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Abstract: Stellar shells observed in many giant elliptical and lenticular as well as a few spiral and

dwarf galaxies presumably result from radial minor mergers of galaxies. We show that the line-of-

sight velocity distribution of the shells has a quadruple-peaked shape. We found simple analytical

expressions that connect the positions of the four peaks of the line profile with the mass distribution

of the galaxy, namely, the circular velocity at the given shell radius and the propagation velocity

of the shell. The analytical expressions were applied to a test-particle simulation of a radial minor

merger, and the potential of the simulated host galaxy was successfully recovered. Shell kinematics

can thus become an independent tool to determine the content and distribution of dark matter

in shell galaxies up to ∼100 kpc from the center of the host galaxy. Moreover we investigate the

dynamical friction and gradual disruption of the cannibalized galaxy during the shell formation in

the framework of a simulation with test particles. The coupling of both effects can considerably

redistribute positions and luminosities of shells. Neglecting them can lead to significant errors in

attempts to date the merger in observed shell galaxies.
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1 Objectives and motivation

The most successful theory of the evolution of the Universe so far seems to be the theory
of the hierarchical formation based on the assumption of the existence of cold dark matter,
significantly dominating the baryonic one. In such a universe, large galaxies are formed
by merging of small galaxies, protogalaxies and diffuse accretion of surrounding matter.
Galactic interaction and dark matter play thus a crucial role in the life of every galaxy.

But the determination of both the dark matter content and the merger history of a
galaxy is difficult. Firstly, the cold dark matter interacts only gravitationally (and possibly
via the weak interaction) and thus the mapping of its distribution in galaxies is tricky.
Secondly, the nature disallows us to see individual galaxies from different angles, thus our
knowledge of their spatial properties is degenerate. Thirdly, it is non-trivial to determine
anything about the history of a given galaxy as the whole existence of humanity presents
only a snapshot in the evolution of the Universe. Yet this knowledge is important to
confirm or disprove theories of the creation and evolution of the Universe, improve their
accuracy and to understand how the Universe we live in actually looks.

The deal of the galactic astronomy is to try to circumvent these obstacles. One of the
possibilities is to use tidal features left by the galactic interactions. They act as dynamical
tracers of the potential of their host galaxies and as hints left behind by the accreted galaxies
in the past. The special case is that of arc-like fine structures found in shell galaxies. Their
unique kinematics carries both qualitative and quantitative information on the distribution
of the dark matter, the shape of the potential of the host galaxy and its merger history.
Moreover, shell galaxies have their own mysteries that call for an explanation.

Figure 1: Shell galaxy M89.

Some shells need to be discovered using deep photometry, e.g., Duc et al. (2011),
whereas others can be today captured using amateur technology. The photography of
galaxy M89 in Fig. 1 was taken by a member of our research group Michal B́ılek using
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his own amateur equipment (taking 4.4 hours of exposure with an 8”, f/4 Schmidt-Newton
telescope equipped with a CCD at a site about 50 km from Prague). Faint structures
were first identified by Malin (1979) and Xu et al. (2005) who concluded that the galaxy
possibly possesses a low-luminosity active galactic nucleus. Michal’s image shows fairly
well the shell at bottom left, the jet at bottom right and a less prominent shell at top
right.

However all the information is hidden so deep in the structure and kinematics of shell
galaxies that it is not clear that they could be practically unraveled. Certainly, a lot of effort
and invention is required. In this work we focus mainly on the possibility to deduce the
potential of the host galaxy using shell kinematics (Part II). We aim at creating equations
and algorithms applicable to observed data. Now comes the era when the instrumental
equipment begins to allow us to actually obtain such kind of data and that requires deeper
theoretical understanding of the topic. Having no such data yet at hand, we apply our
methods to simulated data. This method requires that the shell is formed by stars on
mainly radial orbits. According to present state of knowledge, shells in one galaxy are
probably bound by common origin in a radial minor merger. Reproducing their overall
structure is nevertheless complicated by physical processes such as the dynamical friction
and the gradual decay of the cannibalized galaxy. We deal with these phenomena in
Part III.

Self-consistent simulations allow us to simulate many physical processes at once. Some
of them are difficult or outright impossible to reproduce by analytical or semi-analytical
methods. At the same time, the manifestation of these processes in self-consistent simula-
tions is difficult to separate and sometimes they may even be confused with non-physical
outcomes of used methods. Moreover, self-consistent simulations with high resolution nec-
essary to analyze delicate tidal structures such as the shells are demanding on computation
time. This demand is even larger if we want to explore a significant part of the parameter
space.

Attempts to date a merger from observed positions of shells have been made in previous
works. Recently, Canalizo et al. (2007) presented HST/ACS observations of spectacular
shells in a quasar host galaxy (Fig. 3) and, by simulating the position of the outermost shell
by means of restricted N -body simulations, attempted to put constraints on the age of the
merger. They concluded that it occurred a few hundred Myr to ∼ 2 Gyr ago, supporting a
potential causal connection between the merger, the post-starburst ages in nuclear stellar
populations, and the quasar. A typical delay of 1–2.5 Gyr between a merger and the onset
of quasar activity is suggested by both N -body simulations by Springel et al. (2005) and
observations by Ryan et al. (2008). It might therefore appear reassuring to find a similar
time lag between the merger event and the quasar ignition in a study of an individual
spectacular object. In Part III we explore the options for inclusion of the dynamical
friction and the gradual decay of the cannibalized galaxy in test-particle simulations and
we look at what these simulations tell us about the potential and merger history of shell
galaxies.

In Appendix A, we show the conversion of units used in the thesis to SI units. List
of abbreviations can be found in Appendix B and our publications created during the
doctoral studies in Appendix I. Videos mostly illustrating the formation and evolution of
shell structures are part of the electronic attachment of the thesis. Their description can be
found in Appendix H and the videos can be downloaded at: galaxy.asu.cas.cz/∼ivaana/phd
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Part I

Introduction

2 Shell galaxies in brief

Shell galaxies, like e.g. the beautiful and renowned NGC 3923 in Fig. 2, are galaxies
containing fine structures. These structures are made of stars and form open, concentric
arcs that do not cross each other. The term shells has spread throughout the literature,
gradually superseding the competing term ripples. According to the knowledge gained over
the past more than thirty years, their origin lies in the interactions between galaxies.

Figure 2: NGC 3923 from Malin and Carter (1983) made from UK Shmidt IIIa-J plates. The
bottom row shows more central parts of the galaxy. All images were processed (unsharp masking)
to emphasize the shell structure. 10 ′′ roughly corresponds to 1 kpc in the galaxy.
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3 Observational knowledge of shell galaxies

This section is mostly based on the review of literature presented in Ebrová (2007).

3.1 Observational history

It was Halton Arp, who first noticed the shell galaxies in his Atlas of Peculiar Galaxies
(Arp, 1966a) and the accompanying article Arp (1966b). He used the term “shells” to
describe the structures associated with galaxy Arp 230. The Atlas contains 338 objects,
divided into several subgroups. Shell galaxies are found under “concentric rings” (Arp
numbers 227 to 231), but many other objects are in fact shell galaxies (Arp 92, 103, 104,
153–155, 171, 215, 223, 226 and probably others).

To date, the only (at least partial) list of shell galaxies is “A catalogue of elliptical
galaxies with shells” from Malin and Carter (1983). The authors present a catalogue of
137 galaxies (with declination south of −17°) that exhibit shell or ripple features at large
distances from the galaxy or in the outer envelope. Some further work has been done on
this set of galaxies: Wilkinson et al. (1987a,b) examined these shell galaxies to find radio
and infrared sources, Wilkinson et al. (1987c) carried out two-color CCD photometry of
66 Malin-Carter galaxies, Carter et al. (1988) obtained nuclear spectra for 100 of the
galaxies in the catalogue. In a series of articles, Longhetti et al. (1998a,b); Rampazzo
et al. (1999); Longhetti et al. (2000, 1999) (the fifth part surprisingly preceding the fourth)
examined star formation history in 21 catalogued shell galaxies. Forbes et al. (1994) were
searching for secondary nuclei in 29 shell galaxies. Larger samples of shell galaxies were
studied for example by Schweizer (1983), Thronson et al. (1989), Forbes and Thomson
(1992) or Colbert et al. (2001). Their results will be mentioned in the following chapters.
Unsurprisingly, many observational studies have been carried out over decades for smaller
samples or many individual shell galaxies.

3.2 Occurrence of shell galaxies

Originally (Arp, 1966b; Malin and Carter, 1983), shells were discovered basically in galaxies
of E, E/S0 or S0 morphological type. Schweizer and Seitzer (1988) revealed that they
can be found also in S0/Sa and Sa galaxies (NGC 3032, NGC 3619, NGC 4382, NGC 5739,
and a Seyfert galaxy NGC 5548) and even one Sbc galaxy (NGC 3310) was found likely to
contain a shell. In fact, Schweizer and Seitzer were against the term“shells”, supporting the
term “ripples” being more descriptive and not forcing a particular geometric interpretation.
NGC 2782 (Arp 215) is probably a spiral galaxy with shells which Arp misclassified as spiral
arms rather than as shells. NGC 7531, NGC 3521, and NGC 4651 (Mart́ınez-Delgado et al.,
2010) are examples of some other lesser known cases of spiral galaxies with shells. The last
of them, NGC 4651 and also M31 (Fardal et al., 2007, 2012) are the only spiral galaxies
where a multiple shell system has been discovered. Coleman (2004) and Coleman et al.
(2004) reported a shell, immediately followed by another one (Coleman and Da Costa,
2005; Coleman et al., 2005) in Fornax dwarf spheroidal galaxy and it became the only shell
galaxy of this type.

The realistic estimate of the relative abundance of shell galaxies (Schweizer, 1983;
Schweizer and Ford, 1985; cited in Hernquist and Quinn, 1988, and Malin and Carter, 1983)
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is about 10% in early-type galaxies.1 Malin and Carter (1983) state a surface brightness
detection limit µmax = 26.5 mag/arcsec2 in B filter2. Schweizer and Seitzer (1988) quoted
similar results for their sample of more than a hundred of galaxies, with the abundance of
6% for S0 and 10% for E type galaxies, but with significantly lower number among spirals
(around 1%). Weil and Hernquist (1993a) state that Seitzer and Schweizer (1990) found
56% and 32% of 74 E and S0 type galaxies respectively posses ripples.

In a complete sample of 55 elliptical galaxies at distances 15–50 Mpc and luminosity
cut of MB< −20 with detection limit µmax = 27.7 mag/arcsec2 in V band, at least 22%
of galaxies have shells, making them the most common interaction signature identified by
Tal et al. (2009). Shells are also the most commonly detected feature in a sample of radio
galaxies of Ramos Almeida et al. (2011) with µmax ∼ 26 mag/arcsec2 in V filter.

On the contrary, in ATLAS3D sample of 260 early-type galaxies Krajnović et al.
(2011) found only 9 (3.5%) galaxies with shells at the limiting surface brightness µmax ∼
26 mag/arcsec2 in r band. Kim et al. (2012) examined a sample of 65 early types drawn
from the Spitzer Survey of Stellar Structure in Galaxies (S4G) and identified 4 shell galax-
ies (6%). Their detection limit was 25.2 mag/arcsec2 for newly obtained S4G data and
26.5 mag/arcsec2 for some Spitzer archival images, both at 3.6µm, which correspond to
26.9 and 28.2 mag/arcsec2 in B band, respectively. But they failed to detect some previ-
ously known shells in at least three cases: NGC 2974 and NGC 5846 (Tal et al., 2009) and
NGC 680 (Duc et al., 2011) – these three galaxies alone increase the percentage of shell
galaxies in their sample to 11%. Atkinson et al. (2013) found shells in 6% of blue galaxies
and around 14% in red galaxies.3 The survey concerns 1781 luminous galaxies with the
redshift range 0.04 < z < 0.2 and detection limit 27.7 mag/arcsec2 in g′ filter.

The occurrence of tidal features of any kind in galaxies is quite high: 73% in the sample
of Tal et al. (2009); 53% in a sample of 126 red galaxies at a median redshift of z = 0.1
and µmax ∼ 28 mag/arcsec2 using B, V, and R filters (van Dokkum, 2005); 71% in the
subsample of 86 color- and morphology- selected bulge-dominated early-type galaxies of
the previous sample; about 24% in s sample of 474 close to edge-on early-type galaxies
using the Sloan Digital Sky Survey DR7 archive with µmax ∼ 26 mag/arcsec2 using u′, g′,
r′, i′, z′ bends (Miskolczi et al., 2011); 12–26% (according to confidence level of a feature
identification) in the sample of Atkinson et al. (2013). The lower detection rate in Atkinson
et al. (2013) is explained by authors by assertion that the majority of tidal features in early-
type galaxies are seen at surface brightness near (or below) 28 mag/arcsec2. Since shells
are generally low surface brightness features, the abundance of shell galaxies will probably
rise with deeper photometric observations.

Another important piece of information from the above mentioned studies is the en-
vironmental dependence of occurrence of shell structures. They are seen about five
times more often in isolated galaxies than in galaxies in clusters. Malin and Carter (1983)
explored 137 shell galaxies – 65 (47.5%) are isolated, 42 (30.9%) occur in loose groups

1We use the term early-type galaxies to denote all the Hubble types E, E/S0, and S0 (elliptical and
lenticular galaxies), because many galaxies gradually wander between these classes according to different
classifications or simply in time (not physically, of course, e.g. because of better or other observations).

2It is interesting to note that according to van Dokkum (2005), galaxy surveys in blue filters would miss
the majority of faint features in their sample even if they met the same surface brightness limit.

3Red and blue galaxies are defined based on position in the color-magnitude diagram in order to discrim-
inate between systems on the red sequence and blue cloud. It corresponds to a morphological segregation as
well. Vast majority of the red sequence galaxies are early-type galaxies, while the blue sequence represents
the late-type galaxies (Coupon et al., 2009).
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(of these 13% have one or two close companions), only 5 (3.6%) occur in clusters or rich
groups, and the remaining 25 (18%) occur in groups of two to five galaxies. Taking into
account only isolated galaxies, the relative abundance of shell galaxies increases to 17%.
Similar result was reached more recently by Colbert et al. (2001) – they detected shell/tidal
features in nine of the 22 isolated galaxies (41%), but only one of the twelve (8%) group
early-type galaxies shows evidence for shells. Reduzzi et al. (1996) presented their result
that 4% of 54 pairs of galaxies (pairs are located in low-density environments) and 16%
of 61 isolated early-type galaxies exhibit shells. Adams et al. (2012) found abundance of
tidal features about 3% in a sample of 54 galaxy clusters (0.04 < z < 0.15) containing 3551
early-type galaxies, µmax = 26.5 mag/arcsec2 in r′ filter.

Schweizer and Ford (1985) have investigated an unbiased sample of 36 isolated giant
ellipticals, in order to study their fine morphology. They found that 16 of them (44%)
possess ripples (some of them very weak, as Schweizer and Ford note). In contrast to
this, Marcum et al. (2004) did not find a single shell galaxy in their sample of nine early-
type galaxies previously verified to exist in extremely isolated environments, even though,
according to the prognosis, at least four shell galaxies should have been present. The
probability of this (a sample of nine early-type galaxies from regions of low galaxy density
with no shell) is about 1% if we assume that 40% of galaxies in low-density environments
have shells.

However, the true abundance of shell galaxies can still be different from what has been
summarized here. It crucially depends on which galaxies we classify as shell galaxies and
on our ability to detect faint shells in otherwise innocent looking galaxies.

3.3 Appearance of the shells

Shells have been detected in various numbers, appearance and distributions. Rich systems
like NGC 3923 (Fig. 2) or NGC 5982 (Sikkema et al., 2007) show about 30 shells, but it is
rather an exception among shell galaxies. A large fraction of the Malin-Carter catalogue
(1983) consists of galaxies with less then 4 shells. It is in fact difficult to make statements
about numbers of shells in galaxies, because the detection of all of them (sometimes even
the proof of their existence) is a delicate matter. Shells actually contain only a fraction
of total luminosity of the host galaxy, mostly from 3 to 6% (e.g., it is 5% for the
famous NGC 3923; Prieur, 1988). Shell surface brightness contrast is very low, about
0.1–0.2 mag (Dupraz and Combes, 1986). Schweizer (1986) states that on the brightness
profiles of host galaxies, ripples appear as minor steps of about 1–10% in the local light
distribution.

To enhance or detect shells and other fine structures in galaxies, some more or less
sophisticated techniques are often used, like unsharp masking for photographic images
(Malin, 1977), digital masking (Schweizer and Ford, 1985) or structure map (Pogge and
Martini, 2002; based on the probabilistic image-restoration method of Richardson and
Lucy; Richardson, 1972). Host galaxy subtraction was used to process the image of a shell
galaxy in Fig. 3.

Shells are stellar structures that form arcs in galaxies (circular or slightly elliptical)
that either lie within a specific double cone on opposite sides of the galaxy, or encircle the
galaxy almost all around. In general, they tend to have sharp outer boundaries, but many
of them are faint and diffuse. Prieur (1990) and Wilkinson et al. (1987c) recognized three
different morphological categories of shell galaxies.
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Figure 3: Top: Very deep ACS/WFC image (total integration time of 11432 s) of a formerly un-
known shell galaxy, the host galaxy of the quasar MC2 1635+119 (Canalizo et al., 2007; Bennert
et al., 2007; the three images shown here are unpublished and were kindly provided by G. Canalizo
and N. Bennert). The shell structure is already visible in this final reduced but otherwise unaltered
image. The image size is 10 ′′×10 ′′. The residual image is shown in the bottom left panel and was
obtained by subtracting a model – fitted using GALFIT (Peng et al., 2002) – for the host galaxy
light (bottom right) from the original data (top). Acknowledgment: NASA, STScI.
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Figure 4: Galaxy-subtracted image of the type I shell galaxy NGC 7600 from Turnbull et al. (1999).
North is up and east is to the left. The dark oval shape is an artifact of the subtraction process. The
easternmost shell lies 215 ′′ away from the galaxy center. The field of view is 9 ′. Acknowledgment:
The Isaac Newton Group of Telescopes and the Royal Astronomical Society.

� Type I (Cone) – shells are interleaved in radius. That is, the next outermost shell
is usually on the opposite side of the nucleus. They are well-aligned with the major
axis of the galaxy. Shell separation increases with radius. Prominent examples are
NGC 3923 (Fig. 2), NGC 5982, NGC 1344 but also NGC 7600 in Fig. 4.

� Type II (Randomly distributed arcs) – shell systems that exhibit arcs which are
randomly distributed all around a rather circular galaxy. A typical example of this
kind is NGC 474 in Fig. 5.

� Type III (Irregular) – shell systems that have more complex structure or have too
few shells to be classified.

Prieur (1990) has found all three types in approximately the same fraction.
Dupraz and Combes (1986) state that the angular distribution of the shells is

strongly related to the eccentricity of the galaxy. When the elliptical is nearly E0, the
structures are randomly spread around the galactic center. On the contrary, when the
galaxy appears clearly flattened (>E3), the shell system tends to be aligned with its major
axis. In this case, shells are also interleaved on both sides of the center. Their elliptic-
ity is in general low, but neatly correlated to the eccentricity of the elliptical. Nearly E0
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galaxies are surrounded by circular shells, while the ellipticity of the shells is of about 0.15
for E3–E4 galaxies.

When we define the radial range of the shell system as the ratio between the distance
from the galactic center to the outermost and the innermost shells, then this range of radii,
over which shells are found, is large. The value reaches over 60 for type I galaxy NGC 3923
(the innermost shell is less than 2 kpc from center and the outermost one ∼100 kpc; Prieur,
1988), but in most systems, a ratio of 10 or less would be more typical. The range is lower
than 5 for systems where only a few shells are detected (Dupraz and Combes, 1986).

In their sample of three shell galaxies, Fort et al. (1986) found that the characteristic
thicknesses of shells are of the order of 10% or less of their distance from the center of
the galaxy.

Wilkinson et al. (1987c) probed 66 of the 74 galaxies in the range from 01h 40m to 13h
46m in the Malin and Carter (1983) catalogue. They found that shells commonly occur
close to the nucleus. In roughly 20% of the systems these innermost shells have spiral
morphology.

Figure 5: Galaxy-subtracted image of the type II shell galaxy NGC 474 from Turnbull et al. (1999).
North is up and east is to the left. The easternmost shell is 202 ′′ from the galaxy center. NGC 470
is located just off the frame, ∼300 ′′ west. The field of view is 9 ′. Acknowledgment: The Isaac
Newton Group of Telescopes and the Royal Astronomical Society.
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3.4 Colors

At the beginning of the research on shell galaxies, it was widely believed that shells are
rather bluer than the underlying galaxy (Athanassoula and Bosma, 1985). But it was rather
difficult to obtain relevant data for shells with only several percent of galaxy’s luminosity
and the uncertainty was probably huge.

Carter et al. (1982) presented broad-band optical and near-IR photometry of NGC 1344.
The color indices derived suggest that the shell comprises a stellar population, perhaps
bluer than the main body of the galaxy. The first CCD photometric observations of shell
galaxies were made in April 1983 at the CFHT (Canada-France-Hawaii Telescope) by Fort
et al. (1986) for their three objects (NGC 2865, NGC 5018, and NGC 3923). Unlike the
shells of NGC 2865 and NGC 5018 which were found bluer than the galaxy itself, the shells
of NGC 923 had similar color indices to those of the galaxy. The results were obtained
from the outer shells of the galaxies.

Pence (1986) got the same result for NGC 3923 and in addition for NGC 3051 as well.
On the other hand, McGaugh and Bothun (1990) found both redder and slightly bluer
systems of shells among their three shell galaxies (Arp 230, NGC 7010, and Arp 223 =
NGC 7585). Multicolor photometry of NGC 7010 shows a color trend between the center
and the galaxy periphery, red in the center and blue further out.

Recent observations, using the ever-improving observational capabilities may turn the
old myth of blue shells over. Sikkema et al. (2007) wrote: “To date, observations give a
confusing picture on shell colors. Examples are found of shells that are redder, similar, or
bluer, than the underlying galaxy. In some cases, different authors report opposite color
differences (shell minus galaxy) for the same shell. Color even seems to change along some
shells; examples are NGC 2865 (Fort et al., 1986), NGC 474 (Prieur, 1990), and NGC 3656
(Balcells, 1997). Errors in shell colors are very sensitive to the correct modeling of the
underlying light distribution. HST images allow for a detailed modeling of the galaxy
light distribution, especially near the centers, and should provide increased accuracy in the
determination of shell colors.” In their sample of central parts of six galaxies (NGC 1344,
NGC 3923, NGC 5982, NGC 474, NGC 2865, and NGC 7626) they find only one shell (in
NGC 474) with blue color. All other shells have similar or redder colors – what is just
contrary to the results of Fort et al. in 80’s for NGC 2865 and Carter et al. (1982) for
NGC 1344. Sikkema et al. attribute the red color to dust which is physically connected to
the shell (see Sect. 3.5).

Forbes et al. (1995) measured shell colors of shell galaxy IC 1459 and found them to
be similar to the underlying galaxy. In their study of the shell galaxies NGC 474 and
NGC 7600, Turnbull et al. (1999) found inner shells redder than the outer ones. For the
first shells, colors seem to follow those of the galaxy, for NGC 7600 three outermost shells
are bluer than the galaxy. In Liu et al. (1999) it is said that a preliminary reduction of the
shell sample shows that most of the shells have colors that are similar to the elliptical. The
shell colors in the shell galaxy MC 0422-4764 are scattered around the underlying galaxy
value (Wilkinson et al., 2000). Pierfederici and Rampazzo (2004) inspected another sample
of five galaxies with shells (NGC 474, NGC 6776, NGC 7010, NGC 7585, and IC 1575) and
found the color of the shells being similar to or slightly redder than that of the host galaxy

4The reference name of object derived from the 1950 coordinates. The last digit is a decimal fraction of
degree, truncated. Notation used in Malin and Carter (1983) catalogue (MC).
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with the exception of one of the outer shells in NGC 474, the only interacting galaxy in
the sample.

3.5 Gas and dust

Athanassoula and Bosma (1985) found that shells are not a good indicator of the presence
of dust. Shell galaxies (64 items) of Wilkinson et al. (1987b) have rather higher dust
contain than normal elliptical. Sikkema et al. (2007) detected central dust features out of
dynamical equilibrium in all of their six shell galaxies. Using HST archival data, about
half of all elliptical galaxies exhibit visible dust features (Lauer et al. 2005: 47% of 177 in
field galaxies). On the other hand, Colbert et al. (2001) found evidence for dust features
in approximately 75% of both the isolated and group galaxies (17 of 22 and 9 of 12,
respectively). But in their sample also all of the galaxies that display shell/tidal features
contain dust. Also Rampazzo et al. (2007) found all of their three shell galaxies to show
evidence of dust features in their center.

Moreover, Sikkema et al. (2007) discovered that the shells contain more dust per unit
stellar mass than the main body of the galaxy. This could explain redder color of shells
which is observed in many cases (Sect. 3.4). Observational evidence for significant amounts
of dust residing in a shell was also found in NGC 5128 (Stickel et al., 2004).

In general, both the ionized and neutral gas contents of shell galaxies are thus compa-
rable to those of normal early-type galaxies (Dupraz and Combes, 1986) or rather higher
(Wilkinson et al., 1987b). However, arcs of HI have been discovered (Schiminovich et al.,
1994, 1995) lying parallel to but outside of the outer stellar arcs in a few shell systems
(Cen A = NGC 5128 and NGC 2865). In Centaurus A, gas has the same arc-like curvature
but is displaced 1 ′ (∼ 1 kpc) to the outside of the stellar shells. A similar discovery has been
made by Balcells et al. (2001) in NGC 3656. The shell, at 9 kpc from the center, has traces
of H I with velocities bracketing the stellar velocities, providing evidence for a dynamical
association of H I and stars at the shell. Petric et al. (1997) found an off-centered H I ring
in NGC 1210. A short report about H I in shell galaxies has been done by (Schiminovich
et al., 1997).

Charmandaris et al. (2000) reveal the presence of dense molecular gas in the shells
of NGC 5128 (Cen A). Cen A, the closest active galaxy, is a giant elliptical with jets and
strong radio lobes on both sides of a prominent dust lane which is aligned with the minor
axis of the galaxy (van Gorkom et al., 1990; Clarke et al., 1992; Hesser et al., 1984). A
significant amount of gas and dust is situated predominantly in an equatorial disk where
vigorous star formation is occurring (Dufour et al., 1979). Charmandaris et al. detected
CO emission from two of the fully mapped optical shells with associated H I emission,
indicating the presence of 4.3× 107 M� of H2, assuming the standard CO to H2 conversion
ratio.

About 5×108 M� of molecular gas is located in the inner 2 ′ (∼ 13 kpc) of the NGC 1316
(Fornax A) and is mainly associated with the dust patches along the minor axis (Horellou
et al., 2001). In addition, the four H I detections in the outer regions are all far outside the
main body of NGC 1316 and lie at or close to the edge of the faint optical shells and X-ray
emission of NGC 1316. The location and velocity structure of the H I are reminiscent of
other shell galaxies such as Cen A.

Around 8× 107 M� of neutral hydrogen, and some 109 M� of molecular hydrogen have
been previously found in NGC 3656 by Balcells and Sancisi (1996). Roughly 10% of the
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total gas content, one third of the neutral hydrogen, lies in an extension to the south, what
is also similar to Cen A. NGC 3656 also contains a prominent central dust line (Leeuw
et al., 2007).

These galaxies seem to form up an interesting category of shell galaxies – aside from
the shells, they also contain a prominent central dust line, good amount of gas (usually
both H I and CO detected), and are usually strong radio sources with jets and active
nucleus. Galaxies with these features are suspected of cannibalization of a gas-rich com-
panion. Some examples of this group are NGC 5128 (Centaurus A), NGC 1316 (Fornax A),
NGC 3656, NGC 1275 (Perseus A; massive network of dust, active nucleus; Carlson et al.,
1998), IC 1575 (active nucleus in the center drives the jet orthogonally to the strong central
dust lane, producing the two radio lobes; Pierfederici and Rampazzo, 2004), and possibly
IC 51 (Schiminovich et al., 2013), NGC 5018 (Rampazzo et al., 2007), and NGC 7070A
(Rampazzo et al., 2003).

Pellegrini (1999) found that the softer X-ray component which likely comes from hot
gas, is not as large as expected for a global inflow, in a galaxy of an optical luminosity
as high as that of NGC 3923. Sansom et al. (2000) find that early-type galaxies with fine
structure (e.g. shells) are exclusively X-ray underluminous and, therefore, deficient in hot
gas.

Rampazzo et al. (2003) analyzed the warm gas kinematics in five shell galaxies. They
found that stars and gas appear to be decoupled in most cases. Rampazzo et al. (2007) ,
Marino et al. (2009), and Trinchieri et al. (2008) investigated star formation histories and
hot gas content using the NUV and FUV Galaxy Evolution Explorer (GALEX) observa-
tions (and in the latter case also X-ray ones) in a few shell galaxies.

3.6 Radio and infrared emission

Wilkinson et al. (1987a) surveyed a subset of 64 galaxies of the Malin & Carter catalogue at
20 and 6 cm with the VLA. Apart from Fornax A, only two galaxies of their set contained
obvious extended radio sources. 42% of the galaxies were detected, down to a 6-cm flux
density limit of about 0.6 mJy. This detection rate does not differ significantly from normal
early-type galaxies. In a complete sample of 46 southern 2 Jy radio galaxies at intermediate
redshifts (0.05 < z < 0.7) of Ramos Almeida et al. (2011), 35% of galaxies have shells.

A more interesting discovery was made by Wilkinson et al. (1987b). Eight of the
previous sample of 64 shell galaxies plus two from Sadler (1984) sample of E and S0
galaxies were detected by IRAS. And here comes the discovery: All of these galaxies
are also radio sources with 6-cm flux densities ≥ 0.6 mJy. They noted that according to
the binomial distribution, the probability of finding all 10 galaxies at both wavelengths by
chance would be 0.1%. From non-shell galaxies which are detected in the IRAS survey,
only 58% are radio sources. So, there is a strong radio-infrared correlation for shell
galaxies. In the tree-dimensional radio-infrared-shell space, no significant correlation is
seen in any two dimensions, but a correlation is apparently found if all three are taken
together.

Thronson et al. (1989) investigated infrared color-color diagram of early-type galaxies.
On average, shell galaxies appear to have broadband mid- and far-infrared energy distri-
butions very similar to those of normal S0 galaxies, although many of them were classified
as ellipticals.
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3.7 Other features of host galaxies

From their sample of 100 shell galaxies, Carter et al. (1988) derived that about 15–20% of
shell galaxies have nuclear post-starburst spectra. Ramos Almeida et al. (2011) found
shells in 15 out of 33 (45%) of the non-starburst systems, but in only 1 out of 13 (8%) of
the starburst systems. All their objects are powerful radio galaxies (PRGs) and quasars.

Longhetti et al. (2000) have studied star formation history in a sample of 21 shell
galaxies and 30 early-type galaxies that are members of pairs, located in very low density
environments. The last star formation event (which involved different percentages of mass)
that happened in the nuclear region of shell galaxies is statistically old (age of the burst
from 0.1 to several Gyr) with respect to the corresponding one in the sub-sample of the
interacting galaxies (age of the burst < 0.1 Gyr or ongoing). This distinction has been
possible only using diagrams involving newly calibrated “blue” indices. Assuming that
stellar activity is somehow related to the shell formation, shells have to be long lasting
structures.

There is an obvious strong association between kinematically distinct/decoupled
cores (“KDC” or “KDCs”) and shell galaxies. First example of an elliptical galaxy with
a KDC was NGC 5813 (Efstathiou et al., 1982). These galaxies are characterized by a
rotation curve that shows a decoupling in rotation between the outer and inner parts of
the galaxy. In some spectacular cases, the core can be spinning rapidly in the opposite
direction to the outer part of the galaxy (e.g. IC 1459). It was found by Forbes (1992;
cited in Hau et al., 1999) that all of the nine well-established KDCs and a further four out
of the six “possible KDCs” possess shells.

Some galaxies are known to contain multiple nuclei (e.g. NGC 4936, NGC 7135,
MC 0632-629, MC 0632-629). Forbes et al. (1994) conducted the first systematic search
for secondary nuclei in a sample of 29 known shell galaxies. They find six (20%) galaxies
with a possible secondary nucleus, what they concluded to be a probable upper limit to
the true fraction of secondary nuclei. In the sample of radio galaxies of Ramos Almeida
et al. (2011), five galaxies have more than one nucleus while also having shells detected.
That makes 20% of their shell galaxies containing the secondary nucleus. Thereof one
double nucleus is uncertain (PKS 1559+02) and one galaxy has triple nucleus indicated
(PKS 0117-15). On the other hand, Longhetti et al. (1999) in their sample of 21 shell
galaxies found only one (ESO 240-100) to be characterized by the presence of a double
nucleus.

According to Wilkinson et al. (1987c), shell galaxies have an enormous diversity of
central surface brightness. In addition, Wilkinson et al. (1987a) found a wide variety
of optical appearances, suggesting that shell galaxies are not a homogeneous class with
uniform physical characteristics.
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4 Summary of shell characteristics

1. Shells are observed in at least 10% of early-type galaxies (E and S0) and ∼1% of
spirals.

2. Shell galaxies occur markedly most often in regions of low galaxy density.

3. The number of shells in a galaxy ranges from 1 to ∼30.

4. The shells contain at most a few per cent of the overall brightness of the galaxy.

5. Surface brightness contrast of the shells is very low, about 0.1–0.2 mag.

6. Shells are of stellar nature.

7. For type I shell galaxies (see in Sect. 3.3), shells are interleaved in radius and their
separation increases with radius.

8. Shells appear to be aligned with the galaxy’s major axis and slightly elliptical for
flattened galaxies, and randomly spread around the galactic center for nearly E0
galaxies.

9. The radial range of shells (the ratio of the radii of the outermost and the innermost
shells) is typically less then 10 but can reach over 60.

10. Shells commonly occur close to the nucleus.

11. In roughly 20% of the systems, the innermost shells have spiral morphology.

12. Shells can have any color, perhaps they are rather similar to or slightly redder than
the host galaxy.

13. The colors of shells are different even in the same galaxy, tend to be red in the center
and bluer further out.

14. It seems that galaxies with shells also contain central dust features.

15. An increased amount of dust has been observed in shells.

16. Slightly displaced arcs of H I, with respect to the stellar shells, have been discovered
in some galaxies.

17. Molecular gas associated with shells was detected in several galaxies.

18. The detection rate of radio emission of shell galaxies is similar to other early-type
galaxies.

19. There is probably a strong radio-infrared correlation for galaxies which possess shells.

20. 15–20% of shell galaxies have nuclear post-starburst spectra.

21. There is a strong association between kinematically distinct/decoupled cores and
shells in galaxies.

22. The shell galaxies have an enormous diversity of central surface brightness and a wide
variety of optical appearances.
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5 Scenarios of shells’ origin

In the eighties and nineties several theories of formation of shell galaxies were proposed.
They can be divided into three categories:

� Gas dynamical theories (Sect. 5.1) – The first truly developed theories connect
star formation and the formation of shells. These theories, however, seem to be
contradicted by observation and now they are not usually taken into consideration.

� Weak Interaction Model (WIM, Sect. 5.2) – According to this model, shells are
density waves induced in a thick disk population of dynamically cold stars by a weak
interaction with another galaxy. WIM has nice explanations for many phenomena
related to the shells but suffers from some deficiencies and obscurities.

� Merger model – The most widely accepted theory is based on the idea that the
stars in shells come from a cannibalized galaxy. The entire Sect. 6 is devoted to this
model.

For a more detailed review, see Ebrová (2007).

5.1 Gas dynamical theories

The first theory of shell formation has been proposed by Fabian et al. (1980), who suggested
that shells are regions of recent star formation in a shocked galactic wind. Gas produced by
the evolution of stars in an elliptical galaxy and driven out of the galaxy in a wind powered
by supernovae would be heated and compressed as it passes through a shock. As the gas
cools, star formation can occur. This scenario was expanded by Bertschinger (1985) and
Williams and Christiansen (1985). In the Williams and Christiansen (1985) model, shells
are initiated in a blast wave expelled during an active nucleus phase early in the history of
the galaxy, sweeping the interstellar medium in a gas shell, in which successive bursts of
star formation occur, leading to the formation of several stellar shells.

This scenario was inspired by the supposedly bluer color of the shells, but as time and
the measurements have shown, shells are composed mostly of old populations of stars (see
Sect. 3.4). As Williams and Christiansen mention, star formation is a subject only to local
conditions and is a stochastic process. This is in conflict with the observed interleaving
of shells in many shell galaxies. Further, there is the failure to detect either ionized or
neutral gas associated with the shells except in a very few cases. Dupraz and Combes
(1986) argued that the mechanism of star formation in such a galactic wind is not known;
the galaxy should have possessed a very large amount of interstellar matter in order to
produce stellar mass of a typical shell system; and the supernovae explosions might rapidly
dispel the wind which would exclude that as much as 20–25 shells form around some shell
galaxies.

Loewenstein et al. (1987) reconciled previous models with the last observations at that
time. Only a modest outburst is demanded by the authors to cause a period of star-
formation in an outward-moving disturbance from the galactic core. The newly-formed
stars occupy a small volume in the orbital phase-space of the underlying galaxy. The shells
were produced in the same phase-wrapping mechanism as in the merger model (Sect. 6.1)
producing an interleaved shell system (point 7 in Sect. 4). The model does not exclude the
merger hypothesis, since a merger can lead to a burst of star formation in the galactic core
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that is the precursor of the initial blast wave. The inner shells are older than the outer
ones in this scenario. This could lead to the color gradient which seems to be observed in
some cases (point 13 in Sect. 4) and which was not known at the time.

All these arguments are sound, but other observed aspects of shell galaxies seem to
exclude the model of Loewenstein et al. anyway. Aside from the already mentioned points,
Colbert et al. (2001) discovered a consistency of the colors of the isolated galaxies with and
without shells and it argues against the picture in which shells are caused by asymmetric
star formation. Again the failure to detect gas in shells argues against this scenario. Finally,
the lack of signs of recent star formation in the shells is the most fatal reality for the model
discussed here.

A rather different scenario was proposed by Umemura and Ikeuchi (1987), and was
quickly forgotten for its clumsiness and only a little agreement with observations. They ten-
tatively considered a hot supernova-driven galactic wind as a process which produces both
extended multiple stellar shells and hot X-ray coronae which have been detected around
a number of early-type galaxies. Few of them also have shells (NGC 1316, NGC 1395,
NGC 3923, and NGC 5128). This scenario suffers from much the same diseases as the for-
mer ones. Moreover, it gives no explanation for the increasing separation of shells with
radius, since the distribution of shells is variable with the lapse of time in this scenario.
As previously mentioned, early-type galaxies with fine structure are X-ray underluminous,
thus deficient in hot gas (Sect. 3.5). However, this theory seems to be primarily out of
game because of the observed systematic interleaving of shells.

All the models mentioned above more or less fell in condemnation and oblivion before
they even started to try explaining more detailed characteristics observed in shell galaxies.

5.2 Weak Interaction Model (WIM)

Thomson and Wright (1990) came up with an elegant and revolutionary model of shell
formation in elliptical/lenticular galaxies which is still in the game today. According to
them, shells are density waves induced in a thick disk population of dynamically cold
stars by a weak interaction with another galaxy – whence the name, the Weak Interaction
Model (WIM). A year later, this hypothesis was further developed and supported by new
simulations of Thomson (1991).

To support their theory, the authors state that Thronson et al. (1989) pointed out
that most of the elliptical galaxies with shells catalogued by Malin and Carter (1983) are
classified elsewhere as S0s. As such, a significant population of dynamically cold stars
moving on nearly circular orbits could be present in these systems. They also note that
faint thick disks could be present in many elliptical galaxies without detection. The authors
noted that a thick-disk population which makes up only a few per cent of the total mass of
a galaxy is required to explain the faint features seen in most shell galaxies. But the disk
must by heavy enough to produce shells which form a few per cent of the overall brightness
of the galaxy (point 4 in Sect. 4). Wilkinson et al. (2000) looked for such a disk in the shell
galaxy MC 0422-476 and found no sign of an exponential disk, or any thick disk additional
to the short-axis tube orbits already expected within an oblate ellipsoidal potential.

The WIM has always been simulated with the parabolic encounter of the secondary
galaxy, since more circular orbits would decay rapidly during a close encounter, resulting
in a merger scenario, while more hyperbolic orbits would result in encounters too quick to
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be effective. This fact can also account for the less frequent occurrence of shell galaxies in
clusters than in the field (point 2 in Sect. 4).

Required mass of the secondary is about 0.05–0.2 of the primary mass and orbital
inclination 45° or less with respect to the thick disk. The total time of the shell structure’s
visibility is typically around 10 Gyr in Thomson and Wright (1990). But in the simulations
of Thomson (1991), the shells are visible for only about 3 Gyr.

Possibly, the age of the shell system can be deduced from its appearance and thus the
presence of a suitable secondary galaxy at an appropriate distance could be checked. But
e.g. around NGC 3610 no surrounding galaxies were found (Silva and Bothun, 1998).

In WIM, the host galaxy is an oblate5 spheroid, and shells are readily formed as spiral
density waves in the thick disk which is symmetric about the plane of symmetry of the
galaxy. The model also gives the correct relative frequency of two types of shell galaxies (i.e.
1:1, Sect. 3.3), since the systems appear as type II shell galaxies when viewed at inclination
angles less than approximately 60° (0° is face-on). At inclination angles larger than 60°, the
systems appear as type I. As we change the viewing angle, the observed ellipticity changes
from E0 (for 0°) to E4 (90°), where E4 may be the true ellipticity of the galaxy, since
Prieur (1990), cited in Thomson (1991), found a strong peak at this value in the type I
ellipticity histogram. However, implications of this would be somewhat strange – either all
elliptical galaxies are E4 type oblate spheroids seen from different angles, or shells do occur
only in E4 galaxies, what would be probably in contradiction to their relatively frequent
occurrence.

Prieur (1988) pointed out that the shells in NGC 3923 are much rounder than the
underlying galaxy and have an ellipticity which is similar to the inferred equipotential
surfaces. This idea was originally put forward by Dupraz and Combes (1986) who found
such a relationship for their merger simulations (Sect. 6). The same effect can be seen in
the simulations presented by Thomson (1991).

Another advantage of the WIM lies in its ability to explain the occurrence of the shells
over a broad range of radii (point 9 in Sect. 4) and close to the nucleus (point 10), since
shells are formed in the thick disk that is required to be already present in the galaxy.

In his study of the shell galaxy NGC 3923, Prieur (1988) discussed varying distribution
of the shells – interleaved in outer region and roughly symmetric in inner parts. According
to this model, in the outer region of the galaxy, the simulations show a predominantly one-
armed trailing spiral density wave which, when viewed edge-on, gives rise to the interleaving
of the outer shells, naturally aligned with the major axis. Inside the perigalactic radius
of the path of the intruder, the tidal forces produced during the encounter induce a bi-
symmetric kinematic density wave in the thick disk. Thomson has achieved an almost
breathtaking agreement with the observation of radial shell distribution, except for the
innermost shells that have not appeared at all in his simulations. But he believes it could
be remedied by shrinking the core radius of primary galaxy.

The WIM for shells does not predict the existence of a kinematically distinct nucleus
(KDC, point 21 in Sect. 4). Hau and Thomson (1994) proposed a mechanism whereby a
counter-rotating core could be formed by the retrograde passage of a massive galaxy past
a slowly rotating elliptical with a pre-existing rapidly rotating central disk. In their study
of the shell galaxy NGC 2865, Hau et al. (1999) state that the requirement of the WIM for

5An oblate ellipsoid is rotationally symmetric around its shortest axis, whereas for a prolate ellipsoid
the axis of symmetry is the longest one. A triaxial ellipsoid has no rotational symmetry at all.
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the nuclear disk to be primordial is in conflict with the observed absorption line indices.
It is also unlikely that a passing galaxy can transfer a large amount of orbital angular
momentum over a period longer than 0.5 Gyr without being captured or substantially
disrupted, as NGC 2865 has an extended massive dark halo (Schiminovich et al., 1995).
Thus a purely interaction induced origin for the shells and KDC in NGC 2865 is ruled out.

The observation by Pence (1986) shows that the surface brightness of shells in NGC 3923
is a “surprisingly constant” fraction (∼3–5%) of the surface brightness of the underlying
galaxy. The WIM produces shells with the correct surface brightness, since they are formed
in a thick disk which has the same surface brightness profile as the underlying galaxy.
However, further observations (Prieur, 1988; Sikkema et al., 2007) revealed more shells in
NGC 3923 that defy this rule. And there are more disobedient shell galaxies: NGC 474
and NGC 7600 (Turnbull et al., 1999) and MC 0422-476 (Wilkinson et al., 2000). Similarly
for NGC 2865, the WIM origin is in conflict with the existence of bright outer shells, their
blue colors, and their chaotic distribution (Fort et al., 1986).

Furthermore, Carter et al. (1998) revealed a minor axis rotation of the famous NGC 3923
what suggests a prolate or triaxial potential, and challenges the requirement of an oblate
potential by the WIM. They noted that it is difficult to induce minor axis rotation in an
oblate potential without inducing any corresponding major axis rotation that has not been
observed.

Silva and Bothun (1998) note that the spectacular morphological fine structure of the
shell galaxy NGC 3610 leads to the natural conclusion that this galaxy has undergone a
recent merger event. This scenario is supported by the existence of a centrally concentrated
intermediate-age stellar population which is a prediction of the dissipative gas infall models.
Furthermore, the central stellar structure could have been formed by this infalling gas. It
seems unlikely that the structures were formed by a non-merging tidal interaction since
there is no nearby galaxy.

It is interesting that nobody has ever noticed any general one-armed spiral in the outer
shells of type II shell galaxies nor any bi-symmetric spiral in inner regions. Only Wilkinson
et al. (1987c) probed 66 shell galaxies and found that in roughly 20% of the systems these
innermost shells have spiral morphology. But they did not specify which galaxies they
were nor what spiral morphology has been found. Thomson (1991) explains: “The broken
appearance of the shells is actually an interference pattern formed by the leading and
trailing density waves induced during the encounter”, and he adds that the faint residual
one-armed leading spiral feature seen at the end of some of the simulations is probably an
m = 1 kinematic density wave6. The relative importance of this mode for the shell forming

6Here, a common method of decomposition of a 2D density or potential to Fourier modes in the azimuthal
direction (that is, Fourier transforming in the angle separately for every radius) is used. The potential is
decomposed as

φ(R, θ) = φ0(R) +

∞∑
m=1

φm(R) cos[m(θ − θm(R))],

what means a sum of harmonics with different amplitudes and phase shifts for every R. The φ0 (m = 0)
mode is the axisymmetric part of the potential, the m = 1 mode has an azimuthal period of 360°, the m =
2 mode has 180° and so on. It is most frequently used for spiral galaxies. The m = 1 mode corresponds to
one spiral arm (θ1 is dependent on R) or a closed structure (an ellipse when θ1is a constant) not concentric
with the galaxy. The m = 2 mode is the most common, being either a bar (constant θ2) or two spiral arms.
In the WIM case, the m = 2 mode (bi-symmetric spiral density wave) is important for the inner parts of
the disk.
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process is not fully understood, but it does play an important role in determining the shell
morphology produced by the more massive encounters.

Wilkinson et al. (2000) found many arguments for and against the WIM in their study
of the shell galaxy MC 0422-476.

Longhetti et al. (1999) favor the WIM, since they derived that in shell galaxies, the age
of the last star forming event ranges from 0.1 to several Gyr. If the last burst of stellar
activity that affects the absorption line strength indices, correlates with the dynamical
mechanism forming the shell features, these shells are long lasting phenomena. The WIM
predicts such a long life for the shells, whereas for the merger model of Quinn (1984),
Sect. 6, guessed a shorter lifetime due to the initial dispersion of velocities that the stars
of the shell inherited. But for example, in the framework of the merger model, Dupraz and
Combes (1986) happily simulated shell systems for 10 Gyr.

A consequence of the WIM is that the stars which make up the shells must be in nearly
circular orbits. That is almost opposite to the conclusions of the merger model (Sect. 6).
It could be thus decided from measurements of the shell velocity fields which model is
favored, but this is indeed a formidable task, as the shells contain at most a few per cent
of the overall brightness of the host galaxy. Some attempts have been already carried out
(Balcells and Sancisi, 1996), but as far as we know, the results are inconclusive.

To conclude, the WIM has nice explanations for many phenomena related to the shells
(inner shells, shell distribution, symmetry of inner shells, etc.), for which the competing
merger model (Sect. 6) seeks explanations with difficulties or has none at all. On the
other side, the WIM suffers from some deficiencies and obscurities (thick disk, KDC, shells
brightness, etc.). Generally, it seems to lack observational confirmation of phenomena
specific to the model.

Figure 6: Time evolution of a cloud of test particles falling into a one dimensional Plummer
potential v − x space (upper row), particle radial density (lower row). The x axis is centered with
the center of the potential and scaled so that 1 on the axis is the Plummer radius.
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6 Merger model

In this section we introduce the merger origin scenario of the shell galaxies that we consider
for the rest of the thesis. For a more detailed (but slightly outdated) review, see Ebrová
(2007).

6.1 Phase wrapping

The idea of a connection between mergers and shells was first published by Schweizer (1980)
in his study of the shell galaxy NGC 1316 (Fornax A). The presence of shells (or “ripples”
as Schweizer calls them) deep within NGC 1316 and a surprising number of galaxies with
ripples but no companions fosters his belief that Fornax A, too, has been shaken by a
recent intruder rather than by any of the present neighbors. Schweizer imagined that the
ripples represent a milder version of the strong response that occurs in the disk of a galaxy
when an intruder of comparable mass free-falls through the center: A circular density wave
runs outward, followed sometimes by minor waves, and give the galaxy the appearance of
a ring (Lynds and Toomre, 1976; Toomre, 1978).

Quinn (1983, 1984) took up the idea of a merger origin of shells, but showed it in a
slightly different spirit. When a small galaxy (secondary) enters the scope of influence of a
big elliptical galaxy (primary) on a radial or close to a radial trajectory, it splits up and its
stars begin to oscillate in the potential of the big galaxy which itself remains unaffected. In
their turning points, the stars have the slowest speed and thus tend to spend most of the
time there, they pile up and produce arc-like structures in the luminosity profile of the host
galaxy. Quinn modeled the formation of shell galaxies using test-particle and restricted
N -body codes, much as many other did later (e.g, Hernquist and Quinn, 1987b, 1988,
1989; Dupraz and Combes, 1986) and as we will do in this work as well. It should be also
noted that already Lynden-Bell (1967) described something like a pig-trough dynamics in
violent relaxation in stellar systems.

Figure 7: Surface brightness density from the simulation of a radial minor merger. Top row: both
primary and secondary galaxy are displayed. Bottom row: only the surface density of particles
originally belonging to the secondary is displayed. Panels show an area of 300 × 300 kpc. Time-
stamps mark the time since the release of the star in the center of the host galaxy. For parameters
of the simulation, see Appendix H point 1.
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The mechanism is illustrated on the one dimensional example in Fig. 6. The density
maxima occur near the turnaround points of the particle orbits. The maximal radial
position of the orbit is first reached by the most tightly bound particles, but as more
distant particles stop and turn around, the density wave propagates slowly in radius to
the outermost turning point set by the least bound particle. The particles in phase space
form a characteristic structure, for which this mechanism of shell formation is often called
“phase wrapping”.

In an idealized case, the edges in density are the caustics of the mapping of the phase
density of particles into physical space (Nulsen, 1989). As a natural consequence, the shells
are interleaved in radius and their separation increases with radius (point 7 in Sect. 4).
Furthermore, the range of the number of shells present around ellipticals is a simple con-
sequence of the age of the event. More shells will imply that a longer time has passed
since the merger event. A more detailed explanation and some equations can be found in
Sect. 9.1. The best insight on the shell formation is provided by video 1-shells.avi, which
is a part of the electronic attachment. Five snapshots related to the video can be seen in
Fig. 7. For the description, see Appendix H point 1.

6.2 Cannibalized galaxy

The choice of the type of the secondary galaxy initially felt on a disk galaxy. The authors
were probably led to it by two aspects. Firstly, dynamically cold systems promised to be
better in shell formation, since they occupy a smaller phase volume than velocity dispersion
supported galaxies of comparable masses. In such a process of non-colliding stars we can
assume phase volume conservation according to the Liouville’s theorem. This means that
a system with an initially small phase volume keeps this property and forms sharper shells.
So, the visibility of the shell system is expected to be lower for an elliptical companion
than for a spiral companion of the same mass, since the velocity dispersion is greater for
the elliptical. Secondly, the observations seemed to suggest that the stars in shells have the
color indices of late-type galaxies (see Sect. 3.4). Later observations have shown that the
shells are not that blue (see also Sect. 3.4), but even before that the simulations showed
that the shell systems can be formed by a disk as well as an elliptical companion (Dupraz
and Combes, 1986; Hernquist and Quinn, 1988).

Hernquist and Quinn (1988) examined among others the influence of the phase volume
and velocity dispersion of a spherical companion on shell formation. As was already men-
tioned above, higher dispersion means higher blur of resulting shells through the increase of
the phase volume (velocity dispersion is proportional to the square root of mass of the ac-
creted companion). Another effect brought in by higher dispersion is that the material can
be captured into more tightly bound orbits, so shells are produced more rapidly, since the
shell production rate is indirectly proportional to the shortest period of stellar oscillations.
This means that for the same potential of the primary galaxy, we can easily get different
shell systems by changing some parameters of the accreted galaxy, what constituted one
of several serious problems of the idea to explore the potential of the host galaxy through
its shell system.

The disk-like secondary galaxy has some extra options that the spherical one lacks. By
accreting differently inclined disks we can get different peculiar structures. The resulting
configuration of sharp-edged features is considerably more complex and disordered than
for a spherical companion. For a very flat system, there is also the possibility of forming
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caustics through spatial wrapping. That is to say, as the sheet of particles moves and folds
in three-dimensional space, sharp edges can be formed in its two-dimensional projection
onto the plane of the sky. Projection effects become critical in this context, as evidenced
by the different viewing angles, see Hernquist and Quinn (1988). This effect was evident
already in the simulations by Quinn (1984).

6.3 Ellipticity of the host galaxy

Dupraz and Combes (1986) tried to explain the observed characteristics of shell morphology
(point 8 in Sect. 4) with the encounter of a disk galaxy with a prolate or oblate primary
E-galaxy. The secondary galaxy falls into the prolate galaxy around its symmetry axis
and into the oblate galaxy perpendicularly to its symmetry axis (the symmetry axis is
the major axis when the E-galaxy is prolate, minor axis when oblate). The disk of the
secondary galaxy is always oriented in the direction of the collision. In the prolate case,
the companion stars achieve pendular motion along the major axis of the E-galaxy. The
shells form consequently along this axis, alternatively on one side and the other (type I
shell galaxy, see Sect. 3.3). On the contrary, in the oblate case, the shell system does
not possess any symmetry, since there is no privileged major axis here. The shells appear
randomly spread around the center of the E-galaxy (type II shell galaxy).

Dupraz and Combes (1986) state that a shell system is found aligned with the major
axis of an elliptical galaxy, only when the E-galaxy is prolate and the impact angle is likely
to be lower than 60°. A shell system is found aligned with the minor axis of an E-galaxy,
only when the latter is oblate and the impact angle is lower than ∼30°. It is interesting to
note that no such system, with the shell aligned with the minor axis, is known.

However, all this results were negated by Hernquist and Quinn (1989), who also simu-
lated an ellipsoidal potential of the primary galaxy. Their result is that if the potential well
maintains the same shape at all radii as in the simulations of Dupraz and Combes, then
the shape of the dark matter halo, as well as that of the central galaxy, is responsible for
aligning and confining the shells. If, on the other hand, the potential is allowed to become
spherical at large radii, the shell alignment and angular extent are less sensitive to the
properties of the potential at small radii. This means that two primaries, one oblate and
the other prolate, can have similar projected shapes and similar outer shells if the outer
isophotentials in each case become spherical. Hence the shape of the potential at large as
well as small radii needs to be considered when examining the shell extent and alignment.

Even the same authors formerly tried to get some information about the potential
of several chosen shell galaxies (Hernquist and Quinn, 1987b), but for those reasons and
the reasons stated in Sects. 6.2 and 6.4, they were left with nothing to say but: “The
shell morphology is sensitive to the shape of the primary at large and small radii as well
as to the detailed structure of the companion. This would imply that it is difficult, if
not impossible, to infer the form of the primary from the shell geometry alone. In this
conclusion, we disagree with Dupraz and Combes (1986).”

6.4 Radial distribution of shells

The radial distribution of shells was always probably the most watched aspect of the
merger model. From Sect. 6.1 we already know how easily the merger model reproduces
the interleaving in radii. The shell formation is closely connected to the period of radial
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oscillation in the host galaxy potential, what is in any case an increasing function of radius,
see Sect. 9. The shells as density waves receding from the center, composed in every
moment of different stars, are the older the further from the center they are. With time,
the frequency of the shells increases, thus the distances between shells decrease towards
the center, what is also in agreement with observations (see Sect. 3.3).

The above-mentioned facts suggest a connection of shell distribution and the potential
of the underlying galaxy. But already Quinn (1984) discovered that the radial distribution
of shells derived from the potential inferred from the observed luminous matter distribution
cannot agree with the observed reality. Quinn (1984) derived that the potential of the
shell galaxy NGC 3923 must be less centrally condensed at radii 1 < r/re < 4 (where re is
the half-mass radius) than the luminous matter observations predict. This discovery was
reflected by Dupraz and Combes (1986); Hernquist and Quinn (1987b) as they added an
extensive dark matter halo in their simulations and then they were able to better reproduce
the observed shape of the shell distribution. But immediately after that, Dupraz and
Combes (1987) synthesized successfully a similar radial distribution taking into account
the dynamical friction instead of dark matter. Moreover, in spite of the simplicity of their
model, they synthesized a wide variety of shapes for the shell distribution by varying only
the two parameters: mass ratio of primary and secondary and impact parameter. It all
leads to the conclusion that the shell system is not suitable to study the potential of a host
galaxy.

Note that in the eighties only photometric data were considered. Merrifield and Kui-
jken (1998) suggested methods of measurement of the potential using shell kinematics
(Sect. 7.2). The method relies on the stars, which form the shell, to be on the close-to-
radial orbits and it is insensitive to the details of the merger such as the type of cannibalized
galaxy and dynamic friction.

The cornerstone of the merger theory is also the huge range of radii in which the shells
occur. A simple merger simulation, as of Quinn (1984) (see Sect. 6.1), is not able to
produce shells simultaneously on large and small radii. The presence of shells deep within
the host galaxy (and thus the presence of deeply bound stars that once were part of the
secondary galaxy) was mysterious from the very beginning. But because at that time
the merger model had no direct competition, it was felt more as a challenge than a flaw.
However, the advent of the WIM (Sect. 5.2) that does not have any problems explaining
this phenomenon, challenges the merger model more seriously.

Quinn (1984) suggested three possible explanations: First, the infall velocity of the
disk may have been small and hence the disk was initially strongly bound to the elliptical.
Second, the mass ratio may have been closer to unity, and hence energy could have been
transferred from orbital motion to internal velocity dispersion. But as the most probable
explanation he promoted the idea that the disruption process is a gradual one and that
the center-of-mass motion of the disk is subject to dynamical friction.

Another effect that no one predicted was found by Heisler and White (1990). They
self-consistently simulated the secondary galaxy and left the primary as a rigid potential.
During the disruption event there is a substantial transfer of energy between the various
parts of the satellite. Stars which lead the main body through the encounter are braked
and later form the inner shell system. Stars which lag the main body are accelerated
and turn into an escaping tail. This transfer is asymmetric and, for the encounters they
have studied, the surviving core suffers a net loss of orbital energy which can shrink the
apocenter of its orbit by a large factor. All these transfer effects increase with the mass
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of the satellite. It should be emphasized that this energy transfer happens only within the
original secondary galaxy and no dynamical friction from the stars of the primary galaxy
is accounted for in this case.

This scenario also allows the shell formation in a larger spread of radii. If the core of
the cannibalized galaxy survives the merger, new generations of shells are added during
each successive passage. This was predicted by Dupraz and Combes (1987) and success-
fully reproduced by Bartošková et al. (2011) in self-consistent simulations. Further, the
combination of the loss of orbital energy in this way and the dynamical friction could bring
new results, if properly modeled. This was also mentioned by Seguin and Dupraz (1996),
who also simulated the formation of shell galaxies in a radial merger in a self-consistent
manner, although without any dark matter halo in the primary galaxy.

6.5 Radiality of the merger

The assumption of a radial merger is the most awkward and criticized point of Quinn’s
model of shell formation. In his work, Quinn (1984) has shown that if the center-of-mass
motion of the infalling disk is predominantly non-radial, the merger produces confused,
often overlapping shells which appear enclosing. This does not correspond to what we see
in real shell galaxies.

On the other hand, A. Toomre modeled an off-axis release of a non-rotating, inclined
disk into a fixed spherical force field (shown in Schweizer, 1983) and his results resemble the
observed shapes. The model was similar to that of Quinn in that the disk was released as
a set of test particles with identical subparabolic velocities. The shells are created via the
mass transfer from the secondary galaxy flying by on a parabolic trajectory. The captured
part forms a complex structure around the primary galaxy. In this case, a complete merger
is not necessary to produce the shells. Hernquist and Quinn (1988) present examples of
objects from the Arp atlas (Arp, 1966a) that may well have resulted from such non-merging
encounters – Arp 92 (NGC 7603), 103, 104 (NGC 5216 + NGC 5218), and 171 (NGC 5718
+ IC 1042) all show evidence of interactions as well as diffuse shell-like features surrounding
the more luminous galaxy. Hernquist and Quinn (1988) also note that, as in the strictly
planar case, the term ”shell”can occasionally be a misnomer since the stars near the vicinity
of a sharp edge are not necessarily distributed on a three-dimensional surface in space.

However, the requirement of a fairly radial encounter stays valid to produce type I shell
galaxies (Sect. 3.3) as NGC 3923 or NGC 7600 that we have already seen in Fig. 2 and Fig. 4,
respectively. A strictly radial merger of galaxies is improbable, but now cosmological N -
body simulations tell us that satellites are preferentially accreted on very eccentric orbits
(Wang et al., 2005; Benson, 2005; Khochfar and Burkert, 2006).

Dupraz and Combes (1987) considered that the shell distribution, from the parabolic
encounter with dynamical friction, remains unchanged for a (small but) significant range
of impact parameters. The more massive the secondary galaxy is (compared with the
primary), the larger range is allowed. González-Garćıa and van Albada (2005a,b) carried
out N -body simulations of encounters between spherical galaxies with and without a dark
halo with ∼ 104 particles. Shells are rather a byproduct of their work, but they were able
to get them even for impact parameters enclosing 95% of the total mass of the primary.
Even earlier, Barnes (1989) examined the evolution of a compact group of six disk galaxies
in a self-consistent simulation of 65,536 particles. The result was a giant elliptical galaxy
containing the shells. The shells were created during the final infall of the last galaxy into

32



the merged body of all other galaxies. The initial distribution of the disk galaxies and their
inclinations were by no means special, and Barnes did not specifically try to get the shells.
This simulation may mean that during the evolution of a compact group, the shell galaxies
are indeed formed in the final stage of the merger. Similarly, recently Cooper et al. (2011)
found shell galaxies as a product of galaxy formation in Milky Way-mass dark halo in two
from six simulated halos from the Aquarius project (Springel et al., 2008), which builds
upon large-scale cosmological simulations. Furthermore, it is supported by the observed
high occurrence of shells in isolated giant galaxies (Sect. 3.2).

6.6 Major mergers

Hernquist and Spergel (1992) published results of their simulation of a major merger which
creates shells. Two identical galaxies with self-gravitating disks and halos merged following
a close collision from a parabolic orbit. The plane of each disk initially coincides with the
orbital plane. When plotted in phase space, the remnant exhibits more than 10 clearly
defined phase-wraps which can be identified with shells. Shells also occur near the nucleus
and appear to be aligned with the major axis of the resulting galaxies.

González-Garćıa and Balcells (2005) examined the creation of elliptical galaxies from
mergers of disks. They used disk-bulge-halo or bulge-less, disk-halo models with mass
ratios of the participants of 1:1, 1:2, and 1:3 and various impact parameters. As a result of
those mergers, shells which could be identified in phase space occurred sometimes. They
found out that the models without bulges with the mass ratio of 1:2 or 1:3 lead to more
prominent shells. But these were always shell systems of type II (all-round) or type III
(irregular). González-Garćıa and Balcells note the lack of shells in remnants of equal-mass
mergers and on all prograde mergers. This contrasts with the shell system presented by
Hernquist and Spergel (1992), a prograde merger of two equal-mass, bulge-less disks. The
perfect alignment of the disk spins with the orbital angular momentum may have favored
the formation of shells in their model.

González-Garćıa and van Albada (2005a,b) have also carried out simulations of encoun-
ters between spherical galaxies (see Sect. 6.5): In their first paper without a dark halo and
in the second one with a dark halo (with mass ratios of 1:1, 1:2, and 1:4). The sharpness
of the occurring shells was higher in models with a halo. A head-on collision for a run with
mass a ratio 4:1 showed the shells even after 5 Gyr from the first encounter of the galaxy
centers. But the shells showed up also in the merger with 1:2 mass ratio and a nonzero
impact parameter. In any case, the shells are formed from particles of the less massive
galaxy through the same phase wrapping that was established by Quinn (1984).

To summarize, shells can be formed via a merger even in the cases when the mass ratios
are not as dramatic as it has been simulated in the 80s (the big mass of the secondary galaxy
could influence the alignment of shells with the major axis of the host galaxy, but no one
has so far explored it). It is probably not common to have shells when two disk galaxies of
comparable masses merge. Hernquist and Spergel (1992) got shells in their model maybe
only thanks to the very special conditions of the collision they have chosen. Furthermore,
the interleaving structure and more generally the distribution of shells is not known for
such cases. Some authors have guessed a major-merger origin for the shell galaxies in their
observational studies (Schiminovich et al., 1995; Balcells et al., 2001; Goudfrooij et al.,
2001; Serra et al., 2006).
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6.7 Simulations with gas

Only a few works have been dedicated to modeling the formation of shell galaxies in the
presence of gas, all of them in the framework of the minor-merger model. Weil and Hern-
quist (1993b) used a variant of the TREESPH code but self-gravity was strictly ignored.
The primary galaxy was treated as a rigid spherically symmetric potential. They performed
four runs – two radial and two non-radial; two of them were prograde with the disk inclined
by 45°. Isothermal processes were assumed (T = 104 K) except for one run where radia-
tive cooling was allowed, and at the end 94% particles had temperature 6,000–10,000 K.
Main results are that in all cases gaseous and stellar debris segregated and gas forms dense
rings around the nucleus of the primary galaxy where massive star formation may occur.
Furthermore the diameter of the ring depends on the impact parameter (the total angular
momentum in the ring is 50% of the initial value for those particles); radial and inclined
encounter forms a s-shaped ring and a counterrotating core; and about a half of all the gas
particles is captured in these rings.

A completely different conclusion was reached by Kojima and Noguchi (1997). They
used the sticky particle method (after collision, the radial velocity component of the particle
is halved and the sign reversed) and performed four runs of simulation – radial (twice),
prograde, retrograde (all with zero inclination). Both galaxies were self-gravitating systems.
Star formation was modeled as a probability of a change of a gas particle to a stellar based
on local gas density. They found definitely no significant segregation of gas and stars;
star formation was mainly reduced because of scattering on the deep potential well of the
primary (radial and retrograde runs); for slightly prograde orbit, the inner part of the
secondary galaxy survives, a small stellar bar of the secondary is created which causes
bar-driven gas inflow and a strong starburst. In the radial run with a less concentrated
primary, a larger part of the secondary survives and the oscillating remnant destroys the
shells. They state that the “poststarburst” nature of shell galaxies is due to the cessation
of star formation in the disk galaxies caused by the merger (no massive star formation is
caused by the encounter itself).

The model of Combes and Charmandaris (1999, 2000); Charmandaris and Combes
(2000) was based on the belief in two components of galactic gas – diffuse H I gas ends in
center of primary, while the small and dense gas clouds have an intermediate behavior be-
tween stars and H I. They took into account the dynamical friction and a proper treatment
of the dissipation of the gas (using cloud-cloud collision code). The gaseous component
was liberated first since it was less bound than stars. Then stars lose their energy due
to the dynamical friction what causes some displacement of the gaseous and stellar shells.
That was really observed in some shell galaxies, see Sect. 3.5.

6.8 Merger model and observations

Merger models can well explain the interleaving of shells and their increasing separation
with radius (point 7 in Sect. 4) and the number of shells increases with time. The observed
brightness of shells puts a lower limit to the mass of the original secondary galaxy that is
usually several per cent of the primary (point 4 in Sect. 4). The question of an alignment
of shells with the major axis of the host galaxy and the correlation between the type of
the shell galaxy and ellipticity (point 8 in Sect. 4) remains unsettled for the merger model.
The merger model has also problems explaining the large range of radii where the shells are
found and their occurrence at low radii (points 9 and 10 in Sect. 4). Mergers of different
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secondary galaxies can explain different colors of shells and their possible difference from
the color of the underlying galaxy (point 12 in Sect. 4).

A merger origin of shell systems is supported by many observations, a list of which
would be lengthy. It seems that all the shell galaxies that have been so far examined in
detail contain dust close to the nucleus (point 14 in Sect. 4). These dust features are
often found to be out of dynamical equilibrium (Sect. 3.5), what clearly points to their
external origin. Shell galaxies contain even more characteristics believed to be the results
of a merger, including tidal tails, multiple nuclei or nuclear post-starburst spectra.

It seems that about 20% of shell galaxies could contain a second nucleus (Sect. 3.7)
– a characteristic that one would expect in a galaxy after a merger event. Forbes et al.
(1994) calculate that this could be an expected frequency due to the short lifetime of the
nucleus of the secondary galaxy as opposed to the long-living shells. They note that it is
also the expected frequency for the WIM origin of shell galaxies – the galaxies with the
double nuclei would be those we see at the moment when the secondary galaxy just passes
through the primary.

A large support for the merger theories comes from the kinematically distinct cores
(KDCs). Even before it was recognized that all known galaxies with KDCs in 1992 are
shell galaxies, (point 21 in Sect. 4, see also Sect. 3.7), the origin of KDCs from mergers
of galaxies has been independently anticipated. Already Kormendy (1984) proposed this
mechanism for the formation of counterrotating cores in elliptical galaxies and Balcells
and Quinn (1990) investigated this using self-consistent numerical simulations of mergers
between elliptical galaxies of unequal mass, and found that the core kinematics in the
remnant depend mostly upon the orbital angular momentum at a late stage of the merger,
whereas the kinematics of the outer regions is largely the original kinematics of the primary.
Thus, in retrograde encounters a counter-rotating core can form. Hernquist and Barnes
(1991), cited in Turnbull et al. (1999), demonstrated the formation of a counterrotating
central gas disk in a merger of two gas-rich disk galaxies of equal mass. But this model is
less widely accepted than the previous one. Hau and Thomson (1994) suggested a model
that would comply with the WIM, but it is probably even less popular.

Enormous diversity of central surface brightness (point 22 in Sect. 4) and other charac-
teristic show that shell galaxies are otherwise not a compact or privileged group of galaxies
– so to say, the secondary cannot choose on what it falls. Still some selection effect seems
to be there, because shell galaxies are much more often seen in regions with low galactic
density (point 2 in Sect. 4). That can be explained with velocities in galaxy clusters being
too high for one galaxy to be captured by another, or the influence of the surrounding
galaxies breaks the shells structure or even prevents it from forming; or both.

Simulations show (Sect. 6.7) that in the framework of the merger model of shells’ cre-
ation, diffuse gas is introduced into the center of the host galaxy (point 20 in Sect. 4), while
dense gas clouds form slightly displaced shells with respect to the stellar shells (points 16
and 17 in Sect. 4). Both are in agreement with the observations.

As the observations show, shells in galaxies are fairly common (point 1 in Sect. 4,
see also Sect. 3.2). It means that in fact they occur even more frequently because from
the three-dimensional shape of the shells as introduced by Quinn (1984), Sect. 6, we can
easily understand that we see shells only when looking from angles close to the plane
perpendicular to the line of the collision. But it is not that improbable as the shells in
mergers are formed in a much larger range of impact parameters than it was originally
believed (see Sect. 6.6) and interactions between galaxies are quite a common matter.
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7 Measurements of gravitational potential in galaxies

Before we present our original results, we introduce the reader shortly to the topic of
measuring galactic potentials, particularly in the case of elliptical and shell galaxies.

7.1 Insight into methods

The issue of the determination of the overall potential and distribution of the dark matter
in galaxies is among the most prominent in galactic astrophysics. In disk galaxies, where
stars and gas move on near-circular orbits, we can derive the potential (at least in the disk
plane) directly up to several tens of kiloparsecs from the center of the galaxy in question.
Early-type galaxies lack such kinematical beacons.

Several different methods have been used to measure the potentials and the potential
gradients of elliptical galaxies, including strong gravitational lensing (e.g., Koopmans et al.,
2006, 2009; Auger et al., 2010), weak gravitational lensing (e.g., Mandelbaum et al., 2008),
X-ray observations of hot gas in the massive gas-rich galaxies (e.g., Fukazawa et al., 2006;
Churazov et al., 2008; Das et al., 2010), rotational curves from detected disks and rings of
neutral hydrogen (e.g., Weijmans et al., 2008), stellar-dynamical modeling from integrated
light spectra (e.g., Thomas et al., 2011), as well using tracers such as planetary nebulae
(e.g., Coccato et al., 2009), globular clusters (e.g., Norris et al., 2012) and satellite galaxies
(e.g., Nierenberg et al., 2011; Deason et al., 2012).

All the methods have various limits, e.g., the redshift of the observed object, the lu-
minosity profile, gas content, and so forth. In particular, the use of stellar dynamical
modeling is plausible in the wide range of galactic masses, as far as spectroscopic data are
available. However, it becomes more challenging past few optical half-light radii. Moreover,
the situation is made complex by our insufficient knowledge of the anisotropy of spatial
velocities. Another complementary gravitational tracers or techniques are required to de-
rive mass profiles in outer parts of the galaxies. While comparing independent techniques
for the same objects at the similar galactocentric radii, the discrepancies in the estimated
circular velocity7 curves were revealed together with several interpretations (e.g., Chura-
zov et al., 2010; Das et al., 2010). The compared techniques usually employ modeling the
X-ray emission of the hot gas (assuming hydrostatic equilibrium) and dynamical model-
ing of the optical data in the massive early-type galaxies. Therefore, even for the most
massive galaxies with X-ray observations at disposal, there is a need for other methods to
independently constrain the gravitational potential at various radii.

7.2 Use of shells

Using the radial distribution of shells to derive the potential of the host galaxy seems
tempting, but it insofar generally failed due to reasons discussed in Sect. 6.4. The question
remains whether it is better to use the outer shells that are less affected by the dynamical
friction and possible later generations of shells, or if we could, by careful modeling of all the

7The concept of circular velocity is commonly used even in elliptical galaxies where none or small amount
of the matter is expected to move on circular orbits. It is a quantity which says what speed would move
the body launched into a circular orbit. Provided spherical symmetry of the galaxy, it simply denotes
the quantity

√
rφ′(r) , where φ′(r) is the first derivative of the galactic potential with respect to the

galactocentric radius r.
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relevant physical processes, reproduce the whole observed shell distribution for a suitable
potential.

An alternative hypothetical use of shells to determine the dark matter content of galax-
ies is proposed by Sanderson et al. (2012). The increased concentration of matter and its
low velocity dispersion in the shells is favorable for indirect detection of dark matter via
gamma-ray emission from dark matter self-annihilation due to the Sommerfeld effect.

A slightly less exotic, though not less bold method has been proposed by Merrifield
and Kuijken (1998). The method uses shells to constrain the form of the gravitational
potential in the case of validity of the Quinn (1984) merger model (described in Sect. 6.1).
They studied theoretically the kinematics of a stationary shell, a monoenergetic spherically
symmetric system of stars oscillating on radial orbits in a spherically symmetric potential.
They predicted that spectral line profiles of such a system exhibit two clear maxima, which
provide a direct measure of the gradient of the gravitational potential at the shell radius.

In practice, the situation is far more complex and the shells themselves are faint struc-
tures in a bright galaxy, so the fulfillment of this program seems almost impossible. How-
ever, the authors state that they have carried out signal-to-noise ratio calculations for
some of the brighter shell galaxies such as NGC 3923, and have ascertained that data of
the requisite quality could be obtained with a couple of nights integration using a 4-m
telescope.

Now comes the era when the instrumental equipment begins to allow us to actually
obtain such kind of data and that requires deeper theoretical understanding of the topic.
In Part II, we extend the work of Merrifield and Kuijken (1998) and we develop methods
to better reproduce parameters of the potential of the host galaxy from measured data.

The first attempt to analyze the kinematical imprint of a shell observationally was
made by Romanowsky et al. (2012), who used globular clusters as shell tracers in the
early-type galaxy M87, the central galaxy in the Virgo cluster. They obtained wide-
field (0–200 kpc from the center) high-precision (median velocity uncertainties: 14 km/s)
spectroscopic data for 488 globular clusters. They found signatures of a cold stream (about
15 globular clusters at 150 kpc) and a large shell-like pattern (about 30 globular clusters
between 50 and 100 kpc) and verified the presence of these features using statistical tests.
These features are the first large stellar substructure with a clear kinematical detection in
any type of galaxy beyond the Local Group. The stream is associated with a known stellar
filament but there is no photometric shell visible in the galaxy. Typical surface brightness
in the region of the shell-like pattern is µV ∼ 27 mag/arcsec2. Following the calculations of
Merrifield and Kuijken (1998), Romanowsky et al. (2012) derived circular velocity at the
shell radius vc ∼ 270 km/s while X-ray data indicate vc ∼650–900 km/s in the same region.
Further analysis done by the authors suggests that for such a shell to be created, the host
galaxy would have to accrete a large group of dwarf galaxies or a single giant elliptical or
a lenticular galaxy (about 5 times bigger than the entire Milky Way system).

Fardal et al. (2012) obtained radial velocities (median error 3 km/s) of 363 red giant
branch stars in the region of the so-called Western Shelf in M31, the Andromeda galaxy.
The Western Shelf, located about 25 kpc from the center of the galaxy, is one of several
features in the stellar halo of M31. In the space of line-of-sight velocity velocity versus
projected radius, the data they obtained show a wedge-like pattern. This is consistent with
the previous finding of Fardal et al. (2007) who reproduced main photometric structures in
the stellar halo using a simulation of an accretion of a dwarf satellite within the accurate
M31 potential model. They inferred that the Western Shelf is a shell from the third orbital
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wrap8 of a tidal debris stream. Using similar simulation, Fardal et al. (2012) derived that
the Western Shelf moves with phase velocity of 40 km/s and that the wedge pattern has a
global offset -20 km/s with respect to the systemic velocity due to the angular momentum.

8If we considered the remains of the accreted satellite to be a shell system, we would assign number 2
to this shell, see Sect. 9.1.
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Part II

Shell kinematics

A lot of useful information about the shell galaxies can be extracted from the kinematics
of the stars forming the shell system. That it is by measuring the line-of-sight velocity
distribution (LOSVD) near the edge of the shell. Now comes the era when the instrumental
equipment begins to allow us to actually obtain such kind of data and that requires deeper
theoretical understanding of the topic. First attempts to analyze such kind of data have
been already made, see Sect. 7.2. The idea to use shell kinematics, has been proposed
by Merrifield and Kuijken (1998), hereafter MK98, and we further developed it in papers
J́ılková et al. (2010) and Ebrová et al. (2012), Appendices I.5 and I.7, respectively.
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Figure 8: Potential of the host galaxy. The potential is modeled as a double Plummer sphere with
parameters listed in Table 2.

8 Preliminary provisions

First we introduce several useful notions to aid the reader.

8.1 Host galaxy potential model

In this part of the thesis, we will often need to illustrate the shell kinematics using specific
examples. For this purpose, the potential of the host galaxy is modeled as a double
Plummer sphere with parameters presented in Table 1, unless specified otherwise. This
model has properties consistent with observed massive early-type (and even shell) galaxies
(Auger et al., 2010; Nagino and Matsushita, 2009; Fukazawa et al., 2006). The forms of
the potential and density for the chosen model are shown in Figs. 8 and 9, respectively.
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Plummer radius total mass
kpc M�

luminous component 5 2× 1011

dark halo 100 1.2× 1013

Table 1: Parameters of the potential of the host galaxy used in Part II. The potential is modeled
as a double Plummer sphere.

The potential of a Plummer sphere can be expressed as

φ(r) = − GM√
r2 + ε2

, (1)

where G is the gravitational constant, M is the total mass of the galaxy, r is the distance
from the center of the galaxy and ε is the Plummer radius. The radial density then reads

ρ(r) = ρ0
1

(1 + r2/ε2)5/2
, (2)

where ρ0 = 3M/(4πε3) is the central density. The interested reader can find more on the
Plummer potential in Sects. 17.2–17.4.

Let us note that such a choice of the potential of the host galaxy represents a whole class
of models. For example, we can express all distances in the terms of the Plummer radius
of the luminous component and all masses in the terms of the total mass of the luminous
component and then choose these two parameters at will. For clarity, we nevertheless keep
the specific values noted below.
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Figure 9: Density of the host galaxy. The potential is modeled as a double Plummer sphere with
parameters listed in Table 2.

8.2 Terminology

In this section, we briefly introduce terms used in next sections.

� Model of radial oscillations – through Part II, the word model is assigned to
the concept described in Sect. 9 and used for modeling of shell kinematics. The
model assumes that shells are made by stars on strictly radial orbits released at one
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moment in the center of the host galaxy. The potential of the host galaxy is chosen
to represent real galaxies reasonably well. In our work, we restrict ourselves to a
double Plummer sphere introduced in Sect. 8.1.

� Approximation of constant acceleration and shell velocity (Sect. 11) – it is
basically the model of radial oscillations but the value of acceleration in the host
galaxy as well as the value of the shell phase velocity are always constant. The
approximation is assumed to be valid only in the vicinity of the shell edge. In the
framework of this approximation, the position of line-of-sight velocity maxima are
calculated using either of the following three methods: the approximative LOSVD
(Sect. 11.2); the approximative maximal LOS velocities (Sect. 11.4); and and the
method using the slope of the LOSVD intensity maxima (Sect. 11.5). Differences
between these methods are summarized in Sect. 11.6.

� Higher order approximation (Sect. 12) – similarly as previous, but this time we
allow the value of acceleration in the host galaxy to change linearly with galactocen-
tric radius.

� Simulation – in this part, we only use this term when we model shell galaxies in
the simulation of a radial minor merger of galaxies using test particles (Sect. 13).

8.3 Quantities

t time; usually indicates the time since the release of stars at the center of the
host galaxy

r = (x, y, z) vector of Cartesian coordinates that are oriented so that the origin is at the
center of the host galaxy; x − y is the projected plane (“the sky”) and the z
direction coincides with the line of sight (LOS); x-axis is also the collision axis
although in the model of radial oscillations it is just a virtual concept, since no
collision is actually modeled

X,Y coordinates of the projected plane

r galactocentric radius, distance from center of the galaxy; r =
√
x2 + y2 + z2

R projected radius, the projection of r into the x− y plane; R =
√
x2 + y2

φ(r) potential of the host galaxy; in this part, we use a spherically symmetric po-
tential introduced in Sect. 8.1; parameters of the potential are the total mass
M∗, MDM and the scale radius ε∗, εDM of the luminous and dark component,
respectively

ρ(r) spatial density (in a spherically symmetric system)

vc circular velocity; provided spherical symmetry of the galaxy, it simply denotes
the quantity

√
rφ′(r) , where φ′(r) is the first derivative of the galactic potential

with respect to the galactocentric radius r.

a acceleration in the host galaxy; a0 is the constant term and a1 is the coefficient
of a linear term of the expansion of the acceleration around the shell edge

41



T (r) period of radial motion at the galactocentric radius r in the host galaxy poten-
tial; Eq. (4)

n serial number of a shell; shells are traditionally numbered from the outermost
to the innermost ones; Sect. 9.1

rTP current turning point, i.e. the radius where the stars are located in their apoc-
enters at a given moment (the moment of measurement); Eq. (3)

vTP phase velocity of a current turning point; Eq. (5)

r∗ position of a star at a given time t since the release of the star in the center
of the host galaxy; Eqs. (6) and (7); often plain r also denotes the position of
stars but the meaning is clear from the context

rac position of the apocenter of a star (uniquely related to the energy of the star
for radial orbits); Eqs. (6) and (7)

vr stellar velocity at the galactocentric radius r; in the model of radial oscillations
the stellar velocity is always in the radial direction

rs position of the edge of a shell, a function of time rs(t); Sect. 9.2, Eq. (8)

rs0 position of the shell edge at the moment of measurement

vs phase velocity of a shell edge; approximately equal to vTP; Eq. (9)

ts time when a star currently at radius r will or did reach the corresponding edge
of the shell; Sect. 11.1

vlos line-of-sight velocity; the projection of the stellar velocity into z direction; vlos =
vrz/r

vlos,max the maximal absolute value of the LOS velocity

rvmax radius of maximal LOS velocity, radius from which comes the contribution to
the LOSVD at the maximal speed vlos,max; Sect. 11.3

zvmax spot at the line of sight from which comes the contribution to the LOSVD at
the maximal speed; zvmax = ±

√
r2
vmax −R2, Sect. 9.8

F (vlos) line-of-sight velocity distribution (LOSVD); Eq. (11)

σsph (rs) shell-edge density distribution; Eq. (13), Sects. 9.6, 9.7, and 9.8

Σsph (rs) discrete equivalents of σsph (rs); Eq. (17)

Σlos (R) projected surface density, the projection of spacial density into the x− y plane
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9 Model of radial oscillations

If we approximate the shell system with a simplified model, we can describe its evolution
completely depending only on the potential of the host galaxy. The approximation lies in
the numerical integration of radial trajectories of stars in a spherically symmetric potential.
Stars behave as if they were released in the center of the host galaxy at the same time
and their distribution of energies is continuous. Usually we demand that the distribution
is continuous at least in such a range that stars with apocentra 10–30 kpc around the
edge of the observed shell are present. Moreover we need that their density in this region
does not go sharply to zero. In some cases, we need to know the distribution of energies
explicitly. We express it in terms of the shell-edge density distribution (Sects. 9.6), which
is a quantity more suitable for our situation and which can be unambiguously converted
to the distribution of energies or the initial velocity distribution (Appendix C). We show
that the particular choice of the function does not affect the results presented in this work
(Sects. 9.7).

We call this model the model of radial oscillations, and it corresponds to the notion
that the cannibalized galaxy came along a radial path and disintegrated in the center of
the host galaxy. As a result the stars were released at one moment in the center and began
to oscillate freely on radial orbits. This approach was first used by Quinn (1984), followed
by Dupraz and Combes (1986, 1987) and Hernquist and Quinn (1987a,b).

This model uses the exact knowledge of the chosen potential of the host galaxy, but
requires it to be spherically symmetric. The potential can be given analytically or numeri-
cally and the stellar trajectories are usually integrated numerically. It differs from the real
shell galaxies in several aspects but it is still the most exact analytical model that we can
easily construct. We will show that in this model, the LOSVD of shells exhibits four inten-
sity maxima and how the position of these maxima are connected with the parameters of
the host galaxy potential. All the following approximations will be compared to the model
of radial oscillations. Later we will show that the model agrees very well with results of
test-particle simulations of the formation of the shell galaxies (Sect. 13).

9.1 Turning point positions and their velocities

In shell galaxies, the shells are traditionally numbered according to the serial number of
the shell, n, from the outermost to the innermost (which in the model of radial oscillations
for a single-generation shell system corresponds to the oldest and the youngest shell, re-
spectively). If the cannibalized galaxy comes from the right side of the host galaxy, stars
are released in the center of the host galaxy. After that, they reach their apocenters for
the first time. But a shell does not form here yet, because the stars are not sufficiently
phase wrapped. We call this the zeroth oscillation (the zeroth turning point) as we try to
match the number of oscillations with the customary numbering scheme of the shells. We
label the first shell that occurs on the right side (the same side from which the cannibalized
galaxy approached) with n = 1. Shell no. 2 appears on the left side of the host galaxy,
no. 3 on the right, and so forth.

In the model of radial oscillations, the shells occur close to the radii where the stars
are located in their apocenters at a given moment (the current turning point, rTP, in our
notation). The shell number n corresponds to the number of oscillations that the stars
near the shell have completed or are about to complete. The current turning point rTP
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must follow the equation

t = (n+ 1/2)T (rTP), (3)

where t is the time elapsed since stars were released in the center of the host galaxy. T (r)
is the period of radial motion at a galactocentric radius r in the host galaxy potential φ(r):

T (r) =
√

2

ˆ r

0

[
φ(r)− φ(r′)

]−1/2
dr′. (4)

The radial period is defined as the time required for a star to travel from apocenter to
pericenter and back (Binney and Tremaine, 1987).

The position of the current turning point evolves in time with a velocity given by the
derivative of Eq. (3) with respect to radius

vTP(r;n) = dr/dt =
1

dt/dr
=

1

n+ 1/2
(dT (r)/dr)−1 . (5)

We can clearly see from this relation, which was first derived by Quinn (1984), that any
further turning point (turning point with higher n) at the same radius moves more slowly
than the former one. Thus causes a gradual densification of the space distribution of the
shell system with time.

Technically, the reason for this densification is that the time difference between the
moments when two stars with similar energy reach their turning points is cumulative. Let
4t be the difference in periods at two different radii ra and rb (with ra < rb, on the right).
The radius where stars complete the first oscillation moves from ra to rb in 4t. But in
the second orbit on the left, the stars from rb will already have a lag of 4t behind those
from ra and will just be getting a second one, so the third one (the second on the same
side) reaches rb from ra in 3×4t. Every nth completed oscillation on the right side, then
moves n times more slowly than the first one. The situation is similar on the left side,
and the shell system is getting denser. Moreover, the turning point has an additional lag
of 1/2T (rTP), because the stars were released in the center of the host galaxy before their
zeroth oscillation. This is the source of the factor (n+ 1/2) in Eqs. (3) and (4).

9.2 Real shell positions and velocities

Even in the framework of the model of radial oscillations, the position and velocity of the
true edge of the shell cannot be expressed in a straightforward manner. Photometrically,
shells appear as a step in the luminosity profile of the galaxy with a sharp outer cut-off. This
is because the stars of the cannibalized galaxy occupy a limited volume in the phase space.
With time, the shape of this volume gets thinner, more elongated, and wrapped around
invariant surfaces defined by the trajectories of the stars in the phase space, increasing its
coincidence with these surfaces. A shell appears close to the points where the invariant
surface is perpendicular to the plane of the sky (Nulsen, 1989). For the nth shell, this is
the largest radius where stars about to complete their nth oscillation are currently located.
This radius corresponds to the shell edge (Sect. 9.3) and it is always larger than that of
the current turning point of the stars that are completing their nth oscillation. Thus, the
shell edge consists of outward-moving stars about to complete their nth oscillation.

Dupraz and Combes (1986) state that the stars forming the shell move with the phase
velocity of the shell. While we show that this holds only roughly, we use this approximation
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in Sect. 11 to derive the relation between the shell kinematics and the potential of the host
galaxy.

The position of a star, r∗, at a given time t since the release of the star in the center
of the host galaxy is given by an implicit equation for r∗ and is a function of the star
energy, or equivalently the position of its apocenter rac.

9 For stars with the integer part of
t/[2T (rac)] odd, the equation reads:

t = (n+ 1)
√

2
´ rac

0 [φ(rac)− φ(r′)]−1/2 dr′−
−
´ r∗

0 [2(φ(rac)− φ(r′))]−1/2 dr′.
(6)

For stars that have completed an even number of half-periods (only such stars are found
on the shell edge), the equation is

t = n
√

2
´ rac

0 [φ(rac)− φ(r′)]−1/2 dr′+
+
´ r∗

0 [2(φ(rac)− φ(r′))]−1/2 dr′.
(7)

The first term in Eq. (7) corresponds to n radial periods for the star’s energy (n is maximal
so that nT (rac) < t), while the other term corresponds to the time that it takes to reach
radius r∗ from the center of the galaxy. Even for the simplest galactic potentials, these
equations are not analytically solvable and must be solved numerically.

The position of the nth shell rs equals the maximal radius r∗ that solves Eq. (7) for
the given n.10 In symbolic notation

rs = max{r∗(rac); bt/T (rac)c = n− 1}, (8)

where r∗(rac) is an implicit function given by Eq. (7). Simultaneously, we require rac to
satisfy the equation bt/T (rac)c = n− 1, where bxc indicates the integer part of x, so that
bt/T (rac)c is the number of periods completed by the star since the release of the star in
the center of the host galaxy. Radial period T (rac) is defined by Eq. (4) and n is the serial
number of the shell for which we want to find the edge radius rs.

Such a radius is actually identical to the step in projected surface density that corre-
sponds to the shell edge (Sect. 9.3). For a shell with nonzero phase velocity the shell edge
is always further from the center than the current turning point, rTP < rs. On the other
hand, the apocenter rac of a star currently located at the shell edge is obviously further
from the center than the current shell edge position.

The shell velocity vs is obtained from the numerical derivative of a set of values of rs

for several close values of t
vs = drs/dt. (9)

The stellar velocity at the shell edge, vr(rs), is obtained by inserting rs with its corre-
sponding11 rac into:

vr(r∗) = ±
√

2[φ(rac)− φ(r∗)]. (10)

9We denote the apocenter of the star corresponding to its energy as rac, whereas rTP (the current turning
point) is the radius at which the stars reach their apocenters at the time of measurement.

10In the approximation of a constant shell velocity, vs, and a constant galactocentric acceleration, a0

(Sect. 11), the distance between the current turning points and the shell radius is rs − rTP = −v2
s /(2a0).

11By corresponding we mean that the pair of values rs = r∗ and rac solves Eq. (7) for a given time t
since the release of the star in the center of the host galaxy, a given serial number n of a shell and a given
potential of the host galaxy φ(r).
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For the stars following Eq. (7), the velocity will be positive; for the rest, it will be negative.
The positive velocity means that the stars are moving outward. The edge of a shell is
exclusively made up of stars with positive velocities. Recall that the star moves along
radial trajectories.

It is clear that vr(rs) ≤ vs. Actually, vr(rs) is lower than the phase velocity of the
shell (Table 2) but the difference between the values of these velocities is small. At the
same time, the position of the shell for a given time is not far from the current turning
point, and their separation changes slowly in galactic potentials. Thus, the velocity of the
turning points given in Eq. (5) is a good approximation for the shell velocity (Fig. 14).
Eq. (5) is not generally solvable analytically either, but the numerical calculation of vTP is
much easier than determining the true shell velocity vs. The procedure to calculate vs is
described in this section.

Figure 10: Projected surface density of shells in the host galaxy, with potential introduced in
Sect. 8.1, 2.2 Gyr after the release of the stars in the center. The scale bar is logarithmic in
arbitrary units.

9.3 Appearance of the shells

The model of radial oscillations is primarily used for calculating the positions of LOSVD
maxima. Nevertheless, we can also use it to derive the spatial and projected surface
density of the stars that form the shell (ρ(r) and Σlos(R), respectively) and the shape of
the LOSVD itself. We do not aim to produce these quantities with such a precision that
would be required for comparison with observation within this model. But we can still have
a look at them to obtain qualitative insight, although their exact shape is not important
for our work.

To do that, it is not sufficient to know the kinematics as described in Sect. 9.2 but we
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need to add an assumption about the radial dependence of the shell-edge density distribu-
tion σsph (rs). We chose this to correspond to a constant number of stars at the edge of
the shell; for more details, see Sects. 9.6, 9.7, and 9.8. Furthermore we assume that the
density of stars on the shells has uniform angular distribution. In most cases, we follow
the shell kinematics only between 0.9rs − rs and thus an opening angle of at least 51.7° is
sufficient.

Fig. 10 shows the projected surface density of the five outermost shells at 2.2 Gyr after
the release of the stars in the center of the host galaxy (for parameters of the potential, see
Sect. 8.1). Projected surface density of the host galaxy itself is not displayed. The opening
angle of the shells is chosen to be the full 180°. Shells with an odd serial number are to
the right, those with an even number to the left, corresponding to the cannibalized galaxy
flying in from the right hand side of the host galaxy. The whole picture is analogical to
the results of the N -particle simulation analyzed in Sect. 13.2.

In practice, such a projected surface density depends only on the projected radius R
and it is shown also in Fig. 11. Jumps in the density do indeed correspond to the radius
rs in the sense in which it is introduced in Sect. 9.2, Eq. (8).
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Figure 11: Projected surface density of shells with respect to the projected radius, the same as
in Fig 10.

9.4 Kinematics of shell stars

In the model of radial oscillations, we can also describe the LOSVD of a shell at a given
time t, for a given potential of the host galaxy φ(r). Eqs. (6) and (7) determine the current
star position r∗ and the shell number n for any apocenter rac in a range of energies. The
radial velocity of a star on the particular radius is given by inserting the corresponding
pair of rac a r∗ in Eq. (10). Naturally, the projections of these velocities to the selected
line of sight (LOS) form the LOSVD, which can be formally expressed by Eq. (15). To
reconstruct the LOSVD, we have to add an assumption about the radial dependence of the
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Figure 12: Left: Scheme of the kinematics of a shell with radius rs and phase velocity vs. The
shell is composed of stars on radial orbits with radial velocity vr and LOS velocity vlos. Right: The
LOSVD at projected radius R = 0.9rs, where rs = 120 kpc (parameters of the shell are highlighted
in bold in Table 2), in the framework of the model of radial oscillations. The profile does not include
stars of the host galaxy, which are not part of the shell system, and is normalized, so that the total
flux equals one. (a) The LOSVD showing separate contributions from inward and outward stars;
(b) the same profile, separated for contributions from the near and far half of the host galaxy.

shell-edge density distribution σsph (rs). We chose this to correspond to a constant number
of stars at the edge of the shell, σsph (rs) ∝ 1/r2

s . In Sects. 9.6, 9.7, and 9.8, we deal with
this function in detail and show that the particular choice does not matter much. Here we
concisely describe the LOSVD at the projected radius R which is less than the position of
current turning points, R < rTP. The other case (rTP < R < rs) is discussed in Sect. 9.5.

Mr. Eggy measures the LOSVD of stars in the shell, which is composed of inward
and outward stars on radial trajectories as illustrated in Fig. 12. The stars near the edge
of the shell move slowly. But it is clear from the geometry that contributions add up
from different galactocentric distances, where the stars are either still traveling outwards
to reach the shell or returning from their apocenters to form a nontrivial LOSVD.

For every galactocentric distance r intersected by the line of sight z, there is a different
radial stellar velocity vr and a different projection factor z/r. The maximal/minimal
LOS velocity comes from stars at two particular locations along the line of sight (A and
B), both of which are at the same galactocentric distance for outward or inward stars
(the radii of maximal LOS velocity, Sects. 9.8 and 9.8; routward

A = routward
B ≡ routward

vmax ;
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rinward
A = rinward

B ≡ rinward
vmax ). For inward stars, points A and B are closer to the center of the

host galaxy than for outward stars (rinward
vmax < routward

vmax ) as indicated in Fig. 12 on the left.
This will be discussed more precisely in Sect. 11.6 (see also Fig. 21). The maximal/minimal
LOS velocity corresponds to the intensity maximum of the LOSVD, as can be seen in the
right-hand panels of Fig. 12. The nature of this correspondence is explained in Sect. 9.8.

The edge of the shell moves outwards with velocity vs. At any given instant, the stars
that move inwards are returning from a point where the shell edge was at some earlier time,
and so their apocenter is inside the current shell radius rs. Similarly, the stars that move
outwards will reach the shell edge in the future. Consequently, the stars that move inwards
are always closer to their apocenter than those moving outwards at the same radius, and
their velocity is thus smaller. The inward stars move toward Mr. Eggy in the farther of
the two points (A) and away from them in the nearer point (B), while the stars moving
outwards behave in the opposite manner. Together, there are four possible velocities with
the maximal contribution to the LOSVD, resulting in its symmetrical quadruple shape
shown in Fig. 12. In the picture, the intensity maxima coincide with velocity extremes for
separate contributions to the LOSVD (for more details, see Sect. 9.8).
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Figure 13: Locations of peaks of the LOSVDs in the framework of the model of radial oscillations:
(a) for the first shell at different radii, (b) for the first to the fourth shell at the radius of 120 kpc.
Parameters of all shells are shown in Table 2. For parameters of the host galaxy potential, see
Sect. 8.1.

9.5 Characteristics of spectral peaks

In this section we describe and demonstrate the characteristics of the LOSVD maxima
in the model of radial oscillations using a particular host galaxy model. We model the
potential of the host galaxy as a double Plummer sphere, as described in Sect. 8.1.

The separation between peaks of the LOSVD for a given projected radius R is given by
the distance of R from the edge of the shell rs. The profile shown in Fig. 12 corresponds to
projected radius R = 0.9rs. The closer to the shell edge, the narrower the profile is. The
separation of the peaks at a given R depends on the phase velocity of the specific shell,
near which we observe the LOSVD. This velocity is, for a fixed potential, given by the shell
radius and its serial number (Sect. 9.1). These effects are illustrated in Fig. 13, where we
show the positions of the LOSVD peaks for the first shell at different radii rs and for a shell
at 120 kpc with different serial numbers n. Note that the higher the serial number n at a
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given radius, the smaller is the difference in the phase velocity between the two shells with
consecutive serial numbers and thus in the positions of the respective peaks. Parameters
of the corresponding shells can be found in Table 2.

t n rs rTP vs vr(rs) vTP vc

Myr kpc kpc km/s km/s km/s km/s

215 1 15 14.5 63.5 57.5 61.2 245
416 1 30 28.3 90.3 82.6 81.0 261
634 1 60 53.9 165.8 151.5 151.8 362
1006 1 120 113.9 142.4 133.3 141.8 450
1722 2 120 117.9 84.7 79.4 84.7 450
2428 3 120 118.9 60.3 54.6 60.3 450
3130 4 120 119.3 46.8 42.6 47.0 450

Table 2: Parameters of shells for which the LOSVD intensity maxima are shown in Fig. 13. t:
time since the release of stars at the center of the host galaxy, in which the shell has reached its
current radius calculated in the framework of the model of radial oscillations; n: serial number of
a shell (Sect. 9.1); rs: shell radius; vs: shell phase velocity according to the method described in
Sect. 9.2; rTP: galactocentric radius of the current turning points of the stars at this time, given
by Eq. (3); vr(rs): radial velocity of the stars at the shell edge; vTP: phase velocity of the current
turning point according Eq. (5); vc: circular velocity at the shell-edge radius. For parameters of the
host galaxy, see Sect. 8.1. The shell that is used in Figs. 12, 15–18, and 21–25 is highlighted in
bold.

 0

 50

 100

 150

 200

 30  60  90  120  150

v s
 [k

m
/s

]

r [kpc]

vs(n = 1)
vTP(n = 1)
vTP(n = 2)
vTP(n = 3)
vTP(n = 4)

Figure 14: Dependence of the phase velocity of the turning points on the galactocentric radius for
the first four shells according to Eq. (5). For parameters of the host galaxy potential, see Sect. 8.1.
Black crosses show the true velocity of the first shell calculated for several radii according to the
method described in Sect. 9.2.
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The radial dependence of the phase velocity of the first four shells in the whole host
galaxy is shown in Fig. 14. Using Eq. (5), we see that the velocity of each subsequent
shell differs from the first one only by a factor of 3/(1 + 2n). The large interval of the
galactocentric radii where the shell velocity increases is caused by the presence of the halo
with a large scaling parameter. In fact, we do not show the shell velocity, but the velocity
of the turning points at the same radius. Nevertheless, these are sufficiently close. Black
crosses show the true velocity of the first shell calculated for several radii according to the
method described in Sect. 9.2. For shells of higher n, these differences between the phase
velocity of a shell and the corresponding turning point with consecutive serial numbers are
even smaller.

The edge of a moving shell is at the radius, which is always slightly further from the
center than the current turning points. Between these radii (rTP < R < rs), there is an
intricate zone, where all the stars of a given shell move outwards. As shown in Fig. 15,
when the LOS radius from lower radii gets near to the turning points of the stars, the
inner maxima of the LOSVD approach each other until they merge and finally disappear.
We actually see a minimum in the middle of the LOSVD closer to the shell edge than the
current turning points. The intricate zone is much larger for the first shell. For the shell
radius of 120 kpc in our host galaxy potential, it occupies 6 kpc for the first shell, 2 kpc for
the second one, and less than one kpc for the fourth shell (Table 2).
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Figure 15: Evolution of the LOSVD near the shell edge for the second shell at rs = 120 kpc
(parameters of the shell are highlighted in bold in Table 2) for the projected radius 116, 117, 118,
and 119 kpc in the framework of the model of radial oscillations. In this model, the current turning
points of stars in the shell are at rTP = 117.9 kpc. For R > rTP the inner maxima disappear.
Profiles do not include stars of the host galaxy, which are not part of the shell system and are
normalized so that the total flux equals one. For parameters of the host galaxy potential, see
Sect. 8.1.
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9.6 Equations of LOSVD

We want to investigate the LOSVD, F (vlos), on a given projected radius R for one particular
shell. Assuming cylindrical symmetry of the shell system, F near(vlos) = F far(−vlos), where
the superscripts indicate the near and far half of the galaxy. The total LOSVD is obtained
adding the two contributions together.

F far(vlos) form the far half of the galaxy is given by the integral of the distribution of
shell stars f(r, vlos) along the line of sight

F far(vlos) =

ˆ zfin

0
f(r, vlos)dz. (11)

In the model of radial oscillations, we assume spherical symmetry of the shell system
and thus the distribution function depends only on galactocentric radius r. Moreover, in
this model, stars are located on a three-dimensional hypersurface in the six-dimensional
phase space as they move as if they were released all at once in the center of the galaxy.
In this case zfin =

√
r2

s −R2. Furthermore, for a given r, in each moment there are only
two possible values for the radial velocity, vr1 and vr2, therefore only two possible values
for its projection to the line of sight, thus

f(r, vlos) = ρ1(r)δ[vlos −
z

r
vr1] + ρ2(r)δ[vlos −

z

r
vr2], (12)

where δ is the Dirac delta function; and ρ1(r) and ρ2(r) are the densities of stars with the
velocities vr1 and vr2, respectively. The values vr1 and vr2 are taken from Eq. (10), into
which we put both pairs [r; rac1] and [r; rac2], that solve Eqs. (6) and (7) in Sect 9.2 for
given galactic potential φ(r), time t since the release of the star, and serial number n of a
shell. In Eqs. (6) and (7) r is substituted for r∗ and rac1 or rac2 for rac.

To evaluate the density, ρ(r), let us first define N (rs) as the probability density for
stars to have their shell radius within an interval (rs, rs + drs). Then we can define the
distribution σsph (rs) as

σsph (rs) = m
N (rs)

r2
s

, (13)

where m is the (average) mass of a star. We call σsph (rs) the shell-edge density distribution.
In this case, rs is a function of the stellar energy, rs(rac), and stands for the value of the
shell edge radius at the moment when the star with the corresponding energy is at the
shell edge.

The radial dependence of σsph (rs) determines the time evolution of the projected surface
density of a shell, Sect. 14. The shell-edge density distribution also determines what the
distribution of stellar velocities was at the time of their release in the center of the host
galaxy, see Appendix C.

The spatial density ρ(r) is given by

ρ(r) =
2∑
i=1

r2
si(r)

r2
σsph (rsi(r))

drsi(r)

dr
, (14)

where rs(r) is the location where the stars, currently situated at the radius r, will or did
reach their respective shell edge, and rs(r) has two solutions, rs1(r) and rs2(r), for one r,
where 0 < r < rs.
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Eq. (14) is easy to understand: the first fraction, r2
si(r)/r

2, corresponds to the geometri-
cal dilution of the number of stars during radial movement and the last fraction, drsi(r)/dr,
converts the somewhat ephemeral distribution function in an artificially chosen parameter
(shell radius) into a coordinate density. The final formal expression for the LOSVD then
reads

F far(vlos) =

ˆ zfin

0

2∑
i=1

r2
si(r)

r2
σsph (rsi(r))

drsi(r)

dr
δ[vlos −

z

r
vri]dz. (15)

We call this expression “formal”, because – at least in the model of radial oscillations – we
are not able to obtain closed analytical expression for almost any of the terms involved.

9.7 Shell-edge density distribution and LOSVD

For us, the modeling of the shape of the LOSVD is of peripheral importance, as we will
eventually need to know only the positions of the LOSVD maxima. The peaks occur at the
edge of the distribution (Sect 9.8). The determination of the location of the line-of-sight
velocity extremes does not require the knowledge of stellar density profile. We do not even
aim to qualitatively model the shape of the LOSVD, but we can still show it to obtain a
qualitative insight.

If we want to obtain the full LOSVD, we have to choose the radial dependence of the
shell-edge density distribution σsph (rs). In the framework of the radial-minor-merger origin
of shell galaxies, σsph (rs) depends on the parameters of the merger that has produced the
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Figure 16: LOSVD of the second shell at rs = 120 kpc (parameters of the shell are highlighted in
bold in Table 2) for the projected radius 108 kpc in the framework of the model of radial oscillations,
where the shell-edge density distribution is σsph (rs) ∝ r2

s for the blue curve and σsph (rs) ∝ 1/r2
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for the red one. The profiles do not include stars of the host galaxy, which are not part of the shell
system, and are normalized, so that the total flux equals one.
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shells. It is determined by the energy distribution of stars of the cannibalized galaxy in the
instant of its decay in the center of the host galaxy. But the energy distribution is principle
unknown for real shell galaxies and it can be very different for various collisions even if we
consider only radial mergers. Thus you need to choose σsph (rs) somehow arbitrary.

For simplicity, we choose the shell-edge density distribution to be

σsph (rs) ∝ 1/r2
s , (16)

corresponding to a shell containing the same number of stars at each moment. It turns
out that no reasonable choice of this function has an effect on the general characteristics
of the LOSVD and the principles of its formation that we describe in Sect. 9.8.

For illustration, we demonstrate the LOSVD of σsph increasing as r2 and σsph decreasing
as 1/r2 in Fig. 16. For the profiles shown, the ratio of the inner and outer peaks changes
with the change of the σsph, but the peak positions are unaffected and the overall shape
of the profile does not change significantly. For shells that were created in a radial minor
merger, we can expect the shell-edge density distribution to rise in the inner part of the
host galaxy, followed by an extensive area of its decrease. The fact that the main features
of the LOSVD do not depend on the choice of σsph means that our method of measuring
the potential of shell galaxies is not sensitive to the details of the decay of the cannibalized
galaxy It also means that, for the purposes of the modeling the LOSVD of shells, we can
safely pick σsph of our choice.

9.8 Nature of the quadruple-peaked profile

Now we will show, why the LOSVD is so insensitive to the choice of the radial dependence of
the shell-edge density distribution σsph (rs). Fig. 17 shows the formation of the quadruple-
peaked profile for the far half of the galaxy (that is, for positive values of z) at particular
projected radius R. The inner peak is located to the left, the outer one to the right (Fig. 17
– lower panels). For the near half of the galaxy, the graph is simply reflected along the
axis vlos = 0. To help visualize the problem, we show the individual contributions to the
LOSVD from stars with different shell radii that correspond to different points along the
line of sight. To allow that, we discretize their continuous distribution σsph (rs) to a set of
equidistant spheres. Each of the spheres carries a density of stars obtained by integration
of the distribution σsph (rs) over a small range in shell radii as follows:

Σsph(rs) =

ˆ rs+∆rs/2

rs−∆rs/2
σsph(r)dr (17)

to represent the given part of the distribution. To each of the spheres, we associate the
weight

I = (rs/r)
2Σsph(rs)

r√
r2 −R2

, (18)

which shows its contribution to the LOSVD. Similarly to Eq. (14), the term (rs/r)
2 simply

takes into account the geometric dilution of the sphere with radius. The factor r/
√
r2 −R2

reflects the fact that spheres with different radii are intersected by the line of sight under
different angles. The color of the point encodes the weight I for each contributing sphere
– the upper panels of both figures (a) and (b) in Fig. 17. Note that to each value of z we
can assign the corresponding r =

√
z2 +R2.
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To evaluate which spheres contribute to the observed shell profile, we let them evolve
(either backwards or forwards) from the point in time when they will reach or have reached
their shell radii to the time of the observation and we place them on the exact locations
they reach after this evolution. This operation is a discrete analog of the term drs(r)/dr in
Eq. (14) which transfers the distribution in rs into the distribution in actual positions at
the time of observation. In the figures, we can see its effects as dilution and thickening of
the distribution of the colored points in different parts of the plane. The points are located
at a curve in the vlos − z plane. The shape of the curve is determined by the δ functions
in Eq. (12). Finally, we count the spheres in bins of vlos irrespective of their z coordinate
to obtain the LOSVD (the lower panels of both figures (a) and (b) in Fig. 17).

σsph (rs) and Σsph (rs) are different quantities, but from Eq. (17) it is clear that once we
choose the radial dependence of one of them, the other has to have the same dependence.
In Fig. 17 (a), this function is chosen to be Σsph(rs) ∝ 1/r2

s , which is the formula we
generally use for σsph (rs) or Σsph (rs) unless specifically noted otherwise. In Fig. 17 (b)
we show that the quadruple-peaked shape appears even for a completely reversed density
function Σsph(rs) ∝ r2

s . The densities are calculated relative to the density at the radius of
current turning points, Σsph(rTP) = 1.

The bottom panels of both figures in Fig. 17 show the LOSVD itself. Although the
weights of every point are different for the different choices of Σsph(rs), the dominant effect
is the bending of the curve in the vlos − z plane around zvmax1/2 at the LOS velocity
extremes and thus the points around these extremes are much denser for a unit of the vlos

than in the inner part of the distribution. This effect is completely the same for both (a)
and (b). The change of the weight causes relative differences in the heights of the LOSVD
peaks, but in no way casts any doubts over their existence at the extremes of the projected
velocity.

The points zvmax1/2 correspond to the radii of maximal LOS velocity rvmax1/2 (points

A and B from Sect. 9.4) through the equation rvmax =
√
z2
vmax +R2. If the density in

the vicinity of these points quickly dropped towards zero, the peaks could disappear. This
should certainly not happen at all projected radii around the shell edge, because then
there would be no shell at all. Moreover, such a gap has no physical foundation for shells
of radial-minor-merger origin. On the other hand, if the shell has rather stream-like nature,
the stars may be present in only one half of the galaxy. Then just one inner and one outer
peak would be observable (i.e. the inner peak at negative velocities and the outer at positive
or vice versa). This is probable the case of the so-called Western Shelf in the Andromeda
galaxy (Fardal et al., 2012).

The only case of disappearance of peaks, which is natural to the model of radial os-
cillations, occurs for the inner peaks in the zone between the current turning points rTP

and the shell edge. The reason is evident from Fig. 18 where we show the contributions
along the line of sight at projected radii R = 108 kpc and R = 119 kpc, while the edge of
the shell is at rs = 120 kpc and the current turning points at rTP = 118 kpc. The color
code in this case encodes the positions of the apocenters of the stars contributing to the
respective LOSVD. The location of the apocenters rac roughly corresponds to the radii
rs(r) where the stars will or have been located during their passage through the edge of
the shell. The radius rs(r) is obviously always slightly closer to the center of the host
galaxy than the apocenters of the respective stars. For the shell that we show (the second
shell at rs = 120 kpc) the difference of these radii is (for the chosen potential of the host
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Figure 17: The LOSVD and its different contributions along the line of sight z for the far half of
the host galaxy for the second shell at rs = 120 kpc (parameters of the shell are highlighted in bold
in Table 2) for the projected radius 108 kpc in the framework of the model of radial oscillations.
Graphs (a) and (b) differ in the choice of Σsph (rs): (a) Σsph(rs) ∝ 1/r2

s , (b) Σsph(rs) ∝ r2
s .

galaxy) approximately rac − rs(r) = 2 kpc.12

10 Stationary shell

MK98 studied the kinematics of a stationary shell – a monoenergetic spherically symmetric
system of stars oscillating on radial orbits in a spherically symmetric potential. They de-
rived an analytic approximation for the LOSVD in the vicinity of the shell edge, predicting
a double-peaked spectral-line profile, where the locations of these peaks are connected via
a simple relation to the gradient of the potential of the host galaxy at the shell edge.

12In the approximation of a constant shell velocity, vs, and a constant galactocentric acceleration, a0

(Sect. 11), the following holds: rac − rs(r) = −v2
s /(2a0). This is an expression for the difference of the

radius of apocenter of a star and the radius of the passage of the very same star through the edge of the
shell. Incidentally (and only in this approximation), the same expression holds for the difference of the
current turning point and the shell radius rTP − rs even though the current turning point represents the
apocenter for stars that have already been on the shell edge.
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As our work expands the analysis of MK98, we also show the derivation of their results.
In Sect. 13, we apply also their method to the simulated data and compare the results with
the results of our methods. Furthermore, the approximation of a stationary shell allows
some calculations that prove impossible for a moving shell, such as the calculation of an
explicit analytical shape of the LOSVD.

The stationary shell differs qualitatively from the model of radial oscillations, because
it requires stars to appear at all radii between R and rs, where R is the projected radius
at which we observe the LOSVD. But because all the stars in this system have the same
energy, it is impossible to create such a situation by releasing all of the stars at one time
from one point.

10.1 Motion of stars in a shell system

Let the shell edge be again rs. Stars at this radius are in their apocenters and thus
stationary. We assume following:

� stars are on strictly radial orbits

� all stars have the same energy

� stars are near the shell edge, so 1− r/rs � 1

The radial velocity of stars at a given galactocentric radius r is then given by the difference
of the host galaxy potential φ at this radius and at the edge of the shell

vr± = ±
√

2 [φ(rs)− φ(r)]. (19)
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Figure 18: LOSVD and its individual contributions along the line of sight for the far half of the
host galaxy for the second shell at rs = 120 kpc (parameters of the shell are highlighted in bold
in Table 2) for the projected radius 108 kpc (light blue curve in the lower panel) and 119 kpc (dark
blue curve in the lower panel) in the framework of the model of radial oscillations.
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The velocity projected to the line of sight is

v2
los =

(
1−R2/r2

)
2
√
φ(rs)− φ(r). (20)

Expanding this function around r = rs we obtain

v2
los = −2 (r − rs)φ

′(rs)
(
1−R2/r2

s

)
−

− (r − rs)
2 1
r3
s

[
4R2φ′(rs) + rs

(
r2

s −R2
)
φ′′(rs)

]
+

+o
[
(r − rs)

3
]
,

(21)

where φ′(rs) and φ′′(rs) are the first and the second derivative of the potential of the host
galaxy with respect to the radius at rs. Near the edge of the shell (|R− rs| � rs), the
following holds: (

1−R2/r2
s

)
' 2

rs −R
rs

. (22)

Using Eq. (22) and neglecting all terms of the order o
[
(R− rs)

3
]
, Eq. (21) takes the form

v2
los ' 4 (rs − r) (r −R)

φ′(rs)

rs
. (23)

The derivative of this expression is zero when

r =
1

2
(R+ rs). (24)

thus the extremes of the projected velocity, vlos,max±, must follow

vlos,max± = ±vc(1−R/rs), (25)

where vc =
√
rsφ′(rs) is the circular velocity in the potential of the host galaxy at the

radius of the shell. If we call 4vlos = 2 |vlos,max±| the difference between the minimal and
maximal LOS velocity at the given galactocentric radius, the derivative of this variable
directly gives the derivative of the gravitational potential of the galaxy at the radius of the
shell edge (equation (7) in MK98):

d(4vlos)

dR
= −2

vc

rs
. (26)

10.2 Constant acceleration

Alternatively, we may assume that the stars move in a gravitational field of a constant
acceleration a0 = −φ′(rs). In such a case, the radial velocity vr of a star at radius r will
by given by

vr± = ±
√

2a0(r − rs) (27)

and its projection to the line of sight

v2
los = (vr±z/r)

2 = −2a0(rs − r)
(
1−R2/r2

)
, (28)

where R and z denote the projected radius and the distance along the line of sight, respec-
tively. The center of the host galaxy is located at R = 0 and z = 0. Comparing Eq. (23)
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and Eq. (28) , we obtain an approximative relation for the projection factor z/r near the
edge of the shell

z/r =
√

1−R2/r2 '
√

2(r/rs −R/rs). (29)

We use this relation in Sect. 11.7 in order to calculate the extremes of the LOS velocity in
the approximation of a shell with a constant phase velocity.

10.3 LOSVD

Eq. (26) shows, that by measuring the width of the projected velocity distribution at
different radii near the shell edge we can easily obtain the gradient of the potential of the
host galaxy at the shell edge. Measuring the extremes of the LOS velocity may prove very
difficult in practice, particularly because of the contamination of the signal from the shell
by the light of the host galaxy. For the stationary shell, we can however calculate the shape
of the LOSVD explicitly and it turns out that the extremes of the LOS velocity correspond
to the maxima of the intensity in the LOSVD, as shown below in this section.
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Figure 19: LOSVD of the stationary shell at four projected radii according to Eq. (35).

MK98 derived the analytical form of LOSVD, F (vlos), in the approximation for the
projected radius close to the edge of a stationary shell rs. For the construction of the
LOSVD, we start with Eq. (11) – the integration of the stellar distribution function in
the shell along the line of sight at the chosen projected radius R. The problem is again
spherically symmetric, thus the distribution depends only on the radius r. Moreover, for a
stationary shell, the spatial density near the shell edge is proportional to ρ(r) ∝ (vrr

2)−1,
thus it is useful to express the distribution function in radial velocity

f(r, vlos) = f(r, vr)
dvr
dvlos

. (30)
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It follows from Eq. (23) that a particular value of the projected velocity can be found only
at two specific galactocentric radii r± along the line of sight

r± = rs/2

√
R/rs + 1±

[
(1−R/rs)2 − (vlos/vc)

2
]
. (31)

Note that at a particular galactocentric radius, the value of the radial velocity is fully
determined in the case of a stationary shell, see Eq. (27). Thus

f(r, vr) =
k

vrr2
δ(vr − vr±), (32)

where δ is the Dirac delta function and k is a constant of proportionality of the density at
the given shell radius. The LOSVD then take the form

F (vlos) =

ˆ
k

vrr2
δ(vr − vr±)

dz

dvlos
dvr (33)

yielding after the integration

F (vlos) =
kr2

s |vlos|
2vc

[
1

r+z+vr+ |R+ rs − 2r+|
+

1

r−z−vr− |R+ rs − 2r−|

]
, (34)

where z± = (r2
± − R2). Eq. (34) can be further simplified for r± near rs and assuming

1−R/rs � 1 to obtain a final relation (equation (15) in MK98)

F (vlos) ∝ 1/

[
rs

√
(1−R/rs)2 − (vlos/vc)

2

]
. (35)

The function F (vlos) has a clear double-peaked profile, symmetric around zero (or rather
the overall velocity of the system). Examples of such a profile are shown in Fig. 19.

10.4 Comparison with the model of radial oscillations

The approximation of the stationary model differs qualitatively from the model of radial
oscillations in that there is only a double-peaked profile (instead of a quadruple-peaked
one). If the real shell galaxies are of radial-minor-merger origin, they would rather exhibit
a profile with four peaks (Sect. 9.4). Nevertheless, we can compare the locations of the
two peaks of the stationary shell with the model (Sect. 9.4) in Fig. 20. We have inserted
the values of the shell radius rs = 120 kpc and the circular velocity at the edge of the shell
in the chosen potential vc = 450 km/s (for parameters of the host galaxy potential, see
Sect. 8.1) into Eq. (25).

On the other hand the model of radial oscillations uses the complete knowledge of the
potential and the velocity of the shell at different times derived from it. The higher is the
number of the shell, the lower is its velocity and the closer are the peaks of the quadruple-
peaked profile to each other and to the green line of the stationary shell. However this
holds only near the edge of the shell. For lower radii, the approximation of a stationary
shell causes the positions of the peaks to diverge from the model of the radial oscillations.

60



-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120

R [kpc]

model of radial oscillations, n = 1
model of radial oscillations, n = 2
model of radial oscillations, n = 3
model of radial oscillations, n = 4

stationary shell

v l
os

 [k
m

/s
]

R [kpc]

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 110  112  114  116  118  120

model of radial oscillations, n = 1
model of radial oscillations, n = 2
model of radial oscillations, n = 3
model of radial oscillations, n = 4

stationary shell

v l
os

 [k
m

/s
]

R [kpc]

Figure 20: LOSVD peak locations for the stationary shell at the radius of 120 kpc according to
Eq. (25) (green dashed lines); and for the first four shells at the radius of 120 kpc (parameters of
the shells are listed in Table 2) according to the model of radial oscillations (Sect. 9.4). The upper
panel shows the whole range of radii, the lower zooms in on the edge of the shell.

11 Constant acceleration and shell velocity

Now we will leave the stationary case and look at the kinematics of a moving shell. The
nonzero velocity of the shell complicates the kinematics of shells in two aspects. Due to
the energy difference between inward and outward stars at the same radius, the LOSVD
peak is split into two, see Fig. 12, and the shell edge is not at the radius of the current
turning point, but slightly further from the center of the host galaxy. In this section, we
describe the LOSVD of such a shell using the assumption of a locally constant galactic
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acceleration together with the assumption of a locally constant shell phase velocity. We
call it the approximation of constant acceleration and shell velocity. In addition, we assume
that the velocity of stars at the edge of the shell is equal to the phase velocity of the shell.

This approximation is nothing but a modification of the model of radial oscillations for
a constant acceleration and shell velocity and thus the concept that the stars behave as if
they were released in the center of the host galaxy at the same time and their distribution
of energies is continuous is still valid in this approximation.

11.1 Motion of a star in a shell system

The galactocentric radius of the shell edge is a function of time, rs(t), where t = 0 is the
moment of measurement and rs(0) = rs0 is the position of the shell edge at this time. We
assume following:

� stars are on strictly radial orbits

� locally constant value of the radial acceleration a0 in the host galaxy potential13

� a locally constant velocity of the shell edge vs
13

� stars at the shell edge have the same velocity as the shell14

The galactocentric radius of each star is at any time r(t), while ts is the time when the
star could be found at the shell edge rs(ts). Then the equation of motion and the initial
conditions for the star near a given shell radius are

d2r(t)

dt2
= a0, (36)

dr(t)

dt

∣∣∣∣
t=ts

= vs, (37)

r(ts) = rs(ts) = vsts + rs0. (38)

The solution of these equations is

r(t) = a0(t− ts)2/2 + vs(t− ts) + rs(ts), (39)

vr(t) = vs + a0(t− ts), (40)

and the actual position of the star r(0) and its radial velocity vr(0) at time of measurement
(t = 0) are

r(0) = t2sa0/2 + rs0, (41)

13By locally constant we mean that we apply one constant value of radial acceleration or shell velocity to
the calculation of the stellar kinematics for one shell in the whole range of radii of interest. Nevertheless,
we use a different value for different shells, even when considering stars at the same radii. Moreover note,
that for stars that give the highest contribution to the LOSVD peaks, the range 0 − rs0 in projected radii
corresponds approximately to 1/2rs0 − rs0 in galactocentric radii.

14In Sect. 9.2 we have discussed that the stars at the shell edge in fact do not have the same velocity as
the shell, but in Table 2 we show using examples that these velocities are very similar.
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vr(0) = vs − a0ts. (42)

Eliminating ts from the two previous equations, we get

vr(0)± = vs ± vc

√
2 (1− r(0)/rs0), (43)

where vc =
√−a0rs0 is the circular velocity at the shell-edge radius.

11.2 Approximative LOSVD

The projection of the velocity given by Eq. (43) to the LOS at a projected radius R will
be

vlos± =
√

1−R2/ (r (0))2vr(0)± =

=
√

1−R2/ (r (0))2
[
vs ± vc

√
2 (1− r(0)/rs0)

]
.

(44)

Using this expression, we can model the LOSVD at a given projected radius for a given
shell. For the proper choice of a pair of values vc and vs, we can find a match with observed
and modeled peaks of the LOSVD. When we use this approach, we call it the approximative
LOSVD.

To model the approximative LOSVD by Eq. (44), we have to add an assumption about
the radial dependence of the shell-edge density distribution, Eq. (13). We chose this func-
tion in the same manner as in the model of radial oscillations that is in a way that corre-
sponds to constant number of stars at the edge of the shell. In Sect. 9.7 we have shown in
the model of radial oscillations that a different choice of the radial dependence of the shell
brightness changes neither the quadruple-peaked shape of the LOSVD of the shells, nor the
positions of the maximal/minimal velocity which corresponds to the peaks of the LOSVD.
This holds also for the approximative LOSVD, because the approximative LOSVD is very
close to the LOSVD from the model of the radial oscillations, see Fig. 23. For the ap-
proximative LOSVD also holds that the inner peaks of the LOSVD disappear in the zone
between the current turning points and the edge of the shell.

11.3 Radius of maximal LOS velocity

MK98 proved that near the edge of a stationary shell, rs, the maximum intensity of the
LOSVD is at the edge of the distribution. They also proved that the maximal absolute
value of the LOS velocity vlos,max comes from stars at the galactocentric radius

rvmax =
1

2
(R+ rs0), (45)

at each projected radius R.
For a moving shell, analogous equations are significantly more complex and a similar

relation cannot be easily proven. Nevertheless, when we apply both results of MK98 we can
show in examples (Figs. 22, 23, and others) that their use is valid, even for nonstationary
shells. In the framework of the radial oscillations model (Sect. 9.4), we have shown that
the peaks of the LOSVD occur at the edges of distributions of the near or the far half of
the galaxy (Sect. 9.8). The inner peak corresponds to inward-moving stars and the outer
one to outward-moving ones. This approach is used in the equations in Sect. 11.4. The
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maximal LOS velocity corresponds to the outer peak and the minimal to the inner one.
Reasons and justification for use of Eq. (45) for rvmax are discussed in Sect. 11.6, point 2
(see also Fig. 21).

11.4 Approximative maximal LOS velocity

Using the results of MK98, we derive an expression for the maxima/minima of the LOS
velocity corresponding to locations of the LOSVD peaks in observable quantities (i.e.,
the maxima/minima of the LOS velocity, the projected radius, and the shell radius) by
substituting rvmax given by Eq. (45) for r(0) in Eq. (44)

vlos,max± =
(
vs ± vc

√
1−R/rs0

)
×

×
√

1− 4 (R/rs0)2 (1 +R/rs0)−2.
(46)

For the measured locations of the LOSVD peaks vlos,max+, vlos,max−, projected radius R,
and shell-edge radius rs0, we can express the circular velocity vc at the shell-edge radius
and the current shell velocity vs by using inverse equations:

vc =
|vlos,max+ − vlos,max−|

2

√
(1−R/rs0)

[
1− 4 (R/rs0)2 (1 +R/rs0)−2

] , (47)

vs =
vlos,max+ + vlos,max−

2
√

1− 4 (R/rs0)2 (1 +R/rs0)−2
. (48)

We call this approach the approximative maximal LOS velocity.

11.5 Slope of the LOSVD intensity maxima

Alternatively, the value of the circular velocity vc at the shell-edge radius could be inferred
from measurements of positions of peaks at two or more different projected radii for the
same shell: let 4vlos = vlos,max+ − vlos,max−, where vlos,max± satisfy Eq. (46). Then, in the
vicinity of the shell edge,

4vlos = 2vc

√
(R/rs0 − 1)

[
1− 4 (R/rs0)2 (1 +R/rs0)−2

]
'

' 2(1−R/rs0)vc,
(49)

and taking the derivative with respect to the projected radius

d(4vlos)

dR
= −2

vc

rs0
, (50)

which happens to be the same expression as Eq. 26 (equation (7) in MK98). Nevertheless,
for a stationary shell, 4vlos is the distance between the two LOSVD intensity maxima of
a stationary shell, whereas in this framework, it is the distance between the outer peak for
positive velocities and the inner peak for negative velocities or vice versa. This equation
allows us to measure the circular velocity in shell galaxies using the slope of the LOSVD
intensity maxima in the R× vlos diagram.
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When we use this approach, we call it the use of the slope of the LOSVD intensity
maxima. It requires us to measure the LOSVD for at least two different projected radii.
In exchange, as we show in Sect. 13.3, that it promises a more accurate derivation of vc.
However it does not allow the derivation of the shell velocity vs. For this purpose, we can
use Eq. (46) to derive a hybrid relation between the positions of the LOSVD peaks, the
circular velocity at the shell-edge radius vc, and the shell velocity:

v2
s = v2

c (1−R/rs0) +
vlos,max+vlos,max−

4 (R/rs0)2 (1 +R/rs0)−2 − 1
. (51)

If we insert the value of vc derived from the measurement of the LOSVD intensity maxima
into this equation, we can expect a better estimate of the phase velocity of the shell.

11.6 Comparison of approaches

The approximation of a constant radial acceleration in the host galaxy potential and shell
phase velocity (Sect. 11) splits into three different analytical and semi-analytical approaches
for obtaining values of the circular velocity vc at the shell-edge radius and the shell phase
velocity vs. Different approaches/models have a different color assigned. This color is used
in Figs. 21–27 and 31–33 to represent the output of the corresponding approach. Here we
summarize differences, advantages and disadvantages in these three approaches:

1. The approximative LOSVD (purple curves): For the given shell at the chosen
projected radius, Eq. (44) is a function of only two parameters – vc and vs. Assuming
a radial dependence of the shell-edge density distribution, Eq. (44) allows us to plot
the whole LOSVD (Sect. 11.2). However, computing the LOSVD and the positions
of peaks requires a numerical approach in this framework. When deriving vc and vs

from the observed LOSVD, we need to find a numerical solution to Eq. (44) and to
search for a pair of vc and vs, which matches the (simulated) data best.

2. The approximative maximal LOS velocities (orange curves): Eq. (46) supplies
the positions of the peaks directly. It differs from the previous approximation in the
assumption about the galactocentric radius rvmax, from which comes the contribution
to the LOSVD at the maximal speed. The assumption is that rvmax is given by
Eq. (45), which was derived by MK98 for a stationary shell. This equation is actually
only very approximate (see Fig. 21), but allows us to analytically invert Eq. (46)
to obtain formulae for the direct calculation of vc and vs from the measured peak
positions in the spectrum of the shell galaxy near the shell edge – Eqs. (47) and (48).
Nevertheless, when measuring in the zone between the radius of the current turning
points and the shell radius, we can expect very bad estimates of vc and vs.

3. Using the slope of the LOSVD intensity maxima in the R× vlos diagram:
Eq. (50) cannot be used to draw theoretical LOSVD maxima for the given potential
of the host galaxy, because it connects only the circular velocity in the host galaxy
and the difference of the slopes of the LOSVD maxima. Moreover, the difference of
the slopes alone does not allow us to determine the shell velocity, but we can use
Eq. (51) as it is described in Sect. 11.5. Nevertheless it is this approach that gives
the most accurate estimate of vc when applied to simulated data, Sect. 13.3.
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These methods can be compared with the model of radial oscillations described in Sect. 9.4
(plotted with light blue curves in the relevant figures). The model of radial oscillations uses
thorough knowledge of the potential of the host galaxy. From it we extract the circular
velocity at the shell-edge radius and the current shell velocity and we put them in the
approximative relations derived in Sect. 11. We apply all the three approximations to the
simulated data in Sect. 13.3.
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Figure 21: Galactocentric radii rvmax that contribute to the LOSVD maxima according to Eq. (45),
which was used in the derivation of the approximative maximal/minimal LOS velocities (Sect. 11.6,
point 2) – orange curve, according to the approximative LOSVD (Sect. 11.6, point 1) – purple
curves, and according to the model of radial oscillations (Sect. 9.4) – light blue curves for the sec-
ond shell at 120 kpc (parameters of the shell are highlighted in bold in Table 2). For parameters of
the host galaxy potential, see Sect. 8.1.

Fig. 21 shows a comparison of the radii that contribute to the LOSVD maxima accord-
ing to the model of radial oscillations, the approximative LOSVD, and the approximative
maximal LOS velocities. For the first two methods, the radius corresponding to the inner
maxima of the LOSVD (which are the maxima created by the inward stars) is lower than
that for the outer maxima, whereas Eq. (45) assumes the same rvmax for both inward and
outward stars.

Fig. 22 shows locations of the LOSVD peaks for the second shell at the radius of
120 kpc near the shell-edge radius. The purple curve is calculated using the approximative
LOSVD (Sect. 11.6, point 1) given by Eq. (44), into which we inserted the velocity of the
second shell according to the model of radial oscillations and the circular velocity in the
potential of the host galaxy (see Sect. 8.1 for parameters of the potential). The purple
curve does not differ significantly from the light blue curve calculated in the model of
radial oscillations (Sect. 9.4). The more important deviations in the orange curve of the
approximative maximal LOS velocities (Sect. 11.6, point 2) given by Eq. (46), are caused
by Eq. (45) for rvmax. With this assumption, approximative maximal LOS velocities (the

66



-800

-600

-400

-200

 0

 200

 400

 600

 800

 0  20  40  60  80  100  120

v l
os

 [k
m

/s
]

R [kpc]

model of radial oscillations
approximative maximal LOS velocities

approximative LOSVD

-90

-60

-30

 0

 30

 60

 90

 106  108  110  112  114  116  118  120

v l
os

 [k
m

/s
]

R [kpc]

model of radial oscillations
approximative maximal LOS velocities

approximative LOSVD

Figure 22: LOSVD peak locations for the second shell at the radius of 120 kpc (parameters of
the shell are highlighted in bold in Table 2) according to the approximative maximal LOS velocities
(Sect. 11.6, point 2) given by Eq. (46) (orange curves); the approximative LOSVD (Sect. 11.6,
point 1) given by Eq. (44) (purple curves); and the model of radial oscillations (Sect. 9.4) (light blue
curves which almost merged with the purple ones near the shell edge). The red line shows the
position of the LOSVD from Fig. 23, the black one shows the position of the current turning points.
The upper panel shows the whole range of radii, the lower zooms in on the edge of the shell. For
parameters of the host galaxy potential, see Sect. 8.1.

orange curve) predict that around the zone between the current turning point and the shell
edge, the inner peaks change signs. This means that for the part of the galaxy closer to
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the observer, both inner and outer peaks will fall into negative values of the LOS velocity
and vice versa. However, from the model of the radial oscillations, we know that the signal
from the inner peak in a given (near or far) part of the galaxy is always zero or has the
opposite sign to that of the outer peak.

The model of the radial oscillations and the approximative LOSVD given by Eq. (44)
were also used to construct the LOSVD for the second shell located at 120 kpc, at the
projected radius of 108 kpc in Fig. 23. The graph also shows the locations of the peaks
using the approximative maximal LOS velocities given by Eq. (46).

To wrap up, all three approaches give a good agreement with the model of radial
oscillations. The first approach is practically identical to this model in the vicinity of the
shell edge, but it requires numerical solution of equations. The second approach is more
approximative and gives worse results particularly in the zone between the current turning
point and the shell edge, but allows direct expression of vc and vs. The third approach
gives only the relation between the slopes of the LOSVD maxima and vc, but we have
already announced that it gives the best results when calculating vc from the simulated
data.
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Figure 23: LOSVD of the second shell at rs = 120 kpc (parameters of the shell are highlighted
in bold in Table 2) for the projected radius R = 0.9rs = 108 kpc according to the approximative
LOSVD (Sect. 11.6, point 1) given by Eq. (44) (purple curve) and the model of radial oscillations
(Sect. 9.4) (light blue curve almost merged with the purple one). Locations of peaks as given by
the approximative maximal LOS velocities (Sect. 11.6, point 2) given by Eq. (46) are plotted with
orange lines. Profiles do not include stars of the host galaxy that are not part of the shell system
and are normalized, so that the total flux equals to one. For parameters of the host galaxy potential
see Sect. 8.1.

11.7 Projection factor approximation

In Sect. 10.2 we have derived an approximative relation for the factor z/r that projects
the galactocentric velocity of the stars at radial trajectories to the line of sight, Eq. (29),
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which has been already used by Fardal et al. (2012) to derive the relation for vlos,max±.
Inserting this equation to the expression for the projected velocity of the stars of the shell,
Eq. (44) in Sect. 11.2, we get

vlos±(r) '
√

2(r/rs0 −R/rs0)
[
vs ± vc

√
2 (1− r/rs0)

]
. (52)

The derivative of this expression is zero for r = rvmax±, where
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Figure 24: Galactocentric radii rvmax± that contribute to the LOSVD maxima for the second shell
at 120 kpc (parameters of the shell are highlighted in bold in Table 2) according to Eq. (53) – red
curves. For comparison, we show the radii rvmax according to the model of radial oscillations
(Sect. 9.4) – light blue curves – and according to the approximation of Sect. 11.6 (orange and pur-
ple curves). See also Fig. 21.

rvmax± = rs0

(
vs

4vc

)2
1

2

(
4vc

vs

)2(
1 +

R

rs0

)
− 1±

√(
4vc

vs

)2(
1− R

rs0

)
+ 1

 . (53)

Near the edge of the shell, the values rvmax± are in good coincidence with the galactocentric
radii that contribute to the LOSVD maxima according to the model of radial oscillations
(Sect. 9.4), whereas at lower radii they differ substantially, Fig. 24.

The position of the outer LOSVD peaks is expressed as the function vlos+(rvmax+), the
position of the inner peaks as vlos−(rvmax−), Fig. 25. The equations have a solution only
for rvmax < R. The radius, where rvmax− = R, is the radius of the current turning point
rTP in this approximation and for R > rTP the inner peaks disappear. Eq. (53) implies

rTP = rs0

[
1− 1

2

(
vs

vc

)2
]
. (54)

The functions vlos+(rvmax+) and vlos−(rvmax−) are a good approximation to the LOSVD
peak locations near the edge of the shell, as can be seen in Fig. 25. Using these functions
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Figure 25: LOSVD peak locations for the second shell at the radius of 120 kpc (parameters of
the shell are highlighted in bold in Table 2). The red curves show the values of the functions
vlos+(rvmax+) and vlos−(rvmax−), where vlos±(r) is given by Eq. (52) and rvmax± follows Eq. (53).
The light blue curves are LOSVD peak locations according to the model of radial oscillations
(Sect. 9.4). The left panel shows the whole range of radii, the right zooms in on the edge of the
shell. For parameters of the host galaxy potential, see Sect. 8.1.

are a better way to calculate these than the approximative LOSVD (Sect. 11.6, point 1),
because their values are given analytically. Nevertheless they are such a complicated func-
tion of the circular velocity vc at the shell-edge radius and the current shell velocity vs

that they do not allow the expression of these variables as a simple function of observable
quantities, unlike the approximative maximal/minimal LOS velocities (Sect. 11.6, point 2).
Thus we will not use these function in the following and show them only for the sake of
completeness and comparison with Fardal et al. (2012).

12 Higher order approximation

The approximation of a locally constant galactic acceleration a0 and shell phase velocity
vs, Sect. 11, describes the positions of the LOSVD peaks fairly well and allows a good
determination of the parameters of the potential of the host galaxy. Nevertheless we try
to have a look outside the realm of constant a0 and vs using the same concept that stars
behave as if they were released in the center of the host galaxy at the same time and their
distribution of energies is continuous.

12.1 Motion of a star in a shell system

The galactocentric radius of the shell edge is a function of time, rs(t), where t = 0 is the
moment of measurement and rs(0) = rs0 is the position of the shell edge at this time. Let
us define a new coordinate system s, where the radial coordinate is the distance from the
edge of the shell, in the same direction as the galactocentric radius

s(t) = r(t)− rs0. (55)

The position of the stars of the given shell in this system is always negative.
We assume the following:
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� stars are on strictly radial orbits

� radial acceleration in the potential of the host galaxy is given as a(s) = a0 + a1s,
where a0 and a1 are constant for a given shell

� position of the shell edge is (insofar) a general function of time ss(t)

� stars at the shell edge have the same velocity as the shell

The position of each star is at any time s(t), while ts is the time when the star could be
found at the shell edge ss(ts). Then the equation of motion and the initial conditions for
the star near a given shell radius are

d2s(t)

dt2
= a0 + a1s, (56)

ds(t)

dt

∣∣∣∣
t=ts

= vs, (57)

s(ts) = ss(ts). (58)

The solution to these equation differs for negative and positive values of a1. The
position of a star in a general time t is given by

s(t, a1 > 0) =
[a1ss(ts) + a0] cosh

[√
a1 (t− ts)

]
+
√
a1vs sinh

[√
a1 (t− ts)

]
− a0

a1
, (59)

s(t, a1 < 0) =
[|a1| ss(ts)− a0] cos

[√
|a1| (t− ts)

]
+
√
|a1|vs sin

[√
|a1| (t− ts)

]
+ a0

|a1|
,

(60)
where sinh(x) = 1/2 [exp(x)− exp(−x)] and cosh(x) = 1/2 [exp(x) + exp(−x)]. For a1 =
0, the solution of Sect. 11.1 holds. At the time of the measurement t = 0 we obtain two pairs
of equations for the position of the star s(0) and its radial velocity vr(0) = ds(t)/dt|t=0,
depending on the sign of a1

s(0, a1 > 0) = 1/a1

{
[a1ss(ts) + a0] cosh

(
ts
√
a1

)
−√a1vs sinh

(
ts
√
a1

)
− a0

}
,

vr(0, a1 > 0) = 1/
√
a1

{√
a1vs cosh

(
ts
√
a1

)
− [a1ss(ts) + a0] sinh

(
ts
√
a1

)}
,

(61)

s(0, a1 < 0) = 1/ |a1|
{

[|a1| ss(ts)− a0] cos
(
ts
√
|a1|
)
−
√
|a1|vs sin

(
ts
√
|a1|
)

+ a0

}
,

vr(0, a1 < 0) = 1/
√
|a1|

{√
a1vs cos

(
ts
√
|a1|
)

+ [|a1| ss(ts)− a0] sin
(
ts
√
|a1|
)}

.

(62)
For galactic potentials, one value of s(0) will yield solutions for two different values of ts
and correspondingly two values of vr(0) and its projection to the line of sight. The minimal
and maximal LOS velocities show the positions of LOSVD peaks.
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12.2 Comparison of approximations

Now we compare this higher order approximation with the approximation of a constant
acceleration (Sect. 11) and the model of radial oscillations (Sect. 9.4). For higher accuracy,
we can obviously introduce the acceleration of the shell as and express the shell position as
ss(ts) = vsts +ast

2
s/2. However, for observation data it would mean to fit 4 parameters (a0,

a1, vs, and as), what could prove difficult in practice. To compare the approximations, we
thus restrict ourselves to a shell of constant velocity, that is ss(ts) = vsts, like in Sect. 11.
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Figure 26: Comparison of LOSVD peak locations in different approximations for the second shell
at the radius of 120 kpc, a1 = 1.2×10−5 Myr-2. The upper panel shows the whole range of radii, the
lower zooms in on the edge of the shell. For parameters of the host galaxy potential, see Sect. 8.1.
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Figure 27: Comparison of LOSVD peak locations in different approximations for the first shell at
the radius of 10 kpc, a1 = 8.5 × 10−4 Myr-2. The upper panel shows the whole range of radii, the
lower zooms in on the edge of the shell. For parameters of the host galaxy potential, see Sect. 8.1.

Besides the usual second shell at 120 kpc showed in Fig. 26, we show also the first
shell at 10 kpc in Fig. 27. In our case, the value of a1 at the galactocentric distance of 10
kpc is almost two orders of magnitude larger than the corresponding value at 120 kpc (see
Fig. 28). For the approximations, we have used values of parameters calculated from the
potential of the host galaxy (for parameters of the host galaxy potential, see Sect. 8.1). The
model of radial oscillations (thick light-blue curves) requires the knowledge of the potential
at all radii. The maxima/minima of the LOS velocities (that correspond to the locations
of the peaks of the LOSVD) are shown in purple for the approximation of a constant
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acceleration (or, as we call it, using the ”approximative LOSVD” by Eq. (44)), and in dark
blue for a LOS projection of the solution of Eq. (61) with a nonzero a1, which is positive
for both shells. At the edge of the shell, both approximations are almost identical to the
model of radial oscillations. On the other hand, at lower galactocentric radii, only the
approximation with a nonzero a1 follows the model of radial oscillations reasonably well.
In general, the shell will be difficult to observe in real galaxies at lower projected radii, but
for the case of observations of individual stars, star clusters and planetary nebulae, the
kinematical imprint of the shell could be observed considerably far from its edge.

The purple and blue curves are calculated by finding maxima/minima of the LOS
velocities at each projected radius. It is possible to obtain these in a much easier, but
less accurate manner using the approximation for the radius of maximal LOS velocity
rvmax = 1

2(R + rs0), as described in Sect. 11.3. The orange and red curves in Fig. 26 and
Fig. 27 show the result of this procedure in the approximation of a constant acceleration
(the ”approximative maximal LOS velocity”, Eq. (46)) and in the approximation with a
nonzero value of a1, respectively. Again, both approximations merge near the edge of the
shell. For lower projected radii, the two curves separate again, but taking into account
their overall difference from the model of radial oscillations, we cannot in this case consider
the approximation of a nonzero a1 to be a significant improvement. The approximative
maximal LOS velocity with constant acceleration has the advantage that it allows a direct
expression of basic variables (the circular velocity vc at the shell-edge radius and shell phase
velocity vs) in terms of observable quantities, facilitating and easy application to measured
data. The same cannot be done in the approximation with a nonzero value of a1.

12.3 a1

The assumption about the function a(r) in the host galaxy is in fact an assumption on the
radial dependence of the density of the host galaxy, by

a(r) =
4πG

r2

ˆ r

0
ρ(r′)r′2dr′, (63)

where ρ(r) is the density in the host galaxy and G is the gravitational constant. For the
case of constant acceleration a = a0 the derivative of Eq. (63) with respect to r shows that
the density goes to zero for large r as

ρ(r) =
a0

2πG
r−1, (64)

whereas for a = a0 + a1(r − rs0) the density goes to 3a1
4πG for large r as

ρ(r) =
3a1

4πG
+
a0 + a1rs0

2πG
r−1. (65)

It is important to note that this approximation of the acceleration is applied only locally,
although this word may sometimes mean a fairly large span of radii. The parameter a1 may,
in real galaxies, assume both positive and negative values. In Fig. 28 we show the radial
dependence of a1 in the host galaxy modeled as a double Plummer sphere (for parameters
of the host galaxy potential, see Sect. 8.1).
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Figure 28: The radial dependence of a1 in the host galaxy. For parameters of the host galaxy
potential, see Sect. 8.1.

13 Test-particle simulation

We performed a simplified simulation of formation of shells in a radial minor merger of
galaxies. Both merging galaxies are represented by smooth potential. Millions of test
particles were generated so that they follow the distribution function of the cannibalized
galaxy at the beginning of the simulation. The particles then move according to the sum
of the gravitational potentials of both galaxies. When the centers of the galaxies pass
through each other, the potential of the cannibalized galaxy is suddenly switched off and
the particles continue to move only in the fixed potential of the host galaxy. We use the
simulation to demonstrate the validity of our methods of recovering the parameters of the
host galaxy potential by measuring15 the positions of the peaks in the LOSVD of simulated
data.

In all cases, we look at the galaxy from the view perpendicular to the axis of collision,
so that the cannibalized galaxy originally flew in from the right.16 Information on details
of the simulation process can be found in Sect. 17.1.

13.1 Parameters of the simulation

The potential of the host galaxy is the same as the one described in Sect. 8.1. Let us only
recall that it is a double Plummer sphere with respective masses M∗ = 2 × 1011 M� and
MDM = 1.2×1013 M� , and Plummer radii ε∗ = 5 kpc and εDM = 100 kpc for the luminous
component and the dark halo, respectively. The potential of the cannibalized galaxy is
chosen to be a single Plummer sphere with the total mass M = 2× 1010 M� and Plummer
radius ε∗ = 2 kpc.

15By measuring, we mean that the data measured are the output of our simulation.
16We use the term cannibalized galaxy even before and during the merger process.
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Figure 29: Snapshots from our test-particle simulation of the radial minor merger, leading to the
formation of shells. Each panel covers 300×300 kpc and is centered on the host galaxy. Only the
surface density of particles originally belonging to the satellite galaxy is displayed. The density
scale varies between frames, so that the respective range of densities is optimally covered. Time-
stamps mark the time since the release of the star in the center of the host galaxy.

The details of the simulations are described in Sect. 17.1. In the simulations that we
present in this part, neither the gradual decay of the cannibalized galaxy nor the dynamical
friction is included. The cannibalized galaxy is released from rest at a distance of 100 kpc
from the center of the host galaxy. When it reaches the center of the host galaxy in
306.4 Myr, its potential is switched off and its particles begin to oscillate freely in the host
galaxy. The shells start appearing visibly from about 50 kpc of galactocentric distance and
disappear at around 200 kpc, as there are very few particles with apocenters outside these
radii, Fig. 29. Video from the simulation is part of the electronic attachment. For the
description of the video, see Appendix H point 2 and 3.

13.2 Comparison of the simulation with models

In the simulations, some of the assumptions that we used earlier (the model of radial
oscillations, Sect. 9) are not fulfilled. First, the particles do not move radially, but on more
general trajectories, which are, in the case of a radial merger, nevertheless very eccentric.
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Second, not all the particles are released from the cannibalized galaxy right in the center
of the host galaxy; when the potential is switched off, the particles are located in the broad
surroundings of the center and some are even released before the decay of the galaxy. These
effects cause a smearing of the kinematical imprint of shells, as the turning points are not
at a sharply defined radius, but rather in some interval of radii for a given time.

Figure 30: Simulated shell structure 2.2 Gyr after the decay of the cannibalized galaxy. Only
the particles originally belonging to the cannibalized galaxy are taken into account. Top: surface
density map; middle: the LOSVD density map of particles in the ±1 kpc band around the collision
axis; bottom: histogram of galactocentric distances of particles. The angle between the radial
position vector of the particle and the x-axis (the collision axis) is less than 90◦ for the blue curve
and less than 45◦ for the red curve. The horizontal axis corresponds to the projected distance X in
the upper panel, to the projected radius R in the middle panel, and to the galactocentric distance
r in the lower panel.
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rs n rTP,model vs,sim vs,model vc,model

kpc kpc km/s km/s km/s

48.8 5 48.5 38.7±2.1 38.7 326

−70.6 4 −69.9 59.8±1.6 54.3 390

105.0 3 103.9 68.1±1.9 63.5 441

−157.8 2 −155.7 74.3±1.2 72.4 450

257.4 1 251.0 97.5±1.4 95.7 406

Table 3: Parameters of the shells in a simulation 2.2 Gyr after the decay of the cannibalized
galaxy. The shell positions rs are taken from the simulation. The values of rTP,model and vs,model

are calculated for the shell position rs and its corresponding serial number n according to the
model of radial oscillations (Sect. 9). The shell velocity vs,sim is derived from 20 positions between
the times 2.49–2.51 Gyr for each shell. The value vc,model corresponds to the circular velocity at
the shell-edge radius rs for the chosen potential of the host galaxy (Sect. 8.1).

Figure 31: LOSVD map of the simulated shell structure 2.2 Gyr after the decay of the cannibalized
galaxy (middle panel in Fig. 30). Light blue curves show locations of the maxima according to the
model of radial oscillations (Sect. 9.4) for shell radius rs, corresponding serial number n, and the
known potential of the host galaxy (Sect. 8.1). Orange curves are derived from the approximative
maximal LOS velocities (Sect. 11.6, point 2) given by Eq. (46) for rs, vs,model, and vc,model. Param-
eters of the shells are shown in Table 3. Black lines mark the location at 0.9rs for each shell. The
LOSVD for these locations are shown in Fig. 32. The map includes only stars originally belonging
to the cannibalized galaxy.

The model of radial oscillations presented in Sect. 9 predicts that 2.2 Gyr after the decay
of the cannibalized galaxy, five outermost shells should lie at the radii of 257.3, −157.8,
105.1, −70.5, and 48.8 kpc. The negative radii refer to the shell being on the opposite side
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Figure 32: LOSVDs of four shells at projected radii 0.9rs (indicated as the title of each plot)
2.2 Gyr after the decay of the cannibalized galaxy (parameters of the shells are shown in Table 3).
The simulated data are shown in green, the LOSVDs according to the approximative LOSVD
(Sect. 11.6, point 1) given by Eq. (44) in purple, and LOSVDs according to the model of radial
oscillations (Sect. 9.4) in light blue. The graph also shows the locations of the peaks using the
approximative maximal LOS velocities (Sect. 11.6, point 2) given by Eq. (46) by orange lines.
Profiles do not include stars of the host galaxy, which are not part of the shell system. The
theoretical profiles are scaled so that the intensity of their highest peak approximately agrees with
the highest peak of the simulated data. LOSVD is given in relative units, so maxima of the profiles
have values of about 0.9.

of the host galaxy with respect to the direction from which the cannibalized galaxy flew in.
These radii agree surprisingly well with the radii of the shells measured17 in the simulation
2.2 Gyr after the decay of the cannibalized galaxy, see Fig. 30 and Table 3. The position
of the shell edge rs in the simulation was determined as the position of a sudden decrease
of the projected surface density (see Figs. 41 and 42). These values are shown in Table 3.

In the simulation, the first shell at 257.4 kpc is composed of only a few particles, and
therefore we will not consider it (its parameters are listed in Table 3 for completeness).
Thus, the outermost relevant shell in the system lies at −157.8 kpc and has a serial number
n = 2. Also, the shell at 48.8 kpc suffers from lack of particles, but we will include it
nevertheless.

Fig. 31 shows the comparison between the LOSVD in the simulation, the peaks of the
LOSVD computed in the model of radial oscillations (light blue curves), and the approxi-
mative maximal LOS velocities – Eq. (46) (orange curves). To evaluate the approximative
maximal LOS velocities, we obtained the shell velocity vs,model from the model of radial
oscillations (Sect. 9) for the respective serial number n of the shell and circular velocity
vc,model at the shell-edge radius, using our knowledge of the potential of the host galaxy.
The values of all the respective shell quantities are listed in Table 3. Within the resolu-
tion of Fig. 31, the theoretical positions of the LOSVD maxima agree very well with the
simulated data, even further from the shell edge than the usual limit of 0.9rs.

Fig. 31 also shows the locations that correspond to the radii of 0.9rs for each individual
shell (black lines). The LOSVD for these locations is shown in Fig. 32. The data are
taken from an area spanning 0.5× 2 kpc centered at (R, 0) in the projected X − Y plane,
where R is the number indicated above the corresponding panel in Fig. 32. The positions
of simulated LOSVD peaks largely agree with the approaches of the approximation of

17Recall that by measuring, we mean that the data measured are the output of our simulation.
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Figure 33: Fits for circular velocity vc and shell velocity vs using the approximative LOSVD
(Sect. 11.6, point 1) given by Eq. (44) for four shells (rs indicated in bottom right corner of each
plot) in the simulation 2.2 Gyr after the decay of the cannibalized galaxy. The best fit is the pur-
ple curve, and its parameters are shown in Tables 4 and 5 in the columns labeled vc,fit and vs,fit.
The green crosses mark the measured maxima in the LOSVD, and the light blue curves show
the locations of the theoretical maxima derived from the host galaxy potential according to the
model of radial oscillations (Sect. 9.4). Note that the values of vc and vs used in the approximative
LOSVD for the purple line were obtained by fitting the parameters to the simulated data, whereas
in Figs. 22, 23, and 32, the values are known from the model of the host galaxy potential.

constant acceleration and shell velocity described in Sect. 11.6 and with the model of
radial oscillations (Sect. 9).

13.3 Recovering the potential from the simulated data

We used a snapshot from our simulation, which 2.2 Gyr after the decay of the cannibalized
galaxy, as a source of the simulated data and tried to reconstruct the parameters of the
potential of the host galaxy from the locations of the LOSVD peaks measured from the
simulated data by using the the approximation of constant acceleration and shell velocity
(Sect. 11).

For a given host galaxy, the signal-to-noise (S/N) ratio in the simulated data is a func-
tion of the number of simulated particles, the age of the shell system, the distribution
function of the cannibalized galaxy, and the impact velocity. For a given radius in the
simulated data, we can obtain arbitrarily good or bad S/N ratios by tuning these param-
eters. Thus, we adopted the universal criteria: 1) the LOSVD of each shell is observed
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down to 0.9 times its radius; 2) we measured the positions of the LOSVD peaks in different
locations within the shell, sampled by 1 kpc steps. These criteria give us between 7 and
15 measurements for a shell. Each measurement contains two values: the positions of the
outer and inner peaks, vlos,max+ and vlos,max−, respectively, for each projected radius R
(see green crosses in Fig. 33).
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Figure 34: Comparison of velocity of the shell as a function of radius from the model and the
simulated data. Velocity for the first shell (n = 1) in the host galaxy model is shown by the black
line. Red crosses show vs,eq(51)−slope (Table 5) as they result from the analysis of the simulated
LOSVD. Values are corrected for shell number n by the factor 3/(2n + 1), so they correspond to
velocity of the first shell, e.g., Eq. (5).

We do not estimate the errors, since the real data will be dominated by other sources,
such as the contamination of the signal from the light of the host galaxy and the accuracy
of the subtraction of this background light, night-sky background in the case of ground-
based telescopes, detector noise, instrumental dispersion, accuracy in the determination of
the systemic velocity and so forth. So we decided to quote only the mean square deviation
and the standard error of the linear regression.

First we used the approximative maximal LOS velocities given by Eqs. (47) and (48)
for a direct calculation of the circular velocity vc,eq(47) at the shell-edge radius rs and
the current shell velocity vs,eq(48). These equations are the inverse of Eq. (46), which
corresponds to the model shown in orange lines in pictures throughout the text (Sect. 11.6,
point 2). Mean values from all the measurements for each shell are shown in Tables 4 and 5
in the end of the section.

Compared with the approximative maximal LOS velocities, we obtain a better agree-
ment with the circular velocity of our host galaxy potential when using the slope of the
LOSVD intensity maxima (Sect. 11.6, point 3) given by Eq. (50), where we fit the linear
function of the measured distance between the outer and the inner peak on the projected
radius (vc,slope in Table 4 and in Fig. 35). To estimate the shell velocity, we use a hybrid
relation Eq. (51) between the positions of the LOSVD peaks, the circular velocity at the
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shell-edge radius vc, and the shell velocity. We substitute the values of vc,slope derived
from the measurements (that we know better describe the real circular velocity of the host
galaxy) into this relation, thus obtaining the improved measured shell velocity vs,eq(51)−slope

(Table 5 and Fig. 34).
In the zone between the current turning points and the shell edge, the inner peaks coa-

lesce and gradually disappear (Fig. 15). The simulated data do not show a disappearance
of the inner peaks as abrupt and clear as the theoretical LOSVD profiles predict, so that in
this zone, we can usually measure one inner peak at 0 km/s. The information from these
measurements is degenerate, and thus we defined a subsample of simulated measurements
with all four clear peaks in the LOSVD (in the columns labeled SS in Tables 4 and 5).
The spread of the values derived using the approximative maximal LOS velocities given
by Eqs. (47) and (48) is significantly lower for the subsample (vSS

c,eq(48) and vSS
s,eq(47)) due

to the exclusion of areas where these equations do not hold well. On the contrary, the
slope of the linear regression in Eq. (50) using the slope of the LOSVD intensity maxima
gives a worse result (with a larger error) for the subsample vSS

c,slope than the approximative
maximal LOS velocities.
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Figure 35: Circular velocity of the model and values derived from the simulated data: vc,model

of the host galaxy model is shown by the black line; blue and red points show values of circular
velocity as they result from the analysis of the simulated LOSVD (see Sect. 13.2 and Table 4 for
the numbers).

The third option to derive the circular velocity vc at the shell-edge radius rs and shell
velocity vs from the simulated data is to use the approximative LOSVD given by Eq. (44),
which corresponds to the model shown in purple lines in pictures throughout the text
(Sect. 11.6, point 1). However, this requires a numerical solution of the equation for a
given pair of vc and vs. We have calculated two sums of squared differences between
vlos,max(vc, vs) as given by the approximative LOSVD and the simulated data. One for
vlos,max−(vc, vs) and a second one for vlos,max+(vc, vs) . Then we have searched for the
minimum of the sum of these two values to obtain best fitted values vc,fit and vs,fit (see
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Tables 4 and 5 for the results). Errors were estimated using the ordinary least squared
minimization as if the functions vlos,max+(vc,fit, vs,fit) and vlos,max−(vc,fit, vs,fit) were fitted
separately; quoted is the larger of the two errors.

rs vc,model N NSS vc,eq(47) vSS
c,eq(47) vc,slope vSS

c,slope vc,fit vc,slope(MK98)

kpc km/s km/s km/s km/s km/s km/s km/s

48.8 326 5 4 346±130 340±94 322±19 314±32 318±51 449±26

−70.6 390 7 5 394±85 390±53 391±5 392±11 368±60 570±23

105.0 441 11 8 478±144 452±64 440±5 447±7 427±28 632±9

−157.8 450 15 10 497±236 472±79 462±8 484±14 460±32 671±11

Table 4: Circular velocity at the shell-edge radius rs derived from the measurement of the sim-
ulated data 2.2 Gyr after the decay of the cannibalized galaxy. rs and vc,model have the same
meaning as in Table 3. N : number of measurements for each shell; vc,eq(47): the mean of values
derived from the approximative maximal LOS velocities given by Eq. (47) with its mean square de-
viation; vc,slope: a value derived from the linear regression using the slope of the LOSVD intensity
maxima given by Eq. (50) and its standard error (see also Fig. 35); vc,fit: a value derived by fitting
a pair of vc and vs in the approximative LOSVD given by Eq. (44) (Sect. 11.6, point 1 and Fig. 33);
vc,slope(MK98): the mean of values derived from the slope of the LOSVD intensity maxima given by
Eq. (50) with its standard error (see also Fig. 35). In the equation, however, 4vlos is substituted
with the distance between the two outer peaks of the LOSVD intensity maxima in order to mimic
the measurement as originally proposed by MK98 for double-peaked profile. The quantities with
the superscript SS correspond to the subsample, where only measurements with two discernible
inner peaks in the LOSVD are used.

rs vs,model vs,sim vs,eq(48) vSS
s,eq(48) vs,eq(51)−slope vSS

s,eq(51)−slope vs,fit

kpc km/s km/s km/s km/s km/s km/s km/s

48.8 38.7 38.7±2.1 50.7±2.3 51.7±1.1 44.2±6.5 44.9±6.3 53±16

−70.6 54.3 59.8±1.6 60.8±9.8 65.6±2.0 60.7±10.8 66.0±2.9 66±19

105.0 63.5 68.1±1.9 74.8±4.6 76.5±1.4 68.0±8.9 71.3±2.5 79±9

−157.8 72.4 74.3±1.2 84.4±5.4 86.7±2.0 78.7±10.5 82.±3.5 85±14

Table 5: Velocity of the shell at the radius rs derived from the measurement of the simulated
data 2.2 Gyr after the decay of the cannibalized galaxy. rs, vs,model, and vs,sim have the same
meaning as in Table 3. vs,eq(48): the mean of values derived from the approximative maximal LOS
velocities given by Eq. (48) with its mean square deviation; vs,eq(51)−slope: the mean of values de-
rived from the hybrid relation given by Eq. (51) with its mean square deviation (see also Fig. 34);
vs,fit: a value derived by fitting a pair of vc and vs in the approximative LOSVD given by Eq. (44)
(Sect. 11.6, point 1 and Fig. 33). The quantities with the superscript SS correspond to the subsam-
ple, where only measurements with two discernible inner peaks in the LOSVD are used. Number
of measurements is the same as in Table 4 for each shell.

The LOSVD intensity maxima resulting from this procedure are plotted in Fig. 33,
together with the fitted data and the maxima given by the model of radial oscillations
(Sect. 9.4). All three agree fairly well. The remaining two methods (the approximative
maximal LOS velocities and using the slope of the LOSVD intensity maxima) use only
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equations to derive vc and vs and thus we do not show them in the plot. On the other
hand, in Figs. 34 and 35, we show the comparison of values extracted from the simulated
data with model values only for the most successful approach – using the slope of the
LOSVD intensity maxima.

For the sake of comparison with the method of MK98, we calculated the circular velocity
vc,slope(MK98) at the shell-edge radius rs using the slope of the LOSVD intensity maxima
given by Eq. (50). To mimic the measurement of the circular velocity according to the
Eq. (26), which was derived for the double-peaked profile, we assume 4vlos is the distance
between the two outer peaks of the LOSVD intensity maxima. In Table 4 and Fig. 35, we
can easily see that the values vc,slope(MK98) differ from the actual circular velocity of the
host galaxy vc,model by a factor of 1.3–1.5.

The main message of this section is that in order to obtain the value of the circular
velocity vc at the shell-edge radius and shell phase velocity vs from kinematical data near
the shell edge, the best approach to use is the method based on the slope of the LOSVD
intensity maxima given by Eq. (50) without limiting the data to a subsample.

13.4 Notes about observation

This work is a theoretical one, dealing with simulations and models. Obtaining and ana-
lyzing real data requires preparation, knowledge and experience that are beyond the goals
we have set in this research. Nevertheless, we will make some remarks regarding potential
observation of shell kinematics.
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Figure 36: Line profiles of four shells at projected radii 0.9rs (indicated as the title of each plot,
same as in Fig. 32) 2.2 Gyr after the decay of the cannibalized galaxy: gray lines show the LOSVDs
for the host galaxy at a given radius (except for the radius of 44 kpc the signal of the host galaxy
is negligible comparing to the signal from the cannibalized galaxy); green lines show the total
LOSVDs from the host and the cannibalized galaxy together; red, blue, and yellow lines show
convolutions of the total simulated data with different Gaussians representing the instrumental
profiles having the FWHM 10, 30, and 60 km/s, respectively. Scaling is relative, similar as in
Fig. 32.

When it comes to real observational data, there will be additional issues to deal with,
night-sky background, detector noise, instrumental dispersion and so forth. MK98 esti-
mated the data of the requisite quality could be obtained with a couple of nights integration
using a 4-m telescope.
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The situation gets more complex when the LOSVD assumes the quadruple-peaked
profile instead of a double-peaked one. Not only becomes the intensity of a single peak
smaller, but a higher spectral resolution is also needed to distinguish all four peaks. The
instrumental dispersion naturally smooths features of the spectral profile. In Fig. 36, we
show the LOSVDs from the simulated data smoothed with different Gaussians representing
the instrumental profiles having the full width at half maximum (FWHM) of 10, 30, and
60 km/s. It is obvious that relatively high spectral resolution is necessary for observing an
imprint of shell peaks in line profiles.

We have done our own simplified estimations of the observability of the LOSVD of
shells. First, we used archival data of long-slit spectroscopy of the outermost shell in
NGC 3923. The data were taken in July 2001 (about 10 hours of exposure time) and in
March 2005 (about 20 hours) with FORS2 instrument at the Very Large Telescope (VLT,
8.2 meter diameter) of the European Southern Observatory. We processed a part of the
data from 2005 using the FORS pipeline.18 The spectra are generally of a very low signal-
to-noise ratio (S/N). We were particularly looking for the magnesium triplet around 5200 Å
(taken into account the redshift of NGC 3923, about 30 Å) and we found no sign of it, so
the analysis of kinematics was not possible. We conclude that the estimate of MK98 was
probably a bit of an understatement.

Furthermore, we used exposure time calculators to determine expected S/N at available
instruments (VLT/FORS2, VLT/FLAMES, Calar Alto/PPAK) assuming the exposure
time 20 hours and the surface brightness of shells between 25 and 28 mag/arcsec2 in V filter.
The resulting S/N ranges from ∼ 0.3 to ∼ 4.4. This is not very satisfactory but using the
integral field spectroscopy or the multi object spectroscopy, S/N could be increased by a
factor of up to ∼ 10 by summing the signal from all fibers. Moreover, one can use some kind
of a cross-correlation technique (e.g., Simkin, 1974; Tonry and Davis, 1979) which allows
to extract more accurate kinematic measurements than the actual resolution of the data
is or extract more information from data with low S/N. Eventually, the situation should
be much better with the next generation of telescopes, like the European Extremely Large
Telescope or the James Webb Space Telescope.

Another important issue is the background light of the host galaxy. It is possible to
model the LOSVD of the host galaxy, subtract it from the overall LOSVD and obtain
the clear quadruple-peaked profile, but it may not be even necessary, because the velocity
dispersion of the stars in the host galaxy would be likely significantly broader than the
distance between the peaks and thus the peaks should be clearly visible already in the
overall LOSVD.

Moreover, for shells at large radii, the contribution from the stars of the host galaxy
becomes negligible – and it is exactly the shells at large radii that are the most interesting
because our knowledge of the potential of the host galaxy is the worst in the outer parts
of the galaxy, where the potential is expected to be dominated by the dark matter. In
our simulated data, the host galaxy light is negligible already for the shell at 70 kpc, see
Fig. 36. The surface brightness of observed shells goes from 24.5 mag/arcsec2 (in V filter)
up to the current detection limit of the deepest photometric observation ∼ 29 mag/arcsec2

(McGaugh and Bothun, 1990; Turnbull et al., 1999; Pierfederici and Rampazzo, 2004). The
surface brightness of giant elliptical galaxies at ∼ 100 kpc (the position of the outermost
shell in NGC 3923) is 28–30 mag/arcsec2 (in g and r filters; Tal and van Dokkum, 2011).

18The procedure was done mostly by Lucie J́ılková, Ivana Orlitová, and Tereza Skalická
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A category on its own is the measurement of LOS velocities of individual objects,
such as globular clusters, planetary nebulae and individual giant stars (Fardal et al., 2012;
Romanowsky et al., 2012), where the result is dependent only on the accuracy of the
measurement and the number of measured objects.

The positions of LOSVD maxima should be symmetric around the systemic velocity
which we can measure or assume to be in the middle between the peaks. We also need
photometric data to find the center of the host galaxy and to measure the distance of
the point of the spectroscopic observation and the shell edge from the center. As soon as
we measure the locations of the LOSVD peaks vlos,max+, vlos,max−, the projected radius
R of the measurement, and the shell-edge radius rs0, we can calculate the value of the
circular velocity vc at the shell-edge radius and shell phase velocity vs using one of the
three approaches described in Sect. 11.6. Using the simulated data (Sect. 13.3), we found
the derived vc to be the most accurate when using the slope of the LOSVD intensity
maxima given by Eq. (50), which requires the peak locations to be measured at several
different radii. When a measurement from only one projected radius is available, Eqs. (47)
and (48) can be used to derive vc and vs , respectively.

14 Shell density

In this section we take an apparent detour from the shell kinematics to explore the projected
and volume densities of a shell. In Sect. 14.1 we express the projected surface density of the
shell edge Σlos(rs) (that is, the projected surface density at the projected radius R = rs)
as a function of Σsph (Sects. 9.6, 9.7, and 9.8) and the shell-edge radius rs. In Sect. 14.2
we investigate the evolution of Σlos(rs) as a function of time, as the position of the shell
edge is a function of time. In Sect. 14.3 we show the volume density of a shell at a frozen
moment and finally in Sect. 14.4, we explore the projected surface density of shells near
the shell edge at a given time as a function of the projected radius R.

14.1 Projected surface density of the shell edge

Each time we needed to model an LOSVD, we have used the assumption that the shell-edge
density distribution σsph (rs) or rather Σsph (rs) decreases as 1/r2

s (t), see Sects. 9.6, 9.7,
and 9.8. Now we show how is this value related to an observable quantity, the projected
surface density of the shell edge Σlos(rs). If we knew or assumed the mass-to-light ratio,
Σlos could be easily converted to the projected surface brightness.

Consider a thin sphere of mass with a uniform spatial density ρ and radius rs, Fig. 37.
When observed along the line of sight z, the amount of light registered from a point with
a projected radius R in the sphere’s image is proportional to the expression

ρ∆z = ρ

(√
r2

s −R2 −
√

(rs −∆r)2 −R2

)
, (66)

which for an infinitesimally thin sphere (∆r → 0) reduces to

ρ∆z → rsΣsph√
r2

s −R2
. (67)

This expression diverges when the sphere is observed tangentially to its surface, that is on
the shell edge – thus to talk about the projected surface density of the shell edge, we have
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Figure 37: Schema for the calculation of the projected surface density.

to integrate the flux over a small observation area. As the shape of the area is irrelevant
for infinitesimal sizes, we choose an area that is the easiest to integrate over in spherical
coordinates that are convenient for a radially-symmetric density. Note that the angular
size of the area is approximately 2∆R/rs and thus the integrated flux is

Σlos =
2

S
Σsphrs

∆R
rsˆ

0

rsˆ

rs−∆R

R√
r2

s −R2
dRdφ, (68)

where S = 2∆R2 + o(∆R3) is the size of the integration area. Since
´ b
a

x√
r2−x2

dx =√
r2 − b2 −

√
r2 − a2, the integral reads

Σlos ' Σsph

√
(2rs −∆R) /∆R ∝ r1/2

s Σsph. (69)

14.2 Time evolution

The radial dependence of Σsph is chosen, as usual, as Σsph(rs(t)) ∝ 1/r2
s (t). Then from

Eq. (69) it follows that

Σlos(rs(t)) ∝ r−3/2
s (t). (70)

However, the calculation leading to Eq. (69) assumes that all the stars are located at
the sphere with the radius of the shell. We have thus examined the time evolution of
the projected surface density of the shell edge in the framework of the approximation
of a constant radial acceleration in the host galaxy potential and shell phase velocity
(Sect. 11, in this section, Sect. 14, hereafter the approximation) – Fig. 38. For each shell
radius we calculate the motion of stars under a constant acceleration, but we update this
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approximation of a constant radial acceleration in the host galaxy potential and shell phase velocity
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Figure 39: Histogram of apocenters of particles in the simulation used in Sect. 13.
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acceleration for different shell radii according to the chosen potential of the host galaxy (for
the parameters of the potential, see Sect. 8.1). The time evolution of the projected surface
density of the shell edge in this approximation does not depend on its velocity and thus
on its serial number, see Sect. 14.4. In this approximation, stars are present at all radii,
0–rs, in contrast to the calculation that lead us to Eq. (70), where we assumed the stars
to be located only at the shell radius (in a given time). Nevertheless, the time evolution of
Σsph(rs(t)), Fig. 38, turns out to be essentially identical when calculated by either of these
approaches.

Both the calculation of Eq. (70), and the approximation assume Σsph to decrease as
1/r2

s (t), corresponding to constant number of stars at the edge of the shell, N (rs). Fig. 39
shows the distribution of apocenters of particles in the simulation from Sect. 13, which
is a good approximation to real N (rs). We have to honestly admit that this function is
anything but constant, but it is difficult to devise any approximation as the shape of the
distribution significantly varies with parameters of the collision. Moreover, we do apply this
function usually only in a small range of radii and as we have already shown, the character
of the LOSVD does not depend much on its choice (Sects. 9.7 and 9.8). Converting the
histogram of apocenters of the particles to the shell brightness is not straightforward as,
both in the simulation and real shell galaxies, the distribution of particles is not uniform in
azimuth, contrary to what he assumed in modeling the LOSVD both in the approximation
and in the model of radial oscillations (Sect. 9.4).

14.3 Volume density

The calculation in Sect. 14.1 assumes that stars are at each moment located only on a
sphere with the radius of the shell. Nevertheless it gives good results when compared to
the approximation (Fig. 38), where this assumption does not hold. The reason is that the
volume density decreases quickly inward from the shell edge (it obviously decreases outward
in a jump, but that is not of concern at the moment). In their work, Hernquist and Quinn
(1988) recall that Arnold (1984) states that for phase wrapped shells, that are just caustics
in the mapping of the particle density from phase space into three-dimensional space, it
holds that the density behind a caustic should scale as (rs − r)−1/2. This behavior should
be independent of the used potential of the host galaxy. In Fig. 40 we have compared the
volume density near the shell edge in the approximation with this function and they indeed
show a pretty good agreement.

For a stationary shell, the volume density near the shell edge holds

ρ(r) =
k

vrr2
, (71)

where k is a constant for the given shell and vr is the radial velocity of the shell. In a field
of constant acceleration a0 Eq. (27) holds – vr =

√
2a0(r − rs), thus the volume density is

ρ(r) ∝ 1

r2
√
r − rs

. (72)

In the vicinity of the shell, the term (rs−r)−1/2 dominates. For a moving shell it is difficult
to make such analysis, but we have seen on an example, in Fig. 40, that this holds even in
such case.
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Figure 40: Volume density for the third shell at 105 kpc in the approximation of a constant radial
acceleration in the host galaxy potential and shell phase velocity (Sect. 11) – yellow curve, in
arbitrary units. The red curve represents a function (rs−r)−1/2 normalized so that at rs−r = 1.1 kpc
it has the same value as the yellow curve. For the parameters of the host galaxy potential, see
Sect. 8.1.

14.4 Projected surface density

Finally we reach a really observable quantity that is the projected surface density on the
sky for a shell in a given time. For volume density following Eq. (72) the projected surface
density turns out to be constant after integration. Thus we can assume constant projected
surface density/brightness immediately behind the shell. The sharp-edged appearance of
shells is caused by the abrupt decrease of their brightness outside the shell radius, as we
already demonstrated in Sect. 9.3.

Fig. 41 shows the projected surface density profile for two shells from the simulation
(Sect. 13) and for shells on same radii (70 and 105 kpc) using the approximation and
the model of radial oscillations (Sect. 9). The approximation departs from the model of
radial oscillations slightly only in the vicinity of the center of the host galaxy. In the
approximation, the current location of a star for different ts does not depend on the shell
velocity, see Eq. (41), where ts is the time where the star was or will be at the shell edge.
Thus even the projected surface density calculated in the approximation does not depend
on the serial number of the shell. The character of the profile immediate behind the shell
is however slowly rising toward the center of the host galaxy, rather than constant. The
shapes of the profile from the simulation and the approximation or the model of the radial
oscillations coincide fairly well, even though the approximation and the model of radial
oscillations assume uniform azimuthal distribution of particles which is obviously not valid
in the simulation (see e.g. Figs. 30 or 29).

On the other hand, no agreement at all is found for the outermost shell from the simu-
lation at 158 kpc near its edge with the approximation or the model of radial oscillations,
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Figure 41: Surface brightness profile for two shells from simulation used in Sect. 13 – green
curve; for equivalent shells using the approximation (Sect. 11) – yellow curve, and the model of
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Figure 42: Surface brightness profile near the shell edge for the outer shell from simulation used
in Sect. 13 – green curve; and for equivalent shells using the approximation – yellow curve, and
the model of radial oscillations – red curve. The curves are normalized so that they coincide and
assume unit value at 100 kpc.

Fig. 42. The simulated shell even significantly decreases in brightness just at its edge. The
reason for this is that the shell is nearing its demise and stars to arrive at higher radii are
missing (see Figs. 30). Another factor is the azimuthal development of brightness, as the
shell is the brightest near the axis of the merger and at higher angles (measured from the
axis of the merger) the number of stars decreases. That, together with a large shell radius
causes a decrease in the projected surface density at radii lower than the shell radius. A
universal profile of the projected surface density/brightness for phase wrapped shells thus
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does not exist, but in general a rather constant or rising behavior can be expected for the
inner shells, whereas the outer shell can show decrease toward the center of the host galaxy.

All the profiles of the projected surface density have been drawn for a band ±1 kpc
around the merger axis in the projected plane perpendicular to the merger axis.

15 Discussion

In this part of the thesis, we developed a method to measure the potential of shell galaxies
from kinematical data, extending the work of MK98, assuming a constant shell phase
velocity and a constant radial acceleration in the host galaxy potential for each shell. The
method splits into three different analytical and semi-analytical approaches (Sect. 11.6) for
obtaining the circular velocity in the host galaxy, vc, and the current shell phase velocity,
vs – the approximative LOSVD, the approximative maximal LOS velocities, and the slope
of the LOSVD intensity maxima. In Sect. 11.6, the first two approaches are compared
to the model of radial oscillations (numerical integration of radial trajectories of stars in
the host galaxy potential, Sect. 9). All three approaches are then applied to data for the
four shells obtained from a test-particle simulation and compared to the theoretical values
(Sect. 13.2).

The approximative LOSVD requires a numerical solution to Eq. (44) and the search for
a pair of vc and vs, which matches the (simulated) data best. Although this approach is
not limited by any assumptions about the radius of the maximal LOS velocity (Sect. 11.3),
it does not give a better estimate of vc and vs for our simulated shell galaxy than the other
two methods. The deviation from the real value of vc is between 2 % and 6 %.

Using the approximative maximal LOS velocities results in simple analytical relations
and is the only one that can in principle be used for a LOSVD measured at only one
projected radius. Nevertheless, when measuring in the zone between the radius of the
current turning points and the shell radius, we can expect very bad estimates of vc and
vs. The mean value from more measurements of the LOSVD peaks for each shell of our
simulated shell galaxy has similar accuracy to those of the approximative LOSVD, provided
that we include only the measurements outside the zone between the radius of the current
turning points and the shell radius.

The best method for deriving the circular velocity in the potential of the host galaxy
seems to be to use the slope of the LOSVD intensity maxima, with a typical deviation in
the order of units of km/s when fitting a linear function over all the measured positions of
the LOSVD peaks for each shell. This circular velocity is then used in the hybrid relation,
Eq. (51), to obtain the best estimate of the shell phase velocity.

All the approaches, however, derive the shell phase velocity systematically larger than
the prediction of the model of radial oscillations vs,model and the value derived from positions
between the times 2.49–2.51 Gyr in the simulation vs,sim (Table 5). This is because the
simulated LOSVD peaks lie too far out (for the outer peaks) or too far in (for the inner
peaks) when compared to the model of radial oscillations. That can be caused by nonradial
trajectories of the stars of the cannibalized galaxy or by poor definition of the shell radius
in the simulation.

Nevertheless, the shell phase velocity depends, even in the simplified model of an instant
decay of the cannibalized galaxy in a spherically symmetric host galaxy (Sec. 9), on the
serial number of the shell n and on the whole potential from the center of the galaxy up to
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the shell radius, Eq. (5). A comparison of its measured velocity to theoretical predictions
is possible only for a given model of the potential of the host galaxy and the presumed
serial number of the observed shells. In such a case, however, it can be used to exclude
some parameters or models of the potential that would otherwise fit the observed circular
velocity.

The first shell has a serial number equal to one. A higher serial number means a
younger shell. On the same radius, the velocity of each shell is always smaller than that
of the previous one. In practice, it is difficult to establish whether the outermost observed
shell is the first one created, or whether the first shell (or even the first couple of shells)
is already unobservable. Here, we can use the potential derived from our method or a
completely different one in a reverse way: to determine the velocity of the first shell on the
given radius and to compare it to the velocity derived from the positions of the LOSVD
peaks. Knowing the serial number of the outermost shell and its position allows us then to
determine the time from the merger and the impact direction of the cannibalized galaxy.
Moreover, the measurement of shell velocities can theoretically distinguish the shells from
different generations, which can be present in a shell galaxy (Bartošková et al., 2011).

Our method for measuring the potential of shell galaxies has several limitations. The-
oretical analyses were conducted over spherically symmetric shells, while the test-particle
simulation was run for a strictly radial merger and analyzed in a projection plane parallel
to the axis of the merger. In addition, both analytical analyses and simulations assume
spherical symmetry of the potential of the host galaxy. In reality, the regular shell systems
with higher number of shells in a single host galaxy are more often connected to galaxies
with significant ellipticity (Dupraz and Combes, 1986). Moreover, in cosmological simu-
lations with cold dark matter, halos of galaxies are described as triaxial ellipsoids (e.g.,
Jing and Suto, 2002; Bailin and Steinmetz, 2005; Allgood et al., 2006). However, the effect
of the ellipticity of the isophotes of the host galaxy on the shell kinematics need not be
dramatic, as the shells have the tendency to follow equipotentials that are in general less
elliptical than the isophotes. Dupraz and Combes (1986) concluded that while the elliptic-
ity of observed shells is generally low, it is neatly correlated to the eccentricity of the host
galaxy. Prieur (1988) pointed out that the shells in NGC 3923 are much rounder than the
underlying galaxy and have an ellipticity that is similar to the inferred equipotential sur-
faces. This idea was originally put forward by Dupraz and Combes (1986), who found such
a relationship for their merger simulations. Our method is in principle applicable even to
shells spread around the galactic center, which are usually connected to rounder elliptical
galaxies if they were created in a close-to-radial merger. Nevertheless, the combination
of the effects of the projection plane, merger axis, and ellipticity of the host galaxy can
modify our results and require further analyses.

Because the kinematics of the stars that left the cannibalized galaxy is in the first
approximation a test-particle problem, they should not be much affected by self-gravity of
the cannibalized galaxy and the dynamical friction that this galaxy undergoes during the
merger, both of which have been neglected in Part II.

Another complication is that the spectral resolution required to distinguish all four
peaks is probably quite high (Sect. 13.4 and Fig. 36) and the shell contrast is usually
small. The higher order approximation, Sect. 12, is sensible only when kinematical data
are available to larger distances from the shell edge. In the application to simulated data,
we considered a shell that is observable down to 0.9 shell radii. Nevertheless, there is
the possibility to measure shell kinematics using the LOS velocities of individual globular
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clusters, planetary nebulae, and, in the Local group of galaxies, even of individual stars.
It is even possible that the shell kinematics will be detectable in H I and CO emission, see
Sects. 3.5 and 6.7.

We have also explored the projected surface density of shells, Sect. 14.4. In the model
of radial oscillations, the shells show constant projected surface density near the shell edge,
whereas outside the shell radius, there is a step-like decrease of the density, creating the
sharp-edged feature of the shells. This behavior can be expected from shells with a large
development in azimuth and a sufficient supply of stars at different energies. Already
in our simple simulation of a radial minor merger with test particles and instantaneous
decay of the cannibalized galaxy, we can observe a shell with a projected surface density
that defies this description. We can assume that the self-gravity and gradual decay of the
cannibalized galaxy can disrupt the observed profile even further. Moreover, we worked
only in strictly spherical potentials and any non-zero ellipticity of the host galaxy can play
a significant role. For the moment, all we can say is how the projected surface density of
shells looks within the model of radial oscillations – any stronger statement would require
more detailed simulations.
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Part III

Dynamical friction and gradual disruption

In the same spirit as in Part II, we will consider the formation of the shell structure during a
radial minor merger. This time, we will try to get closer to real shell galaxies by introducing
into the test-particle simulations the gradual decay of the secondary galaxy as well as its
braking by dynamical friction against the primary.19

16 Motivation

In Sect. 9.1 we have shown how are the positions of the shells related to the potential of
the host galaxy at different times from the merger that created the shells. In practice,
nevertheless, it has proven difficult to reproduce the space distribution of the shells in the
observed shell galaxies using sensible potentials (Sect. 6). The main suspects of making
the relation more complex are the dynamical friction and the possibility to have shells
from multiple generations. In the case when the measurement of shell kinematics is not
available, we can pose a goal less ambitions than the derivation of the potential of the host
galaxy, that is to determine the age of the shell system (the time of the merger). To this
end, the measurement of the position of the outermost shell could be sufficient, as this shell
is the one which is the least effected by those additional effects.

As we have mentioned in Sect. 1, this is the approach chosen by Canalizo et al. (2007).
They presented observations of shells in a quasar host galaxy and, by simulating the posi-
tion of the outermost shell by means of restricted N -body simulations, attempted to put
constraints on the age of the merger. They concluded that it occurred a few hundred Myr
to ∼ 2 Gyr ago, supporting a potential causal connection between the merger, the post-
starburst ages in nuclear stellar populations, and the quasar. A typical delay of 1–2.5 Gyr
between a merger and the onset of quasar activity is suggested by both N -body simulations
by Springel et al. (2005) and observations by Ryan et al. (2008). It might therefore appear
reassuring to find a similar time lag between the merger event and the quasar ignition in
a study of an individual spectacular object.

The issue here is that noone has studied in detail the effects assumed to complicate the
shell distribution (the dynamical friction and the gradual decay of the secondary galaxy)
and thus it is not clear how exactly they change the shell structure and how they influence
the position of the outermost shell. We try to include the dynamical friction and the gradual
decay of the cannibalized galaxy in test-particle simulations. The manifestation of these
processes in self-consistent simulations is difficult to separate and sometimes they may even
be confused with non-physical outcomes of used methods. Test-particle simulations helped
us to separate and better understand the roles of the dynamical friction and gradual tidal
decay in the shell formation. Moreover, self-consistent simulations become demanding on
computation time when we want to explore a significant part of the parameter space.

We look at what these enhanced test-particle simulations tell us about the potential

19In this section, we use the terms secondary or satellite, rather than cannibalized galaxy. The host
galaxy will be usually referred to as primary. In related papers, one may also find the notation dwarf or
small galaxy for the secondary and giant elliptical or big galaxy for the primary.
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and merger history of shell galaxies with the focus on the plausibility of the use of the
outermost shell for dating the merger.

17 Description of simulation

In this and the previous part we show results of test-particle simulations and in this section
we describe the procedure of their calculation in detail.

17.1 Configuration

The test (i.e. mass-less) particles of the secondary galaxy are generated (usually in counts
from 104 to 107) so that they follow the density profile of the secondary galaxy. The
particles then move according to a smooth gravitational potential of both galaxies, which
move with respect to each other based on their masses, shape of potentials, positions and
velocities; Eq. (77). Figures and videos are generally oriented so that the secondary galaxy
approaches originally from the right hand side.

In the simplest case, when the centers of the galaxies pass through each other, the
potential of the secondary galaxy is suddenly switched off and the particles continue to move
only in the fixed potential of the primary galaxy. This approach is applied in simulation in
Part II and in some simulations in Part III. In the simulations with dynamical friction and
gradual disruption, the smooth potential of the secondary galaxy is kept for whole time and
its mass is progressively lowered during each successive passage. The dynamical friction
is added in the form of an (semi-)analytical prescription into the equations of motion of
galaxies.

All the simulations in the thesis are, for the sake of simplicity, carried out for spherical
galaxies, i.e. elliptical galaxies with zero ellipticity. The secondary (cannibalized) galaxy
is always modeled as a single Plummer sphere. The primary (host) galaxy is modeled as a
single or double Plummer sphere in Part III, while in Part II its potential has always two
components, both Plummer spheres.

For the numerical integration of the motion of the test particles and the galaxies, the
Leapfrog method was chosen. In this method, velocities derived for a time half step earlier
(or later) than the current position are used to update the position. Conversely, to update
the half-step velocity one step forward, the positions for the round position in between
are used. In so doing the velocities can be seen to “leapfrog” over the current time step.
This simple enterprise improves the accuracy of the numerical computation by an order
compared to when the position x and velocities v are taken simultaneously. The error is
of the order of (4t)3, where ∆t is the time step. For the longest time step used in our
simulations (1 Myr), the error for the trial circular motion was only 11 revolutions after
10,000 (compared to the simple analytical solution that is available in this case), what is
only 1 per mille.

17.2 Plummer sphere

The gravitational potential of each of the galaxies in this part, Part III, is modeled with
the Plummer profile with varying parameters in different simulations:

φ(r) = − GM√
r2 + ε2

, (73)
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where G is the gravitational constant, M is the total mass of the galaxy, r is the distance
from the center of the galaxy and ε is the Plummer radius – a scale parameter that
determines the compactness of the galaxy. For ε = 0 the Eq. (73) represents a simple
potential of a point mass. The Plummer radius corresponds to the effective radius20 of the
galaxy.

While the Plummer model follows the profile of the real spherical galaxies only approx-
imately, we use it here – as was the case of numerous other studies of galaxies – because of
its simple expressions of dynamical quantities. It was first used by Plummer (1911) to fit
the observations of globular clusters and now is often used as a stellar distribution model
in simulations.

From the Poisson equation 4φ = 4πGρ, we can easily infer the radial density distribu-
tion ρ that acts as the source for the Plummer potential:

ρ(r) = ρ0
1

(1 + r2/ε2)5/2
, (74)

where ρ0 = 3M/(4πε3) is the central density. About
√

2/4 (approx. 35%) of the total mass
of the galaxy is enclosed inside the r = ε radius.

The force F (r) acting on a test particle (of a mass m) is calculated from the potential
by the equation F (r) = −5 φ(r), what reads in Plummer potential as:

F (r) = −GMm
r

(r2 + ε2)3/2
. (75)

The particles in our model then move according to an acceleration a(r) given by the
potentials of both galaxies

a(r) = −G
∑
i

Miri

(r2
i + ε2

i )
3/2

, (76)

where the summation goes over pres quantities corresponding to the secondary galaxy,
and one or two components of the primary galaxy. In simulations where the potential of
secondary galaxy is switched off, the particles continue to move only in the fixed potential
of the primary galaxy. ri is the vector of distance between the center of the primary
or secondary galaxy and the particle: ri = rparticle − rgalaxy, where rparticle is a position
vector of the particle and rgalaxy is the position vector of the center of the primary or the
secondary galaxy.

The action of two Plummer spheres on each other is a little more intricate. The non-zero
radius reduces their attraction compared to two point masses. This interaction cannot be
appropriately described by simple means, but we approximate the attraction by keeping the
form of the Plummer potential and by defining a common softening parameter in order to
fulfill the law of the action and reaction. The definition of the common softening parameter
is derived from both Plummer radii and then we use it in the equation of motion as:

F (r) = −GMpMs
r

(r2 + ε2
p + ε2

s )3/2
, (77)

where r is the relative distance of centers of masses of galaxies. The indexes p and s
mark the quantities corresponding to the primary and the secondary galaxy. The common

20The effective radius is the radius at which one half of the total light of the galaxy is emitted interior to
this radius.
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softening parameter is then εcommon =
√
ε2

p + ε2
s . In the case of a two-component primary

galaxy, we use in Eq. (77) with Mp = M∗ + MDM and ε2
p = ε2

∗ + ε2
DM, where ∗ stands for

luminous component and DM for the dark halo.

17.3 Velocity dispersion in Plummer potential

For computation of dynamic friction we will need to know the velocity dispersion in the
Plummer potential, so let’s derive it briefly now. Applying the Jeans equations (see Binney
and Tremaine, 1987, Ch. 4.2) to our spherically symmetric galaxy without any systematical
movement, we get

∂
(
ρ(r)σ2(r)

)
∂r

= −ρ(r)
∂φ(r)

∂r
, (78)

where σ stands for the velocity dispersion, which is assumed isotropic at any given r.
Applying the assumption σ(∞) = 0 we get the solution:

σ2(r) =
1

ρ(r)

∞̂

r

ρ(r′)
dφ(r′)

dr′
dr′. (79)

The density ρ and potential φ of the Plummer sphere are given by the Eq. (74) and Eq. (73),
respectively. The final formula for the velocity dispersion of the galaxy with mass M and
Plummer radius ε is thus

σ2(r) =
GM

6
√
ε2 + r2

. (80)

Figure 43: The radial dependence of the velocity dispersion in a Plummer sphere galaxy extend-
ing to infinity (red line) and a galaxy having the same Plummer profile truncated in 10 times its
scale radius (green line). The distance is in multiples of the scale and the velocity dispersion in
the units of the dispersion in the center σ0 (σ0 differs negligibly between the two cases).
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For the galaxies in our model, we use the Eq. (80) in a slightly modified from, because
in the previous derivation we considered an isolated Plummer sphere extending to the
infinity. In reality, the size of a single galaxy is limited (by tidal forces) and so we assume
that at some distance Rtc it ends and here, σ(Rtc) = 0. With this assumption we get:

σ2(r) =
GM

6 ε
(1 + r2/ε2)5/2

[
1

(1 + r2/ε2)3
− 1

(1 +R2
tc/ε

2)3

]
. (81)

The radial dependence of the velocity dispersion for the truncated and the infinite
galaxy are compared in Fig. 43.

17.4 Velocity dispersion in a double Plummer sphere

For a galaxy modeled as two Plummer spheres – one for the luminous component and
another one for the dark halo – the situation with the velocity dispersion is more complex.
The presence of one component influences the dispersion in the other one and vice versa.
Eq. (79) changes to

σ2
1(r) =

1

ρ1(r)

∞̂

r

ρ1(r′)
d [φ1(r′) + φ2(r′)]

dr′
dr′. (82)

Using Eq. (74) and Eq. (73) and after a partial integration, we obtain

σ2
1(r) =

GM1

6
√
ε2

1 + r2
+

GM2

ε3
2

(
1 + r2/ε2

1

)5/2
I(r, ε1, ε2), (83)

where the first term is identical to the dispersion of the first component without in the
absence of the second one. The integral I(r, ε1, ε2) is solved as follows

I(r, ε1, ε2) =

∞̂

r

r′(
1 + r′2/ε2

1

)5/2 (
1 + r′2/ε2

2

)3/2 dr′ = (84)

=
1

3
(
ε2

2 − ε2
1

) [ 1(
r2 + ε2

1

)3/2 (
r2 + ε2

2

)1/2 +
4(

ε2
2 − ε2

1

)2
(

2−
√
r2 + ε2

2

r2 + ε2
1

−
√
r2 + ε2

1

r2 + ε2
2

)]
.

Fig. 44 illustrates the effect of the presence of the other component on the velocity
dispersion of a Plummer sphere.
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Figure 44: An illustration of the effect of a second component on the dispersion of a Plummer
sphere (M∗ = 3.2 × 1011 M� , ε∗ = 7 kpc). Red: the dispersion of the isolated sphere, green:
additional dispersion caused by the presence of a second component of large mass (MDM =

6.4×1012 M� ) and large Plummer radius (εDM = 60 kpc), blue: the sum of the two. The dispersion
is normalized so that the dispersion in the center of the first component in the absence of the
second one (181 km/s) equals 1.

17.5 Standard set of parameters

For the future reference, let us define the standard set of parameters for simulations (used
in this Part) as the following set of values:

The mass of the primary galaxy: Mp = 3.2× 1011 M�
The secondary to primary mass ratio: 0.02

Plummer radius of the primary galaxy: εp = 20 kpc
The cut-off diameter for the primary galaxy: Rtc = 200 kpc

Plummer radius of the secondary galaxy: εs = 2 kpc
The initial radial distance of the secondary galaxy: 180 kpc

The initial velocity of the secondary galaxy: 125 km/s, the escape velocity for the initial
distance

These values are used as the usual setup of the presented simulations and we will refer to
them often, so we do not have to repeat them.

Let us only remark that the escape velocity, vesc, is computed only approximately, on
the same grounds as the force between the galaxy (see Eq. 77), i.e. we put

vesc =

√
2G (Mp +Ms)√
r2 + ε2

common

. (85)

The results of our simulation show that, in the relevant range of radii, its difference from
reality is negligible.
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18 Dynamical friction

Dynamical friction is a braking force of gravitational origin acting on a body that moves
through the field of stars or any other matter. We will be interested in the dynamical
friction incurred on the secondary galaxy by the stars and dark matter of the primary
galaxy. We encourage the reader to consult Appendix D – Introduction to dynamical
friction – which is a modified chapter from Ebrová (2007). It explains in detail the nature
of this phenomenon and it is likely to be of interest even to a reader already familiar with
the topic.

Appendix D also contains a derivation of the Chandrasekhar formula (Sect. D.2). Chan-
drasekhar formula is an analytical expression derived by Chandrasekhar (1943) that is still
often used to calculate the dynamic friction. The formula is a good approximation for the
dynamical friction and is easy to use in test-particle simulations.

There are several different simplifications done during its derivation (see Sect. E.1).
One is the assumption of homogeneity of the stellar field around the braked body (both
density and velocity dispersion are taken as constants). This leads to a relatively simple
expression that contains the so-called Coulomb logarithm. The exact value of this logarithm
is unknown and is usually roughly estimated and taken as a constant.

In Ebrová (2007), we have devised an alternative way to calculate the dynamical friction
in radial mergers (that are the most likely to produce shell structures). We call it our
modification of the Chandrasekhar formula and a detailed description and derivation can
be found in Appendix E. Here we summarize only the main ideas.

The homogeneity of density and velocity dispersion is not assumed during the deriva-
tion of the Chandrasekhar formula. Instead, a more realistic stellar distribution function
is used, varying both the density and velocity dispersion based on the chosen model of the
host galaxy. Using the radial symmetry, the originally 5-dimensional problem is reduced
to a 2-dimensional one, Eq. (104), which is analytically insolvable and so numerical inte-
gration is used to calculate the final result for the dynamical friction. In this approach,
no estimated values are needed as an input, only the distribution function chosen for the
galaxy determines the friction.

In Sect. E.2, we compare the result of Eq. (104) to the Chandrasekhar formula. It is
shown that using a constant as the Coulomb logarithm is completely inadequate for the
problem at hand.

19 Multiple Three-Body Algorithm (MTBA)

We now investigate another alternative method to calculate the dynamical friction in radial
minor merger. The method is described in the paper Seguin and Dupraz (1994) and it is
also suitable for test-particle simulations.

19.1 Principle and characteristics

Seguin and Dupraz (1994) used restricted tree-body simulations to examine dynamical
friction in head-on encounter. They adopted the Multiple Three-Body Algorithm which
was originally proposed by Borne (1984). The basis of the method is to calculate the motion
of the satellite galaxy from the gravitational influence of the particles in the primary galaxy.
However, it is not a self-consistent simulation, as the particles are otherwise treated as test
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particles – their motion is calculated as the motion of massless particles in the sum of
the gravitational potentials of both galaxies, in the same manner as in our simulations
of the creation of the shell structure (Sect. 13 and Sect. 22). In the case of the MTBA,
the particles are generated so that they follow the distribution function of the primary
galaxy. Only when the motion of the secondary galaxy is calculated, these particles are
used as if each of them had a mass of m = Mp/N , where Mp is the total mass of the
primary galaxy and N is the total number of particles used. The force/acceleration acting
upon the secondary galaxy in each step is fully determined by the action of all particles
in the primary galaxy upon a chosen smooth potential of the secondary galaxy. Having
also the potential of the satellite act on these particles naturally perturbs their trajectories
and from their force exerted back on the satellite galaxy the dynamical friction naturally
arises.

To summarize, this method to calculate the dynamical friction requires a model for the
potentials of the primary and the secondary galaxy and the use of particles in the primary
galaxy. The particles are treated in two different ways: as massless when their motion is
calculated and as massive when the motion of the secondary galaxy is calculated.

Seguin and Dupraz (1994) have directly compared the results of a MTBA simulation
with the coupled solution of the linearized Poison and collisionless Boltzmann equations
for the first passage of the satellite. They found MTBA to be equivalent to the analytical
method. Compared to their analytical method, the MTBA has the advantage of easier and
faster calculation. Moreover the MTBA is more flexible so it can follow the whole process
until a complete merger. Both these methods show that the dynamical friction in radial
merger is not strictly proportional to the local density – contrary to what is assumed in the
Chandrasekhar formula. Moreover, it is a time-dependent process which depends on the
full past history of the merger, contrary to a satellite on a circular orbit in the co-rotating
frame. This observation cannot be reproduced in any modification of the Chandrasekhar
formula (including ours) which is fundamentally local.

In Seguin and Dupraz (1996) the MTBA has been compared with a self-consistent
Particle-Mesh simulation. The MTBA gives an accurate estimate of the decay rate of
orbital energy of the satellite, within 10% of the N -body simulation during the first orbit.
But it fails to reproduce the ultimate phase of the merger.

19.2 Merger parameters

To compare different methods for the calculation of the dynamical friction, we have modeled
the secondary as a point mass (eventually with a very small softening – 0.01 kpc) and have
chosen the following parameters of the collision:

The mass of the primary galaxy: Mp = 1012 M�
The secondary to primary mass ratio: 0.01

Plummer radius of the primary galaxy: εp = 10 kpc
The cut-off diameter for the primary galaxy: R = 200 kpc

The initial radial distance of the secondary galaxy: 100 kpc
The initial velocity of the secondary galaxy: 0 km/s
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19.3 Results of simulations

It turns out that for a successful application of the MTBA it is necessary to use a high
enough number of particles in the primary galaxy and a small enough time step of inte-
gration. The simulation for the chosen set of parameters (Sect. 19.2) stabilizes for about
100,000 particles with time step of 0.01 Myr, but even then there are noticeable differences
mainly in the later part of the merger as we further increase the number of particles and
decrease the time step, see Fig. 45 and Fig. 46. On the other hand, the introduction of the
slight softening in the interaction of the secondary does not influence the results provided
that enough particles and a small enough time step are used.
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Figure 45: (a) Distance of the secondary from the center of the primary galaxy; (b) energy of the
secondary. The motion was calculated using the MTBA with 100,000 particles for time steps of
0.001–1 Myr. Parameters of the collision are given in Sect. 19.2.
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Figure 46: (a) Distance of the secondary from the center of the primary galaxy; (b) energy of the
secondary.The motion was calculated using the MTBA with time step 0.01 Myr for 1,000-1,000,000
particles. Parameters of the collision are given in Sect. 19.2.

20 Comparison with self-consistent simulations

To compare the calculation of the dynamical friction using the methods mentioned earlier
(Appendix E and Sect. 19) with the self-consistent simulations, we use the simulations
performed by Kateřina Bartošková using GADGET-2. GADGET-2 is free software, dis-
tributed under the GNU General Public License. The code can be used for studies of
isolated systems, or for simulations that include the cosmological expansion of space. It
computes gravitational forces with a hierarchical tree algorithm (optionally in combination
with a particle-mesh scheme for long-range gravitational forces) and represents fluids by
means of smoothed particle hydrodynamics (SPH). Both the force computation and the
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time stepping are fully adaptive. The code is written in highly portable C and uses a spatial
domain decomposition to map different parts of the computational domain to individual
processors. GADGET-2 was publicly released in 2005 (Springel, 2005) and presently is the
most widely employed code for the cosmic structure formation.

20.1 Altering GADGET-2 computational setting

The parameters of the collision have been set the same as in the previous case, Sect. 19.2,
but with no cut-off diameter. 105 particles have been used to represent the primary galaxy.
The results differ for different settings of computational parameters in GADGET-2. Here
we present results of five simulations that differ in settings for three chosen parameters and
in the accuracy of variables during the calculation.

During the calculation of the gravitation force, spline softening is used. SoftPar is
the magnitude of the softening used for mutual interactions of the particles of the primary
galaxy. SoftSec is the softening for the secondary and in an interaction between the
secondary and a particle of the primary galaxy, the larger value from SoftPar and SoftSec
is used. ETIA (ErrorTolIntAccuracy) influences the accuracy of the integration method.
It is used in the estimation of the adaptive integration step ∆t

∆t =

√
2ETIASoftPar

a
, (86)

where a is the amount of acceleration the particle has been subjected to in the previous
step. Thus the smaller ETIA we choose, the shorter will be the time step. Precision
refers to the type of the floating-point precision used during numerical calculations.

The values we have used in the five different simulations and the labels of the simulations
are shown in Table 6. The orbital decay of the satellite for all the runs is shown in Fig. 47.
Run D has been calculated with the highest precision and we thus use it as a reference in
the following section.

run ETIA SoftPar SoftSec Precision

kpc kpc

A 0.002 0.21 0.05 Single
B 0.008 0.05 0.05 Single
C 0.04 0.01 0.01 Single
D 0.04 0.01 0.01 Double
E 0.002 0.05 0.05 Single

Table 6: The settings for the GADGET-2 simulations. The meaning of the parameters is explained
in Sect. 20.1.
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Figure 47: (a) Distance of the secondary from the center of the primary galaxy; (b) energy of the
secondary.The motion has been calculated using GADGET-2. The parameters of the collision are
given in Sect. 19.2, the settings for each simulation in Table 6.

20.2 Comparison of methods

Fig. 48 shows the orbital decay of the secondary in the merger with parameters given in
Sect. 19.2 for three different methods of calculation of dynamical friction. Our modification
of Chandrasekhar formula adds to the equations of motion of the secondary the dynam-
ical friction calculated using a numerically integrated analytical formula as described in
Appendix E. The MTBA method (Sect. 19) is represented by a simulation with 100,000
particles and time step of 0.01 Myr. From the self-consistent simulation with GADGET-2
we show run D (see Sect. 20.1).
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Figure 48: (a) Distance of the secondary from the center of the primary galaxy; (b) energy of the
secondary in three different methods: our modification of Chandrasekhar formula (Sect. E.1, red
curve); inconsistent simulation with GADGET-2 (Sect. 20.1, green curve); and MTBA (Sect. 19.1,
blue curve). Parameters of the collision are given in Sect. 19.2.

Our modification of Chandrasekhar formula gives by far the fastest loss of the orbital
energy of the satellite, but even the MTBA gives a significantly larger value of the dynam-
ical friction than the self-consistent simulation.

In Sect. 22 we will however use our modification of Chandrasekhar formula for the
calculation of the dynamical friction, as we have conducted a sizable number of simulation
using this method before we became familiar with the MTBA. The MTBA is also more
computationally demanding. It requires a small enough time step and the inclusion of test
particles in the primary galaxy, which are otherwise of no interest for us. Our modification
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of Chandrasekhar formula, on the contrary, gives the same results for the motion of the
secondary galaxy for the time step of 1 Myr as for any shorter step.

Doing self-consistent simulations is not an option because of the number of different
simulations required for this study (most of which we do not show explicitly in this thesis).
Because it seems that our modification of Chandrasekhar formula significantly overesti-
mates the real value of the friction, the results have to be considered an upper bound for
the influence of the dynamical friction on the shell structure. At the end, it turns out
that the differences in the shell structure related to the choice of a method to calculate the
dynamical friction is smaller than the uncertainty in the models of the tidal decay of the
secondary galaxy (Sect. 21).

21 Tidal disruption

Together with the dynamical friction, the tidal disruption is another effect that is important
for the galactic merger. The tidal disruption gradually lowers the mass of the cannibalized
galaxy and thus mitigates the effect of the dynamical friction. During shell formation, it is
of particular importance, because the gradual release of stars from the secondary galaxy has
an important effect on the growing shell structure. The introduction of the tidal disruption
into test-particle simulation is nevertheless a difficult task.

21.1 Massloss of the secondary

In the context of the tidal disruption of an object in the gravitation field of another body,
the notion of the tidal radius is frequently introduced. This is an approximative approach
to the tidal forces, assuming that under the tidal radius the matter is still bound to the
disrupted body, but it is not the case anymore outside the tidal radius. The reader may
find more details on the concept in Appendix F. Here we will only show how we used it in
our test-particle simulations.

First we have implemented a purely analytical approach, where we calculate the current
tidal radius in every step using Eq. (107) and update the mass of the secondary galaxy

Figure 49: The purely analytical approach to the decay of the secondary galaxy during the first
passage for the standard set of parameters (Sect. 17.5). Left: the evolution of the mass of the
secondary galaxy. Rights: Distance of the secondary from the center of the primary galaxy (blue
curve) and tidal radius of the secondary (red curve).
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Figure 50: Gradual decay of the secondary galaxy calculated using test particles. Top: distance
between the centers of the primary and the secondary galaxy. Bottom: the number of particles
bound to the secondary galaxy. Blue curves show the development for the simulation where we
consider as bound particles those inside the sphere of the tidal radius, the red curves correspond
to keeping particles with lower than escape velocity. Both simulations are carried out for the
standard set of parameters (Sect. 17.5), the dynamical friction is calculated using our modification
of the Chandrasekhar formula (Appendix E).

accordingly to the mass of a Plummer sphere with the original parameters of the secondary
galaxy but restricted to the tidal radius. But this leads to us only lowering the satellite mass
during the first passage through the center of the primary galaxy, see Fig. 49. Particles
are released in limited amount also during further passages, but this mechanism obviously
does not reflect the real situation for multiple passages.

To describe the decay of the satellite during further passages, we have included in its
calculation the test particles of the secondary galaxy. We count particles that we still
consider bound with the satellite galaxy. The ratio between their number and the number
of particles that we have put in the secondary galaxy at the beginning of the simulation
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Figure 51: Development of the distance between the primary and the secondary galaxy (top)
and the Plummer radius of the secondary galaxy (bottom). The simulations carried out for the
standard set of parameters (Sect. 17.5), the dynamical friction is calculated using our modification
of the Chandrasekhar formula (Appendix E). The radial density of the secondary galaxy at the
beginning of the simulation and in 5 Gyr is shown Fig. 52.

determines its current mass. As a criterion for bound particles we consider that 1) the
distance of the particle from the center of the secondary galaxy is lower than the current
tidal radius; 2) the velocity of the particle with respect to the secondary galaxy does not
exceed the escape velocity for its given distance from the center of the secondary galaxy.
Fig. 50 shows how these two approaches differ for otherwise identical initial conditions.

The use of the tidal radius causes large fluctuations of the number of bound particles
near the passage of the secondary galaxy through the center of the primary galaxy, when
many particles suddenly find themselves outside the tidal radius. When later the secondary
galaxy retreats from the center of the primary, the tidal radius quickly increases and more
particles are included. Some of them eventually escape before the secondary reaches its
apocenter, but still more particles stay bound to the secondary than there were during its
passage through the center of the primary. In the other simulation the loss of particles is
more monotonous, the orbital decay slightly faster, and more particles are caught in the
center of the host galaxy.

The use of the two different methods to model the tidal disruption of the secondary
does not have a dramatic impact on the merer. Nevertheless, the times of the passages of
the secondary through the center of the host galaxy and the volume of particles released
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in each passage differ between the two models, mainly in the later phases of the merger.
This may have a noticeable impact on the appearance of the shell system in different time,
that is the positions of the shells, their number, brightness, opening angle and so forth.

The problem is that we have no hint as to which of the methods is a better approx-
imation for the true decay of the secondary galaxy. If we were to compare the results
with self-consistent simulations, we would likely get different results depending mainly on
the configuration of the merger. Thus we compare the test-particle simulations done with
different methods for the tidal disruption of the secondary galaxy and focus on features of
the shell system that are independent of the method used (Sect. 22.1).

21.2 Deformation of the secondary galaxy

Another thing going on during the merger that is difficult to reproduce in test-particle
simulations is the deformation if the cannibalized galaxy. We model components of galaxies
with spherically symmetric Plummer spheres. Thus we have tried at least to change the
profile of the sphere of the secondary galaxy during the simulation.

The mean value of the radial distance of a particle 〈r〉 in a Plummer sphere is given as

〈r〉 =

´ Rtc

0 r′3ρ(r′)dr′´ Rtc

0 r′′2ρ(r′′)dr′′
, (87)

where ρ(r′) is the density of the Plummer sphere Eq. (74) and we express the cut-off in
multiplies of the Plummer radius Rtc = pε. The mean value of the radial distance is then

〈r〉 = ε
2
(
1 + p2

)3/2 − 2− 3p2

p3
. (88)

Thus if we calculate the mean value radial distance from the center of the secondary galaxy
for the particles that we consider bound to it in the simulation

〈r〉 =
N∑
i=1

ri/N, (89)

we can easily convert it to a new Plummer radius for the secondary galaxy εs. Fig. 51
shows the development of the Plummer radius of the secondary galaxy in a simulation
with the standard set of parameters (Sect. 17.5). The Plummer radius is calculated using
Eq. (88), where 〈r〉 is the mean radial distance of particles under the current tidal radius.
The radial density of the secondary galaxy at the beginning of the simulation and in 5 Gyr
is shown in Fig. 52. It is important to keep in mind that the density is calculated only
from radial distances from the center of the satellite even though the spherical symmetry
was surely broken during the simulation.
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Figure 52: The radial density of the secondary galaxy at the beginning of the simulation and in
5 Gyr for the standard set of parameters (Sect. 17.5). In blue is the density calculated from the test
particles of the secondary galaxy, in green the model of the secondary chosen at the start of the
simulation and in red the density of the Plummer sphere that corresponds to the changing Plummer
radius which is calculated from the distribution of the test particles. The density is normalized so
that the central density of the initially chosen Plummer sphere of the secondary galaxy is one.

Figure 53: Snapshots of simulations. For description of all runs see text in Sect. 22.1. Time 0
is defined as the moment then the secondary galaxy reaches the center of the primary galaxy for
the first time, which is (for all three runs) almost exactly 1 Gyr after it has been released from the
distance of 180 kpc with escape velocity. Only the surface density of particles originally belonging
to the satellite galaxy is displayed corresponding to the subtraction of the profile of the primary
galaxy. Each box, centered on the host galaxy, shows 300×300 kpc. Radial histogram of particles
in 5 Gyr is shown in Fig. 54.
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22 Simulations of shell structure

Now we finally show the combined effect that the inclusion of both the dynamical friction
and gradual decay of the secondary galaxy in the simulations has on the shell formation.
The simulations are carried out using the method described in Sect. 17, i.e. millions of
test particles were generated so that they follow the distribution function of the secondary
galaxy at the beginning of the simulation. The particles then move according to the sum
of the gravitational potentials of both galaxies that are both represented by a smooth
potential. The galaxies move with respect to each other as dictated by their masses, shape
of potentials, positions and velocities.

The dynamical friction, when included, is calculated using our modification of the
Chandrasekhar formula, see Appendix E, and the gradual decay of the secondary galaxy,
when included, is calculated using some of the methods from Sect. 21.1. In Sect. 22.2, we
have added the dark halo to the primary galaxy and Sect. 22.3 shows the shell formation in
a self-consistent simulations. All the outputs are oriented so that the secondary originally
approached the primary galaxy from the right hand side.

22.1 Dynamical friction and tidal disruption

We have compared three simulations, all of them for the standard set of parameters
(Sect. 17.5).

� Run 1 – without dynamical friction and with instant disruption of the secondary.

� Run 2 – dynamical friction is calculated using our modification of the Chandrasekhar
formula and the tidal disruption using the analytical approach based on the tidal
radius as described at the beginning Sect. 21.1.

� Run 3 – dynamical friction is again calculated using our modification of the Chan-
drasekhar formula, the tidal disruption is based on the counting of particles in-
side/outside the current tidal radius. Additionally, the Plummer radius of the sec-
ondary galaxy is constantly recalculated as described in Sect. 21.2.

Snapshot from all the runs for two different times are shown in Fig. 53, radial histograms
of particles in Fig. 54. Video from run 1 and run 2 is part of the electronic attachment. For
the description of the video, see Appendix H point 4.

We compare a simple simulation (Run 1) with a pair of simulations (Runs 2 & 3), where
the tidal decay of the secondary galaxy is modeled using two different methods. However,
we can see a qualitative shift in the same direction between both Runs 2 & 3 and the simple
simulation. The result of both Runs 2 & 3 is a multi-generation shell system, whereas Run 1
can in principle give rise only to one generation of shells.

For both Runs 2 & 3 there were more particles trapped in the gravitational field of the
host galaxy and a large part of them has been transported to the vicinity of the center of
the host galaxy. The outer shells (of the first generation) are more diffuse and significantly
less luminous when compared to Run 1, whereas their positions remain essentially the
same. On the other hand, in the later generations, there are brighter shells, some of which
can overlap with the first-generation shells. The shells of the later generations appear on
smaller radii and are often bright, whereas in Run 1 shells at small radii are completely
missing. The evolution of the shell brightness in Run 1 is somehow calmer, whereas the
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Figure 54: Radial histogram of stars of the secondary galaxy, centered on the primary 5 Gyr after
the first passage of the secondary galaxy through the center of the primary galaxy for the three
different simulations – run 1 (red), run 2 (green) and run 3 (blue). For description of all runs, see
text in Sect. 22.1.

shells of the later generations in Runs 2 & 3 have a tendency to reach very high brightness
in certain small range of radii.

Runs 2 & 3 are more consistent with observations (Sect. 3) in the sense that their contain
shells on both small and large radii. An important thing to notice is that within our model,
any subsequent passage of the secondary galaxy through the center of the primary galaxy
does not lead to a complete destruction of the shells from the previous passages. Towards
the center of the host galaxy, we find shells with larger surface brightness, also a feature
found in real shell galaxies. At the same time, in Runs 2 & 3 we can find faint shells
surrounded by brighter ones from both sides, another effect observed in real galaxies and
impossible to reproduce in a simple simulation.

The main difference between Run 2 and Run 3 lies in the positions of the shells from
the later generations – those shells that dominate the system in later times thanks to their
brightness. The timing of the second passage of the secondary galaxy through the center of
the host galaxy is very similar for Run 2 and Run 3 but the difference in energy, mass and
decay of the secondary galaxy is sufficient to produce shells at different radii. Run 3 also
differs significantly from Run 2 (and also Run 1) in that a bright shells system persist even
a long time after the first approach of the secondary galaxy (7 Gyr). However, we cannot
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say whether it is Run 2 or Run 3 that better describes the real merger of two galaxies under
given initial conditions. This indicates that quantitative modeling of a shell system using
test-particle simulation is very difficult or even impossible.

In spite of the difficulties, we dare to state qualitative conclusions independently on the
method chosen for the tidal decay of the secondary galaxy: the introduction of the dynam-
ical friction and the gradual decay to our simulations dramatically changes the appearance
of shell structures. Only the outermost shell of the first generation is not overlayed by
later, brighter generations of shells added during next passages of the satellite through the
center of the primary. While the position of the outermost shell is not much affected by
the dynamical friction, its brightness is rapidly lowered due to the many particles staying
trapped in the weakened but remaining potential of the small galaxy.

22.2 Dark halo

To be even more realistic, we present a two-component model of the galaxy – a luminous
component with a dark halo. The velocity dispersion of each component is under the
influence of the other (Sect. 17.4). The velocity dispersion is an important parameter of
the dynamical friction a thus values of the friction induced by each component slightly
differ (the amount depends on parameters) from the values we get when the component is
isolated (Sect. E.1).

We performed three simulations with parameters listed in Table 7. In all the cases, the
mass of the secondary galaxy is 0.02 of the total mass of the primary; and the secondary
approaches with escape velocity. Dynamical friction is calculated using our modification
of the Chandrasekhar formula (Appendix E). The mass of the secondary galaxy was
gradually lowered during the simulation according to the number of test particles under
the current tidal radius (Sect. 21.1) and its Plummer radius was being adjusted according
to the method described in Sect. 21.2.

run ε∗ M∗ εDM MDM εs Ms Dini vini

kpc M� kpc M� kpc M� kpc km/s

M0B0 7 3.2× 1011 - - 2 6.4× 109 180 125

M2B6 7 3.2× 1011 60 6.4× 1012 2 1.344× 1011 300 443

M6B10 7 3.2× 1011 100 1.92× 1013 2 3.904× 1011 300 756

Table 7: Parameters of simulations. The potentials of the galaxies are modeled as a single
Plummer sphere for the secondary galaxy in all runs and the primary galaxy in the run M0B0; and
as a double Plummer sphere for the primary in runs M2B6 and M6B10. Indices *, DM and S refer to
the luminous and dark components of the primary galaxy and the secondary galaxy, respectively.
ε is Plummer radius, M total mass of the Plummer sphere, Dini initial distance between centers of
the secondary and primary galaxies and vini their mutual velocity.
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Figure 55: Evolution of the merger for three different configurations of the dark halo of the primary
galaxy – distance between galaxies, number of particles bound to the secondary galaxy and its
Plummer radius. For the parameters of the mergers, see Table 7.
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Figure 56: Snapshots from three simulations, for the parameters of the mergers, see Table 7.
Time stamps refer to the time elapsed since the first passage of the secondary galaxy through the
center of the primary galaxy. Each panel covers 300×300 kpc and is centered on the host galaxy.
Only the surface density of particles originally belonging to the satellite galaxy is displayed. The
density scale varies between frames, so that the respective range of densities is optimally covered.

Fig. 55 illustrates the evolution of the distance between the galaxies and the gradual
decay of the secondary galaxy. Time stamps of each run have been shifted so that in each
case the secondary galaxy reaches the center of the primary galaxy at time 0. In the first
case (run M0B0 without any halo), the secondary galaxy lost all particles during the first
passage and this simulation is rather equivalent to simulations with instant disruption. In
the configurations that include the halo (runs M2B6 and M6B10), the velocity is such on
the other hand that the primary galaxy catches only very few particles in the first passage
and a significant growth of the shell structure is observed only in later phases of the merger.
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Snapshots for three different times are shown in Fig. 56 and radial histograms for time
3 Gyr in Fig. 57. For the simulation with a heavy halo (run M6B10) the particles cover
the largest span of energies (apocenters) and in both simulations with a halo (runs M2B6
and M6B10), new shells on lower radii are created in further passages of the secondary
through the center of the primary galaxy and many particles end up being caught in the
center of the primary. In the simulation without a halo (run M0B0) the secondary decays
in the first passage, but the particles have mostly sizable energies at that time and thus
have apocenters at larger galactocentric radii or outright escape the system. The positions
of the shells in a given time are obviously different for different potentials of the primary
galaxy.

Figure 57: Radial histogram of stars of the secondary galaxy, centered on the primary 3 Gyr
after the first passage of the secondary galaxy through the center of the primary for three different
simulations. The meaning of colors is the same as in Fig. 55 (red: M0B0 – without halo, green:
M2B6 – halo 20 times more massive than the luminous component, blue: M6B10 – 60 times more
massive). For the parameters of the mergers, see Table 7.

The main effect of the halo on the shell system is probably in that its presence (through
the increased mass of the primary galaxy) allows for a faster development of shells at larger
radii, despite the secondary releasing in our case only a small part of its stars during its
first passage through the center of the host galaxy. Meanwhile, there are additional shells
created in the following passages, creating the high radial range of shells observed in some
galaxies which has continuously proven difficult to reproduce in simulations.

The increased total mass of the host galaxy is apparently more important than the
difference in the dynamical friction caused by the differences in local density and veloc-
ity dispersion for different halo configurations. The more massive halo accelerates the
secondary galaxy more, reducing the loss of its energy via the dynamical friction and in-
creasing the time before a subsequent return of the secondary galaxy. But the higher
energy/velocity of the secondary galaxy allows the existence of shells at larger radii - while
it is important to note that in our simulations, we see shells at 200 to 300 kpc from the
center of the host galaxy, which is a distance where noone ever observed (or even looked
for) shells in real galaxies.
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Figure 58: Comparison of histograms of radial distances of shells‘ particles in the self-consistent
(green) and test-particle (red) simulations at two different time steps.

22.3 Self-consistent versus test-particle simulations

In this section, we compare two simulations with the same initial conditions, one conducted
in a self-consistent manner using GADGET-2 by Kateřina Bartošková, the other one with
test particles. Originally we intended to keep the parameters of the primary galaxy, but
a two-component (luminous+dark matter) Plummer sphere is not a consistent system for
an arbitrary choice of parameters, particularly for those we have used so far. The system
is consistent when each physically distinct component has a positive distribution function
(Ciotti, 1996). Thus we have chosen the following parameters for the merger:

The potential of the primary galaxy is a double Plummer sphere with respective masses
M∗ = 2 × 1011 M� and MDM = 8 × 1012 M� , and Plummer radii ε∗ = 8 kpc and εDM =
20 kpc for the luminous component and the dark halo, respectively. The potential of
the secondary galaxy is chosen to be a single Plummer sphere with the total mass M =
2× 1010 M� and Plummer radius ε∗ = 2 kpc. The cannibalized galaxy is released from the
distance of 200 kpc from the center of the host galaxy with the initial velocity 102 km/s in
the radial direction (as always).

Snapshots from several times for both of the simulations are shown in Fig. 59, radial
histograms for the chosen times in Fig. 58. Video from the self-consistent simulation is
part of the electronic attachment. For the description, see Appendix H point 5.

119



Figure 59: Snapshots from a test-particle simulation (left) and from the corresponding self-
consistent simulation (right). Time equal zero corresponds to the passage of the secondary galaxy
through the center of the primary galaxy. Each panel covers 400×400 kpc and is centered on the
host galaxy. Only the surface density of particles originally belonging to the satellite galaxy is
displayed. The density scale varies between frames, so that the respective range of densities is
optimally covered. 120



Unfortunately it turns out that for this choice of parameters, our method of including
the gradual decay of the secondary galaxy (Sect. 21.1) does not lead to a very gradual
decay at all. In the case of simulation with test particles, the secondary galaxy loses all
its particles near its first passage through the center of the primary galaxy. Thus we use
the model with instant disruption of the secondary instead. To make the comparison even
worse, the self-consistent simulations behaves in yet another way: the core of the secondary
galaxy survives the first two passages through the center of the primary galaxy and for
some reason dissolves close to its apocenter.

However, despite these significant differences, the results are surprisingly similar. Most
importantly, the radii of the outermost shells differ by less than 10%. In comparison with
our enhanced test-particle simulations (e.g., Sect. 22.1 – Runs 2 & 3), the self-consistent
simulation does not show a significant transport of particles of the secondary galaxy to the
area around the center of the host galaxy, neither does it produce shells at low radii. Where
on the other hand the self-consistent simulation resembles more the enhanced test-particle
simulations than the simple test-particle simulation (with instantaneous disruption of the
secondary galaxy and no dynamical friction) is the dramatic decrease of the brightness of
the outermost shell on large radii (compare with Sect. 22.1 – Fig. 54).

23 Discussion

Our goal in this Part of the work was to include the dynamical friction and the gradual
decay of the secondary galaxy in the test-particle simulations. It has been previously
pointed out that coupling of these phenomena is a key effect in the shell structure formation
but it was never modeled in much detail so far. Using these simulations, we aimed to asses
the plausibility of timing the shell-creating merger using the outermost observed shell in a
shell galaxy.

For the dynamical friction we used our own modification of the Chandrasekhar formula
for radial trajectories, Appendix E, which is more faithful to the true stellar distribution
function of the host galaxy. The dynamical friction calculated in this way is fully deter-
mined by the distribution function of the host galaxy and the mass and velocity of the
secondary, thus is contains no free parameters. Comparison between our modification and
the commonly used form of the Chandrasekhar formula, Sect. E.2, shows that the use of
a constant Coulomb logarithm is completely inappropriate for radial mergers. But when
compared with the self-consistent simulations, our method is found to significantly overes-
timate the friction, Sect. 20.2. In reality, the dynamical friction in a radial merger depends
on the whole merger history and thus can be hardly reproduced by any modification of
the Chandrasekhar formula, Sect. 19.1. Our simulations thus have to be understood as the
upper estimate on the true effect of the dynamical friction on the shell formation.

Including the tidal disruption of the secondary galaxy in test-particle simulation is even
more complicated. We have tried several methods, Sect. 21.1, and none of them is a priori
better than any other. Moreover we tried to reflect on the change of the shape of the grav-
itational potential of the cannibalized galaxy during the merger using a variable Plummer
radius, Sect. 21.2. We have carried out several simulations using different methods for the
decay of the secondary galaxy, focusing on qualitative effects in which these simulations dif-
fer from simple simulations that assume instantaneous breakdown of the secondary galaxy
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and no dynamical friction. We can believe that effects that are independent of the method
used are more likely to participate in shell forming process in reality.

One such effect is that while the position of the outermost shells of the first generation
is not much affected by the inclusion of the gradual decay and dynamical friction in the
simulations, its brightness is drastically lowered. The same effect is observed in our self-
consistent simulation, Sect. 22.3. Even easily inferring the age of the collision is rendered
impossible (as already pointed out by Dupraz and Combes, 1987). The shell systems in
Fig. 54 (Sect. 22.1), all having the outermost shell at +150 kpc, are seen 5 Gyr after the
first passage of the cannibalized galaxy through the center of the host galaxy. If we obser-
vationally identify the leftmost shell (around −80 kpc in Fig. 54) as being the outermost
one, we would mistakenly estimate the merger age to be only ∼ 2.5 Gyr. We would also
wrongly determine the direction from which the secondary galaxy came: assuming the clas-
sical picture (based on simulations without friction and with instantaneous disruption), the
outermost shell would be located on the side from which the satellite came, so we would
conclude it went from the left while the opposite is true.

Furthermore, with respect to the simple simulation, in the simulations with gradual
decay of the secondary, we observe the creation of new generations of shell during every
passage of the remnant of the secondary galaxy through the center of the primary. In
the consecutive generations, shells are created at lower radii and with higher brightness.
It is important to see that, in our simulations, the subsequent passages of the secondary
galaxy do not significantly disturb the existing shell structure of the previous generation
and thus a shell system with a large range of radii is created. The radial range of shells
observed in some real shell galaxies is truly impressive and it is impossible to reproduce in
a simple simulation. It is also worth noting that in simulations with the gradual decay of
the secondary, a large part of the mass of the secondary ends up in the proximity of the
center of the primary galaxy.

Presence of a dark matter halo in the primary galaxy, Sect. 22.2, changes not only the
dependence of the period of radial oscillations on radius (Sect. 9), but also the range of
stellar energies through the change of the velocity of the accreted satellite. The halo allows
for a faster development of shells at larger radii. A more massive halo creates a larger
range of shell radii in our simulations than a less massive one. The increased total mass
of the host galaxy is more important than the difference in the dynamical friction caused
by the differences in local density and velocity dispersion for different halo configurations.
The more massive halo accelerates the secondary galaxy more, reducing the loss of its
energy via the dynamical friction and increasing the time before a subsequent return of
the secondary galaxy. The higher velocity of the secondary galaxy also means that the
primary galaxy catches only very few particles in the first passage and a significant growth
of the shell structure is observed only in later phases of the merger.

In general, it seems that test-particle simulations are not suitable for a quantitative
reproduction of observed shell systems. There is no reliable (semi-)analytical method to
calculate the dynamical friction in radial and close-to-radial minor mergers. Apparently
even more importantly, there is no universal method to model the tidal decay of the
cannibalized galaxy in test-particle simulations. Unfortunately, it turns out that it is
exactly the details of the decay of the secondary galaxy that affect significantly the overall
shell structure. In two simulations, with apparently small differences in the loss of mass and
energy of the secondary galaxy during the first passage and the time of the second passage,
shells of the second generations were created at different radii with respect to the shells from
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the first generation (which are otherwise very similar between the simulations). Moreover,
the brightness of these shells differs and with each farther passage of the secondary galaxy,
the difference in the appearance of the shell system increases and the observability of shells
in the host galaxy changes by whole gigayears. Overall, an accurate reproduction of a shell
galaxy is a very delicate matter, as in practice we do not know an exact distribution of
mass in the host galaxy, the original trajectory of the secondary galaxy, nor its own mass
distribution and our simulations suggest that the shell structure is very sensitive even to
small details in these quantities.

Nevertheless even despite the simplicity of the models we used, it turned out that our
test-particle simulations with gradual disruption and dynamical friction of the secondary
galaxy do better than the simple simulations in reproducing observed features in real shell
galaxies. We thus conclude that also in real galaxies, these features are the result of
combined effects of the gradual decay and dynamical friction.

At the end, we shall stress that while all these details have a large effect on the overall
appearance of the shell system, they are not very important for the application of the
method to measure the host galaxy potential from kinematical data that we have intro-
duced in Part II. This method relies only on the assumption that the stars that form one
particular shell are moving along radial trajectories and were released in the center of the
primary galaxy together at some moment in the past. Within the framework the radial-
minor-merger model, neither the gradual decay of the secondary galaxy nor the dynamical
friction do not in principle have a large influence on the radiality of the stellar trajectories.
Also, even when these effects are present, stars are being released in short time intervals
when the secondary galaxy passes through the center of the primary galaxy, however these
intervals are slightly larger than zero, which would be the case for the instantaneous decay
of the secondary galaxy. This fact causes the shells to be slightly more diffuse and can
interfere with an effort to determine the positions of the spectral peaks and the shell edge.
Nevertheless, in principle the measurement of the potential should be still possible.

123



Part IV

Conclusions

In Part I we have summarized observational and theoretical knowledge about the shell
galaxies according to the available literature. Shell galaxies are mostly elliptical galaxies
containing fine structures which are made of stars and form open, concentric arcs that
do not cross each other. The most prominent observational characteristics of shells are
summarized in 22 points in Sect. 4. In Sect. 5, we introduce all proposed scenarios of
origin of shell galaxies. The most widely accepted theory, supported by a multitude of
observational evidence, is the close-to-radial minor merger of galaxies introduced by Quinn
(1984). In the framework of this model, Merrifield and Kuijken (1998) suggested using shell
kinematics to measure the potential of the host galaxy. The issue of the determination of
the overall potential and distribution of the dark matter in galaxies is among the most
prominent in galactic astrophysics since the most successful theory of the evolution of
the Universe so far seems to be the theory of the hierarchical formation based on the
assumption of the existence of cold dark matter, significantly dominating the baryonic
one. Thus, independent measurement of the dark matter content in galaxies is highly
desirable. Measurement of galactic potential is particularly difficult in elliptical galaxies
at large distances from the center of the galaxy. Incidentally, shells are found mainly in
elliptical galaxies and they do occur in distances up to 100 kpc from the center.

The method of Merrifield and Kuijken (1998) is based on the approximation of a sta-
tionary shell. Using positions of peaks in the line-of-sight velocity distribution (LOSVD),
it allows the calculation of the gradient of the potential near the shell edge. We have
developed this method further in Part II assuming validity of the radial-minor-merger
model and spherical symmetry of the host galaxy. Using both analytical calculations and
test-particle simulations, we have shown that the LOSVD has a quadruple shape in this
situation. Assuming a constant shell phase velocity and a constant radial acceleration in
the host galaxy potential for each shell, we have developed three different analytical and
semi-analytical approaches (Sect. 11.6) for obtaining the circular velocity in the host galaxy
and the current shell phase velocity from the positions of the peaks of the maxima of the
LOSVD.

The applicability of our different approaches varies with the character of measured
data. As obtaining suitable data is at the very limit of current observational tools and
thus no such data is yet available for analysis, we have applied our methods to results of
a simulation of a radial minor merger. We were able to reproduce the circular velocity at
shell radii to within ∼ 1 % from the actual value. Applying the method of Merrifield and
Kuijken (1998) to the simulated data, we have derived a circular velocity larger by 40–50%
than the true value.

All our approaches, however, derive the shell phase velocity systematically larger, 7–
30%, than the real velocity is. That can be caused by nonradial trajectories of the stars
of the cannibalized galaxy or by poor definition of the shell radius in the simulation. The
method of Merrifield and Kuijken (1998) does not allow to derive the shell phase velocity
at all since it is based on the approximation of a stationary shell.

In the case of spherical symmetry, the value of the circular velocity directly determines
the amount of mass enclosed under the given radius, thus determining the dark matter
content of the galaxy. On the other hand, the shell velocity depends on the serial number
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of the shell and on the whole potential from the center of the galaxy up to the shell radius
and thus its interpretation is less straightforward. A comparison of its measured velocity to
theoretical predictions is possible only for a given model of the potential of the host galaxy
and the presumed serial number of the observed shells. In such a case, however, it can be
used to exclude some parameters or models of the potential that would otherwise fit the
observed circular velocity. Moreover, the measurement of shell velocities can theoretically
decide whether the outermost observed shell is the first one created; determine the time
from the merger and the impact direction of the cannibalized galaxy; and reveal the shells
from different generations, which can be present in a shell galaxy (Bartošková et al., 2011).

In Part II we have examined effects of the gradual decay and dynamical friction of the
cannibalized (secondary) galaxy on the appearance of the shell structure. Our goal was
to asses the plausibility of timing the shell-creating merger using the outermost observed
shell in a shell galaxy. Attempts to date a merger from observed positions of shells, using
simple test-particle simulations, have been made in previous work of Canalizo et al. (2007)
supporting a potential causal connection between the merger, the post-starburst ages in
nuclear stellar populations, and the quasar.

We have searched for a method to include the gradual decay and dynamical friction
of the secondary galaxy into the test-particle simulations. While these effects are (along
with many other physical processes) naturally included in self-consistent simulations, us-
ing these has also some serious drawbacks when compared to test-particle simulations. For
example, some effects seen in self-consistent simulations are difficult or outright impossible
to reproduce by analytical or semi-analytical methods. At the same time, their manifesta-
tion in self-consistent simulations is difficult to separate and sometimes they may even be
confused with non-physical outcomes of used methods. Moreover, self-consistent simula-
tions with high resolution necessary to analyze delicate tidal structures such as the shells
are demanding on computation time. This demand is even larger if we want to explore a
significant part of the parameter space.

For the dynamical friction we used our own modification of the Chandrasekhar formula
for radial trajectories, Appendix E. The dynamical friction calculated in this way is fully
determined by the distribution function of the host galaxy and the mass and velocity of the
secondary, thus is contains no free parameters. But when compared with the self-consistent
simulations, our method is found to significantly overestimate the friction, Sect. 20.2. Our
simulations thus have to be understood as the upper estimate on the true effect of the
dynamical friction on the shell formation.

We have tried several methods for including the tidal disruption and deformation of
the secondary galaxy, Sect. 21, and none of them is a priori better than any other. In our
simulations it turns out that the resulting shell system is very sensitive to small differences
during the decay of the cannibalized galaxy and thus the test-particle simulations are not
suitable for a quantitative reproduction of observed shell systems. We have thus focused
on qualitative effects in which our enhanced simulations differ from simple simulations that
assume instantaneous breakdown of the secondary galaxy and no dynamical friction. It
turned out that these enhanced test-particle simulations do better than the simple simula-
tions in reproducing observed features in real galaxies, including features that the simple
simulations cannot show at all. We thus conclude that also in real galaxies, these features
are the result of combined effects of the gradual decay and dynamical friction.

One effect found commonly in all the enhanced test-particle simulations is that while
the position of the outermost shells of the first generation is not much affected by the
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inclusion of the gradual decay and dynamical friction in the simulations, its brightness is
drastically lowered. The same effect is observed in our self-consistent simulation, Sect. 22.3.
Even just inferring the age of the collision is thus tricky: if we observationally miss the
weakened outermost shell, which should be clearly visible according to simple simulations,
we would underestimate the merger age by a factor of 2. At the same time, we would also
wrongly determine the direction from which the secondary galaxy came.

Ideally, for systems with multiple shells we would like to combine measurements of
shell kinematics and their radial distribution, possibly also with measurements of surface
brightness profile (Sect. 14.4). The kinematical measurements supply us with the magni-
tude of acceleration at the shell edge and an estimate of the phase shell velocity, which
allows us to separate the shells in different generations, if these are present. Simulations
with the dynamical friction and gradual decay of the secondary galaxies that reproduce the
kinematic and photometric data will then constrain other parameters of the merger such
as its age and the trajectory and nature of the satellite galaxy. A similar result has been
obtained for M31, Fardal et al. (2007, 2008, 2012), whereas for the other shell galaxies,
obtaining the kinematical data is a great challenge for the next generation of astronomical
instruments.
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Part V

Appendix

A Units and conversions

When dealing with galaxies, we need to describe objects and time spans incommensurable
with our daily experience that defines the standard sets of units, such as SI. Throughout
the text we thus use a set of units adapted for this task – we measure the mass in M�
the length in kpc and the time in Myr. Although their meaning is clear, they sometimes
give rise to rather awkward derived units. We will briefly list the most prominent of them
(together with the basic ones) and give their relation to the SI and cgs units.

Time: 1 Myr = 106 yr = 3.156× 1013 s

Distance: 1 kpc = 3 262 ly = 3.086× 1019 m = 3.086× 1021 cm

Mass: 1 M� = 1.989× 1030 kg = 1.989× 1033 g

Velocity: 1 kpc/Myr = 977.8 km/s = 9.778× 107 cm/s (the roundness of this value

allows for an easy conversion for most of our plots)

Acceleration: 1 kpc/Myr2= 3.098× 10−8 m/s2 = 3.098× 10−6 cm/s2

Density: 1 M�/kpc3= 6.768× 10−29 kg/m3 = 6.768× 10−32 g/cm3

Grav. unit: 1 kpc3/Myr2/M� = 14.83 m3/s2/kg = 14 830 cm3/s2/g –

thus G = 6.674× 10−11 m3/s2/kg = 4.500× 10−12 kpc3/Myr2/M�
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B List of abbreviations

AU arbitrary unit, a relative placeholder unit for when the actual value of a measurement
is unknown or unimportant

DM dark matter

FWHM full width at half maximum, parameter of Gaussian function

GADGET-2 free software used for self-consistent simulations, see Sect. 20

KDC kinematically distinct/decoupled cores of galaxies, see Sect. 3.7

LOS line-of-sight

LOSVD line-of-sight velocity distribution

MK98 paper about measuring gravitational potential using shell kinematics Merrifield
and Kuijken (1998)

MTBA Multiple Three-Body Algorithm, a method used by Seguin and Dupraz (1994) to
study dynamical friction in head-on galaxy collisions, see Sect. 19

S/N signal-to-noise ratio

WIM Weak Interaction Model of origin of shell galaxies by Thomson and Wright (1990),
see Sect. 5.2
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C Initial velocity distribution

The shell-edge density distribution, σsph (rs), is defined by Eq. (13). Note that, since, in
the model of the radial oscillations, all stars at the shell edge have the same energy, the
function N (rs) determines the distribution of stellar apocenters, the radial dependence of
which differs just slightly from σsph (rs).

Let f(rac) and g(v0) be the distribution function of the stellar apocenters and the initial
velocities, respectively, then

g(v0) = f(rac)
drac

dv0
. (90)

In almost all cases in the thesis σsph (rs) ∝ 1/r2
s , so the distribution function of the stellar

apocenters is a constant function f(rac) = A.
Initially, all stars are at the center of the host galaxy, so

v0 =
√
−2 [φ(rac)− φ(0)], (91)

where φ(r) is the spherically symmetric potential of the host galaxy. Then

g(v0) = A
dφ(v)

dv

∣∣∣∣
v=v0

v0, (92)

where φ(v) is inverse function to v0 (φ) given by Eq. (91).
The correspondence between the shell-edge density distribution and initial velocity

distribution is one-to-one, unlike for example the one between the spatial (or projected)
density and the shell-edge density distribution, Eq. (14), as the density at one radius
receives contributions from particles with two distinct velocities.
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D Introduction to dynamical friction

Appendix D was, with some adjustments, adapted from the master thesis Ebrová (2007).

D.1 A thermodynamic meditation

The dynamical friction is a braking force of gravitational origin, caused by the sole fact
that the area, through which the secondary galaxy (or, in general, any object passing
through a galaxy or another extended object) flies is not an empty space filled with a
smooth potential, but a large sea of individual stars.

Thinking deeper, we can easily see that some slowdown of the secondary galaxy is
inevitable. Every system, where energy transfer is possible tends to temperature equilib-
rium. In a system of at least three gravitating bodies such a transfer is indeed possible
and frequently happens. The relatively fast and heavy secondary galaxy possesses a decent
amount of kinetic energy and as such it is just a hot piece thrown into a colder sea of
the stars of the primary galaxy. The slowdown of the intruder that cannot be accounted
for in the fixed-potential model, is the way of leveling the temperatures. The kinetic en-
ergy transfers to the primary’s stars – the same effect causes the heating of the cold disk
population in the week interaction model, as mentioned in Sect. 5.2.

The reality of this process can be grasped from a different point of view. The rela-
tively massive secondary galaxy attracts the primary’s stars and thus creates an area of
a higher density of stars behind itself. The passing galaxy is attracted backwards by this
condensation, lowering its speed towards the primary.

D.2 Chandrasekhar formula

An analytical derivation of such a braking force is based on the following thought: In a
distant encounter with just one star, the velocity of an object cannot be changed, instead
it is only deflected from the original direction and thus enriched with a component of speed
perpendicular to the original direction. For a very massive body, as our secondary galaxy
is, the magnitude of this perpendicular component will not be large, neither will be the loss
of the velocity in the original direction. But when it undergoes many such encounters, the
contributions add. The contributions in the perpendicular directions will have randomly
scattered azimuthal angles and thus add to zero (except for the overall action of the smooth
potential). On the other hand, the contributions to the original direction of the velocity
will always be opposite to it, resulting in the braking of the galaxy.

The Chandrasekhar formula was originally derived by Chandrasekhar (1943). Here we
present a short version of the presentation of the chapter 7.1 in the bible of the galactic
astronomy, “Galactic Dynamics” by Binney and Tremaine (1987).

To start, let us imagine the encounter of our object of interest with a single star. When
two bodies meet, energy is not transferred, but the direction of velocity of our object
changes. It is a matter of a simple mechanics and as a result, the change of the component
of velocity parallel to its original direction, | 4vM‖ | between the times t = −∞ and t =∞
is given by (Eq. 7-10b in Binney and Tremaine, 1987; see its derivation there):

| 4vM‖ |=
2mV0

M +m

[
1 +

b2V 4
0

G2(M +m)2

]−1

, (93)
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where M is our object’s (the secondary galaxy) mass, m is the mass of the star, b the
impact parameter (the length of b, the vector indicating the position of the star in a plane
perpendicular to the original velocity of the galaxy) and V0 is the difference between the
original velocity of the star vm and velocity of our object vM , so V0 = vm − vM . The
bold typeface indicates vectors, and their length is indicated by the same symbol in normal
type.

For an object flying through a field of stars with the phase-space number density of
stars f(vm,b), the change in the parallel component of velocity dvM‖ in an infinitesimal
time dt will be given by the integration of Eq. (93) multiplied by the density f(vm,b) over
the plane of b and the space vm. For b is measured from a given point in a plane, it is
advantageous to use the polar coordinates (b, ϕ):

dvM‖
dt

=

ˆ ˆ ˆ
f(vm, b, ϕ)

2mV0(vm)V0(vm)

(M +m)
[
1 +

b2V 4
0 (vm)

G2(M+m)2

]d3vm bdbdϕ. (94)

To derive the Chandrasekhar formula we further assume the homogeneity of the field of
stars, so as the distribution function of the stars does not depend on b. The remaining
b-dependent part is of the following form a can be easily integrated from 0 to some bmax:

bmaxˆ

0

bdb

1 + c2b2
=

[
ln(1 + c2b2)

2 c2

]b=bmax

b=0

, (95)

where in our case c = V 2
0 /[G(M +m)]. It is conventional to introduce the notation

Λ =
bmaxV

2
0

G(M +m)
. (96)

A typical value of Λ would be of the order of 103, thus we can neglect the one and put
1
2 ln(1 + Λ2) ∼= ln(Λ). This factor is often called the Coulomb logarithm. Furthermore we
assume that we do not err too much when replacing V0 in Λ by vtyp, a typical speed. Then
the Coulomb logarithm does not depend on vm, and still V0 =| vm − vM | and the whole
Eq. (94) goes to

dvM‖
dt

= 4π ln(Λ)G2m(M +m)

ˆ
f(vm)

vm − vM
| vm − vM |3

d3vm. (97)

The integral is of exactly the same form as in the Newton’s law of gravity and if the stars
move isotropically, the density distribution is spherical and by Newton‘s first theorem (see
Binney and Tremaine, 1987; chapter 2), the total acceleration of our object by dynamical
friction is:

dvM‖
dt

= −16π2 ln(Λ)G2m(M +m)

´ vM
0 f(vm)vmdvm

v3
M

vM (98)

i.e., only stars moving slower then our object contribute to the force and this force al-
ways opposes the motion. Eq. (98) is usually called the Chandrasekhar dynamical friction
formula.

If f(vm) is Maxwellian with dispersion σ
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f =
n0

(2πσ2)3/2
exp(−1

2
v2/σ2), (99)

we can integrate Eq. (98). The density of the stars is ρ0 = n0m and for M � m, what
happens to be our case, we can put (M +m) ∼= M , and then Eq. (98) reads:

dvM‖
dt

= −4π ln(Λ)G2ρ0M

v3
M

[
erf(X)− 2X√

π
e−X

2

]
vM , (100)

where Λ is given by Eq. (96), X ≡ vM/(σ
√

2) and erf(X) is the error function given by

erf(X) ≡ 2√
π

X̂

0

e−t
2
dt (101)

for which we can obtain tabulated values, or we can pre-generate them numerically with
an arbitrary precision.

D.3 What a wonderful universe

Giving it a deeper thought, one can consider the validity of the Chandrasekhar formula
almost a miracle. We have by the way disclosed that it works, at least approximately – the
confrontation with numerical simulations of flybys through a galaxy or a cluster has been
carried out by e.g. Lin and Tremaine (1983); Bontekoe and van Albada (1987), who proved
that the analytical solution (given by the Chandrasekhar formula) is in a good agreement
with the simulations in a relatively wide range of situations. The analytical solutions has
some freedom in the Coulomb logarithm which is not completely well-defined. Its correct
choice can help to better reproduce the numerical results and compensate other drawbacks
of the formula – anyway, the freedom is small when we demand the Coulomb logarithm to
stay constant.

Figure 60: The path and velocity changes of the objects undergoing encounters with individual
stars. The absolute value of the velocity remains unchanged.

But back to our astonishment. When the secondary galaxy deviates from its course, its
speed in the original direction is reduced. But after meeting another star that compensates
the deviation, it also gets back the original velocity in this direction, as is shown in Fig. 60.

The point is that the Chandrasekhar formula evaluates the change of the parallel com-
ponent of the velocity after the flyby from infinity to infinity for every single star with the
same initial conditions and then adds these changes and applies them to the secondary
galaxy in one moment, the moment of the closest approach with these stars, see Fig. 61.
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The change of the parallel component of the velocity and the compensation of the changes
in the perpendicular direction then happen somehow at the same time, although the mag-
nitude of their effect is calculated as if they happen consecutively – and by some wonder,
it works.

Figure 61: A schematic depiction of the change of the velocity of the secondary galaxy after three
steps. In every moment, only the influence of the stars lying in one plane perpendicular to the
motion of the galaxy is taken into account.

Let us just remark that the fact that we account for the influence of the stars in the
moment of the closest approach is not so strong neglection. During an encounter of two
bodies, roughly one half of the velocity change takes place around the point of the closest
approach on the scale of the impact parameter. For the encounter of the galaxy with two
stars, it is confirmed in the right panel of Fig. 62.

D.4 Why does it work?

We can see the mechanism of the dynamical friction in action even in a simple model of
a “galaxy” interacting with two “stars”, results of which are seen in Fig. 62. Although the
model is a very simple one, it allows us to see in practice that yet in the system of three
bodies (in contrary to two) the permanent energy and momentum transfer is possible. The
symmetry of the configuration ensures that the galaxy will keep a straight line and thus
any change of velocity it undergoes will be a change in the magnitude of the velocity.
According to the idea of an infinite sea of stars, we take into account only the interaction
between the stars and the galaxy, not mutually between the stars.

It is clear that due to the galaxy’s gravity, the stars begin to move towards its track
(meanwhile also moving towards the galaxy along the track, but let us not care for a
moment). While the stars move towards the track, the attraction accumulates and they
gather speed. When they cross the galaxy’s track, the galaxy starts pulling them back (at
least when we speak about the perpendicular component of the velocity) and they slow
down. Anyway, thanks to the fact that they cross the track after the galaxy’s passage, they
spend more time in the phase where their perpendicular velocity component is increased
than otherwise and finally they retain some speed in this direction. But it means they
have gathered kinetic energy, what must be at the expense of the galaxy’s kinetic energy
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Figure 62: The result of the simulation. A large body (with the mass of 200 M�, straight black line)
moves in the direction of the x-axis (with the velocity of only 100 m/s – this and the other unrealistic
values have been chosen only to make the picture more illustrative in a linear and uniform scale)
and encounters a pair of stars (2 M� each) that are initially place symmetrically with respect to its
track (0.1 pc from the track). The mutual gravitational attraction of the stars is neglected. The right
panel shows the development of the velocity of the large body during the closest approach. The
blue line represents its original velocity, thus its path if the stars were not present.

and so the speed of the galaxy must have decreased (that is the dynamical friction) –
even though it has moved much faster than before during the closest approach of the
encounter. In reality, the situation is a little more complex, because apart from the energy,
the momentum has to be also conserved – the momentum of the galaxy has decreased and
so the stars must have also a non-zero parallel component of the velocity, to maintain this
component of momentum.

In accordance with the derivation of the Chandrasekhar formula, we use Eq. (93) just
multiplied by two to derive the analytical formula for the change of the galaxy’s velocity.
For the impact parameter b we obviously put the original distance between the stars and
the galaxy’s track. Our numerical tests for various values of parameters (masses, initial
velocity of the galaxy, impact parameter) show that the analytical results obtained this
way tend to overestimate the decrease in the velocity, typically by about 15 per cent.

It could be anticipated that the numerical and analytical results will differ, as the
analytical formula counts with two separated encounters from infinity to infinity. In such a
case the galaxy follows a curved trajectory and thus its interaction with the star is slightly
different than when both encounters happen at the same time and the galaxy is forced to
stay on a straight line. Let us remark that we have tested the model by removing one of
the stars and then the results for the change of the parallel component of the velocity differ
from the prediction in fractions of per mille.

In reality, the situation is even more complex, there are many stars in the game and
they also mutually interact and undergo the influence of all the surrounding stars that do
not take part in the dynamical friction directly.
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E Our method

In Ebrová (2007) we have introduced our method to calculate the dynamical friction in
restricted N -body simulations during the radial merger. In this section we remind the
reader of its characteristics and derivation as introduced in the master thesis.

E.1 Avoiding some approximations

The Chandrasekhar formula contains two kinds of inaccuracies. The first of them is the
principal one, namely the fact that the change in the parallel component of the velocity
from any individual star is added instantaneously at the point of the closest approach (of
the secondary galaxy) to it. We have already shown that it is not too wrong, but what is
worse, the influence of the star is taken to be such as if the galaxy passed it from infinity to
infinity and there was nothing in the universe but the star and the galaxy. Sects. D.2–D.4
for details.

The second source of inaccuracy lies in all the approximation that have been done when
passing from Eq. (94) to Eq. (98). These will concern us in this section, leaving aside the
assumptions of the Maxwellian velocity distribution and the negligence of the masses of
the stars compared to that of the secondary galaxy, that led us from Eq. (98) to Eq. (100),
which we use in the simulations and keeping the “principal inaccuracy” mentioned above.

The first approximations that allowed us to integrate Eq. (94) over the plane of the
impact parameter was the assumed homogeneity of the star field, i.e. that the distribution
function does not depend on position. Then we have taken the Coulomb logarithm to be
independent of velocity of the stars vm (it obviously isn’t, but it varies slowly) and this
has allowed us to simplify the vm-integral and given a suitable choice of the distribution
function we could even carry out the integration (see Sect. D.2). Both steps are only
approximate even in the simple case of the spherical galaxy with the Plummer profile, as
both the density – Eq. (74) and the velocity dispersion – Eq. (80) of the Plummer sphere
do depend on the radius.

If we wish to avoid these simplification, we have to turn back to Eq. (94) and put in
e.g. the Maxwellian distribution, Eq. (99), for f(vm, b, ϕ), together with putting n0m = ρ,
where ρ is the density of the primary at a given point – keeping in mind that the radius
r (the distance of a point from the center of the primary galaxy) on which the formulae
depend is a function of b, ϕ and in fact also of the direction of motion of the braked
body (the secondary galaxy). When dealing with the radial mergers, this direction points
towards the center of the primary galaxy and r becomes a particularly simple function of
b:

r =
√
d2 + b2, (102)

where d is (also in the following) the distance between the centers of the primary and the
secondary galaxy. There is no ϕ-dependence in the radial case and the integration gives a
trivial factor of 2π. For simplicity, we put the Eq. (80) for the velocity dispersion, as the
friction is essentially negligible for both the simple and the cut-off dispersion in the areas
where they significantly differ (see Fig. 43). Furthermore, during the multiple passages
that occur in the simulations (where the friction becomes significant) the secondary galaxy
does not reach these areas at all. Using Eq. (80) for the cut-off velocity dispersion would
thus unnecessarily complicate the already complex formulae.
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Putting all this together, we get

dvM‖
dt

=
35/2ε2

p

(πG)3/2M
1/2
p Ms

ˆ ˆ | vm − vM | (vm − vM )

(b2 + d2 + ε2
p)7/4

× (103)

×
[
1 +

b2(vm − vM )4

G2M2
s

]−1

exp

[
− 3vm

GMp

√
b2 + d2 + ε2

p

]
bdbd3vm,

where the meaning of the variables is the same as when we derived the Chandrasekhar
formula in Sect. D.2. The indexes p and s again stand for the parameters of the primary
and the secondary galaxy, respectively.

First, we shift the integration variable to v′m = vm − vM and immediately rename
it back v′m → vm. We then perform the scalar product with the unit vector vM/vM on
both sides, getting the projection of the friction acceleration to the direction of the velocity
of the secondary galaxy. This is by symmetry its only nonzero component in the radial
case and it will be advantageous to deal with a scalar-valued integral. The negative value
means that the friction acts in the direction opposite to the motion of the braked body,
what is the only feasible situation in any setup with an isotropic velocity distribution in
the primary galaxy.

Transforming to the spherical coordinates (taking the z-axis parallel with the velocity
of the secondary galaxy), we have vm · vM = vmvM cos θ and again no dependence on the
azimuthal angle, leaving us with the obligatory factor of 2π. The θ-integral then can be
carried out in the form that could be with some effort put on mere three lines:

dvM‖
dt
· vM
vM

=

√
3MpG

3/2Msε
2
p

2
√
πv2

M

√
R2−d2ˆ

0

∞̂

0

bdb v2
mdvm(

ε2
p + d2 + b2

)11/4
(G2M2

s + b2v4
m)
× (104)

×[e−3

√
ε2
p+d2+b2(vm−vM )2

GMp

(
GMp − 6 vmvM

√
ε2

p + d2 + b2
)
−

−e
−3

√
ε2
p+d2+b2(vM+vm)2

GMp

(
GMp + 6 vmvM

√
ε2

p + d2 + b2
)] ,

where R is the considered cut-off of the primary galaxy. We cannot proceed analytically
with the integration (not even in one of the variables), instead we have solved it numerically
in Maple for chosen values of the parameters.

We have come to a formula for the dynamical friction Eq. (104) that is physically
more accurate than the Chandrasekhar formula, but it is valid only for a radially moving
body in the Plummer sphere. It is also only more accurate in the sense of avoiding the
approximation used between Eq. (98) and Eq. (100) but it is still built atop the “principal
inaccuracies” described above.

The reader who considers a formula to be the best figure can enjoy Eq. (104) and
who considers a figure to be the best formula can explore Fig. 63, where the integrand
of Eq. (104) is shown in dependence of both integration variables for a chosen set of
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Figure 63: The value of the integrand (including all the constants) from Eq. (104) in the depen-
dence on the integration variables (the impact parameter and the relative velocity between the
secondary galaxy and the stars) for the standard set of parameters (see Sect. 17.5) and the dis-
tance of the braked body (the secondary galaxy) from the center of the primary of 70 kpc. The
velocity of the body is taken to be 0.2 kpc/Myr (1 kpc/Myr .

= 1000 km/s, see Appendix A). This
value is also indicated in the graph by a red marker – it not surprising to find it near the peak,
because there is a strong contribution from the stars that are in rest with respect to the center of
the primary galaxy, as the Maxwellian distribution peaks in zero.

parameters. It is clear that far most of the acceleration comes from a close neighborhood
of the braked body both in the plane of the impact parameter and the velocity space.
However, the maximum of the integrand does not exactly coincide with the actual speed
of the body, as there is no reason for it to be so, but it is very close.

For a primary galaxy made of two Plummer spheres – one for the luminous component
and one for the dark matter halo – the equivalent of Eq. (104) becomes much more compli-
cated. It can be obtain in much the same manner as described in this chapter, only using
Eq. (83) instead of Eq. (80) for the velocity dispersion. But the angular integration is not
possible to analytically, and the resulting three-dimensional integral cannot be written in
a couple of lines’ worth of space. A numerical solution is necessary for specific values of
parameters.

E.2 Back to Chandrasekhar formula

We have examined how the braking force according to Eq. (104) differs from that calcu-
lated using the Chandrasekhar formula. The Coulomb logarithm is in some sense a free
parameter of the formula, thus we have adjusted it to maximize the agreement between
the two methods of calculation of the friction. For further details, see Ebrová (2007).

Using a constant value of the Coulomb logarithm we did not obtain a good agreement
between the friction calculated using the Chandrasekhar formula and using our method.
The best option seems to be to calculate the value of the Coulomb logarithm in every
step from the actual value of the velocity of the secondary galaxy. The V0 in the definition
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Figure 64: The logarithmic and linear plots of the time dependence of the dynamical friction for
multiple passages of the secondary galaxy for the standard set of parameters (Sect. 17.5), using
bmax = 10 kpc together with the lower limit of the Coulomb logarithm ln Λcrit = 2. Red values are
computed in the model, blue values are numerical solution of Eq. (104).

Eq. (96) for Λ is the difference between the velocities of the stars and the secondary galaxy.
As the stellar velocities are isotropic, the average value is just the velocity of the secondary
galaxy with respect to the center of the primary.

There is a uncertainty in the parameter bmax in the same equation – it should be theo-
retically equal to the distance between the center of the secondary and the outer boundary
of the primary measured in the plane perpendicular to the motion of the secondary. But
Eq. (100) assumes a homogeneous field of stars across all this distance, what is obviously
not true. As the plane of the impact parameter is the plane perpendicular to the radial
motion of the secondary galaxy, the density of the primary galaxy is always the highest in
its center and decreases outwards. Thus it may seem that the bmax should be smaller than
the normal distance to the edge of the primary galaxy, but the approximation of the V0

with the velocity of the galaxy and other circumstances make the situation more complex.
The value of bmax must be chosen in a trial-and-error method for the chosen parameters
of collision so that the magnitude of the friction agrees best with the numerical solution of
the integral Eq. (104).
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The adaptive version of the Coulomb logarithm with a suitable chosen bmax fits nicely
in the high velocity regime. The problem appears when the satellite gets close to its apoc-
enter and also mainly in the late parts of the merger when the velocity of the satellite is
much lower than during its first passage through the center of the primary galaxy. Here the
adaptive version of the Coulomb logarithm with the chosen bmax significantly underesti-
mates the friction when compared with the numerical solution of the integral Eq. (104). So
we use the adaptive Coulomb logarithm until its value drops under a certain limit ln Λcrit,
then we put this limit for the Coulomb logarithm instead. With this modification of the
Chandrasekhar formula, we can achieve a reasonable agreement, see Fig. 64. bmax and
the lower limit for the Coulomb logarithm are free parameters and they depend on the
parameters of the radial merger – the initial mutual velocity of the galaxies, their masses
and Plummer radii.

E.3 Incorporation of the friction in the simulation

The question of incorporation of the dynamical friction in the simulations of the shell
formation is tricky. In a fully self-consistent simulation, the dynamical friction would be
automatically included, but such a simulation would be extremely demanding on resources –
for the friction to be really well simulated, the number of particles of primary galaxy should
not be several orders of magnitude smaller than the true amount of stars in the galaxies.
Joining the stars in a smaller amount of more massive objects systematically overcounts
the friction. Peñarrubia et al. (2004) remarked that Prugniel and Combes (1992); Wahde
and Donner (1996) have indeed shown that the dynamical friction is artificially increased if
the particle number is small. Using the analytical formula for the friction is not devoid of
problems, but in some respects it could be more accurate than some of the self-consistent
simulations.

On the other hand, the number of the particles of the secondary is an important quantity
for the visibility of the shells in the simulations. And for the large number of required test
particles (∼ 106) that represent just the secondary galaxy, even our “simple” simulations
take hours of computation on a contemporary desktop computer. Furthermore, to explore
the parameter space we have to run a lot of simulations, so we can really use a handy
(semi-)analytical formula. We can easily add the acceleration calculated by Eq. (104) into
the equation of motion of the galaxies.

It is worth mentioning that we departed in two aspects from the potential that we chose
to model the merging galaxies. We assumed Maxwell velocity distribution, Eq. (99). This
is not exactly true for the Plummer sphere, but the difference is small and the true velocity
distribution in real galaxies is not known, so we cannot do much better, or say exactly how
big mistake do we make.

The secondary galaxy is here treated as a point mass what artificially increases the
friction, because the extended character of the galaxy softens the force (Sect. 17.2). Spe-
cially the stars with a small impact parameter with respect to the center of the secondary
galaxy fly straight through it and their effect is significantly reduced compared to the
Chandrasekhar formula for the point mass. The overestimation of the dynamical friction
is not a crucial problem as we want to estimate how much the shell system is influenced
by it – we can assume that the reality is not worse than our results and we get the upper
bound on the effect.
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F Tidal radius

For starters, let us remind the reader of the derivation of the tidal radius, as presented in
Ebrová (2007). The tidal forces acting on an object are often derived using the following
picture: A massive body (secondary galaxy) as a whole follows the force acting on it in
its center of mass. But the force acting on outer parts of the body is different, as it is at
different distances of the source (the primary galaxy). If this difference is larger than the
binding force with the secondary for a given star, it is stripped off.

The tidal radius rtidal is then defined as the distance (from the center of the secondary),
where the difference of the force of the primary from its force in the center of mass of the
secondary is just equal to the force from the secondary:

Fp(d− rtidal)− Fp(d) = Fs(rtidal), (105)

where d is the separation between the centers of the galaxies and Fp(r) and Fs(r) is the
force from the primary and the secondary for a given test particle (its mass is immediately
canceled out from the equation).

For two point-like bodies (with masses Mp and Ms), we can write Eq. (105) as:

GMp

d2(1− rtidal/d)2
− GMp

d2
=
GMs

r2
tidal

. (106)

Assuming further rtidal � d we can use the Taylor expansion (1 − x)−2 ∼= 1 + 2x for
x = rtidal/d as it is then a small quantity. under this assumption we get a simple formula
for the tidal radius:

rtidal = d 3

√
Ms

2Mp
. (107)

However, for two point masses we can get an exact result for the tidal radius. Not
making any approximation in Eq. (106) we can cast it as a fourth-order polynomial

X4 − 2X3 + q X2 − 2 q X + q = 0, (108)

where X = rtidal/d and q = Ms/Mp. A polynomial with an order less than five can be
always solved. In our case, where q is positive, there are two real roots, from which we
take the one that gives rtidal < d and thus X < 1. The second real root corresponds to a
point of the other side of the primary galaxy that is not of interest for us. The expression
for this root does not give much insight, but an interested reader can find it in Appendix
G.

Eq. (105) gives the tidal radius for the particles on the line connecting the centers of
the two bodies – we call it the inner tidal radius. Similarly we can write an equation for
the particles on the other side of the secondary than the center of primary lies:

Fp(d)− Fp(d+ rtidal) = Fs(rtidal). (109)

It again leads to a fourth-order polynomial for which we can obtain the root that we call
the outer tidal radius. The approximate solution Eq. (107) is the same for both equations,
Eq. (105) and Eq. (109). Let us remark that the tidal radius is in any case just proportional
to d as there is no other scale in the problem. Fig. 65 shows the dependence of the three
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Figure 65: Tidal radius for two point masses: the approximate solution, Eq. (107), is shown in
blue, the exact solutions in red (the outer one in light red, the inner in dark red). The shows y-axis
X = rtidal/d, the x-axis shows the secondary-to-primary mass ratio.

radii on the mass ratio of the bodies. We can see that for all relevant ratios the approximate
formula is just between the inner and the outer tidal radius.

The tidal radius for a point mass is in some sense an oxymoron, as these objects have
zero proportions by definition. For spherically symmetric bodies we can write Eq. (106) as

GMp(d− rtidal)

(d− rtidal)2
− GMp(d)

d2
=
GMs(rtidal)

r2
tidal

, (110)

where M(r) is the mass enclosed in the radius r. Particularly for the Plummer sphere we
get this value integrating Eq. (74) over the sphere with the radius r:

M(r) =
M

(1 + ε2/r2)3/2
, (111)

where M is the overall mass of the body and ε is the Plummer radius. Unfortunately
this makes the equation too complex to be easily solved. Let us compare graphically the
tidal radii for point masses and Plummer spheres of the same overall masses just for one
particular case – Fig. 66.

The figure (or a simple thought) shows that the notion of the tidal radius in a general
potential makes sense only when the force grows with the distance. Otherwise the tidal
force acts in the same direction as the gravitation of the secondary and thus cannot strip
off any mass. In the Plummer potential the force reaches its maximum in

√
2 ε/2, so the

tidal radius is not defined under this radius, whereas for the point masses it is defined
everywhere.

The idea of the tidal radius is just an approximation to the complex processes during
encounters of two extended bodies. It also does not define a sphere around the center of
the secondary galaxy, but as we have seen, it is different for various locations, with the
lowest value towards the center of the primary galaxy and the highest on the opposite
side. For these reasons it is not really useful to improve its evaluation and so we have used
the approximate Eq. (107) that as we have seen gives the values somewhere in the middle
between the two extreme values of the tidal radius.
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Figure 66: The outer and inner tidal radii (marked with circles) for the point masses and Plummer
spheres with the secondary-to-primary mass ratio of 0.02. In the Plummer case, the Plummer
radius of the primary is 0.5 of the distance between the bodies and the Plummer radius of the
secondary is 0.1 of the same quantity. Blue lines (light blue for the point mass, dark blue for the
Plummer sphere) show the gravitational force of the primary in arbitrary units, red lines (light red
for the point mass, dark red for the Plummer sphere) show the difference between the gravitational
force of the primary in a given point and its value in 1, where the center of the secondary is. The
tidal radii are the points of intersection of corresponding curves.
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G Expressions for the tidal radius

Here we give the analytical formulae for the tidal radii in the system of two point masses
as discussed in Appendix F. For the inner tidal radius we have:

r

d
=

1

2
+

√
3

6

√y
6
√
z
−

√
6− 4 q − 3

√
qz − 3

√
q5

z
+ 6 6
√
z

√
3

y
(q + 1)

 , (112)

where
y = (3− 2 q) 3

√
z + 3

√
qz2 + q5/3 (113)

z = 54 + q2 + 6
√

81 + 3 q2 (114)

and for the outer tidal radius we get similar expressions:

r
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=

1

2
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3

6
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6
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3
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(q − 1)

 , (115)

where

u = (3 + 2 q) 3
√
v + 3

√
qv2 + q5/3 (116)

v = −54− q2 + 6
√

81 + 3 q2 (117)

and in all the expressions we use

q =
Ms

Mp
. (118)
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H Videos

Several videos are also part of the electronic attachment of the thesis. Here we present
their description. Information on details of the simulation process can be found in Sect. 17.
The videos can be also downloaded at: galaxy.asu.cas.cz/∼ivaana/phd

1. 1-shells.avi – Video from a simulation of a shell-producing radial minor merger from
a perspective perpendicular to the axis of the merger. The bottom three panels show
an area of 60 × 60 kpc centered on the primary which is the zoomed part of the
upper panels of size 300 × 300 kpc. The first column shows the surface density of
both the primary and the secondary galaxy, the second only the surface density of
the particles originally belonging to the secondary galaxy (corresponding to the host
galaxy subtraction, a technique used in processing real galaxy images). The third
column shows the surface density of particles originally belonging to the secondary
galaxy divided by the surface density of the primary galaxy (also corresponding to
an observational technique). The parameters of the merger are the following: the
mass of the primary is 3 × 1011 M� , the secondary-to-primary mass ratio is 0.02,
the Plummer radius of the primary is 7.6 kpc, of the secondary 0.76 kpc. The initial
relative velocity of the galaxies was equal to the escape velocity of the secondary and
the separation of their centers was 90 kpc. When the centers of the galaxies pass
through each other, the potential of the secondary is suddenly switched off.

2. 2-shells.mpg – Video from a simulation of a shell-producing radial minor merger
used in Sect. 13. The top panel (300 × 300 kpc centered on primary) shows the
surface density of the particles originally belonging to the secondary galaxy from
a perspective perpendicular to the axis of the merger; the bottom panel shows the
density of the particles originally belonging to the secondary in the space of radial
velocity (vertical axis) versus galactocentric distance (horizontal axis). The potential
of the host galaxy is the same as the one described in Sect. 8.1. Primary is modeled
as a double Plummer sphere with respective masses M∗ = 2× 1011 M� and MDM =
1.2 × 1013 M� , and Plummer radii ε∗ = 5 kpc and εDM = 100 kpc for the luminous
component and the dark halo, respectively. The potential of the cannibalized galaxy
is chosen to be a single Plummer sphere with the total mass M = 2 × 1010 M�
and Plummer radius ε∗ = 2 kpc. The cannibalized galaxy is released from rest at a
distance of 100 kpc from the center of the host galaxy. When it reaches the center of
the host galaxy in 306.4 Myr, its potential is switched off and its particles begin to
oscillate freely in the host galaxy.

3. 3-projection.mpg – Video shoes the simulation from point 2 (used in Sect. 13) at the
time 2.2 Gyr after the decay of the cannibalized galaxy (2.5 Gyr of the simulation
time) from different perspectives. Angle of 0 degrees corresponds to the perspective
perpendicular to the axis of the merger.

4. 4-friction.avi – Surface density of the particles originally belonging to the secondary
galaxy from two simulation of a radial minor merger from Sect. 22.1 (run 1 – right
panels and run 2 – left panels). The first column corresponds to the simulation with
dynamical friction and gradual decay of the secondary; the other corresponds to the
simulation without friction and with the instant disruption of the secondary near the
center of the primary galaxy. The bottom panels show an area of 60×60 kpc centered
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on the primary which is the zoomed part of the upper panels of size 300 × 300 kpc.
The video covers 8 Gyr since the release of the secondary galaxy from distance of
180 kpc from the center of the primary with the escape velocity. Both simulations
were executed for the the standard set of parameters (Sect. 17.5): the mass of the
primary is 3.2× 1011 M� , the secondary-to-primary mass ratio is 0.02, the Plummer
radius of the primary is 20 kpc, of the secondary 2 kpc.

5. 5-selfconsistent.avi – Video from self-consistent simulation of a radial minor merger
from Sect. 22.3. The bottom panel (400 × 400 kpc centered on primary) shows the
surface density of the particles originally belonging to the secondary galaxy from a
perspective perpendicular to the axis of the merger; the top panel shows the density
of the particles originally belonging to the secondary in the space of radial velocity
(vertical axis) versus galactocentric distance (horizontal axis). The potential of the
primary galaxy is a double Plummer sphere with respective masses M∗ = 2×1011 M�
and MDM = 8 × 1012 M� , and Plummer radii ε∗ = 8 kpc and εDM = 20 kpc for the
luminous component and the dark halo, respectively. The potential of the secondary
galaxy is chosen to be a single Plummer sphere with the total mass M = 2×1010 M�
and Plummer radius ε∗ = 2 kpc. The cannibalized galaxy is released from the distance
of 200 kpc from the center of the host galaxy with the initial velocity 102 km/s.

Videos 2–4 were made from simulated data by Miroslav Kř́ıžek.
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GALAXIES IN ISOLATION: EXPLORING NATURE VERSUS NURTURE
ASP Conference Series, Vol. 421, 2010
L. Verdes-Montenegro, A. del Olmo, and J. W. Sulentic, eds.

Shell Galaxies, Dynamical Friction, and Dwarf Disruption

I. Ebrová,1,2 B. Jungwiert,2 G. Canalizo,3 N. Bennert,4 and L. J́ılková5

1Faculty of Mathematics and Physics, Charles University in Prague,
Ke Karlovu 3, CZ-121 16 Prague, Czech Republic
2Astronomical Institute, Academy of Sciences of the Czech Republic,
Bočńı II 1401/1a, CZ-141 31 Prague, Czech Republic
3IGPP & Dept. of Phys., Univ. of California, Riverside, CA 92521,USA
4Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
5Dept. of Theoretical Physic and Astronomy, Faculty of Science,
Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic

Abstract. Using N-body simulations of shell galaxies created in nearly radial
minor mergers, we investigate the error of collision dating, resulting from the
neglect of dynamical friction and of gradual disruption of the cannibalized dwarf.

We compared a simulation without dynamical friction and with instant dis-
ruption of the elliptical dwarf during the first passage through the center of a
giant elliptical (run 1) to a model with the same initial conditions but dynam-
ical friction and gradual decay of the dwarf involved (run 2). Only position of
the outermost shell remains almost unaffected but its brightness is drastically
lowered. If we observationally identified the second outermost shell to be the
outermost one, we would underestimate the merger age by several Gyr. For
details and references, see Ebrová et al. (2009).

Figure 1. Snapshots of simulations – run 1 (left) and run 2 (right) – at 4.5
Gyr after beginning of the merger. Only stars of the dwarf are shown. Each
box, centered on the host galaxy, shows 300×200 kpc.
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I.2 Ebrová et al. (2010b), ASPC vol. 423, p. 236

Shell Galaxies: Dynamical Friction, Gradual Satellite Decay and
Merger Dating
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ASP Conference Series, Vol. 423, c© 2010
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Shell Galaxies: Dynamical Friction, Gradual Satellite
Decay and Merger Dating

Ivana Ebrová,1,2 Bruno Jungwiert,2 Gabriela Canalizo,3

Nicola Bennert,4 and Lucie J́ılková5

Abstract. With the goal to refine modelling of shell galaxies and the use of
shells to probe the merger history, we develop a new method for implementing
dynamical friction in test-particle simulations of radial minor mergers. The
friction is combined with a gradual decay of the dwarf galaxy. The coupling of
both effects can considerably redistribute positions and luminosities of shells;
neglecting them can lead to significant errors in attempts to date the merger.

1. Shells as Probes of the Host Galaxy Merger History

Shell galaxies contain faint arc-like stellar features. It is widely believed that
shells are a signature of a merger experienced by the host galaxy. They contain
at most a few percent of the overall galaxy luminosity, and their contrast is
usually very low. The model of a radial merger of a giant elliptical with a
smaller galaxy (a spiral or a dwarf elliptical) (Quinn 1984; Dupraz & Combes
1986; Hernquist & Quinn 1988) seems to be the most successful in reproducing
regular shell systems. When a small galaxy enters the sphere of influence of
a giant elliptical on a close-to-radial trajectory, it disintegrates and its stars
begin to oscillate in the potential of the giant. At their turning points, where
the stars tend to spend most of their time, they pile up and produce arc-like
enhancements in the luminosity profile of the host galaxy.

Attempts to date a merger from observed positions of shells have been made
in previous works. Recently, Canalizo et al. (2007) presented HST/ACS obser-
vations of spectacular shells in a quasar host galaxy (Fig. 1) and, by simulating
the position of the outermost shell by means of restricted N-body simulations,
attempted to put constraints on the age of the merger. They concluded that
it occurred a few hundred Myr to ∼ 2 Gyr ago, supporting a potential causal
connection between the merger, the post-starburst ages in nuclear stellar popu-
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Prague, Czech Republic

2Astronomical Institute, Academy of Sciences of the Czech Republic, Bočńı II 1401/1a, CZ-141
31 Prague, Czech Republic

3Institute of Geophysics and Planetary Physics & Dept. of Physics, University of California,
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4Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA

5Dept. of Theoretical Physic and Astronomy, Faculty of Science, Masaryk University, Kotlářská
2, CZ-611 37 Brno, Czech Republic
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Shell Galaxies: Dynamical Friction and Merger Dating 237

Figure 1. Deep HST/ACS images of the host galaxy of the quasar
MC2 1635+119, so far the only known shell galaxy with a quasar (Canalizo
et al. 2007; Bennert et al. 2008). The left panel shows the original image, the
right one the residual after the subtraction of the fitted smooth light profile.

lations, and the quasar. A typical delay of 1–2.5 Gyr between a merger and the
onset of quasar activity is suggested by both N-body simulations (Springel et al.
2005) and observations (Ryan et al. 2008). It might therefore appear reassuring
to find a similar time lag between the merger event and the quasar ignition in a
study of an individual spectacular object. However, caution must be exercised
in estimating merger ages from the location of shells (see below).

2. Dynamical Friction and Gradual Decay of the Satellite

While the shell formation, once the dwarf galaxy is disrupted, is basically a test-
particle phenomenon, the gradual decay of the satellite as well as its braking by
dynamical friction against the primary can considerably affect the energy dis-
tribution of oscillating stars, and thus the positions and the brightness of shells.
The dynamical friction effect was first pointed out by Dupraz & Combes (1987)
and also discussed by Hernquist & Quinn (1988), while the gradual decay, with
friction neglected, was modelled by Heisler & White (1990). However, coupling
of these phenomena was never modelled in much detail. Our goal is to improve
restricted N-body simulations of shells created in minor mergers by a) including
dynamical friction, b) improving its implementation by avoiding the use of the
Chandrasekhar formula, c) coupling it to the gradual decay, d) taking into ac-
count the present state of knowledge of stellar and dark matter distributions in
both giant and dwarf ellipticals. A detailed description is beyond the scope of
this paper. Here, we confine ourselves to a simple example of a radial minor
merger (Fig. 2), instructive in showing how an observed shell structure could be
misinterpreted in terms of the merger time scale (and of the relative pre-merger
motion) if dynamical friction and gradual decay were neglected.

In test-particle simulations, the Chandrasekhar formula is commonly used
to include dynamical friction. Its relative simplicity is made possible, among oth-
ers, by the oversimplifying assumption of homogeneity of the stellar and dark
matter distributions. To avoid it, we used the axial symmetry of our merger
configuration to simplify the integrals over impact parameters and velocity dis-
tributions so that they can be solved numerically. The mass of the satellite,
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238 Ebrová et al.

a key quantity for the efficiency of dynamical friction, is gradually lowered in
proportion to the mass located beyond its evolving tidal radius.

Figure 2. Three snapshots of simulations (3.5, 5 and 7 Gyr after the first
passage of the satellite, coming from the right, through the center of the
primary) without (upper row) and with (bottom row) dynamical friction and
gradual disruption (in the first case, the dwarf instantly disrupts during the
first passage). Only stars of the dwarf are shown. Each box, centered on the
primary, shows 300×300 kpc.

The introduction of dynamical friction and gradual decay dramatically
changes the appearance of shells as can be seen in histograms of particles’ galac-
tocentric distances (Fig. 3, corresponding to central snapshots of Fig. 2). While
the position of the outermost shell is not much affected, its brightness is dras-
tically lowered. The other shells are shifted and new generations of shells are
added during each successive passage of the dwarf. Easily inferring the age of
the collision is rendered impossible (as already pointed out by Dupraz & Combes
1987). The shell systems in Fig. 3, both having the outermost shell at +150 kpc,
are seen 5 Gyr after the first passage of the two galaxies through each other.
If we observationally identified the leftmost shell (at −80 kpc in Fig. 3, lower
panel) as being the outermost one, we would mistakenly estimate the merger
age to be only ∼ 2.5 Gyr. We would also wrongly determine the direction from
which the dwarf came: assuming the classical picture (based on simulations
without friction and with instantaneous disruption), the outermost shell would
be located on the side from which the satellite came, so we would conclude it
went from the left while the opposite is true.
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3. Conclusions

Using even the outermost observed shell to date a merger, and basing on it
a support for a causal connection between the merger and the quasar, is very
uncertain. Supposedly, the first formed shell (observed as the outermost one if
still undissolved and bright enough) is the least affected by dynamical friction
(since it is formed out of stars released during the first satellite’s passage) and
thus the most reliable for merger dating. In our example, this first shell is very
weak due to the gradual decay of the satellite. If missed in observations, the
merger age would be underestimated by ∼ 2.5 Gyr; in reality, it is twice as old.

Figure 3. Histograms of galactocentric distances of stars (in kpc) originally
belonging to the dwarf, at 5 Gyr. Top: Instantaneous disruption, no friction;
Bottom: Gradual disruption plus friction. Distances are measured from the
center of the primary, and plotted separately for positions on the side from
which the satellite came and those on the opposite one (plus/minus sign).
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Comparing Various Approaches to Simulating
the Formation of Shell Galaxies

Ivana Ebrová, Kateřina Bartošková, Bruno Jungwiert, Lucie Jı́lková, Miroslav
Křı́žek

Abstract The model of a radial minor merger proposed by [6], which successfully
reproduces the observed regular shell systems in shell galaxies, is ideal for a test-
particle simulation. We compare such a simulation with a self-consistent one. They
agree very well in positions of the first generation of shells but potentially important
effects – dynamical friction and gradual decay of the dwarf galaxy – are not present
in the test-particle model, therefore we look for a proper way to include them.

Tides and dynamical friction in test particle simulations

We model the luminous and dark matter components of a host giant elliptical (gE)
and a dwarf elliptical galaxy by analytical potentials. In the simplest model, we
assume the dwarf galaxy, filled with millions of test particles, to be ripped apart in-
stantly when it comes close to the center of the gE galaxy. Its stars begin to oscillate
in the potential of the host galaxy and produce shells at their turning points.

Such a setup allows us to use large numbers of particles and so to gain sufficient
contrast to detect all the shells in the simulation, also to investigate the kinematic
footprint in spectral lines (see [2] and [5]) and explore a large parameter space. This
would be very time consuming for large sets of self-consistent simulations.

Surprisingly, the agreement with a self-consistent simulation (for more details
see [1]) turns out to be very good especially in the positions of shells (see Fig. 1
and [1]). But the simple model does not involve effects like dynamical friction and
gradual decay of the dwarf galaxy, so that it cannot simulate phenomena seen in
self-consistent simulations: the next generation of shells (see [1]) and lowering of
brightness of shells. We thus look for a middle way, where we can still have the
large contrast available through the use of test particles, yet include some of the
more complicated effects to make it more realistic.
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2 Ebrová et al.

Fig. 1 The graph shows the comparison of histograms of radial distances of shells’ particles (cen-
tered on the host galaxy) in the self-consistent (black) and test-particle (grey) simulations at two
different time steps. Time equal zero corresponds to the passage of the dwarf galaxy through the
center of the host galaxy. Both simulations have the same initial conditions. Notice that the bright-
ness of the outmermost shell (at 280 kpc at 2.55 Gyr) is supressed in the self-consistent simulation.
This effect has been successfully simulated in the improved test-particle simulations; see [4].

In this improved test-particle simulation we use our version of enhanced Chan-
drasekhar formula with variable Coulomb logarithm to include dynamical friction,
and we also introduced a gradual decline of the mass parameter of the dwarf galaxy
potential to better imitate the evolution of tides. For details, see [4] and [3].
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1. Bartošková, K. et al., in these proceedings
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Simulations of shell galaxies with GADGET-2:
Multi-generation shell systems

Kateřina Bartošková, Bruno Jungwiert, Ivana Ebrová, Lucie Jı́lková, Miroslav
Křı́žek

Abstract As the missing complement to existing studies of shell galaxies, we carried
out a set of self-consistent N-body simulations of a minor merger forming a stellar
shell system within a giant elliptical galaxy. We discuss the effect of a phenomenon
possibly associated with the galaxy merger simulations — a presence of multiple
generations of shells.

Two-generation shell structure

Galaxies with stellar shells are thought to be by-products of galaxy mergers [5].
Most, though not all, previous models, e.g. [5, 3, 2, 4], relied on test-particle simu-
lations. No systematic explorations of galactic models with these shell structures
as merger debris via fully self-consistent N-body simulations, naturally involving
the dynamical friction and the progressive decay of the accreted galaxy, were con-
ducted. To bridge this gap, we decided to carry out a set of self-consistent simu-
lations of a minor merger between a giant elliptical galaxy (gE with the mass of
dark matter halo 8·1012 M� and stellar component 2·1011 M�) and a satellite dwarf
elliptical galaxy (2·1010 M� in total), using the GADGET-2 code [6].

In order to study differences in the resulting shell system formed in differently
centrally concentrated mass distributions, we prepared simulations with the gE
galaxy in two versions: a two-component Plummer and a two-component Hernquist
model, with the same effective radius. The dwarf galaxy is then released on a radial
orbit with initial velocity ∼100 km/s and distance of 200 kpc from the giant galaxy.

In the first simulation, the core of the satellite passes through, returns and makes
a second passage across the center of the primary galaxy (∼1 Gyr after the first
passage). This event leads to creating the second generation of shells. To our know-
ledge, this process has never been simulated in any previous study of the shell gala-
xies, although predictions in this sense were made, e.g. [1]. In the first approxima-

Kateřina Bartošková
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Fig. 1 The time evolution of the edges of three similar shell systems: results from the self-
consistent simulation with gE galaxy modeled as the Plummer model (solid lines); from the test-
particle simulation with the same initial conditions, but without the second passage of the satel-
lite (boxes); and from the self-consistent simulation with gE galaxy represented by the Hernquist
model (dotted lines). While the stars, gradually released from the potential of the satellite, oscillate
in the potential of the gE galaxy, they are forming shells alternately interleaved on both sides of the
gE galaxy along the merger axis — the first shell on the right side (R) is later followed by the second
shell on the left (L), etc. The velocity of the shell-edge expansion — slope of dn(t) dependency —
is given by the gravitational potential and by the shell ordinal number within a given generation.
Therefore the first shells from each generation move with the same velocity. Such a shell galaxy
arisen in the first self-consistent simulation, if observed in the particular time (e.g. 1.7 Gyr after
the first passage), may appear to cause ”the problem of a missing shell”, since the third (originally
fourth) outermost shell is then detected on the same side (L) as the second one.

tion, we can look at this as a new collision between the returning core part of the
satellite and the gE galaxy. Within the same generation, the shells of the debris sys-
tem are moving with decreasing velocity. As the subsequent passage is not present
in the latter simulation (with a two-component Hernquist model for the gE galaxy),
the subsequent shells created after ∼1 Gyr move with different velocities compared
to those belonging to the next generation in the former simulation, see Fig. 1.
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Simulations of Line Profile Structure in Shell Galaxies

Lucie J́ılková,1 Bruno Jungwiert,2 Miroslav Kř́ıžek,2,3 Ivana Ebrová,2,3

Ivana Stoklasová,2 Tereza Bartáková,1 and Kateřina Bartošková1

Abstract. In the context of exploring mass distributions of dark matter
haloes in giant ellipticals, we extend the analysis carried out byMerrifield &
Kuijken (1998) for stellar line profiles of shells created in nearly radial mergers of
galaxies. We show that line-of-sight velocity distributions are more complex than
previously predicted. We simulate shell formation and analyze the detectability
of spectroscopic signatures of shells after convolution with spectral PSFs.

1. Introduction

Stellar shells observed in some elliptical galaxies are thought to be by-products of
galaxy mergers, predominantly of those involving a giant elliptical with a much
smaller galaxy, e.g., a spiral or a dwarf elliptical. The most regular shell sys-
tems, Type I shell galaxies, are believed to result from a nearly radial merger.
Stars of the secondary galaxy oscillate in the potential of the primary and cu-
mulate near the turning points of their orbits. This can be observed as shell-like
enhancements of surface brightness if observed along a line-of-sight nearly per-
pendicular to the merger axis. While the mechanism of shell formation was
explained nearly three decades ago (Quinn 1984; Dupraz & Combes 1986; Hern-
quist & Quinn 1988), recent discoveries – e.g., a regular shell system in a quasar
host galaxy (Canalizo et al. 2007; Bennert et al. 2008), shells found in M31
(Fardal et al. 2007, 2008) – bring fresh wind into this field.

On top of the new data, the shells attract interest due to the (so far theore-
tical) possibility of using them to probe the dark matter distribution of the host
galaxy. While Dupraz & Combes (1987) showed that using shell spacing from
photometry to constrain the matter distribution is hopeless due to the effects
of dynamical friction, Merrifield & Kuijken (1998, hereafter MK98) proposed a
way to use spectroscopy to reach the same goal via studying profiles of stellar
absorption lines. Here, we extend their analysis beyond monoenergetic shells
and show that line profiles from more realistic shells are more complex.
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Figure 1. (a) LOSVDs for a monoenergetic shell (Rshell =20 kpc) in the
Plummer potential (mass of 3.2·1011 M⊙, scaling length of 5 kpc) at projected
radii of 0.9Rshell and 0.8Rshell (black and grey solid lines). The dashed lines
show MK98 approximation. (b) vlos,max for the monoenergetic, i.e., station-
ary, shell (solid black line), and the uniformly expanding shell (solid grey
lines) in the Plummer potential as in Fig. 1a. At the given instant, Rshell is
the same for both cases. The dashed line shows the MK98 approximation.

2. Monoenergetic Shells: Double-peaked LOSVDs

MK98 studied the kinematics of a monoenergetic shell – spherical system of
stars oscillating on radial orbits of the same amplitudes in a spherical poten-
tial. The amplitude of oscillations corresponds to the shell-edge radius Rshell.
They derived an analytic approximation for the line-of-sight velocity distribu-
tion (LOSVD) in the vicinity of the shell-edge, predicting a double-peaked profile
(Fig. 1a). The separation of the peaks is related to the gravitational potential
of the primary galaxy. For a general gravitational potential and a general pro-
jected radius, the LOSVD has no analytical form. We computed the LOSVD
numerically as a generalization of the MK98 approach for various gravitational
potentials (Plummer, isochrone, de Vaucouleurs). An example for the Plummer
sphere, and two different projected radii, is presented in Fig. 1a.

3. Traveling Shells: Splitting of LOSVD Peaks

Real shells are not stationary features: the infalling galaxy stars have a conti-
nuous energy distribution, and therefore the shell edge is successively formed by
stars of different energies, which appears as the shell edge traveling outwards
from the primary-galaxy center. We studied numerically line-of-sight velocity
vlos of particles in a uniformly expanding spherical shell. The LOSVD contains
signatures of stars returning from a radius where the shell-edge was at some
past time, and those traveling to a position which the shell-edge will reach at
a future time. This leads to splitting of both vlos maxima (vlos,max) at a given
projected radius (Fig. 1b). The stars traveling to their apocenters have higher
energies and higher vlos,max than the falling stars.
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Figure 2. Position-velocity maps of particles originally belonging to the
secondary galaxy, at two different times. Surface density of particles from
the vicinity of merger axis per vlos is mapped. The “wedges” correspond to
stars traveling to the shell-edge future position and returning from the past
one - notice the splitting similar to Fig. 1b. Panels on the right represent the
LOSVDs (cuts parallel to the velocity axis). The black line corresponds to the
outermost (oldest) shell at both times, the grey line to the cut of a younger
shell. All cuts are made at the same relative radius 0.8Rshell.

4. LOSVDs from N-body Simulations

To study LOSVDs in more detail, we carried out a restricted N-body simulation
of shells resulting from a radial merger of a giant elliptical galaxy with a dwarf
elliptical (Figs. 2 and 3). The primary was represented by a two-component
potential: stars and the dark matter halo. For simplicity the Plummer profile
was assumed for both components (with masses of 2·1011M⊙ and 1.2·1013M⊙,
scaling lengths of 5 kpc and 100 kpc for stars and the dark matter halo, respec-
tively). The dwarf elliptical was simulated as a single Plummer sphere (mass of
2·1010M⊙, scaling length of 2 kpc).

Right panels in Fig. 2 show the LOSVDs for different times of the simulation.
For the outermost shell, we can see a narrowing of the line profile with time,
i.e., with increasing shell-edge radius, due to the spatial change of the primary’s
gravitational potential (see MK98). The bottom right panel in Fig. 2 also shows
the inner shell profile, which is more complicated, as it also contains signatures
of particles belonging to the outer shell. In Fig. 3a, the LOSVD from the top
panel of Fig. 2 is decomposed according to the sense of particle’s motion.

5. Conclusions

Theoretical studies of line profiles are needed and timely since getting high
S/N and high spectral resolution spectra from faint external parts of ellipticals
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Figure 3. (a) Decomposition of the LOSVD (solid black) to the contribu-
tions produced by stars moving radially outward (grey long-dashed) and in-
ward (grey short-dashed) with respect to the primary-galaxy center. The same
LOSVD of the outermoust shell as in top panel of Fig. 2 was used. (b) A pre-
diction of observed line profiles: black solid line shows the simulated LOSVDs
(same as in Fig. 3a), dashed lines show convolutions with different Gaussians
representing the instrumental dispersion of FWHM 30 and 100 km/s.

becomes within the reach of current large telescopes. We predict the shape
of spectral lines for Type I shell galaxies: quadruple-peaked profile. The con-
nection of this shape with the shell galaxy’s gravitational potential is not as
straightforward as previously predicted. We also show that relatively high spec-
tral resolution is necessary for observing the line profiles (Fig. 3b). To make our
study still more realistic, better models for galaxy potentials, and the dynamical
friction need to be applied (see Ebrová et al.).
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Quadruple-peaked Line-of-sight Velocity
Distributions in Shell Galaxies

Ivana Ebrová, Lucie Jı́lková, Bruno Jungwiert, Kateřina Bartošková, Miroslav
Křı́žek, Tereza Bartáková, and Ivana Stoklasová

Abstract We present an improved study of the expected shape of the line-of-sight
velocity distribution in shell galaxies. We found a simple analytical expression con-
necting prominent and in principle observable characteristics of the line profile and
mass-distribution of the galaxy. The prediction was compared with the results from
a test-particle simulation of a radial merger.

Quadruple-peaked Spectral-line Profile

Stellar shells are observed in almost half of elliptical and S0 galaxies that live in a
low galactic density environment, see e.g. [1]. They are thought to be by-products
of galaxy mergers [5]. The most regular shell systems are believed to result from a
nearly minor radial merger in which the satellite galaxy is dissolved by tidal forces
and its stars begin to oscillate in the potential of the host galaxy at close-to-radial
orbits. The stars accumulate at their turning points and create shells.

The shape of line-of-sight velocity distribution (LOSVD) in the vicinity of the
shell edge for a stationary shell was studied by [4]. They predicted a double-peaked
spectral-line profile and proposed to use spectroscopy to probe the dark matter dis-
tribution of a galaxy that contains shells using the profiles of stellar absorption lines.

Nevertheless, shells are not stationary features: stars of the satellite galaxy have
a continuous energy distribution, and therefore the shell edge is, at different times,
made of stars of different energies, as they continue to arrive at their respective
turning points. Thus, the shell front moves outwards from the center of the host
galaxy with its velocity given by the mass distribution of the host galaxy. Therefore,
both of the original double peaks in the spectral line are split into two, resulting in a
quadruple-peaked shape [3]. Taking the shell’s velocity and the cumulative mass of
the host galaxy to be constant near the edge of the shell, we found an approximate
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Faculty of Science, Masaryk University, Brno, Czech Republic

Ivana Stoklasová
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2 Ebrová et al.

Fig. 1 left: LOSVD map of the simulated shell galaxy (only stars of the satellite galaxy are taken
into account). The two apexes of the wedges seen in the map (at zero velocity) correspond to the
two shells, the black curves show the velocity maxima position obtained from our approximation.
right: LOSVDs (cuts of the map shown in the left plot) of stars belonging to the right shell at two
different galactocentric distances—90 and 110 kpc—red and green profiles respectively. Dashed
lines show the locations of the maxima in our approximation for the red (90 kpc) profile.

analytical description for the positions of the peaks in the LOSVD (for details see
[2]).

To study the LOSVD more in detail we carried out a test-particle simulation of
a radial merger of dwarf (dE) and giant elliptical (gE) galaxies, leading to a for-
mation of shells. The potential of the gE galaxy is represented with a luminous de
Vaucouleurs sphere and an NFW dark halo. See Fig. 1 for comparison of LOSVD
from simulation and the analytical approximation. If the velocity maxima were mea-
sured, the approximation could be used to constrain the mass distribution of the host
galaxy.
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ABSTRACT

Context. Stellar shells observed in many giant elliptical and lenticular as well as a few spiral and dwarf galaxies presumably result
from galaxy mergers. Line-of-sight velocity distributions of the shells could, in principle, if measured with a sufficiently high signal-
to-noise ratio, constitute a method to constrain the gravitational potential of the host galaxy.
Aims. Merrifield & Kuijken (1998, MNRAS, 297, 1292) predicted a double-peaked line profile for stationary shells resulting from a
nearly radial minor merger. In this paper, we aim at extending their analysis to a more realistic case of expanding shells, inherent to
the merging process, whereas we assume the same type of merger and the same orbital geometry.
Methods. We used an analytical approach as well as test particle simulations to predict the line-of-sight velocity profile across the
shell structure. Simulated line profiles were convolved with spectral PSFs to estimate peak detectability.
Results. The resulting line-of-sight velocity distributions are more complex than previously predicted due to nonzero phase velocity
of the shells. In principle, each of the Merrifield & Kuijken (1998) peaks splits into two, giving a quadruple-peaked line profile, which
allows more precise determination of the potential of the host galaxy and contains additional information. We find simple analytical
expressions that connect the positions of the four peaks of the line profile and the mass distribution of the galaxy, namely, the circular
velocity at the given shell radius and the propagation velocity of the shell. The analytical expressions were applied to a test-particle
simulation of a radial minor merger, and the potential of the simulated host galaxy was successfully recovered. Shell kinematics can
thus become an independent tool to determine the content and distribution of the dark matter in shell galaxies up to ∼100 kpc from
the center of the host galaxy.

Key words. galaxies: kinematics and dynamics – methods: analytical – methods: numerical – galaxies: elliptical and lenticular, cD –
galaxies: halos – galaxies: interactions

1. Introduction

Several methods have been used to measure the gravitational
potentials and their gradients of elliptical galaxies, including
strong and weak gravitational lensing (e.g., Gavazzi et al. 2007;
Mandelbaum et al. 2008; Auger et al. 2010), X-ray observations
of hot gas in the massive gas-rich galaxies (e.g., Fukazawa et al.
2006; Nagino & Matsushita 2009; Churazov et al. 2008; Das
et al. 2010), rotation curves of detected disks and rings of neutral
hydrogen (e.g., Weijmans et al. 2008), stellar-dynamical mod-
eling from integrated light spectra (e.g., Weijmans et al. 2009;
de Lorenzi et al. 2009; Churazov et al. 2010; Thomas et al.
2011), and the use of tracers such as planetary nebulae, glob-
ular clusters, and satellite galaxies (e.g., Coccato et al. 2009;
Nierenberg et al. 2011; Deason et al. 2012; Norris et al. 2012).
All these methods have their limits, such as the redshift of the
observed object, the luminosity profile, and gas content. In par-
ticular, the use of stellar dynamical modeling is plausible in the
wide range of galactic masses, as long as spectroscopic data are
available. However, it becomes more challenging beyond a few

optical half-light radii. Other complementary gravitational trac-
ers or techniques are required to derive mass profiles in outer
parts of the galaxies. When comparing independent techniques
for the same objects at similar galactocentric radii, discrepancies
in the estimated circular velocity curves were revealed together
with several interpretations (e.g., Churazov et al. 2010; Das et al.
2010). The compared techniques usually employ modeling of
the X-ray emission of the hot gas (assuming hydrostatic equilib-
rium) and dynamical modeling of the optical data in the massive
early-type galaxies. Therefore, even for the most massive galax-
ies with X-ray observations available, there is a need for other
methods to independently constrain the gravitational potential at
various radii.

Shell galaxies are galaxies that contain arc-like fine features,
which were first noticed by Arp (1966). These structures are
made of stars and form open, almost concentric arcs that do not
cross each other. Shells are relatively common in elliptical or
lenticular galaxies. At least 10% of all these galaxies in the lo-
cal universe possess shells. Nevertheless, shells occur markedly
most often in regions of low galaxy density, and perhaps up to
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half of E and S0 galaxies in these environments are shell galax-
ies (Malin & Carter 1983; Schweizer 1983; Schweizer & Ford
1985; Colbert et al. 2001). Shells can also be associated with
dust (Sikkema et al. 2007; Stickel et al. 2004) and neutral hy-
drogen emission (Schiminovich et al. 1994, 1995; Balcells &
Sancisi 1996; Petric et al. 1997; Horellou et al. 2001). In addi-
tion, Charmandaris et al. (2000) detected the presence of dense
molecular gas in the shells of NGC 5128.

Shells are thought to be by-products of minor mergers of
galaxies (Quinn 1984), although they can also be formed dur-
ing major mergers (Hernquist & Spergel 1992). The most regu-
lar shell systems are believed to result from nearly radial merg-
ers (Dupraz & Combes 1986; Hernquist & Quinn 1988). When
a small galaxy enters the sphere of influence of a big ellipti-
cal galaxy on a radial or close-to-radial trajectory, it disinte-
grates and its stars begin to oscillate in the potential of the big
galaxy. At their turning points, the stars have the lowest speed
and thus tend to spend most of the time there, where they pile
up and produce arc-like structures in the luminosity profile of
the host galaxy when viewed perpendicular to the axis of the
collision.

Measurement of the number and distribution of shells can, in
principle, yield to an approximate estimate of the mass distribu-
tion of the host galaxy and the time since the merger (Quinn
1984; Dupraz & Combes 1986; Hernquist & Quinn 1987a,b;
Canalizo et al. 2007). But both of these observables are sen-
sitive to details such as the dynamical friction and the gradual
decay of the cannibalized galaxy during the merger (Dupraz &
Combes 1987; James &Wilkinson 1987; Heisler &White 1990;
Ebrová et al. 2010). Moreover, if the core of the cannibalized
galaxy survives the merger, new generations of shells are added
during each successive passage. This was predicted by Dupraz
& Combes (1987) and successfully reproduced by Bartošková
et al. (2011) in self-consistent simulations. All these effects com-
plicate the simulations to such an extent that the interest in
shell galaxies largely faded by the end of the 1980s. Recently,
this topic has raised interest again, thanks to the discovery of
shells in a quasar host galaxy (Canalizo et al. 2007) and shell
structures in M31 (Fardal et al. 2007, 2008) and in the Fornax
dwarf (Coleman et al. 2004). Helmi et al. (2003) suggested that
ring-like stellar structures, including the one observed in the
outer disk of the Milky Way (the so-called Monoceros ring),
could be analogous to shells. A significant number of shells
is also contained in the early-type galaxy sample of the ongo-
ing ATLAS3D project, including images of galaxies with a sur-
face brightness down to 29mag/arcsec2 (see, e.g., Krajnović
et al. 2011; Duc et al. 2011). Kim et al. (2012) identified shells
in about 6% of a sample of 65 early-type galaxies from the
Spitzer Survey of Stellar Structure in Galaxies (S4G). Shells
also appear to be suitable for indirect detection of dark mat-
ter via gamma-ray emission from dark matter self-annihilations
(Sanderson et al. 2012). About 70% of a complete sample of
nearby (15–50Mpc) luminous (MB < −20mag) elliptical galax-
ies were found to show tidal features by Tal et al. (2009). Faint
structures, including shells and other signatures of recent grav-
itational interaction (tidal tails and streams), were found in the
Sloan Digital Sky Survey (SDSS). Kaviraj (2010) identified 18%
of early-type galaxies (ETGs) in the SDSS Stripe82 sample
as having disturbed morphologies; similarly, Miskolczi et al.
(2011) found tidal features in 19% of their sample of galaxies
from SDSS DR7. Observations of warm gas by Rampazzo et al.
(2003) in five shell galaxies showed irregular gaseous velocity
fields (e.g., a double nucleus or elongated gas distribution with
asymmetric structure relative to the stellar body), and in most

cases, gas and stellar kinematics appear decoupled. Rampazzo
et al. (2007), Marino et al. (2009), and Trinchieri et al. (2008)
investigated star formation histories and hot gas content using
the NUV and FUV Galaxy Evolution Explorer (GALEX) obser-
vations (and in the latter case also X-ray ones) in a few shell
galaxies. The results support accretion events in the history of
shell galaxies.

Merrifield & Kuijken (1998, hereafter MK98), studied the-
oretically the kinematics of a stationary shell, a monoenergetic
spherically symmetric system of stars oscillating on radial orbits
in a spherically symmetric potential. They predicted that spec-
tral line profiles of such a system exhibit two clear maxima,
which provide a direct measure of the gradient of the gravita-
tional potential at the shell radius. The first attempt to analyze
the kinematical imprint of a shell observationally was made by
Romanowsky et al. (2012), who used globular clusters as shell
tracers in the early-type galaxy M87. Fardal et al. (2012) ob-
tained radial velocities of giant stars in the so-called western
shelf in M31 Andromeda galaxy. They successfully analyzed
the shell pattern in the space of velocity versus radius.

Nevertheless, real-world shells are not stationary features.
The stars of the satellite galaxy have a continuous energy distri-
bution, and so at different times, the shell edge is made of stars
of different energies, as they continue to arrive at their respec-
tive turning points. Thus, the shell front appears to be traveling
outwards from the center of the host galaxy and shell spectral-
line profiles are more complex (Jílková et al. 2010; Ebrová et al.
2011; see also Fardal et al. 2012).

In this paper, we derive spectral-line profiles of nonstation-
ary shells. We assume that shells originate from radial minor
mergers of galaxies, as proposed by Quinn (1984). We find that
both of the original MK98 peaks in the spectral line are split
into two, resulting in a quadruple shape, which can still be used
to constrain the host galaxy potential and even bring additional
information. We outline the simplified theoretical model and de-
rive the shell velocities in Sect. 2, and describe the origin of
the quadruple line profile in Sect. 3. In Sect. 4, we derive equa-
tions connecting the observable features of the quadruple-peaked
line-of-sight velocity distribution (LOSVD) with parameters of
the host galaxy potential in the vicinity of the shell edge. We
compare these analytical predictions with the theoretical model
(Sect. 5) and with results of test-particle simulations of the radial
minor merger (Sect. 6). Section 6 also demonstrates the deriva-
tion of the galactic potential from the simulated spectral data.

2. Model of radial oscillations

If we approximate the shell system with a simplified model,
we can describe its evolution completely depending only on the
potential of the host galaxy. The approximation lies in the nu-
merical integration of radial trajectories of stars in a spherically
symmetric potential. The distribution of energies of stars is con-
tinuous, and these stars were released from a small volume in the
phase space.We call it the model of radial oscillations, and it cor-
responds to the notion that the cannibalized galaxy came along a
radial path and disintegrated in the center of the host galaxy. As
a result the stars were released at one moment in the center and
began to oscillate freely on radial orbits. This approach was first
used by Quinn (1984), followed by Dupraz & Combes (1986,
1987) and Hernquist & Quinn (1987a,b).

2.1. Turning point positions and their velocities

In shell galaxies, the shells are traditionally numbered accord-
ing to the serial number of the shell, n, from the outermost to
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the innermost (which in the model of radial oscillations for a
single-generation shell system corresponds to the oldest and the
youngest shell, respectively). If the cannibalized galaxy comes
from the right side of the host galaxy, stars are released in the
center of the host galaxy. After that, they reach their apocenters
for the first time. But a shell does not form here yet, because
the stars are not sufficiently phase wrapped. We call this the ze-
roth oscillation (the zeroth turning point) as we try to match the
number of oscillations with the customary numbering scheme of
the shells. We label the first shell that occurs on the right side
(the same side from which the cannibalized galaxy approached)
with n = 1. Shell No. 2 appears on the left side of the host galaxy,
No. 3 on the right, and so forth.

In the model of radial oscillations, the shells occur close to
the radii where the stars are located in their apocenters at a given
moment (the current turning point, rTP, in our notation). The
shell number n corresponds to the number of oscillations that
the stars near the shell have completed or are about to complete.
The current turning point rTP must follow the equation

t = (n + 1/2)T (rTP), (1)

where t is the time elapsed since stars were released in the cen-
ter of the host galaxy. T (r) is the period of radial motion at a
galactocentric radius r in the host galaxy potential φ(r):

T (r) =
√
2
� r

0

�
φ(r) − φ(r�)�−1/2 dr�. (2)

The position of the current turning point evolves in time with a
velocity given by the derivative of Eq. (1) with respect to radius

vTP(r; n) = dr/dt =
1

dt/dr
=

1
n + 1/2

(dT (r)/dr)−1 . (3)

We can clearly see from this relation, which was first derived by
Quinn (1984), that any further turning point (turning point with
higher n) at the same radius moves more slowly than the former
one. This causes a gradual densification of the space distribution
of the shell system with time.

Technically, the reason for this densification is that the time
difference between the moments when two stars with similar en-
ergy reach their turning points is cumulative. Let �t be the dif-
ference in periods at two different radii ra and rb (with ra < rb,
on the right). The radius where stars complete the first oscilla-
tion moves from ra to rb in �t. But in the second orbit on the
left, the stars from rb will already have a lag of �t behind those
from ra and will just be getting a second one, so the third one
(the second on the same side) reaches rb from ra in 2×�t. Every
nth completed oscillation on the right side, then moves n times
more slowly than the first one. The situation is similar on the left
side, and the shell system is getting denser. Moreover, the turn-
ing point has an additional lag of 1/2T (rTP), because the stars
were released in the center of the host galaxy before their zeroth
oscillation. This is the source of the factor (n + 1/2) in Eqs. (1)
and (2).

2.2. Real shell positions and velocities

Even in the framework of the radial oscillation model, the posi-
tion and velocity of the true edge of the shell cannot be expressed
in a straightforward manner. Photometrically, shells appear as a
brightening in the luminosity profile of the galaxy with a sharp
cut-off. This is because the stars of the cannibalized galaxy oc-
cupy a limited volume in the phase space. With time, the shape

of this volume gets thinner, more elongated, and wrapped around
invariant surfaces defined by the trajectories of the particles,
increasing its coincidence with these surfaces. A shell appears
close to the points where the invariant surface is perpendicular
to the plane of the sky (Nulsen 1989). For the nth shell, this is
the largest radius where stars about to complete their nth oscilla-
tion are currently located. This radius is always larger than that
of the current turning point of the stars that are completing their
nth oscillation. Thus, the shell edge consists of outward-moving
stars about to complete their nth oscillation.

Dupraz & Combes (1986) state that the stars forming the
shell move with the phase velocity of the shell. While we show
that this holds only approximately, we use this equality in Sect. 4
to derive the relation between the shell kinematics and the poten-
tial of the host galaxy.

The position of a star, r∗, at a given time t since the release
of the star in the center of the host galaxy is given by an implicit
equation for r∗ and is a function of the star energy, or equiva-
lently the position of its apocenter rac1. For stars with the integer
part of t/[2T (rac)] odd, the equation reads:

t = (n + 1)
√
2
� rac
0

�
φ(rac) − φ(r�)�−1/2 dr�

− � r∗
0

�
2(φ(rac) − φ(r�))�−1/2 dr�.

(4)

For stars that have completed an even number of half-periods
(only such stars are found on the shell edge), the equation is

t = n
√
2
� rac
0

�
φ(rac) − φ(r�)�−1/2 dr�

+
� r∗
0

�
2(φ(rac) − φ(r�))�−1/2 dr�.

(5)

The first term in Eq. (5) corresponds to n radial periods for the
star’s energy (n is maximal so that nT (rac) < t), while the other
term corresponds to the time that it takes to reach radius r∗ from
the center of the galaxy. Even for the simplest galactic potentials,
these equations are not analytically solvable and must be solved
numerically.

The position of the nth shell rs equals the maximal ra-
dius r∗,max that solves Eq. (5) for the given n. The shell veloc-
ity vs is obtained from the numerical derivative of a set of values
of r∗,max for several close values of t.

The stellar velocity at the shell edge is obtained by insert-
ing r∗,max with its corresponding rac into:

v(r∗) = ±
�
2[φ(rac) − φ(r∗)]. (6)

For the stars following Eq. (5), the velocity will be positive; for
the rest, it will be negative.

It is clear that v(r∗,max) ≤ vs. Actually, v(r∗,max) is always
slightly lower than the phase velocity of the shell (Table 1).
Meanwhile, the position of the shell for a given time is not
far from the current turning point, and their separation changes
slowly. Thus, the velocity of the turning points given in Eq. (3) is
a good approximation for the shell velocity (Fig. 3). Equation (3)
is not generally solvable analytically either, but the numerical
calculation of vTP is much easier than determining the true ve-
locity vs as described in this chapter.

2.3. Kinematics of shell stars

In the same model, we can also describe the LOSVD of a shell at
a given time t, for a given potential of the host galaxy φ(r). In this

1 We denote the apocenter of the star corresponding to its energy as rac,
whereas rTP (the current turning point) is the radius at which the stars
reach their apocenters at the time of measurement.
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Fig. 1. Kinematics of a moving shell. Compare with Fig. 3 in MK98 for a stationary shell. Left: scheme of the kinematics of a shell with radius rs
and phase velocity vs. The shell is composed of stars on radial orbits with radial velocity vr and LOS velocity vlos. Right: the LOSVD at projected
radius R = 0.9rs, where rs = 120 kpc (parameters of the shell are highlighted in bold in Table 1), in the framework of the model of radial oscillations
(Sect. 2.3). The profile does not include stars of the host galaxy, which are not part of the shell system, and is normalized, so that the total flux
equals one. a) The LOSVD showing separate contributions from inward and outward stars; b) the same profile, separated for contributions from
the half of the host galaxy closer to the observer (the one including point B) and the more distant half (includes point A).

Table 1. Parameters of shells for which the LOSVD intensity maxima
are shown in Fig. 2.

t n rs rTP vs v(r∗,max) vTP vc
Myr kpc kpc km s−1 km s−1 km s−1 km s−1

215 1 15 14.5 63.5 57.5 61.2 245
416 1 30 28.3 90.3 82.6 81.0 261
634 1 60 53.9 165.8 151.5 151.8 362
1006 1 120 113.9 142.4 133.3 141.8 450
1722 2 120 117.9 84.7 79.4 84.7 450
2428 3 120 118.9 60.3 54.6 60.3 450
3130 4 120 119.3 46.8 42.6 47.0 450

Notes. t: time since the release of stars at the center of the host galaxy,
in which the shell has reached its current radius calculated in the frame-
work of the model of radial oscillations (Sect. 2); n: serial number of
shell (Sect. 2.1); rs: shell radius; vs: shell phase velocity according to
the method described in Sect. 2.2; rTP: galactocentric radius of current
turning points of the stars at this time given by Eq. (1); v(r∗,max): radial
velocity of stars at the shell edge; vTP: phase velocity of current turning
point according Eq. (3); vc: circular velocity at the shell edge radius.
For parameters of the host galaxy, see Sect. 6.1. The shell that is used
in Figs. 4–8 is highlighted in bold.

paper, we model the host galaxy potential as a double Plummer
sphere, as described in Sect. 6.1.

Equations (4) and (5) give the actual star position r∗ and the
shell number n for any apocenter rac in a range of energies. The
radial velocity of a star on the particular radius is given by in-
serting the corresponding pair of rac a r∗ in Eq. (6). Naturally,
the projections of these velocities to the selected line-of-sight
(LOS) form the LOSVD. To reconstruct the LOSVD, we have
to add an assumption about the behavior of shell brightness in
time. In Sect. 4.2, we show our choice of the behavior and also
illustrate that the particular choice does not matter much.

3. Quadruple-peaked LOSVD

Figure 1 illustrates a measurement of the LOSVD of stars in
the shell, which is composed of inward and outward stars on
radial trajectories. The stars near the edge of the shell move
slowly. But it is clear from the geometry that contributions add
up from different galactocentric distances, where the stars are ei-
ther still traveling outwards to reach the shell or returning from
their apocenters to form a nontrivial LOSVD.MK98 showed that
the maximal contribution to the LOSVD comes from stars at two
particular locations along the line of sight (A and B), both of
which are at the same galactocentric distance.

In MK98’s stationary shell model, inward stars at the same
radius differ from outward stars only in the sign of the LOS ve-
locity vlos. This is not true when the edge of the shell moves
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outwards with velocity vs. At any given instant, the stars that
move inwards are returning from a point where the shell edge
was at some earlier time, and so their apocenter is inside the cur-
rent shell radius rs. Similarly, the stars that move outwards will
reach the shell edge in the future. Consequently, the stars that
move inwards are always closer to their apocenter than those
moving outwards at the same radius, and their velocity is thus
smaller. The inward stars move toward the observers in the far-
ther of the two MK98 points (A) and away from them in the
nearer point (B), while the stars moving outwards behave in
the opposite manner. Together, there are four possible veloci-
ties with the maximal contribution to the LOSVD, resulting in
its symmetrical quadruple shape shown in Fig. 1. In fact, for a
moving shell, points A and B are not at the same galactocentric
radius for inward and outward stars. For inward stars, points A
and B are a little closer to the center as indicated in Fig. 1. This
is discussed in Sect. 4.3.

In the right-hand panel of Fig. 1, we used the model of radial
oscillations as described in Sect. 2.3 to illustrate individual con-
tributions to the LOSVD. MK98 constructed an analytical func-
tion describing the LOSVD close to the edge of their stationary
shell model. This function exhibits intensity maxima that coin-
cide with maximal/minimal velocity, leading to the symmetrical
double-peaked profile with peaks at the edges of the LOSVD.
This cannot be shown for a general moving shell, but Fig. 1
demonstrates that the intensity maxima coincide with velocity
extremes for separate contributions to the LOSVD.

The separation in velocity between peaks for a given pro-
jected radius R is given by the distance of R from the edge of the
shell rs. The profile shown in Fig. 1 corresponds to projected
radius R = 0.9rs. The closer to the shell edge, the narrower
the profile is. The separation of the peaks at a given R depends
on the phase velocity of the specific shell, near which we ob-
serve the LOSVD. This velocity is, for a fixed potential, given
by the shell radius and its serial number (Sect. 2.1). These ef-
fects are illustrated in Fig. 2, where we show the positions of
the LOSVD peaks for the first shell at different radii rs and for
a shell at 120 kpc with different serial numbers n. Note that the
higher the serial number n at a given radius, the smaller is the
difference in the phase velocity between the two shells with con-
secutive serial numbers and thus in the positions of the respec-
tive peaks. Parameters of the corresponding shells can be found
in Table 1.

The radial dependence of the phase velocity of the first four
shells in the whole host galaxy is shown in Fig. 3. Using Eq. (3),
we see that the velocity of each subsequent shell differs from the
first one only by a factor of 3/(1 + 2n). The large interval of the
galactocentric radii where the shell velocity increases is caused
by the presence of the halo with a large scaling parameter. In
fact, we do not show shell velocity, but the velocity of the turn-
ing points at the same radius. Nevertheless, these are sufficiently
close. Black crosses show the true velocity of the first shell cal-
culated for several radii according to the method described in
Sect. 2.2. For shells of higher n, these differences between the
phase velocity of a shell and the corresponding turning point
with consecutive serial numbers are even smaller.

The radius of a stationary shell is the same as the radius
of the apocenter of stars (as they all have the same energy),
while the edge of a moving shell is at the radius which is al-
ways slightly further from the center than the current turning
points. This difference creates an intricate zone between the ra-
dius of the current turning points and the radius of the edge,
where all the stars of a given shell move outwards. When the
LOS radius from lower radii gets near to the turning points of the
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Fig. 2. Locations of peaks of the LOSVDs in the framework of the
model of radial oscillations (Sect. 2.3): a) for the first shell at differ-
ent radii, b) for the first to the fourth shell at the radius of 120 kpc.
Parameters of all shells are shown in Table 1. For parameters of the host
galaxy potential, see Sect. 6.1.
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Fig. 3. Dependence of the phase velocity of the turning points on the
galactocentric radius for the first four shells according to Eq. (3). For
parameters of the host galaxy potential, see Sect. 6.1. Black crosses
show the true velocity of the first shell calculated for several radii ac-
cording to the method described in Sect. 2.2. In fact, the turning point
responsible for the current location of shell is not at the same radius as
the shell edge at the same time, but the difference is small (Table 1).

stars, the inner maxima of the LOSVD approach each other until
they merge and finally disappear (Fig. 4). We actually see a min-
imum in the middle of the LOSVD closer to the shell edge than

A33, page 5 of 15

milackove
172



A&A 545, A33 (2012)

 0

 0.2

 0.4

 0.6

 0.8

-40 -30 -20 -10  0  10  20  30  40

in
te

n
s
it
y

vlos [km/s]

R = 116 kpc
R = 117 kpc
R = 118 kpc
R = 119 kpc

Fig. 4. Evolution of the LOSVD near the shell edge for the second
shell at rs = 120 kpc (parameters of the shell are highlighted in bold
in Table 1) for the projected radius 116, 117, 118, and 119 kpc in the
framework of the model of radial oscillations (Sect. 2.3). In this model,
the current turning points of the shell particles are at rTP = 117.9 kpc.
Beyond this radius, the inner maxima disappear. Profiles do not include
stars of the host galaxy, which are not part of the shell system and are
normalized so that the total flux equals one. For parameters of the host
galaxy potential, see Sect. 6.1.

the current turning points. The intricate zone is much larger for
the first shell. For the shell radius of 120 kpc in our host galaxy
potential, it occupies 6 kpc for the first shell, 2 kpc for the second
one, and less than one kpc for the fourth shell (Table 1).

4. Relating observables to circular and shell
velocities

The nonzero velocity of the shell complicates the kinematics of
shells in two aspects mentioned above. Due to the energy differ-
ence between inward and outward particles at the same radius,
the LOSVD peak is split into two and the shell edge is not at the
radius of the current turning point, but slightly further from the
center of the host galaxy. In this section, we describe the LOSVD
of such a shell in the approximation of a locally constant galac-
tic acceleration and shell velocity. In addition, we assume that
the velocity of stars at the edge of the shell is equal to the phase
velocity of the shell.

4.1. Motion of a star in a shell system

The galactocentric radius of the shell edge is a function of time,
rs(t), where t = 0 is the moment of measurement and rs(0) = rs0
is the position of the shell edge at this time. We assume that the
stars are on strictly radial orbits, that there is a locally constant
value of the radial acceleration a0 in the host galaxy potential
and a locally constant velocity of the shell edge vs, and that the
stars at the shell edge have the same velocity as the shell. The
galactocentric radius of each star is at any time r(t), while ts is
the time when the star could be found at the shell edge rs(ts).
Then the equation of motion and the initial conditions for the
star near a given shell radius are

d2r(t)
dt2

= a0, (7)

dr(t)
dt

�����
t=ts
= vs, (8)

r(ts) = rs(ts) = vsts + rs0. (9)

The solution of these equations is

r(t) = a0(t − ts)2/2 + vs(t − ts) + rs(ts), (10)

v(t) = vs + a0(t − ts), (11)

and the actual position of the star r(0) and its radial velocity v(0)
at time of measuring (t = 0) are

r(0) = t2sa0/2 + rs0, (12)

v(0) = vs − a0ts. (13)

Eliminating ts from the two previous equations, we get

v(0)± = vs ± vc
�
2 (1 − r(0)/rs0), (14)

where vc =
√−a0rs0 is the circular velocity at the shell edge

radius.

4.2. Approximative LOSVD

The projection of the velocity given by Eq. (14) to the LOS at a
projected radius R will be

vlos± =
�
1 − R2/ (r (0))2v(0)±

=
�
1 − R2/ (r (0))2

�
vs ± vc

√
2 (1 − r(0)/rs0)

�
.

(15)

Using this expression, we can model the LOSVD at a given pro-
jected radius for a given shell. For the proper choice of a pair of
values vc and vs, we can find a match with observed and modeled
peaks of the LOSVD.

To model the LOSVD in both frameworks, the model of ra-
dial oscillations (Sect. 2.3) and the approximative LOSVD by
Eq. (15), we have to add an assumption about the behavior of
the shell brightness in time or in space (as the shell expands with
time). This behavior depends on the parameters of the merger
that has produced the shells. It is determined by the energy dis-
tribution of stars of the cannibalized galaxy in the instant of its
decay in the center of the host galaxy. For simplicity, we choose
the density at the surface of a sphere of shell edge radius rs
to be Σsph(rs(t)) ∼ 1/r2s (t), corresponding to a shell contain-
ing the same number of stars at each moment. The relation be-
tween Σsph(rs(t)) and the projected surface density near the shell
edge on the sky Σlos(rs(t)) is Σlos(rs(t)) ∼

√
rs(t)Σsph(rs(t)). It

turns out that no reasonable choice of this function has an effect
on the general characteristics of the LOSVD and the principles
of formation that we describe in this paper. For illustration, we
demonstrate the LOSVD of Σsph increasing as r2 and Σsph de-
creasing as 1/r2 in Fig. 5. For the profiles shown, the ratio of the
inner and outer peaks changeswith the change of the Σsph, but the
peak positions are unaffected and the overall shape of the profile
does not alter significantly. For shells that were created in a ra-
dial minor merger, we can expect a sharp rise in shell brightness
near the center of the host galaxy, followed by an extensive area
of its decrease. The fact that the main features of the LOSVD
do not depend on the choice of Σsph means that our method of
measuring the potential of shell galaxies is not sensitive to the
details of the decay of the cannibalized galaxy.

4.3. Radius of maximal LOS velocity

MK98 proved that near the edge of a stationary shell, rs, the max-
imum intensity of the LOSVD is at the point where the maximal
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Fig. 5. LOSVD of the second shell at rs = 120 kpc (parameters of
the shell are highlighted in bold in Table 1) for the projected ra-
dius 108 kpc in the framework of the model of radial oscillations
(Sect. 2.3), where the density at the surface of a sphere of shell edge
radius rs is Σsph(rs(t)) ∼ r2s (t) for the blue curve and Σsph(rs(t)) ∼ 1/r2s (t)
for the red one. The profile does not include stars of the host galaxy,
which are not part of the shell system and are normalized, so that the
total flux equals one.

absolute value of the LOS velocity is. They also proved that the
maximal absolute value of the LOS velocity vlos,max comes from
stars at the galactocentric radius

rvmax =
1
2
(R + rs0), (16)

at each projected radius R.
For a moving shell, analogous equations are significantly

more complex and a similar relation cannot be easily proven.
Nevertheless, when we apply both results of MK98 we can show
in examples (Figs. 7, 8, 11, and 12) that their use is valid, even
for nonstationary shells. In the framework of the radial oscil-
lations model (Sect. 2.3), we have shown that the peaks of the
LOSVD occur fairly close to the edges of distributions of inward
and outward stars (Fig. 1). The peaks are also near the edges of
the LOSVD, if we divide the LOSVD into the contributions of
the near and the far half of the galaxy as in Fig. 1b. The inner
peak corresponds to inward-moving stars and the outer one to
outward-moving ones. This approach is used in the equations in
Sect. 4.4. The maximal LOS velocity corresponds to the outer
peak and the minimal to the inner one. Reasons and justification
for use of Eq. (16) for rvmax are discussed in Sect. 5, point 3 (see
also Fig. 6).

4.4. Approximative maximal LOS velocity

Using the results of MK98, we derive an expression for the
maxima/minima of the LOS velocity corresponding to locations
of the LOSVD peaks in observable quantities (i.e., the max-
ima/minima of the LOS velocity, the projected radius, and the
shell radius) by substituting rvmax given by Eq. (16) for r(0) in
Eq. (15)

vlos,max± =
�
vs ± vc

√
1 − R/rs0

�

×
�
1 − 4 (R/rs0)2 (1 + R/rs0)−2.

(17)

For the measured locations of the LOSVD peaks vlos,max+,
vlos,max−, projected radius R, and shell edge radius rs0, we can
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Fig. 6. Galactocentric radii rvmax that contribute to the LOSVD the max-
imal velocities according to Eq. (16), which was used in the deriva-
tion of the approximative maximal/minimal LOS velocities (Sect. 5,
point 3) – orange curve, according to the approximative LOSVD
(Sect. 5, point 2) – purple curves, and according to the model of radial
oscillations (Sect. 2.3) – light blue curves for the second shell at 120 kpc
(parameters of the shell are highlighted in bold in Table 1). For param-
eters of the host galaxy potential, see Sect. 6.1.

express the circular velocity vc at the shell edge radius and the
current shell velocity vs by using inverse equations:

vc =

���vlos,max+ − vlos,max−
���

2
�
(1 − R/rs0)

�
1 − 4 (R/rs0)2 (1 + R/rs0)−2

� , (18)

vs =
vlos,max+ + vlos,max−

2
�
1 − 4 (R/rs0)2 (1 + R/rs0)−2

· (19)

Alternatively, the value of the circular velocity vc at the shell
edge radius could be inferred from measurements of positions of
peaks at two or more different projected radii for the same shell:
let �vlos = vlos,max+ − vlos,max−, where vlos,max± satisfy Eq. (17).
Then, in the vicinity of the shell edge,

�vlos = 2vc
�
(R/rs0 − 1)

�
1 − 4 (R/rs0)2 (1 + R/rs0)−2

�

≈ 2(1 − R/rs0)vc,
(20)

and taking the derivative with respect to the projected radius

d�vlos
dR

= −2 vc
rs0
, (21)

which happens to be the same expression as Eq. (7) in MK98.
Nevertheless, in MK98, �vlos is the distance between the two
LOSVD intensity maxima of a stationary shell, whereas in our
framework, it is the distance between the outer peak for posi-
tive velocities and the inner peak for negative velocities or vice
versa. This equation allows us to measure the circular velocity in
shell galaxies using the slope of the LOSVD intensity maxima
in the R × vlos diagram.

5. Comparison of models

In this section, we compare three different approaches to the
theoretical calculation of the maximal/minimal LOS velocities,
which are equivalent to the positions of LOSVD peaks:

1. Using the model of radial oscillations as described in
Sect. 2.3 (these results are plotted with light blue curves in
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Fig. 7. LOSVD peak locations for the second shell at the radius
of 120 kpc (parameters of the shell are highlighted in bold in Table 1)
according to the approximative maximal LOS velocities (Sect. 5,
point 3) given by Eq. (17) (orange curves); the approximative LOSVD
(Sect. 5, point 2) given by Eq. (15) (purple curves); and the model of
radial oscillations (Sect. 2.3) (light blue curves almost merged with the
purple ones). The red line shows the position of the LOSVD from Fig. 8,
the black one shows the position of the current turning points. For pa-
rameters of the host galaxy potential, see Sect. 6.1.

relevant figures). This model requires thorough knowledge
of the potential of the host galaxy, obviously unavailable for
real galaxies.

2. Using the approximative LOSVD (purple curves). For the
given shell at the chosen projected radius, Eq. (15) is a func-
tion of only two parameters, the circular velocity vc at the
shell edge radius and the current shell velocity vs. Assuming
a behavior of shell brightness as a function of the shell ra-
dius, Eq. (15) allows us to plot the whole LOSVD (Sect. 4.2).
However, computing the LOSVD and the peaks’ positions
requires a numerical approach in this framework.

3. Using the approximative maximal LOS velocities (orange
curves). Equation (17) supplies the positions of the peaks
directly. It differs from the previous approximation in the as-
sumption about the galactocentric radius rvmax, from which
comes the contribution to the LOSVD at the maximal speed.
The assumption is that rvmax is given by Eq. (16), which was
derived by MK98 for a stationary shell. This equation is ac-
tually only very approximate, but allows us to analytically
invert Eq. (17) to obtain formulae for the calculation of vc
and vs from the measured peak positions in the spectrum of
the shell galaxy near the shell edge (Eqs. (18) and (19)). For
a moving shell, we could not derive a more accurate formula
for rvmax that would be simple enough to make the calcula-
tion of vc and vs feasible.

Figure 6 shows a comparison of the radii that contribute to the
LOSVD at the maximal velocities according to all three ap-
proaches. For the first two methods, the radius corresponding
to the inner maxima of the LOSVD (which are the maxima cre-
ated by the inward stars) is lower than that for the outer maxima,
whereas Eq. (16) assumes the same rvmax for both inward and
outward stars.

Figure 7 shows locations of the LOSVD peaks for the sec-
ond shell at the radius of 120 kpc near the shell edge radius.
The purple curve is calculated using the approximative LOSVD
(Sect. 5, point 2) given by Eq. (15), into which we inserted the
velocity of the second shell according to the model of radial
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Fig. 8. LOSVD of the second shell at rs = 120 kpc (parameters of
the shell are highlighted in bold in Table 1) for the projected ra-
dius R = 0.9rs = 108 kpc according to the approximative LOSVD
(Sect. 5, point 2) given by Eq. (15) (purple curve) and the model of
radial oscillations (Sect. 2.3) (light blue curve almost merged with the
purple one). Locations of peaks as given by the approximative maximal
LOS velocities (Sect. 5, point 3) given by Eq. (17) are plotted with or-
ange lines. Profiles do not include stars of the host galaxy that are not
part of the shell system and are normalized, so that the total flux equals
to one. For parameters of the host galaxy potential see Sect. 6.1.

oscillations and the circular velocity in the potential of the host
galaxy (see Sect. 6.1 for parameters of the potential). The purple
curve does not differ significantly from the light blue curve cal-
culated in the model of radial oscillations (Sect. 2.3). The more
important deviations in the orange curve of the approximative
maximal LOS velocities (Sect. 5, point 3) given by Eq. (17) are
caused by using Eq. (16) for rvmax. With this assumption, approx-
imative maximal LOS velocities (the orange curve) predict that
around the zone between the current turning point and the shell
edge, the inner peaks change signs. This means that for the part
of the galaxy closer to the observer, both inner and outer peaks
will fall into negative values of the LOS velocity and vice versa.
However, from the model of the radial oscillations we know that
the signal from the inner peak in a given (near or far) part of the
galaxy is always zero or has the opposite sign to that of the outer
peak.

The model of the radial oscillations and the approxima-
tive LOSVD given by Eq. (15) were also used to construct the
LOSVD for the second shell located at 120 kpc, at the projected
radius of 108 kpc in Fig. 8. The graph also shows the locations
of the peaks using the approximative maximal LOS velocities
given by Eq. (17).

6. Test-particle simulation of the merger

We performed a simplified simulation of formation of shells in
a radial galactic minor merge. Both merging galaxies are repre-
sented by smooth potential. Millions of test particles were gen-
erated so that they follow the distribution function of the canni-
balized galaxy at the beginning of the simulation. The particles
then move according to the sum of the gravitational potentials
of both galaxies. When the centers of the galaxies pass through
each other, the potential of the cannibalized galaxy is suddenly
switched off and the particles continue to move only in the fixed
potential of the host galaxy. We use the simulation to demon-
strate the validity of our methods of recovering the parameters
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Fig. 9. Snapshots from our test-particle simulation of the radial minor
merger, leading to the formation of shells. Each panel covers 300 ×
300 kpc and is centered on the host galaxy. Only the surface density
of particles originally belonging to the satellite galaxy is displayed. The
density scale varies between frames, so that the respective range of den-
sities is optimally covered.

of the host galaxy potential by measuring2 the positions of the
peaks in the spectral lines. In all cases, we look at the galaxy
from the view perpendicular to the axis of collision, so that the
cannibalized galaxy originally flew in from the right.

6.1. Parameters of the simulation

The potential of the host galaxy is modeled as a double Plummer
sphere with respective masses M∗ = 2 × 1011 M� and MDM =
1.2 × 1013 M�, and Plummer radii b∗ = 5 kpc and bDM =
100kpc for the luminous component and the dark halo, respec-
tively. This model has properties consistent with observed mas-
sive early-type (and even shell) galaxies (Auger et al. 2010;
Nagino & Matsushita 2009; Fukazawa et al. 2006). The poten-
tial of the cannibalized galaxy is chosen to be a single Plummer
sphere with the total mass M = 2 × 1010 M� and Plummer
radius b∗ = 2 kpc.

The cannibalized galaxy is released from rest at a distance of
100 kpc from the center of the host galaxy. When it reaches the
center of the host galaxy in 306.4Myr, its potential is switched
off and its particles begin to oscillate freely in the host galaxy.
The shells start appearing visibly from about 50 kpc of galac-
tocentric distance and disappear at around 200 kpc, as there are
very few particles with apocenters outside these radii (Fig. 9).

6.2. Comparison of the simulation with models

In the simulations, some of the assumptions that we used ear-
lier (Sect. 2) are not fulfilled. First, the particles do not move

2 Here and in the rest of this section, the data measured are the output
of our simulation.

Fig. 10. Simulated shell structure 2.2Gyr after the decay of the canni-
balized galaxy. Only the particles originally belonging to the cannibal-
ized galaxy are taken into account. Top: surface density map; middle:
the LOSVD density map of particles in the ±1 kpc band around the
collision axis; bottom: histogram of galactocentric distances of parti-
cles. The angle between the radial position vector of the particle and
the x-axis (the collision axis) is less than 90◦ for the blue curve and
less than 45◦ for the red curve. The horizontal axis corresponds to the
projected distance X in the upper panel, to the projected radius R in the
middle panel, and to the galactocentric distance r in the lower panel.

radially, but on more general trajectories, which are, even in the
case of a radial merger, nevertheless very eccentric. Second, not
all the particles are released from the cannibalized galaxy right in
the center of the host galaxy; when the potential is switched off,
the particles are located in the broad surroundings of the center
and some are even released before the decay of the galaxy. These
effects cause a smearing of the kinematical imprint of shells, as
the turning points are not at a sharply defined radius, but rather
in some interval of radii for a given time.

The model of radial oscillations presented in Sect. 2 predicts
that 2.2Gyr after the decay of the cannibalized galaxy (Fig. 10),
five outermost shells should lie at the radii of 257.3, −157.8,
105.1, −70.5, and 48.8 kpc. The negative radii refer to the shell
being on the opposite side of the host galaxy with respect to
the direction from which the cannibalized galaxy flew in. These
radii agree well with the radii of the shells measured in the sim-
ulation 2.2Gyr after the decay of the cannibalized galaxy. In
the simulation, the first shell at 257.4 kpc is composed of only
a few particles, and therefore we will not consider it (its parame-
ters are listed in Table 2 for completeness). Thus, the outermost
relevant shell in the system lies at −157.8kpc and has a serial
number n = 2. Also, the shell at 48.8 kpc suffers from lack of
particles, but we will include it nevertheless.

Figure 11 shows the comparison between the LOSVD in the
simulation, the peaks of the LOSVD computed in the model
of radial oscillations (light blue curves), and the approxima-
tive maximal LOS velocities – Eq. (17) (orange curves). To eval-
uate the approximative maximal LOS velocities, we obtained
the shell velocity vs,model from the model of radial oscillations
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Table 2. Parameters of the shells in a simulation 2.2Gyr after the decay
of the cannibalized galaxy.

rs n rTP,model vs,sim vs,model vc,model
kpc kpc km s−1 km s−1 km s−1

48.8 5 48.5 38.7 ± 2.1 38.7 326
−70.6 4 −69.9 59.8 ± 1.6 54.3 390
105.0 3 103.9 68.1 ± 1.9 63.5 441
−157.8 2 −155.7 74.3 ± 1.2 72.4 450
257.4 1 251.0 97.5 ± 1.4 95.7 406

Notes. The values of rTP,model and vs,model are calculated for the shell
position rs and its corresponding serial number n according to the
model of radial oscillations (Sect. 2). The shell velocity vs,sim is derived
from 20 positions between the times 2.49–2.51 Gyr for each shell. The
value vc,model corresponds to the circular velocity at the shell edge ra-
dius rs for the chosen potential of the host galaxy (Sect. 6.1).

Fig. 11. LOSVD map of the simulated shell structure 2.2Gyr after the
decay of the cannibalized galaxy (middle panel in Fig. 10). Light blue
curves show locations of the maxima according to the model of radial
oscillations (Sect. 2.3) for shell radius rs, corresponding serial num-
ber n, and the known potential of the host galaxy (Sect. 6.1). Orange
curves are derived from the approximative maximal LOS velocities
(Sect. 5, point 3) given by Eq. (17) for rs, vs,model, and vc,model. Parameters
of the shells are shown in Table 2. Black lines mark the location at 0.9rs
for each shell. The LOSVD for these locations are shown in Fig. 12.
The map includes only stars originally belonging to the cannibalized
galaxy.

(Sect. 2) for the respective serial number n of the shell and circu-
lar velocity vc,model at the shell edge radius, using our knowledge
of the potential of the host galaxy (see Sect. 6.1 for parameters
of the potential). The values of all the respective shell quantities
are listed in Table 2.

Figure 11 also shows the locations that correspond to the
radii of 0.9rs for each individual shell (black lines). The LOSVD
for these locations is shown in Fig. 12. The positions of sim-
ulated LOSVD peaks largely agree with three theoretical ap-
proaches described in Sect. 5.

6.3. Recovering the potential from the simulated data

We used a snapshot from our simulation, which 2.2Gyr after the
decay of the cannibalized galaxy, as a source of the simulated

data and tried to reconstruct the parameters of the potential of the
host galaxy from the locations of the LOSVD peaks measured
from the simulated data.

For a given host galaxy, the signal-to-noise (S/N) ratio in the
simulated data is a function of the number of simulated particles,
the age of the shell system, the distribution function of the canni-
balized galaxy, and the impact velocity. For a given radius in the
simulated data, we can obtain arbitrarily good or bad S/N ratios
by tuning these parameters. Thus, we adopted the universal cri-
teria: 1) the LOSVD of each shell is observed down to 0.9 times
its radius; 2) we measured the positions of the LOSVD peaks in
different locations within the shell, sampled by 1 kpc steps. We
do not estimate the errors, since the real data will be dominated
by other sources. We quote only the mean square deviation and
the standard error of the linear regression.

These criteria give us between 7 and 15 measurements for
a shell. Each measurement contains two values: the positions of
the outer and inner peaks, vlos,max+ and vlos,max−, respectively, for
each projected radius R (see green crosses in Fig. 13).

First we used the approximative maximal LOS velocities
given by Eqs. (18) and (19) for a direct calculation of the cir-
cular velocity vc,eq(18) at the shell edge radius rs and the current
shell velocity vs,eq(19). These equations are the inverse of Eq. (17),
which corresponds to the model shown in orange lines in pic-
tures throughout the text (Sect. 5, point 3). Mean values from all
the measurements for each shell are shown in Tables 3 and 4.

We obtain a better agreement with the circular velocity of our
host galaxy potential when using the slope of the LOSVD inten-
sity maxima given by Eq. (21), where we fit the linear function
of the measured distance between the outer and the inner peak
on the projected radius (vc,slope in Table 3 and in Fig. 14).

From the approximative maximal LOS velocities (Sect. 5,
point 3) given by Eq. (17), we can derive a hybrid relation be-
tween the positions of the LOSVD peaks, the circular velocity at
the shell edge radius vc, and the shell velocity:

v2s = v
2
c(1 − R/rs0) +

vlos,max+vlos,max−
4 (R/rs0)

2 (1 + R/rs0)
−2 − 1 · (22)

We substitute the values of vc,slope derived from the measure-
ments (that we know better describe the real circular velocity
of host galaxy) into this relation, thus obtaining the improved
measured shell velocity vs,eq(22)−slope (Table 4 and Fig. 15).

In the zone between the current turning points and the shell
edge, the inner peaks coalesce and gradually disappear (Fig. 4).
The simulated data do not show a disappearance of the inner
peaks as abrupt and clear as the theoretical LOSVD profiles pre-
dict, so that in this zone, we can usually measure one inner peak
at 0 km s−1. The information from these measurements is degen-
erate, and thus we defined a subsample of simulated measure-
ments with all four clear peaks in the LOSVD (in the columns
labeled SS in Tables 3 and 4).

The spread of the values derived using the approximative
maximal LOS velocities given by Eqs. (18) and (19) is signif-
icantly lower for the subsample (vSSc,eq(19) and v

SS
s,eq(18)) due to the

exclusion of areas where these equations do not hold well. On
the contrary, the slope of the linear regression in Eq. (21) using
the slope of the LOSVD intensity maxima gives a worse result
(with a larger error) for the subsample vSSc,slope.

The third option to derive the circular velocity vc at the shell
edge radius rs and shell velocity vs from the simulated data is to
use the approximative LOSVD given by Eq. (15), which corre-
sponds to the model shown in purple lines in pictures throughout
the text (Sect. 5, point 2). However, this requires a numerical so-
lution of the equation for a given pair of vc and vs. We minimized
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Fig. 12. LOSVDs of four shells at projected radii 0.9rs (indicated as the title of each plot) 2.2Gyr after the decay of the cannibalized galaxy
(parameters of the shells are shown in Table 2). The simulated data are shown in green, the LOSVDs according to the approximative LOSVD
(Sect. 5, point 2) given by Eq. (15) in purple, and LOSVDs according to the model of radial oscillations (Sect. 2.3) in light blue. The graph also
shows the locations of the peaks using the approximative maximal LOS velocities (Sect. 5, point 3) given by Eq. (17) by orange lines. Profiles do
not include stars of the host galaxy, which are not part of the shell system. The theoretical profiles are scaled so that the intensity of their highest
peak approximately agrees with the highest peak of the simulated data. Intensity is given in relative units, so maxima of the profiles have values of
about 0.9.
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Fig. 13. Fits for circular velocity vc and shell velocity vs using the approximative LOSVD (Sect. 5, point 2) given by Eq. (15) for four shells
(rs indicated in bottom right corner of each plot) in the simulation 2.2Gyr after the decay of the cannibalized galaxy. The best fit is the purple
curve, and its parameters are shown in Tables 3 and 4 in the columns labeled vc,fit and vs,fit. The green crosses mark the measured maxima in the
LOSVD, and the light blue curves show the locations of the theoretical maxima derived from the host galaxy potential according to the model of
radial oscillations (Sect. 2.3). Note that the values of vc and vs used in the approximative LOSVD for the purple line were obtained by fitting the
parameters to the simulated data, whereas in Figs. 7, 8, and 12, the values are known from the model of the host galaxy potential.

the sum of sums of squared differences between vlos,max±(vc, vs)
as given by the approximative LOSVD and the simulated data
to obtain best fitted values vc,fit and vs,fit (see Tables 3 and 4
for the results). Errors were estimated using the ordinary least
squared minimization as if the functions vlos,max+(vc,fit, vs,fit) and
vlos,max−(vc,fit, vs,fit) were fitted separately; quoted is the larger of
the two errors. The LOSVD intensity maxima resulting from this

procedure are plotted in Fig. 13, together with the fitted data and
the maxima given by the model of radial oscillations (Sect. 2.3).

For the sake of comparison with the method of MK98, we
calculated the circular velocity vc,slope(MK98) at the shell edge ra-
dius rs using the slope of the LOSVD intensity maxima given
by Eq. (21). To mimic the measurement of the circular veloc-
ity according to Eq. (7) in MK98, which was derived for the
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Table 3. Circular velocity at the shell edge radius rs derived from the measurement of the simulated data 2.2Gyr after the decay of the cannibalized
galaxy.

rs vc,model Ndata NSSdata vc,eq(18) vSSc,eq(18) vc,slope vSSc,slope vc,fit vc,slope(MK98)
kpc km s−1 km s−1 km s−1 km s−1 km s−1 km s−1−1 km s−1−1

48.8 326 5 4 346 ± 130 340 ± 94 322 ± 19 314 ± 32 318 ± 51 449 ± 26
−70.6 390 7 5 394 ± 85 390 ± 53 391 ± 5 392 ± 11 368 ± 60 570 ± 23
105.0 441 11 8 478 ± 144 452 ± 64 440 ± 5 447 ± 7 427 ± 28 632 ± 9
−157.8 450 15 10 497 ± 236 472 ± 79 462 ± 8 484 ± 14 460 ± 32 671 ± 11

Notes. rs and vc,model have the same meaning as in Table 2. Ndata: number of measurements for each shell; vc,eq(18): the mean of values derived from
the approximative maximal LOS velocities given by Eq. (18) with its mean square deviation; vc,slope: a value derived from linear regression using
the slope of the LOSVD intensity maxima given by Eq. (21) and its standard error (see also Fig. 14); vc,fit: a value derived by fitting a pair of vc
and vs in the approximative LOSVD given by Eq. (15) (Sect. 5, point 2 and Fig. 13); vc,slope(MK98): the mean of values derived from the slope of
the LOSVD intensity maxima given by Eq. (21) with its standard error (see also Fig. 14). In the equation, however, �vlos is substituted with the
distance between the two outer peaks of the LOSVD intensity maxima in order to mimic the measurement as originally proposed by MK98 for
double-peaked profile. The quantities with the superscript SS correspond to the subsample, where only measurements with two discernible inner
peaks in the LOSVD are used.

Table 4. Velocity of the shell at the radius rs derived from the measurement of the simulated data 2.2Gyr after the decay of the cannibalized
galaxy.

rs vs,model Ndata NSSdata vs,sim vs,eq(19) vSSs,eq(19) vs,eq(22)−slope vSSs,eq(22)−slope vs,fit
kpc km s−1 km s−1 km s−1 km s−1 km s−1 km s−1 km s−1

48.8 38.7 5 4 38.7 ± 2.1 50.7 ± 2.3 51.7 ± 1.1 44.2 ± 6.5 44.9 ± 6.3 53 ± 16
−70.6 54.3 7 5 59.8 ± 1.6 60.8 ± 9.8 65.6 ± 2.0 60.7 ± 10.8 66.0 ± 2.9 66 ± 19
105.0 63.5 11 8 68.1 ± 1.9 74.8 ± 4.6 76.5 ± 1.4 68.0 ± 8.9 71.3 ± 2.5 79 ± 9
−157.8 72.4 15 10 74.3 ± 1.2 84.4 ± 5.4 86.7 ± 2.0 78.7 ± 10.5 82. ± 3.5 85 ± 14

Notes. rs, vs,model, and vs,sim have the same meaning as in Table 2. Ndata: number of measurements for each shell; vs,eq(19): the mean of values derived
from the approximative maximal LOS velocities given by Eq. (19) with its mean square deviation; vs,eq(22)−slope: the mean of values derived from
the hybrid relation given by Eq. (22) with its mean square deviation (see also Fig. 15); vs,fit: a value derived by fitting a pair of vc and vs in the
approximative LOSVD given by Eq. (15) (Sect. 5, point 2 and Fig. 13). The quantities with the superscript SS correspond to the subsample, where
only measurements with two discernible inner peaks in the LOSVD are used.
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double-peaked profile, we assume �vlos is the distance between
the two outer peaks of the LOSVD intensity maxima. In Table 3
and Fig. 14, we can easily see that the values vc,slope(MK98) differ
from the actual circular velocity of the host galaxy vc,model by a
factor of 1.3–1.5.
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6.4. Instrumental LOSVD

When observed, the LOSVD is always influenced by instrumen-
tal dispersion, which naturally smoothes features of the spectral
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profile. In Fig. 16, we show the LOSVDs from the simulated data
smoothed with different Gaussians representing the instrumental
profiles having the full width at half maximum (FWHM) of 10,
30, and 60 km s−1. It is obvious that relatively high spectral reso-
lution is necessary for observing an imprint of shell peaks in line
profiles.

7. Discussion

We developed a new method to measure the potential of shell
galaxies from kinematical data, extending the work of MK98.
The method splits into three different analytical and semi-
analytical approaches for obtaining the circular velocity in the
host galaxy, vc, and the current shell phase velocity, vs:

1. the approximative LOSVD: using Eq. (15) and an assump-
tion of the behavior of the shell brightness as a function of
the shell radius (Sect. 4.2);

2. the approximative maximal LOS velocities: Eqs. (18)
and (19) (Sect. 4.4);

3. using the slope of the LOSVD intensity maxima in
the R × vlos diagram in Eq. (21) (Sect. 4.4).

In Sect. 5, the first two approaches are compared to the model
of radial oscillations (numerical integration of radial trajecto-
ries of stars in the host galaxy potential, Sect. 2). All three ap-
proaches are then applied to data for the four shells obtained
from a test-particle simulation and compared to the theoretical
values (Sect. 6.2).

Approach 1 requires a numerical solution to Eq. (15) and the
search for a pair of vc and vs, which matches the (simulated) data
best. Although this approach is not limited by any assumptions
about the radius of the maximal LOS velocity (Sect. 4.3), it does
not give a better estimate of vc and vs for our simulated shell
galaxy than the other two methods. The deviation from the real
value of vc is between 2% and 6%.

Using the approximativemaximal LOS velocities approach 2
results in simple analytical relations and is the only one that
can in principle be used for an LOSVD measured at only one
projected radius. Nevertheless, when measuring in the zone be-
tween the radius of the current turning points and the shell ra-
dius, we can expect very bad estimates of vc and vs. The mean

value from more measurements of the LOSVD peaks for each
shell of our simulated shell galaxy has similar accuracy to those
of approach 1, provided that we include only the measurements
outside the zone between the radius of the current turning points
and the shell radius.

The best method for deriving the circular velocity in the po-
tential of the host galaxy seems to be to use the slope of the
LOSVD intensity maxima, with a typical deviation in the order
of units of km s−1 when fitting a linear function over all the mea-
sured positions of the LOSVD peaks for each shell. This circular
velocity is then used in the hybrid relation, Eq. (22), to obtain the
best estimate of the shell velocity.

All the approaches, however, derive a shell velocity system-
atically larger than the prediction of the model of radial oscil-
lations vs,model and the value derived from positions between the
times 2.49–2.51Gyr in the simulation vs,sim (Table 3). This is be-
cause the simulated LOSVD peaks lie too far out (for the outer
peaks) or too far in (for the inner peaks) when compared to the
model of radial oscillations. That can be caused by nonradial
trajectories of the stars of the cannibalized galaxy or by poor
definition of the shell radius in the simulation.

Nevertheless, the shell velocity depends, even in the simpli-
fied model of an instant decay of the cannibalized galaxy in a
spherically symmetric host galaxy (Sect. 2), on the serial num-
ber of the shell n and on the whole potential from the center of
the galaxy up to the shell radius (see Eq. (3)). A comparison of
its measured velocity to theoretical predictions is possible only
for a given model of the potential of the host galaxy and the
presumed serial number of the observed shells. In such a case,
however, it can be used to exclude some parameters or models
of the potential that would otherwise fit the observed circular
velocity.

The first shell has a serial number equal to one. A higher
serial number means a younger shell. On the same radius, the
velocity of each shell is always smaller than that of the previous
one. In practice, it is difficult to establish whether the outermost
observed shell was the first one created, or whether the first shell
(or even the first couple of shells) were already unobservable.
Here, we can use the potential derived from our method or a
completely different one in a reverse way: to determine the ve-
locity of the first shell on the given radius and to compare it to
the velocity derived from the positions of the LOSVD peaks.
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Knowing the serial number of the outermost shell and its posi-
tion allows us then to determine the time from the merger and the
impact direction of the cannibalized galaxy. Moreover, the mea-
surement of shell velocities reveals the presence of shells from
different generations (Bartošková et al. 2011).

Our method for measuring the potential of shell galaxies has
several limitations. Theoretical analyses were conducted over
spherically symmetric shells, while the test-particle simulation
was run for a strictly radial merger and analyzed in a projection
plane parallel to the axis of the merger. In addition, both ana-
lytical analysis and simulations assume spherical symmetry of
the potential of the host galaxy. In reality, the regular shell sys-
tems with more shells in one galaxy are more often connected
to galaxies with significant ellipticity (Dupraz & Combes 1986).
Moreover, in cosmological simulations with cold dark matter,
halos of galaxies are described as triaxial ellipsoids (e.g., Jing
& Suto 2002; Bailin & Steinmetz 2005; Allgood et al. 2006).
However, the effect of the ellipticity of the isophotes of the host
galaxy on the shell kinematics need not be dramatic, as the shells
have the tendency to follow equipotentials that are in general
less elliptical than the isophotes. Dupraz & Combes (1986) con-
cluded that while the ellipticity of observed shells is generally
low, it is neatly correlated to the eccentricity of the host galaxy.
Prieur (1988) pointed out that the shells in NGC3923 are much
rounder than the underlying galaxy and have an ellipticity that
is similar to the inferred equipotential surfaces. This idea was
originally put forward by Dupraz & Combes (1986), who found
such a relationship for their merger simulations. Our method is
in principle applicable even to shells spread around the galactic
center, which are usually connected to rounder elliptical galaxies
if they were created in a close-to-radial merger. Nevertheless, the
combination of the effects of the projection plane, merger axis,
and ellipticity of the host galaxy can modify our results and re-
quire further analyses.

Because the kinematics of the stars that left the cannibalized
galaxy is in the first approximation a test-particle problem, they
should not be much affected by self-gravity of the cannibalized
galaxy and the dynamical friction that this galaxy undergoes dur-
ing the merger, both of which have been neglected in this work.

Another complication is that the spectral resolution required
to distinguish all four peaks is probably quite high (Sect. 6.4
and Fig. 16) and the shell contrast is usually small. Nevertheless,
there is the possibility to measure shell kinematics using the LOS
velocities of individual globular clusters, planetary nebulae, and,
in the Local group of galaxies, even of individual stars.

8. Conclusions

Kinematics of regular shells produced during nearly radial mi-
nor mergers of galaxies can be used to constrain their gravita-
tional force field and thus the dark matter distribution. Merrifield
& Kuijken (1998) showed that the LOSVD measured near the
edges of a shell has a double-peaked shape, and found a relation
between the values of the two LOS velocity peaks and the circu-
lar velocity. Their approximation is limited to stationary shells.

We have extended their theoretical analysis to traveling
shells. We find that in two-component giant galaxies with re-
alistically massive dark matter halos, shell propagation veloc-
ity is significantly higher, typically 30–150 km s−1, compared
to values quoted in the theoretical studies in the literature. We
show that such large speeds have considerable impact on the
LOS kinematics of shells. We demonstrate that each peak of the
double-peaked profile is split into two, producing a quadruple-
peaked LOSVD. We derive a new approximation, relating the

circular velocity of the host galaxy potential at the shell edge
radius, as well as the current phase velocity of the shell, to the
positions of the four peaks.

In galaxies with multiple shells, we can use circular veloc-
ities measured by these methods to determine the potential of
the host galaxy over a large span in radii, whereas the measured
shell phase velocity carries information on the age of the shell
system, and the arrival direction of the cannibalized galaxy. The
potential observation of multigeneration shell systems contains
additional limits on the shape of the potential of the host galaxy.
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Simulations of Shell Galaxies with GADGET-2: Multi-Generation Shell
Systems, eds. I. Ferreras, & A. Pasquali, 195

Canalizo, G., Bennert, N., Jungwiert, B., et al. 2007, ApJ, 669, 801
Charmandaris, V., Combes, F., & van der Hulst, J. M. 2000, A&A, 356, L1
Churazov, E., Forman, W., Vikhlinin, A., et al. 2008, MNRAS, 388, 1062
Churazov, E., Tremaine, S., Forman, W., et al. 2010, MNRAS, 404, 1165
Coccato, L., Gerhard, O., Arnaboldi, M., et al. 2009, MNRAS, 394, 1249
Colbert, J. W., Mulchaey, J. S., & Zabludoff, A. I. 2001, AJ, 121, 808
Coleman, M., Da Costa, G. S., Bland-Hawthorn, J., et al. 2004, AJ, 127, 832
Das, P., Gerhard, O., Churazov, E., & Zhuravleva, I. 2010, MNRAS, 409, 1362
de Lorenzi, F., Gerhard, O., Coccato, L., et al. 2009, MNRAS, 395, 76
Deason, A. J., Belokurov, V., Evans, N. W., & McCarthy, I. G. 2012, ApJ, 748,
2

Duc, P.-A., Cuillandre, J.-C., Serra, P., et al. 2011, MNRAS, 417, 863
Dupraz, C., & Combes, F. 1986, A&A, 166, 53
Dupraz, C., & Combes, F. 1987, A&A, 185, L1
Ebrová, I., Jungwiert, B., Canalizo, G., Bennert, N., & Jílková, L. 2010, in
Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies,
eds. B. Smith, J. Higdon, S. Higdon, & N. Bastian, ASP Conf. Ser., 423, 236

Ebrová, I., Jílková, L., Jungwiert, B., et al. 2011, Quadruple-Peaked Line-of-
Sight Velocity Distributions in Shell Galaxies, eds. I. Ferreras, & A. Pasquali,
225

Fardal, M. A., Guhathakurta, P., Babul, A., & McConnachie, A. W. 2007,
MNRAS, 380, 15

Fardal, M. A., Babul, A., Guhathakurta, P., Gilbert, K. M., & Dodge, C. 2008,
ApJ, 682, L33

Fardal, M. A., Guhathakurta, P., Gilbert, K. M., et al. 2012, MNRAS, 423, 3134
Fukazawa, Y., Botoya-Nonesa, J. G., Pu, J., Ohto, A., & Kawano, N. 2006, ApJ,
636, 698

Gavazzi, R., Treu, T., Rhodes, J. D., et al. 2007, ApJ, 667, 176
Heisler, J., & White, S. D. M. 1990, MNRAS, 243, 199
Helmi, A., Navarro, J. F., Meza, A., Steinmetz, M., & Eke, V. R. 2003, ApJ, 592,
L25

Hernquist, L., & Quinn, P. J. 1987a, ApJ, 312, 17
Hernquist, L., & Quinn, P. J. 1987b, ApJ, 312, 1
Hernquist, L., & Quinn, P. J. 1988, ApJ, 331, 682
Hernquist, L., & Spergel, D. N. 1992, ApJ, 399, L117
Horellou, C., Black, J. H., van Gorkom, J. H., et al. 2001, A&A, 376, 837
James, R. A., & Wilkinson, A. 1987, in Structure and Dynamics of Elliptical
Galaxies, ed. P. T. de Zeeuw, IAU Symp., 127, 471
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ABSTRACT

Context. NGC 3923 is an elliptical galaxy surrounded by numerous stellar shells, which are concentric arcs centered on the galactic
core. They are likely a result of a minor merger and they are made of stars on nearly radial orbits. For a given potential, the shell radii
at a given time after the merger can be calculated and compared to observations. The Modified Newtonian Dynamics (MOND) is a
theory aiming to solve the missing mass problem by modifying the laws of classical dynamics in the limit of small accelerations. The
shell distribution of NGC 3923 was claimed to contradict MOND by Hernquist & Quinn (1987b), but Milgrom (1988) found several
substantial insufficiencies in their work.
Aims. We test whether the observed shell distribution in NGC 3923 is consistent with MOND using the current observational knowl-
edge of the shell number and positions as well as of the host galaxy surface brightness profile, all of them superseding the data
available in 80’s when the last (and negative) tests of MOND viability were performed on NGC 3923.
Methods. Using the 3.6 µm bandpass image of NGC 3923 from the Spitzer space telescope we construct the mass profile of the galaxy.
The evolution of shell radii in MOND is then computed using analytical formulae. We use 27 currently observed shells and allow for
their multi-generation formation, unlike the Hernquist & Quinn’s one-generation model with 18 then-known shells.
Results. Our model reproduces the observed shell radii with a maximal deviation of ∼ 5% for 25 out of 27 known shells while keeping
a reasonable formation scenario. A multi-generation nature of the shell system, resulting from successive passages of the surviving
core of the tidally disrupted dwarf galaxy, is one of key ingredients of our scenario. The 25 reproduced shells are interpreted as
belonging to three generations.

Key words. Gravitation – Methods: analytical – Galaxies: elliptical and lenticular, cD – Galaxies: formation – Galaxies: individual:
NGC 3923 – Galaxies: kinematics and dynamics

1. Introduction

1.1. Modified Newtonian dynamics

MOND is an observationally found rule according to which the
acceleration of a body, a, moving in gravitational field is often
tightly related to the Newtonian gravitational acceleration pro-
duced by the known forms of matter, aN. This relation says that
a = aN, if aN � a0, and a =

√
aNa0, if aN � a0, where

a0 ≈ 10−10 m s−2 (Milgrom 1983a,b,c). The existence of this re-
lation is difficult to be explained by the cold dark matter hypoth-
esis, where the dominating dark matter is expected to controll
the dynamics of the baryons and not vice versa. The baryonic
matter acts on itself also by non-gravitational effects (supernova
explosions, gas cloud collisions, matter transport by AGN, etc.),
but the distribution of baryons should have only subtle effect on
the total gravitational field. A possible interpretation of this rela-
tion is that the laws of dynamics need to be modified in the limit
of small accelerations (therefore MOND – Modified Newtonian
Dynamics). Then MOND replaces the dark matter theory as the
solution of the missing mass problem.

Several MOND theories have been built. Generally, a
MOND theory has to reduce to conventional Newtonian dynam-
ics when taking the limit a0 → 0 (similarly as the quantum the-

ory reduces to classical physics for ~→ 0). In the opposite limit
a0 → ∞, G → 0, keeping the product Ga0 fixed, the space-
time scaling symmetry comes up: Consider a system consisting
of massive particles mi, i = 1, 2 . . .N. Then if the equations
of the theory are valid for the trajectories ri(t), then they also
hold for the trajectories λri(λt) (Milgrom 2009). A list of many
MOND theories can be found in the thorough review of MOND
by Famaey & McGaugh (2012). The theoretical motivation for
such a modification is still missing. It is unclear whether MOND
is a modification of gravity or a modification of inertia. In the
first case, the acceleration of a body depends only on the instan-
taneous value of the gravitational acceleration at its position; in
the latter case it generally depends on the full trajectory of the
body (Milgrom 2006).

To avoid the necessity to solve the partial differential equa-
tions of the fully-fledged MOND theories, the algebraic relation
aµ

(
a
a0

)
= aN (Milgrom 1983c) is employed frequently. Here µ(x)

is the interpolating function satisfying µ(x) ≈ 1, for x � 1, and
µ(x) ≈ x, for x � 1. In the known modified gravity theories,
the algebraic relation is precise for test particles moving in the
gravitational field of a spherically symmetric matter distribution
and several other highly symmetric types of systems (see, e.g.,
Brada & Milgrom 1994). However, it is well known it cannot
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constitute a general law of dynamics. E.g., one can easily prove
the momentum is not conserved for an isolated system made of
two particles with different masses.

In spite of the missing theoretical grounds, MOND reached
remarkable success on the scale of groups of galaxies and
smaller. It naturally explains the baryonic Tully-Fisher (Milgrom
1983a; McGaugh 2011) and Faber-Jackson (Milgrom 1983a;
Sanders 2010) relations. MOND gained respect due to its ability
to predict rotational curves of disc galaxies on the basis of their
visible mass distribution (e.g., Figs. 21-27 in Famaey & Mc-
Gaugh 2012), even under strong observational constraints (An-
gus et al. 2012). Ellipticals are often embedded in too strong
gravitational field for the MOND effects to show up. The rare ex-
ceptions are NGC 720 and NGC 1521 in which Milgrom (2012)
verified the MOND expectations on the distribution of X-ray
gas. MOND successfully explains the rotational curves of tidal
dwarf galaxies, which is a problematic task for the dark mat-
ter theory (Gentile et al. 2007). The MONDian numerical self-
consistent simulations of individual disc galaxies as well as in-
teracting galaxies by Tiret & Combes (2008) show the observed
morphology. Another example is the high collision velocity of
the Bullet Cluster, which is much higher than the escape speed
predicted by the classical dynamics with dark matter. On the
contrary, this velocity is not extraordinary for colliding galac-
tic clusters in the MOND cosmological simulations (Angus &
Diaferio 2011). The escape velocity from Milky Way is com-
patible with the MOND prediction (Wu et al. 2008). According
to Lüghausen et al. (2013), MOND reproduces the qualitative
properties of the rotational curves of polar ring galaxies. MOND
predictions get confirmed also for gravitational lensing by iso-
lated galaxies (Milgrom 2013).

On the other hand, MOND itself does not suffice to explain
the missing mass problem on the scales of galaxy clusters and
higher. A possible solution is to add hot dark matter in the form
of sterile neutrinos (Angus et al. 2008; Famaey et al. 2008).
These problems could disappear after we find the final MOND
theory.

1.2. Shell galaxies

Shells in galaxies are arc-like sharp-edged faintly-glowing fea-
tures, which are centered on the galactic core (Fig. 1). The shells
are widely believed to be remnants of minor galactic mergers.
The formation scenario was firstly proposed by Quinn (1983)
and further discussed by Quinn (1984) and others. A small low-
mass galaxy, the secondary, encounters a much bigger and more
massive galaxy, the primary. When the secondary gets close to
the center of the primary, it is partly or totally disrupted by tidal
forces. The stripped stars start to freely move in the potential
well of the primary. When they reach the apocenters of their or-
bits, they slow down and form kinematical density waves which
are observed as the shells. If the core of the secondary survives
the first passage through the primary galaxy, it is decelerated by
dynamical friction. It can start oscillating in the potential well of
the primary. Each time, when it goes through the primary center,
it loses part of its stars and so gives rise to another generation of
shells. Typically, the luminosity of the shells constitutes several
percent of the host galaxy luminosity (e.g. Prieur 1988; Dupraz
& Combes 1986). Thus we judge that the secondary-to-primary
mass ratio had to be similar to this value.

A special kind of shell galaxies, the Type I (Wilkinson et al.
1987), is characteristic by its regularity (see, Fig. 1). The shells
form axially symmetric structure, axes of which coincide with
the major axis of the host galaxy. The shells are confined by a

Fig. 1. NGC 3923 – an example of a Type I shell galaxy and the object
of our study. The image comes from Malin & Carter (1983).

double cone centered on the galactic core. When sorted accord-
ing to the distance from the galaxy center, almost every shell
lies on the opposite side of the galaxy than its immediate prede-
cessor and successor. This property is called the interleaving in
radius. Type I shell galaxies most likely result from nearly radial
mergers along the major axis of the primary (Hernquist & Quinn
1988, 1989).

Type I shell systems can be useful for constraining the poten-
tial of the host galaxy on the basis of the positions of the shells
(Hernquist & Quinn 1987b), because a relation exists, which al-
lows to calculate the shell radii for a given potential at a given
moment after the merger. To derive this relation, we can restrict
ourself to particles moving along the major axis of the galaxy,
since the edges of shells form surfaces close to spherical caps.
To proceed analytically, a simplifying assumption has to be in-
troduced: All the stars to form the shells are released from the
primary center at the same moment and their velocity vectors
point to the same direction. In other words, the considered stars
differ only by their velocity modulus at the moment of releasing.
The shell edges are made of stars reaching their apocenters. The
number of a shell, n = 0, 1, 2, . . ., is the number of complete os-
cillations performed by these stars since the moment of their re-
leasing. An oscillation is defined as the movement between two
subsequent apocenters. E.g., the zeroth shell is made of stars near
their first apocenter – because they are just finishing one half of
an oscillation. To a first approximation, at a time t after the de-
cay of the secondary, the radius of a shell can be calculated as
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the radius at which stars just reach their apocenter (Quinn 1984).
The n-th shell is thus approximately located at distance rA,n from
the center of the primary satisfying the equation

t = P(rA,n)(n + 1/2), (1)

where P(r) denotes the period of radial oscillation at the galac-
tocentric radius r (i.e. 2× the free fall time). Note that the shells
with high numbers are located at smaller galactocentric radii
than those with lower numbers and that shells increase their radii
with time. P(r) can be calculated from the primary potential φ by
the relation

P(r) =
√

2
∫ r

0

[
φ(r) − φ(x)

]−1/2 dx. (2)

The positions of shells calculated by the relations (1) and (2) are
in good agreement with our test-particle simulations (see Ebrová
et al. 2012, Sec. 6, for their description). A further improvement
can be reached by performing a correction. The conservation of
energy requires for each particle that

rS,n = φ
−1

[
φ(rA,n) − 1

2
v2

S,n

]
, (3)

where rS,n is the corrected radius of the n-th shell, vS,n is the
velocity of the particles on its edge and φ−1 is the inverse of φ.
We do not offer the analytical expression for vS,n. However, it
can be approximated by the phase velocity of apocenters vA,n,
because the two velocities are very similar (see Ebrová et al.
2012, Table 1). Derivative of Eq. (1) with respect to t yields

vS,n ≈ vA,n =
1

(n + 1/2) dP(r)
dr

∣∣∣
r=rA,n

. (4)

Using test-particle simulations, we have verified that this ap-
proximation works in practice almost precisely. The simulations
show that the shells with odd numbers tend to lie on the side
of the arrival of the secondary and the other way around for the
even shells. To take this property into account, we will hereafter
take rS,n as positive for even n and as negative in the opposite
case.

Self consistent simulations show that formation of shells in
several generations is common (Cooper et al. 2011; Bartošková
et al. 2011; Seguin & Dupraz 1996). For the minor merger
model, this manner of formation is actually needed to explain
such high radial ranges as observed in shell galaxies (the radial
range is the ratio of radii of the innermost and the outermost
shell). E.g. in our test-particle simulations (Ebrová et al. 2012)
and that of Dupraz & Combes (1986), where the shells are forced
to form in a single generation, more than 10 shells are never visi-
ble. If the secondary core survives a passage through the primary
center, it loses part of its kinetic energy by dynamical friction, so
the shells formed in the subsequent generation lie in lower range
of radii.

Shell formation is a complex process. The disruption of the
secondary is actually a gradual rather than an instantaneous
event. The secondary is also being affected by dynamical fric-
tion during its decay. These processes can have impact on the
distribution of shells (Dupraz & Combes 1986; Ebrová et al.
2010). However, the self-consistent simulations of Bartošková
et al. (2011), Fig. 1, show that these effects cause shift of shells
by less than 10%. In MOND, furthermore, the dynamical friction
tends to be lower than in the analogous system with dark matter
(Tiret & Combes 2008). On the other hand, the disruption of the
secondary in MOND is probably more gradual than in the clas-
sical dynamics due to the external field effect (Milgrom 1988).

1.3. NGC 3923 and MOND

NGC 3923, the main object of interest in this study, is an E4–
5 Type I shell galaxy in the Hydra constellation. It is a record
object among shell galaxies for the number of shells surrounding
it: 27 shells were found so far. It hosts the greatest known shell in
the Universe with the radius of ∼ 130 kpc. It is also exceptional
by the radial range of its shells which is 65. Due to these facts, it
is the most studied shell galaxy.

Hernquist & Quinn (1987a) used the Eqs. (1) and (2) to find
the relation between the shell numbers and their radii for a power
law potential. Assuming that the shells were formed in one gen-
eration and that the only missing shells are those farther than the
outermost observed shell, they concluded that the positions of
the shells of NGC 3923 contradict MOND. But Milgrom (1988)
found several substantial deficiencies in their analysis. Some of
them concerned to the assumptions, which are too strong and
probably incorrect. Others pointed to their method itself, because
it can lead to incorrect conclusions, if the Eqs. (1)–(2) do not
work completely precisely and the method is sensitive to obser-
vational errors in shell radii. To our knowledge, shell galaxies
have not been investigated in the context of MOND since that
time. Hernquist & Quinn (1987a) as well as Milgrom (1988)
worked with constant potential that crudely approximates the
logarithmic one, which is expected at large galactocentric dis-
tances in MOND. At the time when Hernquist & Quinn (1987a)
published their paper, only 18 shells were known. Further obser-
vations discovered new shells (Prieur 1988 and Sikkema et al.
2007), so that we know 27 shells around NGC 3923 today.

In this paper we test whether the shell system of NGC 3923 is
consistent with the prediction of MOND gravity. To this aim, we
calculated the radii of shells for this galaxy expected in MOND.
The paper is organized as follows. In Sect. 2 we describe the
observational data used for the calculations (shell radii and char-
acteristics of NGC 3923). In Sect. 3 we give description of the
gravitational potential model used for NGC 3923. Sect. 4 in-
cludes description and analysis of the shell radii calculations.
And finally, we discuss and summarize our results in Sects. 5
and 6 respectively.

2. Input data

We use the set of shell positions given in the second column
of Table 1. The shells with “+” sign lie on the northern side of
the galaxy and those with “−” on the southern. The data for shell
distances greater than 130′′ are taken from Prieur (1988), the rest
from Sikkema et al. (2007). It is uneasy to say where exactly lies
the edge of a shell for an observed galaxy, because it is always
blurry (see, e.g., Figs. 3 and D.4 in Sikkema et al. 2007). The
observers measured the position of the maximum of brightness,
which does not necessary need to be the same as the position
of the edge. This uncertainty of the shells radii reaches several
percent.

The shell edges form almost spherical caps. Therefore the
three dimensional radius of a shell must be the same as the pro-
jected one.

There are 5 direct distance measurements of NGC 3923
from Earth on NED (The NASA/IPAC Extragalactic Database)1,
which are all based on the surface brightness fluctuation method.
The distance varies from 19.9 to 24.0 Mpc with the median of
22.9 Mpc. In the following, we will use the value of 23 Mpc.

Our goal will be to calculate the shell radii time evolution in
NGC 3923 using Eqs. (1)–(4) in MOND. This requires a model
1 http://ned.ipac.caltech.edu/
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Table 1. Shells of NGC 3923

Label d [′′] G n o dmodel [′′] ∆ [%]
a +1170 I 2 −1 +1178 0.7
b −840 I 3 −1 −845 0.6
c +630 I 4 −1 +658 4.5
d −520 I 5 −1 −539 3.6
e +365 I 8 −1 +349 4.5
f −280 II 2 1 −275 1.8
g +203 II 3 1 +198 2.5
h −148.5 II 4 1 −155.2 4.5
i +147.3 II 4 1 +155.2 5.1
j +128.1 II 5 1 +127.6 0.4
k −103.6 II 6 1 −108.4 4.6
l +99.9 II 7 1 +94.5 5.4

m −79.6 II 8 1 −83.9 5.4
n +72.8 II 9 1 +75.4 3.6
o −67.0 II 10 1 −68.6 2.3
p +64.1 III 6 −1 +64.0 0.1
q +60.4 II 11 1 +62.9 4.1
r −55.5 III 7 −1 −55.9 0.7
s +51.2 III 8 −1 +49.7 3.0
t −44.0 III 9 −1 −44.8 1.8
u +41.5 III 10 −1 +40.8 1.6
v −37.7 III 11 −1 −37.5 0.5
w +34.3 III 12 −1 +34.7 1.1
x +29.3 III 14 −1 +30.2 3.0
y −28.7 III 15 −1 −28.3 1.3
A +19.4 IV ? 1 ? ?
B −18.0 IV ? 1 ? ?

Notes. d – the observed distance of the shell from the center of
NGC 3923, data taken from Prieur (1988) and Sikkema et al. (2007),
the plus sign means that the shell is situated on the northern side of
the galaxy and minus on the southern; n – identified shell number; G –
identified shell generation; o – the sign of generation; dmodel – modeled
distance of the shell; ∆ – relative difference between observed and mod-
eled distance.

of the mass distribution of the galaxy, which we derive by de-
projecting the observed radial surface brightness profile while
assuming a constant mass-to-light ratio, M/L.

To derive the radial surface brightness profile, we used a
flux-calibrated image of NGC 3923 from the Spitzer Space Tele-
scope archive. The image is a mosaic made from 120 individual
frames obtained by the InfraRed Array Camera (IRAC, see Fazio
et al. 2004) in the 3.6 µm bandpass. First, we manually masked
bright foreground stars and also the brightest shells that could
influence the surface photometry. The surface brightness analy-
sis was done following Muñoz-Mateos et al. (2013, see also Gil
de Paz & Madore 2005, and Muñoz-Mateos et al. 2009). Galaxy
isophotes were fitted using the IRAF (Tody 1993) task ellipse.
Galaxy center was obtained using the IRAF task centroid and
the center was kept fixed during the isophote fitting. First run
of the isophote fitting was carried out with a linear step of
6′′ in the semi-major axis. The mean ellipticity of the galaxy,
(0.316 ± 0.007), defined as 1 − a/b, where a and b are the semi-
major and semi-minor axes, respectively, and the mean position
angle, (48.2 ± 0.1)◦ (measured counterclockwise from the N),
were then obtained as intensity weighted means of individual
isophotal ellipses parameters. Then we performed a second run
of the ellipse isophotal analysis, with a linear step of 2′′ and
the position angle and ellipticity fixed to the mean values. Output
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Fig. 2. Surface brightness profile of NGC 3923 (Spitzer Space telescope
IRAC 3.6 µm bandpass). The semi-major axis of the isophotal ellipses,
Ra, is given on the horizontal axis. Black points with gray error-bars
show the observed profile; the red line shows fit by the sum of two
Sérsic profiles (see Table 2).

of this second run was used to construct the surface brightness
radial profile.

The sky intensity and uncertainties in surface brightness
were obtained similarly as by Gil de Paz & Madore (2005)
and Muñoz-Mateos et al. (2009). To obtain the sky level, we
measured intensity in ten square regions (with the size of
40×40 pixels) randomly situated around the galaxy, far enough
from its center to avoid contamination by the galaxy itself. Sky
intensity was obtained as the mean value in all ten regions. The
uncertainty in surface brightness is calculated as combination of
the uncertainty of intensity measured along individual isophotes
(part of the ellipse task output) and uncertainty of the sky in-
tensity measurement (which has two components: Poisson noise
in the sky intensity and possible large-scale variations due to flat-
fielding errors). Following Muñoz-Mateos et al. (2013), we fur-
ther applied a correction of the photometric calibration of IRAC
for the extended source photometry. This corrects the surface
brightness measured along an isophote for the extended emission
of the IRAC PSF and diffuse scattering on the detector. Finally,
the surface magnitude was calculated using the IRAC zero-point
of 18.8 mag (according to the IRAC Instrument Handbook2).

The resulting surface brightness radial profile is shown in
Fig. 2. In order to obtain a model of mass distribution of the
galaxy, we fitted the surface brightness by sum of two Sérsic
profiles. Parameters of the fit are listed in Table 2. The fit is also
shown in Fig. 2 by the red line.

The M/L ratio in the 3.6 µm band was obtained using Eq. (4)
of For et al. (2012):

(M/L)3.6 = 0.92 × 101.434(J−Ks)−1.380 − 0.05, (5)

where J and Ks are the magnitudes in the 2MASS J and Ks
bands (see Skrutskie et al. 2006). The two magnitudes were ob-
tained by fitting the 2MASS images of the galaxy in the J and Ks
bands. A sum of two Sérsic profiles was used again. We get J =
7.44 mag and Ks = 6.51 mag, which implies (M/L)3.6 = 0.78 in
the solar units. The absolute solar magnitude in the 3.6 µm band
is 3.24 mag (Oh et al. 2008).
2 http://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/25/
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Table 2. Two component Sérsic fit of the Spitzer IRAC image of
NGC 3923 in the 3.6 µm bandpass.

Component µe re n
[mag arcsec−2] [′′]

1 20.5 ± 0.2 235+20
−21 5.28+0.52

−0.48

2 15.9 ± 0.1 7.58+0.32
−0.28 1.53+0.17

−0.13

Notes. µe – effective surface brightness of the individual Sérsic profile
components; re – effective radius; n – Sérsic index. The errors indicate
the 95% confidence interval.

For these values, we get the total stellar mass of NGC 3923
of 5.1×1011 M�, which is close to the value of 5×1011 M� given
by Prieur (1988). For comparison, the same author measured the
effective radius of the galaxy as 105 ′′. Sikkema et al. (2007) de-
termined the value of the effective radius as 39 ′′ from the narrow
field-of-view image from Hubble Space Telescope.

The measurements of the mass of the hot X-ray emitting gas
are available up to the radius of 500 ′′. Nagino & Matsushita
(2009) measured the dynamical mass-to-light ratio in the K-band
at this radius. Their value differs only by 3% from that following
from our model of NGC 3923 in MOND, which we derive in
Sect. 3 from the distribution of stellar mass. According to Fig. 4
in Sato & Tawara (1999), NGC 3923 contains exceptionally low
hot gas fraction among early-type galaxies. Therefore we neglect
its mass.

3. Model of the gravitational potential

The spatial orientation of NGC 3923 is unknown. Our goal is
only to test, whether its shell distribution is consistent with
MOND. Therefore we simply assume that the galaxy is a prolate
ellipsoid and the Earth lies in its equatorial plane. If the Earth did
not lie close enough to the equatorial plane, the shells could not
be visible or they would not form axially symmetric structure.
The prolate shape of the galaxy is also preferred due to its minor
axis rotation (Carter et al. 1998). We repeated the test described
in Sect. 4 for an oblate ellipsoid and we get practically the same
results.

Deprojection of the fitted profile was performed to obtain the
volume mass density model. Subsequently, the gravitational ac-
celeration aN was calculated along the galactic major axis by the
classical Newtonian way. The MONDian acceleration aM was
obtained from the algebraic relation (Milgrom 1983c),

aMµ

(
aM

a0

)
= aN. (6)

We choose the successful “simple” interpolation function
(Famaey & McGaugh 2012),

µ(x) =
x

x + 1
, (7)

and the value of the Milgrom’s acceleration constant a0 = 1.2 ×
10−10m s−2. We are aware that the use of the algebraic relation
is inexact for a non-spherical galaxy. The calculations of Ciotti
et al. (2006) suggest that this inaccuracy in acceleration is of the
order of several percent.

We treat MOND as a modification of gravity, so the acceler-
ation of a particle depends only on its immediate position.

Integrating the MONDian acceleration along the major axis
of the galaxy one gets the potential and can use the Eqs. (1)–(4)
to evaluate the shell positions at any time after releasing the stars
from the secondary at the center of the primary.

4. Are the shell radii of NGC 3923 consistent with
MOND?

Shells in NGC 3923, like other shell galaxies, were probably
formed in several generations. Its extreme shell radial range
points to it. The progenitor of the shells was disrupted by sev-
eral subsequent passages through the center of NGC 3923 – part
by part at each passage. The set of shells originating from the
same passage is called the generation. For the purposes of the
following test, it is convenient to define the sign of the N-th gen-
eration: If the secondary reached the primary center from north
during its N-th infall, we put oN = 1; otherwise oN = −1.

In order to compare the radii of the observed shells with
those calculated using Eqs. (1)–(4) one has to: 1) interpret the
observed shells, i.e. to assign a shell number and generation
number to each of the observed shells, and 2) to choose the ages
of the individual generations, tN . Those are free parameters. If
our potential is the right one, the model of shell propagation is
flawless and the shell radii are measured absolutely precisely,
then it is possible to identify the true interpretation, which satis-
fies

rm,N(tN) = rλoN (8)

for the all observed shells. In this equation, the observed shell
labeled λ is interpreted as the shell number m from the N-th gen-
eration released at the time tN before the observation. The radius
rλ is that listed in the second column of Table 1 and rm,N is the
radius of the m-th shell calculated using Eqs. (1)–(4) with the
added sign. Recall that we define the sign of rm,N as positive for
odd m and negative in the other case.

Eq. (8) stands in the basis of our test of the potential, in which
we try to find the right interpretation of the observed shells and
the time passed since the individual collisions. An interpretation
of the observed shells can be considered as plausible, if the fol-
lowing criteria hold true:

– The relative difference
∣∣∣[rm,N(tN) − rλoN

]
/rλ

∣∣∣ is small for all
the observed shells and appropriate ages of the generations.

– Only few shells are escaping observations. When a gener-
ation is formed, stars are released from the secondary with
energies forming a continuous interval. Therefore, we expect
the numbers of the observed shells from a generation to form
a series of subsequent integers. If a number is missing in this
series, a shell must be escaping observations. If a sufficient
number of shells is allowed to be missing in an interpreta-
tion, it is easy to fulfill the remaining criteria for virtually
any set of shell radii.

– Not too many generations are present. The reason is similar
as for the previous point.

– The (N + 1)-th generation is younger than N-th generation,
for any N, i.e. tI > tII > tIII = . . .

– The time difference between the subsequent passages of the
secondary shortens, because the galaxy is decelerated by dy-
namical friction.

– At every infall, the secondary reaches the center of the pri-
mary from the opposite side than at the previous one, i.e.
oI = −oII = oIII = . . .

If no interpretation satisfies these criteria, it means that the
potential is incorrect, or the model of shell radii evolution is too
rough, or, indeed, a lot of not yet observed shells exist.

However, we succeeded in finding an interpretation that com-
plies with these criteria for 25 outermost shells of NGC 3923
very well. Maximal deviation of observed and calculated shell
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Fig. 3. Calculated time evolution of shell radii in our potential – black curves. The observed radii of shells plus 5% uncertainty boundaries –
horizontal lines. The shells from the same generations are marked by identical colors. The age of a generation is marked by the vertical line of
the same color. The calculated shell radii should ideally reach their observed values at the times marked by the vertical lines. The shells can be
identified in the Tab. 1 by their labels. The other two columns on the right denote the identified generation, to which the shell belongs, and its
number. The signs of the shells from the first column of Table 1 had to be multiplied by the 3-rd column to take into account the directions of
the individual collisions. The sign of the shell i was switched since it is interpreted as the shell h encircling the galaxy. The two innermost shells
probably come from the fourth generation and were not formed in the manner as our model assumes.

radii is 5.4%. The identified shell numbers and generations are
presented in the third and fourth columns of Tab. 1. The interpre-
tation is also apparent from Fig. 3. In this figure, the evolution
of calculated shell positions is depicted by the black curves. The
observed shells radii, after the multiplication by the sing of their
parent generation, are marked by the horizontal lines. The 25
outermost observed shells originate from three generations. In
Fig. 3, shells from the same generations are marked by the same
color – red, green, and blue. The age of the generations is marked
by the tree vertical lines. The calculated shell radii should ideally
reach their observed values at the age of the generation. The ages
of individual generations are tI = 2688 Myr, tII = 631 Myr and
tIII = 364 Myr. The ages were chosen so that the maximum of
relative deviations in each generation is minimized. According
to the presented interpretation, the sign of the first generation is
oI = −1, meaning that the secondary originally collided with the
primary from south along the major axis of the primary.

We have checked that these results stay practically un-
changed if the galaxy is assumed to be an oblate ellipsoid.

5. Discussion

As explained in Sect. 2, a significant part of the deviations can be
caused by observational uncertainty of the shell radii. E.g., as can
be seen in Fig. D.1 of Sikkema et al. (2007), their shell no. 16 is
very faint and diffuse. It was not even detected by Prieur (1988).
This is our shell labeled l, which causes the largest deviation. If
we exclude this shell, the optimal age of the second generation
comes out 621 Myr and the deviations of the second generation
shells decrease under 3.9%.

If this interpretation of shells is correct, the shells 6 and 7 of
the first generation are escaping observations. This can happen,
because even several of the already known shells are on the limits
of detectability (see Fig. D.1 of Sikkema et al. 2007). The shells
6 and 7 should be located approximately at the radii of −390 and
450 arcseconds.

Shells can be observed only at the distances where sufficient
number of stars has apocenters. Accordingly, every shell disap-
pears, when it grows too big. The lower the shell number, the
sooner the shell vanishes. For the same reason, new shells ap-
pear at certain minimal radius. The minimal and maximal radii
are common for all the shells from the same generation. That is
why the shells with low and high numbers can be unobservable.
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There are three pairs of shells in Table 1 that violate the inter-
leaving in radius: i– j, p–q, and w–x. It can be caused by several
reasons: 1) Some shells with radii between the pair were missed
by observations; 2) One shell of the pair comes from a different
generation than the other; 3) A dynamical phenomenon not in-
cluded in our model. According to the presented interpretation,
a missing shell must exist between the shells w and x. This is
credible, because there is a dust cloud visible in the Fig. D.1
of Sikkema et al. (2007) at the expected position of the missing
shell (between the shells 3 and 6 in their figure). The pair p–q is
interpreted as two shells from different generations. The shell i of
the remaining pair i– j seems to be a part of the shell h encircling
the whole galaxy, because the radii of h and i are very close to
each other. As our unpublished simulation show (like those de-
scribed in Ebrová et al. 2012), the interleaving in radius does not
has to be always a strict law. For some common potentials (e.g.,
NFW, de Vaucouleurs), shells can be formed which encircle the
whole galaxy. Their radius is still well approximated by the Eqs.
(1)-(4) (with about a few percent deviation). The ellipticity of
the potential helps to keep the shells confined to the double cone
(Hernquist & Quinn 1989).

We do not present an unequivocal explanation of the origin
of the two innermost shells. They probably come from the fourth
generation. Eqs. (1)–(4) come from the assumption that the stars
are always released from the secondary when it passes through
the primary center. However, it is possible that the secondary
was peeled so much by the third passage, so that its remnant was
disrupted by the tidal force sooner than it reached the center for
the fourth time. The assumption of radiality of the stellar orbits
may be too crude for these shells at smallest radii.

At the moment, we are not able to guarantee that the pre-
sented shell interpretation is the only possible. Also the proba-
bility that it is possible to interpret equally well an arbitrary set
of shell radii is unknown. These questions will be the topic of
our next paper.

6. Summary

We showed that the distribution of shell radii observed in the
galaxy NGC 3923 is consistent with MOND, at least up to the
current level of knowledge of the shell formation process. The
relative deviations of shell radii in our model from observation
are maximally 5.4% for 25 out of the 27 known shells (Tab. 1,
last column). The order of these deviations coincide with the
order of the uncertainty in radii of the observed shells origi-
nating from the smoothness of their edges. This result removes
the shade of doubt shed on MOND by the work of (Hernquist
& Quinn 1987b), according to which the shell distribution of
NGC 3923 contradicts MOND.

No tuning of potential was needed. Fixed values of the
galaxy distance and mass-to-light ratio were used. They come
from sources independent of the shell positions (Sect. 2).

We have assumed that MOND is the modification of gravity
and that the algebraic relation between the MONDian and New-
tonian accelerations holds sufficiently precisely.

The model of the mass distribution of the shell galaxy
NGC 3923 was derived on the basis of the Spitzer IRAC 3.6 µm
bandpass data. The fit parameters can be found in the Table 2.
The total mass of the galaxy came out 5.1×1011 M�. The MON-
Dian gravitational potential was calculated using the algebraic
relation (6) and the “simple” interpolation function (7) along the
major axis of the galaxy. The modeled shell radii were calculated
using the formulas (1)–(4), which come from the assumption that
the shells are formed during a radial minor galactic merger and

the shells are made of stars near apocenters, which move on ra-
dial orbits.
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Ebrová, I., B. Jungwiert, G. Canalizo, N. Bennert, and L. J́ılková: 2010a, ‘Shell Galaxies,
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ies: Dynamical Friction, Gradual Satellite Decay and Merger Dating’. In: B. Smith,
J. Higdon, S. Higdon, and N. Bastian (eds.): Galaxy Wars: Stellar Populations and
Star Formation in Interacting Galaxies, Vol. 423 of Astronomical Society of the Pacific
Conference Series. pp. 236–240.

Efstathiou, G., R. S. Ellis, and D. Carter: 1982, ‘Further observations of the elliptical
galaxy NGC 5813’. MNRAS 201, 975–990.

194



Fabian, A. C., P. E. J. Nulsen, and G. C. Stewart: 1980, ‘Star formation in a galactic
wind’. Nature 287, 613–614.

Fardal, M. A., A. Babul, P. Guhathakurta, K. M. Gilbert, and C. Dodge: 2008, ‘Was the
Andromeda Stream Produced by a Disk Galaxy?’. ApJ 682, L33–L36.

Fardal, M. A., P. Guhathakurta, A. Babul, and A. W. McConnachie: 2007, ‘Investigating
the Andromeda stream - III. A young shell system in M31’. MNRAS 380, 15–32.

Fardal, M. A., P. Guhathakurta, K. M. Gilbert, E. J. Tollerud, J. S. Kalirai, M. Tanaka,
R. Beaton, M. Chiba, Y. Komiyama, and M. Iye: 2012, ‘A spectroscopic survey of
Andromeda’s Western Shelf’. MNRAS 423, 3134–3147.

Forbes, D. A.: 1992. Ph.D. thesis, University of Cambridge.

Forbes, D. A., D. B. Reitzel, and G. M. Williger: 1995, ‘Shell colors in the peculiar elliptical
galaxy IC 1459’. AJ 109, 1576–1581.

Forbes, D. A. and R. C. Thomson: 1992, ‘Shells and isophotal distortions in elliptical
galaxies’. MNRAS 254, 723–728.

Forbes, D. A., R. C. Thomson, W. Groom, and G. M. Williger: 1994, ‘A search for
secondary nuclei in shell galaxies’. AJ 107, 1713–1716.

Fort, B. P., J.-L. Prieur, D. Carter, S. J. Meatheringham, and L. Vigroux: 1986, ‘Surface
photometry of shell galaxies’. ApJ 306, 110–121.

Fukazawa, Y., J. G. Botoya-Nonesa, J. Pu, A. Ohto, and N. Kawano: 2006, ‘Scaling Mass
Profiles around Elliptical Galaxies Observed with Chandra and XMM-Newton’. ApJ
636, 698–711.
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Madore, I. Trujillo, M. Schirmer, and D. A. McDavid: 2010, ‘Stellar Tidal Streams in
Spiral Galaxies of the Local Volume: A Pilot Survey with Modest Aperture Telescopes’.
AJ 140, 962–967.

McGaugh, S. S. and G. D. Bothun: 1990, ‘Stellar populations in shell galaxies’. AJ 100,
1073–1085.

Merrifield, M. R. and K. Kuijken: 1998, ‘Measuring galaxy potentials using shell kinemat-
ics’. MNRAS 297, 1292–1296.

Miskolczi, A., D. J. Bomans, and R.-J. Dettmar: 2011, ‘Tidal streams around galaxies in
the SDSS DR7 archive. I. First results’. A&A 536, A66–A79.

Nagino, R. and K. Matsushita: 2009, ‘Gravitational potential and X-ray luminosities of
early-type galaxies observed with XMM-Newton and Chandra’. A&A 501, 157–169.

Nierenberg, A. M., M. W. Auger, T. Treu, P. J. Marshall, and C. D. Fassnacht: 2011,
‘Luminous Satellites of Early-type Galaxies. I. Spatial Distribution’. ApJ 731, 44–60.

Norris, M. A., K. Gebhardt, R. M. Sharples, F. R. Faifer, T. Bridges, D. A. Forbes, J. C.
Forte, S. E. Zepf, M. A. Beasley, D. A. Hanes, R. Proctor, and S. J. Kannappan: 2012,
‘The globular cluster kinematics and galaxy dark matter content of NGC 3923’. MNRAS
421, 1485–1498.

Nulsen, P. E. J.: 1989, ‘The dynamics of shell formation’. ApJ 346, 690–711.
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