh∇jhπn)− G(θh∇πnh)‖22;M

where the constants c1 and c2 only depend on p. The terms F1 and F2 are estimated exactly
as in the proof of Theorem 4.22. Using Hölder’s inequality, the interpolation property of
jh, Young’s inequality, and applying Lemma 4.9, we estimate the term F3 as follows:

F3 ≤ k
m∑
n=1
‖πn − jhπn‖p′‖∇vn −∇jhvn‖p ≤ ch2k

m∑
n=1
‖πn‖1,p′‖vn‖2,p

≤ ch2k
m∑
n=1
‖πn‖p

′

1,p′ + ch2k
m∑
n=1
‖∇F(Dvn)‖22 + ch2k

m∑
n=1
‖ε+ |Dvn|‖pp.

Applying integration by parts (vn, jhvn belong to W 1,p
0 (Ω)), using the orthogonality

property of jh with respect to Y h, we estimate the term F4 by

F4 = k
m∑
n=1

(vn − jhvn,∇ηnh)Ω = k
m∑
n=1

(vn − jhvn,θh∇ηnh)Ω

≤ k
m∑
n=1

∑
M∈Mh

α
− 1
p′

M ‖vn − jhvn‖p;Mα
1
p′
M‖θh∇η

n
h‖p′;M .

Applying Young’s inequality, we deduce that for each δ3 > 0 there exists cδ3 > 0 such that

F4 ≤ cδ3k
m∑
n=1

∑
M∈Mh

α
−(p−1)
M ‖vn − jhvn‖

p
p;M + δ3k

m∑
n=1

∑
M∈Mh

αM‖θh∇ηnh‖
p′

p′;M

. cδ3k
m∑
n=1

∑
M∈Mh

α1−p
M h2p

M‖v
n‖p2,p;SM + δ3k

m∑
n=1

∑
M∈Mh

αM‖G(θh∇jhπn)− G(θh∇πnh)‖22;M

. cδ3h
2p+s(1−p)k

m∑
n=1
‖vn‖p2,p + δ3k

m∑
n=1

∑
M∈Mh

αM‖G(θh∇jhπn)− G(θh∇πnh)‖22;M .

Using (2.43) and Young’s inequality, for any δ4 > 0 we estimate the term F5 as follows:

F5 ≤ ck
m∑
n=1
‖πn − jhπn‖p′‖ε+ |Dvn|+ |Dvnh|‖

2−p
2

p ‖F(Dvn)−F(Dvnh)‖2

≤ cδ4k
m∑
n=1
‖πn − jhπn‖2p′‖ε+ |Dvn|+ |Dvnh|‖2−pp + δ4k

m∑
n=1
‖F(Dvn)−F(Dvnh)‖22.

96



4.8 Numerical experiments

Using the properties of jh and Young’s inequality (with 2
p′ + 2−p

p = 1), we arrive at

F5 ≤ cδ4h
2k

m∑
n=1
‖πn‖21,p′‖ε+ |Dvn|+ |Dvnh|‖2−pp + δ4k

m∑
n=1
‖F(Dvn)−F(Dvnh)‖22

≤ cδ4h
2k

m∑
n=1

{
‖πn‖p

′

1,p′ + ‖ε+ |Dvn|+ |Dvnh|‖pp
}

+ δ4k
m∑
n=1
‖F(Dvn)−F(Dvnh)‖22.

Applying Lemma 4.3 and the W 1,p′-stability of jh, we realize that for each δ5 > 0 there
exists a constant cδ5 > 0 only depending on p and δ5 such that the term F6 is bounded by

F6 ≤ cδ5h
sk

m∑
n=1
‖τ + |∇πn|‖p

′

p′ + δ5k
m∑
n=1

∑
M∈Mh

αM‖G(θh∇jhπn)− G(θh∇πnh)‖22;M .

As in the proof of Thm. 4.22 we obtain F7 = O(h2). In view of s = 2 we can complete the
proof following the proof of Thm. 4.22 and taking into account (4.90), (4.96), (4.103).

If we suppose that we are allowed to combine Theorem 4.22 and Lemma 4.19, then we
would arrive at an a priori estimate for the discretization error v(tn)− vnh which would
provide an optimal convergence order with respect to k and h.

4.8 Numerical experiments

In this section we present numerical experiments which illustrate the established a priori
error estimates. All computations were performed for the Carreau-type model (2.10),
(2.11b). If not stated otherwise, the parameters were set to µ0 := 1 and ε := 10−5.
Problem (P1) was discretized with equal-order d-linear (Q1/Q1) finite elements based
on quadrilateral meshes. Since the considered discretization is not stable, the LPS-based
stabilization methods of Sections 4.1 and 3.2 were applied. The algebraic equations were
solved by Newton’s method, the linear subproblems by the GMRES method. The multigrid
method was applied as a preconditioner. Details on the numerical solver and information
about its realization within the software package Gascoigne [GAS] can be found in Section
3.4. In the following experiments we measure the error of approximation for the quantities

EFv := ‖F(Dv)−F(Dvh)‖2, E1,ν
v := ‖∇(v − vh)‖ν , Eνv := ‖v − vh‖ν ,

ESv := ‖S(Dv)− S(Dvh)‖p′ , Eνπ := ‖π − πh‖ν ,
(4.104)

and we depict the experimental order of convergence (EOC) with respect to the number
of elements (under global mesh refinement). As usual, (v, π) denotes the (continuous)
solution to (P1) and (vh, πh) is referred to as the (discrete) solution to (P1h). The order
of convergence is determined by the standard formula log(E(h)/E(h/2))/ log(2) where
E(h) stands for one of the quantities in (4.104). In this section, we aim at answering the
question whether the order of convergence predicted by our theoretical results coincides
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4 Finite Element Approximation of the p-Stokes Equations

with the rate of convergence observed by numerical experiments. First of all, by means
of Examples 1–3 we numerically confirm the a priori error estimates of Theorem 4.11
for different values of p ≤ 2. Then, in Example 4 we demonstrate the optimality of the
error estimates (4.43) and (4.44) with respect to the supposed regularity of (v, π). Via
Examples 5–6 we numerically validate Theorem 4.12 for different values of p ≥ 2. In
Example 7 we discuss super-approximation effects that usually occur for Q1/Q1 elements
provided that a smooth solution is approximated on a sequence of regular meshes. By means
of Example 8 we illustrate the a priori error estimates of Corollaries 4.14 and 4.16 which
deal with the standard LPS method proposed in [BB01] and its application to p-Stokes
systems. Note that the above experiments are performed in two space dimensions. Finally,
via Example 9 we verify the derived a priori error estimates in three space dimensions.

Table 4.1. Numerical verification of Theorem 4.11 for p < 2

(a) p = 1.1

Ep
′

π E1,p
v

#cells error conv. error conv.
1024 4.28e-03 0.15 5.61e-04 1.05
4096 3.85e-03 0.15 2.74e-04 1.03
16384 3.42e-03 0.17 1.36e-04 1.02
65536 3.02e-03 0.18 6.73e-05 1.01
262144 2.66e-03 0.18 3.35e-05 1.01
expected 0.18 1.00

(b) p = 1.2

Ep
′

π E1,p
v

#cells error conv. error conv.
1024 1.84e-03 0.34 5.67e-04 1.02
4096 1.47e-03 0.32 2.81e-04 1.01
16384 1.17e-03 0.33 1.40e-04 1.01
65536 9.29e-04 0.33 6.99e-05 1.00
262144 7.36e-04 0.34 3.49e-05 1.00
expected 0.33 1.00

(c) p = 1.3

Ep
′

π E1,p
v

#cells error conv. error conv.
1024 8.58e-04 0.50 5.85e-04 1.00
4096 6.25e-04 0.46 2.93e-04 1.00
16384 4.54e-04 0.46 1.46e-04 1.00
65536 3.29e-04 0.46 7.32e-05 1.00
262144 2.38e-04 0.46 3.66e-05 1.00
expected 0.46 1.00

(d) p = 1.5

Ep
′

π E1,p
v

#cells error conv. error conv.
1024 2.20e-04 0.80 6.36e-04 0.97
4096 1.37e-04 0.69 3.22e-04 0.98
16384 8.58e-05 0.67 1.62e-04 0.99
65536 5.38e-05 0.67 8.17e-05 0.99
262144 3.38e-05 0.67 4.10e-05 0.99
expected 0.67 1.00

Example 1: First of all we deal with the shear thinning case. We numerically validate
Theorem 4.11, see Table 4.1. As a first designed experiment, we chose the computational
domain Ω := (−0.5, 0.5)× (−0.5, 0.5) and we prescribed the exact solution to (P1) by

v(x) := |x|a−1
(
x2
−x1

)
and π(x) := x1x2 + (x1x2)3. (4.105)

Problem (P1h) was solved for the following data: The right-hand side f was given by
f := −∇·S(Dv)+∇π, and Dirichlet boundary conditions with vD := v|∂Ω were prescribed
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on the whole boundary ∂Ω. The stabilization term sh was chosen similarly to the one in
(4.4) with αM = α0h

2
M and τ = 1. However, instead of θh∇πh as in (4.4), the gradient of

fluctuations ∇θ̄hπh was used where the filter θ̄h is defined by (3.32). Although we analyzed
LPS schemes based on fluctuations of gradients θh∇πh only and we have θh∇πh 6= ∇θ̄hπh
in general, we believe that the choice ∇θ̄hπh allows a similar convergence analysis and the
same a priori error estimates (cf. Remark 3.4, [BB01, MST07]). The stabilization parameter
α0 was set to α0 = 0.3. Note that in all examples the stabilization method was less sensitive
with respect to α0. Clearly, the regularity of v is controlled by the choice of a ∈ R. We
easily compute that ∇·v = 0, |∇v(x)| ∼ |x|a−1, and |∇F(Dv(x))| ∼ |x|

(a−1)p
2 −1 for ε = 0.

Hence, it holds F(Dv) ∈ W 1,2(Ω)d×d provided that (a−1)p
2 − 1 > −1 ⇔ a > 1. In this

example we set a = 1.01. According to (4.43) and (4.44) we expect the convergence rates 1
for the velocity in W 1,p(Ω) and 2

p′ for the pressure in Lp′(Ω). Considering Table 4.1, we
realize that the numerical results agree with the theoretical ones very well. In particular,
Examples 4.1(a) – 4.1(d) reflect that the order of convergence for the pressure depends on
the choice of p as predicted by (4.44).

Table 4.2. Numerical verification of Theorem 4.11 for p < 2

(a) p = 1.1

#elements E1,p
v Epv ES

v Ep
′

π E2
π

1024 1.08 1.90 0.18 0.19 0.95
4096 1.05 1.95 0.18 0.17 0.99
16384 1.03 1.98 0.18 0.17 1.01
65536 1.01 1.99 0.18 0.17 1.01
262144 1.01 1.99 0.18 0.17 1.01
expected 1.00 0.18 1.00

(b) p = 1.2

#elements E1,p
v Epv ES

v Ep
′

π E2
π

1024 1.02 1.94 0.34 0.36 1.01
4096 1.02 1.97 0.34 0.32 1.00
16384 1.01 1.98 0.34 0.33 1.01
65536 1.01 1.99 0.34 0.33 1.01
262144 1.00 1.99 0.34 0.33 1.01
expected 1.00 0.33 1.00

(c) p = 1.3

#elements E1,p
v Epv ES

v Ep
′

π E2
π

1024 1.00 1.95 0.46 0.59 1.11
4096 1.00 1.97 0.46 0.46 1.03
16384 1.00 1.98 0.46 0.46 1.02
65536 1.00 1.99 0.46 0.46 1.01
262144 1.00 1.99 0.46 0.46 1.01
expected 1.00 0.46 1.00

(d) p = 1.5

#elements E1,p
v Epv ES

v Ep
′

π E2
π

1024 0.97 1.95 0.66 1.42 1.51
4096 0.98 1.96 0.67 0.80 1.22
16384 0.99 1.98 0.67 0.68 1.08
65536 0.99 1.98 0.67 0.67 1.03
262144 0.99 1.99 0.67 0.67 1.01
expected 1.00 0.67 1.00

Example 2: The following experiments are in the same spirit as the ones in Example 1.
Here we do not only demonstrate Theorem 4.11 but also we determine the experimental order
of convergence with respect to further quantities such as ESv . We chose the computational
domain Ω as in Example 1 and we prescribed the exact solution to (P1) by

v(x) := |x|a−1
(
x2
−x1

)
and π(x) := |x|bx1x2, a, b ∈ R. (4.106)
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The data f and vD, for which Problem (P1h) was solved, were chosen similarly as in
Example 1. There the patch-wise constant αM , that arises in the stabilization term
sh, was given by αM := α0h

2
M/µ0. In view of the LPS-theory for Stokes systems, the

choice αM := α0h
2
M/µ(|Dvh|2) would however be more natural where µ(|Dvh|2) is the

generalized viscosity defined in (2.11b). Numerical experiments indicate that both forms
of αM influence neither the stability of the discrete pressure nor the order of convergence
(see Example 3). In this example the stabilization term sh is chosen as in Example
1 but its patch-wise constant αM is set to αM := α0h

2
M/µ(|Dvh|2). The requirement

F(Dv) ∈W 1,2(Ω)d×d and π ∈W 1,p′(Ω) amounts to the condition a > 1 and b > − 2
p′ − 1.

Table 4.2 depicts the rates of convergence that were obtained for a = 1.01 and b = 2.
Since π is smooth, in (4.54) the interpolation error (π − jhπ) is of higher order than the
quantity ESv . Consequently, in view of (4.53)–(4.56) the order of convergence for Ep′π
should basically be determined by the one for ESv . Studying Table 4.2, we observe that
Ep
′
π is exactly of same order as ESv . Recalling Theorem 4.11, we realize that the numerical

results agree with the theoretical ones very well. In particular, the rate of convergence for
Ep
′
π depends on the parameter p as predicted by Theorem 4.11. We also observe that Epv

behaves as O(h2). Hence we are allowed to conjecture that a duality argument, which is
similar to the one described in [BS94], may be applicable here.

Table 4.3. Numerical verification of Theorem 4.11: p = 1.1, a = 1.01, b = −1.17

#elements E1,p
v Epv ES

v Ep
′

π E2
π

1024 1.08 1.90 0.18 1.01 1.54
4096 1.05 1.95 0.18 0.92 1.33
16384 1.03 1.98 0.18 0.33 1.16
65536 1.02 1.99 0.18 0.19 1.07
262144 1.01 1.99 0.18 0.18 1.03
expected 1.00 0.18 1.00

Table 4.3 shows the experimental rates of convergence that were obtained for a = 1.01 and
b = − 2

p′ − 0.99. In contrast to the previous experiment, neither the velocity v nor the
pressure π were smooth functions but they satisfy the condition F(Dv) ∈W 1,2(Ω)d×d and
π ∈W 1,p′(Ω). In view of Table 4.3 the experimental order of convergence coincides with
the theoretical rate of convergence predicted by Theorem 4.11. It should be pointed out
that E2

π ≈ O(h) is expected as long as ε > 0, cf. (4.87), (5.32). To sum up, the numerical
observations agree with Theorem 4.11. The quantities Ep′π and ESv converge with same
order. Since Epv behaves as O(h2), a duality argument seems to be applicable here.

Example 3: In Examples 1–2 we observed that both patch-wise stabilization parameters
αM := α0h

2
M/µ0 and αM := α0h

2
M/µ(|Dvh|2) lead to the same convergence order. However

the second choice seems to be more suitable from numerical point of view as depicted
by the following experiment (see Table 4.4). The analytical solution (v, π) was given by
(4.106) with a = 1.01 and b = 2. Hence, the velocity v satisfies F(Dv) ∈W 1,2(Ω)d×d and
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Table 4.4. Validation of Theorem 4.11 for p = 1.2 and different versions of αM

(a) αM := α0h
2
M/µ0

E1,p
v Ep

′

π E2
π Numerical costs

#cells error conv. error conv. error conv. #Newt.-It. #GMRES-It.
256 1.16e-03 – 2.58e-03 – 1.44e-03 – 7 (2) 1;1;1;1;1;1;1
1024 5.72e-04 1.02 2.01e-03 0.36 7.14e-04 1.01 7 (2) 1;1;1;1;1;1;1
4096 2.83e-04 1.02 1.61e-03 0.32 3.57e-04 1.00 6 (2) *;*;*;35;29;17
16384 1.41e-04 1.01 1.28e-03 0.33 1.78e-04 1.00 6 (2) *;*;*;39;33;21
65536 7.00e-05 1.01 1.01e-03 0.33 8.90e-05 1.00 6 (2) *;*;*;*;37;23
262144 3.49e-05 1.00 8.04e-04 0.33 4.44e-05 1.00 6 (2) *;*;*;*;39;23

(b) αM := α0h
2
M/µ(|Dvh|2)

EF
v Ep

′

π E2
π Numerical costs

#cells error conv. error conv. error conv. #Newt.-It. #GMRES-It.
256 1.16e-03 – 2.53e-03 – 1.49e-03 – 7 (2) 1;1;1;1;1;1;1
1024 5.72e-04 1.02 1.96e-03 0.36 7.37e-04 1.01 7 (2) 1;1;1;1;1;1;1
4096 2.83e-04 1.02 1.57e-03 0.32 3.68e-04 1.00 6 (2) 8;8;7;7;6;4
16384 1.41e-04 1.01 1.25e-03 0.33 1.83e-04 1.01 6 (2) 8;9;8;7;6;4
65536 7.00e-05 1.01 9.92e-04 0.33 9.10e-05 1.01 6 (2) 8;9;8;7;6;5
262144 3.49e-05 1.00 7.90e-04 0.33 4.51e-05 1.01 6 (2) 8;15;12;9;7;6

the pressure π is smooth. In Table 4.4, we depict the absolute errors and corresponding
convergence rates. We also compare the numerical complexity. The discrete nonlinear
problem was solved by means of Newton’s method with step-size control, see Algorithm
3.1. The numerical costs were measured by the number of iterations that were performed
by Newton’s algorithm in order to reduce the (nonlinear) residual up to the prescribed
tolerance TOL = 10−11. Here, the number within the brackets exhibits the total number
of iterations performed by the step-size control. The linear system of equations, that arises
in each Newton step, was solved by the GMRES method. As a preconditioner, we applied
2 iterations of the multigrid method with W-cycle. Within the W-cycle, we performed
4 pre-smoothing/post-smoothing steps. In case of grids with less than 2000 elements,
the linear systems of equations were solved directly. In Table 4.4, for each Newton step
we depict the number of iterations that were performed by the GMRES algorithm in
order to reduce the (linear) residual up to the prescribed tolerance TOL = 10−12. The
symbol “*” indicates that the tolerance was not reached within 40 iterations of GMRES.
In view of Table 4.4, the two versions of αM lead to similar order of convergence for the
pressure. If we compare the number of iterations performed by GMRES, we realize that
the choice αM = α0h

2
M/µ(|Dvh|2) requires less iterations of GMRES and, hence, it allows

less computational effort than αM = α0h
2
M/µ0. As a result, if αM = α0h

2
M/µ(|Dvh|2)

is used, then the linear systems of equations arising from Newton iteration seem to be
better-conditioned. Hence, we use αM := α0h

2
M/µ(|Dvh|2) for the following simulations.
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Table 4.5. Optimality of the a priori error estimates: Case p = 1.4

a = 0.99 a = 0.70 a = 0.40 a = 0.10

#cells EF
v Ep

′

π EF
v Ep

′

π EF
v Ep

′

π EF
v Ep

′

π

1024 0.88 0.95 0.75 0.56 0.57 0.45 0.37 0.34
4096 0.90 0.59 0.76 0.45 0.57 0.33 0.37 0.21
16384 0.91 0.57 0.77 0.45 0.58 0.33 0.37 0.21
65536 0.92 0.57 0.77 0.45 0.58 0.33 0.37 0.20
262144 0.93 0.57 0.78 0.45 0.58 0.33 0.37 0.20
expected 0.99 0.57 0.79 0.45 0.58 0.33 0.37 0.21

Example 4: The numerical results shown in Table 4.5 indicate that the a priori estimates
(4.43), (4.44) are optimal with respect to the required regularity of the solution. Once
again, the exact solution (v, π) was given by (4.106) with a ∈ R and fixed b = 2. In
this example we investigated the convergence of the method regarding the regularity of
v. Table 4.5 depicts the EOC for EFv and Ep′π . As expected, in case of EFv we lose linear
convergence as soon as F(Dv) no more belongs to W 1,2(Ω)d×d. More precisely, we observe
that EFv ≈ chβ‖∇βF(Dv)‖2 with β ≈ (a− 1)p2 + 1 noting that |∇βF(Dv)| ∈ L2(Ω) iff
β < (a− 1)p2 + 1. Moreover, we realize that Ep′π is of order {(a− 1)p2 + 1} 2

p′ . In view of
(4.55), the numerical observations agree with our expectations.

Table 4.6. Numerical verification of Theorem 4.12 for p > 2

(a) p = 3.0, a = 1.34, b = −0.32

Ep
′

π E1,p
v

#cells error conv. error conv.
1024 1.02e-02 1.02 8.55e-02 0.52
4096 5.04e-03 1.01 5.97e-02 0.52
16384 2.49e-03 1.01 4.18e-02 0.52
65536 1.24e-03 1.01 2.93e-02 0.51
262144 6.12e-04 1.01 2.06e-02 0.51
expected 0.75 0.50

(b) p = 3.5, a = 1.44, b = −0.42

Ep
′

π E1,p
v

#cells error conv. error conv.
1024 1.65e-02 1.00 1.78e-01 0.42
4096 8.21e-03 1.01 1.34e-01 0.41
16384 4.09e-03 1.01 1.00e-01 0.41
65536 2.03e-03 1.01 7.54e-02 0.41
262144 1.01e-03 1.01 5.67e-02 0.41
expected 0.70 0.40

Example 5: For the proposed LPS-based stabilization scheme (4.4) we numerically verify
the derived a priori error estimates of Theorem 4.12 in the case p ≥ 2, see Table 4.6.
Here the exact velocity v was given by (4.106)1 and the exact pressure π was prescribed
by π(x) := |x|b − −

∫
Ω |x|bdx. The data f , v|D and the stabilization sh were chosen as

in Example 1 but the patch-wise constant αM , which appears in the definition of sh,
was set to αM := α0h

p′

M/µ(|Dvh|2). The availability of the error estimates (4.57) and
(4.58) requires the regularity v ∈W 2,p(Ω) and π ∈ W 1,p′(Ω), which is equivalent to the
conditions a > 2− 2/p and b > 1− 2/p′. Considering Tables 4.6(a) and 4.6(b), we realize
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that the error E1,p
v behaves as O(h1/(p−1)) and, hence, it converges as predicted by Theorem

4.12. However, we observe linear convergence for the pressure in Lp′(Ω) although we would
expect the rate of convergence p′/2. Hence, the a priori estimate (4.58) may be suboptimal
or the observed convergence rate for Ep′π may be caused by super-approximation effects
which, however, generally occur in case of smooth solutions only. Further investigations
are necessary, and they are carried out in Examples 6 and 7.

Table 4.7. Numerical verification of Theorem 4.12 for p > 2

(a) p = 2.5; b = −2.19

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 0.83 0.67 1.66 1.00 1.00 0.80
4096 0.84 0.67 1.67 1.00 1.00 0.81
16384 0.84 0.67 1.67 1.01 1.01 0.81
65536 0.84 0.67 1.67 1.01 1.01 0.81
262144 0.84 0.67 1.67 1.01 1.01 0.81
expected 0.83 0.67 0.83

(b) p = 3; b = −2.32

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 0.75 0.50 1.46 1.00 0.99 0.67
4096 0.75 0.50 1.45 1.00 1.00 0.67
16384 0.76 0.50 1.50 1.01 1.01 0.68
65536 0.76 0.51 1.51 1.01 1.01 0.68
262144 0.76 0.51 1.51 1.01 1.01 0.68
expected 0.75 0.50 0.75

(c) p = 3.5; b = −2.42

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 0.69 0.40 1.36 0.99 0.99 0.57
4096 0.70 0.40 1.29 1.00 1.00 0.58
16384 0.70 0.40 1.13 1.00 1.00 0.58
65536 0.70 0.40 1.35 1.01 1.01 0.58
262144 0.71 0.40 1.39 1.01 1.01 0.58
expected 0.70 0.40 0.70

Example 6: We illustrate the a priori error estimates (4.57) & (4.58) for less regular
velocity as required in Theorem 4.12, and we determine the EOC with respect to further
quantities such as ESv , see Table 4.7. Here, the analytical solution was given by (4.106)
with a = 1.01 and b = −2/p′ − 0.99 so that F(Dv) ∈ W 1,2(Ω)d×d and π ∈ W 1,p′(Ω) is
fulfilled. The data f , v|D and the stabilization sh were chosen as in Example 5. In view
of Tables 4.7(a) – 4.7(b), we realize that EFv = O(hp′/2) and E1,p

v = O(h1/(p−1)) although
v /∈W 2,p(Ω). Note that Theorem 4.12 predicts the observed convergence provided that
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v ∈W 2,p(Ω). Hence, for this particular example the assumption F(Dv) ∈ W 1,2(Ω)d×d
and π ∈W 1,p′(Ω) seems to be sufficient to ensure (4.57). According to Remark 4.9, we can
expect convergence as in (4.57) & (4.58) if ∇πh is uniformly bounded in Lp′(Ω). Indeed,
we numerically observed that the Lp′-norm of ∇(π − πh) behaves as O(1). Concerning
the pressure convergence, Tables 4.7(a) – 4.7(b) indicate that, similarly to Example 5,
Ep
′
π ≈ O(h) in the case p > 2. Although we have not been able to verify Ep

′
π = O(h)

analytically, by virtue of (4.53) and (4.54) we may explain this convergence behavior
referring to the apparent EOC for ESv . Using the inverse inequality (3.20), the interpolation
inequality (3.18), we can easily derive the following relation between Ep′π and E2

π:

‖π − πh‖2 . h
1− d

p′+
d
2 ‖π‖1,p′ + h

− d
p′+

d
2 ‖π − πh‖p′ (p ≥ 2).

Hence, for d = 2 we deduce from Ep
′
π = O(h) that the pressure error in L2(Ω) converges

with order 2− 2/p′ = 2/p. By Tables 4.7(a) – 4.7(b) the behavior E2
π = O(h2/p) is well

reflected. To sum up, we observed that the experimental convergence order for the velocity
agrees with the theoretical one. The pressure converges linearly in Lp′(Ω) for all considered
p > 2 and, hence, its convergence is better than expected from (4.58). As a result the error
estimate (4.58) may be suboptimal. If we compare the experimental order of convergence
for ESv and Ep′π , we realize that both quantities are of same order. We recall that we made
the same observation in the case p ≤ 2. Consequently we conjecture that, in order to
derive sharp pressure-error estimates in the case p > 2, we should estimate the quantity
ESv directly and we should not relate it to the natural distance EFv , see Lemma 2.7.

Table 4.8. Verification of Corollary 4.13 for a smooth solution: Case p = 3

(a) Q1/Q1 elements

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1280 0.94 0.99 2.12 0.94 0.87 0.60
5120 0.99 1.00 2.04 0.99 1.59 1.44
20480 1.00 1.00 2.00 1.00 1.73 1.63
81920 1.00 1.00 2.00 1.00 1.76 1.62
327680 1.00 1.00 2.00 1.00 1.76 1.58
1310720 1.00 1.00 2.00 1.00 1.75 1.55
expected 1.00 0.67 1.00

(b) Q2/Q2 elements

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1280 1.96 2.04 3.14 1.95 2.04 2.03
5120 1.98 2.02 3.05 1.98 2.01 2.01
20480 1.99 2.01 3.01 1.99 2.01 2.00
81920 2.00 2.00 3.00 2.00 2.00 2.00
327680 2.00 2.00 3.00 2.00 2.00 2.00
supposed 2.00 1.33 2.00
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Example 7: In the context of Q1/Q1 elements, we numerically investigate the role of
super-approximation. For low-order elements, super-approximation effects are well-studied
(see [BLR86]). They may occur if, e.g., uniform triangulations are employed and the
solution is sufficiently smooth. In this example a smooth solution (v, π) was prescribed by
(4.106) with a = 3 and b = 2. The data f , v|D were chosen accordingly as in Example 1,
and the stabilization sh was given by (3.54) with αM := α0h

2
M/µ(|Dv|2) and %M := 0. In

view of Corollary 4.13, we expect that EFv = O(h), E1,p
v = O(h2/p) and Ep′π = O(h). The

numerical results of Table 4.8(a) were obtained for the Q1/Q1-discretization, whereas the
results of Table 4.8(b) were generated with Q2/Q2 finite elements. In Table 4.8(a), the
pressure converges better than predicted by Corollary 4.13. The convergence rates for Ep′π
are even better than the ones for ESv . Note that in all previous examples Ep′π was of same
order as ESv . Here, the convergence rates for Ep′π cannot be explained by the apparent
convergence rates for ESv . By contrast, as depicted in Table 4.8(b) the Q2/Q2-discretization
yields convergence rates for Ep′π which rather agree with our expectations. At least Ep′π
converges with same order as ESv . Hence, in Table 4.8(a) the improved convergence order for
Ep
′
π seems to be a special feature of the Q1/Q1-discretization. For both discretizations, the

velocity-error E1,p
v behaves better than predicted by Corollary 4.13. Below we numerically

investigate whether the improved convergence is caused by super-approximation.

Table 4.9. Super approximation for a smooth solution: Case p = 3

(a) Regular meshes

E1,p
v Ep

′

π

#cells error conv. error conv.
320 7.68e-02 – 2.39e-03 –
1280 3.88e-02 0.99 1.31e-03 0.87
5120 1.94e-02 1.00 4.36e-04 1.59
20480 9.71e-03 1.00 1.31e-04 1.73
81920 4.85e-03 1.00 3.88e-05 1.76
327680 2.43e-03 1.00 1.14e-05 1.76
1310720 1.21e-03 1.00 3.40e-06 1.75
expected 0.67 1.00

(b) Distorted meshes

E1,p
v Ep

′

π

#cells error conv. error conv.
320 7.85e-02 – 2.52e-03 –
1280 4.01e-02 0.97 1.42e-03 0.83
5120 1.99e-02 1.01 5.13e-04 1.47
20480 1.00e-02 0.99 1.82e-04 1.49
81920 5.00e-03 1.00 7.02e-05 1.37
327680 2.50e-03 1.00 3.06e-05 1.19
1310720 1.25e-03 1.00 1.43e-05 1.10
expected 0.67 1.00

(a) Regular initial mesh (b) Distorted initial mesh (c) Distorted mesh with 320 el.

Figure 4.1. Distorted mesh (c) with apparent patch-structure based on (b)

In all previous examples, the mesh was refined uniformly. In particular, in each refinement
step one quadrilateral is uniformly subdivided in four quadrilaterals of same size. By
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contrast, in Table 4.9 we numerically solved the same problem as in Table 4.8(a) for
disturbed grids: On each refinement level every inner node of the grid, which is not located
next to the boundary, was randomly displaced up to 0 < δx < 0.15h in x-direction and
0 < δy < 0.15h in y-direction (see Figure 4.1). Table 4.9 indicates a similar convergence of
the velocity for both regular and distorted meshes. As a result, this observation does not
allow us to state whether the improved convergence order for E1,p

v can be explained by
super-approximation effects. By contrast, Table 4.9 reveals a reduced convergence rate
for the pressure on distorted meshes. In fact, in view of Table 4.9(b) we realize that Ep′π
almost behaves as O(h). Hence, super-approximation seems to be involved.

Table 4.10. Super approximation for a smooth solution: Case p = 2

(a) Discretization errors

E1,2
v E2

π

#cells error conv. error conv.
256 4.66e-02 – 2.67e-03 –
1024 2.33e-02 1.00 9.33e-04 1.52
4096 1.16e-02 1.00 3.23e-04 1.53
16384 5.82e-03 1.00 1.13e-04 1.52
65536 2.91e-03 1.00 3.94e-05 1.52
262144 1.46e-03 1.00 1.38e-05 1.51
expected 1.00 1.00

(b) Projection errors

‖∇ξh‖2 ‖ηh‖2

#cells error conv. error conv.
256 2.26e-03 – 2.69e-03 –
1024 8.04e-04 1.49 9.36e-04 1.52
4096 2.81e-04 1.51 3.24e-04 1.53
16384 9.84e-05 1.52 1.13e-04 1.52
65536 3.45e-05 1.51 3.94e-05 1.52
262144 1.21e-05 1.51 1.38e-05 1.51

In Table 4.8 we observed an improved convergence rate for Ep′π (and E2
π) larger than one

although we would expect from (4.53) and (4.54) that the convergence rate for Ep′π (and
E2
π) is restricted to one for Q1 elements. The improved convergence order for Ep′π is not

related to the p-structure of the problem but it is rather caused by super-approximation in
the context of Q1/Q1 elements. This statement is supported by Table 4.10 which shows
a computation for p = 2. Note that the case p = 2 corresponds to the linear Stokes
equations. In Table 4.10 we solved the above problem for p = 2 using a sequence of regular
meshes. Table 4.10(a) depicts the obtained discretization errors E1,2

v and E2
π. We expect

linear convergence for E2
π but we observe the improved convergence rate 3/2. In this

connection, we also measured the projection errors. Table 4.10(b) presents the projection
errors ξh := (jhv − vh) and ηh := (jhπ − πh). Comparing Tables 4.10(a) and 4.10(b), we
realize that the convergence rates for ηh agree with the ones for (π − πh). The velocity
error ξh in W 1,2(Ω) converges with same order as the the pressure error ηh in L2(Ω). For
p = 2 the pressure-estimates (4.53) and (4.54) can be expressed as follows:

β̃‖ηh‖2 ≤ sup
wh∈X 2

h

(∇v −∇jhv,∇wh)Ω
‖∇wh‖2

+ sup
wh∈X 2

h

(∇ξh,∇wh)Ω
‖∇wh‖2

+ sh(ηh)(ηh) 1
2

√
α0

+O(h2).

The first term on the right-hand side is known to be of quadratic order (see Blum [Blu91])
whereas the second one is estimated by the quantity ‖∇ξh‖2 whose behavior is numerically
illustrated in Table 4.10(b). The convergence order for ηh is basically determined by the
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one for ∇ξh. In fact, both quantities converge with same order. We believe that this
observation can be shown analytically at least in the case p = 2 by means of the following
procedure: Similarly to the derivation of (4.47), we easily obtain the identity

‖∇ξh‖22 + sh(ηh)(ηh) ∼ (∇jhv −∇v,∇ξh)Ω − (jhπ − π,∇ · ξh)Ω
+ (∇ · (jhv − v), ηh)Ω + sh(jhπ − π)(ηh) + sh(π)(ηh).

One has to show that the terms on the right-hand side are of higher order. Since the
theory of super-approximation is not topic of the thesis, we do not proceed further in this
direction. To sum up, we conjecture that the improved convergence of Ep′π , which was
observed in Table 4.8, is caused by super-approximation due to the smoothness of (v, π).

Table 4.11. Stabilization by classical LPS. Verification of Corollary 4.14

(a) p = 1.1

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 0.91 1.06 1.90 0.18 0.19 1.02
4096 0.92 1.04 1.97 0.18 0.19 1.02
16384 0.93 1.03 1.92 0.18 0.19 1.01
65536 0.94 1.02 1.68 0.18 0.19 1.01
262144 0.94 1.01 1.40 0.18 0.19 1.01
expected 1.00 1.00 0.18 1.00

(b) p = 1.3

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 0.97 1.22 1.85 0.47 0.47 1.01
4096 0.98 1.17 1.65 0.47 0.47 1.01
16384 0.98 1.12 1.51 0.47 0.47 1.01
65536 0.98 1.09 1.44 0.47 0.47 1.01
262144 0.98 1.06 1.42 0.47 0.47 1.01
expected 1.00 1.00 0.46 1.00

Example 8: We numerically verify the a priori error estimates of Corollaries 4.14 and
4.16 which quantify the convergence of the standard LPS method proposed in [BB01] in
the context of p-Stokes systems. The exact solution (v, π) to Problem (P1) was prescribed
by (4.106) with a = 1.01 and b = −1.99 so that F(Dv) ∈W 1,2(Ω)d×d and π ∈W 1,2(Ω) is
satisfied as required in Corollaries 4.14 and 4.16. The data f , v|D were chosen accordingly
as in Example 1. The stabilization sh was given by (4.63) with αM = α0h

2
M/µ(|Dv|2),

but in (4.63) the fluctuation of the gradient θh∇πh was replaced by the gradient of the
fluctuation ∇θ̄hπh and the filter θ̄h was chosen as in (3.32). First of all, by means of Table
4.11 we numerically confirm the a priori error estimates of Corollary 4.14 in the case p ≤ 2.
Since v ∈ W 1,∞(Ω) for a > 1, Corollary 4.14 predicts that EFv = O(h), E1,p

v = O(h),
and Ep′π = O(h2/p′). Considering Table 4.11, we observe that the experimental order of
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convergence agrees with the expected one very well. By means of Table 4.12 we illustrate
the a priori error estimates of Corollary 4.16 in the case p ≥ 2. Compared to Example 6 and
Table 4.7, the better regularity of π should lead to improved convergence rates for both
the velocity and pressure. Theoretically we expect that EFv = O(h), E1,p

v = O(h2/p), and
E2
π = O(h). In view of Table 4.12, we realize good agreement of the numerical results with

the theoretical ones. Once again we observe that Ep′π is of same order as ESv .

Table 4.12. Stabilization by classical LPS. Verification of Corollary 4.16

(a) p = 2.5; b = −1.99

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 1.01 0.81 1.79 1.21 1.20 1.01
4096 1.01 0.81 1.80 1.21 1.21 1.01
16384 1.01 0.81 1.81 1.21 1.21 1.01
65536 1.01 0.81 1.81 1.21 1.21 1.01
262144 1.01 0.81 1.81 1.21 1.21 1.01
expected 1.00 0.80 1.00

(b) p = 3; b = −1.99

#elements EF
v E1,p

v Epv ES
v Ep

′

π E2
π

1024 1.01 0.67 1.56 1.34 1.33 1.01
4096 1.01 0.67 1.57 1.34 1.34 1.01
16384 1.01 0.67 1.66 1.34 1.34 1.01
65536 1.01 0.67 1.67 1.34 1.34 1.01
262144 1.01 0.67 1.67 1.34 1.34 1.01
expected 1.00 0.67 1.00

Example 9: We perform some numerical experiments in three space dimensions which
are in the same spirit as the previous two-dimensional experiments. In Tables 4.13, 4.14
we demonstrate Theorems 4.11, 4.12 for d = 3 and in Table 4.15 we validate Corollary 4.18
for d = 3. Here, on the cube Ω := (−0.5, 0.5)3 the exact solution of (P1) was given by

v(x) := |x|a−2

 x2x3
−0.5x1x3
−0.5x1x2

 and π(x) := |x|bx1x2x3. (4.107)

In Table 4.13 the parameters a and b have been chosen so that F(Dv) ∈W 1,2(Ω)d×d and
π ∈ W 1,p′(Ω). We easily compute that ∇ · v = 0 and |∇v(x)| ∼ |x|a−1. For ε = 0 we
observe |∇F(Dv(x))| ∼ |x|

(a−1)p
2 −1. Hence, it holds F(Dv) ∈ W 1,2(Ω)3×3 if and only

if (a − 1)p − 2 > −3. This condition is equivalent to a > p−1
p . For Table 4.13 we set

a = p−1
p + 0.01 and b = 2. Due to Theorem 4.11 we expect that EFv = O(h), E1,p

v = O(h),
and Ep′π = O(h2/p′). In view of Table 4.13, we realize that for all considered quantities
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the experimental order of convergence agrees with the theoretical one predicted by the
a priori error estimates. In Table 4.14 the parameters a and b have been chosen so that

Table 4.13. Numerical verification of Theorem 4.11 for d = 3 and p < 2

(a) p = 1.1, a = 0.10

#elements EF
v E1,p

v Epv ES
v Ep

′

π

4096 0.84 0.99 1.72 0.18 1.12
32768 0.88 1.02 1.84 0.18 0.20
262144 0.90 1.02 1.91 0.18 0.18
expected 1.00 1.00 0.18

(b) p = 1.2, a = 0.17

#elements EF
v E1,p

v Epv ES
v Ep

′

π

4096 0.84 0.98 1.82 0.34 1.72
32768 0.87 1.00 1.91 0.33 0.64
262144 0.89 1.00 1.95 0.33 0.34
expected 1.00 1.00 0.33

v ∈ W 2,p(Ω) and π ∈ W 1,p′(Ω). Note that these requirements are equivalent to the
conditions a > −3/p+ 2 and b > −3(p− 1)/p− 2. For Table 4.14 we set a = −3/p+ 2.01
and b = −3(p − 1)/p − 1.99. By virtue of Theorem 4.12 we expect that EFv = O(hp′/2),
E1,p
v = O(h1/(p−1)), and Ep

′
π = O(hp′/2). In view of Table 4.14, we realize that the

experimental convergence order for the velocity agrees with the theoretical one. But we
observe linear convergence for the pressure although we expect the convergence rate p′/2
only. Note that we made similar observations in the case d = 2 (see Examples 5 and 6).
As in the above examples, the quantity ESv converges with same order as Ep′π and the
apparent convergence rate for Ep′π may be explained by the one for ESv . We mention that
if we prescribe the regularity F(Dv) ∈ W 1,2(Ω)d×d instead of v ∈ W 2,p(Ω) only, then
we observe similar convergence rates as in Table 4.14. Hence we conjecture that for this
particular example the regularity assumption F(Dv) ∈W 1,2(Ω)d×d and π ∈W 1,p′(Ω) is
sufficient to ensure the availability of the error estimates stated in Theorem 4.12.

Table 4.14. Numerical verification of Theorem 4.12 for d = 3 and p > 2

(a) p = 3.0, a = 1.01, b = −3.99

#elements EF
v E1,p

v Epv ES
v Ep

′

π

4096 0.66 0.36 0.99 0.93 1.02
32768 0.72 0.42 1.26 1.00 1.01
262144 0.74 0.46 1.38 1.01 1.01
expected 0.75 0.50 0.75

(b) p = 3.5, a = 1.15, b = −4.13

#elements EF
v E1,p

v Epv ES
v Ep

′

π

4096 0.62 0.28 0.80 0.94 1.03
32768 0.69 0.37 1.24 1.02 1.01
262144 0.70 0.40 1.35 1.02 1.01
expected 0.70 0.40 0.70

In Example 4.15 the parameters a and b have been chosen so that v ∈ W 2,2(Ω) and
π ∈ W 1,2(Ω). Note that the assumptions v ∈ W 2,2(Ω) and π ∈ W 1,2(Ω) amount to
the conditions a > 0.5 and b > −3.5. In Example 4.15 we set a = 0.51 and b = −3.49.
According to Corollary 4.18, we expect that E1,p

v = O(h) and E2
π = O(h). Moreover,

Corollary 4.18 predicts the convergence rate 3
p′ −

1
2 for Ep′π . Considering Table 4.15, we

observe a good agreement of the numerical results with the theoretical ones.
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Table 4.15. Numerical verification of Corollary 4.18 for d = 3 and p < 2

(a) p = 1.1

#elements E1,p
v Epv ES

v Ep
′

π E2
π

512 0.99 1.81 0.21 -0.21 1.13
4096 1.02 1.86 0.22 -0.22 1.05
32768 1.02 1.94 0.21 -0.22 1.01
262144 1.01 1.97 0.20 -0.22 1.00
expected 1.00 -0.22 1.00

(b) p = 1.2

#elements E1,p
v Epv ES

v Ep
′

π E2
π

512 0.98 1.83 0.37 0.13 1.11
4096 1.02 1.89 0.39 0.01 1.04
32768 1.01 1.95 0.38 0.01 1.01
262144 1.01 1.97 0.37 0.01 1.01
expected 1.00 0.00 1.00

(c) p = 1.3

#elements E1,p
v Epv ES

v Ep
′

π E2
π

512 0.97 1.84 0.50 0.45 1.09
4096 1.01 1.91 0.52 0.20 1.04
32768 1.01 1.96 0.52 0.20 1.01
262144 1.01 1.97 0.51 0.20 1.01
expected 1.00 0.19 1.00

(d) p = 1.5

#elements E1,p
v Epv ES

v Ep
′

π E2
π

512 0.93 1.86 0.65 0.78 1.06
4096 0.98 1.91 0.70 0.51 1.03
32768 0.99 1.95 0.71 0.51 1.01
262144 1.00 1.97 0.72 0.51 1.01
expected 1.00 0.50 1.00

Conclusion: In this chapter we proposed the novel LPS-based stabilization (4.4) which
was particularly designed for the approximation of p-Stokes systems with equal-order finite
elements. For low-order d-linear elements, we derived a priori error estimates which quantify
the convergence of the method (see Theorems 4.11 and 4.12). In the case p ≤ 2 the derived
error estimates provide optimal rates of convergence with respect to the supposed regularity
of the solution. They improve existing results in literature, see [BN90, BL93b, BL94]. Note
that the results of [BN90, BL93b, BL94] are suboptimal in the sense that either the rate
of convergence is not optimal or the assumed regularity of the solution is too high and
not realistic for general solutions. In the case p ≥ 2 our a priori error estimates yield an
optimal convergence rate for the velocity and a possibly suboptimal convergence order for
the pressure provided that the velocity satisfies slightly more regularity than its natural one.
Our numerical experiments indicate that the pressure error Ep′π converges with same order
as ESv . This observation was also made in Belenki et al. [BBDR10]. In order to obtain
sharp error estimates for Ep′π in the case p ≥ 2, one should therefore attempt to estimate
ESv directly, and one should not relate it to the natural distance EFv via Lemma 2.7. Note
that in the proof of Theorem 4.12 the quantity ESv was estimated by EFv as suggested by
Lemma 2.7. If the pressure gradient is stabilized with the standard LPS method for Stokes
systems as introduced in [BB01], then similar a priori error estimates were derived (see
Corollaries 4.14 and 4.16). They are optimal with respect to the rate of convergence in
case of d = 2, but their derivation requires either additional regularity assumptions on the
solution (v, π) or the restriction to the case ε > 0. Their rate of convergence depends on
the space dimension d. By contrast, the LPS-based stabilization proposed in (4.4) allows
a priori error estimates which, at least for p ≤ 2, provide optimal rates of convergence
for arbitrary space dimension d ≥ 2. Moreover we observed super approximation for the
pressure whenever we approximated a smooth solution on a sequence of uniformly refined
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meshes. This improved convergence supports the usage of LPS-based stabilization: If the
pressure is smooth, artificial terms such as hs∑M∈Mh

‖θh∇π‖p
′

p′;M (see, e.g., Remark 4.4)
resulting from stabilization are usually of higher order than s since they involve fluctuations
θh satisfying ‖θh∇π‖p′;M . hM‖∇2π‖p′;M . In contrast let us imagine a simplified version
of (4.4) for which the fluctuations of gradients θh∇π are replaced by gradients ∇π. For
such simplified stabilization, the order of convergence would be restricted to s so that an
improved convergence due to super approximation would not be possible.

4.9 Final remarks on LPS

We close the chapter with some remarks on the LPS scheme proposed in Section 4.1. In
Assumption 4.1 we required that the pairing Xh/Yh between the original FE space Xh and
the projection space Yh satisfies a certain local inf-sup condition. In fact Assumption 4.1
can be satisfied for several choices of Yh. In this section we exemplarily verify Assumption
4.1 for particular pairings Xh/Yh following the literature [MST07]. Let M̂ := (−1, 1)d
be the reference hyper-cube with vertices âi, i = 1, . . . , 2d, and the barycenter â0 and let
FM : M̂ →M be the multilinear reference mapping. Let M̂ be refined into 2d congruent
cubes K̂i, i = 1, . . . , 2d. This induces a refinement of M into 2d cells. The union of all
these cells forms the principal mesh Th = ∪M∈Mh

{
FM (K̂i); i = 1, . . . , 2d

}
. We define

Xh,r : = {w ∈ C(Ω);w|K ◦ FK ∈ Qr(K̂) ∀K ∈ Th},
Xdisc

2h,r−1 : = {w ∈ L2(Ω);w|M ◦ FM ∈ Qr−1(M̂) ∀M ∈Mh = T2h}.

Actually the spaces Xh,r and Xdisc
2h,r−1 have already been introduced in (3.3) and (3.28).

Lemma 4.24 (Local inf-sup condition). Let Mh satisfy the mesh-property (M5), i.e.,
let the distortion parameter γM defined in (3.9) fulfill γM ≤ γ0 < 1. Let the local projection
scheme be defined for the pair Xh/Yh = Xh,r/X

disc
2h,r−1 with a fixed polynomial degree r ∈ N.

As in Section 4.1, we set Yh(M) := {qh|M ; qh ∈ Yh} and

X0
h(M) := {wh|M ; wh ∈ Xh, wh = 0 on Ω \M}.

Then for ν ≥ 1 there exists β̄ = β̄(γ0) > 0 independent of h such that

inf
q∈Yh(M)

sup
w∈X0

h
(M)

(w, q)M
‖w‖ν;M‖q‖ν′;M

≥ β̄ > 0

for all h > 0 and all M ∈Mh, where ν ′ := ν/(ν − 1). If ν = 1, then ν ′ :=∞. If γ0 → 1,
then the constant β̄ may degenerate, i.e., β̄ → 0.

Proof. We follow the proof of Lemma 3.2 in [MST07]. There the desired result has been
proven in a Hilbert space setting. Here we can use the same arguments. First of all let
ν ∈ (1,∞). From (3.10) it follows that (note x = FM (x̂), q̂(x̂) := q(x))

‖q‖ν′ν′;M =
∫
M̂

|q̂(x̂)|ν′ |det(∇FM (x̂))| dx̂ ≤ Cd!(1 + γM )dhdM‖q̂‖ν
′

ν′;M̂ (4.108)
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for all q ∈ Yh(M). Let b̂ : M̂ → R be the piecewise multilinear hat function associated
with â0, i.e., let b̂(â0) = 1, b̂(âi) = 0 for i = 0, . . . , 2d. For arbitrary q ∈ Yh(M) we choose
w(x) := (q̂ · b̂) ◦F−1

M (x). Note that q̂ ∈ Qr−1(M̂). Because q̂ · b̂ is continuous on the closure
of M̂ , (q̂ · b̂)|K̂i ∈ Qr(K̂i) for i = 1, . . . , 2d, and b̂|∂M̂ = 0, we can conclude that

ŵ(x̂) := q̂(x̂)b̂(x̂) ∈
{
û ∈ C(closure of M̂); û|∂M̂ = 0, û|K̂i ∈ Qr(K̂i), i = 1, . . . , 2d

}
.

Hence, we realize that w ∈ X0
h(M) (note that x ∈ ∂M ⇒ F−1

M (x) ∈ ∂M̂ ⇒ w(x) =
ŵ(F−1

M (x)) = 0). Recalling (3.10), we observe that

(q, w)M =
∫
M

q(x)w(x) dx =
∫
M̂

q̂(x̂)ŵ(x̂)|det(∇FM (x̂))|dx̂

=
∫
M̂

q̂(x̂)q̂(x̂)b̂(x̂)|det(∇FM (x̂))|dx̂ ≥ Cd!(1− γM )dhdM
∫
M̂

q̂(x̂)2b̂(x̂) dx̂.

Since the space Qr−1(M̂) is finite dimensional, all norms on Qr−1(M̂) are equivalent. Hence∥∥∥q̂ · b̂ 1
2

∥∥∥
2;M̂
≥ C‖q̂‖2;M̂ ∀q̂ ∈ Qr−1(M̂)

for some C > 0. As a result, we arrive at

(q, w)M ≥ Cd!(1− γM )dhdM‖q̂‖22;M̂ . (4.109)

For all x̂ ∈ M̂ it holds |b̂(x̂)| ≤ 1. Consequently, in view of (3.10) we obtain the estimate

‖w‖νν;M ≤
∫
M̂

|q̂(x̂)|ν |det(∇FM (x̂))|dx̂ ≤ Cd!(1 + γM )dhdM‖q̂‖νν;M̂ . (4.110)

Using (4.108), (4.110), and the equivalence of norms on Qr−1(M̂), we conclude that

‖w‖ν;M‖q‖ν′;M ≤ C
(
d!(1 + γM )dhdM

)1/ν
‖q̂‖ν;M̂

(
d!(1 + γM )dhdM

)1/ν′
‖q̂‖ν′;M̂

≤ Cd!(1 + γM )dhdM‖q̂‖22;M̂ . (4.111)

If ν = 1, then ν ′ =∞ and ‖q‖∞;M ≤ ‖q̂‖∞;M̂ . Therefore, for ν = 1 we obtain an analog
estimate that is similar to (4.111). Combining (4.109) and (4.111), we deduce that for all
ν ≥ 1 and for all q ∈ Yh(M) there exists w ∈ X0

h(M) such that

(q, w)M
‖w‖ν;M‖q‖ν′;M

≥ C
(1− γM

1 + γM

)d
≥ C

(1− γ0
1 + γ0

)d
=: β̄.

This yields the assertion.
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5 Approximation of the p-Navier-Stokes
Equations

This chapter is devoted to the finite element (FE) discretization of the p-Navier-Stokes
problem (P5). The standard Galerkin finite element method (FEM) may suffer from
numerical instabilities resulting not only from violation of the inf-sup stability condition but
also from dominating advection in case of high Reynolds numbers (cf. [BL09]). The local
projection stabilization (LPS) method can be applied to handle both instability phenomena.
In this chapter, we will extend the LPS approach proposed in Section 4.1 to the generalized
p-Oseen problem (P6). Such p-Oseen problems usually appear as an auxiliary problem
when the non-steady p-Navier-Stokes system is discretized with an implicit A-stable time
step method (cf. [BDR09, BL09]). In the shear thinning case, we will show optimal a
priori error estimates that ensure the convergence of the method and that are similar
to those established in Theorem 4.11. Finally, we will study the FE approximation of
(P5). In this connection we will discuss a posteriori error estimation. From practical
point of view, a posteriori error estimation plays an important role since it allows to assess
the actual discretization error numerically. In contrast, a priori error estimation yields
upper bounds for the discretization error that depend on the unknown exact solution and
that cannot be evaluated numerically. The dual weighted residual (DWR) method has
been developed particularly for goal-oriented a posteriori error estimation. It also allows
adaptive mesh refinement which enables to reduce numerical costs without loss of accuracy.
In this chapter, we will apply the DWR method to the p-Navier-Stokes equations.

In Section 5.1, we introduce the LPS method in the context of p-Oseen systems. In
Section 5.2 we summarize resulting properties of the stabilization term and we discuss
the well-posedness of the stabilized discrete systems. In Section 5.3 we analyze the LPS
method applied to the p-Oseen equations. In particular, we derive a priori error estimates
by extending the basic concepts of Chapter 4. The established results are motivated by
the time-discretization of the p-Navier-Stokes equations in Section 5.4, whereas they are
numerically validated in Section 5.5. Following the literature [BR03], in Section 5.6 we
introduce the DWR method. Finally, in Section 5.7 we apply the DWR method to the
steady p-Navier-Stokes equations for the computation of the drag coefficient.

5.1 LPS in the context of p-Oseen systems

In this section, we consider the p-Oseen system (2.17) complemented with homogeneous
Dirichlet boundary conditions and we study its discretization with equal-order Q1/Q1 finite
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5 Approximation of the p-Navier-Stokes Equations

elements. The investigation of system (2.17) is motivated by the fact that it is needed for the
error analysis of the time-discretized non-steady p-Navier-Stokes equations if an A-stable
semi-implicit Euler scheme is applied (see Section 5.4 or Berselli et al. [BDR09]). System
(2.17) corresponds to the steady (σ = 0) and the non-steady (σ > 0) time-discretized
p-Navier-Stokes-system with linearized convective term. For ease of presentation, for all
u ≡ (v, π) and ω ≡ (w, q) we introduce the semi-linear form

A(u)(ω) := (S(Dv),Dw)Ω +
(
(b ·∇)v,w

)
Ω

+σ(v,w)Ω− (π,∇·w)Ω + (∇·v, q)Ω (5.1)

so that we can equivalently write the p-Oseen Problem (P6) as follows: For given f ∈ Lp′(Ω)
find u ≡ (v, π) ∈ X p ×Qp (the continuous solution) such that

A(u)(ω) = (f ,w)Ω ∀ω ≡ (w, q) ∈ X p ×Qp. (5.2)

Below, we always assume that the vector field b belongs toW 1,∞(Ω) and satisfies ∇·b = 0
a.e.. The Galerkin discretization of (P6) reads: Find uh ≡ (vh, πh) ∈ X p

h ×Q
p
h such that

A(uh)(ωh) = (f ,wh)Ω ∀ωh ≡ (wh, qh) ∈ X p
h ×Q

p
h. (5.3)

As mentioned in Section 3.1, the formulation (5.3) may suffer from violation of the discrete
inf-sup condition and locally dominating advection. Both instability phenomena can be
handled by the local projection stabilization method. In particular, the stabilization of the
pressure gradient can be carried out as described for p-Stokes systems in Section 4.1.

Following the literature [MST07] or Section 4.1, we introduce the coarse mesh Mh = {M}
constructed by coarsening the basic mesh Th such that each macro element M ∈Mh with
diameter hM is the union of one or more neighboring elements K ∈ Th. We assume that
the decomposition Mh of Ω is non-overlapping and shape-regular. The interior elements
are supposed to be of similar size as the macro element, i.e., ∃C > 0: hM ≤ ChK for all
K ∈ Th and M ∈ Mh with K ⊂ M . Since we deal with equal-order discretizations, we
do not need to assign separate projection spaces for the velocity and pressure. Similarly
as in Section 4.1, we introduce the space Yh as a (possibly discontinuous) finite element
space defined on the macro partition Mh so that the pairing Xh/Yh satisfies the local
inf-sup condition Assumption 4.1. The restriction of Yh on a patch M ∈Mh is denoted
by Yh(M) := {wh|M ; wh ∈ Yh}. Let PM : Lν(M) → Yh(M) be a local projection. The
global projection Ph : Lν(Ω)→ Yh is then given by (Phw)|M := PM (w|M ) for all M ∈Mh.
The associated fluctuation operator θh : Lν(Ω)→ Lν(Ω) is defined by θh := id− Ph. We
modify the discrete problem (5.3) by adding the stabilization term

Sh(uh)(ωh) : =
∑

M∈Mh

αM
(
(τ + |θh∇πh|)p

′−2θh∇πh,θh∇qh
)
M

+
∑

M∈Mh

%M
(
θh(b · ∇)vh,θh(b · ∇)wh

)
M
.

(5.4)

Later the patch-wise constants αM and %M will depend on the local mesh size hM . Their
dependence on hM will be determined by the convergence analysis of the method. The
stabilized finite element system reads as follows:
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(P6h) Find uh ≡ (vh, πh) ∈ X p
h ×Q

p
h (the discrete solution) such that

A(uh)(ωh) + Sh(uh)(ωh) = (f ,wh)Ω ∀ωh ≡ (wh, qh) ∈ X p
h ×Q

p
h. (5.5)

Note that in the particular case p = 2 the stabilization scheme (5.5), (5.4) coincides with
the standard LPS scheme for Oseen systems presented in Matthies et al. [MST07]. In
order to control the consistency error caused by the θh-dependent stabilization terms, the
space Yh has to be rich enough or, in other words, it should satisfy the following

Assumption 5.1. Let ν > 1. We assume that the fluctuation operator θh satisfies

‖θhw‖ν;M ≤ ChkM‖∇kw‖ν;M ∀w ∈W k,ν(Ω), ∀M ∈Mh, k ∈ {0, 1},

where C > 0 does not depend on the local mesh size.

Below we always assume that Assumption 5.1 is satisfied.

5.2 Properties of the stabilization scheme

In this section, we summarize important properties of the proposed stabilization term (5.4)
and we discuss the well-posedness of Problem (P6h). We proceed similarly as in Section
4.2. Let G be defined by (4.6). For u ≡ (v, π) and ω ≡ (w, q) we define the distance

|u− ω|2lps : =
∑

M∈Mh

%M‖θh(b · ∇)v − θh(b · ∇)w‖22;M

+
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M .
(5.6)

This definition is justified by the following observation:

Lemma 5.1. For p ∈ (1,∞) let Sh be defined by (5.4). There holds

Sh(u)(u− ω)− Sh(ω)(u− ω) ∼ |u− ω|2lps ∀u,ω ∈W 1,2(Ω)×W 1,p′(Ω).

Proof. The assertion follows from the vector-valued version of Lemma 2.4.

Lemma 5.2. Let p ∈ (1, 2]. For all (v, π), (w, q) ∈W 1,2(Ω)×W 1,p′(Ω) there holds

|(v −w, π − q)|2lps ≤
∑

M∈Mh

%M‖(b · ∇)(v −w)‖22;M

+ ‖τ + |∇π|+ |∇q|‖p
′−2
p′

( ∑
M∈Mh

α
p′
2
M‖∇(π − q)‖p

′

p′;M

) 2
p′
.
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Proof. We can easily derive the desired estimate using Lemma 4.1, Assumption 5.1, and
Hölder’s inequality with 2

p′ + p′−2
p′ = 1. More precisely,

|(v −w, π − q)|2lps .
∑

M∈Mh

%M‖θh(b · ∇)v − θh(b · ∇)w‖22;M

+
∑

M∈Mh

αM‖τ + |θh∇π|+ |θh∇q|‖p
′−2
p′;M‖θh∇π − θh∇q‖

2
p′;M

.
∑

M∈Mh

%M‖(b · ∇)(v −w)‖22;M

+
( ∑
M∈Mh

‖τ + |∇π|+ |∇q|‖p
′

p′;M

) p′−2
p′
( ∑
M∈Mh

α
p′
2
M‖∇(π − q)‖p

′

p′;M

) 2
p′
.

This yields the assertion.

Lemma 5.3. For p ∈ (1,∞) let Sh be defined by (5.4). For all δ > 0 there exists a
constant c = c(δ, p) such that for all u, ū,ω ∈W 1,2(Ω)×W 1,p′(Ω) there holds

Sh(u)(u− ω)− Sh(ū)(u− ω) ≤ cδ|u− ū|2lps + δ|u− ω|2lps.

Proof. Let ϕ and ϕ∗ be given by (2.37). Using the vector-valued version of Lemma 2.4
(with p, ε, ϕ replaced by p′, τ , ϕ∗), for u ≡ (v, π), ū ≡ (v̄, π̄), ω ≡ (w, q) we conclude that

Sh(u)(u− ω)− Sh(ū)(u− ω)

.
∑

M∈Mh

αM

∫
M

(ϕ∗)′τ+|θh∇π|(|θh∇π − θh∇π̄|)|θh∇π − θh∇q| dx

+
∑

M∈Mh

%M

∫
M

|θh(b · ∇)v − θh(b · ∇)v̄||θh(b · ∇)v − θh(b · ∇)w| dx

=: I1 + I2.

Lemma 2.2, Lemma 4.2 and Young’s inequality imply that for arbitrary δ > 0

I1 ≤ cδ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇π̄)‖22;M + δ
∑

M∈Mh

αM‖G(θh∇π)− G(θh∇q)‖22;M ,

I2 ≤ cδ
∑

M∈Mh

%M‖θh(b · ∇)v − θh(b · ∇)v̄‖22;M + δ
∑

M∈Mh

%M‖θh(b · ∇)v − θh(b · ∇)w‖22;M .

Recalling (5.6), we easily complete the proof.

Lemma 5.4. Let p ∈ (1, 2] and q ≥ 2d
d+1 . Then, for each δ > 0 there exists cδ > 0 such

that for all u ≡ (v, π) ∈W 2,q(Ω)×W k+1,p′(Ω), k ∈ {0, 1}, ω ∈W 1,2(Ω)×W 1,p′(Ω)

Sh(u)(u− ω) ≤ cδ‖v‖2,q;Ω
( ∑
M∈Mh

[
%MhM‖b‖21,∞;M

]q
‖v‖q2,q;M

) 1
q

+ cδ‖τ + |∇π|‖p
′−2
p′

( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖∇k+1π‖p

′

p′;M

) 2
p′

+ δ|u− ω|2lps.

116



5.2 Properties of the stabilization scheme

Proof. Setting ū = 0 in Lemma 5.3, we observe that for each δ > 0 there exists cδ > 0:

Sh(u)(u− ω) ≤ cδ|u|2lps + δ|u− ω|2lps.

Applying Lemma 4.1, noting the fact p′ ≥ 2, using Hölder’s inequality and Assumption 5.1,
for k ∈ {0, 1} we can estimate the term |u|2lps by

|u|2lps =
∑

M∈Mh

%M‖θh(b · ∇)v‖22;M +
∑

M∈Mh

αM‖G(θh∇π)‖22;M

.
∑

M∈Mh

%M‖θh(b · ∇)v‖q′;M‖θh(b · ∇)v‖q;M

+
∑

M∈Mh

αM‖τ + |θh∇π|‖p
′−2
p′;M‖θh∇π‖

2
p′;M

.
∑

M∈Mh

%M‖(b · ∇)v‖q′;MhM‖(b · ∇)v‖1,q;M

+
∑

M∈Mh

αM‖τ + |∇π|‖p
′−2
p′;Mh

2k
M‖∇k+1π‖2p′;M .

Using Hölder’s inequality twice (with 2
p′ + p′−2

p′ = 1 in the second sum), we arrive at

|u|2lps .
( ∑
M∈Mh

‖∇v‖q
′

q′;M

) 1
q′
( ∑
M∈Mh

[
%MhM‖b‖21,∞;M

]q
‖∇v‖q1,q;M

) 1
q

+
( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖∇k+1π‖p

′

p′;M

) 2
p′
( ∑
M∈Mh

‖τ + |∇π|‖p
′

p′;M

) p′−2
p′
.

Since q ≥ 2d
d+1 , the embedding W 2,q(Ω) ↪→W 1,q′(Ω) holds. This implies the assertion.

The following lemma represents a simple modification of Lemma 5.4:

Lemma 5.5. Let p ∈ (1, 2] and q ∈ [ 2d
d+2 , 2]. Assume that the fluctuation operator θh

additionally satisfies the approximation property ‖θhw‖2;M ≤ Ch1−d/q+d/2
M ‖w‖1,q;M for all

M ∈Mh and w ∈W 1,q(Ω) ↪→ L2(Ω). Then, for each δ > 0 there exists cδ > 0 such that
for u ≡ (v, π) ∈W 2,q(Ω)×W k+1,p′(Ω), k ∈ {0, 1}, ω ∈W 1,2(Ω)×W 1,p′(Ω) there holds

Sh(u)(u− ω) ≤ cδ
( ∑
M∈Mh

[
%Mh

2− 2d
q

+d
M

] q
2 ‖(b · ∇)v‖q1,q;M

) 2
q

+ cδ‖τ + |∇π|‖p
′−2
p′

( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖∇k+1π‖p

′

p′;M

) 2
p′

+ δ|u− ω|2lps.

Proof. Setting ū = 0 in Lemma 5.3, we realize that for each δ > 0 there exists cδ > 0:

Sh(u)(u− ω) ≤ cδ|u|2lps + δ|u− ω|2lps.
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Using Lemma 4.1, the assumption on θh, and Hölder’s inequality with 2
p′ + p′−2

p′ = 1, and
noting q ∈ [ 2d

d+2 , 2], p′ ≥ 2, for k ∈ {0, 1} we can estimate

|u|2lps =
∑

M∈Mh

%M‖θh(b · ∇)v‖22;M +
∑

M∈Mh

αM‖G(θh∇π)‖22;M

.
∑

M∈Mh

%Mh
2− 2d

q
+d

M ‖(b · ∇)v‖21,q;M +
∑

M∈Mh

αM‖τ + |∇π|‖p
′−2
p′;Mh

2k
M‖∇k+1π‖2p′;M

.
( ∑
M∈Mh

[
%Mh

2− 2d
q

+d
M

] q
2 ‖(b · ∇)v‖q1,q;M

) 2
q

+
( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖∇k+1π‖p

′

p′;M

) 2
p′
( ∑
M∈Mh

‖τ + |∇π|‖p
′

p′;M

) p′−2
p′
.

This completes the proof.

Remark 5.1. If the fluctuation operator θh satisfies Assumption 5.1, then it also fulfills the
assumption of Lemma 5.5, cf. the homogeneity argument in (3.18).

Using similar arguments as in the proofs of Lemmas 4.6, 4.7, and taking into account the
properties of b and Sh, we can easily conclude the well-posedness of Problem (P6h):

Lemma 5.6. For p ∈ (1,∞) and ε ∈ [0, ε0] let S satisfy Assumption 2.1. Let Sh be defined
by (5.4) with αM := α0h

s
M , s ∈ [0, p′], τ ∈ [0, τ0], %M := %0hM . Then for p ≥ 2d

d+1 there
exists a unique solution uh ≡ (vh, πh) ∈ X p

h ×Q
p
h to Problem (P6h) satisfying

‖vh‖p1,p + σ‖vh‖22 + ‖S(Dvh)‖p
′

p′ + Sh(uh)(uh) ≤ C1(Ω, p, ε0, σ0, σ1,f),
β̃(p)‖πh‖p′ ≤ C2(Ω, p, ε0, σ0, σ1, σ,f , α0, τ0, %0),

(5.7)

where β̃(p) > 0 is the constant appearing in (4.30). The restriction on p solely comes from
the availability of the Lp′-pressure-estimate (5.7)2. The constants C1 and C2 only depend
on the data quoted within the brackets. If p ≤ 2 then the constant C2 does not depend on
τ0, whereas if p > 2 the constant C1 does not depend on ε0.

Proof. Due to ([b · ∇]vh,vh)Ω = 0, the well-posedness of (P6h) follows along the lines of
Lemmas 4.6 and 4.7. The restriction on p, p ≥ 2d

d+1 , results from the continuous embedding
W 1,p(Ω) ↪→ Lp

′(Ω) which is needed for the derivation of (5.7)2. More precisely, the discrete
pressure πh is estimated by (cf. the proof of Lemma 4.6)

β̃‖πh‖p′ ≤ sup
wh∈X ph

(∇ ·wh, πh)Ω
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh∇πh‖
p′

p′;M

) 1
p′

≤ sup
wh∈X ph

|(S(Dvh),Dwh)Ω − (f ,wh)Ω|
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh∇πh‖
p′

p′;M

) 1
p′

+ sup
wh∈X ph

∣∣∣([b · ∇]vh,wh)Ω + σ(vh,wh)Ω + Sh
(
(vh, 0)

)(
(wh, 0)

)∣∣∣
‖∇wh‖p

.
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The first two terms on the right-hand side also appear in the proof of Lemma 4.6 and they
are estimated similarly as there. Compared to the proof of Lemma 4.6, we additionally
need to control the latter term. Using W 1,p(Ω) ↪→ Lp

′(Ω), for p ≥ 2d
d+1 we conclude that

([b · ∇]vh,wh)Ω ≤ ‖b‖∞‖∇vh‖p‖wh‖p′ . ‖b‖∞‖vh‖1,p‖wh‖1,p,
σ(vh,wh)Ω ≤ σ‖vh‖2‖wh‖2 . σ‖vh‖1,p‖wh‖1,p.

Using Assumption 5.1, the local inverse inequality (3.19), for p ≥ 2d
d+1 we arrive at

Sh
(
(vh, 0)

)(
(wh, 0)

)
≤
( ∑
M∈Mh

%M‖θh(b · ∇)vh‖22;M

) 1
2
( ∑
M∈Mh

%M‖θh(b · ∇)wh‖22;M

) 1
2

. ‖b‖2∞
( ∑
M∈Mh

%Mh
− 2d
p

+d
M ‖vh‖21,p;M

) 1
2
( ∑
M∈Mh

%Mh
− 2d
p

+d
M ‖wh‖21,p;M

) 1
2

. ‖b‖2∞
( ∑
M∈Mh

‖vh‖p1,p;M
) 1
p
( ∑
M∈Mh

‖wh‖p1,p;M
) 1
p

. ‖b‖2∞‖vh‖1,p‖wh‖1,p.

We note that %M ∼ hM and 1− 2d
p + d ≥ 0 ⇔ p ≥ 2d

d+1 . We easily complete the proof.

5.3 Error estimates for the stabilized p-Oseen system

In this section we derive a priori error estimates which quantify the convergence of the
method. We restrict ourselves to the case p ≤ 2 since we may perform a similar analysis in
the case p ≥ 2. The following theorem extends Theorem 4.11 to p-Oseen systems. Its a
priori error estimates represent one of the main results of the thesis. They provide optimal
rates of convergence with respect to the supposed regularity of the solution.

Theorem 5.7. Let p ∈ (1, 2] and ε ∈ [0,∞). Let (v, π) ∈ X p ×Qp be the unique solution
of (P6), and let (vh, πh) ∈ X p

h×Q
p
h be the unique solution of (P6h) where the stabilization

term Sh is defined by (5.4). We assume that (v, π) satisfies the additional regularity
F(Dv) ∈ W 1,2(Ω)d×d and π ∈ W k+1,p′(Ω) with k ∈ {0, 1} and 1/p + 1/p′ = 1. Let the
stabilization parameters %M , αM be chosen as follows:

%M := %0
hM

‖b‖1,∞;M
, αM := α0h

2
M if k = 0, and αM := α0h

2/p′
M if k = 1.

Then, the error of approximation can be estimated in terms of the maximum mesh size
h := max{hM ; M ∈Mh} as follows: There exist constants Cv, C ′v > 0 such that

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖v − vh‖1,p ≤ C ′vh. (5.8)

Moreover, if p ≥ 2d
d+1 , then there exists a constant Cπ > 0 such that

‖π − πh‖p′ ≤ Cπh
2
p′ . (5.9)
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5 Approximation of the p-Navier-Stokes Equations

The constants Cv, C ′v, Cπ > 0 only depend on ‖∇F(Dv)‖2, ‖π‖k+1,p′ , p, ε0, σ0, σ1, σ, Ω,
f , %0, α0, τ0, and Cπ additionally depends on the constant β̃(p) appearing in (4.30).

Assume additionally that Mh is quasi-uniform. Then, there exists C ′π > 0 such that

‖π − πh‖p′ ≤ C ′πh
min{2− 2d

p
+d, 2

p′ }. (5.10)

The constant C ′π > 0 depends on the same quantities as Cπ.

Remark 5.2. If Mh is quasi-uniform, then (5.10) improves (5.9) concerning the admissible
range of p. In particular, it holds min{2− 2d

p + d, 2
p′ } = 2

p′ provided that p ≥ 2d−2
d . Hence,

if d = 2, (5.10) yields an O(h2/p′) bound for the pressure error in Lp′(Ω) provided that
p > 1, whereas (5.9) ensures the same convergence rate for p ≥ 4

3 only. If d = 3, (5.10)
predicts the convergence rate 2

p′ for p ≥
4
3 .

Proof of Theorem 5.7. Let jh and jh be interpolation operators as in Lemma 4.4. It is
sufficient to estimate the projection error ξh := (jhv − vh) and ηh := (jhπ − πh) with
respect to the distance ‖(ξh, ηh)‖lps defined by

‖(ξh, ηh)‖2lps := ‖F(Djhv)−F(Dvh)‖22 + σ‖ξh‖22 + |(ξh, ηh)|2lps. (5.11)

Using Lemma 2.5 and Lemma 5.1, we observe the equivalence

‖(ξh, ηh)‖2lps ∼ (S(Djhv)− S(Dvh),Dξh)Ω + σ‖ξh‖22
+ Sh

(
(jhv, jhπ)

)(
(ξh, ηh)

)
− Sh

(
(vh, πh)

)(
(ξh, ηh)

)
.

Adding the following trivial identities to the right-hand side,

0 =
(
(b · ∇)ξh, ξh

)
Ω

=
(
(b · ∇)(v − vh), ξh

)
Ω

+
(
(b · ∇)(jhv − v), ξh

)
Ω
,

0 = −(π − πh,∇ · ξh)Ω + (∇ · (v − vh), ηh)Ω − (jhπ − π,∇ · ξh)Ω + (∇ · (jhv − v), ηh)Ω,

and using the disturbed Galerkin orthogonality, which reads

A(u)(ωh)−A(uh)(ωh) = Sh(uh)(ωh) ∀ωh ∈ X p
h ×Q

p
h

for u ≡ (v, π) and uh ≡ (vh, πh), we arrive at

‖(ξh, ηh)‖2lps ∼ (S(Djhv)− S(Dv),Dξh)Ω + σ(jhv − v, ξh) +
(
(b · ∇)(jhv − v), ξh

)
Ω

− (jhπ − π,∇ · ξh)Ω + (∇ · (jhv − v), ηh)Ω + Sh
(
(jhv, jhπ)

)(
(ξh, ηh)

)
=: I1 + I2 + I3 + I4 + I5 + I6. (5.12)

We estimate the terms I1, . . . , I6 in (5.12) separately. Similarly to the proof of Theorem 4.11,
for arbitrary δ1 > 0 the term I1 can be bounded by

I1 ≤ cδ1‖F(Djhv)−F(Dv)‖22 + δ1‖F(Djhv)−F(Dvh)‖22
≤ cδ1h

2‖∇F(Dv)‖22 + δ1‖(ξh, ηh)‖lps.
(5.13)
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Lemma 4.10 implies that v ∈W 2,q(Ω) with q := 2− δ for arbitrary δ ∈ (0, 1] in the case
d = 2 and q := 3p

p+1 in the case d = 3. Hence, by means of Young’s inequality and the
approximation property of jh, for arbitrary δ2 > 0 the term I2 can be estimated by

I2 ≤ cδ2σ‖jhv − v‖22 + δ2σ‖ξh‖22 ≤ cδ2σh
4− 2d

q
+d‖v‖22,q + δ2σ‖(ξh, ηh)‖2lps. (5.14)

Using integration by parts (∇ · b = 0), and the interpolation properties of jh, we conclude
that for arbitrary δ3 > 0 there exists a constant cδ3 > 0 such that

I3 =
(
(b · ∇)(jhv − v), ξh

)
Ω

= −
(
jhv − v,θh(b · ∇)ξh

)
Ω

≤ cδ3

∑
M∈Mh

%−1
M ‖jh − v‖

2
2;M + δ3

∑
M∈Mh

%M‖θh(b · ∇)ξh‖22;M

≤ cδ3

∑
M∈Mh

%−1
M h

4− 2d
q

+d
M ‖v‖22,q;SM + δ3

∑
M∈Mh

%M‖θh(b · ∇)ξh‖22;M

≤ cδ3

( ∑
M∈Mh

[
%−1
M h

4− 2d
q

+d
M

] q
2 ‖v‖q2,q;SM

) 2
q

+ δ3‖(ξh, ηh)‖2lps. (5.15)

Applying Lemma 2.6, recalling the W 1,p-stability of jh, using the uniform a priori W 1,p-
bounds for vh, v as (5.7), we deduce that for each δ4 > 0 there exists cδ4 > 0 so that

I4 ≤ ‖π − jhπ‖p′‖ε+ |Djhv|+ |Dvh|‖
2−p

2
p ‖F(Djhv)−F(Dvh)‖2

≤ cδ4‖ε+ |Djhv|+ |Dvh|‖2−pp ‖π − jhπ‖2p′ + δ4‖F(Djhv)−F(Dvh)‖22
≤ cδ4h

2k+2‖π‖2k+1,p′ + δ4‖(ξh, ηh)‖2lps. (5.16)

The constant cδ4 only depends on Ω, p, ε0, σ0, σ1,f , δ4. The term I5 can be estimated
similarly to (4.51). Using integration by parts (the discrete pressure is continuous), the
orthogonality of jh with respect to Y h, Hölder’s and Young’s inequality, Lemma 4.1 with
p′ ≥ 2, and the approximation property of jh, for arbitrary δ5 > 0 we estimate

I5 ≤
∣∣∣(∇ · (jhv − v), ηh)Ω

∣∣∣ =
∣∣∣(jhv − v,∇ηh)Ω

∣∣∣ =
∣∣∣(jhv − v,θh(∇ηh))Ω

∣∣∣
≤ cδ5

∑
M∈Mh

α
−(p−1)
M ‖jhv − v‖

p
p;M + δ5

∑
M∈Mh

αM‖θh∇jhπ − θh∇πh‖p
′

p′;M

≤ cδ5

∑
M∈Mh

α1−p
M h2p

M‖v‖
p
2,p;SM + δ5c‖(ξh, ηh)‖2lps, (5.17)

where the constant cδ5 only depends on p, α0, δ5. Finally, the term I6 can be estimated
by means of Lemmas 5.3, 5.4, 5.2. We need to check that the assumptions of Lemma 5.4
are satisfied: If d = 2, the condition q ≥ 2d

d+1 is clearly satisfied. If d = 3, the requirement
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3p
p+1 ≥

3
2 is equivalent to p ≥ 1. Hence, for each δ6 > 0 there exists cδ6 > 0 such that

I6 ≡ Sh
(
(v, π)

)(
(ξh, ηh)

)
+
{
Sh
(
(jhv, jhπ)

)(
(ξh, ηh)

)
− Sh

(
(v, π)

)(
(ξh, ηh)

)}
≤ Sh

(
(v, π)

)(
(ξh, ηh)

)
+ cδ6 |(jhv − v, jhπ − π)|2lps + δ6‖(ξh, ηh)‖2lps

≤ cδ6‖v‖2,q;Ω
( ∑
M∈Mh

[
%MhM‖b‖21,∞;M

]q
‖v‖q2,q;M

) 1
q

+ cδ6‖τ + |∇π|‖p
′−2
p′

( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖∇k+1π‖p

′

p′;M

) 2
p′

+ cδ6‖τ + |∇jhπ|+ |∇π|‖p
′−2
p′

( ∑
M∈Mh

α
p′
2
M‖∇(jhπ − π)‖p

′

p′;M

) 2
p′

+ cδ6

∑
M∈Mh

%M‖(b · ∇)(jhv − v)‖22;M + δ62‖(ξh, ηh)‖2lps.

Using the properties of jh and jh, we can hence estimate the term I6 as follows:

I6 ≤ cδ6‖v‖2,q;Ω
( ∑
M∈Mh

[
%MhM‖b‖21,∞;M

]q
‖v‖q2,q;M

) 1
q

+ cδ6

[
τ |Ω|

1
p′ + ‖π‖1,p′

]p′−2
( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖π‖p

′

k+1,p′;SM

) 2
p′

+ cδ6

( ∑
M∈Mh

[
%M‖b‖2∞;Mh

2− 2d
q

+d
M

] q
2 ‖v‖q2,q;SM

) 2
q

+ δ62‖(ξh, ηh)‖2lps. (5.18)

Combining (5.12) – (5.18), choosing δ1, . . . , δ6 sufficiently small, we easily arrive at

‖(ξh, ηh)‖2lps . h2‖∇F(Dv)‖22 + σh
4− 2d

q
+d‖v‖22,q +

( ∑
M∈Mh

[
%−1
M h

4− 2d
q

+d
M

] q
2 ‖v‖q2,q;SM

) 2
q

+ h2k+2‖π‖2k+1,p′ +
∑

M∈Mh

α1−p
M h2p

M‖v‖
p
2,p;SM

+ ‖v‖2,q
( ∑
M∈Mh

[
%MhM‖b‖21,∞;M

]q
‖v‖q2,q;M

) 1
q

+
[
τ |Ω|

1
p′ + ‖π‖1,p′

]p′−2
( ∑
M∈Mh

[
αMh

2k
M

] p′
2 ‖π‖p

′

k+1,p′;SM

) 2
p′

+
( ∑
M∈Mh

[
%M‖b‖2∞;Mh

2− 2d
q

+d
M

] q
2 ‖v‖q2,q;SM

) 2
q

. (5.19)

We equilibrate the terms in (5.19) involving %M and αM through

%M ∼
hM

‖b‖1,∞;M
, αM ∼ h2

M if k = 0, αM ∼ h
2
p′
M if k = 1. (5.20)
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As a result, we easily derive the first inequality in (5.8) combining (5.19) with (5.20) and
noting that 1− 2d

q + d ≥ 0 for q as defined above. In fact, the condition 1− 2d
q + d ≥ 0

amounts to q ≥ 2d
d+1 which is satisfied for q as defined above. Hence, we obtain

‖F(Dv)−F(Dvh)‖2 ≤ ‖F(Dv)−F(Djhv)‖2 + ‖(ξh, ηh)‖lps ≤ Cvh. (5.21)

The second inequality in (5.8) follows from (5.21) and the estimate

‖v − vh‖1,p . ‖Dv −Dvh‖p . ‖F(Dv)−F(Dvh)‖2, (5.22)

which is a simple consequence of the Poincaré & Korn inequality, Lemma 2.6 (i), and the
uniform W 1,p-bounds on v and vh. Next we prove the pressure-estimate (5.9). For this, it
is sufficient to estimate the projection error ηh. From (P6) and (P6h) we conclude that

(jhπ − πh,∇ ·wh)Ω = (S(Dv)− S(Dvh),Dwh)Ω + (jhπ − π,∇ ·wh)Ω
+
(
(b · ∇)(v − vh),wh

)
Ω

+ σ(v − vh,wh)Ω − Sh
(
(vh, 0)

)(
(wh, 0)

)
for all wh ∈ X p

h. Hence, by means of Lemma 4.5 we deduce that ηh is bounded by

β̃‖ηh‖p′ ≤ sup
wh∈X ph

(∇ ·wh, ηh)Ω
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh(∇ηh)‖p
′

p′;M

) 1
p′

≤ sup
wh∈X ph

∣∣∣(S(Dv)− S(Dvh),Dwh)Ω + (jhπ − π,∇ ·wh)Ω
∣∣∣

‖∇wh‖p

+ sup
wh∈X ph

∣∣∣((b · ∇)(v − vh),wh

)
Ω

+ σ(v − vh,wh)Ω
∣∣∣

‖∇wh‖p

+ sup
wh∈X ph

∣∣∣∑M∈Mh
%M (θh(b · ∇)[v − vh],θh(b · ∇)wh)M

∣∣∣
‖∇wh‖p

+ sup
wh∈X ph

∣∣∣∑M∈Mh
%M (θh(b · ∇)v,θh(b · ∇)wh)M

∣∣∣
‖∇wh‖p

+
( ∑
M∈Mh

hp
′

M‖θh(∇ηh)‖p
′

p′;M

) 1
p′

=: J1 + J2 + J3 + J4 + J5. (5.23)

Using Hölder’s inequality, Lemma 2.7 (i), and the properties of jh, jh, we estimate J1 by

J1 . ‖F(Dv)−F(Dvh)‖
2
p′
2 + h‖π‖1,p′ . (5.24)

For 2 ≥ p ≥ 2d
d+1 there holds the continuous embedding W 1,p(Ω) ↪→ Lp

′(Ω) ↪→ L2(Ω).
Therefore, by means of (5.22) we conclude that the term J2 is bounded by

J2 ≤ sup
wh∈X ph

1
‖∇wh‖p

{
‖b‖∞‖∇(v − vh)‖p‖wh‖p′ + σ‖v − vh‖2‖wh‖2

}
. (‖b‖∞ + σ)‖F(Dv)−F(Dvh)‖2. (5.25)
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Before we estimate J3, we firstly derive an upper bound for |(wh, 0)|lps. Noting the fact
p ≤ 2, recalling the stability of θh and the local inverse inequality (3.19), we observe that

|(wh, 0)|lps ≡
( ∑
M∈Mh

%M‖θh(b · ∇)wh‖22;M

) 1
2

.
( ∑
M∈Mh

%M‖b‖2∞;Mh
− 2d
p

+d
M ‖wh‖21,p;M

) p
2

1
p . h

1
2−

d
p

+ d
2 ‖b‖1/2∞ ‖wh‖1,p (5.26)

provided that p ≥ 2d
d+1 and %M ∼ hM/‖b‖1,∞;M . Taking into account (5.26), we conclude

J3 ≤ sup
wh∈X ph

∣∣∣∑M∈Mh
%M (θh(b · ∇)ξh,θh(b · ∇)wh)M

∣∣∣
‖∇wh‖p

+ sup
wh∈X ph

∣∣∣∑M∈Mh
%M (θh(b · ∇)[v − jhv],θh(b · ∇)wh)M

∣∣∣
‖∇wh‖p

≤ sup
wh∈X ph

|(ξh, 0)|lps|(wh, 0)|lps
‖∇wh‖p

+ sup
wh∈X ph

|(v − jhv, 0)|lps|(wh, 0)|lps
‖∇wh‖p

≤ ch
1
2−

d
p

+ d
2 ‖b‖1/2∞

[
|(ξh, 0)|lps +

( ∑
M∈Mh

%M‖b‖2∞;M‖∇(v − jhv)‖22;M

) 1
2
]
.

Since v ∈W 2, 3p
p+1 (Ω) and %M ∼ hM/‖b‖1,∞;M , we arrive at

J3 ≤ ch
1
2−

d
p

+ d
2 ‖b‖1/2∞

[
|(ξh, 0)|lps +

( ∑
M∈Mh

hM‖b‖∞;Mh
2− 2d(p+1)

3p +d
M ‖v‖22, 3p

p+1 ;SM

) 1
2
]

≤ ch
1
2−

d
p

+ d
2 ‖b‖1/2∞

[
‖(ξh, ηh)‖lps + h

3
2−

d(p+1)
3p + d

2 ‖b‖1/2∞ ‖v‖2, 3p
p+1

]
. (5.27)

Similarly we may estimate the term J4. Using Hölder’s inequality with p+1
3p + 2p−1

3p = 1,
the approximation property of θh, and the local inverse inequality (3.19), we deduce that

J4 ≤ sup
wh∈X ph

1
‖∇wh‖p

∑
M∈Mh

%M‖θh(b · ∇)v‖ 3p
p+1 ;M‖θh(b · ∇)wh‖ 3p

2p−1 ;M

≤ sup
wh∈X ph

1
‖∇wh‖p

∑
M∈Mh

%MhM‖b‖21,∞;M‖v‖2, 3p
p+1 ;Mh

− d
p

+ d(2p−1)
3p

M ‖wh‖1,p;M

≤ ch
1
2−

d
p

+ d
2 ‖b‖1,∞h

3
2−

d(p+1)
3p + d

2 ‖v‖2, 3p
p+1

. (5.28)

We observe that 3
2 −

d(p+1)
3p + d

2 ≥ 1 for p ≥ 1. Hence, the convergence order of the
stabilization part J3+J4 is restricted to 3

2−
d
p+ d

2 by virtue of (5.27) and ‖(ξh, ηh)‖lps = O(h).
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We remark that 3
2 −

d
p + d

2 ≥
2
p′ for p ≥ 1. Finally, Lemma 4.1 implies that

J5 . h
1− 2

p′

( ∑
M∈Mh

αM‖θh∇jhπ − θh∇πh‖p
′

p′;M

) 1
p′

. h
1− 2

p′

( ∑
M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

) 1
p′

. h
1− 2

p′ ‖(ξh, ηh)‖
2
p′
lps. (5.29)

Combining (5.23), (5.24), (5.25), (5.27)–(5.29), in view of (5.21) we get the desired estimate
(5.9). It remains to prove (5.10). If the triangulation Mh is quasi-uniform, then we can
make use of the global inverse inequality (3.20) in order to better estimate the term J2.
Since the case p ≥ 2d

d+1 is already treated above, for the remainder of the proof we may
suppose that p ≤ 2d

d+1 . We recall the embedding W 1,p(Ω) ↪→ Lq
∗(Ω) with q∗ = dp

d−p . Since
q∗ ≤ p′ for p ≤ 2d

d+1 , the inverse estimate (3.20) yields

‖wh‖p′ . h
− d
q∗+ d

p′ ‖wh‖q∗ . h
− d
q∗+ d

p′ ‖wh‖1,p.

Using the latter estimate, Poincaré’s inequality, and (5.8), we obtain the upper bound

J2 . h
− d
q∗+ d

p′
(
‖b‖∞‖∇(v − vh)‖p + σ‖v − vh‖p

)
. (‖b‖∞ + σ)h1− d

q∗+ d
p′ . (5.30)

We easily compute that 1− d
q∗ + d

p′ = 2− 2d
p + d. The remaining terms are estimated just

as above. Besides, we remark that the exponent 1
2 −

d
p + d

2 in (5.26) becomes negative for
p < 2d

d+1 . Combining (5.23), (5.24), (5.30), (5.27)–(5.29), and taking into account (5.21),
we finally obtain the desired estimate (5.10). This completes the proof.

Remark 5.3. We briefly discuss in which sense in the case p = 2 we recover the well-known
results for Oseen systems. Note that the LPS method was proposed and studied for Oseen
systems in Matthies et al. [MST07]. In view of Lemma 5.5, in (5.19) the term

‖v‖2,q
( ∑
M∈Mh

[
%MhM‖b‖21,∞;M

]q
‖v‖q2,q;M

) 1
q

can be replaced by the following one( ∑
M∈Mh

[
%Mh

2− 2d
q

+d
M

] q
2 ‖(b · ∇)v‖q1,q;M

) 2
q

.

In doing so, we observe that for p = q = 2 the a priori error estimate (5.19) coincides with
the well-known error estimate for Oseen systems presented in [MST07].

Remark 5.4. Usually the function b is given as a finite element solution to system (2.17),
cf. [BL09]. Consequently b satisfies (∇ · b, qh)Ω = 0 for all qh ∈ Qph but it does not fulfill
∇ · b = 0 pointwise as required by Theorem 5.7. If we recall the proof of Theorem 5.7, we
realize that the assumption ∇ · b = 0 a.e. is only needed for the estimation of the term
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I3. We can relax the assumption ∇ · b = 0 a.e. if, in (5.5), we replace the convective term
([b · ∇]vh,wh)Ω by the skew-symmetric tri-linear form B(b,vh,wh) defined by

B(u,v,w) := 1
2

(
([u · ∇]v,w)Ω − ([u · ∇]w,v)Ω

)
∀u,v,w ∈ X p, (5.31)

cf. [BL09]. The tri-linear form B(u,v,w) naturally extends the term ([u · ∇]v,w)Ω for
u ∈ Vp and v,w ∈ X p, cf. [PR02]. Indeed, B preserves the skew-symmetry property, i.e.,
B(u,v,v) = 0. By virtue of (2.79) the definition of B is compatible in the sense that there
holds B(u,v,w) = ([u · ∇]v,w)Ω for all u ∈ Vp and v, w ∈ X p.

Corollary 5.8. For p ∈ ( 2d
d+2 , 2] and k = 0 let the assumptions of Theorem 5.7 be satisfied.

Assume additionally that ε > 0. Then there exists a constant C > 0 such that

‖v − vh‖1,p + β̃(2)‖π − πh‖2 ≤ Ch. (5.32)

The constant C only depends on ‖∇F(Dv)‖2, ‖π‖1,p′, p, ε, σ0, σ1, σ, Ω, f , %0, α0, τ0.

Proof. In view of Theorem 5.7 it is sufficient to prove the error estimate for the pressure.
The starting point is estimate (5.23) with p and p′ replaced by 2. Using the identity
([b · ∇](v − vh),wh)Ω = −(b⊗ (v − vh),∇wT

h )Ω, Lemma 2.7 (i), Hölder’s and Poincaré’s
inequality, for ε > 0 we estimate the expression J1 + J2 as follows:

J1 + J2 . ε
p−2

2 ‖F(Dv)−F(Dvh)‖2 + ‖jhπ − π‖2 + (‖b‖∞ + σ)‖v − vh‖2.

Because of p ≥ 2d
d+2 it holds W 1,p(Ω) ↪→ L2(Ω). Using this and (5.22), we arrive at

J1 + J2 .
(
ε
p−2

2 + ‖b‖∞ + σ
)
‖F(Dv)−F(Dvh)‖2 + h‖π‖1,2. (5.33)

Along the lines of (5.27), we can estimate the term J3 by

J3 ≤ ch
1
2 ‖b‖1/2∞

[
|(ξh, 0)|lps +

( ∑
M∈Mh

%M‖b‖2∞;M‖∇(v − jhv)‖22;M

) 1
2
]

≤ ch
1
2 ‖b‖1/2∞

[
|(ξh, 0)|lps + h

3
2−

d(p+1)
3p + d

2 ‖b‖1/2∞ ‖v‖2, 3p
p+1

]
. (5.34)

Note that 3
2 −

d(p+1)
3p + d

2 ≥ 1 for p ≥ 1. Similarly to (5.28), we conclude that

J4 ≤ sup
wh∈X 2

h

1
‖∇wh‖2

∑
M∈Mh

%M‖θh(b · ∇)v‖ 3p
p+1 ;M‖θh(b · ∇)wh‖ 3p

2p−1 ;M

≤ sup
wh∈X 2

h

1
‖∇wh‖2

∑
M∈Mh

%MhM‖b‖21,∞;M‖v‖2, 3p
p+1 ;Mh

− d2 + d(2p−1)
3p

M ‖wh‖1,2;M

≤ ch
1
2 ‖b‖1,∞h

3
2−

d(p+1)
3p + d

2 ‖v‖2, 3p
p+1

. (5.35)
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5.4 The non-steady p-Navier-Stokes equations

Using Hölder’s inequality with 2
p′ + p′−2

p′ = 1 and Lemma 4.1, we bound the term J5 by

J2
5 =

∑
M∈Mh

h2
M

∫
M

|θh(∇ηh)|2 dx ≤ h2− 4
p′

∑
M∈Mh

h
4
p′
M

(∫
M

|θh(∇ηh)|p′ dx
) 2
p′
|M |

p′−2
p′

≤ h2− 4
p′

( ∑
M∈Mh

h2
M‖θh(∇ηh)‖p

′

p′;M

) 2
p′
( ∑
M∈Mh

|M |
) p′−2

p′

. h
2− 4

p′

( ∑
M∈Mh

αM‖G(θh∇jhπ)− G(θh∇πh)‖22;M

) 2
p′
|Ω|

p′−2
p′ . h

2− 4
p′ ‖(ξh, ηh)‖

4
p′
lps.

(5.36)

Inserting (5.33)–(5.36) into the L2-norm version of (5.23), and recalling the error estimate
(5.21), we can easily complete the proof.

5.4 The non-steady p-Navier-Stokes equations

We depict how the results of Section 5.3 are applied in the numerical analysis of non-steady
p-Navier-Stokes systems (2.14). Although in this section we only deal with well-known
results from [BL09] and [BDR09], we state them for sake of completeness in order to provide
a motivation for the analysis of p-Oseen systems performed in Section 5.3. A standard
numerical approach which is frequently used for the approximation of the Navier-Stokes
problem can be stated as follows (cf. [BL09]): Firstly, discretize the continuous problem
in time with an A-stable implicit time-step scheme and, secondly, discretize the resulting
quasi-steady problem in space with finite elements. Following the literature [BDR09], we
present a semi-implicit Euler scheme for the approximation of a transient flow. For N ∈ N
let us introduce the time step size k := T/N > 0 and the corresponding net tn := nk,
n = 1, . . . , N . System (2.14) is discretized in time as in Algorithm 5.1.

Algorithm 5.1. Semi-implicit Euler scheme

1: Set v0 = v̂.
2: For n = 1, 2, . . . determine the solution vn to the system

dtv
n −∇ · S(Dvn) + [vn−1 · ∇]vn +∇πn = f(tn)

∇ · vn = 0

 in Ω (5.37)

endowed with homogeneous Dirichlet boundary conditions, where

dtv
n := vn − vn−1

k
.
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5 Approximation of the p-Navier-Stokes Equations

The weak formulation of (5.37) reads: For n = 1, 2, . . . find (vn, πn) ∈ X p ×Qp such that

(dtvn,w)Ω + (S(Dvn),Dw)Ω + ([vn−1 · ∇]vn,w)Ω
− (πn,∇ ·w)Ω + (∇ · vn, q)Ω = (f ,w)Ω ∀(w, q) ∈ X p ×Qp.

(5.38)

We define 〈F ,w〉 := (f ,w)Ω + (σvn−1,w)Ω for all w ∈ X p. Setting σ := k−1 and
b := vn−1, we observe that problem (5.38) is equivalent to the p-Oseen problem

(S(Dvn),Dw)Ω + (σvn,w)Ω + ([b · ∇]vn,w)Ω − (πn,∇ ·w)Ω + (∇ · vn, q)Ω = 〈F ,w〉

for all w ∈ X p and q ∈ Qp. Next, we discretize this p-Oseen problem in space and we
apply the LPS technique discussed in Section 5.1. In particular, the numerical analysis
performed in Section 5.3 can be applied for each time step.

For the time-discretization of system (2.14), the Algorithm 5.1 was proposed and analyzed
in [BDR09] in the case of space-periodic boundary conditions. It can be interpreted as
a semi-implicit Euler scheme since the convective term is treated semi-implicitly while
the nonlinear extra stress tensor is treated implicitly. The semi-implicit treatment of
the convective term allows to prove the uniqueness of the solutions to system (5.37), see
[BDR09]. For regular initial values v̂ ∈ W 2,2(Ω) it is shown in [BDR10, BDR09] that
there exists a unique strong solution vn to system (5.37) satisfying the weak formulation
(5.38) and the regularity F(Dvn) ∈ W 1,2(Ω)d×d, see Lemma 2.28. If the initial value v̂
belongs to W 2,2(Ω), then the semi-implicit Euler scheme 5.1 also allows for an optimal a
priori error estimate with respect to the convergence order, see [BDR09] or Lemma 4.19.

5.5 Numerical experiments

In this section we present numerical experiments for p-Navier-Stokes systems. On the basis
of more natural flow configurations we demonstrate the convergence of the (stabilized)
FEM, see Section 5.3. As illustrative examples, we consider steady channel flows such
as a planar flow in a channel with a sudden expansion. Note that the observed order of
convergence may provide hints on the smoothness of the solution. In case of Dirichlet
boundary conditions, the regularity of (weak) solutions up to the boundary is subject of
current research (cf. [Ebm06]). Numerical experiments may support analytical studies.

Let us consider the steady p-Navier-Stokes equations (2.15). We restrict ourselves to fluid
models of class (2.10). We consider planar flows driven by the difference of the pressure
between inlet and outlet. We assume that Ω is a 2d channel and that its boundary ∂Ω
consists of a solid part Γ (upper and lower edge), of an inflow boundary S1 (left), and of a
free outflow boundary S2 (right), see e.g. Figure 5.3(a). On the solid part we prescribe
homogeneous Dirichlet boundary conditions: v = 0 on Γ . On the inlet and outlet we
prescribe the following natural inflow and outflow boundary conditions

−µ(|Dv|2)
2 ∂nv + πn = bin on Si, i ∈ {1, 2}, (5.39)
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5.5 Numerical experiments

for given bi ∈ R. Here, n denotes the outer normal on ∂Ω, and ∂nv is the corresponding
directional derivative. We recall that ∇v = (∂jvi)di,j=1 and ∂nv = (n · ∇)v = [∇v]n.
The boundary conditions (5.39) arise from the variational formulation and they implicitly
normalize the pressure which is initially determined up to a constant only, compare Remarks
5.5 and 5.9 below. Related to boundary conditions of type (5.39), extensive discussions
can be found in Heywood et al. [HRT96] in the context of Navier-Stokes equations.

Remark 5.5. Alternatively, we can prescribe the boundary conditions (see [LS11b])

−S(Dv)n · n+ π = bi

v = (v · n)n

 on Si, i ∈ {1, 2}. (5.40)

In case of simple channel flows, the boundary conditions (5.39) and (5.40) lead to the same
flow behavior as depicted below. In a simple channel Ω = (0, L)× (0, H), the condition
v = (v · n)n on Si ensures that stream lines are orthogonal to the inflow and outflow
boundary, i.e., that v = (v1, 0)T on Si. We note that n|Si is a constant vector and that
v = (v · n)n implies ∂x1v1 = ∇ · v = 0. Hence, we conclude that v1 = v1(x2) and,
consequently, [∇v]n = 0 on Si. Let vn = (v · n) be the normal component of v. Let t be
the tangential vector on ∂Ω, and vt the corresponding tangential component of v. Using
[∇v]n = 0 on Si and [∇v]Tn = ∇vn, we equivalently write the condition (5.40) as follows:

−µ(|Dv|2)
2 ∂nvn + π = bi on Si.

Integrating this over Si and observing ∂nvn = −∂tvt due to ∇ · v = 0, we finally arrive at∫
Si

π do = |Si|bi −
1
2

∫
Si

µ(|Dv|2)∂tvt do, i ∈ {1, 2}. (5.41)

Multiplying (5.39) by n and integrating the result over Si, we obtain the condition (5.41)
as well. As a result, both (5.39) and (5.40) lead to (5.41). If v = (v · n)n on Si, i.e., if
vt ≡ 0 on Si, then ∂tvt = 0 and, hence,

∫
Si
π do = |Si|bi. We realize that the prescribed

value bi can be interpreted as the mean-value of the pressure over Si.

The variational formulation (P5) has to be adapted to the current flow configuration.
Since Dirichlet boundary conditions are prescribed on Γ only, the used function spaces
have to be modified. We define the velocity and pressure space as follows:

X p
Γ := {w ∈W 1,p(Ω); trw = 0 on Γ}, QpΓ := Lp

′(Ω). (5.42)

Let the semi-linear form A(·)(·) be defined by (3.23). Then the weak pressure-drop problem
reads: Find a velocity v and pressure π, u ≡ (v, π) ∈ X p

Γ ×Q
p
Γ , that solve the system

A(u)(ω) =
∑
i

(
µ(|Dv|2)

2 [∇v]Tn− bin,w
)
Si

∀ω ≡ (w, q) ∈ X p
Γ ×Q

p
Γ (5.43)

(f ≡ 0). The weak formulation (5.43) implicitly contains natural boundary conditions on
the free inflow and outflow boundaries as depicted by Remark 5.6.
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5 Approximation of the p-Navier-Stokes Equations

Remark 5.6. Below we derive the free inflow and outflow boundary conditions which are
implicitly hidden in the weak formulation (5.43). We assume that there exists a solution
(v, π) to problem (5.43) which is smooth enough in order to be a classical solution. Using
(S(Dv),Dw)Ω = (S(Dv),∇w)Ω and integration by parts, from (5.43) we deduce that∑

i

(
µ(|Dv|2)

2 [∇v]Tn− bin,w
)
Si

=
∫
Ω

S(Dv) : ∇w − π∇ ·w + ([v · ∇]v) ·w dx

=
∫
Ω

(
−∇ · S(Dv) +∇π + [v · ∇]v

)
·w dx

+
∫

S1∪S2

(
S(Dv)n− πn

)
·w do

since the test functions w ∈ X p
Γ do not vanish on the boundary part S1 ∪ S2 where no

Dirichlet boundary condition is prescribed. Consequently, the inflow/outflow conditions∑
i

∫
Si

(
µ(|Dv|2)

2 [∇v]n− πn+ bin

)
·w do = 0 ∀w ∈ X p

Γ (5.44)

follow. The natural inflow/outflow conditions (5.44) lead to the boundary conditions (5.39).

Remark 5.7. Problem (5.43) is not well-posed in general since, unless the velocity v is
sufficiently smooth, the boundary integral (µ(|Dv|2)[∇v]Tn,w)Si is not well-defined. Up
to now, for p 6= 2 an existence theory is only established for pressure-drop problems of the
following type (cf. [LS11b]): Find u ≡ (v, π) ∈ X p

Γ ×Q
p
Γ such that

A(u)(ω) = −
∑
i

(bin,w)Si ∀ω ≡ (w, q) ∈ X p
Γ ×Q

p
Γ . (5.45)

Similarly to Remark 5.6, from (5.45) we derive the natural inflow/outflow conditions∑
i

∫
Si

(S(Dv)n− πn+ bin) ·w do = 0 ∀w ∈ X p
Γ . (5.46)

Note that the natural inflow/outflow conditions (5.44) lead to the following boundary
conditions: (2.24b) with b := b1n on S1, and (2.24b) with b := b2n on S2. Although the
boundary condition (2.24b) is popular from analytical point of view (it allows an existence
theory such as in [LS11b]), it is less suitable from practical point of view since it is not
satisfied even for simple flows such as Poiseuille flows. In particular, if the boundary
condition (2.24b) is required on Si, then the stream lines of simple flows are generally
curved inwards or outwards on Si (see [HRT96]). Such flow behavior is not desirable since
it does not reflect the physical objectivity. In contrast, the boundary condition (5.39)
seems to be the proper choice since it well recovers simple Poiseuille flows.

In order to guarantee that stream lines are orthogonal to the boundary Si, we can require
the additional condition v = (v · n)v on Si which we can incorporate into the weak
formulation (5.45) by altering the velocity space as follows (cf. [LS11b]):

X p
Γ :=

{
w ∈W 1,p(Ω); trw = 0 on Γ, trw = (trw · n)n on Si, i ∈ {1, 2}

}
. (5.47)
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5.5 Numerical experiments

For a 2d channel Ω as in Remark 5.5, functions w from X p
Γ satisfy w = (w · n)n on Si

and, hence, they take the form w = (w1, 0)T on Si. If the trial space X p
Γ in (5.45) is

replaced by the modified one X p
Γ , then the natural inflow/outflow conditions (5.46) lead

to inflow/outflow boundary conditions that are equivalent to (5.39). More details on free
inflow/outflow boundary conditions can be found in [HRT96].

Problem (5.43) was discretized with equal-order d-linear Q1/Q1 finite elements, see Sec-
tion 3.1. The used FE spaces are given by X p

Γ ;h := Xh ∩X p
Γ and QpΓ ;h := Xh ∩QpΓ with

Xh := Xh,1 defined in (3.2). Since this discretization is not “inf-sup” stable, the following
stabilized discrete problem was solved: Find uh ≡ (vh, πh) ∈ X p

Γ ;h ×Q
p
Γ ;h such that

A(uh)(ωh) + Sh(uh)(ωh) =
∑
i

(
µ(|Dvh|2)

2 [∇vh]Tn− bin,wh

)
Si

∀ωh ≡ (wh, qh) ∈ X p
Γ ;h ×Q

p
Γ ;h.

(5.48)

In the subsequent simulations, we used the Carreau model (2.10) & (2.11b). The stabiliza-
tion term Sh was always chosen as in (3.54). We determined the experimental order of
convergence (EOC) with respect to the quantities E1,p

v , Epv, Ep
′
π , E2

π defined in (4.104).

Table 5.1. Numerical verification of Theorem 5.7

(a) p = 1.3

#cells EFv E1,p
v Epv ESv

512 0.99 0.99 1.98 1.00
2048 1.00 1.00 2.00 1.00
8192 1.00 1.00 2.00 1.00
32768 1.00 1.00 2.00 1.00
131072 1.00 1.00 2.00 1.00
expected 1 1 2

(b) p = 1.5

#cells EFv E1,p
v Epv ESv

512 1.00 1.00 2.00 1.00
2048 1.00 1.00 2.00 1.00
8192 1.00 1.00 2.00 1.00
32768 1.00 1.00 2.00 1.00
131072 1.00 1.00 2.00 1.00
expected 1 1 2

Example 1: First of all, let Ω := (0, L) × (0, H) be a simple channel. Below, we set
b1 = L/2 and b2 = 0. In the case under consideration, it can easily be verified that for
ε = 0 the unique (strong) solution (v, π) to (5.43) is given by

v1(x) = cp

((1
2

) p
p−1
−
∣∣∣∣x2 −H/2

H

∣∣∣∣ p
p−1
)
, v2(x) ≡ 0, π(x) = −1

2x1 + 1
2L, (5.49)

where cp = µ
− 1
p−1

0
√

2
p−2
p−1 p−1

p H
p
p−1 . We briefly motivate why we consider this particular

simple pressure-drop example here: The data such as f are independent of p. The function
(v, π) defined in (5.49) captures the typical flow behavior of a shear thinning fluid. For
1 < p � 2 sharp boundary layers occur near Γ , and the measure of the critical set
Ωc := {x ∈ Ω; ∇v(x) ≈ 0} becomes large. In this example we set L = 1.64, H = 0.41,
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Figure 5.1. Comparison of analytical and numerical velocity profiles

b1 = 0.82, b2 = 0, µ0 = 0.15. Due to Theorem 5.7 we expect linear convergence for the
quantities E1,p

v and EFv . The observed convergence rates are presented in Table 5.1. We
realize that the experimental order of convergence agrees with the theoretical one very well.
Obviously, convergence rates for the pressure are not presented. This is due to the fact that
the pressure π belongs to the finite element space QpΓ ;h and, hence, π was resolved exactly
up to machine accuracy. It is worth mentioning that we were not able to determine the
solutions to (5.48) numerically for a smaller range of p using Newton’s method (Algorithm
3.1). For instance, if p = 1.2, then the Newton iteration did not reach the prescribed
tolerance TOL = 10−11 for the nonlinear residual on the grid with 32768 elements. The
reason is simple: Since |Ωc| is large for 1 < p� 2, in view of (3.53) the Newton matrices
arising in Algorithm 3.1 become singular. This usually causes numerical instabilities, and
Newton’s method does not converge. As a result, system (5.48) can generally be solved for
ε > 0 only. Then the parameter ε > 0 plays the role of a regularization parameter. The
question arises how solutions to (5.43) can properly be approximated in the case p < 2 and
ε = 0. This will be the topic of Chapter 6. Figure 5.1 depicts the analytical velocity profiles
(5.49) and it shows the solutions to (5.48) for small ε > 0 which apparently represent good
approximations to the exact solution. In Chapter 6 we will analytically show that for ε↘ 0
the (discrete) solutions to (5.48) indeed approximate the solution to (5.43) with ε = 0.

In Table 5.2(a) we solved (5.48) for p = 1.1 and ε = 10−7. Clearly, the overall approxi-
mation error (v − vh) can be splitted into two contributions: The first one results from
discretization, while the second one is caused by regularization of (5.48) with ε > 0. Here,
the regularization parameter ε was chosen sufficiently small so that the discretization error
dominates the regularization error on the considered meshes by several orders of magnitude.

132



5.5 Numerical experiments

For instance, on the grid with 128 elements we obtained a W 1,p-error of about 4.55e-02 for
ε = 0, which agrees with the corresponding value for E1,p

v in Table 5.2(a). Considering
Table 5.2(a), we realize that E1,p

v behaves as O(h). This agrees with Theorem 5.7.

Table 5.2. Global vs. local mesh refinement: Case p = 1.1

(a) Global mesh refinement

E1,p
v

#cells error conv.
128 4.55e-02 –
512 2.50e-02 0.87
2048 1.28e-02 0.97
8192 6.44e-03 0.99
32768 3.22e-03 1.00
131072 1.61e-03 1.00

(b) Local mesh refinement

E1,p
v

#cells error conv.
128 4.55e-02 –
320 2.50e-02 0.87
704 1.33e-02 0.91
2816 6.73e-03 0.99
9728 3.42e-03 0.98
35840 1.80e-03 0.93

(a) Coarse grid (128 elements) (b) Locally refined grid (9728 elements)

Figure 5.2. Pressure (left) and velocity (right) profile on different meshes

Local mesh refinement: Considering (5.49), for diminishing values of p we observe sharp
boundary layers near the Dirichlet boundary Γ and we realize that the measure of Ωc
increases. In Ωc the velocity is almost constant. Hence, a good refinement strategy consists
in the following one which, in each refinement cycle, refines elements along the Dirichlet
boundary Γ only: After covering Ω with a coarse mesh, we refine all elements that are
located in a neighborhood of Γ . Since the velocity is almost constant in Ωc, we do not
refine the mesh within Ωc. As is common practice, the local mesh refinement is performed
by bisection of edges (cf. Algorithm 5.2 below): Each quadrilateral is subdivided into four
subelements. Here, the neighborhood of Γ , in which elements are refined, was chosen as the
set {x ∈ Ω; dist(x, Γ ) < 0.05}. In Table 5.2 we compared the global refinement strategy
with the described local one for p = 1.1, while in Table 5.3 we applied the same refinement
strategies for p = 1.03. Table 5.2 indicates that local mesh refinement is more efficient than
global mesh refinement: On globally refined meshes the approximation error E1,p

v behaves
as O(h). Similar values of E1,p

v were obtained if the mesh is refined along Γ only (see Figure

133



5 Approximation of the p-Navier-Stokes Equations

5.2). In view of Table 5.3 we realize even better agreement of the approximation errors for
the two different refinement strategies. The reason is that, compared to the case p = 1.1,
sharper boundary layers occur. Hence, we could further reduce the complexity by choosing
a smaller refinement area without losing accuracy. For such simple flows, the smaller the
power-law exponent p is, the more efficient local mesh refinement works. To sum up, we
benefit from local mesh refinement since we obtain the same accuracy as in the case of
global mesh refinement while saving random access memory. Since the numerical solution
of power-law flows becomes more complex and more cost-intensive for diminishing p, we
should make use of local mesh refinement in order to counter the increasing complexity
and to efficiently approximate power-law flows.

Table 5.3. Global vs. local mesh refinement: Case p = 1.03

(a) Global mesh refinement

EF
v E1,p

v

#cells error conv. error conv.
128 6.41e-02 – 9.48e-03 –
512 4.24e-02 0.60 7.82e-03 0.28
2048 2.35e-02 0.85 4.86e-03 0.69
8192 1.21e-02 0.96 2.59e-03 0.91
32768 6.10e-03 0.99 1.32e-03 0.98
131072 3.06e-03 1.00 6.62e-04 0.99

(b) Local mesh refinement

EF
v E1,p

v

#cells error conv. error conv.
128 6.41e-02 – 9.48e-03 –
320 4.24e-02 0.60 7.82e-03 0.28
704 2.35e-02 0.85 4.86e-03 0.69
2816 1.21e-02 0.96 2.59e-03 0.91
9728 6.10e-03 0.99 1.32e-03 0.98
35840 3.06e-03 1.00 6.62e-04 0.99
137216 1.53e-03 1.00 3.31e-04 1.00

Example 2: We consider a steady flow in a channel with sudden expansion driven by the
difference of the pressure between inlet (left) and outlet (right), see Figure 5.3(d). For
p = 1.3, ε = 10−7, µ0 = 0.15, b1 = 1 the observed convergence rates are presented in Table
5.4. Note that the exact solution is unknown. As the reference solution we took an accurate
FE solution that was determined on a fine grid with 7340032 elements (cf. the subsequent
discussion). In Table 5.4 we discover almost linear convergence for E1,p

v . Apparently, the
experimental convergence rate for Ep′π is less than the one stated in Theorem 5.7. To sum
up, the observed convergence does not agree with the a priori error estimates of Theorem
5.7. As a result we conclude that the regularity of the solution is not sufficient to ensure
the optimal order of convergence. Note that the pressure and the velocity gradient exhibit
a singular behavior in the corner, see Figure 5.3.

Reference solution: For general flow configurations, the exact solution (v, π) to (5.43) is
generally not available. Hence, a finite element solution (vH , πH), that is computed on a
very fine grid with mesh size H, is employed as the reference solution (vH , πH) ≈ (v, π).
Let us reconsider Example 2. In Table 5.5 we compare the approximation errors and
convergence rates obtained for the reference solution (vH , πH) with those obtained for the
“better” reference solution (vH/2, πH/2). Here, H corresponds to the grid with 1835008
elements, which results from the finest grid in Table 5.5(a) by double refinement. In view
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5.5 Numerical experiments

Table 5.4. Experimental order of convergence: Case p = 1.3

#cells E1,p
v Epv Ep

′
π E2

π

448 0.89 1.66 0.27 1.11
1792 0.92 1.56 0.24 0.88
7168 0.92 1.43 0.24 0.83
28672 0.91 1.31 0.24 0.80
114688 0.91 1.27 0.26 0.79
458752 0.92 1.31 0.38 0.81

(a) First velocity component (b) Second velocity component

(c) Pressure with singularity

(d) Coarse mesh (112 elements)

Figure 5.3. Steady flow in a channel with sudden expansion
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5 Approximation of the p-Navier-Stokes Equations

of Table 5.5 the approximation errors for (vH , πH) differ from the ones for (vH/2, πH/2)
on the finer grids. As a result, the observed convergence rates are reliable only in their
first significant digit. Throughout the thesis, we use the following convention: If the exact
solution (v, π) is unknown, then the finite element solution (vH , πH) is set as the reference
solution and the fine grid with mesh size H is chosen as the grid that is obtained after
second refinement of the finest grid stated in the table.

Table 5.5. Comparison of different reference solutions

(a) Reference solution (vH , πH)

‖vH − vh‖1,p ‖πH − πh‖2

#cells error conv. error conv.
112 1.75e-01 – 2.34e-02 –
448 9.48e-02 0.89 1.09e-02 1.11
1792 5.00e-02 0.92 5.89e-03 0.88
7168 2.65e-02 0.92 3.32e-03 0.83
28672 1.40e-02 0.92 1.89e-03 0.81
114688 7.33e-03 0.93 1.07e-03 0.82

(b) Reference solution (vH/2, πH/2)

‖vH/2 − vh‖1,p ‖πH/2 − πh‖2

#cells error conv. error conv.
112 1.75e-01 – 2.34e-02 –
448 9.45e-02 0.89 1.08e-02 1.11
1792 5.01e-02 0.92 5.88e-03 0.88
7168 2.66e-02 0.92 3.32e-03 0.83
28672 1.41e-02 0.91 1.90e-03 0.80
114688 7.48e-03 0.91 1.10e-03 0.79
458752 3.95e-03 0.92 6.25e-04 0.81

Figure 5.4. Stream lines in a channel with expansion: case p = 1.5, b1 = 2.5

Example 3: We consider a steady flow in a channel with stenosis driven by pressure drop,
see Figure 5.5. The parameters were given as in Example 2. The experimental convergence
rates are depicted in Table 5.6. We realize that E1,p

v behaves as O(h). The apparent
convergence is in agreement with Theorem 5.7. For Ep′π the observed rates of convergence
are better than expected from Theorem 5.7. We believe that the improved order of
convergence for the pressure can be explained by super approximation (cf. Example 7 in
Section 4.8). The velocity converges in Lp(Ω) quadratically. As a result, we conclude that
the solution is smooth and that, hence, a duality argument (similar to the one described in
[BS94]) seems to be applicable here.
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5.5 Numerical experiments

Conclusion: We extended the LPS-based approach of Chapter 4 to p-Oseen equations
in order to cope with dominating advection. For p-Oseen systems we established optimal
a priori error estimates that quantify the convergence of the method, see Theorem 5.7. At
least for 1 < p� 2 a convergence analysis of stabilized p-Navier-Stokes systems remain
an open problem. If p is sufficiently large and the Reynolds number is small enough, we
can easily generalize Theorem 5.7 to p-Navier-Stokes systems using the skew-symmetric
tri-linear form (5.31) for approximation of the convective term. We performed several
numerical experiments on p-Navier-Stokes systems. They indicate that the proposed
stabilization leads to a stable discretization. Furthermore, the experimental order of
convergence agrees with the expected one for p-Oseen systems (Theorem 5.7). Hence we
conjecture that for the considered experiments Theorem 5.7 remains valid in the context
of p-Navier-Stokes systems.

Table 5.6. Numerical verification of Theorem 5.7: Case p = 1.3

#cells E1,p
v Epv Ep

′
π E2

π

384 0.87 1.48 0.48 1.04
1536 0.96 1.71 0.65 1.18
6144 1.00 1.87 1.57 1.63
24576 1.01 1.97 1.66 1.80
98304 1.01 1.95 1.53 1.80

(a) Velocity (b) Pressure

(c) Coarse mesh (384 elements)

Figure 5.5. Steady flow in channel with stenosis
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5 Approximation of the p-Navier-Stokes Equations

5.6 A posteriori error estimation and adaptive mesh refinement

This section deals with a posteriori error estimation and adaptive mesh refinement. The
adaptive finite element method (AFEM) consists of a loop (see [DK08]): First of all the FE
problem is solved on the current mesh, then the a posteriori error estimator is evaluated,
and finally elements are marked for refinement with the help of the estimator:

SOLVE → ESTIMATE → MARK → REFINE.

In this section we introduce the well-known dual weighted residual (DWR) method following
the literature [BR03] and [Sch10]. Later we will apply the DWR method to the steady p-
Navier-Stokes equations. If u represents the unknown exact solution, uh the corresponding
approximation and J an output functional such as the drag force, then the goal-oriented
DWR estimator aims at assessing the error between J(u) and J(uh). The DWR method
yields weighted a posteriori error bounds such as

|J(u)− J(uh)| ≤
∑
K∈Th

%KωK

where the weights ωK are determined by means of approximative solutions to a linearized
dual problem and the quantities %K represent computable residuals. We briefly recall the
DWR method within an abstract framework. For details on the DWR method we refer to
[BR03] and [Sch10]. Let Y be a function space. In the context of p-Navier-Stokes systems,
the space Y will be chosen as a subspace of W 1,p(Ω)×Lp′(Ω). For given F ∈ Y ∗ we seek
a solution u ∈ u0 + Y to the abstract variational problem

B(u)(ω) = F (ω) ∀ω ∈ Y . (5.50)

Here, u0 stands for non-homogeneous Dirichlet data, and the semi-linear form B is
supposed to be three-times differentiable on Y × Y . The problem (5.50) is approximated
by conforming finite elements, i.e., the finite dimensional spaces Y h satisfy Y h ⊂ Y . The
discrete problem reads: Find uh ∈ u0,h + Y h such that

B̃(uh)(ωh) = F (ωh) ∀ωh ∈ Y h. (5.51)

Here, u0,h denotes an approximation of u0 and the semi-linear form B̃ stands for an
approximation of B. In the context of p-Navier-Stokes systems, the discrete approximation
B̃ will include stabilization terms such as (5.4). We introduce the Lagrangians

L(u; z) := J(u) + F (z)−B(u)(z) (5.52)
L̃(uh; zh) := J(uh) + F (zh)− B̃(uh)(zh). (5.53)

Let u and uh be the solutions to (5.50) and (5.51) (the primal solutions). Hence,

J(u) = L(u; z), J(uh) = L̃(uh, zh). (5.54)
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5.6 A posteriori error estimation and adaptive mesh refinement

Below we proceed as in [Sch10]. We observe that the solutions u and uh can be interpreted
as the first component of the stationary points of the corresponding Lagrangians:

L′z(u; z)(ω) = F (ω)−B(u)(ω) = 0 ∀ω ∈ Y (5.55)
L̃′z(uh; zh)(ωh) = F (ωh)− B̃(uh)(ωh) = 0 ∀ωh ∈ Y h. (5.56)

Let z ∈ Y be the solution of the so-called dual problem:

B′u(u)(ω, z) = J ′u(u)(ω) ∀ω ∈ Y ⇔ L′u(u; z)(ω) = 0 ∀ω ∈ Y . (5.57)

Its Galerkin approximation reads: Find zh ∈ Y h such that

B̃′u(uh)(ωh, zh) = J ′u(uh)(ωh) ∀ωh ∈ Y h

⇔ L̃′u(uh; zh)(ωh) = 0 ∀ωh ∈ Y h.
(5.58)

We define euh := u− uh and ezh := z − zh. The main theorem of calculus implies that

L(u; z)− L̃(uh; zh) = L(u; z)− L(uh; zh) + (L− L̃)(uh; zh)

=
1∫

0

d
dsL(uh + seuh ; zh + sezh) ds+ (L− L̃)(uh; zh)

=
1∫

0

L′u(uh + seuh ; zh + sezh)(euh) ds

+
1∫

0

L′z(uh + seuh ; zh + sezh)(ezh) ds+ (L− L̃)(uh; zh).

For approximation of the integrals we use the trapezoidal rule,
1∫

0

f(s) ds = 1
2f(0) + 1

2f(1) + 1
2

1∫
0

f ′′(s)s(s− 1) ds,

so that we arrive at

L(u; z)− L̃(uh; zh) = 1
2L
′
u(uh; zh)(euh) + 1

2L
′
z(uh; zh)(ezh)

+ 1
2 L
′
u(u; z)(euh)︸ ︷︷ ︸

=0

+1
2 L
′
z(u; z)(ezh)︸ ︷︷ ︸

=0

+(L− L̃)(uh; zh) +R

= 1
2L
′
u(uh; zh)(euh) + 1

2L
′
z(uh; zh)(ezh) + (L− L̃)(uh; zh) +R

where for eh := (euh , ezh) the remainder term R is given by

R := 1
2

1∫
0

L′′′(uh + seuh ; zh + sezh)(eh, eh, eh)s(s− 1) ds. (5.59)
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5 Approximation of the p-Navier-Stokes Equations

This simple argument needs the assumption euh ∈ Y which requires exact representation of
boundary data, i.e., u0 = u0,h. Let ũh ∈ Y h be arbitrary. Using (5.58), we conclude

L′u(uh; zh)(euh) = L′u(uh; zh)(u− ũh) + L′u(uh; zh)(ũh − uh)
= L′u(uh; zh)(u− ũh) + (L− L̃)′u(uh; zh)(ũh − uh).

Let z̃h be an arbitrary element of Y h. Similarly as above, in view of (5.56) we deduce

L′z(uh; zh)(ezh) = L′z(uh; zh)(z − z̃h) + (L− L̃)′z(uh; zh)(z̃h − zh).

Collecting all results above, we finally get the following error representation

J(u)− J(uh) = 1
2L
′
u(uh; zh)(u− ũh) + 1

2L
′
z(uh; zh)(z − z̃h)

+ 1
2(L− L̃)′u(uh; zh)(ũh − uh) + 1

2(L− L̃)′z(uh; zh)(z̃h − zh)

+ (L− L̃)(uh; zh) +R. (5.60)

Introducing the primal and dual residual,

%(u)(ω) := L′z(u; z)(ω), %∗(u; z)(ω) := L′u(u; z)(ω),

the above identity may be rewritten as

J(u)− J(uh) ≈ ηh := 1
2%(uh)(z − z̃h) + 1

2%
∗(uh; zh)(u− ũh) (5.61)

for all ũh, z̃h ∈ Y h provided that the remainder term R and the additional terms involving
(L− L̃) can be neglected. Note that in many cases the remainder term R is of higher order
in the errors u− uh and z − zh. If a priori information on u− uh and z − zh is known,
then the neglect of R can often be justified. Concerning the practical realization of the
DWR method, we study Algorithm 5.2 and the subsequent discussion. For details we refer
Bangerth/Rannacher [BR03] and the literature cited therein.

Practical aspects and adaptive mesh refinement: Below we deal with the practical
evaluation of ηh in (5.61) and we discuss adaptive mesh refinement within the DWR
framework. Since ũh and z̃h are arbitrary, the weights u− ũh and z − z̃h appearing in
(5.61) basically represent interpolation errors. Because the weights u−ũh and z−z̃h depend
on the unknown primal and dual solution, they cannot be evaluated numerically and in case
of Q1/Q1 elements they are replaced by i(2)

2huh − uh and i(2)
2h zh − zh. Here, the operator

i
(2)
2h : Xh,1 → X2h,2 denotes the nodal interpolant into the space of d-quadratic finite
elements. (It can be constructed easily since the underlying mesh exhibits patch structure.)
Details on this approach can be found in Becker/Rannacher [BR01]. The presented error
estimator ηh also enables adaptive mesh refinement which plays an important role when
the accuracy should be improved efficiently. The aim of adaptivity is to compute the
functional value J(u) up to a prescribed accuracy TOL > 0 and to refine the meshes only
locally in order to get along with the available random access memory. In order to achieve
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5.6 A posteriori error estimation and adaptive mesh refinement

an adaptive method, the information of ηh is localized to element-wise contributions via
the representation ηh = ∑

K∈Th ηK . The quantities ηK are called local error indicators.
Note that different representations of ηK are possible: For instance, the error estimator
ηh can simply be splitted into its cell-wise contributions, or cell-wise integration by parts
can be applied to the cell-wise contributions so that the resulting local error indicators
ηK involve strong cell-wise residuals of the equation and jumps of the discrete solution
over faces of elements (see [BR03, Ran09]). For an extensive discussion on localization we
refer to [Sch10]. Adaptive mesh refinement can be carried out on the basis of standard
strategies such as: successive “error balancing” or “fixed fraction” strategy. In case of the
first strategy we balance the values of ηK until we achieve ηK ≈ TOL/(#Th), while in
case of the second strategy we refine a certain fraction, say 20 – 30 %, of the elements
with the largest value of ηK . An alternative approach, which was used for the subsequent
computations, is described in Richter [Ric05].

Algorithm 5.2. Adaptive finite element method (AFEM)

1: Choose a tolerance TOL > 0 and an initial discretization Th0 .
2: Set L := 0.
3: On the grid ThL determine the solution uhL to the discrete primal problem

(5.51) and compute the solution zhL to the discrete dual problem (5.58).
4: Compute the local error indicators ηK = ηK(uhL , zhL) for all K ∈ ThL on the

basis of (5.61) and take into account the following conventions (see [Ran09]):

• Neglect the higher-order remainder term R and all terms involving
(L− L̃) in (5.60).

• Approximate the weights in (5.61) by higher-order interpolation

(z − z̃hL)
∣∣∣
K
≈
(
i
(2)
2hLzhL − zhL

)∣∣∣
K
,

where i(2)
2hLzhL denotes the d-quadratic nodal interpolant on patches of

the current mesh ThL applied to the computed d-linear approximation
zhL . Use a similar replacement for the weights involving u.

5: If ηh = ∑
K∈ThL

ηK ≤ TOL then STOP.
6: For mesh adaptation choose a subset of ThL on the basis of the local error

indicators ηK by an appropriate strategy such as successive “error balancing”
or “fixed fraction” strategy. Mark the elements for refinement.

7: Perform a refinement of ThL using bisection of edges. Each marked element
K is subdivided in 2d subelements. Since quadrilateral meshes are involved,
the refinement process leads to hanging nodes. The degrees of freedom, that
correspond to hanging nodes, are eliminated using interpolation between
neighboring degrees of freedom (see, e.g., [AO00]).

8: Increment L and go to step 3.
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5 Approximation of the p-Navier-Stokes Equations

Numerical example: As a simple test we considered the p-Laplace system (3.44) provided
with Ω := (0, 1)2, f ≡ (2, 0)T, vD ≡ 0, ε = 10−5, and p = 1.1. We applied the dual weighted
residual (DWR) method, which serves for two purposes: the quantitative assessment of the
discretization error and the adaptive refinement of the underlying meshes. The quality of
the a posteriori error estimation was measured by the effectivity index Ieff,

Ieff := J(u)− J(uh)
ηh

,

where J(u) − J(uh) is the true error and ηh is the estimated error. In Table 5.7 we
chose the output functional J(u) = 1/p′

∫
Ω |∇u|p dx. We used the reference value

J(u) = 0.082979144 which was obtained by Richardson extrapolation of approxima-
tions {J(ũ2jH)}4j=0. Here the functions ũh denote the d-quadratic FE solutions computed
on uniformly refined meshes and H corresponds to the mesh with 1048576 elements. In
view of Table 5.7(a) we observe that the estimated errors agree with the actual errors
very well and, in particular, Ieff ≈ 1 on finer grids. Apparently local mesh refinement is
more efficient than uniform mesh refinement, even though only marginally for this example.
More significant differences of the two refinement strategies usually occur when the involved
quantities are not smooth as exemplarily depicted by the subsequent experiment.

Table 5.7. A posteriori estimation of the energy

(a) Local mesh refinement

#cells ηh J(u)− J(uh) Ieff

64 2.15e-02 4.79e-02 2.23
160 1.41e-02 2.53e-02 1.80
640 5.70e-03 7.21e-03 1.26
1600 1.78e-03 1.98e-03 1.11
4480 5.63e-04 5.91e-04 1.05
14656 1.65e-04 1.68e-04 1.02
52672 4.57e-05 4.64e-05 1.02
200464 1.21e-05 1.22e-05 1.01

(b) Uniform mesh refinement

#cells ηh J(u)− J(uh) Ieff

64 2.15e-02 4.79e-02 2.23
256 1.11e-02 1.59e-02 1.44
1024 3.79e-03 4.36e-03 1.15
4096 1.07e-03 1.12e-03 1.05
16384 2.78e-04 2.83e-04 1.01
65536 7.05e-05 7.08e-05 1.00
262144 1.77e-05 1.77e-05 1.00

Remark 5.8. For ε = 0 let u be the primal weak solution to (3.44), and let J(u) :=
1
p′
∫
Ω |∇u|p dx. If ε = 0, then obviously z = u is a solution to the dual problem (5.57). In

the case under consideration, the dual equation (5.57) formally takes the form∫
Ω

|∇u|p−2∇ω : ∇z dx+ (p− 2)
∫
Ω

|∇u|p−4(∇u : ∇ω)(∇u : ∇z) dx

≡ B′u(u)(ω, z) = J ′u(u)(ω) ≡ (p− 1)
∫
Ω

|∇u|p−2∇u : ∇ω dx ∀ω ∈ Y ≡W 1,p
0 (Ω).

Below we show that for ε = 0 the solution z = u is uniquely determined within the class
{v ∈ Y ; B′u(u)(ω,v) <∞ for all ω ∈ Y }. To this end, we suppose that there is a further
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5.6 A posteriori error estimation and adaptive mesh refinement

solution z̃ with z̃ 6= z. This implies that B′u(u)(ω, z − z̃) = 0 for all ω ∈ Y . Using the
latter identity with ω := z − z̃, Lemma 2.4 with ε = 0, for p < 2 we conclude that

0 = B′u(u)(u− z̃,u− z̃)

≡
∫
Ω

|∇u|p−2|∇(u− z̃)|2 dx+ (p− 2)
∫
Ω

|∇u|p−4(∇u : ∇(u− z̃))(∇u : ∇(u− z̃)) dx

≥ (p− 1)
∫
Ω

|∇u|p−2|∇(u− z̃)|2 dx ≥ (p− 1)
∫
Ω

(|∇u|+ |∇z̃|)p−2|∇(u− z̃)|2 dx

∼ (p− 1)
∫
Ω

(S(∇u)− S(∇z̃)) : (∇u−∇z̃) dx.

Since S is monotone and z̃ 6= u, the last term is strictly positive. This yields the desired
contradiction. As a result, the solution z = u is uniquely determined.

In Table 5.8 we estimated the error at some point x0 ∈ Ω. Since the point functional
J(u) := u1(x0) is not well-defined on the trial space Y := W 1,p

0 (Ω), for Bδ := {x ∈
R2; |x− x0| < δ} the regularized functional Jδ(u) := |Bδ|−1 ∫

Bδ
u1 dx is employed within

the DWR method. It is well-known that for small δ it holds Jδ(u) = u1(x0) +O(δ2). Here,
for x0 := (0.8, 0.8) the reference value J(u) = 0.082979144 was used. It was obtained
analogously to the previous experiment by extrapolation of approximations computed on
uniformly refined meshes. Considering Table 5.8, we observe that the estimated errors
agree with the actual errors very well. In particular we realize that Ieff ≈ 1 on finer grids.

Table 5.8. A posteriori estimation of a point value

(a) Local mesh refinement

#cells ηh J(u)− J(uh) Ieff

64 1.58e-02 4.20e-02 2.66
172 9.38e-03 1.96e-02 2.09
484 4.95e-03 5.80e-03 1.17
1348 1.66e-03 1.79e-03 1.08
4300 4.91e-04 5.00e-04 1.02
14260 1.40e-04 1.47e-04 1.05
50788 3.94e-05 3.95e-05 1.00

(b) Uniform mesh refinement

#cells ηh J(u)− J(uh) Ieff

64 1.58e-02 4.20e-02 2.66
256 8.45e-03 1.70e-02 2.01
1024 4.22e-03 4.78e-03 1.13
4096 1.22e-03 1.25e-03 1.03
16384 3.12e-04 3.02e-04 0.97
65536 7.64e-05 7.90e-05 1.03

Lemma 5.9. For p ∈ (1, 2] let us consider the p-Laplace problem (3.44), i.e., let B = B̃

be given by B(u)(ω) :=
∫
Ω(ε2 + |∇u|2)

p−2
2 ∇u : ∇ω dx. If for some constant C > 0 the

functional J satisfies J ′u(uh)(ωh) ≤ C‖ωh‖1,p for all ωh ∈ X p
h, then for each h > 0 there

exists a unique solution zh ∈ Y h ≡ X p
h to problem (5.58) satisfying

‖zh‖1,p ≤ C = C(p, ε0, Ω,f). (5.62)
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5 Approximation of the p-Navier-Stokes Equations

(a) 64 el. (b) 172 el. (c) 484 el.

(d) 1348 el. (e) 4300 el. (f) 14260 el.

Figure 5.6. Adaptively refined meshes for the computation of J(u) =
1/p′

∫
Ω |∇u|p dx: primal solutions

(a) 64 el. (b) 172 el. (c) 484 el.

(d) 1348 el. (e) 4300 el. (f) 14260 el.

Figure 5.7. Adaptively refined meshes for the computation of u(0.8, 0.8): primal
solutions (a)–(e) and dual solution (f)
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5.7 Application to the p-Navier-Stokes equations

Proof. First of all we prove that if there exists a solution zh to problem (5.58), then zh
is determined uniquely. For this we assume that z1

h and z2
h are two functions satisfying

(5.58). Setting ξh := z1
h − z2

h, we observe that

B′u(uh)(ωh, ξh) = 0 ∀ωh ∈ X p
h.

Using Hölder’s inequality with 2−p
2 + p

2 = 1 and taking into account p < 2, we conclude

(p− 1)‖∇wh‖2p = (p− 1)
(∫
Ω

(
ε2 + |∇uh|2

) (2−p)
4 p(

ε2 + |∇uh|2
) (p−2)

4 p
|∇wh|p dx

) 2
p

≤ (p− 1)‖ε+ |∇uh|‖2−pp

∫
Ω

(
ε2 + |∇uh|2

) p−2
2 |∇wh|2 dx

≤ ‖ε+ |∇uh|‖2−pp

[ ∫
Ω

(
ε2 + |∇uh|2

) p−2
2 |∇wh|2 dx

+ (p− 2)
∫
Ω

(
ε2 + |∇uh|2

) p−4
2 |∇uh|2|∇wh|2 dx

]
≤ ‖ε+ |∇uh|‖2−pp B′u(uh)(wh,wh) (5.63)

for all wh ∈ X p
h. We recall that uh is uniformly bounded in W 1,p(Ω) by a constant only

depending on the data. Hence, we deduce that there exists a constant c = c(p, ε0, Ω,f):

0 = B′u(uh)(ξh, ξh) ≥ c‖∇ξh‖2p. (5.64)

We infer that ξh ≡ 0 and, hence, z1
h = z2

h. Since system (5.58) is linear and the space X p
h

is finite dimensional, we can conclude that there exists a solution zh to system (5.58). In
order to show (5.62), we test (5.58) with ωh := zh and we apply (5.63) so that

C‖zh‖1,p ≥ J ′u(uh)(zh) = B′u(uh)(zh, zh) ≥ (p− 1)‖ε+ |∇uh|‖p−2
p ‖∇zh‖2p.

This completes the proof.

For instance, the assumptions of Lemma 5.9 are satisfied for the functional J(u) =
1/p′

∫
Ω |∇u|p dx since the primal solution uh of the discrete p-Laplace problem is uniformly

bounded in W 1,p(Ω) by a constant only depending on the data. Discrete dual solutions zh
usually exist. In contrast the well-posedness of the continuous dual problem (5.57) cannot
be established in general, even for the simple p-Laplace equation.

5.7 Application to the p-Navier-Stokes equations

In this section we apply the well-known DWR method to the p-Navier-Stokes equations
(2.15). As an illustrative example, we compute the drag coefficient of an obstacle immersed
into a fluid of class (2.10). We consider the planar flow around an obstacle between two
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5 Approximation of the p-Navier-Stokes Equations

steady parallel plates driven by an inflow profile for the velocity. We assume that Ω is
a simple channel whose boundary consists of a solid part Γs (upper and lower edge), of
an inflow boundary Γi (left), and of a free outflow boundary S (right), see Figure 5.8(b).
In addition we suppose that an obstacle with surface Γo is immersed into the fluid. On
Γ := Γs ∪ Γo ∪ Γi we prescribe boundary conditions of Dirichlet type: v|Γs∪Γo = 0 and
v|Γi = vD. Here, vD is given by the trace of a globally defined function v0 ∈W 1,p(Ω).
On S we prescribe the natural outflow boundary condition

−µ(|Dv|2)
2 ∂nv + πn = 0 on S. (5.65)

As above, n denotes the outer normal on ∂Ω, and ∂nv is the corresponding directional
derivative. Note that ∂nv = (n · ∇)v = [∇v]n. If the boundary condition (5.65) is
prescribed, then the pressure is uniquely determined without an additional constraint on
the pressure mean value. More details can be found in [HRT96], Remarks 5.6 and 5.9.

Remark 5.9. Let t be the tangential vector on ∂Ω and let vt = v · t be the corresponding
tangential component of v. Multiplying (5.65) by n, integrating the result over S, and
observing ∂nvn = −∂tvt due to ∇ · v = 0, we obtain the condition∫

S

π do = −1
2

∫
S

µ(|Dv|2)∂tvt do. (5.66)

For instance, for unidirectional flows (Poiseuille flows) the stream lines are orthogonal to
the outflow boundary S. In this case, the tangential component vt is identically zero. As a
result, we conclude that ∂tvt = 0 and, hence,

∫
S π do = 0.

The variational formulation (P5) has to be adjusted to the current flow configuration.
Let the semi-linear form A(·)(·) be defined by (3.23). As above, X p

Γ and QpΓ denote the
velocity and pressure space, and they are defined as in (5.42). Then the weak formulation
reads: Find a velocity v and pressure π, u ≡ (v, π) ∈ (v0 +X p

Γ )×QpΓ , such that

A(u)(ω) = (f ,w)Ω +
(
µ(|Dv|2)

2 [∇v]Tn,w
)
S

∀ω ≡ (w, q) ∈ X p
Γ ×Q

p
Γ . (5.67)

Similarly to Remark 5.6, we can derive the so-called “do-nothing” boundary condition
(5.65) by applying integration by parts to (5.67).

Drag computation: Below we introduce the drag and lift force following the literature
Giles et al. [GLLS97]. For u = (v, π) the weighted boundary flux Jψ(u) is defined by

Jψ(u) :=
d∑

i,j=1

∫
∂Ω

ni(Sij(Dv)− πδij)ψj do. (5.68)

If ψ is a unit vector parallel to the direction of the flow, then Jdrag := Jψ is called the drag
on ∂Ω. If ψ is a unit vector perpendicular to the direction of the flow, then Jlift := Jψ is
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5.7 Application to the p-Navier-Stokes equations

referred to as the lift on ∂Ω. If only a part Γo of the boundary ∂Ω is of concern, then ψ
can be taken to have its support in Γo. As above, Γo is a closed surface which represents
the boundary of an object immersed into the fluid. The space of all w ∈W 1,p(Ω), which
satisfy the Dirichlet boundary condition w|∂Ω = ψ, is denoted byW 1,p

ψ (Ω). Let u = (v, π)
be a weak solution to (2.15) that is smooth enough in order to be a classical solution. Then
it follows from integration by parts that for any ω = (w, q) ∈W 1,p

ψ (Ω)× Lp′(Ω)

A(u)(ω)− (f ,w)Ω =
d∑
j=1

∫
Ω

(
−

d∑
i=1

∂iSij(Dv) + ∂jπ +
d∑
i=1

vi∂ivj − fj
)

︸ ︷︷ ︸
=0

wj dx

+
d∑
j=1

∫
∂Ω

d∑
i=1

niSij(Dv)wj − njπwj do = Jψ(u).

Clearly, the left-hand side is independent of the choice of ω ∈W 1,p
ψ (Ω)× Lp′(Ω). Here,

we choose the particular test functions ωdrag = (wdrag, 0) and ωlift = (wlift, 0) which fulfill
wdrag|∂Ω = ψdrag and wlift|∂Ω = ψlift, where ψdrag|Γo = (1, 0)T, ψdrag|∂Ω\Γo = 0, and
ψlift|Γo = (0, 1)T, ψlift|∂Ω\Γo = 0. As a result, we obtain the identities

Jdrag(u) = A(u)(ωdrag)− (f ,wdrag)Ω, Jlift(u) = A(u)(ωlift)− (f ,wlift)Ω. (5.69)

However, such identities are not true on the discrete level. The finite element space Xh,ψ

consists of all wh ∈Xh with wh|∂Ω = ψ where ψ is given by ψ = gh|∂Ω for some gh ∈Xh.
Motivated by (5.69), we define approximations Jhdrag(uh) to Jdrag(u) by

Jhdrag(uh) := A
(
uh
)(

(wdrag,h, 0)
)
− (f ,wdrag,h)Ω, wdrag,h ∈Xh,ψdrag .

As usual, uh = (vh, πh) denotes the finite element solution. If the boundary is sufficiently
smooth and if the used FE spaces are based on d-simplices and are inf-sup stable, then
Giles et al. showed in [GLLS97] in the case p = 2 that the order of convergence for
Jhdrag(uh)− Jdrag(u) amounts to1 2r. However, for the direct approximation Jdrag(uh) the
order of convergence is typically only r (see [GLLS97]). To sum up, for p = 2 there hold

|Jdrag(uh)− Jdrag(u)| = O(hr), |Jhdrag(uh)− Jdrag(u)| = O(h2r). (5.70)

Similar results hold true for Jlift and Jhlift.

The DWR method applied to p-Navier-Stokes systems: As above, let A(·)(·) be defined
by (3.23). The p-Navier-Stokes problem (5.67) can be expressed equivalently by (5.50)
if the product space Y := X p

Γ × Q
p
Γ is used, and for u ≡ (v, π), ω ≡ (w, q) ∈ Y the

right-hand side is given by F (ω) := (f ,w)Ω and the semi-linear form B is defined by

B(u)(ω) := A(u)(ω)−
(
µ(|Dv|2)

2 [∇v]Tn,w
)
S
. (5.71)

1Here, the variable r denotes the underlying polynomial degree of the velocity space.
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5 Approximation of the p-Navier-Stokes Equations

We discretize the p-Navier-Stokes system (5.67) with equal-order Q1/Q1 finite elements.
This discretization requires stabilization of the finite element equations. The stabilized
discrete problem reads: Find uh ≡ (vh, πh) ∈ (v0,h +X p

Γ ;h)×QpΓ ;h such that

B(uh)(ωh) + Sh(uh)(ωh) = (f ,wh)Ω ∀ωh ≡ (wh, qh) ∈ X p
Γ ;h ×Q

p
Γ ;h. (5.72)

The used stabilization term Sh is chosen as in (3.54). The semi-linear form B̃, that
was introduced in (5.51), is given by the left-hand side of (5.72). We only consider the
popular Carreau-type model (2.10) & (2.11b). The directional derivative A′(u)(ω, z) is
then formally given by (3.53). As already mentioned, the directional derivative (3.53) is not
well-defined for ε = 0 and p < 2 since the functions u, ω, z naturally belong to the space
W 1,p(Ω)×Lp′ only. If additional regularity on the primal solution u such as u ∈W 1,∞(Ω)
is not available, then the existence of a unique solution z to the dual problem (5.57) is not
ensured. The additional terms in (5.60) caused by stabilization are given by

(L− L̃)(uh; zh) = Sh(uh)(zh), 1
2(L− L̃)′z(uh; zh)(z̃h − zh) = 1

2S
′
h(uh)(z̃h − zh), . . . .

They are supposed to be neglectable. This may be justified by the fact that they include
stabilization parameters which vanish for diminishing mesh size (see [Sch10]).

Example 1: For the Carreau model (2.10) & (2.11b) we reconsider the benchmark problem
2D-1 in Schäfer/Turek [TS96]. As in [TS96], the parabolic inflow profile vD(x, y) =
(4vmy(H − y)/H2, 0)T was prescribed on Γi. Here, the variable H denotes the height of
the channel and it was given by H = 0.41. The parameters were set to p = 1.2, ε = 10−3,
µ0 = 0.15, vm = 0.3. For Q2/Q2 elements on uniformly refined meshes the computation of
the drag-coefficient yielded the values listed in Table 5.9.

Table 5.9. Drag-coefficient (Q2/Q2 elements, uniform refinement): Case p = 1.2

#cells Jhdrag(uh)

10240 0.1655069473366795
40960 0.1650880440829428
163840 0.1650477143604138
655360 0.1650447725137632

extrapolated 0.1650445410360044

Since the exact drag coefficient Jdrag(u) is unknown, the extrapolated value was used as
the reference value Jdrag(u) = 0.16504454. We applied the DWR method which enables
the quantitative assessment of the discretization error and the adaptive refinement of
the underlying meshes. As above, Jdrag(u) − Jhdrag(uh) represents the actual error and
ηh denotes the estimated error. The quality of the error estimation is measured by the
effectivity index Ieff := (Jdrag(u) − Jhdrag(uh))/ηh. Using adaptively refined meshes, we
obtained the results shown in Table 5.10. Particularly on finer grids we observe a good
agreement of the estimated and the actual errors. This is illustrated by Ieff ≈ 1. The
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5.7 Application to the p-Navier-Stokes equations

(a) Coarse mesh (160 elements)

(b) Primal solution: velocity

(c) Dual solution: velocity

(d) Primal solution: pressure

Figure 5.8. FE solution on an adaptively refined mesh: case p = 1.2
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5 Approximation of the p-Navier-Stokes Equations

(a) 1048 elements

(b) 2560 elements

(c) 5836 elements

(d) 17308 elements

Figure 5.9. Adaptively refined meshes in case of Example 1
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5.7 Application to the p-Navier-Stokes equations

number of elements, which is needed to reach a relative error of one percent, is indicated
by bold face. Figure 5.10 depicts the behavior of the discretization error for different
refinement strategies. As expected, adaptive mesh refinement is more efficient than uniform
mesh refinement.

Table 5.10. Drag-coefficient: case p = 1.2, ε = 10−3

#cells ηh Jdrag(u)− Jhdrag(uh) Ieff

160 -1.35e-02 -3.08e-02 2.28
412 -4.85e-03 -1.15e-02 2.36
1048 -2.03e-03 -3.89e-03 1.91
2560 -9.13e-04 -1.22e-03 1.34
5836 -3.90e-04 -4.14e-04 1.06
17308 -1.34e-04 -1.33e-04 0.99
54760 -4.17e-05 -4.14e-05 0.99
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Figure 5.10. |Jdrag(u)− Jhdrag(uh)| for different refinement strategies: p = 1.2

Example 2: We consider the laminar flow around an obstacle with square cross-section,
see Figure 5.12. Here the parameters were set to p = 1.5, ε = 10−3, µ0 = 0.15. Considering
Figure 5.12, we observe singularities of the pressure and velocity-gradient caused by the
obstacle. The lack of regularity leads to a reduction of the convergence-rate for Jhdrag(uh)
with respect to uniform refinement. As a reference value for the drag-coefficient, we
used the estimated value Jdrag(u) ≈ 0.31244827. We established this value by comparing
the approximations obtained for bi-linear and bi-quadratic finite elements by means of
adaptive and uniform refinement. Considering Table 5.11, we discover over-estimation
which is indicated by Ieff > 1. The measured effectivity indices Ieff are worse than those
in Example 1. The reason is that neither the primal nor the dual solution is regular. In
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5 Approximation of the p-Navier-Stokes Equations

view of Figure 5.11 adaptive mesh refinement is more efficient than uniform refinement.
Compared to Example 1, the efficiency of adaptivity is greater.

Table 5.11. Drag-coefficient: case p = 1.5, ε = 10−3

#cells ηh Jdrag(u)− Jhdrag(uh) Ieff

160 -2.37e-02 -3.93e-02 1.66
412 -7.26e-03 -1.54e-02 2.13
868 -4.13e-03 -8.16e-03 1.97
1828 -2.22e-03 -4.15e-03 1.87
3976 -1.12e-03 -2.08e-03 1.86
6244 -7.65e-04 -1.25e-03 1.64
13840 -3.78e-04 -6.23e-04 1.64
23644 -2.20e-04 -3.39e-04 1.54
42736 -1.27e-04 -1.88e-04 1.48
79192 -7.02e-05 -9.95e-05 1.42
142204 -3.92e-05 -5.38e-05 1.37
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Figure 5.11. |Jdrag(u)− Jhdrag(uh)| for different refinement strategies: p = 1.5

Conclusion: For a posteriori error estimation we applied the DWR method to p-Navier-
Stokes systems. Our numerical experiments demonstrate that the DWR method works well
in the context of p-Navier-Stokes systems: It quantitatively assesses the discretization error
and it enables efficient adaptive mesh refinement. Despite its practical success, the DWR
method offers many open questions when it is applied to p-Navier-Stokes systems. In fact,
from theoretical point of view it has not yet been understood at all: For p < 2 the dual
problem (5.57) is not well-posed in general even in the case ε > 0. Moreover the analysis
performed in Section 5.6 does not include the limiting case ε↘ 0. The remainder term
(5.59) generally does not remain bounded as ε ↘ 0 for fixed h > 0. At least numerical
experiments indicate that the DWR method works reasonably in the case 0 < ε� 1.
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5.7 Application to the p-Navier-Stokes equations

(a) Coarse mesh (160 elements)

(b) Primal solution: velocity

(c) Dual solution: velocity

(d) Primal solution: pressure

Figure 5.12. FE solution on an adaptively refined mesh: case p = 1.5
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5 Approximation of the p-Navier-Stokes Equations

(a) 868 elements

(b) 1828 elements

(c) 3976 elements

(d) 6244 elements

(e) 13840 elements

Figure 5.13. Adaptively refined meshes in case of Example 2
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6 Finite Element Approximation of Singular
Power-Law Systems

Non-Newtonian fluid motions are often modeled by a power-law ansatz. In this chapter, we
consider the power-law model (2.10) & (2.11a) with p < 2 which features an unbounded
viscosity in the limit of zero shear rate, and we study the finite element (FE) discretization
of the corresponding equations of motion (the singular power-law systems). In the case
under consideration, numerical instabilities usually arise when the finite element equations
are solved via Newton’s method. In this chapter, we aim at developing a numerical
method that enables the stable approximation of singular power-law systems. First of
all we identify the arising difficulties connected with the numerical solution. Then we
propose an approximation method for singular power-law systems that is based on a simple
regularization of the power-law model (2.11a). Our proposed method generates a sequence
of discrete functions that is computable in practice via Newton’s method and that converges
to the power-law solution for diminishing mesh size. We derive a priori error estimates that
quantify the convergence of our method, see Corollary 6.4. Furthermore, we demonstrate
numerically that our regularized approximation method surpasses the non-regularized one
regarding accuracy and numerical efficiency.

In Section 6.1, we recall the weak formulation and we introduce its discretization. For
ease of presentation, we restrict ourselves to stable discretizations that satisfy the inf-sup
stability condition (IS). Section 6.2 deals with Newton’s method and its stability. For the
regularized model we show the stability of Newton’s method in the sense that we derive an
upper bound for the condition number of the Newton matrix. In Section 6.3, we present
our regularized approximation scheme and we derive a priori error estimates for it. In
Section 6.4, we illustrate the a priori error estimates by numerical experiments.

6.1 Problem formulation

For ease of presentation, we only study power-law/Carreau-type models (2.10)–(2.11b).
Such models are derived from a potential. For p ∈ (1,∞) and ε ≥ 0, we define the extra
stress tensor Sε by means of a convex function Φε : R+

0 → R+
0 as follows:

Sε(Q) := Φ′ε(|Q|)
Q

|Q|
∀Q ∈ Rd×dsym , Φε(t) :=

t∫
0

(ε2 + s2)
p−2

2 sds. (6.1)

The subscript ε highlights the dependence on ε which will be of relevance below.
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6 Finite Element Approximation of Singular Power-Law Systems

Weak formulation: The weak formulation of system (2.16) & (6.1) reads:

(Pε) For given f ∈ (X p)∗ find (vε, πε) ∈ X p ×Qp such that

(Sε(Dvε),Dw)Ω − (πε,∇ ·w)Ω = 〈f ,w〉 ∀w ∈ X p (6.2)
(∇ · vε, q)Ω = 0 ∀q ∈ Qp. (6.3)

The well-posedness of Problem (Pε) has been established in Section 2.5: There exists a
unique solution (vε, πε) ∈ X p ×Qp to Problem (Pε) that satisfies the a priori estimate

‖vε‖1,p ≤ c
(
‖f‖

1
p−1
−1,p′ + ε

)
(6.4)

where c > 0 only depends on Ω, p (see Lemma 2.19). Since Sε is derived from the potential
Φε, we can introduce the functional Jε : X p → R associated with Φε:

Jε(u) :=
∫
Ω

Φε(|Du|) dx− 〈f ,u〉 ∀u ∈ X p. (6.5)

In Section 2.5 we have shown that Problem (Pε) is equivalent to the minimization problem

(Mε) For given f ∈ (X p)∗ find vε ∈ Vp such that

Jε(vε) ≤ Jε(w) ∀w ∈ Vp. (6.6)

Finite element discretization: Let X p
h and Qph be two appropriate finite element spaces

as in (3.21). Their precise definition is not important for the purpose of the following
sections. The Galerkin approximation of (Pε) reads as follows:

(Pεh) Find (vεh, πεh) ∈ X p
h ×Q

p
h such that

(Sε(Dvεh),Dwh)Ω − (πεh,∇ ·wh)Ω = 〈f ,wh〉 ∀wh ∈ X p
h (6.7)

(∇ · vεh, qh)Ω = 0 ∀qh ∈ Qph. (6.8)

For ease of presentation, throughout the chapter we require that the discrete inf-sup
condition (IS) is satisfied. We may easily verify the well-posedness of the discrete Problem
(Pε

h) using the same arguments as in the continuous case (see Lemma 2.19).
Lemma 6.1. Let (IS) be satisfied. Then, there exists a unique solution (vεh, πεh) ∈ X p

h×Q
p
h

to Problem (Pε
h) that satisfies the a priori bound (6.4) with vε replaced by vεh.

Remark 6.1. It is well-known that equal-order finite elements (such as Q1/Q1) lead to an
unstable discretization, i.e., they do not fulfill the inf-sup stability condition (IS). If the
pairing X p

h×Q
p
h does not satisfy (IS), we need to stabilize the Galerkin discretization (Pε

h).
Stabilization methods, that are frequently used, are the local projection stabilization (LPS)
and the pressure-stabilization Petrov-Galerkin (PSPG) method (see Section 3.2). If we
discretize (Pε) with the unstable Q1/Q1 elements, we can apply the LPS-based stabilization
method proposed in Section 4.1: One adds an appropriate stabilization term sh(πh)(qh) to
(6.8) which gives a weighted Lp′-control over the fluctuations of the pressure-gradient.
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6.2 Stability of Newton’s method

In order to ensure approximation properties, one clearly needs to specify the choice of the
discrete spaces. Since approximation properties are not important for the purpose of the
forthcoming section, we will discuss particular choices of the discrete spaces later on.

6.2 Stability of Newton’s method

Nonlinear FE systems are frequently solved via Newton’s method, see Algorithm 3.1. This
section is dedicated to computational aspects: We discuss Newton’s method and its stability
in the context of power-law/Carreau-type models. In particular, we derive an upper bound
for the condition number of the matrix resulting from linearization of the viscous part.

Solution of the discrete problems: Below we investigate the numerical scheme that
solves the FE systems (6.7) & (6.8). Due to their nonlinear nature, the discrete equations
need to be linearized. For linearization we apply Newton’s method, see Algorithm 3.1. For
ease of presentation, we introduce a semi-linear form aε(·)(·) associated with Sε:

aε(v)(w) := (Sε(Dv),Dw)Ω ∀v,w ∈ X p.

Formally, we may compute the Gâteaux-derivative of aε(·)(·):

a′ε(v)(ξ,w) =
∫
Ω

(
ε2 + |Dv|2

) p−2
2 Dξ : Dw dx

+ (p− 2)
∫
Ω

(
ε2 + |Dv|2

) p−4
2 (Dv : Dξ)(Dv : Dw) dx

(6.9)

for v, ξ, w ∈ X p. We recall Newton’s method applied to (6.7) & (6.8), see Algorithm 3.1:
Choose an initial guess (v0

h, π
0
h). For k = 0, 1, 2, . . . compute (ξkh, ηkh) ∈ X p

h ×Q
p
h from

a′ε(vkh)(ξkh,wh)− (ηkh,∇ ·wh)Ω + (∇ · ξkh, qh)Ω = −aε(vkh)(wh)
+ (πkh,∇ ·wh)Ω − (∇ · vkh, qh)Ω + 〈f ,wh〉 ∀(wh, qh) ∈ X p

h ×Q
p
h

(6.10)

and set (vk+1
h , πk+1

h ) := (vkh, πkh) + (ξkh, ηkh). For p < 2 and ε = 0 the Gâteaux-derivative
a′ε(vkh)(ξkh,wh) does not exist in general when the critical set Ωc ≡ {x ∈ Ω; ∇vkh(x) ≈ 0}
is not empty. Since Newton’s method requires the existence of first derivatives, for ε = 0
its convergence is not ensured in the case Ωc 6= ∅. Hence, for ε = 0 the solution to Problem
(Pε

h) cannot (approximatively) be determined by means of Newton’s method in general.
However, if ε > 0, it can easily be shown that aε is Gâteaux differentiable on X p

h ×X
p
h.

Stability of Newton’s method: First of all we discuss the algebraic structure of Newton’s
algorithm. For simplicity, we assume that Problem (Pε) is discretized with inf-sup stable
finite elements. In this case, the Galerkin discretization (6.7), (6.8) does not need to be
modified by additional stabilization terms. If equal-order discretizations are considered
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6 Finite Element Approximation of Singular Power-Law Systems

(cf. Remark 6.1), then the forthcoming investigations can easily be generalized. Let
{ψj , j = 1, . . . , N := dim(X p

h)} and {χj , j = 1, . . . ,M := dim(Qph)} be the nodal basis of
the finite element space X p

h and Qph, respectively. In view of the representations

ξkh =
N∑
j=1

αkjψj , ηkh =
M∑
j=1

βkj χj , (6.11)

Newton’s system (6.10) is equivalent to the linear system of equations(
Ak B

−BT 0

)(
αk

βk

)
=
(
bk

ck

)
(6.12)

for the unknowns αk ∈ RN and βk ∈ RM where

Ak :=
(
a′ε(vkh)(ψj ,ψi)

)N
i,j=1

, B := −
(
(χj ,∇ ·ψi)Ω

)N,M
i,j=1

, (6.13)

bk :=
(
− aε(vkh)(ψi) + (πkh,∇ ·ψi)Ω + 〈f ,ψi〉

)N
i=1
, ck :=

(
− (∇ · vkh, χi)Ω

)M
i=1
.

The following theorem provides an upper bound for the condition number of Ak.

Theorem 6.2. Let p ∈ (1, 2] and ε ∈ (0,∞). Then, the matrix Ak defined in (6.13) is
symmetric and positive definite for all k ∈ N. Consequently, Ak is regular for all k ∈ N.
Furthermore, the condition number cond2(Ak) of the matrix Ak can be estimated by

cond2(Ak) := λmax(Ak)
λmin(Ak)

≤ c(p− 1)−1
(
ε+ ‖Dvkh‖∞

)2−p
εp−2h−2. (6.14)

Here, λmax(Ak) and λmin(Ak) denotes the largest and smallest eigenvalue of the matrix
Ak. The constant c only depends on Ω and on the shape-regularity of the grid Th.

Proof. In the context of the regularized p-Laplace equation, an estimate similar to (6.14)
has been proven by Hirn [Hir08]. Here, we similarly derive estimate (6.14) following the
arguments in [Hir08]. Clearly, the matrix Ak defined in (6.13) is symmetric. Let wh ∈ X p

h

be an arbitrary finite element function with corresponding nodal vector ζ = (ζi)Ni=1 ∈ RN ,
i.e., wh = ∑N

i=1 ζiψi. Then, there holds true the following identity:

a′ε(vkh)(wh,wh) =
N∑

i,j=1
ζia
′
ε(vkh)(ψi,ψj)ζj =

N∑
i,j=1

ζiA
k
ijζj .

In view of (6.9), we observe that

a′ε(vkh)(wh,wh) =
∫
Ω

(
ε2 + |Dvkh|2

) p−2
2 |Dwh|2 dx

+ (p− 2)
∫
Ω

(
ε2 + |Dvkh|2

) p−4
2 |Dvkh : Dwh|2 dx.

(6.15)
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6.2 Stability of Newton’s method

Taking into account p ≤ 2, applying the Cauchy-Schwarz inequality, we deduce from (6.15):

a′ε(vkh)(wh,wh) ≥ (p− 1)
(
ε+ ‖Dvkh‖∞

)p−2
‖Dwh‖22. (6.16)

Using Korn’s and Poincaré’s inequality, for some c = c(Ω) > 0 we arrive at the estimate
N∑

i,j=1
ζiA

k
ijζj ≥ c(p− 1)

(
ε+ ‖Dvkh‖∞

)p−2
‖wh‖21,2.

As a result, the matrix Ak is positive definite. Let M be the mass matrix associated with
X p
h, i.e., let M ∈ RN×N be defined by Mij := (ψi,ψj)Ω. Then, it is well-known that

‖wh‖22 =
N∑

i,j=1
ζiMijζj , cond2(M) = O(1). (6.17)

The smallest eigenvalue λmin(Ak) is bounded from below by

λmin(Ak) = min
ζ∈RN

∑N
i,j=1 ζiA

k
ijζj

|ζ|2

≥ min
ζ∈RN

∑N
i,j=1 ζiA

k
ijζj∑N

i,j=1 ζiMijζj
min
ζ∈RN

∑N
i,j=1 ζiMijζj

|ζ|2
= min
ζ∈RN

∑N
i,j=1 ζiA

k
ijζj∑N

i,j=1 ζiMijζj
λmin(M).

Using (6.16), Poincaré’s and Korn’s inequality, we conclude that for some c = c(Ω) > 0:

λmin(Ak) ≥ min
wh∈X ph

a′ε(vkh)(wh,wh)
‖wh‖22

λmin(M) ≥ c(p− 1)
(
ε+ ‖Dvkh‖∞

)p−2
λmin(M).

Similarly, we get an upper bound for the largest eigenvalue λmax(Ak):

λmax(Ak) = max
ζ∈RN

∑N
i,j=1 ζiA

k
ijζj

|ζ|2
≤ max

ζ∈RN

∑N
i,j=1 ζiA

k
ijζj∑N

i,j=1 ζiMijζj
λmax(M).

In view of p < 2, it easily follows from (6.15) that

a′ε(vkh)(wh,wh) ≤
∫
Ω

(
ε2 + |Dvkh|2

) p−2
2 |Dwh|2 dx ≤ εp−2‖Dwh‖22.

Using the global inverse estimate (3.20), we can estimate the largest eigenvalue of Ak by

λmax(Ak) ≤ max
wh∈X ph

a′ε(vkh)(wh,wh)
‖wh‖22

λmax(M)

≤ εp−2‖Dwh‖22
‖wh‖22

λmax(M) ≤ Cεp−2h−2λmax(M),

where C > 0 only depends on the shape-regularity of Th. To sum up, we have proven that

c(p− 1)
(
ε+ ‖Dvkh‖∞

)p−2
λmin(M) ≤ λmin(Ak) ≤ λmax(Ak) ≤ Cεp−2h−2λmax(M).

Using (6.17), we easily complete the proof.
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Remark 6.2. Finally, we comment on Theorem 6.2:

• For p = 2, the result (6.14) is well-known in the context of Stokes systems. If the
elasticity problem is studied, i.e., if the pressure term and the constraint ∇ · v = 0
are omitted, then the Newton matrix stated in (6.12) only consists of the bloc Ak.

• Theorem 6.2 only yields an upper bound for the condition number of the matrix Ak.
However, numerical experiments indicate that, indeed, the condition number of Ak

can behave as the expression on the right-hand side of (6.14). This means that for
diminishing ε > 0 and p > 1 the condition number of Ak increases.

• Since Ak is regular for all k ∈ N, one can eliminate the variable αk in the system of
equations (6.12) so that βk and αk can be determined from

BT(Ak)−1Bβk = ck +BT(Ak)−1bk, αk = (Ak)−1
(
bk −Bβk

)
. (6.18)

The matrix BT(Ak)−1B is referred to as the “Schur complement”. For its compu-
tation, one needs to determine the inverse matrix of Ak. According to (6.14), the
condition number of Ak can be large for 0 < ε � 1 and p < 2. Hence, one has to
construct appropriate preconditioning methods in order to solve (6.18) numerically.

6.3 Approximation of singular power-law systems

This section is dedicated to the finite element approximation of power-law solutions (ε = 0).
As already mentioned, the nonlinear operator related to Sε is not differentiable for ε = 0 in
the shear thinning case. The lack of differentiability may cause numerical instabilities when
the nonlinear discrete systems are solved via Newton’s method. In this section, we propose
a numerical method that enables the stable approximation of singular power-law systems.
The proposed method generates a sequence of discrete functions which is computable in
practice via Newton’s method and which converges to the exact solution of the power-law
system. It is based on a simple regularization of the power-law model. Clearly, the Carreau
model (6.1) with ε > 0 can be interpreted as a regularized power-law model. Let the
quantities Sε, Φε, Jε be defined as in Section 6.1. In order to highlight the dependence on
ε, we also relabel F introduced in (2.39) as

Fε(Q) :=
(
ε2 + |Q|2

) p−2
4 Q ∀Q ∈ Rd×dsym . (6.19)

Let us set S := S0, Φ := Φ0, F := F0, and J := J0. As depicted by the following theorem,
the solutions to the Carreau systems (ε > 0) approximate the solution to the power-law
system (ε = 0) for diminishing ε↘ 0.

Theorem 6.3. For p ∈ (1, 2) and ε ∈ [0, ε0] let the extra stress tensor Sε be given by (6.1)
and let Fε be defined by (6.19). For each ε ∈ [0, ε0] let (vε, πε) ∈ X p ×Qp be the unique
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solution to (Pε). Let us define (v, π) := (v0, π0). Then, there hold the a priori estimates

‖Fε(Dvε)−Fε(Dv)‖2 ≤ c(p,Ω)εp/2 (6.20)
‖Dvε −Dv‖p ≤ c(p, ε0, Ω,f)εp/2 (6.21)
‖πε − π‖p′ ≤ c(β(p), p, Ω)εp−1, (6.22)

where the constants only depend on the quantities quoted within the brackets. In particular,
(vε, πε) converge to the power-law solution (v, π) in X p ×Qp strongly for ε→ 0.

Proof. Since vε is the unique solution to (Pε) for ε ≥ 0, it can be characterized as the
unique minimizer of the functional Jε in Vp, i.e., it satisfies

Jε(vε) ≤ Jε(u) ∀u ∈ Vp

for each ε ≥ 0. Using the trivial inequality

Φε(t) = 1
p

[(
ε2 + t2

)p/2
− εp

]
≤ 1
p
tp = Φ(t) ∀t ∈ R+

0 ,

we conclude that Jε(u) ≤ J (u) for all u ∈ Vp. We recall that v ∈ Vp is the unique
minimizer of J . Consequently, we arrive at the inequalities

Jε(v) ≤ J (v) ≤ J (vε). (6.23)

From the main theorem of calculus we deduce that

Jε(v)− Jε(vε) =
1∫

0

J ′ε(vε + s(v − vε))(v − vε) ds

=
1∫

0

[
J ′ε(vε + s(v − vε))(

[
vε + s(v − vε)

]
− vε)

− J ′ε(vε)(
[
vε + s(v − vε)

]
− vε)

]ds
s

+ J ′ε(vε)(v − vε)

=: I + J ′ε(vε)(v − vε).

Since vε is the minimizer of Jε, the last term equals zero: J ′ε(vε)(v − vε) = 0. Let us
estimate the term I. On the one hand, inequality (6.23) implies that

I = Jε(v)− Jε(vε) ≤ J (vε)− Jε(vε)

=
∫
Ω

1
p
|Dvε|p dx−

∫
Ω

1
p

[(
ε2 + |Dvε|2

)p/2
− εp

]
dx

= 1
p

∫
Ω

[
|Dvε|p −

(
ε2 + |Dvε|2

)p/2]
dx+ |Ω|

p
εp ≤ |Ω|

p
εp. (6.24)
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On the other hand, Lemma 2.4 and (2.46) imply that

I =
1∫

0

(
Sε(Dvε + s(Dv −Dvε))− Sε(Dvε), [Dvε + s(Dv −Dvε)]−Dvε

)
Ω

ds
s

∼
1∫

0

∫
Ω

(
ε+ |Dvε + sD(v − vε)|+ |Dvε|

)p−2
s|D(v − vε)|2 dxds

∼
1∫

0

∫
Ω

(
ε+ |Dvε|+ s|D(v − vε)|

)p−2
s|D(v − vε)|2 dxds

∼
∫
Ω

(
ε+ |Dvε|+ |D(v − vε)|

)p−2
|D(v − vε)|2 dx ∼ ‖Fε(Dv)−Fε(Dvε)‖22,

where the constants only depend on p. This inequality together with the upper bound
(6.24) yields the desired estimate (6.20). Using (2.43) and (6.20), we conclude that

‖Dvε −Dv‖p ≤ c
(
ε0|Ω|

1
p + ‖Dv‖p + ‖Dvε‖p

) 2−p
2 εp/2

for some c = c(p) > 0. Due to the a priori bound (6.4), the expression within the brackets
is uniformly bounded by a constant only depending on p, ε0, Ω and f . This proves (6.21).

In order to show (6.22), we recall that the functions (v, π) and (vε, πε) satisfy

(S(Dv),Dw)Ω − (π,∇ ·w)Ω = 〈f ,w〉
(Sε(Dvε),Dw)Ω − (πε,∇ ·w)Ω = 〈f ,w〉

for all w ∈ X p. Subtracting these equations, we immediately conclude that

(π − πε,∇ ·w)Ω = (S(Dv)− Sε(Dvε),Dw)Ω ∀w ∈ X p. (6.25)

Using the inf-sup inequality (2.68) for X p ×Qp and the identity (6.25), we deduce that

β‖π − πε‖p′ ≤ sup
w∈X p

(π − πε,∇ ·w)Ω
‖w‖1,p

= sup
w∈X p

(S(Dv)− Sε(Dvε),Dw)Ω
‖w‖1,p

≤ ‖S(Dv)− Sε(Dv)‖p′ + ‖Sε(Dv)− Sε(Dvε)‖p′ =: J1 + J2.

(6.26)

In order to estimate J1, we have to control |Φ′(t)− Φ′ε(t)|. We recall that there holds∣∣∣|a|q − |b|q∣∣∣ ∼ (|a|+ |b|)q−1|a− b| ∀a, b ∈ R (6.27)

for each q > 0 (cf. Lemma 2.4). Applying (6.27) with q := (2− p)/2, we conclude that

|Φ′ε(t)− Φ′(t)| =
(
ε2 + t2

) p−2
2 t

∣∣∣∣∣1−
(
ε2 + t2

t2

) 2−p
2
∣∣∣∣∣ ∼ (ε2 + t2

) p−2
2 t

(
1 + ε2 + t2

t2

)− p2 ε2

t2

∼
(
ε2 + t2

) p−2
2
(
ε2 + 2t2

)− p2 tp−1ε2 ∼ tp−1 ε2

ε2 + t2
(6.28)
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uniformly in t ∈ R+
0 where we have used ε2 + t2 ∼ ε2 + 2t2. In particular, (6.28) implies

that |Φ′ε(t)−Φ′(t)| . (ε2 + t2)
p−3

2 ε2 . εp−1 uniformly in t ∈ R+
0 . Consequently, we obtain

J1 = ‖S(Dv)− Sε(Dv)‖p′ ≤
(∫
Ω

|Φ′(|Dv|)− Φ′ε(|Dv|)|p
′ dx

) 1
p′
≤ c|Ω|

1
p′ εp−1 (6.29)

where the constant c only depends on p. It remains to estimate the term J2. Using Lemma
2.7 and inequality (6.20), we deduce that for some c = c(p,Ω) > 0:

J2 ≤ c‖Fε(Dv)−Fε(Dvε)‖
2
p′
2 ≤ cε

p2
2p′ = cεp−1. (6.30)

Combining (6.26), (6.29), and (6.30), we arrive at the desired result (6.22).

Remark 6.3. One can also derive similar error estimates as stated in Theorem 6.3 without
using the minimization property of the energy functional. Since vε are the solutions of (Pε)
for ε ≥ 0, they satisfy (S(Dv),Dw)Ω = 〈f ,w〉 for all w ∈ Vp and (Sε(Dvε),Dw)Ω =
〈f ,w〉 for all w ∈ Vp. Subtracting the latter equations, we immediately conclude that
(Sε(Dvε)− S(Dv),Dw)Ω = 0 for all w ∈ Vp. By means of (6.28) we deduce that

‖F(Dvε)−F(Dv)‖22 ∼ (S(Dvε)− S(Dv),Dvε −Dv)Ω
= (S(Dvε)− Sε(Dvε),Dvε −Dv)Ω

=
∫
Ω

[
Φ′(|Dvε|)− Φ′ε(|Dvε|)

] Dvε
|Dvε|

: (Dvε −Dv) dx

∼ εp−1
∫
Ω

ε3−p|Dvε|p−1

ε2 + |Dvε|2
Dvε

|Dvε|
: (Dvε −Dv) dx. (6.31)

The real function g(t) := ε3−ptp−1

ε2+t2 , t ∈ R+
0 , is bounded by one:

g(t) ≤

 ε2

ε2+t2 if t ≤ ε
t2

ε2+t2 if t > ε
⇒ g(t) ≤ 1 ∀t ∈ R+

0 .

Therefore, the integral in (6.31) is well-defined. Using the continuous embedding Lp(Ω) ↪→
L1(Ω), Lemma 2.6, and the uniform a priori bound (6.4) for vε, we finally arrive at

‖F(Dvε)−F(Dv)‖2 ≤ cεp−1

where the constant c only depends on p, ε0, Ω, f .

Application to the FE approximation: On the basis of Theorem 6.3, we now construct
our approximation scheme for singular power-law equations. For it, we require certain
approximation properties of the finite element method. For particular finite elements, the
following result is known (cf. Theorem 4.11): For p ∈ (1, 2] and ε ∈ [0, ε0] let (vε, πε) be
the solution to (Pε) and let (vεh, πεh) be the solution to (Pε

h). Assume that the solution
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(vε, πε) satisfies Fε(Dvε) ∈W 1,2(Ω)d×d(Ω) and πε ∈W 1,p′(Ω). Then, the discretization
error can be estimated in terms of the maximum mesh size h as follows:

‖Fε(Dvε)−Fε(Dvεh)‖2 ≤ C1h, β̃‖πε − πεh‖p′ ≤ C2h
2
p′ . (6.32)

The constants C1 and C2 depend on ‖∇Fε(Dvε)‖2, ‖πε‖1,p′ , p, ε0, Ω, and f . In particular,
they do not depend on ε explicitely. The error estimates (6.32) remain valid for ε = 0.

Remark 6.4. The error estimates (6.32) have been proven for various finite elements by
[BBDR10], [Hir10] or Thm. 6.3. (Note that Thm. 6.3 has recently been published in
[Hir10].) In [BBDR10], they were derived for inf-sup stable finite elements based on
d-simplices such as: P2/P0, Crouzeix-Raviart (P2 plus bubble / discontinuous P1), MINI-
element (P1 plus bubble / P1). In [Hir10] or Thm. 6.3, the error estimates (6.32) were
proven for equal-order d-linear finite elements (Q1/Q1) based on quadrilateral meshes
provided that the LPS-based stabilization proposed in Section 4.1 is used. Note that (6.32)
provides optimal convergence rates with respect to the supposed regularity of the solution.

The following corollary is a simple consequence of Theorem 6.3. It yields the desired ap-
proximation scheme for singular power-law systems. Our approximation method generates
a sequence of discrete functions vεh which is computable in practice via Newton’s method
and which converges to the power-law solution.

Corollary 6.4. Let p ∈ (1, 2) and ε ∈ [0, ε0]. For each ε let (vε, πε) ∈ X p × Qp be the
unique solution to (Pε), and let (vεh, πεh) ∈ X p

h ×Q
p
h be the unique solution to (Pε

h). Let
us define (v, π) := (v0, π0) and (vh, πh) := (v0

h, π
0
h). We assume that (IS) is satisfied.

Furthermore, we suppose that F(Dv) ∈ W 1,2(Ω)d×d and π ∈ W 1,p′(Ω), and that (6.32)
holds true for ε = 0. Then, the solution (v, π) to the power-law problem can be approximated
by the discrete functions (vεh, πεh) for ε, h↘ 0 in the following sense:

‖v − vεh‖1,p ≤ C1
(
εp/2 + h

)
, ‖π − πεh‖p′ ≤ C2

(
εp−1 + h2/p′

)
. (6.33)

The constants C1, C2 only depend on ‖∇F(Dv)‖2, ‖π‖1,p′ , p, ε0, Ω, f , and C2 additionally
depends on β̃(p). As a result, for ε := h2/p it follows from (6.33) that

‖v − vεh‖1,p ≤ 2C1h, ‖π − πεh‖p′ ≤ 2C2h
2/p′ .

Proof. Since (IS) is fulfilled, the discrete mixed formulation (Pε
h) is equivalent to a discrete

version of (Mε). In particular, for each ε ≥ 0 the discrete solution vεh can be characterized
as the unique minimizer of the functional Jε in Vph, i.e., vεh satisfies

Jε(vεh) = inf
wh∈Vph

Jε(wh), Vph := {wh ∈ X p
h; (∇ ·wh, qh)Ω = 0∀qh ∈ Qph}.

Hence, we can adjust the proof of Theorem 6.3 to the discrete setting. We conclude that

‖Dvh −Dvεh‖p ≤ c1ε
p/2, ‖πh − πεh‖p′ ≤ c2ε

p−1

where c1 = c1(p, ε0, Ω,f) and c2 = c2(p, β̃(p), Ω). Using the latter inequalities, (6.32) with
ε = 0, Poincaré’s and Korn’s inequality, we easily deduce the desired estimates (6.33).
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Remark 6.5. When we choose finite element pairings X p
h ×Q

p
h which do not satisfy the

discrete inf-sup condition (IS), then we need to stabilize the Galerkin discretization (Pε
h).

If standard stabilization methods such as LPS or PSPG are applied (cf. [BBJL07]), then
the discrete velocity vεh cannot be interpreted as the minimizer of Jε in Vph any more.
Hence, we cannot apply Theorem 6.3 to the discrete setting as carried out in Corollary 6.4.
However, Theorem 6.3 yields an upper bound of (v − vε) in terms of ε so that

‖v − vεh‖1,p ≤ ‖v − vε‖1,p + ‖vε − vεh‖1,p ≤ cε
p
2 + ‖vε − vεh‖1,p. (6.34)

In order to derive an estimate similar to (6.33), the discretization error (vε − vεh) needs to
be estimated. For this, the error estimate (6.32) is available. Note that the constant in
(6.32) depends on ‖∇Fε(Dvε)‖2 and ‖πε‖1,p′ . In order to be able to deduce (6.33) from
(6.34), we have to assume that there exist constants C, C ′ > 0 independent of ε ∈ [0, ε0]:

‖∇Fε(Dvε)‖2 ≤ C, ‖∇πε‖p′ ≤ C ′. (6.35)

The question is whether it is allowed to assume (6.35). In fact, the assumption (6.35)1
is satisfied at least in the case of space-periodic boundary conditions, see Lemma 2.28.
However assumption (6.35)2 seems to be rather sophisticated. In particular, Lemma 2.28
does not enable us to make any statement: According to Lemma 2.28, the pressure-gradient
∇πε is only bounded in L2(Ω) by a constant which might explode as ε↘ 0. Alternatively,
in Corollary 6.4 we can avoid assumption (IS) if we employ (6.31) on the discrete level
instead of using a discrete version of Theorem 6.3. But then the order of the resulting
error estimates is less than the one of (6.33).

6.4 Numerical experiments

For p < 2 and ε ≥ 0 let the generalized viscosity µ be given by (2.11b) and let the extra
stress tensor Sε be given by Sε(Dv) ≡ µ(|Dv|2)Dv. From mathematical point of view,
the singular power-law model (ε = 0) is more interesting and more challenging than its
regularized counterpart (ε > 0). In particular, the discrete power-law systems cannot
numerically be solved in general without regularization. In this section, we numerically
justify the regularized approximation method proposed by Corollary 6.4.

We reconsider the pressure-drop problem described in Section 5.5: Find a velocity field
vε ∈ X p

Γ ≡ {w ∈W
1,p(Ω); w|Γ = 0} and a pressure πε ∈ QpΓ ≡ Lp

′(Ω) such that

(Sε(Dvε),Dw)Ω − (πε,∇ ·w)Ω + (∇ · vε, q)Ω

=
∑
i

(
µ(|Dvε|2)

2 [∇vε]Tn− bin,w
)
Si

∀(w, q) ∈ X p
Γ ×Q

p
Γ .

(6.36)

Let Ω be a rectangular channel with length L and height H, and let b1 := L/2 and
b2 := 0. This simple pressure-drop problem seems to be a proper example due to the
following two reasons: Firstly, the data such as f are independent of p, and for ε = 0
the exact solution (v, π) is known and it is given by (5.49). Secondly, the solution (v, π)
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captures the typical flow behavior of a shear thinning fluid: For 1 < p � 2 sharp
boundary layers occur along the Dirichlet boundary Γ , and the measure of the critical
set Ωc ≡ {x ∈ Ω; ∇v(x) ≈ 0} becomes large, see Figure 5.1. The nonlinear operator
associated with S0 is not differentiable on Ωc so that the convergence of Newton’s method
is not ensured in general. Hence, numerical problems related to the stability of the solver
may be expected when the algebraic equations arising from the FE discretization of (6.36)
with ε = 0 are solved directly by means of Newton’s method. For 1 < p� 2 our numerical
simulations will indicate that the solution (v, π) cannot numerically be approximated via
the direct application of the FEM-Newton algorithm but it can be approximated with help
of the method proposed by Corollary 6.4.

Remark 6.6. Below we highlight the structure of the functions that solve the pressure-drop
problem under consideration of ε ≥ 0. Here, we assume that µ0 = 1. Let Φε be defined in
(6.1). We introduce a function ṽε : (0, L)× (−H/2,+H/2)→ R2 by

ṽε1(x) :=
√

2H[Φ∗ε(0.5)− Φ∗ε(|x2|/H)], Φ∗ε(t) :=
t∫

0

(Φ′ε)−1(s) ds, ṽε2 ≡ 0.

If ε = 0, then Φ∗0(t) = 1
p′ t

p′ and, hence, ṽ0 coincides with v given by (5.49) up to scaling.
Note that (Φ∗ε)′(t) = (Φ′ε)−1(t) for t > 0. Consequently, the derivative of ṽε1 equals

(ṽε1)′(x2) = −
√

2H(Φ∗ε)′(|x2|/H) x2
H|x2|

= −
√

2(Φ′ε)−1(|x2|/H) x2
|x2|

.

As a result, the symmetric part of the velocity gradient takes the form

Dṽε(x) = 1√
2

 0 −(Φ′ε)−1(|x2|/H) x2
|x2|

−(Φ′ε)−1(|x2|/H) x2
|x2| 0

 .
Since |Dv| :=

√
Dv : Dv, we conclude that |Dṽε| = (Φ′ε)−1(|x2|/H). Hence, we obtain

Sε(Dṽε) = Φ′ε(|Dṽε|)
Dṽε

|Dṽε|
= −|x2|√

2H

 0 x2
|x2|

x2
|x2| 0

 = −1√
2H

(
0 x2
x2 0

)
.

Clearly, ∇ · Sε(Dṽε) is constant. If ṽε represents the velocity field solving the momentum
equations −∇ · Sε(Dṽε) +∇πε = 0, then the pressure π̃ε necessarily needs to be a linear
function satisfying ∂x2 π̃

ε ≡ 0.

Problem (6.36) was discretized with equal-order Q1/Q1 finite elements, i.e., both the
velocity and pressure were discretized with bilinear finite elements based on quadrilateral
meshes. Since this discretization is not “inf-sup” stable, the stabilized discrete system

(Sε(Dvεh),Dwh)Ω − (πεh,∇ ·wh)Ω + sh(πεh)(qh) + (∇ · vεh, qh)Ω

=
∑
i

(
µ(|Dvεh|2)

2 [∇vεh]Tn− bin,wh

)
Si

∀(wh, qh) ∈ X p
Γ ;h ×Q

p
Γ ;h

(6.37)
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was solved. The stabilization term sh(πεh)(qh) was chosen as in (3.54) with %M ≡ 0.
The algebraic equations were solved by Newton’s method, the linear subproblems by the
GMRES method (see Section 3.4). The subsequent computations were performed with the
following parameters: L = 1.64, H = 0.41, b1 = 0.82, b2 = 0, µ0 = 0.15. In our numerical
experiments, we measured the approximation errors ‖∇(v − vεh)‖p and ‖π − πεh‖p′ and
corresponding convergence rates under global mesh refinement.

Table 6.1. Development of ‖∇(v − vεh)‖p: Case ε = 0

p = 1.1 p = 1.2 p = 1.3 p = 1.5
#cells error conv. error conv. error conv. error conv.
256 4.55e-02 – 6.29e-02 – 6.96e-02 – 7.48e-02 –
1024 – – 3.22e-02 0.97 3.51e-02 0.99 3.75e-02 1.00
4096 – – 1.62e-02 0.99 1.76e-02 1.00 1.88e-02 1.00
16384 – – 8.10e-03 1.00 8.80e-03 1.00 9.38e-03 1.00
65536 – – – – 4.40e-03 1.00 4.69e-03 1.00
262144 – – – – 2.20e-03 1.00 2.34e-03 1.00
expected 1.00 1.00 1.00 1.00

Example 1: In this example, we did not regularize the singular power-law model and we
directly solved the discrete system (6.37) with ε = 0 applying Newton’s method. Table
6.1 depicts the discretization errors (v − vh) with respect to the W 1,p(Ω)-norm and
corresponding convergence rates for different values of p. Note that the pressure π belongs
to the finite element space QpΓ ;h and, hence, π was resolved exactly up to machine accuracy.
Thus convergence rates for the pressure are not presented. For p ≥ 1.3 we observe that the
discretization error behaves as O(h). This agrees with Theorem 4.11. For p < 1.3 we were
not able to determine vh numerically using Newton’s method. For instance, if p = 1.2,
then the Newton iteration did not reach the prescribed tolerance TOL = 10−11 for the
residual in case of the mesh with 65536 elements.

Table 6.2. Development of ‖∇(v − vεh)‖p for ε = ε0h
2
p : Case p = 1.1

ε0 = 0 ε0 = 1 ε0 = 102

#cells error conv. error conv. error conv.
256 4.55e-02 – 4.64e-02 – 6.06e-02 –
1024 – – 2.52e-02 0.88 2.92e-02 1.05
4096 – – 1.29e-02 0.97 1.39e-02 1.07
16384 – – 6.46e-03 0.99 6.73e-03 1.05
65536 – – 3.23e-03 1.00 3.30e-03 1.03
262144 – – 1.61e-03 1.00 1.63e-03 1.02
expected 1.00 1.00 1.00

Below we intend to illustrate the approximation scheme proposed by Corollary 6.4: Instead
of solving system (6.37) with ε = 0, we determine the solution vεh to system (6.37) for
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6 Finite Element Approximation of Singular Power-Law Systems

small ε > 0. For diminishing mesh size h↘ 0, the error caused by regularization of the
power-law model with ε > 0 dominates the discretization error. In order to obtain a
convergent method for h↘ 0, we couple the parameter ε with the mesh size h so that we
preserve the convergence rate of the discretization error. The choice ε = ε0h

2/p implies
that the regularization error is of same order as the discretization error at least.

Table 6.3. Development of ‖∇(v − vεh)‖p for ε = ε0h
2
p : Case p = 1.2

ε0 = 0 ε0 = 1 ε0 = 102

#cells error conv. error conv. error conv.
256 6.29e-02 – 6.33e-02 – 7.61e-02 –
1024 3.22e-02 0.97 3.23e-02 0.97 3.59e-02 1.09
4096 1.62e-02 0.99 1.62e-02 0.99 1.71e-02 1.07
16384 8.10e-03 1.00 8.11e-03 1.00 8.34e-03 1.04
65536 – – 4.06e-03 1.00 4.11e-03 1.02
262144 – – 2.03e-03 1.00 2.04e-03 1.01
expected 1.00 1.00 1.00

Example 2: We solved the regularized discrete system (6.37) with ε = ε0h
2/p. It is easy

to see that πε coincides with π from (5.49) for all ε ≥ 0. Indeed, πε is a linear function
that satisfies ∂x2π

ε = 0, cf. Remark 6.6. Hence, the condition
∫
Si
π do = |Si|bi actually

fixes the absolute value of the pressure on the inlet and outlet: πε(x) = bi for x ∈ Si.
Consequently, there holds πε = π for all ε ≥ 0. Since π is linear and, hence, π ∈ QpΓ ;h
holds true, the pressure was resolved exactly up to machine accuracy: πεh = π. Tables 6.2
– 6.3 depict the errors of approximation (v − vεh) in W 1,p(Ω) with ε = ε0h

2/p. Since the
pressure was resolved exactly, only velocity errors are presented. Independently of the
value of ε0, we expect that the error (v−vεh) inW 1,p(Ω) behaves as O(h) due to Corollary
6.4. Considering Tables 6.2 – 6.3, we realize that the numerical results agree with the
theoretical ones very well. In case of ε0 = 0, the numerical results coincide with those from
Example 1. The missing numbers indicate that Newton’s method did not converge. More
precisely, the Newton iteration did not reach the prescribed tolerance TOL = 10−11 for
the residual. Comparing the absolute errors for ε0 = 0 with those for ε0 6= 0 depicted in
Tables 6.2 – 6.3, we finally observe that despite the additional regularization errors the
proposed approximation scheme leads to better approximation results and higher accuracy
compared to the non-regularized FE approximation of singular power-law systems.

Example 3: In this example, we considered another flow configuration which is less
realistic from a physical point of view but which exhibits a non-smooth analytical solution.
Here, we chose the computational domain Ω := (−0.5, 0.5)2 and we defined

v(x) := |x|7
(
x1
−x2

)
and π(x) := |x|bx1x2.
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6.4 Numerical experiments

Table 6.4. Development of ‖∇(v − vεh)‖p for ε = ε0h
2
p : Case p = 1.3

ε0 = 0 ε0 = 1 ε0 = 20
#cells error conv. error conv. error conv.
256 1.12e-02 – 1.47e-02 – 3.52e-02 –
1024 5.54e-03 1.02 6.47e-03 1.18 1.37e-02 1.37
4096 2.76e-03 1.01 2.99e-03 1.11 5.05e-03 1.44
16384 1.37e-03 1.00 1.43e-03 1.06 1.95e-03 1.37
65536 6.87e-04 1.00 7.00e-04 1.03 8.27e-04 1.24
262144 3.43e-04 1.00 3.46e-04 1.02 3.76e-04 1.14
expected 1.00 1.00 1.00

The right-hand side f was chosen accordingly as f := −∇ · S(Dv) + ∇π, and system
(2.16) was complemented with non-homogeneous Dirichlet boundary conditions: On ∂Ω the
boundary values v|∂Ω were prescribed. The parameter b was chosen so that π ∈W 1,p′(Ω).
This condition is ensured for b > − 2

p′ − 1. We approximatively solved the corresponding
weak boundary value problem for the following parameters: p = 1.3, µ0 = 1, and b = −1.45.
Table 6.4 depicts the approximation errors (v − vεh) and corresponding convergence rates
for ε = ε0h

2/p. We realize that vεh converges to v in W 1,p(Ω) with order one at least. The
numerical results for the pressure are presented in Table 6.5. We observe that the error
(π− πεh) measured in Lp′(Ω) behaves as O(h). In view of Tables 6.4 and 6.5, the numerical
results agree with the theoretical ones stated in Corollary 6.4.

Table 6.5. Development of ‖π − πεh‖p′ for ε = ε0h
2
p : Case p = 1.3

ε0 = 0 ε0 = 1 ε0 = 20
#cells error conv. error conv. error conv.
256 2.84e-02 – 2.66e-02 – 3.63e-02 –
1024 1.28e-02 1.45 1.14e-02 1.22 1.17e-02 1.63
4096 6.37e-03 1.01 5.47e-03 1.06 5.19e-03 1.17
16384 3.22e-03 0.98 2.67e-03 1.03 2.53e-03 1.04
65536 1.60e-03 1.01 1.31e-03 1.02 1.24e-03 1.03
262144 7.96e-04 1.01 6.46e-04 1.02 6.08e-04 1.03
expected 0.46 0.46 0.46

Numerical complexity: Finally, for Examples 1–3 we compare the proposed regularized
approximation scheme with the non-regularized one regarding numerical complexity. The
numerical costs were measured by the number of iterations carried out by Newton’s
algorithm, see Algorithm 3.1. In Table 6.6 we depict the number of Newton iterations that
were performed in order to reduce the residual up to the prescribed tolerance TOL = 10−11

for each refinement level l. Here, l = 1 corresponds to the mesh with 256 cells. The number
within the brackets represents the total number of iterations performed by the step-size
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6 Finite Element Approximation of Singular Power-Law Systems

control and it equals the number l∗ that appears in Algorithm 3.1 with λ = 3/4. As initial
guess for Newton’s method on level l, we chose the FE solution corresponding to level l− 1.
In particular, as initial guess for Newton’s method on level l = 1, we took the discrete
solution on the mesh with 64 cells. Comparing the number of iterations for ε0 = 0 with
those for ε0 6= 0 depicted in Table 6.6, we observe that the solution of the non-regularized
systems (ε0 = 0) requires more iterations of the Newton algorithm and step-size control
than the solution of the regularized systems (ε0 6= 0). We recall that in view of Tables
6.2 – 6.3 we achieved higher accuracy for reasonable values of ε0 > 0. Hence, we realize
that the regularized approximation method proposed by Corollary 6.4 is more efficient
than the non-regularized FE approximation of singular power-law equations. To sum up,
we conclude that the regularized FE approximation surpasses the non-regularized one
regarding accuracy and numerical efficiency.

Table 6.6. Number of Newton iterations (TOL = 10−11) w.r.t. refinement level

(a) Ex. with p = 1.1

l ε0 = 0 ε0 = 1 ε0 = 102

1 8 (11) 6 (2) 5 (3)
2 – 5 (2) 6 (2)
3 – 5 (2) 5 (2)
4 – 5 (2) 5 (2)
5 – 5 (2) 5 (2)
6 – 6 (2) 5 (2)

(b) Ex. with p = 1.2

l ε0 = 0 ε0 = 1 ε0 = 102

1 6 (4) 5 (2) 5 (1)
2 6 (4) 5 (1) 5 (1)
3 6 (4) 5 (1) 5 (1)
4 7 (4) 5 (1) 5 (1)
5 – 5 (1) 5 (1)
6 – 4 (1) 4 (1)

(c) Ex. with p = 1.3

l ε0 = 0 ε0 = 1 ε0 = 20
1 12 (6) 7 (0) 6 (0)
2 17 (11) 5 (0) 7 (0)
3 16 (13) 5 (0) 6 (0)
4 19 (16) 5 (0) 5 (0)
5 21 (18) 5 (0) 5 (0)
6 16 (17) 5 (0) 5 (0)

Conclusion: In this chapter we studied singular power-law systems and their numerical
approximation. The application of Newton’s method usually suffers from instabilities.
We proposed an approximation scheme that is based on a regularization of the singular
power-law model and that enables the stable approximation of singular power-law systems
via Newton’s method. In Corollary 6.4 we derived a priori error estimates that quantify
the convergence of the proposed method. We practically validated them by numerical
experiments. The numerical examples indicate that our regularized approximation scheme
surpasses the non-regularized one regarding accuracy and numerical efficiency.
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7 Fluids with Shear-Rate- and
Pressure-Dependent Viscosity

In this chapter, we extend the finite element analysis performed so far to a wider class of
fluid models and more general boundary conditions such as (2.24). We consider a class
of incompressible viscous fluids whose viscosity depends on the shear rate and pressure.
We restrict ourselves to shear thinning fluid models that are similar to the Carreau model,
but we allow a restricted sub-linear dependence of the viscosity on the pressure (see
Assumption 2.2). The fluid models under consideration appear in many practical problems,
for instance, in elasto-hydrodynamic lubrication where very high pressures occur. We
deal with the isothermal steady flow under various boundary conditions. First of all, we
analyze the Galerkin discretization of the governing equations: We discuss the existence
and uniqueness of discrete solutions, and their convergence to the solution of the original
problem. Note that the mathematical theory concerned with the self-consistency of the
governing equations has emerged recently, see [MNR02, FMR05, BMR07, Lan09]. We
adopt the established theory in the context of discrete approximations. As before, our
aim is to quantify the convergence if a finite element (FE) discretization is applied. Since
the considered equations come up with additional difficulties due to the complicated
structure of the viscosity, only inf-sup stable elements are considered so that no additional
pressure-stabilization is needed. We derive a priori error estimates similar to (4.1), which
provide optimal rates of convergence with respect to the supposed regularity of the solution,
see Corollary 7.13. Finally, we demonstrate the established error estimates by numerical
experiments. To the best of my knowledge, there is no further literature presenting
a rigorous FE analysis for fluids with pressure-dependent viscosity. The derived error
estimates coincide with the optimal error estimates for Carreau-type models established in
Theorem 4.11, which are covered as a special case. The results of this chapter have already
been published in Hirn et al. [Hir10].

The chapter is organized as follows: Section 7.1 deals with the weak formulation. In
Section 7.2 we introduce the Galerkin discretization and we discuss its well-posedness,
while in Section 7.3 we show that the discrete solutions converge to a weak solution. Many
estimates of Sections 7.3 are also employed in Section 7.4, in which a priori error estimates
are derived in the form of best approximation results. In Section 7.5 we apply the abstract
error estimates of Section 7.4 to finite element discretizations. Section 7.6 is dedicated to
numerical experiments. Finally, in Section 7.7 we verify Assumption 2.2 for a particular
fluid model.
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

7.1 Galerkin formulation

Throughout the chapter, we assume that for p ∈ (1,∞) and ε ∈ (0, ε0] the extra stress S
satisfies Assumption 2.2. We consider system (2.16) complemented with mixed boundary
conditions (2.24). The natural spaces for the velocity and pressure are given by

X p
Γ := {w ∈W 1,p(Ω); trw = 0 on Γ},
QpΓ := {q ∈ Lp′(Ω); if |S| = 0 then

∫
Ω q dx = 0}.

As usual, p′ := p/(p− 1). The following Korn inequality holds in X p
Γ as long as |Γ | > 0:

Lemma 7.1 (Korn’s inequality). Let ν ∈ (1,∞), let Ω ⊂ Rd be a bounded domain with
∂Ω, Γ ∈ C0,1, where Γ ⊂ ∂Ω has nonzero (d− 1)-dimensional measure. Then there exists
a constant cK := cK(Ω,Γ, ν) > 0 such that

cK‖w‖1,ν ≤ ‖Dw‖ν ∀w ∈ X ν
Γ .

Proof. The result can be found e.g. in [MNRR96, Theorem 1.10 on p. 196]; although it is
formulated for Γ = ∂Ω there, its proof covers the case |Γ | > 0.

Let us summarize the general assumptions that will be used in the following sections.

Assumption 7.1. We suppose that

• Ω ⊂ Rd, d ≥ 2, is a bounded domain, ∂Ω = Γ ∪ S and ∂Ω, Γ, S ∈ C0,1, |Γ | > 0;

• Let ε0 > 0 be arbitrary. The extra stress tensor S belongs to the class (2.12) and for
p ∈ (1, 2), ε ∈ (0, ε0], γ0 ∈ (0,∞) it satisfies (A1) – (A2), see Assumption 2.2.

• The following data are given:

v0 ∈W 1,p(Ω), ∇ · v0 = 0 a.e. in Ω, v0 = vD on Γ,

f ∈ Lp′(Ω) and b ∈ L(p#)′(S), with (p#)′ := (d−1)p
d(p−1) .

Remark 7.1. In Assumption 7.1, p# is given by p# := (d−1)p
d−p so that tr(W 1,p(Ω)) ↪→

Lp
#(∂Ω). Indeed, it holds tr(W 1,p(Ω)) ↪→ W

1− 1
p
,p(∂Ω) due to the trace theorem, and

W
1− 1

p
,p(∂Ω) ↪→ Lp

#(∂Ω) for p−1
p −

d−1
p = −d−1

p# due to Sobolev’s embedding theorem.
The condition on p# is equivalent to p−d

p = −d−1
p# and, hence, p# = (d−1)p

d−p .

The weak formulation of system (2.16), (2.24), (2.25) reads:

(P8) Find (v, π) ∈ (v0 +X p
Γ )×QpΓ (the weak solution) such that

(S(π,Dv),Dw)Ω − (π,∇ ·w)Ω = (f ,w)Ω − (b,w)S ∀w ∈ X p
Γ , (7.1)

(∇ · v, q)Ω = 0 ∀q ∈ QpΓ . (7.2)
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7.2 Galerkin discretization and its well-posedness

The following observation plays an essential role in the analysis of (P8).

Lemma 7.2. Let Assumption 7.1 be satisfied. For any ν ∈ (1,∞) there exists a constant
β(ν) (depending on ν, Ω and ΓP ) such that

0 < β(ν) ≤ inf
q∈QνΓ

sup
w∈X νΓ

(q,∇ ·w)Ω
‖q‖ν′‖w‖1,ν

. (7.3)

In particular, there exists a constant β0(ν) depending on ν and Ω such that

0 < β0(ν) ≤ inf
q∈Lν′0 (Ω)

sup
w∈W 1,ν

0 (Ω)

(q,∇ ·w)Ω
‖q‖ν′‖w‖1,ν

. (7.4)

Proof. We refer to Haslinger/Stebel [HS11] and Hirn et al. [HLS10].

Remark 7.2 (See Remark 2.3 in [HLS10]). Lemma 7.2 reveals, in terms of the spaces X p
Γ ,

QpΓ , why the additional constraint (2.25) is requisite to fix the level of pressure if ∂Ω = Γ .
Note that (1,∇ ·w)Ω = 0 for all w ∈W 1,ν

0 (Ω) and, consequently,

inf
q∈Lν′ (Ω)

sup
w∈W 1,ν

0 (Ω)

(q,∇ ·w)Ω
‖q‖ν′‖w‖1,ν

= 0.

7.2 Galerkin discretization and its well-posedness

For given h > 0, let Xh, Qh be finite-dimensional spaces and

X p
Γ ;h := Xh ∩X p

Γ , QpΓ ;h := Qh ∩QpΓ ,

VpΓ ;h :=
{
wh ∈ X p

Γ ;h; (∇ ·wh, qh)Ω = 0 for all qh ∈ QpΓ ;h

}
.

We will specify the spaces Xh and Qh in the context of finite elements in Section 7.5. As
before, the symbol h will then stand for the mesh parameter. At this stage, we only require
that X p

Γ ;h and QpΓ ;h approximate X p
Γ and QpΓ in the following sense

lim
h↘0

inf
wh∈X pΓ ;h

‖w −wh‖1,p = lim
h↘0

inf
qh∈QpΓ ;h

‖q − qh‖p′ = 0 ∀w ∈ X p
Γ , ∀q ∈ Q

p
Γ . (7.5)

The pure Galerkin approximation of Problem (P8) consists in replacing the Banach spaces
X p
Γ and QpΓ by their finite dimensional subspaces X p

Γ ;h and QpΓ ;h:

(P8h) Find (vh, πh) ∈ (v0,h +X p
Γ ;h)×QpΓ ;h (the discrete solution) such that

(S(πh,Dvh),Dwh)Ω − (πh,∇ ·wh)Ω = (f ,wh)Ω − (b,wh)S ∀wh ∈ X p
Γ ;h, (7.6)

(∇ · vh, qh)Ω = 0 ∀qh ∈ QpΓ ;h. (7.7)

Here, v0,h is any1 appropriate approximation of the Dirichlet data which satisfies

(∇ · v0,h, qh)Ω = 0 ∀qh ∈ QpΓ ;h and lim
h↘0
‖v0 − v0,h‖1,p = 0. (7.8)

1In the context of finite elements v0,h typically belongs to Xh.
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Since we have to cope with additional difficulties due to the complex structure of the
viscosity, here we restrict ourselves to inf-sup stable discrete spacesXh, Qh so that we avoid
any further term in (7.7), which would be necessary for pressure stabilization. For shear
rate dependent viscosities, local projection stabilization has been analyzed in Chapter 4.
Below, we require that for ν ∈ (1,∞) the pair X ν

Γ ;h, QνΓ ;h satisfies the inf–sup condition:

(ISνΓ ) For given ν ∈ (1,∞), there exists a constant β̃(ν) independent of h such that

0 < β̃(ν) ≤ inf
q∈Qν

Γ ;h

sup
w∈X νΓ ;h

(q,∇ ·w)Ω
‖q‖ν′‖w‖1,ν

.

The availability of (ISνΓ ) and the value of β̃(ν) depend on the choice of the spaces Xh

and Qh. For the purposes of Thm. 7.5, we also require the following modification of (ISνΓ ).

(ISν0) There exists a constant β̃0(ν), independent of h, such that

0 < β̃0(ν) ≤ inf
q∈Qh∩Lν

′
0 (Ω)

sup
w∈Xh∩W 1,ν

0 (Ω)

(q,∇ ·w)Ω
‖q‖ν′‖w‖1,ν

.

Below we will use (IS2
0) in conjunction with the following observation:

Remark 7.3. Let (IS2
0) hold, let |S| > 0 and p ∈ (1, 2). For arbitrary q ∈ QpΓ ;h, we write

q = q0 +−
∫
Ω q dx, where2 q0 ∈ Qh ∩L2

0(Ω). Since ‖q‖2 ≤ ‖q0‖2 + |Ω|1/2|−
∫
Ω q dx|, we obtain

β̃0(2)
(
‖q‖2 − |Ω|1/2|−

∫
Ω q dx|

)
≤ sup
w∈X 2

Γ ;h

(q,∇ ·w)Ω
‖w‖1,2

, ∀q ∈ QpΓ ;h. (7.9)

Below, in Thm. 7.3 we show the existence of solutions to (P8h), and in Thm. 7.4 we discuss
the conditions that guarantee the uniqueness of solutions to both (P8h) and (P8).

Theorem 7.3 (Existence of discrete solutions). Let Assumption 7.1 hold. Let X p
Γ ;h

and QpΓ ;h fulfill (ISpΓ ) with β̃(p) > 0 arbitrary. Then there exists a solution to (P8h).
Moreover, any such solution (vh, πh) satisfies the a priori estimate

‖vh‖1,p + ‖S(πh,Dvh)‖p′ + β̃(p)‖πh‖p′ ≤ K. (7.10)

The constant K only depends on Ω,Γ, p, ε0, σ0, σ1, ‖f‖p′ , ‖b‖(p#)′;S and ‖v0,h‖1,p.

Proof. The proof is similar to the proof of Lemma 4.6. For any δ > 0 (small), we consider
the quasi-compressible problem (P8δh): find (vδh, πδh) ∈ (v0,h +X p

Γ ;h)×QpΓ ;h such that

(S(πδh,Dvδh),Dwh)Ω − (πδh,∇ ·wh)Ω = (f ,wh)Ω − (b,wh)S ∀wh ∈ X p
Γ ;h, (7.11)

δ(πδh, qh)Ω + (qh,∇ · vδh)Ω = 0 ∀qh ∈ QpΓ ;h. (7.12)
2Here we assume that constants belong to Qh.
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7.2 Galerkin discretization and its well-posedness

The inserted term δ(πδh, qh)Ω ensures the coercivity of the equations with respect to the
pressure and allows to use the Brouwer fixed-point theorem to establish the solution
to (P8δh). Indeed, setting wh := vδh − v0,h and qh := πδh, summing the equations and
using Hölder’s and Korn’s inequality, (7.8)1, the embedding tr(W 1,p(Ω)) ↪→ Lp

#(∂Ω), the
following estimate (which can be derived from (2.52) and Hölder’s inequality)

(S(πδh,Dvδh),Dvδh −Dv0,h)Ω ≥
σ0
2p‖Dv

δ
h‖pp −

σ1
p− 1‖Dv

δ
h‖p−1
p ‖Dv0,h‖p −

σ0
2p |Ω|ε

p,

and Young’s inequality, we obtain the a priori bound

δ‖πδh‖22 + ‖vδh‖
p
1,p + ‖S(πδh,Dvδh)‖p

′

p′ ≤ C,

where C > 0 depends on Ω,Γ, p, ε0, σ0, σ1, ‖f‖p′ , ‖b‖(p#)′;S and ‖v0,h‖1,p. In particular, C
is independent of δ and h. Therefore, using (ISpΓ ) and (7.11), we observe that

β̃(p)‖πδh‖p′ ≤ sup
wh∈X pΓ ;h

(πδh,∇ ·wh)Ω
‖wh‖1,p

≤ C,

with C > 0 and β̃(p) > 0 independent of δ and h. The same arguments applied to (P8h)
prove (7.10). Since X p

Γ ;h and QpΓ ;h are of finite dimension, the uniform bounds above imply
that there exists (vh, πh) ∈ (v0,h +X p

Γ ;h)×QpΓ ;h such that (for some sequence δn ↘ 0)

vδnh → vh in W 1,p(Ω),
πδnh → πh in Lp′(Ω),

S(πδnh ,Dv
δn
h )→ S(πh,Dvh) in Lp′(Ω)d×d.

Consequently, (vh, πh) is a solution to (P8h).

The constant K in (7.10) does not depend on h since ‖v0,h‖1,p ≤ 2‖v0‖1,p for h ≤ h0. For
the subsequent analysis we recall the natural distance d(·, ·) defined in (2.53). According
to Thm. 7.3, discrete solutions exist regardless of (A2). However, uniqueness of a solution
can only be shown by means of (A2) under a smallness assumption on γ0 as depicted by

Theorem 7.4 (Uniqueness). Provided that (IS2
Γ ) is satisfied and

γ0 < β̃(2)ε
2−p

2
σ0

σ0 + σ1
, (7.13)

the solution to (P8h) in Theorem 7.3 is uniquely determined.

Similarly, there is at most one solution to (P8) if Assumption 7.1 is satisfied and

γ0 < β(2)ε
2−p

2
σ0

σ0 + σ1
.
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Proof. We prove the uniqueness of a solution to (P8h). The second statement can be
proven analogously. Let (vih, πih), i = 1, 2, be two solutions to (P8h). Then we realize that

(S(π1
h,Dv

1
h)− S(π2

h,Dv
2
h),Dwh)Ω = (π1

h − π2
h,∇ ·wh)Ω ∀wh ∈ X p

Γ ;h.

In particular, choosing wh := v1
h − v2

h we observe

(S(π1
h,Dv

1
h)− S(π2

h,Dv
2
h),Dv1

h −Dv2
h)Ω = 0

and we thus obtain from (2.54) that

d(v1
h,v

2
h)2 ≤ γ2

0
σ2

0
‖π1

h − π2
h‖22. (7.14)

Hence, (IS2
Γ ) and (2.56) yield the following estimate

β̃(2)‖π1
h − π2

h‖2 ≤ sup
wh∈X 2

Γ ;h

(π1
h − π2

h,∇ ·wh)Ω
‖wh‖1,2

≤ ‖S(π1
h,Dv

1
h)− S(π2

h,Dv
2
h)‖2

≤ σ1ε
p−2

2 d(v1
h,v

2
h) + γ0ε

p−2
2 ‖π1

h − π2
h‖2, (7.15)

which together with (7.14) and (7.13) leads to π1
h = π2

h a.e. in Ω and to d(v1
h,v

2
h) = 0. But

this completes the proof, because (2.60), (2.43) and the a priori bound (7.10) ensure that
‖Dv1

h −Dv2
h‖2p ≤ C d(v1

h,v
2
h)2 = 0. Since |Γ | > 0, Lemma 7.1 yields v1

h = v2
h a.e. in Ω.

7.3 Convergence of the discrete solutions

In this section, we show that the discrete solutions generated by (P8h) converge to a weak
solution solving the original problem (P8). In particular, we establish the existence of
a solution to (P8) as the limit of the discrete solutions. Note that the well-posedness
of (P8) has already been resolved: For Γ = ∂Ω this was published in [FMR05, Lan09],
while the case |S| > 0 was conducted in [LS11a]. In these works, the proof was carried
out in a different way than here: First a quasi-compressible approximation to (P8) was
established (by the Galerkin method), and later it was shown that this approximation
converges (on the continuous level) to the “incompressible” solution to (P8). Here, since
our concern lies with the finite element discretization, the weak solution is established
directly as a limit of discrete solutions satisfying the incompressibility constraint (7.7).
Theorem 7.5 (Convergence of discrete solutions). Let the assumptions of Theorem
7.3 hold, let the discrete spaces {(X p

Γ ;h,Q
p
Γ ;h)}h>0 satisfy (7.5), and let {v0,h}h>0 sat-

isfy (7.8). In addition, let (IS2
0) hold and let γ0 fulfill

γ0 < β̃0(2)ε
2−p

2
σ0

σ0 + σ1
. (7.16)

Then, the solutions to (P8h) converge to a solution to (P8) as follows,

(vhn , πhn)→ (v, π) strongly in W 1,p(Ω)× Lp′(Ω), for some hn ↘ 0. (7.17)

If the solution to (P8) is unique, then the whole sequence {(vh, πh)}h>0 tends to (v, π).

176



7.3 Convergence of the discrete solutions

Remark 7.4. Note that β̃0(2) appears in (7.16) even in the case |S| > 0.

Proof of Theorem 7.5. Theorem 7.3 ensures that solutions (vh, πh) ∈ (v0,h +X p
Γ ;h)×QpΓ ;h

to (P8h) exist and satisfy the a priori estimate (7.10). Hence, there exist (v, π) ∈
(v0 +X p

Γ )×QpΓ and S ∈ Lp′(Ω)d×d such that for a sequence hn ↘ 0 there hold

vhn ⇀ v weakly in W 1,p(Ω), (7.18)
πhn ⇀ π weakly in Lp′(Ω), (7.19)

S(πhn ,Dvhn) ⇀ S weakly in Lp′(Ω)d×d. (7.20)

Obviously, the weak limits satisfy equation (7.2) and

(S,Dw)Ω − (π,∇ ·w)Ω = (f ,w)Ω − (b,w)S ∀w ∈ X p
Γ . (7.21)

Here, we have used the density (7.5). Subtracting (7.21) and (7.6), we observe

(S(πhn ,Dvhn)− S,Dwhn)Ω = (πhn − π,∇ ·whn)Ω ∀whn ∈ X
p
Γ ;hn . (7.22)

Then, (7.22) with wh := vhn − v0,hn implies

(S(πhn ,Dvhn)− S(π,Dv),Dvhn −Dv)Ω = (πhn − π,∇ · (vhn − v0,hn))Ω
+ (S,Dvhn −Dv0,hn)Ω + (S(πhn ,Dvhn),Dv0,hn −Dv)Ω − (S(π,Dv),Dvhn −Dv)Ω.

Using (7.8), (7.7), and (7.2), we realize that

(S(πhn ,Dvhn)− S(π,Dv),Dvhn −Dv)Ω = (π,∇ · (v − vhn))Ω + (π,∇ · (v0,hn − v0))Ω
+ (S,Dvhn −Dv)Ω + (S − S(πhn ,Dvhn),Dv)Ω
+ (S(πhn ,Dvhn)− S,Dv0,hn)Ω − (S(π,Dv),Dvhn −Dv)Ω.

Recalling (7.18)–(7.20) and using (7.8), we conclude that

(S(πhn ,Dvhn)− S(π,Dv),Dvhn −Dv)Ω = o(1), hn ↘ 0, (7.23)

where o(1) denotes an arbitrary sequence that tends to zero for hn ↘ 0. Furthermore,
from (2.43), (7.10), (2.54), and (7.23) we deduce (cf. (7.14))

C ‖Dvhn −Dv‖2p ≤ d(vhn ,v)2 ≤ γ2
0
σ2

0
‖πhn − π‖22 + o(1) (7.24)

for some C > 0 independent of hn. We suppose for a while that

β̃0(2)‖πhn − π‖2 ≤ ‖S(πhn ,Dvhn)− S(π,Dv)‖2 + o(1). (7.25)

Then, combining (7.25) and (2.56), we arrive at

β̃0(2)‖πhn − π‖2 ≤ σ1ε
p−2

2 d(vhn ,v) + γ0ε
p−2

2 ‖πhn − π‖2 + o(1), hn ↘ 0.
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Using (7.24) and assumption (7.16), we conclude that ‖πhn − π‖2 ≤ o(1). Consequently,
(7.24) also yields ‖Dvhn −Dv‖p ≤ o(1), which finally implies that

πhn → π a.e. in Ω and Dvhn →Dv a.e. in Ω.

This allows us to apply Vitali’s lemma and to identify S,∫
Ω

S(πhn ,Dvhn) : Dw dx→
∫
Ω

S(π,Dv) : Dw dx =
∫
Ω

S : Dw dx ∀w ∈ X p
Γ .

Therefore, it only remains to show (7.25). Define w̃hn ∈ X 2
Γ ;hn , ‖w̃hn‖1,2 = 1, such that

sup
whn∈X 2

Γ ;hn

(πhn − π,∇ ·whn)Ω
‖whn‖1,2

= (πhn − π,∇ · w̃hn)Ω.

Then, there exists w̃ ∈ X 2
Γ such that (for a not-relabelled subsequence) w̃hn − w̃ ⇀ 0

weakly in X 2
Γ and3 ‖w̃hn − w̃‖1,2 ≤ 1. Hence, using (7.22) and (7.20), we obtain:

(πhn − π,∇ · w̃hn)Ω =(S(πhn ,Dvhn)− S,Dw̃hn −Dw̃)Ω + o(1)
=(S(πhn ,Dvhn)− S(π,Dv),Dw̃hn −Dw̃)Ω + o(1)
≤‖S(πhn ,Dvhn)− S(π,Dv)‖2 + o(1), hn ↘ 0.

Recalling (7.9) and using that −
∫
Ω πhn − π dx→ 0, we deduce that for any qhn ∈ Q

p
Γ ;hn :

β̃0(2)‖πhn − qhn‖2 ≤ sup
whn∈X 2

Γ ;hn

(πhn − qhn ,∇ ·whn)Ω
‖whn‖1,2

+ β̃0(2)|Ω|1/2
∣∣∣∣∣∣∣−
∫
Ω

πhn − qhn dx

∣∣∣∣∣∣∣
≤ sup
whn∈X 2

Γ ;hn

(πhn − π,∇ ·whn)Ω
‖whn‖1,2

+ ‖π − qhn‖2 + C

∣∣∣∣∣∣∣−
∫
Ω

πhn − qhn dx

∣∣∣∣∣∣∣
≤ ‖S(πhn ,Dvhn)− S(π,Dv)‖2 + C ‖π − qhn‖2 + o(1), hn ↘ 0,

with C > 0 independent of hn. Using the density of {QpΓ ;hn} in Q
p
Γ , we finally assert (7.25):

β̃0(2)‖πhn − π‖2 ≤ β̃0(2) inf
qhn∈Q

p
Γ ;hn

{
‖πhn − qhn‖2 + ‖qhn − π‖2

}
≤ ‖S(πhn ,Dvhn)− S(π,Dv)‖2 + o(1), hn ↘ 0.

This completes the proof.

Theorem 7.5 guarantees the existence of a solution to (P8) provided that there is a suitable
family of discrete spaces {X p

Γ ;h,Q
p
Γ ;h}h>0. The proper existence result is formulated in

Corollary 7.6. For its proof one constructs an appropriate family of discrete spaces that
approximates the Banach spaces {X Γ ,QΓ } and that satisfies the inf-sup condition (IS2

0)
with a constant β̃0(2) which is almost equal to β0(2). To any discrete pressure space one
assigns a rich enough discrete velocity space. The construction of such spaces, which is
carried out in [Hir10], is based on the fact that the used Banach spaces are separable.

3Indeed, ‖w̃‖2
1,2 ≤ 2(w̃hn , w̃)1,2;Ω for n large enough, which implies ‖w̃hn − w̃‖2

1,2 ≤ ‖w̃hn‖2
1,2 (= 1).
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Corollary 7.6 (Existence of solutions). Let Assumption 7.1 hold and

γ0 < β0(2)ε
2−p

2
σ0

σ0 + σ1
. (7.26)

Then there exists a weak solution to (P8). Any solution to (P8) fulfills the a priori
estimate

‖v‖1,p + ‖S(π,Dv)‖p′ + β(p)‖π‖p′ ≤ K. (7.27)

The constant K only depends on Ω,Γ, p, ε0, σ0, σ1, ‖f‖p′ , ‖b‖(p#)′;S and ‖v0‖1,p.

Proof. The proof follows from Theorems 7.3 and 7.5 if the family of discrete spaces
{X p

Γ ;h,Q
p
Γ ;h}h>0 is chosen appropriately. Details can be found in [Hir10].

7.4 A priori error estimates

In this section we aim to derive a priori estimates for the error of approximation v−vh and
π−πh. For the remainder of this chapter, let us use the convention that (v, π) and (vh, πh)
denote the solutions to (P8) and (P8h), respectively. Their existence and uniqueness was
shown in Sections 7.2 and 7.3. The main results are given by Corollaries 7.9 and 7.10 which
state a priori error estimates in the form of a best approximation result.

Lemma 7.7. Let Assumption 7.1 hold, let d(·, ·) be defined by (2.53). For each δ > 0 there
exists a constant cδ > 0 such that for all uh ∈ (v0,h + VpΓ ;h), rh ∈ QpΓ ;h there holds

d(v,vh) ≤ cδ
(
d(v,uh) + ‖Dv −Duh‖p + ‖π − rh‖p′

)
+
( 1
σ0

+ δ

)
γ0‖π − πh‖2,

where the constant cδ also depends on p, ε0, σ0, σ1, Γ, Ω, ‖f‖p′ , ‖b‖(p#)′;S and ‖v0‖1,p.

Proof. Let (uh, rh) ∈ (v0,h +VpΓ ;h)×QpΓ ;h be arbitrary. From (P8), (P8h) it follows that

(S(π,Dv)− S(πh,Dvh),Dwh)Ω = (π − πh,∇ ·wh)Ω = (π − rh,∇ ·wh)Ω

for all wh ∈ VpΓ ;h. This, with wh := (uh − vh) ∈ VpΓ ;h, implies

(S(π,Dv)− S(πh,Dvh),Dv −Dvh)Ω = (S(π,Dv)− S(πh,Dvh),Dv −Duh)Ω
+ (π − rh,∇ · (uh − vh))Ω =: I1 + I2.

Applying (2.54), we conclude that

σ0
2 d(v,vh)2 ≤ I1 + I2 + γ2

0
2σ0
‖π − πh‖22. (7.28)

It remains to estimate I1 and I2. First of all, we split the term I1 in the following way,

I1 = (S(π,Dv)− S(πh,Duh),Dv −Duh)Ω
+ (S(πh,Duh)− S(πh,Dvh),Dv −Duh)Ω =: I3 + I4.
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Due to (2.55), for each δ1 > 0 there exists cδ1 > 0 such that

I3 ≤ cδ1d(v,uh)2 + δ1γ
2
0‖π − πh‖22.

Let ϕ be defined by (2.37) and let ϕa be given as in Definition 2.4. In order to get an upper
bound of I4, we apply Lemma 2.8 and Young’s inequality (2.36) with ψa := ϕa taking into
account that the ∆2-constants of ϕa, (ϕa)∗ only depend on p and do not depend on the
shift-parameter a ≥ 0. Hence, for each δ2 > 0 there is a constant cδ2 > 0 so that

I4 ≤ c
∫
Ω

ϕ′ε+|Duh|(|Duh −Dvh|)|Dv −Duh| dx

≤ δ2

∫
Ω

ϕε+|Duh|(|Duh −Dvh|) dx+ cδ2

∫
Ω

ϕε+|Duh|(|Dv −Duh|) dx

∼ δ2‖F(Duh)−F(Dvh)‖22 + cδ2‖F(Dv)−F(Duh)‖22
≤ δ2cd(v,vh)2 + cδ2d(v,uh)2.

Here, we have also used Lemma 2.11. Collecting the estimates above, we arrive at

I1 ≤ cδ1,δ2d(v,uh)2 + δ2cd(v,vh)2 + δ1γ
2
0‖π − πh‖22. (7.29)

Next, we estimate the term I2. Using Korn’s and Young’s inequality, applying Lemma
2.6 (i) with ν = p and Lemma 2.11, and recalling the uniform a priori bounds (7.10) and
(7.27), we deduce that for each δ3 > 0 there exists a constant cδ3 > 0 such that

I2 ≤
∣∣∣(π − rh,∇ · (uh − vh))Ω

∣∣∣ ≤ c‖π − rh‖p′‖Duh −Dvh‖p
≤ δ3

(
‖Dv −Duh‖2p + ‖Dv −Dvh‖2p

)
+ cδ3‖π − rh‖2p′

≤ δ3‖Dv −Duh‖2p + δ3cd(v,vh)2‖ε+ |Dv| + |Dvh|‖2−pp + cδ3‖π − rh‖2p′
≤ δ3‖Dv −Duh‖2p + δ3cd(v,vh)2 + cδ3‖π − rh‖2p′ . (7.30)

Combining the estimates (7.28), (7.29) and (7.30), we conclude that
σ0
2 d(v,vh)2 ≤ δ2cd(v,vh)2 + δ3cd(v,vh)2 + cδ1,δ2d(v,uh)2 + δ3‖Dv −Duh‖2p

+ cδ3‖π − rh‖2p′ +
( 1

2σ0
+ δ1

)
γ2

0‖π − πh‖22.

Multiplying this with 2/σ0, taking the square root, we easily complete the proof.

Lemma 7.7 enables us to estimate the pressure error in the L2-norm.

Theorem 7.8. Let Assumption 7.1 hold. Let the discrete spaces fulfill (IS2
Γ ) and let the

parameters meet the condition (7.13): γ0 < β̃(2)ε
2−p

2 σ0
σ0+σ1

. Then, there exists a constant
c > 0, which only depends on p, ε, γ0, σ0, σ1, β̃(2), Γ,Ω, ‖f‖p′ , ‖b‖(p#)′;S , ‖v0‖1,p and which
may explode as ε↘ 0, such that the pressure error is bounded in L2(Ω) by

‖π − πh‖2 ≤ c inf
uh∈v0,h+Vp

Γ ;h

(
‖F(Dv)−F(Duh)‖2 + ‖Dv −Duh‖p

)
+ c inf

rh∈QpΓ ;h

‖π − rh‖p′ .
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Proof. Let (uh, rh) ∈ (v0,h + VpΓ ;h)×QpΓ ;h be arbitrary. Then, (P8) and (P8h) imply

(rh − πh,∇ ·wh)Ω = (S(π,Dv)− S(πh,Dvh),Dwh)Ω + (rh − π,∇ ·wh)Ω (7.31)

for all wh ∈ X p
Γ ;h. Using (IS2

Γ ) and (7.31), we deduce, cf. (7.15),

β̃(2)‖rh − πh‖2 ≤ sup
wh∈X 2

Γ ;h

(rh − πh,∇ ·wh)Ω
‖wh‖1,2

≤ ‖S(π,Dv)− S(πh,Dvh)‖2 + ‖rh − π‖2.

Applying (2.56) & Lemma 7.7, we conclude that for each δ > 0 there exists cδ > 0 so that

β̃(2)‖rh − πh‖2 ≤ σ1ε
p−2

2 d(v,vh) + γ0ε
p−2

2 ‖π − πh‖2 + ‖rh − π‖2
≤ σ1ε

p−2
2 cδ

(
d(v,uh) + ‖Dv −Duh‖p + ‖π − rh‖p′

)
+ σ1ε

p−2
2

( 1
σ0

+ δ

)
γ0‖π − πh‖2 + γ0ε

p−2
2 ‖π − πh‖2 + ‖rh − π‖2.

Using Minkowski’s inequality, Lemma 2.11, and Lp′(Ω) ↪→ L2(Ω) for p ≤ 2, we arrive at

‖π − πh‖2 ≤ cδ
(
‖F(Dv)−F(Duh)‖2 + ‖Dv −Duh‖p + ‖π − rh‖p′

)
+ β̃(2)−1σ1ε

p−2
2

( 1
σ0

+ δ

)
γ0‖π − πh‖2 + β̃(2)−1γ0ε

p−2
2 ‖π − πh‖2.

Recalling (7.13), and choosing δ > 0 sufficiently small, we can absorb all terms, which
include the pressure error, into the left-hand side. Hence, we get the desired result.

Corollary 7.9. Let the assumptions of Theorem 7.8 be satisfied. Then, the approximation
error of the velocity field is bounded with respect to the natural distance as follows

‖F(Dv)−F(Dvh)‖2 ≤ c inf
uh∈(v0,h+Vp

Γ ;h)

(
‖F(Dv)−F(Duh)‖2 + ‖Dv −Duh‖p

)
+ c inf

rh∈QpΓ ;h

‖π − rh‖p′ . (7.32)

Proof. The estimate follows from Lemma 2.11, Lemma 7.7, and Theorem 7.8.

Corollary 7.10. Let the assumptions of Thm. 7.8 hold. In addition, let (ISpΓ ) hold and

γ0 < β̃(p)ε
2−p

2 . (7.33)

Then, the approximation error of the pressure field is bounded in Lp′(Ω) by

‖π − πh‖p′ ≤ c ‖F(Dv)−F(Dvh)‖
2
p′
2 + c inf

rh∈QpΓ ;h

‖rh − π‖p′ . (7.34)
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Proof. The estimate is again based on the inf–sup inequality (ISpΓ ). Using (IS
p
Γ ), Hölder’s

inequality, (7.31), (2.57) and (2.60), for arbitrary rh ∈ QpΓ ;h we obtain the estimate

β̃(p)‖rh − πh‖p′ ≤ sup
wh∈X pΓ ;h

(rh − πh,∇ ·wh)Ω
‖wh‖1,p

≤ ‖S(π,Dv)− S(πh,Dvh)‖p′ + ‖rh − π‖p′

≤ c ‖F(Dv)−F(Dvh)‖
2
p′
2 + γ0ε

p−2
2 ‖π − πh‖p′ + ‖rh − π‖p′ .

Due to assumption (7.33), this completes the proof.

In practice, one never obtains the solution (vh, πh) to Problem (P8h) exactly. Instead,
one obtains its approximation (ṽh, π̃h) ∈ (v0,h + VpΓ ;h)×QpΓ ;h, satisfying

(S(π̃h,Dṽh),Dwh)Ω − (π̃h,∇ ·wh)Ω = (f ,wh)Ω − (b,wh)S + 〈e,wh〉 ∀wh ∈ X p
Γ ;h,

(∇ · ṽh, qh)Ω = 〈g, qh〉 ∀qh ∈ QpΓ ;h,

where e ∈ (X p
Γ ;h)∗, g ∈ (QpΓ ;h)∗, and the brackets 〈·, ·〉 denote the corresponding duality

pairings. Here, e = e(ṽh, π̃h) and g = g(ṽh, π̃h) represent some additional error which
includes, e.g., the residual associated with the approximative solution of the nonlinear
algebraic problem, or the error due to numerical integration. However, provided that one
is able to estimate e and g, then one can derive estimates for v − ṽh and π − π̃h similar
to those derived above by following the same procedure. For instance, assuming that
|〈e,wh〉| ≤ E ‖wh‖1,p and |〈g, qh〉| ≤ G ‖qh‖2 for E, G independent of h (say, E,G ≤ 1,
such that ‖Dṽh‖p remains reasonably bounded), one can show (cf. (7.32), (7.34)):

‖F(Dv)−F(Dṽh)‖2 ≤ c inf
uh∈(v0,h+Vp

Γ ;h)

(
‖F(Dv)−F(Duh)‖2 + ‖Dv −Duh‖p

)
+ c inf

rh∈QpΓ ;h

‖π − rh‖p′ + c (E +G)

‖π − π̃h‖p′ ≤ c ‖F(Dv)−F(Dṽh)‖
2
p′
2 + c inf

rh∈QpΓ ;h

‖rh − π‖p′ + cE.

7.5 Finite element approximation

In this section, we consider some finite element approximations of (P8) that satisfy the
abstract theory of the previous sections. We assume that, for ease of exposition, Ω is
a polygonal/polyhedral domain and that Th is a shape-regular decomposition of Ω into
quadrilaterals/hexahedra (or d-dimensional simplices) so that Ω = ⋃

K∈Th K, see Section
3.1. As usual, the symbol hK denotes the diameter of an element K ∈ Th. The mesh
parameter h represents the maximum diameter of the elements, i.e., h := max{hK ; K ∈ Th}.
As mentioned in Section 3.1, the neighborhood SK of K ∈ Th, which denotes the union
of all elements in Th touching K, fulfills |K| ∼ |SK | with constants independent of h.
Furthermore, the number of elements in SK is uniformly bounded with respect to K ∈ Th.
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Let Xh, Qh be appropriate finite element spaces defined on Th that satisfy Xh ⊂W 1,∞(Ω),
Qh ⊂ L∞(Ω). We recall that the FE spaces for the velocity and pressure are given by
X p
Γ ;h := Xh ∩X p

Γ , Xh = [Xh]d, and QpΓ ;h := Qh ∩QpΓ . In order to ensure approximation
properties and the discrete inf-sup conditions, we need to specify the choice of spaces:

Assumption 7.2 (Approximation property of Xh and Qh). We assume that Xh con-
tains the set of linear polynomials on Ω. Moreover, we suppose that there exist a linear
projection jh : W 1,1(Ω)→Xh and an interpolation operator ih : W 1,1(Ω)→ Qh so that

(1) jh preserves zero boundary values on Γ , such that jh(X p
Γ ) ⊂ X p

Γ ;h.

(2) jh is locally W 1,1-stable in the sense that there exists c > 0 independent of h:

−
∫
K

|jhw|dx ≤ c−
∫
SK

|w|dx+ c−
∫
SK

hK |∇w|dx ∀w ∈W 1,1(Ω), ∀K ∈ Th, (7.35)

where SK denotes a local neighborhood of K (as defined above).

(3) jh preserves divergence4 in the Q∗h-sense, i.e.,

(∇ ·w, qh)Ω = (∇ · jhw, qh)Ω ∀w ∈W 1,1(Ω), ∀qh ∈ Qh. (7.36)

(4) ih preserves mean values, i.e., ih(QpΓ ) ⊂ QpΓ ;h, and, for any ν ≥ 1, ih satisfies

‖q − ihq‖ν ≤ ch‖q‖1,ν ∀q ∈W 1,ν(Ω). (7.37)

Later we will suppose that functions in Xh satisfy the following global inverse inequality:

Assumption 7.3 (Inverse property of Xh). For ν, µ ∈ [1,∞] and 0 ≤ m ≤ l it holds

‖wh‖l,ν ≤ Chm−l+min(0, d
ν
− d
µ

)‖wh‖m,µ ∀wh ∈ Xh. (7.38)

Assumption 7.3 usually requires that the mesh is quasi-uniform, see (3.6). Assumption 7.2
is similar to Assumption 2.21 in [BBDR10]. Clearly, the existence of jh and ih as in
Assumption 7.2 depends on the choice of the finite element pairing Xh/Qh:

• The construction of an operator jh, that satisfies Assumptions 7.2 (1) – (3), is
well-known for some particular finite elements, including the Crouzeix-Raviart and
MINI element, see [BBDR10]. If Γ 6= ∂Ω, Assumption 7.2 (1) requires that the
triangulation matches Γ appropriately, cf. [SZ90].

4In case of |S| > 0 this implies
∫
S
w·n dx =

∫
S

(jhw)·n dx which requires that Th matches S appropriately.
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• Assumption 7.2 (2) is standard in the context of interpolation in Orlicz-Sobolev
spaces, see Section 3.3 or [DR07]. For standard finite elements, it is well-known that
the Scott-Zhang interpolation operator satisfies (7.35), see [SZ90]. It is crucial that
from (7.35) one can derive the local stability result (see Lemma 3.1 or [DR07])

−
∫
K

ψ(|∇jhw|) dx ≤ c−
∫
SK

ψ(|∇w|) dx ∀w ∈W 1,ψ(Ω) ∀K ∈ Th, (7.39)

which is valid for arbitrary N -functions ψ with ∆2(ψ) <∞. Here, W 1,ψ(Ω) is the
classical Orlicz-Sobolev space and the constant c only depends on ∆2(ψ).

• For standard finite elements, ih may be chosen as the L2-projection onto Qh:

(ihq, qh)Ω = (q, qh)Ω ∀qh ∈ Qh ∀q ∈ L1(Ω). (7.40)

Indeed, it is shown in Crouzeix/Thomée [CT87] that the L2-projection is Lν-stable
and even W 1,ν-stable for any ν ∈ [1,∞] and that, consequently, it fulfills (7.37).
The results of [CT87] are derived for finite element spaces Qh based on simplices,
Qh := {w ∈ C(Ω); w|K ∈ Pr(K) for all K ∈ Th}, where Pr(K) denotes the space
of polynomials on K of degree less than or equal to r. Moreover, setting qh = 1 in
(7.40), we deduce that ih preserves mean values. Hence, ih(QpΓ ) ⊂ QpΓ ;h.

Next, we depict important consequences of Assumption 7.2:

Lemma 7.11. Let there exist a linear projection jh that satisfies Assumption 7.2 (2).
Then, for all K ∈ Th and w ∈W 1,p(Ω) there holds

−
∫
K

|F(Dw)−F(Djhw)|2 dx ≤ ch2
K−
∫
SK

|∇F(Dw)|2 dx (7.41)

provided that F(Dw) ∈W 1,2(Ω)d×d. The constant c only depends on p.

Proof. The proof is based on the Orlicz-stability (7.39) and it is identical to the proof of
Lemma 4.4 (iii). Note that in Lemma 4.4 the interpolation estimate (7.41) was especially
proven for the isoparametric d-linear Q1 finite elements. Under Assumption 7.2, estimate
(7.41) follows analogously. We also refer to [BBDR10, Hir10].

Moreover, the assumptions on jh imply the discrete version of the inf-sup inequality:

Lemma 7.12. Let there exist a linear projection jh that satisfies Assumption 7.2 (1)–(3).
Then, for ν ∈ (1,∞) the discrete inf-sup inequality (ISνΓ ) is satisfied.

Proof. Since Th is nondegenerate, the local stability result (7.39) (with ψ(t) := tν) leads
to the global W 1,ν-stability inequality, ‖jhw‖1,ν ≤ Cs ‖w‖1,ν for all w ∈ X ν

Γ , where
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ν ∈ (1,∞) and the stability constant Cs does not depend on h. Thus, the continuous
inf-sup inequality (7.3) and Assumption 7.2 imply that for arbitrary qh ∈ QνΓ ;h ⊂ QνΓ

‖qh‖ν′ ≤ β(ν)−1 sup
w∈X νΓ

(qh,∇ ·w)Ω
‖w‖1,ν

= β(ν)−1 sup
w∈X νΓ

(qh,∇ · jhw)Ω
‖w‖1,ν

≤ β(ν)−1Cs sup
w∈X νΓ

(qh,∇ · jhw)Ω
‖jhw‖1,ν

≤ β̃(ν)−1 sup
wh∈X νΓ ;h

(qh,∇ ·wh)Ω
‖wh‖1,ν

,

where β̃(ν) := β(ν)/Cs is independent of h.

Remark 7.5. Let us briefly discuss the case of unstable discretizations. For instance, one
can consider the equal-order d-linear Q1/Q1 element, which uses continuous isoparametric
d-linear shape functions for both the velocity and pressure approximation, see Section 3.1.
In this case, the discrete inf-sup condition is violated. For p-Stokes systems (2.10) & (2.11),
a stabilization technique based on the local projection stabilization (LPS) method was
proposed in Chapter 4, that leads to optimal convergence results. Whether LPS can be
applied to the equal-order discretization of (P8), is subject of current research.

Below we state our a priori error estimates that quantify the convergence of the finite
element method. For this, the regularity F(Dv) ∈W 1,2(Ω)d×d of the solution v is required.
According to Lemma 2.27, this condition is equivalent to I(v) <∞, where the quantity I(v)
is defined in (2.82). We mention that the regularity I(v) <∞ is available for sufficiently
smooth data at least in the setting of space-periodic boundary conditions in two space
dimensions, see Bulíček/Kaplický [BK08].

Corollary 7.13. Let the assumptions of Theorem 7.8 hold. We suppose that there exist
operators jh and ih satisfying Assumption 7.2. Moreover, we assume the regularity

F(Dv) ∈W 1,2(Ω)d×d and π ∈W 1,p′(Ω)

and we set v0,h := jhv0. Then, the error of approximation is bounded in terms of the
maximum mesh size h as follows:

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖π − πh‖2 ≤ Cπh. (7.42)

If additionally γ0 < β̃(p)ε
2−p

2 , then the pressure error in Lp′(Ω) is bounded by

‖π − πh‖p′ ≤ C ′πh
2
p′ . (7.43)

The constants Cv, Cπ, C ′π > 0 only depend on p, ε, γ0, σ0, σ1, β̃(2), Γ , Ω, ‖f‖p′ , ‖b‖(p#)′;S,
‖v0‖1,p, ‖∇F(Dv)‖2, ‖π‖1,p′, and C ′π additionally depends on β̃(p).

Proof. According to Lemma 7.12, the discrete inf-sup inequalities (IS2
Γ ), (IS

p
Γ ) hold true.

Hence, the desired error estimates follow from Theorem 7.8, Corollaries 7.9 and 7.10, and
the interpolation properties of jh and ih. More precisely, the velocity is given by v = v0 + v̂
for some v̂ ∈ X p

Γ . Since v̂ is divergence-free, the interpolant jhv̂ fulfills (∇ · jhv̂, qh)Ω = 0
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for all qh ∈ QpΓ ;h. Hence, jhv̂ ∈ V
p
Γ ;h and jhv = jhv0 +jhv̂ ∈ (v0,h+VpΓ ;h). Consequently,

we can set uh := jhv and rh := ihπ in Theorem 7.8 and Corollary 7.9. Using Lemma 2.6
(i), the global W 1,p-stability of jh (which follows from (7.39) with ψ(t) = tp and the non-
degeneracy of Th), the a priori bound (7.27), the interpolation properties (7.41), (7.37),
we easily conclude (7.42). Finally, (7.43) follows from Corollary 7.10 and (7.42).

Remark 7.6. Using (2.43), (7.10), and (7.27), we deduce from Corollary 7.13 that

‖Dv −Dvh‖p ≤ c ‖F(Dv)−F(Dvh)‖2 ≤ ch. (7.44)

Hence, we also obtain an a priori error estimate in W 1,p(Ω).

If d = 2, then the W 1,p′-regularity assumption for the pressure π can be avoided and
confined to π ∈W 1,2(Ω) provided that the velocity v additionally satisfies v ∈W 1,∞(Ω).
Note that from analytical point of view we are not able to show the regularity π ∈W 1,p′(Ω)
but we can expect the regularity π ∈ W 1,2(Ω), see Bulíček/Kaplický [BK08]. Moreover
note that, in case of space-periodic boundary conditions, global C1,α-regularity of v is
well-established, see [BK08]. The following Corollary represents a variant of Corollary 7.13
that is motivated by our subsequent numerical experiments.
Corollary 7.14. Let d = 2. Let the hypothesis of Theorem 7.8 hold true and let Assump-
tion 7.3 be satisfied. We suppose that there exist operators jh and ih as in Assumption 7.2.
Moreover, we assume that the solution (v, π) satisfies the additional regularity

F(Dv) ∈W 1,2(Ω)d×d, v ∈W 1,∞(Ω), and π ∈W 1,2(Ω).

We set v0,h := jhv0. Then, the error of approximation is bounded as follows:

‖F(Dv)−F(Dvh)‖2 ≤ Cvh, ‖π − πh‖2 ≤ Cπh. (7.45)

Assume additionally (7.33) and the W 1,2-stability of ih. Then, there holds

‖π − πh‖p′ ≤ C ′πh
2
p′ . (7.46)

The constants Cv, Cπ, C ′π > 0 only depend on p, ε, γ0, σ0, σ1, β̃(2), Γ , Ω, ‖∇F(Dv)‖2,
‖π‖1,2, ‖v‖1,∞, and C ′π additionally depends on β̃(p).

Proof. Under the supposed regularity, (7.45) and (7.46) are not surprising: due to v ∈
W 1,∞(Ω) and ε > 0 the generalized viscosity µ remains bounded from below and above so
that system (2.16) can basically be interpreted as a Stokes system. We only need to show
that vh is uniformly bounded in W 1,∞(Ω): Similarly to [SZ90] it can be shown that jh
is locally W 1,1-stable, i.e., there holds ‖jhw‖1,1;K . ‖w‖1,1;SK for all w ∈W 1,1(Ω) and
K ∈ Th. As in the proof of Corollary 4.14, we then conclude that W 1,1-stability implies
W 1,∞-stability, i.e., that jh actually satisfies (4.67). Using the inverse inequality (3.20)
with d = 2, the W 1,∞-stability of jh – (4.67), Korn’s Lemma 7.1, and Lemma 2.6 (i) with
ν = 2, exactly as in (4.69) we can estimate the W 1,∞-norm of vh by

‖vh‖1,∞ ≤ c
[
h−1‖F(Dvh)−F(Djhv)‖2

(
ε0 + ‖∇vh‖∞ + ‖∇v‖∞

) 2−p
2 + ‖v‖1,∞

]
.

(7.47)
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Similarly to the derivation of (7.32), via Lemma 2.6 with ν = 2 we can infer the estimate

‖F(Dv)−F(Dvh)‖2 + ‖π − πh‖2 . ‖F(Dv)−F(Djhv)‖2

+
(
ε0 + ‖∇jhv‖∞ + ‖∇vh‖∞

) 2−p
2 ‖π − ihπ‖2.

Using the properties of jh and ih, we consequently arrive at (w.l.o.g. ε0 ≥ 1)

‖F(Dv)−F(Dvh)‖2 + ‖π − πh‖2 ≤ Ch
(
ε0 + ‖∇v‖∞ + ‖∇vh‖∞

) 2−p
2 (7.48)

where C depends on ‖∇F(Dv)‖2 and ‖π‖1,2. Combining (7.47) and (7.48), we conclude

‖vh‖1,∞ ≤ C = C
(
‖∇F(Dv)‖2, ‖π‖1,2, ‖v‖1,∞

)
.

The constant C also depends on p, ε, ε0, γ0, σ0, σ1, β̃(2), Ω, but it is independent of h.
Thus, (7.48) yields the desired error estimates (7.45). It remains to prove the pressure
estimate in Lp′(Ω). Interpolating Lp′(Ω) between L2(Ω) and W 1,2(Ω), using (7.37) and
the W 1,2-stability of ih, for p > 2d

d+2 and λ := d
2 −

d
p′ we obtain the estimate

‖π − ihπ‖p′ ≤ c ‖π − ihπ‖λ1,2‖π − ihπ‖1−λ2 ≤ ch1+ d
p′−

d
2 ‖π‖1,2. (7.49)

For d = 2 the estimate (7.46) follows from the combination of (7.34), (7.45), (7.49).

7.6 Numerical experiments

In this section we present some numerical examples, which illustrate the a priori error
estimates of Corollary 7.13. Here we use the following model that goes back to [MNR02]:

µ(π, |Dv|2) := µ0
(
δ1 + δ2 (δ3 + exp(απ))−s + δ4 |Dv|2

) p−2
2 , (7.50)

where s, α, δ1, . . . , δ4 ≥ 0.

Remark 7.7. Similarly to (e.g.) [MNR02], it can be shown that model (7.50) satisfies
Assumptions (A1)–(A2), e.g., with ε2 := δ1/δ4, σ0 := µ0δ

(p−2)/2
4 (p−1)(1+δ2δ

−s
3 /δ1)(p−2)/2,

σ1 := µ0δ
(p−2)/2
4 , and γ0 := µ0δ

(p−4)/4
4 sα2−p

2 δ
p/4
2 δ

−sp/4
3 , see Section 7.7.

Problem (P8) was discretized with bilinear Q1/Q1 finite elements based on quadrilateral
meshes. Since the considered discretization is not inf-sup stable, we used the LPS-type
stabilization (3.54). Note that in all examples the stabilization method was less sensitive
with respect to the stabilization parameter. As described in Section 3.4, the algebraic
equations were solved by Newton’s method, the linear subproblems by the GMRES method.
In the following numerical examples we depict the experimental order of convergence (EOC)
with respect to the quantities EFv , E1,ν

v , Eνv , Eνπ defined in (4.104).
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7 Fluids with Shear-Rate- and Pressure-Dependent Viscosity

Table 7.1. Numerical verification of Corollary 7.13

(a) p = 1.7

#cells EF
v Epv E2

π Ep
′

π

1024 1.00 2.17 1.00 0.83
4096 1.00 2.17 1.00 0.83
16384 1.00 2.17 1.00 0.82
65536 1.00 2.16 1.00 0.83
262144 1.00 2.16 1.00 0.83
expected 1 1 0.82

(b) p = 1.5

#cells EF
v Epv E2

π Ep
′

π

1024 1.01 2.33 1.01 0.68
4096 1.01 2.33 1.01 0.67
16384 1.00 2.32 1.01 0.67
65536 1.00 2.31 1.01 0.67
262144 1.00 2.29 1.01 0.67
expected 1 1 0.67

(c) p = 1.3

#cells EF
v Epv E2

π Ep
′

π

1024 0.99 2.49 1.00 0.46
4096 0.99 2.48 1.00 0.46
16384 0.99 2.45 1.00 0.46
65536 1.00 2.41 1.00 0.47
262144 1.00 2.36 1.00 0.47
expected 1 1 0.46

(d) p = 1.1

#cells EF
v Epv E2

π Ep
′

π

1024 0.99 2.70 0.99 0.19
4096 0.99 2.66 1.00 0.19
16384 0.99 2.56 1.00 0.19
65536 1.00 2.44 1.00 0.19
262144 1.00 2.30 1.01 0.19
expected 1 1 0.18

Example 1: In a square domain Ω := (−0.5, 0.5)× (−0.5, 0.5), the exact solution to (P8)
was given by v(x) := |x|a−1(x2,−x1)T and π(x) := |x|bx1x2 for a, b ∈ R. Here, the case
S = ∅ was considered. Problem (P8h) was then solved for the data f := −∇·S(π,Dv)+∇π
and v0 := v. The parameters a and b were chosen so that F(Dv) ∈ W 1,2(Ω)d×d and
π ∈ W 1,2(Ω). This requirement amounts to the conditions a > 1 and b > −2. Since
‖∇v‖∞ is bounded for a > 1, according to Corollary 7.14 the requirement π ∈ W 1,2(Ω)
is sufficient to ensure the optimal rate of convergence (note that Corollary 7.13 would
require π ∈ W 1,p′(Ω) with p′ > 2). We set a = 1.01 and b = −1.99. Hence, as soon
as (7.13) is satisfied, we expect EFv = O(h), E2

π = O(h), and Ep
′
π = O(h2/p′), for finite

elements satisfying Assumption 7.2. Note that our considered Q1/Q1 discretization does
not fulfill Assumption 7.2. By virtue of Chapter 4 we however believe that Corollaries 7.13
and 7.14 can be extended to Q1/Q1 finite elements if the Galerkin system (7.6)–(7.7) is
stabilized by (4.4) or (4.63). The parameters of the model (7.50) were set to δ1 := 10−8,
s := 2/(2− p) and µ0 = δ2 = δ3 = δ4 := 1. Then, Remark 7.7 implies γ0 = α and, hence,
(7.13) is ensured at least for α < β̃(2)δ(2−p)/4

1
(p−1)(1+1/δ1)(p−2)/2

(p−1)(1+1/δ1)(p−2)/2+1 , i.e., by virtue of δ1 � 1,
(7.13) is satisfied for α � 1. In this particular example, for the stated parameters we
have numerically observed the expected convergence rates for α ∈ [0, 8] approximately.
For greater α, Newton’s method did not converge any more. One may ask, whether the
assumption (7.13) could be relaxed5. In particular, one may ask whether the estimates
(7.43) and (7.44) remain valid in the degenerate case ε↘ 0. Note that in case of Carreau-

5However, the above observations do not allow us to claim that assumption (7.13) could be relaxed. We
note that, in this example, the solution (v, π) always exists, whatever the values of α and γ0 are.
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type models (i.e., γ0 ≡ 0), error estimates similar to (7.43) and (7.44) actually hold true
and are numerically validated also for ε = 0, see Chapter 4. For fluids with pressure
dependent viscosity, though, the behavior for ε↘ 0 remains an open question. In what
follows, we set α := 1. In Tables 7.1(a)–7.1(d), we present the observed convergence rates
for different values of p ∈ (1, 2). We realize that the numerical results agree with the
theoretical ones very well. In particular, the example reflects that the rate of convergence
for Ep′π depends on the choice of p as predicted by the estimate (7.46). Apart from that, we
observed that the experimental order of convergence declines as soon as a < 1 or b < −2.
This indicates that the derived a priori error estimates are optimal with respect to the
regularity of the solution. We also observe that the error Epv behaves like O(h2). This
observation raises hope that a duality argument (see [BS94]) may be applicable here.

Table 7.2. EOC: Pressure drop problem for the model (7.50)

(a) p = 1.5 and δ4 = 10−5

#cells E1,p
v Epv E2

π

1024 1.00 1.97 1.94
4096 1.00 2.00 2.04
16384 1.01 2.01 1.98
65536 1.02 2.06 1.89

expected 1 1

(b) p = 1.2 and δ4 = 10−3

#cells E1,p
v Epv E2

π

1024 0.99 1.96 1.97
4096 1.00 1.98 1.98
16384 1.00 1.99 1.92
65536 1.01 2.03 1.90

expected 1 1

Example 2: Pressure drop problem. In order to confirm the results in a realistic flow
configuration, we consider a planar flow between two steady parallel plates, driven by the
difference of pressure between inlet and outlet, cf. Section 5.5. Here, Ω = (0, 1.64)×(0, 0.41).
We prescribe homogeneous Dirichlet boundary conditions on the upper and lower edge,
while we set b := 0.8n on the inflow (left) boundary, and b := 0 on the outflow (right)
boundary. Moreover, we additionally require6 there that v = (v · n)n, i.e., the stream
lines are orthogonal to the inflow and outflow boundary. Note that if the viscosity did not
vary with the pressure, this setting would lead to a unidirectional flow (Poiseuille flow)
of the form v = (v1(x2), 0)T and π = π(x1). Since the viscosity depends on the pressure,
however, this needs not be the case; e.g., there is no such unidirectional solution for the
Barus model µ = µ0 exp(απ), as was shown in [HMR01]. Here we consider the model (7.50)
provided with µ0 := 0.01, s := 2

2−p , δ1 := 5 ∗ 10−6, δ2 = δ3 := 1 and α := 10. The resulting
velocity and pressure fields are shown in Figure 7.1. For moderate and low pressures
(in the middle-length and the right-hand part of the domain) this model approximates
the Barus model, while for higher pressures (in the domain left-hand part) the behavior
is that of the Carreau model. In Table 7.2, we present the observed convergence rates
for different values of p. Since the exact solution is unknown, we have used the finite

6This requirement is achieved by altering the definition of the space X pΓ , see, e.g., [LS11b].
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(a) Velocity v1 (b) Pressure π

(c) Velocity v2

Figure 7.1. Pressure drop problem for the model (7.50): Case p = 1.2

element approximation computed on a grid with 410 cells as the reference solution (cf.
Example 4). In view of Table 7.2, the velocity error E1,p

v behaves as O(h). For the velocity
the experimental convergence rate agrees with the theoretical one. However we observe
that E2

π behaves almost as O(h2) and, hence, it converges better than expected. In [HLS10]
we discretized the considered problem with p = 1.5 not only with Q1/Q1 elements, but also
with the inf-sup stable Q2/Q1 and Q2/Q0 elements. While for the Q2/Q1 discretization
we discovered E2

π ≈ O(h2), for the Q2/Q0 elements we observed E2
π ≈ O(h) which agrees

with the derived a priori error estimate. Hence we believe that for the Q1/Q1 elements the
improved convergence rates are caused by super-approximation effects.

Table 7.3. EOC: Pressure drop problem for the Barus model

#cells E1,2
v E2

π

1024 1.16 1.21
4096 1.06 1.07
16384 1.03 0.88
65536 1.04 0.89

Example 3: We considered the Barus model µ := µ0 exp(απ) that corresponds to model
(7.50) in the limiting case δ1 = δ3 = δ4 = 0. As in Example 2, we set µ0 := 0.01 and
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α := 10. Once again, a FE solution on a fine grid was employed as the reference solution.
Table 7.3 depicts the observed convergence rates. We realize almost linear convergence for
E2
π. In contrast to Example 2, super-approximation for E2

π does apparently not occur.

Table 7.4. Discretization errors for different reference solutions: p = 1.2

(a) analytical reference solution

E1,2
v E2

π

#cells error conv. error conv.
256 1.69e-2 0.98 5.56e-2 1.01
1024 8.38e-3 1.01 2.76e-2 1.01
4096 4.17e-3 1.01 1.38e-2 1.01
16384 2.08e-3 1.01 6.84e-3 1.01
65536 1.03e-3 1.01 3.41e-3 1.01
262144 5.15e-4 1.01 1.70e-3 1.01
1048576 2.56e-4 1.01 8.43e-4 1.01

(b) approximative reference solution

E1,2
v E2

π

#cells error conv. error conv.
256 1.69e-2 0.98 5.55e-2 1.01
1024 8.39e-3 1.01 2.76e-2 1.01
4096 4.18e-3 1.01 1.37e-2 1.01
16384 2.09e-3 1.00 6.79e-3 1.01
65536 1.04e-3 1.00 3.32e-3 1.03

Example 4: Finally, we numerically confirm that, even if the exact solution (v, π) is
unknown, we are able to determine reliable convergence rates using an accurate finite
element element solution (vH , πH) as the reference solution (v, π). In Table 7.4 we depict
the discretization errors that are obtained (a) if the analytical solution is known and (b)
if the analytical solution is not known. In this example, the model (7.50) was used and
its parameters were chosen as in Example 1. The (non-smooth) analytical solution was
given by v(x) := |x|a−1(x2,−x1)T and π(x) := |x|bx1x2 with a = 1.01 and b = −1.99 so
that the assumptions of Corollary 7.14 are satisfied. In Table 7.4(b) we employed the
finite element approximation (vH , πH) as the reference solution (v, π) ≈ (vH , πH), where
H corresponds to the grid with 1048576 cells. Comparing Tables 7.4(a) and 7.4(b), we
observe that the discretization errors and rates of convergence agree reasonable well.

Conclusion: We have shown the convergence of the finite element method in the context
of fluids with shear rate and pressure dependent viscosity. The convergence of the method
has been quantified by the a priori error estimates of Corollary 7.13. These error estimates
have been demonstrated practically by numerical experiments. The numerical examples
indicate that the problems are well posed for a wider class of models than required by
the assumptions. This is encouraging for further investigation, since the assumptions are
rather restrictive from the point of view of practical applications. To my best knowledge,
the error estimates of Corollary 7.13 are the first of their kind for fluids with pressure
dependent viscosity. All results of this chapter also cover the case of Carreau-type models.
In this case, the error estimates of Corollary 7.13 coincide with the optimal error estimates
for Carreau-type models which have been established in Theorem 4.11.
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7.7 Verification of (A1)–(A2) for particular models

As stated in Remark 7.7, the model (7.50) satisfies Assumptions (A1)–(A2), e.g., with
ε2 := δ1/δ4, σ0 := µ0δ

(p−2)/2
4 (p − 1)(1 + δ2δ

−s
3 /δ1)(p−2)/2, σ1 := µ0δ

(p−2)/2
4 , and γ0 :=

µ0δ
(p−4)/4
4 sα2−p

2 δ
p/4
2 δ

−sp/4
3 . Below we prove Remark 7.7 following Málek et al. [MNR02].

Note that in [MNR02] Remark 7.7 was shown for µ0 = δ2 = δ3 = δ4 = 1. Setting
γ(q) := δ2

δ4
(δ3 + exp(αq))−s and ε2 := δ1

δ4
, for all P ,Q ∈ Rd×dsym we observe that

∂S(q,P )
∂P

: (Q⊗Q) =
∑
i,j,k,l

∂Skl(q,P )
∂Pij

QijQkl

=
∑
i,j,k,l

(p− 2)µ0δ
p−2

2
4

(
δ1
δ4

+ γ(q) + |P |2
) p−4

2
PijQijPklQkl

+
∑
i,j,k,l

µ0δ
p−2

2
4

(
δ1
δ4

+ γ(q) + |P |2
) p−2

2
δij,klQijQkl

= (p− 2)µ0δ
p−2

2
4

(
ε2 + γ(q) + |P |2

) p−4
2 |P : Q|2

+ µ0δ
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2
4

(
ε2 + γ(q) + |P |2

) p−2
2 |Q|2.

Since p < 2 and 0 < γ(q) ≤ δ2δ
−s
3
δ4

= ε2 δ2δ
−s
3
δ1

, on the one hand we get the lower bound

∂S(q,P )
∂P

: (Q⊗Q) ≥ (p− 1)µ0δ
p−2

2
4

(
ε2 + γ(q) + |P |2

) p−2
2 |Q|2

≥ µ0δ
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2
4 (p− 1)

(
ε2(1 + δ2δ

−s
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2 |Q|2

≥ µ0δ
p−2

2
4 (p− 1)

(
(1 + δ2δ
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(
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2 |Q|2

= µ0δ
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2
4 (p− 1)(1 + δ2δ
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3 /δ1)

p−2
2
(
ε2 + |P |2

) p−2
2 |Q|2.

On the other hand, we easily obtain the upper bound

∂S(q,P )
∂P

: (Q⊗Q) ≤ µ0δ
p−2

2
4

(
ε2 + γ(q) + |P |2

) p−2
2 |Q|2 ≤ µ0δ

p−2
2

4

(
ε2 + |P |2

) p−2
2 |Q|2.

Hence, the model (7.50) satisfies Assumption (A1) with σ1 = µ0δ
(p−2)/2
4 and σ0 =

µ0δ
(p−2)/2
4 (p− 1)(1 + δ2δ

−s
3 /δ1)(p−2)/2. Moreover, there holds

γ′(q) = −sδ2
δ4

(δ3 + exp(αq))−s−1α exp(αq)
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7.7 Verification of (A1)–(A2) for particular models

and, hence, |γ′(q)| ≤ sαγ(q). As a result, we conclude that∣∣∣∣∂S(q,P )
∂q
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2 .

Since 3−p
2 > 2−p

4 , we finally arrive at∣∣∣∣∂S(q,P )
∂q

∣∣∣∣ ≤ µ0δ
p−2

2
4 αs

2− p
2 γ(q)

p−1
2
(
1 + γ(q)−1

(
ε2 + |P |2

)) p−2
4

≤ µ0δ
p−2

2
4 αs

2− p
2 γ(q)

p
4
(
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4 .

To sum up, due to γ(q) ≤ δ2δ
−s
3
δ4

the model (7.50) satisfies Assumption (A2) with

γ0 = µ0δ
p−4

4
4 αs

2− p
2 δ

p
4
2 δ
− sp4
3 . (7.51)

In particular, γ0 is independent of δ1.
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8 Conclusion and Outlook

In this thesis, we analyzed the finite element (FE) approximation of nonlinear equations
describing the steady motion of incompressible non-Newtonian fluids whose viscosity
depends on the shear rate and pressure through a general power-law with exponent
p ∈ (1,∞), see Assumption 2.2. The studied models include the popular power-law and
Carreau model. To a certain degree, the thesis closes the gap between the widely developed
mathematical theory concerned with the self-consistency of the governing equations and
engineering simulations performed in industrial applications.

In Chapter 4, we considered viscosities that solely depend on the shear rate. We discretized
the p-Stokes equations with equal-order d-linear Q1/Q1 elements which uses continuous
isoparametric d-linear shape functions for both the velocity and pressure approximation.
Since this discretization fails to satisfy the inf-sup stability condition, we proposed a
stabilization method for the pressure gradient that is based on the well-known local
projection stabilization (LPS) method introduced for Stokes systems in Becker/Braack
[BB01]. Our proposed stabilization scheme is adjusted to the p-structure of the problem,
and it coincides with the classical LPS scheme of [BB01] in the particular case p = 2. We
established the well-posedness of the stabilized discrete problems, and we derived a priori
error estimates which quantify the convergence of the method (see Theorems 4.11 & 4.12).
Our a priori error estimates improve the ones derived in the literature so far regarding the
order of convergence or the assumed regularity of the solution (cf. [BN90, BL93b, BL94]).
Numerical experiments indicate that, at least in the shear thinning case, our derived a priori
error estimates provide optimal rates of convergence with respect to the supposed regularity.
In the shear thickening case, the derived error estimates may be suboptimal. A priori error
estimates were also derived for both the steady and non-steady p-Stokes equations if the
classical LPS method of [BB01] is applied. They provide rates of convergence depending
on the space dimension d. In contrast, our modified stabilization with p-structure enabled
us to establish error estimates that do not depend on d, see Theorem 4.11.

In Chapter 5 we studied the FE approximation of p-Oseen systems which may suffer
from numerical instabilities resulting from lacking inf-sup stability and locally dominating
advection. We extended the LPS approach of Chapter 4 to p-Oseen systems in order to
cope with both instability phenomena (see Theorem 5.7). Note that the derived a priori
error estimates remain valid for the classical power-law model which, in the case p < 2,
features an unbounded viscosity in the limit of zero shear rate.

Chapter 6 deals with singular power-law models (p < 2). We identified the numerical
difficulties which usually arise when the algebraic systems are solved via Newton’s method.
By means of Corollary 6.4 we suggested a numerical method that is based on a simple
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8 Conclusion and Outlook

regularization of the power-law model and that enables the stable approximation of singular
power-law systems. We demonstrated numerically that our regularized approximation
method surpasses the non-regularized one regarding accuracy and numerical efficiency.

In Chapter 7 we considered viscosities which do not only depend on the shear rate but
also on the pressure. The proposed structure of the viscosity allows a restricted sublinear
dependence on the pressure measured by the parameter γ0, see Assumption 2.2. Since the
equations of motion come up with additional difficulties due to the complicated structure
of the viscosity, we restricted ourselves to inf-sup stable discretizations so that we avoided
stabilization of the pressure. We analyzed the Galerkin discretization of the governing
equations and we showed that the discrete solutions converge to the solution of the original
problem provided that γ0 is small enough. Then we established a priori error estimates (see
Corollary 7.13) which provide optimal rates of convergence with respect to the expected
regularity. Note that Carreau-type models are covered as a special case. For such models,
the derived error estimates agree with those established in Theorem 4.11.

Regarding the achieved results of the present thesis, the following topics represent possible
extensions and they can be considered as encouraging future work:

Improved interpolation estimates

In order to be able to derive optimal a priori error estimates for Taylor-Hood elements,
we need to generalize the interpolation inequalities expressed in quasi-norms to quadratic
elements. From analytical point of view it still is not known if interpolation inequalities
such as (3.47) hold for higher polynomial degree r > 1.

Optimal version of Theorem 4.12

The a priori error estimates of Theorem 4.12 quantify the convergence of the proposed sta-
bilized finite element method in the shear thickening case. However, numerical experiments
indicated that they are possibly suboptimal.

Optimal error estimates for the space-time discretization

Theorem 4.23 provides a priori error estimates for the non-steady p-Stokes problem if the
temporal discretization is performed before the spatial one. But the restricted regularity
of the time-discretized pressure has led to a suboptimal order of convergence in space. A
future project can consist in deriving error estimates if the non-steady p-Stokes system is
firstly discretized in space and afterwards an A-stable time-step method is applied.

Numerical solution on anisotropic meshes

Since typical velocity profiles of shear thinning fluids often exhibit sharp boundary layers,
anisotropic meshes can be used in order to efficiently resolve sharp velocity gradients
perpendicular to the boundary. The numerical solution on anisotropic meshes becomes
important for an efficient solution of problems with boundary layers. For linear Oseen
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systems, M. Braack studied the LPS method on anisotropic meshes in [Bra08]. One may
ask whether the LPS analysis of Chapter 4 can be extended to anisotropic meshes.

Refinement of the results of Chapter 7

In Chapter 7 we considered viscosities µ which depend on both the shear rate and pressure.
Assumption 2.2 allows a restricted sublinear dependence on the pressure and, hence, it is
rather restrictive since the relation between viscosity and pressure is usually considered as
µ ∼ exp(απ). Concerning a super-linear dependence on the pressure, the well-posedness
of the governing equations and the convergence of discrete solutions are however open
problems. Similarly, the singular case ε = 0 is not included in our analysis and the behavior
for ε↘ 0 remains an open question. Our numerical experiments indicated that assumption
(7.13) relating ε to γ0 can possibly be relaxed. In further studies one could investigate
whether the results of Chapter 7 can be extended to a wider class of models.
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