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Chapter I

Introduction

We deal with three topics in this text.

1 Nonhomogeneity and coherent structures

The first topic is the question of nonhomogeneity of extremally disconnected compact
spaces (EDC spaces). A topological space X is homogeneous if for every pair of
points x, y ∈ X there is an autohomeomorphism h such that h(x) = y. The cautious
reader will notice right away that we are only interested in the infinite case.

The EDC spaces, i.e. the Stone spaces of complete Boolean algebras, are long
known not to be homogeneous. However, the original elegant proof due to Froĺık
[Fro] suggests no topological reason for this. A topological way of exploiting non-
homogeneity would be to exhibit a pair of points which simply cannot be swapped
by an automorphism. Those would be the witnesses of nonhomogeneity . In large
subclasses of the EDC spaces, such witnesses have been found. This was done by
isolating a topological property that is shared by some, but not all, points in the
space — while an automorphisms would have to preserve the property.

A scale of such properties has been developed in set-theoretic topology. Clearly,
such a property has to be strong enough so that not all points enjoy it, yet weak
enough so that points having the property can actually be found. A good candidate
for such a topological property is the following.

A point x of an (infinite) topological space X is discretely untouchable
if x /∈ D̄ for every countable discrete subset D ⊆ X not containing x.

Escaping the closure of sets which are small in some sense is also the main
idea in other properties designed to witness nonhomogeneity. What makes discrete
untouchability a good candidate is that it is the weakest of the properties introduced
so far, yet there have to be points without it: by the very compactness, some points
have to be discretely touched . So finding a discretely untouchable point would indeed
be a topological exhibition of nonhomogeneity.

The subclass of EDC spaces where a witness of nonhomogeneity hasn’t been
found yet is currently reduced to the class of ccc spaces of weight at most con-
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CHAPTER I. INTRODUCTION 2

tinuum. In others EDC spaces, points with properties even stronger that discrete
untouchability have been found. We deal with what we call the Simon Conjecture:

Every infinite, extremally disconnected compact Hausdorff space
contains a discretely untouchable point .

By Stone duality, the topic has a Boolean translation: we are looking for dis-
cretely untouchable ultrafilters on complete ccc Boolean algebras of size (or, equiva-
lently, algebraic density) at most continuum. It is in this form that we actually deal
with the question. To this end, we introduce the notion of coherent ultrafilters .

Let U be an ultrafilter on a complete ccc Boolean algebra B. If for every
partition {pn;n ∈ ω} ⊆ B, the family {A ⊆ ω;

∨

A pn ∈ U} is a P -point
on ω, call U a coherent P-point on B.

Analogous definitions can be introduced for other traditional properties of ul-
trafiters on ω. We show that coherent P -points and coherent Ramsey ultrafilters
consistently exist on every complete ccc algebra of size not exceeding the continuum.

Proposition: Let B be a complete ccc Boolean algebra of size at most
c. Then every filter F on B with a base smaller than c can be extended
to a coherent selective ultrafilter on B if and only if c = cov(M).

Proposition: Let B be a complete ccc Boolean algebra of size at most c.
Every filter on B with a base smaller than c can be extended to a coherent
P -ultrafilter on B if and only if c = d.

Finally, we show that they serve as witnesses of nonhomogeneity for the corre-
sponding Stone spaces.

Proposition: Let B be a complete ccc algebra. Let U be a coherent
P -ultrafilter on B. Then U is an untouchable point in St(B).

2 The order-sequential topology

Our second topic is the order-sequential topology τs on σ-complete Boolean algebras.
This topology has been introduced and shown to be relevant to measure-theoretic
properties of Boolean algebras in [M2], and systematically developed in [BGJ]. In
particular, a Boolean algebra is a Maharam algebra if and only if it is Hausdorff
when equipped with the order-sequential topology.

We add a characterization of Maharam algebras using the order-sequential topol-
ogy, extending the list known from [BGJ].

Proposition: A σ-complete weakly distributive ccc algebra B is a Ma-
haram algebra if and only if the cartesian product topology of (B, τs) ×
(B, τs) coincides with the order-sequential topology of the algebra B ×B.
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We study the question of compactness for this topology. It is known from [Gl]
that the only compact Hausdorff topology on an (infinite) Boolean algebra is the
case of P (ω). Dropping the condition of Hausdorfness, we ask which algebras are
compact in their order-sequential topology, and pick the Suslin algebra as a natural
candidate. First we discuss the relevance of KC spaces to this question.

A topological space is a (countably) KC space if every (countably) com-
pact subset of X is closed in X.

The KC property is a natural substitute for T2 in cases T2 cannot be guaranteed,
as the closedness of compacts, a property readily implied by T2, is often precisely
the desired feature. The property relevant for us is

Theorem (Bella, Costantini): Minimal KC spaces are compact.

In a partial result, we show that the order-sequential topology of the complete
algebra determined by a Suslin tree is close to compact:

Proposition: The Suslin algebra is a minimal strongly KC space.

We employ a coloring reformulation of compactness due to E. Thümmel and
show that it is satisfied by the inherent coloring of the algebra determined by a
Suslin tree added by the Jech forcing as a subset of 2<ω1 .

3 Measures and functionals

The third topic is the study the similarities and differences between measures and
submeasures on Boolean algebras. We look at examples of how certain measure-
theoretic statements and constructions can be generalized to submeasures or even
more general functionals. We are using and extending some propositions form [Pa].

Proposition: Let (X, d) be a separable metric space without isolated
points. Let µ be a Maharam submeasure on Borel(X). Then X can
be decomposed into a meager set M ⊆ supp(µ) and a Gδ set N with
µ(N) = 0.

Proposition: Every exhaustive submeasure on CO(2κ) extends to a con-
tinuous regular submeasure on Baire(2κ).

Proposition: An ultraproduct of algebras carrying finitely additive mea-
sures carries a σ-additive measure; its Maharam type is c.

Proposition: Let B be a Boolean algebra carrying a monotone strictly
positive exhaustive functional. Then every tree in B is countable.



Chapter II

Basic notions

In this chapter, we recall some standard terminology and notation, and introduce
the notions and results that we will be using later. Our basic references are [Je] for
set theory, [Ku] for forcing, [HST] for topology, and [HBA] for Boolean algebras.

1 Set Theory

We work in ZFC and its extensions. Our set-theoretical notation is standard. When-
ever κ appears, it denotes an infinite cardinal number, and α, β, γ, . . . are ordinal
numbers; ω = ℵ0 denotes the first infinite cardinal, and ℵ1 is the first uncountable
cardinal; i, j, k, l,m, n will usually be used as natural numbers, indexes in particular.
The cardinality of a set A is denoted as |A|. The cardinal number c = 2ω = |R| is the
cardinality of the continuum. As usual, CH stays for the Continuum Hypothesis,
i.e. the statement c = ℵ1, and AC stays for the Axiom of Choice.

Throughout the text, the gentle reader is advised to substitute nonempty set for
set whenever appropriate.

1.1 Combinatorics

Almost disjoint systems

Let A,B be two infinite sets. If A \ B is finite, we say that A is almost a subset of
B and write A ⊆∗ B. If the symmetric difference A△B is finite, which means that
both A ⊆∗ B and B ⊆∗ A hold, we say that A and B are almost equal and write
A =∗ B. If A ∩ B is finite, we say that A and B are almost disjoint .

A family A of infinite subsets of an infinite set X is an almost disjoint system
(or an AD family) on X if the sets in A are pairwise almost disjoint. If the family A
is maximal (with respect to inclusion) among the AD families on X, it is a maximal
almost disjoint system (or a MAD family) on X. The smallest possible cardinality
of a MAD family on ω is denoted by a = min {|A|;A ⊆ [ω]ω is a MAD family}.

By a standard application of the Zorn lemma, maximal almost disjoint systems
do exist. For example, there is a MAD family of size c on 2<ω (and therefore on ω too,
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CHAPTER II. BASIC NOTIONS 5

via any bijection): for f ∈ 2ω, let Af = {f ↾ n;n ∈ ω} and put A = {Af ; f ∈ 2ω}.
Now extend the AD family A to a maximal one.

Delta systems

1.1 Definition. A family X of sets is a ∆-system if there is a set r (called the root)
such that x ∩ y = r for every x, y ∈ X .

1.2 Theorem. Let κ < λ be infinite cardinals, λ regular, and assume that |α<κ| < λ
for every α < λ. If X is a family of sets, |X | = λ, and every x ∈ X is of size < κ,
then there is a subsystem X0 ⊆ X of full size λ that forms a delta system.

Two instances of the ∆-system lemma we will need are the following: an un-
countable family of finite sets contains an uncountable ∆-system; a family of size
c
+ consisting of countable sets contains a ∆-system of size c

+.

Diamonds

1.3 Definition. A set C ⊆ ω1 is a club if it is closed in the order topology and
unbounded in ω1, i.e. for every α ∈ ω1 there is some β ∈ C such that α < β. A set
S ⊆ ω1 is stationary if it intersects every club; otherwise it is nonstationary .

1.4 Definition. Let ♦ stay for the following statement: there exists a diamond
sequence (Aα ⊆ α;α ∈ ω1) such that for every A ⊆ ω1, the set {α ∈ ω1;A ∩ α = Aα}
is stationary.

The diamond principle is a combinatorial statement known to be consistent with
ZFC; for example, it holds in the constructible universe. It is easily seen that ♦
implies CH, and it is known that the existence of Suslin trees follows from ♦.

Families of functions

1.5 Definition. For two function f, g ∈ ωω, we say that f is dominated by g and
write f ≤ g if f(n) ≤ g(n) for every n ∈ ω. We say that f is eventually dominated
by g, and write f ≤∗ g, if the set {n ∈ ω; f(n) > g(n)} is finite.

The (pre)ordered set (ωω,≤∗) gives rise to two ubiquitous cardinals:

1.6 Definition. A family F ⊆ ωω is unbounded if it has no upper bound in (ωω,≤∗).
The bounding number b is the smallest possible cardinality of an unbounded family.

1.7 Definition. A family F ⊆ ωω is dominating if (∀f ∈ ωω)(∃g ∈ F)f ≤∗ g. The
dominating number d is the smallest possible cardinality of a dominating family.

Clearly, b ≤ d ≤ c, and a diagonalization argument shows they are uncountable.
While it is known that b is a regular cardinal, d can be forced to attain the singular
value of ℵω1

by a famous result of Hechler [He].

A family {fα;α < λ} ⊆ ωω is a λ-scale if it is dominating and fα <∗ fβ for
α < β < λ. In other words, a scale is a well-ordered dominating family.

1.8 Fact. b = d if and only if there is a scale.
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1.2 Ideals and filters

An ideal on a nonempty set X is a family I ⊆ P (X) such that for A ⊆ B ∈ I we
have A ∈ I, and for A,B ∈ I we have A ∪ B ∈ I. In other words, an ideal is a
family closed on finite unions and subsets. An ideal I on X is proper if X /∈ I.

A subfamily B ⊆ I of an ideal I on a set X is a base of I if for every A ∈ I
there is some B ∈ B such that A ⊆ B.

Given an ideal I on X, a subset A ⊆ X such that A /∈ I is I-positive; the
I-positive subsets form a coideal denoted by I+. A family A ⊆ P (X) is easily seen
to be a coideal iff for every partition of A ∈ A into two disjoint sets A0, A1, at least
one of A0, A1 is in A.

With every ideal on a set, four cardinal characteristics are associated.

1.9 Definition. For I ⊇ Fin(X) an ideal on an infinite set X, call

(i) add(I) = min {|A|;A ⊆ I and
⋃

A /∈ I} the additivity of I.
The ideal is κ-additive if add(I) ≥ κ; an ℵ1-additive ideal is a σ-ideal .

(ii) cov(I) = min {|A|;A ⊆ I and
⋃

A = X} the covering number of I.

(iii) cof(I) = min {|A|;A ⊆ I a base of I} the cofinality of I.

(iv) non(I) = min {|A|;A ⊆ X and A /∈ I} the uniformity of I.

These cardinals are mostly of interest for σ-ideals on Polish spaces. We will recall
these with the Cichoń diagram in the topology section.

1.10 Definition (P -ideal). In ideal I on ω is a P-ideal if for every sequence of
An ∈ I there is some A ∈ I such that An ⊆

∗ A for every n.

Dually, a filter on a nonempty set X is a family F ⊆ P (X) such that I =
{A ⊆ X;X \ A ∈ F} is an ideal. That is, for every A ∈ F and A ⊆ B we have
B ∈ F , and for every A,B ∈ F we have A ∩B ∈ F . A filter F is κ-complete if the
dual ideal is κ-additive.

For a filter F on X, call B ⊆ F a base of F if for every F ∈ F there is some
B ∈ B such that F ⊇ B. Call a family B ⊆ P (X) centered if

⋂

A is nonempty for
every finite A ⊆ B. For a centered family B, let

〈B〉 =
{

A ⊆ X; (∃A ⊆ B finite)
⋂

A ⊆ A
}

be the filter generated by B, for which {
⋂

A;A ⊆ B finite} is a base.

Ultrafilters

A filter F on a set X is an ultrafilter if it is maximal (with respect to inclusion)
among all filters on X; that is to say, if G = F for every filter G ⊇ F on X. An
ultrafilter of the form {A ⊆ X; x ∈ A} for some x ∈ X is a trivial ultrafilter; other
ultrafilters are nontrivial or free. Denote the set of free ultrafilters on ω by ω∗.
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Without AC, it is possible that only trivial ultrafilters exist. On the other hand,
the maximality principle implies there are 2c nontrivial ultrafilters on ω.

Beyond ZFC, nontrivial ultrafilters with various interesting properties can be
constructed. We are interesetd in the following two, for their topological significance.

1.11 Definition. An ultrafilter U on ω is a P-ultrafilter if for every partition {An}
of ω, either some An ∈ U , or there is a set X ∈ U such that every X ∩ An is finite.

1.12 Fact. For a nontrivial ultrafilter U on ω, the following are equivalent.

(a) U is a P -ultrafilter.

(b) For every descending sequence of An ∈ U , there is some A ∈ U such that
A ⊆∗ An for every n.

(c) U is a P -point in the topology of ω∗.

Clearly, every trivial ultrafilter is a P -ultrafilter. The existence of nontrivial
P -ultrafilters is undecidable in ZFC. On one hand, it is consistent with ZFC that
there are many P -ultrafilters.

1.13 Theorem ([Ke]). Every filter on ω with a base smaller than c can be extended
to a P-ultrafilter iff c = d.

However, it is also consistent with ZFC that there are no P -ultrafilters. This was
originally proved by Shelah; see [Wi] for an exposition, and [Wo] for a very readable
account of this result.

1.14 Definition. For a partition P of ω into infinite sets, call X ⊆ ω a selector
for P if A ∩X is a singleton for every A ∈ P . An ultrafilter U on ω is selective or
Ramsey if for every partition P of ω into infinite sets, U contains either some A ∈ P
or a selector for P .

Clearly, every selective ultrafilter is a P -ultrafilter.

1.15 Theorem ([Ca]). Every filter on ω with a base smaller than c can be extended
to a selective ultrafilter iff c = cov(meager).

2 Topology

All spaces are understood to be nonempty. A priori, we assume no separation axioms
beyond T1, as we will encounter spaces for which even the basic separation properties
are nontrivial, or in fact the point in question. We will be explicit about any
separation requirements; in particular, compact does not mean compact Hausdorff.

A space without isolated points is perfect .
A space with a clopen base is zero-dimensional .
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2.1 Polish spaces

A Polish space is a separable, completely metrizable space.

Let us first recall the prominent Cantor spaces and Baire spaces .

2.1 Example. For κ an infinite cardinal, equip 2κ with the product topology, where
2 = {0, 1} carries the discrete topology; that is, take the family of sets of the form
{f ∈ 2κ; f(α) = 1} for a subbase. It is clear that these are in fact clopen. Being a
product of compact Hausdorff spaces, it is compact Hausdorff. This is the Cantor
space of weight κ. In particular, 2ω is simply the Cantor space.

2.2 Example. For κ an infinite cardinal, equip κω with the product topology where
κ carries the discrete topology; that is, take the family of {f ∈ κω; f(n) = α} for a
clopen subbase. This is the Baire space of weight κ. In particular, ωω is simply the
Baire space.

The standard metric for the Cantor spaces and Baire spaces is ρ(f, g) = 2−δ(f,g)

where δ(f, g) = min {n; f(n) 6= g(n)}. Note however that the definition does not fix
a chosen metric; in fact, some definitions call Polish spaces Polishable, and reserve
Polish for a space with a fixed metric. It is well known that the Baire space is
homeomorphic to the set R \Q of irrational numbers, which, as a subset of the real
line, is not complete in the usual Euclidean metric.

The Cantor space and the Baire space can be uniquely characterized.

2.3 Theorem (Brouwer). Up to homeomorphism, the Cantor space 2ω is the unique
perfect compact metrizable zero-dimensional space.

2.4 Theorem (Alexandroff). Up to homeomorphism, the Baire space ωω is the
unique Polish zero-dimensional space in which evrey compact has an empty interior.

The Cantor space and the Baire space are universal in their respective classes.

2.5 Theorem. Every uncountable Polish space without isolated points is a contin-
uous image of the Baire space ωω under a one-to-one maping.

2.6 Theorem. Every uncountable Polish compact without isolated points is a con-
tinuous image of the Cantor space 2ω.

2.7 Fact. Let X be a Polish space and Y ⊆ X a subspace. Then Y is a Polish space
itself if and only if Y is a Gδ subset of X.

For example, the set [ω]<ω of finite subsets of ω, as a subset of 2ω, is clearly an
Fσ subset. Hence the subspace [ω]ω = 2ω \ [ω]<ω of infinite sets is a Gδ subset of 2ω,
therefore a Polish space itself.
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2.2 Baire category

Let X be a topological space. A subset N ⊆ X is nowhere dense if the closure of
N has an empty interior. A subset M ⊆ X is meager if it is a union of countably
many nowhere dense sets. A complement of a meager set is a comeager set . The
space X has the Baire category property (BCP) if the only meager open set is the
empty set.

It is easily checked that a topological space X has the BCP if and only if every
intersection of countably many open dense sets is a dense set.

For every topological space X, the family nwd(X) of nowhere dense sets is an
ideal, and the family meager(X) of meager sets is a σ-ideal if X has the BCP.

2.8 Theorem (Baire Category Theorem). Locally compact Hausdorff spaces and
complete metric spaces do have the Baire category property.

Recall the four cardinal characteristics of an ideal as defined in 1.9 and note that
for a space X having the BCP, cov(nwd(X)) = cov(meager(X)).

Cichoń diagram

The cardinal characteristics of ideals have been well studied for two traditional ideals
on the real line: the σ-ideal N of sets of Lebesgue measure zero, and the σ-idealM
of meager sets of reals. See [BJST] for a general introduction into the set theory of
the reals.

2.9 Theorem. Let X, Y be two uncountable Polish space without isolated points.
Let I and J be the σ-ideals of meager sets in X and Y , respectively. Then the
additivity, covering, cofinality, and uniformity characteristics of I and J and equal.

By this theorem, we can write just cov(M) for cov(meager(R)) or cov(nwd(X))
for any other convenient Polish space X.

The ZFC inequalities between the ideal characteristics can be compactly sum-
marized in the famous Cichoń diagram below.

cov(N ) −−−→ non(M) −−−→ cof(M) −−−→ cof(N )
x





x





x




b d

x





x





x





add(N ) −−−→ add(M) −−−→ cov(M) −−−→ non(N )

Every arrow in the diagram means an inequality provable in ZFC. It is also
known that add(M) = min{cov(M), b} and cof(M) = max{non(M), d}. Clearly,
all of these cardinals are between ℵ1 and c; hence CH collapses the Cichoń diagram
to a single point. It is also known that Martin’s Axiom makes all cardinals of the
diagram equal to c.
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These inequalities are all that is provable in ZFC; any assignment of ℵ1 and ℵ2
to these cardinals, compatible with the above, is realized in a suitable model of ZFC.
See [Fr1] for full proofs.

Meager ideals

As P (ω) is bijective with 2ω, it carries a topology of the Cantor space. Subfamilies
of P (ω) such as ideals and ultrafilters become subsets of 2ω under this identification,
and one might investigate their topological properties.

2.10 Theorem ([T1]). For an ideal I ⊇ Fin on ω, the following are equivalent.

(a) I ⊆ 2ω is a meager set.

(b) There is a partition of ω into intervals In such that every union of infinitely
many In’s is I-positive.

2.3 Sequential spaces

A topological space X is first-countable iff every point has a countable local base; X
is Fréchet if for every subset A ⊆ X and every x ∈ Ā, there is a sequence of points
xn ∈ A converging to x; X is sequential iff every subset A ⊆ X that is sequentially
closed , i.e. closed under limits of sequences from A, is closed.

It is easily seen that the properties above are given in descending strength, and
all follow from metrizability. Standard examples from [Fra] show that none of the
implications can be reversed.

2.11 Fact. A mapping f from a sequential space X to any topological space Y is
continuous if and only if it is sequentially continuous, i.e., f(x) = lim f(xn) for
every sequence (xn) in X converging to x ∈ X.

2.12 Fact. Let X be a sequential T1 space. Then X is sequentially compact if and
only if it is countably compact.

The closure operator in a sequential space (X, τ) can be described as follows.
For A ⊆ X, let u(A) ⊆ X contain those points x ∈ X for which there is a sequence
of an ∈ A converging to x. Put u0(A) = A and uα(A) = u(

⋃

{uξ(A); ξ < α}) for
α < ω1. Then Ā =

⋃

{uα(A);α < ω1}.
In particular, the space (X, τ) is Fréchet if and only if Ā = u1(A) for every

A ⊆ X, i.e. if the sequential closure stabilizes after the first step.

2.13 Definition. Let (X, τ) be a topological space. The sequential modification of
τ is the finest topology τs ⊇ τ on X such that every τ -convergent sequence in X is
τs-convergent.

The standard construction of the sequential modification is to consider all topolo-
gies σ ⊇ τ on X with the property that every τ -convergent sequence is σ-convergent,
and define τs to be the topology on X generated by the union of all such σ. Ob-
viously, τs ⊇ τ , and it is easy to see that (X, τs) is a sequential space. The spaces
(X, τ) and (X, τs) have the same class of convergent sequences.
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2.14 Example. Consider the set 2κ equipped with two topologies: the Cantor
topology τc, and the sequential modification τs. If κ = ω, the two topologies coincide,
as (2ω, τc) is a metric space, hence sequential already. On the other hand, for κ > ω,
the sequential topology τs is strictly finer than τc; indeed, the subset of countably
supported functions is τs-closed but not τc-closed. Hence (2κ, τs) cannot be compact.

2.15 Example. The space βω contains no convergent sequences beside the eventu-
ally constant ones. Hence the sequential modification is the discrete topology; βω
is said to be sequentialy discrete.

We will return to sequential spaces when we discuss the order-sequential topology.

2.4 Descriptive theory

Here we recall the hierarchies of descriptive theory: the Borel sets, the Baire sets,
and the analytic sets of a given topological space.

Borel sets

Given a topological space X, denote by Σ0 the family of all open sets, and by Π0

the family of all closed sets. For α > 0, let Σα be the family of all countable unions
of sets from

⋃

β<α Πβ, and let Πα be the family of all countable intersections of sets
from

⋃

β<α Σβ.
Call the sets from Σ1 the Fσ subsets, and call the sets from Π1 the Gδ subsets

of X. Apparently, Fσ sets are the complements of Gδ sets.
The hierarchy of Σα and Πα stabilizes after ω1 steps; for a countable set A ⊆

⋃

α<ω1
Σα there is some α < ω1 such that A ⊆ Σα, as ω1 is a regular cardinal. Let

Borel(X) =
⋃

α<ω1

Σα =
⋃

α<ω1

Πα.

This is the Borel algebra of X — the smallest σ-algebra of sets containing all
open sets. Being a σ-algebra makes it a natural setting for the study of measures.

The Borel algebra of a Polish space is in fact unique.

2.16 Theorem. Let X, Y be uncountable Polish space withut isolated points. Then
the algebras Borel(X) and Borel(Y ) are isomorphic.

Baire sets

For X a topological space, call a subset Z ⊆ X a zero-set if there is a continuous
function f : X → R such that Z = {x ∈ X; f(x) = 0}. Let Baire(X) be the
smallest σ-subalgebra of P (X) containing all zero sets.

Clearly every clopen set is a zero set, and every zero set is a closed Gδ set, hence
a Borel set. Thus for every topological space we have

CO(X) ⊆ Baire(X) ⊆ Borel(X) ⊆ P (X).
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Note that in a normal space, being a zero set is equivalent to being a closed
Gδ, by the Tietze-Urysohn theorem. In the special case of perfectly normal spaces,
where every closed set is Gδ, we have Baire(X) = Borel(X).

We are mostly interested in the Borel and Baire sets of the Cantor spaces 2κ.
These are normal spaces, but perfectly normal only for κ = ω: for κ > ω, any
singleton {f} ⊆ 2κ is a closed set that is not Gδ.

By definition, Baire(X) is σ-generated by the zero sets; in the case of Baire(2κ),
it is in fact σ-generated by the clopen sets: if Z ⊆ 2κ is a zero set, hence closed Gδ,
let Z =

⋂

Un for some open Un. Every Un is a sum of some basic clopen sets Bn
ι ,

hence the compact Z ⊆ Un is covered by some finite union Vn = Bn
ι1
∪ · · · ∪Bn

ιk
. So

the zero sets that σ-generate Baire(2κ) are themselves σ-generated by CO(2κ).

We describe now some topological properties of the Baire sets in 2κ.

2.17 Definition. For X ⊆ 2κ and I ⊆ κ, let X ↾ I = {f ↾ I; f ∈ X}. For Y ⊆ 2I ,
let the extension of Y be Ext(Y ) = {f ∈ 2κ; (∃ϕ ∈ Y )(f ⊇ ϕ)}. Say that X only
depends on I if X = Ext(X ↾ I).

2.18 Fact. Every B ∈ Baire(2κ) only depends on a countable set.

Proof. We show that B = Ext(B ↾ I) for a countable set I ⊆ κ. The inclusion
B ⊆ Ext(B ↾ I) is immediate. As the Baire subsets of 2κ are σ-generated by the
clopen sets, we proceed by induction on the Baire complexity of B.

Every clopen set clearly depends on a finite set only. If Bn only depends on
a countable In, put I =

⋃

In; then B =
⋃

Bn =
⋃

Ext(Bn ↾ In) = Ext(B ↾ I),
i.e. B only depends on I, which is countable. For complements, the statement is
immediate; hence also for countable intersections.

2.19 Fact. Let B be a closed Baire set in 2κ. If I ⊆ κ is a countable set such that
B only depends on I, then B ↾ I is a closed set in 2I .

Proof. Let ϕ ∈ 2I \ (B ↾ I). Then ϕ 6= f ↾ I for every f ∈ B. Hence no g ∈ 2κ

with g ⊇ ϕ is in B. As B ⊆ 2κ is closed, there is a neighbourhood g ↾ K of g
that isolates g /∈ B from B. If K ∩ I was empty, then g ↾ K would not isolate g
from B, as B only depends on I; hence I ∩ K 6= ∅. This gives a neighbourhood
g ↾ (I ∩K) = ϕ ↾ (I ∩K) isolating ϕ from B ↾ I.

As the space 2I is homeomorphic to 2ω, the closed set B ↾ I ⊆ 2I corresponding
to a closed Baire B is in fact a closed Gδ in 2I . But then B = Ext(B ↾ I) is also a
closed Gδ in 2κ, being the preimage of B ↾ I under the projection πI : 2κ → 2I .

2.20 Corollary. The only compact sets in Baire(2κ) are the σ-generating zero sets.
Dually, every open set in Baire(2κ) is Kσ.

Once we introduce the order-sequential topology on Boolean algebras, we will
see Baire(2κ) as the order-sequential closure of CO(2κ).
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Analytic sets

2.21 Definition. A subset A of a Polish space X is analytic if there is a continuous
function f : ωω → X such that A = f [ωω]. A complement of an analytic set is
coanalytic.

Analytic sets can be equivalently described by the following construction.

2.22 Definition. For a topological space X, a Suslin scheme is any family § =
{As; s ∈ ω

<ω} of subsets of X indexed be the finite sequences on natural numbers.
Let the Suslin operation be the function A which maps any such scheme § to

A(§) =
⋃

f∈ωω

⋂

n∈ω

§(f ↾ n)

2.23 Theorem. A subset of a Polish space X is analytic if and only if it is of the
form A(§) for some Suslin scheme § consisting of closed subsets of X.

2.24 Theorem (Suslin). A subset of a Polish space is Borel if and only if it is both
analytic and coanalytic.

Hence the class of analytic subsets is generally not an algebra of sets.

2.5 KC spaces

Here we describe a property of topological space which, while elementary in nature,
is not widely known.

2.25 Definition. A topological space (X, τ) is KC (strongly KC ) if every compact
(countably compact) subset K ⊆ X is closed.

It is clear that a Hausdorff space is strongly KC. Singletons are compact, hence
a KC space is T1. So KC can be viewed as a separation axiom between T2 and T1.

Standard counterexamples show that none of these implications can be reversed:
the cofinite topology on an infinite set is T1 but not KC, as every subset is compact,
but only finite sets are closed. The cocountable topology on an uncountable set is
KC, even strongly KC, as the only countably compact subsets are the finite sets,
which are closed; but it is obviously not Hausdorff.

2.26 Definition. A topological space (X, τ) has the unique limit property (ULP)
if every sequence in X has at most one limit.

It is easily seen that every KC space has ULP, for if (xn) converges to both x
and y, then the set {xn;n ∈ ω} ∪ {x} is compact but not closed. Also, every ULP
space is T1, because if y cannot be T1-separated from x, then the constant sequence
of (x) converges to both x and y.

To summarize, T2 → SKC → KC → ULP → T1.

The role of the KC property is that many folklore results about compact Haus-
dorff spaces continue to hold for compact KC spaces, as the closedness of compacts
is often precisely the feature desired in a proof. In this sense, the KC property is a
substitute for T2 in situations where T2 cannot be guaranteed. For example:
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2.27 Lemma. (i) A continuous bijection between a compact space and a KC
space is a homeomorphism.

(ii) A compact KC topology on X is minimal among all KC topologies and maximal
among all compact topologies.

(iii) A countably compact strongly KC topology is minimal strongly KC and maximal
countably compact.

The nontrivial converse to (ii) will be relevant when studying the compactness
of order-sequential topology on Boolean algebras.

2.28 Theorem ([BC]). Minimal KC spaces are compact.

2.6 Topological groups

A topological group (G, ∗, τ) is a group (G, ∗,−1 , e) equipped with a topology τ in
such a way that the group operations ∗ and −1 are continuous.

The group structure relevant for us is a Boolean algebra equipped with the
operation of symmetric difference, i.e. the structure (B,△). It is easily checked that
this is indeed an Abelian group structure, where 0B is the neutral element and every
x ∈ B is its own group inverse.

For example, (P (ω),△) is a topological group, in its natural Polish topology.
It was shown in [M2] that the question of metrizability of groups of this form is

relevant to measure-theoretic problems, due to a theorem of Kakutani:

2.29 Theorem ([Ka]). A first-countable topological group is metrizable.

An ideal I on ω is also a group when equipped with the operation of symmetric
difference. Such an ideal is called Polishable if there is a Polish group topology with
the same Borel structure as that inherited from 2ω.

2.30 Theorem ([So]). The following are equivalent for an ideal I on ω.

(a) I is Polishable.

(b) I is an analytic P -ideal.

2.7 Connectedness

A topological space is connected if it has no clopen subsets beside itself and the
empty set. A space is totally disconnected if every pair of points can be separated
by a clopen set.

It is easily seen that a T1 space is totally disconnected if and only if it has a base
consisting of clopen sets. So Cantor spaces and Baire spaces are totally disconnected.

A topological space is extremally disconnected if the closure of every open set
is open, hence clopen. We write EDC for an extremally disconnected compact
Hausdorff space.
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A regular open set U in a topological space X is an open set whose closure is
open, hence clopen. Note that we have CO(X) ⊆ RO(X) and recall that X is
extremally disconnected if and only if CO(X) = RO(X).

2.8 Homogeneity

A topological space X is homogeneous if for any pair of points x, y ∈ X, there is an
autohomeomorphism h of X such that h(x) = y.

As an example, every topological group is a homogeneous space, the witness-
ing automorphisms being the group translations. A σ-complete Boolean algebra
equipped with the order-sequential topology (see below) is a homogeneous space.

One of our topics is the study of nonhomogeneity. See the introduction for a
history of its development. The starting point for us is the famous result of Froĺık.

2.31 Theorem ([Fro]). Let X be an extremally disconnected space. If Y ⊆ X is an
infinite compact subspace, the Y is not homogeneous.

2.9 Direct limits

The direct limit of a directed system is one of the standard constructions in category
theory. Without employing the abstract nonsense of categories, we define just the
limit of topological spaces, and later Boolean algebras.

2.32 Definition. Let (D,≤) be a directed set. A directed system of topologi-
cal spaces is a family {Xα;α ∈ D} of topological spaces together with a family of
continuous mappings

{

fβ
α : Xα → Xβ;α < β in D

}

such that fγ
β f

β
α = fγ

α for every
α < β < γ in D. A direct limit of such a directed system is a topological space X
together with a family of continuous mappings fα : Xα → X such that

(i) fβf
β
α = fα for every α < β in D

(ii) For every other topological space Y together with a family gα : Xα → Y of
continuous mappings satisfying (i), there is a unique homeomorphism h : X →
Y such that gα = hfα for every α ∈ D.

The standard construction of a direct limit is to consider the disjoint topological
sum S =

⋃

Xα of the spaces Xα, and take the quotient X of S by an equivalence
≈ naturally prescribed by the binding maps: let s ≈ t for s, t ∈ S if s ∈ Xα, t ∈ Xβ

and fγ
α(s) = fγ

β (t) for some α, β < γ in D.

3 Partially ordered sets

Let (P,≤) be a nonempty partially ordered set. If there is a smallest element in
P, we denote it by 0 (or 0P if necessary); similarly, 1 (or 1P) denotes the largest
element if there is one. For a subset X ⊆ P, let X+ = X \ {0}. For p ∈ P, call
P ↾ p = {x ∈ P; x ≤ p} a factor of P.
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Two elements x, y ∈ P are compatible if there is some z ∈ P+ such that z ≤ x
and z ≤ y; we write x ‖ y in that case. A subset X ⊆ P in which every two elements
are compatible is linked . A subset X ⊆ P is centered if for every finitely many
x1, . . . , xn ∈ X there is a lower bound x in P; if moreover the lower bound is itself
in X, we call X filtered.

Elements x, y which are not compatible are disjoint ; in that case, we write x ⊥ y.
For x ∈ P, let x⊥ denote the set of all elements disjoint with x. A set consisting of
mutually disjoint elements is an antichain.

An element a ∈ P+ is an atom of P if there are no mutually disjoint elements
below p. The poset (P,≤) is atomic if there is an atom below every p ∈ P, and is
atomless if it has no atoms.

A subset X ⊆ (P,≤) is upper bounded (lower bounded) if there is some p ∈ P
such that x ≤ p (p ≤ x) for every x ∈ X. A subset is bounded if it is both upper
and lower bounded.

If every two-element subset {x, y} of (P,≤) has a supremum (denoted by x ∨ y)
and an infimum (denoted by x∧ y), then (P,≤,∨,∧) is a lattice. A lattice in which
every bounded subset has a supremum and an infimum is Dedekind complete. A
lattice in which every subset has a supremum and an infimum is complete.

3.1 Fact. A lattice (L,≤) is Dedekind complete iff every nonempty upper bounded
set has a supremum iff every nonempty lower bounded set has an infimum.

3.2 Theorem. A lattice (L,≤) is complete if and only if every monotone mapping
from (L,≤) to itself has a fixed point.

3.1 Chain conditions

A subset X of a poset (P,≤) is a chain if its elements are pairwise comparable, and
an antichain if its elements are pairwise disjoint. A maximal antichain is also called
a partition of P .

For a poset (P,≤), the cellularity c(P,≤) is the supremum of all cardinalities |X|
for X ⊆ P an antichain. For a cardinal κ, say that (P,≤) is κ-cc if every antichain
in P is smaller than κ. The poset ic ccc if it is ω1-cc. The saturation of (P,≤) is
sat(P ) = min {κ;P is κ-cc}

Clearly c(P ) ≤ sat(P ), and there are two possibilities: either some antichain
X ⊆ P attains the supremal cardinality c(P ), in which case sat(P ) = (c(P ))+, or
there is no antichain with the supremal cardinality, in which case c(P ) = sat(P ).

3.3 Proposition ([HBA]). The saturation of a poset is a regular cardinal.

The question whether the ccc property is productive, i.e. whether P × Q is
ccc whenever both P and Q are, cannot be resolved in ZFC. Under MAω1

, ccc is
productive. However, it is also consistent that there exist two ccc posets whose
product is not ccc; see [Ga].
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3.2 Separative quotient

A poset (P,≤) is called separative if it that satisfies any (all) of the following equiv-
alent conditions.

(i) for every p 6≤ q in P , there is some z ∈ P+ such that z ≤ p and z ⊥ q

(ii) p ≤ q if and only if (∀x)(x ‖ p)→ (x ‖ q)

(iii) p ≤ q if and only if p⊥ ⊇ q⊥

For a poset that is not separative, as standard construction exists to arrive at a
separative quotient . For (P,≤), let p � q if p⊥ ⊇ q⊥. Then

(a) (P,�) is separative.

(b) (P,�) preserves the order relation of (P,≤)

(c) (P,�) preserves the disjointness relation of (P,≤)

The relation p ≈ q defined on P by (p � q)&(q � p) is an equivalence. The
quotient P/ ≈, with order induced by �, is the separative quotient of (P,≤).

As a standard example, consider the poset ([ω]ω,⊆). This is not separative, and
the separative quotient is easily seen to be ([ω]ω,⊆∗).

3.3 Density

A subset D ⊆ P of a poset (P,≤) is dense if for every p ∈ P+ there is some
d ∈ D+ such that d ≤ p. A dense subset is open dense if it is downward closed ,
i.e. (∀d ∈ D)(∀p ∈ P )((p ≤ d) → (p ∈ D)). The density of (P,≤) is π(P ) =
min {|D|;D ⊆ P is dense}.

A dense subset D of (P,≤) can be characterized by the distinguishing property
that for every p ∈ P+ there is some X ⊆ D which is a maximal antichain in
{q ∈ P ; q ≤ p}, that is, a partition of p.

3.4 Embeddings

For two posets (P,≤) and (Q,≤), a one-to-one mapping e : P → Q is an embedding
if for every x, y ∈ P we have x ≤ y in P if and only if e(x) ≤ e(y) in Q. The
embedding is dense if e[P ] is dense in Q, and is regular if every maximal antichain
X ⊆ P maps to a maximal antichain e[X] ⊆ Q.

In particular, a subposet P of Q is regular if the inclusion is regular. It is easily
checked that every dense subset of P is regular in P , hence every dense embedding
is a regular embedding. The notion of dense and regular embedding is of particular
interest when the posets are viewed as forcing notions, which we will recall later.

As an example, let Pα be arbitrary posets, each having a largest element 1α.
Then every Pα is regularly embedded into the product ΠPα by the natural mapping
eα that sends p ∈ Pα to the function eα(p) ∈ ΠPα which attains p at α and 1β at
every other β 6= α.
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3.5 Trees and linear orders

3.4 Definition. A partially ordered set (T,≤) is a tree if for every node t ∈ T ,
the set (←, t) = {s ∈ T ; s < t} of its predecessors is well-ordered. For t ∈ T , let
the height of t in T be the ordinal type of (←, t), denoted by hT (t). Let Tα =
{t ∈ T ;hT (t) = α} be the α-th level of T and call the tree rooted if T0 consists of a
single point, the root . Let h(T ) = min {α;Tα = ∅} be the height of T .

Familiar examples of trees are the Cantor tree 2<ω and the Baire tree ω<ω, both
ordered by inclusion. More generally, for an ordinal γ, both 2<γ and ω<γ are trees
of height γ.

3.5 Definition. A maximal chain in T is a branch of T . A branch is cofinal if its
order type (its length) is equal to h(T ). A subset X ⊆ T is an antichain if the
members of X are mutually incomparable in (T,≤).

It is easily seen that x, y ∈ T are incomparable in (T,≤) precisely when they are
disjoint in (T,≥); hence the term for antichain. Every level Tα ⊆ T is an antichain
in T , but there might be other antichains too.

3.6 Definition. For an infinite kardinal κ, a tree T of height κ such that every level
of T is of size < κ is called a κ-tree.

As an easy example, 2<ω is an ω-tree but ω<ω is not. They both have cofinal
branches. We are mostly interested in ω1-trees without cofinal branches.

3.7 Definition. An ω1-tree without cofinal branches is an Aronszajn tree. An
Aronszajn tree where every antichain is countable is a Suslin tree.

The existence of an Aronszajn tree can be proved in ZFC. The existence of a
Suslin tree follows from ♦ and hence is consistent with ZFC. On the other hand, MA
implies that there are no Suslin trees. The existence of Suslin trees is independent
of ZFC. We will get back to Suslin trees in the section on forcing, and later when
studying the corresponding Suslin algebras.

3.8 Definition. A subset D of linearly ordered set (L,≤) is dense if D intersects
every nonempty open interval of (L,≤), i.e. if D is topologically dense in the order
topology. The linear order L is ccc if every family of nonempty, mutually disjoint
open intervals is at most countable. A linear order which is Dedekind complete, ccc,
but not separable is a Suslin line.

It can be shown in ZFC that a Suslin line exists if and only if a Suslin tree exists.

4 Boolean algebras

We recall the algebraic, order-theoretic, and combinatorial properties needed later.
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4.1 Fields of sets

A subalgebra of a powerset P (X) is a field of sets ; that is, the elements are subsets
of X, and the Boolean operations are the set-theoretical operations. Similarly, a
σ-subalgebra of P (X), i.e. a subalgebra that also contains unions and intersection
of countably many members, is a σ-field of sets .

Every Boolean algebra is isomorphic to a field of sets, as a consequence of the
Stone duality described in 4.7.

Let us recall the fields of sets appearing naturally in topology. For a topological
space X, denote the field of clopen sets by CO(X); denote the smallest σ-field
containing all zero sets by Baire(X), the σ-algebra of Baire sets ; denote the smallest
σ-field containing all open sets by Borel(X), the σ-algebra of Borel sets .

It is clear that CO(X) ⊆ Baire(X) ⊆ Borel(X) ⊆ P (X) for any topological
space. We will mostly be interested in these fields for the Cantor spaces 2κ. In the
case κ = ω, the σ-algebras Baire(2ω) and Borel(2ω) coincide: as 2ω is a metric
space, every closed subset is closed Gδ, hence a zero set. In a general Cantor space
2κ, the zero sets are precisely the Gδ compacts, and every compact Baire set is Gδ.

The prominence of Borel(2ω) is described in the following theorem.

4.1 Theorem. Let X, Y be two Polish spaces. Then Borel(X) and Borel(Y ) are
isomorphic σ-fields of sets, via a σ-complete isomorphism.

4.2 Theorem (Loomis-Sikorski). Every σ-complete Boolean algebra is isomorphic
to a quotient of a σ-field of sets by a σ-ideal. If moreover B is σ-generated by a
countable subset, then the ideal can be chosen as a σ-ideal on Borel(X) for a suitable
Polish space X.

4.2 Complete algebras

A Boolean algebra B is complete, resp. κ-complete if the lattice (B,≤) is complete,
resp. κ-complete; an ℵ1-complete algebra is σ-complete.

Recall that the algebra RO(X) of regular open sets of a topological space X is a
complete algebra. Another rich source of complete Boolean algebras is the process
of completion of an arbitrary poset.

4.3 Fact. Let (P,≤) be a partially ordered set. Then there is a complete Boolean
algebra B(P), unique up to isomorphism, and a mapping e : P → B(P) with the
following properties:

(i) e preserves the ordering ≤ and disjointness ⊥ of P, i.e. e(p) ≤ e(q) in B(P)
if p ≤ q in P and e(p) ⊥ e(q) in B(P) if p ⊥ q in P

(ii) the image e[P ] is a dense subset of B(P)

(ii) e is an isomorphic embedding iff (P,≤) is separative
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In particular, for a Boolean algebra A which is not complete, there is a complete
Boolean algebra B in which A is a dense subalgebra.

For instance, the algebra Baire(2ω) = Borel(2ω) is σ-complete but not complete.
It contains all the (closed) singletons as atoms, hence the completion can only be
the whole powerset P (2ω). We will return to Borel(2κ) for κ > ω later.

Solovay embeddings

4.4 Definition. Let B be a Boolean algebra. A subset X ⊆ B generates (σ-
generates, completely generates) B if the smallest subalgebra (σ-subalgebra, complete
subalgebra) of B that contains X is B itself. In that case, X is a set of generators
(σ-generators , complete generators).

The smallest possible cardinality of a subset X ⊆ B that generates (σ-generates,
completely generates) B will be denoted by g(B) (by gσ(B), by gc(B)).

It is well known that there are complete Boolean algebras of arbitrarily large
cardinalities that are completely generated by a countable subset. Consider the
poset Fn(ω, κ) of partial functions p : F → κ where F ⊆ ω is finite, ordered
by reverse inclusion. The complete Boolean algebra determined by this poset is
isomorphic to RO(κω). This is the collapsing algebra, denoted by C(ω, κ).

4.5 Theorem (Solovay). Every ccc algebra of size at most c can be embedded into
a complete ccc algebra of size at most c with a countable set of complete generators.

4.3 Chain conditions

Viewing a Boolean algebra B as the partially ordered set (B,≤), the notions of
cellularity and saturatedness apply as introduced in 3.1

4.6 Definition. A Boolean algebra is

(i) σ-centered if B+ =
⋃

Xn with each Xn centered;

(ii) σ-linked if B+ =
⋃

Xn with each Xn linked;

(iii) σ-bounded-cc if B+ =
⋃

Xn with each Xn being (n+ 1)-cc;

(iv) σ-finite-cc if B+ =
⋃

Xn with each Xn being ω-cc;

Clearly every σ-bounded-cc algebra is σ-finite-cc. It was an open problem since
1948 (see [HT]) whether the opposite implication also holds. This has recently
been solved by E. Thümmel ([Th]) by exhibiting a σ-finite-cc poset which is not
σ-bounded-cc.

A σ-linked algebra B cannot be larger than the continuum: if B =
⋃

Xn witnesses
the σ-linkedness, let f(x) = {n; x ∈ Xn}. It is easily verified that f is an injective
mapping into P (ω).
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4.4 Distributivity properties

Let κ, λ be cardinal numbers. A Boolean algebra B is (κ, λ)-distributive if it satisfies

∏

α<κ

∑

β<λ

aα,β =
∑

f∈κλ

∏

α<κ

aα,f(α)

for any family {aα,β;α < κ, β < λ} ⊆ B. The algebra is κ,∞-distributive (or
simply κ-distributive) if it is (κ, λ)-distributive for every cardinal λ.

Of course, the algebra needs to be suitably complete for the formula to even
make sense; we will mainly deal with distributivity properties of complete algebras.

If κ, λ are finite, the above equality holds in every Boolean algebra. The first
nontrivial case is the question of (ω, 2)-distributivity.

The distributivity property can be reformulated in the language of order, and
thus generalizes to partially ordered sets.

4.7 Fact. A complete Boolean algebra B is (κ, λ)-distributive if and only if for every
family {Xα;α < κ} of partitions of B, with each |Xα| ≤ λ, has a common refinement.

4.8 Definition. A partially ordered set (P,≤) is κ-closed if for every α ≤ κ and
every descending sequence (pξ; ξ < α) there is a lower bound of (pξ), i.e. p ∈ P such
that p ≤ pξ for all ξ < α.

It is eaily verified that a partially ordered set which is κ-closed is κ-distributive
and that a Boolean algebra with a κ-closed dense subset is κ-distributive.

4.9 Definition. An complete atomless ccc algebra which is ω-distributive and has
density κ is called a κ-Suslin algebra. The case κ = ω1 is simply the Suslin algebra.

The existence of a Suslin algebra is undecidable in set theory. In fact, a Suslin
algebra can be obtained by completing a Suslin tree, and conversely a Suslin tree
can be found as a dense subset in a Suslin algebra.

Weak distributivity

The notion of distributivity has a natural generalization, relevant in forcing and
measure-theoretic considerations.

4.10 Definition. A Boolean algebra is weakly distributive if for any countable fam-
ily {Xn;n ∈ ω} of partitions, there is a partition X such that every x ∈ X only
intersects finitely many members of every Xn.

Clearly, every ω-distributive algebra is weakly distributive, and an atomless mea-
sure algebra is an example of a complete algebra which is weakly distributive, but
not (ω, 2)-distributive.

The Cohen algebra C is an example where even weak distributivity fails every-
where, i.e. no factor C ↾ x is weakly distributive.

The forcing significance of weak distributivity of an algebra B is that forcing
with B is ωω-bounding, i.e. every function f ∈ ωω in the extension is bounded by a
function from the ground model.
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4.5 Countable separation

4.11 Definition. A Boolean algebra B has the countable separation property (CSP
for short) if for every two countable subsets X, Y ⊆ B such that every x ∈ X and
every y ∈ Y ) are mutually disjoint, there is a separating b ∈ B such that

(∀x ∈ X)(x ≤ b) and (∀y ∈ Y )(b ⊥ y).

It is immediate that every σ-complete algebra has the CSP. Is is also easily
checked that a quotient of a CSP algebra is CSP again. In particular, P (ω) and
P (ω)/fin have the CSP.

4.12 Fact. Every ccc algebra with CSP is complete.

Proof. Let A = {an;n ∈ ω} be a countable subset of B. Put xn = an −
∨

m<n am
and let X = {xn;n ∈ ω}. Clearly X is an antichain in B; extend X by Y so that
X ∪Y ⊆ B is a maximal antichain. Now X and Y are two countable subsets by ccc,
consisting of disjoint elements, so by CSP there is a separating a ∈ B. It is clear
that a is the supremum of X, hence also a supremum of A.

4.13 Proposition (Smith-Tarski). Let B be a Boolean algebra with CSP, let I be
an ideal on B such that B/I is ccc. Then B/I is complete.

4.6 Direct limits

4.14 Definition. Let (D,≤) be a directed set. A directed system of Boolean alge-
bras is a family {Bα;α ∈ D} of Boolean algebras together with a family of homo-
morphisms

{

fβ
α : Bα → Bβ;α < β in D

}

such that fγ
β f

β
α = fγ

α for every α < β < γ
in D. A direct limit of such a directed system is a Boolean algebra B together with
a family of homomorphisms fα : Bα → B such that

(i) fβf
β
α = fα for every α < β in D

(ii) For every other Boolean algebra C together with a family gα : Bα → C of
homomorphisms satisfying (i), there is a unique isomorphism h : B → C such
that gα = hfα for every α ∈ D.

To obtain a direct limit of a given directed system, consider the disjoint union
B =

⋃

Bα of the algebras Bα, and identify x ≈ y for x, y ∈ B if x ∈ Bα, y ∈ Bβ and
fγ
α(x) = fγ

β (y) for some α, β < γ in D. This imposes an algebraic structure on B/ ≈
in a natural way.

4.7 Stone duality

We recall the Stone duality between Boolean algebras and compact Hausdorff totally
disconnected spaces, called Boolean spaces .

For a Boolean algebra B, let St(B) be the space of all ultrafilters on B, equipped
with the Stone topology whose base consists of the sets s(b) = {U ∈ St(B); b ∈ U},
for b ∈ B. This is the Stone space of B.
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4.15 Theorem (M. H. Stone). For a Boolean algebra B, the space St(B) is a compact
Hausdorff totally disconnected space. The clopen algebra CO(St(B)) is isomorphic
to B. The properties of B and St(B) are in the following correspondence.

(a) B is σ-centered iff St(B) is separable.

(b) B is weakly distributive iff the nowhere dense sets of St(B) form a σ-ideal.

(c) B is complete iff St(B) is extremally disconnected.

When looking for special points in extremally disconnected compacts spaces, we
are in fact looking for special types of ultrafilters under the Stone duality disguise.

4.16 Corollary. Every Boolean algebra is isomorphic to a field of sets.

Given a Boolean algebra B, it is a natural question what is the least possible
cardinality |X| of a set X such that B is a subfield of P (X). Using Stone duality, it
can be shown that this is exactly the topological density of St(B).

5 Forcing and Generic Extensions

Here we recall extensions of models of ZFC, the basic concepts of forcing, and
describe some standard forcing notions. Our basic reference is [Ku]. We will be
translating freely between the language of partial orders and Boolean algebras.

5.1 Definition. (i) Let V and W be transitive models of ZFC. Say that W is an
extension of V if V ⊆ W and both have the same ordinals.

(ii) Let (P,≤) be a poset in a model V of ZFC. A filter G on P is generic over V
if for every dense subset D ⊆ P such that D ∈ V , the intersection D ∩ G is
nonempty.

(iii) An extensionW of V is a generic extension if there is a poset (P,≤) ∈ V and a
generic filter G ∈ W on P such thatW is the smallest model of ZFC extending
V and containing G as a set. Denote this smallest extension as V [G].

In this context, V is called the ground model , P ∈ V is the forcing notion, and the
elements of P are the forcing conditions . We follow the “western” notation where
p ≤ q means that p is a stronger forcing condition. Note that if the forcing notion
P ∈ V is atomless, then a generic filter G ⊆ P ∈ V cannot be a set in V .

By 4.3, every separative poset P in V uniquely determines a complete Boolean
algebra B in V , together with an embedding of P onto a dense subset of B. Every
generic filter G on P then determines a generic utrafilter Ḡ = {b ∈ B; (∃p ∈ G)p ≤ b}
on B, satisfying

(i) G ⊆ B+;

(ii) if b ∈ G and b ≤ c, then c ∈ B+;
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(iii) either b ∈ G or −b ∈ G, for every b ∈ B;

(iv)
∧

X ∈ G for every X ⊆ G such that X ∈ V .

In the other direction, a generic ultrafilter Ḡ ⊆ B determines a generic filter
G = Ḡ ∩ P on (the embedded copy of) P. The generic extensions determined by G
and Ḡ are indentical.

We will follow the usual practice of using either the poset P or the correspond-
ing complete algebra B, as convenient. Two forcing notions will be called forcing
equivalent if their corresponding complete algberas are isomorphic.

5.1 New reals

We are interested in generic extensions that add new reals , i.e. such that there are
r ⊆ ω in W which are not in V . In a forcing context, adding a new “real” means
adding a new member of 2ω or ωω; this is justified by the fact that a new member
of 2ω codes a new path through the halved subintervals of [0, 1], and thus a new real
number in their intersection.

For a set a ∈ V , the mappings f : a→ B in V are Boolean names for new subsets
of a: given a generic filter G on B, the name f is evaluated in V [G] as

fG = {x ∈ a; f(x) ∈ G} ⊆ a.

In particular, every f : ω → B in the ground model is a Boolean name for a new
real. P (ω) in the extension V [G] consists precisely of the sets fG ⊆ ω for f ∈ Bω

in the ground model. Note that the set Bω of all names for new reals is itself a
complete Boolean algebra in V .

If a new real is added in a generic extension, various combinatorial properties
with respect to the ground model reals are of interest.

5.2 Definition. Let V [G] be a generic extension of V .

(i) A new real b : ω → ω in V [G] is an unbounded real if b 6≤∗ f for every f : ω → ω
in the ground model.

(ii) A new real d : ω → ω in V [G] is a dominating real if f ≤∗ d for every f : ω → ω
in the ground model.

(iii) A new real r ⊆ ω in V [G] is a splitting real , also called an independent real , if
for every x ⊆ ω in the ground model both x ∩ r and x \ r are infinite sets.

(iv) We say that a forcing notion B ∈ V adds an ubounded (dominating, indepen-
dent) real if there is a Boolean name f : ω → B in V such that for every
generic G ⊆ B, the added real fG is unbounded (dominating, independent).

5.3 Fact. A forcing that adds a dominating real adds an independent real as well.
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A combinatorial property of Boolean algebras characterizing the adding of inde-
pendent reals has been isolated in [Pa].

5.4 Definition. Let B be a complete Boolean algebra. Say that B almost regularly
embedds the Cantor algebra A = CO(2ω) if there are xn ∈ B such that

∨

{xn;n ∈ A} = 1B and
∧

{xn;n ∈ A} = 0B

for every infinite set A ⊆ ω.

Clearly, this condition is weaker than embedding the Cantor algebra regularly.

5.5 Proposition. A complete Boolean algebra B adds an independent real if and
only if B almost regularly embedds the Cantor algebra.

5.6 Question. If B adds an independent real, does B ∗B add a Cohen real? Equiv-
alently, if B embeds A almost regularly, does B ∗ B embed A regularly?

5.2 Some standard forcings

Here we describe some of the traditional forcing notions.

Cohen forcing

Let P = {p : ω → 2; dom(p) is finite} be ordered by reverse inclusion; this is the
Cohen forcing . The Boolean completion of P is the Cohen algebra C = RO(2ω). For
a generic G ⊆ C, the generically added real r =

⋃

G ∈ 2ω is a Cohen real .
Equivalently, we can consider the set of finite functions p : ω → ω ordered by

reverse inclusion, which is forcing equivalent to the P above. The added Cohen real
can be viewed then as a new function r : ω → ω.

Cohen forcing is known to add a Suslin tree by suitably modifying an Aronszajn
tree from the ground model. In V , let {fα;α→ ω1} be a coherent system of func-
tions , i.e. a family such that every fα is one-to-one and fα ⊆

∗ fβ for α < β; this
means that fβ ↾ α is a finite modification of fα. A trivial coherent system can be
obtained by taking fα = f ↾ α for any one-to-one function f : ω1 → ω1, but a
nontrivial coherent system also exists. See [Ku] for the construction.

If r : ω → ω is the Cohen real, put S = {rf ; dom(f) = α and f =∗ fα}. Then
(S,⊆) is a Suslin tree in V [G]. A detailed proof can be found in [St].

Jech forcing

This partial order adds a Suslin tree with countable forcing conditions. These are
normal binary α-trees for α < ω1, i.e. trees T ⊆ 2<α such that

(i) every s ∈ T with h(s) < α splits into sa0, sa1 ∈ T

(ii) for every s ∈ T and every ξ < α there is some t ∈ Tξ with s ⊆ t or t ⊆ s.
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(iii) for every ξ < α, the level T ∩ 2ξ is countable.

The ordering is the end extension, i.e. T1 ≤ T2 if T2 = T1 ↾ α for some α.

For a generic filter G, let S =
⋃

{T ;T ∈ G}. Then S is a normal Suslin tree in
the generic extension V [G]. It is straightforward that the forcing is σ-closed, hence

V [G] contains no new countable subsets. In particular, ωV
1 = ω

V[G]
1 and there are no

new reals. A density argument shows that S is a normal binary ω1-tree. It can be
shown that every antichain in S is countable; see [Je] for full proofs.

The construction can be generalized to regular κ ≥ ω1. Note that Jech forcing
adds a Suslin tree with countable conditions; independently, Tennenbaum [Te] forces
a Suslin tree with finite conditions.

Forcing with the Baire sets

The σ-algebra Baire(2κ) for κ > ω was introduced in the previous sections. Being σ-
complete but not complete, we ask from the forcing point of view what the Boolean
completion is. It is in fact a standard forcing in disguise.

For a topological space (X, τ), let the Gδ-modification of τ , denoted by τδ, be
the topology on X whose base sets are the countable intersections of τ -open sets. It
is immediate that τδ ⊇ τ and that(X, τδ) is discrete if (X, τ) is first-countable. On
the other hand, the Gδ-modification of βω for instance remains unchanged.

For (2κ, τc), the sets of the form {f ∈ 2κ; f ⊇ ϕ}, where ϕ : I → 2 for some
countable I ⊆ κ, form a base of the Gδ-modification. Hence (2κ, τδ) is precisely the
σ-box topology on 2κ, for which {f ∈ 2κ; f ⊇ ϕ} form a clopen base.

5.7 Proposition. Baire(2κ, τc) for κ > ω is isomorphic to CO(2κ, τδ). Hence its
Boolean completion is isomorphic to RO(2κ, τδ).

Proof. First we show that every B ∈ Baire(2κ, τc) is an open set in (2κ, τδ). By
2.18, B = Ext(B ↾ I) for some countable I ⊆ κ, so given f ∈ B, the set Ext(f ↾ I),
which is a τδ-neighbourhood of f , is a subset of B. As 2κ \ B is τδ-open by the
same argument, we see that the Baire sets of (2κ, τc) are clopen in (2κ, τδ); in fact,
they form a clopen base. Now recall that for any totally disconnected space X, the
completion of CO(X) is RO(X).

With this description in hand, we can describe the properties of Baire(2κ) in-
teresting from the forcing point of view. Firstly, Baire(2κ) is apparently σ-closed,
hence (ω, 2)-distributive, and it does not add any new reals. As for cellularity,

5.8 Fact. The algebra Baire(2κ, τc) is (2ω)+-cc.

Proof. Let Bα, α < c
+ be an antichain in Baire(2κ). We can assume that the

Bα are of the form {f ∈ 2κ; f ⊇ ϕα} for some ϕα : dom(ϕα) → 2 with dom(ϕα)
countable. The system {dom(ϕα;α < c

+} contains a delta system of full size, with
(countable) root D ⊆

⋂

ϕα. But then ϕα ↾ D is c
+ many distinct functions in 2D,

a contradiction.
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Hence the cellularity of RO(2κ, τδ) is also c; forcing with Baire(2κ) preserves all
cardinalities above the continuum.

5.9 Fact. Baire(2κ) is not (ω1, 2)-distributive.

Proof. Let κ ≥ ω1. For any countable I ⊆ κ, the family AI =
{

Ext(ϕ);ϕ ∈ 2I
}

consists of Baire sets and is an antichain in Baire(2κ). In fact, this antichain is
maximal: for B ∈ Baire(2κ, τc), choose a basis clopen set C ⊆ B in CO(2κ, τδ), of
the form C = {f ; f ⊇ ψ} for some countable ψ : κ → 2. The function ψ ↾ I is one
of the ϕ ∈ 2I , hence C ⊆ B is compatible with the corresponding Ext(ϕ).

A generic filter G on Baire(2κ) chooses exactly one Ext(ϕ) from every AI .
This corresponds to choosing one ϕI from every 2I . These ϕI have to be mutually
consistent, as G is a filter. Hence f =

⋃

{ϕ;Ext(ϕ) ∈ G} ∈ 2κ.
Every restriction f ↾ I for I ⊆ κ countable is a set from the ground model, as

the forcing is σ-closed, but f is a new subset of κ, by a standard density argument:
for every g ∈ 2κ, the set Dg = {ϕ : dom(ϕ)→ 2;ϕ * g} is dense, i.e. the set of the
corresponding Ext(ϕ) is dense in Baire(2κ).

For the case κ = ω1, the poset Baire(2κ,⊇) is forcing equivalent to

(i) Fn(ω1, 2, ω1), adding a new subset of ω1

(ii) Fn(ω1,R, ω1), forcing CH

(iii) Jech’s forcing for adding a Suslin tree

In fact, it is shown in [BDH] that these forcing have isomorphic base trees .

6 Order-sequential topology

We recall now an important class of sequential spaces: Boolean algebras equipped
with the order-sequential topology. This structure is relevant to measure-theoretic
questions we will be studying later. We recall the basic properties of this topology
as developed mostly in [BGJ] and add a few examples.

Algebraic convergence

6.1 Definition. For a sequence (an) in a σ-complete Boolean algebra, put

lim sup an =
∧

m∈ω

∨

n≥m

an

lim inf an =
∨

m∈ω

∧

n≥m

an

and say that (an) converges algebraically to a ∈ B if lim sup an = a = lim inf an;
write an → a if this is the case.
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6.2 Example. Let (An) be a sequence of subsets of X. Then x ∈ lim supAn iff
x ∈ An for infinitely many n while x ∈ lim inf An iff x ∈ An for almost all n. Hence
the sequence converges algebraically iff every x ∈ X that belongs to infinitely many
An belongs to almost all An. In particular, the sequence algebraically converges to
∅ if and only if the family {An;n ∈ ω} is point-finite.

These are the elementary properties of algebraic convergence:

6.3 Fact ([BGJ]). Let B be a σ-complete Boolean algebra.

(a) Every constant sequence converges algebraically.

(b) The limit of an algebraically converging sequence is unique.

(c) Every monotone sequence converges to its supremum/infimum.

(d) If lim an = a then also lim aπ(n) = a for any permutation π of ω.

(e) A sequence (an) converges to a if and only if a is simultaneously a supremum
of an increasing sequence (xn) and an infimum of a decreasing sequence (yn)
such that xn ≤ an ≤ yn for every n.

(f) Algebraic convergence is preserved by Boolean operations.

(g) If an ∈ B are pairwise disjoint, then lim an = 0.

(h) If (an) and (bn) are decreasing sequences, than
∧

an ∨
∧

bn =
∧

an ∨ bn

6.4 Observation. A sequence (xn) in B converges to x if and only if there is a
partition P of B refining {x,−x} \ {0} such that every p ∈ P, p ≤ x is compatible
with almost every xn, while every q ∈ P, q ⊥ x is disjoint with almost every xn.

Proof. If xn → x, then
∨

n≥m xn decreases to x; put qm =
∨

n≥m xn −
∨

n≥m+1 xn;
then qm ⊥ x. Similarly,

∧

n≥m xn increases to x; put pm =
∧

n≥m+1 xn −
∧

n≥m xn;
then pm ≤ x. All the pm, qm are mutually disjoint, so P = ({pm, qm;m ∈ ω} ∪
{
∧

n xn,−
∨

n xn}) is a partition. This partition works: every pm is compatible with
all xn except possibly {x0, . . . , xm} while every qm can only be compatible with the
elements of {x0, . . . , xm}.

Conversely, if P is a suitable partition, then
∧

m

∨

n≥m xn must be disjoint with
every q ∈ P, q ⊥ x, as otherwise q would be compatible with infinitely many xn.
Hence lim sup xn ≤ x. Similarly, lim inf xn ≥ x. Hence xn → x.

The algebraic convergence of sequences in a σ-complete Boolean algebra is not
necessarily a topological convergence – the operation of taking a closure with respect
to algebraic limits is not necessarily idempotent. There is however a natural topology
determined by the algebraic convergence.

6.5 Definition. Let B be a σ-complete Boolean algebra. The order-sequential
topology τs on B is the finest topology for which every algebraically convergent
sequence in B is topologically convergent in (B, τs).
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Note that that there is indeed such a finest topology on B: simply take the
topology generated by the union of all such topologies as a subbase.

6.6 Remark. For a subset A ⊆ B, let u(A) = {a ∈ B; (∃(an) ⊆ A)(an → a)} be
the algebraic closure of A in B. The algebraic closure is not necessarily necessarily
idempotent, and needs to be iterated to stabilize. For a subset A of an algebra B,
put u0(A) = A and define

uα+1(A) = u(uα(A))

at successors and
uλ(A) =

⋃

α<λ

uα(A)

for λ a limit. Then Ā =
⋃

α<ω1
uα(A) is a topological closure operator, and it can

be easily checked that Ā is precisely the closure of A in (B, τs).

6.7 Example. Consider the order-sequential topology τs on 2κ, viewing 2κ as the
complete algebra P (κ). The pointwise convergence in 2κ is exactly the algebraic
convergence in P (κ), hence τc ⊆ τs. In fact, we know from example 2.14 that
(2κ, τs) is the sequential modification of (2κ, τc). Hence (2κ, τs) is noncompact for
κ > ω. The class of convergent sequences is the same in both topologies.

6.8 Example. Consider CO(2κ) as a subset in the σ-algebra Baire(2κ). We show
that this is a τs-dense subset, i.e., Baire(2κ) is the τs-closure of CO(2κ).

To see this, note first that the zero sets of 2κ, i.e. the σ-generators of Baire(2κ),
belong to the sequential closure of CO(2κ). Indeed, let Z =

⋂

Un be a closed Gδ.
Each Un, being open, is a union of some basic Bn

α ∈ CO(2κ). By compactness, we
have Z ⊆ Bn

α1
∪ · · · ∪ Bn

αk
= Vn ⊆ Un for some finitely many. Hence Z =

⋂

Vn is
in fact an intersection of a decreasing sequence of Vn ∈ CO(2κ), hence a τs-limit of
clopen sets. Note that the σ-generators of Baire(2κ) belong into the first iteration
of the sequential closure.

It remains to show that every Baire set B ⊆ 2κ belongs to the τs-closure of
CO(2κ). This is proved by induction on the Baire complexity of B. For example, let
B =

⋃

Zk be a countable union of zero sets, with Zk = V k
n a countable intersection

of clopen sets. Let U1 be the union of the increasing sequence V 0
1 , V

0
1 ∪V

1
2 , . . . , V

k
k+1

of clopen sets; generally, let Ul =
⋃

V k
k+l. Clearly every Ul is in the τs-closure of

CO(2κ), and B =
⋃

Zk =
⋂

Ul is as well.
Proceeding by induction, we see that the Baire complexity of B corresponds to

the iteration of the algebraic closure as described in 6.6 above.

In fact, we see that for a subalgebra A of a σ-algebra of sets B, the subalgebra
σ-generated by A is precisely the closure of A in (B, τs), by the same argument.

These are the basic topological properties of (B, τs):

6.9 Proposition ([BGJ]). Let B be a σ-complete Boolean algebra.

(a) A sequence converges to x ∈ B topologically iff every subsequence has a subse-
quence which converges to x algebraically.
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(b) The space (B, τs) is sequential.

(c) The space (B, τs) has the ULP (and hence is T1).

(d) The space (B, τs) is homogeneous.

(e) The space (B, τs) has no isolated points unless B is finite.

(f) The topology τs is determined by the neighbourhood filter of zero.

(g) The space (B, τs) is connected for a complete atomless B.

It is worth noting at this point that the space (B, τs) is not necessarilly Hausdorff;
indeed, the Hausdorffness of this space is a nontrivial property of the algebra.

6.10 Lemma. Let B be a σ-complete algebra, let X be any topological space. Then
a mapping f : (B, τs) → X is continuous if and only if f preserves the algebraic
convergence of sequences in B.

Proof. The space (B, τs) is sequential, hence it is enough to show that f is sequen-
tially continuous. So let xn be a sequence in (B, τs) that topologically converges to
x, and imagine that f(xn) does not converge to f(x) in X. Then there is a neigh-
bourhood V of f(x) such that infinitely many f(xn) are missing from V ; this yields a
subsequence (xnk

) of (xn). This subsequence has a subsequence (xnkl
) that converges

to x algebraically, so f(xnkl
) converges to f(x) algebraically, hence topologically as

well — a contradiction.

All algebraically convergent sequences of B are topologically convergent in (B, τs)
by definition. It is natural to ask whether those are precisely the sequences which
converge in (B, τs), or if new convergent sequences can emerge.

6.11 Proposition ([BGJ]). For a σ-complete algebra B the following are equivalent:

(a) The topologically convergent sequences of (B, τs) are precisely the algebraically
convergent sequences of B

(b) B does not add new reals

(c) B is (ω, 2)-distributive

6.12 Example. Enumerate CO(2ω) as {an;n ∈ ω} and consider (an) as a sequence
in the Cohen algebra RO(2ω). It is easily seen that the sequence converges topo-
logically to zero, while lim sup an = 1 and lim inf an = 0, so the sequence does not
converge algebraically. Indeed the Cohen algebra does add new reals of course.

By the Borel isomorphism theorem 2.16, the algebras Borel(X) are all isomor-
phic for all uncountable Polish spaces X. We pick Borel(2ω) for the following
proposition.

6.13 Proposition. (Borel(2ω), τs) is a separable, Hausdorff, non-regular space.
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Proof. The separability of (Borel(2ω), τs) is a special case of 6.8, as CO(2ω) is
countable and Borel(2ω) = Baire(2ω).

For Hausdorffness, take two distinct Borel sets A and B, pick some x ∈ A \ B,
and consider U = {X ∈ B; x ∈ X}. The set U ⊆ B is both sequentially open and
sequentially closed, hence clopen in (B, τs), and clearly separates A and B.

To show non-regularity, consider the filter F ⊆ B of comeager sets. Being a σ-
complete filter, F is a closed subset of (B, τs), and clearly 0 /∈ F . We will show that
the closure of every open neighbourhood V ⊆ B\F of 0B intersects F ; consequently,
the point 0 ∈ B and the closed set F cannot be separated by open neighbourhoods.

Fix an enumeration {Uk; k ∈ ω} of CO(2ω). Let {V n
0 ;n ∈ ω} be a maximal

antichain in CO(2ω). Put Gn
0 =

⋃

m≥n V
m
0 and note that the sets Gn

0 form a de-
creasing sequence converging to 0 ∈ V . Hence there is some n0 ∈ ω such that
G0 = Gn0

0 ∈ V . As a next step, choose an infinite partition {V n
1 ;n ∈ ω} ⊆ CO(2ω)

of V n
0 ∪ · · · ∪ V

n0−1
0 ∈ CO(2ω) such that every V n

0 with n < n0 is infinitely parti-
tioned. If U0 misses G0, make sure that U0 is infinitely partitioned too. The sets
Gn

1 = G0∪
⋃

m≥n V
m
1 form a decreasing sequence converging to G0 ∈ V . Hence there

is some n1 ∈ ω such that G1 = Gn1

1 ∈ V . See if U1 meets G1 and take a suitable
{V n

2 ;n ∈ ω}.
Continue inductively in this fashion, arriving at an increasing sequence of open

sets Gk ∈ V . Then the open set G =
⋃

Gk is in cl(V ), as the Gk ∈ V converge to
G. In fact, G is open dense: a basic clopen set Uk meets Gk+1 at the latest. Hence
G is comeager, and G ∈ F ∩ cl(V ) 6= ∅.

7 Measures and submeasures

Here we recall the fundamental properties of measures and submeasures on Boolean
algebras, viewed as an the interaction of Boolean algebras and real numbers.

7.1 Definition. Let B be a Boolean algebra, and let µ : B → R+ be a monotone
mapping such that µ(0) = 0. Call µ

(a) strictly positive if µ(x) > 0 for x > 0B;

(b) a measure if µ(x+ y) = µ(x) + µ(y) for every two disjoint x, y ∈ B;

(c) a submeasure if µ(x+ y) ≤ µ(x) + µ(y) for every x, y ∈ B;

(d) a supermeasure if µ(x+ y) ≥ µ(x) + µ(y) for every x, y ∈ B.

Call µ normalized if µ(1B) = 1.
Denote by Null(µ) the set {x ∈ B;µ(x) = 0} of null elements .

If moreover the algebra B is σ-complete, call µ

(e) a σ-additive measure if µ(
∨

X) =
∑

x∈X µ(x) for countable disjoint X ⊆ B;

(f) a probability measure if µ is σ-additive and normalized;
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(e) a σ-subadditive submeasure if µ(
∨

X) ≤
∑

x∈X µ(x) for countable X ⊆ B;

(f) continuous if limµ(an) = 0 for every decreasing sequence (an) with
∧

an = 0B.

(g) exhaustive if limµ(an) = 0 for every disjoint sequence (an).

It is clear that every measure is a submeasure. For µ a submeasure, Null(µ)
is an ideal, which determines the quotient algebra B/Null(µ). On this algebra, a
natural quotient submeasure µ̄ can be introduced by putting µ̄([x]) = µ(x).

Note that the continuity defined above is precisely the continuity of µ as a real
function on the sequential space (B, τs), as introduced in 6.5. In particular, for µ a
measure, continuity is equivalent to σ-additivity.

Asymptotic density and Solecki’s Theorem

As an illustration of the notions just introduced, we mention the known results con-
cerning submeasures on the fundamental complete Boolean algebra P (N) of subsets
of natural numbers. Here we write N = ω \ {0} for the natural numbers to avoid
possible divisions by zero.

7.2 Definition. For a subset X ⊆ N, call

(i) d∗(X) = lim infn |X ∩ n|/n the lower asymptotic density of X,

(ii) d∗(X) = lim supn |X ∩ n|/n the upper asymptotic density and

(iii) d(X) = limn |X ∩ n|/n the asymptotic density of X if the limit exists.

It is easily seen that d∗ is a normalized submeasure on P (N) and d∗ is a nor-
malized supermeasure on P (N), both extending d. Note that the family of sets
having an asymptotic density does not form a Boolean algebra, as it is not closed
on intersections.

7.3 Definition. Every measure µ extending the asymptotic density d to the com-
plete algebra P (N) is a density on N.

Every nontrivial ultrafilter U on ω determines such an extension of asymptotic
density: for A ⊆ N, put µ(X) = U − limn |X ∩ n|/n.

7.4 Definition. The density ideal is the family Z = {X ⊆ N; d(X) = 0} sets having
zero asymptotic density. Clearly, Z = {X ⊆ N; d∗(X) = 0}.

Note that the family {X ⊆ N; d∗(X) = 0} of sets having zero lower density does
not form an ideal. In fact, N can be partitioned into two sets of lower density zero.

7.5 Lemma. For k ≥ 2, partition N into intervals In = [kn, kn+1). Then

(a) d(X) = lim |X∩In|
|In|

for every X having asymptotic density;

(b) X ∈ Z iff lim |X∩In|
|In|

= 0.
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Proof. Let X ⊆ N be a set with density d(X) = lim |X ∩ n|/n = γ. Then
lim |X ∩ kn+1|/kn+1 = γ as well. Fix ε > 0; then for n large enough we have
|X ∩ kn+1|/kn+1 < γ + ε and so |X ∩ kn+1|/kn < kγ + kε. At the same time, for n
large enough we have |X ∩ kn|/kn > γ − ε. Putting these two inequalities together
we get

|X ∩ kn+1|

kn
−
|X ∩ kn|

kn
≤ (kγ + kε)− (γ − ε) = (k − 1)γ + (k + 1)ε

and so
|X ∩ [kn, kn+1)|

kn(k − 1)
=
|X ∩ In|

|In|
≤ γ +

k + 1

k − 1
ε.

Similarly, we get |X ∩ In|/|In| ≥ γ − ((k + 1)/(k − 1))ε for n large enough.

Note that the other implication in (a) above does not hold; that is, the existence
of lim |X ∩ In|/|In| for X ⊆ N does not even imply that X has a density. Simply
put X =

⋃

{[2n, 2n + 2n−1);n ∈ ω} so that X consists of the first halves of intervals
In = [2n, 2n+1). Then clearly lim |X ∩ In|/|In| = 1/2 while

lim sup |X ∩ n|/n = 1 6= 0 = lim inf |X ∩ n|/n.

We will show now that Z is an analytic P -ideal, using Solecki’s characterization
via semicontinuous functions.

7.6 Definition. A real-valued function f : X → R, defined on an arbitrary
topological space X, is lower (upper) semicontinuous if for every r ∈ R, the set
{x ∈ X; f(x) ≤ r} is closed (the set {x ∈ X; f(x) ≥ r} is open).

7.7 Fact. A submeasure µ on P (N) is lower semicontinuous if

µ(A) = lim
n
µ(A ∩ n)

for every A ⊆ N.

As a corollary we see that a lower semicontinuous submeasure is uniquely deter-
mined by its values on finite sets. So a finite subadditive function on [N]<ω uniquely
extends to a lower semicontinuous submeasure on P (N).

In the present context, we are viewing (P (N), τs) as the metric space (2N, τc).

7.8 Definition. For a lower semicontinuous submeasure µ on P (N) with finite values
on singletons, let Exh(µ) = {A ⊆ ω; limµ(A \ n) = 0} be the exhaustive ideal of µ.

It is easily seen that Exh(µ) is indeed an ideal. In fact, it is a P -ideal on N, and
cannot be of complexity higher than Fσδ.

For let µ be a lower semicontinuous submeasure. For every n, k ∈ ω, the set
ϕ−1[0, 1/n] ∩ P (ω \ k) ⊆ 2ω is closed by the lower semicontinuity of ϕ. Hence
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⋂

n

⋃

k ϕ
−1[0, 1/n] ∩ P (ω \ k) is an Fσδ subset, and it is not hard to verify that it

contains precisely the members of Exh(ϕ).
If An ∈ Exh(ϕ) are disjoint sets, choose for n ∈ ω a number kn ∈ ω large enough

so that ϕ(An \ kn) < 2−n. Put A =
⋃

n(An ∩ kn); then An ⊆
∗ A for every n, and

A ∈ Exh(ϕ) by definition.

7.9 Theorem ([So]). Let I be an ideal on N. Then I is an analytic P -ideal iff
I = Exh(ϕ) for some finite, lower semicontinuous submeasure ϕ on P (N).

As an application of Solecki’s theorem we show a well-known property of the
zero density ideal Z on N.

7.10 Proposition. Z is a Fσδ P -ideal.

Proof. We will describe a suitable submeasure ϕ with Z = Exh(ϕ). Let N =
⋃

In
be a decomposition of N into intervals In = [2n, 2n+1) and let µn be the counting
measure on In. For a finite A ⊆ N, put

ϕ(A) = max {µn(A ∩ In);A ∩ In 6= ∅}

It is easy to see that ϕ is subadditive and strictly positive. Extend ϕ to infinite sets
A ⊆ N as is necessary: by putting ϕ(A) = limn ϕ(A∩n). This makes ϕ a finite lower
semicontinuous submeasure on P (N) with ||ϕ|| = 1. Now see that Exh(ϕ) = Z.

7.11 Example. Let Ik = [2k, 2k+1) as in the previous proof. Consider a function
f : N→ R defined as f(n) = µk({n}), where k is the unique index such that n ∈ Ik.

For X ∈ [N]<ω put ν(X) =
∑

{f(n);n ∈ X}. Then ν is subadditive on [N]<ω

and so extends to a lower semicontinuous submeasure ν : P (N) → R ∪ {∞}. Now
Exh(ν) =

{

A ⊆ N;
∑

n∈A f(n) converges
}

is an example of a summable ideal on N,
hence an Fσ P -ideal.

Note that if we put ν̄(A) = ν(A)/(1 + ν(A)) and ∞/∞ = 1, then ν̄ is a finite
normalized submeasure and Exh(ν̄) = Exh(ν).

7.12 Proposition. The algebra P (ω)/Z

(a) is atomless,

(b) is algebraically homogeneous,

(c) contains a regularly embedded copy of P (ω)/fin,

(d) is a complete metric space with respect to µd∗.

Proof. (a) Every set A ⊆ N of nonzero upper density can be split into two disjoint
sets, both of nonzero upper density again. Hence [A] is never an atom of P (N)/Z.

(b) We need to find an isomorphism between P (N)/Z and a factor given by any
[A] 6= 0. So let A ⊆ N be a set of nonzero upper density. Surely A is infinite, so let
eA : N→ A be the enumeration of A. This bijection naturally lifts to an isomorphism
of P (N)/Z and P (A)/Z, and it is not hard to see that P (A)/Z ≃ ((P (N)/Z) ↾ [A]).
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(c) Put In = [2n, 2n+1), and for A ⊆ ω let h([A]fin) = [
⋃

{In;n ∈ A}]Z (we drop
the subscripts of the equivalence classes of the respective quotients in what follows).

This is a well defined mapping from P (ω)/fin to P (ω)/Z, because if A =∗ B,
then h([A]) differs from h([B]) only by a finite union of the In’s, which has zero
density. It is easy to check that h is a Boolean morphism. Also, h is one-to-one:
for a nonzero [A] in P (ω)/fin, hence an infinite A ⊆ ω, the set

⋃

n∈A In has upper
density at least 1/2, so h([A]) 6= 0.

For regularity, let A be a maximal antichain in P (ω)/fin; this means that A is
a MAD family on ω. Clearly h[A] is an antichain in P (ω)/Z under the embedding.
If h[A] fails to be maximal, then there is a nonzero element [X] in P (ω)/Z disjoint
to every h(A), A ∈ A. So X ⊆ ω has nonzero upper density, but every h(A) ∩ X
has zero upper density, and by 7.5

lim
k

|X ∩
⋃

A In ∩ Ik|

|Ik|
= 0

for every A ∈ A. But then X only meets every A ∈ A in a finite set: if some
X ∩ A was infinite, then for the infinitely many indexes k ∈ X ∩ A we would have
|X ∩

⋃

A In ∩ Ik|/|Ik| = 1. This is a contradiction as A is a MAD family.
(d) Let (Xn) be a sequence in P (N)/Z such that ρ([Xn], [Xn+1]) < 2−n. We can

assume that the representatives Xn are such that d∗(Xn△Xi) < 2−i+1 for n ≥ i.
Choose a sequence (kn) in N increasing fast enough so that kn+1 ≥ 2kn and

1/m < |Xn△Xi ∩m| < 1/2i−2

for n ≥ i and m ≥ kn. Put X =
⋃

n (Xn ∩ (kn+1 − kn)). Then ([Xn]) converges to
[X] in (P (N)/Z, ρ).

7.1 Measure algebras

Here we recall Maharam’s algebraic characterization of measure algebras, and the
structural lemmas used in its proof.

7.13 Definition. A measure algebra is a complete ccc Boolean algebra that carries
a σ-additive, strictly positive measure. If µ is a measure on A and ν is a measure on
B, then (A, µ) and (B, ν) are measure-isomorphic if there is a Boolean isomorphism
f : A → B such that µ(a) = ν(f(a)) for every a ∈ A.

7.14 Theorem (Kelley). A complete Boolean algebra is a measure algebra if and
only if it is weakly distributive and carries a strictly positive, finitely additive mea-
sure.

7.15 Definition. An infinite complete algebra A is of Maharam type κ if gc(A) = κ.
A is homogeneous in type if moreover gc(A ↾ a) = κ holds for every a ∈ A+.

7.16 Theorem ([M1]). Let (A, µ) and (B, ν) be two measure algebras, both homo-
geneous in type κ, such that µ(1) = ν(1). Then they are measure-isomorphic.
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Hence the the normalized measure algebra of 2κ is the unique measure algebra
homogeneous in type κ.

7.17 Lemma (Vladimirov). Let A be a complete Boolean algebra, let B be a complete
subalgebra of A such that (∀a ∈ A+)(∃a′ ∈ A+)(∀b ∈ B+)b � a′; i.e., B is not dense
below any a ∈ A+. Let x ∈ A be arbitrary. Then there is an element r ∈ A such
that, simultaneously, r is independent with respect to B, and x ∈ B[r].

7.18 Lemma (Fremlin). Let µ be a σ-additive measure on a complete ccc Boolean
algebra A. Let B be a complete subalgebra of A with {a ∧ b; b ∈ B} 6= A ↾ a for every
a ∈ A, and let ν ≤ µ ↾ B be a finitely additive measure on B. Then there is some
a ∈ A such that ν(x) = µ(x ∧ a) for every x ∈ B.

Fremlin’s lemma can be seen as an abstract version of the Radon-Nikodým The-
orem. Note that to satisfy the assumptions, the algebra A cannot have atoms. Also,
the measure ν is itself σ-additive.

Note the two apparently distinct conditions for a complete subalgebra B of a
complete algebra A in Fremlin’s and Vladimirov’s lemma:

(F) (∀a ∈ A+)(∃a′ ∈ (A ↾ a)+)(∀b ∈ B+)(b ∧ a 6= a′)

(V) (∀a ∈ A+)(∃a′ ∈ (A ↾ a)+)(∀b ∈ B+)(b � a′)

It is clear that (F) implies (V): if (V) fails and B is dense below some a ∈ A+,
then a ∈ B, hence (F) fails. The following example due to E. Thümmel shows that
the reverse implication does not hold.

7.19 Example. Let A be the completion of a free product of P (ω) with a complete
atomless algebra B. Then A itself is a complete atomless algebra, and the product
P (ω) × B is dense in A. Both P (ω) and B are regular subalgebras of A, and we
identify them with their embedded copies via b 7→ (1, b) for b ∈ B, resp. x 7→ (x, 1)
for x ⊆ ω. The regular subalgebra B of A satisfies (V): below every a ∈ A+ there is
some nonzero (x, b′) ∈ P (ω) × B, and for any n ∈ x, the element ({n}, b′) ≤ (x, b′)
has no (1, b) ∈ B bellow it. On the other hand, the (F) condition fails: the only
members of A below a = ({n}, 1) are of the form a ∧ b = ({n}, 1) ∧ (1, b) = ({n}, b)
for some b ∈ B.

7.2 Maharam algebras

The class of Maharam algebras was introduced in [M2] in a measure-theoretic con-
text: the motivation was to describe the algebraic properties of an algebra B neces-
sary and sufficient for B to carry a measure. Various algebraic (and not so algebraic)
equivalents have been found. See [Ve] for an exhaustive survey.

7.20 Definition. A submeasure µ on a σ-complete Boolean algebra B is a contin-
uous submeasure or a Maharam submeasure if for every decreasing sequence (an)
in B such that

∧

an = 0 we have limµ(an) = 0. An algebra that carries a strictly
positive Maharam submeasure is a Maharam algebra.
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A Maharam algebra is necessarily ccc and weakly distributive.
A number of equivalent reformulations of being a Maharam algebra has been

developed in [BGJ].

7.21 Theorem. Let B be a σ-complete Boolean algebra. Then the following condi-
tions are equivalent.

(i) B is a Maharam algebra.

(ii) The sequential space (B, τs) is metrizable.

(iii) B is ccc and the space (B, τs) is Hausdorff.

(iv) The space (B, τs) is regular.

(v) B is ccc and (B,△, τs) is a topological group.

7.22 Example. The completeness of the algebra cannot be omitted in the char-
acterization theorem above – the algebra B ≤ P (ω1) consisting of countable sets
and their complements is σ-complete, not complete, and indeed the theorem fails:
(B,△, τs) is a topological group, yet is not a Maharam algebra.

To show this, we need the following fact: while the order-sequential topology
τs of 2ω1 is strictly finer than the Cantor topology τc on 2ω1 , these two topologies
coincide on the subspace [ω1]

≤ω; hence also on the dual filter, as complementation
is an automorphism.

So the zero element 0 cannot be a countable intersection of neighbourhoods, and
B is not a Maharam algebra. On the other hand, the group (B,△, τs) is topological.

7.3 Metric from a submeasure

A Boolean algebra carrying a submeasure carries the structure of a (pseudo)metric
space. We recall some basic results from [Fr1].

7.23 Definition. For µ a submeasure on a complete ccc Boolean algebra B, put

ρµ(x, y) = µ(x△y)

for every x, y ∈ B.

It is easily verified that ρµ is a pseudometric on B; in case µ is strictly positive,
ρµ is a metric. The Boolean operations ∧,−,∨ are uniformly continuous functions
with respect to this metric.

7.24 Theorem. Let B be a σ-complete Boolean algebra and let µ be a strictly positive
submeasure on B.

(i) If µ is a Maharam submeasure, then the metric space (B, ρµ) is complete.

(ii) If µ is exhaustive, then the metric completion B̄ of (B, ρ) carries a structure
of a complete Boolean algebra that makes B a subalgebra.
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The reason for (ii) is that the Boolean operations, being uniformly continuous,
have a unique continuous extension to B̄, and the validity of Boolean-algebraic
axioms is preserved. Clearly B is a dense subset of B̄ metrically, but not necessarily
a dense subset in the order-theoretic sense.

As a consequence, we get the following

7.25 Proposition. Let (B, µ) be an algebra with a strictly positive exhaustive sub-
measure. Then the Boolean completion of B also carries a strictly positive exhaustive
submeasure.

Proof. Consider the metric completion B̄ of (B, ρµ) as above. By [Fr2], the original
µ can be extended to a strictly positive exhaustive submeasure µ̄ on B̄. Being a
complete algebra, B̄ is injective by Sikorski’s theorem. Hence the Boolean completion
of B also embeds into B̄ and inherits µ̄.

The following theorem describes the correspondence between the measure-theoretic
properties of an algebra equipped with a measure and the properties of the corre-
sponding metric space.

7.26 Theorem. Let (B, µ) be an infinite measure algebra and let κ ≥ ω. Then

(a) (B, µ) has Maharam type κ iff the metric space (B, ρµ) has density κ.

(b) (B, µ) is homogeneous in Maharam type κ iff the metric space (B, ρµ) has
hereditary density κ.



Chapter III

Coherent Structures and

Nonhomogeneity

Motivated by the search for untouchable points, we introduce in this chapter the
notion of a coherent structure on a Boolean algebra.

We give a short overview of the nonhomogeneity problem. We describe the lattice
of partitions on a complete ccc Boolean algebra and the structure of subalgebras and
quotients it induces. We look at how an ultrafilter on the given algebra reflects in the
partition structure and we introduce coherent ultrafilters , specifically the coherent
P -points and coherently Ramsey ultrafilters. We show that these consistently exist
on every complete ccc algebra, and use them as witnesses of nonhomogeneity for the
corresponding Stone spaces.

1 The nonhomogeneity problem

A Stone space of an infinite complete Boolean algebra is never homogeneous. That is
to say, there are pairs of points that cannot be swapped by an autohomeomorphism.
This was proved by Z. Froĺık for a wider class of F -spaces, using a cardinality
argument.

It is a natural quest to provide a transparent topological property of ultrafilters
on complete Boolean algebras that would – as points in the corresponding Stone
spaces – visibly violate the homogeneity of the extremally disconnected compact.
A candidate for such a topological property has been formulated as “not to be a
cluster point of a countable discrete subset”.

1.1 Definition. Let X be a topological space. A point x ∈ X is discretely untouch-
able if x /∈ cl(D \ {x}) for every countable discrete set D ⊆ X.

A homeomorphism obviously preserves the property of being discretely untouch-
able. In a compact Hausdorff space, every infinite subset must also have a cluster
point – which cannot be swapped with a discretely untouchable point then. So find-
ing a discretely untouchable point is a straight way to show the nonhomogeneity of
a compact Hausdorff space.

39
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Note that trying to find points that are not cluster points of any countable
set (not necessarilly discrete) would be too much to ask: there are separable EDC
spaces – via Stone’s duality, these are Stone spaces of σ-centered complete algebras.
In these, such points cannot exist. That’s why we need to specify which class of
countable sets our points are escaping.

1.2 Conjecture (Simon). In every extremally disconnected ccc compact space of
weight c without isolated points, there is a discretely untouchable point. Equiv-
alently, every complete atomless ccc Boolean algebra of size c carries a discretely
untouchable ultrafilter.

Consistently, the conjecture holds. It is also known that points with properties
even stringer than discrete untouchability do exist in EDCs with weight > c (van
Mill), with uncountable cellularity (van Douwen) and with cf(g(RO(X))) > ω (Si-
mon). Hence the spaces where a discretely untouchable point is yet to be found
are the Stone spaces of complete, atomless, ccc algebras of size (or, equivaently,
algebraic density) equal to the continuum.

2 The lattice of partitions

Recall that a partition of a Boolean agebra is a maximal antichain. We will denote
the set of all partitions of an algebra B by Part(B), while Partfin(B) and Part∞(B)
will stand for the set of finite and infinite partitions, respectively.

2.1 Definition. Let B be a Boolean algebra. For two partitions P,Q of B, we say
that P refines Q and write P � Q if for each p ∈ P there is exactly one q ∈ Q such
that p ≤ q. We say that P finitely (infinitely) refines Q if P � Q and for each q ∈ Q,
the set {p ∈ P ; p ≤ q} is finite (infinite). We call P ∧Q = {p ∧ q; p ∈ P, q ∈ Q}\{0}
the common refinement of P and Q.

The relation P � Q is easily seen to be a partial order on Part(B). We note
that P ∧ Q is indeed a partition of B that refines both P and Q. In fact, it is the
infimum of {P,Q} in (Part(B),�), and makes (Part(B),∧, {1B},�) a semilattice
with unit.

2.2 Observation. For a complete Boolean algebra B, the order (Part(B),�) is a
lattice. This lattice is complete iff B is atomic.

Proof. We show that, in fact, every system {Pα;α ∈ κ} ⊆ Part(B) has a supremum.
Fix any P from the system. For p ∈ P , put p0 = p and inductively define

qn =
∨

{

q ∈
⋃

Pα; q ‖ pn
}

pn+1 =
∨

{p ∈ P ; p ‖ qn} .

It is clear that p ≤ pn ≤ qn ≤ pn+1 ≤ qn+1 for each n ∈ ω. Put u(p) =
∨

{pn;n ∈ ω} =
∨

{qn;n ∈ ω}. It is easily checked that the set
∨

Pα = {up; p ∈ P}
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does not depend on the choice of the starting partition P . Clearly,
∨

Pα is a partition
refined by every Pα; we show that it is the finest among such partitions.

Let Pα � R for every α ∈ κ. It suffices to see that whenever p ≤ r for some
p ∈ Pα and r ∈ R, we also have u(p) ≤ r; this can be shown by induction for every
pn, qn as defined above. Let p ∈ P and let r be the only member of R such that
p ≤ r. Every q ∈

⋃

Pα is below exactly one r′ ∈ R, and if r 6= r′, then q ⊥ p; hence
q0 =

∨

{q ∈
⋃

Pα; q ‖ p} ≤ r. Similarly, p1 =
∨

{p ∈ P ; p ‖ q0} ≤ r, and it follows
by induction that every pn ≤ qn ≤ r. Hence u(p) ≤ r and

∨

Pα � R.
For completeness, let {Pα;α ∈ κ} be a system of partitions. A supremum

∨

Pα

exists in Part(B) by the above. A complete atomic algebra is a powerset algebra,
which is completely distributive. The partition P =

{
∧

α∈κ f(α); f ∈ ΠPα

}

\ {0} is
easily seen to be the infimum of the Pα. In particular, the set of all atoms is the
finest partition of B, i.e., the smallest element of Part(B). In the other direction,
if (Part(B),�) is complete, it must have a smallest element, which clearly needs to
be a partition consisting exclusively of atoms of B.

Note that for an atomless algebra B, completeness is actually necessary in the pre-
vious observation: we will show that in an atomless algebra that is not σ-complete,
two partitions can always be found that do not have a supremum.

2.3 Example. Let A = {an;n ∈ ω} ⊆ B be a countable subset without a supremum
in B; without loss of generality, A is an antichain. Let C be the completion of B,
and consider c =

∨C A ∈ C \ B. The element −c ∈ C can be partitioned into some
{xα;α ∈ κ} = X ⊆ B, as B is dense in C.

Split every an ∈ A into a0n∨a
1
n, put b0 = a00, bn+1 = a1n∨a

0
n+1 and B = {bn;n ∈ ω}.

Then clearly
∨C B =

∨C A = c. Put P = A∪X,Q = B∪X. Now P,Q are partitions
of B, and we show that {P,Q} has no supremum in Part(B).

Let R ∈ Part(B) satisfy P,Q � R. Then there must be some r ∈ R such that
r ≥ an, bn for all n; but r ∈ B cannot be a supremum of an, hence r meets some
x ∈ X. In fact, we have x ≤ r, as X ⊆ P ∩Q and P,Q � R. Then the partition R0

which contains r − x, x ∈ R0 instead of r ∈ R satisfies P,Q � R0 ≺ R. Hence R is
not a supremum.

2.4 Definition. Partitions P,Q ∈ Part(B) are independent if p ∧ q 6= 0 for every
p ∈ P, q ∈ Q. More generally, {Pi; i ∈ I} is an independent system of partitions if
for every finite K ⊆ I and every f ∈ Π {Pi; i ∈ K}, the intersection

∧

{f(i); i ∈ K}
is nonzero.

Note that if P,Q are independent, then P ∨Q = {1B} in Part(B).

2.5 Definition. A partition filter is a filter in (Part(B),�); i.e., a subset F ⊆
Part(B) that contains with every P ∈ F all Q ∈ Part(B) such that P � Q, and
contains P ∧Q with every P,Q ∈ F . Clearly, Partfin(B) is a partition filter.

3 The structure induced by partitions

Let B be a complete ccc Boolean algebra. For P ∈ Part(B), let BP be the subalgebra
completely generated by P ⊆ B. Denote the inclusion as eP : BP ⊆ B. If P � Q,
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let eQP be the inclusion of BQ in BP . The family {BP ;P ∈ Part(B)} together with
the mappings ePQ forms a directed system of complete Boolean algebras indexed by
the directed set (Part(B),�).

The restriction to complete ccc algebras is not strictly necessary in the above
definition; a more general situation could be described, minding the possible size of
partitions and suitable κ-completeness of the algebra. It is however the complete
ccc case which we are mostly interested in.

3.1 Fact. Let B be a complete ccc Boolean algebra.

(a) For each P ∈ Part∞(B), the algebra BP is isomorphic to P (ω).

(b) BP∧Q is completely generated by BP ∪ BQ, and BP∨Q = BP ∩ BQ.

(c) BP ∩ BQ = {0B, 1B} iff P ∨Q = {1B}.

(d) For P � Q ∈ Part(B), the inclusion eQP : BQ ⊆ BP is a regular embedding.

(e) For each P ∈ Part(B), the inclusion eP : BP ⊆ B is a regular embedding.

3.2 Lemma. The algebra B, together with the regular embeddings eP : BP → B, is
a direct limit of the directed system of algebras BP and mappings eQP . In fact, B is a
limit of every subsystem consisting of BP and eQP for P,Q /∈ F , where F ⊆ Part(B)
is a partition filter.

Proof. Every triangle commutes, i.e. eP ◦ e
Q
P = eQ whenever P � Q. The algebra

B is easily seen to be isomorphic to the direct limit as described in Chapter I. Put
ϕ(x) = [x]≈ for x ∈ B. Then ϕ : B → (

⊔

BP/ ≈) is well defined; in fact, the
equivalence relation x ≈ y iff x ∈ BP , y ∈ BQ, e

P
P∧Q(x) = eQP∧Q(y) reduces to x = y

in B, and merely factorizes out the formal distinction between multiple copies of
x ∈ B coming from different components BP of the disjoint union; hence ϕ is one-
to-one, too. Clearly, ϕ is onto, and it is easily checked to be homomorphic. The
second part follows from the fact that for every partition filter F , the system formed
by BP and eQP for P,Q /∈ F is a cofinal directed subsystem.

For P ∈ Part(B), let JP be the ideal on B generated by P ⊆ B. Note that
JP∧Q = JP ∩ JQ and JP ⊆ JQ for P � Q. Write B/P for B/JP and BP/P for
BP/JP . Whenever P � Q ∈ Part(B), we have JP ⊆ JQ, hence the algebra B/Q is

a quotient of B/P ; denote the quotient mapping by fQ
P : B/P → B/Q. The family of

algebras B/P and mappings fQ
P for P,Q ∈ Part(B) forms an inverse system indexed

by (Part(B),�).

3.3 Observation. Let B be a complete ccc Boolean algebra. Then

(a) For each P ∈ Part∞(B), the quotient BP/P is isomorphic to P (ω)/fin.

(b) The inclusion BP/P ⊆ B/P is a regular embedding.
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3.4 Lemma. The algebra B, together with the quotient mappings fP : B → B/P , is
an inverse limit of the inverse system {B/P, fQ

P }.

Employing the Stone duality, we see that

3.5 Corollary. (a) Every infinite complete ccc algebra is a limit of a directed
system of copies of P (ω). Dually, every infinite ccc EDC space is an inverse
limit of a directed system of copies of βω.

(b) Every infinite complete ccc Boolean algebra is an inverse limit of an inverse
system of copies of P (ω)/fin. Dually, every infinite ccc EDC space is a direct
limit of directed system of copies of ω∗.

4 Ultrafilters and the partition structure

In this section, we fix an ultrafilter U on a complete ccc algebra B and look at how
U reflects in the partition structure described above.

Let B be a complete, ccc algebra, U an ultrafilter on B, and P a partition of B.
Put UP = U ∩BP , which is clearly an ultrafilter on BP ; as BP is isomorphic to P (ω),
the ultrafilter UP can be viewed as an ultrafilter on ω.

4.1 Observation. Let B be a complete atomless ccc algebra, let P,Q be partitions
of B, and let U be an ultrafilter on B. Then

(a) P ∩ U 6= ∅ if and only if UP is trivial.

(b) {P ∈ Part(B);U ∩ P 6= ∅} is a proper partition filter if U is nontrivial.

(c) {P ∈ Part(B);U ∩ P = ∅} is an open dense subset of (Part(B),�).

(d) UQ = UP ∩ BQ for P � Q.

(e) B =
⋃

{BP ;P ∩ U = ∅}

5 Coherent families

5.1 Definition. Let B be a complete, atomless, ccc algebra. For a property ϕ of
families of subsets of ω, we say that a subset X ⊆ B is a coherent ϕ-family on B if
for every partition P = {pn;n ∈ ω} of B, the family {A ⊆ ω;

∨

{pn;n ∈ A} ∈ X} of
subsets of ω satisfies ϕ.

For some properties ϕ, the coherent ϕ is actually no stronger than ϕ itself. As an
easy example, any antichain in B is a coherent antichain; and any filter F on B is a
coherent filter, as for every partition P of B, the family {A ⊆ ω;

∨

{pn;n ∈ A} ∈ F}
is a filter on ω. Similarly, every ultrafilter on B is a coherent ultrafilter, and an
ultrafilter that is coherently trivial is a generic ultrafilter on B. We will be interested
in ultrafilters with special properties, where the coherent version becomes nontrivial.
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It can be seen from the very definition that the ZFC implications between various
classes of ultrafilters on ω continue to hold for the corresponding classes of coherent
ultrafilters on B. For instance, every coherent selective ultrafilter on B is a coherent
P -ultrafilter on B, as every selective ultrafilter on ω is a P -ultrafilter on ω.

6 Coherent P-ultrafilters

6.1 Definition. An ultrafilter U on a complete ccc algebra B is a coherent P -
ultrafilter if for every partition P of B, the family {A ⊆ ω;

∨

{pn;n ∈ A} ∈ U} is a
P -ultrafilter on ω

Seeing that the subalgebra BP is a copy of P (ω), we can equivalently characterize
coherent P -ultrafilters as follows.

6.2 Observation. Let B be a complete ccc algebra. An ultrafilter U on B is a
coherent P -ultrafilter iff for every pair of partitions P and Q of B such that P � Q,
either U ∩Q 6= ∅, or there is a set X ⊆ P such that

∨

X ∈ U and for every q ∈ Q,
the set {p ∈ X; p ∧ q 6= 0} is finite.

It should probably be noted explicitly that as the notion of a coherent P -
ultrafilter on B only depends on countable partitions P of B, and the P -point
condition is only evaluated in the corresponding subalgebras BP , a coherent P -
ultrafilter on B is in no way a P -point in the Stone space of B — unless B happens
to be P (ω) itself.

We show now that coherent P -points consistently exist. The proof is an iteration
of the Ketonen argument ([Ke]) for the existence of P -points on ω.

6.3 Proposition. Let B be a complete ccc Boolean algebra of size at most c. Every
filter on B with a base smaller than c can be extended to a coherent P -ultrafilter on
B if and only if c = d.

Proof. Assume c = d and let F ⊆ B be a filter with a base smaller than c. We
will construct an increasing chain of filters Fα extending F , eventually arriving at
a filter

⋃

Fα, where each Fα takes care of a pair of partitions, as requested by 6.2.
Start with F0 = F and enumerate all partition pairs P � Q as (Pα, Qα), where

α < d runs through all isolated ordinals. If an increasing chain (Fβ; β < α) of filters
has already been found such that every Fβ has a base smaller than c and has the
P -ultrafilter property 6.2 with respect to the partition pairs Pγ � Qγ for γ < β,
proceed as follows.

If α is a limit, take for Fα the filter generated by
⋃

{Fβ; β < α}; then Fα still
has a base smaller than c = d. We didn’t miss a partition pair here.

If α = β + 1 is a successor, consider the partition pair Pβ � Qβ. If some q ∈ Qβ

is compatible with Fβ, let Fα = Fβ+1 be the filter generated by Fβ ∪ {q} and be
done with (Pβ, Qβ). If there is no such q in Qβ, enumerate Qβ as {qn;n ∈ ω} and
consider the refinement Pβ of Qβ. Without loss of generality, every qn ∈ Qβ is
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partitioned into infinitely many p ∈ Pβ; enumerate {p ∈ P ; p < qn} as {pmn ;m ∈ ω}.
Let {aξ; ξ < κ} be the base of Fβ, for some κ < c.

Now perform the Ketonen construction for this step: for each ξ < κ, put fξ(n) =
min {m; aξ ∧ p

m
n 6= 0} if there is such an m. The value of fξ(n) is defined for infinitely

many n, corresponding to those qn which aξ meets. In the missing places, fill the
value of fξ(n) with the next defined value (there must be some). This yields a family
{fξ : ω → ω; ξ < κ} of functions — which cannot be dominating, as κ < c = d.
Therefore, there is a function f : ω → ω which is not dominated by any fξ; that is,
for each ξ, we have f(n) > fξ(n) for infinitely many n. We can assume that f is
strictly increasing.

Put a =
∨

{pmn ;n ∈ ω,m ≤ f(n)}. The element a is compatible with Fβ, because
it meets every aξ, as witnessed by f 6≤ fξ. Let Fα be the filter generated by Fβ∪{a}.
This filter obviously extends Fβ, is generated by fewer than c elements, and has the
P -ultrafilter property with respect to (Pβ, Qβ).

Now every ultrafilter extending
⋃

{Fα;α < c} is a coherent P -ultrafilter on B
that extends F , because we have taken care of all possible partition pairs P � Q,
as requested by 6.2.

The other direction follows from [Ke] immediately. Being able to extend every
small filter F ⊆ B into a coherent P -ultrafilter is apparently stronger than being
able to extend every small filter F on ω to a P -point, which itself implies c = d.

For completeness, we translate the Ketonen argument for the opposite direction
into the algebra B, showing how d < c can break the coherence anywhere.

Assume d < c and let {fα;α < d} be a dominating family of functions. Choose
any two countable partitions P � Q of B such that every qn ∈ Q is partitioned into
countably many pmn ∈ P . For each α < d, put aα =

⋃

{pmn ;m > fα(n)}. The family
{aα;α < d} ∪ {−qn;n ∈ ω} ⊆ B is centered, and the filter F that it generates has
d < c generators. No ultrafilter on B that extends F can be a coherent P -ultrafilter,
as witnessed by P � Q.

We have shown that coherent P -ultrafilters consistently exist on complete ccc
algebras of size≤ c. On the other hand, there consistently is no coherent P -ultrafilter
on any complete ccc algebra, as even the classical P -points need not exist. Hence
the existence of coherent P -ultrafilters is undecidable in ZFC.

6.4 Question. The consistency we have shown is what [Ca] calls “generic existence”
— under our assumption, coherent P -ultrafilters not only exist, but every small filter
can be enlarged into one. Questions arise:

(a) If B is a complete ccc algebra of size > c, is it consistent that there is a coherent
P -ultrafilter on B?

(b) Is it consistent that P -ultrafilters exist in ω, but there are no coherent P -
ultrafilters on any complete atomless ccc algebra?

(c) Is it consistent that a coherent P -ultrafilters exists on a complete atomles ccc
algebra B, but does not exist on another?
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(d) Is there a single “testing” algebra B with the property that if there is a coher-
ent P -ultrafilter on B, then necessarily c = d, and hence P -ultrafilters exist
generically?

An application to nonhomogeneity

Now we show the relevance of coherent P -ultrafilters to the Simon Conjecture: they
provide a consistent positive answer.

6.5 Proposition. Let B be a complete ccc algebra. Let U be a coherent P -ultrafilter
on B. Then U is an untouchable point in St(B).

Proof. We assume that U is not an atom, otherwise there is nothing to prove. Let
R = {Fn;n ∈ ω} be a countable nowhere dense set in St(B) such that Fn 6= U for
all n. Choose some a0 ∈ F0 with −a0 ∈ U and put R0 = {F ∈ R; a0 ∈ F} ⊆ R.
Generally, if ai ∈ B

+ for i < k are disjoint elements such that
∨

i<k ai /∈ U and
Ri = {F ∈ R; ai ∈ F}, consider

⋃

i<k Ri ⊆ R. If
⋃

i<k Ri = R, we are done, as
−
∨

i<k ai ∈ U guarantees U 6∈ cl(R). Otherwise, let nk be the first index such that
Fnk
6∈

⋃

i<k Ri and choose some ak disjoint with
∨

i<k ai such that ak ∈ Fnk
and

ak /∈ U .
This construction either stops at some k and we are done, or we arrive at an

infinite disjoint systemQ = {ai; i ∈ ω} ⊆ B
+. Again, if

∨

Q 6∈ U , we have U 6∈ cl(R).
Otherwise, we can assume that

∨

Q = 1, so Q is a partition of B. For each ai ∈ Q,
choose an infinite partition Pi of ai such that Pi∩

⋃

Ri = ∅ – this is possible, because
Ri ⊆ R is nowhere dense. Now P =

⋃

Pi � Q is a partition pair in B.
As U is a coherent P -ultrafilter and misses Q, there is some X ⊆ P with u =

∨

X ∈ U such that for every i, the set {p ∈ X; p ≤ ai} is finite. This means that
u /∈ Fn for all n: every Fn is in one particular ai, so u ∈ Fn would mean that Fn

contains one of the finitely many {p ≤ u; p ≤ ai}. But this is in contradiction with
Pi ∩

⋃

Ri = ∅. So u ∈ U isolates U from cl(R).

In fact, we have proven something slightly stronger: U escapes the closure of any
nowhere dense set that can be covered by countably many disjoint open sets.

7 Coherent selective ultrafilters

Similarly to coherent P -ultrafilters, we start with the following characterization of
coherent selective ultrafilters via partitions.

7.1 Observation. Let B be a complete ccc algebra. An ultrafilter U on B is a
coherent selective ultrafilter iff for every pair of partitions P and Q of B such that
P � Q, either U ∩Q 6= ∅, or there is a set X ⊆ P such that

∨

X ∈ U and for every
q ∈ Q, the set {p ∈ X; p ∧ q 6= 0} is at most a singleton.

The following proposition generalizes the arguments from [Ke] and [Ca] on exi-
stence of selective ultrafilters on ω to coherent selective ultrafilters on complete ccc
algebras.
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7.2 Proposition. Let B be a complete ccc Boolean algebra of size at most c. Then
every filter F on B with a base smaller than c can be extended to a coherent selective
ultrafilter on B if and only if c = cov(M).

Proof. Assume c = cov(M) and let F be a filter with a base smaller than c. We will
construct an increasing chain of filters extending F . Put F0 = F and enumerate all
partition pairs P � Q as {(Pα, Qα);α < cov(M) isolated }.

If an increasing chain (Fβ; β < α) of filters has been found such that every
Fβ has a base smaller than c and has the selective property with respect to all
{(Pγ, Qγ); γ < β}, proceed as follows.

If α is a limit, take for Fα the filter generated by
⋃

{Fβ; β < α}; then Fα still
has a base smaller than c.

If α = β+1 is a successor, consider (P,Q) = (Pβ, Qβ). Without loss of generality,
both partitions are infinite, and every qn ∈ Q is infinitely partitioned into pmn ∈ P .

If there is some q ∈ Q compatible with Fβ, let Fα be the filter generated by
Fβ ∪ {q}. If there is no such q ∈ Q, consider some base {aξ; ξ < κ} of Fβ, where
κ < c. Every aξ intersects infinitely many q ∈ Q: if aξ only meets q1, . . . , qn ∈ Q,
choose aiξ disjoint with qi, respectively; then aξ ≤

∨

qi is disjoint with
∧

aiξ — a
contradiction.

Consider the set T = Πn∈ω {p
m
n ;m ∈ ω}; the functions ϕ ∈ T are the selectors

for Q. View T as a copy of the Baire space ωω. If no selector for Q is compatible
with Fβ, put Tξ = {ϕ ∈ T ;

∨

rng(ϕ) ⊥ aξ}; then we have T =
⋃

ξ<κ Tξ. But the
sets Tξ cannot cover T , as κ < cov(M) and every Tξ is a nowhere dense subset of
T , which is seen as follows.

For a basic clopen subset [s] of T , there is some n > |s| such that aξ meets
qn ∈ Q, because aξ meets infinitely many qn. Hence some pmn meets aξ. Extend s
into t so that t(n) = m. Then [t] ⊆ [s] is disjoint with Tξ.

Thus there must be a selector ϕ ∈ T with b =
∨

rng(ϕ) compatible with every
aξ. Let Fβ+1 be the filter generated by Fβ ∪ {b}. Iterating this process, we obtain
a monotone sequence of filters (Fα;α ∈ c) extending F = F0. Now every ultrafilter
extending

⋃

Fα is a coherent selective ultrafilter on B by 7.1.

We note in closing that this contribution to the nonhomogeneity question in
not a ZFC solution, and consistent solution have been found before under additive
set-theoretic assumptions.

7.3 Question. Does the Simon conjecture hold in ZFC?



Chapter IV

The order-sequential topology

1 Downward closed neighbourhoods

For a σ-complete Boolean algebra equipped with the order-sequential topology, the
space (B, τs) is sequential by definition. It is natural to ask whether it has some
stronger sequential property, such as being Fréchet or metrizable.

Metrizability of the sequential space (B, τs) is equivalent to B being Maharam.
An algebra that is not Maharam, hence not metrizable, can still be Frchet, as
is the case with the Suslin algebra. An algebra that adds a Cohen real cannot
be metrizable, and cannot even be Fréchet, as the Cohen algebra is not weakly
distributive.

We show here another property of Fréchet algebras that gets violated in every
algebra B which regularly embedds the Cantor algebra.

1.1 Proposition ([BGJ]). Let B be a σ-complete Boolean algebra.

(i) The space (B, τs) is Fréchet if and only if B is weakly distributive and b-cc.

(ii) If (B, τs) is a Fréchet space, then every neighbourhood V of 0B contains an
neighbourhood U ⊆ V which is downward closed.

1.2 Proposition ([BGJ]). If (B, τs) is a Fréchet space, then every neighbourhood
V of 0B contains an neighbourhood U ⊆ V which is downward closed.

1.3 Lemma. In a σ-complete algebra B, let ym → 0, xm,n → ym and znm ≤ xnm. If
0 /∈ cl({znm;m,n ∈ ω}), then U = B \ cl({znm;m,n ∈ ω}) is an open neighbourhood
of zero which does not contain any downward closed neighbourhood of zero.

Proof. Let 0 ∈ V ⊆ U be a downward closed neighbourhood. Then some ym ∈ V ,
hence some xnm ∈ V . But then also znm ≤ xnm is in V ⊆ U , a contradiction.

1.4 Proposition. If a complete Boolean algebra regularly embedds the Cantor alge-
bra, and hence adds a Cohen real, then 0 ∈ (B, τs) cannot have a local base consisting
of downward closed neighbourhoods.

48
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Proof. We will construct the situation described in the above lemma inside the
Cohen algebra. Let I ⊆ A be an independent system in the Cantor algebra.

Decompose I into infinite {ak; k ∈ ω}, {bml ; i, n ∈ ω}, {cn;n ∈ ω} and put

ym =
∧

k≤m

ak

xnm = ym ∨
∧

l≤n

bml

znm = (ym ∧ cn) ∨
∧

l≤n

bml .

It is clear that ym → 0, xnm → ym and znm ≤ xnm. Also, every znm > 0 by independence.
We claim now that the set Z = {znm;m,n ∈ ω} is closed in (B, τs); in particular,

0 /∈ Z̄. Suppose not. As the space (B, τs) is sequential, there is a sequence (zni
mi

) in
Z converging to some b /∈ Z, so that Z is not sequentially closed.

If the set of {mi} is infinite, then lim sup zni
mi

= 1, while lim inf zni
mi
≤ a0 < 1

— a contradiction. If the set of {mi} is finite, then without loss of generality the
sequence (zni

mi
) is in fact of the form (zni

m ) for a fixed m. Then lim sup zni
m > 0, while

lim inf zni
m = 0 — a contradiction.

2 Characterizing Maharam with τs × τs

In this section, we formulate one more equivalence of B being a Maharam algebra,
using properties of the order-sequential topology.

The idea concerns the product topology τs × τs. Given a σ-complete algebra B,
there are two natural topologies on the cartesian product algebra B×B: the product
topology of (B, τs) × (B, τs), and the order-sequential topology of B × B, which is
a σ-complete algebra itself. It is a natural question whether these two topologies
coincide.

2.1 Lemma. The order-sequential topology of the cartesian product algebra B × B
is the sequential modification of the topological product (B, τs)× (B, τs).

2.2 Proposition. Let B be a σ-complete weakly distributive ccc algebra. Then
B is a Maharam algebra if and only if the topological product (B, τs) × (B, τs) is
homeomorphic to the order-sequential topology of the cartesian product algebra B×B.

Proof. We need to show that the operation x△y is continuous, as a function from
B × B to B. Assuming that the product topology is the order-sequential topology,
it suffices to verify that △ preserves the limits of algebraically convergent sequences
in the product algebra B × B.

Conversely, if B is Maharam, the space (B, τs) is metrizable. So (B, τs)× (B, τs)
is a metrizable space as well, hence sequential, and the product topology coincides
with its sequential modification. By the previous lemma, this is precisely the order-
sequential topology on the σ-complete algebra B × B.



CHAPTER IV. THE ORDER-SEQUENTIAL TOPOLOGY 50

Note that if the two topologies coincide, the topology of the product becomes
simultaneously extreme in two opposing ways: being the product topology, it is
the coarsest that makes the projections continuous; being order-sequential, it is the
finest that lets algebraic sequences converge.

If a ccc algebra B fails to be Maharam, we know that (B, τs) is not Hausdorff.
In that case, we can easily exhibit the subset of B × B that exploits the difference
of the two topologies considered in the previous proposition.

Recall the elementary lemma which says that a topological space (X, τ) is Haus-
dorff if and only if the diagonal {(x, x); x ∈ X} is closed in X×X. So if (B, τs) is not
Hausdorff, the diagonal {(x, x); x ∈ B} is not closed in (B, τs)× (B, τs). However, it
is easily seen to be sequentially closed, hence closed in (B × B, τs).

3 Compactness of the order-sequential topology

The general problem we deal with in this section is to describe the complete Boolean
algebras which are compact in their order-sequential topology. We remind the gentle
reader that by compact we do not mean compact Hausdorff.

Obviously, we only consider infinite algebras. Some further restrictions need to
be made at the outset.

3.1 Observation. Let B be a complete Boolean algebra. If the order-sequential
topology τs of B is compact, then B is ccc.

Proof. If not, let X be an antichain of size ℵ1. By completeness, we can assume that
X is a maximal antichain (add −

∨

X to the antichain otherwise). This generates
a copy of P (ω1) as a complete subalgebra in B; this copy is a sequentially closed,
hence closed subspace of (B, τs). So if (B, τs) is compact, then (2ω1 , τs) is a compact
Hausdorff space, with a topology strictly finer than (2ω1 , τc) — a contradiction.

3.2 Proposition ([BJP]). For a complete Boolean algebra B, the space (B, τs) is
countably compact if and only if B, as a forcing, does not add an independent real.

3.3 Proposition (G lowczyński). Let B be an infinite complete Boolean algebra such
that (B, τs) is a compact Hausdorff space. Then B is isomorphic to P (ω).

The previous proposition was originally proved in [Gl]. It follows from the results
of [BJP] as well. Being compact, the algebra must be ccc by the above observation.
For (B, τs) ccc and Hausdorff, the algebra B is Maharam, and an atomless Maharam
algebra adds an independent real. Hence to not add an independent real, a Hausdorff
algebra has to be atomic. Hence B is isomorphic to the only complete atomic ccc
algebra, namely P (ω).

Thus in the search for compact order-sequential topology, we restrict ourselves
to complete infinite ccc algebras which are not Hausdorff, hence not Maharam, and
do not add independent reals, hence do not almost regularly embedd the Cantor
algebra. It is a natural question now where to get a supply of such algebras. We
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don’t know of any within ZFC. (The candidates described in [BJP] require either a
measurable cardinal or constructibility features to work.)

Note that if a non-compact algebra B embeds regularly into a complete algebra
C, then C cannot be compact either, as the embedded copy of B is a sequentially
closed subspace.

Suslin: a compactness candidate

We restrict ourselves to a special case which is a natural candidate, namely the
complete Boolean algebra B = B(T ) which is a completion of a Suslin tree T .
Note that for an Aronszajn tree T which is not Suslin, the algebra B(T ) cannot be
compact, as it is not ccc. Note also that our candidate is out of ZFC.

Let (T,≤) be a normal Suslin tree, and let B = B(T ) be the complete algebra
determined by (T,≤). We recall that this is a complete, atomless, ccc and σ-closed,
hence ω-distributive Boolean algebra of density ω1. It is known that these properties
characterize the Suslin algebra.

Let Tα for α < ω1 be the countable levels of T . These are partitions of B and Tβ
is a refinement of Tα for α < β < ω1. Let Bα be the subalgebra completely generated
by Tα ⊆ B. It is clear that Bα is a copy of P (ω) and Bα is a regular subalgebra of
Bβ for α < β < ω1. Hence we have a chain of regularly embedded copies of P (ω) –
a special case of a directed system of complete algebras.

3.4 Fact. The Suslin algebra B is a direct limit of the chain of Bα.

Proof. As B is ccc, we have B =
⋃

Bα: every x ∈ B is a join of some countably many
xn ∈ T , and every xn ∈ Tαn

for some αn < ω1. Hence x ∈ Bα for any α ∈ ω1 such
that α ≥ sup {αn;n ∈ ω}. Commutativity of the regular inclusions is clear.

As B is atomless, the space (B, τs) is connected. The algebra B is ω-distributive,
hence topological convergence in (B, τs) coincides with algebraic convergence in B.
Distributivity and ccc implies that the space (B, τs) is Fréchet.

It is well known that the Suslin algebra is not a Maharam algebra. In fact, this is
the original example from [M2]. Hence (B, τs) is not Hausdorff. Being ω-distributive,
it adds no new reals, in particular does not add independent reals, and is therefore
sequentially compact; equivalently, it is countably compact, being a T1 space.

3.5 Fact. The space (B, τs) is a direct limit of the spaces (Bα, τs).

Proof. The subalgebras Bα, in their order-sequential topology, are copies of the
compact Cantor space (2ω, τc). It is easy to see that this coincides with the subspace
topology imposed by (B, τs). Being sequentially closed, they are closed compact
subspaces of (B, τs).

To show that τs is the topology of a direct limit, consider a set A ⊆ B such
that every A ∩ Bα is closed in Bα; we will show that A is sequentially closed in B,
hence τs-closed. So let (xn;n ∈ ω) be a sequence in A, converging to x ∈ B. Choose
α < ω1 large enough so that Bα contains the countable set {xn;n ∈ ω} ∪ {x}. Then
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(xn;n ∈ ω) is a sequence in A ∩ Bα ⊆ Bα, which we assumed to be a closed subset
of Bα. So x ∈ A ∩ Bα ⊆ A, and A is sequentially closed.

We assume the Suslin tree T to be normal, in particular T splits everywhere.
Hence every x ∈ Tα is partitioned into infinitely many members of Tα+1. As a
consequence, every Bα is a closed nowhere dense subset of Bα+1.

Next we show that the Suslin tree T itself, as a subset of (B(T ), τs), can be
assumed to be closed and compact.

3.6 Lemma. Let T be a Suslin tree. Then there is a Suslin tree S in B(T ) such
that B(S) = B(T ) and S ∪ {0} is a closed compact subset of (B(T ), τs).

Proof. S can be constructed from T inductively by refining the levels. Put S0 = T0.
On isolated levels α = β + 1, let Sα be the common refinement of Sβ and Tβ. For α
limit, consider all branches f in

⋃

β<α Sβ of length α such that
∧

f 6= 0, and let Sα

consist of all the
∧

f .
Then S ∪ {0} is sequentially closed: a sequence (xn) either contains infinitely

many parwise disjoint nodes and converges to 0, or contains infinitely many members
of a branch in S, which converges either to 0 or to a member of S.

For compactness, let U be an open cover of S∪{0}. Some U ∈ U is a neighbour-
hood of zero, and we can assume that U is a downward closed algebraically dense
subset of B, as (B, τs) is Fréchet.

Hence there is a countable maximal antichain X ⊆ S ∩ U ; by possibly further
refining X, we can assume that X = Sα for some α < ω1. Then

⋃

{Sξ; ξ > α} ⊆ U
and

⋃

{Sξ; ξ ≤ α} is compact, being a closed subset of the compact space Bα.

Towards a minimal KC topology

We recall a general topological theorem from [BC] mentioned in the introduction
and show a path towards its application.

3.7 Theorem (Bella, Costantini). Minimal KC spaces are compact.

3.8 Proposition. (B, τs) is a strongly KC space.

Proof. Let K be a countably compact subset of (B, τs). We need to show that K
is sequentially closed. So let (xn;n ∈ ω) be a sequence in K, converging to x ∈ B.
Choose α < ω1 so large that Bα contains the countable set {xn;n ∈ ω} ∪ {x}. Then
(xn;n ∈ ω) is a sequence in K ∩ Bα ⊆ Bα. It suffices to show now that K ∩ Bα is a
closed subset in Bα. But Bα is a compact metric space: a copy of 2ω.

Hence if K ∩ Bα is not a closed subset, it fails to be countably compact. So
K ∩ Bα has a countable bad covering U – but then U ∪ (B \ Bα) is a countable bad
covering of K. Hence K ∩ Bα is in fact a closed subset of Bα and x ∈ K ∩ Bα ⊆ K;
so K is sequentially closed.

3.9 Proposition. (B, τs) is a minimal strongly KC space.
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Proof. Let τ be a strongly KC topology on B that is strictly coarser than τs. Then
the identity mapping from (B, τs) to (B, τ) is a continuous bijection. But a contin-
uous bijection from a countably compact space to a strongly KC space must be a
homeomorphism — a contradiction.

So the order-sequential topology on B is minimal among all strongly KC topolo-
gies. That by itself does not imply it is also minimal among all the KC topologies,
which leaves a step to be made to an application of the Bella-Costantini theorem.
Hence we ask:

3.10 Question. Is there a KC topology on B(T ) strictly weaker than τs?

We close with a description of the peculiar properties of such a topology.

3.11 Proposition. Let τ be a KC topology on B(T ) strictly coarser than τs, let A
be a subset that is τs-closed but not τ -closed.

(i) The subspaces (Bα, τ) are copies of 2ω

(ii) The intersections A ∩ Bα are τ -closed.

(iii) |A \ Bα| ≥ ω1 for every α < ω1

(iv) (B, τs) is the sequential modification of (B, τ). Hence (B, τ) is not sequential.

Proof. (i) Every Bα is τs-compact, hence τ -compact, and must be τ -closed by KC.
Being a τ -closed subspace of a KC space, every Bα is a τ -compact KC space itself.
So (Bα, τ) cannot be a strictly weaker topology than (Bα, τs).

(ii) As the order-sequential topology τs is the topology of the direct limit B =
⋃

Bα, every A ∩ Bα is τs-closed in Bα, hence τs-compact. Thus A ∩ Bα is also
τ -compact, and must be τ -closed because τ is KC.

(iii) Clearly A 6⊆ Bα for every α < ω1, because if A ⊆ Bα, then A, being τs-closed,
is a compact subset of Bα; so A is τ -compact as well, hence τ -closed, as τ is KC —
a contradiction. If some A\Bα was only countable, we would have A ⊆ Bβ for some
suitably larger β < ω1.

(iv) We show that the class of convergent sequences is the same. As B is σ-
distributive, the τs-convergent sequences are precisely the algebraically convergent
sequences. Hence a τ -convergent sequence xn → x that is not τs-convergent means
that x is not the algebraic limit of (xn). But this can never happen: the space (B, τs)
is sequentially compact, so (xn) has a τs-convergent subsequence (xnk

) → y, where
y is the algebraic limit; hence y 6= x. But then also (xnk

) → y in τ , which violates
the ULP of (B, τ). So both τs and τ have the same class of convergent sequences,
namely, the algebraically convergent sequences of B.
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Coloring a Suslin tree

For a Suslin tree T , the topological density of (B(T ), τs) is ω1. Hence to show
compactness, it suffices to find an ω1-accumulation point for every subset of size ω1.
We use in this section a coloring reformulation of the accumulation property, due to
E. Thümmel, and show that the Suslin tree added with Jech’s forcing as a subset of
2<ω1 satisfies Thümmel’s condition with respect to the inherent coloring.

3.12 Definition. Let T be a Suslin tree. For a coloring χ : T → 2 and α < β < ω1,
say that β returns to α if there is an increasing sequence of ordinals αn < β such that
α0 = α, supαn = β, and for every node x ∈ Tα there is a fixed color k(x) ∈ 2 with
the property that for every y ∈ Tβ with y > x, the set {n ∈ ω;χ(y ↾ αn) 6= k(x)} is
finite. The coloring accummulates if for some α < ω1, there are unboundedly many
β > α that return to α.

Note that the “right” color k(x) is in no relation to the color χ(x) of the node x
itself, or the color χ(y) of y ∈ Tβ.

The following fact is a reformulation of the accumulating property in terms of
convergence in (B(T ), τs), which is precisely the algebraic convergence.

3.13 Fact. In the above notation, β returns to α if and only if the sequence of points
xn =

∨

{p ∈ Tαn
;χ(p) = 1} ∈ Bαn

⊆ B converges to x =
∨

{p ∈ Tα; k(p) = 1} ∈ Bα.

With this reformulation, compactness can be described as follows.

3.14 Proposition (Thümmel). For a Suslin tree T , the following are equivalent.

1. The space (B(T ), τs) is compact.

2. For every subtree S ⊆ T of the form S =
⋃

α∈M Tα, where M ∈ [ω1]
ω1, every

coloring χ : S → 2 accummulates.

3. For every subtree S ⊆ T of the form S =
⋃

α∈C Tα, where C ⊆ ω1 is a club,
every coloring χ : S → 2 accummulates.

Proof. Let (B(T ), τs) be compact, let S =
⋃

α∈M Tα be a subtree. Note that B(S) =
B(T ), as S is algebraically dense in T . Let χ : S → 2 be a coloring. For every α < ω1,
put xα =

∨

{p ∈ Sα;χ(p) = 1}. Without loss of generality, this is ℵ1 many distinct
points. As (B, τs) is compact, the set {xα;α < ω1} has a complete accumulation
point; that is some x in some Bα. Hence for every ξ < ω1, the point x is in the
closure of {xα;α > ξ}. Recall that the space (B(T ), τs) is Fréchet; so being in the
closure means there is a sequence in {xα;α > ξ} which converges to x. Also, the
topological convergence in (B(T ), τs) is precisely the algebraic convergence. So by
the lemma, unboundedly many β return to α.

Conversely, let Fα ⊆ B(T ), α < ω1 be a descending chain of nonempty closed sets.
For every α < ω1, the intersection

⋂

ξ<α Fξ is nonempty, as (B(T ), τs) is countably
compact; pick some xα from this intersection. If unboundedly many of these xα
happen to be in some fixed Bβ, which is a copy of 2ω, then there is a complete
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accumulation point x in Bβ; then x ∈ Fα for unboundedly many (hence all) of the
Fα and we are done.

So without loss of generality, assume that xα /∈
⋃
{

Bh(αξ); ξ < α
}

. Every xα,
being a member of Bh(xα), is a join of some members p of Th(xα); put χ(p) = 1 iff
p ≤ xα. This defines a coloring of the (Suslin) subtree S =

⋃
{

Th(xα);α < ω1

}

.
Renumerate the levels of S to ease notation and pretend that xα ∈ Bα. By

assumption, there is unboundedly many β < ω1 returning to some fixed α0 < β
(each via some sequence αn → β, possibly different). Put x =

∨

{p ∈ Tα0
; k(p) = 1}.

Then by the previous lemma, for unboundedly many Fξ we have a sequence in Fξ

converging to x. Thus x is in every F̄α = Fα, and (B(T ), τs) is compact.

We show now that the generic Suslin tree added with Jech’s forcing as a new sub-
set of 2<ω1 satisfies the coloring condition with respect the inherited {0, 1}-coloring.

3.15 Lemma. Consider the Jech forcing P consisting of normal binary γ-trees, for
γ < ω1, ordered by the relation of end extension. For every ξ < ω1, the set

Dξ = {T ∈ P; (∃α, β ∈ h(T ))ξ < α < β and β returns to α}

is a dense subset of P.

Proof. Given any Jech tree S ∈ P, we will find an end extension T of S which
belongs to Dξ. So let S ∈ P. We can assume without loss of generality that the
height of S is already larger than ξ. This is a property of the Jech forcing which
guarantees that the generic tree is indeed of height ω1.

Put α = h(S) and extend S with ω + 1 many more levels Tαn
, n ∈ ω as follows.

Let α0 = α and make Tα0
any legal extension of S; now Tα0

is the last level so far
of the tree we are building.

Put αn = α+ n and make
⋃

n Tαn
form a copy of the full binary tree of height ω

attached to every x ∈ Tα. Let β = α+ω and put a successor y to Tβ for every branch
of

⋃

n Tαn
which is eventually constant. There is countably many such branches, so

Tβ is countable. Hence T = S ∪
⋃

n≤ω Tαn
is a condition in P which extends S.

It is clear now that T ∈ Dξ: we have ξ < α < β and β returns to α via αn: the
“right” color k(x) for x ∈ Tα is the value of the eventual constant.

3.16 Corollary. The Suslin tree T ⊆ 2<ω1 generically added with Jech forcing
satisfies the compactness condition with respect to the inherent coloring.

3.17 Question. Let V be a model without Suslin trees, and let T be an Aronszajn
tree in V formed by a coherent system of one-to-one functions {fα : α→ ω1;α < ω1}.
Consider the Suslin tree S = {rf ; dom f = α and f =∗ fα} in a generic extension
obtained by adding a Cohen real r, as described in the introduction. Color with
0 the nodes “glued” together with r, color the others with 1. Does T satisfy the
compactness condition with respect to this coloring?

3.18 Question. The notion of a Suslin algebra is more general: it is defined to be
a complete ccc distributive algebra, without necessarily being a Boolean completion
of a Suslin tree – which is a property we have relied upon. It is consistent that there
are algebras exploiting the difference. Can these be compact?



Chapter V

Measures and functionals

In this chapter, we present miscelaneous measure-theoretic constructions and gener-
alize some of them to submeasures and possibly other functionals. We give examples
meant to illustrate the similarity between measures and submeasures. We are using
and extending some results from chapters III and IV from T. Pazák’s dissertation
Exhaustive structures on Boolean algebras ([Pa]).

Measures versus submeasures

Clearly, every measure is a submeasure, and every σ-additive measure is a Maharam
submeasure; hence every measure algebra is a Maharam algebra. D. Maharam
conjectured in [M2] the existence of an algebra carrying a strictly positive continuous
submeasure which does not carry a measure.

It was only proved in 2006 by M. Talagrand [T2] that such an algebra indeed
exists. While solving the original problem, the solution raised more questions on
the relation between measures and submeasures.

1 Submeasure and category

We start with the following generalization of a theorem on paradoxial decomposition,
usually stated for measures (see [Ox]).

For a submeasure µ on Borel(X), let the support of µ, denoted by supp(µ), be
the largest closed subset of X such that every neighbourhood of every x ∈ supp(µ)
has a positive submeasure.

1.1 Proposition. Let (X, d) be a separable metric space without isolated points.
Let µ be a Maharam submeasure on Borel(X). Then X can be decomposed into
a meager set M ⊆ supp(µ) and a Gδ set N with µ(N) = 0.

Proof. First, let O be the system of all open U ⊆ X with µ(U) = 0. Then O =
⋃

O
is clearly open, and µ(O) = 0; being a union of open null sets, it is a union of
countably many, due to separability. Put F = X \O.

Let S ⊆ F be the set of all singletons with nonzero submeasure. S is at most
countable, by exhaustivity of µ. Let H be a countable dense subset of F \ S;

56
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this exists by second-countability. Let Kn be a maximal subset of H satisfying
(∀x, y ∈ Kn)d(x, y) > 1

n
. Then K =

⋃

Kn is again a dense subset of F \ S.
Clearly µ(K) = 0, as K ⊆ H is countable. Hence K is contained in a Gδ set G

with µ(G) = 0 by the claim below. Put N = O ∪ G and M = S ∪ (F \ G). N is
clearly a null Gδ set. S is countable and F \G is meager in the closed F , as it misses
the dense Gδ set G. Hence F \G, and M as well, is meager in the whole space.

1.2 Lemma. Every countable subset K of (X, d) with µ(K) = 0 is contained in a
Gδ subset G with µ(G) = 0.

Proof. Enumerate K as {xn;n ∈ ω}. Choose a sequence of εk > 0 decreasing to
0, and for every k choose a family of balls Bk

n ∋ xn such that the sum of their
diameters is less then εk. Put Gk =

⋃
{

Bk
n;n ∈ ω

}

. For every k, this is an open set
containing K. Hence K ⊆ G =

⋂

Gk, which is a Gδ set with µ(G) < εk for every k,
i.e. µ(G) = 0.

2 Baire extensions

As an example of another property shared by measures and submeasures, we prove
the following generalization of an extension theorem in [Pa] (section V.5) from the
countable case to an arbitrary Cantor space.

2.1 Definition. Let X be a topological space and let B be a σ-field of sub-
sets of X. Call a submeasure µ on B regular ir regular from below if µ(B) =
sup {µ(C);C ∈ B compact} for every B ∈ B.

2.2 Theorem. Every exhaustive submeasure on CO(2κ) extends to a continuous
regular submeasure on Baire(2κ).

Being a continuous function on (Baire(2κ), τs), this extension is necesarily unique,
as CO(2κ) is a τs-dense subspace. So in fact, there is a correspondence between ex-
haustive submeasures on CO(2κ) and continuous submeasures on Baire(2κ). In the
well known case of κ = ω we already have Baire(2ω) = Borel(2ω).

Proof. Let µ be an exhaustive submeasure on CO(2κ). Firstly, we will extend µ to
the closed sets in Baire(2κ). These are Gδ compacts of 2κ; in fact, every such F is
of the form

⋂

Un for some clopen Un: F is a countable intersection of some open
Vn; every Vn is a union of basic clopen Bn

α, hence for every n, F is covered by some
finite clopen union Un of the Bn

α, which is a clopen set.
Put µ(F ) = inf {µ(A);F ⊆ A ∈ CO(2κ)}; equivalently, µ(F ) = limn∈ω µ(Un) for

any sequence of clopen Un such that F =
⋂

Un. It follows from the compactness of
2κ that the value of limn∈ω µ(Un) does not depend on the particular choice of the
Un; in particular, the Un can be made decreasing.

Similarly, an open set U ∈ Baire(2κ) is of the form
⋃

Un for some clopen Un, and
for µ(U) = sup {µ(A);U ⊇ A ∈ CO(2κ)} we equivalently have µ(U) = limn∈ω µ(Un),
independent of the particular choice of the Un.
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We have extended µ to closed sets and open sets in Baire(2κ). We show now
some basic properties of this extension, needed in what follows.

(a) It is clear that µ so extended is a monotone function. Also, µ is subadditive
on the open sets in Baire(2κ): if U =

⋃

Un, V =
⋃

Vn, then for U ∪V =
⋃

(Un∪Vn)
we have µ(U ∪ V ) = limµ(Un ∪ Vn) ≤ limµ(Un) + limµ(Vn) ≤ µ(U) + µ(V ) by
subadditivity of µ on CO(2κ).

(b) For a closed Baire F =
⋂

Vn and an open Baire U =
⋃

Un with F ⊆ U , we
have Un\Vn ⊆ U \F for every n, so µ(U)−µ(F ) = limµ(Un)−limµ(Vn) ≤ limµ(Un\
Vn) ≤ µ(U \ F ) by subadditivity of µ on CO(2κ). Hence µ(U)− µ(F ) ≤ µ(U \ F ).

(c) For an open Baire set U , and a given ε > 0, there is a clopen A ⊆ U
satisfying µ(U \A) < ε by monotonicity and exhaustivity of µ on CO(2κ); similarly
for a closed Baire F there is a clopen set above F with an arbitrarily small difference
in submeasure.

Now we extend µ further. Let B be the family of those B ⊆ 2κ such that for
every ε > 0, there are a closed (compact) F ⊆ B and an open U ⊇ B in Baire(2κ)
with µ(U \F ) < ε. By the above, B contains all closed Baire sets (the σ-generators
of Baire(2κ)) and it is easy to see that with every B ∈ B, we also have −B ∈ B.

In fact, B can be verified to be a σ-field of sets: let Bn ∈ B and ε > 0; fix some
closed Fn and open Un in Baire(2κ) such that Fn ⊆ Bn ⊆ Un and µ(Un \ Fn) <
ε/2n+1. Then U =

⋃

Un is again an open Baire set, hence there is some clopen
A ⊆ U with µ(U\A) < ε/2n. By compactness, A ⊆

⋃

n<n0
Un for some n0 ∈ ω. Thus

µ(U \
⋃

n<n0
Fn) ≤ µ(U \A) +

∑n0

0 µ(Ui \Fi) ≤ ε+ ε, while
⋃

n<n0
Fn ⊆

⋃

An ⊆ U .
Hence B is closed under countable unions, is a σ-field of sets, and so in particular
contains Baire(2κ).

For B ∈ B, put µ(B) = inf {µ(U);B ⊆ U open Baire}. By (b) above, we can
equivalently put µ(B) = sup {µ(F );B ⊇ F closed Baire}. This extends µ to B ⊇
Baire(2κ) and the extension is clearly regular. We need to verify that µ so extended
is indeed a continuous submeasure.

For subadditivity, given B1, B2 ∈ B, chose for ε > 0 some open Baire U1, U2

such that µ(Bi) ≤ µ(Ui) + ε. Using (a) above, we have µ(B1 ∪ B2) ≤ µ(U1 ∪ U2) ≤
µ(U1) + µ(U2) ≤ µ(B1) + µ(B2) + 2ε.

For continuity, let Bn form a sequence in B decreasing to ∅ and suppose that
the nonincreasing sequence of µ(Bn) has limµ(Bn) = ε > 0. Choose a sequence
of closed Baire Fn ⊆ Bn with µ(Bn \ Fn) < ε/2n+1. For every n we have Bn ⊆
⋃

k<n(Bk \ Fk) ∪
⋂

k<n Fk, so µ(
⋂

k<n Fk) > ε/2 and
⋂

k<n Fk is nonempty. By
compactness, also

⋂

n∈ω Fn ⊆
⋂

n∈ω Bn = ∅ is nonempty — a contradiction.

Note that in the special case when the starting µ in CO(2κ) is a measure, the
extended µ on Baire(2κ) constructed in the previous theorem is again a measure.

3 An ultraproduct of measures

In this section, we describe a way of arriving at measure algebras using an ultra-
product construction.
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Let (Bn, µn) be a sequence of σ-complete Boolean algebras carrying finitely ad-
ditive, normalized measures. The cartesian product B = ΠBn is σ-complete as well.

Choose a free ultrafilter U on ω, and for b = (bn) ∈ B put µU(b) = U− limµn(bn).
It follows easily from the properties of the U − lim operator that µU is a finitely
additive measure on B.

Denote by Null(µU) the null ideal of µU and consider the quotient algebra BU =
B/Null(µU). Notice that Null(µU) extends the ideal {b ∈ B; b =U 0} on B. Hence
BU is a quotient of the ultraproduct algebra ΠBn/U .

3.1 Proposition. The algebra BU carries a σ-additive, strictly positive measure,
and is therefore a measure algebra.

Proof. Consider the quotient measure mU on BU defined by mU([b]) = µU(b). This
is a strictly positive, finitely additive measure on BU . Hence the algebra BU is ccc.

The cartesian product B = ΠBn is σ-complete, and therefore has the countable
separation property. Thus BU also has the countable separation property, being
a quotient of B = ΠBn. Being ccc as well, BU is complete by the Smith-Tarski
theorem.

We will show that mU is in fact a σ-additive measure on BU , by showing its
continuity. Let [bk] form a sequence in BU with

∧

[bk] = 0. We assume the sequence
is decreasing, and we can also assume without loss of generality that the represen-
tatives bk themselves form a decreasing sequence in B; if not, remove from b1 the
element (b1n− b

0
n) of B which has zero measure as [b1] ≤ [b0], thus obtaining a better

representative for [b1], lying below b0; proceed inductively, removing a finite union
of zero-measure elements in each step.

Now (µU(bk))k∈ω is a non-increasing sequence of positive real numbers, which
is convergent. Aiming for contradiction, assume that limµU(bk) = ε > 0. Let
Uk =

{

n;µn(bkn) > ε/2
}

\ k for k ∈ ω be the ultrafilter sets witnessing this. So we
have decreasing Uk ∈ U for k ∈ ω such that

⋂

Uk = ∅.
We will find a nonzero lower bound for ([bk])k∈ω by diagonalizing the sequence.

Let b = (bn) ∈ B where bn = bkn for n ∈ Uk \ Uk+1, and let bn ∈ Bn be arbitrary
on the non-ultrafilter set ω \ U0 /∈ U . Then b − bk ∈ B has measure zero for every
k ∈ ω, hence [b] ≤ [bk] in BU . At the same time, the measure of b itself is nonzero,
as µn(bn) > ε/2 on an ultrafilter set. This makes [b] a nonzero element of BU below
all [bk] — a contradiction.

3.2 Example. (a) As an easy example of the above construction, let all Bn be copies
of the finite algebra 22 = {0, a,−a, 1}, equipped with µn(a) = pn, µ(−a) = 1 − pn.
Then BU is again a copy of 22, with some atomic measure. Similarly for other 2m.

(b) Let Bn be copies of P (N), equipped with the atomic measure assigning µ(A) =
∑

{2−m;m ∈ A} to A ⊆ N. Then BU is a copy of P (N), with some atomic measure.
(c) Let In ⊆ N form a decomposition of N into intervals of increasing length; put

Bn = P (In) and let µn be the counting measure on Bn. Then µU is a density, i.e. a
finitely additive measure on P (N) extending the asymptotic density.

(d) Consider the Cantor algebra A equipped with the usual measure. This
measure extends to the Cohen algebra C by 7.25. Let Bn be a copy of the Cohen
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algebra with the extended measure. Then BU is the measure algebra B(c) of length
continuum.

We will show this using the metric reformulation: the hereditary density of the
corresponding metric space (BU , ρ) cannot be smaller than c. To see this, con-
sider the countably many elements xk of the Cantor algebra which form a measure-
independent system; that is, the measure of every xk is 1/2 and the measure of
every xk∧xl is 1/4. Having countably many such xk in every copy Bn of A, we have
a system of size c in ΠBn consisting of mutually U -different functions attaining a
value of some xk in every Bn. This yields a system of c mutually different elements
bα = (bnα) in BU such that ρ(bα, bβ) = U − limµU(bnα, b

n
β) = U − lim 1/2 = 1/2 for

every α 6= β. Hence every dense set in (BU , ρ) must be of size at least c. The same
argument applies to every nonempty base set of (BU , ρ), as every clopen base subset
of 2ω is homeomorphic to 2ω itself.

4 Functionals

The notion of a functional is a wide generalization of the notion of a measure.

Basic classification

4.1 Definition. A mapping f : B → R on an algebra B is a functional if f(0) = 0.
Denote by Fn(B) the set of all functionals on B. For functionals f and g, let f ≤ g
if (∀x ∈ B)f(x) ≤ g(x).

Occasionally, we deal with functionals that also admit an infinite value, i.e.
mappings f : B → [0,∞]. In that case, we will speak of extended functionals . To
retain a notion of ordering for extended functionals, we accept that ∞ ≤ ∞; to
retain a notion of additivity, we accept that ∞+∞ =∞.

4.2 Definition. An extended functional f on B is

(i) nonnegative if f(b) ≥ 0 for every b ∈ B;

(ii) strictly positive if f(b) > 0 for b > 0B;

(iii) monotone if f(a) ≤ f(b) for a ≤ b;

(iv) bounded if (∃r ∈ R)(∀b ∈ B)|f(b)| ≤ r.

For f ∈ Fn(B), let ||f || = sup {|f(b)|; b ∈ B} denote the norm of f .
Let Null(f) = {b ∈ B; f(b) = 0} denote the set of null elements of f .

Denote by Mon(B) the set of monotone functionals. Clearly every monotone
functional is nonnegative and bounded, with norm equal to f(1B).

We recall now the property of functionals concerning the relation of disjointness.

4.3 Definition. A functional f on an algebra B is
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(i) exhaustive if for every disjoint sequence (an) in B we have lim |f(an)| = 0.

(ii) uniformly exhaustive if for every ε > 0 there is some k ∈ ω such that for every
disjoint sequence (an) in B we have | {n; |f(an)| ≥ ε} | ≤ k.

4.4 Fact. Let f, g be functionals on a Boolean algebra B.

(i) f is exhaustive iff |f | is exhaustive iff min(1, |f |) is exhaustive.

(ii) If f is monotone and D ⊆ B is a dense subset, then f is exhaustive iff the
restriction f ↾ D is an exhaustive mapping.

(iii) If |f | ≤ |g| and g is exhaustive, then f is exhaustive.

4.5 Lemma. Let f be an exhaustive functional on B. Then g = min(1, |f |) is
a bounded functional and there is a smallest monotone functional h ≥ g. This
functional h is exhaustive as well.

The preceding lemma and fact also remain valid with exhaustivity replaced by
uniform exhaustivity in all statements.

For monotone functionals, exhaustivity can be characterized as follows.

4.6 Lemma. Let f be a monotone functional on B. Then f is exhaustive iff for
any sequence (an) in B and any given ε > 0, there is some k ∈ ω such that

(∀l > k)f(
∨

n<l

an −
∨

n<k

an) < ε.

The following properties are motivated by additivity. Note that signed measure
is synonymous with finitely additive functional , and by measure we understand a
finitely additive finite measure.

4.7 Definition. A functional µ on Boolean algebra B is

(i) finitely additive, also called a signed measure, if µ(a ∨ b) = µ(a) + µ(b) for
every two disjoint a, b ∈ B

(ii) 2-additive if µ(a ∨ b) = µ(1) for every partition {a, b} of 1B

(iii) 3-additive if µ(a ∨ b ∨ c) = µ(1) for every partition {a, b, c} of 1B

Clearly, every 3-additive functional is 2-additive. It is easy to see that 3-
additivity is, in fact, equivalent to finite additivity.

4.8 Definition. Let B be a Boolean algebra. A non-negative functional µ on B is

(i) a (finitely additive) measure on B if µ(a∨b) = µ(a)+µ(b) for disjoint a, b ∈ B.
Denote by Meas(B) the set of all measures on B.

(ii) a submeasure on B if it is monotone and subadditive, i.e. µ(a∨b) ≤ µ(a)+µ(b)
for every disjoint a, b ∈ B. Denote by Sub(B) the set of all submeasures on B.
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(iii) a supermeasure on B if it is superadditive, i.e. µ(a∨ b) ≥ µ(a) +µ(b) for every
disjoint a, b ∈ B. Denote by Sup(B) the set of all supermeasures on B.

Every measure is simultaneously a submeasure and a supermeasure. Every su-
permeasure is uniformly exhaustive and monotone; for submeasures, we require
monotonicity explicitly, as it does not follow from subadditivity.

As an easy example, the functional mapping every x < 1B to 0 is a supermeasure,
and the functional mapping every x ∈ B+ to 1 is a (non-exhaustive) submeasure.

Variation

Here we introduce the variation of an arbitrary functional, generalizing the classical
notion of variation for measures (see e.g. [DS]).

4.9 Definition. For f ∈ Fn(B) and x ∈ B, the variation of f on x is

vf (x) = sup

{

n
∑

1

|f(xi)|; x1, . . . , xn a finite antichain bellow x

}

The functional vf mapping x to vf (x) is the variation of f .

It will always be clear whether by “variation” we mean the value or the mapping.
Note that vf (1B) is finite iff vf is a bounded functional with ||vf || = vf (1B).

4.10 Fact. For any functional f ∈ Fn(B)

(i) vf is a (extended) supermeasure on B;

(ii) vf is the smallest supermeasure above |f |;

(iii) vf = f iff f is a supermeasure.

(iv) For f a signed measure, vf is a (extended) submeasure.

Proof. (i) For finite antichains (xi) and (yj) bellow disjoint elements x and y respec-
tively, (xi)∪ (yj) is a finite antichain bellow x∨ y. Hence vf (x∨ y) ≥ vf (x) + vf (y).

(ii) vf is a supermeasure by (i), and clearly vf (x) ≥ |f(x)| for every x ∈ B. If
ν ≥ |f | is a supermeasure, then for every x ∈ B and every finite antichain (xi) below
x we have ν(x) ≥

∑

ν(xi) ≥
∑

|f(xi)|, hence also ν(x) ≥ vf (x).
(iii) A supermeasure f is monotone, and

∑

|f(xi)| =
∑

f(xi) ≤ f(x) for every
finite antichain (xi) bellow x; hence also vf (x) ≤ f(x). The other inequality holds
by (ii), so we have vf = f . The converse is trivial.

4.11 Example. We describe a uniformly exhaustive submeasure on P (N) without
a bounded variation. This indicates that having a bounded variation is a strong
property that even “nice” submeasures can fail to have.

For nonempty A ⊆ N, put f(A) = 1/min(A); in particular, f({n}) = 1/n for
singletons. This is a submeasure on P (N): monotonicity is clear, and subadditivity
follows from 1/min(A)+1/min(B) ≥ 1/min(A∪B). Uniform exhaustivity is easily
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verified: for a given ε > 0, at most 1/ε of the disjoint members of an antichain {An}
can gave minA < 1/ε, i.e. f(An) = 1/minAn > ε.

If P,Q are finite partitions of A ⊆ N , with P finer than Q, then
∑

X∈P f(X) is
a larger contribution to vf (A) than

∑

X∈Q f(X), by the same inequality as above.
Hence the supremal value of vf (A) is the supremum of

∑

n∈P 1/n for P a finite
subset of A. It follows that vf (A) < ∞ if and only if A belongs to the summable
ideal.

We note that the example can obviously be modified by taking 2−minA or some
other function decreasing fast enough (as opposed to 1/n) so that the variation
becomes finite for all sets.

Lattices of functionals

In this section, we describe the properties of the natural ordering f ≤ g of functionals
on a given algebra B.

Firstly, note that this is a lattice. For functionals f, g ∈ Fn(B), put (f ∧g)(x) =
min{f(x), g(x)} and (f ∨ g)(x) = max{f(x), g(x)}. These are easily seen to be the
supremum and infimum of {f, g} in Fn(B).

4.12 Proposition. For any Boolean algebra B, the sets (Fn(B),≤), (Mon(B),≤),
(Sub(B),≤), (Sup(B),≤), (Meas(B),≤) are Dedekind complete lattices.

This is not to say that the infinite suprema necessarily coincide: a sublattice can
well be Dedekind complete in its own right without inheriting the existing suprema.

Proof. (a) The constant zero function is the smallest element in each of the classes.
(b) Fn(B) itself is a Dedekind complete lattice: if F ⊆ Fn(B) is a bounded

subset, then sup {f(x); f ∈ F} is the supremum of F .
(c) Mon(B) is a complete sublattice of Fn(B), as the supremum from (b) is a

monotone functional if all the f ∈ F are monotone.
(d) For a bounded family S ⊆ Sub(B), put µ(x) = sup {ν(x); ν ∈ S}. We

have µ(0) = 0 immediately, and ν(x + y) ≤ ν(x) + ν(y) for every ν ∈ S, hence
µ(x+ y) ≤ µ(x) + µ(y) as well. So µ is a submeasure on B, and it is clear that µ is
the supremum of S.

(e) Let M⊆ Meas(B) be a family of measures on B, bounded by m. We know
that there is a submeasure µ on B which is the supremum of M in Sub(B), but
not necessarily a measure. For x ∈ B, the variation vµ(x) is finite, and vµ is a
supermeasure below m. Check that vµ is in fact a measure, and is the supremum of
M in Meas(B).

As an example of an unbounded family of measures, consider for any ultrafilter
U on an algebra B the corresponding 2-valued measure mU on B. The family of all
mU is not bounded in Meas(B) unless B is finite.
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Extremal submeasures and supermeasures

4.13 Proposition ([Pa]). For any Boolean algebra B,

(i) a submeasure µ on B is 2-additive if and only if it is minimal in (Sub(B),≤)
among submeasures with the same norm µ(1).

(ii) A supermeasure ν on B is 2-additive if and only if it is maximal in (Sup(B),≤)
among supermeasure with the same norm ν(1).

Given the above proposition, we will also call a 2-additive submeasure (resp. su-
permeasure) a minimal submeasure (resp. a maximal supermeasure). It is clear that
a measure is simultanelously a minimal submeasure and a maximal supermeasure.

4.14 Proposition. For any Boolean algebra B,

(i) for every µ ∈ Sub(B), there is a minimal submeasure µ̄ ≤ µ with ||µ̄|| = ||µ||.

(ii) for every ν ∈ Sup(B), there is a maximal supermeasure ν̄ ≥ ν with ||ν̄|| = ||ν||.

Proof. One way to prove this is to call forth the Zorn minimality (maximality)
principle. We give an explicit description instead.

(i) For x ∈ B such that µ(x) ≤ µ(1)/2 (which implies µ(−x) > µ(1)/2 by
subadditivity), put µ̄(x) = µ(x) and µ̄(−x) = µ(1) − µ(x); for x ∈ B with both
µ(x) > µ(1)/2 and µ(−x) > µ(1)/2, put µ̄(x) = µ̄(−x) = µ(1)/2. Clearly µ̄
is a functional with µ̄ ≤ µ, is 2-additive by definition, and µ̄(1) = µ(1). The
subadditivity of µ̄ follows from the subadditivity of µ.

(ii) is completely dual. Note that for a supermeasure ν with ν(1) > 0, the
resulting ν̄ is strictly positive.

Algebraic restrictions

4.15 Lemma. Let B be a Boolean algebra carrying a strictly monotone functional.
Then B is ccc.

Proof. Let X ⊆ B be an uncountable antichain in B. For some ε > 0, there must
be uncountably many x ∈ X with f(x) > ε. Fix infinitely many such xn. Then
limn

∑

i≤n f(xi) =∞, a contradiction.

For a Boolean algebra B, call T ⊆ B a tree in B if (T,≥) with the inherited
(reverse) ordering is a tree in the usual set-theoretic sense, and for every x, y ∈ T ,
if x, y are disjoint in T , then x, y are disjoint on B. In other words, T inherits both
the order relation and the disjointness relation.

4.16 Proposition. Let B be a Boolean algebra carrying a monotone strictly positive
exhaustive functional. Then every tree in B is countable.



CHAPTER V. MEASURES AND FUNCTIONALS 65

Proof. Working towards a contradiction, suppose T is an uncountable tree in B.
Every level and every branch of T must be at most countable, as B is ccc. Hence
there must be uncountably many α ∈ ω1 such that the αth level Tα of T is nonempty.

For every such α, let rα = max {f(x); x ∈ Tα}. The maximum exists: by ex-
haustivity, only finitely many x ∈ Tα can have f(x) larger than some chosen ε > 0.
Clearly, the sequence (rα)α∈ω1

is not increasing.
In fact, the value rα strictly decreases uncountably many times, which is a con-

tradiction. Indeed, the sequence can only not decrease for a countable number of
times: if for some α ∈ ω1 the set {β ∈ ω1;α < β and rα = rβ} is uncountable, look
at the witnessing xβ ∈ Tβ with f(xβ) = rα. Colour the pairs of such xβ, xγ with two
colors, based on whether xβ and xγ are comparable or disjoint in T (which means
disjoint in B).

Only countably many xβ can be comparable, otherwise we would have an un-
countable branch. Hence by the Erdös-Duschnik theorem, there must be infinitely
many disjoint xβ with f(xβ) = rα. This contradicts exhaustivity.

The above proposition can be restated as saying that the Suslin algebra cannot
carry a strictly positive, monotone exhaustive functional. For Maharam submea-
sures, this is known from [M2].
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Lines

In this appendix, we consider the maximal linear subposets of Boolean algebras.

1 General properties

1.1 Definition. Let (B,≤) be the canonical ordering of a Boolean algebra. A subset
L ⊆ B is a line in B if it is a maximal linear subordering of (B,≤).

Clearly, every line L ⊆ B contains both 0 and 1 as its smallest and greatest
element. Being linearly ordered, the line (L,≤) carries the order topology structure.
For example, in CO(2ω), every line is homeomorphic to the rationals with ends.

1.2 Fact. Let B be a complete Boolean algebra, let L ⊆ B a line.

(i) The linearly ordered topological space (L,≤) is a compact Hausdorff space.

(ii) If B is atomless and ccc then the linearly ordered space (L,≤) is connected.

Proof. (i) It is well known that a linearly ordered topological space is Hausdorff in
its order topology; in fact, it is collectionwise normal. Compactness of a linearly
ordered space is equivalent to the completeness of the linear order; so let X ⊆ L.
The supremum

∨

X exists in B. Every y ∈ L is either below some x ∈ X, hence
below

∨

X, or above every x ∈ X, hence above
∨

X. Thus
∨

X ∈ L by maximality
of L, and (L,≤) is complete.

(ii) If (L,≤) is not connected, let X and Y be two nonempty clopen subsets of
L. Assume 0 ∈ X and y0 ∈ Y . Let x = sup {a ∈ X; a < y0}, where the supremum
is taken in L; we have x ∈ X. Let y = inf {b ∈ Y ; x < b}; we have y ∈ Y . Clearly
x < y, and as B is atomless, there is some z ∈ B such that x < z < y. By maximality
of L, we have z ∈ L. But then X and Y do not form a decomposition of L — a
contradiction.

It is a natural question whether the linear order topology of (L,≤) is the same
as the order-sequential topology (L, τs) which L inherits as a subspace of (B, τs).

66
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1.3 Proposition. Let B be a complete ccc algebra. Then for every line L ⊆ B,
the topologies (L,≤) and (L, τs) coincide. Moreover, the subspace (L, τs) is Fréchet.
The subset L ⊆ (B, τs) is closed.

1.4 Proposition (Thümmel). Let B be a complete atomless algebra such that the
free product B ∗ B is ccc. Then every line L ⊆ B is homeomorphic to the closed
interval [0, 1].

Proof. B is a regular subalgebra of the free product B ∗ B which is ccc, so B is ccc
itself. Therefore, the linearly ordered compact Hausdorff space (L,≤) is connected.
Hence it suffices to show the separability of (L,≤). Suppose that (L,≤) is not
separable. Then we can find by induction a family of triples {aα < xα < bα;α ∈ ω1}
in L such that {xα;α < β}∩(aβ, bβ) = ∅. But then {(xα − aα, bα − xα);α ∈ ω1} is an
antichain of size ω1 in B∗B: assume α < β < ω1; if xα < xβ, then xα−aα ⊥ xβ−aβ;
and if xα > xβ, then bα−xα ⊥ bβ −xβ. Either way, the two pairs are disjoint in the
free product.

1.5 Example. We show that the converse to the above theorem does not hold. It
is relatively consistent with ZFC that CH and SH hold simultanelously (hint: start
in L and kill all trees; see[DJ]). We work in a model of ZFC + CH + SH.

From CH it follows that there exists an algebra B which is complete atomless
and ccc, but B ∗ B is not ccc (see [Ga] or excercise VIII.C8 in [Ku]).

Now every line L ⊆ B is a complete ccc order without jumps, hence the linearly
ordered space (L,≤) is a compact connected ccc Hausdorff space. The linear order
(L,≤) is in fact separable: if not, it is a Suslin line, which violates SH. So every line
L ⊆ B is homeomorphic to the unit interval, yet B ∗ B is not ccc.

2 Examples

2.1 Definition. Let (L,≤) be a linear order. A jump in (L,≤) is a pair x < y in
L such that there is no z ∈ L with x < z < y. A complete linear order (L,≤) is
boolean if it has a dense set of jumps, i.e., for every nonempty (a, b) ⊆ L there is
a jump x < y in L such that a ≤ x < y ≤ b.

It is folklore knowledge that a linearly ordered topological space (L,≤) is Boolean
if and only if the order (L,≤) is itself Boolean.

2.2 Example. We show that the lines in P (ω) are precisely the boolean linear
orders with a countable dense set of jumps.

Indeed, let (L,≤) be such an order, and let D be the countable dense set. Con-
sider P (D) as a copy of P (ω). For every cut (X, Y ) of (D,≤), let uX =

∨

X.
Obviously L′ = {uX ; (X, Y ) a cut} is a linear order in B which is easily seen to be
isomorpic to (L,≤). It is not hard to see that L′ is maximal, and therefore a line1.

1Note in this context how R is a chain, but not a line in P (ω): indeed, R has no jumps. The
countable dense set of jumps that correspond to the rational cuts is what’s missing in maximality.
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The other implication is easy: a line L ⊆ P (ω) is a complete linear order in itself,
hence a compact Hausdorff space. It must have a dense set of jumps by maximality,
which makes it a Boolean order. At the same time, the set of jumps cannot be
uncountable.

We have, in particular, that ω + 1 is a line (which can be shown directly). This
line is minimal in the sense that a copy of ω + 1 can be found in every other line.
More generally, every α + 1 for α < ω1 can be found in P (ω) as a line. It follows
that there are c many nonisomorphic types of lines: take the countable set of jumps
in a countable ordinal α+ 1. For a subset A of the set of jumps, replace every jump
in A with the Cantor discontinuum. Now different A yield different lines in P (ω).

2.3 Example. Let T be a Suslin tree, let B = B(T ) be the corresponding Suslin
algebra. We show that every line (L,≤) ⊆ B and, in fact, any closed interval
[a, b] ⊆ L is a Suslin line (with ends).

The compact Hausdorff space (L,≤) is ccc and connected. The interval [a, b] is
itself a complete dense linear order which is ccc and connected. We show that it is
not separative.

Let D ⊆ (a, b) be a countable dense subset. Let G be a generic filter on B that
contains b − a; so b ∈ G but a /∈ G. The filter G determines a cut of the linear
order (D,≤): put X = (a, b) \G and Y = (a, b) ∩G. Then X, Y are two countable
subsets of D, and hence are sets in the ground model, as B is a (ω,∞)-distributive
algebra. By genericity of G, we have x =

∨

X /∈ G and y =
∧

Y ∈ G; hence x < y.
But then y − x must be an atom — a contradiction.
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