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Katedra: Katedra numerické matematiky
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Introduction

The introduction of a posteriori error estimates for finite element method
in the paper of Babuška and Rheinboldt [3] brought considerable advance
in the error analyzis in the solution of partial differential equations. The
subject was further developed in vast amount of literature, we reffer, e.g., to
the book of Ainsworth and Oden [1]. Apart from few exceptions a posteriori
error estimates rely on the assumption that the linear algebraic system re-
sulting from discretization is solved exactly. A moderately sized system can
be solved by direct methods; for large systems the (preconditioned) itera-
tive methods become competitive and with increasing side they represent
the only viable alternative. Moreover, they enable saving the computational
work by stopping whenever the algebraic error drops to the level at which it
does not significantly affect the whole error. In last years a posteriori error
estimates which take into account an inexact solving of the linear algebraic
system were derived, see, e.g., [4, 23, 35, 36, 47].

The solution of a partial differential equation (PDE) by the finite element
method reduces the original mathematical model to the discretized problem,
where the approximate solution is restricted to some finite-dimensional func-
tion subspace, and to the algebraic problem that determinates the coefficients
for the approximate solution with respect to the given basis of the finite-
dimensional subspace (see, e.g., [25, Section 1]). We believe that any reliable
and effective PDE solver requires the understanding of the relations between
these problems.

The goals of the thesis are to explain the connection between the dis-
cretization and the algebraic error, to present an overview of the estimates
for the algebraic error and to implement the estimates for the error and the
stopping criteria in an adaptive finite element method.

The thesis is organized as follows. In the first chapter we describe the
model problem and its discretization and we show the existence and the
uniqueness of the solution. In Chapter 2, the Conjugate Gradient Method
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(CG, [21]) is described, estimates for the energy norm of the error in CG are
derived and a heuristic for the adaptive estimate is proposed and numerically
tested. In the numerical experiments we also show the difference in the
local distribution of the algebraic and the discretization error. Then the
a posteriori error estimates including the algebraic error are presented in
Chapter 3. In order to get a useful perspective we describe multigrid methods
in Chapter 4. In Chapter 5 the Cascadic Conjugate Gradient Method (CCG,
[10]) is described. Using the results from Chapter 2 we propose new stopping
criteria for the CCG method. The new implementation of the CCG method
with the a posteriori error estimates described in Chapter 3 is then tested.
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Chapter 1

Second-order elliptic PDEs and
their discretization

In this chapter we present the model problem considered in the thesis, its
basic properties and discretization by the Galerkin Finite Element Method
(FEM). The theorems are presented briefly and without proofs (the details
and proofs can be found, e.g., in [14, 6, 18]).

1.1 Sobolev spaces

Let D be a domain (open, bounded and connected set) in Rd, d = 2, 3.
We say that ∂D is a Lipschitz boundary and D is called a Lipschitz domain,
if for each point s = (s1, . . . , sd) ∈ ∂D there exists a ball Br(s) of radius
r > 0 centered at s and a Lipschitz function γ : Rd−1 → R such that – upon
relabeling and reorienting the coordinate axes if necessary – we have

D ∩Br(s) = {x ∈ Br(s);xd > γ(x1, . . . , xd−1)} .

For 1 ≤ p <∞, let

‖u‖Lp(D) ≡
(∫

D

up ds

)1/p

and for the case p =∞ let

‖u‖L∞(D) ≡ ess sup
D
|u| = inf

{
C ∈ R;

∫
{ξ;|u(ξ)|>C}

ds = 0

}
.
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We define the Lebesgue space Lp(D), 1 ≤ p ≤ ∞

Lp(D) ≡
{
u : D → R; ‖u‖Lp(D) <∞

}
.

In order to avoid trivial differences between two functions, we identify two
functions u, v ∈ Lp(D) that satisfy ‖u− v‖Lp(D) = 0.

Let
α = (α1, . . . , αd), αi ∈ {0, 1, . . .} , 1 ≤ i ≤ d

be a multiindex and |α| =
∑d

i=1 αi. By C∞c (D) we denote the space of in-
finitely differentiable functions with compact support in D. For ϕ ∈ C∞c (D)
we define the (strong) multiindex derivation

Dαϕ =
∂|α|ϕ

∂xα1
1 · · · ∂x

αd
d

.

We define the space of locally integrable functions

L1
loc ≡ {u : D → R;u ∈ L1(K) ∀compact K ⊂ D}.

As D is bounded, Lp(D) ⊂ L1
loc, 1 ≤ p ≤ ∞. For u ∈ L1

loc(D) we define the
weak derivation v = Dαu such that∫

D

vϕ dx = (−1)|α|
∫
D

uDαϕdx ∀ϕ ∈ C∞c (D) .

The weak derivation is uniquely determined (see [14, Section 5.2.1]). We
define the Sobolev space W k,p(D), k ∈ N, 1 ≤ p ≤ ∞

W k,p(D) ≡ {u ∈ Lp(D);Dαu ∈ Lp(D) ∀α; |α| ≤ k} ,

with the norm

‖u‖k,p,D ≡

∑
|α|≤k

‖Dαu‖Lp(D)

 .

For p = 2, W k,2(D) is a Hilbert space that we denote by

Hk(D) ≡ W k,2(D)

and the norm
‖u‖k,D ≡ ‖u‖k,2,D .
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According to this notation, we denote by H0(D) the Hilbert space L2(D)
and its norm

‖u‖0,D ≡ ‖u‖L2(D) .

For a Lipschitz domain D we define the trace operator (see, e.g., [14, Sec-
tion 5.5])

T : W 1,p(D)→ Lp(∂D), 1 ≤ p <∞ ,

such that
Tu = u|∂D ∀u ∈ C(D̄) ∩W 1,p(D) .

For the definition of Sobolev-Slobodetskii spaces W s,p(D) with s /∈ N see,
e.g., [30].

1.2 Model problem, weak solution

Consider a second-order elliptic pure diffusion model problem

−∇ · (S∇u) = f in Ω , (1.1)

u = gD on ∂ΩD , (1.2)

∂u

∂n
= gN on ∂ΩN , (1.3)

where

A1: Ω is a Lipschitz domain in Rd, d = 2, 3, ∂Ω = ∂ΩD ∪ ∂ΩN and
∂ΩD ∩ ∂ΩN = ∅;

A2: S is a symmetric, bounded and uniformly positive diffusion tensor, i.e.

S = (sij)
d
i,j=1, sij ∈ L∞(Ω), sij = sji, i, j = 1, . . . , d,

‖S‖ ≡ sup
ξ∈Ω

sup
06=z∈Rd

‖S(ξ)z‖
‖z‖

<∞

and there exists constant cS > 0 such that

cS‖z‖2 ≤ zTS(ξ)z, ∀ξ ∈ Ω, ∀z ∈ Rd.

A3: f ∈ L2(Ω) is a source term;
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A4: gD ∈ L2(∂ΩD) prescribes the Dirichlet boundary condition. We assume
that there exists uD ∈ H1(Ω) such that

TuD = gD ;

A5: gN ∈ L2(∂ΩN ) prescribes the Neumann boundary condition.

Here ∂u/∂n denotes the derivative in the direction normal to the boundary
∂Ω (conventionally pointing outwards). Moreover we assume1 that∫

∂ΩD

ds 6= 0,

so that (1.2)–(1.3) does not represent the pure Neumann condition.
Multiplying (1.1) by an admissible test function v, integrating over Ω

and using the Gauss–Green theorem ([14, Appendix C.2]) we get for any
test function v from the test space

H1
0 ≡ {v ∈ H1(Ω); Tv = 0 on ∂ΩD}

the equation ∫
Ω

S∇u · ∇v =

∫
Ω

vf +

∫
∂ΩN

v gN . (1.4)

The solution u of (1.4) belongs to the solution space

H1
D ≡ {u ∈ H1(Ω); Tu = gD on ∂ΩD} = H1

0 + uD . (1.5)

Considering the bilinear form a : H1(Ω)×H1(Ω)→ R

a(u, v) ≡ (S∇u,∇v)Ω ≡
∫

Ω

S∇u · ∇v ,

and the linear functional ` : H1(Ω)→ R

`(v) ≡ (f, v)Ω + (gN , v)∂ΩN ≡
∫

Ω

vf +

∫
∂ΩN

v gN ,

the equation (1.4) can be restated as the weak formulation of (1.1)–(1.3):

Find u ∈ H1
D such that

a(u, v) = `(v) ∀v ∈ H1
0 . (1.6)

1this assumption can be removed, see [6, Section 5.2]
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1.3 Uniqueness of the solution, regularity

For the study of uniqueness of the weak solution and its properties we rewrite
the weak formulation (1.6). Since

u ∈ H1
D = H1

0 + uD ,

there exists w ∈ H1
0 such that u = w + uD. Substituting into (1.6) we get

a(w, v) = `(v)− a(uD, v) ∀v ∈ H1
0 .

Let now consider the problem equivalent to (1.6):

Find w ∈ H1
0 such that

a(w, v) = ¯̀(v) ≡ `(v)− a(uD, v) ∀v ∈ H1
0 . (1.7)

Theorem 1.1 ([14, Section 5.8.1], Poincaré-Friedrichs inequality). Assume
that Ω is a Lipschitz domain in Rd. Then there exists a constant C(Ω) > 0
depending only on Ω such that

‖v‖0,Ω ≤ C(Ω)‖∇v‖0,Ω

holds for any v ∈ H1(Ω) satisfying∫
Ω

v dx = 0 or Tv = 0 on Γ ,

where Γ ⊂ ∂Ω such that
∫

Γ
ds 6= 0 .

Using Poincaré-Friedrichs inequality

a(v, v) = (S∇v,∇v)Ω = ‖S1/2∇v‖0,Ω ≥

≥ cS‖∇v‖0,Ω ≥
cS

C(Ω)
‖v‖0,Ω .

With the assumption
∫
∂ΩD

ds 6= 0, i.e. the Dirichlet boundary condition is
prescribed on a nontrivial part of ∂Ω, and Tv = 0 on ΩD we get

a(v, v) = 0 ⇐⇒ v = 0 .
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Thus the bilinear form a(·, ·) represents an inner product over the test space
H1

0 and it induces there the energy norm,

‖v‖2
a ≡ a(v, v)1/2 = ‖S1/2∇v‖0,Ω , ∀v ∈ H1

0 . (1.8)

Using Theorem 1.1 we get ∀v ∈ H1
0 the inequality

‖∇v‖0,Ω ≥
1

1 + C(Ω)
(‖v‖0,Ω + ‖∇v‖0,Ω) = cH1‖v‖1,Ω . (1.9)

The uniqueness of the weak solution w of (1.7) follows from the Lax-
Milgram theorem (see, e.g., [14, Section 6.2.1]) presented below. We state it
for a general Hilbert space and then we present its application for (1.7).

Theorem 1.2 (Lax-Milgram). Let V be a Hilbert space and a(·, ·) a bilinear
form on V, which is

• bounded: a(w, v) ≤ C‖w‖V ‖v‖V , ∀w, v ∈ V and

• coercive: a(v, v) ≥ c‖v‖2
V , ∀v ∈ V

Then, for any ¯̀∈ V ′, where V ′ be the dual space to V , there exists a unique
solution w to the equation a(w, v) = ¯̀(v) and

‖w‖V ≤
1

c
‖¯̀‖V ′ .

In our case V = H1
0 , H

1(Ω) ⊂ V ′ = [H1
0]′ with the H1(Ω)-norm ‖ · ‖1,Ω.

Using the definition of ‖ · ‖1,Ω and (1.9)

• a(w, v) ≤ ‖S‖‖∇w‖0,Ω‖∇v‖0,Ω ≤ ‖S‖‖w‖1,Ω‖v‖1,Ω , ∀w, v ∈ H1
0

• a(v, v) ≥ cS‖∇v‖2
0,Ω ≥ cScH1‖v‖2

1,Ω , ∀v ∈ H1
0 .

Consequently Theorem 1.2 holds, the solution w of (1.7) is unique and

‖w‖1,Ω ≤ c0‖¯̀‖1,Ω . (1.10)

It can be easily seen that the assumptions of Theorem 1.2 are fulfilled for
any finite-dimension subspace S of the test space H1

0 so that the problem

Find w ∈ S such that

a(w, v) = ¯̀(v) ∀v ∈ S , (1.11)
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has also the unique solution w. We use this property in the Galerkin dis-
cretization of (1.6).

With further assumptions on the diffusion tensor S we can even improve
the estimate (1.10) and prove the higher regularity of the weak solution w
of (1.7), see [14, Section 6.3].

Theorem 1.3 (H1+ε-regularity of the weak solution). Let w be the weak
solution of (1.7). Let the diffusion tensor S = (sij)

d
i,j=1 satisfies

sij ∈ W 2,∞ i, j = 1, . . . , d .

Then there exists ε ∈ (0, 1] such that w ∈ H1+ε(Ω) and the following inequal-
ity holds

‖w‖1+ε,Ω ≤ c1‖¯̀‖1−ε,Ω . (1.12)

ε depends only on the shape of the Lipschitz domain Ω.
For Ω polygonal/polyhedral, ε depends on the greatest interior angle. For

a convex Ω, we have ε = 1 and

‖w‖2,Ω ≤ c1‖¯̀‖0,Ω . (1.13)

The norm ‖ · ‖k+ε,Ω is defined as (see, e.g., [30])

‖v‖2
k+ε,Ω = ‖v‖2

k,Ω +
∑
|α|=k

∫
Ω

∫
Ω

|Dαv(x)−Dαv(y)|2

|x− y|d+2ε
dx dy

1.4 Galerkin discretization

In this section we describe the idea of the Galerkin FEM discretization, its
basic properties and, as an example, the P 1-conforming FEM discretization.

The Galerkin approximation to (1.6) can be briefly summarized in the
following way. Let Sh0 ⊂ H1

0 be a finite-dimensional subspace of the test
space and let the problem on Sh0 is considered

Find uh ∈ ShD ≡ uD + Sh0 such that

a(uh, vh) = `(vh) ∀vh ∈ Sh0 . (1.14)
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Theorem 1.2 assures the existence and the uniqueness of the solution uh.
Let {φ1, . . . , φn} form the basis of Sh0 . Then the finite element approxi-

mation uh ∈ ShD can be written in the form

uh =
n∑
j=1

ζjφj + uD , (1.15)

By substituting (1.15) into (1.14) and taking vh = φi, i = 1, 2, . . . , n, we get
the system of linear algebraic equations

Ax = b, (1.16)

with

A = [aij] , aij =

∫
Ω

S∇φi · ∇φj ,

b =

 b1
...
bn

 , bi =

∫
Ω

φif +

∫
∂ΩN

φigN −
∫

Ω

∇φi · ∇uD ,

x =

 ζ1
...
ζn

 .

The system (1.16) is called the Galerkin system, the symmetric matrix A is
called the stiffness matrix and the solution (1.15) obtained by solving (1.16)
is called the Galerkin solution. In order to have the arisen matrix A as
sparse as possible (for effective solving of (1.16)), we usually consider basis
functions φi of small support.

Using the Poincaré-Friedrichs inequality (Theorem 1.1) we showed that
the bilinear form a(·, ·) represents the inner product over the test space H1

0

and induces there the energy norm. Consequently the (symmetric) matrix
A is positive-definite.

Consider two arbitrary functions w̃h, z̃h ∈ Sh0 . Denoting by

Φ = [φ1, φ2, . . . , φn]

we can write these functions as w̃h = Φx, z̃h = Φ y for some coefficient
vectors x, y ∈ Rn. Then the inner product of w̃h, z̃h is given by

a(w̃h, z̃h) =

∫
Ω

S∇w̃h · ∇z̃h = (x,Ay) .

12



Therefore, for any w̃h ∈ Sh0 ,

‖x‖2
A ≡ (x,Ax) = a(w̃h, w̃h) = ‖w̃h‖2

a (1.17)

defines the algebraic energy norm on Rn.
We point out that in our considerations we have excluded for clarity

of exposition the pure Neumann boundary conditions. Moreover, we will
further assume that the Galerkin solution uh is conforming, i.e. the Dirichlet
boundary conditions are interpolated by uD exactly, hence for any ũh ∈ ShD

u− ũh ∈ Sh0 . (1.18)

For any Galerkin approximation uh given by (1.15) and (1.16) and for
any vh ∈ Sh0 ,

a(u, vh) = `(vh) and a(uh, vh) = `(vh)

give the Galerkin orthogonality condition

a(u− uh, vh) = 0 for all vh ∈ Sh0 , (1.19)

i.e. the discretization error u − uh is orthogonal to the subspace Sh0 with
respect to the energy inner product. Since

u− uh = (u− uD)−
N∑
j=1

ζjφj ,

u− uh can be seen as the result of the orthogonalization of u− uD against
φ1, φ2, . . . , φn in the energy inner product. Subsequently u − uh must have
the minimal energy norm among all possible vectors u − wh for wh ∈ ShD.
As an immediate consequence of conforming approximations (1.18) and the
Galerkin orthogonality (1.19) we therefore get the best approximation prop-
erty of uh in the energy norm (1.8), see, e.g., [13, Theorem 8.1]).

‖u− uh‖a = min
wh∈Sh

D

‖u− wh‖a . (1.20)

1.4.1 P 1-conforming FEM discretization

Now we present the simplest FEM discretization using piecewise linear con-
tinuous functions.
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Let Th be the partition of polygonal/polyhedral domain Ω into closed
simplices i.e. triangles (d = 2) or tetrahedra (d = 3) such that Ω̄ =

⋃
K∈Th

K.
We assume that if K,L ∈ Th, K 6= L, then K ∩ L is either an empty set, a
common face, edge or vertex of K and L. By h we denote the mesh size

h ≡ max
K∈Th

diam(K).

We consider the finite element space

Sh,P 1 ≡ {u ∈ C(Ω);u|K ∈ P 1(K) ∀K ∈ Th}

and the appropriate test and solution spaces Sh,P
1

0 ⊂ Sh,P 1
, Sh,P

1

D ⊂ Sh,P 1

respectively.

We consider the Sh,P
1

0 -basis functions φi of small support, function φi
corresponds to a single vertex Zi of the triangulation Th and

φi(Zj) = δij , i, j = 1, . . . n.

Here δij stands for Kronecker delta. The illustration of the basis function
φi is given in Figure 1.1. Consequently aij 6= 0 only for neighboring vertices
Zi, Zj, i.e. vertices of the same element K of triangulation Th.

Figure 1.1: Basis function φi .

In the previous section we showed the equality of the energy norm (1.8)
and the algebraic energy norm (1.17)

‖ṽh‖a = ‖x‖A , ṽh = Φx .

14



There exists constants c2 > 0, c3 > 0 such that the Euclidean norm ‖x‖ and
the L2-norm ‖ṽh‖0,Ω fulfill the inequality with factor h (see [40, relation 5.12])

c2h‖x‖ ≤ ‖ṽh‖0,Ω ≤ c3h‖x‖ , ∀ṽh ∈ Sh0 ; ṽh = Φx . (1.21)

The convergence of the Galerkin approximation uh to the exact solution
u of the (1.6) has been studied in many papers. For the problem (1.6) using
the P 1-conforming FEM discretization the following estimates hold (see,
e.g., [9, Section 3.2])

Theorem 1.4 (a priori estimates). Let (1.14) be the weak formulation
of problem (1.1)–(1.3) with assumptions A1 – A5. Then there exists the

unique solution uh ∈ Sh,P
1

D of (1.14) and obeys the estimates

‖u− uh‖a ≤ c4h ‖`‖0,Ω , (1.22)

‖u− uh‖0,Ω ≤ c5h
2‖`‖0,Ω . (1.23)

However, the inequalities (1.21), (1.22) and (1.23) give only theoretical
bounds due to unspecified constants c2, c3, c4 and c5. For computations we
need reliable and computable bounds for the errors. Such bounds are pre-
sented in Chapter 3.
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Chapter 2

Error estimates and stopping
criteria in Conjugate Gradient
Method (CG)

We start the introduction to CG by its derivation (following [26]) in order to
present some important properties and relationship to other mathematical
disciplines. We show the consistency of CG and Galerkin discretization and
the energy interpretation of the A-norm. Then the estimates of the CG
error are presented using the relations of CG with the Lanczos method
and Gauss quadrature, and a simple heuristic for an adaptive estimate is
proposed (following [33]). Finally, we present stopping criterion for CG using
the proposed heuristic. This topic will be further developed in Chapter 5.

2.1 Derivation of CG

Derivation of CG historically proceeded in a different way but the following
one very naturally illustrates the properties of CG. It is motivated by the
standard optimization approach to CG and employs the well-known equiv-
alence between solving the linear algebraic system

Ax = b ,

where A ∈ Rn×n is real symmetric positive-definite (SPD) matrix and b ∈ Rn

is a right hand side vector, and minimizing the quadratic functional

F (x) =
1

2
(x,Ax)− (x, b) .
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Defining the A-norm
‖z‖A = (z, Az)1/2

and considering xk an approximation to the solution x, the equality

F (xk) = 1
2

((x− xk), A(x− xk))− 1
2
(x,Ax) =

= 1
2
‖x− xk‖2

A − 1
2
‖x‖2

A ,

shows that the minimization of F (z) over some subspace of RN is mathe-
matically equivalent to minimization of ‖x − z‖A over the same subspace.
Therefore the A-norm is natural to measure the error of the approximate
solution. (In Section 2.2.2 we will further elaborate on the relevance of the
A-norm of the error.)

Let x0 be an initial approximation, and let the sequence of approxima-
tions to the solution x be constructed by the simple recurrence

xk = xk−1 + γk−1pk−1 , k = 1, 2, . . .

where pk−1 represents the search direction at the step k. The new approxi-
mation xk is determined as the point along the line xk−1 + γk−1pk−1 where
‖x− z‖A is minimimal (i.e. the minimum of F (z)). By simple calculation

‖x− xk‖2
A = ‖x− xk−1‖2

A − 2γk−1(pk−1, rk−1) + γ2
k−1(pk−1, Apk−1) ,

so the minimum is attained for

γk−1 =
(pk−1, rk−1)

(pk−1, Apk−1)
. (2.1)

As an immediate consequence we get the orthogonality of the residual rk
(corresponding to the new minimum xk) to the search vector pk−1,

(pk−1, rk) = (pk−1, (rk−1 − γk−1Apk−1)) = 0 ,

which geometrically means that the gradient ∇F (xk) at xk is orthogonal to
the equipotential surface determined by the equation F (y) = F (xk).

It remains to determine the search directions. The simplest choice of the
initial direction p0 is p0 ≡ r0 = b− Ax0. If we take pk ≡ rk, where rk is the
residual at k-th step rk = b−Axk, also in the subsequent steps, k = 1, 2, . . .,
we get the method of steepest descent (see, e.g, [37, Section 5.3]), which
can exhibit a rather poor convergence, because at each step the norm of
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the error is minimized only over one-dimensional space determined by rk.
In order to get minimization property over more dimensional subspaces, we
must combine in the choice of pk the information from several iteration steps.
The simplest choice generates the new search direction as a combination of
the previous search direction and the (new) residual,

pk = rk + δkpk−1, for some δk ∈ R .

In order to motivate the choice of δk below, we first notice that the change
of the error from the step k − 1 to k

x− xk = (x− xk−1)− γk−1pk−1

with the value

γk−1 =
(pk−1, rk−1)

(pk−1, Apk−1)
=

(pk−1, A(x− xk−1))

(pk−1, Apk−1)
,

can be regarded as the A-orthogonalization (i.e. the orthogonalization with
the respect to the inner product defined by (z, Ay), z, y ∈ Rn) of the error
x− xk−1 against pk−1. Then

(x− xk−1) = γk−1pk−1 + (x− xk)

can be interpreted as the A-orthogonal decomposition of x − xk−1. The
Pythagorean theorem then gives

‖x− xk−1‖2
A = |γk−1|2‖pk−1‖2

A + ‖x− xk‖2
A .

The recursive application of this gives

x− x0 =
k∑
j=1

γj−1pj−1 + (x− xk) .

and

‖x− x0‖2
A =

k∑
j=1

|γj−1|2‖pj−1‖2
A + ‖x− xk‖2

A . (2.2)

Now assume that all search directions p0, p1, . . . are A-orthogonal, i.e.

(pi, Apj) = 0, i 6= j
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holds. Then

x− xk = (x− x0)−
k∑
j=1

γj−1pj−1

represents the A-orthogonal decomposition of x−x0, and, as a consequence,
‖x− xk‖A is minimal over all possible approximations in the subspace gen-
erated by the search directions p0, . . . , pk−1,

‖x− xk‖A = min
u∈x0+span{p0,...,pk−1}

‖x− u‖A . (2.3)

Moreover, the assumed A-orthogonality of pj, j = 0, 1, . . . implies pn = 0,
i.e., the algorithm would reach the true solution (in exact arithmetic) in at
most n steps.

Having only one undetermined scalar coefficient δk, we can’t get closer
to desired A-orthogonality of the search directions, than requiring local
A-orthogonality of the two subsequent search directions, i.e.,

(pk−1, Apk) = 0 ,

which gives

δk = − (pk−1, Ark)

(pk−1, Apk−1)
.

Now the algorithm is fully determined. In Section 2.2 we will prove that

(ri, rj) = 0 and (pi, Apj) = 0, i 6= j ,

for rj ≡ b − Axj. Consequently, the local A-orthogonality of pk and pk−1

guarantees the global orthogonality of residuals (with respect to the stan-
dard Euclidean inner product) and global A-orthogonality of all search direc-
tions. So the orthogonality assumption mentioned prior to the minimization
property (2.3) is satisfied.

Finally, using
(pk−1, rk−1) = (rk−1, rk−1)

and

−Apk−1 =
rk − rk−1

γk−1

=
(rk − rk−1)(pk−1, Apk−1)

(pk−1, rk−1)
.

we get

δk =
(rk, rk)

(rk−1, rk−1)
, γk−1 =

(rk−1, rk−1)

(pk−1, Apk−1)
,

that leads to the standard algorithm implementation of the CG method,
see [21].
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2.2 CG and its properties

Consider the linear algebraic system

Ax = b , (2.4)

where A ∈ Rn×n is a SPD matrix and b ∈ Rn a right hand side vector. The
CG algorithm was first derived in [21], in our notation

Given x0, r0 = b− Ax0, p0 = r0 for i = 1, 2, . . .

γi−1 = (ri−1, ri−1)/(pi−1, Api−1) ,
xi = xi−1 + γi−1pi−1 ,
ri = ri−1 − γi−1Api−1 ,
δi = (ri, ri)/(ri−1, ri−1) ,
pi = ri + δipi−1 .

(2.5)

We will recall some important properties.

2.2.1 Orthogonality

Theorem 2.1 ([21, Theorem 5.1], orthogonality in CG). Residual vectors ri
and search directions pi determined by the CG algorithm satisfy

(ri, rj) = 0 i 6= j ,

(pi, Apj) = 0 i 6= j ,

(pi, rj) = 0 i < j , (pi, rj) = ‖ri‖2 i ≥ j ,

(ri, Api) = (pi, Api) , (ri, Apj) = 0 i 6= j, i 6= j + 1 .

From the definition of pi, ri it follows that

Kk(A, r0) ≡ span{r0, Ar0, . . . , A
k−1r0}

= span{p0, p1, . . . , pk−1}
= span{r0, r1, . . . , rk−1}, ∀k = 0, 1, . . .

(2.6)

Kk(A, r0) is called kth Krylov subspace generated by A and the initial residual
r0 = b − Ax0. From Theorem 2.1 one can see that {r0, r1, . . . , rk−1} form
orthogonal basis and {p0, p1, . . . , pk−1} A-orthogonal basis of Kk(A, r0).
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2.2.2 CG and the Galerkin discretization

Very important characteristic of CG is the energy error minimizing property,

‖x− xk‖A = min
u∈x0+span{p0,...,pk−1}

‖x− u‖A ,

using previous notation

‖x− xk‖A = min
u∈x0+Kk(A,r0)

‖x− u‖A . (2.7)

Following [26] (and resuming Chapter 1) we will show the consistency of CG
and Galerkin finite element method. For details and references see [26, 12].

Consider the problem (1.1)–(1.3) and its weak formulation (1.6) derived
in Section 1.2. Consider the Galerkin discretization given in Section 1.4, with
the system of linear algebraic equations

Ax = b, A ∈ Rn×n, b ∈ Rn (2.8)

and the Galerkin approximation

uh = Φx+ uD ,

corresponding to the exact solution x of the system (2.8).
Let xk ∈ Rn represents an approximation to x and

u
(k)
h ≡ Φxk + uD ∈ ShD . (2.9)

By construction and under the conformity assumption

uh − u(k)
h ∈ S

h
0 .

(Recall that ShD,Sh0 are the finite-dimensional subspaces of the solution and
test space respectively, ShD = Sh0 + uD, the columns of Φ form the basis of
Sh0 and uD interpolates the Dirichlet boundary condition exactly.)

Consider the error of the computed approximate solution u
(k)
h in the

energy norm ‖u− u(k)
h ‖a defined in (1.8). The error u− u(k)

h consists of two
parts:

• the discretization error u − uh, with its energy norm defined in (1.8)
given by

‖u− uh‖a ;
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• the algebraic error uh−u(k)
h , which can be measured using the induced

algebraic energy norm (see (1.17)) as

‖uh − u(k)
h ‖

2
a = ((x− xk), A(x− xk))

= ‖x− xk‖2
A .

The relationship between the size of the total error, the Galerkin discretiza-
tion error and the algebraic error is summarized in the following theo-
rem ([12]).

Theorem 2.2 (Consistency of CG and Galerkin FEM). Let uh be the
Galerkin approximation of the solution u of the problem (1.1)–(1.3) and

let u
(k)
h given by (2.9) corresponds to the approximate solution xk of the

linear algebraic system (2.8). Assuming the conformity (1.18),

‖u− u(k)
h ‖

2
a = ‖u− uh‖2

a + ‖x− xk‖2
A .

Proof. A simple manipulation gives

‖u− u(k)
h ‖2

a = a(u− u(k)
h , u− u(k)

h )

= a(u− uh + uh − u(k)
h , u− uh + uh − u(k)

h )

= a(u− uh, u− uh) + a(uh − u(k)
h , uh − u(k)

h ) ,

since a(u − uh, uh − u(k)
h ) = 0 due to the Galerkin orthogonality condition

(1.19) as uh − u(k)
h ∈ Sh0 . The rest of the proof follows trivially by rewriting

the terms in the form of the energy norms.

Theorem 2.2 has the following interpretation. Consider the approximate so-
lution xk from a given algebraic subspace G ⊂ Rn, that results through (2.9)

in u
(k)
h ; an element of the corresponding functional subspace F ⊂ ShD deter-

mined by G. In order to get the best possible approximation over F measured
in the functional energy norm, the distance of xk to the exact solution x of
the system (1.16) measured by the algebraic energy norm (i.e. ‖x− xk‖A)
has to be minimized over G.

If we use Krylov subspace methods (see, e.g., [37]) for solving (1.16), the
algebraic subspace G is the Krylov subspace (2.6). Then the best approxi-

mation u
(k)
h of the solution of (1.1)–(1.3) in the corresponding subspace Fk
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determined by the Krylov subspace Kk(A, r0) is given by the CG method.
This shows the consistency of CG with the Galerkin FEM discretization of
the continuous problem which is unique among all iterative methods seeking
the approximate solution of the linear algebraic system in the given Krylov
subspace.

Theorem 2.2 has also another important meaning. When solving PDE
problems, our goal should seek a balance between the algebraic and the
discretization parts of the error. Solving arisen linear systems too accurately
(which means often too costly) cannot change the order of the total error
(as we see from Theorem 2.2). We discuss this further in Section 3.1 where
we look for the way how to estimate the discretization (and total) error.
Estimates for the algebraic energy norm are described in Section 2.3.

2.2.3 Lanczos Method and its relationship to CG

In this subsection we present following [43], where the references to the
original sources can be found the well-known relationship between CG and
the the Lanczos method.

For A and r0 the Lanczos method generates (ideally, see [28] for the
finite precision behaviour) an orthonormal basis {v1, v2, . . . , vk} of the Krylov
subspace Kk(A, r0) via the recurrence:

Given v1 = r0/‖r0‖, v0 ≡ 0, β1 ≡ 0, for i = 1, 2, . . .

αi = (Avi − βivi−1, vi) ,
wi = Avi − αivi − βivi−1 ,
βi+1 = ‖wi‖ ,
vi+1 = wi/βi+1 .

(2.10)

Comparing CG (2.5) with (2.10) gives

vi+1 = (−1)i
ri
‖ri‖

. (2.11)

Denoting by Vi ≡ [v1, . . . , vi] ∈ Rn×i the matrix having the Lanczos vectors
vi as its columns and by Ti the symmetric tridiagonal matrix with positive
subdiagonals

Ti ≡


α1 β2

β2 α2
. . .

. . . . . . βi
βi αi

 , (2.12)
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equations (2.10) can be rewritten in the matrix form

AVi = ViTi + βi+1vi+1e
T
i , (2.13)

where ei is i-th column of the identity matrix I ∈ Ri×i. Using the change of
variables

xi = x0 + Vi yi . (2.14)

Using the orthogonality relation between ri and the basis vectors {v1, . . . , vi}
of Ki(A, r0), we get

0 = V T
i ri = V T

i (b− Axi) = V T
i (r0 − AViyi) =

= e1‖r0‖ − V T
i AViyi = e1‖r0‖ − Tiyi .

Consequently, the CG approximation xi is determined by (2.14) and by
solving

Tiyi = ‖r0‖e1 . (2.15)

2.2.4 Orthogonal polynomials and Gauss quadrature

The relation of CG to orthogonal polynomials and the Gauss quadrature
is the key for understanding both mathematical properties and the highly
nonlinear behaviour of the CG method. The connection of CG to the Gauss
quadrature was pointed out in the original paper [21], with the orthogonality
of CG residuals as a link to orthogonal polynomials. In our exposition we
follow [43].

Using (2.5), the i-th error resp. residual can be written as a polynomial
in the matrix A applied to the initial error resp. residual,

x− xi = ϕi(A) (x− x0), ri = ϕi(A) r0, ϕi ∈ Πi , (2.16)

where Πi denotes the class of polynomials of degree at most i having the
property ϕ(0) = 1 (the constant term is equal to one). Consider the eigen-
decomposition of the symmetric matrix A in the form

A = UΛUT , UUT = UTU = I, (2.17)

where Λ = diag(λ1, . . . , λn) and U = [u1, . . . , un] is the matrix having the
normalized eigenvectors of A as its columns. Substituting (2.17) and (2.16)
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into the CG minimizing property (2.7) gives

‖x− xi‖A = ‖ϕi(A)(x− x0)‖A = min
ϕ∈Πi

‖ϕ(A)(x− x0)‖A =

= min
ϕ∈Πi

‖ϕ(A)r0‖A−1 = min
ϕ∈Πi

{
n∑
k=1

(r0, uk)
2

λk
ϕ2(λk)

}1/2

.(2.18)

Consequently, for A SPD the rate of convergence of CG is determined by the
distribution of its eigenvalues and by the size of components of the initial
residual r0 in the direction of the individual eigenvectors.

Similarly to (2.16), Lanczos vector vi+1 is linked with a monic polyno-
mial ψi,

vi+1 = ψi(A) v1 ·
1

β2β3 . . . βi+1

. (2.19)

Using the orthogonality of vi+1 to v1, . . . , vi, the polynomial ψi is determined
by the minimizing condition

‖ψi(A)v1‖ = min
ψ∈Mi

‖ψ(A)v1‖ = min
ψ∈Mi

{
n∑
k=1

(v1, uk)
2 ψ2(λk)

}1/2

, (2.20)

where Mi denotes the class of monic polynomials of degree i.
We showed that the CG residuals or the Lanczos basis vectors (defined

by (2.5) resp. by (2.10)) can be linked with a sequence 1, ψ1, ψ2, . . . of the
monic orthogonal polynomials determined by (2.20). These polynomials are
orthogonal with respect to the discrete inner product

(f, g) =
n∑
k=1

ωkf(λk)g(λk) , (2.21)

where the weights ωk are determined as

ωk = (v1, uk)
2,

n∑
k=1

ωk = 1 ,

(
v1 =

r0

‖r0‖

)
. (2.22)

For simplicity of notation we assume that the eigenvalues of A are distinct
and increasingly ordered (an extension to the case of multiple eigenvalues
will be obvious). Let ζ, ξ be such that

ζ < λ1 < λ2 < . . . < λn < ξ .
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Figure 2.1: Distribution function ω(λ)

Consider the distribution function ω(λ) with the finite points of increase
λ1, λ2, . . . , λn,

ω(λ) = 0 for ζ ≤ λ < λ1 ,

ω(λ) =
j∑

k=1

ωk for λj ≤ λ < λj+1 ,

ω(λ) = 1 for λn ≤ λ ≤ ξ ,

(2.23)

see Figure 2.1, and the corresponding Riemann-Stieltjes integral∫ ξ

ζ

f(λ) dω(λ) =
n∑
k=1

ωkf(λk) . (2.24)

Then (2.20) can be rewritten as

ψi = arg min
ψ∈Mi

{∫ ξ

ζ

ψ2(λ) dω(λ)

}
, i = 0, 1, 2, . . . , n . (2.25)

Consider, analogously to (2.17), the eigendecomposition of the symmetric
tridiagonal matrix Ti in the form

Ti = SiΘiS
T
i , STi Si = SiS

T
i = I, (2.26)

Θi = diag(θ(i)

1 , . . . , θ
(i)

i ), Si = [s(i)

1 , . . . , s
(i)

i ]. Ti is determined by the i steps
of the CG or Lanczos method for matrix A starting with ‖r0‖v1 resp. v1. It
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can be also regarded as determined by the CG applied to the i-dimensional
problem Tiyi = e1‖r0‖ with the initial residual e1‖r0‖ (resp. by the Lanczos
method for Ti with the starting vector e1). The eigenvalues of Ti are called
Ritz values and they are distinct (see e.g. [34, Chapter 7]). Obviously, we
can construct a Riemann-Stieltjes integral for this i-dimensional problem
similarly as above. Let

ζ < θ(i)

1 < θ(i)

2 < . . . < θ(i)

i < ξ

and

ω(i)

k = (e1, s
(i)

k )2,
i∑

k=1

ω(i)

k = 1 (2.27)

be the weights determined by the squared size of the components of e1 in
the direction of the eigenvectors of Ti, and

ω(i)(λ) = 0 for ζ ≤ λ < θ(i)

1 ,

ω(i)(λ) =
j∑

k=1

ω(i)

k for θ(i)

j ≤ λ < θ(i)

j+1,

ω(i)(λ) = 1 for θ(i)

i ≤ λ ≤ ξ .

Then the first i polynomials from the set {1, ψ1, . . . , ψn} determined by
(2.25) are also determined by the condition based on the Riemann-Stieltjes
integral with the distribution function ω(i)(λ)

ψl = arg min
ψ∈Ml

{∫ ξ

ζ

ψ2(λ) dω(i)(λ)

}
, l = 0, 1, . . . , i . (2.28)

(we can look at the sequence {1, ψ1, . . . , ψi as determined by CG or the
Lanczos method to the i-dimensional problem described above.) The integral∫ ξ

ζ

f(λ) dω(i)(λ) =
i∑

k=1

ω(i)

k f(θ(i)

k ) (2.29)

is the i-th Gauss quadrature approximation of the integral (2.24), see, e.g., [17].
Thus, the CG and Lanczos methods determine the sequence of distribution
functions ω(1)(λ), ω(2)(λ), . . . , ω(i)(λ), . . . approximating in the sense of the
Gauss quadrature the original distribution function ω(λ) (i.e. the value of
the original integral (2.24) is approximated by (2.29) exactly for any poly-
nomial of degree less than of equal to 2i− 1).
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With f(λ) = λ−1 we have from (2.18)

‖x− x0‖2
A = ‖r0‖2

n∑
k=1

ωk
λk

= ‖r0‖2

∫ ξ

ζ

λ−1 dω(λ) , (2.30)

and, using (2.13) with i = n, i.e. AVn = VnTn,,

‖x− x0‖2
A = (r0, A

−1r0) = ‖r0‖2(e1, T
−1
n e1) ≡ ‖r0‖2 (T−1

n )11 .

Consequently, ∫ ξ

ζ

λ−1 dω(λ) = (T−1
n )11 . (2.31)

Repeating the same considerations using the CG method for Ti with the
initial residual ‖r0‖e1, (or the Lanczos method for Ti with e1)∫ ξ

ζ

λ−1 dω(i)(λ) = (T−1
i )11 . (2.32)

Applying the i-point Gauss quadrature to (2.24) gives∫ ξ

ζ

f(λ) dω(λ) =

∫ ξ

ζ

f(λ) dω(i)(λ) +Ri(f), (2.33)

where Ri(f) denotes the (approximation) error in the Gauss quadrature. For
f(λ) = λ−1 this gives

‖x− x0‖2
A = ‖r0‖2(T−1

n )11 = ‖r0‖2(T−1
i )11 + ‖r0‖2Ri(λ

−1) . (2.34)

In [20] it was proved that

Ri(λ
−1) =

‖x− xi‖2
A

‖r0‖2
.

Then (2.33) can be rewritten

‖x− x0‖2
A = ‖r0‖2(T−1

i )11 + ‖x− xi‖2
A . (2.35)

Using (2.15) and eT1 = vT1 Vi resulting from the global orthogonality of
v1, . . . , vi ,

‖r0‖2(T−1
i )11 = ‖r0‖ eT1 T−1

i e1 ‖r0‖
= ‖r0‖ vT1 ViT−1

i e1 ‖r0‖ = (‖r0‖ v1)T (ViT
−1
i e1 ‖r0‖)

= rT0 (xi − x0) .

(2.36)
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Hence using (2.35),

‖x− x0‖2
A = rT0 (xi − x0) + ‖x− xi‖2

A . (2.37)

Although (2.35) and (2.37) are mathematically equivalent, (2.37) was de-
rived from (2.35) using the global orthogonality between v1 and all other
basis vectors v2, v3, . . . , vi . Therefore one can expect that in finite precision
computations, where the global orthogonality is not well preserved due to
rounding errors propagation throughout the Lanczos recurrences, (2.37) will
be significantly less accurate than (2.35). This was confirmed in [43].

In the next section we present relations mathematically equivalent to
(2.37). We should keep in mind that the quadratures and orthogonal poly-
nomials underlying these algebraic equations represent the highly nonlinear
objects with respect to the original data.

2.3 CG error estimates

2.3.1 Lower bounds for the A-norm of the error

In this section we present (following [43]) three expressions for the A-norm
of the error at the i-th step of the CG method. Assuming its sufficient rate
of decrease we show that the lower bounds for the A-norm of the error are
sufficiently close to the actual size of the error and we discuss their properties.
Details and the analysis of numerical stability in finite precision arithmetics
can be found in [43].

Using the Gauss quadrature and mutual orthogonality between Lanczos
vectors v1, . . . , vi we showed in Section 2.2.4 that

‖x− x0‖2
A = rT0 (xi − x0) + ‖x− xi‖2

A . (2.38)

By simple algebraic manipulations (without any knowledge about the Gauss
quadrature connection), a similar mathematically equivalent relation can be
derived (see [43])

(x− x0)TA(x− x0) = (x− xi + xi − x0)TA(x− x0)

= (x− xi)TA(x− x0) + (xi − x0)TA(x− x0)

= (x− xi)TA(x− xi + xi − x0) + (xi − x0)T r0

= ‖x− xi‖2
A + (x− xi)TA(xi − x0) + rT0 (xi − x0)

= ‖x− xi‖2
A + rTi (xi − x0) + rT0 (xi − x0) ,
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consequently

‖x− x0‖2
A = rTi (xi − x0) + rT0 (xi − x0) + ‖x− xi‖2

A . (2.39)

The right-hand side of (2.39) contains, in comparison to (2.38), the addi-
tional term rTi (xi− x0). This term is in exact arithmetics equal to zero, but
has a correction effect in finite precision computations (see [43, Section 6]).
Hestenes and Stiefel in [21, Theorem 6.1] presented the relation

‖x− xi−1‖2
A − ‖x− xi‖2

A = γi−1‖ri−1‖2 . (2.40)

Its derivation is simple employing only the local A-orthogonality,

‖x− xi−1‖2
A − ‖x− xi‖2

A = ‖x− xi + xi − xi−1‖2
A − ‖x− xi‖2

A

= ‖xi − xi−1‖2
A + 2(x− xi)TA(xi − xi−1)

= γ2
i−1p

T
i−1Api−1 + 2rTi (xi − xi−1)

= γi−1‖ri−1‖2 .

Recurrently

‖x− x0‖2
A =

i−1∑
l=0

γl‖rl‖2 + ‖x− xi‖2
A . (2.41)

Consider (2.38), (2.39) and (2.41) for i and i+d, where d is some positive
integer. Subtracting the identities for i and i+d results in equivalent relations

‖x− xi‖2
A = rT0 (xi+d − xj) + ‖x− xi+d‖2

A , (2.42)

‖x− xi‖2
A = rT0 (xi+d − xi)− rTi (xi − x0) + rTi+d(xi+d − x0) (2.43)

+‖x− xi+d‖2
A ,

‖x− xi‖2
A =

i+d−1∑
l=i

γl‖rl‖2 + ‖x− xi+d‖2
A . (2.44)

Neglecting ‖x − xi+d‖2
A on the right-hand side of (2.42), (2.43) and (2.44)

we get the lower bounds for ‖x− xi‖2
A. We denote

µi,d ≡ rT0 (xi+d − xi) , (2.45)

ϑi,d ≡ rT0 (xi+d − xi)− rTi (xi − x0) + rTi+d(xi+d − x0) , (2.46)

νi,d ≡
i+d−1∑
l=i

γl‖rl‖2 . (2.47)
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Now recall that the A-norm of the error in CG is strictly decreasing. If d is
chosen such that

‖x− xi‖2
A � ‖x− xi+d‖2

A , (2.48)

then lower bounds µi,d , ϑi,d and νi,d approximate the value of ‖x− xi+d‖2
A

with an acceptable inaccuracy ‖x− xi+d‖2
A .

Mathematically (in exact arithmetic)

µi,d = ϑi,d = νi,d .

The derivation of µi,d is based on the global orthogonality of the Lanczos
vectors, that is lost rapidly in finite precision computations (see [43, chapters
5, 6]). Hence, in practice µi,d can significantly differ from the other bounds.
This happens not because of errors in its evaluation, but due to the fact that
the relations used in derivation of (2.37) do not hold.

Bound ϑi,d contains, in comparison with µi,d , additional terms rTi (xi−x0)
and rTi+d(xi+d−x0). They are equal to zero in exact arithmetic but they have
corrective effect in finite precision calculations. On the other hand, they
increase the cost of the evaluation and in applications with a variable choice
of the parameter d the change of d forces us to recompute whole bound ϑi,d.

Unlike ϑi,d , the evaluation of νi,d requires just scalar inputs that are
computed during the CG iterations (γi, ‖ri‖2). Its derivation used only lo-
cal orthogonality and the change of parameter d leads to simple updates.
Moreover, as shown in [43], νi,d is numerically stable.

2.3.2 Upper bounds for the A-norm of the error

Using the CG minimizing property (2.7) and the relation (2.18) we can
bound the A-norm of the error by the min-max approximation problem on
the (discrete) set of eigenvalues λ1, . . . , λn of the matrix A

‖x− xi‖A = min
ϕ∈Πi

‖ϕ(A)(x− x0)‖A ≤ min
ϕ∈Πi

max
λl

|ϕ(λl)| ‖x− x0‖A . (2.49)

Using Chebyshev polynomials for ϕ in (2.49) gives the widely quoted upper
bound for the A-norm of the error (the original result can be found in [27],
see also, e.g., [37, Section 6.11])

‖x− xi‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)i
‖x− x0‖A . (2.50)
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Despite the fact that this bound is very often mentioned in the context of
conjugate gradient method, it describes the CG convergence very rarely.
Indeed, if the bound is tight, i.e.

‖x− xi‖A ≈ 2

(√
κ(A)− 1√
κ(A) + 1

)i
‖x− x0‖A , i = 1, 2, . . . n

then
‖x− xi+1‖A
‖x− xi‖A

≈

(√
κ(A)− 1√
κ(A) + 1

)
, i = 1, 2, . . . n− 1 ,

and CG convergence would be linear. The bound (2.50) employs only in-
formation about the edges of the spectrum λmin, λmax of the matrix A and
moreover, it represents a worst-case bound, which means that (2.50) holds
for any right hand side b and matrix Ã, such that κ(Ã) = κ(A). As we showed
in Section 2.2.4, the particular distribution of eigenvalues of A determines
the particular CG convergence.

Other upper bounds are derived in [19] using Gauss-Lobatto and Gauss-
Radau quadratures. However, in finite precision computations the bounded-
ness cannot be guaranteed, see [43]. Moreover, these upper bounds expect
the tight estimate of the smallest eigenvalue λmin of A that is not usually
at the disposal. Hence we cannot use them together with lower bounds in
order to set definite stopping criteria.

2.3.3 Other estimates

Although we pointed out the importance of the A-norm of the error, in
some applications (for example in image processing) CG is used for problems
where the Euclidean norm ‖x − xi‖ is to be minimalized. Theoretically, at
most in the n-th step CG gives the exact solution for which

‖x− xn‖A = ‖x− xn‖ = 0 .

For the Euclidean norm of the error no minimizing property similar to (2.7)
holds, but it does not mean that CG is useless for the problems mentioned
above. In [21, Theorem 6.3] the relation

‖x− xi−1‖2 − ‖x− xi‖2 =
‖pi−1‖2

‖pi−1‖2
A

(
‖x− xi−1‖2

A + ‖x− xi‖2
A

)
(2.51)
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was derived. From (2.51) we see that Euclidean norm ‖x−xi‖ in CG is also
monotonously decreasing. Using similar consideration as for the A-norm we
get for positive d

‖x−xi‖2 =
i+d−1∑
l=i

(
‖pl‖2

‖pl‖2
A

(‖x− xl‖2
A + ‖x− xl+1‖2

A)

)
+‖x−xi+d‖2 , (2.52)

assuming

‖x− xi‖2 � ‖x− xi+d‖2 and ‖x− xi+d‖2
A � ‖x− xi+2d‖2

A (2.53)

and using νi,d as the estimate for ‖x− xi‖A

‖x− xi‖2 ≈
i+d−1∑
l=i

‖pl‖2

‖pl‖2
A

(
γl‖rl‖2 + 2

i+2d−1∑
k=l+1

γk‖rk‖2

)
. (2.54)

This lower bound for ‖x− xi‖2 requires 2d additional iterations.
In practical computations CG is used with preconditioning (Precondi-

tioned Conjugate Gradient Method - PCG). Because here no preconditioning
is needed, we refer in that respect to [44] where the bounds for the A-norm
of the error in PCG are described and studied.

Relation (2.41) can be generalized also for the approximation of the bi-
linear form (c, A−1b) in nonsymmetric case, see [45]. For the BiConjugate
Gradient Method the estimate has the form

ξBi ≡
i−1∑
l=0

γl (rl, sl) ,

where rl, sl stand for the primal, resp. dual residual (see [45] for details).

2.4 Heuristic for the adaptive estimate

In Section 2.3.1 we described the reliable and numerically stable lower bound
νi,d for ‖x− xi‖2

A with the inaccuracy equal to the value of ‖x− xi+d‖2
A. As-

suming the sufficient decrease of the A-norm of the error within d iterations
i + 1, . . . , i + d given by the condition (2.48), νi,d gives the tight estimate
of the actual error ‖x − xi‖2

A. If the CG method nearly stagnates and the
decrease within the steps i+ 1, . . . , i+ d is small,

‖x− xi‖2
A ≈ ‖x− xi+d‖2

A ,
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then νi,d may represent a significant underestimate of ‖x − xi‖2
A. In this

section we present the heuristic proposed in [33] that changes the value of d
adaptively in order to satisfy the condition (2.48) and thus provide a suitable
error estimate.

The algorithm of the CG method including the evaluation of the estimate
νi,d and the heuristic for the adaptive choice of d is following:

Given d, x0, r0 = b− Ax0, p0 = r0

for ` = 1, 2, . . . do

{CG}
γ`−1 = (r`−1, r`−1)/(p`−1, Ap`−1)
x` = x`−1 + γ`−1 p`−1

r` = r`−1 − γ`−1Ap`−1

δ` = (r`, r`)/(r`−1, r`−1)
p` = r` + δ` p`−1

{Evaluation of νi,d for i = `− d (starting from ` = d+ 1)}

νi,d =
i+d−1∑
m=i

γm‖rm‖2

{Heuristic for the adaptive choice of d (starting from ` = d+ 1)}
if γi+d‖ri+d‖2 > σ νi,d then
d := d+ 1

else
while (d > 1 and γi+d‖ri+d‖2 ≤ σ νi,d) do
d := d− 1

end

We start the exposition of the heuristic with a simple remark. Figure 2.2
shows the typical behaviour of the lower bound νi,d with the fixed value d = 5
in the case of near stagnation. We see that the stages where the decrease of
the A-norm of the error is slow always end with the increase of the lower
bound when the character of the CG convergence changes. The algorithm of
the heuristic is derived from the following workflow:
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Figure 2.2: Behaviour of the lower bound in the case of near stagnation; [33,
matrix maticestred(50,2,2)]

1) Given d, we test whether the estimate grows:

if γi+d‖ri+d‖2 < σ νi,d then
d is too small and has to be increased, we follow to 2)

else
we follow to 3) and ask whether a smaller value of d would be suffi-
cient (in order to prevent additional iterations which are not needed)

Here σ stands for the safety parameter, its choice will be discussed later.

2) We increase d := d+1. In order to test, whether this increase is sufficient
(whether the condition

‖x− xi+d‖2
A � ‖x− xi‖2

A .

is fulfilled) we use the heuristic arguments. We replace the unknown
values ‖x−xi+d‖2

A, ‖x−xi‖2
A by the estimates νi+d,1 = γi+d‖ri+d‖2, resp.

νi,d and demand
γi+d‖ri+d‖2 < σ νi,d . (2.55)
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if (2.55) is satisfied then
we proceed out

else
we go back to 2) and further increase d

3) We ask whether d could be decreased. We test (in the same way as in 2))
whether

γi+d−1‖ri+d−1‖2 < σ νi,d−1 , (2.56)

if (2.56) is satisfied then
we decrease d := d− 1 and go back to 3)

else
we stay with the given value of d and proceed out

The heuristic can be interpreted as the searching for the minimal value of d
satisfying

γi+d‖ri+d‖2 < σ νi,d ,

where the safety parameter σ depends on the solved problem. The choice
of σ was studied and numerically tested in [33]. In Section 2.6 we present
additional numerical experiments and the newly proposed choice of σ for
the matrices arising from the discretization of second-order elliptic PDEs.

In the steps 2), 3) we replace ‖x−xi+d‖2
A by the simplest estimate νi+d,1.

In Figure 2.2 we see that even the smallest value of d is sufficient for getting
the tight estimate when the A-norm of the error is decreasing. We have
numerically tested the estimates νi+d,m for m > 1 with nearly the same
results. Therefore we use the simplest choice m = 1.

2.5 Stopping criteria

We start this section with the comment on the choice of the initial vector.
Then we present the commonly used stopping criteria for the CG method.
The appropriate one has to be always set according to the solved problem.
In this section we follow [44, Sections 2 and 3.2]

The proper choice of the initial vector can considerably fasten the con-
vergence of the CG method. However, the initial vector x0 should be chosen
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such that no significant information unrelated with the solution is introduced
into the problem. For an unsuitable choice x0 it may happen that

‖x− x0‖A � ‖x‖A .

In order to prevent this risk, we can scale the initial vector (i.e. change its
size but not the direction) such that

‖x− αx0‖A ≤ ‖x‖A (2.57)

holds. It can be easily shown that for the choice

α ≡ (b, x0)

(x0, Ax0)
,

the error ‖x − αx0‖A is minimal. If we have no relevant information from
the problem about the choice of x0, we use the zero initial vector x0 = 0.
For such choice r0 = b.

The relative A-norm of the error

‖x− xk‖A
‖x‖A

(2.58)

is the natural measure of the CG convergence in many cases (e.g. solving
PDEs) and can be easily estimated (following [44]). Using the relation

‖x‖A = ‖x− x0‖A + (b, x0) + (r0, x0) ,

the relations derived in Section 2.3.1 (d ∈ N)

‖x− x0‖2
A =

k+d−1∑
i=0

γi‖ri‖2 + ‖x− xk+d‖2
A ,

‖x− xk‖2
A =

k+d−1∑
i=k

γi‖ri‖2 + ‖x− xk+d‖2
A ,

and assuming ‖x− x0‖A ≤ ‖x‖A, the estimate

ρ2
k,d ≡

‖x− xk‖2
A − ‖x− xk+d‖2

A

‖x‖2
A − ‖x− xk+d‖2

A

≤ ‖x− xk‖
2
A

‖x‖2
A
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gives lower bound of the relative A-norm of the error. It can be easily com-
puted

ρ2
k,d ≡

k+d−1∑
i=k

γi‖ri‖2

k+d−1∑
i=0

γi‖ri‖2 + (b, x0) + (r0, x0)

=
νk,d

ν0,k+d + (b, x0) + (r0, x0)
.

and, assuming (2.48), this bound is close to ‖x− xk‖A/‖x‖A. For the adap-
tive choice of d the heuristic proposed in the previous section can be used.

Another measure of the CG convergence can be the ratio of the actual
and the initial A-norm of the error

‖x− xk‖A
‖x− x0‖A

. (2.59)

This value can be bounded (in the same way as the relative A-norm of the
error) using the estimates νk,d

‖x− xk‖A
‖x− x0‖A

≥

k+d−1∑
i=k

γi‖ri‖2

k+d−1∑
i=0

γi‖ri‖2

=
νk,d
ν0,k+d

.

Assuming (2.48), this estimate gives suitable results. The heuristic for the
choice of d can be applied as above.

The normwise backward error (see, e.g., [31]), measures the smallest rel-
ative perturbations β(xk) = ‖∆A‖/‖A‖ = ‖∆b‖/‖b‖ such that

(A+ ∆A)xk = b+ ∆b

holds. This value can be computed (see [42]) as

β(xk) =
‖rk‖

‖A‖‖xk‖+ ‖b‖
.

The spectral norm ‖A‖ can be estimated using the largest eigenvalue of Tk
defined in Section 2.2.3.

38



The evaluation of convergence is often based on the relative residual
norm

‖rk‖
‖r0‖

. (2.60)

The relative residual norm strongly depends on the initial approximation
x0. For x0 = 0, (2.60) measures the relative norm ‖∆b‖/‖b‖ of the smallest
perturbation ∆b in the right-hand side b (the matrix A is considered unper-
turbed), such that xk solves the perturbed system Axk = b + ∆b exactly.
For x0 6= 0, (2.60) can give a misleading information about the convergence,
see [32].

2.6 Numerical experiments

In Section 2.6.1 we demonstrate and explain the different distribution of the
discretization and the algebraic error in the FEM discretization. We will see
that the local behaviour of the discretization error differs, in general, from
the local behaviour of the algebraic error. Moreover, the local behaviour
of the total error can be determined by its algebraic part despite the fact,
that energy norm of the algebraic error is significantly smaller than the
energy norm of the discretization error. Then in Section 2.6.2 we focus on
the local behaviour of the algebraic error. We will see that the algebraic
error oscillates with the increasing frequencies with the increasing number
of the CG iteration steps. In Section 2.6.3 we test the heuristic proposed in
Section 2.4.

2.6.1 Distribution of error

In this section we focus on the local behaviour of the total error, the dis-
cretization error and the algebraic error. We demonstrate the influence of
the algebraic error on the behaviour of the total error, further elaborating
on [25] and [26, Section 5.1].

Problem 1 (Polynomial problem, [10, Example 3]).

We consider the problem

−∆u = f in Ω ≡ [0, 1]2 ,

u = 0 on ∂Ω .
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with right-hand side

f = −2 (x2 + y2 − x− y) .

The solution
u(x, y) = x (x− 1) y (y − 1)

is shown in the upper left part of Figure 2.3.

Figure 2.3: The exact solution u (upper left), the discretization error u− uh
(upper right), the algebraic error uh − u

(k)
h (lower left) and the total error

u− u(k)
h (lower right) in Problem 1.

We discretize the problem using the P 1-conforming FEM discretization
on the regular triangular mesh with 30 inner nodes in each direction. The
stiffness matrix A has the form

A = tridiag(−I, T,−I) ∈ R900×900 , T = tridiag(−1, 4,−1) ∈ R30×30 .
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The right-hand side b is assembled using a two-dimensional Gaussian quadra-
ture formula that is exact for polynomials of degree at most two. The exact
solution x of the system Ax = b is approximated (to a sufficient accuracy)
using the MATLAB backslash operator. The (closely approximated) squared
energy norm of the discretization error is

‖u− uh‖2
a = 1.5767e-2 .

The shape of the discretization error is very similar to the shape of the exact
solution, see the upper right part of Figure 2.3.

We apply the CG method with the zero initial vector x0 = 0. We consider
the approximation xk to the exact solution x such that the squared energy
norm of the algebraic error is

‖x− xk‖2
A = ‖uh − u(k)

h ‖
2
a = 1.6644e-5 .

Here u
(k)
h denotes the approximation to the Galerkin solution uh given by

the approximation xk, see (2.9).
In Figure 2.3 we can see that the oscillations in the algebraic error

uh − u(k)
h (lower left part) are up to three times greater then the maximum

of the discretization error and the local distribution of the algebraic error
differs from the local distribution of the discretization error. The behaviour
of the resulting total error u− u(k)

h , showed in the lower right part of Fig-
ure 2.3, is apparently dominated by the algebraic error despite the fact that
the energy norm of the algebraic error is significantly lower than the energy
norm of the discretization error.

Problem 1 - 1D For simplicity we now consider the one-dimensional
boundary value problem

− u′′(x) = f , x ∈ [0, 1] (2.61)

u(0) = u(1) = 0

with the right-hand side f chosen differently in the following examples.
We discretize the problem using the piecewise linear basis functions on

uniform partition with the step h = 1/(m + 1) , where m stands for the
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number of the inner nodes. The stiffness matrix A has the form

A =


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 .

In our numerical experiments we use m = 49 (Example 1) and m = 19
(Examples 2 and 3) (i.e. 50, respectively 20 elements of the partition). The
exact solution x of the stiffness system Ax = b is approximated (to a suffi-
cient accuracy) using the MATLAB backslash operator. We apply the CG
method with x0 = 0 and stop the iteration when the normwise backward
error β(xk) (see Section 2.5) drops below the prescribed tolerance TOL. The
stopping criterion for the CG method is then

β(xk) =
‖b− Axk‖
‖b‖+ ‖A‖‖xk‖

< TOL .

In our numerical experiments we evaluate also the componentwise relative
backward error (see, e.g., [22])

ω(xk) ≡ min{ω | (A+ ∆A)xk = (b+ ∆b);

|∆A| ≤ ω|A|, |∆b| ≤ ω|b|} ,

where |A| stands for the matrix and |b| for the vector of the absolute values
of the the entries of the matrix A and vector b respectively. Here ω(xk) is
equal to the absolute value of the smallest relative perturbation in the non-
zero entries of A and b such that xk solves the perturbed system exactly.
The componentwise relative backward error ω(xk) can be computed using
the formula [22, page 130]

ω(xk) = max
i

|ri|
(|A||xk|+ |b|)i

.

We recall the relation (see Theorem 2.2)

‖u− u(k)
h ‖

2
a = ‖u− uh‖2

a + ‖uh − u(k)
h ‖

2
a

= ‖u− uh‖2
a + ‖x− xk‖2

A
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that holds in finite precision computations up to a small inaccuracy (caused
by the computational errors in evaluating the norms and determining the
solution) proportional to machine precision. The energy norm ‖ · ‖a stands
in the one-dimensional problem (2.61) for the L2-norm of the first derivative

‖w‖a = ‖w′‖(0,1) .

Example 1: We consider the problem (2.61) with the constant right-hand
side

f = 2

with the exact solution given by

u(x) = −x (x− 1) (2.62)

and the squared energy norm of the discretization error (for m = 49)

‖u− uh‖2
a = 1.3333e-4 .

Figure 2.4 shows the solution u given by (2.62) and the corresponding
discretization error u−uh. The values of u−uh at the nodes of the partition
are on the machine precision level.

TOL k β(xk) ω(xk) ‖x− xk‖2
A ‖u− u(k)

h ‖2
a

5e-4 23 4.2448e-4 3.2180e-5 1.6000e-4 2.9333e-4

3e-4 24 1.8973e-4 8.0064e-6 1.6000e-5 1.4933e-4

1e-4 25 ≈ 1e-17 ≈ 1e-17 ≈ 1e-30 1.3333e-4

Table 2.1: The number of CG iterations k, the normwise backward error
β(xk), the componentwise relative backward error ω(xk), the energy norm of
the algebraic error and the energy norm of the total error in Example 1 for
the different values of TOL.

In the Figures 2.5–2.7 we plot the algebraic error uh− u(k)
h and the total

error u− u(k)
h for the values of TOL = 5e-4, 3e-4 and 1e-4 respectively. See

Table 2.1 for the number of performed CG iteration k and the values of
errors for the particular choices of TOL.
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Figure 2.4: The exact solution u and the discretization error u − uh in Ex-
ample 1 for m = 49.

Figure 2.5: The algebraic error and the total error in Example 1 for the
choice TOL = 5e-4. β(xk)/‖u− uh‖2

a = 3.1837.
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Figure 2.6: The algebraic error and the total error in Example 1 for the
choice TOL = 3e-4. β(xk)/‖u− uh‖2

a = 1.4230.

Figure 2.7: The algebraic error and the total error in Example 1 for the
choice TOL = 1e-4. β(xk)/‖u− uh‖2

a ≈ 1e− 13.
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Example 2: In the second example we consider the right-hand side f
of (2.61) equal to the polynomial of the second order

f = −12x2 + 12x+ 2

with the exact solution given by

u(x) = (x− 2) (x− 1)x (x+ 1) (2.63)

and the squared energy norm of the discretization error (for m = 19)

‖u− uh‖2
a = 3.5000e-3 .

Figure 2.8 shows the solution u given by (2.63) and the corresponding dis-
cretization error u − uh. The values of u − uh at the nodes of the partition
are on the machine precision level.

Figure 2.8: The exact solution u and the discretization error u − uh in Ex-
ample 2 for m = 19.

In the Figures 2.9–2.11 we plot the algebraic error uh − u(k)
h and the total

error u − u
(k)
h for the values of TOL = 3e-3, 1e-3 and 0.5e-3 respectively.

See Table 2.2 for the number of performed CG iteration k and the values of
errors for the particular choices of TOL.
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TOL k β(xk) ω(xk) ‖x− xk‖2
A ‖u− u(k)

h ‖2
a

3e-3 8 2.0031e-3 1.9944e-4 2.6905e-3 6.1905e-3

1e-3 9 0.8592e-3 5.2429e-5 2.5563e-4 3.7556e-3

0.5e-3 10 ≈ 1e-17 ≈ 1e-18 ≈ 1e-30 3.5000e-3

Table 2.2: The number of CG iterations k, the normwise backward error
β(xk), the componentwise relative backward error ω(xk), the energy norm of
the algebraic error and the energy norm of the total error in Example 2 for
the different values of TOL.

Figure 2.9: The algebraic error and the total error in Example 2 for the
choice TOL = 3e-3. β(xk)/‖u− uh‖2

a = 0.5723.
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Figure 2.10: The algebraic error and the total error in Example 2 for the
choice TOL = 1e-3. β(xk)/‖u− uh‖2

a = 0.2455.

Figure 2.11: The algebraic error and the total error in Example 2 for the
choice TOL = 0.5e-3. β(xk)/‖u− uh‖2

a ≈ 1e− 14.
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Example 3, [13, p. 120]: We consider the problem 2.61 with the right-hand
side in (2.61)

f = 10
(
1− 10(x− 0.5)2

)
e−5(x−0.5)2 ,

with the exact solution given by

u(x) = e−5(x−0.5)2 − e−5/4 (2.64)

and the squared energy norm of the discretization error (for m = 19)

‖u− uh‖2
a = 6.8077e-3 .

Figure 2.12 shows the solution u given by (2.64) and the corresponding
discretization error u−uh. The values of u−uh at the nodes of the partition
are on the machine precision level.

Figure 2.12: The exact solution u and the discretization error u − uh in
Example 3 for m = 19.

In the Figures 2.13–2.15 we plot the algebraic error uh − u(k)
h and the total

error u− u(k)
h for the values of TOL = 5e-3, 3e-3 and 1e-3 respectively. See

Table 2.3 for the number of performed CG iteration n and the values of
errors for the particular choices of TOL.
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TOL k β(xk) ω(xk) ‖x− xk‖2
A ‖u− u(k)

h ‖2
a

5e-3 8 4.1161e-3 2.5247e-4 1.4504e-2 2.1312e-2

3e-3 9 1.6198e-3 7.2781e-5 1.2381e-3 8.0459e-3

1e-3 10 ≈ 1e-17 ≈ 1e-17 ≈ 1e-30 6.8077e-3

Table 2.3: The number of CG iterations k, the normwise backward error
β(xk), the componentwise relative backward error ω(xk), the energy norm of
the algebraic error and the energy norm of the total error in Example 3 for
the different values of TOL.

Figure 2.13: The algebraic error and the total error in Example 3 for the
choice TOL = 5e-3. β(xk)/‖u− uh‖2

a = 0.6046.
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Figure 2.14: The algebraic error and the total error in Example 3 for the
choice TOL = 3e-3. β(xk)/‖u− uh‖2

a = 0.2379.

Figure 2.15: The algebraic error and the total error in Example 3 for the
choice TOL = 1e-3. β(xk)/‖u− uh‖2

a ≈ 1e− 14.
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In Figure 2.16 we compare the relative discretization error (u− uh)/u
with the relative total error (u− u(k)

h )/u in Example 2 for the choice
TOL = 3e-3. The relative errors tend to 1 on the boundaries of the interval
[0, 1].

Figure 2.16: The relative discretization error (u− uh)/u and the relative total

error (u− u(k)
h )/u in Example 2 for the choice TOL = 3e-3.

Figure 2.17 shows the contributions to the energy norm of the discretization
error and the total error

‖u− uh‖2
a,[i h,(i+1)h]

‖u− u(k)
h ‖

2
a,[i h,(i+1)h] i = 0, 1, . . . , 19

on the elements of the partition [i h, (i+1)h] = [i/19, (i+1)/19] in Example 2
for the choice TOL = 3e-3. In this case, the energy norm of the algebraic
error is about 1.3 times smaller than the energy norm of the discretization
error but it is concentrated mostly around the center of interval [0, 1], see
Figure 2.9. We recall that the energy norm of the algebraic error is equal to
the L2-norm of the gradient of the algebraic error.
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Figure 2.17: The contributions to the energy norm of the discretization error
‖u−uh‖2

a and to the energy norm of the total error ‖u−u(k)
h ‖2

a in Example 2
for the choice TOL = 3e-3.

These simple examples demonstrate:

1. the local distribution of the algebraic error can significantly differ from
the local distribution of the discretization error;

2. the energy norm of the algebraic error gives only the global information
about the behaviour of the algebraic error.

In the FEM discretization we use the basis function of local support and
get close to the uniform approximation error per element. This locality is one
of the main principles of the finite element method. Since the individual basis
functions approximate the solution u only locally, the problem of restoring
the global approximation is transferred to solving the linear algebraic system,
where, as the consequence of the local supports, the stiffness matrix A is
large and sparse. The fundamental fact pointed out in [26, Section 5.1] is
that a small globally measured algebraic error can exhibit relatively large local
components.

In P 1-FEM discretization either uh and u
(k)
h are piecewise linear func-

tions and the algebraic error uh − u(k)
h is also piecewise linear function with
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the elementwise constant derivatives. The discretization error is, however,
generally nonlinear. In Figure 2.3 the discretization error is displayed as the
elementwise linear function and this misled our intuition. Since the nonlin-
ear gradient ∇(u − uh) is on the individual elements relatively large, the
energy norm of the discretization ‖u − uh‖a = ‖∇(u − uh)‖ is (in this par-
ticular case) of the higher order than the energy norm of the algebraic error

‖uh − u(k)
h ‖a = ‖x− xk‖A. As the consequence, the values of the total error

are dominated by the values of the algebraic error, as shown in Figure 2.3.
(This phenomenon can be observed also in the one-dimensional examples.)
The behaviour of the algebraic error is further studied in the following sec-
tion.

2.6.2 Smoothness of algebraic error

In the previous section we showed that the local behaviour of the total error
may be dominated by the local behaviour of the algebraic error despite the
fact that the energy norm of the algebraic error is of the significantly smaller
than the energy norm of the discretization error. In this section we therefore
focus on the local behaviour of the algebraic error and its smoothness.

In the lower left part of Figure 2.3 one can notice the oscillations in the
algebraic error. In Figure 2.18 we show the algebraic errors corresponding to
different values of ‖x− xk‖A in Problem 1 discretized by the P 1-conforming
FEM discretization on the regular triangular mesh. Since the CG method
tends to approximate well the large eigenvalues of the matrix A (see, e.g. [28])
that corresponds to the low frequencies of the Laplace operator, the algebraic
error oscillates with increasing frequencies as the iteration step k increases.

Stationary iterative methods (see, e.g. [37, Chapter 4]) are known to
reduce the highly-oscillating parts of the error more effectively than the
parts of the error corresponding to low frequencies. This property is called
the smoothing property. Hence one may suggest to apply a few steps of a
stationary method after CG iterations in order to smooth out and further
reduce the algebraic error. Such idea is proposed, e.g., in [24, Section 7.13].

In the following experiment we therefore compare the reduction of the
error in 3 subsequent iterations of SOR method (see, e.g., [37]) with the
reduction in 3 additional CG iterations. The values of the energy norm of
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the errors are

k ‖x− xk‖2
A ‖x− xk+3‖2

A ‖x− xk+SOR(3)‖2
A

12 1.6467e-4 2.8326e-5 5.1591e-5

20 6.5016e-8 1.2616e-8 2.0570e-8

27 6.7929e-10 7.8455e-11 1.1534e-10
34 1.5434e-12 4.1064e-14 7.6223e-14

The comparison of the behaviour of the algebraic errors is given in fig-
ures 2.19–2.22. We can see that the SOR method smoothes out the high
frequencies but the moderate frequencies that determine the oscillating be-
haviour of the error stay (almost) unchanged. The additional CG steps re-
duce either energy norm of the error and the local algebraic errors more
effectively. With the increasing number of additional steps the difference is

Figure 2.18: Algebraic error u−u(k)
h for different values of the energy norm.
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even more apparent. This property is independent on the chosen station-
ary method. Jacobi and Gauss-Seidel methods (see [37]) provide even worse
results. However, the smoothing property has the application in numerical
solving of PDEs as a key feature of multigrid methods, see Chapter 4 of the
thesis.

We do not advocate, as pointed out in [25], the CG method for the prac-
tical solving of the Poisson problem on regular domains where CG cannot
compete with some other methods as the fast Poisson solvers.

Figure 2.19: Comparison of the algebraic error uh − u(k)+SOR(3)
h after 3 sub-

sequent steps of the SOR method and the algebraic error uh − u(k+3)
h after 3

additional steps of CG.
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Figure 2.20: Comparison of the algebraic error uh − u(k)+SOR(3)
h after 3 sub-

sequent steps of the SOR method and the algebraic error uh − u(k+3)
h after 3

additional steps of CG.

Figure 2.21: Comparison of the algebraic error uh − u(k)+SOR(3)
h after 3 sub-

sequent steps of the SOR method and the algebraic error uh − u(k+3)
h after 3

additional steps of CG.
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Figure 2.22: Comparison of the algebraic error uh − u(k)+SOR(3)
h after 3 sub-

sequent steps of the SOR method and the algebraic error uh − u(k+3)
h after 3

additional steps of CG.

2.6.3 The heuristic

In Section 2.4 we proposed the heuristic that changes adaptively the value of
the parameter d in order to satisfy the condition (2.48) and thus provide the
suitable estimate for the algebraic error ‖x−xi‖2

A. In this section we propose
the value of the safety parameter σ defined in (2.55) and test the adaptively
chosen value of d. We apply CG including the heuristic to systems arisen
from the discretization of the second-order elliptic problems

Problem 2 (Peak problem, [10, Example 1]).

We consider the problem

−∆u = f in Ω ,

u = gD on ∂Ω .

on the hexagon domain Ω
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with right-hand side f and Dirichlet boundary conditions gD imposed such
that

u(x, y) = (x+ 1)(x− 1)(y + 1)(y − 1) e−100(x2+y2)

is the solution.

Figure 2.23: The exact solution of Problem 2.

Problem 3 (L-shape problem, [2, Test Problem 1]).

We consider the L-shape domain Ω
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and the problem

−∆u = f in Ω ,

u = gD on ∂Ω .

with right-hand side f and Dirichlet boundary conditions gD imposed such
that the solution has in polar coordinates (r, θ) the form

u(r, θ) = r2/3 sin

(
2

3
θ

)
.

Figure 2.24: The exact solution of Problem 3.
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Problem 4 (Inhomogenous diffusion tensor, [23, Example 8.2]).

We consider the problem

−∇ · (S∇u) = 0 in Ω ,

u = gD on ∂Ω .

on square domain Ω ≡ [−1, 1]2 divided into four subdomains Ωi corre-
sponding to axis quadrants numbered counterclockwise, with S the piecewise
constant tensor equal to siI on Ωi (I stands for the identity matrix). The
Dirichlet boundary conditions gD are imposed such that the solution in each
subdomain Ωi has in polar coordinates (r, θ) the form

u(r, θ)|Ωi
= rα(ai sin(αθ) + bi cos(αθ)) .

The parameters are set

s1 = s3 = 5, s2 = s4 = 1
α = 0.53544095
a1 = 0.44721360 b1 = 1.00000000
a2 =−0.74535599 b2 = 2.33333333
a3 =−0.94411759 b3 = 0.55555556
a4 =−2.40170264 b4 =−0.48148148

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The condition (2.48) on the decrease of the A-norm of the error in d steps
is in [33] rewritten using a prescribed parameter G, 0 < G < 1 as

‖x− xi+d‖2
A

‖x− xi‖2
A

≤ G2 . (2.65)

The adaptively chosen value of parameter d given by the heuristic is com-
pared to the ideal value dideal defined as the minimal d satisfying (2.65).
When the value of d is smaller than dideal the condition (2.65) is not satis-
fied and the estimate νi,d underestimates the value ‖x− xi‖2

A. On the other
hand, a higher value of d (in comparison to dideal) increases the cost of com-
putation and give no significant improvement to the accuracy of the estimate
νi,d .
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Figure 2.25: The exact solution of Problem 4.

dim(A) ‖A‖ κ(A)

Problem 1, a) 7872 7.9119 3.0716e3

Problem 1, b) 22934 7.9753 1.4110e4

Problem 2, a) 3185 7.9204 1.2990e3

Problem 2, b) 7548 7.9690 2.9711e3

Problem 3, a) 1288 12.3800 3.9377e3

Problem 3, b) 3506 13.3258 1.2913e4

Problem 4, a) 2096 38.4189 3.7698e3

Problem 4, b) 4054 38.4619 1.1045e4

Table 2.4: dim(A), ‖A‖ and κ(A) for the test matrices

The safety parameter σ from (2.55) was in [33] proposed to be set

σ = G · κ(A)−1/4 ,

where κ(A) denotes the condition number of the matrix A. After further
numerical experiments we do not consider this choice generally recommend-
able. Moreover, the condition number κ(A) cannot be easily estimated.
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In this section we consider the system assembled in the discretization of
Problems 1–4. For each problem we consider two meshes that are obtained
after 5, resp. 6 iterations of the adaptively finite element method. The de-
tails of the adaptive mesh refinement and the method will be described in
Chapter 5. In Table 2.4 we show the size of the systems, the norm ‖A‖ and
the condition number κ(A) of the test matrices.

We propose the safety parameter σ to be set as

σ = G · ‖A‖−1/2 . (2.66)

In the Figures 2.26–2.33 we compare the ideal value dideal and the adaptively
chosen value of d for the choice G = 0.4 and the zero initial vector x0 = 0. In
the experiments we estimate the value of ‖A‖ using the MATLAB command
normest(A) suitable for sparse matrices.

Figure 2.26: Comparison of the adaptive and ideal value of d, Problem 1, a).
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Figure 2.27: Comparison of the adaptive and ideal value of d, Problem 1, b).

Figure 2.28: Comparison of the adaptive and ideal value of d, Problem 2, a).
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Figure 2.29: Comparison of the adaptive and ideal value of d, Problem 2, b).

Figure 2.30: Comparison of the adaptive and ideal value of d, Problem 3, a).
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Figure 2.31: Comparison of the adaptive and ideal value of d, Problem 3, b).

Figure 2.32: Comparison of the adaptive and ideal value of d, Problem 4, a).
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Figure 2.33: Comparison of the adaptive and ideal value of d, Problem 4, b).

For Problems 1–3 the adaptively chosen value of d is very close to the
ideal value dideal. For such d the lower bound νi,d gives the tight estimate
for ‖x− xi‖2

A with the innacuracy close to G2 ‖x− xi‖2
A . For Problem 4 the

adaptively chosen value of d is higher than dideal (see Figures 2.32, 2.33). This
means that the estimate νi,d is more accurate than we demanded in (2.65).
However, the evaluation of νi,d requires more CG iteration than needed.

The key element of the heuristic is the choice of the safety parameter σ.
We do not claim that there exists a value suitable in general for any system.
This subject deserves further study and additional experiments. For the
systems arisen from the discretization of the model problem (i.e. second
order self-adjoint elliptic problem) we propose (based on the experiments
above) the value σ = G · ‖A‖−1/2.

67



Chapter 3

Including algebraic error into
the a posteriori error estimates

The energy norm of the total error depends, as shown in Theorem 2.2,
on the energy norm of the error of the Galerkin solution and on the error
in the solution of the system measured by the algebraic energy norm. A
moderately sized system can be solved by a direct method. For large systems
iterative methods represents the only possible alternative. These methods —
in contrast to direct methods — produce an approximation of the solution
in the every iteration step and the considerable amount of computational
time (and work) can be saved by stopping the algebraic solver whenever the
algebraic error drops to the level at which it does not significantly effect the
total error. This approach requires an a posteriori error estimate that takes
into account an inexact solving of the linear algebraic system. The analysis
of such estimates advanced recently.

In Section 3.1 we present following [23] the estimate for the total error for
the cell-centered finite volume discretization. The estimate consists of three
parts – the algebraic, the nonconformity and the oscillation one. Then we
present the stopping criteria for the algebraic solver proposed in [23] relating
the nonconformity and the algebraic parts of the error.

In Section 3.2 we present the bounds for the total error for the piecewise
linear FEM discretization presented in [4]. Based on these bounds we propose
and test in Section 3.2.1 an estimate for the total error.

Consider the model problem (1.1)

−∇ · (S∇u) = f in Ω (3.1)
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with the pure Dirichlet boundary condition (1.2)

u = gD in ∂ΩD = ∂Ω . (3.2)

Let Th be the partition of polygonal/polyhedral domain Ω into closed sim-
plices i.e. triangles (d = 2) or tetrahedra (d = 3) such that Ω̄ =

⋃
K∈Th

K.
We assume that if K,L ∈ Th, K 6= L, then K ∩ L is either an empty set, a
common face, edge or vertex of K and L. We denote the space of elementwise
polynomial functions

Pm(Th) ≡ {w;w|K ∈ Pm(K), ∀K ∈ Th} .

In this chapter we assume:

A1’: Ω ∈ Rd is a polygonal (d = 2) or polyhedral (d = 3) domain,

A2: S is a symmetric, bounded and uniformly positive diffusion tensor, i.e.

S = (sij)
d
i,j=1, sij ∈ L∞(Ω), sij = sji, i, j = 1, . . . , d,

‖S‖ ≡ sup
ξ∈Ω

sup
06=z∈Rd

‖S(ξ)z‖
‖z‖

<∞

and there exists constant cS > 0 such that

cS‖z‖2 ≤ zTS(ξ)z, ∀ξ ∈ Ω, ∀z ∈ Rd.

A3: f ∈ L2(Ω) is a source term;

A4: gD ∈ L2(∂ΩD) prescribes the Dirichlet boundary condition. We assume
that there exists uD ∈ H1(Ω) such that

TuD = gD ;

A6: f ∈ P l(Th) is a piecewise l-degree polynomial function1.

We recall that the assumptions A1’ – A4 ensure the existence and the
uniqueness of the weak formulation

Find u ∈ H1
D such that

a(u, v) = `(v) = (f, v)Ω ∀v ∈ H1
0 (3.3)

see Section 1.3.
1this assumption is usually satisfied in practice. Otherwise, an interpolation can be

used.
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3.1 A posteriori error estimates for the finite

volume discretization

In [23] the cell-centered finite volume discretization of (3.3) is considered
and a posteriori error estimate that takes into account an inexact solution
of linear algebraic system is derived. It is shown that algebraic error can be
bounded and the stopping criterion for iterative algebraic solvers is proposed.
We briefly present the results from [23].

Let the space of piecewise constant function

Sh = P 0(Th) ,

and the appropriate test and the solution spaces Sh0 ⊂ Sh , resp. ShD ⊂ Sh
be considered. Let the diffusive fluxes through the sides ∂K of the elements
K depend linearly on the values vh|K , vh ∈ Sh. Then each row of the arisen
linear algebraic system Ax = b corresponds to a single element K ∈ Th
and it represents the principle of mass conservation (the amount of diffusive
fluxes through the sides of K is equal to the amount of sources in K).

Vector x represents the cell-values of the finite volume solution
uh ∈ ShD see, e.g., [15]. Since uh is piecewise constant, it is not appropri-
ate for an energy error estimates as ∇uh = 0. Hence the postprocessed ap-
proximation ũh ∈ P 2(Th) is constructed using the diffusive fluxes prescribed
by the values of uh, see [23] for details. Such postprocessed approximation
exists but is not conforming, i.e. ũh /∈ H1(Ω). So the Oswald interpolation
operator IOS (see [23] and the references given there),

IOS : P 2(Th)→ P 2(Th) ∩H1(Ω)

is used. Then we can state the following a posteriori error estimate ([23,
Theorem 5.2]).

Theorem 3.1 (A posteriori error estimate including the algebraic error).
Let assumptions A1’, A2 – A4, A6 be satisfied. Let u be the weak solution
of (3.3). Let xk be the approximation to the exact solution x of the system

Ax = b, let u
(k)
h be the approximation to the finite volume solution uh given

by xk and let ũ
(k)
h be the postprocessed approximation prescribed by the values

of u
(k)
h . Then

‖u− ũ(k)
h ‖a ≤ ηNC + ηO + ηAE , (3.4)
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where the global nonconformity and oscillation estimators are given by the
local estimators

ηNC :=

{∑
K∈Th

η2
NC,K

} 1
2

and ηO :=

{∑
K∈Th

η2
O,K

} 1
2

,

respectively, and ηAE stands for the algebraic error estimator.

The algebraic error estimator ηAE estimates the algebraic error due to
inexact solving of the system Ax = b and can be bounded using estimates
for ‖x− xk‖A.

The local nonconformity estimator ηNC,K measures the distance of ũ
(k)
h

from H1(Ω) and it is given by

ηNC,K ≡ ‖ũ(k)
h − IOS(ũ

(k)
h )‖a,K ,

where ‖ · ‖a,K stands for the energy norm over element K.
The local oscillation estimator ηO,K estimates the interpolation error in

the right-hand side. Whenever f ∈ H1(Ω), ηO is of the higher order (due to
Poincaré inequality, see [23, relation (5.1)]) and its value is significant only
on coarse meshes or for highly varying diffusion tensor S.

The proposed stopping criterion relates the algebraic error estimator and
the nonconformity one via

ηAE ≤ ρ ηNC , 0 < ρ ≤ 1 , (3.5)

where ρ is typically close to 1. The stopping criterion (3.5) gives the bound

‖u− ũ(k)
h ‖a ≤ (1 + ρ) ηNC + ηO .

Supposing that ηAE can be constructed using local contributions ηAE,K as

ηAE :=

{∑
K∈Th

η2
AE,K

} 1
2

,

we can consider a local stopping criterion

ηAE,K ≤ ρKηNC,K , 0 < ρK ≤ 1 , ∀K ∈ Th . (3.6)

With the stopping criteria (3.5) and (3.6), the global and local efficiency of
the estimates can be proved (see [23, Section 6.2]).
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As the matrix A is SPD, CG can be applied for solving the system
Ax = b. In the numerical examples in [23] the estimate νi,d described in
Section 2.3.1 gives tight lower bound for ηAE. The estimator ηNC depends
also on the approximate solution xk but it is too expensive to be evaluated
in every CG iteration. Having a cheap and reliable estimate for ηAE, ηNC
can be evaluated only when νi,d drops to a certain level.

3.2 A posteriori error estimates for FEM dis-

cretization

In [4] the convergence and the complexity of an adaptive FEM algorithm
are studied. As the algebraic solver authors propose a multigrid method
assuming the existence of the upper bound for the error suppression operator
(see Section 4.3). The most interesting (related to the content of the thesis)
are the lemmas in [4, Section 3].

Consider the space of piecewise linear continuous functions

Sh ≡ P 1(Th) ∩ C(Ω)

and the appropriate solution space

ShD ≡
{
v ∈ Sh; v = gD on ∂Ω

}
.

Denote by Eh the set of the edges of the triangulation and define for E ∈ Eh
and vh ∈ Sh

JE(vh) ≡ |E|1/2
[
∂vh
∂nE

]
E

, Jh(vh) ≡

(∑
E∈Eh

J2
E(vh)

)1/2

the edge residuals. Here |E| stands for the Lebesgue measure of E, [·]E for
the jump of an elementwise constant function over E and ∂vh/∂nE for the
derivative of vh in the direction normal to E.

Denote by Nh the set of the vertices of the triangulation Th, by wZ the
set of elements joining a vertex Z ∈ Nh and for ω ⊂ Ω the mean-value
operator πw

πw(f) ≡ 1

|w|

∫
w

f dx .
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We define the oscillation terms

oscZ ≡ |wZ |1/2‖f − πwZ
(f)‖0,wZ

, Z ∈ Nh,

osch ≡

(∑
Z∈Nh

osc2
Z

)1/2

.

Then we can state the theorem giving the upper bound for the error.

Theorem 3.2 ([4, Lemma 3.1], upper bound). There exists a constant
C1 > 0 depending only on the maximum angle of the elements of the tri-
angulation Th such that for the solution u of (3.3), the Galerkin solution uh
and an arbitrary wh ∈ ShD

‖u− wh‖2
a ≤ C1

(
J2
h(wh) + osc2

h

)
+ 2‖uh − wh‖2

a (3.7)

Consider the sequence Thk
, k = 0, . . . , K of locally refined meshes. With

assumptions on the shape regularity and the number of refined elements,
see [4, Assumption 2.1], it can be proved (see [4, Lemma 3.1]) that the
constant C1 depends only on the maximum angle of the initial mesh Th0 .

Theorem 3.3 ([4, Lemma 3.2], lower bound). There exists a constant C2 > 0
depending only on the minimum angle of the elements of the triangulation
Th such that for all wh ∈ ShD

J2
h(wh) ≤ C2(‖u− wh‖2

a + osc2
h) . (3.8)

Similarly as in Theorem 3.2 for a sequence of refined meshes, C2 depends
only on the minimum angle of the initial mesh elements, see [4, Lemma 3.2].

3.2.1 Numerical experiments

Theorems 3.2 and 3.3 give the bounds for the total error. In this section we
propose an estimate for the total error and test the bounds and the estimate.
In the experiments we consider Problems 1–3 described on pages 39, 58, 59.

We discretize the problem using the P 1-conforming FEM discretization
(for details see Section 1.4.1) on the given mesh. We approximate the exact
solution x of the Galerkin system Ax = b using the MATLAB backslash
operator and we apply the CG method with the zero initial approximation
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x0 = 0. We denote by u
(k)
h the approximation to the Galerkin solution uh

given by the CG approximation xk.
We denote the bounds

η ≡ C1

(
J2
h(u

(k)
h ) + osc2

h

)
+ 2 ‖x− xk‖2

A , (3.9)

η ≡ 1

C2

J2
h(u

(k)
h )− osc2

h . (3.10)

In the experiments we set the constants C1, C2 such that

C1 =
‖u− uh‖2

a

J2
h(uh) + osc2

h

, (3.11)

C2 =
J2
h(uh)

‖u− uh‖2
a + osc2

h

. (3.12)

For xk such that
‖x− xk‖2

A � ‖u− uh‖2
a

the total error ‖u− u(k)
h ‖2

a satisfies

‖u− u(k)
h ‖

2
a ≈ ‖x− xk‖2

A ,

see Theorem 2.2, and thus we consider the estimate for the total error

η
(k)
h ≡ C1

(
J2
h(u

(k)
h ) + osc2

h

)
+ ‖x− xk‖2

A . (3.13)

We evaluate the term J2
h(·) following [16]. In the evaluation of osc2

h

we approximate the right-hand side f using a two-dimensional Gaussian
quadrature formula that is exact for polynomials of degree at most two. In
the figures we show the total, the discretization and the algebraic errors
‖u− u(k)

h ‖2
a, ‖u− uh‖2

a, ‖x− xk‖2
A , the bounds η, η and the estimate η

(k)
h .

Example 1: We consider Problem 1, see page 39, discretized on the uni-
form triangular mesh with 16384 right-angled isosceles elements, i.e. the
minimal and the maximal angle of the elements of the triangulations are
αmin = 45◦, αmax = 90◦. In this example

‖u− uh‖2
a = 4.1803e-6 osc2

h = 1.9647e-8

C1 = 0.0397 C2 = 25.2866

1/C2 = 0.0395
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In Figure 3.1 we show the errors, the bounds and the estimate η
(k)
h in Ex-

ample 1. The solid line and the bold solid line are almost identical, i.e. η
(k)
h

gives a very tight estimate for the total error. When the energy norm of the
algebraic error drops below the value of the discretization error (k > 75), the

values of the bounds, the estimate η
(k)
h and the values of the discretization

and the total error ‖u− uh‖2
a, ‖u− u

(k)
h ‖2

a are almost equal.

Figure 3.1: The errors, bounds and the estimate η
(k)
h in the discretization of

Problem 1 on the uniform mesh, Example 1.

Example 2: In the second example we consider Problem 1 discretized on
the mesh shown in Figure 3.2 that consists of 15276 elements. The mesh
was obtained by the local refinement from the initial mesh consisting of the
right-angled isosceles elements. The values of the discretization error, the
oscillation term and constants C1, C2 are

‖u− uh‖2
a = 5.1071e-6 osc2

h = 3.7856e-8

C1 = 0.0396 C2 = 25.4615

1/C2 = 0.0393
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Figure 3.2: The locally refined mesh in Example 2.

Figure 3.3: The errors, bounds and the estimate η
(k)
h in the discretization of

Problem 1 on the locally refined mesh, Example 2.
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Example 3: We consider Problem 2 described on page 58 discretized on
the uniform triangular mesh with 6144 equilateral elements. Due to large
values of the right-hand side f around the point [0; 0] the oscillation term
osc2

h is large (in comparison to discretization error ‖u−uh‖2
a). The values of

the discretization error, the oscillation term and the constants C1, C2 are

‖u− uh‖2
a = 0.0766 osc2

h = 0.2854

C1 = 0.0333 C2 = 5.5567

1/C2 = 0.18

Figure 3.4: The errors, bounds and the estimate η
(k)
h in the discretization of

Problem 2 on the uniform mesh, Example 3.

Example 4: We consider Problem 2 discretized on the locally refined mesh
that consists of 7514 elements, see Figure 3.5. The mesh is refined mostly
around [0; 0] where the exact solution has a steep gradient. Note, that osc2

h

is significantly smaller than the oscillation term in previous Example 3.
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Figure 3.5: The locally refined mesh in Example 4.

‖u− uh‖2
a = 0.0062 osc2

h = 0.0042

C1 = 0.0325 C2 = 17.8763

1/C2 = 0.0559

In Figure 3.6 we see that η
(k)
h gives a tight estimate for the total error. Due

to the large differences in the element sizes the CG method converges more
slowly than in Example 3.

Example 5: We consider Problem 3, see page 59, discretized on the uni-
form triangular mesh with 12288 right-angled isosceles elements, αmin = 45◦,
αmax = 90◦. Since the right-hand side f is constant the oscillation term osc2

h

is equal to zero and C1 = 1/C2.

‖u− uh‖2
a = 0.0014 osc2

h = 0

C1 = 0.0464 C2 = 21.5426

1/C2 = 0.0464

In Figure 3.7 we see the similar behaviour of the bounds and the estimate
η

(k)
h as in Example 1.
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Figure 3.6: The errors, bounds and the estimate η
(k)
h in the discretization of

Problem 2 on the locally refined mesh, Example 4.

Example 6: In the last example we consider Problem 3 discretized on
the mesh shown in Figure 3.8 that consists of 19831 elements. The mesh
was obtained by the local refinement from the initial mesh consisting of the
right-angled isosceles elements with αmin = 45◦, αmax = 90◦.

‖u− uh‖2
a = 1.5661e-4 osc2

h = 0

C1 = 0.0404 C2 = 24.7376

1/C2 = 0.0404

In Figure 3.9 we see very similar behaviour of the bounds η, η and the esti-

mate η
(k)
h as in the previous Example 5.
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Figure 3.7: The errors, bounds and the estimate η
(k)
h in the discretization of

Problem 3 on the uniform mesh, Example 5.

Figure 3.8: The locally refined mesh in Example 6.
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Figure 3.9: The errors, bounds and the estimate η
(k)
h in the discretization of

Problem 3 on the locally refined mesh, Example 6.

In Figures 3.1–3.9 we see that η, η give reliable bounds for the total error

‖u − u(k)
h ‖2

a and η
(k)
h (the bold line) gives the tight estimate for total error.

For CG iteration steps k such that

‖x− xk‖2
A � ‖u− uh‖2

a (3.14)

the bounds η, η are very tight and the discretization error ‖u− uh‖2
a can be

estimated using

ηh ≡ C1

(
J2
h(u

(k)
h ) + osc2

h

)
. (3.15)

For a smooth right-hand side f or an appropriately refined mesh the value of
the oscillation term osc2

h is significantly smaller than the value of ‖u− uh‖2
a

(as we can see in Examples 1, 2, 4 – 6) and it can be neglected.
In real computations the values ‖u−uh‖2

a and J2
h(uh) are not known and

the constant C1 cannot be set according to (3.11). For a sequence of locally
refined meshes Tj , j = 0, 1, . . . (with assumptions on the shape regularity,
see [4, Assumption 2.1]) the constant C1 depends on the maximum angle of
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the initial mesh T0, see [4, Lemma 3.1]. Based on the experiments above we
use for αmax = 90◦ the value C1 ≡ 0.04 and for αmax = 60◦ C1 ≡ 0.033.
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Chapter 4

Multigrid methods

In order to provide a useful perspective we present in this chapter the idea
of using more levels (grids) in multigrid methods. We state the principle,
algebraic formulation and some of the basic convergence results.

Starting as the solver for boundary value problems in [5], multigrid me-
thods have grown to be popular in many other domains (e.g. nonlinear prob-
lems, see [40, Chapter 6]). The principle of multigrid has been applied also
to problems that are not associated to any grid or the grid is too irregular.
Such extension is called algebraic multigrid, see, e.g., [7, Chapter 8] or [46,
Appendix A]. Rather than a single method (or even a family of methods)
multigrid now denotes an entire approach, a collection of ideas.

4.1 Principle of multigrid

We describe the principle of multigrid on the simplest multigrid scheme.
Consider the (fine) grid Ωh. Let Ahxh = bh be the system arisen from the
discretization of the model problem (1.1)–(1.3) on Ωh (see Section 1.4). Let
ΩH be the coarse grid and let AH be the matrix assembled in the discretiza-
tion of the problem on ΩH . The two-grid correction scheme solves the system
Ahxh = bh using a stationary iterative method (Jacobi, Gauss-Seidel, SOR,
see, e.g., [37, Chapter 4]) and the error correction on the coarse grid. It
consists of five phases (see Figure 4.1 for illustration):

• (pre-smoothing)
Use m1 iteration steps of a stationary method applied to Ahxh = bh

with initial guess wh giving the approximation yh;
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Figure 4.1: Two-grid correction scheme

• (restriction)
Compute the fine-grid residual rh = bh − Ahyh and restrict it to the
coarse grid as rH ;

• (solving on the coarse grid)
Solve AHeH = rH ;

• (prolongation)
Prolongate (i.e. interpolate) eH to the fine grid as eh and correct the
approximation yh by yh := yh + eh;

• (post-smoothing)
Use m2 iteration steps of a stationary method applied to Ahxh = bh

with initial guess yh giving the final approximation zh to the exact
solution xh;

The pre-smoothing phase has, due to the smoothing property of station-
ary iterative methods (see, e.g., [46, Section 2.1]), the effect of damping out
the oscillatory part of the error. After few steps of the stationary method
the error xh−yh is dominated by the smooth components and the additional
iterations are not effective. Hence we restrict the error xh− yh that satisfies
the residual equation

Ah(xh − yh) = bh − Ahyh = rh
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to the coarse grid where the system AHeH = rH is of smaller dimension and
thus it is less costly to be solved. The solution eH of the restricted system
is then prolongated to the fine grid as the approximation eh of the error
xh − yh. The post-smoothing phase smoothes out the oscillations that may
occur in yh + eh due to the prolongation.

The system AHeH = rH is smaller than the original system but it can be
still too large to be solved effectively by a direct method. For the solution
on the coarse grid we can use recursively the correction scheme until the
restricted system is small enough to be solved by a direct method.

Now we present two one-dimensional examples to illustrate the smooth-
ing property of stationary iterative methods and to demonstrate the impor-
tance of the pre-smoothing phase. In the first example we consider (following
the exposition in [7, Chapter 2]) the SPD matrix A ∈ R64×64 arisen from the
discretization of the one-dimensional Poisson equation, see [7], in the form

A =


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 ,

the zero right-hand side vector b = 0 and the initial vectors v(1), v(3), v(8)

equal to the (discrete) Fourier basis functions

v
(k)
(i) ≡ sin (ikπ/64) , 0 ≤ i ≤ 64

with the frequencies k = 1, 3, 8 respectively. Here v(i) stands for the i-th
component of the vector v. The exact solution x of the system Ax = b is equal
to the zero vector. For an approximation xj to the solution x we denote the
error vector ej ≡ x−xj. Figure 4.2 shows on the left the vectors v(1), v(3), v(8).
On the right we plot the maximum norm of the errors ‖ej‖∞ = maxi |ej,(i)| in
100 Jacobi iterations with the initial vectors v(1), v(3) and v(8). Obviously the
maximum norm of the error corresponding to higher frequency is reduced
faster, i.e. such error is smoothed out more effectively.

In the second example we illustrate the restriction to the coarse grid and
demonstrate the importance of the pre-smoothing phase. We consider the
coarse grid as the grid consisting of even-numbered points of the fine grid.
The grid size of the coarse grid H is then equal to 2h. We restrict a vector
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Figure 4.2: v(1), v(3), v(8); ‖ej‖infty for the initial vectors v(1), v(3), v(8)

to the coarse grid by using the even indexed components. Figure 4.3 shows
the typical restriction of a smooth vector (on the left) and the restriction
of an oscillating vector (on the right). We see that the restriction keeps
the essential behaviour of the smooth vector while an oscillating vector is
misrepresented as a smooth vector. We may expect that the restriction to
the coarse grid has the same property also in the d-dimensional case. In
the two-grid correction scheme the highly-oscillating parts of the error are
smoothed out in the pre-smoothing phase and the error is then restricted to
the coarse grid with acceptable accuracy.

Figure 4.3: Typical restriction of a smooth vector and an oscillating vector
to the coarse grid
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4.2 Algebraic formulation

Let a sequence of finite-dimensional spaces with increasing dimensions

M0,M1, . . . ,Mk

with inner products denoted by (·, ·)j correspondingly in Mj be given. As-
sume that we have the prolongation operators

Ij : Mj →Mj+1 , j = 0, . . . , k − 1 ,

the restriction operators

Rj : Mj →Mj−1 , j = 1, . . . , k ,

the invertible operators

Lj : Mj →Mj , j = 0, . . . , k

and the sequence of the right-hand sides

fj ∈Mj , j = 0, . . . , k .

Let Dj be the linear operator corresponding to a stationary iterative method
(Jacobi, Gauss-Seidel, SOR)

Dj : Mj →Mj , j = 1, . . . , k .

By MGj(z, fj) we denote the approximation to the problem

Ljuj = fj , fj ∈Mj (4.1)

obtained from the j-th level iteration with the initial guess z. The j-th level
iteration of multigrid is defined recursively starting from the lowest level
that corresponds to the coarsest grid:

j-th level iteration
The problem on the coarsest level j = 0 is solved directly, i.e.

MG0(z, f0) := L−1
0 f0 ,

For j > 0, MGj(z, fj) is obtained in 5 steps:
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1) (pre-smoothing)
Set v0 = z and define vm1 by

vl+1 = vl −Dj,l+1(Ljvl − fj) , l = 0, 1, . . . ,m1 − 1 ;

2) (restriction)
Let

gj−1 = Rj(Ljvm1 − fj) ;

3) (solving on the coarse grid)
Let w̃0 = 0 ∈Mj−1 , repeat (j − 1)-th iteration γ-times:

w̃s = MGj−1(w̃s−1, gj−1) , s = 1, . . . , γ ;

4) (prolongation)
Let

y0 = vm1 − Ij−1w̃γ ;

5) (post-smoothing)
Define ym2 by

yl+1 = yl −Dj(Ljyl − fj) , l = 0, 1, . . . ,m2 − 1 .

Finally set
MGj(z, fj) := ym2 .

The choice of integers m1,m2 depends on the problem (for illustration see
[40]). For γ = 1, this scheme is called V-cycle multigrid, for γ = 2 W-cycle
multigrid, see Figure 4.4 for illustration.

The full multigrid algorithm for solving the problem on the finest level k

Lkuk = fk , fk ∈Mk (4.2)

consists of nested iterations:

Full multigrid algorithm

1. Set ṽ0 = L−1
0 f0 .

2. For j = 1, 2, . . . , k do:

(a) set ṽj = Ij−1ṽj−1 ,

(b) repeat t-times:
ṽj := MGj(ṽj, fj)

The result after k-th step ṽk is an approximation to the solution uk of (4.2).
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Figure 4.4: V -cycle, W -cycle multigrid

4.3 Convergence of multigrid methods

The convergence theory of multigrid methods usually consists of a bound-
ing of the so-called error suppression operator. In this section we present
(following [40]) two theorems, for symmetric and for general case.

Let uj be the solution of (4.1) and let w0 be an arbitrary initial vector.
We denote

e0 ≡ w0 − uj
the error of the initial vector w0 and

e1 ≡ w1 − uj
the error of approximation w1 to uj given by the j-th multigrid iteration.
We define the operator Bj : Mj →Mj , j = 1, . . . , k

Bj : e0 7→ e1 . (4.3)

Bj is called the operator of error suppression and has following properties
(see [40, Lemma 4.2.1]):

Theorem 4.1. The operator of error suppression Bj defined in (4.3) is
linear for any e0, independent of fj, w0 and has the form

Bj = J
(m2)
j (I − Ij−1(I −Bγ

j−1)L−1
j−1RjLj)J

(m1)
j ,

where I stands for the identity operator and

J
(m1)
j = (I −DjLj)m1 (4.4)

J
(m2)
j = (I −DjLj)m2 . (4.5)
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In the symmetric case we assume

SC 1: the operators Lj are self-adjoint and positive-definite;

SC 2: The restriction operator Rj is the transpose to the prolongation op-
erator Ij−1 with respect to the inner products (·, ·)j−1 and (·, ·)j, i.e.

(Rj w, v)j−1 = (w, Ij−1 v)j , ∀v ∈Mj−1 , ∀w ∈Mj ;

SC 3: Operators J
(m1)
j and J

(m2)
j are adjoint with respect to the inner prod-

uct (·, ·)j , i.e.

(J
(m1)
j v, w)j = (v, J

(m2)
j w)j , ∀v, w ∈Mj ;

SC 4: The operators Lj−1 , Lj satisfy

Lj−1 = RjLjIj−1 ;

SC 5: Denoting Jj = J
(m1)
j we assume that JjLj = LjJj .

Consider the Lj-inner product

(u, v)Lj
= (Lju, v)j ∀u, v ∈Mj

and the corresponding norm

‖u‖Lj
= (u, u)

1/2
Lj
.

The convergence criterion is given by the weak approximation condition:
there exists constant c∗ > 0 such that ∀j = 1, . . . , k

‖v‖2
Lj
− ‖Jjvj‖2

Lj
≥ c∗‖QjJjv‖2

Lj
∀v ∈Mj , (4.6)

where
Qj = I − Ij−1L

−1
j−1RjLj

is the operator representing the correction on the coarse grid. The following
theorem proves the convergence of the symmetric V -cycle multigrid.
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Theorem 4.2 ([40, Theorem 4.5], convergence of the symmetric V -cycle).
Let the assumptions SC 1 – SC 5 are satisfied and let the weak approxi-
mation condition (4.6) holds with constant c∗, let γ = 1. Then

‖Bj‖Lj
≡ sup

06=v∈Mj

‖Bjv‖Lj

‖v‖Lj

≤ 1

1 + c∗
.

In the general case we assume only

GC 1: Lj are invertible operators, j = 0, 1, . . . , k ,

GC 2: The restriction operator Rj is the transpose to the prolongation
operator Ij−1 with respect to the inner products (·, ·)j−1 and (·, ·)j, i.e.

(Rj w, v)j−1 = (w, Ij−1 v)j , ∀v ∈Mj−1 , ∀w ∈Mj ;

The operators Lj do not induce any norm and hence we consider the norm
‖ · ‖j induced by the inner product (·, ·)j on Mj. We assume

GC 3: ‖Jj‖j ≤ cJ , ∀j = 1, . . . , k

GC 4: There exist constants 0 < cI ≤ cI such that

cI‖Ij−1v‖j ≤ ‖vj‖j−1 ≤ cI‖Ij−1v‖j , ∀v ∈Mj−1 , j = 1, . . . , k .

The weak approximation condition (4.6) is replaced by the condition

‖L−1
j − Ij−1L

−1
j−1Rj‖j · ‖LjJj‖j ≤ µ(m) ∀j = 1, . . . , k (4.7)

with a function µ(m) independent of j and tending to zero as m → ∞.
Here m = m1 stands for the number of pre-smoothing iterations. In the
following theorem ([40, Theorem 4.11]) we consider asymmetric variant of
the multigrid algorithm with m2 = 0 and γ = 2.

Theorem 4.3 ([40, Theorem 4.11], convergence of asymmetric W -cycle).
Let the assumptions GC 1–GC 4, are satisfied. Let m1 = m, m2 = 0 and
γ = 2. Then for any ξ ∈ (0, 1) there exists index m0 such that ∀m ≥ m0

‖Bj‖j ≤ ξ ∀j = 1, . . . , k .
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As the consequence of the convergence of the j-th multigrid iteration, the
convergence of the full multigrid method can be shown, see, e.g. [4, Theo-
rem 6.7.1]

The multigrid method provides an optimal order algorithm for solving el-
liptic boundary value problems, see, e.g., [46, Section 3.2]. The error bounds
of the approximate solution obtained from the full multigrid algorithm are
comparable to the theoretical bounds for the error in the finite element solu-
tion, while the amount of computational work is proportional to the number
of unknowns in the discretized equations, see, e.g., [4, Proposition (6.7.4)].
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Chapter 5

Cascadic Conjugate Gradient
Method (CCG)

Cascadic Conjugate Gradient Method (CCG, [10]) is a method for solv-
ing self-adjoint positive-definite problems on a sequence of grids (uniformly
as well as adaptively constructed). It combinates the discretization by the
Galerkin finite element method and the conjugate gradient method1 for solv-
ing the linear algebraic system arising on each level of the discretization.

In papers [38, 39] the optimal complexity is proved for elliptic second-
order Dirichlet problem in 2D for convex and non-convex polygonal domain.
The optimal complexity means that CCG converges with the rate that is
independent of the number of unknowns and the number of grids.

In CCG (as well as in other PDE solvers) the balancing of the algebraic
error and the discretization error on a particular level (grid) is essential. In
the original paper [10] an unreliable stopping criterion for CG was used. In
the following papers [38, 39] the number of CG iterations was set in order
to ensure the algebraic error to drop to a certain level which may lead to
many iterations that are not needed. We therefore use the actual algebraic
error estimator with the heuristic proposed in Chapter 2.

The CCG method is described in Section 5.1. Using the estimate for the
algebraic error and the heuristic for the adaptive choice of the parameter
of the estimate proposed in Section 2.4 we propose in Section 5.2 the new
stopping criteria for CCG. Then we briefly present the adaptive refinement

1In the original paper [10] the preconditioned conjugate gradient method was con-
sidered. Nevertheless, the version with no preconditioning was in numerical examples
superior (see [10])
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technique in Section 5.3. In numerical experiments (Section 5.4) the CCG
method with the newly proposed stopping criteria is tested.

5.1 Description of the CCG method

Consider the problem given in the weak formulation

Find u ∈ H such that

a(u, v) = `(v), ∀v ∈ H , (5.1)

where H is the appropriate Hilbert space, u ∈ H is the solution and a(·, ·) is
the symmetric positive-definite bilinear form. In CCG the Hilbert space H is
approximated by a sequence of nested finite element spaces with increasing
dimension

S0 ⊂ S1 ⊂ . . . Sk ⊂ H . (5.2)

The Galerkin FEM discretization of (5.1) on S0, S1, . . . , Sk generates the
sequence of problems

Find uj ∈ Sj such that

a(uj, vj) = `(vj), ∀vj ∈ Sj . (5.3)

The Galerkin solution uj ∈ Sj minimizes the energy norm of the error over
the finite dimensional space Sj

‖u− uj‖a = min
w∈Sj

‖u− w‖a , (5.4)

see (1.20). In Section 1.4 we showed that the problem (5.3) can be repre-
sented as a linear algebraic system

Ajx = bj , (5.5)

where the exact solution x corresponds to the Galerkin solution uj. Hereafter
we denote by x the solution of the system (5.5) for any j = 0, 1, . . . , k. From
the context it will be clear which discretization level j is considered. We
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reserve g, j, k for denoting the levels of the discretization and i, `, n,m for
denoting the iteration steps of the CG method.

All matrices Aj are SPD (as the bilinear form a(·, ·) is symmetric and
positive-definite) so that the conjugate gradient method can be applied.
As showed in Section 2.2.2, the approximation xi given by the CG method
applied to system Ajx = bj with the initial vector x0 minimizes the algebraic
energy norm of the error over the Krylov subspace generated by Aj and the
initial residual r0 = bj − Ajx0

‖x− xi‖Aj
= min

u∈x0+Ki(Aj ,r0)
‖x− u‖Aj

. (5.6)

The CCG method combinates the Galerkin FEM discretization to minimize
the discretization error (measured in the energy norm) and the CG method
to minimize the algebraic energy norm of the error on each discretization
level j.

The CCG method is based on cascading principle that we describe on a
single level j > 0:

Suppose that we have (from the previous level) the Galerkin solution
uj−1 and marked elements of the previous mesh to refine. Then we proceed
in the following way:

1) refine marked elements (and the neighboring ones in order to keep the
conformity of the mesh)

2) assembly the matrix Aj and the right-hand side vector bj

3) interpolate the solution uj−1 from the previous level to the new mesh

as u
(0)
j ∈ Sj

4) denote by x0 the vector of the coefficients of u
(0)
j with respect to the

given basis of Sj, see (1.15) 2

5) solve the system Ajx = bj by CG with the initial vector x0

6) compute the Galerkin solution uj corresponding to the exact solution x

7) compute the global error estimate and test the convergence; we assume
that the global estimator is given as the sum of the local error estimates

2for P 1 FEM discretization described in Section 1.4.1 the vector x0 is given by the
values of u

(0)
j in the vertices of the triangulation
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8) use the local estimates for marking the elements with the highest con-
tribution to the global error (or mark all elements when using the
uniform refinement)

On the coarsest grid j = 0, we replace 1) – 5) by the direct solution of the
(small) system A0x = b0 and we continue from 6).

j = k
...

j = 2

j = 1

j = 0 �
�
�
�
�
�

��

�
�
�
��

v
v

v
v

Figure 5.1: Scheme of the CCG method

The scheme of the CCG method is shown in Figure 5.1. The CCG method
is, e.g. in [38, 39, 41], considered as the simpler version of a multigrid method
without coarse-grid correction. However, the CCG method is in principle
different from multigrid methods (see Section 4.1 and compare Figure 5.1
with Figure 4.4).

Providing that Sj are nested, the Galerkin orthogonality, see (1.19)

a(u− uj+1, vj+1) = 0 , ∀vj+1 ∈ Sj+1

gives
a(u− uj+1, uj+1 − uj) = 0 .

Then for the Galerkin solutions uj and uj+1

‖u− uj‖2
a = a(u− uj, u− uj) =

= a(u− uj+1 + uj+1 − uj, u− uj+1 + uj+1 − uj) =

= a(u− uj+1, u− uj+1) + 2 a(u− uj+1, uj+1 − uj) +

+ a(uj+1 − uj, uj+1 − uj) =

= ‖u− uj+1‖2
a + ‖uj+1 − uj‖2

a ,
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which gives the relation

‖u− uj+1‖2
a = ‖u− uj‖2

a − ‖uj+1 − uj‖2
a . (5.7)

From the cascading principle we have uj = u
(0)
j+1 and using the equality of

the energy norms (1.17) we get the relation

‖uj+1 − uj‖2
a = ‖uj+1 − u(0)

j+1‖2
a = ‖x− x0‖2

Aj+1
. (5.8)

The relations (5.7) and (5.8) give

‖u− uj‖2
a − ‖u− uj+1‖2

a = ‖x− x0‖2
Aj+1

, (5.9)

which means that the reduction of the discretization error from the dis-
cretization level j to j + 1 (measured in the enrgy norm) is equal to to the
error of the initial CG approximation x0 on the discretization level j + 1
(measured in the algebraic energy norm).

In finite precision computations we are not able to compute the exact
solution x of the system Ajx = bj. Following [10], we therefore consider the
cascading principle changed, solving the system Ajx = bj on finer meshes
(j > 0) approximately by the CG method. For j > 0:

1) refine marked elements (and the neighboring ones in order to keep the
conformity of the mesh);

2) assembly the matrix Aj and the right-hand side vector bj

3) interpolate the approximation ũj−1 from the previous level to the new

mesh as ũ
(0)
j

4) denote by x̃0 the vector of the coefficients of ũ
(0)
j with respect to the

given basis of Sj

5) apply CG for the system Ajx = bj with the initial vector x̃0 giving the
approximation x̃mj

to the exact solution x

6) compute the Galerkin approximation ũj ≡ ũ
(mj)
j given by the CG ap-

proximation x̃mj

7) compute the global error estimate and test the convergence

97



8) use local estimates for marking the elements with the highest contribu-
tion to the global error (when using the uniform refinement we mark
all elements)

Please note, that since ũj−1 6= uj−1, x̃0 6= x0 and the CG convergence (that
is affected by the choice of the initial vector, see Chapter 2) is different from
the “exact” case, i.e. x̃i 6= xi , i = 1, 2, . . . ,mj .

Using (5.4), the error ‖u− ũj‖a satisfy

‖u− ũj‖a ≥ ‖u− uj‖a .

As a consequence of the cascading principle, Theorem 2.2 and the local
orthogonality of CG residuals (2.41)

‖u− ũj‖2
a = ‖u− ũ(0)

j+1‖2
a =

= ‖u− uj+1‖2
a + ‖x− x̃0‖2

Aj+1
=

= ‖u− uj+1‖2
a + ‖x− x̃mj+1

‖2
Aj+1

+ ‖x̃mj+1
− x̃0‖2

Aj+1
=

= ‖u− ũ(mj+1)
j+1 ‖2

a + ‖ũ(mj+1)
j+1 − ũ(0)

j+1‖a =

= ‖u− ũj+1‖2
a + ‖ũj+1 − ũj‖2

a ,

which give the relation

‖u− ũj+1‖2
a = ‖u− ũj‖2

a − ‖ũj+1 − ũj‖2
a . (5.10)

Analogously to (5.8)

‖ũj+1 − ũj‖2
a = ‖x̃mj+1

− x̃0‖2
Aj+1

. (5.11)

and
‖u− ũj‖2

a − ‖u− ũj+1‖2
a = ‖x̃mj+1

− x̃0‖2
Aj+1

. (5.12)

The illustration of errors in the CCG method is given in Figure 5.2.

5.2 Stopping criteria for the CCG method

In Section 5.2.1 we recall the original stopping criteria for the CCG method
presented in [10] and briefly comment their reliability. In Section 5.2.2 we
propose new stopping criterion for the CG method using the estimate for
the algebraic error presented in Section 2.3.1 and the heuristic proposed in
Section 2.4. Then in Section 5.2.3 we propose new stopping criterion for the
Galerkin discretization.
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Figure 5.2: CCG error scheme

5.2.1 Original stopping criteria

Demanding the reduction of the discretization error given by the user pre-
scribed parameter ε2red

‖u− uj‖2
a ≤ ε2red‖u− u0‖2

a , (5.13)

99



the stopping criterion for the Galerkin FEM discretization is in [10] proposed
as

Θ̃j ‖ũj − ũj−1‖2
a

1−Θh

≤ ε2red

(
j∑

g=1

‖ũg − ũg−1‖2
a

)
, (5.14)

where

Θ̃j ≡
(
nj−1

nj

)2/d

, (nj = dim(Aj)) ,

Θh ≡
1

4
.

The term ‖ũg − ũg−1‖2
a can be evaluated using (5.11) as

‖ũg − ũg−1‖2
a = ‖x̃mg − x̃0‖2

Ag
.

However, as we will see in the numerical examples, the fulfillment of (5.14)
need not assure the fulfillment of the condition (5.13).

The stopping criterion for the CG method on the discretization level j
is in [10] proposed as

‖x̃i − x̃i−1‖2
Aj

1−
‖x̃i−x̃i−1‖2Aj

‖x̃i−1−x̃i−2‖2Aj

≤ ρ̂2ε2red

(
j∑

g=0

‖ũg − ũg−1‖2
a

)
, (5.15)

where ρ̂ is a parameter empirically chosen as 1/4 . The criterion (5.15) is
derived assuming the existence of the contraction factor Θ < 1 such that
there exist index i0 satisfying

‖x− x̃i‖2
Aj
≤ Θ ‖x− x̃i−1‖2

Aj
, ∀i > i0 , (5.16)

In Figure 2.2 on page 35 we can see the stages of near stagnation where
Θ ≈ 1. Moreover, the unknown factor Θ is in (5.15) estimated using the
ratio

‖x̃i − x̃i−1‖2
Aj

‖x̃i−1 − x̃i−2‖2
Aj

,

that may give even more misleading information about the CG convergence
in finite precision computations (see, e.g., [28]).
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5.2.2 Stopping criterion for the CG method

We regard the setting of the proper stopping criterion for CG essential for
the effective implementation of CCG. Too stringent criterion leads to CG
iterations that are not needed whereas too loose one causes mesh refinement
to be ineffective (since the total error is dominated by the algebraic error).

According to Theorem 2.2 we demand on level j the balance of discretiza-
tion and algebraic error

‖x− x̃i‖2
Aj

= ‖uj − ũ(i)
j ‖2

a ≤ ρj‖u− uj‖2
a , ρj ∈ [0, 1] . (5.17)

As we showed in numerical examples in Section 2.6.1, this criterion controls
only the global balance of the errors and the local distribution of the alge-
braic and the discretization error may differ. However, we do not have any
local estimator for the algebraic error to control the balance of the local
contributions to the total error.

The choice ρj = 0 in (5.17) assumes the exact solution of the Galerkin
system. Using the cascading principle of CCG

‖u− uj‖2
a = ‖u− ũj−1‖2

a − ‖x− x̃0‖2
Aj
, j = 1, . . . , (5.18)

where x̃0 corresponds to the interpolation of the approximation ũj−1 from
the previous level to the new mesh. The relations (5.17) and (5.18) give on
the level j = 1, 2, . . .

‖x− x̃i‖2
Aj
≤ ρj

(
‖u− ũj−1‖2

a − ‖x− x̃0‖2
Aj

)
. (5.19)

In numerical experiments in Section 5.4 we will see that for fixed value
ρj = ρ, j = 1, 2, . . . , the number of CG iterations required for the fulfillment
of (5.19) is increasing with the size of the matrix Aj where the CG iterations
are more costly. In order to prevent this increase we propose to set ρj such
that the criterion (5.19) is more stringent on the coarser levels.

Fixing the values ρ0 = 0 and ρk = 1 (k stands for the finest level), we
consider for a parameter ξ ≥ 1 the choice

ρj = ξj−k , j = 1, . . . , k . (5.20)

Note that ξ = 1 gives ρj = 1, j = 1, . . . , k.
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Proposition 1. Let ρj be given by (5.20) with ξ satisfying

ξ >
‖u− uj‖2

a

‖u− uj+1‖2
a

, ∀j = 0, . . . , k − 1 . (5.21)

Then for j = 1, . . . , k − 1

ρj+1

(
‖u− ũj‖2

a − ‖x− x̃0‖2
Aj+1

)
> ρj

(
‖u− ũj−1‖2

a − ‖x− x̃0‖2
Aj

)
,

i.e. the criterion (5.19) is more stringent on the coarser level.

Proof. Using (5.18),

ρj+1

(
‖u− ũj‖2

a − ‖x− x̃0‖2
Aj+1

)
= ρj+1‖u− uj+1‖2

a = ξρj ‖u− uj+1‖2
a >

>
‖u− uj‖2

a

‖u− uj+1‖2
a

ρj ‖u− uj+1‖2
a = ρj

(
‖u− ũj−1‖2

a − ‖x− x̃0‖2
Aj

)
.

Combinating (5.19) and (5.20) we get the (theoretical) stopping criterion
for the CG method on the discretization level j = 1, 2, . . . , k (we recall that
k stands for the finest level)

‖x− x̃i‖2
Aj
≤ ξj−k

(
‖u− ũj−1‖2

a − ‖x− x̃0‖2
Aj

)
. (5.22)

For estimating the error ‖x − x̃0‖Aj
of the initial CG approximation we

consider the lower bound

ν0,i+d =
i+d∑
`=0

γ`‖r`‖2 ,

see Section 2.3.1.
We estimate the algebraic error ‖x− x̃i‖Aj

using the bound νi,d with the
adaptively chosen value of d given by the heuristic proposed in Section 2.4.
In [2] the estimates for ‖x− x̃i‖Aj

are compared in three numerical examples.
The estimate νi,d for fixed value d = 5 gives worse results in comparison to
upper bounds. However, we believe that using the adaptive choice of the
parameter d significantly improves the accuracy of the lower bound νi,d.

Let ηj be an estimator for the discretization error ‖u− uj‖2
a. As

‖u− ũ(i)
j ‖2

a = ‖u− uj‖2
a + ‖x− x̃i‖Aj

,

102



see Theorem 2.2, we consider the estimator for the total error ‖u− ũ(i)
j ‖2

a

η
(i)
j ≡ ηj + νi,d .

Using these estimates in (5.22), we get the criterion

νi,d ≤ ξj−k
(
η

(mj−1)
j−1 − ν0,i+d

)
, j = 1, . . . , k .

Since the positivity of the term η
(mj−1)
j−1 − ν0,i+d is assured only theoretically,

it need not hold in finite precision computations. Hence we include also the
other estimate for ‖u− uj‖2

a . Assuming (5.21),

‖u− uj‖2
a >

1

ξ
‖u− uj−1‖2

a ,

we get

‖u− uj‖2
a '

ηj−1

ξ
.

Then we set the stopping criterion for the CG method as

νi,d ≤ ξj−k max

(
(η

(mj−1)
j−1 − ν0,i+d),

ηj−1

ξ

)
, j = 1, . . . , k . (5.23)

The choice of parameter ξ is to be further studied and examined. See the
numerical experiments in Section 5.4 for the comparison of various choices.

5.2.3 Stopping criterion for the Galerkin FEM dis-
cretization

For the Galerkin FEM discretization we consider following [10] the standard
stopping criterion

‖u− uj‖2
a ≤ ε2red‖u− u0‖2

a (5.24)

demanding the reduction of discretization error prescribed by the parameter
εred. Assuming the fulfillment of (5.17), the criterion (5.24) controls also the
reduction of the total error

‖u− ũj‖2
a ≤ (1 + ρj) ε

2
red ‖u− ũ0‖2

a . (5.25)

Using the estimate ηj the stopping criterion for the Galerkin FEM discretiza-
tion is set as

ηj ≤ ε2red η0 . (5.26)
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The choice of the estimator ηj depends on the solved problem and the
chosen discretization. For the second-order elliptic pure diffusion problem
with the pure Dirichlet boundary condition (see Section 1.2) discretized by
the P 1-conforming FEM discretization described in Section 1.4.1 we propose
the estimate ηj defined in (3.15) in Section 3.2.1.

5.3 Adaptive refinement

Each iteration j of adaptive finite element method (AFEM) (i.e. the FEM
method using the adaptive mesh refinement) can be summarized in the fol-
lowing workflow (see, e.g., [2]):

SOLVE→ ESTIMATE→ MARK→ REFINE

The first step includes the computing of the approximation ũj to the Galerkin
solution uj. In the second step we evaluate the local estimators for each edge
E ∈ Ej or for each element of the triangulation K ∈ Tj . Then we mark el-
ements for refinement forming the set Mj ⊂ Tj . In the fourth step the
marked elements are refined using a proper refinement technique and the
conformity of mesh is provided by a sufficient additional refinement.

In Section 2.6.1 we showed that the local distribution of the algebraic
and the discretization error can significantly differ. However, to the best
of our knowledge, there is not yet described any estimator for the local
algebraic error. In the implementation of the CCG method we therefore
consider the adaptive refinement technique according to the local estimators
for the element contributions to the discretization error.

Let the estimator ηj for the discretization error is given as the sum of
element contributions ηKj , K ∈ Tj

ηj =
∑
K∈Tj

ηKj .

We mark elements for refinement employing the Dörfler-type marking strat-
egy (see [11]). For a user-defined parameter 0 < θ ≤ 1 we find a set Mj of
minimal cardinality such that∑

K∈Mj

ηKj ≥ θ
∑
K∈Tj

ηKj . (5.27)
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The choice θ = 1 stands for the uniform mesh refinement. In numerical
experiments we use θ = 0.75. We refine the elements using the red-green-
blue (RGB) refinement strategy that avoids degeneracies, i.e. maintain the
minimum angle condition, see, e.g., [8]. We believe that the newest-vertex-bi-
section (NVB, [29]), the other commonly used technique, would give nearly
the same results.

5.4 Numerical experiments

In this section we test the CCG method with the newly proposed stopping
criteria on Problems 1–4, described on pages 39, 58, 59 and 61. We start
with the comparison of the choice of parameter ξ defined in (5.20). Then we
test the stopping criteria proposed in Section 5.2 and compare them with the
original stopping criteria proposed in [10]. Finally we show the convergence
rate of the CCG method.

We compare the choices of the parameter ξ defined in (5.20) according
to the number of CG iterations required for the fulfillment of the criterion
(5.19) on the levels j = 1, 2, . . . , 6. In this experiment we evaluate the

values of ‖x− x̃0‖Aj
, ‖x− x̃i‖Aj

, ‖u− u(i)
j ‖a and ‖u− uj‖a using the exact

solution u and the Galerkin approximation uj given by the exact solution x
approximated (to a sufficient accuracy) using the MATLAB backslash solver
Aj \ b.

From the Tables 5.1– 5.4 it is evident that the proper choice of ξ can
significantly improve the efficiency of CCG. For ξ = 1 (i.e. constant ρj) the
number of CG iterations required for the fulfillment of the criterion (5.19) is
increasing with the size of the matrices Aj. We can see that higher values of
ξ lead to more CG iterations on lower and middle levels and give no major
improvement (in comparison to ξ = 3 or ξ = 4) on finer levels.

The optimal value ξopt depends on the problem and on Dörfler marking
parameter θ, see (5.27). For the choice θ = 0.75 we expect ξopt ∈ [3, 4].
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Problem 1
2.3929 ≤ ‖u−uj−1‖2a

‖u−uj‖2a
≤ 3.2667

ξ \ j 1 2 3 4 5 6

1 2 2 8 15 27 49

2 6 10 8 12 17 29

3 8 12 8 5 8 3

4 9 14 9 4 3 2

8 13 18 19 5 3 2

16 16 23 27 8 3 2

Table 5.1: The number of CG iterations on the levels j = 1, 2, . . . , 6 for
different ξ in Problem 1.

Problem 2
‖u−u0‖2a
‖u−u1‖2a

= 1.3487 , 2.6597 ≤ ‖u−uj−1‖2a
‖u−uj‖2a

≤ 2.9086 , 2 ≤ j ≤ 6

ξ \ j 1 2 3 4 5 6

1 1 2 5 11 16 31

2 3 6 8 11 12 23

3 4 9 11 10 13 4

4 6 12 14 12 5 3

8 16 22 18 17 4 2

16 19 26 34 21 5 2

Table 5.2: The number of CG iterations on the levels j = 1, 2, . . . , 6 for
different ξ in Problem 2.
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Problem 3
1.9706 ≤ ‖u−uj−1‖2a

‖u−uj‖2a
≤ 2.2539

ξ \ j 1 2 3 4 5 6

1 2 3 10 16 26 38

2 8 12 9 12 14 12

3 15 16 13 7 5 3

4 20 20 17 8 4 2

8 25 29 29 12 4 2

16 30 34 41 21 5 2

Table 5.3: The number of CG iterations on the levels j = 1, 2, . . . , 6 for
different ξ in Problem 3.

Problem 4
1.7811 ≤ ‖u−uj−1‖2a

‖u−uj‖2a
≤ 1.8524

ξ \ j 1 2 3 4 5 6

1 3 8 12 17 23 32

2 17 19 20 22 20 18

3 23 27 25 29 18 9

4 27 31 31 34 22 9

8 33 38 41 42 40 9

16 37 43 48 50 53 9

Table 5.4: The number of CG iterations on the levels j = 1, 2, . . . , 6 for
different ξ in Problem 4.
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Now we present the results of the CCG method with the new stopping
criteria proposed in Section 5.2 applied to the Problems 1–4. We consider
the estimate for the discretization error ηj defined in (3.15) in Section 3.2.1.
The estimate ηj measures the jumps of the gradient of the approximation

u
(i)
j over the edges of the triangulation, see Section 3.2. We refine the mesh

adaptively according to the element contributions to the estimator ηj as
described in Section 5.3. We set the parameters

• σ = 0.4 ‖A‖−1/2 , the safety parameter for the heuristic for the adaptive
choice of d, see Section 2.6.3;

• ξ = 3.5 , see the experiment above;

• C1 = 0.04 for αmax = 90◦ and C1 = 0.033 for αmax = 60◦ , the constant
in the estimate ηj, see Section 3.2.1;

• ε2red = 0.01 , the demanded reduction of the discretization error in (5.26);

We recall that the squared energy norms of the error satisfy (up to a small
innacuracy proportional to machine precision) the Galerkin orthogonality
relation

‖u− u(i)
j ‖2

a = ‖u− uj‖2
a + ‖uj − u(i)

j ‖2
a = ‖u− uj‖2

a + ‖x− x̃i‖2
Aj
,

see Theorem 2.2.
For the particular problem we plot the energy norm of the total, the

discretization and the algebraic error and the square roots of the estimates
ηj, νi,d.

In Figures 5.3–5.6 we see that ηj gives a tight estimate for the discretiza-
tion error. The estimate νi,d lost its accuracy for higher j where the number
of CG iteration decreases. However, the balancing of the energy norms of
the algebraic and the discretization error on the finest level k prescribed by
the criterion (5.17) is fulfilled, i.e.

‖x− x̃mk
‖2
Ak

= ‖uk − ũ(mk)
k ‖2

a ≤ ‖u− uk‖2
a .
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Figure 5.3: The errors and the estimates in CCG applied to Problem 1.

Figure 5.4: The errors and the estimates in CCG applied to Problem 2.
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Figure 5.5: The errors and the estimates in CCG applied to Problem 3.

Figure 5.6: The errors and the estimates in CCG applied to Problem 4.
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In the following set of figures 5.7–5.10 we compare the total and the alge-
braic errors in the CCG method with the newly proposed stopping criteria
and the errors in the original implementation proposed in [10] (using the
adaptive mesh refinement described in Section 5.3).

We can see that for Problems 1, 2 the original implementation of CCG
gives the similar results as the new one. In Problem 3 and 4 the original
implementation stopped on the discretization level j = 6, (resp. j = 7)
when the condition (5.24) is not fulfilled, i.e. the ratio of the initial and the
actual discretization error is larger than the prescribed tolerance ε2red = 0.01

‖u− uj‖2
a

‖u− u0‖2
a

> ε2red .

In Problem 3 this ratio is equal to 0.0104, in Problem 4

‖u− u7‖2
a/‖u− u0‖2

a = 0.0149 .

Moreover, in Problem 4 the algebraic error grows over the value of the dis-
cretization error, see Figure 5.10.

The number of performed CG iterations is compared in Table 5.5. We
present also the size nj of matrices Aj for the newly proposed implementation
of the CCG method. The sizes of matrices for the original implementation
are slightly different as the estimate ηj (and its local contributions) depends
on the CG approximation x̃mj

.
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Problem 1

discr. level j 1 2 3 4 5

nj 437 1247 3005 8337 23233

mnew
j 15 8 4 4 4

morig
j 8 8 5 3 3

Problem 2

discr. level j 1 2 3 4 5

nj 235 313 593 1358 3684

mnew
j 6 10 4 4 5

morig
j 13 14 6 6 4

Problem 3

discr. level j 1 2 3 4 5 6 7

nj 467 717 1504 3075 6561 13859 31642

mnew
j 25 30 21 12 4 4 4

morig
j 46 24 15 8 5 3 —

Problem 4

discr. level j 1 2 3 4 5 6 7 8

nj 403 625 1094 2089 4073 7819 14704 27376

mnew
j 27 32 37 39 34 18 8 4

morig
j 10 10 8 7 8 7 5 —

Table 5.5: Comparison of the number of performed CG iterations mnew
j for

the newly proposed CCG implementation and morig
j for the original imple-

mentation due to [10].
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Figure 5.7: Total and algebraic errors for the new and the original imple-
mentation of the CCG method in Problem 1.

Figure 5.8: Total and algebraic errors for the new and the original imple-
mentation of the CCG method in Problem 2.
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Figure 5.9: Total and algebraic errors for the new and the original imple-
mentation of the CCG method in Problem 3.

Figure 5.10: Total and algebraic errors for the new and the original imple-
mentation of the CCG method in Problem 4.
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Although the CCG method with the new stopping criteria does not give
in the numerical experiments significantly better results than the original
implementation, the new stopping criteria have the following advantages:

• they give the estimate for the actual discretization and algebraic error
at every iteration step,

• the estimate for the discretization error is locally-based and it enables
the adaptive mesh refinement according to local indicators,

• the new stopping criteria are more reliable.

Finally we show in Figure 5.11 the dependance of the total error on the
number of degrees of freedom in the new implementation of the CCG method
for Problems 1–4. We can see that the total error behaves like O(n

−1/2
j ) ,

where nj stands for the number of degrees of freedom (i.e. the size of the
linear algebraic system Ajx = bj).

Figure 5.11: Dependance of the total error on the number of degrees of free-
dom in the new implementation of the CCG method in Problems 1–4.
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Conclusion

In Chapter 1 of the thesis we have described the model problem and pre-
sented some of its basic properties. The discretization of the problem leads to
a symmetric positive-definite linear algebraic system. Effective PDE solvers
using iterative methods should stop the iteration whenever the algebraic
error drops to the level at which it does not significantly affect the total
error. Linear system with a SPD matrix can be solved using the conjugate
gradient method. The CG method has been described in Chapter 2 includ-
ing the estimates for the energy norm of the error and the heuristic for the
adaptive choice of the parameter of the estimate have been presented. As we
have shown on a simple example in Section 2.6.1, the local distribution of
the algebraic error can significantly differ from the local distribution of the
discretization error. When using the global stopping criteria for an algebraic
solver we are (generally) not able to find the level at which the algebraic er-
ror does not significantly affect the total error locally. In Chapter 3 we recall
the locally-based estimators for the discretization error for the cell-centered
finite volume and for the piecewise linear finite element discretization that
take into account the inexact solving of the algebraic system, presented in
the literature. After recalling the multigrid method in Chapter 4 we have
described in Chapter 5 the CCG method and proposed new stopping criteria
relating the algebraic and the discretization error. The new implementation
is then tested.

Many questions remain opened. The balance between the algebraic and
the discretization error requires further study. This should include the deriva-
tion of a locally-based estimator for the algebraic error and setting the local
stopping criteria for the algebraic solver. We also intend to compare the
CCG method (with the newly proposed stopping criteria) with multigrid
methods.
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