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Chapter 1

Introduction

Low-density parity-check (LDPC) codes are linear error correcting codes which
are capable of performing near channel capacity. Furthermore, they admit effi-
cient decoding algorithms that provide near optimum performance. Their main
disadvantage is that most LDPC codes have relatively complex encoders.

LDPC codes were first described by Robert G. Gallager in his doctoral disser-
tation, completed in 1960 at MIT. Gallager came up with an iterative decoding
algorithm designed for linear codes with a sparse parity-check matrix. At the
time, however, computers lacked the computational power necessary for a practi-
cal implementation of the algorithm he proposed and so LDPC codes were largely
forgotten. Then in 1993 iterative decoding was rediscovered in connection with
turbo codes, and the independent rediscovery of LDPC codes soon followed.

Today, LDPC codes are being integrated into standards for both wired and
wireless data transmissions, and a variety of other applications are being explored.

For example 10GBASE-T Ethernet which is designed to provide 10 Gb/s
performance over twisted-pair wiring uses a (6,32)-regular LDPC code of length
2048 and dimension 1723. [17]

The 802.11n Wi-Fi standard allows for the optional use of LDPC codes as
a high-performance alternative to the default binary convolutional code. The
standard defines 12 different systematic LDPC codes of length 648, 1296 and
1944 bits and rate 1/2, rate 2/3, rate 3/4, and rate 5/6. [18]

The 2nd generation Digital Video Broadcasting standards DVB-C2 (cable),
DVB-S2 (satellite) and DVB-T2 (terrestrial) use a concatenation of BCH with
LDPC inner coding whereas the first generation standards used Reed-Solomon
coding. [19]

A study by Yang and Ryan has shown some promising initial results regarding
the application of LDPC codes in magnetic storage systems. The codes have
proven robust against large noise bursts, which may be present due to media
defects or thermal asperities. [15]

NASA researchers have also designed LDPC codes that fit the specific needs
of spacecraft equipment. These codes are being considered for both near-earth
and deep space applications. [16]



1.1 Preliminaries

We start with an example of two communication channels:

Definition 1.1. By X; and Y; we denote the random variables that are equal to
the channel input and output at time ¢, respectively. The time ¢ is discrete and
the transmitter and receiver are synchronised.

By BSC(e) we denote the binary symmetric channel with cross-over proba-
bility €. The input and output alphabet is {0, 1}. Each transmitted bit is either
received correctly with probability Pr(Y; = X;) = 1—¢ or flipped with probability
Pr(Y; # X;) =e.

By BEC(g) we denote the binary erasure channel with erasure probability .
This channel models a situation, where transmitted bits are either received cor-
rectly or are known to be lost. The input alphabet is {0, 1} and the output alpha-
bet is {0, 1,7}, where 7 indicates an erasure. Each bit is either received correctly
with probability Pr(Y; = X;) = 1 — € or erased with probability Pr(Y; =7) = «.

X, 2 Y, X, \

BSC(e) BEC(¢)
FIGURE 1.1: The binary symmetric channel and the binary erasure channel.

Although the BEC might seem like an overly simple and unrealistic model
of a communication channel, there do exist real world examples. The Internet
Protocol (IP) used for relaying datagrams over computer networks is one such
example. IP datagrams may arrive corrupted, which is detectable by means of
a checksum, or they may be lost altogether. In both of these cases we would
consider the information bits carried by such datagrams erased. If on the other
hand the datagrams arrive with a valid checksum, then we may consider them
error free. If sequentially numbered datagrams of fized size are transmitted over
IP, then the receiver can detect not only corrupted datagrams, but also lost
datagrams, and therefore knows exactly which bits were erased.

The study of LDPC codes on the BEC provides one of the few scenarios
where exact analysis is possible. Quite surprisingly, however, the BEC can give
us a good understanding of what happens in more general cases, because most
properties and statements that we encounter in the investigation of the BEC hold
in much greater generality. [13]

Definition 1.2. For a given channel, let X = (Xy,...,X,,) denote the random
variable that is equal to the channel input and let Y = (Y3,...,Y},,) denote random
variable that is equal to the channel output. The channel is said to be memoryless



if
Pri =y | X =x2)= HPI“(Y; =y X; = x;),

i=1

where © = (z1,...,2,) and y = (Y1, ..., Yn)-

Both the BSC and the BEC are memoryless channels since the cross-overs
and erasures occur independently for each t.

Definition 1.3. A linear error-correcting code of length n and dimension k over
a finite field F, is a k-dimensional subspace C of . The code C is referred to
as an [n, k], code, and its elements are called codewords. Any k x n matrix G,
whose rows form a basis of C is called a generator matriz of C. If the generator
matrix is of the form G = (Ix|P), where I} is the k x k identity matrix and P is
a k x (n — k) matrix, then we say that G is in systematic form.

To each code C we associate a dual code C*, defined as

Cr={veF,|w"'=0VzelC}={velF, |G =0"},

i.e. the dual code is the set of solutions to the system of equations GvT = 0T. Since
the k rows of G are linearly independent, C* is an n — k dimensional subspace
of F7'. Any (n — k) x n generator matrix of the code C* is called a parity-check
matriz of the original code C, and is denoted H. By this definition, the rows of
the parity-check matrix are linearly independent. In this thesis, we broaden the
definition of the parity-check matrix to include all matrices whose row vectors
generate the dual code, regardless of whether the rows are linearly independent
or not. Therefore, if H is an m X n parity-check matrix of C in the sense of the
broader definition, then m > n — k.

The code C can now be expressed as
C={zeF,|Ha"=0"}.

Consider the following problem: We wish to transmit a message across a noisy
channel, so that the receiver can determine the message with high probability de-
spite the imperfections of the channel. The solution is to add redundancy by
mapping the messages to codewords, and transmitting these instead. The oper-
ation by which messages are mapped to codewords is termed encoding. Perhaps
the most straightforward method of encoding a message u to a codeword x of C
is to represent the message as a vector of length k over F;, and then compute
x = u@G, where (G is a generator matrix of C. If GG is in systematic form, then the
first k£ symbols of x will be the message symbols. The remaining n — k symbols
of x are then called parity symbols.

Whenever a codeword is transmitted over a noisy channel, the output of the
channel shall be referred to simply as a word. The received word is used to
estimate which codeword was transmitted over the channel. This operation is
termed decoding. Finally, from the decoded codeword a message is retrieved,
hopefully the original one. If the original message was encoded using a generator
matrix in systematic form, then the retrieval is done simply by discarding the
parity symbols of the codeword.



In Chapter 4 we will discuss time complexity of encoding algorithms in the
length of the code. When we say that an algorithm runs in time O(f(n)), we
mean that it can be easily implemented to run in time O(f(n)) on a random
access machine in the uniform cost model.

The rate of an [n, k|, code is defined as k/n. This value gives a measure of
the amount of non-redundant information contained in each codeword. Shannon’s
channel coding theorem asserts the existence of a maximum rate, at which infor-
mation can be transmitted reliably with vanishing probability of error, provided
that the encoder and decoder are allowed to operate on long enough sequences of
data. This maximum rate is called the capacity of the channel and is denoted C'.

The capacity of the BEC is 1 — e. It is easy to see that Cggc(e) < 1 — e
suppose that the transmitter knew in advance which bits will be erased. This
additional information can only increase the achievable rate. On average it would
be possible to use (1—¢)n bits of the n transmitted. The best that the transmitter
could do is fill these (1—¢)n bits with information. The receiver would then simply
ignore the erased bits. Thus, even if the transmitter knows in advance which bits
will be erased, information can be transmitted reliably at a rate of at most 1 —«.
Reliable transmission over the BEC at a rate arbitrarily close to 1 — ¢ is possible
even without this knowledge (see Example 3.6 [13]).

The capacity of the BSC is 1 + elog,(e) + (1 — €) logy(1 — £) (see Theorem
1.17 [13]).

The Hamming weight of u € Fy, denoted w(u), is defined as the number of
nonzero symbols in u. The minimum weight of a code is defined as

w(C) =min{w(u) |ueC,c#0}.

The Hamming distance of u,v € Fy, denoted d(u,v), is the number of positions,
where u differs from v. The minimum distance of a code C is defined as

d(C) = min{ d(u,v) | u,v € C,u # v }.

For linear codes, w(C) = d(C). This can be seen as follows. Let u be a nonzero
minimum weight codeword of C, then w(C) = w(u) = d(0,u) > d(C). Now let
u # v be two closest codewords of C, then u — v is a codeword as well, and
d(C) = d(u,v) = w(u —v) > w(C).

A code C can correct any [(d(C) — 1)/2] errors introduced into a codeword.
The minimum distance of a code thus gives a measure of its error-correcting
ability. Codes that contain low-weight codewords have low minimum distance
and hence low error-correcting ability. The presence of low-weight codewords is
therefore undesirable.

1.2 Thesis outline

The thesis is outlined as follows. In Chapter 2 the concept of maximum a-
posteriori decoding and maximum likelihood decoding is presented, followed by
a detailed description of the sum-product decoding algorithm. Some practical



implementation issues of the algorithm are addressed. Finally, codes with cycle-
free Tanner graphs, though they are in a sense optimal for use with the sum-
product algorithm, are shown to have severe shortcomings when it comes to their
minimum distance.

Chapter 3 provides a definition of LDPC codes and a discussion of certain
structural properties that they possess. The performance of LDPC codes on the
BEC is analyzed to obtain criteria for the design of good LDPC codes and to
obtain theoretical estimates of their error-correcting ability. The design of codes
that allow reliable transmission at rates arbitrarily close to channel capacity on
the BEC is described. Experimental results are presented and compared with
theoretical predictions.

In Chapter 4 various approaches to solving the complex encoder problem are
presented.



Chapter 2

Iterative decoding on graphs

2.1 Tanner graph representation

Let H be an m x n parity-check matrix of a linear code C. The rows of the
parity-check matrix need not be linearly independent. We shall, however, assume
throughout this thesis that every row of the parity-check matrix has at least two
nonzero entries. A single nonzero entry in one of the rows would mean that
all codewords would have a zero at the corresponding position, which serves no
purpose.

The code C is the set of n-tuples that satisfy the m constraint equations

Hy" =0".
Using these equations, we may represent a binary linear code as a bipartite graph.

Definition 2.1. The Tanner graph associated with the parity-check matrix H
for the binary code C is a bipartite graph with n variable nodes, corresponding
to the bits of a codeword, and m check nodes corresponding to the constraint
equations. Check node 7 is connected to variable node j if and only if H;; = 1.

Note that by the assumption above, the Tanner graph has no leaf check nodes
or isolated check nodes.

Example 2.2. Consider the [7,4,3] Hamming code with parity-check matrix

o~ o 0

11
10
01

_ = O

1
1
1

o O =
—_— O O

x = (11,...,27) € FI is a codeword of C if and only if the following parity-check
constraints are satisfied
ZE1+1’2+ZE4+J]5:0,
1+ 23+ x4 + 26 =0, (2.1)
$2+I3+l‘4+l’7:0.

Figure 2.1 shows the associated Tanner graph.
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FIGURE 2.1: Tanner graph of the [7,4,3] Hamming code.

The Tanner graph is helpful in visualizing iterative decoding algorithms.
Given the output of a BEC, the simplest method of correcting erasures is us-
ing a greedy algorithm:

1. Find a check node that is joined to exactly one erased variable node.

2. Calculate the sum of the unerased variable nodes that are joined to that
check node and assign the result to the erased variable.

3. Repeat steps 1. and 2. until no check nodes with exactly one erased variable
node remain.

Example 2.3. Let y = (1,0,7,7,0,1,7) be the output of a transmission over
a BEC using the [7,4,3] Hamming code from the previous example. Figure 2.2
illustrates the state at the beginning of every cycle of the greedy algorithm. The
edges that are incident to an erased variable node are dashed, those that are
incident to a variable node with value 0 are solid, and those that are incident to
a variable node with value 1 are snaked. The algorithm proceeds as follows:

(i) Only the top check node is joined to exactly one erased variable z4. Calcu-
late 1 + x5 + x5 = 1 and assign the result to z4.

(ii) Now only the middle check node is joined to exactly one erased variable xs.
Calculate x1 + x4 + z¢ = 1 and assign the result to x3.

(iii) Now only the bottom check node is joined to exactly one erased variable x7.
Calculate x9 + 23 + 4 = 0 and assign the result to z7.

We have successfully recovered the codeword (1,0,1,1,0,1,0).

Example 2.4. Let = = (7,0,7,7,0,1,0) be the output of a transmission over
a BEC using the [7,4,3] Hamming code. Figure 2.3 illustrates the state at the
beginning of the greedy algorithm. This time, however, none of the check nodes is
joined to exactly one erased variable node. We are unable to recover the codeword
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FIGURE 2.2: Cycles of the greedy algorithm for z = (7,0,7,7,0,1,0).

using the greedy algorithm. Nevertheless it is possible to recover the codeword
by solving a system of linear equations. Substituting the values of the unerased
variables into (2.1) yields

J]1+$4:0,
$1+$3+$4+1:0,
$3+.T4:0.

The solution is z; = x4 = x3 = 1, so once again we obtain the codeword
(1,0,1,1,0,1,0).

FIGURE 2.3: The greedy algorithm fails to decode x = (7,0,7,7,0,1,0).

The reason why the greedy algorithm was not capable of recovering the erased
variables is the presence of the cycle {1, f1, x4, f3, 23, fo} in the Tanner graph,
and the fact that the all of its variables are erased. In general, cycles of small
length are undesirable. The smaller the cycle, the greater the probability that all
its variables will be erased. If all the variables in the cycle are erased, then the
algorithm will fail, unless one of the variables is recovered by means of a check
node that is not present in the cycle.



2.2 MAP and ML decoding

Consider the scenario, where the transmitter choses a codeword X from C with
probability distribution Pr(X = z). The codeword is then transmitted and Y
is the random variable that is equal to the channel output. If we decode the
received word y to Z(y), then the probability that we have correctly recovered
the original codeword is Pr(X = Z(y) | Y = y). We should choose #(y) such
that this probability is maximized. This scheme is called mazimum a-posterior:
(MAP) decoding and may be expressed as

PMAP () = argmax Pr(X =z | Y =), (2.2)
zeC
where argmax stands for the argument of the maximum. The argument of the
mazimum argmax,.y f(x) is defined as the point x € X for which f attains
its maximum value. If there are multiple such points, then argmax,., f(x) is
undefined.

Alternatively we could choose to decode y as the codeword that is most likely
to have brought about the observed output, i.e. that which maximizes the prob-
ability Pr(Y =y | X = Z(y)). This scheme is called mazimum likelihood (ML)
decoding and may be expressed as

#Mi(y) = argmax Pr(Y =y | X = 2).

zeC
Recall Bayes’ Theorem, which states that for any two events A and B

Pr(B | A)Pr(A)

I T

provided that the probability of B is not zero.
Applying Bayes’ rule to (2.2) yields

Pr(X =
PMAP () = argmax Pr(Y =y | X = 2) il z)

zeC PI‘(Y - y) ‘
Since y is given to the decoding algorithm as an input, the probability Pr(Y = y)
plays the role of a positive multiplicative constant in the expression being max-
imized. It therefore does not affect the argument of the maximum and may be
disregarded:

#MAP(y)) = argmax Pr(Y =y | X = 2) Pr(X = ).
zeC
We see that if X is uniformly distributed, i.e. all codewords are equally likely to
be transmitted, then 2MAP (y) = 2ME(y).

Maximum likelihood decoding for linear codes on the BSC is NP-complete as
shown by Berlekamp, McEliece, and van Tilborg [3]. However, this merely says
that there is no efficient algorithm known that solves the ML decoding problem
for all linear codes. It leaves open the possibility that some subclasses of codes
have an efficient ML decoding algorithm.

In comparison, on the BEC maximum likelihood decoding can be achieved in
polynomial time in the length of the code, as we will see shortly.



MAP decoding on the BEC

We shall assume that the transmitted codewords are chosen from a uniform dis-
tribution. This assumption is reasonable (provided that the mapping from source
messages to codewords is onto), since source message redundancy can be removed
by data compression if necessary.

Let &£ denote the index set of erasures, i.e. i € £ if and only if y; = 7, and
let £ = {1,...,n} \ £ Let He denote the submatrix of H, restricted to the
columns indexed by €. For every z € C we have HxT = 07, we can rewrite this
as Hex} + Hgm} =07 or

Hexy = H g:E:g.

The right side is equal to H, gyg and is therefore known to the receiver. We can
now find z¢ by solving a system of linear equations. Since x is a valid codeword
of C a solution surely exists. This solution is unique if and only if rank(Hg) = |€].
We define the set of candidate codewords

X(y)={2 €C| Hexg = Heyz ,xg = ys }.

Assuming that the codewords are chosen from a uniform distribution

#MAP () = argmax Pr(X = 2 | Y = y) = argmaxPr(Y =y | X = 2).

zeC zeC

For any codeword x such that zgz = yz

therefore all elements of X (y) are equally likely and so

fail otherwise.
We see that MAP decoding for the BEC can be accomplished in complexity at
most O(n?) by solving a system of linear equations, e.g. by Gaussian elimination.

MAP decoding on a memoryless channel

Let us now look more closely at MAP decoding on memoryless channels in general.
We shall proceed one bit at a time. By X; we denote the random variable that
is equal to the ith bit of the channel input and by Y; the random variable that is
equal to the ith bit of the channel output. We again assume that the transmitted
codewords are chosen from a uniform distribution. If we decode the ith bit y; of
the received word y to #;(y), then the probability that we have correctly recovered
the original bit is Pr(X; = #;(y) | Y = y). We should choose Z;(y) such that this
probability is maximized. This scheme is called bitwise MAP decoding and may
be expressed as

j}'i\/IAP

(y) = argmax Pr(X; = z; | Y = v).
$i6{0,1}

10



Recall the law of total probability, which states that if { B; | i € I } is a set of
pairwise disjoint events whose union is the entire sample space and [ is a finite
index set, then for any event A of the same probability space

=> Pr(ANB).
iel
Consider the index set Fj. For each z € 4 let B, be the event X = z, i.e.
the event that the transmitter chooses to transmit z. Note that if 2 ¢ C then

Pr(B,) = 0. Let A be the event (X; = x;) N (Y = y). We now apply the law of
total probability

Pr(X;=a; | Y =y) = Pr((Xi =) N (Y =y))

Pr(Y =y)
:ﬁZPr((Xizmi)ﬂ(Yzy)ﬁ(X:Z))
= Pr(X;=z)N(X=2)|Y =y)
=) Pr(X=z|Y =y)

Thus we have

#MAP () = argmax Z Pr( X =z |Y =y).
z;€{0,1} zE]F"

Applying Bayes’ theorem, as we did in Section 2.2, and using the fact that the
channel is memoryless
Pr(X = z)
~MAP
;" (y) = argmax PrlY =y | X =2)——7—=
z;€{0,1} z%;n Pr(Y = y)

zz—rz

= argmax Z PriY =y | X =2)Pr(X = 2)
#€{01} Lepp

zzl

= argmax Z (HPr =y | X; = )) Pr(X = z).
z;€{0,1} zGIF" ;

Assuming that the codewords are chosen from a uniform distribution, we can

replace Pr(X = z) by the indicator function 1[z € C], which is defined as 1 if the

condition in the brackets is true and 0 otherwise.

MAP () = argmax Z (HPr =y | X; = zj))l[z € (] (2.3)
xz;€{0,1} ZEF" ;

For any linear code the indicator function can be factorised according to the
parity check equations. Consider the linear code C with parity-check matrix

11100
01001 (2.4)
00110

11



In this case 1[z € C] factorizes to
1[2’ € C] = 1[21 + 22+ 23 = O] 1[22 + 25 = 0] 1[23 +z4 = 0]

We see that bitwise MAP decoding can be performed by computing sums of
products of certain multivariate functions.

2.3 Marginalization by message passing

Definition 2.5. Let f be a function from a finite set ™ to R and let i € N,
1 <i <n. The marginal of f(x1,...,x,) with respect to x; is a function from X

to R, defined as
> flay, ... @), (2.5)

(1o i 1,Ti 1, T ) EXT L

In order to facilitate the expression of marginals, we introduce the following
simplified notation for (2.5)
Z f T1y...,T

~T;

The symbol ) denotes summation over all variables contained in the expres-
sion except the one listed.

Under the right conditions the computational complexity of marginalization
of a function can be significantly reduced by exploiting its factorisation. The idea
is illustrated in this simple example.

Example 2.6. Let fi,..., f, be real-valued functions defined on the set X', then
i = (00 (a0
(21,0 ) EXT zeX zeX

Evaluating the left side requires n |X|" — 1 operations of addition and multipli-
cation, whereas evaluating the right side requires only n|X’| — 1 operations.

The next example shows a scenario, where the idea is applied recursively.
Example 2.7. Let f be a function defined on F such that
f(xy, . x5) = fi(zn, 2, 23) fol, w5) f3 (73, T4).

The marginal of f with respect to x3 is

2.

z1,T2,%4,25E€F2

1(561, T2, 333)f2($2, iU5)f3(9C3, 954)

> filwn,wa,ws) folws, ws )< > falrs, )

z1,72,25E€F2 x4€F2

f
(

- ( Z fi(xy, 29, 23) Z f2<$2,$5))< Z f3($3a$4))
!

z1,22€F2 r5€l2 za€F2

D filans,as) ) fols, $5)) (Z G 1’4)) :

~T3 ~T ~I3

12



The last line shows the use of the simplified notation.

To evaluate the marginal we start with the innermost sum ) p fo(22,25)
and evaluate it for both values of xo, call the results p;(0) and p;(1). Now
evaluate the left term for both values of x5 using the results from the previous
Step D, ayer, f1(T1, T2, 23)p1(72) and call the results 115(0) and pp(1). Similarly
evaluate the right term for both values of z3 and call the results u3(0) and p3(1).
Finally compute po(z3)ps(xs) for both values of x3 to obtain the end results.

Our goal is to generalize the described procedure. For this purpose, we asso-
ciate a graph with every factorisation.

Definition 2.8. The factor graph associated with the factorisation of the func-
tion f is a bipartite graph with variable nodes corresponding to the variables of f,
and factor nodes corresponding to the factors of f. A factor node f; is connected
to a variable node z; if and only if the factor f; is dependent on the variable x;.

Figure 2.4 shows the factor graph associated with the factorisation of f from
Example 2.7. Note that the graph is in fact identical to the Tanner graph asso-
ciated with the parity-check matrix (2.4).

N
AN
/

N

Tr @

fom

FI1GURE 2.4: Factor graph associated with the factorisation of f from Exam-
ple 2.7.

Assume that a function f defined on F7 has a factorisation [[, f; such that its
factor graph is a tree. We shall compute the marginal of f(z1,...,x,) with respect
to the variable xy. Designate x; as the root of the factor graph. There exists a
factorisation [] i 9 of f such that the variable z; appears in each factor, while
every other variable appears in exactly one factor. The factors g; correspond to
the subtrees emanating from vertex x;. Each factor g; is equal to the product of
the factors f;, whose factor nodes lie in the corresponding subtree. If any variable
other than z; were to appear in two different factors g;, and g;,, then this would
imply that the associated factor graph contains a cycle, which contradicts the
assumption that the factor graph is a tree. The fact that variables other than x;
are not shared between factors g; allows us to exchange the order of summation
and multiplication:

Y f@) =) Tlo@=]]> g = Huj(:ﬁ),

~T1 ~x1 J |~y

where p;(v1) = >, g;(x) is the marginal of g; with respect to z;.
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The next step is to simplify the computation of the marginals p;(z;). For
any g; there exists a factorisation HkK:o hy, of g; such that the factor hy is depen-
dent on x; and on some variables that we shall call zq, ..., zx, and such that no
two factors hy,, hg,, 1 < k1 < ke < K share a common variable. The factor hg
is the root node of the subtree corresponding to g;. The variables zi, ..., zx are
the child nodes of hg, and each hy, 1 < k < K corresponds to the subtree rooted
at z,. Thus we get

pi(x) = Zgj(ac) = ZHhk(x) = Zho(xl,zl,zg, ce 2K) Hhk(zk, o)

~I] ~xr1 k ~T1
K
= Z ho(x1721722,...7ZK)Hth(Zk,...)
215002 K k=1 ~zp
K
= Z ho(ﬂfl,ZhZz,---,ZK)HM%(%),
2152 K k=1

where pi(2) = >, hx(2k,...) is the marginal of hy with respect to 2. We
are again faced with the task of computing marginals of functions that have a
factorisation such that the factor graph is a tree.

The steps described above can now be applied recursively until the leaf nodes
are reached. For a variable leaf node the marginal is simply equal to 1 as it has
no child factor nodes. For a factor leaf node g;(x;) the marginal is the factor
itself, since ) g;(z;) = g;(z;). This leads us to the following algorithm.

2.4 The sum-product algorithm

The sum-product algorithm proceeds by sending messages, denoted u, along the
edges of the factor graph. The messages that pass to and from variable node z;
are functions of the variable x;. In practice messages are represented as vectors
(1(0), p(1)). Message passing starts at the leaf nodes, proceeds up the tree, and
finishes at the root node. The rules for every type of node are as follows:

(a) A variable leaf node x; sends the message p(x;) = 1 to its parent.

b) A factor leaf node f:(x;) sends the message u(x;) = f;(x;) to its parent
( j ge i ;
node z;.

(c) A variable node z; that has received messages p1, ..., p; from all its chil-
dren, sends its parent the message
J

(i) = HMJ‘(%)-

j=1

(d) A factor node f;(z;) that has received messages p,...,ux from all its
children, call them z,..., zx, respectively, sends its parent node z; the
message

K
H(xi): Z fj(xivzlaz?w"7ZK)HH’/€(Z/€)'
k=1

2152 K

14



The marginal of f with respect to z; is obtained by multiplying all the messages
received at the root node.

In practice we wish to compute the marginals of f with respect to every vari-
able. This can be done by running the algorithm n times, every time designating
a different variable node as the root of the factor graph. Notice, however, that
the message that is passed from some node a to its parent node b, remains the
same regardless of which node in the factor graph is designated as the root, as
long as b remains the parent of a with respect to the newly designated root node.
If the parent-child relationship between nodes a and b is reversed as a result of
designating a different root node, then no message will pass from a to b (some
message will pass in the opposite direction instead). This allows us to compute
the marginals all in one go by simultaneously perceiving each variable node of
the factor graph as a root node.

Method 1

We start at the leaf nodes, applying rules (a) and (b). At every inner node we
treat each one of the neighbouring nodes as if it were a parent node. In other
words, for each inner node a let N'(a) be the set of neighbouring nodes of node a,
for each node b € N(a) wait until messages from nodes A(a) \ {b} have arrived,
then apply the appropriate rule (¢) or (d) and send the resulting message to
node b. Thus messages are passed along every edge in each direction, and after a
finite number of steps, every message is created. The marginal of f with respect
to any x; is then obtained by multiplying all the messages received at node x;.

Method 2

Another way to achieve the same result is to initialize the algorithm by passing
the message 4 = 1 from each variable node to the neighbouring factor nodes,
and then to proceed in iterations. An iteration starts by processing messages at
factor nodes and sending the resulting messages to variable nodes along all edges.
These messages are processed at the variable nodes and the resulting messages
are sent to factor nodes along all edges. This constitutes one iteration. After a
number of iterations approximately equal to half the diameter of the graph, the
algorithm will converge to the same set of messages as the previous algorithm.
The marginal of f with respect to any x; is then obtained by multiplying all the
messages received at node x; in the last iteration.

Compared with the first method, this one involves a lot of wasted computa-
tions, however it has the advantage that it can be applied to a graph that has
cycles. On a graph with cycles, the algorithm does not necessarily have to con-
verge and it does not even compute the correct marginals, nevertheless it produces
very good results when used for decoding, since we only need to know which of the
marginals is greater. The algorithm is usually terminated after a predetermined
number of iterations. This number can be as high as half the diameter of the
Tanner graph, but usually one would choose a smaller value, which compromises
between the need to maximise effectiveness of decoding and the need to minimise
the number of computations. Alternatively, one can compute all the marginals

15



after every iteration, and if these produce a valid codeword, i.e. all constraint
equations are satisfied, then the algorithm is terminated early.

2.5 Sum-product algorithm for bitwise MAP de-
coding

We can now apply the sum product algorithm to the bitwise MAP decoding
problem discussed in Section 2.2. Figure 2.5 shows the factor graph associated
with the factorisation

<HPr =y | X —x])>1[x1+x2+x3:0]1[x2+x5:O]1[x3+x4:0].

This factorisation corresponds to the bitwise MAP decoding of the code with
parity-check matrix (2.4).

X
Pr(Yi=uy | Xi = 21)m—— :

T 1[.7}1+I2+.T3:0]
Pr(Yy = ys | Xo = ap)m——

X
PI‘(Y},—yg | X3:ZE3)-73 1[I2+l’5:0]

x
Pr(Yy=ys | Xy = a4)m—- :

T5 1[333 + x4 = O]
Pr(Ys = ys | X5 = z5)m——

FI1GURE 2.5: Factor graph for the bitwise MAP decoding of the code with parity-
check matrix (2.4).

If the factor graph is a tree, like in Figure 2.5, we can use the first method
of sum-product decoding, however all the rules we derive in this section apply to
the second method just as well. The algorithm starts at the factor leaf nodes on
the left, for each 7 passing the message

(1(0), p(1)) = (Pr(Y; = y; | Xi = 0), Pr(Y; = y; | Xi = 1))

to the variable node z;. In practice, we work with the ratios r = p(0)/u(1)
instead, in order to reduce the number of computations. The rules for working
with these ratios are as follows:

According to rule (c) of the sum-product algorithm, at a variable node of
degree J 4+ 1 we multiply J incoming messages to produce the outgoing message

0) = Hﬂj(O), (1) = Huj(l)

When working with ratios r1,...,r;, the outgoing ratio at a variable node is
simply

T w0) )
Il e 11



Let us now look at the inner factor nodes, i.e. the nodes on the right in
Figure 2.5. Here the incoming messages from variable nodes z1, ..., zx produce
the outgoing message

w0 = 1S a0 [Imtn. w= ¥ 1[Sa=1][Tnto

2140 2K k=1 k=1 21y 2K k=1

When working with ratios, the outgoing ratio at these factor nodes is

K K
S U 2 = O T () ey 100 2 = O T,

O U = UL ) XL AT e = 1T, )
D Ui 5 = Oy i [y )+ I (= D)
S e 100 20 = 1 T ;[Zk =T e+ 1)~ TT (e — 1)

In order to understand the last step expand the products in the last formula to
get

K K
[Hre+v= > JIr= > M o~=3 [[=
k=1 IC{1,..,K} €T IC{1,..,K}ie{l,...,K\T 212k k=1

and
K
o-v= ¥ o "Iln= % 0" [ »
k=1 {1, K} i€ {1, K} ie{1,..K\T

K
— Z (_1)1[25:1 2x=1] H r;[zk:(’].
Z1yR K k=1
Now it is easy to see that the nominator can be expressed
K K
[T+ +[n—D=2 > sz_o H L =0]
k=1 k=1 2140y R K

and analogously for the denominator.
Finally dividing the numerator and denominator by [[r_, (7 + 1) yields

K rp—1
Hk 1 rk+1

Another useful computational trick is to work with logarithms of ratios I; = Inr;.
This means that at the variable nodes the outgoing message is computed as
[ = Z}]:1 l;. At the factor nodes the computation of the outgoing message also
attains an elegant form. Equation (2.6) implies that

(2.6)




after substituting r, = e’* we have

tanh(l/2) =

lk -1 K
H e Htanh(zk /2).

So at inner factor nodes the outgoing message will be

| =2tanh™" (f[ tanh(l, /2)).

The number of operations can be reduced by omitting messages with large |lx|,
taking into account only their sign, since limy, 4 tanh(l;/2) = +1. Even for
relatively small values the function rapidly approaches 1, e.g. tanh(5) =~ 0.99991.
Thus if we have for example the incoming messages [; = 3 and [ = —10, then
the outgoing message will be [ ~ —2.9991.

The evaluation of the hyperbolic tangent and its inverse can be implemented
by means of a look-up table. We can also replace the multiplication with summa-
tion by working with the logarithm of the hyperbolic tangent. However, we need
to be careful with negative . We therefore factorise tanh(l/2) into its sign and

magnitude:
K
tanh(l/2) = (H sgn lk) (H tanh(|{x| /2))
k=1

Then we apply the logarithm

| = <ﬁ sgn lk>2tanh1 (ﬁtanh(uk\ /2))

k=1

— <]f[1 sgn zk> 2tanh ™' In~! (kXK; In tanh (|l /2))
_ <£{lsgnzk>¢—l (g ¢><|lk|>>,

where ¢(r) = —Intanh(z/2). Notice the minus sign in the definition of ¢, its
presence causes ¢ to be self inverse, while it makes no difference in the above.
The evaluation of ¢ can once again be implemented by means of a lookup table.
We have thus reduced the operations of the sum-product algorithm to a series of
floating point additions and look-ups into a single look-up table. On the BSC,
the algorithm can be simplified even further, since the factor leaf nodes pass only
two different messages. The same applies on the BEC, where the factor leaf nodes
pass only three different messages.

The min-sum algorithm

As noted above, messages with large |l;| can be ignored in the sum-product
algorithm without impacting its decoding ability. We need only take into account
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the sign of [,. If we go so far as to ignore all [}, except the smallest one, then the
computation of the outgoing message at the factor nodes simplifies to

K
| = l -1 : l I . Ll
Q_Ilsgn k>¢ (kegf.l.?m (Ji ) (H e ’“) cepin Vil

At the variable nodes, we leave the rule unchanged: the outgoing message is
computed as | = Z;]:l l;. The algorithm employing these rules is called the
min-sum algorithm.

2.6 Sum-product algorithm on the BEC

The sum-product decoding algorithm can be greatly simplified on the BEC. The
algorithm is initialized by sending the message (1,1) from each variable node to
the neighbouring factor nodes. During every iteration of the algorithm the leaf
factor nodes pass the message

(1(0), (1)) = (Pr(Y; = y; | Xi = 0), Pr(Y; =y | Xi = 1)),

which is (1 —¢,0), (0,1 —¢) or (e,¢) depending on whether the value of y; is
0, 1 or 7, respectively. Recall that the algorithm works just as well with ratios
1(0)/1(1), so there is no harm done in normalizing the messages and calling them
(1,0), (0,1) and (1,1), respectively. These three messages are in fact the only
ones that get passed around (up to normalization). We will also represent them
by the symbols 0, 1 and ?.

At the inner factor nodes (check nodes) the incoming messages ji1, ..., fix
from variable nodes zq, ..., zx produce the message
K K
( 3 1{2% :o] [z, 3 {sz - 1] H“k % ) @
21402 K k=1 k=1 2140y 2K

i.e. 4(0) = p(1). It is nonzero, since for at least one (K — 1)-tuple (zs,..., 2k)
from FAX~1 the product []i_, pur(2x) is nonzero, and then the indicator function
1[5, 2 = 21] is nonzero for either z; = 0 or z; = 1. We can therefore normalize
the outgoing message to (1,1).

Looking back at (2.7), if none of the incoming messages is (1,1), then for
exactly one K-tuple (21,...,2x) € FX the product Hszl i (zx) will come out
nonzero. This K-tuple corresponds to the values of the incoming messages, each
2, being 0 if the kth incoming message is (1,0) and 1 if the message is (0,1). The
outgoing message is then



which is either (1,0) or (0,1). If we represent the messages as symbols 0, 1 and ?,
then the rule simplifies to:

e If none of the incoming messages at a check node is 7, then the outgo-
ing message is the mod-2 sum of the incoming messages. Otherwise the
outgoing message is ?.

At the variable nodes we obtain the outgoing message by point-wise multi-
plication of the incoming messages. If all incoming messages are (1, 1), then the
outgoing message is (1,1). Assuming that a valid codeword was sent over the
channel, and that the channel erased some bits, but did not alter any of them,
then at any point in the algorithm, the messages (1,0) and (0, 1) can never both
arrive at the same variable node. If this did happen, it would be in violation of the
constraint equations, since, as we just saw, the sum-product algorithm calculates
the mod-2 sum at the check nodes. This means that all the incoming messages at
a variable node either lie in the set {(1,0), (1,1)} or in the set {(0,1),(1,1)}. If at
least one of the incoming messages is not (1, 1), then by point-wise multiplication
the outgoing message will be equal to that message. If we represent the messages
as symbols, then the rule reads

e If at least one of the incoming messages yu; at a variable node is not 7, then
the outgoing message is equal to pg. Otherwise the outgoing message is 7.

The algorithm proceeds in iterations, until its state ceases to progress from
one iteration to the next. The incoming messages at every variable node are then
multiplied to obtain the (normalized) marginal with respect to that variable.
Once again, if at least one of these messages py, is not (1, 1), then the marginal
is equal to p. The sth bit of the received word then decodes to argmax, g, (%),
which is 0 if the marginal is (1,0) and 1 if the marginal is (0, 1). If the marginal
is (1, 1), then we have a decoding failure for x;.

Example 2.9. Let y = (1,0,7,7,0,1,7) be the output of a transmission over
a BEC using the [7,4,3] Hamming code from Example 2.2. The sum-product
algorithm is initialized by sending the message (1,1) from each variable node to
the neighbouring factor nodes, and then it proceeds in iterations. Figure 2.6 shows
the first four iterations of the algorithm. The message (1,0), which corresponds
to 0, is represented by a solid line, the message (0, 1), which corresponds to 1, is
represented by a snaked line, and the message (1,1), which corresponds to ?, is
represented by a dashed line. Notice that for every node the outgoing message
along an edge depends on the incoming messages along all incident edges other
then the edge itself. After four iterations the algorithm does not progress any
further (the right diagram in the fourth iteration is the same as the right diagram
in the third iteration). Looking at the left diagram in the fourth iteration, we see
that the word decodes to (1,0,1,1,0,1,0).

The sum-product algorithm on the BEC produces the same results as the
greedy algorithm described in Section 2.1. In practice one would use the greedy
algorithm for decoding on the BEC, however the sum-product algorithm has the
advantage that it can be analyzed quite precisely on the BEC as we will see in
Section 3.2.
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2.7 Cycle-free graphs

In Section 2.4 we described an adaptation of the sum-product algorithm to graphs
with cycles. However, the adapted algorithm requires more computations and it
does not actually perform MAP decoding on graphs with cycles. The reason why
we need to concern ourselves with decoding on such graphs is that the class of
codes with cycle-free Tanner graphs is not powerful enough to perform well. The
following theorem shows that cycle-free codes of rate above % contain words of
weight 2, and that the lower bound on the number of words of weight 2 exhibits
hyperbolic growth as the rate of the code approaches 1. Codes of rate below %
also contain low-weight codewords. In [5] Etzion, Trachtenberg and Vardy have

shown that for any [n, k, d], cycle-free linear code

n n+1 2
d < < —=.
—{k+1J+L€+1J R
Proposition 2.10. Let C be a binary linear code of rate r > 1/2 that admits

a Tanner graph that is a forest. Then C contains at least T’;g:)l) codewords of
weight 2.

Proof. The Tanner graph has n variable nodes and (1 —r)n check nodes, since for
a forest the rows of the parity-check matrix that correspond to the check nodes are
linearly independent. To see this, assume to the contrary that the rows hq, ..., hy,
of the parity-check matrix are linearly dependent, then there exists a nonempty
subset Z C {1,...,m} such that >, h; = 0. Restrict the parity-check matrix
to the rows indexed by Z. This restricted matrix corresponds to a subgraph of
the forest and as such, the subgraph is a (nonempty) forest itself. But every
column in the restricted matrix has an even number of ones, which means that
the subgraph has no variable leaf nodes. By assumption there are no leaf check
nodes either. This is in contradiction to the subgraph being a nonempty forest.

The total number of nodes is (2 — r)n and the number of edges in the forest
is therefore (2 — r)n — ¢, where ¢ is the number of trees in the forest. This means
that the average degree of the variable nodes is less than 2 — r. It follows that
the fraction of variable nodes that have degree at least 2 is less than 1 — r. The
number of variable leaf nodes is therefore greater than rn.

For the next step, recall Jensen’s inequality, which states that if f is a convex
function on the interval [a,b] and x4, ..., 2, € [a,b], then

I I
Any two variable leaf nodes that are connected to the same check node give
rise to a codeword of weight 2. Let [; denote the number of variable leaf nodes
connected to the ith check node, these I; leaf nodes give rise to I;(l; — 1)/2 code-
words of weight 2. By applying Jensen’s inequality to the real convex function
z— z(x—1)/2, we get

ZE-LT)" Li(li = 1) ZELI”” l; Zi}”n li ™ m_
(I—=r)n = (1—=r)n (I1—=r)n 1 Z(1—7ﬂ)n ((1—7‘)71 1)'
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The total number of codewords of weight 2 is therefore at least

(1—r)n

Li(l;=1) _ ™ ™ _m(2r —1)
> ey () S

i=1

2.8 Notes

In addition to the cited sources, the books Modern Coding Theory [13] by Richard-
son and Urbanke, Information Theory, Inference, and Learning Algorithms [10]
by David MacKay, and An Introduction to LDPC Codes [14] by William E.
Ryan were used throughout this chapter. Proposition 2.10 was adapted from
Lemma 2.24 [13] with an improvement on the lower bound for the number of
codewords of weight 2.
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FIGURE 2.6: Iterations of the sum-product algorithm for the [7,4,3] Hamming
code from Example 2.2 with y = (7,0,7,7,0,1,0).
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Chapter 3

Low-density parity-check codes

Just as there are many parity-check matrices for one code, there are many Tanner
graphs for one code. The codes that have at least one sparse Tanner graph are
called low-density parity-check (LDPC) codes. By sparse, we mean that the
number of edges in the graph is of the order of a small multiple of n, where n
is the length of the code. The sparsity of the graph is what brings about good
performance under message-passing decoding. One of the reasons for this is that
the number of operations of the sum-product algorithm is linear in the number
of edges of the Tanner graph.

Definition 3.1. We call an LDPC code (I, 7)-regular if it has a Tanner graph
such that every variable node has degree [ and every check node has degree r.
The design rate of an LDPC code with an m x n parity-check matrix is defined

as R = (n—m)/n.

Note that the design rate might be less than the actual rate of the code since
the rows of the parity-check matrix need not be linearly independent. But in fact
the expected rank of a randomly chosen parity-check matrix is very close to m.

The number of edges in the Tanner graph of an (I, r)-regular LDPC code is
nl = mr. The design rate R therefore satisfies

j_p="_1L
n or
Notice that for constant [, the number of edges in the Tanner graph (i.e., the
number of ones in the n(1 — R) X n parity-check matrix) grows linearly in n.
In comparison, for a randomly generated n(1 — R) x n parity-check matrix the
number of ones grows quadratically in n.

Definition 3.2. Let C be an LDPC code with a Tanner graph such that the
number of variable nodes of degree i is A; and the number of check nodes of
degree i is P;. We call the polynomial A(x) = Zéz‘j" Azt the variable degree
distribution, P(x) = > P;a* the check degree distribution, and we call C a

(A(z), P(x))-irregular LDPC code.

We shall only consider codes without degree 1 nodes. As mentioned in Sec-
tion 2.1, check nodes of degree 1 serve no purpose. As for variable nodes of
degree 1, if two of them are connected to the same check node, then the code
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will contain words of weight 2. In general, it is possible to allow variable nodes
of degree 1, as long as they are placed with care.

Example 3.3. The variable degree distribution of the [7,4,3] Hamming code
from Example 2.2 is A(x) = 2 + 32% + 3z and the check degree distribution is
P(z) = 32%.

The length of a (A(z), P(x))-irregular LDPC code is ). A; = A(1) and the
number of check nodes is ), P; = P(1). The design rate therefore satisfies
P(1)
1-R=—-=.
A(1)
The number of edges in the Tanner graph can be expressed as ) . iA; = A'(1)
or equivalently ). iP; = P'(1).
Sometimes it is convenient to work with the normalized degree distributions

Further define

A@):}jA@Fle“@ Lz) (3.1)

(1)
()
ol (3.2)

(1

If E is the total number of edges in the Tanner graph, then \; = iA;/E. In other
words ); is the fraction of edges that are incident to a variable node of degree 1.
The same applies to g; in relation to the check nodes. Note that A(0) = 0 = p(0),
since we assume that there are no nodes of degree 1. Integrating (3.1) and (3.2)

gives
A(z) * P(z) *
= Az)d = dz.
We can now express the average variable degree l,,, and the average check de-
gree Tayg as

A(1) 1

lavg = A(1) =L = fol A(2) dz’ (3:3)
Py ]
Tavg = P(1) RO = fol o(z)dz’ (34)

The design rate can also be expressed in terms of the average variable and check
degrees as
Lav
1-R="2%&

Tavg

The average degree d of all the nodes in the Tanner graph is

N AP ) e _ 2
A<1) + P(l) lavg + Tavg fol )\(Z) + Q(Z) dz '
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3.1 The girth of Tanner graphs of LDPC codes

As we saw in Example 2.4, the presence of small cycles in the Tanner graph is
undesirable. This applies not only on the BEC, but on other channels as well.
Whenever there is a cycle, any errors in the corresponding bits will effectively
propagate through the cycle back to themselves, thereby reinforcing themselves.
However, as we saw in Section 2.7, the complete absence of cycles in the Tanner
graph is also undesirable, as the corresponding codes contain low-weight code-
words. As a compromise, we seek codes that have a Tanner graph with large
girth. The girth of a graph is defined as the length of the shortest cycle in the
graph.

Consider the Tanner graph of an ([, r)-regular LDPC code. Denote the girth
of the Tanner graph by ¢g. Since the graph is bipartite, the girth is even. For any
variable node x, the ball of radius g/2 — 1 around z is a tree. Designate x as the
root of this tree. The root has degree [, the nodes of odd depth in the tree have
degree r — 1, and the nodes of even depth have degree [ — 1. The number of nodes
at every depth, starting with depth 0 is as follows: 1, [, I(r — 1), I(r — 1)(I — 1),
I(r—1)(l =1)(r — 1), ... The total number of variable nodes in the tree is

Lg/4)-1 | D — 1leral
LHir—1) Y ((l—l)(r—l))l:1+l(r—1)<(l(li)§)(ri))l>_1 L (35)

1=0

This gives us a lower bound on the number of variable nodes in the Tanner graph.
We can use it to obtain an upper bound on the girth. For example, for a (3, 6)-
regular LDPC code of length 2048 we find that g < 14. We see that for fixed [
and r, the upper bound on g is of the order of Inn.

For irregular LDPC codes, we can utilize a lower bound on the total number
of nodes in a graph of girth g and average degree d > 2 given by Alon, Hoory
and Linial in [1]. For a Tanner graph, their result translates to

(d—1)9% -1

2 R)>2
n2-k)z d—2

This gives the following upper bound on the girth of the graph

2In(3n(2 — R)(d —2) + 1)

In(d — 1) (36)

g <

For a (3,6)-regular LDPC code the average degree is 4, so the bound would be
g < 2log;(1.5n + 1). When n = 2048 we obtain the same upper bound as that
given by the first estimate g < 14.

In [11] it was shown that for any given degree pair (I,r) and any ¢ € N,
the probability that the depth-¢ neighborhood of a randomly chosen node z in
a randomly chosen (I, r)-regular LDPC code is a tree, goes to 1 as the length of
the code goes to infinity. This result was then used to show that as the length of
an LDPC code increases, the behavior of the sum-product algorithm converges
to the behavior it exhibits on cycle-free graphs.
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3.2 Performance of LDPC codes on the BEC

We analyze the performance of the sum-product algorithm for large random
LDPC codes on the BEC(g). This is one of the few scenarios in which exact
analysis is possible. However, the results obtained here are qualitatively indica-
tive of what happens in more general scenarios. Consider a (A(x), P(z))-irregular
LDPC code. We shall track the progress of the algorithm by the expected frac-
tion of 7 messages passed between check nodes and variable nodes during every
iteration. When we speak of the degree of a variable node, we mean its degree
in the Tanner graph. Denote by p the probability that a message passed from a
variable node to a check node is 7, and by ¢ the probability that a message passed
from a check node to a variable node is 7. We will assume that at each node,
the incoming messages are independent of each other. This assumption is true
only during the first g/2 iterations, where g is the girth of the Tanner graph. We
justify this assumption by the sparseness and randomness of the parity-check ma-
trix, and by the large length of the code. These factors should insure reasonably
large girth.

Since the sum-product algorithm is initialized by sending the message 7 from
each variable node to the neighbouring check nodes, the initial value of p is 1.

The probability that the outgoing message from a check node of degree d
along one of the edges is 7 is equal to the probability that at least one of the
incoming messages along the other d — 1 edges is 7. Assuming that the values of
the incoming messages are independent events, the probability that none of the
d — 1 incoming messages is ? is equal to (1 — p)4~1. Therefore the probability
that at least one them is ? is equal to 1 — (1 — p)¢~!. The expected number of
outgoing ? messages from check nodes of degree d is dP4(1 — (1 — p)¢1), so the
expected fraction of 7 messages passed from all check nodes to variable nodes is

q = %ded(l — (1 —p)d_l) = % _ Z %(1 _p)d—l

=1-) ol —p)*' =1—0(1-p),

where F is the total number of edges in the Tanner graph.

The probability that the outgoing message from a variable node of degree d
along one of the edges is 7 is equal to the probability that all the incoming mes-
sages along the other d — 1 edges as well as along the edge from the leaf factor
node are 7. Assuming that the values of the incoming messages are independent
events, the probability that they are all ? is e¢?~!. The expected number of out-
going ? messages from all variable nodes of degree d is dAgzeq? !, so the expected
fraction of 7 messages passed from all variable nodes to check nodes is

1
P=1 Z dAgeqt ' = ¢ Z Aaq? ™t =eX(q).
d d

For an (I, r)-regular LDPC code the expressions simplify to

g=1—(1—=p)"' and p=eg "
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Figure 3.1 shows a plot of these two functions for a (3, 4)-regular LDPC code on
a BEC with erasure probability 0.6. The dashed line indicates the progress of the
decoding algorithm. The algorithm is initialized with p = 1. In the first iteration
we get ¢ = 1 and then p = 0.6. In the second iteration we get ¢ = 0.936 and then
p ~ 0.526, and so on. Both values eventually converge to 0, i.e. the decoding is
successful. We call this diagram an extrinsic information transfer (EXIT) chart.

0 p 1

F1GUre 3.1: EXIT chart for the decoding of a (3,4)-regular LDPC code on a
BEC(0.6).

For a (3,4)-regular LDPC code of length 2048 on a BEC(0.6) the expected
number of 7 messages evolves as follows (values rounded to the nearest integer):

[6144p]: 6144 3684 3171 2853 2591 2356 2109 1862 1608 1347 1064 755 424 156 22 2 0

NNNNNNNNNININNN NN
(6144¢]: 6144 5724 5445 5209 4984 4714 4363 4000 3584 3152 2614 1945 1162 454 62 6

And below we have an example of how the number of ? messages actually evolves
for a randomly generated (3,4)-regular LDPC code of length 2048 on a BEC(0.6):

6144p: 6144 3686 3230 2942 2716 2517 2326 2129 1916 1676 1396 1069 702 343 92 7 O
NONCNCNNNNNNNNN N NN N
6144q: 6144 5751 5488 5274 5077 4880 4670 4430 4142 3781 3308 2681 1874 973 273 22
One complete iteration of the algorithm can be expressed in terms of p as

For a regular code this becomes

piv1 =e(1— (1 — pi)rfl)lfl-
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Lemma 3.4. For a given degree distribution pair (X, 0) define
fe,p) = eA(l = o(1—p)).

Then for p,e € [0,1] the function f(e,p) is increasing in both arguments and
0< fle,p) <e.

Proof. The coeficients of p are nonnegative, therefore o(1 — p) is decreasing and
0 < ol —p) < p(l) =1 for p € [0,1]. Since the coeficients of A are also
nonnegative, A(1 — o(1 — p)) is increasing and nonnegative for p € [0, 1]. Finally
A1 = o(1 =p)) < A(1) =1 for p € [0, 1], hence the upper bound on f(e,p). O

Lemma 3.5. Let pg,e € [0,1]. Fori € N, define p; = f(e,pi_1). Then {p;}tien,
is a monotone sequence converging to some ps € [0,¢]. This ps is a solution of
the equation p = f(g,p), and it is the nearest solution to py (in the direction of
monotonicity).

Proof. If ¢ = 0 or pg = 0, then p; = 0 for all © € N and the solution is 0. If
pi < pi_1, then pyy = f(e,p;) < f(e,pi—1) = pi, and the same is true if the
inequalities are reversed. Hence the monotone nature of the sequence {p; }ien,-

The monotonicity of {p; }ien, and the fact that it is bouded by 0 and ¢ implies
that it converges to some p,, € [0,¢]. Since f is continuous, p., is a solution of
the equation p = f(e, p):

P = hm Di = hm f<€7pi—1) - f(€7 hm pi—l) - f(gapoo)
1—00 i—00 i—00

It remains to be shown that this is the nearest solution. Assuming the sequence
is decreasing, let p’ be the nearest solution such that p’ < pg. For every i € N,
P’ < pioy implies p' = f(e,p') < f(e,pi1) = pi, thus p' < pee < po and since pf
is the nearest solution, equality follows. If the sequence is increasing, then let p/
be the nearest solution such that p’ > py and reverse the inequalities to get the
corresponding result. O

The decoding algorithm is initialized with py = 1. What this lemma tells us is
that if p’ = f(e,p’) for some p’ € (0, 1], then the decoding algorithm will converge
to p = p' > 0. The decoding is therefore expected to be unsuccessful. Such a
point p’ manifests itself in an EXIT chart as an intersection of the two curves.
The EXIT chart in Figure 3.2 shows this for a (3,4)-regular LDPC code on a
BEC with erasure probability 0.65. The dashed line indicates the progress of the
decoding algorithm as it converges to p ~ 0.481 and ¢ =~ 0.860.

Even if p and ¢ do not converge to 0, the algorithm is likely to have recovered a
portion of the erased bits. The probability that a bit corresponding to a variable
node of degree d fails to decode is equal to the probability that all the incoming
messages along the d edges as well as along the edge from the leaf factor node
are 7. Assuming that the values of the incoming messages are independent events,
the probability that they are all ? is e¢?. The expected fraction of bits that fail
to decode is therefore

1
= " Ageqt = eL(q).
n d

Generally we wish to know the highest erasure probability, below which de-
coding is expected to succeed. This value is called the threshold.
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0 P 1
FIGURE 3.2: EXIT chart for the decoding of a (3,4)-regular LDPC code on a
BEC(0.65).

Definition 3.6. The threshold associated with the degree distribution pair (A, g),
call it (A, o), is defined as

e(A\, 0) =inf{e € [0,1] | p= f(e,p) has a solution p € (0,1] },

where f(e,p) = eA(1 — o(1 — p)).

It is also possible to define the threshold as the lowest erasure probability,
above which decoding is expected to fail.

Theorem 3.7. For a given degree distribution pair (X, o)
e(\, 0) =sup{e €[0,1] | p= f(e,p) has no solution p € (0,1] }.

Proof. Tt suffices to prove that for any ¢,¢’ € [0, 1] such that &’ < ¢, if p = f(e,p)
has no solution p € (0, 1], then p’ = f(¢’,p’) has no solution p’ € (0, 1].

Let po(e) = 1 and for i € N define p;(¢) = f(e,pi—1(¢)). Then by Lemma 3.5
lim; o pi(€) = 0, since the only solution of p = f(e,p) on [0,1] is p = 0.

For every i € N, p;(e') < p;(e) implies

pir1(e) = f(e i) < fle,pi(€)) = pita(e).

Hence lim; o pi(¢’) < 0 and by Lemma 3.5 p’ = f(¢,p') has no solution on
(0,1]. O

This theorem allows us to approximate (), o) numerically by doing a binary
search on the interval [0,1]. This method was used to compute the thresholds
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associated with some regular LDPC codes. Table 3.1 shows the results and com-
pares them with the corresponding Shannon thresholds (the thresholds achievable
with optimal codes under optimal decoding at the given rates). The exact values
of some of the thresholds (), g) can be found in [2].

I r Designrate &%)\ o) &(),0)
2 8 0.75 0.25 0.1429
3 12 0.75 0.25 0.2105
4 16 0.75 0.25 0.1931
2 6 0.6667 0.3333 0.2

3 9 0.6667 0.3333 0.2828
4 12 0.6667 0.3333 0.2571
2 4 05 0.5 0.3333
3 6 0.5 0.5 0.4294
4 8 0.5 0.5 0.3834
6 12 0.5 0.5 0.3075
2 3 0.3333 0.6667 0.5

4 6 0.3333 0.6667 0.5061
6 9 0.3333 0.6667 0.4035
3 4 025 0.75 0.6474
6 8 0.25 0.75 0.4499
9 12 0.25 0.75 0.3483

TABLE 3.1: The &(], ¢) thresholds and the Shannon thresholds 5%(), p) asso-
ciated with some (I, r)-regular LDPC codes. All values rounded to four decimal
digits.

The threshold value for a (3,4)-regular LDPC code is approximately 0.6474.
In order to see how this theoretical estimate compares with empirical data, the
decoding algorithm was simulated on some randomly generated codes. Table 3.2
shows how the probability of erasure ¢ affects the number of iterations of the
message passing algorithm required to successfully decode a received word and
the percentage of cases where the algorithm is successful. For every erasure
probability 10000 measurements were taken on LDPC codes of length 2048 and
100 measurements were taken on LDPC codes of length 22!,

For every measurement a random (3,4)-regular LDPC code of length 2048
was generated, together with a word that had random erasures with probability
at every bit. The LDPC code was constructed by first generating a random
permutation 7 of length nl = 6144 and then for every ¢, 1 < ¢ < 1536 prescribing
the constraint equation

T (ixd) /3] +1 T T n(ixa—1)/3]+1 T T|m(ixd—2)/3)+1 T T|x(ix4—3)/3)+1 = 0.

This essentially means that the variable nodes in the Tanner graph were randomly
connected with the check nodes. However, this method does not rule out the pos-
sibility that a variable node is connected to a check node multiple times, thereby
reducing the degree of the check node from 4 to 2 and the degree of the variable
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node from 3 to 1. Unfortunately this happens in about 95 % of the randomly
generated codes. On average 3 out of the 1536 check nodes are affected. When
this happened, the code was discarded and a new one was generated instead.

The same method was used to generate the random (3,4)-regular LDPC codes
of length 22! = 2048 * 1024.

For codes of length 2048 we see that the success rate of the decoding algorithm
experiences a rapid decline on the interval [0.61,0.68], which is centered near the
predicted threshold. For codes of length 22! the success rate experiences a swift
decline on a much narrower interval [0.6465, 0.6480], which is again centered near
the predicted threshold. The presence of these intervals of decline as opposed
to a strict single-point threshold is most likely due to two reasons. Firstly, the
independence assumption stated at the beginning of this section is not entirely
valid, especially not for codes of small length. The second reason is statistical
dispersion. For example, in order to simulate the behaviour of the BEC, erasures
occur randomly with probability € at every bit. The fraction of erasures in the
words that are being decoded is therefore generally not equal to €. As the length
of the code increases, the effects of these phenomena diminish. The experimental
results are in accordance with the predicted threshold.

The results also show that as the erasure probability nears the threshold the
number of iterations of the decoding algorithm required to successfully decode a
word grows rapidly. This is to be expected, since increasing the erasure proba-
bility brings the curves in the EXIT chart closer together. Looking at the chart
in Figure 3.1 we see that the number of iterations is significantly greater in the
narrow region between the two curves than in the regions where the curves are
further apart.

For any given erasure probability, the mean number of iterations required
to successfully decode a word does not vary significantly between the codes of
length 2048 and 22!, with the exception of the area near the threshold. When
the erasure probability is well below the threshold, the codewords are recovered
early on in the algorithm, therefore the length of the code has little effect on the
number of iterations. But as we approach the threshold, the number of iterations
approaches maximum, which is approximately half the diameter of the Tanner
graph. The longer codes have a Tanner graph of greater diameter than the shorter
codes, which explains the difference between the two near the threshold.

3.3 Stability condition

In order for the two curves in an EXIT chart not to cross on the interval (0, 1],
the curve p = e\(q) must lie above the curve ¢ = 1 — o(1 — p). Consider the
two curves in an EXIT chart near the point (0,0). If the derivative of the first
one with respect to p at (0,0) is less than the derivative of the second one with
respect to p at (0,0), then the curves must cross on (0,1]. Thus we have the
following necessary condition for the decoding to be successful:

> 0'(1).

eXN(0)

This is expressed in the following theorem.
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Theorem 3.8. Let ¢ € [0,1] and let (X, 0) be a degree distribution pair. If
eN(0)0' (1) > 1, then the equation p = e\(1 — o(1 — p)) has a solution p € (0, 1].

Proof. For i € N define
pi =M1 —o(1 —pi1)).

Expanding the right side into a Taylor series around 0 we get
pi =eXN(0)e'(Dpi-1 + O(py).

If eN(0)o'(1) > 1, then for some sufficiently small py € (0,1] we have p; > py.
By Lemma 3.5 the sequence {p;}en, converges to some ps, € (0,1}, which is a
solution of the equation. O

Corollary 3.9 (Stability condition). For any degree distribution pair (X, o)

1
SN0)D oDy

e(A 0)

3.4 Approaching channel capacity on the BEC

Consider the areas under the curves p = eA(q) and ¢ =1 — o(1 — p) in an EXIT
chart. If the sum of these two areas is greater than or equal to the area of the
EXIT chart, which is 1, then the curves must cross somewhere on the interval
(0,1]. We find the area under the first curve by applying (3.3)

1
/5)\(55) do =
0 lavg

The area under the second curve can be obtained by substituting y for 1 — z in
the following integral and by applying (3.4)

1

/Oll—Q(l—x)dx:—/lol—g(y)dyZ/oll—Q(y)dyz1—

Tavg
Thus we have another necessary condition for the decoding to be successful

1
€ q_

< 1.
lavg Tavg

Expressed in terms of design rate R we have € < lyyg/Tave = 1 — R or equivalently
R < 1—¢ = Cggc(e). This implies that as R nears the capacity of the channel,
the sum of the two areas nears 1 and the two curves come closer together, but
must not touch. Approaching channel capacity on the BEC is therefore a matter
of choosing degree distributions that fulfill this criterion.

In [9] Luby, Shokrollahi et al. designed a family of irregular LDPC codes that
allow transmission at rates arbitrarily close to channel capacity on the BEC. For
any 0 > 0, they describe degree distributions that yield codes which have rate
1 —¢(1+6) and threshold at least . The degree distribution pair (A(z), o(x)) is
created by taking high order Taylor polynomials of —In(1 — 2) and e*®~Y  and

33



scaling them suitably. The resulting Tanner graph has some variable nodes of
degree 1/6, but the average variable node degree is only In(1/4).

The authors also describe a method based on linear programming that has
proven effective in finding a good p for a given A and vice versa. They start out
with a pair of equivalent conditions

1—po(1—eXq)) <q forall qe(0,1],
eAX1—o(1—p)) <p forallpe(0,1]

Each of these conditions implies that the equation eA\(1 — o(1 — p)) = p has no
solution on (0, 1] and the decoding is therefore expected to be successful. Given A,
one chooses which of the coeficients of ¢ are to be nonzero. Then based on the
condition (3.8) several linear constraints on the coefficients of ¢ are produced by
choosing ¢ to be multiples of 1/N, for some suitably large N. The function to
be minimized is ¢ — (1 — o(1 — eA(q))), which effectively means that the distance
between the curves in the EXIT chart is being minimized. Certain numerical
problems can be avoided by including the stability condition Ay < 1/(g0'(1)).

After obtaining the solution p of the linear programming problem, the process
is repeated the other way around, finding good A for the obtained p. This time
the linear constraints being based on (3.9). After obtaining the new A, the process
is repeated again to obtain good ¢ and so on.

The authors give the following example of a degree distribution they found
using this method

Az) = 0.43003422 + 0.2373312"2 + 0.0079792" + 0.1194932*" + 0.0521532*+
+0.0796302'! + 0.0733802%2,

o(z) = 0.7137882" + 0.1224942™° + 0.1637182.
(3.10)

This degree distribution yields a code of rate 0.5 with average variable node
degree l,ys = 6 and average check node degree r,,s = 12. A binary search for
the threshold on the interval [0, 1] gives (A, 0) ~ 0.49563. In comparison, the
thresholds of the regular LDPC codes of rate 0.5 shown in Table 3.1, do not
exceed 0.4294, which is the threshold for (3, 6)-regular LDPC codes.

Figure 3.3 shows the EXIT chart of this degree distribution for ¢ = 0.4. If
we plot the two curves for the threshold value ¢ = 0.49563, they become visually
indistinguishable, and the sum of the areas under the curves comes out to 0.99927.

In order to see how the theoretical threshold compares with empirical data,
the decoding was again simulated on some randomly generated codes. The
graph in Figure 3.4 shows the success rate of this degree distribution for codes
of length 2048 and codes of length 22!, and for comparison the success rate of
(3,6)-regular and (6, 12)-regular LDPC codes of length 2048. For each erasure
probability and for each type of code 10000 measurements were taken on ran-
domly generated codes of length 2048 and 100 measurements were taken on the
irregular codes of length 22!. These measurements, including the number of it-
erations required to successfully decode a word, can be found in Tables A.1, A.2
and A.3 in the appendix. The number of iterations does not vary significantly
between the regular and irregular codes of length 2048.
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Fi1GURE 3.3: EXIT chart for the near capacity irregular LDPC code with degree
distribution (3.10) on a BEC(0.4).
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FI1GURE 3.4: Success rate of the near capacity irregular LDPC code with degree
distribution (3.10) on the BEC(e) in comparison with (3,6)-regular and (6, 12)-
regular LDPC codes.
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For length 2048, we notice that the irregular codes perform better than the
(3,6)-regular codes only on the interval [0.42,0.50]. Their performance on the
whole is quite disappointing. The success rate of the irregular codes begins to
drop as early as € = 0.15, whereas the success rate of the (3,6)-regular codes
begins to drop around £ = 0.4. For low erasure probabilities, the irregular codes
are even outperformed by (6,12)-regular codes. The poor performance of the
irregular codes of length 2048 is probably caused by the presence of cycles of
small length in the Tanner graph. The existence of such cycles is more likely in
the irregular codes than in the regular codes, because the irregular codes contain
nodes of very high degree: Approximately 6 variable nodes of degree 163, 6
variable nodes of degree 162 and 10 check nodes of degree 200. In light of what
is discussed in Section 3.1, increasing the length of the code should make small
cycles less likely. We see that increasing the length of the irregular codes to
221 does indeed remedy their performance. The success rate of the longer codes
begins to drop at € = 0.494, which is on the verge of the predicted threshold.

3.5 Notes

In addition to the cited sources, the book Modern Coding Theory [13] by Richard-
son and Urbanke, and Chapter 13 of the lecture notes for Principles of Digital
Communication II [6] by David Forney were used throughout this chapter. All
empirical results were obtained by the author.
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Length 2048

Length 22

Probability

of erasure e
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64

0.6460
0.6465
0.6470
0.6475
0.6480
0.6485

0.65
0.66
0.67
0.68
0.69

Number
of iterations*
12 (0.4)
48 (0.4)
5.2 (0.4)
5.9 (0.4)
6.6 (0.5)
7.6 (0.5)
8.9 (0.6)
1.2 (0.9)
1.9 (1.0)
126 (1.2)
13.6 (1.4)
14.9 (1.8)
16.5 (2.6)
19.0 (4.2)
22.8 (6.8)
28.3 (10.0)
34.5 (12.4)
38.1 (13.6)
38.4 (13.7)
38.5 (13.5)
38.7 (13.5)
39.0 (13.6)
39.3 (13.8)
40.2 (13.9)
45.2 (15.0)
48.5 (13.6)
62.7 (18.1)
n/a (n/a)

Success rate
100.00 %
100.00 %

99.99 %
99.99 %
99.99 %
99.96 %
99.96 %

99.94 %
99.93 %
99.93 %
99.93 %
99.93 %
99.89 %
99.61 %
97.55 %
87.48 %
62.84 %

42.43 %
40.75 %
38.92 %
37.36 %
35.83 %
34.15 %

29.59 %
8.49 %
1.51 %
0.07 %
0.00 %

Number
of iterations™
5.0 (0.1)
5.9 (0.3)
6.0 (0.0
7.0 (0.0)
7.6 (0.5)
85  (0.5)
100 (0.0)
12.0  (0.0)
13.0  (0.1)
13.3 (0.5
142 (0.4)
156 (0.5)
170 (0.1)
19.0  (0.1)
220 (0.2)
274 (0.5)
415 (1.1)
97.5 (16.7)
130.8 (48.5)
183.5 (95.6)
262.7 (125.4)
308.0 (142.7)
n/a (n/a)
n/a (n/a)
n/a (n/a)
n/a (n/a)
n/a (n/a)
n/a (n/a)

*Mean value with sample standard deviation in parentheses.

Success rate

100 %
100 %
100 %
100 %
100 %
100 %
100 %

100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %

100 %
99 %
80 %
33 %
3 %
0 %

0 %
0 %
0 %
0 %
0 %

TABLE 3.2: Decoding (3,4)-regular LDPC codes on a BEC(¢).
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Chapter 4

Encoding LDPC codes

The most straightforward method of encoding an LDPC code, given its m x n
parity-check matrix H, is to precompute the generator matrix G' using Gaussian
elimination, and then multiply each message block by GG. Generally, G will not be
a sparse matrix, and the multiplication will therefore require time O(n(n —m)),
which is O(n?), assuming constant rate.

Ideally, we would like to perform the task in time O(n). There are two possible
approaches that can be taken. One is to design a general algorithm that works
efficiently on any LDPC code. The other is to design LDPC codes that admit an
efficient encoding algorithm. We start with a method introduced by Richardson
and Urbanke, which uses the first approach.

4.1 The general case

Given a sparse parity-check matrix over Fy in upper triangular form with ones
on the diagonal, the encoding of a message into a codeword x can be performed
by filling the last n — m entries of x with the message bits and solving for the
remaining entries by back substitution. We start by solving for x,,, which can be
done in time O(1), as the matrix is sparse. We continue with z,,_; and so on,
taking time O(m) = O(n) to perform the whole task.

Given a sparse parity check matrix that is not in upper triangular form, we
could convert it by Gaussian elimination and column permutation, but the re-
sulting matrix would generally not be sparse. We therefore need to choose a
more cautious approach. Instead of using algebraic operations to perform the
conversion to upper triangular form, we limit ourselves to row and column per-
mutations. These operations are generally not powerful enough to yield a matrix
in the desired form, so the best we can do is obtain a matrix in approximate
upper triangular form as shown in Figure 4.1, where the size of the gap ¢ is as
small as possible. We shall assume throughout this section that we are given a
parity-check matrix that has full rank.

Split the vector z into vectors pi, po and s of length m — g, g and n — m,
respectively. Vectors p; and py contain the parity bits of z, while s contains
the message bits. Assuming we have the parity-check matrix in approximate
upper triangular form, we could finish the conversion to full upper triangular
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FIGURE 4.1: Parity-check matrix H in approximate upper triangular form.

form by Gaussian elimination and column permutation, obtaining a matrix with
E = 0 and C in upper triangular form, with ones on the diagonal. However,
the submatrices C' and D would not be sparse after this operation, and the
computation of py by back substitution would therefore require time O(ng). The
remaining parity bits in p; would then be computed as before, in time O(n). We
will show that it is possible to improve upon this result by computing ps in time
O(n + ¢%).

Assume that the first m columns of the parity-check matrix are linearly in-
dependent. If not, then we can permute the columns of H to make the first m
linearly independent. We eliminate the submatrix £ by multiplying H from the
left by a regular matrix:

I 0\(T A B\ (T A B
—eT* 1)\E ¢ D)~ \0 C-ET'A D-ET'B)"

Define C' = C'— ET~'A, this matrix is regular. This can be seen as follows. The
submatrix (L 4) of H is regular by assumption, and we multiplied from the left
by a regular matrix, thus the submatrix (7 &) of the result is regular, its rows
are linearly independent and therefore the rows of C” are linearly independent.
In order to find po, we need to solve the equation C'pi + (D — ET !'B)s™ = 0,
which translates to p; = —C""'(D — ET"'B)sT. Since B is sparse, BsT can
be computed in time O(n). The multiplication by 7! can also be performed
in linear time, since its equivalent to solving Ty' = BsT, which can be done
by back substitution (7" is upper triangular and sparse). Multiplication by the
sparse matrices D and F, and the subtraction are all O(n). Only multiplication
by the g X g matrix C'~! remains, and this requires time O(g?).

Assuming we have converted the parity-check matrix into approximate upper
triangular form, such that the first m columns are linearly independent, and
assuming we have precomputed C’~!, the overall complexity of this encoding
algorithm is O(n + ¢?).

Conversion into approximate upper triangular form

We now discuss a simple algorithm that brings the parity-check matrix H into
approximate upper triangular form by performing row and column permutations.
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We start with Hy = H and proceed in steps. The parity-check matrix after step ¢
is denoted H;. The size of the upper triangular submatrix 7" starts at 0 x 0 and
increases by one row and one column in each step of the algorithm. The size of the
gap g starts at 0 and increases as needed. The algorithm stops when g 4+t = m.

The submatrix of H; consisting of rows t+1,...,m—g and columns t+1,...,n
will be referred to as the residual parity-check matrix. At the beginning of the
algorithm, the residual parity-check matrix is the whole matrix H. In each step,
we find a column of the residual parity-check matrix that has minimum positive
weight. Denote the position of this column with respect to H by j. Denote the
positions of the non-zero entries in this column with respect to H by iy,..., 4.
Choose one of these non-zero entries, say i1, and swap columns j and t + 1 of H
and rows ¢; and t + 1 of H, so as to bring the non-zero entry onto the diagonal.
Move the rows i, . . ., 74 that contain the remaining nonzero entries, to the bottom
of the matrix. Increase t by 1 and increase g by d — 1. Repeat, until g +t = m.

In [12, 13] Richardson and Urbanke show how to estimate the size of the gap
left by this algorithm by solving a system of differential equations. For a (3,6)-
regular code their estimate is approximately 0.017n. When the algorithm was
applied to a randomly generated (3,6)-regular LDPC code of length 2048, the
gap came out to 39, which is indeed close to the estimate, 39/2048 ~ 0.019. The
number of operations required to encode one block is therefore 0.017*n* + O(n).
Although the encoding complexity is quadratic in n, the small constant makes it
well manageable even for n as large as 100000.

The authors also showed that codes that allow transmission close to capacity
have gaps of order less than /n, with high probability. This makes the encoding
complexity linear in n. In practice, the resulting gap for such codes is typically
in the range of one to three, even for very large lengths like one million.

4.2 Codes with cascaded sparse Tanner graphs

In [9] Luby, Shokrollahi et al. introduce a class of codes with a simple linear time
encoding algorithm. Their codes have the advantage that they can be designed
to allow communication at rates arbitrarily close to channel capacity on a BEC,
provided the length of the code is large enough.

Consider a sparse Tanner graph with £ variable nodes and n — k check nodes.
We shall refer to its variable nodes as message nodes. To each of the n — k
check nodes, attach a new variable node of degree 1. We shall refer to these new
variable nodes as parity nodes. Figure 4.2 shows an example of such a graph with
the parity nodes placed on the right.

The encoding algorithm on such graphs is quite simple. Fill the first k entries
of x with the message bits. Then for each check node, compute the mod-2 sum of
the message bits, which are connected to that check node, and assign the result
to the corresponding parity bit. Assuming the Tanner graph has O(n) edges, this
encoding algorithm requires O(n) operations.

Assume that we transmit a codeword of this code over a BEC(¢), and that
some message bit, say x;, is erased in the process. Recall that under sum-product
decoding, a check node can recover an erased variable node only if all the other
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FI1GURE 4.2: Tanner graph with added parity nodes.

variable nodes connected to that check node are unerased. The probability that
a check node which is connected to x; cannot recover the erased bit is at least ¢
(the probability that the corresponding parity bit is erased). The probability
that none of the check nodes connected to x; can recover the erased bit is at
least ¢, where d is the degree of the message node z;. If we denote the fraction
of message nodes that have degree d by L4, then the probability that a randomly
chosen message bit is erased and is unrecoverable under iterative decoding is at
least £ >, Lge?. This result is independent of the length of the code. Therefore,
if we maintain the message node degree distribution, this lower bound on the
expected fraction of unrecovered bits will remain constant even for large n.

The problem lies in the fact that the parity nodes have degree 1. The erasure
of a parity bit permanently impairs the ability of the corresponding check node
to recover erased message bits. In order to overcome this problem, the parity
bits also need to have the ability to be recovered in case of erasure. We therefore
need to increase the degree of the parity nodes, while maintaining the efficiency
of the encoding algorithm. The solution is to protect the parity bits in the same
fashion as we protect the message bits, i.e. with another level of parity bits, and
these are in turn protected by yet another level of parity bits and so on, forming
a cascade of bipartite graphs. Figure 4.3 illustrates the scheme. At each level,
the number of parity nodes decreases by a fraction f3, i.e. the first level contains
Bk parity bits, the second k%, and so on. Finally, the last level is protected by
a conventional code (e.g. a Reed-Solomon code or an LDPC code) of rate 1 — f.
The total number of parity bits then adds up to

aVE R BV A N Bk
1- 3’

1_5+;B%:m+k(ﬁ_l

where NNV is the number of levels of parity bits. The number of levels N is chosen
so that SNk ~ v/k. The resulting code will have rate
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FIGURE 4.3: Cascaded Tanner graph with £k =12, § = 0.5 and N = 2.

The encoding now takes place separately at every level, starting from the left.
At each level, parity bits are computed the same way as before. The results
enter the next level, and are used to compute the next set of parity bits, and so
on. The number of operations required to compute all parity bits up to level N
is proportional to the number of edges in Tanner graph. The level N parity
bits, of which there are SNk ~ vk, are then encoded by the conventional code.
Assuming that the conventional code can be encoded in quadratic time and that
the total number of edges in the Tanner graph is O(n), the encoding takes time
O((VE)?) + O(n), which is O(n), assuming constant rate.

The question now is how to design the subgraphs that form the levels of the
cascaded Tanner graph, so that the resulting code provides good performance
on the BEC(g). Recall that in Section 3.4 we discussed the design of degree
distributions, which yield codes that allow communication at rates arbitrarily
close to channel capacity on the BEC. This allows us to find a degree distribution,
such that the corresponding LDPC code is capable of recovering any e-fraction
of erasures with high probability, and its rate R comes arbitrarily close to the
channel capacity 1 — . Let us construct the subgraphs of our cascade, so that
each of them has such a degree distribution. The number of check nodes in any
of the subgraphs is then (1 — R) times the number of variable nodes in that
subgraph, in other words f = 1 — R. For the conventional code, we use a code
that can recover any e-fraction of erasures with high probability. (A code with
the required properties does exist, since its rate is 1 — § = R < 1 —e = Cpgc(¢).)

Consider the following decoding algorithm for transmissions over BEC(g). We
proceed on a level by level basis, starting from the right. First, the conventional
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code is used to recover the highest level parity bits, these are in turn used in
recovering erased parity bits at the next lower level, and so on. The recovery
operation taking place at each of the subgraphs is simply the greedy decoding
algorithm discussed in Section 2.1. Assume that the conventional code recovered
all the level N parity bits. Use the sum-product algorithm on the level N sub-
graph to recover any erased level N — 1 parity bits. Since the level N parity bits
are assumed to be known, they will have no impact on the success rate of the
sum-product algorithm, and the algorithm will therefore recover any e-fraction
of erasures among the level N — 1 parity bits with high probability. We can
now assume that all the level N — 1 parity bits have been recovered, and apply
the argument inductively to decoding at the next lower level. Eventually, we
reach the level 1 subgraph and we are able to recover the message bits with high
probability.

A more extensive probabilistic analysis of the decoding process is conducted
in [9]. The authors show that for any ¢ > 0 this method can be used to produce
codes of rate 1 — e(1 + J) that recover from any e-fraction of erasures with high
probability for sufficiently large n. The average variable node degree in each of the
subgraphs is then In(1/§) and so both the encoding and the decoding algorithm
run in time O(nlIn(1/9)).

4.3 Repeat-accumulate codes

In [4] Divsalar, Jin and McEliece introduced a class of simple turbo-like codes
which they call repeat and accumulate (RA) codes. For the purposes of encoding,
these codes can be described as interleaved serially concatenated convolutional
codes, and for the purposes of decoding, they can be viewed as LDPC codes,
because they have a sparse parity check matrix. Figure 4.4 shows the encoding
scheme. A message of length k is repeated ¢ times, forming a vector of length ¢k.
The entries of this vector are permuted and it is then encoded by a rate 1 accu-
mulator. The output of the accumulator is then transmitted. The accumulator
is a linear transformation, which maps (21, z2,...,Zg) to (Y1,%2, ..., Yg), Where

Yy = €,
Yo =T + o,

Y3 = T1 + To + T3,

Ygk = T1 + T2+ T3+ + Tgk-

Since repetition, permutation and accumulation are all linear transformations,
the encoding operation is a linear mapping. The image of F§ under RA encoding
is therefore a subspace of F*. Thus RA codes are linear [gk, k] codes of rate 1/q.
Their encoding time is linear in the length of the code, since the permutation
requires no more than O(gk) operations and the accumulator performs gk — 1
operations of mod-2 addition.

Figure 4.5 shows the Tanner graph of a very simple example of an RA code
with ¢ = 3 and k = 2. The variable nodes corresponding to the message bits have
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FIGURE 4.4: Encoder of a [gk, k] repeat and accumulate code.

been placed on the left side of the Tanner graph, while the remaining variable
nodes are placed on the right, we shall call these nodes message nodes and parity
nodes, respectively. The arrangement of the parity nodes and check nodes acts
as the accumulator. The input message (x1,z2) gets repeated 3 times yielding
(21, T2, 1, T2, T1,T9). This is permuted to obtain the vector (s, x1, 1, T2, 21, T2),
which is then accumulated to obtain the parity bits (yi, ..., ys)-

oy6:x2+x1+:c1+x2+:c1+x2

Ys = T2+ T1 + 21 + X2+ 21
4op)
Yy = T+ X1+ 21+ 22

®Ys =22+ X1+ 2

x

FiGURE 4.5: Tanner graph of a repeat and accumulate code with ¢ = 3 and
k= 2.

The Tanner graph of an RA code is sparse, since the number of edges is
gk +2qk —1 < 3gk = 3n. Notice that by the above definition, only the parity bits
Y, ..., Ygr get transmitted. We can think of the message bits x1, ...,z as being
guaranteed to be erased. The sum-product decoding algorithm is then applied to
recover the message bits.

RA codes which transmit both the message bits and the parity bits are called
systematic RA codes. Systematic RA codes are [(g+1)k, k] codes of rate 1/(g+1).

One of the drawbacks of these codes is that they are inherently low-rate, and
that the range of possible rates is very limited (1/2,1/3,1/4,...). This problem
can be overcome by deleting some of the parity bits in the encoder output. This
procedure is known as puncturing. A common way to do this is for the encoder
to output only every ath parity bit: (ya, Y24, Y3a, - - - )- Figure 4.6 shows how the
Tanner graph of the code from the previous example is changed, when we apply
this approach with a = 2. What effectively happens is that every a check nodes
are merged into a single check node of degree a + 2. We see that this method
cannot be applied to non-systematic RA codes, because if all the message bits
are erased, then each check node is connected to at least two erased nodes, and
therefore the decoding algorithm cannot recover any information. The systematic
RA codes that employ this puncturing method are [k + gk/a, k] codes of rate
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a/(a+ q). It was shown in [8] that on the BEC these RA codes can outperform
randomly generated regular LDPC codes of equivalent length, rate and parity-
check matrix density.

®Ys =2t X1+2T1+ X2+ 21+ X2

T2 @
O Yy =T+ X1 +2T1+ X2

! 0 Y2 =1+ 11

FIGURE 4.6: Tanner graph of a repeat and accumulate code with ¢ = 3, k = 2
and a = 2.

The performance of these codes can be further improved by repeating some
bits more often than others. That way, the message nodes in the Tanner graph
will have an irregular degree distribution. Such codes are called irreqular repeat-
accumulate (IRA) codes. These codes were introduced in [7], where their per-
formance on the BEC was studied. The authors showed how to choose for any
e € (0,1) and any @ > 1 the message node degree distribution, so that the code
is able to correct any e-fraction of erasures with high probability. The rate of the
codes with such message node degree distribution can be brought arbitrarily close
to the channel capacity 1 — ¢ by choosing a large enough value of a. Note that
for a > 1, the codes have to be systematic due to the same reason as regular RA
codes. The codes then have length k+ gk/a, where § is the average message node
degree, and rate 1/(1 + g/a). Since the rate is upper bounded by the capacity
1 — ¢ of the channel, we have § > ae/(1 — ¢). Increasing the value of a therefore
increases the average message degree ¢. But the encoding requires time O(gk), so
increasing the value of a also increases the encoding time. The number of edges
in the Tanner graph is gk + 2gk/a — 1, which is O(gk), so increasing the value
of a increases the decoding time as well. Fortunately, experiments show that the
value of a need not be very large. For example, the authors of [7] constructed a
rate 0.4978 IRA code with a = 5 that has threshold 0.4929 on the BEC.
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Conclusion

We have given a detailed discussion of the sum-product algorithm and proven its
optimality on cycle-free Tanner graphs. We then showed that codes of rate greater
than 0.5 that admit a cycle-free Tanner graph contain codewords of weight 2,
which severely diminishes their error correcting ability and establishes the need
for the study of codes that have cycles in their Tanner graph. The lower bound
for the number of codewords of weight 2 was improved over previous results.

We have given a probabilistic analysis of the sum-product algorithm on the
BEC, and used it to show how to determine the thresholds of LDPC codes on the
BEC. The simulations presented in Chapter 3 confirmed that randomly generated
LDPC codes do indeed allow reliable transmission over any BEC that has erasure
probability below the predicted threshold, provided that the length of the code
is sufficiently large. We discussed the design of irregular LDPC codes that allow
transmission at rates arbitrarily close to channel capacity on the BEC. Based on
simulations, we saw that these codes perform as expected, provided their length
is sufficiently large, but give very poor results for low lengths, at which they may
even be outperformed by comparable regular codes with low thresholds.

Finally, we have seen that the complex encoder problem of LDPC codes has
been largely solved using two main approaches. Firstly, by an algorithm that
exploits the sparseness of the parity-check matrix to obtain an efficient encoder.
Secondly, by specifically designing codes that admit an efficient encoding algo-
rithm.
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Appendix A

Appendix
(3, 6)-regular Irregular
Probability Number Number
of erasure ¢ | of iterations™ Success rate | of iterations™ Success rate
0.05 3.1 (0.3) 100.00 % 4.0 (0.5) 99.93 %
0.10 3.9 (0.3) 99.99 % 5.2 (0.7) 99.49 %
0.15 4.6 (0.5) 99.99 % 6.5 (0.9) 98.89 %
0.20 5.4 (0.5) 99.98 % 8.0 (1.2) 97.81 %
0.25 6.5 (0.6) 99.98 % 9.9 (1.6) 95.70 %
0.30 8.0 (0.7) 99.92 % 124 (2.1) 91.70 %
0.32 8.8 (0.8) 99.91 % 13.7 (2.3) 89.22 %
0.34 9.9 (0.9 99.90 % 15.3 (2.6) 86.20 %
0.36 11.5 (1.3) 99.90 % 17.2  (2.9) 82.06 %
0.38 14.0 (2.3) 99.89 % 19.6 (3.3) 76.89 %
0.40 19.1 (5.6) 98.01 % 229 (4.0) 70.78 %
0.41 235 (8.1) 90.05 % | 25.0 (4.5) 67.20 %
0.42 28.6 (10.4) 68.40 % | 275 (5.1) 62.48 %
0.43 33.8 (11.8) 37.56 % | 30.6 (5.9) 56.80 %
0.44 38.8 (13.1) 13.08% | 34.7 (7.2) 50.51 %
0.45 42.1 (12.5) 234% | 40.0 (9.2) 41.86 %
0.46 45.3 (12.8) 0.19 % | 46.5 (11.3) 30.33 %
0.47 n/a (n/a) 0% | 532 (13.3) 17.06 %
0.48 n/a (n/a) 0% | 604 (14.2) 6.81 %
0.49 n/a (n/a) 0% | 68.6 (16.5) 1.63 %
0.50 n/a (n/a) 0% | 789 (14.5) 0.20 %
0.51 n/a (n/a) 0% | 111.0 (n/a) 0.01 %
0.52 n/a (n/a) 0 % n/a (n/a) 0%

*Mean value with sample standard deviation in parentheses.

TABLE A.1: Decoding the near capacity irregular LDPC codes with degree dis-
tribution (3.10) and length 2048 on the BEC(¢) in comparison with decoding
(3,6)-regular LDPC codes of length 2048.
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Probability Number
of erasure € of iterations

*

Success rate

0.05 30 (0.1)  100.00 %
0.10 3.1 (04)  100.00 %
0.15 40 (0.1)  100.00 %
0.20 51 (0.3)  100.00 %
0.25 7.2 (0.8)  100.00 %
0.26 80 (1.1)  100.00 %
0.27 9.2 (1.7) 99.94 %
0.28 1.0 (3.0) 98.77 %
0.29 13.9 (4.9) 91.08 %
0.30 17.3 (6.5) 65.92 %
0.31 20.7 (7.2) 31.48 %
0.32 23.5 (7.7) 8.21 %
0.33 25.6 (7.6) 1.24 %
0.34 276 (8.3) 0.09 %
0.35 38.0 (n/a) 0.01 %
0.36 n/a (n/a) 0%

*Mean value with sample standard deviation in parentheses.

TABLE A.2: Decoding (6, 12)-regular LDPC codes of length 2048 on the BEC(e).
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Probability Number
of erasure ¢  of iterations™  Success rate
0.20 9.3 (0.5) 100 %
0.25 11.3  (0.5) 100 %
0.30 4.1 (0.2) 100 %
0.35 18.3  (0.5) 100 %
0.40 26.1  (0.3) 100 %
0.41 28.8  (0.4) 100 %
0.42 31.9 (0.4) 100 %
0.43 35.7  (0.5) 100 %
0.44 40.7  (0.5) 100 %
0.45 477 (0.7) 100 %
0.46 57.8  (0.8) 100 %
0.47 747 (1.3) 100 %
0.48 108.5  (2.6) 100 %
0.49 229.2 (11.7) 100 %
0.491 264.3 (15.7) 100 %
0.492 316.9 (24.2) 100 %
0.493 404.8 (46.3) 100 %
0.4940 588.5 (137.0) 92 %
0.4945 746.5 (157.8) 73 %
0.4950 970.3 (249.4) 38 %
0.4955  1166.8 (239.8) 6 %
0.4960  1597.0 (n/a) 1%
0.497 n/a (n/a) 0 %

*Mean value with sample standard deviation in parentheses.

TABLE A.3: Decoding the near capacity irregular LDPC codes with degree dis-
tribution (3.10) and length 2! on the BEC(e).
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