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ABSTRAKT

Mitochondrie jsou hlavním, nepostradatelným zdrojem ATP, který je 

produkován především systémem oxidativní fosforylace (OXPHOS). Mutace v genech 

podmiňujících správnou funkci OXPHOS způsobují mitochondriální onemocnění, 

jejichž incidence je odhadována na 1:5000 živých narozených dětí. Cytochrom c 

oxidáza (COX) je klíčovým enzymem dýchacího řetězce, který katalyzuje přenos 

elektronů na kyslík za vzniku molekuly vody. Izolované nebo kombinované poruchy 

aktivity COX jsou spolu s deficitem komplexu I nejčastějším typem mitochondriální 

poruchy u dětí. Způsobeny jsou mutacemi v mitochondriálních nebo jaderných genech 

kódujících strukturní podjednotky a asemblační faktory jednotlivých komplexů 

OXPHOS. Přesná genetická podstata poruchy aktivity COX však zůstává u mnoha 

pacientů neobjasněna navzdory vzrůstajícímu počtu nově charakterizovaných genů.

Cílem dizertační práce bylo popsat genetickou příčinu mitochondriálního 

onemocnění u skupiny 60 nepříbuzných dětí z České republiky s biochemicky 

potvrzenou poruchou COX. Optimalizovanou metodikou high-resolution melting byly 

identifikovány čtyři heterozygotní varianty v exonech genů COX4I2, COX5A, COX7A1

a COX10, které byly klasifikovány jako patologické, a proto jsou vhodnými kandidáty 

pro provedení cílené mutační analýzy u dětí s deficitem COX. Pomocí SNP DNA 

mikročipu byly nalezeny patologické rozsáhlé delece genů TYMP, SCO2 a PUS1 u 4/16

dětí. Tyto delece byly u 2 pacientů kombinovány s missense mutacemi v genech TYMP

a SCO2. Předběžné výsledky mutačního skríningu mitochondriálního exomu 

provedeného na genomové DNA u 25/57 pacientů přispěly k nalezení kauzálních 

mutací u 5/25 pacientů v genech AARS2, TSFM, TK2, AIFM1 a MGME1. U dalších 

5/25 pacientů NGS technologie umožnila výběr kandidátních sekvenčních variant 

v genech ACOX2, UQCRH, QARS, SUCLG2 a ACBD3, jejichž patogenita však ještě 

musí být experimentálně potvrzena. V průběhu studie se podařilo objasnit genetickou 

podstatu poruchy COX u 9 nemocných dětí.

Klíčová slova: mitochondrie, mitochondriální poruchy, laboratorní diagnostika, 

dědičnost, deficit cytochrom c oxidázy (COX)
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ABSTRACT

Mitochondria are the key source of vital ATP molecules, which are largely 

produced within cells by a system of oxidative phosphorylation (OXPHOS). Genetic 

defects affecting any of the components of the oxidative phosphorylation system or the 

structure and function of mitochondria lead to mitochondrial disorders, which occur at 

an incidence rate of 1 in 5000 live births. Cytochrome c oxidase (COX) is the terminal 

enzyme and electron acceptor of a respiratory chain that catalyses oxygen to produce a 

water molecule. In addition to complex I deficiency, isolated or combined COX 

deficiency is the most common respiratory chain defect in paediatric patients, and it can 

arise from mutations located either in mitochondrial DNA or in nuclear genes encoding 

the structural subunits or corresponding assembly factors of the enzyme complex. 

However, the molecular basis of COX deficiency remains elusive in many patients 

despite advances in the identification of an increasing number of mutations and genes 

involved in the disease.

This thesis focuses on the identification of the genetic causes of mitochondrial 

diseases in a cohort of 60 unrelated Czech children with clinically and laboratory 

confirmed COX-deficiency. With the use of a high-resolution melting analysis mutation 

screen, four heterozygous sequence variants, located in COX4I2, COX5A, COX7A1 and 

COX10, were found to be pathogenic and are suggested as candidate variants for future 

targeted-mutation screening in Czech COX-deficient children. The application of a 

DNA microarray SNP chip enabled the identification of rarely occurring but 

pathological large deletions in 4/16 patients affecting the TYMP, SCO2 and PUS1

genes, which were combined with causal missense mutations in TYMP and SCO2. The 

genomic DNA of 25/57 patients was analysed using next-generation sequencing 

targeted to the mitochondrial exome. The preliminary data analysis enabled the 

identification of pathological sequence variants in 5/25 patients, which affected the 

AARS2, TSFM, TK2, AIFM1 and MGME1 genes. Additional suspected disease-

candidate variants were found in the ACOX2, UQCRH, QARS, SUCLG2 and ACBD3

genes of 5/25 patients, but their pathogenicity has yet to be confirmed experimentally. 

In conclusion, the genetic bases of COX deficiency have been clarified in nine 

paediatric patients.

Key words: mitochondria, mitochondrial disorders, laboratory diagnostics, inheritance, 

cytochrome c oxidase (COX) deficiency
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1 Introduction

The mammalian cytochrome c oxidase (COX, Complex IV, EC 1.9.3.1) is a 

multimeric copper haem A metalloenzyme embedded in the inner mitochondrial 

membrane; its function is to transport electrons from cytochrome c to molecular 

oxygen, which is then reduced to water. COX consists of 14 polypeptide subunits, of 

which the 3 largest are encoded by the mitochondrial genome (MTCO1, MTCO2 and 

MTCO3); the other 11 small peripheral subunits are encoded by the nuclear genome 

[1,2]. COX activity is tissue specific due to the different ontogenic development and 

metabolic needs and is subjected to regulation by molecules including hormones, 

membrane lipids and second messengers. In humans, four of the nuclear-encoded 

subunits, COX4I, COX6A, COX6B, and COX7A, have tissue specific isoforms that 

reflect differences in the energetic demands of the particular tissues. For COX6A and 

COX7A, two isoforms of each are known: the heart (H) type, which is present 

in skeletal and cardiac muscle, and the liver (L) type, which is present in non-muscle 

tissues. The testis-specific COX6B2 and lung-specific COX4I2 isoforms have also been 

identified [3].

COX deficiency is a clinically heterogeneous group of disorders that 

predominantly affect tissues with high-energy demand. The disorders range from 

isolated myopathy to severe multi-system disease and exhibit onset from infancy to 

adulthood; they are caused by mutations located in mtDNA and in the nuclear genes 

required for mitochondrial function. The incidence of COX deficiency has been 

estimated at 1:35000 births in the Slavonic population, where the majority of detected 

mutations are located in two genes, SCO2 and SURF1 [3,4]. The defects can be 

biochemically isolated or combined with deficiencies of any other components of the 

respiratory chain [5]. Rare disease-related mutations have been described for all 3 of the 

mitochondrial DNA-encoded COX subunits. The majority of COX defects originate 

from mutations in nuclear genes involved in the assembly and maintenance of the 

holoenzyme complex, including SURF1, SCO1, SCO2, COX10, COX14, COX15, 

TACO1, LRPPRC, COA5 and COX20. Until now, no mutations have been detected in 

nuclear genes for other assembly factors, such as COX11, COX16, COX17, COX18, 

COX19, which are thought to be required to prevent COX deficiency [6-8]. However, 

the first mutations were only recently characterised in nuclear genes coding for 

structural subunits COX4I2, COX6B1, COX7B, NDUFA4 [9-12]. Despite advances in 
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the identification of an increasing number of mutations and genes involved in the 

disease, the molecular basis of COX deficiency remains elusive in many patients, which 

leads to difficulties in genetic counselling.
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2 Aims	of	the	study

Mitochondrial diseases represent one of the most common groups of inherited 

metabolic disorders affecting adults and children [13]. Because of the dual genetic 

control of mitochondria, dysfunction of mitochondrial processes can be caused by 

mutations in the mitochondrial (mtDNA) or nuclear genome. The inheritance of 

mitochondrial disorders is either maternal (mtDNA) or Mendelian (nuclear encoding 

genes) and can have autosomal recessive, autosomal dominant or X-linked genetic 

traits. To date, mutations in 1500 proteins are thought to be potential causes of 

mitochondrial disorders [14], although pathological mutations have only been identified 

in a small fraction of them despite advances in applied research methodologies [15]. 

Thus, the genetic basis of mitochondrial disorder remains unexplained in a large number 

of patients manifesting clinical symptoms and biochemical properties of the disease. 

This lack of explanation implies that determining the complexity of the COX defect is 

exceptionally challenging, perhaps due to the genotype- phenotype variability and the 

overlap of disease phenotypes in patients with cytochrome c oxidase deficiency, similar 

to other types of mitochondrial disease [16].

The Laboratory for the Study of Mitochondrial Diseases in the Department of 

Paediatrics and Adolescent Medicine of the First Faculty of Medicine in Prague has 

dealt with the clinical diagnostics of mitochondrial dysfunction for over 20 years. In this 

laboratory, data were collected from a group of 60 unrelated Czech paediatric patients 

with clinically and biochemically confirmed isolated or combined COX deficiency 

resulting from an unclear genetic cause. The aim of this study is concentrated on 

determining the genetic causes of COX deficiency in the selected cohort of patients to 

illuminate the pathogenic mechanisms behind their phenotype.

The specific aims of the thesis were:

1) To optimise and perform a mutation screening methodology involving high-

resolution melting analysis for genes encoding COX structural subunits and 

selected COX assembly factors

2) To analyse copy-number variations in 16 patients with COX deficiency

3) To apply targeted sequencing of the mitochondrial exome in a group of 25 

children with COX deficiency and to prioritise candidate disease variants
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3 Review	of	the	literature

The human body is composed of approximately 200 cells types totalling 1012-

1018 cells whose directed differentiation ensures full body function [17]. The proper 

function of a cell as a basic self-sufficient organised unit of life is generally conditioned 

by concerted mechanisms of energy production. The key energy-carrying molecule in 

human cells is ATP, and 95% of its mass-production occurs at the inner membranes of 

mitochondria during the OXPHOS process [18]. With the exception of aerobic 

production of ATP, mitochondria are needed for many other cellular processes; they 

contain hundreds of enzymes involved in the metabolic pathways of amino acids, fatty 

acids, haem, organic acids; in the tricarboxylic acid cycle (TCA); in part of the urea 

cycle; and in the biosynthesis of steroid hormones, porphyrins, purine and pyrimidine 

nucleotides, phosphocreatine, acetyl-CoA, gluconeogenesis precursors and FeS clusters. 

Mitochondria also participate in the production of free radicals, regulation of 

cytoplasmic and mitochondrial matrix calcium, apoptotic signalling and signalling that 

modulates the movement of whole organelles inside cells [19-23]. Thus, many primary

mitochondrial defects affect multiple organ systems, demonstrating the indispensability 

of energy generated via OXPHOS [24,25].

3.1 From	mitochondrial	molecular	ultrastructure	to	function

The ultrastructure and function of human mitochondria have been extensively 

studied since the late 1940s [26,27]. mtDNA was discovered in 1963 and was 

characterised in more detail in 1967 [28]. The complete sequence of mtDNA was 

identified in 1981 and subsequently corrected in 1999, but detailed knowledge of 

mtDNA replication, transcription, translation and maintenance remain lacking [20]. 

Circular double-stranded mtDNA consists of 16568 bp coding 37 genes: 2 RNAs, 22 

tRNAs and 13 structural proteins of the OXPHOS system. Each mitochondrion contains 

2-10 molecules of mtDNA; thus, one nucleated cell can have 103-104 copies of mtDNA,

depending on the specific cell type [19,29,30]. Within a single cell, sequences of the 

mtDNA molecules may be identical (homoplasmic) or distinct (heteroplasmic). 

Identical mtDNA molecules are packed into clusters (nucleoids) tethered to the inner 

mitochondrial membrane; this clustering is thought to facilitate mtDNA segregation 

[31]. Notably, it seems that nucleoids rarely change and/or share genetic material 

[32,33].
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Mitochondria have several functionally different microcompartments: the

mitochondrial outer membrane (OM), inner membrane (IM), intermembrane space 

(IMS), matrix, cristae membrane (CM), intra-cristal space and inner boundary 

membrane (IBM). The IM forms disk-like structures that protrude into the matrix 

(cristae) and extend the IM surface; the remaining portion of the IM is called the IBM 

(Fig. 1) [34].

Fig. 1 The structure and composition of mitochondrial microcompartments

(A) A schematic view of a mitochondria with its main compartments: OM = outer membrane; 

IM = inner membrane; IMS = intermembrane space; CM = cristae membrane; CJ = cristae 

juntion. (B) Electron micrograph from a cryo cut mitochondrion with antibody probing of 

OXPHOS complexes. The localization in the cristae membrane is obvious. Inset: detailed view 

of the two IM microcompartments CM and IBM connected by the CJ. Scale bar: 150 nm. (C) 

Localization of OXPHOS complexes and supercomplexes in the CM [34].

Studies have shown the presence of tiny tubular junctions between cristae and 

the IBM, which further supports the hypothesis of a specific cristae microcompartment 

with a different pH value [34]. These microcompartments most likely differ in their 

membrane composition, especially in their lipid and protein contents. In general, the 

lipid fluid mosaic of membranes can drive membrane protein redistribution and/or 
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structural changes of lipid-binding domains. Cardiolipin, located exclusively in the 

inner mitochondrial membrane of eukaryotic cells, has been suggested as a stabilising 

factor of respiratory supercomplexes (all respiratory chain complexes and ATPase) 

although it has no adverse effect on their individual function and can be replaced by 

phospholipids with similar biochemical and structural characteristics [35,36]. 

Nonetheless, the mutation of TAZ, a nuclear gene involved in the formation of the 

mitochondrial membrane lipid milieu, has been described as an evident destabilisation 

factor for OXPHOS supercomplex assembly [37,38].

In addition to the foundational subunits that comprise every respiratory complex, 

several other nuclear-encoded ancillary scaffolding proteins that participate in their 

appropriate assembly processes are required. However, they do not belong to the 

structural constituent elements of OXPHOS. Complexes of the OXPHOS system, 

containing functionally indispensable prosthetic groups and metals in reactive enzyme 

centres, associate within the IM to form a higher-level of organised clusters called 

respirasomes, which enhance the effectiveness of the electron transport chain (ETC)

[35]. Such respirasomes have been observed in many organisms, including fungi, plants 

and mammals [39]. The most frequent types of supercomplex assemblies are clusters of 

complexes I-III-IV, which have variable stoichiometries, and the dimeric or oligomeric 

forms of ATPase [18,40,41]. In addition, clusters comprising complex I and ATPase 

have been observed [42]. These supermolecular assemblies enable more efficient 

functioning of the respiratory complexes, leading to better substrate channelling, an 

increase in overall stability and a decrease in ROS formation. Recently, the Rcf1

(human homolog HIG2A) and Rcf2 genes, necessary for supercomplex assembly and 

stability, have been identified in yeast and shown to support the assembly and activity 

of the COX enzyme [43,44].

Although the complexes of the OXPHOS system are distributed over the entire 

IM, the majority of them are situated in the CM (Figure 1C). Nevertheless, the mobility 

of supercomplexes between the CM and the IBM is apparently rare due to spatial 

constraints and/or specific conditions related to the microcompartments. The extent that 

OXPHOS supercomplexes of the IBM differ in their composition and/or 

posttranslational modifications from those embedded in the CM can be hypothesised, in 

addition to predictions of whether the changes are significant enough to influence the 

local IBM potential and/or import of proteins or other substances into the mitochondria. 

In addition, the possibility of heterogeneous values of PMF within particular cristae of 
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single mitochondria needs to be confirmed [34].

The structure of cristae junctions is thought to support formation of a diffusion 

barrier between the intracristal space and the IMS; functionality of the barrier could be 

maintained by complex proteins such as MINOS/MitOS/MICOS, OPA1 or dynamin 

[45,46]. Additionally, it is clear that proteins involved in mitochondrial fusion and 

fission (OPA1, mitofilin, dynamin) and the spatial arrangement of cristae (ATPase, 

MINOS/MitOS/MICOS) determine not only the mitochondrial ultrastructure but also 

the conditions of mitochondrial homeostasis, depending on the specific metabolic needs 

of the cell [47-50] (Fig. 2).

Fig. 2 Organisation of the endoplasmic reticulum (ER) – mitochondria network in yeast

The ER and the OM, as well as the OM and IM are connected by protein-protein interactions. 

This network of interactions promotes the transport of lipids and calcium ions between the 

compartments. The figure shows a schematic view of protein complexes that are involved in 

membrane contact sites. The ER – mitochondria organizing network comprises a branched 

chain of physical and genetic interactions that structurally and functionally link three 

intracellular membranes and the adjacent aqueous compartments from the mitochondrial matrix 

to the lumen of ER. Key players in this network are the membrane-bridging (ERMES) and the 

mitochondrial inner-membrane organizing system (MINOS) complexes. The ERMES 

physically links the OM with the ER membrane. The MINOS is involved in connecting the two 

subdomains of the IM, the IBM and the cristae. MINOS deficiency leads to detachment of 

cristae from the IBM and loss of cristae junctions. Additionally, MINOS components are 

engaged in multiple interactions with the OM [47].

The intracristal compartment plays a role in an early stage of apoptosis because 

it serves as a pool of cytochrome c, which is released to the IMS after cristae 
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remodelling. The cristae remodelling event and regulation of the cytochrome c efflux 

are complicated mechanisms that involve many mitochondrial proteins, such as OPA1, 

rhomboid PARL and prohibitin. RNAi-mediated deficiency was documented to change 

typical vesicle- and tubular-like cristae to onion-like structures similar to those found in 

OPA1- and prohibitin-deficient cells. Mitofilin-deficiency leads to a cytochrome c 

release to the IMS, loss of cristae junctions in mitochondria and fragmentation of the 

mitochondrial network [51-53]. Three years ago, the first mutation in nuclear gene 

AIFM1, a mitochondrial FAH-dependent NADH oxidase required for proper OXPHOS 

function and mitochondrial programmed cell death, was characterised [54]. AIFM1 is 

an interacting partner of OPA1, which is required for the assembly and stability of 

respiratory complexes I and IV, fusion of the mitochondrial network and sequestration 

of cytochrome c [55]. These data emphasise that in addition to the functions of 

individual mitochondrial proteins, important interactions with other molecules taking 

place in the mitochondria.

Despite the highly organised bioenergetic microcompartments of the ETC, the 

efficiency of the OXPHOS process is reduce by interactions between the electrons and

inappropriate organic or inorganic electron acceptors, proton leaks, reverse electron 

transport, motility and solute transport [34]. The assembly of OXPHOS complexes is 

dependent on the membrane potential (ATPase dimerisation) and is fixed by inhibitory 

and regulatory factors [56]. The membrane potential also participates in the 

establishment of cristae shape; it is also influenced by the physical and chemical 

properties of the inner mitochondrial membrane, which confer an electrical charge on 

the membrane surface. The potential is especially influenced by the presence of 

negatively charged acidic groups [34].

In summary, the proper function of the bioenergetic compartments is modulated 

by many factors, such as the activities of energy-converting supercomplexes, physical 

and chemical properties of the membrane, the kinetic and electrostatic barrier formed by 

presence of a water layer in close proximity to the membrane, proper shape of the 

mitochondrial cristae decreasing proton losses, heterogeneous mosaic composition of 

the membrane phospholipid bilayer and variation in proteins or substrates diffusing to 

the membrane as a response to the demands of the cell. In addition, the maintenance of 

mtDNA and mitochondrial function is regulated by many other molecular factors that 

are responsible for mtDNA replication, transcription, signalling pathways, fusion and 

fission, protein assembly, biogenesis, renewal of the counter-balanced mitochondrial 
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nucleoside pool and transport of solutes, metabolites and proteins [34].

Mitochondrial dysfunction associated with impaired mitochondrial structure and 

function is increasingly reported as a primary or attendant phenomenon in the pathology 

of many human diseases affecting muscles, brain, liver, kidneys, vision, hearing or the 

cardiovascular system; for example, mitochondrial diseases, diabetes, cancer, 

neurodegenerative disorders, ageing and others [25,57]. As mtDNA is in close 

proximity to respiratory chain reactions, it is more susceptible to oxidative damage 

because of the lack of histones and presence of less effective DNA repair mechanisms; 

thus, the increased levels of ROS can induce mutagenesis in mtDNA.

3.2 OXPHOS	system

The OXPHOS system is composed of organised multimeric protein enzyme 

centres and consists of an ATPase, F1F0-ATP synthase, complex V, and four electron 

transport chain complexes: complex I is an NADH:ubiquinone oxidoreductase; complex 

II is a succinate dehydrogenase; complex III is a ubiquinol cytochrome c reductase (bc1 

complex) and complex IV is a cytochrome c oxidase (COX). These complexes are 

tightly coordinated and manage the direct connection of electron and proton transport, 

which results in the generation of ATP (Fig. 3) [34,39,58].

Fig. 3 Generation and consumption of the mitochondrial proton motive force

Electrons harvested from oxidizable substrates are passed through the respiratory chain in an 

exergonic process that drives proton pumping by respiratory complexes I, III and IV. The 

resulting electrochemical proton gradient across the inner membrane can be dissipated in two 

ways: (1) through ATPsynthase, where relieving the proton motive force drives ADP 

phosphorylation and 2) via proton leak pathways that do not generate ATP but regulate 

physiological process including nonshivering thermogenesis and perhaps glucose-stimulated 
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insulin secretion and protection from oxidative damage. Proton leak pathways are stucturally 

represented by the adenine nucleotide translocase (ANT), which can mediate both basal and 

inducible proton conductance [58].

The enzyme complexes of OXPHOS accept electrons from several electron 

carriers that are either intrinsic parts of the OXPHOS system, such as cytochrome c and 

ubiquinone, or extrinsic electron donors, such as FADH2 and NADH++H+. NADH++H+

produced in the cytosol is delivered to the mitochondria by the glycerol-phosphate and 

malate-aspartate shuttles. Once delivered, the reduced coenzymes proceed to either 

respiratory complex I (NADH++H+) or complex II (FADH2), where the electrons are 

transferred to the mobile electron carrier coenzyme Q. Coenzyme Q also accepts 

electrons from other flavoprotein-linked dehydrogenases that are participating in the 

oxidation of fatty acids and branched-chain amino acids. Complex I couples the transfer 

of electrons from NADH++H+ to ubiquinone with the ejection of protons from the 

matrix to the IMS. Complex II oxidises FADH2 to FAD to form ubiquinone and ensures 

the transfer of protons from the matrix to the IMS. Reduced coenzyme Q is oxidised by 

complex III, and the mobile carrier cytochrome c accepts the obtained electrons, which 

will then be transferred to complex IV. Thus, reduced ubiquinol supplies electrons from 

complexes I and II to complex III, which further transfers them to complex IV via the 

mobile carrier cytochrome c. Complex III also ensures reduction of ubiquinone into 

ubiquinol with an associated uptake of protons from the matrix to the IMS, as well as 

oxidation of ubiquinol via semiquinone to ubiquinone. Complex IV is the terminal 

electron acceptor and catalyses the reduction of oxygen, yielding a water molecule. 

Complex IV uses electrons from cytochrome c to reduce the molecular oxygen and 

produce water, which is also accompanied with consumption of protons. At the same 

time, the transport of other protons via complex IV occurs from the matrix to the IMS; 

this transport recovers the proton electrochemical gradient, as it is affected by ATP 

production. ATPase catalyses the spontaneous formation of ATP, which is subsequently 

released to the IMS due to conformation changes of ATPase, through utilisation of Δpm

energy provided via proton translocation to the matrix [59,60].

3.2.1 Regulation	of	OXPHOS	system

Three OXPHOS complexes, I, III and IV, couple electron transport with proton 

pumping from the mitochondria matrix into the IMS. This proton transport generates an 

electrochemical gradient, also called the mitochondrial proton motive force (PMF, 
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Δpm), and the positive charge of the IM facing the IMS. The generated Δpm is used in 

ATP synthesis and in the transport of chemical agents from inside or outside the 

mitochondria, for example, metabolites, proteins and ions. The electrochemical gradient 

consists of two interdependent contributions: an electrical component ΔѰm (the 

mitochondrial membrane potential) and a chemical component ΔpH (the pH across the 

IM). A hypothesis determining three zones of ΔѰm has been postulated [60]. Normal 

ΔѰm values measured in intact cells or intact organs can range from 80-160 mV. In 

general, the ΔѰm value of maximal ATPase activity is approximately 100-120 mV, but 

the normal range is approximately 100-140 mV depending on the cell type. In 

conditions of cellular stress, when proton pumps are greatly dephosphorylated, the 

activity of OXPHOS complexes can be maximised to generate ΔѰm values greater than

200 mV. This value has an inhibitory effect on further proton pumping and also plays a 

role in type II apoptosis. A ΔѰm value greater than 150 mV leads to structural changes 

in complexes I, III and IV and inhibition of proton pumping, which hampers the 

excessive formation of free radicals. In addition, ΔѰm is physiologically influenced by 

the metabolic state of a specific tissue (ATP/ADP), variable protein composition, 

inverse correlation to increasing age and the specific experimental conditions used 

during its measurement; for example, isolated mitochondria compared with intact cells 

[61,62].

The function of mitochondrial OXPHOS is driven by a controlled flow of 

electrons that are derived from nutrients or energy stores of the organism. It functions to 

synthesise ATP from ADP and inorganic phosphate by generating and utilising a 

chemiosmotic gradient of H+ coupled with a reduction of oxygen to water. The proton 

gradient facilitates metabolite and proton transport across the IM. The basic principles 

of OXPHOS system function were proposed by Mitchell`s chemiosmotic theory, which 

connects electron transport and ATP synthesis with endergonic proton pumping 

activities of respiratory complexes. This connection is imperfect due to spontaneous 

proton leaks, which lower the Δpm value, irrespective of ATPase activity. Because of 

the resulting Δpm decrease, a proton leak is supposed as a protective factor against free 

radical formation that does not require substantial impairment of ATP synthesis [58]. 

The precise mechanism that ensures proton leakage is not known, but several agents are 

considered, including uncoupling proteins (UCPs), nucleotide transporters (ANT) and 

lipids of the membrane bilayer. Proton leaks are physiologically controlled at multiple 

levels and include biochemical (Ca2+ cycling, proteins, fatty acids, thyroid hormones, 
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cytokines, retinoid acid), transcriptional (PPARs, MyoD, SREBP-1c, Sirt1), 

translational (glutamine) and proteolytic events. The dissipation of Δpm is used by UCPs 

to maintain thermogenesis, thus the membrane potential can be adjusted in this way 

[63,64]. Deficiency of UCPs has been identified in obesity, type 2 diabetes mellitus, 

cancer, cardiovascular diseases, pathologic immune responses related to disturbances of 

apoptotic signal pathways and age-related diseases caused by oxidative stress [58,65]. 

Other processes are proposed to affect proton leakage, for example, electron slipping in 

OXPHOS system when the concomitant transport of protons does not occur [39,61].

Higher values of ΔѰm support the production of reactive oxygen species, induce 

accrual of mtDNA mutations (often multiple deletions) and accelerate ageing. 

Mitochondrial function usually deteriorates with age, which is associated with ETC 

defects [24]. However, a straightforward causal relation between ROS formation and 

ageing has not been indisputably confirmed [66]. Although some sources of 

mitochondrial ROS have been identified, many questions remain, such as the precise 

site of mitochondrial ROS production and the mechanisms that maintain physiological 

levels of ROS within the mitochondria and in close proximity to them [67]. The 

contribution of ROS to onset of pathological processes is a widely discussed topic 

[68,69]. 

Mechanisms regulating OXPHOS affect the availability of substrates, including 

NADH++H+, ADP, and phosphate, as well as the generation of PMF. However, 

NADH++H+ is the least limiting factor of OXPHOS function because other metabolic 

pathways can supply it. Oxygen levels are strongly limiting when tissue hypoxia occurs. 

The efficiency of the OXPHOS system is controlled not only by particular assembly 

factors but also by mitochondrial transporter proteins, uncoupler proteins and inhibitory 

agents and the ratio of ATP produced to oxygen consumed per number of transported 

electrons [59].

The proper function of the OXPHOS system is provided by PMF; supercomplex 

formation, such as tissue specific isoforms of particular subunits of ETC; cell signalling 

pathways, such as reversible phosphorylation; ATP/ADP allosteric inhibition; and 

regulatory mechanisms, such as posttranslational modifications, including the 

acetylation and oxidation of methionines and the competitive inhibition of cytochrome c 

oxidase by nitric oxide. cAMP and Src signalling mediate the phosphorylation of 

OXPHOS components, and a Ca2+- dependent mechanism takes part in their 

dephosphorylation. Calcium is one of the most valuable signals for mitochondrial 
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activation. At the beginning of type II apoptosis, transitional membrane 

hyperpolarisation occurs repeatedly to cause higher production of free radicals, which 

are assumed to be major triggers of the apoptotic process. The IM depolarisation results 

in a lack of protons for ATP synthesis, which is needed to maintain a balanced energy 

state in the cell. This phenomenon indicates that the phosphorylation state of respiration 

complexes is the main mechanism determining OXPHOS activity, while ΔѰm regulates 

only the function of proton pumps [60].

In addition to the OXPHOS system, which is the primary source of ATP, other 

metabolic pathways are able to supply cells with the molecule; these pathways include 

the citric acid cycle, β-oxidation of fatty acids, pyruvate oxidation and glycolysis. The 

key molecule of the TCA cycle is acetyl-CoA, which is supplied by oxidative 

decarboxylation of pyruvate and catalysed by PDH. The amino acid glutamine can serve 

as an alternative substrate for the TCA cycle following its conversion into glutamate 

and α-ketoglutarate, a TCA cycle intermediate, in the mitochondrion [70]. The TCA 

cycle is the final metabolic pathway for glucose, fatty acids and some amino acids, and 

it yields FADH2 and NADH++H+ that can be processed by the OXPHOS system. 

Increased mitochondrial levels of Ca2+ stimulates TCA cycle dehydrogenases and 

activity of PDH and ATPase. The levels of mitochondrial and cytoplasmic Ca2+ are 

regulated by many factors, including hormones, growth factors and electrical signals,

and they are maintained by Ca2+ protein transporters [59,70].

3.3 Mitochondrial	disorders

The combined incidence of inherited metabolic disorders is more than 1 in 500 

live births, and mitochondrial disorders are among the most abundant of these [71]. In a 

strict sense, mitochondrial disorders are caused by defects of genes encoding the 

components directly involved in ATP synthesis and the electron transport chain, 

medically known as a primary deficiency of the affected enzyme complex. Causal 

genetic disturbances in any other genes involved in the maintenance of mitochondrial 

homeostasis are termed secondary mitochondrial disorders or secondary respiratory 

chain dysfunctions [72]. Isolated and combined defects of respiratory chain enzymes are 

also signs of primary mitochondrial disorders [73,74]. The genetic basis of 

mitochondrial disorders is still unexplained in a large number of patients despite 

advances in applied research methodology [3]. To date, approximately 1500 proteins 

have been identified as potential causes of mitochondrial disorders; pathologic 
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mutations were identified in approximately 300 of the corresponding mitochondrial and 

nuclear encoded genes [75,76].

3.3.1 Clinical	presentation	of	mitochondrial	disease

Mitochondrial disease can present at any age, affect any tissue and manifest any 

symptom [77]. Mitochondrial disorders predominantly affect tissues with higher energy 

demands, such as the heart, skeletal muscles and central nervous system, although other 

organs are often affected, for example, the retinas, kidneys, liver, gastrointestinal tract, 

bone marrow, and endocrine system [72,78-80]. Neuromuscular manifestation is the 

most common and typical clinical sign of mitochondrial disorders [30,81-83]. 

Manifested clinical symptoms and commonly affected organs in patients with 

mitochondrial disorders are summarised in Table 1. These symptoms and organs show 

that mitochondrial disorders represent a very heterogeneous group that presents poor 

phenotype-genotype correlation, which is often observed even in patients within the 

same family (POLG1, OPA1) [31,84,85]. One mutation may present a variable 

spectrum of symptoms and, conversely, the same signs of a particular mitochondrial 

disorder can be caused by mutations in diverse genes, including TYMP, RRM2B, MT-

TL1, MTTV and POLG1 [86-89]. For this reason, clinical symptoms and findings of 

metabolic and functional assays must be considered when a mitochondrial disorder is 

suspected [90].

Both nuclear and mitochondrial genetic backgrounds contribute to the phenotype 

of patients suffering from a mitochondrial disorder [91-93]. Thus, many genetic factors 

can impair diagnosis of mitochondrial disorders; for example, the tissue specificity of a 

disorder (tissue specific expression of genes, somatic mosaicism), variability in gene 

copy number affecting the genomic neighbourhood, identification of sequence variants 

with unclear effects on gene expression and/or function, potential roles of epigenetic 

factors, possibility of variable penetrance, expression of a disease-gene being caused by 

modifier genes or a rarely occurring reversible disease phenotype. At present, the 

resulting clinical effect of these genetic factors is difficult to determine by routine 

diagnostic procedures [94] and suggests why the diagnosis of mitochondrial disorders is 

challenging. However, several investigation flowcharts regarding the clinical and 

laboratory diagnosis of mitochondrial disorders have been proposed [24,95-99], 

although none are used as a general compulsory guideline. Despite these difficulties, 
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some pieces of basic information regarding the management, diagnosis and therapy of 

mitochondrial disorders are available online at www.mitosoc.org [100].

Table 1 The most common clinical symptoms of mitochondrial disorders

Syndromes and symptoms of patients with mitochondrial diseases adapted from [24,72,101]

Red-flag findings

Neurologic: stroke-like episodes, encephalopathy (recurrent or with low/moderate dosing 
valproate), epilepsia partialis continua, myoclonus, MRI findindings consistent with Leigh 
disease, characteristic MRS  peaks (lactate, succinate)

Cardiovascular: hypertophic cardiomyopathy, dilated cardiomyopathy with muscle weakness, 
Wolf-Parkinson-White syndrome

Opthalmologic: pigmentary retinal degeneration, opthalmoplegia, ptosis, sudden- or insidious-
onset optic neuropathy/atrophy

Gastroenterologic: unexplained or valproate-induced liver failure, severe dysmotility, pseudo-
obstructive episodes

Laboratory findings: 3-methylglutaconic aciduria (mainly with neutropenia and 
hyperammonemia), lactic aciduria, excretion of Krebs cycle intermediates, level of lactic acid 
in blood/CSF, level of serum and CSF alanine

Others: a newborn/infant/young child with unexplained hypotonia/weakness/failure to thrive, 
myopathy, exercise intolerance

Nonspecific findings

Constitutional: short stature, intrauterine growth retardation, microcephaly, muscle wasting, 
brain malformation

Neurologic: hypotonia, infantile spasms, intractable epilepsy, unexplained movement disorder, 
ataxia, hearing loss (sensorineural), axonal neuropathy, status epilepticus with an additional 
red-flag or nonspecific feature, episodic coma,  dystonia, pyramidal signs, hemiparesis, chorea, 
spasticity

Opthalmologic: cataract

Gastroenterologic: chronic or cyclic vomiting

Dermatologic: symmetric lipomatosis, hypertrichosis

Endocrine: diabetes mellitus, hypothyreoidism

Imaging: unexplained central nervous system atrophy (cerebral, cerebellar), unexplained 
leukodystrophy

Family history: multigenerational maternal inheritance pattern of migraine 
headaches/depression/anxiety disorder

Others: congenital nephrotic syndrome, renal tubulopathy, pancytopenia or failure of specific 
blood cell lines (sideroblastic anemia)

3.3.2 Causative	mutations,	inheritance,	prevalence

Mitochondrial disease can be classified according to several criteria regarding 

the phenotypic, genetic, functional and/or diagnostic properties. Considering functional 

and genetic information, primary and secondary mitochondrial diseases can be grouped 

as follows [16,22,28,102]:
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 Mutations in mtDNA genes encoding:

 structural subunits of the OXPHOS system

 mitochondrial tRNAs and rRNAs

 Mutations in nuclear genes encoding:

 proteins important for formation of the inner mitochondrial membrane lipid 

milieu, genetic factors driving the maintenance (disorders of intergenomic 

communication) and expression (dNTP pool maintenance, replication, 

transcription, translation) of mtDNA, mitochondrial proteins with functions 

indirectly linked to OXPHOS, genetic factors responsible for mitochondrial 

protein import, synthesis and metabolism (mitochondrial proteases etc.) and 

for mitochondrial dynamics (fusion, fission, mobility)

 structural subunits, assembly and/or ancillary factors of the OXPHOS 

system, enzymes of metabolic pathways and other genetic or signalling 

factors that have effects inside the mitochondria and/or indirectly influence 

OXPHOS function

Because of the dual genetic control of mitochondria, the dysfunction of 

mitochondrial processes can be caused by mutations in mtDNA or the nuclear genome. 

These possibilities imply that the inheritance of mitochondrial disorders can be either 

maternal, at the level of mtDNA, or Mendelian, at the level of nuclear genes presenting 

as autosomal recessive, autosomal dominant or X-linked inborn mutations. Disorders of 

the OXPHOS system, including both primary mitochondrial and nuclear defects, are 

considered to occur at an incidence rate of 1 in 5000 live births [103]. In paediatric 

patients, mtDNA mutations give rise to only 10-25% of defects of the OXPHOS system 

[82,104]. As opposed to mutation in mtDNA, mutations of nuclear genes are more 

frequent, typically fatal and can occasionally lead to physical abnormalities 

[83,105,106]. OXPHOS defects caused by mutations in nuclear genes usually present 

autosomal recessive inheritance [98,107]. The first mutation in a nuclear encoded gene 

(ANT1) that severely deteriorated mitochondrial function was characterised in 2000 

[108].

Epidemiological studies are absolutely dependent on the accurate diagnosis and 

classification of findings. Currently, canonical criteria applicable to the diagnosis of 

mitochondrial disease combine both laboratory and clinical findings, but their 

overriding shortcoming lies in the scarce application of clinical studies, as their 
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diagnostic trustworthiness cannot be determined [104,109]. Additionally, the 

concluding prevalence data could be influenced by the disunited application of 

diagnostic criteria for primary mitochondrial disease in adults and children, especially 

when studies have enrolled individuals without clearly identified pathogenic mutations 

[81,82,110]. This limitation means that some patients present with few discernible 

symptoms, so that the representative clinical criteria of mitochondrial disorders are not 

fulfilled thoroughly, leading to doubt about the primary cause of their disease 

[99,104,109]. For these reasons, well-designed longitudinal studies monitoring the 

health status of patients with suggested mitochondrial disease are needed to show the 

specificity of the criteria for primary mitochondrial disorders, as illustrated by Morava 

and co-workers [109].

3.3.3 mtDNA	focus

Until recently, the prevalence of mtDNA mutations was difficult to estimate 

because of clinically asymptomatic carriers in the worldwide population. Based on 

recent findings, the de novo mtDNA mutation rate, determined by the detection of ten 

frequent mtDNA pathogenic mutations in the general population, was assessed to be 

1:1000 in neonates. At least one in 200 healthy individuals of the background 

population carries a pathogenic mtDNA mutation that may potentially cause disease in 

the offspring of female carriers [111]. This finding supports the results of another recent 

study, which used a next-generation parallel sequencing method to detect a very low 

level of heteroplasmy in DNA samples from both blood and skeletal muscle in all tested 

healthy individuals [40]. These studies are important because further clinical monitoring 

of the investigated individuals would make the known prevalence of mitochondrial 

disorders more precise. In addition, the effect of mtDNA mutations may be modulated 

by frequent and closely related mtDNA polymorphisms (haplogroups) whose precise 

role in mitopathy has not been conclusively explained [24,111-113]. Over 100 

pathogenic point mutations and 200 rearrangements (deletions and/or insertions) of 

mtDNA have been characterised since the first mtDNA mutations were described in 

1988 [72]. The prevalence of mtDNA mutations causing a disease phenotype was 

suggested to be approximately 1:10900-14300 in adults carrying mutations in 

mitochondrial genes encoding mitochondrial tRNAs in approximately 50% of cases 

[112,114-116].

The maternal mode of inheritance is characterised by transmission of a mutation 
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from an affected mother to her children and not from affected fathers to their children. 

The second typical feature of maternal inheritance is a mitochondrial bottleneck, which 

explains the random shift of mutational load that occurs in the course of segregation of 

mtDNA copies during oocyte development, in foetal tissues and/or anytime in 

adulthood. By this mechanism, an asymptomatic mother with low heteroplasmy levels 

could give birth to a clinically affected child with a higher copy number of mutated 

mtDNA molecules. The mitochondrial bottleneck theory clarifies the probable 

mechanism of a mutation threshold, as well as tissue specificity that can be associated 

with mutations in mtDNA. The mutation threshold depends on the type of mutation, for 

example mtDNA rearrangements or point mutations [31]. Large-scale mtDNA deletions 

are usually sporadic and invariably heteroplasmic, but they can also be secondary with 

respect to a primary nuclear gene defect. In contrast, mtDNA point mutations are 

usually maternally inherited and may be homoplasmic or heteroplasmic [30]. 

Nonetheless, the majority of mtDNA mutations are heteroplasmic [117]. The disease-

indicative level of mutated mtDNA is predicted to be approximately 60-90% [20], but 

heteroplasmic mtDNA mutations may also present an unusual dominant disease 

phenotype at 25% of the mutation load in affected tissues [118]. Additionally, a higher 

mtDNA mutation load corresponds to a more severe phenotype of adversely affected 

tissue. This correlation explains why heteroplasmic mtDNA mutations confer more 

heterogeneous clinical manifestations than homoplasmic mutations [30,119,120]. Thus, 

assessment of the proportion of mutated mtDNA and characterisation of mtDNA 

deletion breakpoints is highly desirable [20,75]. Pathogenicity criteria for homoplasmic 

and heteroplasmic mtDNA mutations have been proposed by several authors 

[20,119,121,122] and should be considered to avoid incorrect assessment of SNPs, as 

illustrated by the mitochondrial variant m.8296A>G [123,124].

The effect of mtDNA mutations may be diluted or even disappear as a growing 

number of cultured cell passages are used for diagnosis of mitochondrial disorders, as 

substantiated in fibroblasts [106]. Mitochondrial defects can sometimes be absent in 

patient muscle tissue samples or in cultured cells (fibroblasts, muscle) despite a proven 

mutation and frequent involvement of the specific tissue in disease pathology; thus, 

absence cannot rule out a primary mitochondrial deficiency as in some cases the 

examined tissue could not have an OXPHOS defect [75,83,98,125]. Therefore, both 

genetic factors and the patient phenotype should be considered if pathogenicity of any 

identified mitochondrial and/or nuclear sequence variant is suggested [106].
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3.3.3.1 Genetic	counselling

Several issues affect the genetic counselling of families with mitochondrial 

disorders. Specifically, the mutation load of mtDNA present by amniocytes or chorionic 

villi can be completely different from that in other foetal tissues and may be startlingly 

variable due to random mitotic segregation [49,119]. Consequently, routine genetic 

counselling of mitochondrial disorders is currently restricted to known nuclear gene 

defects and/or clearly quantifiable OXPHOS deficiency in examined tissue samples 

because pathologic mutations could be excluded from mtDNA [126,127]. This scenario

implies that conventional prenatal diagnosis (PND) relating to the transmission of 

mtDNA mutations from an affected mother to her progeny is problematic and primarily 

designated for de novo mtDNA disease or carriers with a low mtDNA mutation load. 

However, it would be highly effective to perform preimplantation genetic diagnosis 

(PGD), a contemporary laboratory technique, in carriers with a higher mtDNA mutation 

load because in many cases they are able to ensure the birth of healthy offspring 

[41,45]. Several pioneering case studies with successful preimplantation diagnosis have 

been published [46,128-130]. In a recent study, an affected mother with low mutation 

heteroplasmy in her muscle that was absent in her blood had a very low probability of 

passing the disease phenotype to her child [130]. Additionally, an asymptomatic child 

was born after a preimplantation genetic diagnosis confirmed a low mtDNA mutation 

load of m.3243A>G in the blastocyst [129]. 

However, PND and PGD methods cannot be used to prevent the transmission of 

homoplasmic mutations [35]. This limitation could be overcome by methodologies 

using the replacement of mutated mtDNA with wild-type mtDNA, such as germinal 

vesicle transfer, metaphase chromosome transfer, pronuclear transfer and ooplasmic 

transfer. Hopefully, further research exploring laboratory methods to prevent the spread 

of mitochondrial disease will show new trends and refinements for the preimplantation 

procedure, as well as for genetic counselling [42].

3.4 Laboratory	diagnostics	of	mitochondrial	disorders

The close interdisciplinary collaboration of medical specialists is needed to 

correctly diagnose mitochondrial dysfunction. Therefore, knowledge of family history, 

clinical evaluation of manifested symptoms and careful consideration of laboratory 

results is vital [24]. If they are available, it is important that laboratory assays are 

performed on affected tissue samples [127]. The outcomes of these assays can confirm 
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suspicion of mitochondrial aetiology of disease, if deficiency of one or more enzymes 

of the energy transport system is detected. Notably, a combined dysfunction of the 

OXPHOS system is more common [131]. If the affected tissue samples are not available 

or reduced efficiency of the OXPHOS system is not accompanied by a specific enzyme 

defect, mitochondrial disorder cannot be completely excluded. However, findings can 

be distorted by the poor clinical status of a patient, mtDNA depletion (cut off: <50% of 

age matched control) or omission of a secondary mitochondrial dysfunction because of 

other types of primary disorder, such as muscular dystrophy [75,101].

None of the laboratory investigations alone can provide results to inquiring 

clinicians because particular biochemical markers, e.g., lactate, can be normal or 

borderline in patient samples and can fluctuate noticeably during metabolic crises. 

Conceivably, wrong conclusions can be drawn from any borderline values, especially 

when appraising low or mildly reduced activities of respiratory enzymes [127,132,133]. 

This is an unfortunate implication of the clinical heterogeneity of mitochondrial 

diseases. 

3.4.1 Basis	of	biochemical	and	follow-up	investigations

Using fresh (preferably) or frozen bioptic patient tissues, including muscle and 

liver, or cultured cells such as fibroblasts and myoblasts, biochemical methods are used 

to determine the function of the OXPHOS system or the rate of oxidation of specific 

substrates (malate, pyruvate, glutamate, succinate, ascorbate, TMPD), ATP production 

and oxygen consumption, as well as the activity of individual respiration complexes of 

the OXPHOS system. Functional assays of PDH, enzymes of the TCA cycle and β–

oxidation, coenzymes and transmembrane carriers can be helpful to identify the type of 

mitochondrial dysfunction [98,101]. Notably, measurements of respiratory enzyme 

activities performed on frozen tissue samples should be assessed with caution [134]. 

Total cellular ATP content is a very poor marker of mitochondrial dysfunction; thus,

determining the cause of variable ATP levels requires further experiments [61].

The key metabolic hallmarks of mitochondrial disorders are elevation of lactate 

(blood/serum, CSF or urine) and pyruvate and low or high levels of acetone, ketones 

and the lactate/pyruvate ratio, as well as other metabolites [72]. Lactate acidosis, 

originating from NADH++H+ accumulation, and less effective pyruvate utilisation cause 

overall fluctuations in cellular pH, which can increase the production of ketone bodies 

due to changes in the lactate/pyruvate and NADH+/NAD+ ratios, as well as alterations in 
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the concentration of TCA cycle intermediates. Such metabolic disturbances support the 

conversion of pyruvate to alanine, mediated by alanine aminotransferase, whose 

elevated levels are frequently detected in patients with defects in the OXPHOS system 

[23,135,136]. Mitochondrial disease can also be indicated by worsened β-oxidation, 

which is frequently signalled by an increase in the plasma acylcarnitine level [24]. 

In a few patients with mitochondrial disorders, increased concentrations of 

lactate could affect the oxidation of proline, leading to its elevation [137]. Glycine and 

sarcosine may also be increased in mitochondrial dysfunction [98]. Redox imbalance 

has been detected in the white blood cells of patients with mitochondrial disease and 

organic acidaemias manifesting hypocitrullinaemia and glutathione deficiency [138]. 

Moreover, diabetes is a common feature in adult patients with OXPHOS disorders and 

reflects impaired glucose signalling and cellular ATP homeostasis including GLUT1, 

phosphofructokinase, pyruvate kinase, ATP/AMP ratio or AMP-activated protein 

kinases [70]. Disturbances of the creatine-phosphocreatine-creatine kinase system, 

which functions in intracellular ATP homeostasis, can accompany mitochondrial 

deficiency when muscle or brain tissues are affected [139].

All the biomarkers mentioned, including lactate and pyruvate, should be 

considered simply as signs of respiratory chain dysfunctions that lack significant 

sensitivity and specificity to primary or secondary mitochondrial diseases [21,101,133]. 

For mitochondrial dysfunctions, the relative ratios of enzyme activities and/or 

biochemical analyses can be informative, for example, the ratios of lactate/pyruvate, 

alanine/lysine, alanine/phenylalanine + tyrosine, miscellaneous organic acids/creatinine, 

proportion of certain acyl-carnitine esters, some neurometabolites/creatine and 

phosphocreatine/inorganic phosphate [75,98]. Thus, altered concentration values of 

additional mitochondria-related biomarkers strengthen the diagnosis of mitochondrial 

disorders, although attention must be paid to the selection of compared markers, as they 

do not have to correlate at all, as exemplified by blood lactate/plasma creatine or 

respiratory chain activities/plasma creatine [139].

Proton circuit (PMF) and respiration rate measurements are the most employed 

techniques used to monitor mitochondrial function in isolated mitochondria and in intact 

cells. ΔѰm comprises the majority of PMF, and its absolute value can be monitored as a 

change in the distribution of membrane-permeable cations with the use of isolated 

mitochondria. The measurement of relative ΔѰm values is easier because of the use of 

living cells and voltage-dependent fluorescent probes accumulating in mitochondria 
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[61]. As documented, ΔѰm depends on the activity of charged or electroneutral 

chemical substances transported across the IM [60]. The detection of ΔѰm provides 

additional information on mitochondrial function and structure, as well as on the 

metabolic state of an intact cell, which is commonly monitored by fluorescent probes 

such as TMRM, TMRE and R123. Additionally, this fluorescent technique also enables 

detection of ΔѰm generated by particular respiratory chain complexes [61,76,140].

The activity of respiratory enzymes is routinely measured by spectrophotometric 

analyses that usually use citrate synthase (CS) as an internal control of mitochondrial 

mass [141]. The activity of OXPHOS enzymes is usually indicated as a percentage of 

the mean control value of a particular respiratory complex/CS. Major and minor criteria

that can be used to determine the severity of OXPHOS deficiency have been published 

[142]. Another approach uses a polarographic assay to measure the ability to oxidise 

radioactively labelled substrates; however, monitoring of the cellular energy state is 

possible via additional modalities [61,98,143]. Without the need for mitochondria 

isolation from tissue, the activity of COX and complex I can be detected by enzyme 

immunocapture assays using human cultured fibroblasts, whole blood or cheek swabs, 

which requires only very small sample size [144,145].

The measured activities and assembly profiles of respiratory complexes can be 

misrepresented due to compensatory mechanisms that can hide the OXPHOS 

deficiency, as shown in a patient with Kearns Sayre syndrome and in some patients with 

autosomal dominant optic atrophy [146,147]. This compensatory effect may be 

indicated via increased activity of CS, but some of the compensatory mechanisms do 

not conform to this rule [148]. Additionally, the normalisation of respiratory enzyme 

activities to the total protein content allows the identification of patients with mtDNA 

depletion [149]. In addition, most tissue-specific spectrophotometric OXPHOS assays 

provide resultant activity values that cannot be compared inter-laboratory easily due to 

the lack of standardised physiological ranges and obligatory guidelines [127,142].

Recently, several multi-centre studies investigating standardisation processes 

and/or the conditions of spectrophotometric OXPHOS activity assays have been 

published [132,150,151], and the necessity of a standardised protocol with regard to 

uniform costs, laboratory equipment, reagents and quality control management is being 

debated. Although some contradictory statements relating to the significance of 

changeable analytical factors (buffer composition, sample handling) persist, establishing 

a routine protocol would ensure collection of homogeneous and cohesive data that 
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would be advantageous for the meta-analysis of rarely occurring cases, as well as for

updating the list of diagnostic criteria for mitochondrial disorders. In addition, the 

reproducibility of such a unified protocol would be improved. Consequently, several 

findings of these recent studies could be applied to routine laboratory procedures, 

specifically regarding the appraisal of borderline respiratory chain activities in clinically 

suspicious patients, normalisation of measured respiratory enzyme activities, inclusion 

of proprietary reference samples in inter-laboratory studies, ensuring the linearity of 

assays and the buffer types used [132,149-151].

Laboratories diagnosing mitochondrial disorders currently have to collect their 

own set of positive and negative control samples, which ideally should be the same age 

as the patients. Thus, many research groups have made immense efforts to find 

infallible and widely applicable markers of mitochondrial defects. One candidate is 

FGF21, an endocrine-acting metabolic hormone that has been identified as a significant 

marker for primary neuromuscular respiratory chain deficiencies in adults and children 

[152,153]. However, the sensitivity and specificity of FGF21 for various mitochondrial 

disorders should be tested in an another large-scale study that include patients with 

different phenotypes and genotypes because FGF21 has a broad range of physiological 

roles in the human body, and its elevated serum levels have been observed in other 

diseases [154-157]. Such an FGF21 study is likely to be swiftly accompanied by 

certified, commercially affordable ELISA kits. Another promising approach is the

metabolic profiling of affected tissues derived from genetically modified animals or 

media from cultured cell lines [133,158]. By this methodology, a retrospective study of 

commonly measured blood metabolites revealed potentially significant markers of 

primary mitochondrial respiratory chain disease, including ratios of branched amino 

acids/glutamate, glycine/glutamate and alanine/glutamate, but these data have not yet 

been validated in further studies [159]. Thus, identification of a steady “housekeeping” 

biomarker closely linked to mitochondrial energy metabolism, whose values would be 

comparable to presently known biomarkers, could be another approach. For instance, 

higher levels of alanine and glutamate were detected in one patient carrying causal 

mutations in the AARS2 gene [13].

With the use of electrophoretic techniques, analysis of the respiratory chain 

assembly profile can be performed by immunoblotting coupled with SDS-PAGE, BN-

PAGE or clear-native PAGE; certain mitochondrial disorders can display a 

representative assembly pattern [160,161]. However, this approach requires verification 
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of a large group of patients with the same type of mutation. Defective mitochondrial 

protein synthesis can be observed with the use of radioactive labelling (35S-methionine) 

of mitochondrial translation products in cultured cells, which are subsequently 

visualised on pulse-chase SDS-PAGE gradient gels [162,163].

Regarding specific tissue defects, the performance of further assays can be 

required; for example, MRI (brain, muscle), EEG, ECG, EMG, assessment of the retina, 

optic nerve or hearing (BAEP or VEP), exercise tests, liver function tests, tests for 

diabetes mellitus, measurements of the dNTP pool and membrane potential and 

evaluation of the urinary profile of organic acids [24,72,75,164]. Other modalities can 

also be used to determine the basis of mitochondrial dysfunction [98].

3.4.2 Genetic	analyses

Although the outcomes of biochemical investigation can reveal the probable 

causes of mitochondrial disorders, further analyses are required to identify causative 

mutations and to confirm the effects of the specific mutations. If the symptoms present 

in an affected patient are characteristic, Sanger sequencing or PCR-RFLP and ASO 

analysis can be used to perform targeted molecular analyses of specific nuclear genes 

(white blood cell DNA) or the most frequent large deletions and point mutations in 

mitochondrial genes (white blood cell DNA and/or affected tissue). The Sanger 

sequencing approach has flaws involving the inappropriate detection of large deletions 

and mutation load (cut off: 20%), as summarised elsewhere [75]. Excluding a few 

recognisable mitochondrial phenotypes, clinical and laboratory data are frequently not 

satisfactory enough to identify causative genes and only provide insight into the most 

likely location of genetic defects [121]. There are several more accurate screening 

methods that can be used to consider a broad spectrum of genes: ARMS, SSCP, DGGE, 

TGGE, TTGE, dHPLC, ASO hybridisation method, DNA arrays, HRM analysis and 

targeted exome sequencing [165,166]. Quantitative Southern blot analysis or real-time 

quantitative PCR can be used to assess the amount of mitochondrial DNA in muscle or 

liver samples if the expression of nuclear genes, mitochondrial depletion or content of 

mutated mtDNA (homoplasmy, heteroplasmy) are being analysed [31,167,168]. In 

addition, large-scale mtDNA rearrangements can be identified by long-range PCR [169-

171]. Some of these methods have been superseded, but they can still be useful in

routine mutation testing, especially because advanced technologies are only available in 

specialist research centres at present.
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If clear results are not obtained from the fundamental screening approaches, 

DNA arrays and next-generation sequencing (NGS) are frequently used to investigate 

genes and their expression levels. DNA arrays are principally based on the findings of 

many genome-wide association studies [172-174]. MitoCarta is a list of over one 

thousand candidate genes that are localised to mitochondria and have recorded defects 

that induce mitochondrial dysfunction [175]. However, this list should be expanded for 

use in targeted NGS analysis because novel genes involved in mitochondrial biology are 

still being characterised. NGS technology is advantageous to Sanger sequencing 

because a small sample can be used for the fine detection of mutation load, and the 

method allows the analysis of a large quantity of genes; however, the employment of 

NGS technologies (whole exome or genome sequencing) cannot guarantee 

identification of causal mutations because of evident limitations [15]. Genetic factors 

such as the type of inheritance, occurrence of de novo mutations and/or cause of tissue-

specific phenotype manifestations must be considered [173,176,177]. This requirement 

implies that there are many additional genetic factors, such as SNPs, CNVs and new 

sequence variants with unclear significance, which are capable of modifying the effect 

of causative mutations and generating huge phenotypic variability among afflicted 

patients, which hinders diagnosis and genetic counselling. Studies using CNV have 

clearly shown that CNVs are significant genetic factors that can affect the apparent 

phenotype of every individual. Typically, CNVs are structural variants of human DNA 

of at least 1 kb or greater in length [178,179].

The significance of any new mutation or a mutation located in a newly 

characterised gene should be proved in a cell model system such as patient-derived 

fibroblasts or myoblasts, using methodologies that include cybrids, viral 

complementation or bacterial systems with inserted plasmid vectors. Complementation 

techniques using patients cells with viral vectors and/or plasmids expressing the wild-

type candidate gene are of special relevance to confirm the effect of newly identified 

mutations or suspected sequence variants [57,106]. Transmitochondrial cybrids are 

experimental model cells that enable the study of mtDNA sequence variants. Cybrids 

are constructed by combining the mtDNA of interest with mtDNA-less rh0 cells; the 

disease phenotype can show improvement after complementation with wild-type RNAs. 

However, this complex combination of polymorphic mtDNA and its twofold genetic 

control can cloud the analysis due to changeable penetrance of homoplasmic mutations, 

threshold effects of heteroplasmic mutations or differences in the global genetic 
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background of the cell; these factors can modulate the effect of a pathogenic mutation 

by compensatory and/or epigenetic mechanisms [30,121,180]. Thus, genetic counselling 

for mtDNA diseases is still difficult despite several guidelines for the diagnosis of 

mitochondrial disorders.

3.4.3 In	silico	methods

As the interpretation of laboratory findings and clinical symptoms remains 

ambiguous, functional studies using computational methods, such as evolutionary 

comparison, population databases, and structural modelling, can reveal the effect of 

suspected sequence variants [181,182]. However, these approaches are not sufficient to 

overcome our incomplete knowledge of mitochondrial physiology and pathology [24].

Briefly, in silico tools represent free online software that can predict the effect 

of identified mitochondrial or nuclear sequence variants and score them as neutral, 

possibly pathogenic or pathogenic [183]. A large quantity of software packages enable 

structural 3D-analysis of unknown protein sequences of interest; however, a 

characterised crystal structure of the wild-type protein and/or of a protein derived from 

the same family with high sequence identity are needed for this type of analysis [184].

3.4.4 Imaging	methods

Skin and muscle biopsies, as well as (less frequently) liver biopsies, are widely 

used as samples for morphological evaluation and/or for monitoring of specific protein 

expression [78]. Light or electron microscopy techniques typically show pathologic 

mitochondrial ultrastructure, which manifests as changes in the number, shape and size 

of mitochondria (enlarged, swollen, onion-like with reduced cristae), the presence of 

pathologic inclusions or as a disintegrated mitochondrial network in affected cells, 

especially in muscles (Fig. 4). These morphological ultrastructural pathologies are 

general characteristics of mitochondrial disorders rather than specific indicators of 

particular types of mitochondrial dysfunction [83,185,186]. 

In preparations for light microscopy, subsarcolemmal accumulation of abnormal 

mitochondria may be seen as red granular deposits called “ragged red fibres” (RRFs) 

with the use of histological staining of muscle cells (Gomori trichrome), where activity 

of cytochrome c oxidase may be decreased. RRFs are markers of faulty protein 

synthesis that results in variable muscle fibre atrophy [30,186]. However, RRFs are 

found in only a small minority of children with respiratory chain defects, where they 

can be detected as a mild subsarcolemmal increase of proliferating mitochondria 
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[75,98]. RRFs can also be observed in individuals without mitochondrial disease, 

particularly in association with ageing and other types of muscle disorders [98,187].

If Gomori staining is combined with succinate dehydrogenase (ragged-blue 

fibres) and COX staining, the resulting abnormal fibres are specific to mitochondrial 

defects if more than 0,5% of abnormal fibres are coupled with the absence of another 

primary neuromuscular disease. However, the presence of only a small proportion of 

RRFs and COX-deficient fibres does not exclude the mitochondrial aetiology of a 

disease [187]. Accordingly, muscle biopsy is widely used in microscopic studies as the 

Fig. 4 Ultrastructure of mitochondria

Electron microscopy of mitochondria was performed on patient-cultured 

myoblasts. An onion-like mitochondrion with concentric cristae, which is 

located in the centre of the picture, is surrounded by a set of normal 

patient mitochondria in the section. The picture was kindly provided by 

RNDr. Jana Sládková, CSc.



39

gold standard procedure to differentiate mitochondrial dysfunction from other 

neuromuscular disorders [185].

3.5 Cytochrome	 c	 oxidase:	 structure,	 function,	 biogenesis	 and	

regulation

The function, biogenesis and regulation of COX have been explored in more 

detail than the other OXPHOS complexes. Knowledge of human COX structure is 

based on studies performed in model organisms such as bacteria, mammals and,

especially, yeasts. Accordingly, the nomenclature of human orthologous COX subunits 

reflects the designation of COX subunits in yeast, where they were initially identified 

[3,188,189].

Recently, NDUFA4 was revised and suggested to be the 14th COX structural 

subunit, with a role in COX enzyme function and biogenesis and whose mutations cause 

COX deficiency; however, its exact role and location in the COX structure remain to be 

elucidated [2,11,65]. Mammalian cytochrome c oxidase is composed of 14 subunits 

including 2 haems, cytochrome aa3 and 2 copper centres, which become 3 redox 

centres: CuA, haem a and haem a3-CuB. The enzyme catalytic core is formed by 3 

mtDNA-encoded subunits, COXI, COXII and COXIII. Subunit I binds the haem a and 

a3 prosthetic groups to form the CuB redox centre, which is close to the cytochrome c 

binding site. Subunit II binds the CuA centre. Subunit III provides electron transport 

and proton pumping [59,190,191]. In COX, the key role of ligands is coupled with 

either histidine residues of COXI or with an amino acid sequence of two cysteine-

methionine and glutamate residues located in COXII. Seven nuclear-encoded subunits 

are transmembrane proteins that interact with other nuclear or mitochondrial subunits. 

Three peripheral subunits are present on the matrix side or on the IMS side [65]. The 

remaining 11 characterised nuclear encoded structural subunits and their isoforms 

(COX4I1, COX4I2, COX5A, COX5B, COX6A1, COX6A2, COX6B1, COX6B2, 

COX6C, COX7A1, COX7A2, COX7B, COX7C, COX8A, NDUFA4) are thought to be 

responsible for the stability, regulation and/or tissue-specific activity of the mammalian 

COX enzyme and for protection of the catalytic core subunits from oxidative damage, 

although their precise function is not yet determined [11,188]. Each nuclear gene 

encoding a COX subunit and/or specific isoform is located in a different chromosomal 

location. In addition, there are accessory proteins that take part in COX assembly and 

biogenesis [192-194].
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The regulation of COX activity is driven by the ratio of several nuclear-encoded 

tissue-specific COX isoforms (COX4, COX6A, COX6B, COX7A) and by the stage of 

tissue development, which is accompanied with switches in the expression of COX 

isoforms. The remaining subunits are expressed ubiquitously. Expression of muscle 

isoforms COX6AH and COX7AH is regulated by muscle-specific elements e.g., MyoD. 

Expression of L-isoforms is primarily regulated at the posttranscriptional level. In 

general, a liver-type COX present in tissues with a lower mitochondrial density (liver, 

brain) shows a higher activity, whereas a heart-type COX (heart and skeletal muscle) 

has a high mitochondrial capacity [60]. For example, lung COX has approximately 2.5 

times more activity than liver COX, which results in increased electron flux through the 

ETC and fewer free electrons accessible for ROS generation. The expression of tissue 

specific isoforms is variable and dependent on the degree of tissue maturation, which is 

dissimilar in foetuses and adults. Many promoters of the COX genes contain binding 

site for the SP1, NRF2 and NRF2 regulatory proteins, which together with thyroid and 

adrenal steroid hormones further modulate COX biogenesis [59].

The COX complex is active as a dimer, with the COX6A and COX6B subunits

linking the two monomers. The stability of the COX dimer is also provided by the 

adenine nucleotides located between COX6AH and subunit I. Thus, interactions with 

the COX6AH subunit are influenced by ATP [60]. Electrons are carried to the COX 

complex by reduced cytochrome c, which binds at the IMS side of the enzyme 

involving residues of subunits II, VIA and VIB [59]. The electrons are transferred via 

the CuA centre to the haem a and subsequently to the a3-CuB centre, where the 

reduction of oxygen occurs. In a monomeric and dimeric state, COX is able to perform 

transfer of electrons and reduction of oxygen; however, the dimeric form alone is 

sufficient for proton pumping. The effect of slipping protons was documented in COX, 

when the ΔѰm, ΔpH or ATP/ADP ratio was increased. Notably, the variability in H+/e-

stoichiometry was not present in complex III, even in a wide range of measured ΔѰm

values. In contrast, the efficiency of proton pumping in COX decreases with higher

values of Δpm and/or ΔѰm and fully disappears at maximal rates of electron transport (at 

high ΔpH) [65].

The phosphorylation of individual OXPHOS components (COXI, COXII, 

COX4, COX5A, COX5B, COX6A, cytochrome c and the β subunit of ATPase) 

represents a mechanism that changes the activity of affected molecules. Moreover, 

phosphorylated sites may be tissue-specific as phosphorylation of cytochrome c oxidase 
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is specific to liver and heart [60,195]. Active phosphorylated COX permits its allosteric 

regulation through ATP by its binding to subunits COX4 and COX6A. Thus, the 

dephosphorylation of COX regulates respiration via the ATP/ADP ratio. In the 

mitochondria and/or in the cytosol, the balanced state of ATP and ADP is regulated by 

ANT, in cooperation with VDAC and tissue-specific creatine kinase. The correct 

function of ANT stimulates the influx of protons into the mitochondrial matrix, 

resulting in a lower pH. Starvation initiates the cAMP-signalling pathway in liver tissue, 

which leads to the phosphorylation of COXI; there is no evidence of this mechanism in 

heart tissue. In addition, hypoxia triggers PKC-dependent phosphorylation of COX4 

and increases COX activity. This phenomenon implies that both the metabolic state of 

the cell and tissue-specific properties modulate the activity of COX. When the COX 

enzyme is phosphorylated at its regulation sites, proton slipping does not cause 

excessive ROS production, as documented in COX6A [60].

The allosteric regulation of cytochrome c and COX activity is possible via their 

binding sites for adenine nucleotides, which inhibit respiration by binding to 

cytochrome c or a specific subunit of cytochrome c oxidase, COX6A. In contrast, 

binding of ATP to COX4 leads to higher COX activity. Nucleotide binding to COX 

subunits at an increased ATP/ADP ratio induces a drop in respiration and proton 

pumping, as well as in Δpm and ΔѰm. This allosteric ATP inhibition of COX, which 

leads to uncoupled respiration, can be ceased by binding of 3,5-diiodothyronine to 

COX5A, dephosphorylation of the COX enzyme and low levels of cardiolipin 

connecting the COX monomers [36]. The allosteric inhibition of COX that occurs at a 

high intramitochondrial ATP/ADP ratio is performed by cAMP-dependent 

phosphorylation (mitochondrial protein kinases) of COX subunits, which is supported 

by the mitochondrial uptake of Ca2+ and leads to lowered ΔѰm via proton slipping. This 

inhibition via ATP is abolished by hormone signals (3,5-diiodothyronine) or Ca2+-

dependent dephosphorylation (Ca2+-activated protein phosphatases), which 

subsequently leads to an increase in ΔѰm, respiration and ATP synthesis, as well as 

proton slipping and the production of heat. A high nutrient uptake may also release ATP 

inhibition due to raised NADH++H+ production in the TCA cycle [73,196]. 

In addition, other mechanisms control COX function, such as divalent cation 

binding sites, fatty acids and NO. Mitochondrial NO synthase interacts with COX5A to 

result in reversible inhibition of COX due to NO competition with oxygen for the 

binuclear haem a3-CuB binding site. With regard to the NO inhibitory effect, its 
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increased production is thought to be a cause of neurodegenerative disorders [60,197]. 

Membrane lipid composition has been found to influence the stability and activity of 

COX in addition to affecting the overall respiration rate [65].

3.6 Cytochrome	c	oxidase	deficiency

As shown by histological studies, presence of COX-deficient fibres is more 

frequent than ragged-red and ragged-blue fibres in both patient and control groups 

[187]. In muscle tissues, mosaic expression of COX activity is indicative of a 

heteroplasmic mtDNA mutation, while global COX-deficiency suggests mutation in 

nuclear genes important for COX function and/or biogenesis. However, there are 

several exceptions, including some homoplasmic tRNA mutations, and this 

classification also depends on an equal distribution of COX positivity in affected tissue, 

as observed in MELAS [98]. Thus, the presence of COX-deficient fibres is not a 

definite marker of a causal mutation in COX-related genes [198]. COX-deficient fibres 

can be in excess of RRFs in paediatric patients with other neuromuscular disorders, and 

both types of fibres can be fully missed despite clearly deteriorated mitochondrial 

ultrastructure [199,200]. Analysis of the COX assembly profile is more helpful for the 

diagnosis of COX deficiency, as patients with SURF1, SCO1, COX10 and COX15

defects express distinct disturbances of COX biogenesis [22].

Together with complex I deficiency, isolated or combined COX deficiency is 

one of the most common respiratory chain defects in paediatric patients. It can arise 

from mutations located in either mitochondrial genes or in nuclear genes encoding the 

structural subunits or corresponding assembly factors of the enzyme complex 

[22,77,201,202]. Importantly, COX deficiency manifests as a fatal infantile form or as a 

rarely occurring benign reversible infantile form (homoplasmic m.14674T>C or T>G 

mutations in tRNAGlu, pathogenic mutations in nuclear gene TRMU) that can be 

improved when treated effectively [203-208]. As a complicating factor, mutations in 

COX-related genes can give rise to secondary impairment of other respiratory chain 

complexes. Primary deficiencies of respiratory complexes I and III were documented to 

have secondary effects on the activity of COX, which impedes correct interpretation of 

laboratory findings [209,210].

Supplementary table 1 lists genetic defects leading to clinically and 

biochemically confirmed primary and/or secondary COX deficiency (see the 

Attachment section). These collected genetic data illustrate that isolated or combined 
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COX deficiency can arise from mutations of genes involved in the biogenesis of any 

OXPHOS complex, in mitochondrial DNA synthesis and maintenance, apoptosis, 

cytochrome c sequestration, mitochondrial ultrastructure maintenance, mitochondria 

networking and the metabolism of various chemical substances present in mitochondria,

in addition to the genes relating to mitochondrial protein synthesis, whose defects often 

lead to combined OXPHOS deficiency. However, a decrease in COX activity was 

observed in only a few of the mitochondrial patients with tabulated causal mutations, 

and in some cases, a secondary COX defect was only displayed with concomitant faulty 

assembly or stability of the COX enzyme [38,211,212]. Novel nuclear genes involved in 

COX biogenesis are incessantly characterised; therefore, the contemporary COX-related 

genetic spectrum will be probably enriched with other functional categories that relate 

to mitochondrial homeostasis.
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4 Material	and	methods

4.1 Group	of	patients

A group of 60 Czech unrelated paediatric patients without a known genetic 

cause of COX deficiency was included in this study. Seventeen of these patients were 

diagnosed with an isolated and 43 with a combined COX defect. The onset of 

“mitochondriopathy” was observed in 35 neonates: 14 during the first year of life, 6 at 

the age of 1 – 5 years, 2 at the age of 5 – 10 years and 3 at the age of 10 – 15 years. The 

patients included in this study presented with the following symptoms: failure to thrive 

(30/60), delay of psychomotor development (29/60), encephalopathy (28/60), hypotonia 

(26/60), visual impairment (25/60), myopathy (19/60), dysmorphia (15/60), 

cardiomyopathy (14/60), hepatomegaly (14/60), intrauterine growth retardation (12/60), 

spasticity (10/60), hearing impairment (9/60), epilepsy (7/60), dystrophy (7/60), 

microcephaly (7/60), nephropathy (6/60) and diabetes mellitus type 2 (2/60). Routine 

metabolic workup showed lactate acidosis (23/60), anaemia (23/60) and hepatopathy 

(22/60). Thirty patients died prior to the beginning of this study; their survival ranged 

from 4 days to 13 years, with a median of 1.1 years.

4.2 Samples

Genomic DNA (gDNA) was extracted from the peripheral blood lymphocytes of 

the patients and/or their parents, patients’ cultivated fibroblast cells or patients’ muscle 

biopsies and used for subsequent genetic analysis.

4.3 Ethics

All the biochemical and genetic analysis was approved by the Ethics Committee 

of the General University Hospital in Prague. All samples were analysed with the 

informed consent of the patients or their parents.

4.4 Sanger	sequencing

Prior to the start of HRM mutation screening, the mtDNA of all 60 patients was 

sequenced. Briefly, the whole mtDNA molecule was amplified from muscle or 

fibroblast total DNA by PCR in 34 overlapping fragments. All fragments were 

sequenced in both direction on an ABI PRISM 3100/3100-Avant Genetic Analyser 

(Applied Biosystems), and the obtained sequences were compared with the Revised 

Cambridge Reference Sequence (rCRS) of the Human Mitochondrial DNA 

(NC_012920, http://www.mitomap.org/bin/view.pl/MITOMAP/HumanMitoSeq).

http://www.mitomap.org/bin/view.pl/MITOMAP/HumanMitoSeq
http://www.mitomap.org/bin/view.pl/MITOMAP/HumanMitoSeq
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Based on the clinical phenotypes manifested by the patients and the results of the 

completed genetic analyses, sequencing of suspected candidate disease-genes covering 

exons and their flanking intronic regions of SCO2 (NG_016235.1), TYMP 

(NG_011860.1), PUS1 (NG_013039.1), TSFM (NG_016971.1), AARS2 

(NG_031952.1), TK2 (NG_016862.1) was performed according to the standardised 

internal laboratory procedure (Table 2).

Table 2 Primers used to confirm findings of targeted exome sequencing

Type of 
amplicon

Forward primer (5´→3´)
Reverse primers (5´→3´)

Length of 
amplicon

PCR mixture PCR conditions

SCO2a

exon 2

CAGGAAACAGCTATGACCCTGACATCTGC
CCAGACGAG
AATACGACTCACTATAGGGCCGCTGGTAC
AGATCACAC

477 bp
1x CPM, 6% DMSO, 

0.8 µM primers

95°C 2 min; 33x: 95°C 
30sec, 64.3°C 30 sec, 

72°C 1 min; 95°C 1 min; 
64.3 °C 30sec; 72°C 3 

min

TYMP
exon3

TGCCCCACCGCTGTGGGCTG
TGCGGTATAGGCTCCCGTCT

293 bp
1x CPM, 0.8 µM 

primers

95°C 2 min; 40x: 95°C 
30sec, 68°C 10 sec, 72 °C 

40sec; 72°C  7 min

PUS1a

gDNA

cDNA

TGGCCTGATTTTTCCTAGGTT
ACAAAGGGTTCCTCGCAGTA

488 bp

1x PM, 0.8 µM 
primers

95°C 2min, 35x: 95°C 20 
sec, 60°C 10 sec, 72°C 50 

sec; 72°C 7 min

GTGCTGCTCATGGCCTATTC
GATGATGGTGGGGTAGATGTG

840 bp
95°C 2 min, 35x: 95°C 20 
sec, 60°C 20sec, 72°C 1 

min; 72°C 7 min

TSFM
exon 4

TTTCCGTTGAGTCTGTAGCTTG
ACGGGGGAAGGGTAATTCTA

389 bp
95°C 2 min; 35x: 95°C 30 

sec, 20 sec (exon 4 -
55.5.°C, exons 6 and 16 -

61.8°C, exon 13 -
64.6°C), 72°C 40 sec; 

72°C 7 min

exon 6
CAAACTGGGCCTCTTCTGTG
CTCGGTCTGAAGAGGTTTGG

587 bp

AARS2
exon 13

GCAGGGCAAGAGGTGAGTC
AGTGCCCAGTTCAGCAGGT 394 bp

exon 16
GAAGCCCTTTTGCTGGAGA
TAAGGGCTGATGGCTCCAA

291 bp

TK2a

econ 3

ATACGACTCACTATAGGGCTGACATTCCCC
TGGGTGCTT
GAAACAGCTATGACCATGATTATCCCATC
AAGCTTTCT

221 bp 1x CPM, 0.8 µM 
primers 95°C; 35x: 95°C 30sec, 

54°C 25 sec, 72°C 40 sec; 
72°C 7 min

exon 6

ATACGACTCACTATAGGGCCTCCTTTTCCC
CTGAGTTAG
GAAACAGCTATGACCATGTACTCCATATCT
GTCAATCG

248 bp

Abbreviations : PM = PPP Master Mix; CPM = Combi PPP Master Mix; gDNA = genomic DNA
a Mutation analysis of PUS1 gene were kindly performed by Ing. Kamila Beránková.
b PCR products covering SCO2 and TK2 gene were amplified and sequenced with the unitary accessory 
sequences for forward or reverse primers.

RNA was isolated from patient cultured skin fibroblasts (P8, P12, P17, P29) by 

TRI REAGENT® (Molecular Research Center, Inc.) and transcribed to cDNA as 
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described previously [128]. cDNA and promoter sequence analysis of the COX4I2, 

COX5A, COX7A1 and COX10 genes were performed in patients P8, P12, P17 and P29

with the use of an Expand Long Template PCR System, according to manufacturer's 

protocol (Roche). The used PCR primers are summarised in Table 3.

Table 3 Primers used to confirm sequence variations in COX-related genes

Type of 
amplicon

Forward primer (5´→3´)
Reverse primers (5´→3´)

Length of 
amplicon

Cycles
PCR mixturea

Annealing temperature

COX4I2
cDNA

GAGCTTGGTGCTGAGGAAAG
GGAGACAGCTGGGGATGC

517 bp 40
1x CPM, 1mM MgCl2, 6% 
DMSO, 1.6 µM primers; 
66.8°C

promoter
GTGGGAGAAACAGCAAGGAG
CCCTCTAAGACAGGGACCAC

455 bp

35

1x PM, 6% DMSO, 0.8 µM 
primers; 64.6°C

COX5A
cDNA

GGCTTCTCTCTGTCCTCAGC
TCAATAAATCCTTGGGGAAGC

528 bp
1x PlM, 6% DMSO, 0.8 µM 
primers; 61.8°C

promoter
CTCTGCCTCCTGGGTTCC
CGCTGAGGACAAACTGTTAGC

801 bp
1x CPM, 8% DMSO, 0.8 µM 
primers; 64.6°C

promoter
GGCTTCTCTCTGTCCTCAGC
CGAAGCGTTCCTATGCTTGT

835 bp
1x CPM, 1.5 mM MgCl2, 8% 
DMSO, 0.68 µM primers; 
58.4°C

COX7A1
cDNA

CAGAATGCAGGCCCTTCG
CCCCCAGGCTTCTTGGTC

362 bp
1x PM, 2% DMSO, 0.8 µM 
primers; 61.8°C

promoter
GAGGCTGCAGTGAGCTATGA
GTTCCAACTCCCTGTTCTGTCT

395 bp
1x CPM, 8% DMSO, 0.68 
µM primers; 58.4°C

promoter
CGGAGAAGGGAGGTGACTC
CCACCTGGAAGAGCTTCTGT

784 bp
1x PM, 6% DMSO, 0.8 µM 
primers; 64.6°C

promoter
ACTTCAGGACACCCCTCCAG
AGCCAAGGGAGTACAAGCTG

806 bp
1x CPM, 6% DMSO, 0.64 
µM primers; 64.6°C

COX10b

cDNA_1
CAGGAAACAGCTATGACATGGCCGCATCTCC
AATACGACTCACTATAGCACCGCTTTTCCTCTTTT

462 bp
1x PlM, 0.8 µM primers; 
61.8°C

cDNA_2
CAGGAAACAGCTATGACTGTCCAGAAAGCCAAATGAA
AATACGACTCACTATAGACAGCACAACAAGTGGCAAA

443 bp
1x PlCM, 0.8 µ primers; 
68.4°C

cDNA_3
CAGGAAACAGCTATGACTGCTGCCAACTCCATCAA
AATACGACTCACTATAGCTGCGGACAGCACGA

540 bp
1x PlCM, 0.8 µ primers; 
68.4°C

cDNA_4
CAGGAAACAGCTATGACTCCTGGCAGTTTCCTCATTT
AATACGACTCACTATAGTCAGCTGGGAGGGGG

409 bp
1x PlCM, 0.8 µ primers; 
64.6°C

Abbreviations: PM = PPP Master Mix; CPM = Combi PPP Master Mix; PlM = Plain PP Master 
Mix; PlCM = Plain Combi PP Master Mix
a PCR steps were identical for all amplicons: 95°C 2 min; cycling: 95°C 30 sec, annealing 
temperature 30 sec, 72°C 1 min; 72°C 7 min
b cDNA of COX10 gene was analysed as four overlapping sequential fragments.

4.5 High-resolution	melting	analysis

Primers were designed, using the software Primer3Plus 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/), to amplify the 

coding regions of COX4I1, COX4I2, COX5A, COX5B, COX6A1, COX6A2, COX6B1, 

COX6C, COX7A1, COX7A2, COX7B, COX7C, COX8A, COX10 and COX15. Genomic 



47

DNA was amplified by PCR in the presence of LCGreen Plus Melting Dye (Idaho 

Technology Inc.).

For genetic and subsequent HRM analyses, a total of 15 to 50 ng of gDNA was 

amplified (NanoDrop ND-1000 UV-Vis Spectrophotometer, Nano-Drop Technologies, 

Inc.). The HRM analysis was performed using a LightScanner instrument (Idaho 

Technology Inc.) according to the instructions in the LightScanner’s manual. The 

melting profiles of 60 patient samples were analysed blindly, along with 14 reference 

control samples. If a new sequence variant was found by HRM analysis, all the 

remaining exons of the suspected gene were then sequenced by Sanger methodology.

Variants of both COX4I2 (rs6088855) and COX10 (rs113058506) were clearly

distinguishable from the wild type when the DNA was mixed at a 1:1 ratio. The use of 

High Sensitivity Master Mix (Idaho Technology) allowed superior resolution of all 

genotypes for exon 5 of the COX10 gene and exon 9 of the COX15 gene. All other 

common variants were readily identified by HRM during the first experiment with only

the use of LCGreen® Plus Melting Dye (Idaho Technology).

4.6 Restriction	analysis

All the identified missense mutations were verified by PCR-RFLP analysis. The 

frequency of rare sequence variants was ascertained by PCR-RFLP and/or HRM 

analysis in the Czech population by using set of 100 – 250 Czech healthy control 

samples or a set of 80 control gDNA samples of Roma origin.

4.7 In	silico analysis

The web servers SIFT (http://sift.jcvi.org/) [213], SNAP 

(https://rostlab.org/services/snap/) [214], PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/) [215], MutPred (http://mutpred.mutdb.org/) 

[216], PMut (http://mmb2.pcb.ub.es:8080/PMut/) [217], PANTHER 

(http://www.pantherdb.org/tools/csnpScoreForm.jsp) [218] and SNPs&GO (http://snps-

and-go.biocomp.unibo.it/snps-and-go/) [219] were used to evaluate the possible 

pathogenicity of all identified missense substitutions with unknown genetic effects.

4.8 Biochemical	and	follow-up	electrophoretic	analysis

4.8.1 Thymidine	levels	in	plasma

Thymidine and deoxyuridine levels were analysed by reversed-phase high-

performance liquid chromatography with UV detection at the Institute of Inherited
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Metabolic Disorders of First Faculty of Medicine Charles University in Prague and 

General University Hospital in Prague [220,221]. 

4.8.2 Thymidine	phosphorylase	activity

Thymidine phosphorylase activity was measured spectrophotometrically in 

isolated lymphocytes according to Spinazzola et al. [222]. Briefly, lymphocytes were 

isolated in a Ficoll gradient. Lymphocytes were homogenised in lysis buffer, sonicated 

and centrifuged. In the supernatant, the protein concentration was determined according 

to Lowry [223]. A 150 mg aliquot of supernatant protein was added to the reaction 

mixture and incubated at 37°C for 30 min. The reaction was inhibited, and the amount 

of thymine was determined spectrophotometrically at 300 nm.

4.8.3 SDS-PAGE	electrophoresis	and	immunoblot	analysis	

Ten micrograms of mitochondrial protein was separated by tricine SDS-PAGE 

carried out on 12% polyacrymide, 0.1% SDS and 5.5 M urea gels. Mitochondrial 

fractions were dissociated in 50 mM Tris/HCl (pH 6.8), 12% glycerol, 4% SDS, 2% 2-

mercaptoethanol and 0.01% Bromophenol Blue for 30 min at 37 °C, as described earlier 

[224]. Proteins were electroblotted from the gels onto ImmobilonTM-P PVDF 

membranes (Millipore, Carrigtwohill, Ireland) using semi-dry transfer. The membranes 

were decorated with rabbit polyclonal antiserum raised against human SCO2 (1:1000), 

with mouse monoclonal antibodies raised against cytochrome c oxidase subunits COX1 

(Abcam-Mitosciences, Eugene (OR), USA; 1 μg/ml), COX2 (Abcam-Mitosciences; 1 

μg/ml) and porin (Abcam-Mitosciences; 1 μg/ml) under the same conditions, as 

described previously [224].

4.8.4 Total	copper	content	in	tissues

The total copper content in the dry matter of liver, brain and muscle tissues was 

assessed by FAA (Perkin Elmer 3300 AAS, Perkin-Elmer Corp., USA) or ICP-MS 

(Elan DRC-e Perkin Elmer SCIEX, PerkinElmer Inc., USA) at The National Reference 

Laboratory for Genetic Toxicology in The Centre of Toxicology and Health Safety (The 

National Institute of Public Health, Prague, Czech Republic). 

4.9 DNA	array and	copy	number	variation	analysis

The nuclear DNA of patients (P1, P5, P8, P12, P17, P29, P43, P49) was 

analysed using a Genome-Wide Human SNP 6.0 microarray chip (Affymetrix),

allowing the detection of deletions larger than 700 bp at The Centre for Applied 
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Genomics (Toronto, Canada, http://www.tcag.ca/facilities/statisticalAnalysis.html). 

Additionally, patient 61 with detected combined deficiency of complexes I-III, III and 

IV in muscle was included in the examined group of patients based on a disease 

phenotype resembling the clinical manifestation observed in patient 5. Altogether, the 

DNA array was applied for analysis of 16/61 patients.

The presence of only one copy of the SCO2 and TYMP genes in both affected 

patients was verified by a real-time PCR copy-number variation assay (Hs00093549_cn, 

Hs00001601_cn, Hs00137275_cn, Hs00574610_cn; Applied Biosystems). The 

frequency of deletions covering SCO2 and TYMP genes was assessed in a set of 50 

Czech healthy control samples. As for the copy number of PUS1 gene, TaqMan probes 

were also employed (Hs01998936_cn, Hs01410383_cn; Applied Biosystems) according 

to manufacturer`s instruction.

4.10 Next-generation	sequencing

Targeted sequencing of the mitochondrial exome, containing 1233 genes, was 

performed for 25/57 patients. This collection of candidate genes was originally derived 

from MitoCarta, which contained 1013 genes that were assumed to be functional or 

structural components of the mitochondria. Our updated list of candidate genes was 

enlarged based on our internal laboratory selection to add newly characterised 

mitochondria-related genes and to allow for various inter-molecular interactions 

provided by the selected genes. We analysed 1.2 μg of gDNA from the patients and/or 

both of their parents (blood, skeletal muscle biopsy or cultured fibroblasts) or their 

unaffected siblings.

Next-generation sequencing was performed on a SOLiDTM 4 System (Life 

Technologies, Czech Republic) using an optimised sequence capture protocol derived 

from the standard NimbleGen SeqCap EZ Library SR User`s Guide version 3.0, which 

is available from Roche NimbleGen, Inc. (http://www.nimblegen.com). Sonicated 

patient DNA (Covaris) was purified using Agencourt AMPure XP Reagent beads 

(Beckman Coulter) and treated with the Fast-End Repair Enzyme Mix (Thermo 

Scientific). Purified patient samples were ligated to specific oligonucleotide adaptors 

using the Rapid DNA Ligation Kit (Thermo Science), bar-coded with specific 

oligonucleotides and amplified by PCR. Patient samples were purified with the 

QIAquick PCR Purification Kit (Qiagen) and their concentrations were measured with 

the QubitTM Quantification Platform using the dsDNA BR Assay Kit (Life 
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Technologies). The quality of the amplified patient library was checked using the DNA 

1000 Kit (Agilent) and an Agilent 2100 Bioanalyzer. The sets of barcoded patient 

samples were mixed equally to become 1 ng patient library samples that were then 

hybridised to the Mitoexome SeqCap EZ Library using Human COT-1 DNA 

(Invitrogen) and the SeqCap EZ Hybridisation and Wash Kit (NimbleGen, Roche). 

After the hybridisation procedure, the mixed patients DNA samples were washed using 

the SeqCap EZ Hybridisation and Wash Kit and bound to M-270 Streptavidin 

Dynabeads (Life Technologies). Captured patient DNA samples were ligated to 

identical universal oligonucleotides and amplified by PCR. The amplified samples were 

purified using the QIAquick PCR Purification Kit. Sample concentration was measured 

with the QubitTM Quantification Platform using the dsDNA HS Assay Kit (Life 

Technologies) and sample quality was checked using the HS DNA Kit (Agilent) and an 

Agilent 2100 Bioanalyzer. Emulsion PCR, associated with the enrichment of templated 

beads, was performed according to the available protocol (SureSelect Target 

Enrichment System for the Applied Biosystems SOLiD System, Agilent), and the mixed 

patient samples were sequenced. Statistical analysis of sequencing data was followed by 

a comparison of the identified sequence variants in the patients, family members and 

reference controls with available databases of genetic variants, tissue specific 

expression databases and in silico tools. To confirm the NGS data, Sanger sequencing 

was used. If available, parental DNA was tested for the identified mutations.

The complete and optimised protocol for next-generation sequencing was 

provided by the Institute of Inherited Metabolic Disorders in the First Faculty of 

Medicine at Charles University in Prague and General University Hospital in Prague; 

this institute also performed the sequencing procedure and statistical analysis of the raw 

NGS data. Output sequence reads were aligned to the reference genome (hg19) using 

NovoalignCS version 1.08 (Novocraft, Malaysia) with default parameters. Sequence 

variants in the analysed samples were identified using the SAMtools package version 

1.08. The high confidence variants list was annotated using the ANNOVAR annotation 

tool (hg19). For further analysis, we prioritised sequence variants present in affected 

individuals that were not found in unaffected relatives and that had a frequency lower 

than 0.05 in the dbSNP, 1000 Genomes, Exome Variant Server and internal exome 

database. Candidate variants were visualised using the Integrative Genomics Viewer 

(IGV) version 1.5.65.
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5 Results	and	discussion

5.1 High-resolution melting analysis used for mutation screening of genes 

encoding COX structural subunits and selected COX assembly factors

5.1.1 Sanger	sequencing	of	patient	mtDNA	prior	to	HRM	analysis

Sanger sequencing of the mtDNA revealed only known common polymorphisms 

listed in Mitomap (http://www.mitomap.org/MITOMAP) or mtDB - Human 

Mitochondrial Genome Database (http://www.mtdb.igp.uu.se/index.html) in 59/60

patients. However, in patient P25, a homoplasmic variant m.15866A>G (p.N374D) in 

the MT-CYB gene was detected that has not been yet reported. It was found to be

homoplasmic in patient skeletal muscle, blood and cultivated fibroblasts and was not 

present among the 200 healthy controls, which was confirmed by BbsI-RFLP analysis. 

Since we lost the contact with the patient family, the presence of m.15866A>G 

(p.N374D) in the MT-CYB gene could not be tested in maternal relatives. The protein 

alignment showed that the Asp 374 of cytochrome b is not evolutionary conserved. 

Additionally, the western blot assembly profile and the activity of complex III 

performed on patient cultured fibroblasts were within the physiologic range.

Considering the highly polymorphic nature of mitochondrial genome and the strict 

application of postulated pathogenicity criteria [121,122], we assessed the m.15866G 

variant as polymorphic. These data suggested a nuclear genetic origin of the COX 

deficiency in the patient. However, a subtle modification in the rate of complex III 

biogenesis cannot be excluded, as documented by other publications [20,91]. With the 

exception of the new homoplasmic m.15866G variant, the patient P25 carried only 

common SNPs in her mtDNA.

5.1.2 Optimisation	of	HRM	analysis

[225]. Irrespective of the position of the base-pair variant within the PCR 

product, HRM analysis is capable of detecting homozygous and/or heterozygous 

sequence variations in amplified PCR products by monitoring differences in their 

thermal stability and evaluating the shape and/or shift in their melting curves [226-229].

The sensitivity and specificity of HRM analysis are better than those of many 

conventional methods used to detect mutations [225]. Although HRM analysis makes it 

possible to screen the entire amplicon region, sequencing is still needed to determine the 

precise sequence variation that is present in an amplicon. The accuracy of HRM 

analysis is dependent on the salt concentration, GC content, length and the primary 

http://www.mitomap.org/MITOMAP
http://www.mtdb.igp.uu.se/index.html
http://www.mitomap.org/MITOMAP
http://www.mtdb.igp.uu.se/index.html
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sequence of the duplex. Additionally, it could be affected by the presence of many 

melting domains [230-232]. Currently, several strategies are used to achieve better 

resolution by HRM, for example, small amplicons, unlabelled probes, snapback 

primers, internal temperature calibrators and mixing patient samples with the reference 

control genotype [233-238].

Because the exact occurrence and distribution of common SNPs was not known 

in the examined Czech population, the HRM mutation screening was performed using 

probe-free HRM; this approach is especially suitable for large-scale genetic studies 

[239-242]. A total of 70 amplicons covering 65 coding regions were analysed; their 

length ranged from 191 bp to 565 bp. PCR primer sequences and specific PCR 

conditions are available online at the Journal of Human Genetics

(http://www.nature.com/jhg/journal/v57/n7/suppinfo/jhg201249s1.html, Supplementary 

Table 1) [243]. However, the applied PCR design is described below for clarity 

(Table 4). Moreover, internal calibrators and DNA mixing were applied to improve the 

resolution of individual genotypes for four amplicons of the COX genes that were used. 

However, the majority of examined amplicons did not require these adjustments.

Table 4 Primers and PCR conditions used for HRM analysis.

Gene and 
exon

Forward primer (5´→3´)
Reverse primer (5´→3´)

Length of 
amplicon

Annealing 
temperature

Cycles PCR mixture
d

COX10a

1

AGACACCACGCTCTCCTTTC

GAGAAGAATTTCCCCCAAGG
240bp 61,8°C 35

1x PlM, 4% DMSO, 
800 nM primers

2
TTGCTTCTGGGGAGGTGTAG

TCTCAACAGAGAAAAAGGCAGA
271bp 55,5°C 30

1x PlM, 1 mM MgCl2, 
4% DMSO, 800 nM 
primers

3
AAAAGCTGGTCTGATTGAAGATG

TGAAGAGAGGAAAAATACTAAGACAGG
544bp 58,4°C 30

1x PlCM, 4% DMSO, 
800 nM primers

4
TGGTAACAGTGTGTCTGCTCTGT

ACAGCCATCTAGGAAAAAGTGA
218bp 66,8°C 35

1x PlCM, 2% DMSO, 
800 nM primers

5
GTGCCAGGGTATTGATTTATG

CACACTTTGGTTAGAGGTGGA
369bp 61,8°C 35

1x HSM, 8% DMSO, 
640 nM primers

6
CAGGTTCTCTGCTCTTTTTCC

CTCCTTGACCGAGTGTGCT
306bp 58,4°C 30

1x PlM, 4% DMSO, 
400 nM primers

7ab TCTGGTGATGACTGCCTTTG

GTCCACGTAGAAGCGGAAGC
328bp 61,8°C 35

1x PlCM, 0,5 mM 
MgCl2, 8% DMSO, 
800 nM primers

7bb TTCCCATCAATGCGTACATC

TTCCAGAATTACCACAACATGC
243bp 61,8°C 40

1x PlCM, 8% DMSO, 
800 nM primers

COX15
a

1

GTTGTGGAAGAGGTGGCTGT

TATCTTTATCCCGGCCCTTT
191bp 61,8°C 30

1x PlCM, 4% DMSO, 
800 nM primers

2
CCAGTTGGAAGGCTGATG

GAACTCAGGAGACGGAGG
518bp 66,8°C 30

1x PlCM, 4% DMSO, 
800 nM primers

http://www.nature.com/jhg/journal/v57/n7/suppinfo/jhg201249s1.html
http://www.nature.com/jhg/journal/v57/n7/suppinfo/jhg201249s1.html
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Table 4 Primers and PCR conditions used for HRM analysis (continued)

Gene and 
exon

Forward primer (5´→3´)
Reverse primer (5´→3´)

Length of 
amplicon

Annealing 
temperature

Cycles PCR mixture

3
CCTGATGGCAGCTGTTTCT

TGCCCTCTTCCTCATCAAC
482bp 61,8°C 30

1x PlCM, 4% DMSO, 
800 nM primers

4
GGATGTTTCCTCCTCCTCCT

TGG GAGCATTTCTGGTTTCT
271bp 55,5°C 30

1x PlCM, 1mM 
MgCl2, 4% DMSO, 
240 nM primers

5
CCAAGATCCCGCCACT

CCATCCACCATCCCTTCT
520bp 61,8°C 30

1x PlCM, 4% DMSO, 
1200 nM primers

6
ATGGGGTAGAAGGGAAAACA

TGAAGATGGGGGAATGAGA
429bp 61,8°C 30

1x PlCM, 4% DMSO, 
1200 nM primers

7
TTG GGGTGGGAGCAGGT

GGTAGGGGGACAGGGGTG
565bp 66,8°C 30

1x PlCM, 4% DMSO, 
400 nM primers

8
GAAGAGGATGGTGGAAGAG

TTTGTAGAGATGGGGTTTTG
473bp 61,8°C 30

1x PlCM, 4,6% 
DMSO, 400 nM 
primers

9ab TGTGGAGGTTTGTGTGTG

GTCACAGTCCCAGGAGG
258bp 61,8°C 30

1x PlCM, 800 nM 
primers

9bb GCCCAGCTAGTTCCTCTTT

TCTCGATGGGGTCATTCT
365bp 61,8°C 35

1x HSM, 0,32 mM 
MgCl2, 400 nM 
primers

COX4I1
1

AGACTCCAGTCGCGCTTC
CTGCGGACGTGCAGACTT

331bp 61,8°C 35
1x PlCM, 10% DMSO, 
1000 nM primers

2
GCTCTGGGGCAAAAAGAAG
AACTCCAGCACAGGGCTTTA

234bp 64,6°C 30
1x PlCM, 1 mM 
MgCl2, 800 nM 
primers

3
CTGTGACCCCCTGAGATGAT
GAGGCTCTGTCACACACACG

364bp 64,6°C 35
1x PlM, 800 nM 
primers

COX4I1
4

TGGTTGAATGTTGCAGAGGA
AGCCTCAAGGTATGGAGGTC

298bp 61,8°C 30
1x PlCM, 4% DMSO, 
800 nM primers

5
GAGGGATTGGCCTAGAAACA_CCCTTG
GGAGAAACCTATTG

398bp 58,4°C 30
1x PlM, 4% DMSO, 
800 nM primers

COX4I2
1

CTGCCGAAGCAGGACGTT
AACCCTCTAAGACAGGGACCA

267bp 58,4°C 35
1x PlM, 8% DMSO, 800 
nM primers

2
TGATGTGGGGGCAGAACT
TGGGAAGTGTGGTAGGAACA

242bp 64,6°C 35
1x PlM, 2% DMSO, 800 
nM primers

3
CCCGGCCACCTTCTTTATTA
GGCCATTCTTTCCAAAGTCA

313bp 58,4°C 35
1x PlM, 2% DMSO, 800 
nM primers

4
GAAGCCGGGATCACTTAGAG
GTGACCACAAGGGCATGG

249bp 64,6°C 35
1x PlM, 2% DMSO, 800 
nM primers

5
CCTGGCTGGTGTAGGAAGAC
TGCCTAATTTTAGGTGCCAAGT

356bp 61,8°C 35
1x PlM, 4% DMSO, 800 
nM primers

COX5A
1

GTCACCTGACCAGAGACAAGG
AGGTCACCGCAAGGACAC

390bp 61,8°C 30
1x PlCM, 10% DMSO, 
1000 nM primers

2
TTCAATATTTTTGCTGCCACA
GCAAGTTGCATGAAGTAACCA

354bp 61,8°C 30
1x PlM, 2% DMSO, 800 
nM primers

3
GGAGACCCAGACAGATAAGATCA
TTCTGATACCTCAGCAATAGCC

298bp 55,5°C 30
1x PlM, 2% DMSO, 800 
nM primers

4
TCTGTCCTACCTGCCTCTGC
GCTCACGGCCATTACCTCTA

354bp 61,8°C 30
1x PlM, 2% DMSO, 800 
nM primers

5
TCGCTTGTGGGTTGACAGTA
CAGCAAAACCATGAAACCAA

397bp 61,8°C 30
1x PlM, 2% DMSO, 800 
nM primers
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Table 4 Primers and PCR conditions used for HRM analysis (continued)

Gene and 
exon

Forward primer (5´→3´)
Reverse primer (5´→3´)

Length of 
amplicon

Annealing 
temperature

Cycles PCR mixture

COX5B
1

ACTACGCGGTGCAGAAAGAG
CCACTGGGACCTCGAGAAG

399bp 58,4°C 30
1x PlCM, 8% DMSO, 
1200 nM primers

2
GCACCATTTTCCTTGATCATT
CTCCCAGAGAGGAGACCACT

237bp 61,8°C 30
1x PlM, 800 nM 
primers

3
AACAGTCCCCTGAGCTTCTG
CAACATGCACTCACACACTGA

291bp 66,8°C 30
1x PlCM, 2% DMSO, 
800 nM primers

4
TCAACCATAGTCTTACTTGTGTATCA
GGCAAGCTAGCATTAACAGACA

397bp 61,8°C 30
1x PlCM, 2% DMSO, 
800 nM primers

COX6A1
1

GGCGCCCAATAGTAACTTCC
AGGTCACAGTCCCTCCCTGT

267bp 64,6°C 35
1x PlCM, 0,5 mM 
MgCl2, 6% DMSO, 800 
nM primers

2
CGGGAGGGAAAGTGAGACC
CACCCATGCCTTCAGAGAA

297bp 64,6°C 30
1x PlM, 4% DMSO, 800 
nM primers

3ab CACCCCGTTATAAGCAGTTCA
TAACGGTCCAAACCAGTGCT

222bp 58,4°C 30
1x PlCM, 4% DMSO, 
800 nM primers

3bb CCAACTGGCTACGAAGATGA
CAGCCTAGACCTTCACTGTGG

354bp 58,4°C 30
1x PlM, 4% DMSO, 600 
nM primers

COX6A2
1

TGCCTCCTTGCCAAAATAAG
AGCAGACGCCAGGTACGAG

400bp 61,8°C 35
1x PlM, 6% DMSO, 800 
nM primers

2
TGCCTCCTTGCCAAAATAAG
CGTGGCTATTGTGGAACAGA

724bp 61,8°C 30
1x PlM, 8% DMSO, 800 
nM primers

2c CTACCCTGCCCACCTGTTC
CGTGGCTATTGTGGAACAGA

411bp 50,5°C 30
1x PlM, 0,5 mM MgCl2, 
14% DMSO, 600 nM 
primers

3
CTCTCTCCACAGCCCTACCC
AGGAGCGCTTACCAAGCTG

228bp 66,8°C 35
1x PlCM, 6% DMSO, 
800 nM primers

COX6B1
1

GGCCAGAAGTGAGGATGAAC
CCTCAGCCCGCTAGACTG

288bp 64,6°C 30
1x PlM, 2% DMSO, 800 
nM primers

2
CTGGGTAGTCTGGCTTGCTC
GGGTCCCCTAGGAAGAGG

249bp 64,6°C 30
1x PlM, 640 nM 
primers

3
CAGATTGAGACCCTACCTCAAAA
CACACTCCCCTCTGCTAAGA

245bp 61,8°C 30
1x PlM, 4% DMSO, 800 
nM primers

4
TAGAGGTTGGCACACAGCAG
GGTCAGGGCACTGATTCC

378bp 64,6°C 30
1x PlM, 2% DMSO, 800 
nM primers

COX6C
1

ATGAACTTCGGCTGTCACCT
CGACTAAATCCGAGGCAGAG

248bp 64,6°C 30
1x PlM, 2% DMSO, 800 
nM primers

2
AGCTCCAATCAATGCTTCCA
AAAGATTTTTCAACCAAAAACACA

397bp 58,4°C 30
1x PlM, 4% DMSO, 800 
nM primers

3
AAAACATGTGTTCTACCTTGTCTTTA
GGGACAGTCACCTGTATTTGC

298bp 61,8°C 30
1x PlCM, 2% DMSO, 
800 nM primers

4
CTCAGTTGATCCTCAAAGATGG
GCTTCATAAACAGTTAAATCCCAAA

284bp 61,8°C 30
1x PlM, 2% DMSO, 800 
nM primers

COX7A1
1ab

TAAATACCGTTTTACTCCCAAA
CTCGGATTCGTCCACCAC

398bp 55,5°C 35
1x PlCM, 6% DMSO, 600 
nM primers

1bb TATTCCCTGGTACCGCTTTG
GCACTTGGAGAGTCGCGTAT

377bp 55,5°C 35
1x PlCM, 10% DMSO, 
800 nM primers

3
GCTAGGGATGGGGCTGTC
CTGATGAGAAAGGGGTGCTG

297bp 64,6°C 35
1x PlCM, 8% DMSO, 800 
nM primers

4
CTCTAAGGAGCAGCCAGCAC
AGTCCTGCCCAGAAACCAG

215bp 61,8°C 35
1x PlM, 8% DMSO, 
800nM primers
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Table 4 Primers and PCR conditions used for HRM analysis (continued)

Gene and 
exon

Forward primer (5´→3´)
Reverse primer (5´→3´)

Length of 
amplicon

Annealing 
temperature

Cycles PCR mixture

5
GATGTCCAGGGAGGGGATTA
TCCACAGGGCAGAGATCC

243bp 61,8°C 35
1x PlM, 6% DMSO, 
800nM primers

COX7A2
1ab

GTTTTACGCCTTCTCGCTCA
GCTTGCGCTCCTAACCATAG

257bp 61,8°C 35
1x PlCM, 800 nM 
primers

1b
b CCGTACTGCCGCTCTAGTTT

CCAGGTGAGGGTTTTCTGTC
285bp 61,8°C 35

1x PlCM, 4% DMSO, 800 
nM primers

2
CGACTGAAAATAGTTGGTTTTGAA
CTATGGTACATGTCCTTGACTTTTT

300bp 58,4°C 30
1x PlM, 2% DMSO, 800 
nM primers

3
TCTCAAATTAACGGTGAAAGAAGA
TGGCATAGCAAAAGCAATAAA

399bp 58,4°C 30
1x PlM, 2% DMSO, 800 
nM primers

4
CAAACTTACAACTTTTGAACTGGA
CAAACGGCAAGTTGAGACAG

486bp 58,4°C 30
1x PlM, 2% DMSO, 800 
nM primers

COX7B
1

AAGGGATTGCAATTACTATAGGTTT
CGTAAAAGGAAAGCACACGA

291bp 58,4°C 30
1x PlM, 2% DMSO, 800 
nM primers

2
TTCCTTGGCTTTCCTGATTG
GACACTTTGAATGCATAGACTGAGA

292bp 58,4°C 30
1x PlCM, 4% DMSO, 800 
nM primers

3
TCCCAGGTGAGTTTCTGTGT
AACATAAAGGCTAAAGTGATCAAGC

384bp 61,8°C 30
1x PlCM, 800 nM 
primers

COX7C
1

CCGCAATGGTCTGAACTACAA
AGCCTGGTTTCTGGCTATCA

394bp 58,4°C 30
1x PlCM, 4% DMSO, 600 
nM primers

2
GCCATGTAGTGTTTTGTGATGAA
GTGATGGGGAAGAGGCTACT

400bp 61,8°C 30
1x PlM, 2% DMSO, 800 
nM primers

3
TCATGAAACTACATGATTTCTGTTAAA
CACCATTAAATAAGCTAAATCACAGA

285bp 61,8°C 30
1x PlCM, 2 mM MgCl2, 
2% DMSO, 600 nM 
primers

COX8A
1

GCGTCATTTCCGAGAGACTT
TCCAGACATGCCCAAACC

387bp 61,8°C 30
1x PlM, 6% DMSO, 800 
nM primers

2
CTTTCTGCTGCCTGGGAACT
TCCACACCTCCACCCAGT

476bp 61,8°C 30
1x PlCM, 1 mM MgCl2, 
8% DMSO, 400 nM 
primers

Abbreviations: PlM = Plain PP Master Mix (Top-Bio); PlCM = Plain Combi PP Master Mix (Top-
Bio); HSM = High-Sensitivity Master Mix (Idaho Technology); DMSO , dimethyl sulfoxide (Sigma-
Aldrich)

a HRM analysis used the accessory sequence for forward (5´-cag gaa aca gct atg ac-3´) and 
reverse (5´-aat acg act cac tat ag-3´) primers for the amplicons 2, 3, 5 and 6.
b The analysed amplicon was separateted into two overlapping fragments.
c Primers designed for nested PCR.
d PCR conditions were identical for all amplicons: 95°C 2 min; cycling: 95°C 30 sec, annealing 
temperature 30 sec, 72°C 1 min; 72°C 7 min.
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5.1.3 HRM	analysis in	patients	with	COX	deficiency

In all, the HRM technique directly detected 52 known homozygous and/or 

heterozygous sequence variants located in COX-related genes (Table 5). Thirty-three 

amplicons had a wild-type profile and did not have any heterozygous sequence variants. 

The 175 homozygous and/or heterozygous genetic variants, which when combined 

resulted in 152 distinct genotypes, were correctly detected.

Table 5 Known sequence variations identified by HRM analysis

HRM analysis has expanded the spectrum of known SNPs in COX-related genes.

Seven sequence variants leading to change in affected proteins were identified in a total 

of eight patients (P4, P8, P12, P17, P25, P29, P33, P39) located in four of the nuclear-

encoded subunits COX4I2, COX5A, COX6A2, COX7A1, in an assembly factor COX10

(Figure 5, Table 6) and in mtDNA. All the newly identified nucleotide sequence data 

are available in the EMBL database under the WEBIN ID accession numbers 

HE647854 – HE647864. In total, nine new sequence variants were documented, two of 

which were located in exons of structural subunits COX7A1 (c.91_93delAAG, 

p.K31del) and COX6A2 (c.34T>G, p.L12V) and had not been previously described. The 

remaining seven variants were located in introns of COX4I2, COX6A1, COX7A1, 

COX7A2 and COX10 (Table 7). Three heterozygous missense variations in COX4I2

(c.253C>T, p.Arg85Trp), COX5A (c.212G>A, p.Arg71His) and COX7A1

(c.91_93delAAG, p. K31del) were found in both the group of 60 patients and a set of 

100 healthy control samples, which was confirmed by PCR-RFLP analysis. Using 

Gene Location of SNP

COX10
rs28680987, rs8076787, rs8077302, rs139962310, rs2159132, rs16949103, 
rs151110639, rs78809149, rs2230354, rs151441, rs111541535, rs113058506

COX15 rs3215694, rs11190255, rs2231687

COX4I1 rs2233447, rs11557187

COX4I2 rs6088855, rs61759491, rs149245323, rs1190725

COX5A rs6495131, rs113828200, rs150174803

COX5B rs117644956

COX6A1 rs116850387, rs117492062, rs8903, rs77136374

COX6A2 rs12240

COX6B1 rs10420252, rs7991, rs612220012

COX6C rs1130474, rs11555138, rs139479312, rs1130569, rs4626565, rs138800666

COX7A1 rs75342, rs74398621, rs68159832, rs2285599, rs2285598, rs2008683, rs80050273

COX7A2 rs117825852, rs9360898, rs240418, rs57613317, rs75996601

COX8A rs61759492
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HRM, the variant c.1291C>T (p.Arg431Trp, rs113058506) in COX10 was found to be a 

heterozygous variant in two patients (2/60) and in two control samples (2/250). No 

homozygotes for c.1291T of COX10 were detected. Additionally, the protein alignment 

showed that the affected codons are evolutionary conserved. Even though all the 

remaining exons and adjacent intronic regions of the suspected genes were sequenced in 

P8 (COX4I2), P17 (COX5A), P29 (COX10) and P12 (COX7A1, COX10), only common 

SNPs were identified. No mutations in the promoter regions and/or alternative cDNA 

splicing products were detected in COX4I2, COX5A, COX7A1 and COX10 of the 

patients P8, P12, P17 and P29. Besides, the deletions overlapping COX4I2, COX5A and 

COX7A1 genes were proved to be absent in all four investigated patient gDNAs by 

microarray analysis.

Table 6 Non-synonymous variants identified in 60 investigated patients

Six rare heterozygous base-pair variations were found in five nuclear-encoded 

genes that affect codons of COX4I2 (p.R85W), COX5A (p.R71H), COX6A2 (p.L12V), 

COX7A1 (p.K31del) and COX10 (p.V366L, p.R431W) and were classified by 

predictive bioinformatics tools to help differentiate neutral variants from those that 

affect protein function (Table 6). Importantly, proper interpretation of the predictive 

outcomes that were extracted from the web must take into account the differences in 

criteria and in the sequence and structural data that was used as the standard for the 

Patient Site of variation Type of variation Prediction of pathogenicity -
conclusion

P25 MT-CYB,
m.15866A>G (p.N374D)

homoplasmic ambigous

P8
1

COX4I2
c.253C>T (p.R85W)

rs149245323

heterozygous pathological

P17 COX5A
c.212G>A (p.R71H)

rs150174803

heterozygous pathological

P4, P33 COX6A2
c.34T>G (p.L12V)

heterozygous neutral

P8
1
, P39 COX10

c.1096G>T (p.V366L)
rs111541535

heterozygous neutral

P122, P29 COX10
c.1291C>T (p.R431W)

rs113058506

heterozygous probably damaging

1 In patient P8, two diverse heterozygous missense substitutions were 
identified in COX4I2 (p.R85W) and COX10 (p.V366L).
2 Patient P12 harboured two distinct heterozygous variants of COX7A1
(p.K31del) and COX10 (p.R431W).
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functional comparison of the analysed mutant protein [244-246]. Keeping this in mind, 

three missense variants were evaluated as disease-related and two variants as neutral. 

The effect of m.15866A>G and p.K31del (COX7A1) were not possible to reliably 

assessed via currently available on-line tools (Table 6).

Table 7 New intronic sequence variants identified by HRM analysis

Gene Site of variation Comments

COX10 c.929-8_-7insCCC heterozygous in 11 patient and 1 control samples

COX4I2 c.*63C>A heterozygous in 1 patient sample

COX6A1

c.-45G>A heterozygous in 1 patient sample

c.*21C>T
homozygous in 1 patient sample and heterozygous in 2 
patient and 2 control samples 

c.*147C>T heterozygous in 1 patient sample

COX7A1 c.102+16G>C heterozygous in 1 patient sample

COX7A2 c.-6T>A heterozygous in 2 patient and 2 control samples

To the best of my knowledge, this was the first time that p.R85W (COX4I2), 

p.R71H (COX5A), p.L12V (COX6A2), p.K31del (COX7A1) and p.V366L along with 

p.R431W (COX10) variants were detected in COX-deficient patients. With regard to 

findings of the NHLBI-ESP (https://esp.gs.washington.edu/drupal) and the 1000 

Genomes (http://www.1000genomes.org/home) research projects, the homozygous 

c.253T (COX4I2), c.212A (COX5A) and c.1291T (COX10) variants are extremely rare 

and could be pathogenic. Because the defects caused by mutations in nuclear-encoded 

COX-related genes are autosomal recessive, patients P8, P12, P17 and P29 should be 

considered heterozygous carriers of pathogenic mutations (Table 6). Thus, it is evident 

that every human individual is a complex variable mosaic of potential pathogenic 

variants, which is in accordance with the results from exome sequencing and whole 

genome microarray analyses [107,247-249]. Nevertheless, an additional study of the 

four non-synonymous variations, p.R85W (COX4I2), p.R71H (COX5A), p.K31del 

(COX7A1) and p.R431W (COX10) should be performed to evaluate their pathogenicity, 

significance and severity. For this purpose, cells with stable down-regulated expression 

of individual subunits may be utilized [192].

https://esp.gs.washington.edu/drupal
http://www.1000genomes.org/home
https://esp.gs.washington.edu/drupal
http://www.1000genomes.org/home
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Figure 5 Melting curve plots for the amplicons covering three exons of COX4I2, COX5A

and COX7A1 and COX10.

Melting curves detected for exon 4 of COX4I2. The grey line depicts the wild type, and 

the red line depicts the heterozygous variant c.253C>T (p.R85W) (a). Melting curves detected 

for exon 2 of COX5A. The grey line depicts the wild type, the red line depicts the heterozygous 

variant c.101-63G>A, and the blue line depicts the heterozygous variant c.212G>A (p.R71H) 

(b). Melting curves detected for exon 2 of COX7A1. Seven distinct sequence genotypes were 

detected in these amplicons, which demonstrates the efficiency of the HRM assay. The orange 

line depicts rs68159832 (G), rs2285599 (G), and rs2285598 (G/C). The dark-blue line depicts 

rs68159832 (G), rs2285599 (G), and rs2285598 (G). The middle blue line depicts rs68159832 

(G), rs2285599 (T/G), and rs2285598 (G/C). The light-blue line depicts heterozygous 

c.91_93delAAG (p.K31del), rs68159832 (G), rs2285599 (G), and rs2285598 (G). The grey line 

depicts rs68159832 (delG/G), rs2285599 (T), and rs2285598 (G). The rose line depicts 

rs68159832 (delG), rs2285599 (T), rs2285598 (G), and c.102+16G>C. The red line depicts 

rs68159832 (delG), rs2285599 (T), and rs2285598 (G) (c). Melting curves detected for exon 7 

of COX10 (fragment a). The grey line depicts the wild type, the red line depicts the 

heterozygous intronic variant c.929-8_-7insCCC/-, and the green line depicts the heterozygous 

exonic variant c.1096G>T (p.V366L) (d).
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In summary, HRM and predictive methodologies are suitable low-cost screening 

tools. The reliability of pathogenicity prediction methods has been verified by several 

comparative studies as approximately 81-92% [250]. Despite the abovementioned 

drawbacks of the current predictive tools, they are an invaluable resource for genetic 

testing, especially because of their ability to determine when a rare sequence variant 

may be the cause of a Mendelian disorder. However, the application of only one 

predictive algorithm could be misleading [251]. HRM technology has been shown and 

confirmed as a simple and sensitive method, which is in accordance with previously 

published studies. Thus, application of HRM technology contributed to update of the 

contemporary spectrum of known genetic sequence variations present in the Czech 

population. These variants will be important for future targeted mutation screening in 

Czech COX-deficient children.
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5.2 Copy-number variations in 16 patients with COX deficiency

Using a Genome-Wide Human SNP 6.0 microarray chip (Affymetrix), CNVs 

that affected the gene dosage of whole genes or part of annotated genetic regions and 

that led to loss or gain were identified in 16 patients. The genetic bases for 

mitochondrial disorder were found in four unrelated paediatric patients; their clinical 

manifestation and disease phenotype are summarised in Table 8. In these patients, at 

least one large and causal deletion was identified.

Table 8 Phenotype and genetic findings of the patients

Patient Gene and type of mutation Phenotype Biomarkers of the disease

P49

TYMP
c.261G>T (p.E87D);

Chr.22: 
del49275958_49451008

Age of onset: 4-5 years  Clinical 
presentation: failure to thrive, 
cachexia,  attacks of abdominal pain 
and alternation of diarrhoea and 
constipation due to gastrointestinal 
dysmotility, extreme nausea and 
intermittent vomiting, jejunal 
diverticulosis (X-ray investigation), 
hypotonic syndrome, general 
hyporeflexia and muscle hypotrophy, 
leukodystrophy, polyneuropathy, 
nowadays (16 years) wheelchair-
bound

respiratory chain enzyme 
activities: normal in patient 
fibroblasts, muscle tissue not 
available on analysis others: 
mild hyperlactaciduria, 
increased urinary excretion of 
Krebs cycle intermediates 
(fumarate, aconitate), increased 
levels of uracil, thymine, 
deoxyuridine and thymidine

P1

SCO2
c.667G>A (p.D223N); 

Chr.22: 
del49275958_49362964

Age of onset: 7.5 months (20 months) 
Clinical presentation: microcephaly, 
myoclonic movements on extremities, 
severe hypotonic syndrome, failure to 
thrive, bilateral ptosis, divergent 
strabismus, ataxia, regression of 
psychomotor development, delayed 
myelination (brain MRI)

respiratory chain enzyme 
activities: isolated deficiency of 
complex IV in brain ; combined
deficiency of complexes I and IV 
in muscle and liver others: 
elevated lactate in CSF, mild 
hyperlactaciduria, increased 
urinary excretion of Krebs cycle 
intermediates (fumarate, 
aconitate, 2-oxoglutarate) 

P5

PUS1 
c.[896+2551_1061
delinsATTTTACCA], 
p.Gly148ValfsX41;

Chr.12: 
del130985486_130991463

Age of onset (death): 3 years (5 years 
10 months)
Clinical presentation: muscle 
hypotony, sideroblastic anemia, 
hypotrophy, cardiomyopathy, 
encephalopathy, Pearson syndrome

respiratory chain enzyme 
activities: isolated deficiency of 
complex IV in liver and 
fibroblasts, combined deficiency 
of  complexes III and IV in 
muscle others: mild increase in 
glutamine and glutamate, 
greatly elevated lactate in CSF, 
lactacidemia, mild increase in 
lactate/pyruvate ratio

P611

Age of onset (death):  6 years (24 
years 8 months)
Clinical presentation: microcephaly, 
hypotrophy, normocytic anemia, 
delayed psychomotor development, 
myopathy, dystrophy, cachexia, 
osteoporesis, scoliosis, delayed 
puberty, short stature, strabismus, 
arachnodactyly, IgG monoclonal  
gammopathy

respiratory chain enzyme 
activities: combined deficiency 
of complexes I, I-III and IV in 
muscle others: elevated alanine 
and lactate in blood 
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Table 8 Phenotype and genetic findings of the patients (continued)

1 Patient 61 was included in the examined group of patients because his disease phenotype 

resembled the clinical manifestation of patient 5.

5.2.1 Patients	with	large	deletions	on	chromosome	22q13.33

In patient 49, a maternally inherited 175-kb deletion on Chr.22: 

g.[(49275958_49451008)del(NCBI Build 36.1)] that spanned 12 genes (LMF2, 

NCAPH2, SCO2, TYMP, ODF3B, KLHDC7B, c22orf41, CPT1B, CHKB, 

LOC100144603, MAPKIP2, ARSA) was identified, in addition to a paternally inherited 

point mutation c.261G>T (p.Glu87Asp) in the TYMP gene (Table 9). Although the 

nucleotide substitution c.261G>T has not been described previously, the resulting 

amino acid replacement p.Glu87Asp has already been characterised [252]. The 175-kb 

deletion spans 12 genes and corresponds to known CNV-variation_5192, which occurs 

with almost 7% frequency in control samples [253]. In this patient, the MNGIE

diagnosis was biochemically confirmed by diminished thymidine phosphorylase activity 

in patient lymphocytes. No pathogenic mutation was found in SCO2 gene.

Table 9 Hemizygous genes on 22q13.33 found in our patients

Gene (OMIM) Phenotype  of the disease (OMIM) Type of inheritance Hemizygous in patient

LMF2 (-) - - P1, P49

NCAPH2 (611230) - - P1, P49

SCO2 (604272)

fatal infantile 
cardioencephalomyopathy due to 
cytochromec oxidase deficiency 

(604377)

AR P1, P49

TYMP (131222)
mitochondrial DNA depletion 

syndrome 1 (603041)
AR P1, P49

ODF3B (-) - - P1, P49

KLHDC7B (-) - - P1, P49

c22orf41 (-) - - P1, P49

CPT1B (601987) - AR in mice P1, P49

CHKB (612395)
muscular dystrophy, congenital 

megaconial type (602541)
AR P1 (partialy), P49

LOC10144603 (-) - - P49

MAPK8IP2
(607755)

- - P49

ARSA (607574)
metachromatic leukodystrophy 

(250100)
AR P49
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In patient 1, a paternally inherited 87-kb deletion on Chr.22: 

g.[(49275958_49362964)del(NCBI Build 36.1)] spanning 8 genes (LMF2, NCAPH2, 

SCO2, TYMP, ODF3B, KLHDC7B, c22orf41, CPT1B) was identified by microarrays 

and confirmed by a real-time PCR copy-number variation assay (Table 9). This deletion 

corresponds to a known CNV-variation_4139 that occurs with a frequency of 

approximately 0.4% in the control samples [253]. In combination with this deletion, a 

novel point mutation, c.667G>A (p.Asp223Asn), was found in the SCO2 gene. The 

alignment of SCO2 proteins from multiple species showed that the affected Asp223 is 

completely conserved. The novel missense SCO2 mutation was not present in 100 

Czech healthy control samples. No pathogenic mutation was found in TYMP gene. In 

muscle and heart mitochondria, a markedly decreased quantity of SCO2 protein was 

found by immunoblot analysis (Figure 7).

Lower levels of copper content (Table 10) were detected in autoptic liver (10% 

of control value), brain, heart and muscle (60-70% of control value) and further 

suggested COX deficiency due to SCO2 dysfunction in this patient [254]. In addition, 

the pathogenicity of this mutation was predicted by in silico analysis. With regard to 

knowledge of the human SCO2 protein structure, the newly identified hemizygous 

mutation p.D223N is likely to affect the coordination of copper (I) by the two cysteines 

of the CXXXC conserved motif and by the conserved His224 [255]. Furthermore, 

markedly decreased levels of SCO2 protein and border low copper content found in 

Figure 7 Immunoblot analysis of the muscle and heart mitochondria 

from the patient with causal mutations in the SCO2 gene

The analysis and image were kindly provided by Mgr. Hana Kratochvílová.
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tissues of P1 are in accordance with previously reported findings in SCO2 patients

[224,254].

Table 10 Total copper content in autoptic tissues of P1 with SCO2 

deficiency (expressed in µg in 1g of dry tissue)

Type of patient tissue
Copper content (µg/g)

Patient Controls

Muscle 1.12 1.74 ± 0.53 (n=9)

Heart 2.2 2.98 ± 0.87 (n=8)

Brain (frontal cortex) 2.26 3.06 ± 1.62 (n=6)

Liver 4.49 49.03 ± 24.01 (n=10)

According to the Database of Genomic Variants (DGV), only three documented 

copy number variations of approximately 87-175 kb on chromosome 22q13.33 and 

overlapping the TYMP and SCO2 genes, including CNV-variation_4139 and CNV-

variation_5192 found in presented patients, have been identified so far with total 

frequency 2.2% in control samples [253]. 

To evaluate the occurrence of CNVs spanning the SCO2 gene in the Czech 

population, a real-time PCR copy-number variation assay was carried out in 50 control 

samples. However, no CNV encompassing SCO2 was found in the 50 tested Czech 

control samples. Regarding the deletions found in P49 and P1, only 2 out of 12 affected 

genes, apart from SCO2 and TYMP, are associated to human disease (Table 9). 

Although mutations in both ARSA and CHKB result in autosomal recessive disorders 

their clinical features, neonatal manifestation of cardiomyopathy with increased creatine 

kinase activity found in CHKB related muscular dystrophy [256] or mental decline 

specific for juvenile form of metachromatic leukodystrophy, are distinct from symptoms 

observed in our patients.

5.2.2 Patients	with	large	deletions	on	chromosome	12q24.33

In patients P5 and P61, a 6 kb homozygous deletion affecting exon 4 of the 

PUS1 gene on Chr.12: g.[(130985486_130991463)del(NCBI Build 36.1)] was 

identified. Analysis of the PUS1-cDNA from these patients showed a deletion of the 

whole of exon 4 and a part of exon 5, along with a 9-bp insertion derived from intron 3. 

As a result, both patients were homozygous for 

c.[896+2551_1061delinsATTTTACCA], which lead to a truncation of the PUS1 protein 
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(p.Gly148ValfsX41). These patients were of Roma origin. The identified pathological 

deletion was not present in the 80 control DNA samples of Roma origin or in 200 

samples of the general Czech population. Presently, the DGV identifies only one wider 

deletion (CNV-variation_8742) affecting exon 4 of PUS1, whose prevalence was 

assessed to be 0.1% [253]. Thus, the short, homozygous disease-causing deletion 

identified in our two patients seems to be unique.

5.2.3 Side	genetic	effects	of	CNVs	and	their	clinical	consequences in	our	

patients

According to recent studies, CNVs are significant genetic factors that can 

influence the phenotype of every individual [179]. CNV variants can expose sequence 

differences that have an unclear effect on genes of unknown function, change epigenetic 

factors or alter the genomic neighbourhood [257-259]. These facts, together with the 

nuclear and mitochondrial genetic backgrounds, could further contribute to the complex 

clinical phenotype of mitochondrial disorders [93,257]. The existence of large deletions 

in mtDNA is well known, whereas deletions affecting nuclear genes are not commonly 

described in patients with mitochondrial disorders. A homozygous deletion spanning 3 

genes, including NDUFAF2, was found in a patient with fatal multisystem disorder 

[260]. Leary et al. reported a de novo 15-30 kb heterozygous deletion of a SCO2 allele 

that occurred in combination with a point mutation in a patient with neonatal 

hypertrophic cardiomyopathy; the patient presented a phenotype similar to that 

observed of other patients that were compound heterozygotes for a E140K mutation of 

SCO2 [261]. Additionally, homozygous or heterozygous deletions of several exons of 

other OXPHOS-related disease genes were identified by the application of targeted 

array CGH in several patients with mitochondrial diseases [262,263]. 

Whether such factors influence the clinical presentation of our four patients is 

unknown. Due to the rarity of the causal mutations identified in patients P5 and P61,

this question cannot be answered because the mutations have not yet been reported in 

patients suffering from PUS1 deficiency. There is no satisfactory explanation for the 

phenotype-genotype variability observed in patients suffering from mitochondrial 

diseases; however, the clinical phenotypes of affected patients should be compared to 

note whether the same causal mutations are reported frequently and/or at least occur in 

the same genes. To date, we have diagnosed the late non-neonatal onset of SCO2

deficiency in 8 patients [264], but ataxia was not noted in these or other SCO2 patients 
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reported. All observed symptoms are typical of SCO2 deficiency. Based on a review of 

published cases, hypertrophic cardiomyopathy, a key feature of SCO2 deficient patients 

with neonatal onset, is present in approximately 50% of SCO2 patients with non-

neonatal presentation. Considering the biochemical and genetic findings, MNGIE was 

diagnosed in P49. The manifested symptoms of P49 were similar to those described 

previously [265]. Although no pathogenic mutation was found in SCO2 gene of P49, 

mildly decreased COX activity in the lymphocytes could be a consequence of an 

accumulation of mtDNA point mutations due to diminished thymidine phosphorylase 

activity, as reported previously in MNGIE patients [266].

To conclude, it can be hypothesised that improvement in our knowledge of 

mechanisms based on the presence of variable gene dosage, epigenetic modifications, 

repetitive sequences, non-coding RNAs, cis- and trans-splicing, diverse penetrance of 

diseases, the complex effects of the hundreds of loss-of-function variants present in 

every individual, and general agreement on the classification of particular genetic 

variants will most likely clarify the phenotypic diversity in humans [267-270]. Notably, 

consensual guidelines on the classification of all risk and/or pathological genetic 

variants identified in a patient have not been established yet, which thwarts publicaly 

accepted meritorious intentions to match a complex patient genotype with the clinically 

differentiable and annotated disease-phenotype [271-273]. This might explain, why 

some of variants assessed earlier as deleterious in small cohort studies are nowadays 

ascertained to be quite common polymorphism and vice versa [274].
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5.3 Targeted	 sequencing	 of	 mitochondrial	 exome	 in	 a	 group	 of	 25	

children with	COX	deficiency

Samples of 25 patients were subjected to targeted sequencing of mitochondrial 

exome based on a selection of mitochondria-related candidate genes thought to be 

employed in the maintenance of cellular energy homeostasis. The application of 

targeted NGS highlighted the cause of mitochondrial disorders in 5/25 patients (20%) 

who harboured genetic defects in previously characterised genes (Table 11). All the 

patients harboured at least one mutation that had not yet been characterised. Moreover, 

causative mutations located in four genes, AARS2, TSFM, AIFM1 and MGME1, have 

been documented in very few families across the world. The manifested disease 

phenotypes of our patients resemble those of recently reported index patients, which is 

especially important to paediatricians. All the affected genes are listed in 

Supplementary table 1 (see the Attachment section) and have been recently identified as 

causes of combined COX deficiency. This fact emphasizes the need for such a 

systematically updated genetic depository.

The in-depth analysis of NGS data contributed to the identification of probable 

candidate genes (ACOX2, UQCRH, QARS, SUCLG2, ACBD3) in 5/25 patients (20%),

but the pathogenicity of the suspected sequence variants remains to be confirmed

experimentally. In spite of great effort, no candidate gene has been identified in 15/25 

patients (60%). The proportion of definite molecular diagnoses yielded by NGS in these 

preliminary data is slightly lower than documented by other authors [275-277]. This 

discrepancy could result from a less-strict selection process for the examined group of 

Czech paediatric patients, though they all presented biochemically confirmed isolated or 

combined COX deficiency. Unexpected genetic specificity of the investigated group of 

patients could influence the presented findings, which, when combined with incomplete 

selection of candidate genes, could lead to coincidental omission of some genes causing 

primary and/or secondary mitochondrial dysfunction. Moreover, phenotypic overlap 

typical of patients with mitochondrial disorders could disguise the genuine genetic 

cause of a complex patient`s clinical presentation [107].

The targeted sequencing size was 2.03 Mb, which spanned exons of 1233 

mitochondria-related genes that were covered ≥ 1x (96%), ≥ 10x (83%), ≥ 15x (79%) 

and/or ≥ 20x (75%). The number of identified exome sequence variants compared to the 

reference sample was calculated as approximately 1306 per individual patient sample, 
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of which rare variants occurred in <5% of the overall Czech population and totalled 365 

events that resulted in the modification of 269 proteins.

Table 11 Patients with an identified genetic cause of their mitochondrial disease based on 

next-generation sequencing data

Patient 
(gender)

Gene 
(OMIM)

Pathogenic variants Phenotype of the patients

P16 
(female)

AARS2 
(612035)

c.[1774C>T];[2188G>A], 
p.R592W;p.V730M

Age of onset (death): at birth (9 weeks)Clinical presentation: 
hypertrophic cardiomyopathy, anemia, dystrophy, delayed 

psychomotor development, encephalopathy, failure to thrive
Biochemical findings: lactic acidosis, hyperglycemia, 

combined deficiency of COX and complex I in heart and musle
Support of pathogenicity: clinical phenotype similar to 

described patients, segregation in family

P21 + 
one 

affected 
sibling
(males)

TSFM 
(604723)

c.[446G>A];[856C>T], 
p.Cys149Tyr;Gln286Stop

Age of onset (death): at birth (6 weeks, 8weeks resp.) Clinical 
presentation: hypotonia, severe encephalopathy, 

hypertrophic cardiomyopathy Biochemical findings: lactic 
acidosis, combined OXPHOS deficiency in muscle Support of 
pathogenicity: decreased mitochondrial proteosynthesis in 

fibroblasts

46 
(female)

TK2 
(188250)

c.[209T>C];[416C>T], 
p.Phe70Ser;Ala139Val

Age of onset (death): 15 months (2 years) Clinical 
presentation: myopathy, hypotonia, hypetrophic 

cardiomyopathy, leukodystrophy Biochemical findings: 
combined OXPHOS deficiency in muscle Support of 

pathogenicity: segregation in family 

P48 
(male)

AIFM1
(300169)

c.[1391T>G];[0], 
p.Leu464Trp

Age of onset (death): at birth (18 months) 
Clinical presentation: hypotonia, encephalopathy, myoclonic 

epilepsy, brain atrophy
Biochemical findings: tissue specific deficiency of COX and 

complex I Support of pathogenicity: clinical phenotype 
similar to described patients, segregation in family

P60 
(female)

MGME1 
(615076)

c.[794C>T];[971G>A], 
p.Thr256Ile;Arg324Gln

Age of onset (death): at birth (4 years)
Clinical presentation: epilepsy, hypotonia, encephalopathy, 

hyporeflexia
Biochemical findings: lactic acidosis, tissue specific deficiency 

of COX and complex I
Support of pathogenicity:  dynamics of mtDNA repopulation 

in fibroblasts (ongoing)

Newly identified mutations are highlighted in red. 

High-throughput NGS has enabled the sequencing of whole DNA or RNA 

samples in a cost-efficient manner, which may improve the diagnosis and counselling of 

affected families. Thus, NGS has permitted the discovery of new mitochondrial disease-

causing or disease-associated variants [277]. However, NGS facilities are also facing 

new challenges, particularly in the processing, analysing and interpreting of data. Future 

improvements in advanced sequencing will most likely address increasing read length 

and coverage, particularly in genetic regions that include plentiful repeat sequences, to 

developing more efficient in silico predictive algorithms that enable reliable 
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classification of rare sequence variants and/or variants with dominant effects and 

enhancing the enrichment procedure [278-281].

Advances in the knowledge of genes involved in mitochondrial homeostasis 

have been made. For instance, new pathological mutations located in FLAD1, ELAC2, 

SFXN4 and FBXL4 were reported at the conference “Mitochondrial Disease: 

Translating biology into new treatments” (Hinxton, UK, 2013). The spatial distribution 

and function of LYRM7, OPA3, MRM2, MRM3, METTL20 and COQ4 were also 

discussed at the conference. This report suggests that the list of genes in MitoCarta must

be continually updated. As the existence of new and uncharacterised assembly factors 

with roles in the biogenesis of individual respiratory complexes are highly probable, 

whole exome and/or genome sequencing would be the optimal approach to find the 

molecular bases of COX deficiency in patients. Molecular defects in genes resulting in 

secondary deterioration of mitochondrial function and/or ultrastructure also require 

attention [282]. Additionally, future refinement of advanced whole exome or genome 

techniques will provide information concerning the genetic bases of mitochondrial 

defects, as well as the regulation of tissue-specific energy demands [15,258,259,283].

5.4 Summary	 of	 the	 clinically	 relevant	 findings	 in	 the	 investigated	

group	of	paediatric	patients

Genetic defects causing isolated or combined COX deficiency were revealed and 

confirmed in 9/61 (14.75%) patients using DNA array (4/15, 26.7%) and NGS 

technology (5/25, 20%). The clinical impact of suspected deficiency-causing sequence 

variants remains to be assessed in 5/25 patients (20%). Consequently, our findings 

allowed us to provide genetic counselling in nine affected families that had rare 

pathogenic mutations leading to mitochondrial disease.
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6 Conclusions and	impact	of	the	PhD	thesis

 A high-resolution melting assay was designed and validated for the

examination of 15 nuclear-encoded genes of cytochrome c oxidase that may be possible 

causes of COX deficiency. Nine new exonic and intronic variants of COX-related genes 

were documented, which updated the contemporary spectrum of known genetic 

sequence variations present in the Czech population. The variants that were likely to be 

damaging will be important for a future targeted-mutation screen in Czech COX-

deficient children. 

 HRM and predictive methodologies have been shown to be suitable low-

cost screening tools for the identification of pathological sequence variants. In silico

tools appeared to be helpful in the classification of new missense variants. This utility

encouraged us to implement the predictive modalities in the routine genetic analysis that 

is provided by our laboratory. Further improvements are essential to improve the 

reliability of the predictive tests and studies should evaluate the variant types and their 

effects on protein structure, given knowledge of an affected COX-related protein 

function.

 SNP DNA array analysis was an attainable laboratory analysis that 

contributed to the elucidation of causal genetic defects in 4/16 patients. Two patients 

harboured large heterozygous deletions covering both SCO2 and TYMP genes, in 

addition to point mutations in the second allele. Two unrelated patients carried 6-kb 

homozygous deletions affecting splicing of the PUS1 gene. To evaluate the occurrence 

of CNVs spanning the SCO2 gene and exon 4 of PUS1 gene in the Czech population, a 

real-time PCR copy-number variation assay was carried out in 50 control samples; such 

CNVs were not found in any of the samples.

 For the purpose of targeted mitochondrial exome testing, we updated the 

recently published MitoCarta, which covers the genetic regions that are considered to 

cause mitochondrial disorders. Despite continuous characterisation of further genes 

implicated in mitochondrial dysfunction, we found our updated list to be a basic but 

invaluable tool usable for mutation screening of 1233 candidate genes using only a very 

small amount of patient sample. The preliminary results of next-generation sequencing 

data analysis found pathological mutations in 5/25 patient DNA samples investigated. 

Our findings enabled us to identify several highly suspected candidate genetic variants, 

ACOX2, UQCRH, QARS, SUCLG2 and ACBD3, in 5/25 patients (20%), but their 
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pathogenicity remains to be confirmed. Overall, our results allowed us to provide 

genetic counselling for nine affected families (9/61).
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7 Attachment - Supplementary	table	1

Supplementary table 1 Mutations leading to isolated or combined COX deficiency

Gene Location
Function of a gene 

product
Disease phenotype

[References]

MTCO1 mtDNA catalytic subunit of COX, 
ensuring oxygen binding

therapy resistant epilepsy, multisystem disorder, 
myopathy and cortical lesions, EXIT/myoglobinuria, 
MM and rhabdomyolysis, DEAF, SNHL, LHON, SIDA, 
motor neuron disease, prostate cancer, MELAS-like 

syndrome, mild EXIT and MR

MTCO2 mtDNA catalytic subunit of COX, 
ensuring cytochrome c binding

encephalopathy, myopathy, encephalomyopathy, 
cortical lesions, lactic acidosis, MM, 

EXIT/rhabdomyolysis, SNHL, multisystem diorder, 
developmental delay, ataxia, seizures, hypotonia, 

DEAF, SNHL, PEG glaucoma, Alpers- Huttennlocher -
like syndrome, rhabdomyolysis, LHON, PD risk factor

MTCO3 mtDNA catalytic subunit of COX, 
ensuring proton pumping

Leigh syndrome, encephalopathy, 
encephalomyopathy, MELAS/PEM/NAION, 

myopathy and myoglobinuria, rhabdomyolysis, 
LHON, AD, MM and lactic acidosis, sporadic bilateral 

optic neuropathy, EXIT and APS2 - possible link

MT-TF mtDNA 
(622G>A)

mitochondrial translation late-onset mild myopathy and peripheral 
neuropathy [284]

MT-TF mtDNA 
(616T>C, 

T>G)

mitochondrial translation maternally inherited epilepsy [285]

MTTS1 mtDNA 
(1095T>C)

mitochondrial translation SNHL [286]

MTTL1 mtDNA 
(3243A>G)

mitochondrial translation MELAS [287], Leigh syndrome with PDHC deficiency 
[288], Barth`s-like syndrome [289]

MTTL1 mtDNA 
(3260A>G)

mitochondrial translation MMC [290]

MT-TI mtDNA 
(4277T>C)

mitochondrial translation hypertrophic cardiomyopathy [291]

MT-TI mtDNA 
(4308G>A)

mitochondrial translation CPEO [292]

MT-TI mtDNA 
(4290T>C)

mitochondrial translation progressive necrotising encephalopathy [293]

MT-TI mtDNA 
(4300A>G)

mitochondrial translation maternally inherited hypetrophic cardiomyopathy
[294]

MTTW mtDNA 
(5514A>G)

mitochondrial translation neonatal encephalomyopathy [295]

MTTW mtDNA 
(5545C>T)

mitochondrial translation hypetrophic cardiomyopathy with severe 
multisystem disorder [296]

MT-TN mtDNA 
(5728A>G)

mitochondrial translation multiorgan failure [297]

MTTS1 mtDNA 
(7453G>A)

mitochondrial translation fatal neonatal lactic acidosis [298]

MTTS1 mtDNA 
(7497G>A, 
7512T>C, 
7472insC) 

mitochondrial translation m.7512T>C, 7472insC: myoclonus epilepsy, 
deafness, ataxia, cognitive impairment [299,300]

and diabetes mellitus [301]; m.7497G>A: myopathy, 
SNHL, psychomotor retardation, exercise intolerance

[299,300]
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Supplementary table 1 (continued)

Gene Location
Function of a gene 

product
Disease phenotype

MT-TK mtDNA 
(8328G>A)

mitochondrial translation encephalopathy, EXIT with myopathy and ptosis

MT-TK mtDNA 
(8344A>G)

mitochondrial translation MERRF [302]

MT-TK mtDNA 
(8363G>A)

mitochondrial translation encephalopathy, SNHL, hypertrophic 
cardiomyopathy [303]

MTATP6 mtDNA 
(8993T>G)

structural subunit of F1F(o)-
ATP synthase

Leigh syndrome [304]

MTATP6 mtDNA 
(9205delTA)

structural subunit of F1F(o)-
ATP synthase

failure to thrive, spastic quadruparesis and 
microcephalia [163]

MTTS2 mtDNA 
(12264C>T)

mitochondrial translation neurodevelopmental delay, myopathy, epilepsy, 
deafness [305]; severe multisystem disease with 

cataracts [306]

MTTE mtDNA 
(14674T>C, 

T>G)

mitochondrial translation reversible infantile myopathy with COX deficiency 
[204,205]

MTTE mtDNA 
(14709T>C)

mitochondrial translation hydrops fetalis [307]

MT-TT mtDNA 
(15923A>G)

mitochondrial translation newborn cardiopulmonary arrest [308]

MT-TV mtDNA 
(1643A>G)

mitochondrial translation late infantile encephalomyopathy [295]

COX4I2 20q11.21 structural subunit of COX exocrine pancreatic insufficiency, dyserythropoietic 
anemia, and calvarial hyperostosis (OMIM 612714)

COX6B1 19q13.1 structural subunit of COX neuropathy, seizures, ataxia, musle weakness, 
unsteady gait, visual disturbances (OMIM 220110) 

COX7B Xq21.1 structural subunit of COX aplasia cutis congenita, reticulolinear, with 
microcephaly, facial dysmorphism and other 

congenital anomalies (OMIM 300887)

LRPPRC 2p21 stabilization of COXI and COXIII 
mRNAs

Leigh syndrome, French-Canadian type (OMIM 
220111)

TACO1 17q23.3 translational activator of COXI 
subunit

Leigh syndrome (OMIM 256000)

COX10 
(OMIM 
602125)

17p12 biosynthesis of heme a 
prosthetic group located in 

COXI subunit

encephalopathy, progressive mitochondrial, with 
proximal renal tubulopathy

COX15 10q24 Leigh syndrome (OMIM 256000), 
cardioencephalomyopathy, fatal infantile (OMIM 

615119)

SURF1 9q34.2 assisstance in association of 
COXII subunit with COX 

assembly intermediate S2

Leigh syndrome (OMIM 256000), Charcot-Marie-
Tooth disease [309]

SCO1 
(OMIM 
603644)

17p13.1 mitochondrial chaperones 
delivering copper into COXI and 
COXII subunits, playing role in 

copper homeostasis

hepatic failure, early onset, and neurologic disorder

SCO2 22q13.33 cardioencephalomyopathy, fatal infantile (OMIM 
604377), Myopia 6 (OMIM 608908), SMA-like 

phenotype [310]

COA5 2q11.2 COX assembly factor lethal neonatal cardiomyopathy (OMIM 220110)
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Supplementary table 1 (continued)

Gene Location
Function of a gene 

product
Disease phenotype

COX14 12q13.12 COX assembly factor playing 
role in COXI assembly

fatal neonatal lactic acidosis wiht dysmorphic 
features (OMIM 220110)

COX20 1q44 COX assembly factor mitochondrial complex IV dficiency with ataxia and 
muscle hypotonia (OMIM 220110)

NDUFA4 7p21.3 reassessed as a new additonal 
subunit of COX

congenital lactic acidosis, Leigh syndrome [11]

CEP89 
(OMIM 
615470)

19q13.11 mitochondrial integrity,  
support of complex IV activity, 
proper cognitive and neuronal 

function

delayed development, myopathy, cataracts, severe 
deafness, facial dysmorphism [311]

NDUFAF5 20p12.1 complex I assembly factor mitochondrial complex I deficiency with  Leigh 
syndrome (OMIM 252010)

NDUFV1 11q13 structural subunit of complex I mitochondrial comlex I deficiency (OMIM 252010) 
[312]

BCS1L 2q33 complex III assembly factor encephalopathy [313]                

FLAD1
(OMIM 
610595)

1q21.3 catalysis of the adenylation of 
flavin mononucleotide FMN 
into the redox cofactor FAD

muscular hypotonia with lipid storage myopathy and 
combined respiratory deficiency (Gutierrez-Rios P, et 

al.; 2013 - in Mitochondrial Disease: Translating 
biology into new treatment held in a Wellcome Trust 

Scientific Conference, Hinxton, UK)

FBXL4 6q16.1-
q16.3

phosphorylation-dependent 
ubiquitination, maintenance of 

mtDNA, networking of 
mitochondria, distribution of 

nucleoids

mitochondrial encephalomyopathy with mtDNA 
depletion and lactic acidosis [314]

FASTKD2 2q33.3 role in regulation of 
mitochondrial apoptosis

infantile mitochondrial encephalomyopathy (OMIM 
220110)

OPA1 3q28-q29 mitochondrial network 
stabilization, cytochrome c 

distribution driven by  cristae 
remodeling

optic atrophy 1 (OMIM 165500), optic atrophy plus 
syndrome (OMIM 125250)

ETHE1 19q13.31 sulfide catabolism ethylmalonic encephalopythy (602473)

TRMU 22q13 engaged in modification, 
structural stabilization and 
function of mitochondrial 

tRNAs  (Glu, Lys, Gln)

liver failure, transient infantile (OMIM 613070)

YARS2 12p11.21 mitochondrial enzyme 
catalyzing attachment of 

tyrosine to the corresponding 
tRNA

myopathy with lactic acidosis and sideroblastic 
anemia, type 2 (OMIM 613 561)

TK2 16q22-
q23.1

mitochondrial DNA synthesis myopathic form of mitochondrial DNA depletion 
syndrome 2 (OMIM 609560)

GFM1 3q25 mitochondrial translational 
elongation factor

combined oxidative phosphorylation deficiency 1 
(OMIM 609060)

MRPS16 10q22.1 mitochondrial ribosomal 
protein

combined oxidative phosphorylation deficiency 2 
(OMIM 610498)

TSFM 12q14.1 EFTs enzyme acting during a 
mitochodrial translation 

process

combined oxidative phosphorylation deficiency 3 
(OMIM 610505)

TUFM 16p11.2 mitochondrial translational 
elongation factor

combined oxidative phosphorylation deficiency 4 
(OMIM 610678)
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Supplementary table 1 (continued)

Gene Location
Function of a gene 

product
Disease phenotype

MRPS22 3q23 mitochondrial ribosomal 
protein

combined oxidative phosphorylation deficiency 5 
(OMIM 611719)

AIFM1 Xq26.1 flavoprotein essential for 
apoptotic processess acting on 

a nucleus and mitochonria

combined oxidative phosphorylation deficiency 6 
(OMIM 300816)

C12orf65 12q24.31 translation of mtDNA-encoded 
proteins

combined oxidative phosphorylation deficiency 7 
(OMIM 613559), autosomal recessive spastic 

paraplegia 55 (OMIM 615035)

AARS2 6p21.1 mitochondrial alanyl-tRNA 
synthetase acting in 
mitochondrial mRNA 

translation

combined oxidative phosphorylation deficiency 8 
(OMIM 614096)

MRPL3 3q22.1 mitochondrial ribosomal 
protein

combined oxidative phosphorylation deficiency 9 
(OMIM 614582)

MTO1 6q13 catalysis of mitochondrial tRNA 
modification

combined oxidative phosphorylation deficiency 10 
(OMIM 614702)

RMND1 6q25.1 involved in mitochondrial 
translation process by putative 

coordination of assembly or 
maintenance of mitochondrial 

ribosome (Janer A, 2012)

combined oxidative phosphorylation deficiency 11 
(OMIM 614922)

EARS2 16p12.2 mitochondrial glutamyl-tRNA 
synthetase 2 acting in 

mitochondrial translation

combined oxidative phosphorylation deficiency 12 
(OMIM 614924)

PNPT1 2p15 enzyme involved in RNA import 
into the mitochondria

combined oxidative phosphorylation deficiency 13 
(OMIM 614932)

FARS2 6p25.1 mitochondrial phenylalanyl-
tRNA synthetase 2

combined oxidative phosphorylation deficiency 14 
(OMIM 614946)

MTFMT 15q22.31 methionyl-tRNA 
formyltransferaseacting in 
initiation of mitochondrial 

translation

combined oxidative phosphorylation deficiency 15 
(OMIM 614947)

MRPL44 2q36.1 mitochondrial ribosomal 
protein

combined oxidative phosphorylation deficiency 16 
(OMIM 615395)

MRPL12 17q25 mitochondrial ribosomal 
protein

growth retardation and neurological deterioration 
[315]

LYRM4
(OMIM 
613311)

6p25.1 factor of Fe-S cluster 
biogenesis

combined OXPHOS deficiency with lactic acidosis, 
hepatopathy, stridor and failure to thrive [316]

SCN1A 2q24.3 structural subunit of neuronal 
sodium channel

Dravet syndrome (OMIM 607208) [317]

Deletion 
of 

C2orf34, 
PREPL and 

SLC3A1

2p21 c2orf34 (CAMKMT) -  formation 
of trimethyllysine in 

calmodulin; PREPL - serine 
peptidase with suggested 
facilitation of activation or 

degradation of neuropeptides 
and peptide hormones ; 

SLC3A1 - a component of the 
renal amino acid transporter  

atypical 2p21 deletion syndrome (OMIM 606407) 
[318]
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Supplementary table 1 (continued)

Gene Location
Function of a gene 

product
Disease phenotype

IBA57 1q42.13 part of the iron-sulfur cluster 
assembly machinery in 

mitochondria

multiple mitochondrial dysfunction syndrome 3 
(OMIM 615330)

NFU1 2p13.3 involved in the biogenesis of 
iron-sulfur clusters

multiple mitochondrial dysfunction syndrome 1 
(OMIM 605711) [319]

TYMP 22q13.33 enzyme  essential for the 
nucleotide salvage pathway

mitochondrial DNA depletion syndrome 1 (MNGIE 
type, OMIM 603041) [320]

POLG1 
(OMIM 
174763)

15q25 catalytic subunit of mtDNA 
polymerase

Pearson syndrome, mtDNA depletion syndrome
[321], Alpers syndrome [322]

DGUOK 2p13.1 enzyme  involved in 
phosphorylation of 

deoxyribonucleosides

mitochondrial DNA depletion syndrome 3, 
hepatocebral type (OMIM 251880)

SUCLA2 13q14.2 subunit of the succinyl-CoA 
synthetase

mitochondrial DNA depeltion syndrome 5 (OMIM 
612073) [323]

MPV17 2p23.3 mtDNA maintenance and 
stability

mitochondrial DNA depletion syndrome 6, 
hepatocerebral type (OMIM 256810) [324,325]

TWINKLE 10q24.31 DNA helicase acting in mtDNA 
replication

mitochondrial DNA depletion syndrome 7, 
hepatocerebral type (OMIM 271245)

RRM2B 
(OMIM 
604712)

8q22.3 subunit of a p53-controlled 
ribonucleotide reductase 

catalyzing the biosynthesis of 
deoxyribonucleotides

mitochondrial DNA depletion syndrome 8 [326]

SUCLG1 2p11.2 catalysis of the conversion of 
succinyl CoA and ADP or GDP 
to succinate and ATP or GTP

mtDNA depletion syndrome 9 (encephalomyopathic 
type with methylmalonic aciduria) (OMIM 245400)

AGK 7q34 mitochondrial membrane 
protein involved in lipid and 

glycerolipid metabolism

cardiomyopathic type of mtDNA depletion syndrome 
10 = Sengers syndrome (OMIM 212350)

MGME1 20p11.23 mitochondrial membrane 
structure and shape, levels of 
ROS and mitochondrial redox 
state, mtDNA maintenance

mitochondrial DNA depletion syndrome 11 (OMIM 
615084) [54]

ANT1 4q35.1 homodimer in the 
mitochondrial inner membrane 

transporting ADP and ATP 
across the membrane

mitochondrial depletion syndrome 12, 
cardiomyopathic type (OMIM 615418)

EXIT = exercise intolerance; DEAF = deafness; SNHL = sensorineural hearing loss; SIDA = 
sideroblastic anemia; LHON = Leber hereditary optic neuropathy; MELAS = mitochondrial 
encephalomyopathy; PEM = progressive encephalopathy; NAION = nonarteritic anterior 
ischemic optic neuropathy; MM = mitochondrial myopathy; AD = Alzeimer's disease; APS2 = 
autoimmune polyendocrinopathy type II; MR = mental retardation; PEG =  
pseudoexfoliation glaucoma; PD = Parkinson's disease; MMC = maternal myopathy and 
cardiomyopathy; CPEO = chronic progressive external opthalmoplegia, MNGIE = 
mitochondrial DNA depletin syndrome 1 [117]
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