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protein α 
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protein β 
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STAT3 signal transducer and activator of transcription 3 
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tau mutation 
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TBST Tris Buffered Saline Tween 20 
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Tg1116 transgenic animal model (rat) expressing the APP 

V717l mutation  

TG23 transgenic animal model which expresses  the shortest 

human tau isoform (htau 44) under the murine 3-

hydroxy-methyl-glutaryl CoA reductase promoter  

Tg2576 transgenic animal model expressing human APP (1-

695) with the Swedish mutation under the hamster PrP 

promoter 
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Swedish (KM670/671NL), V717F and triple tau 
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Swedish (KM670/671NL), V717F and tau P301L 
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Swedish K670N/M671L mutation 
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TNF-α tumor necrosis factor α 
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V337M transgenic animal model expressing the human tau 

V337M mutation 

V717F transgenic animal model expressing the APP V717F 

mutation 
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(London) mutation 

VEGF vascular endothelial growth factor 
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 1. INTRODUCTION: 

 

1.1. ASTROCYTES: 

1.1.1. Historical background and types of astroglial cells: 

 

The brain consists of two cooperating major classes of cells – excitable neurons and 

nonexcitable glia (Verkhratsky et al., 2011). The first concept of glia was introduced by 

the 19
th

 century pathologist Rudolf Ludwig Karl Virchow in his commentary (Virchow, 

1858). The term “glia” was adopted from the Greek word “γλία” and is translated as 

“glue” – meaning something with sticky features. Virchow claimed that glia have a fully 

connective function, literally gluing together. Carl Ludwig Schleich (Schleich, 1894) 

proposed more active interactions between neurons and glia, important for proper brain 

function such as the control of excitatory or inhibitory transmission. The name 

“astrocyte”, as a construction of two Greek words meaning star (“astro”) and cell 

(“cyte”), was finally introduced by Michael von Lenhossek (Lenhossek, 1893). Two 

broad groups of “classic” astrocytes are: protoplasmic astrocytes residing in the grey 

matter and fibrous astrocytes of the white matter. Additionally, interlaminal astrocytes 

are located in the cerebral cortex of higher primates (Colombo and Reisin, 2004). All of 

the  mentioned cells are common in the mature brain, whereas radial glia are the source 

and first-in-place during development, also acting as a platform in the process of neuronal 

migration (Gotz et al., 2002). After reaching maturation, cells of radial appearance can 

still be found in the retina and cerebellum as Müller and Bergmann glia, respectively 

(Lewis and Fisher, 2000; Bellamy, 2006). In the cerebellum velate astrocytes also reside, 

where they ensheath granule neurons. Among other astroglial cells tanycytes, pituicytes, 

perivascular and marginal astrocytes have to be mentioned, as well as ependymocytes 

found in the ventricles, cells of the choroid plexus and retinal pigment epithelial cells 

(Verkhratsky and Butt, 2007). Also, stem cells were identified as astrocyte-like cells from 

two neurogenic regions of the mature brain: the subventricular zone (SVZ) and the 

subgranular zone (SGZ) (Ganat et al., 2006). The SVZ of the lateral ventricles is the 

place where new neurons are generated and migrate through the rostral migratory stream 

(RMS) to reach mainly the olfactory bulb, while the SGZ is located in the dentate gyrus 
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of the hippocampus, where granule cells are produced (Gage, 2000; Ming and Song, 

2011). 

1.1.2. Morphology and organization of astrocytes: 

 

The image of astrocytes as star-like cells is still valid and commonly found in the 

literature. However, together with developing novel techniques to reconstruct their shape, 

some researchers claim that they exhibit a more cubic, rounded or spongiform appearance 

instead (Bushong et al., 2002; Nedergaard et al., 2003). Generally, the protoplasmic 

astrocytes show a very complex arrangement of their main processes, likewise the very 

fine ones that appear at the last stage of the maturation period (Wilhelmsson et al., 2006). 

This type of astrocyte establishes their own microanatomical domains, with strict 

boundaries within the limits of their processes (Bushong et al., 2002; Oberheim et al., 

2009). Those domains are the special workplaces of astrocytes, where they cover 

synapses and neuronal membranes and send processes towards the blood vessels in their 

close proximity to establish, isolate and metabolically support their functional units 

(Verkhratsky et al., 2011; Nedergaard and Verkhratsky, 2012). In contrast, fibrous 

astrocytes are less intricate, with rather straight and not so branched processes. These 

processes are not isolated in separate domains, instead they overlap with the extensions of 

neighboring astrocytes (Oberheim et al., 2006). While the processes of protoplasmic 

astrocytes form perivascular endfeet, the fibrous astrocytes establish contacts with 

neuronal axons at the nodes of Ranvier (Verkhratsky and Butt, 2007). 

The total density of protoplasmic astrocytes within the cortex equals around 10,000 to 

30,000 per mm
3
, while  all of their processes can cover a surface area of even 80,000 µm

2
 

(Verkhratsky and Butt, 2007). In the adult mouse cortex, a single astrocyte can closely 

interact with 4 to 8 neurons and approximately 300 to 600 neuronal dendrites (Halassa et 

al., 2007), whereas in humans and rodents the density of synaptic contacts varies between 

1,100 and 1,300 million per mm
3
 (DeFelipe et al., 2002). Also, the astrocyte-neuron ratio 

increases together with advances in evolution and brain development, thus while in the 

leech just one astrocyte coexists with 25-30 neurons, in the human cortex this ratio equals 

1.4:1 (Bass et al., 1971). Astrocytes in humans outnumber the astrocytes found in lower 

mammals by tenfold and are far more complex. As an example, human protoplasmic 

astrocytes posses about 40 main processes, compared to barely 3-4 main ones in murine 



 12 

astrocytes (Oberheim et al., 2006) (Fig.1). Such correlations in numbers between neurons 

and astrocytes evoke strong interest among scientists to investigate why and how 

astroglial cells contribute to specific brain activities such as higher cognitive functions. 

 

 

 

 

Fig.1 (Right) Evolution of astrocytes and neurons.(a) Graphics of (i) mouse and (ii) 

human cortical astrocytes as well as (b) (i) mouse and (ii) human cortical neurons; (c) 

corresponding bars representing the sizes of the cells (Oberheim et al, 2006). 

(Left) Representation of a protoplasmic astrocyte with an established connection with a 

blood vessel via the astrocytic foot; scale bar 3µm (Sofroniew et al, 2010). 

 1.1.2.a. Astrocytic intermediate filaments: 

 

Intermediate filaments (IF) serve as a main component of the astrocytic cytoskeleton. 

They create a network that assures the flexibility and integrity of the cell. Among major 

astrocytic IF proteins are (i) predominant glial fibrillary acidic protein (GFAP), (ii) 

vimentin, (iii) nestin and (iv) synemin (Middeldorp and Hol, 2011). All of them seem to 

mingle and interact with each other in various ways, depending on the developmental 

stage and pathophysiological conditions. Intermediate filaments (with a diameter of 8-12 

nm) are not alone in creating the cytoskeleton of each eucaryotic cell, they also require 

close collaboration with larger microtubules (diameter 25 nm) and small actin 

microfilaments (diameter of 7 nm) (Lepekhin et al., 2001). Up to now, knowledge about 

the functions of astrocytic IF remains incomplete; however, certain presumptions and 

hypotheses have been made. 
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GFAP was defined, purified and described from the specific plaques made of fibrous 

astrocytes and demyelinated axons, found in the brains of multiple sclerosis (MS) 

patients (Eng et al., 1971; Eng et al., 2000). This protein is assumed to be a standard 

astrocytic marker used worldwide in various studies and in the context of many diseases, 

such as Alexander’s disease, Alzheimer’s disease, Parkinson’s disease, amyotrophic 

lateral sclerosis (ALS), depression and autism (Miguel-Hidalgo et al., 2000; Brenner et 

al., 2001; Laurence and Fatemi, 2005; Middeldorp and Hol, 2011). Among other 

functions, GFAP is known to be involved in the motility of astrocytes, as well as in the 

structural stability of their processes (Weinstein et al., 1991; Lepekhin et al., 2001). 

All types of intermediate filaments proteins consist of three main domains: the amino-

terminal “head”, central helical “rod” and carboxy-terminal “tail” (Reeves et al., 1989) 

(Fig.2).  

 

 

Fig.2 General structure of intermediate filaments. 

 

The process of proper IF protein assembly, especially GFAP, is regulated by 

phosphorylation and depends on a complete head domain as well as on proper protein 

concentration. In case this concentration is too high, the cytoskeleton will break down 

and remains as IF aggregate (Eng et al., 1998; Sihag et al., 2007; Middeldorp and Hol, 

2011). GFAP exists in many different isoforms, among which the best known and studied 

is GFAPα (Middeldorp and Hol, 2011). During several pathological events within the 

brain such as injury and CNS degeneration, GFAP expression increases excessively, 

resulting in a process called reactive astrogliosis (see chapter 1.1.4.a) (Pekny and Pekna, 

2004). A close partner of GFAP is vimentin, also a type III intermediate filament. 

Vimentin is normally present in radial glia, potential precursors in adult neurogenesis, as 

well as in immature astrocytes, in which during the process of differentiation it is 

replaced by GFAP (Dahl et al., 1981; Gotz et al., 2002). All in all, GFAP is the main 

intermediate filament in the adult brain, expressed as a norm by adult astrocytes, where it 
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replaces vimentin, dominant in the neonatal brain (Middeldorp and Hol, 2011). In 

addition to the switch from vimentin to GFAP during the maturation of astrocytes, an 

increase in GFAP expression is also observed also during aging, in both humans and 

laboratory rodents (Nichols et al., 1993; Eng et al., 1998; Hinman and Abraham, 2007). 

This process is most probably connected with the ongoing accummulation of oxidized 

proteins in the body (Morgan et al., 1997).  

Several studies on rodents knockouts (GFAP-/-, Vim-/- and double KO) have 

demonstrated substantial interrelations between intermediate filaments and their 

specificity. For example, mice without GFAP (GFAP-/-) are able to develop and 

reproduce in a normal way, but they are unable to compensate for the lack of this protein 

by the upregulation of the others, what leads to fully IF-deficient astrocytes in the 

hippocampus and the white matter of the spinal cord (Pekny et al., 1995; Faulkner et al., 

2004; Pekny and Nilsson, 2005). When GFAP or vimentin is not present, the mean cell 

speed of astrocytes is restricted, and this restriction worsens when both proteins are 

eliminated (Lepekhin et al., 2001). Furthermore, IF proteins are strongly involved in the 

recovery process after CNS damage, when their action can have both positive and also 

negative effects (see chapter 1.1.4.a).  

GFAP is a key player in many cellular processes involving astrocytes-neuron regulatory 

interactions, such as synaptic plasticity, glutamate homeostasis, neurites outgrowth and 

axonal myelination. Taking into consideration the protein’s importance, every change in 

its expression can lead to significant malfunctions at the level of the synapses as well as 

the glutamate-glutamine cycle (Olabarria et al., 2010; Middeldorp and Hol, 2011; Yeh et 

al., 2011; Kulijewicz-Nawrot et al., 2012). As an example, Tanaka and his colleagues 

(Tanaka et al., 2002) found out that after transient ischemia in GFAP-/- mice, both 

hippocampal long-term potentiation (LTP) and paired pulse facilitation (PPF) are 

significantly depressed compared to controls. Together with the observed lower 

immunoreactivity for NF200 (neurofilament 200) in the GFAP-/- post-ischemic 

hippocampus, which indicates loss of axonal branches, the researchers concluded that 

GFAP was highly relevant for neuronal survival and synaptic plasticity.  

 

Other IF proteins, nestin and synemin are expressed by undifferentiated astrocytes (Luna 

et al., 2010). Nestin, a type VI IF protein is also assumed to be a widely accepted marker 
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for multipotent neural stem cells (NSCs), and its expression is used in monitoring the  

proliferation, migration and differentiation of NSCs (Park et al., 2010). Similar to 

vimentin, during development nestin gradually becomes downregulated and is replaced in 

astrocytes by GFAP. After an injury of the adult CNS, nestin is detected again, indicating 

its regenerative potential (Pekny and Nilsson, 2005; Park et al., 2010).  Nevertheless, the 

presence of nestin is not vital for the integrity of the cytoskeleton, and this protein is not 

able to polymerize by itself or to form IF network (it can just incorporate into such a 

network), neither alone nor with GFAP (Eliasson et al., 1999; Park et al., 2010). As was 

shown on primary astrocytic cultures, nestin requires a partnership to organize itself into 

a network composition (Marvin et al., 1998). The same tendency and needs are displayed 

by synemin, which means that not GFAP, but rather vimentin is the proper partner for 

polymerization (Titeux et al., 2001). Synemin is one of the most interesting IF proteins. 

Sultana and her group (Sultana et al., 2000) showed that during the development of the 

rat cortex, synemin is present only in a specific astrocytic subpopulation that expresses all 

three proteins: GFAP, vimentin and nestin. Surprisingly, synemin is not found before the 

appearance of GFAP, in contrast to the other two proteins typical of immature 

astrocytes/radial glia. It can be concluded that synemin serves as a transient and unique 

protein, expressed during the subtle biochemical and morpohological changes that radial 

glia cells undergo in order to become mature astrocytes. 

 1.1.2.b. S100β: 

 

Another protein and growth factor typical for astrocytes is S100β (or S100B), isolated for 

the first time from bovine brain and named “S100” due to its solubility in a 100% 

saturated solution of ammonium sulfate (Moore, 1965; Van Eldik and Wainwright, 

2003). This protein is a member of the broad family of S100 proteins, which because of 

their structure are able to detect Ca
2+

 and upon activation by this molecule interact with 

intracellular target proteins, influencing their activity (Steiner et al., 2011). S100β protein 

is engaged in many processes including the most important neuron-glia interactions 

within the brain. Among the beneficial effects of S100β are those connected with 

neuronal development and maintenance, together with the induction of neurite outgrowth, 

neuronal guidance during development and neuronal survival (Haglid et al., 1997; Mrak 

and Griffinbc, 2001; Van Eldik and Wainwright, 2003). S100β protein was shown to be 
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an important potential neuromodulator in the nervous system because of its effects on 

neuronal electrical activity by increasing or decreasing concrete potassium currents 

(Kubista et al., 1999).  

It is well known that reactive astrocytes overexpress S100β (Mrak and Griffinbc, 2001). 

Elevated levels of S100β were reported in various pathological conditions, including 

Alzheimer’s disease (Van Eldik and Wainwright, 2003; Steiner et al., 2011). This 

increased level can be directly neurotoxic or can provoke astrocytes and microglia to 

generate an inflammatory response manifested by the production of cytokines and NO, 

which can result in the dysfunction or even the death of neurons (Steiner et al., 2011). In 

Alzheimer’s disease, the vast majority of overexpressing S100β reactive astrocytes are 

detected around Aβ plaques, where the degree of the increased expression of this protein 

is correlated with the stage of plaque formation from non-fibrillar deposits to their final 

form (Mrak and Griffinbc, 2001).  

S100β has been used in many studies as a potential biomarker of the disease progression; 

however, due to certain limitation and inconsistent data, the usefulness of the protein is 

still under debate and needs more attention together with careful experimental conditions 

(Tumani et al., 2008; Steiner et al., 2011). 

1.1.3. Role of astrocytes in the physiology of the CNS: 

 

Astrocytes are omnipresent glial cells occupying 25-50% of brain volume (Kimelberg 

and Norenberg, 1989; Magistretti and Ransom, 2002). They are key players in providing 

metabolic and structural support, as well as contributing to BBB formation, controlling 

the microenvironment and signaling within the CNS (Verkhratsky and Butt, 2007; 

Sofroniew and Vinters, 2010). Specific kinds of stem cell like-astrocytes residing in the 

hippocampal subgranular zone and the subventricular zone actively participate in adult 

neurogenesis and gliogenesis (Gotz and Huttner, 2005; Verkhratsky and Butt, 2007; 

Rodriguez et al., 2008; Rodriguez et al., 2009a; Rodriguez and Verkhratsky, 2011b). 

Astrocytes are joined by gap junctions to create characteristic complexes called syncytia, 

which are formed from connexons (Giaume and Venance, 1998). Connexons shape pores 

that are permeable to ions and small molecules, such as nucleotides, sugars, amino acids, 

small peptides, cAMP, inositol triphosphate (IP3) and Ca
2+ 

(Magistretti and Ransom, 

2002). Glial Ca
2+ 

signaling is a crucial form of communication within syncytia and 
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allows coordination between certain adjoining cells (Cornell-Bell et al., 1990; Magistretti 

and Ransom, 2002; Scemes and Giaume, 2006). The important role of astrocytes is 

connected with controlling homeostasis in the brain, which means the concentrations of 

ions, metabolites and neurotransmitters (including the most neurotoxic one, glutamate; 

see chapter 1.1.3.a) as well as regulating water flow (Danbolt, 2001; Simard and 

Nedergaard, 2004; Verkhratsky and Butt, 2007). In terms of ion concentration regulation, 

one of huge importance is K
+
, the presence of which increases extracellularly as a result 

of neuronal activity and which can significantly alter neuronal activity when unregulated 

(Kofuji and Newman, 2004). Astrocytes possess important mechanisms to buffer [K
+
]o. 

One of these is spatial K
+
 buffering, where K

+
 is tranferred from region of a higher [K

+
]o 

to areas with lower [K
+
]o within a syncytium or single cell (Kofuji and Newman, 2004; 

Benarroch, 2005). In another mechanism, astrocytes buffer ion concentration via K
+
 

uptake by inwardly rectifying K
+
 channels (Kir) (Newman et al., 1984). Both ways of 

regulating of K
+
 concentration are connected with water transport and the activation of 

astroglial water channels called aquaporins (AQPs), localized in perisynaptic and 

astrocytic endfeet processes (Amiry-Moghaddam and Ottersen, 2003; Simard and 

Nedergaard, 2004).  

Astrocytes are known to express a variety of neurotransmitter receptors (both forms: 

ionotropic and metabotropic), including those for such important molecules as glutamate, 

purines or GABA (Lalo et al., 2006; Verkhratsky and Butt, 2007; Lalo et al., 2008). 

Various types of correlation between neuronal and astrocytic receptors exist, meaning 

that both classes of cells present a similar set of neurotransmitter receptors in their close 

proximity (Verkhratsky and Shmigol, 1996; Verkhratsky et al., 1998). Astrocytes also 

express receptors for glycine, mainly in the spinal cord (Kirchhoff et al., 1996), 

adrenergic receptors (αARs and βARs), dopamine receptors D1 and D2 in the cortex 

(Khan et al., 2001), acetylcholine receptors (muscarinic mAChRs and nicotinic nAChRs) 

and many others (for review see (Verkhratsky, 2009)). Astrocytic nAChR receptors have 

begun to be suspected of involvement in Alzheimer’s disease pathology after an 

increased number of astrocytes positive for the α7 subunit of this receptor was found in 

AD patients with Aβ plaques (Teaktong et al., 2003; Yu et al., 2005). 
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The vast majority of other regulatory and metabolic functions of astrocytes along with the 

tight interplay between neurons and astroglia will be introduced in details in the 

following chapters.  

 1.1.3.a. Role of astrocytes in glutamate metabolism: 

 

Glutamate is the major excitatory amino acid in the mammalian CNS and is involved in 

many important brain functions, including cognition, memory and learning – in the last 

two glutamate is involved mainly via long-term potentiation (LTP) (Fonnum, 1984; 

Collingridge and Lester, 1989; Headley and Grillner, 1990; Baudry and Lynch, 2001; 

Danbolt, 2001). This excitatory neurotransmitter is a key player when it comes to the 

development of the CNS, which means synapse formation and removal, as well as 

managing the life and death of the cells. Glutamate acts through glutamate receptors, 

expressed by both neurons and glial cells (Verkhratsky and Butt, 2007). For its proper 

function and metabolism, this excitatory neurotransmitter needs specific proteins and 

transporters. 

  1.1.3.a.1. Glutamine synthetase (GS): 

 

Astrocytes are able to prevent excitotoxicity by clearing excess amounts of glutamate 

from the extracellular space. They do that through astrocytic glutamate transporters, 

which are assumed to play the main role in glutamate clearance (Dringen et al., 2000; 

Maragakis et al., 2004; Zou et al., 2010). Subsequently in astrocytes, glutamate is 

converted to nontoxic glutamine, which is then hydrolyzed in neurons to glutamate by the 

enzyme glutaminase (Zou et al., 2010). The cycle of the constant flow and conversion of 

glutamate and glutamine between astrocytes and neurons is considered to be the main 

pathway of glutamate recycling and strictly requires the astrocytic enzyme glutamine 

synthetase (GS) (Danbolt, 2001; Shaked et al., 2002). GS is an omnipresent enzyme, 

encoded by a single gene, which uses ATP to convert glutamate and ammonium to 

glutamine (Matthews et al., 2005). This enzyme is present in almost all tissues, among 

them in kidney, liver, skeletal muscle, spleen, heart and brain (Meister, 1985; Rowe, 

1985; Sihag et al., 2007). In vertebrates GS is present throughout the brain, playing a 

crucial role in the detoxification of brain ammonia and the metabolic regulation of 

glutamate (Kaneko et al., 1988; Suarez et al., 2002). Glutamine synthetase is found 
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primarily in astrocytes, in vivo as well as in vitro, but is also expressed to some extent by 

Müller glial cells of the retina and oligodendrocytes (Martinez-Hernandez et al., 1977; 

Riepe and Norenburg, 1977; Norenberg, 1979; Linser and Moscona, 1983; Yamamoto et 

al., 1987; Fages et al., 1988; D'Amelio et al., 1990; Derouiche and Frotscher, 1991; Prada 

et al., 1998). The activity of GS is dependent on the developmental stage: during 

maturation its expression is increasing, in rodents reaching adult levels at around 20 days 

of postnatal life, while during aging GS expression declines (Caldani et al., 1982; Smith 

et al., 1991; Takahashi et al., 2002). It is widely accepted that the increase in GS 

expression during development is connected with astrocytic differentiation, not 

necessarily with proliferation and that in the adult CNS GS-immunoreactivity is detected 

in the majority of brain regions (Caldani et al., 1982; Derouiche and Frotscher, 1991). 

Because GS possesses a divalent cation site, the enzyme is highly sensitive to oxidation, 

so that changes of GS activity are usually used for estimating oxidative damage limits of 

brain tissue (Schor, 1988). Also, considering the central role of astrocytic GS in the 

metabolism of glutamate, an imbalance of which is well known to be involved in many 

neurological disorders, it is not an overstatement to say that glutamine synthetase plays 

an important role in brain pathological states (Vardimon, 2000; Suarez et al., 2002). In 

many brain injuries and disorders, including ischemia, hypoxia, schizophrenia, 

depression, hepatic encephalopathy, spinocerebellar atrophy and Alzheimer’s disease, up- 

or downregulations of the enzyme has been described (Lavoie et al., 1987; Sher and Hu, 

1990; Smith et al., 1991; Kish et al., 1994; Le Prince et al., 1995; Tumani et al., 1999; 

Robinson, 2000; Burbaeva et al., 2003; Burbaeva et al., 2005; Hoshi et al., 2006; Steffek 

et al., 2008; Miguel-Hidalgo et al., 2010). GS activity is also found to be reduced in the 

case of glucose deprivation (Rosier et al., 1996). Additionally, some researchers claim 

that GS is expressed by neurons when deprived of glutamine or interactions with 

astrocytes, but until now definitive information is scarce (Fernandes et al., 2010). 

However, as in the case of Alzheimer’s disease, taking into consideration some 

discrepancies in results between certain groups and the still limited number of studies, a 

deeper insight into glutamate converting enzymes in AD is needed (Burbaeva et al., 

2005; Olabarria et al., 2011; Kulijewicz-Nawrot et al., 2013; Yeh et al., 2013).  

  1.1.3.a.2. Glutamate transporters: 
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Glutamate transporters (EAATs – Excitatory Amino Acid Transporters), by high activity 

cellular uptake, which assures the fast removal of excitatory amino acid from the 

extracellular space, and the ending of receptor activation, are essential for maintaining 

glutamate homeostasis in the mammalian brain (Walton and Dodd, 2007). Until now, five 

different Na
+
-dependent high-affinity glutamate transporters have been described 

(EAAT1-5), which for the transfer of one molecule of glutamate require the symport of 

three Na
+
 and one H

+
 ions and the countertransport of one K

+
 ion (Zerangue and 

Kavanaugh, 1996; Kanai and Hediger, 2003; Walton and Dodd, 2007). The transporters 

are localized on the plasma membrane of miscellaneous cells in the CNS, belong to the 

solute carrier family 1 (SLC1) and share 50-60% sequence homology (Kanai and 

Hediger, 2003, 2004; Sheldon and Robinson, 2007). Two of them, EAAT1 (rodent 

analog – GLAST) and EAAT2 (rodent analog – GLT-1), are found primarily on 

astrocytes, while others two, EAAT3 (rodent analog – EAAC1) and EAAT4, are assumed 

to be expressed mainly by neurons (Kanai and Hediger, 1992; Arriza et al., 1994; 

Rothstein et al., 1994; Lehre et al., 1995) (Fig. 3). The last type of glutamate transporter, 

EAAT5, is colocalized particularly with rod photoreceptors and bipolar cells of the retina, 

where it controls excitatory neurotransmitter release by hyperpolarizing the presynaptic 

nerve terminal (Arriza et al., 1997; Hasegawa et al., 2006; Veruki et al., 2006). 

The two astrocytic transporters, EAAT1/GLAST and EAAT2/GLT-1, are fundamentally 

responsible for extracellular glutamate uptake and maintaining glutamate metabolic 

equilibrium in the CNS (Rothstein et al., 1996; Tanaka et al., 1997; Danbolt, 2001). 
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Fig.3 Drawing showing an excitatory synapse. Excitatory neurotransmitter glutamate 

released from pre-synaptic terminals activates its ionotropic and metabotropic receptors. 

Glutamate is taken up by certain glutamate transporters. In astrocytes glutamate is 

converted to nontoxic glutamine by a specific enzyme, glutamine synthetase. 

Subsequently, glutamine is shuttled and taken up by neurons. Glu -glutamate; Gln –

glutamine; mGluR –metabotropic glutamate receptors; iGluR –ionotropic glutamate 

receptors; NMDA -N-methyl-D-aspartate; AMPA -α-amino-3-hydroxy-5-methyl-4-

isoxazole propionate; GLAST –excitatory amino transporter 1; GLT-1 –excitatory 

amino transporter 2; EAAC1 –excitatory amino acid transporter 3 (Sheldon et al, 2007). 

  * EAAT1/GLAST glutamate transporter: 

 

EAAT1/GLAST is expressed in many regions of the brain and spinal cord, with different 

intensities depending on the region. It serves as the main glutamate transporter in the 

cerebellum, the inner ear, the retina and the circumventricular organs close to the BBB 

(Furness and Lehre, 1997; Lehre and Danbolt, 1998; Rauen et al., 1999; Berger and 

Hediger, 2000; Cummings, 2004). GLAST is a specific astrocytic transporter, also found 

in other astroglial cells such as a certain subpopulation of radial glia, the cerebellar 

Bergmann glia, supporting glia in the vestibular organ and glia-like Müller cells of the 

retina (Robinson, 2006). It is hardly expressed in nonastrocytic cells, while occasional 

studies report the presence of GLAST in oligodendrocytes (for example in the rat optic 

nerve) (Domercq et al., 1999; Regan et al., 2007).  
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  * EAAT2/GLT-1 glutamate transporter: 

 

Among all glutamate transporters, EAAT2/GLT-1 is the most common one throughout 

the CNS, expressed mainly in the forebrain, striatum, hippocampus and spinal cord 

(Lehre et al., 1995; Furuta et al., 1997; Yang and Rothstein, 2009). It is presumed that at 

the protein level GLT-1 expression can account for 1% of total brain protein (Danbolt, 

2001). GLT-1 protein is found in protoplasmic as well as fibrous astrocytes from the grey 

and white matter, with no described presence in the pituitary gland or sensory 

circumventricular organs: the subfornical organ, the vascular organ of the lamina 

terminalis and the area postrema (Berger and Hediger, 2000; Yang and Rothstein, 2009). 

Based on a variety of studies, GLT-1 is an astrocyte-specific transporter with no evidence 

that this protein is expressed by any other nonastrocytic glial cells in vivo and no definite 

and clearly convincing functional presence in neurons (Danbolt, 2001; Yang and 

Rothstein, 2009). When deprived of neuronal influence, astrocytes express very low 

levels of GLT-1 protein, which suggests that certain soluble factors released by neurons 

in vivo (not defined yet) play an important activating role in GLT-1 expression (Yang 

and Rothstein, 2009). However, some molecules such as EGF, TGF-α, estrogen, 

glucocorticoids, pituitary adenylate cyclase-activating polypeptide, and dibutyryl cAMP 

were reported to activate astrocytic GLT-1 expression in vitro (Schlag et al., 1998; Figiel 

and Engele, 2000; Zschocke et al., 2005; Yang and Rothstein, 2009). As evidence of the 

high importance of neuronal influence, membrane GLT-1 shows a dependency on 

neuronal activity, as demonstrated by changes in the localization of this glutamate 

transporter to the close proximity of neurons releasing glutamate at the moment (Poitry-

Yamate et al., 2002). 

 

According to some studies, in general both astrocytic glutamate transporters, GLAST and 

GLT-1, are coexpressed in the same cells as separate homooligomeric complexes on the 

astrocytic membrane at sites of dense glutamatergic innervation (mainly the hippocampus 

and cerebellum), with a higher proportion of one or the other depending on the brain 

region (Lehre et al., 1995; Haugeto et al., 1996). Nonetheless, more recent studies on 

transgenic mice have shown that GLAST and GLT-1 glutamate transporters function in 

different, nonoverlapping subpopulations of astrocytes (Regan et al., 2007).  
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As already mentioned astrocytes play an important role in the modulation of 

glutamatergic synaptic transmission. A high density of EAAT1 and EAAT2 is found in 

the membranes of astrocytes that enwrap the synapses, meaning that their regulation is 

dependent on the level of synaptic coverage (Ventura and Harris, 1999; Huang et al., 

2004).  

 

Similarly to glutamine synthetase (GS), glutamate transporters, as crucial part of the 

glutamatergic system within the brain, are implicated (by a decrease or increase in their 

expression) in various neurological and neuropsychiatric disorders, including 

Alzheimer’s disease, ALS, Parkinson’s disease, Huntington’s disease, HIV-associated 

dementia (HAD), schizophrenia, bipolar disorder, brain glioma growth, retinal diseases 

and glaucoma (Doble, 1995; Rothstein et al., 1995; Wang et al., 2003; Maragakis et al., 

2004; Beart and O'Shea, 2007; Sheldon and Robinson, 2007). What is known for sure is 

that the downregulation of astrocytic glutamate transporter expression can lead to a much 

greater susceptibility of the CNS to glutamate excitotoxicity, which was first shown in an 

animal model in GLT-1 -/- rats and subsequently found in ALS patients (Rothstein et al., 

1992; Rothstein et al., 1996; Tanaka et al., 1997). When it comes to AD, the mechanism 

responsible for the altered expression of EAAT1 and EAAT2 has not been fully revealed. 

However, applying a non-toxic dosage of Aβ in vitro was shown to aid neuronal survival 

by increasing the expression of EAAT1/GLAST as well as EAAT2/GLT-1 (Abe and 

Misawa, 2003; Rodriguez-Kern et al., 2003). Similar results were obtained with amyloid 

precursor protein, APP (Masliah, 1997; Mattson et al., 1999). Nevertheless, the metabolic 

interactions within the CNS between neurons and astrocytes are very complex, and it is 

still under debate which was first, the chicken or the egg, meaning whether altered 

glutamate transporter expression is the primary cause of the diseases or their 

consequence.  

 1.1.3.b. Role of astrocytes in glucose metabolism: 

 

Neurons receive metabolic support by the glucose-lactate shuttle working within 

astrocytic domains (Danbolt, 2001). When glucose enters the brain, it is first transported 

by the endothelial cells and taken up by astrocytic glucose transporter GLUT1, the most 

abundant type of glucose transporters in the brain (Waagepetersen and Sonnewald, 2009). 
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Neurons can be provided directly with glucose by the GLUT3 transporter (Chih et al., 

2001). GLUT1 in astrocytes is localized on the processes that enclose blood vessels and 

those close to synapses, while neuronal GLUT3 is found all over the cell surface 

(Morgello et al., 1995; Vannucci et al., 1997). The principal difference between the 

mentioned isoforms is their rate of transport, which is seven times faster for GLUT3 in 

comparison to GLUT1 (Vannucci et al., 1997). An increase of Na
+
 concentration in the 

cytosol of astrocytes, as a result of increased neuronal activity and accelerated glutamate 

release, initiates glycolysis. During this process, glucose is converted into pyruvate and 

then to lactate by lactate dehydrogenase (LDH) isoenzyme LDH5, expressed exclusively 

by astrocytes. Subsequently, lactate is transported to neurons with the help of 

monocarboxylase transporters 1 (MTC-1, neuronal) and 2 (MTC-2, astrocytic) 

(Magistretti, 2006; Pellerin et al., 2007). The mechanism of the astrocyte-neuron lactate 

shuttle is asssumed to be of high importance for neuronal metabolic support during 

synaptic activity (Benarroch, 2005). Astrocytes are also equipped with a system of brain 

energy reserves based on glycogen storage of up to 50% of the glucose entering the brain 

and accumulated by astroglial cells (Magistretti and Ransom, 2002). Apart from assuring 

energy supply, glycogen is also a source of carbon for glutamine synthesis, which takes 

place in astrocytes through pyruvate carboxylation and for subsequent glutamate/GABA 

synthesis in adjoining neurons (Hertz et al., 2003; Gibbs et al., 2006). 

 

 1.1.3.c. Neuron-glia vascular unit: 

 

Considering the anatomic location of astrocytes in the brain, they can serve as a major 

transfer station from neurons to the vessels, passing information about the extracellular 

environment. 

The processes of protoplasmic astrocytes create a specific form of contact (called 

endfeet) that is essential from the point of view of the neuron-astrocyte-blood vessel unit 

(Oberheim et al., 2009). Also, a single astrocyte by its numerous processes can contact 

many synapses, as well as stay in touch with other cells within the astrocytic syncytium 

(Fischer and Kettenmann, 1985; Ventura and Harris, 1999).  

According to actual research findings, astrocytes are vital partners in the regulation of 

cerebral blood vessels diameter, by releasing a variety of vasoactive substances, such as 



 25 

adenosine-5’-triphosphate (ATP), adenosine, nitric oxide (NO), prostaglandin E2 (PGE2) 

and epoxyeicosatrienoic acids (EETs) (Amruthesh et al., 1993; Murphy et al., 1993; 

Guthrie et al., 1999; Zhang et al., 2003). The endfeet by themselves are a region that 

expresses noradrenergic receptors and soluble phospholipase A2 (PLA2), produces 

arachidonic acid (AA) and nitric oxide synthase (NOS) and posseses hemichannels 

(Paspalas and Papadopoulos, 1996; Farooqui et al., 1997; Simard et al., 2003). Special 

features of this astrocytic compartment are its high concentration of water channels, K
+
 

channels activated by Ca
2+

 and purinergic receptors, which taken together are postulated 

to be strongly involved in the regulation of the cerebrovasculature (Nicchia et al., 2000; 

Price et al., 2002; Simard et al., 2003; Gordon et al., 2007). To stimulate the release of 

the mentioned substances, an increase of Ca
2+

 in the astrocytic endfeet is needed, as a 

result of neuronal activity. An increase in Ca
2+

 concentration can lead to either 

vasoconstriction or vasodilation (Zonta et al., 2003; Mulligan and MacVicar, 2004; 

Metea and Newman, 2006) (Fig.4.).  

 

Neurovascular dysfunctions in Alzheimer’s disease are the subject of broad research. It 

was shown that AD can occur together with cerebrovascular disease and atherosclerosis 

(Gorelick, 2004; Roher et al., 2004). Also, several pathologies connected with Aβ 

presence in the AD brain were found, including cerebral microvascular pathology, 

cognitive impairment related to amyloid angiopathy and inadequate Aβ clearance across 

the BBB (Farkas and Luiten, 2001; Greenberg et al., 2004; Zlokovic, 2004). However, it 

is still under debate if the neurovascular impairments are the genesis or the result of the 

disease (Zlokovic, 2005). 
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Fig.4 Drawing illustrating two opposite mechanisms of controlling blood vessel diameter 

by vasoactive substances synthesized and released by astrocytes. PLA2 -phospholipase 

A2; AA -arachidonic acid; COX -cyclooxygenase; CYP450 –cytochrome 450; 20-HETE 

-20-hydroxyeicosatetraenoic acid; EET -epoxyeicosatrienoic acid (Gordon et al, 2007). 

 1.1.3.d. Astrocytic involvement in synaptic transmission: 

 

Astrocytes have the capability to release several chemical substances, called 

gliotransmitters. Gliotransmitters, similarly to neurotransmitters released by neurons, 

need to meet certain criteria. This means that a substance called a gliotransmitter needs to 

be synthesized and stored in a glial cell, its release needs to be elicited by physiological 

or pathological stimuli, it has to trigger an immediate response in neighbouring cells and 

it has to be involved in (patho)physiological processes (Volterra and Meldolesi, 2005; 

Parpura and Zorec, 2010). Also, there are different mechanisms by which a 

gliotransmitter can be released, including (i) channel opening triggered by cell swelling, 

hemichannels on the cell surface or purinergic receptors; (ii) transporters, such as plasma 

membrane excitatory amino acid transporters, or exchange mediated by the cystine-

glutamate antiporter as well as organic anion transporters; and (iii) Ca
2+

 dependent 

exocytosis (Bezzi et al., 2004; Parpura and Zorec, 2010). Among the broad repertoire of 

gliotransmitters released by astrocytes are glutamate, ATP, adenosine, GABA, tumor 
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necrosis factor alpha (TNF-α), brain derived neurotrophic factor (BDNF), cholesterol and 

thrombospondins (TSPs) (Araque et al., 1998; Mauch et al., 2001; Beattie et al., 2002; 

Zhang et al., 2003; Elmariah et al., 2004; Christopherson et al., 2005; Volterra and 

Meldolesi, 2005; Angulo et al., 2008). One of the most interesting neuroactive substances 

released by astrocytes is D-serine (Wolosker et al., 2002). D-serine is formed from L-

serine by serine racemase (pyridoxal-5’-phosphate-dependent enzyme) present in 

protoplasmic astrocytes and is assumed to be degraded by D-amino acid oxidase (DAAO) 

(Snyder and Ferris, 2000; Snyder and Kim, 2000; Wolosker et al., 2002; Pollegioni and 

Sacchi, 2010). The level of D-serine varies within the brain, with the highest amount 

observed in forebrain areas, such as the cortex, hippocampus and striatum, where 

NMDA-type glutamate receptors are abundant (Hashimoto et al., 1993; Hashimoto and 

Oka, 1997). This specific glial neuromodulator has been proven to be an endogenous 

ligand for the glycine site of the NMDA receptor, being three-fold more effective even 

than glycine (Matsui et al., 1995; Schell et al., 1995; Snyder and Ferris, 2000; Wolosker 

et al., 2002). It is believed that glutamate released from a presynaptic neuron triggers the 

release of D-serine from neighbouring astrocytes to coactivate the NMDA receptors on 

nearby postsynaptic neurons (Snyder and Ferris, 2000) (Fig.5.). The possible role of D-

serine in pathology of Alzheimer’s disease was described in chapter 1.2.5. 
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Fig.5 D-serine activity in glutamatergic neurotransmission. Astrocytes synthesize specific 

D-amino acid (from L-serine by serine racemase) and release it close to NMDA 

receptors, where D-serine binds to its glycine site, allowing glutamate to bind as well. In 

that way D-serine can influence glutamatergic neurotransmission. Glu -glutamate; D-ser 

-D-serine; NMDA-R -N-methyl-D-aspartate  receptor (Snyder et al, 2000). 

 

Astrocytes are well known to be unable to generate action potentials, a key feature of 

neuronal excitation, but they show a response to stimuli (such as glutamate) by producing 

[Ca
2+

]i transients and oscillations. Also, an increase of [Ca
2+

]i can expand within glial 

networks in the form of so-called calcium waves (Cornell-Bell et al., 1990; Charles et al., 

1991; Bezzi et al., 2001). Set of actions standing behind an increase of Ca
2+

 in astrocytes 

include the activation of G-coupled-receptors, which activates phospholipase C (PLC), 

which in turn causes an elevation of the second messenger inositol-1,4,5-triphosphate 

(Ins(1,2,3)P3) and the release of Ca
2+

 from intracellular stores (Haydon, 2001) (Fig.6). 
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 Fig.6 Possible mechanism of glial Ca
2+ 

wave generation and propagation. Ca
2+

 is 

released from intracellular stores as a result of an increased concentration of internal 

Ins(1,4,5)P3, which simultaneously can spread out to adjoining cells through gap 

junctions (mechanism of short-range signaling). To achieve longer-range signaling, the 

release of ATP is needed, which leads to the regenerative production of Ins(1,4,5)P3 and 

even more ATP release from astrocytes in the close vicinity. Ins(1,4,5)P3 - inositol-1,4,5-

triphosphate; ATP –adenosine triphosphate (Haydon, 2001). 

 

The described astrocytic excitation can be neuron-dependent, when it is created as a 

response to chemical signals within neuronal networks, in addition to spontaneous 

excitation, which arises without neuronal impact. Hence, astrocytes can (i) detect and 

consolidate synaptic activity and appropriately respond to neurons by the release of 

gliotransmitters; (ii) by spontaneous excitation elicit increased activity on adjacent 

neuronal cells, what makes astrocytes important executives in the whole process of the 

excitation within the CNS (Parri et al., 2001; Volterra and Meldolesi, 2005). Considering 

the crucial function of astrocytes in modulating synaptic activity, the tripartite synapse 

model was proposed (Araque et al., 1999). In agreement with this model, the tripartite 

synapse, formed between the astroglial perisynaptic processes, the presynaptic neuronal 

terminal and the postsynaptic neuronal membrane, is a common type of synapse in the 

central nervous system (Araque et al., 1999; Halassa et al., 2007; Heneka et al., 2010). 

Therefore, failure in any astrocytic metabolic function and released transmitters can lead 

to a disruption of synaptic performance, plasticity and neuronal response (Halassa et al., 

2007). (Fig.8) Recently, a new concept of astroglial involvement in synaptic transmission 

was proposed, named the astroglial cradle. According to this, the processes of 

perisynaptic astrocytes form a coat around the synapse to protect it from the influence of 

adjacent ones, creating a separate functional unit. In this model the gliotransmitters do 

not need to be released – the most important aspect is the physical barrier formed by 
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astrocytes within which they control synaptic performance by active ions shuttling and 

metabolic support (Nedergaard and Verkhratsky, 2012) (Fig.7).  

 

 

Fig.7 (Left) Scheme of the tripartite synapse; Glu –glutamate; Gln –glutamine (Eroglu et 

al, 2010). (Right) Model of the astroglial cradle (Nedergaard et al, 2012). 

 

1.1.4. Astrocytes in pathological states: 

 

As has already been mentioned several times, astrocytes are implicated in CNS 

pathologies (Seifert et al., 2006; Giaume et al., 2007; Rossi and Volterra, 2009). Their 

abilities to serve neurons and to assure proper performance as well as homeostasis within 

the brain, altered under pathological conditions, can account for the cascade of events 

leading to brain damage. This subtle balance between physiology and pathology, in 

addition to the two faces of the astrocytic response triggered by such damage as injury or 

neurodegeneration, is an important issue to consider when thinking about therapeutic 

approaches, such as genetic manipulation or drug administration. 

 1.1.4.a. Reactive astrogliosis: 

 

While astrocytes are active partners within the CNS, they naturally react to all kinds of 

insults, including infection, trauma, ischemia and neurodegenerative diseases. The form 

in which they respond is called reactive astrogliosis, a process that involves a set of 

advancing morphological and molecular changes regulated by various complicated intra- 

and intercellular signaling (Rossi and Volterra, 2009; Sofroniew and Vinters, 2010). 
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Reactive astrogliosis is not a straightforward event, and there are many discrepancies and 

misunderstandings in this field. The most cautious and accurate definition is based on a 

few hallmarks: (i) reactive astrogliosis is a range of changes in astrocytes that appear as a 

response to miscellaneous types of the insult within the CNS of different severities; (ii) 

the molecular alterations of reactive astrocytes diverge depending on the nature of the 

insult and its level of severity, from subtle changes in the expression of molecules (such 

as an initial increase in GFAP, vimentin and nestin levels), through progressive 

hypertrophy, in severe cases resulting in proliferation and scar formation; (iii) the 

changes are strictly regulated by certain signaling cascades and molecules with the ability 

to control the nature and level of the changes (i.e. structural changes, astrocytic 

hypertrophy and astrocyte scar formation are under the regulation of STAT3, while 

astrocyte migration is controlled by CEPB1); (iv) the changes during reactive astrogliosis 

influence astrocytic features (which are lost or gained), so that their influence on 

neighbouring cells can also be altered in a detrimental or advantageous way (Sofroniew, 

2009). Changes from the resting state to the reactive one also involve the upregulation of 

the gene repertoire and the release of cytokines, eicosanoids (such as prostaglandins), 

reactive oxygen species, nitric oxide and excitatory amino acids (Perry et al., 1995; Rossi 

and Volterra, 2009). Scar formation demands the triggering of specific molecules, not 

fully known yet, but definitely including epidermal growth factor (EGF), fibroblast 

growth factor (FGF), endothelin 1 and ATP (Gadea et al., 2008; Sofroniew, 2009). 

 

In healthy tissue astrocytic domains are separate entities: they do not overlap and remain 

preserved with hypertrophic changes during mild and moderate states (Bushong et al., 

2002; Nedergaard et al., 2003). However, in a severe level of reactive gliosis, astrocytes 

proliferate, their processes start to overlap and these events lead to scar formation (Bush 

et al., 1999; Faulkner et al., 2004; Wilhelmsson et al., 2006). The glial scar is a result of 

the close collaboration of mainly reactive astrocytes, fibromeningeal cells, microglia and 

invading macrophages (Silver and Miller, 2004; Sofroniew and Vinters, 2010). During 

reactive gliosis the expression of many astrocytic intermediate filaments (IF) increases 

(including vimentin and nestin), but the upregulation of GFAP is assumed to be the key 

feature of this pathophysiological reaction involving reactive astrocytes (Wilhelmsson et 

al., 2006). Reasonably, this shows a special role for GFAP, a major IF protein of adult 
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astrocytes in the intact CNS. Also, the upregulation of GFAP, vimentin and nestin, which 

reappear under reactive gliosis conditions, accounts for the formation of an IF network 

(Pekny and Nilsson, 2005). Important is then the relation between each of the 

intermediate filament network components and their necessity for astrocytes. It has been 

proven using Vim-/- and GFAP-/- mice that GFAP can form IF without vimentin (even if 

they have a defective organization), but vimentin cannot form IF without GFAP. In mice 

lacking both proteins, IF are not created at all (Pekny et al., 1995; Eliasson et al., 1999; 

Pekny et al., 1999). Also, a partnership of intermediate filament proteins depending just 

on nestin or nestin-GFAP is not attainable from a proper IF formation point of view 

(Eliasson et al., 1999). What is more, scar formation in mice lacking vimentin or GFAP is 

quite normal, whereas in double knockout (GFAP-/- and Vim-/-) animals it is 

significantly reduced and accompanied by slower healing of the wound (Pekny et al., 

1999). Logically, the upregulation of particular IF in reactive astrocytes plays a key role 

in the post-traumatic process of recovery (Pekny and Pekna, 2004; Pekny and Nilsson, 

2005).  

 1.1.4.b. Excitotoxicity:  

 

As was already discussed earlier in detail (see chapter 1.1.3.a and 1.1.3.d), astrocytes 

have several transporters and enzymes to prevent excitotoxicity by taking up an excess of 

glutamate (via glutamate transporters) and converting it to non-toxic glutamine (by 

glutamine synthetase, GS) or by modulating neuronal NMDA receptor activity (Wolosker 

et al., 1999; Danbolt, 2001). However, when this complicated astrocytic machinery fails, 

the neurotoxic effect of an excess of glutamate starts its lethal action. Glutamate 

excitotoxicity is known to be involved in many brain diseases and pathologies, such as 

ischemia, trauma, epilepsy, ALS, Huntington’s disease and Alzheimer’s disease 

(Rothstein et al., 1995; Won et al., 2002; Hynd et al., 2004; Tannenberg et al., 2004; 

Fujikawa, 2005; Rego and de Almeida, 2005; Yi and Hazell, 2006). During continuous 

exposure to increased extracellular glutamate, the relevant glutamate receptors, mainly 

NMDA, are tonically activated, which causes the constant local depolarization of 

neurons. This triggers a series of intracellular actions leading to an influx of Na
+
 and Ca

2+
 

accompanied by the further exocytosis of glutamate. The influx of Ca
2+

 is a root cause of 

neuronal necrosis and an activator of apoptotic pathways (Walton and Dodd, 2007). 
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NMDA receptor dysfunction is believed to be of crucial significance in the 

pathophysiology of many neurologic and psychiatric disorders (Fossat et al., 2011). 

NMDAR hyperactivity can be a cause of cell death in stroke and neurodegenerative 

diseases, such as Parkinson’s and HIV-associated dementia (Kemp and McKernan, 2002; 

Hardingham and Bading, 2003). On the other hand, hypoactivity of the receptors causes 

apoptosis during brain development and can account for psychotic and cognitive 

symptoms observed, for example, in schizophrenia (Millan, 2005).  

 

When it comes to AD, as was suggested earlier in this work, glutamate-related alterations 

are most probably not the origin of the disease, nevertheless they can account for the 

observed neuronal pathology (Miguel-Hidalgo et al., 2002). Therefore, knowing that 

NMDA receptors are in general major mediators of excitotoxicity due to an excess of 

glutamate, significant efforts have been made to find a way to regulate its activity 

pharmacologically (Greenamyre et al., 1988; Santangelo et al., 2012).  

 1.1.4.c. Dementia: 

 

Dementia is a highly deteriorating disease, which leads to a brutal loss of global cognitive 

abilities and takes away the core of humanity together with the self identity of every 

person affected. Among the wide variety of causes of dementia are numerous types of 

traumatic injuries, viral infections, as well as genetic predispositions or other undefined 

genetic malfunctions. However, dementia is strongly connected with increasing life 

expectancy, due to higher living standards nowadays, especially in developing countries. 

In this case, if age is the greatest risk factor, the number of people with dementia will 

increase drastically in long-living societies and can reach around 115.4 million in 2050 

(Rodriguez et al., 2009b; Abbott, 2011).  

Astrocytes are significantly involved in many types of dementia, including Alzheimer’s 

disease. The reaction of astrocytes to these pathological conditions can take the form of 

(i) astrogliosis; (ii) astroglial atrophy; or (iii) both of them, depending on the stage of the 

disease (Heneka et al., 2010). In the case of frontotemporal dementia, astrogliosis can be 

accompanied by degenerating astrocytes or directly followed by the rapid and profound 

apoptosis of astrocytes (Martin et al., 2001; Broe et al., 2004). Prominent astrogliosis is 

also found in such diseases as thalamic dementia, Creutzfeld-Jakob disease (CJD) and 
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analogous prion dieases (Potts and Leech, 2005; Kovacs and Budka, 2008). Basically the 

same type of glial pathology is seen in HIV infected individuals (Sabri et al., 2003).  

Considering the recent research findings, astrocytic activation together with altered 

glutamate uptake mechanisms are of the high importance for neuronal degeneration and 

the progression of dementias (Sheldon and Robinson, 2007; Rossi and Volterra, 2009; 

Sofroniew and Vinters, 2010).  

 

Among other astrocytic alterations found in dementias, worthy of mention are tau-

positive inclusions of different appearance (widely accepted as a feature of neuronal 

pathology in Alzheimer’s diease) as hallmarks of such brain diseases as progressive 

supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD) 

(Komori, 1999). The collection of changes that astrocytes undergo signals their active 

participation, if not leadership, in the progression of the disease, and probably in many 

cases such changes lie behind its strict genesis.  

  

1.1.5. Other glial cells of the CNS: 

 

Apart from astroglial cells, the CNS is occupied by other non-neuronal cells: (i) 

microglia, (ii) NG2 glia and (iii) oligodendrocytes. Microglial cells are specialized 

resident macrophages of the central nervous system, which comprise 5-20% of total glial 

cells, depending on the brain region (Perry and Gordon, 1991; Saijo and Glass, 2011). 

They are of haematopoietic origin and act first in the case of brain injury or infection with 

pathogens (Ransohoff and Perry, 2009). The term “microglia” was used for the first time 

by Pio del Rio Hortega in his work from 1919 (Del Rio-Hortega, 1919), while in 1932 he 

described these cells in detail, including their origin and morphology, their method of 

migration within the brain, their anatomical localization, changes in their appearance 

upon activation and their phagocytotic role (Del Rio-Hortega, 1932; Kettenmann et al., 

2011). In the ramified state, the morphological phenotype of microglia is characterized by 

small cell somata with extensively ramified thin processes, by which constant 

surveillance of the surroundings is performed (Nimmerjahn et al., 2005). After receiving 

a signal to defend the CNS, microglia change from their resting phenotype to an 

“ameboid” like activated one (Kreutzberg, 1996). Activated microglia produce and 
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release pro- inflammatory substances, including various cytokines, reactive oxygen 

species (ROS), complement factors and nitric oxide (Saijo and Glass, 2011). To some 

extent those factors are helpful for the clearance of infections by pathogens within the 

CNS; however, prolonged microglia activation can lead to pathological forms of 

inflammation, neuronal dysfunction and cell death, contributing to the progression of 

neurodegenerative diseases (Heneka et al., 2010; Saijo and Glass, 2011).  

NG2-expressing cells (NG2; also known as polydendrocytes) are a rather newly 

discovered (in the 1980s) type of glial population (Verkhratsky and Butt, 2007). 

Polydendrocytes were discovered by chance in the Stallcup laboratory, when using a 

novel antibody in search of the cell surface molecules involved in the differentiation of 

neurons and glia (Stallcup, 1981; Nishiyama et al., 2009). The NG2 proteoglycan (also 

known as chondroitin sulfate proteoglycan 4; CSPG-4) is a transmembrane protein, 

expressed by many cells within and outside the CNS. In the CNS cells expressing NG2 

constitute 5-10% of all glia cells and are located in both grey and white matter, where 

they are able to proliferate even in the adult brain and contribute to the turnover of the 

cell population (Trotter et al., 2010). It is well known that NG2 cells are oligodendrocyte 

progenitor cells (OPCs), which generate oligodendrocytes in the CNS. Also, it is 

speculated that they can generate neurons and astrocytes; however, this hypothesis is still 

under debate (Nishiyama et al., 2009). Nevertheless, NG2 cells establish close functional 

synaptic contacts with neurons in such structures as the cerebellum, cortex and 

hippocampus as well as the corpus callosum (Trotter et al., 2010). When it comes to 

morphology, NG2 cells of the white matter send processes in various directions, which 

gives them a symmetrical radial appearance, while those from the grey matter are more 

polarized with processes following the axons of neurons. Apart from being able to 

generate other cells of the CNS, polydendrocytes are assumed to be an astrocytic 

companion in glial scar formation as a response to ongoing insult and disturbance within 

neuronal networks (Verkhratsky and Butt, 2007).  

Oligodendrocytes have the task of producing the myelin sheaths of axons in the CNS. 

Generally four types of oligodendrocytes are known (I-IV), and this separation was made 

based on their different morphology, number of processes and size of the fibers in close 

association (Verkhratsky and Butt, 2007; Bradl and Lassmann, 2010). After completing 

the migration process, oligodendrocytes start to differentiate, mature and initiate the 
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production of the myelin sheath by myelin proteins, such as proteolipid protein (PLP), 

myelin basic protein (MBP) and myelin associated protein (MAG) (Heneka et al., 2010). 

 

1.2. ALZHEIMER’S DISEASE: 

1.2.1. Historical background and general facts about the disease: 

 

The person who first discovered and described Alzheimer’s disease (AD) at the 

beginning of the twentieth century was Alois Alzheimer in 1906. In his pioneer work 

published in 1907 he sketched the case of a patient, known as Auguste D., who until the 

time of death, at the age of 55, had lost all cognitive functions. After the patient’s death, 

Alzheimer could observe in the affected brain several pathological alterations, which he 

described as “striking changes in the neurofibrils” and “minute miliary foci caused by 

deposition of a particular substance in the cortex”. The novel disease was presented to the 

public by Alzheimer under the name of “Dementia Praecox” (Alzheimer, 1907). For a 

long time it was believed that Alzheimer’s disease (AD) is a “presenile dementia”, 

affecting younger elderly (before the age of 65). Just in the 1970s it became clear for 

neuropathologists that “senile dementia” and the disease described by Alzheimer do not 

differ (Terry and Katzman, 1983; Gandy, 2011). Within that time (1960s, 1970s and early 

1980s) valuable observation were made and milestones reached in terms of recognizing 

and understanding Alzheimer’s disease as the common basis for senile dementia. First of 

all, two main histopathological hallmarks were colocalized and connected with AD: 

senile plaques (“miliary foci”; Aβ deposits) and neurofibrillary tangles (a 

hyperphosphorylated and aggregated form of tau protein). What is more, pathologists 

established that apart from degenerating cholinergic neurons, no other neurotransmitter 

system is so clearly deteriorating, which suggests the multifarious character of AD 

(Selkoe, 2001). This special fact, together with increased life expectancy nowadays, 

makes AD a favorite target of doctors and scientists, being one of the most studied 

neurodegenerative diseases.  

  

Alzheimer’s disease is a chronic, progressive and irreversible neurodegenerative disease, 

affecting more than 35 million people worldwide, with a trend to roughly double by 

2050. Alzheimer’s disease can be “early-onset”, when the patient starts showing 
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symptoms at an age under 65, or “late-onset”, when AD develops at an age of 65 or more 

(Alzheimer's, 2010). This insidious ailment leads to death within 3 to 9 years after 

diagnosis, at the stage of complete detachment from the patient’s identity and conscious 

contact with the surrounding world (Querfurth and LaFerla, 2010; Ittner and Gotz, 2011).  

AD is characterized by three main groups of symptoms. The first refers to cognitive 

dysfunctions, such as the loss of memory, language difficulties and executive 

dysfunctions (loss of higher level planning and intellectual coordination skills). In the 

second group (non-cognitive symptoms) are included psychiatric signs and behavioral 

disruptions, such as depression, hallucinations, delusions and agitation. All kinds of 

problems with “daily routine”, generally described as “instrumental”, such as with 

independent eating, dressing, driving or shopping constitue the third group of symptoms. 

The severity of the symptoms varies during the progression of the disease (Burns and 

Iliffe, 2009). 

  

1.2.2. Forms of Alzheimer’s disease – familial (FAD) and sporadic:  

 

Several risk factors have been connected with Alzheimer’s disease onset. Among them 

are familial and genetic factors, such as apoE genotype, Down’s syndrome (trisomy 21) 

together with other diseases causing mutations on chromosomes 1 and 14, family history 

as well as low intelectual activity. When it comes to non-genetic risk factors, the leading 

one is advancing age, followed by closed head trauma, hypertension, diabetes, high 

cholesterol, atrial fibrillation or the presence of cerebral emboli (Mayeux et al., 1993; 

Burns and Iliffe, 2009). The prevalence of Alzheimer’s disease differs depending on the 

criteria used for diagnosis, the age of group of the people studied, even geography and 

ethnicity (Nussbaum and Ellis, 2003). In general, it affects 1 person in 8 over 65 years 

old and nearly 1 in 2 over 85 (Alzheimer's, 2010). The prevalence of its familial (“early-

onset” disease; FAD) form can fluctuate from 5-10% to an impressive 50% or more and 

there is still much uncertainty in this matter (Selkoe, 2001). The familial form of AD is 

inherited in an autosomal dominant manner and is of high importance when it comes to 

understanding the mechanisms of the disease (Nussbaum and Ellis, 2003). Interestingly, 

concerning the phenotype of the disease (such as clinical manifestations and 

histopathological hallmarks: plaques and tangles), the familial form resembles to a large 

extent the sporadic, non-familial form of AD, which gives a privileged position to 
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detailed knowledge about the amyloid precursor protein (APP) and the presenilin genes 

(PSEN1 and PSEN2) from around 100 candidate AD genes and their mutations for 

understanding the pathogenesis of this neurodegenerative disease (Selkoe, 2001) (Fig.8). 

Also, not directly involved, but responsible for a significant increase in susceptibility to 

AD is the gene for apolipoprotein E (apoE) and especially its form apoE4 (Bertram and 

Tanzi, 2004). 

 

 

Fig.8 Schematic diagram of the hypothetical sequence of pathogenetic steps in AD 

(Selkoe, 2001). 

 

1.2.3. Genetics and histopathology of the disease: 

 1.2.3.a. Presenilins: 

 

The first of missense mutations altering a single amino acid in presenilin genes were 

identified in PSEN1 (on chromosome 14), encoding presenilin 1 (PS1) – a conserved 
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membrane protein. Not long after, the second gene PSEN2 (on chromosome 1) encoding 

presenilin 2 (PS2) was found to be a serious suspect causing the disease. Both presenilin 

genes are very similar to each other; however, mutations on PSEN1 are more frequent 

than on PSEN2 (Nussbaum and Ellis, 2003; Bertram and Tanzi, 2004). Presenilins are 

serpentine integral membrane proteins, generally with eight transmembrane domains and 

without a signal peptide (Li and Greenwald, 1998). When it comes to their localization 

within the cell, in neurons presenilins abide in the endoplasmic reticulum (ER, both 

smooth and rough), the ER-Golgi intermediate compartment (ERGIC) and to some extent 

in the cis-Golgi (Annaert et al., 1997). Considering PS mutations, it is believed that they 

do not cause significant alterations or malfunctions of the proteins’ physiological 

functions, but they can add new toxic features (Haass and De Strooper, 1999). Mutations 

connected with Alzheimer’s disease in PSEN1, PSEN2 or the gene encoding APP lead to 

increased production of the toxic form of amyloid β (Aβ42) by about 1.2- to 3-fold by 

shifting the cleavage site towards γ-secretase (Citron et al., 1997; Nussbaum and Ellis, 

2003). To underline the importance of the presence of presenilins within the cell, it is 

worth mentioning that even mutant genes encoding PS1 are able to “recover” a lethal 

phenotype in mice knockedout for these genes, which means rescuing them from 

embryonic lethality, abnormal somitogenesis, axial skeletal malformations and 

accompanying CNS defects (Qian et al., 1998). 

 1.2.3.b. Amyloid precursor protein (APP) and amyloid beta (Aβ): 

 

Amyloid precursor protein (APP) is a single transmembrane polypeptide, translocated 

into the endoplasmic reticulum via its signal peptide while undergoing the process of 

translation. After that, APP goes through posttranslational modification, called 

maturation, through the secretory pathway. While being modified, the precursor protein 

can be cleaved in a proteolityc manner in various ways and release its derivatives 

(Selkoe, 2001). One of those derivatives is amyloid β (Aβ), a product of the consecutive 

enzymatic activity of a series of proteases: α-, β- and γ-secretases (Nussbaum and Ellis, 

2003). Generally, amyloid β is a normal metabolite, 38-43 residue fragment of APP 

(Shoji et al., 1992). It is abundantly present within the brain in its more common, 40 

amino acid non-toxic form (Aβ40). The other, toxic product of the amyloidogenic 

pathway in APP processing is hydrophobic Aβ42, which displays a tendency towards self-
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association and is connected directly with AD pathology (Ferreira and Klein, 2011) 

(Fig.9). An elevated level of both forms of Aβ protein can be observed in the case of a 

double mutation in the two amino acids directly preceding the β-secretase (also called 

BACE-1) cleavage site, which leads to the induced activity of the secretase and produces 

larger amounts of Aβ40 and Aβ42. This type of mutation is called “Swedish” APP 

mutation, from the ethnic roots of the investigated family (Selkoe, 2001).  

 

 

Fig.9 Two pathways of APP processing. Adapted from Reddy et al, 2008. 

 

Apart from being expressed in large amounts in neurons, APP is also present also in 

many other brain cells, such as astrocytes, endothelial cells and smooth muscle cells, 

which together are responsible for generating a pool of Aβ which at later stages is 

accumulated extracellularly (Haass et al., 1992) (Fig.10). In contrast to the presenilins, 

deletion of the APP gene is not lethal; however, it results in cerebral gliosis, changes in 

locomotor behavior and changes in neurons observed in vitro: decreased viability and 

weak neurite outgrowth (Zheng et al., 1995; Perez et al., 1999; Selkoe, 2001). 

  

A general hypothesis standing behind familial forms of Alzheimer’s disease is called “Aβ 

hypothesis” or “amyloid cascade”. According to this theory, a chronic imbalance between 
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the production and clearance of a small hydrophobic peptide (Aβ) with a tendency to 

misfold and aggregate, thus creating amyloid fibrils and plaques, leads to synaptic and 

neuritic failure combined with the activation of glial cells. Other pathological hallmarks, 

including neurofibrillary tangles of tau protein, are the consequence of this imbalance 

(Hardy and Selkoe, 2002; Selkoe, 2004). Nevertheless, even if toxic fibrils and amyloid 

plaques are known to be strongly correlated with AD progression, there is no clear 

evidence that they correlate with the deterioration of cognitive function (Ferreira and 

Klein, 2011). As a result of detailed studies, a new “oligomer hypothesis” was proposed, 

which suggests that both the memory loss observed early during AD progression and 

later neuronal degeneration are due to the negative effect of Aβ oligomers (Lambert et al., 

1998). In their study, Lambert and colleagues showed that exposure to Aβ-derived 

diffusible ligand (ADDL) causes a loss of LTP in a way suggesting impaired signaling, 

not the direct degeneration and death of neurons. Currently, the concept of Aβ oligomers 

as the most toxic form of this protein is supported by hundreds of papers and still ongoing 

research on this subject (Ferreira and Klein, 2011). 

 

 

Fig.10 Photomicrograph of robust plaque deposition in a 3xTg-AD mouse septum.  

 1.2.3.c. Tau protein and neurofibrillary tangles: 

 

Tau protein is constructed of three main domains: (i) an acidic amino-terminal projection 

domain (N-terminal), (ii) a proline-rich region and (iii) a carboxy-terminal domain of 
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microtubule-binding (MTB) regions (C-terminal) (Ballatore et al., 2007; Ittner and Gotz, 

2011) (Fig.11).  

 

 

Fig.11 The basic structure of tau protein.  

 

Under physiological conditions, the highest concentration of tau is found in neuronal 

axons as well as in dendrites, however in the latter location in much smaller amounts 

(Konzack et al., 2007). When it comes to its functions, tau is mainly responsible for the 

stabilization of molecules and the regulation of axonal transport (Gotz et al., 2006). 

Hyperphosphorylated and accumulated tau is a major element of neurofibrillary tangles – 

filamentous inclusions in pyramidal neurons observed in the brains of AD patients and in 

other neurodegenerative diseases, called by the common term tauopathies (Querfurth and 

LaFerla, 2010) (Fig.12).  

 

 

Fig.12 Photomicrograph of phosphorylated tau protein within the CA1 pyramidal cell 

layer of a 3xTg-AD mouse hippocampus (Rodriguez et al, 2008). 

 

Tau is characterized by probably as many as 84 phosphorylation sites and undergoes 

phosphorylation on a higher level during development than in mature cells. It is well 

known that increased phosphorylation unables binding of tau to microtubules, leading to 
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altered axonal transport and mitochondrial respiration, however the detailed mechanism 

is still poorly understood (Ittner and Gotz, 2011). Hyperphosphorylated tau is aggregated 

in the somatodendritic compartment of neuron and forms neurofibrillary tangles (NFTs) 

(Gotz et al., 1995). Additionally, intermediate aggregates of abnormal tau show similar 

features as Aβ oligomers: toxicity to neurons and devastation for cognition (Oddo et al., 

2006; Querfurth and LaFerla, 2010). 

Generally, as observed in adult tau-/- mice, the lack of the tau gene is not lethal, and the 

alterations within the phenotype are rather frail and limited to delicate changes in tubulin 

spacing within axonal microtubules, a small delay in axonal outgrowth and increased 

aggression combined with memory deficits (Dawson et al., 2001; Ittner and Gotz, 2011). 

When it comes to tau gene mutations, in contrast to APP and the presenilins, no 

mutations have been found in cases of Alzheimer’s disease, while they are common in 

some other neurodegenerative diseases, such as frontotemporal dementia (FTD) – the 

second most frequent form of early-onset dementia (Nussbaum and Ellis, 2003).  

Nevertheless, its pathology in AD attracts great interest. Evidence from many studies 

indicates that an accumulation of Aβ is a primary hallmark of AD and works as a trigger 

for tau aggregation (Gotz et al., 2001; Oddo et al., 2003b; Querfurth and LaFerla, 2010). 

Even if this is the case, the assumption that tau has a more secondary role is no longer 

valid. This is connected with observations that tau-/- neurons do not undergo 

degeneration induced by Aβ; in other words, the presence of tau is indispensible for Aβ-

mediated excitotoxicity (Ittner et al., 2010). These findings led to the formulation of the 

“tau axis hypothesis”, which combines both pathological events of AD in a tightly 

cooperating set of actions. According to this hypothesis, everything begins classically 

with an accumulation of Aβ within the brain. At the initial stages of the disease, the levels 

of tau in dendrites are low, which makes neurons less sensitive to Aβ toxicity. With 

progression of the disease and increasing tau phosphorylation and its accumulation in the 

somatodendritic compartments due to the action of Aβ, dendritic levels of tau rapidly 

increase. At this stage neurons are much more vulnerable to the toxic effects of Aβ, 

which leads to even greater hyperphosphorylated tau accumulation and eventually 

synaptic malfunctions and cell death (Ittner and Gotz, 2011) (Fig.13). Considering the 

most recent data on the topic, in this case the most relevant animal models of AD should 
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combine Aβ and tau pathology in order to observe the full repertoire of correlations and 

cascades of actions and to find the best therapeutic strategy.  

 

 

Fig.13 Possible “tau axis hypothesis”, in which due to the increasing level of tau 

neurons become susceptible to Aβ (Ittner et al, 2011). 

 1.2.3.d. Apolipoprotein E (apoE): 

 

Apolipoprotein E is an amino acid glycoprotein, present within the brain predominantly 

on high-density lipoproteins (HDL) (Fagan et al., 1999). It functions as a ligand in a 

process of receptor-mediated endocytosis of lipoprotein particles. Endocytosis of apoE-

containing lipoprotein fragments is initiated by low-density lipoprotein (LDL) receptor 

family members. After the process is completed, apoE may undergo degradation or 

recycle to the cell surface (Rensen et al., 2000; Kim et al., 2009). Lipoprotein fragments 

with apoE contain cholesterol, which after its release participates in synaptogenesis and 

synaptic maintenance (Pfrieger, 2003). Among various organs in which apoE is 

expressed, the highest level in found in the liver and brain. Astrocytes are the cells that 

predominantly express apoE; however, it can also be found in microglia and even in 

neurons. When it comes to neuronal cells, low levels of apoE can be found only under 

non-physiological conditions, such as after excitotoxic injury to the CNS due to kainate 

acid treatment (Xu et al., 2006). Apart from apoE, other apolipoproteins such as apoA-I, 
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apoA-II, apoA-IV, apoD, apoE, apoH and apoJ are present within the brain (Ladu et al., 

2000). Considering genetics, among all humans there are three versions of the apoE gene 

and of the protein itself: apoEε2, apoEε3 and apoEε4. These forms of apolipoproteins 

arise as a result of changes in a single amino acid within the apolipoprotein E sequence 

(Nussbaum and Ellis, 2003). It is assumed that the ε4 allele of apolipoprotein E 

predisposes the bearer to Alzheimer’s disease by almost doubling the risk for developing 

the disease, while not having it decreases the risk by around 40%. To summarize all the 

numbers, analysis indicates that 70% of people without the apoEε4 allele are safe from 

the disease up to 80 years of age, while with the presence of one or two dangerous alleles 

the percentage drops to just 10% of non-AD patients at the age of 80 (Meyer et al., 1998; 

Nussbaum and Ellis, 2003). The reason why apoE and especially its ε4 allele is highly 

linked with AD is because of its possible stimulatory effect on the Aβ-dependent 

development of pathological changes and Aβ metabolism itself (Fagan et al., 2002). As 

was shown in APP transgenic mice with the human version of the APP gene (APP
V717F

 

and APPSwe) crossbred with apoE-/- mice, deletion of the apoE gene resulted in a major 

decrease of Aβ content, and this content was limited to just diffuse nonfibrillar forms of 

Aβ (Bales et al., 1997; Holtzman et al., 2000). According to the obtained data, it was 

proposed that apoE can be crucial for converting the soluble forms of Aβ to the classic 

fibrillar plaques observed with AD progression (Fagan et al., 2002). However, the 

detailed mechanism underlying apoE ε4- dependent pathology is not fully understood. It 

is still under debate if apoE has a negative effect due to its silencing of protective 

functions, adding some negative factor or something in between (Kim et al., 2009). 

1.2.4. Affected brain regions: 

 

The reason why Alzheimer’s disease is characterized by such a wide range of symptoms 

is because of the different structures affected. The various memory and other cognitive 

impairments in AD patiens are most probably connected with a loss of cholinergic 

neurons within the nucleus basalis of Meynert as well as ongoing severe changes in such 

structures as the entorhinal cortex (initial changes at Braak stage I/II), hippocampus and 

prefrontal cortex (changes from Braak stage III) (Bartus et al., 1982; Braak and Braak, 

1991). 
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 1.2.4.a. Nucleus basalis of Meynert: 

 

The nucleus basalis of Meynert (nbM) is the grey matter of the substantia innominata of 

the forebrain, which is composed mostly of cholinergic neurons, projecting robustly to 

the hippocampus, amygdala, neocortex and other cortical regions (Schliebs and Arendt, 

2006). The rodent equivalent of nbM is called the nucleus basalis magnocellularis (nbm) 

(Toledano and Alvarez, 2004). This structure is deeply involved in AD pathology, as 

basal cholinergic cell loss and altered cholinergic transmission are prominent features of 

Alzheimer’s disease (Whitehouse et al., 1982; Schliebs and Arendt, 2006).  

 1.2.4.b. Entorhinal cortex: 

 

The entorhinal cortex (EC) is located in the medial temporal lobe and serves as the main 

interface between the hippocampus and neocortex, being strongly implicated in mnesic 

processes (Yeh et al., 2011). Classically, the entorhinal cortex consists of six layers, both 

superficial (I-III) and deep ones (IV-VI), which are characterized by different anatomical 

organization as well as function (Suzuki and Amaral, 1994). When it comes to the 

superficial layers, they receive intracortical information and send efferent projections to 

the hippocampus, while the role of the deep layers is concentrated on projecting to 

cortical regions (Suzuki and Amaral, 1994; Yeh et al., 2011). The main afferents to the 

dentate gyrus (DG) come from layer II of the entorhinal cortex. The DG subsequently 

sends its collaterals to the CA2 and CA3 fields of the hippocampus (Witter et al., 1989; 

Suzuki and Amaral, 1994). Layer III neurons project to CA1 and the subiculum, from 

where projections return to layer V of the entorhinal cortex (Naber et al., 2001). Taking 

into consideration the broad connectivity and information flow from the EC, this region is 

assumed to be the quantitatively dominant deliverer of data to the hippocampus (Brodal, 

2010). Also, the dorsolateral EC projects to layers I and II of the prefrontal cortex 

(prelimbic and infralimbic cortices), which further strengthen the functional loop of 

memory formation and consolidation (Delatour and Witter, 2002; Ranganath et al., 2003; 

Remondes and Schuman, 2004).  

The EC is the first region affected in Alzheimer’s disease (Braak and Braak, 1991). It 

undergoes disease-related neuronal loss and consequently atrophy (Gomez-Isla et al., 

1996; Yeh et al., 2011). For unknown reasons, the most vulnerable to neurogedeneration 

during aging and AD are neurons of layer II of EC, which in cascading fashion contribute 
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to degenerative changes in the main interconnected region – the hippocampus (Mattson 

and Magnus, 2006; Stranahan and Mattson, 2010). 

 1.2.4.c. Hippocampus: 

 

The hippocampus is an important part of the limbic system and plays crucial roles in the 

consolidation of information from short-term memory to long-term memory and spatial 

navigation (Brodal, 2010). It is divided into four main subfields: CA1, CA2 and CA3 

(called together the hippocampus proper), where CA stands for cornu ammonis, and the 

dentate gyrus (DG) (Rapp and Gallagher, 1996). Compared to the neocortex, the 

hippocampus has a less complex organization; however, it is far from being simple. 

Several types of cells contribute to establishing strictly interconnected patterns inside the 

structure (Brodal, 2010). The hippocampus proper archicortex consists of three layers: 

the molecular, pyramidal and polymorphic ones. The molecular layer is the deepest layer, 

built of apical dendritic trees of pyramidal cells and axon terminals. The axon terminals 

are granule cells, which originate in the granule cell layer of the hippocampus. The 

middle layer, called the pyramidal layer, consists of pyramidal cells whose axon 

collateral branches (Schaffer collaterals) cross the polymorphic and pyramidal layers to 

establish synaptic contacts with the dendrites of pyramidal neurons. The last layer, a 

superficial one named the polymorphic layer, consists of interneurons, pyramidal cell 

dendrites and axon collateral branches (Patestas and Gartner, 2006). The dentate gyrus 

also has a laminar construction of molecular, granular and polymorphic layers and the 

hilus, which smoothly fuses with the hippocampus proper CA3 area (Amaral et al., 

2007). The dendritic arborizations of the granule cells of the granule cell layer ramify in 

the molecular layer to form synapses with the terminals of the perforant pathway, the 

connective route arising in the EC.  

EC, the first structure affected in AD, is the main projecting structure to the 

hippocampus. Also, many asymmetric, excitatory contacts are established in the 

hippocampus, having a high relevance for LTP and LTD formation, what means for 

cognition and memory. CA1 region shows the earliest pathological burden done by AD – 

it shows abberant Aβ load before other hippocampal areas (Olabarria et al., 2010). What 

is more, emerging evidence suggested that altered neurogenesis in the adult hippocampus 

represents an early clinical event in the AD progression (Mu and Gage, 2011).  

http://en.wikipedia.org/wiki/Limbic_system
http://en.wikipedia.org/wiki/Short-term_memory
http://en.wikipedia.org/wiki/Long-term_memory
http://en.wikipedia.org/wiki/Navigation


 48 

 1.2.4.d. Prefrontal cortex:  

 

The prefrontal cortex (PFC) is situated in the anterior part of the frontal lobes of the 

brain. The primate PFC has been classically characterized and delineated using 

anatomical criteria, such as cytoarchitectonic features or connectivity into mainly the 

dorsolateral (DLPFC), ventrolateral (VLPFC), dorsomedial (DMPFC), ventromedial 

(VMPFC) and orbitofrontal (OFC) regions (Fuster, 2008). The prefrontal cortex of 

rodents is divided into medial, orbital and lateral parts (Ongur and Price, 2000). One of 

the most homologous structures to the primate PFC when it comes to function and 

organization is the rodent medial prefrontal cortex (mPFC), especially its ventral cortices: 

prelimbic (PL – equivalent of the DLPFC) and infralimbic (IL – equivalent of the orbital 

and medial PFC: OMPFC) (Uylings et al., 2003). 

Apart from the PL and IL, the dorsal division of the mPFC consists of the agranular 

(AGm) and anterior cingulate (AC) cortices, involved in many motor actions (Ongur and 

Price, 2000; Heidbreder and Groenewegen, 2003). The infralimbic (IL) and prelimbic 

(PL) cortices are the ones anatomically and functionally linked with the limbic system, 

which makes them directly responsible for cognitive (including personality expression, 

decision making, active goal-directed behavior, response selection and implementation), 

mnemonic (working memory, selection of information) and emotional processes 

(Heidbreder and Groenewegen, 2003; Uylings et al., 2003; Hoover and Vertes, 2007). 

The mPFC receives a direct ipsilateral projection from the hippocampus, from the CA1 

subfield and subiculum (Jay et al., 1989; Carr and Sesack, 1996; Vertes, 2004). The 

relationship between the hippocampus and PFC consists of two types of connective 

pathways: a direct hippocampal projection to the mPFC and an indirect return functional 

loop, which is crucial for long-term memory and as a consequence long-term potentiation 

(LTP) formation involving the active regulatory and relay role of the nucleus reuniens of 

the thalamus (RE) (Fig.14) (Jay et al., 1996; Buckner et al., 1999; Buckner et al., 2000; 

Vertes et al., 2007; Kulijewicz-Nawrot et al., 2012). Backward projections of CA1 

neurons to the deep layers of the entorhinal as well as the perirhinal and postrhinal 

cortices strengthen the process of long-term potentiation due to the fact that the rhinal 

cortical region is a cardinal intermediary between the hippocampus and neocortex, being 

indispensible for the short term storage and consolidation of specific memory forms 

(Cousens and Otto, 1998; Kulijewicz-Nawrot et al., 2012). The PL and IL cortices 
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receive many projections from other structures, such as the perirhinal cortex (PRC), the 

entorhinal cortex (EC), the claustrum (CLA), the medial basal forebrain (BF) and the 

amygdala as well as sending various projections back to the dorsal and ventral tania tecta 

(TT), the piriform cortex (PIR), the medial frontal polar cortex (FPm) and the ventral 

orbital cortex (VO) (Vertes, 2004; Hoover and Vertes, 2007). Taking into consideration 

that the mentioned interconnections are just examples of a vast number of afferent and 

efferent communications, the highly complex nature of the PFC and its definite 

significance in managing all kinds of cognitive functions are not speculative (Goldman-

Rakic, 1987; Miller, 2000). This information, together with the fact that cognitive 

function, meaning things that make a person a self-defined human being, are highly 

affected in AD, thus making the PFC the center of attention during investigations of 

astrocytic changes and their pathological/restorative potential presented in this thesis. 

 

 

 

Fig.14 (Right) Brightfield micrograph of a mPFC section showing the boarders of the PL 

and IL cortices. (Left) Afferent and efferent projections of the mPFC. Afferences from the 

limbic system are mainly received from the hippocampal formation, the entorhinal cortex 

and the thalamic nucleus reuniens, while the mPFC itself projects back indirectly to the 
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hippocampus via the nucleus reuniens of the mid-line thalamus – an integrating part 

within this network. 

 

1.2.5. Astroglia in AD: 

 

Astrocytes are highly involved in Alzheimer’s disease and the pathophysiology of other 

dementias due to their unique, indispensable functions for metabolism and the proper 

action of neurotransmitters, neuronal nutrition, control of neurovascular unit performance 

and much more. In Alzheimer’s disease, the early occurrence of metabolic stress is a 

common response to ongoing pathology (Verkhratsky et al., 2010). Studies using positron 

emission tomography (PET) revealed altered glucose uptake, which is assumed to be due 

to astrocytic metabolic impairments (Alexander et al., 2002; Freemantle et al., 2006). 

Also, much effort has been made to establish the character of the relation between Aβ and 

glucose uptake. Some in vivo studies have shown that reduced glutamate metabolism can 

be an early marker of future Aβ plaques and neurobifrillary tangles, which is supported 

by in vitro studies in which exposure to Aβ decreased astroglial consumption of glucose 

(Parpura-Gill et al., 1997; Small et al., 2000). In contrast, according to other researchers, 

decreased glucose uptake in brain regions strongly affected by Aβ plaques is not 

necessarily the rule, and exposure to Aβ can even increase astroglial use of glucose 

(Edison et al., 2007; Allaman et al., 2011).  

 

When it comes to astrocytes and their modifications linked to altered neurovascular unit 

performance in Alzheimer’s disease, a reduction in astrocytic glucose transporter GLUT1 

and lactate transporters and a retraction of endfeet from blood vessels were noticed 

before the appearance of Aβ plaques (Merlini et al., 2011).  

 

In vitro studies show that glutamine synthetase (GS) can be oxidized by different forms 

of synthetic β-amyloid peptide, which is not the case in vivo, because of greatly limited 

interaction between glutamine synthetase inside astrocytes and β-amyloid produced in 

neurons (Hensley et al., 1994; Zhao et al., 1996; Aksenov et al., 1997). Nevertheless, as 

claimed by some researchers, such interaction is possible via astrocytosis (Vijayan et al., 

1991; Ingelsson et al., 2004). Others do not find GS-immunoreactive astrocytes in the 

close proximity of Aβ plaques, nor any change in GS-positive astrocytes in regions with 
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astrogliosis (Robinson, 2000). The type of Aβ and GS synergy in AD and its significance 

are still unclear (Walton and Dodd, 2007). 

 

Defects and failures of synapses are assumed to be early events in the progression of 

Alzheimer’s disease (Coleman et al., 2004). Currently, synaptic dysfunction followed by 

synaptic loss serves as the most reliable indicator of the cognitive decline observed in AD 

(Terry et al., 1991; Masliah et al., 2001; Koffie et al., 2011). Astrocytic D-serine is 

thought to be involved in the mechanism of controlling NMDAR-mediated neurotoxicity, 

related also to Alzheimer’s disease (Inoue et al., 2008). In patients diagnosed with AD, 

deficits in NMDA-dependent forms of neocortical LTP were observed and serve as proof 

of altered synaptic plasticity and the important correlation between AD and NMDAR 

performance (Battaglia et al., 2007). Considering receptor efficiency, Fisher and 

colleagues in their study (Fisher et al., 1998) found increase levels of D-serine in the 

cerebrospinal fluid (CSF) of AD patients compared to controls, which suggests an 

abnormally high activity of NMDA receptors. In contrast, Hashimoto and his group 

(Hashimoto et al., 2004) showed reduced levels of D-serine in the serum of AD patients, 

which can result from the reduced acitivity of serine racemase (SR), and supports the 

hypothesis of NMDA receptor hypofunction in the pathophysiology of Alzheimer’s 

disease. However, the final contribution of endogenous D-serine to AD pathophysiology 

remains unclear and its clarification is of great interest. As was shown in the 

hypothalamic supraoptic nucleus (SON), where astrocytes reduce their overlay of 

neurons and synapses during lactation (Theodosis and Poulain, 1993; Hatton, 1997), the 

D-serine concentration available at the synaptic cleft, together with the control of the 

glycine site of synaptic NMDARs by D-serine, depend strongly on the extent of 

astrocytic coverage of the synapses (Panatier et al., 2006). It is a matter of wide debate 

whether this form of astrocytic-dependent metaplasticity can appear throughout the 

nervous system and be an important factor in several neuropsychiatric and 

neurodegenerative disorders (Halassa et al., 2007). 

 

Regarding the main histological hallmarks of Alzheimer’s disease, it is suggested that 

astrocytes are capable of accumulating great amounts of Aβ42. However, at the end 

astrocytes become overloaded with Aβ, which severely influences their functionality, 
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most significantly their assistance to neurons (Nagele et al., 2004). Many in vitro 

experiments have been performed to understand the role of astrocytes in Aβ pathology. 

Recently, astrocytes have been proposed to be an important mediator of Aβ clearance, 

thus preventing plaque formation. It was shown that after plating adult astrocytes onto 

brain sections from AD transgenic mice, exogenous astrocytes were able to bind and 

degrade Aβ (Wyss-Coray et al., 2003). Similar astrocytic activation was observed by 

aggregated Aβ protein as well as by the intact cores of amyloid plaques isolated from 

human AD brain tissue (DeWitt et al., 1998). However, the mechanism underlying 

astrocytic Aβ uptake remains unknown (Nagele et al., 2003; Nielsen et al., 2010). What is 

also intriguing is that by administering Aβ peptide to cultured hippocampal neurons with 

astrocytes, atypical [Ca
2+

]i transients and mitochondrial depolarization in astrocytes are 

obtained. These alterations are present before any symptoms of degeneration appear in 

neurons (Abramov et al., 2003, 2004; Rossi and Volterra, 2009). However, it was also 

shown that endogenous astrocytes are unable to remove Aβ from brain tissue, suggesting 

that during Alzheimer’s disease their clearing abilities are highly altered (Wyss-Coray et 

al., 2003).  

1.2.6. Animal models of AD: 

 

To fully understand the pathology of the disease and the detailed mechanism of action of 

the involved factors as well as to introduce potential therapeutical approaches – this is 

why animal models have been designed. To develop relevant animal models of AD, that 

closely mimick the disease progression with a wide range of symptoms, different kinds of 

genetic, biochemical or dietary manipulations have been employed (Woodruff-Pak, 

2008). Among all of the species used, from worms to polar bears, the greatest 

contribution to AD research has been made by mouse models of the disease, introduced 

in the 1990s (Games et al., 1995; Hsiao et al., 1996). Several features make the mouse the 

perfect model: (i) mice are easy to rear and reproduce efficiently, (ii) they have a 

comfortable size for the majority of research approaches, (iii) they have a rather short life 

span (around 30 months), which makes them convenient for aging studies, (iv) mice are 

suitable for studies focused on learning and memory, (v) the entire mouse genome has 

been mapped, which is of high importance for genetic manipulation and research 

purposes (Woodruff-Pak, 2008). A review of the vast majority of animal models of AD, 
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mainly murine models, together with the relevant neuropathology, can be found in table 

1.  

  

 1.2.6.a. Types of animal models: 

 

The damage of cholinergic neurons observed in Alzheimer’s disease led to the first lesion 

models in the basal forebrain to mimic the pathogeny of specific neurodegeneration. The 

best examples of the lesion type were those performed in the nucleus basalis 

magnocellularis of rodents (nbm), which is the analogous structure to the human nucleus 

basalis of Meynert (nbM). Different lesions or dysfunctions induced by toxic substances 

led to miscellaneous models (Toledano and Alvarez, 2004). Electrolytic lesions 

efficiently produce neuronal death; however, they are not highly specific, causing 

damage to neighbouring fibers and influencing distant neurons (Vale-Martinez et al., 

2002; Toledano and Alvarez, 2004).  To obtain another type of lesion, excitoxic non-

selective lesions of the forebrain cholinergic centers, substances acting on glutamatergic 

receptors were used: (i) NMDA, (ii) ibotenic acid, (iii) quisqualic acid, (iv) AMPA 

(Toledano and Alvarez, 2004).  

The most relevant models when it comes to AD were thought to be those obtained by 

chemical and immunochemical cholinergic toxins, such as AF64A and 192IgG-saporin, 

respectively (Hanin, 1996; Schliebs et al., 1996). Those substances target only the 

cholinergic centers and do not harm other neurons or fibers passing through the target 

region (Toledano and Alvarez, 2004).  

 

The intracellular accumulation of Aβ and amyloid plaques are key elements in the 

pathology of AD. That is why a major effort was made to develop relevant animal models 

(single or double transgenic models), that would express human beta-amyloid precursor 

protein (APP) in order to study the progression of the disease. Nowadays, a minimum of 

16 mutations for APP (OMIM 104760) have been characterized, with a tendency to more 

commonly use in research a few distinct ones: K670N/M671L (Swedish), V717I 

(London), E693G (Arctic) and V717F (Indiana) (Trancikova et al., 2011).  

Considering tau transgenic mice, the first model developed (ALZ7) expressed the longest 

human four-repeat (4R) tau isoform (htau40) under the control of the human Thy-1 
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promoter. Similarly to Alzheimer’s disease cases, transgenic human tau protein was 

observed in the cell bodies of nerve cells, axons and dendrites in most brain regions. 

Within next years new models were developed, including TG23, JNPL3 or V337M. 

Generally, they are characterized by differential regional distribution and load of 

neurofibrillary tangles within the brain (Gotz et al., 1995; Brion et al., 1999; Lewis et al., 

2000; Gotz et al., 2001).  

 1.2.6.b. Triple transgenic animal model (3xTg-AD): 

 

The limitation of not having in the same model all of the main pathological hallmarks of 

AD: plaques (Aβ pathology) and tangles (tau pathology), was the stimuli for researchers 

to design combinatorial animal models, expressing both. One of the most relevant models 

used today is a triple transgenic mouse model (3xTg-AD), developed in Frank LaFerla’s 

laboratory (Oddo et al., 2003b). 3xTg-AD animals harbour PS1M156V, APPSwe and tauP301L 

transgenes. The genetic manipulations used to generate the model consist of 

comicroinjections of two independent transgenes encoding human APPSwe and human 

tauP301L, under the mouse Thy1.2 promoter, into single-cell embryos picked from 

homozygous mutant PS1M146V knockin (PS1-KI) mice (Oddo et al., 2003b). The PS1 

knockin mice were generated as a hybrid 129/C57BL6 (Guo et al., 1999). This approach 

to generating the line has many advantages over classic crossbreeding of independent 

transgenic lines. First of all, the APP and tau transgenes co-integrated at the same genetic 

locus, which assures that they will be co-assorted in each future generation. Secondly, 

due to such strict connections also to the knockin of the PS1 mutation, the triple 

transgenic line can be breed as a single-transgenic line, without any additional genetic 

handling. Finally, the animals are homozygotes, which makes their breeding even more 

easy and efficient (Oddo et al., 2003b). 

3xTg-AD mice develop extracellular Aβ deposits before the presence of neurofibrillary 

tangles. They arise in an age- and region-dependent manner. Intracellular Aβ is noticable 

in the neocortex already at early ages of 3-4 months, while in the hippocampus Aβ 

expression is apparent by 6 months of age. The initial location of extracellular Aβ 

deposits is the frontal cortex – aggregates starts to appear at 6 months and became broad 

at 12 months, when they can also be found in the hippocampus. However, Aβ deposits 

are not accompanied by altered tau until the age of around 12 months (in the 
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hippocampus progressing to the neocortex), which goes in line with the more common 

“amyloid cascade hypothesis” (Oddo et al., 2003a; Oddo et al., 2003b). Triple transgenic 

animals also develop cognitive deficits measured as deficits in LTP, paired-pulse 

facilitation (PPF) and/or spatial learning performance, which colocalize with the 

appearance of intracellular Aβ (Oddo et al., 2003b; Billings et al., 2005). At very early 

stages, 1-2 months of age, no sign of cognitive decline is observed, meaning that the mice 

are born with intact mental functions. The very first alteration of cognitive functions 

appears as retention, not learning problems, observed at 4 months of age and measured by 

a slight deterioration in long-term memory (Billings et al., 2005). All other changes 

become apparent at the age of 4-6 months, which is a strong point to conclude about 

intraneuronal Aβ deposition as a foe of proper synaptic performance (Oddo et al., 2003a; 

Billings et al., 2005).  

All of the mentioned data support the notion that the 3xTg-AD mouse model is one of the 

most advanced AD models, mimicking the pathology observed in the human patiens in 

terms of the affected structures (hippocampus, amygdala and cerebral cortex) as well as 

the importance of Aβ and tau pathology in a combined version (Oddo et al., 2003b). This 

provides a huge opportunity for research to find a proper therapeutic approach and makes 

the triple transgenic animal model a great subject for various neuroanatomical, 

biochemical, neurochemical, neuroimaging, cognitive and behavioral studies. 
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Table 1. Neuropathology in the main AD animal models. Modified from (Ittner and 

Gotz, 2011; Rodriguez and Verkhratsky, 2011b). 

 
Lesion and transgenic mouse, 

rat and primate models 

Neuropathology References 

Aging Cholinergic involution and 

amyloid deposition 

(Sani et al, 2003) 

(Fischer et al, 1992) 

(Michalek et al, 1989) 

Electrolytic lesion Neuronal death (Lescaudron et al, 1999) 

(Vale-Martinez et al, 2002) 

Unspecific toxins  

(NMDA, Ibotenic acid, Quisalic 

acid, Quinolic acid, Colchicine, 

Alkaloids, Alcohol) 

Neuronal death (Dunnett et al, 1991) 

(Winkler et al, 1998)  

(Boegman et al, 1985) 

(Shaughnessy et al, 1994) 

(Di Patre et al, 1989) 

(Arendt, 1994) 

Specific toxins  

(AF64A, 192Ig-G saporin) 

Cholinergic neuronal death (Waite et al, 1995) 

(Chrobak et al, 1988)  

(Hanin, 1996)  

(Wiley, 1992) 

(Wiley et al, 1991) 

β-Amyloid 

 

Cholinergic dysfunction (Giovannini et al, 2002) 

(Pavia et al, 2000) 

AMYLOID BETA (Aβ)   

PS1M146L Diffuse plaques (Blanchard et al, 2003) 

PDAPP 

APPSwe 

Plaques 

Plaques 

(Games et al, 1995) 

(Hsiao et al, 1996) 

APP23 Plaques (Sturchler-Pierrat et al, 1997) 

APPV717F Plaques (Dodart et al, 2000) 

APP751SL Plaques (Blanchard et al, 2003) 

K670M/N671L Plaques (Kloskowska et al, 2010) 

Tg478/Tg1116 Plaques (Flood et al, 2009) 

APPSwe and Indiana V717F Plaques (Chishti et al, 2001) 

PS2APP (PS2/APPSwe) Plaques (Richards et al, 2003) 

APP751SL/PS1M146L Plaques (Blanchard et al, 2003) 

APPSwe/PS1dE9 Plaques (Savonenko et al, 2005) 

APPSwe and PS1M146L Plaques (Janus et al, 2000) 

K670N/M671L and V717F Plaques (Janus et al, 2000) 

TgAPPSwe and PS1M146L Plaques (Takeuchi et al, 2000) 

TAU   

ALZ7 Tangles (Gotz et al, 1995) 

TauP301L(4R,2-,3-) Tangles (Lewis et al, 2000) 

P301L Tangles (Gotz et al, 2001) 

7TauTg Tangles (Ishihara et al, 2001) 

P301S Tangles (Allen et al, 2002) 

V337M Tangles (Tanemura et al, 2002) 

4R/2N Tangles (Tatebayashi et al, 2002) 

Endogenous tau knockout Tangles (Andorfer et al, 2003) 

TauP301L Tangles (Arendash et al, 2004) 

P301L TET-off Tangles (Ramsden et al, 2005) 

P301S/G272V Tangles (Schindowski et al, 2006) 

G272V, P301L, R406W Tangles (Eriksen et al, 2007) 

COMBINED Aβ AND TAU   

Tg2576 x JNPL3 (APPSwe) Plaques and tangles (Lewis et al, 2001) 

Tg2576 and VLW Plaques and tangles (Ribe et al, 2005) 

Synthetic Aβ1-42 x pR5 Plaques and tangles (Gotz et al, 2001) 
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APP23 x JNPL3 on C57BL/6 Plaques and tangles (Bolmont et al, 2007) 

APP-V717I x tau-P301L Plaques and tangles (Terwel et al, 2008) 

TauPS2APP (APP152 x pR5) Plaques and tangles (Grueninger et al, 2010) 

ADnnPP7 x TauP301S Plaques and tangles (Coomaraswamy et al, 2010) 

APP23 x pR5 Plaques and tangles (Ittner et al, 2010) 

3xTg-AD Plaques and tangles (Oddo et al, 2003) 

   

Tg478 None (Flood et al, 2009) 

Tg1116 None (Flood et al, 2009) 

   

 

1.2.7. Available treatments for AD and potential therapeutical targets: 

 

Successful therapy for Alzheimer’s disease is one of the urgent needs and dreams of 

today’s medicine. Unfortunately, until now no real cure has been found. The only hope 

for patients are drugs and disease-modifying therapies, with an equal number of pros and 

cons (Pereira et al., 2005). When it comes to strategies to change the direction of the 

disease progression, three main lines of approach have been established: (i) a 

neurotrophic and neuroprotective one, (ii) a strategy to target a particular pathological 

feature of AD, (iii) an approach based on epidemiological observations. Great attention 

has been paid to anti-amyloid actions, as a prevalent hallmark of the disease. Scientists 

are focusing on several possibilities to act on Aβ, such as blocking its aggregation, anti-

amyloid therapy or the modulation of Aβ production (Citron, 2004). In the case of 

blocking Aβ aggregation, zinc chelation with an antibiotic called clioquinol resulted in a 

decrease in β-amyloid accumulation (Cherny et al., 2001). Anti-amyloid immunotherapy 

based on active or passive immunization showed improvement in several transgenic 

mouse models (Schenk et al., 1999; Pfeifer et al., 2002; Oddo et al., 2006). An indirect 

approach with the administration of an antibody against Aβ is based on the assumption 

that the antibody binds to amyloid deposits and in this way activates microglia to 

phagocytize the amyloid (Bard et al., 2000). The therapeutic outcome is thought to be 

achieved also by the direct resolution of Aβ deposits or by the capture of its soluble form, 

which is an important factor affecting cognition (Dodart et al., 2002). Additionally, 

scientists focus on directly reducing Aβ42 production via the stimulation of α-secretase or 

the inhibition of γ- and β-secretase. Although many paths have been explored in the hope 

that they will prove to be the correct one, none of them has been thoroughly tested for 

clinical application (Citron, 2004). In light of the uncertainty about Aβ-based therapy, 

attention has also been paid to tau protein and how to decrease its misfolding and thus 
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restitute tau function. This concept includes inhibiting tau hyperphosphorylation or fibril 

assembly, as well as improving intracellular tau aggregation (Brunden et al., 2009). 

However, until now none of these strategies have been approved for real AD treatment 

(Herrmann et al., 2011).  

Considering drugs to slow down or improve the symptoms of Alzheimer’s disease, there 

are a few already in use. The first group consists of cholinesterase inhibitors (ChEIs), as 

the loss of cholinergic neurons and disrupted cholinergic transmission are among the key 

elements of the pathology (Mangialasche et al., 2010). Improvement should be obtained 

by the modulation of acetylocholinesterase, the enzyme that hydrolyzes acetylcholine in 

the brain (Herrmann et al., 2011). The mechanism of action of ChEIs is connected with 

stopping the hydrolysis caused by acetylcholinesterase, so that the amount of 

acetylcholine available in the synaptic cleft is higher and cholinergic transmission works 

better (Seltzer, 2007). All ChEIs drugs available - donepezil, rivastigmine and 

galantamine - have been approved for AD treatment at different stages, mainly mild to 

moderate (with donepezil also included in 2006 for severe AD). These drugs work via 

non-competitive and reversible binding to acetylcholinesterase and further undergoing 

hydrolysis instead of acetylcholine (Herrmann et al., 2011). The inhibitory effect of 

rivastigmine has long-lasting action, even after the concentration of the drug in the 

plasma decreases (Polinsky, 1998). Similarly to donepezil, rivastigmine works in a dose-

dependent manner and as such contributes to beneficial effects on cognitive functions; 

however, data about its efficacy differ in some cases (Herrmann et al., 2011). 

Galantamine acts in a reversible and competitive way and additionally modulates 

nicotinic acetylcholine receptors – improved nicotinic transmission is a bonus in this case 

(Shimohama, 2009). There are no evident data about its dose-dependent effect; 

nevetheless, it shows positive results demonstrated as a range of symptomatic 

improvements (Herrmann et al., 2011).  

When it comes to non-cholinergic treatment, two drugs are on the market currently: 

memantine and cerebrolysin (Herrmann et al., 2011). Memantine (1-amino-3,5-

dimethyladamantane) is a low affinity uncompetitive NMDA receptor antagonist, which 

achieve its effect by rapid, voltage-dependent interaction within the NMDAR channel. In 

other words, memantine preferentially blocks the receptor activity as a result of extended 

exposure to extracellular glutamate, but still enables its physiological activation (Parsons 
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et al., 1999; Hynd et al., 2004). Also, memantine was shown to prevent 

neurodegeneration induced by Aβ (Miguel-Hidalgo et al., 2002). From the clinical point 

of view, memantine is able to decrease neurotoxic devastation already at the 

concentrations which are not harmful for LTP induction and learning abilities (Muller et 

al., 1995; Chen et al., 1998). For this reason, it has started to be used worldwide as a 

therapeutic agent in many AD clinical trials, also in combination with 

acetylcholinesterase inhibitors (Jain, 2000). Though memantine is commonly used at all 

stages of Alzheimer’s disease, from mild to severe as well as in patients suffering mild 

cognitive impairment, its beneficial role was found just in severe cases (Winblad and 

Poritis, 1999; Miguel-Hidalgo et al., 2002; Schneider et al., 2011). Effective therapy with 

memantine needs further attention and combined studies. Also, extended studies on the 

precise causes of glutamate excitotoxicity in neurodegenerative diseases should be 

undertaken to make every therapeutic approach more effective (Walton and Dodd, 2007). 

Cerebrolysin is used within some European countries and Asia. Its mechanism of action 

is still not clear, but it reseambles endogenous growth factors, meaning that it has 

neurotrophic and supportive effects on neurons (Veinbergs et al., 2000). Studies and 

therapies exploring the use of cerebrolysin require further attention and comparative 

studies (Herrmann et al., 2011).  

 

To conclude, Alzheimer’s disease is a pathology that is the subject of large numbers of 

medical trials and much scientific guessing. Much effort has been made to develop and 

test theories of its causes and progression and to find new therapeutic targets; 

nevertheless, innovative approaches together with diligent work continue to be needed in 

order to achieve a cure. 
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2. AIMS AND HYPOTHESES: 

 

The hypothesis behind this work is based on the assumption that astrocytes are actively 

involved in the progression of Alzheimer’s disease, as well as in normal aging. In our 

opinion, the destructive cascade of events starts from an initial failure of astrocytes, 

which leads to reduced synaptic coverage and homeostatic imbalance, inluding 

inadequate nutrition to neurons. At the end, ongoing devastation in astrocytic 

functionality can result in total brain connectivity breakdown, as observed in AD patients, 

resulting in a complete deterioration of cognitive functions and memory. To closely 

investigate the astrocytic changes, we chose the medial prefrontal cortex (mPFC), an 

important region for managing complex cognitive functions as well as being a part of the 

connective limbic loop between other structures strongly affected in Alzheimer’s disease, 

such as the hippocampus and the entorhinal cortex.  

In our work we sought to prove that astrocytes can be a novel and promissing therapeutic 

target in AD. 

 

The aims of this thesis are: 

1. To characterize the changes in astroglial morphology in the mPFC at different 

ages in AD animals using 3D qualitative and quantitative neuroanatomical 

analysis;  

2. To study the relation between β-amyloid and changes in GFAP-positive 

astrocytes in the mPFC; 

3. To investigate the functional changes in astrocyte-dependent glutamate 

metabolism, crucial for proper neurotransmission within the brain, by analyzing 

the changes in glutamine synthetase (GS) and glutamate transporter – 1 (GLT-1); 

4. To characterize the type of interrelation between the main brain structures 

(hippocampus, entorhinal cortex, medial prefrontal cortex) affected in 

Alzheimer’s disease based on astrocytic alterations; 

5. To study the alterations in astrocytic cytoarchitecture and the expression of 

specific markers (GFAP, S100β and GS) during non-pathological aging in the 

hippocampus and entorhinal cortex.  
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3. MATERIALS AND METHODS: 

 
These studies were performed

 
in accordance with the European Communities Council 

Directive
 
of 24th of November 1986 (86/609/EEC) regarding the use of animals

 
in 

research and were approved by the Ethical Committee of the
 
Institute of Experimental 

Medicine of the Academy of Sciences
 
of the Czech Republic, Prague, Czech Republic. 

All efforts were made to reduce the number of animals. 

3.1. MICE: 

Experiments were performed on male 3xTg-AD mice and their background-matching 

controls as described in detail in the Introduction, part 1.2.6.b (Animal models) and in 

scientific publications (Oddo et al., 2003a; Oddo et al., 2003b; Rodriguez et al., 2008; 

Rodriguez et al., 2009a). Briefly, the homozygous animals harbour mutant genes for 

PS1M146V, APPSwe and tauP301L, which accounts for their ability to manifest the hallmarks 

of AD in an age-related and region-dependent manner. The generation of 3xTg-AD mice 

was based on the co-microinjection of two transgenes (APPSwe and tauP301L) into single-

cell embryos from homozygous PS1M146V knockin mice (Fig.15). The animals were kept 

in the same-sex cages, in 12 hour light-dark cycles, with access to food and water ad 

libitum. 

 

Fig.15 The method used to develop 3xTg-AD mice (Oddo et al, 2003). 
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3.2. IMMUNOHISTOCHEMICAL ANALYSIS: 

3.2.1. Fixation and tissue processing: 

 

3xTg-AD animals of different ages (1, 3, 6, 9, 12, 18 and 24 months; n=3-7 for all ages) 

and their equivalent Non-Tg controls were anesthetized by an intraperitoneal injection of 

sodium pentobarbital (50 mg/ kg). The mice were perfused through the aortic arch with 

3.75% acrolein (25 ml, Fluka Sigma-Aldrich, Germany) in a solution of 2% 

paraformaldehyde (Sigma, Germany) and 0.1 M phosphate buffer (PB) pH 7.4, followed 

by 2% paraformaldehyde (75ml). The brains were then removed and cut into 4 mm 

coronal slabs of tissue consisting of the entire rostrocaudal extent of the mPFC. The brain 

sections were post-fixed in 2% paraformaldehyde for 24 h and kept in 0.1 M PB, pH 7.4. 

Then, they were cut into 40–50 µm thick coronal sections using a vibrating microtome 

(MICROM HM 650 V, Thermo Scientific, USA). Free floating brain sections in 0.1 M 

PB, pH 7.4, were collected and stored in a cryoprotectant solution containing 25% 

sucrose and 3.5% glycerol in 0.05 M PB at pH 7.4. Coronal vibratome sections at levels 

1,98/1,54 mm anterior to Bregma were selected for immunochemistry, according to the 

mouse brain atlas of Paxinos and Franklin (Paxinos and Franklin, 2004). 

3.2.2. Antibodies: 

 

To study the specific subtypes of astrocytes, as well as the interrelationships between 

them and/or Aβ, different antibodies were used. The tables give an overview of the 

primary and secondary antibodies used to fulfill the scientific goals of this thesis.   

 

To assess possible nonspecific background labeling or cross-reactivity between 

antibodies derived from different host species, a series of control experiments was 

performed. The omission of the primary and secondary antibodies from the incubation 

solutions resulted in the total absence of target labeling. 
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Table 2. Primary antibodies used for immunohistochemistry 

Antigen Host Type Provider Dilution Reference 

GFAP Mouse Monoclonal Sigma-

Aldrich 

(G3893) 

1:5000 (Wilhelmsson 

et al., 2004) 

GFAP Rabbit IgG fraction Sigma-

Aldrich 

(G9269) 

1:5000 (Wilhelmsson 

et al., 2004) 

GS Mouse Monoclonal Millipore 

(MAB302) 

1:500 (Wilhelmsson 

et al., 2004) 

S100β Rabbit Polyclonal DAKO 

(Z0311) 

1:5000 (Hagen et al., 

1986) 

Aβ Mouse Monoclonal Covance 

(SIG-39300) 

1:2000 (Oddo et al., 

2003b) 

 

Table 3. Secondary antibodies used for immunohistochemistry 

Antigen Host Type Provider Dilution Reference 

Mouse Goat FITC-

conjugated IgG 

Jackson 

Immunoresearch 

(115-096-146) 

1:100 (Rodriguez et 

al., 2009a) 

Rabbit Goat FITC-

conjugated IgG 

Jackson 

Immunoresearch 

(111-096-144) 

1:100 (Olabarria et 

al., 2010) 

Mouse Goat Alexa Fluor 

594-conjugated 

IgG 

Invitrogen 

(A11005) 

1:200 (Olabarria et 

al., 2011) 

Mouse Goat TRITC-

conjugated IgG 

(Rhodamine) 

Jackson 

Immunoresearch 

(115-026-075) 

1:200 (Olabarria et 

al., 2010) 

Mouse Horse Biotinylated 

IgG 

Vector 

Laboratories 

(BA-1400) 

1:200 (Rodriguez 

et al., 2008) 
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3.2.3. Immunohistochemistry: 

 3.2.3.a. Peroxidase: 

 

To minimise methodological variability, sections through the mPFC containing both 

hemispheres of all animals were processed at the same time under precisely the same 

experimental conditions. For this procedure, the vibratome sections were first incubated 

for 30 min in 30% methanol in 0.1M PB and 3% hydrogen peroxide (Sigma-Aldrich, 

Germany). Sections were rinsed with 0.1M PB for 5 mins and placed in 1% sodium 

borohydride (Sigma-Aldrich, Germany) for 30 minutes. Subsequently, the sections were 

washed with PB profusely before rinsing in 0.1M TS for 10 minutes. Brain sections were 

then incubated with 0.5% albumin bovine serum (BSA, Sigma-Aldrich, Germany) in 

0.1M TS and 0.25% Triton X-100 (Sigma-Aldrich, Germany) for 30 minutes. For single 

labeling, sections were incubated for 48 hours at room temperature with the primary 

antibody. The sections were rinsed in 0.1M TS for 30 minutes and incubated in the 

appriopriate dilution of the biotinylated secondary antibody for 1 hour at room 

temperature. Subsequently, the sections were rinsed in 0.1M TS for 30 minutes, followed 

by incubation for 30 minutes in avidin-biotin peroxidase complex (Vetor Laboratories 

Ltd, UK). The peroxidase reaction product was visualized by incubation in a solution 

containing 0.022 % of 3,3’diaminobenzidine (DAB, Sigma-Aldrich, Germany) and 0.003 

% H2O2 for 1.5 minutes, as described previously (Rodriguez et al., 2008; Rodriguez et al., 

2009a; Olabarria et al., 2011). The reaction was stopped by rinsing the tissue in 0.1M TS 

for 5 minutes followed by 0.1M PB for 15 minutes. Brain sections were permanently 

mounted onto gelatinized slides and then dehydrated in ascending concentrations of 

ethanol (50, 70, 80, 90, 95 and 100 %) followed by xylene. Finally, they were 

permanently coverslipped with entellan (Merck, Czech Republic).  

 3.2.3.b. Fluorescence: 

 

For the detection and determination of GFAP-positive cells and their relation to Aβ 

aggregates, as well as in case of GFAP-GS colocalization, we used both single and 

double indirect immunofluorescence labeling. The initial stages in preparation for antigen 

detection were the same as in the case of peroxidase staining. After incubation in 30% 

methanol in 0.1M PB and 3% of hydrogen peroxide, the sections were placed in 1% 

sodium borohydride (Sigma-Aldrich, Germany) for 30 min, washed profusely with PB 
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and rinsed in 0.1M TS for 10 min. Then, the brain sections were incubated with 0.5% 

bovine serum albumin (BSA; Sigma-Aldrich, Germany) in 0.1M TS and 0.25% Triton X-

100 (Sigma-Aldrich, Germany) for 30 min. For single labeling, the sections were 

incubated for 48 h at room temperature in the appriopriate primary antibody. The sections 

were rinsed in 0.1M TS for 30 min and incubated in a dilution of fluorochrome-

conjugated secondary antibody for 1 h at RT, then rinsed in 0.1M TS for 30 min.  

For double labeling, the sections were incubated for 48 h at room temperature in a 

primary antibody cocktail. Each antigen was detected in a sequential manner on the same 

sections by incubation with their correspondent fluorochrome-conjugated secondary 

antibody.  

 

Finally, the sections were rinsed with 0.1M TS for 30 min and permanently mounted in 

an aqueous medium (Vectashield; Vector laboratories, Peterborough, UK). 

3.2.4. Cell count in the ventral medial prefrontal cortex: 

 

We determined the numerical density (Nv, # cells/mm
3
) of GFAP-positive and GS-

positive astrocytes in the mPFC in at least three representative non-consecutive sections, 

analyzing an area of 600,000 µm
2 

in coronal sections of 40 µm thickness, thus 

representing a total volume of 24,000,000 µm
3 

per section. Confocal images were used 

for this purpose in the case of GFAP-positive astrocytes, while light microscopy images 

enabled the counting of GS-positive glia. Both subtypes of glial cells were intensively 

labeled, which made them easy to identify with an equal chance of being counted by a 

single observer to reduce counting bias to a minimum.  

3.2.5. Morphological analysis of the astrocyte cytoskeleton: 

 

GFAP-positive astrocytes (n=35 per animal, with a minimum of 5 per layer in case of 

mPFC region) were imaged using confocal scanning microscopy (Leica TCS SP), 

recording layers every 0.2µm. Morphological analysis was carried out by Cell Analyst 

(Chvatal et al., 2007), the software developed in the Department of Neurobiology, 

Institute of Experimental Medicine, Prague, Czech Republic. In general, the software 

allows the performance of 2 types of cell visualization: (1) 3D image reconstruction by 

rendering the cell surface as well as (2) 2D reconstruction done by volume rendering, 
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meaning that recordings from all the layers are superimposed (Chvatal et al., 2007) 

(Fig.16A). At the basis of the technique is sectioning of the image along the vertical axis 

into a stack of 2D parallel images, with known xyz size. Subsequently, several techniques 

are utilized, such as filtering the images (including the removal of background noise), 

thresholding and the final morphometric calculations. Digital filters applied for the 

purpose of our study were: average 3x3, convolution, gauss 5x5, despeckle and simple 

objects removal. Thresholding (in a 0-255 greyscale) was used to determine which part of 

the image will be taken into consideration as a part of the cell. The image area where 

pixels had a value above the threshold was ignored. The cell volume was calculated by 

the Cavalieri method, while the cell surface area was established using the iso-contouring 

or iso-intensity contouring method (Kubinova et al., 1999; Duerstock et al., 2003). In the 

case of 3D surfaces of the cells, those were constructed using the pixel value of the 

threshold – “iso-values” (Fig.16B) (Chvatal et al., 2007).  

 

Fig.16 (A) Presentation of GFAP-IR astrocyte confocal sectioning. All cell layers 

recordings (shown as a stack of images in the middle drawing) were superimposed and 

underwent the procedure of digital filtering. (B) Draft showing unit areas bounded by 

isovalue edges and the distance between sections used in the morphometric calculations 

(Chvatal et al, 2007). 

3.2.6. Measurements of the domain and cell body surface area of GS-

immunoreactive cells: 

 

We used ImageJ software to measure the domain and cell body surface area in 

representative cells from each age group (N=15 in both controls and 3xTG-AD animals). 
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For this purpose, higher magnification micrographs (objective 40x) obtained with light 

microscopy (Zeiss Observer D1) were analyzed. 

3.2.7. Colocalization of GS-IR and GFAP-IR astrocytes: 

 
To determine the colocalization of GS-IR and GFAP-IR astrocytes, representative higher 

magnification stacks of images throughout the mPFC region of control and 3xTg-AD 

animals (N = 4 in both cases) were taken with a confocal microscope (Zeiss LSM 5 

DUO) at 0.2 µm z-step. Both GS-IR and GFAP-IR cells were imaged at the same time 

and then counted in an approximate area of 40,500 µm
2
 in a section of 40µm thickness.  

 

3.3. WESTERN BLOT ANALYSIS: 

3.3.1. Tissue processing: 

 

Transgenic and control animals of different ages (1, 6, 9 and 12 months; n = 5-7) were 

euthanized by cervical dislocation. Brain tissue samples containing the mPFC were 

collected immediately and lysed with 100 µl of STEN lysis buffer [50 mM Tris (pH 7.6), 

150mM NaCl, 2 mM EDTA and 1% Triton-X (Sigma-Aldrich, Germany)] with protease 

inhibitors (Complete mini, Protease Inhibitor Cocktail Tablets, Roche, Czech Republic) 

on ice for 30 min. When ready to use, the lysates were centrifuged (13.000 rpm, 5 min) 

and the supernatants tranferred to new eppendorf tubes.  

3.3.2. SDS polyacrylamide gel electrophoresis (PAGE) and transfer of proteins onto 

a nitrocellulose membrane: 

 

The protein concentrations from brain tissue lysates were determined using the Bradford 

method (Bio-Rad, Hercules, CA, USA) (Bradford, 1976).  Samples containing 20 µg of 

protein and 1X Laemmli buffer (Laemmli, 1970) were boiled at 95
o
C for 4-5 min. 

Samples were loaded together with 5µl of protein marker (prestained Protein Ladder, 

Page Ruler, Fermentas) and run on 12% sodium dodecyl sulfate-polyacrylamide gels 

[30% acrylamide: bisacrylamide (37,5:1), 1,5 M Tris (pH 8,8), 10% 

Ammoniumpersulfate (APS), 10% SDS and 0,1% Tetramethylethylene-diamine 

(TEMED)]. The gels were submerged into running buffer 1X (Tris Base 25 mM; Glycine 

119 mM; SDS 1%) and run initially at 100 V until the samples passed the stacking gel 
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and then at 150 V until the mercaptoethanol dye reached the bottom of the gel. After 

electrophoresis, proteins were transferred onto a nitrocellulose membrane in an electrical 

field in order to immobilize them in a specially designed chamber (BioRad). Prior to 

transfer, the gel and nitrocellulose membrane were dunked in 1X transfer buffer (Tris 

Base 25 mM; Glycine 119 mM; Methanol 20%; pH 7,6) and run at 400 mA                                                                                                           

(constant) for 120 min. The polyacrylamide gel was placed onto the nitrocellulose 

membrane (Sigma) and sandwiched in a blotting cassette between a sponge and Whatman 

filter paper. All parts were clinched together after ensuring that no air bubbles had been 

formed between the gel and the membrane.  

 

 

Fig.17 The arrangement of the parts of the transfer cassette. 

 

After electroblotting the membranes were rinsed in water and stained briefly with 

Ponceau S Red dye in 0.1% acetic acid to verify the protein transfer as well as the equal 

loading of the samples.  

To prevent non-specific binding of the primary and secondary antibodies, membrane 

blocking was performed using a blocking solution consisting of 5% non-fat dry milk 

soluted in Tris Buffer Saline Tween20 (TBST) buffer (Tris Base 10 mM; NaCl 100 mM; 

Tween-20 0.1%; pH 7.6). Blots were incubated for 1 h at RT with agitation. 
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3.3.3. Antibodies: 

 

The primary and secondary antibodies used for WB are summarized in the tables below. 

 

Table 4. Primary antibodies used for Western blot 

Antigen Host Type Provider Dilution Reference 

GS Mouse Monoclonal Millipore 

(MAB302) 

1:20000 (Sen et al., 

2011) 

GLT-1 

(EAAT2) 

Rabbit Polyclonal Cell 

Signaling 

(3838) 

1:1000 (Amara and 

Fontana, 

2002) 

*β-actin Mouse Monoclonal Sigma-

Aldrich 

(A2228) 

1:20000 (Gimona et 

al., 1994) 

* antibody used as a loading control  

 

Table 5. Secondary antibodies used for Western blot 

Antigen Host Type Provider Dilution Reference 

Rabbit Goat Peroxidase-

conjugated 

IgG 

Jackson 

Immunoresearch 

(111-035-003) 

1:20000 (Kulijewicz-

Nawrot et al., 

2013) 

Mouse Goat Peroxidase-

conjugated 

IgG 

Jackson 

Immunoresearch 

(115-035-003) 

1:15000 (Kulijewicz-

Nawrot et 

al., 2013) 

 

 

3.3.4. Protein detection and band analysis: 

 

The primary antibodies were diluted in the same blocking buffer (5% non-fat dry 

milk/TBST) and the membranes were incubated for 1h (in the case of anti-GS and anti-β-

actin antibodies) or 2h (in the case of anti-GLT-1 antibody) at RT. Following the 

incubations, the membranes were washed three times in TBST at RT with agitation for 15 

min to remove residual primary antibodies. The blots were then probed with HRP-
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conjugated secondary antibodies and incubated for 1h with agitation at RT. Finally, the 

membranes were washed three times in TBST.  

Visualization of the secondary antibodies was achieved with enhanced 

chemiluminescence substrate (ECL). The membrane was covered with the substrate 

solution 1:1 (Sol1: 250 mM luminol in DMSO and 90 mM p-coumaric acid in DMSO, 

Sigma-Aldrich, Germany; Sol2: 1M Tris pH 8,5 and H2O2, Sigma-Aldrich, Germany) 

and incubated for 5 min in the dark at RT and afterwards exposed to XBM x-ray film 

(Retina, Fotochemische Werke GmbH, Berlin, Germany). After scanning the images, 

ImageJ free software was used to quantify the intensity of the bands. The ratio of GS or 

GLT-1 to β-actin, used as loading control, was first assessed. In order to perform 

comparisons across different Western blots, an internal control was always included on 

each blot as the same reference point, regarding the GS or GLT-1/β-actin ratio.  

3.4. Statistical analysis: 

 

Unpaired t-tests alone (in the GS AD experiments, as well as in the aging study) or 

combined with one-way ANOVA (in the GFAP experiments) were used to examine 

differences in the number, surface area, volume as well as the relative ratios of GS or 

GLT-1 to β-actin in labeled cells from 3xTg-AD and Non-Tg animals. Additionally, a 

linear regression test was used to analyze the relation between age and the relative ratios 

of GS to β-actin in 3xTg-AD and Non-Tg animals. All data are expressed as mean ± 

SEM. Statistical analysis was done using GraphPad Prism (GraphPad Software) and 

significance accepted at p≤0.05.  
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4. RESULTS: 

4.1. ASTROCYTIC CYTOSKELETAL ATROPHY IN THE MEDIAL 

PREFRONTAL CORTEX OF A TRIPLE TRANSGENIC MOUSE MODEL OF 

ALZHEIMER’S DISEASE.  

 

Kulijewicz-Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ. 

 

J Anat. 2012 Sep;221(3):252-62. doi: 10.1111/j.1469-7580.2012.01536.x. Epub 2012 Jun 

27. 

 

We analyzed the astrocytic cytoskeletal changes within the mPFC of a triple transgenic 

mouse model of AD (3xTg-AD) by measuring the surface area and volume of glial 

fibrillary acidic protein (GFAP)-positive profiles in relation to the build-up and presence 

of amyloid-β (Aβ) and compared the results to those found in non-transgenic control 

animals at different ages. 3xTg-AD animals showed clear astroglial cytoskeletal atrophy, 

which appeared at an early age (3 months; 33% and 47% decrease in GFAP-positive 

surface area and volume, respectively) and remained throughout the disease progression 

at 9, 12 and 18 months of age (29% and 36%; 37% and 35%; 43% and 37%, 

respectively). This atrophy was independent of Aβ accumulation, since only a few 

GFAP-positive cells were localized around Aβ aggregates, which suggests no direct 

relationship with Aβ toxicity.  

4.1.1. General astrocytic appearance and cell count: 

 

In both Non-Tg and 3xTg-AD mice, GFAP-immunolabeled astrocytes showed typical 

characteristics of protoplasmic astrocytes with numerous, elongated and extended 

processes arising from the astrocyte somata in a star-shaped radial pattern (Fig. 18A-D). 

These GFAP-immunoreactive (GFAP-IR) processes differed in thickness and length, 

from clearly visible solid branches to thin, subtle and elaborated ones, which 

corresponded to proximal and distal processes, respectively. GFAP-IR astrocytes were 

much more abundant in layer I and appeared in lower numbers through layers II to VI. 

However, independently of the gradient of GFAP-positive astrocytes, the Nv (number of 

cell/mm
3
) of GFAP-IR astrocytes was constant and equal at different ages in both Non-

Tg and 3xTg-AD animals, with no significant differences between them (Fig. 19). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kulijewicz-Nawrot%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Verkhratsky%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Chv%C3%A1tal%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Sykov%C3%A1%20E%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Rodr%C3%ADguez%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Kulijewicz-Nawrot
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4.1.2. Early and sustained astroglial cytoskeletal atrophy in 3xTg-AD mice:  

 

GFAP-positive astrocytes in the 3xTG-AD mice showed a significant reduction in their 

cytoskeletal surface area and volume as early as 3 months of age; both parameters 

decreased by 33% and 47%, respectively, when compared to Non-Tg controls (2526.58 ± 

103.44 µm
2
 vs. 3770.23 ± 166.88 µm

2
, p=0.0007; 507.78 ± 22.28 µm

3
 vs. 950.13 ± 86.99 

µm
3
, p=0.0026). This cytoskeletal atrophy remained at 9 months (a decrease of 29% in 

surface area, 2580.81 ± 288.53 µm
2 

vs. 3633.10 ± 244.97 µm
2
, p=0.0458; and a decrease 

of 36% in volume, 536.51 ± 73.30 µm
3 

vs. 834.16 ± 88.32 µm
3
, p=0.0475), 12 months (a 

decrease of 37% in surface area, 2279.37 ± 340.39 µm
2 

vs. 3633.35 ± 121.88 µm
2
, 

p=0.0096; and a decrease of 35% in volume, 507.91 ± 74.82 µm
3 

vs. 787.37 ± 54.76 µm
3
, 

p=0.0236) and 18 months, when the surface area was reduced by 43% (2210.96 ± 143.36 

µm
2 

vs. 3857.58 ± 391.03 µm
2
, p=0.0075) and the volume by 37% (526.55 ± 58.08 µm

3 

vs. 841.94 ± 91.41 µm
3
, p=0.0269) (Fig. 18E-F). 
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Fig.18 Confocal images showing the classical morphology of GFAP-positive astrocytes 

in control Non-Tg animals and astrocytic atrophy in the 3xTg-AD animals at 3 months (A 

and B, respectively) and 18 months (C and D, respectively) in the mPFC. Bar graphs 

showing the decreases in the GFAP-positive surface area and volume throughout the 

whole extent of the mPFC (E-F) in 3xTg-AD mice when compared with control animals. 

Bars represent mean ± SEM. 
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Fig.19 Bar graphs showing the numerical density (number cells/mm3) of GFAP-IR cells 

in 3xTg-AD mice and Non-Tg controls. Bars represent mean ± SEM. 

 

4.1.3. Layer-specific astrocytic atrophy:   

 

Our results show that astrocytic atrophy is not only a generalized phenomenon, but also 

layer-specific. The affected layers at both young (3 months) and old ages (18 months) 

were the superficial layers 1 and 2  together with the deep layers 4 and 5. However, layer 

3 only appeared to be affected at advanced ages, starting at 12 months of age (Fig. 20C 

and 20H). 

 4.1.3.a. Superficial layers 1-3: 

 

In general, astrocytes from the superficial layers in 3xTg-AD animals were characterised 

by shorter, less numerous and rather horizontally oriented processes. At the age of 3 

months astrocytes in superficial layer 1 were reduced in surface area by 37% (2017.35 ± 

293.54 µm
2
 vs. 3219.53 ± 346.18 µm

2
, p=0.0381) and in volume by 48% (438.24 ± 55.06 

µm
3
 vs. 844.05 ± 81.32 µm

3
, p=0.0061) when compared to those in Non-Tg control 

animals. At very late ages this atrophy, which was absent at middle and advanced ages (9 

to 12 months), re-appeared, and the astrocytic cytoskeletal surface area underwent a 

reduction of 31% (1972.83 ± 111.31 µm
2
 vs. 2843.57 ± 166.21 µm

2
, p=0.0048) along 

with a 32% decrease in volume (410.70 ± 39.60 µm
3
 vs. 603.36 ± 35.91 µm

3
, p=0.0113) 

(Fig. 20A and 20F). 

 

Astrocytic atrophy in layer 2 at 3 months was manifested by a 50% reduction in surface 

area (1900.20 ± 355.75 µm
2
 vs. 3787.24 ± 595.47 µm

2
, p=0.0346) and a 52% reduction 
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in volume (390.97 ± 46.66 µm
3
 vs. 813.33 ± 52.94 µm

3
, p=0.001). Similarly to layer 1 at 

18 months, equivalent decreases were observed: 56% and 53% in surface area and 

volume, respectively (1715.77 ± 92.83 µm
2
 vs. 3945.10 ± 507.82 µm

2
, p=0.005; and 

374.96 ± 51.09 µm
2 
vs. 791.10 ± 66.44 µm

2
, p=0.0025) (Fig. 20B and 20G).  

 

The surface area and volume of astrocytes in layer 3 were affected only at advanced and 

late ages, the changes being significant at 12 months (a decrease of 37%, 3004.46 ± 

527.54 µm
2 

vs. 4763.42 ± 363.08 µm
2
, p=0.0334; and a decrease of 32%, 663.33 ± 

113.59 µm
3 

vs. 981.10 ± 55.21 µm
3
, p=0.0455, respectively) and at 18 months of age (a 

decline in surface area of 41%, 2521.97 ± 237.91 µm
2
 vs. 4244.60 ± 661.12 µm

2
, 

p=0.0497; and a decline in volume of 40%, 540.11 ± 65.38 µm
3
 vs. 906.31 ± 129.89 µm

3
, 

p=0.0454) (Fig. 20C and 20H).  

 

A slight difference was noticeable between astrocytes in the different superficial layers. 

Astrocytes from layer 2 in comparison to those from layer 1 had slightly more expanded 

processes, but less numerous than the more bushy astrocytes from the deeper superficial 

layer 3. At 3 months of age in 3xTg-AD animals, there were some significant internal 

differences between the GFAP-positive profiles of layer 3 and those of other layers, 

despite the fact that this layer was unchanged compared to the same layer in the control 

group. Layer 3 astrocytes appeared to be larger compared to those in layer 1 (53.08% 

larger in surface area, 4299.96 ± 644.34 µm
2
 vs. 2017.35 ± 293.54 µm

2
, p=0.0181; and 

47.42% larger in volume, 833.54 ± 93.17 µm
3 

vs. 438.24 ± 55.06 µm
3
, p=0.0107) and 

also those in layer 2 (55.81% in surface area, 4299.96 ± 644.34 µm
2 

vs. 1900.2 ± 355.75 

µm
2
, p=0.0178; 53.1% in volume, 833.54 ± 93.17 µm

3 
vs. 390.97 ± 46.66 µm

3
, 

p=0.0054); this phenomenon was observed only at early ages and exclusively in 3xTg-

AD animals, not in control mice.  

 4.1.3.b. Deep layers 4 and 5: 

 

Astrocytes in the deep layers were star-like displayed a more typical protoplasmic 

anatomy (Fig. 21) but with rather thin, numerous, but limited in length processes, sent in 

all directions. The reduction in astrocytic cytoskeletal branching in layers 4 and 5 was 
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significant not only in the early and late stages of AD, but also at mid-advanced ages (3, 

12 and 18 months of age).  

The surface area and volume of astrocytes in layer 4 were decreased at 3 months by 42% 

(3024.84 ± 329.86 µm
2
 vs. 5210.35 ± 697.60 µm

2
, p=0.0299) and by 53% (597.18 ± 

45.41 µm
3
 vs. 1269.32 ± 232.94 µm

3
, p=0.0299), respectively. At 12 months the surface 

area was decreased by 49% (2944.96 ± 539.49 µm
2 

vs. 5810.24 ± 383.12 µm
2
, p=0.0049) 

and the volume by 48% (609.86 ± 87.45 µm
3 

vs. 1183.26 ± 165.95 µm
3
, p=0.0223). In 

the oldest group of animals at 18 months of age, the atrophy of mPFC astrocytes in layer 

4 remained evident, showing a decrease in both surface area and volume (50% in surface 

area, 2910.83 ± 556.42 µm
2
 vs. 5832.46 ± 613.04 µm

2
, p=0.0124; and 47% in volume; 

654.01 ± 126.84 µm
3
 vs. 1235.76 ± 200.46 µm

3
, p=0.0496) (Fig. 20D and 20I). 

 

The reduction in astrocytic cytoskeletal surface area and volume in layer 5 at 3 months of 

age was manifested to the same extent by a 51% decrease in surface area (1805.06 ± 

584.22 µm
2 

vs. 3702.41 ± 291.62 µm
2
, p=0.0271) and a 70% decrease in volume (356.60 

± 30.53 µm
3 

vs. 1200.08 ± 241.64 µm
3
, p=0.0134). At 12 and 18 months of age, these 

reductions persisted even though the differences were less pronounced:  36% and 41% in 

surface area (2509.24 ± 484.45 µm
2
 vs. 3907.91 ± 131.85 µm

2
, p=0.0318; and 2053.31 ± 

205.48 µm
2 

vs. 3460.72 ± 359.09 µm
2
, p=0.0145, respectively) and 36% and 37% in 

volume (596.90 ± 118.90 µm
3 

vs. 930.23 ± 46.78 µm
3
, p=0.0402; and 528.75 ± 53.96 

µm
3
 vs. 837.37 ± 101.99 µm

3
, p=0.0368) at 12 and 18 months, respectively (Fig. 20E and 

20J).  

 

As observed in superficial layers 1 and 2, astrocytes in layer 5 were significantly smaller 

than those in layer 3. Indeed, layer 5 astrocytes were smaller by 41.98% in surface area 

(1805.06 ± 584.22 µm
2
 vs. 4299.96 ± 644.34 µm

2 
vs., p=0.0285) and by 43.02% in 

volume (833.54 ± 93.17 µm
3 

vs. 356.6 ± 30.53 µm
3
 p=0.0028), while no clear differences 

were evident compared to astrocytes from layer 4.   
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Fig.20 Bar graphs illustrating the decreased GFAP-positive surface area (A-E) and 

volume (F-J) in the different cortical layers of the mPFC. Bars represent mean ± SEM. 
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Fig.21 Confocal images showing a typical protoplasmic astrocyte (A) compared to a less 

classical cortical astrocyte (B) from the deep layers of 3xTg-AD mice. 

 

4.1.4. Intracellular Aβ accumulation but rare astrocytic association with neuropil 

Aβ aggregates:  

 

Up to 18 months of age, no plaques were formed in the mPFC of 3xTg-AD animals. 

However, vascular Aβ accumulation and a vast intracellular accumulation of amyloid β 

were observed (Fig. 22C and inset, 22B), with a minimal tendency to progress to 

extracellular plaque deposition, except for aggregates (Fig. 22A-B). The intracellular 

accumulation of Aβ started to appear around 6 months of age and became more robust 

with disease progression. Neurones filled with Aβ were located throughout the cortex, 

with a tendency towards a slightly more prominent presence in the deeper layers (4-5). 

These neuropathological signs were not generally associated with the presence of 

neighbouring astrocytes positive for GFAP (Fig. 22A-B) and, if so, only with astrocytes 

displaying evident atrophic characteristics (Fig. 22A and asterisk). 
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A

B

Fig.22 Confocal images illustrating Aβ aggregates in the mPFC, but few GFAP-positive 

neighbouring astrocytes (A and asterisk), and an Aβ loaded blood vessel surrounded by 

some reactive astrocytes in an 18-month-old 3xTg-AD animal (B); Green – GFAP, red – 

Aβ. Brightfield micrograph showing the intracellular accumulation of Aβ in the mPFC of 

an 18-month-old transgenic animal (C). 

C
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4.2. ASTROCYTES AND GLUTAMATE HOMEOSTASIS IN 

ALZHEIMER’S DISEASE: A DECREASE IN GLUTAMINE 

SYNTHETASE BUT NOT IN GLUTAMATE TRANSPORTER-1 IN THE 

PREFRONTAL CORTEX.  

  
Kulijewicz-Nawrot M, Syková E, Chvátal A, Verkhratsky A, Rodríguez JJ.  

 

ASN Neuro 2013 5(4):art:e00123.doi:10.1042/AN20130017. Epub 2013 Sep 23. 

 

We analyzed the expression of glutamine synthetase (GS) and glutamate transporter-1 

(GLT-1) in astrocytes in the mPFC during the progression of AD in a triple-transgenic 

mouse model (3xTg-AD). GS is an astrocyte-specific enzyme, responsible for the 

intracellular conversion of glutamate to glutamine, whereas the removal of glutamate 

from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We 

found a significant decrease in the numerical density (Nv, cells/mm
3
) of GS-positive 

astrocytes from early to middle ages (1-9 months) (at the age of 1 month by 17%, 6 

months by 27% and at 9 months by 27% when compared to control animals) in parallel 

with a reduced expression of GS (determined by Western blots), which started at the age 

of 6 months and was sustained up to 12 months of age. We did not, however, find any 

changes in the expression of GLT-1, which implies an intact glutamate uptake 

mechanism. Our results indicate that the decrease of GS expression may underlie a 

gradual decline in the vital astrocyte-dependent glutamate-glutamine conversion 

pathway, which in turn may compromise glutamate homoeostasis, leading towards 

failures in synaptic connectivity with deficient cognition and memory.  

4.2.1. General characterization of GS-positive astrocytes in control and transgenic 

animals and their relation to GFAP: 

 

Cortical GS-immunoreactive (GS-IR) astrocytes were uniformly distributed in both the 

superficial and deep layers of the mPFC. GS-IR astrocytes showed clear labeling of their 

primary and distal processes, thus faithfully delineating the astrocytic domains (Fig. 23A 

and C). GS-IR astrocytes showed typical characteristics of protoplasmic astrocytes with 

multiple elaborated processes emanating from the cell somata (Fig. 23A). In control 

animals the astrocytic cell bodies were well defined and almost perfectly round in shape. 

In 3xTg-AD animals, the GS-IR cell bodies were also clearly outlined, but slightly less 
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spherical and markedly smaller. In 3xTg-AD animals, GS-positive astrocytes also had 

less branching in both their main and secondary processes (Fig. 23B and D). The 

processes were directed in a random fashion, with thin extensions oriented in various 

directions.  

 

As revealed by co-staining, there was a different tendency to co-express GFAP and GS in 

mPFC astrocytes in control and 3xTg-AD mice. In general, in controls and transgenic 

animals three subpopulations of astrocytes were identified: GS-IR, GFAP-IR and a 

population expressing both proteins (GS/GFAP-IR) (Table 6). The majority of astroglial 

cells in the region of interest in control animals were GS-IR 72.90%, while the population 

of GFAP-IR astrocytes constituted 9.03%. In 3xTg-AD mice 82.50% of astrocytes were 

GS-IR, while 12.5% were GFAP-IR. The most interesting difference was observed in the 

case of astrocytes co-expressing GS and GFAP (GS/GFAP-IR). In 3xTg-AD animals just 

5% expressed both proteins simultaneously (Fig. 23F), while up to 18.07% of astrocytes 

in control animals did so (Fig. 23E).  

 

Table 6. Different distribution of astrocytic subpopulations in the mPFC. Numbers 

represent changes in numerical density (cells/mm
3
) in Non-Tg and 3xTg-AD animals (± 

SEM). 

 NON-TG 3xTG-AD 

GS-IR 17,423 ± 388 15,265 ± 918 
GFAP-IR 2,158 ± 308 2,312 ± 388 
GS/GFAP-IR 4,317 ± 752 925 ± 178 

Total mean Nv 23,899 ± 1,108 18,503 ± 1,153 
 

GS-IR – glutamine synthetase immunoreactive cells; GFAP-IR – glial fibrillary acidic protein immunoreactive cells; GS/GFAP – 

glutamine synthetase and glial fibrillary acidic protein immunoreactive cells; Nv- numerical density (cells/mm3) 
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Fig.23 The astrocytic phenotype of GS-IR astrocytes and their colocalization with 

GFAP are altered in AD mice. Light and confocal images of GS-IR astrocytes in the 

mPFC of Non-Tg control animals (A and C) and 3xTg-AD mice (B and D), illustrating 

the difference in astrocytic morphology and appearance. (E and F) Confocal images 

demonstrating astrocytic GFAP and GS co-expression, which is much reduced in 3xTg-

AD animals. The majority of GFAP-IR astrocytes from control mice do coexpress GS (E; 

arrowheads). In contrast, even if some 3xTg-AD GFAP-IR astroglia show co-expression 

with GS (F; arrowheads), many GFAP-IR astrocytes fail to express both proteins at the 

same time (F; arrows). 

4.2.2. Reduced GS-IR Nv (cell number/mm
3
) astrocytes in early and middle stages of 

Alzheimer’s disease: 

 

From 1 month of age, a significant reduction appeared in the Nv of GS-IR cells in 3xTg-

AD mice in the mPFC, when compared to control animals (17.38%; p=0.0337). This 

reduction was sustained and further progressed through more advanced ages, being 

27.21% at 6 months (p=0.0079) and 27.52% at 9 months (p=0.0252) (Fig. 24 and Table 

7).  

 

The decrease in GS-IR cell numbers in 3xTg-AD animals was paralleled by a decrease in 

the surface area of the cell bodies, which reached significant levels at the age of 1 and 6 
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months (by 40.69%, p<0.0001 and by 39.24%, p<0.0001, respectively). The decrease in 

the size of the GS-IR astroglial profiles was associated with a shrinkage of the astrocytic 

domain, parallelled with less branchy processes as compared with controls (at 1 month by 

46.71%, p<0.0001 and at 6 months by 41.28% p<0.0001).  

 

 

Table 7. Reduced Nv of GS-IR astrocytes in the mPFC during early and middle 

stages of Alzheimer’s disease. Numbers represent changes in numerical density 

(cells/mm
3
) in the Non-Tg and 3xTg-AD animals at different ages (± SEM). 

 

Age (months) NON-TG 3xTG-AD 

1 10,706 ± 609 8,845 ± 299 
6 9,250 ± 384 6,732 ± 517 
9 9,317 ± 827 6,753 ± 254 
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Fig.24 Differential distribution and number of GS-IR astrocytes between control and 

transgenic mice. Light micrographs showing the distribution of GS-IR astrocytes within 

the mPFC in Non-Tg control (A) and 3xTg-AD (B) animals. (C) Bar graphs showing the 

numerical density (number cells/mm
3
) of GS-IR cells in the mPFC of 3xTg-AD and Non-

Tg controls. Bars represent mean ± SEM. 
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4.2.3. GS expression decrease from early to middle AD stages: 

 

As determined by Western blots, GS expression was significantly decreased in 3xTg-AD 

animals compared with controls at both middle and advanced stages of AD (Fig. 25A). A 

significant decrease was observed at 6 months of age (0.561  0.191 vs. 1.534  0.291; 

p=0.021), at 9 months of age (0.507  0.116 vs. 1.843  0.509; p=0.0444) and at 12 

months of age (1.076  0.260 vs. 2.857  0.807; p=0.0364) (Fig. 25B). After performing 

linear regression analysis, no statistically significant positive correlation between the age 

value and relative levels of GS/beta-actin was found neither in Non-Tg nor in 3xTG-AD 

animals (r
2
=0.8347, p=0.0864 and r

2
=0.0166, p=0.8713, respectively) (Fig. 27). 

 

 

 

Fig.25 Bar graphs and representative Western blots showing the relative levels of GS (A-

B) in the mPFC of 3xTg-AD mice and Non-Tg controls. Bars represent mean ± SEM. 
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4.2.4. GLT-1 remains stable during the progression of AD: 

 

Astrocytic GLT-1 expression in 3xTg-AD mice showed no significant difference at all 

ages when compared to control animals (Fig. 26C). Nevertheless, at any given point there 

was a slight reduction of GLT-1 levels, concomitant with the significantly reduced GS 

expression (Fig. 26D).  

 

 

 

Fig.26 Bar graphs and representative Western blots showing the relative levels of GLT-1 

(C-D) in the mPFC of 3xTg-AD mice and Non-Tg controls. Bars represent mean ± SEM. 
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Fig.27 Lack of positive correlation between the age and relative levels of GS. Linear 

regression analysis showing no statistically significant relation between the age and 

relative levels of GS/beta-actin in both Non-Tg and 3xTg-AD animals. Bars represent 

mean ± SEM. 
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4.3. COMPLEX AND REGION-SPECIFIC CHANGES IN ASTROGLIAL 

MARKERS IN THE AGING BRAIN 

 

Rodríguez JJ, Yeh CY, Terzieva S, Olabarria M, Kulijewicz-Nawrot M, Verkhratsky A.  

 

Neurobiol Aging. 2013 Aug 19. pii: S0197-4580(13)00289-3. doi: 10.1016/ 

j.neurobiolaging.2013.07.002. [Epub ahead of print] 

 

The morphological aging of astrocytes in the entorhinal cortex (EC), dentate gyrus (DG) 

and cornu ammonis 1 (CA1) regions of the hippocampi of male SV129/C57BL6 mice of 

different ages (3, 9, 18 and 24 months). Astroglial profiles were visualized by 

immunohistochemistry using glial fibrillary acidic protein (GFAP), glutamine synthetase 

(GS) and S100β staining; these profiles were imaged using confocal or light microscopy 

for subsequent morphometric analysis. GFAP-positive profiles in the DG and the CA1 of 

the hippocampus showed age-dependent hypertrophy, as indicated by an increase in 

surface area, volume and somata volume at 24 months of age compared with 3-month-old 

mice. In EC the changes were just opposite: the surface area, volume and cell body 

volume of astroglial cells at 24 months of age were decreased significantly compared 

with the 3-month group. The GS-positive astrocytes displayed smaller cellular surface 

areas at 24 months compared with 3-month-old animals in both areas of the 

hippocampus, whereas the GS-positive profiles remained unchanged in the EC of old 

mice. The analysis of S100β-immunoreactive profiles revealed a substantial increase in 

the EC, a more moderate increase in the DG and no changes in the CA1 area. Based on 

the obtained data from 3 astroglial markers, we conclude that astrocytes undergo a 

complex age-dependent remodeling in a brain region-specific manner. 

4.3.1. General description of astroglial profiles identified with different markers: 

 

GFAP-positive astrocytes showed a characteristic stellate shape and multiple branched 

morphology (Fig. 28A-L), although there were clear differences between the 

hippocampus and the EC. Hippocampal astrocytes emanated several primary processes 

with numerous secondary processes, all of them extending radially (Fig. 28A-H). 

Astrocytic GFAP profiles in the EC showed fewer branches with a very low number of 

secondary processes (Fig. 28I-L). Similarly, the distribution of astrocytes differed 

between the two brain regions. Astrocytes in the hippocampus uniformly covered the 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kulijewicz-Nawrot%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Verkhratsky%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed?term=Chv%C3%A1tal%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22738374
http://www.ncbi.nlm.nih.gov/pubmed/23969179
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whole parenchyma with the pyramidal and granular cell layers being the only exception, 

where fewer astrocytes were present. In the EC, the presence of GFAP-positive astrocytes 

was less prominent (Olabarria et al., 2010; Yeh et al., 2011). 

Cells immunoreactive for S100β (100β-IR) showed a typical astrocytic stellate shape in 

both the hippocampus and the EC with round somata and multiple branched processes 

(Fig. 30); proximal processes extended outward from the somata in a radial manner, 

whereas the distal processes branched randomly. Both in the hippocampus and the EC, 

the S100β-IR cells were widely and evenly distributed, with the exception of the granular 

and pyramidal cell layers of the DG and CA1 subregions of the hippocampal formation, 

where fewer S100β-IR were present. 

GS-positive astroglial profiles displayed small round cell bodies with primary branches 

and a few secondary processes extending randomly and radially (Fig. 32). In the 

hippocampal subfields, the DG and CA1, the distribution of GS-positive astrocytes was 

similar to that of GFAP- and S100β-positive astrocytes, being widely present throughout 

the regions despite fewer GS-positive astrocytes being found in the pyramidal and 

granular cell layers, as we previously described (Olabarria et al., 2011). In the EC, GS-

positive astrocytes were evenly and extensively distributed throughout the entire region 

with only partial and/or minimal colocalization of GS-IR with GFAP labeling. Of note, 

most EC astrocytes were GFAP negative and comprised three populations: only 10.3% 

were GS/GFAP-IR and 11.3% were single positive GFAP-IR cells, whereas 78.1% of all 

astrocytes in the EC were GS-IR single positive cells (Yeh et al., 2013). 
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Fig.28 Representative confocal 3-dimensional reconstructed images showing glial 

fibrillary acidic protein-immunoreactive astrocytes in the dentate gyrus (DG), cornu 

ammonis 1 (CA1) and entorhinal cortex (EC) of animals at 3 months (A, E and I), 9 

months (B, F and J), 18 months (C, G and K) and 24 months of age (D, H and L), 

respectively. 

 

4.3.2. GFAP-IR astrocytes in the DG show a progressive age-related increase in 

their profile parameters: 

 

GFAP-positive astroglial profiles in the DG were similar in terms of their measured 

parameters at 3 and 9 months of age (Figs. 28A and B and 29A-C). At 18 months of age, 

we detected a significant increase of 78.56% in the surface area of GFAP-IR cells 

(1793.84  138.53 vs. 1004.64  174.88 µm
2
, p=0.0228), 95.89% in volume (665.95  

64.18 vs. 339.96  70.83 µm
3
, p=0.0225) and 128.14% in somata volume (274.03  

25.90 vs. 120.11  28.19 µm
3
, p=0.0107) compared with 3-month-old mice (Figs. 28A 

and C and 29A-C). The increase was also evident compared with 9 months of age, the 

surface area being increased by 83.41% (1793.84  138.53 vs. 978.03  165.58 µm
2
, 
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p=0.0178), the volume by 104.99% (665.95  64.18 vs. 324.87  68.97 µm
3
, p=0.0184) 

and the cell body volume by 115.25% (274.03  25.90 vs. 127.31  31.32 µm
3
, 

p=0.0222) (Figs. 28B and C and 29A-C). At 24 months of age, a marked hypertrophy of 

GFAP-IR cells developed as evidenced by a marked increase of their surface area of 

390.70% and 404.05% (4929.75  1353.56 vs. 1004.64  174.88 µm
2
, p=0.007; 4929.75 

 1353.56 vs. 978.03  165.58 µm
2
, p=0.0034), volume of 404.43% and 427.87% 

(1714.89  492.87 vs. 339.96  70.83 µm
3
, p=0.0088; 1714.89  492.87 vs. 324. 87  

98.97 µm
3
, p=0.0044) and somata volume of 291.16% and 269.06% (469.85  130.96 vs. 

120.11  28.19 µm
3
, p=0.0127; 469.85  130.96 vs. 127.31  31.32 µm

3
, p=0.0092) 

compared to 3- and 9-month-old animals, respectively (Figs. 28A-C and 29A-C). 

Compared with a later age, 18 months, there was also a clear but statistically insignificant 

increase in surface area of 174.81%, volume by 157.51% and somata volume of 71.46% 

(Figs. 28C-D and 29A-C). 

 

4.3.3. GFAP-IR astrocytes in the CA1 show a progressive age-related increase in 

their profile parameters: 

 

An increase in astroglial GFAP profiles in the CA1 region was detected throughout the 

aging process. At 9 months of age, there was already an increase of 206.27% in the 

surface area of GFAP-positive cells (1278.63  236.02 vs. 417.48  57.48 µm
2
, 

p=0.0098), 286.56% in volume (428.65  98.27 vs. 110.89  18.49 µm
3
, p=0.0141) and 

266.96% in cell body volume (165.54  40.22 vs. 45.11  5.46 µm
3
, p=0.0174) compared 

with 3 months of age (Figs. 28F and 29D-F). At 18 months of age, the surface area, the 

volume and the somata volume increased by 75.75% (2247.19  120.76 vs. 1278.63  

236.02 µm
2
, p=0.0217), 113.32% (914.41  58.88 vs. 428.65  98.27 µm

3
, p=0.0133) 

and 108.29% (344.81  7.26 vs. 165.54  40.22 µm
3
, p=0.0118), respectively, compared 

with 9 months of age (Figs. 28F-G and 29D-F). The difference between 18 and 3 months 

was more prominent, with the surface area of GFAP-IR astrocytes being increased by 

438.27% (2247.19  120.76 vs. 417.48  57.48 µm
2
, p<0.0001), the volume by 724.62% 

(914.41  58.88 vs. 110.89  18.50 µm
3
, p<0.0001) and the somata volume by 664.34% 

(344.81  7.2 vs. 45.11  5.46 µm
3
, p<0.0001) (Figs.28E and G and 29D-F). The most 

significant change was detected at 24 months of age with an increase of the surface area 
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of 1203.91% (5443.59  1641.09 vs. 417.48  57.48 µm
2
, p=0.0338), the volume of 

2209.98% (2561.52  843.14 vs. 110.89  18.50 µm
3
, p=0.0407) and the cell body 

volume of 1580.31% (758.03  234.81 vs. 45.11  5.46 µm
3
, p=0.0349) (Figs. 28E and H 

and 29D-F). Compared to mice at 9 and 18 months of age, increases in the surface area of 

GFAP-IR astroglia, their volume and their somata volume were also apparent but not 

statistically significant (Figs. 28F-H and 29D-F).  

 

Fig.29 Bar graphs showing regional comparisons of the surface area, volume and 

somata volume of glial fibrillary acidic protein-positive cells in the dentate gyrus (DG) 

(A-C), cornu ammonis 1 (CA1) (D-F) and entorhinal cortex (EC) (G-I) across ages. Bars 

represent mean  standard error of the mean (*p≤0.05, **p≤0.01, ***p≤0.0001 

compared with 3 months of age; ◊ p≤0.05, ◊◊ p≤0.01 compared with 9 months of age; in 

DG, n-6, 7, 3 and 4 for 3, 9, 18 and 24 months, respectively; CA1, n-4, 3, 3 and 4 for 3, 9, 

18 and 24 months, respectively; in EC, n-4, 5, 3 and 3 for 3, 9, 18 and 24 months, 

respectively).    
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4.3.4. Astrocytes in the EC show a progressive age-dependent decrease in their 

GFAP-IR parameters: 

 

In contrast with the hippocampus, astrocytes in the EC showed a slight decrease in GFAP 

profiles parameters already at middle age (9 months) (Figs. 28J and 29G-I). The 

entorhinal astrocytes in aged animals (18 and 24 months) displayed an atrophy as 

revealed by a reduction in their surface area, volume and somatic volume (Figs. 28K-L 

and 29G-I). At 18 months of age, the GFAP-IR astrocytes showed a significant decline in 

their surface area of 40.28% (406.3  9.30 vs. 680.2  53.70 µm
2
, p=0.0076), in volume 

of 37.76% (139.6  4.06 vs. 224.32  18.80 µm
3
, p=0.0131) and in body volume of 

55.24% (38.81  1.17 vs. 60.25  4.60 µm
3
, p=0.0117) compared with the EC of young 

animals (3 months) (Figs. 28I and K and 29G-I). At the age of 24 months, GFAP-IR 

astrocytes in the EC show a further reduction in their surface area of 40.68% (403.6  

9.31 vs. 680.2  53.70 µm
2
, p=0.0121), the volume of 42.22% (129.6  12.15 vs. 224.32 

 18.80 µm
3
, p=0.0149) and the cell body volume of 47.99% (31.33  2.63 vs. 60.25  

4.60 µm
3
, p=0.0044) compared with mice at 3 months (Figs. 28I and L and 29G-I). 

Meanwhile, mice of 9 months compared with older groups (18 and 24 months) also 

showed a significant reduction in their total volume of 27.24% (53.34  3.67 vs. 38.81  

1.17 µm
3
, p=0.0265) and of 41.26% (53.34  3.67 vs. 31.33  2.63 µm

3
, p=0.0058), 

respectively (Figs. 28J-L and 29G-I). 

 

4.3.5. Age-dependent changes in S100β-IR astrocytic profile parameters: an increase 

in the DG with no changes in the CA1: 

 

Compared with the 3-month-old mice, the surface area and the volume of S100β-positive 

cells in the DG of 24-month-old mice increased by 167.17% (595.5  45.08 vs. 1591  

293.6 µm
2
; p=0.0285) and by 196.96% (147.9  16.12 vs. 439.2  90.23 µm

3
; p=0.0336), 

respectively (Figs. 30A and B and 31A and B). In contrast, the S100β-IR astrocytes in the 

CA1 region of the hippocampal formation did not show any significant difference in 

either surface area (751.8  78.63 vs. 638.4  99.67 µm
2
, 15.10%; p=0.4) or cell volume 

(205.7  19.98 vs. 190.0  32.98 µm
3
, 7.63%; p=0.7054) when comparing 24-month-old 

animals with the young 3-month-old mice (Figs. 30C and D and 31C and D). 
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Fig.30 Representative confocal 3-dimensional reconstructed images showing S100β-

immunoreactive astrocytes in the dentate gyrus (DG), cornu ammonis 1 (CA1) and 

entorhinal cortex (EC) of animals at 3 months (A, C and E) and 24 months of age (B, D 

and F), respectively.  



 95 

 
 

Fig.31 Bar graphs showing the regional comparisons of the surface area and volume of 

S100β-immunoreactive cells in the dentate gyrus (DG) (A and B), cornu ammonis 1 

(CA1) (C and D) and entorhinal cortex (EC) (E and F) at 3 and 24 months of age. Bars 

represent mean  standard error of the mean (*p≤0.05 compared with 3 months of age; 

in DG, n-3 and 4 for 3 and 24 months, respectively; in CA1, n-3 for both 3 and 24 

months; in EC, n-4 and 3 for 3 and 24 months, respectively).  

 

 

4.3.6. Age-dependent increase in S100β-IR astrocytic profile parameters in the EC: 

 

A significant increase in the parameters of S100β-IR astroglia was detected in the EC. 

The surface area of the entorhinal S100β-positive cells at 24 month was increased by 

377.51% (1072  214.9 vs. 5001  1438 µm
2
; p=0.0241) compared with young 3-month-

old mice (Figs. 30E and F and 31E). Likewise, there was a significant increase in the 

volume of S100β-positive cells (of 354.93%; 238.5  54.34 vs. 1085  297.8 µm
3
; 

p=0.0217; Fig. 31F). 

 

4.3.7. Age-dependent decrease in astrocytic GS-IR profile parameters in the DG and 

CA1: 

 

The surface area of the GS-positive cells in the DG was decreased significantly at 24 

months compared with 3 months (by 6.64%; 852.19  18.21 vs. 916.97  18.23 µm
2
; 

p=0.0471; Figs. 32A and B and 33A). Similarly, in the CA1 a similar decline in GS-
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positive cells suface area was detected at 24 months compared with 3 months (of 6.2%; 

988.73  19.26 vs. 1053.70  6.25 µm
2
; p=0.0235; Figs. 32C and D and 33B).  

 

4.3.8. Aging does not affect GS-IR profiles in the EC: 

 

In contrast to the hippocampal regions, entorhinal astrocytes displayed unchanged 

parameters of their GS-IR profiles, as evidenced by the similar values of the surface area 

of GS-positive cells at 24 months compared with 3 months (806.27  14.28 vs. 851.52  

22.90 µm
2
; Figs. 32E and F and 33C). 
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Fig.32 Light micrographs showing the morphology and surface area of glutamine 

synthetase-positive astrocytes in the dentate gyrus (DG), cornu ammonis 1 (CA1) and 

entorhinal cortex (EC) of 3-month-old mice (A, C and E, respectively) and 24-month-old 

mice (B, D and E, respectively).  
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Fig.33 Bar graphs showing regional comparison of the surface area of the glutamine 

synthetase-positive cells in the dentate gyrus (DG) (A), cornu ammonis 1 (CA1) (B) and 

the entorhinal cortex (EC) (C) at 3 and 24 months of age (*p≤0.05 compared with 3 

months of age ; in DG, n-4 for both 3 and 24 months, in CA1, n-4 and 5 for 3 and 24 

months, respectively; in EC, n-4 for both 3 and 24 months).  
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5. DISCUSSION: 

 
Alzheimer’s disease (AD) is characterized by progressive brain dysfunction, strongly 

affecting neurons and synapses and leading to the complete breakdown of cognitive 

functions. Over the time, patient stops being aware of his/her ongoing degeneration and is 

left without anything that identifies him or her as a resolute and mindful human being. 

That is why there is such a strong impetus to find a successful treatment and ideal 

therapeutic targets. 

 

Synaptic loss and synaptic impairment, broadly understood, are assumed to correlate 

most strongly with the cognitive deficits that can be detected long before the clinical 

diagnosis of AD (Coleman et al., 2004). A significant loss of synapses within the 

prefrontal cortex was demonstrated to correlate with dementia in Alzheimer’s patients 

(Masliah et al., 1993). These features are also strictly connected with frontotemporal 

dementia and normal aging (Lipton et al., 2001; Uylings and de Brabander, 2002). 

Synaptic deterioration may be the result of an altered cycle of neurotransmitter 

conversion, from synthesis to reuptake, and vesicle trafficking (Yao and Coleman, 1998; 

Yao et al., 2003).  

In this thesis, based on our results, we propose that morphological and functional 

changes in astrocytes, indispensable modulators of neuronal and synaptic activity, might 

negatively influence synaptic performance and affect the delicate homeostasis within the 

brain, contributing to the cognitive and mnesic decline observed in AD patients. 

5.1. MORPHOLOGICAL CHANGES IN ASTROCYTES AND THEIR 

RELATION TO Aβ PRESENCE IN THE 3xTG-AD MODEL: 

 

First, we focused on a detailed analysis of GFAP-positive astrocytes (their morphology 

and cell density) at different ages to identify the type of change astrocytes undergo in 

3xTg-AD animals, the most advanced model of AD available. We found that the overall 

density of GFAP-positive astrocytes does not vary significantly between Non-Tg and 

3xTg-AD animals with age. Also, no evident age-dependent cell loss was observed. 

These results correlate with previous findings in the hippocampus (HC) and entorhinal 

cortex (EC) in the same animal model, where no signs of astrocytic death were found 
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(Olabarria et al., 2010; Yeh et al., 2011). Those observations are in line with those from 

other neurological diseases that involve neuroglia, such as schizophrenia, where no 

significant changes in glial density were detected (Selemon et al., 1995, 1998). This 

could suggest that astrocytes are constantly involved constantly in some 

morphofunctional changes due to progressive biochemical and molecular alterations that 

are long-lasting and connected with neuronal defects. To answer this question we 

measured the surface area and volume of GFAP-positive astroglia. We have identified a 

general atrophy of GFAP-positive astrocytes, which was already significant at early pre-

symptomatic and pre-pathological ages (3 months) and was sustained during disease 

progression in all age groups up to 18 months. Interestingly, the decrease showed a clear 

layer-specific pattern: layers 1-2 were strongly affected and similar changes were found 

in the deep layers 4 and 5. Layer 3 was only affected from middle age onwards 

(Kulijewicz-Nawrot et al., 2012).  

 

The prefrontal cortex is one of the brain regions most sensitive to the detrimental effects 

of aging (Liu et al., 1996; West, 1996; West, 2000; Lamar and Resnick, 2004). Age-

related degeneration in the prefrontal cortex is more significant than in other brain areas 

(Raz et al., 1997). Extensive PFC atrophy has been observed in Alzheimer’s disease 

patients (Salat et al., 1999, 2001). In this regard, Burgmans and colleagues in their recent 

study (Burgmans et al., 2009) suggested that PFC atrophy is specifically associated with 

dementia and can be used as a predictor/biomarker of Alzheimer’s disease. In general, the 

observed cortical decrease is assumed to be the result of cell shrinkage, rather than a 

reduction in cell numbers (Kemper, 1994; Uylings and de Brabander, 2002). This cell 

diminishing was described mainly in neurons; nevertheless, it is in agreement with our 

data which broaden the concept of atrophic cortical astroglia. Changes in the appearance 

of astrocytes from transgenic animals were manifested mainly in thinner and shorter 

astrocytic processes, with a tendency to be more horizontally oriented (in the superficial 

layers) or with a preserved star-like protoplasmic look (in the deep layers). Such layer-

specific GFAP reductions and alterations also appear in other neurological disorders, 

such as schizophrenia and depression, for which the mPFC (and particularly layer 5) is 

highly pathologically relevant (Kulijewicz-Nawrot et al., 2012). Alterations in the mPFC 

are even more important for frontotemporal dementia (Miguel-Hidalgo et al., 2000; 
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Martin et al., 2001; Rajkowska et al., 2002). One can conclude that regarding the 

important role of astrocytes in maintaning brain homeostasis, the observed mPFC 

astroglial atrophy during the progression of AD can result in reduced synaptic coverage, 

decreased metabolic support to neurons and synapses, and neurotransmitter imbalance, all 

leading to alterations in the flow and processing of information within the brain. 

 

When thinking about the arrangement of afferents and efferents of the prelimbic cortex 

(PL), one of the subdivisions of the mPFC, this brain region is responsible for cognitive 

functions. It is directly involved in the integration and management of sensory and 

mnemonic information, intellectual functions and actions, all of which are strongly 

affected in AD. The second subdivision of interest, the infralimbic cortex (IL), represents 

a visceromotor center and appears to be crucial when it comes to reward-related behavior 

and initiating the state of the mood (Ongur and Price, 2000; Hoover and Vertes, 2007). 

Although they perform different functions, the IL and PL are generally treated as a single 

region of the ventral medial prefrontal cortex, and this thesis treats them in the same way 

(Vertes, 2004). An intriguing conception is that concerning the very complex nature and 

organization of the PFC, it is extremely hard to fully characterize it, with radical opinions 

even holding that this region does not display any systematic organization at all (Miller, 

2000; O'Reilly, 2010). What is more, the development of the prefrontal cortex is not 

completed until the third decade of life or later, while the myelination of axons from the 

prefrontal and associated areas extends until the end of the fifth decade (Bartzokis, 2004). 

All of these facts make the PFC an appealing region to study. 

The mPFC receives a wide range of afferent projections from such structures as the 

hippocampus (layers 1-3,5-6), the entorhinal (layers 1-2) as well as the perirhinal (layers 

1-3) cortices and the medial basal forebrain (layers 1,3,5-6) (Jay and Witter, 1991; 

Delatour and Witter, 2002; Vertes, 2004; Hoover and Vertes, 2007). Also, the midline 

thalamus nucleus reuniens (RE), the major source of thalamic afferents to the 

hippocampus, densely innervates the IL and PL, terminating mainly within layers 1 and 

5/6 (Wouterlood et al., 1990; Bokor et al., 2002; Vertes, 2006). Even though there are no 

direct return projections from the mPFC to the hippocampus, the hippocampal terminals 

form mainly asymmetric synapses on prefrontal pyramidal neurons and mPFC fibers 

shape the same contacts on the dendritic shafts of those RE cells, which in return project 
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to the hippocampal formation (Hurley et al., 1991; Carr and Sesack, 1996; Vertes, 2004). 

Thus, the RE is ideally positioned to strongly influence the activity of the hippocampus 

and the mPFC as an integral part of the limbic loop between these structures (Di Prisco 

and Vertes, 2006; Vertes et al., 2007). Also, considering the salient function of the 

hippocampus/prefrontal cortex connections in the pathophysiology of major depression 

and schizophrenia, specific notable alterations could appear due to an altered connectivity 

of these areas (Szeszko et al., 2003; Goldapple et al., 2004; Jay et al., 2004), associated 

with a potential homeostatic deficiency due to the observed generalized astrocytic 

atrophy. In line with the rewiring hypothesis, Dumitriu and colleagues (Dumitriu et al., 

2010) found a selective spine loss in aged monkeys in the neurons of layer III in the 

homologous PFC, suggesting a decreased ability to reconnect prefrontal cortical circuits 

with advancing age. Layer III, as an origin and “end station” for cortico-cortical 

connections, is highly significant for the formation of memory by association and is 

assumed to be very sensitive to neurodegenerative changes (Fuster, 2008; Kulijewicz-

Nawrot et al., 2012). Considering all its complexity and its role in connection 

management, every change in the cells involved, in our case astrocytes, can have a 

dramatic outcome for the brain functionality. 

 

Our second interesting finding was that the astrocytic atrophy, determined by changes in 

GFAP-positive astrocytes’ surface area and volume, was not directly connected with the 

toxic effect of Aβ. In contrast to other brain regions affected in Alzheimer’s disease, such 

as the hippocampus and entorhinal cortex (Olabarria et al., 2010; Yeh et al., 2011), no 

plaque formation was observed in the mPFC until advanced ages. Nevertheless, amyloid 

β aggregates were clearly visible and robust, especially in the deep layers. Even in the 

close vicinity of Aβ aggregates astrocytes were not broadly present; however, some were 

visible and had atrophic features. This observation makes astrocytic atrophy and Aβ’s 

harmful effects two crucial but independent features of AD pathology in the mPFC. The 

lack of plaques, but the presence of Aβ aggregates in the mPFC could result in different 

synaptic performance and alterations, compared to, for example, the hippocampus, where 

plaques have been noticed (Olabarria et al., 2010). Still, it cannot be forgotten that there 

is controversy concerning the relationship between the presence of plaques and the 

devastation of cognitive functions – no clear correlation has been found so far (Ferreira 
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and Klein, 2011). Nevertheless, taking into consideration the differences in 

cytoarchitecture between the PFC and hippocampus, such as the cortex is not so stratified 

and is less strictly organized into precisely defined layers and fiber pathways, slightly 

different disruptive effects of Aβ alone can be observed on the molecular or physiological 

level (Amaral and Witter, 1989; Uylings and van Eden, 1990). Despite these differences, 

generally the presence of Aβ is connected with altered cognitive performance (Roder et 

al., 2003; Koffie et al., 2011). 

 

It is important to emphasis that our results, which point to very early changes in 

astrocytic GFAP profiles, could signal ongoing pathological processes far before the 

appearance of the classic and well known histological hallmarks of AD. Similar data 

were obtained from analyzing the entorhinal cortex and the hippocampus of 3xTg-AD 

mice (Olabarria et al., 2010; Yeh et al., 2011). Changes within the EC also started from 

very early ages (1 month), before the classic signs of the disease appeared, and were 

maintained till advanced ages (12 months); in the hippocampus atrophy was observed 

from the age of 12 months in the case of the DG and from 18 months of age in the case of 

the CA1 region. The differences between the brain structures and the onset of astrocytic 

atrophy could have their roots in dissimilarities in the detailed cytoarchitecture and the 

propagation pattern of the disease. Normally, we assume that AD initiates within the EC, 

reaches the HC and spreads to other cortical regions, including the mPFC, which directly 

or indirectly projects back to the mentioned places. In this case the specific limbic loop, 

described in the previous section, would be of major importance for therapeutic 

intervention, as the core of memory and cognition lies right there. In line with our results, 

Bossers and colleagues in their recent work (Bossers et al., 2010) describe the 

upregulation of genes within the PFC connected with synaptic activity and plasticity, 

preceding the appearance of any neuropathological alteration associated with AD and 

signaling some kind of compensatory mechanism of brain activity to maintain a normal 

cognitive level. It also strengthens our hypothesis that the observed early and sustained 

astrocytic atrophy, both general and layer-specific, as well as the spatial propagation of 

the pathology or the interrelation between the affected structures can initiate a sustained 

influence on connective processes and interactions within certain circuits within the CNS. 

Astroglial atrophy may represent the ongoing pathological remodeling within the brain. It 
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can impact upon the number and functional status of synapses, leading to decreased 

connectivity together with the neurotransmitter imbalance that underlies the progression 

of Alzheimer’s disease. 

5.2. HOMEOSTATIC CHANGES WITHIN 3xTG-AD ASTROCYTES AND 

THEIR INFLUENCE ON ASTROCYTIC FUNCTIONALITY: 

 

After analyzing the GFAP profiles of astrocytes and finding the atrophy described above, 

questions about further astrocytic changes were raised. As a first step in revealing 

homeostatic alterations, we decided to focus on glutamine synthetase (GS), an enzyme 

expressed by astrocytes and crucial for the conversion of glutamate to non toxic 

glutamine (Martinez-Hernandez et al., 1977; Westergaard et al., 1995). Glutamate is the 

main excitatory neurotransmitter in the CNS, being involved in the vast majority of brain 

functions, including cognition, memory and learning (Fonnum, 1984; Headley and 

Grillner, 1990; Danbolt, 2001). In this regard, the glutamate-glutamine metabolic cycle is 

of the highest importance for rescuing neurons from the toxic effects of excess glutamate 

presence (Broer and Brookes, 2001). We found a significant and sustained decrease in 

astrocytic GS-IR and GS expression, which appear already at very early ages (1 month of 

age in the case of GS-positive cells number per mm
3 

and 6 months of age in case of GS 

expression analyzed by WB). The decrease in GS expression was also present in 12-

month-old animals, when robust intracellular Aβ, with a tendency to form extracellular 

deposits, is clearly visible. The decrease at that age in 3xTg-AD animals was revealed by 

Western blot analysis, but not by the GS-IR cell number (unchanged at 12 months). The 

lack of a significant difference is due to the simultaneous decrease in the number of GS-

IR astrocytes in control animals at 12 months (Kulijewicz-Nawrot et al., 2012). Our 

results underline the substantial metabolic disruptions in the glutamate-glutamine cycle 

starting early during disease progression in the mPFC, which contrasts with findings in 

the hippocampus, where a decline in GS-IR astrocytes was observed at advanced ages, 

around 12-18 months of age (Olabarria et al., 2011). The pattern of above findings 

resemble the tendency observed after analyzing GFAP-positive cells profiles, where 

hippocampal astrocytes located far from amyloid plaques were atrophic also at advanced 

ages, while in mPFC changes were observed far before appearance of any Aβ form 

(Olabarria et al., 2010; Kulijewicz-Nawrot et al., 2012).  
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Also, when analyzing the astrocytes in the mPFC, we found three different 

subpopulations of astroglia: single GS-IR, single GFAP-IR and GS/GFAP-IR. Similar 

observations were made in the hippocampus and entorhinal cortex (Olabarria et al., 2011; 

Yeh et al., 2013). In line with our results, Robinson in his study on the human cortex 

described complementary populations of astrocytes, GFAP-IR and GS-IR, with quite 

heterogeneous regional distribution (Robinson, 2000). The novelty in our case is the 

presence of a third, GS/GFAP-IR population of astrocytes, which furher supports the idea 

of strong heterogeneity among astrocytes, both morphological and functional (Kimelberg, 

2004; Matyash and Kettenmann, 2010; Verkhratsky, 2010; Theis and Giaume, 2012). As 

an example, this heterogeneity is manifested by the different functional behavior of 

astrocytes in the case of injury, by an increase in the co-expression of GFAP and GS or 

the de novo expression of one of them (Humphrey et al., 1997; Walz and Lang, 1998; 

Kulijewicz-Nawrot et al., 2013).  

 

Previously, we hypothesized that the atrophy of astrocytes is involved in AD pathology 

and may be responsible for a decrease in metabolic support for neurons as well as an 

altered synaptic environment, including neurotransmitter inactivation and homeostasis 

(Heneka et al., 2010; Verkhratsky et al., 2010; Rodriguez and Verkhratsky, 2011a). 

 

As was already described, glutamate is a key neuromodulator of the CNS and its 

metabolism strongly depends on astrocytes, specifically on the enzyme GS (Fonnum, 

1984; Anderson and Swanson, 2000; Walton and Dodd, 2007). Two different types of 

changes in enzyme expression have been detected in a variety of brain disorders. The first 

type is an increase in GS concentration, which was reported in such pathologies as 

vascular dementia and ALS (Tumani et al., 1999). The second type is a reduction in the 

activity of GS, found in hepatic encephalopathy, spinocerebellar atrophy and 

schizophrenia (Lavoie et al., 1987; Smith et al., 1991; Kish et al., 1994; Le Prince et al., 

1995; Burbaeva et al., 2003; Volterra and Meldolesi, 2005; Steffek et al., 2008). Taking 

into consideration the great importance of astrocytic GS in the glutamate-glutamine 

cycle, each of the mentioned type of change in enzyme expression can influence the 

accumulation of glutamate and the ability of astrocytes to take up this neurotransmitter. 

Also, the reduction observed in GS levels in Alzheimer’s disease patients is not 
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topographically associated with aggregated Aβ, suggesting no direct restrictive 

connection to the expression of GS (Robinson, 2001). However, significantly decreased 

expression of GS (measured by optical density; OD) was found at the age of 18 months in 

the hippocampus of 3xTg-AD animals, when the Aβ plaques are robust (Olabarria et al., 

2011). As already metioned, we demonstrated significant alterations in mPFC GS-IR 

astrocytes already at the age of 1 month and decreased GS expression manifested in 6-

month-old 3xTg-AD mice, suggesting ongoing metabolic pathology regarding astrocytes. 

In line with our results, several research groups have reported lowered concentrations of 

GS in patients with AD, showing similar reductions in GS and glutamate levels in the 

initial stages of AD (Smith et al., 1985; Csernansky et al., 1996; Jimenez-Jimenez et al., 

1998; Robinson, 2001). Additionally, magnetic resonance spectroscopy at 0.5T in an in 

vivo study confirmed a reduction in the levels of glutamate and glutamine in AD patients 

(Antuono et al., 2001) This could suggest the hypothesis that dysfunction of the 

glutamate-glutamine cycle is a quite early event in the progression of this terminal 

neurogedenerative disease and make such dysfunction an issue of significant concern for 

treatment approches.  

A meaningful fact is that alterations in glutamatergic transmission in the PFC can be a 

direct source of depression (Miguel-Hidalgo et al., 2010). Based on current research data, 

a strong bound is known to exist between depression and dementia, which points towards 

the innovative hypothesis that depression does not appear as a result of AD, but rather 

exists as an independent risk factor for AD (Ownby et al., 2006; Caraci et al., 2010). 

Microarray and Western blot analyses have revealed that the expression of GS is 

significantly lower in depressed patients, further corroborating the fundamental 

importance of astrocytes to the depression pathology (Choudary et al., 2005; Miguel-

Hidalgo et al., 2010). 

 

According to our previous study, a crucial feature of the mPFC is the atrophy of GFAP-

positive astrocytes, observed before the typical histopathological onset of the disease 

(Kulijewicz-Nawrot et al., 2012). This atrophy is further corroborated by a reduced GS -

IR profiles. Similarly, in studies of the prefrontal cortex of patients with schizophrenia 

and major depressive disorder (MDD), reductions in GS and GFAP expression have been 

reported (Miguel-Hidalgo et al., 2002; Steffek et al., 2008). 
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Alterations in the expression of GFAP should be taken into serious consideration due to 

its essential role in the proper guidance and expression of astrocytic and neuronal 

glutamate transporters as well as solid process formation, resulting in accurate functional 

interaction with neuronal cells (Weinstein et al., 1991; Oliet et al., 2001; Hughes et al., 

2004; Sullivan et al., 2007). Astrocytic glutamate transporters (GLT-1 and GLAST) are 

“tools” to protect the inner environment from excitotoxicity by clearing the excitatory 

neurotransmitter from the extracellular space (Maragakis et al., 2004). GLT-1 is 

responsible for 95% of glutamate uptake in the cortex and hippocampus (Lehre et al., 

1995; Danbolt, 2001). The downregulation of GLAST/EAAT1 and GLT-1/EAAT2 was 

found in patients suffering from major depressive disorder (MDD) (Miguel-Hidalgo et 

al., 2010). We did not find any change in GLT-1 expression in the mPFC, which can 

suggest the absence of any alterations in the mechanism of glutamate inactivation. In 

contrast, Li and his group (Li et al., 1997) described a significant decrease in GLT-1 

transporter in the frontal cortex of AD patients. Still, there is much controversy 

surrounding the question of whether the downregulation of these transporters is 

prominent in Alzheimer’s disease. Beckstrom and colleagues in their elegant study of AD 

patients aged from 69 to 94 (Beckstrom et al., 1999) claim individual differences in the 

levels of glutamate transporters, thus rejecting a straightforward correlation between 

reduced glutamate transporter expression and AD (Li et al., 1997). We found GLT-1 

expression in the mPFC to be generally unchanged, which can suggest the preservation of 

glutamate uptake or possible differences in transporter expression between subjects. Our 

results are in line with Beckstrom’s findings highlighting the variability in transporter 

expression and suggesting a common insight into cognitive function decline during 

severe brain diseases associated with astrocyte alterations and malfunction (Kulijewicz-

Nawrot et al., 2013). 

 

We believe that structural changes in astrocytes affect synaptic performance. Perisynaptic 

glial processes provide a structure that shields the individual synapse from interference 

from synapses in the vicinity and other extrasynaptic signaling acts. By ionotropic 

receptors, importantly glutamatergic and purinergic ones, astrocytes are able to generate 

local increases in [Na
+
]i and [Ca

2+
]i in perisynaptic processes, which enable astrocytes to 
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control and support synaptic transmission in various ways, e.g. by modulating the activity 

of Na
+
/K

+
 ATPase (pump) (Verkhratsky et al., 2010; Nedergaard and Verkhratsky, 2012).  

 

Also, as was shown in studies similar to ours, a loss of GS was detected in the 

perisynaptic regions of the neuropil and in astrocytic endfeet – the locations of glutamate 

transporters (Schmitt et al., 1997; Robinson, 2001). As GS is highly sensitive to 

oxidation, among the treatment possibilities could be antioxidant therapy, although there 

is still a lack of common agreement on the subject (Schor, 1988; Vina et al., 2011; 

Teixeira et al., 2013). Also, the area of stem cells research provides hope. An example 

could be a therapy based on MSCs, which release a vast repertoir of growth factors, 

including GDNF, VEGF and FGF-2 (Maltman et al., 2011). Those growth factors are 

known to be indispensible for astrocytes to modulate neuronal activity, and their level 

was shown to decrease during the aging process (Bernal and Peterson, 2011). 

Theoretically, it is then possible to use MSCs to stimulate the activity of affected 

astrocytes to return to their baseline levels, which could be beneficial for all of their 

homeostatic functions and protective roles.  

5.3. HETEROGENOUS REGIONAL DISTRIBUTION OF ASTROCYTES 

WITHIN THE BRAIN DURING PHYSIOLOGICAL AGING: 

 

Aging is a multiplex biological event, involving numerous genetic and environmental 

factors (Wu et al., 2005). Regarding its physiological background in the brain, it is 

generally believed that aging takes place due to the progressive loss of the neuronal 

homeostatic reservoir, including delicate changes in synaptic connectivity, not because of 

substantial neuronal loss (Turlejski and Djavadian, 2002; Toescu and Verkhratsky, 2007). 

Far less is known when it comes to astrocytic changes, though. Nevertheless, changes in 

the morphology and functionality of these main glial cells can cause a serious decrease in 

neuroprotective capability, triggering detrimental processes in senescent neurons (Pertusa 

et al., 2007). Well documented are differences in astrocytic density during aging, 

showing both an increase or decrease (Nishimura et al., 1995; Cotrina and Nedergaard, 

2002; Wu et al., 2005; Mansour et al., 2008). When it comes to changes in morphology 

specifically, the data are still scarce (Matyash and Kettenmann, 2010; Rodriguez et al., 

2013). Astrocytes constitute a very heterogenous population of cells, characterized by 
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different appearances and properties (Matyash and Kettenmann, 2010). To fill an 

important gap in our knowledge of senescent astrocytes, we performed a systematic 

analysis of the morphological changes of astrocytes in the aging hippocampus (HIP) and 

entorhinal cortex (EC), using such specific markers as GFAP, S100β and GS.  

 

Considering changes in GFAP expression, the majority of studies have shown that the 

aging process corresponds closely with an increased level of astrocytic GFAP, in the 

same manner as in reactive astrogliosis (Nichols, 1999; Cotrina and Nedergaard, 2002). 

We report two opposite reactions, depending on brain region. In the hippocampus GFAP-

positive cells showed age-dependent hypertrophy, indicated by a significant increase in 

their surface area, volume and somata volume at 24 months, while entorhinal cortex 

astrocytes showed marked atrophy at the same age point (Rodriguez et al., 2013). 

Astrocytic astrogliosis and the connected hypertrophy are assumed to be a defensive 

reaction, probably a response to the inflammatory and oxidative state of the aging brain 

(Cotrina and Nedergaard, 2002). Undergoing a process of complicated morphofunctional 

modifications (see chapter 1.1.4.a), astrocytes are driven to find the source of damage, to 

assist the neuronal survival and to re-establish connectivity within neuronal networks 

(Sofroniew, 2009; Verkhratsky et al., 2012).  

Inflammation, which possibly underlies the significant increase in hippocampal GFAP, is 

considered to cause alterations in calcium signaling, the basic astrocytic modulatory 

mechanism of neuronal function (Squier and Bigelow, 2000). However, astrocytic 

atrophy and degeneration can be of high pathological importance, especially by reducing 

the support for neurons and very probably having destructive effects on neuronal 

connectivity, as was already broadly described in the previous chapters of the discussion. 

In line with our data, longitudinal MRI studies have shown a reduced volume of the 

entorhinal cortex associated with advanced age, as well as atrophy of the perforant path 

and diminished synaptic connectivity between the EC and hippocampus (Du et al., 2006; 

Scheff et al., 2006; Stranahan and Mattson, 2010). As reported previously, the EC is a 

very sensitive and vulnerable region when it comes to AD, being the first affected by this 

deletorious disease. Importantly, the atrophic changes of EC astrocytes are also observed 

in the 3xTg-AD model, even in the presence of Aβ deposits, which provides further 
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support for the hypothesis of their defective defensive and supportive potential (Yeh et 

al., 2011; Rodriguez et al., 2013).  

 

After analyzing the age-dependent changes in the GS we found s significant decrease in 

the parameters of GS-positive astrocytic profiles in the hippocampus, while no changes 

were observed in the case of the EC (Rodriguez et al., 2013). The coexistence of GFAP 

upregulation and GS downregulation was already shown during in vitro studies and 

points out its functional implications: inhibition of GABAergic and glutamatergic 

transmission (Weir and Thomas, 1984; Verkhratsky and Kirchhoff, 2007; Ortinski et al., 

2010). The age-dependent changes and the relation between GFAP and GS were region-

specific due to the fact that the majority of astrocytes within the hippocampus expressed 

both proteins of interest, while in the entorhinal cortex 3 subtypes of astrocytes were 

detected (GS-IR; GFAP-IR and GFAP/GS-IR) (Olabarria et al., 2011; Rodriguez et al., 

2013; Yeh et al., 2013).  

 

The expression pattern in the case of S100β was rather opposite to that of GS. The profile 

parameters of S100β-immunoreactive cells were highly (around 4-fold) increased in the 

EC, moderately increased in the dentate gyrus (DG) and remained unchanged in the CA1 

hippocampal region at 24 months (Rodriguez et al., 2013). Astrocytic-specific S100β is a 

calcium binding protein, involved in various interactions between astrocytes and neurons 

(see chapter 1.1.2.b) (Kubista et al., 1999). Its elevated level was reported in many 

neurodegenerative diseases, as well as in healthy adults with impaired cognitive functions 

(Yadavalli et al., 2008; Steiner et al., 2011). An excess of S100β can be directly or 

indirectly neurotoxic (via secondary release by astrocytes and microglia cells of 

cytokines and NO) (Van Eldik and Wainwright, 2003). Nevertheless, the precise 

functional consequences of the reported changes remain enigmatic and the subject of 

more detailed study.  

 

Based on the morphological analysis of 3 astroglial markers, we conclude that astrocytes 

undergo a complex age-dependent remodeling in a brain-specific manner (Rodriguez et 

al., 2013). 
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6. CONCLUSIONS: 

The main findings and functional implications of the present thesis are: 
 

1. We found an early and sustained general reduction in the surface area and volume 

of the GFAP astrocytic cytoskeleton. This atrophy is layer-specific, which 

suggests a direct link with the limbic loop established between the thalamic 

nucleus reuniens, hippocampus, entorhinal cortex and mPFC, therefore 

accounting for the memory disturbances observed in AD, 

2. The presence of Aβ aggregates surrounded by only a few GFAP-positive 

astrocytes implies that the astrocytic generalized atrophy does not have a direct 

relationship with β-amyloid toxicity, 

3. The decrease in GS-expressing astrocytes demonstrates a potential glutamatergic 

homeostatic failure, especially in the astrocyte-dependent glutamate-glutamine 

conversion pathway, accompanied by changes in the astroglial GFAP phenotype 

throughout the progression of AD. The fact that we did not find any significant 

changes in the expression of GLT-1 could mean an intact glutamate inactivation 

mechanism; nevertheless, there was a tendency towards a decline, which could 

indicate some changes in the efficacy of glutamate uptake via this specific 

astrocytic glutamate transporter,  

4. The astrocytic atrophy together with reported homeostatic changes found in 3xTg-

AD mice could account for the severity and progression of the neuropathological 

changes as well as synaptic breakdown resulting in disconnection problems and 

therefore the associated cognitive and mnesic alterations observed in AD patients, 

5. During physiological aging, astrocytes undergo morphofunctional changes that 

are region-specific, as revealed by the differential and opposite expression of 

specific astrocytic markers (GFAP, GS and S100β) between the hippocampus 

(CA1 and DG regions) and the entorhinal cortex. 

All of above findings demonstrate that mPFC astroglia are involved in the evolution and 

progression of Alzheimer’s disease, having the potential to be considered as therapeutical 

targets. Additionally, astrocytes were shown to be deeply involved in the non-

pathological aging process in an active and diversified way, depending on the brain 

region. Following their changes further could finally lead to the discovery of successful 

remodeling strategies for affected networks in the senescent brain. 
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7. SUMMARY: 

 

In this thesis we reported astrocytic atrophy characterized by a reduction in the surface 

area and volume of GFAP-positive glial cells in the prefrontal cortex of 3xTg-AD mice – 

an important morphological alteration starting far before any well known 

histopathological hallmark of AD. This change is present in parallel with homeostatic 

failure suggested by the decreased expression of GS. Those alterations can have drastic 

effects on brain connectivity and the biochemistry of the main neurotransmitters within 

the brain, such as glutamate and GABA. GFAP is implicated in a variety of processes, 

such as cell migration and proliferation, neurite outgrowth, astrocytic glutamate 

transporter expression (GLAST and GLT-1) and synaptic plasticity, so that every change 

can shift the astrocytes’ role from physiology to pathology. In the case of affected GFAP-

IR astrocytes, the withdrawal of processes from neurons and synapses can lead to a 

severe transmission crush, due to the uncontrolled spillover of the neurotransmitter from 

the synaptic cleft, inadequate metabolic support and the lack of a physiological barrier 

between the affected synapse and other synapses in its close vicinity. This will directly 

disturb the reciprocal connections between the affected brain regions, inluding the 

important structures for memory and emotions, such as the entorhinal cortex, the 

hippocampus and the PFC.  

Through the glutamate transporters (GLT-1, GLAST) and specific enzymes (GS), 

astrocytes are able to successfully protect the brain from excess of glutamate. After 

cytoskeletal astrocytic atrophy (independent of Aβ accumulation), the observed GS 

deficiency can result in a shortage of glutamine for neurons due to the distorted 

glutamate-glutamine cycle and subsequently in an insufficient synaptic effect.  

The mechanisms and regulations of the aging brain are complicated and still not fully 

understood. Different markers can show opposite changes depending on brain region, as 

was proven by studying GFAP, GS and S100β expression in senescent astrocytes. Further 

study of astroglial aging in needed to reach the next step in helping the brain to remain 

less affected in the face of advancing age. The common agreement underlines the 

fundamental importance of maintaining harmony between the elimination and 

compensatory remodeling of neuronal nets. This reshaping is highly dependent on 

homeostatic stability, support and defence.  
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The basis for proper brain function lies in well functioning networks, in which neurons 

and glia are evenly involved. The results of studies presented in this thesis underline the 

crucial role of astrocytes in maintaining metabolic stability within the synaptic and 

neuronal environment, which makes them a promising therapeutic target in the 

prevention as well as the treatment of AD.  
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 8. SOUHRN: 

  

V této práci jsme popsali důležité morfologické změny astrocytů způsobené 

Alzheimerovou chorobou (AD), které předcházejí typickým histopatologickým změnám 

v mozkové tkáni postižené AD. U 3xTg-AD myšího modelu jsme v prefrontální kůře 

objevili atrofované GFAP-pozitivních astrocyty, jejichž povrch i objem byly významně 

menší. Současný pokles exprese glutamin-syntentázy (GS) u astrocytů postižených AD 

signalizoval porušení mechanismů glutamátové homeostázy. Takové změny pak mohou 

negativně ovlivňovat činnost nervových spojů a funkční stabilitu hlavních mozkových 

neurotransmiterů (glutamátu a GABA). Je známo, že gliální acidický fibrilární protein 

(GFAP) se účastní řady cytokinetických dějů (migrace a proliferace), má zásadní vliv na 

růst neuritů, podílí se na tvorbě transportních proteinů pro glutamát a aspartát v gliových 

buňkách (GLAST a GLT-1) a na vzniku nových synapsí. Tudíž i sebemenší změny v 

morfologii astrocytů mohou vést k patologii mozkové funkce. V případě poškození 

GFAP-IR astrocytů může dojít k progresivní poruše nervového přenosu způsobené 

nekontrolovatelným vyléváním neurotransmiteru v okolí synaptické štěrbiny, 

metabolickou nerovnováhou a ztrátou fyziologické bariéry okolních synapsí. To má za 

následek oboustranné porušení nervových spojů mezi postiženými oblastmi mozku 

zodpovědnými za paměť a emoce (entorhinální kůra, prefrontální kůra a hippokampus). 

Astrocyty zprostředkovávají ochranu mozku před nadměrným uvolňováním glutamátu 

pomocí glutamátových transportérů (GLT-1 a GLAST) a specifických enzymů (glutamin 

syntetázy, GS). Pokles hladiny GS pozorovaný v populaci atrofovaných astrocytů 

(nezávisle na hromadění Aβ) by mohl vysvětlovat sníženou dodávku glutaminu do 

neuronů; syntéza a metabolismus glutaminu závisí na GS a jeho nedostatek může vést 

k poruše glutamátové homeostázy a k narušení synaptického přenosu signálu. 

Mechanismy a regulační děje probíhající ve stárnoucím mozku nejsou ještě zcela známy. 

Sledováním exprese různých biochemických ukazatelů (GFAP, GS a S100β) ve 

stárnoucích astrocytech jsme zjistili rozdílné změny v závislosti na testovaných oblastech 

mozku. Právě nové poznatky ohledně stárnutí glií by nám mohly pomoci zjistit, jak 

zmírnit účinek stárnutí na mozkové funkce. Schopnost mozku udržovat rovnováhu mezi 

odstraňováním a kompenzační přestavbou nervových spojů je klíčová a vyžaduje 

homeostatickou vyváženost.  
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Správná činnost mozku se odvíjí od dobře fungující, vysoce organizované sítě nervových 

okruhů, do kterých jsou rovnoměrně zapojeny jak neurony, tak glie. Výsledky této studie 

podtrhují ústřední roli astrocytů v udržování stability metabolických dějů mezi neurony a 

synapsemi. To je činí slibným terapeutickým cílem v prevenci i léčbě AD.  
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