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Abstract

Although the principles of spectroscopy are well known and methods for analysis have been widely
developed, particularly for spectra collected in laboratory environments, the heterogeneity of
landscapes and earth surface features in extensive environmental studies still presents new
challenges and opportunities for analysis of hyperspectral (HS) imagery. Image spectroscopy is
potentially the best approach for assessing diverse environmental issues, however very little research
has been performed on a regional scale and on long-term monitoring, mainly because of the rather
high costs related to HS data acquisition and the expert knowledge which is still required for HS data
pre-processing and processing. The main purpose of this thesis is to use Image Spectroscopy as a tool
to monitor the environmental conditions in a region affected by anthropogenic activities via
estimating both geochemical and biochemical parameters on a regional scale. The research has been
carried on the Sokolov lignite mine, NW Bohemia, a region affected by long-term extensive mining.

The thesis is divided into two thematic parts. First part is devoted to applications of Image
Spectroscopy into Acid Mine Drainage mapping and its related issues (chapters 2 and 3). Initially,
high-altitude spectroradiometry (ASTER - Advanced Spaceborne Thermal Emission and Reflection
Radiometer satellite data) together with ground-based spectroradiometry are employed in order to
identify the locations of the most significant sources of Acid Mine Drainage (AMD) discharge at the
Sokolov lignite open-pit mines. The equivalent mineral end-members are successfully derived from
the ASTER image data and a sub-pixel method (Linear Spectral Unmixing, LSU) is employed to
relatively estimate the selected end-member abundances and to identify low-pH zones (chapter 2).

Next, a geochemical conceptual model of the site is defined. It is found that pH <3.0 characterize
material with the presence of pyrite, jarosite or lignite. Jarosite in association with goethite indicate
increased pH (3.0-6.5) and goethite alone indicate nearly neutral or higher pH (>6.5). The spectral
properties of these minerals or their mineral associations are further analyzed. These minerals have
absorption feature parameters which are common for both forms, individual minerals as well as
parts of the mixtures, while the shift to longer wavelengths of the absorption maximum centered
between 0.9-1.0 um is one of the main parameters that allows differentiation among the secondary
minerals. The multi Range Spectral Feature Fitting (MRSFF) technique is employed to map the
defined mineral end-members indicating certain pH ranges in the HS image datasets (HyMap data
acquired 07/2009). This technique is found to be sensitive enough to assess the desired spectral
parameters (e.g., absorption maximum wavelength position, symmetry, absorption depth).
Furthermore, the multiple regression model using the fit images, the results of MRSFF, as inputs is
constructed to estimate the surface pH and high accuracy is attained (R%: 0.61, Rv*: 0.76). This is one
of the very first approaches employing image spectroscopy for quantitative pH modeling in a mining
environment and the achieved results demonstrate the potential application of hyperspectral remote
sensing as an efficient method for environmental monitoring (chapter 3).

In the second thematic part (chapters 4-6) Image Spectroscopy is applied into monitoring of
vegetation stress. The studied forest stands surround the lignite open pit mines in Sokolov, but have
not been directly affected by the mining activities. The model based on the derivative indices
(D519/D0s) attaining the greatest accuracy (RMSE: 0.21 mg/g, Rv’: 0.94) is selected to produce a map
of foliar chlorophyll concentrations (Cab). The Cab values retrieved from the image reflectance
(HyMap data acquired 07/2009) are tested together with other non-quantitative vegetation
indicators to create a statistical method allowing assessment of the condition of Norway spruce. As a
result, the following HyMap derived parameters (Cab, REP: Red Edge Position, SIPIl: Structure
Insensitive Pigment Index, PRI: Photosynthetic Reflectance Index) are integrated together to assess
the subtle changes in physiological status of the macroscopically undamaged foliage of Norway
spruce (chapter 4).



In the following study the same method described above is employed and validated while using
additional temporal HS image data set (08/2010). The classification results are validated by ground
truth data (total chlorophyll - Cab, carotenoids - Car and carotenoid to chlorophyll ratio - Car/Cab)
and are associated with the geochemical conditions of the forest stands. Both biochemical analysis of
the sampled foliage and classification of 2009 and 2010 hyperspectral images identified the same
sites affected by vegetation stress. In addition to higher Car/Cab, which enabled detection of the
stressed trees using hyperspectral image data, these sites showed critically low pH and lower values
for the macronutrient parameters in both organic horizons and, in addition, both sites exhibit
critically low base cation to aluminum ratios (Bc/Al) for lower organic and top mineral (0-20 cm) soil
horizons. The results of this study demonstrate the added value of multi-temporal approaches for
hyperspectral data and its further potential for monitoring forest ecosystems (chapter 5).

Lastly, the potential of diverse foliar biochemical parameters used as stress indicators is assessed to
suggest the most sensitive once having the biggest potential for future HS Remote Sensing forest
monitoring. The relationship between soil and spruce needle contents of macronutrients and
potentially toxic elements and tested whether the soil parameters and their vertical distribution
within a soil profile (two organic and two mineral horizons) affect foliage biochemical parameters
(contents of photosynthetic pigments, phenolic compounds and lignin). Factor analysis is used to
identify underlying variables that explain the pattern of correlations within and between the
biochemical and geochemical datasets. The correlations between two toxic element contents in
needles (aluminum (Al) and arsenic (As)) and the contents of soluble phenolic compounds and total
carotenoid to chlorophyll (Car/Cab) ratio suggest that these latter two biochemical parameters,
which both proved to be sensitive to the soil geochemical conditions, can serve as suitable non-
specific stress markers, thus should be further considered for vegetation stress monitoring while
employing the methods of Image Spectroscopy (chapter 6).

Key words: Image spectroscopy; multi-date hyperspectral data; mining impacts; Acid Mine Drainage
(AMD); pH modeling; vegetation stress; non-specific stress markers; heavy metal stress



Abstrakt

PrestoZe je obrazova spektroskopie (také nazyvané jako hyperspektralni dalkovy prizkum Zemé)
metodou pouzivanou po nékolik dekad a jeji principy jsou znamy a aplikovany, heterogenita a vysoka
komplexnost pfirodniho prostiedi stale brani jeji pfimé a rychlé aplikaci do oblasti monitoringu
Zivotniho prostredi. Tento specificky druh distancnich dat nabizi Siroky potencial pro celou fadu
environmentdlnich aplikaci, avSak pouze omezeny pocet studii vyuzivd metody obrazové
spektroskopie pro analyzu plosné rozsahlejsich oblasti (region), ¢i pro studium dynamiky prostredi s
vyuzitim Casové rady hyperspektralnich dat. Toto lze pficist pomérné vysokym finanénim nakladim,
které je nutno vynaloZit na pofizeni téchto dat (vétSinou pofizovana letecky). Dalsim faktorem jsou
pak vysoké naroky kladené na znalosti a zkuSenosti experta, ktery tato data zpracovava a analyzuje.
Proto i v soucasné dobé chybi obecné uchopitelné metody pro rychlé a spolehlivé ziskavani informaci
na podkladé hyperspektalnich dat pokryvajicich rozsahlejsi tzemi/regiony, ¢i analyzujici dynamické
zmény v ramci definovaného ¢asového obdobi. PfedloZend disertacni prace se vénuje aplikaci metod
obrazové spektroskopie jako moderniho nastroje pro environmentdlni monitoring, pficemi se
zaméfuje na modelovani vybranych geochemickych a biochemickych parametrid. Metody jsou
testovany na uzemi Sokolovské hnédouhelna panve a jejim blizkém okoli, regionu zasaZeném
dlouhodobou povrchovou tézbou hnédého uhli. Disertacni prace je ¢lenéna do dvou tematickych
celkd. Prvni z nich (kapitoly 2 a 3) je vénovan aplikaci mineralni a obrazové spektroskopie pro
vymezeni plosného vyskytu povrchové acidifikace (anglicky termin: AMD — Acid Mine Drainage) a
modelovani povrchového pH. Druha tematickd C¢ast (kapitoly 4, 5 a 6) se vénuje zhodnoceni
fyziologického stavu smrkovych porostua.

V kapitole 2 jsou s vyuZitim satelitnich dat ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer satellite data) pomoci metody LSU (Linear Spectral Unmixing; algoritmus
zohlednujici viceslozkovy/smésny obsah pixelu v linedrnim poméru) plosné vymezeny kyselé
zvétralinové povrchy (pH<4), jez charakterizuje vyskyt jarositu a lignitu (hnédé uhli). Tento druh
aplikace ukazuje, Ze i satelitni data, ktera jsou v porovnani s leteckymi hyperspektralnimi daty velmi
levna a rychle dostupnda, mohou prinést dobré vysledky pro detekci kyselych povrch.

Kapitola 3 se vénuje vytvoreni modelu pro odhad povrchového pH odkrytych substratd s vyuzitim
leteckych hyperspektralnich dat HyMap (07/2009). Nejdfive je nadefinovan konceptudlni model
fesici vztah mezi pH a vyskytem tzv. indikativnich minerald, které jsou stabilni v urcitém rozsahu pH a
mohou byt proto vyuzity jako jeho indikatory. Bylo zjisténo, Ze velmi kyselé prostiedi (pH <3)
charakterizuje vyskyt jarositu a lignitu. V pfipadé, Ze se jarosit vyskytuje v asociaci s goethitem, pH
substratu se pohybuje v rozsahu 3-6.5. Pfitomnost samotného goethitu pak indikuje prostredi blizké
neutrdinimu az mirné zasaditému (6.5<pH<8.0). U téchto indikativnich minerald jsou analyzovany
jejich optické vlastnosti a nalezeny takové parametry absorpcnich priznakd, jez jsou spoleéné jak pro
,Cisté” minerdly, tak i pro jejich smési. Je zjiSténo, Ze posun absorpéniho maxima v rozmezi 0.9-1.0
um smérem do del$ich vinovych délek umoZiiuje vzajemné rozlisit zkoumané sekundarni Fe**
mineraly (jarosit a goethit). Tohoto trendu je dale vyuZito i pro jejich prostorové mapovani a relativni
kvantifikaci. S vyuZitim metody ,Multi Range Spectral Feature Fitting” (MRSFF), jeZz pomoci vypoctu
nejmensich ¢tverch urcéuje miru podobnosti sledovanych absorpcénich pfiznakl mezi typologickym
spektrem (anglicky termin: end-member) a obrazovym spektrem, byly identifikovany nadefinované
indikativni mineraly, které se v prostfedi hnédouhelné pdanve vyskytuji prevainé ve formé
minerdlnich smési. Dale byl pomoci vicendsobné regrese sestrojen validni model pro kvantitativni
odhad povrchového pH (R* 0.61, Rv*: 0.76). Tato studie je jednou z prvnich, je? aplikuje metody
obrazové spektroskopie pro kvantitativni modelovani pH v prostfedi povrchovych doll vyznacujici se
vysokou heterogenitou.

V druhé tematické casti je obrazova spektroskopie aplikovana do oblasti monitoringu zdravotniho
stavu lesnich smrkovych porostl, které se vyskytuji v bezprostfednim okoli Sokolovské panve, avsak



nejsou primo zasazeny vlastni téZzbou. Za ucelem zhodnoceni zdravotniho stavu téchto porostl je
sestrojena kvantitativni mapa obsahu celkového chlorofylu (Cab), jeZ je konstruovana na zakladé
vegetacniho indexu odvozeného z derivovaného spektra (D;;g/Dyos) Obrazovych dat HyMap
(07/2009). Pro odhad Cab bylo touto metodou dosazeno relativné vysoké presnosti (RMSE: 0.21
mg/g, R?=0.91, Rv*: 0.94). Dale jsou z obrazovych dat derivovany a analyzovany dalsi indexy indikujici
vegetacni stres (REP: Red Edge Position, SIPI: Structure Insensitive Pigment Index, PRI: Photosynthetic
Reflectance Index). Vysledné je vytvoren statisticky model integrujici obsah chlorofylu (Cab)
s vegetacnimi indexy REP a SIPI, jeZ umoznuje vyhodnotit fyziologicky stav smrkovych porostl a
identifikovat pfipadny stress i u takovych porost(, jez jesté nevykazuji viditelné symptomy poskozeni
(kapitola 4).

V kapitole 5 je vySe popsand metoda aplikovdna na dalsi sadu hyperspektralnich dat HyMap, jez byly
pofizeny v nasledujicim roce (08/2010). Vysledky klasifikace jsou dale validovany s biochemickymi
parametry smrkového jehli¢i a asociovany s geochemickymi podminkami pldniho prostredi.
Klasifikaci obou hyperspektralnich datovych sad (HyMap 07/2009 a 08/2010), stejné jako statistickym
vyhodnocenim biochemickych a geochemickych parametr(, bylo identifikovano zatiZzeni a vegetacni
stres u stejnych lokalit. Pldni prostfedi téchto lokalit vykazuje kriticky nizké pH, nizké hodnoty
makro-nutri¢nich parametr(, a navic i nizky pomér mnozstvi bazickych kationtd vztazenych k volné
dostupnému hliniku (Bc/Al). Vysledky této ¢asti prokazuji validitu modelu navrieného v kapitole 4 a
dale demonstruji pfidanou hodnotu hyperspektralnich dat, jez jsou potizovana ve vice casovych
horizontech.

V posledni kapitole je statisticky vyhodnocena Sirokd skala biochemickych parametri za uUcelem
vytipovani jejich potenciadlniho vyuZiti jako nespecifickych indikatord vegetacniho stresu. Faktorova
analyza je aplikovana pro statistické testovani vztahu mezi biochemickymi parametry jehli¢i a
vertikalni distribuci pldnich makro-nutri¢nich parametrd a potencialné toxickych prvk(. Je nalezen
vztah mezi koncentracemi arzenu (As) a hliniku (Al) v jehli¢i a v padnim profilu. Kromé toho byl
nalezen také vztah mezi koncentracemi As a Al, obsahem fenolickych latek v jehlicich a pomérem
fotosyntetickych pigment( Car/Cab (karotenoidy/chlorofyl: Car/Cab). Tyto vysledky demonstruji, Zze
vedle poméru Car/Cab je i obsah fenolickych latek vyznamnym indikatorem vegetacniho stresu. Oba
tyto parametry je proto vhodné vyuzit pro detekci vegetac¢niho stresu. Vyvoj novych modeli/postuptl
pro jejich presnéjsi stanoveni pomoci obrazové spektroskopie tak pfinese nové moznosti pro
monitoring fyziologického stavu lesnich porostu.

Klicova slova: obrazovad spektroskopie, hyperspektrdlni data, acidifikace, multi-tempordini analyza,
modelovdni pH, vegetacni stress, nespecifické stresové ukazatele, tézké kovy
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1.1 Environmental issues in coal mining and current monitoring
methods

Coal mining generates a number of significant environmental impacts, such as increased acidity of
the soil/water environment, called mineral Acid Mine Drainage (AMD). AMD is produced when
sulfide-bearing material is exposed to oxygen and water. Characterized by low pH and high
concentrations of heavy metals and other toxic elements (Kabata-Pendias, 2004), AMD can severely
contaminate surface waters and groundwater, as well as soils, and stresses the surrounding
vegetation. The typical AMD pattern leads to accumulation of Fe sulfates, oxy-hydroxides, and oxides
in a spatial and temporal sequence that represents the buffering of an acidic solution as it moves
away from its source (Montero et al., 2005; Swayze et al., 2000). AMD can then be mapped by

identifying these typical spatial sequences of indicative minerals.

Low substrate pH and heavy metal contamination are stress factors for vegetation and lead to
changes in the contents of important leaf/foliage compounds (e.g., photosynthetic pigments,
phenolic compounds and lignin), which can be used as non-specific indicators of plant stress.
Particularly the contents of photosynthetic pigments are closely related to photosynthetic
performance and can serve as early-warning symptoms of plant stress, before macroscopic changes
are detected (e.g. Lepedus et al.,, 2005). The chlorophyll content of needles generally decreases
under stress conditions, which can include nutrient deficiency and the presence of heavy metals

(lvanov et al., 2011; Maestri et al., 2010).

From this point of view, a mining environment with high acidity, high heavy metal concentrations
and extreme heterogeneity represents a complex system that needs to be assessed in a
multidisciplinary way. Conventionally used laboratory analyses can be very accurate, but they are
costly and extremely labor and time intensive, and even destructive when used for vegetation. In

addition, they can hardly be extended to cover large regions/areas.

However, estimates of physical and chemical parameters over large areas can be obtained using
remote sensing data acquired from an air or space platform (Gao et al., 2008; Heiskanen et al., 2008;
Kokaly et al., 2003; Sirikulchayanon et al., 2008,). Modern remote sensing has become a novel tool
not only for detecting target materials but also for monitoring dynamic processes and induced
changes in physical/chemical properties. The use of multispectral imagery has been demonstrated to
effectively map the distribution of ecosystem types and vegetative systems (Everitt et al., 2002; Lamb

and Brown, 2001), as well as for monitoring diverse environmental impacts caused by human
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activities (He et al., 2009; Matéjicek and Kopackova, 2010; Rathore et al., 1993). However, the low

spectral resolution of multispectral imagery is a major limitation.

On the other hand imagery with higher spectral resolution (e.g., hyperspectral) provides sufficient
spectral resolution to describe diagnostic absorption signatures (Clark et al., 1990; Ustin et al., 2004;
Vane & Goetz, 1993). Data with very high spectral resolution — hereafter referred to as imaging
spectroscopy (IS) data, which is also known in the remote sensing community as hyperspectral (HS)
data, has been successfully used in earlier studies to detect environmental factors, such as oil
contamination (Li et al.,, 2005), hazardous mining materials (Kemper and Sommer, 2002) or

vegetation stress and damage (Hamzeh et al., 2013).

1.2 Image spectroscopy and its environmental applications

Specific chemical bonds in materials, whether solid, liquid or gas, determine the surface reflectance
and emittance, as variations in material composition often cause shifts in the position and shape of
absorption bands in the spectrum. Spectroscopy has the advantage of being sensitive to both
crystalline and amorphous materials, unlike some diagnostic methods, such as X-ray diffraction (Clark
et al, 1999). Basically, the wavelength position of the absorption maxima allows material

identification while the absorption depth reflects the material quantity.

Continuum
Removed ——»

08 Spectrum ]
| Area(right)
__ Depth :
06

Continuum

L Kaolinite Spectrum

Apporent Reflectance (or Normalized Reflectance)

05 10 15 2.0 2.5

Wavelength (Micrometers)

Figure 1.1: Definition of the continuum and continuum removal and subsequent definition of absorption feature
characteristics (adopted from Van Der Meer 2004).
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Imaging spectroscopy is a relatively new field that has rapidly grown during the last two decades,
however, high spatial resolution hyperspectral (HSRH) data is still a relatively novel data source for
analysis of large -scale aspects in the environment and earth sciences. The term hyperspectral is used
to indicate a very large number of narrow spectral channels (usually about two hundred) in
comparison with multispectral sensing that is represented typically by 4-10 spectral channels at
much wider intervals. The main aim in hyperspectral sensing is to create an image of a scene in a
large number of discrete continuous narrow spectral bands, so that an almost continuous spectrum
can be generated for each pixel. Imaging spectrometry possesses the capability to identify and map
the distribution of real spatial features with specific physical-chemical properties (minerals, solid

solution series, contamination in surface waters and so on).

The image spectral data, after adequate pre-processing, can be interpreted using a field and
laboratory spectral library of indicative end-members (minerals used to generate mineral maps). The
visible-near infrared (VNIR) portion of the spectrum is a source of information about absorption in
transition metals, particularly iron, allowing for instance mapping surfaces with a high concentration
of hematite and goethite (Hunt et al.,, 1972) and also detecting chlorophyll absorption by
photosynthesizing plants (Knipling, 1970). The short wave infrared (SWIR) portion of the spectrum is
useful in detecting such minerals as carbonates, hydrates, and hydroxides (Boardman and Kruse,
1994; Clark et al., 1990). On the other hand, the VNIR and SWIR portions of the electromagnetic
spectrum are not useful in detecting the main constituents of igneous rocks, quartz and feldspars,
due to their lack of absorption features in the VNIR and SWIR wavelengths. These can be mapped
using the thermal infrared region (TIR, 8-12 um) (Gillespie, 1986). The reflectance/emittance can be

measured by spectrometers used in the laboratory, in the field, in aircraft and on satellites.

The following sections give a detailed description of the spectroscopic basis for studying

environmental issues typically present at mining sites.

1.2.1 Basis for spectral interpretation and mineral identification of Acid
Mine Drainage

AMD is a biologically mediated oxidation process, which leads to the formation of a solution with low
pH and high contents of Fe**, Fe** and SO,. In waste piles, meteoric water is acidified by the process
of sulfide oxidation (mainly microbial oxidation of pyrite) and is then partially neutralized by
hydrolysis reactions of aluminosilicates and other minerals in the waste piles as the solution flows

from active oxidation points. This leads to accumulation of Fe sulfates, oxyhydroxides and oxides in a
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spatial and temporal sequence that represents the buffering by the acidic solution as it moves away

from its source (Swayze et al, 2000).

Pyrite and (or) pyrrhotite are ubiquitous at all of the sites. Generalized possible reaction pathways
from primary Fe-sulfide minerals to secondary sulfate minerals observed at a mining site are
illustrated in Fig. 1.2. Ferric iron is the main oxidant of these minerals in natural systems, along with
ferrous iron and sulfates, which can precipitate as early-formed efflorescent sulfate salts (Stoffregen
et al., 2000). A variety of different oxidation pathways can operate in any given setting. Dissolved
metals and sulfate can remain in solution or become incorporated in a variety of minerals (e.g.,
hydroxides, iron oxides and hydroxysulphates), depending on the local chemical and physical

environment (Seal et al., 2000).

The pathways of FeS, oxidation can be controlled either chemically or organically by microorganisms.
The kind of sulphate mineral formed is a function of the solution composition and local conditions,
e.g. humidity, acidity and redox potential. The seasonal variations in AMD compositions are generally
registered because, in dry periods, the pH is lower and the electrical conductivity (EC), SO, and, in
consequence, the metal concentrations (e.g., Fe, Mn, Cu, Zn, Pb and Cd) are higher. Dilution
decreases the metal concentrations and EC and increases the pH during the winter (Gomes et al.,

2006).
1.2.1.1 Spectral properties of hydroxides, iron oxides and hydroxysulfates

Electrical processes involving orbital electrons in transition metals give rise to broad absorption
features that are observed from 0.4 to 1.3 um. Reflectance spectra of Fe minerals reflect single- and
paired-electron transitions between the energy levels in unfilled 3d orbitals and metal-ligand
electron transfers (Sherman and Waite, 1985). The wavelength and intensity of absorption features
in this region depend on the nature of the crystal field around the Fe atom and on the kind of bonds
around it because the nature of magnetic coupling between Fe3" ions (as influenced by the crystal
field) facilitates the transition of electrons between energy states (Sherman and Waite, 1985). Thus,
in Fe3" minerals, subtle differences in the shape and wavelength of the absorption features (Montero

et al., 2005) reflect the crystal structure of the minerals and enable their identification (Fig. 1.3).

Hematite (Fe oxide) possesses the structure of closely packed face-sharing FeOg octahedra (Burns,
1993), and the strong antiferromagnetic interactions among the Fe3+ ions affect the electron
transitions and electric charge transfers to create a very strong absorption (delineated by low

reflectance) at wavelengths shorter than 0.55 um (Taran and Rossman, 2002). The strong absorption
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caused by Fe®' electron transition is characteristic at 0.85-0.9 pum, with a concave downward

inflection at 0.9-0.95 um (Morris et al., 1985).

Oxidation of primary Fe-sulfide minerals by oxygen:
pyrrhotite: Fe,Sg + 155 0, + H,0 —p 7 Fe?* + 8 SO, + 2 H"
pyrile:  FeS,+ 3.50,+ H,O0—#Fe’'+ 250, 21’
Eate of Fe 2*

Mo oxidation 44—~ Biotic (pH<d) or ablotic (pH>4) oxidation
Fe2* +0.250, +H'—p Fe¥* + 0.5 H,0

Fate of Fel*
Salt precipitation & [Th Oxidation of sulfides by ferric iron
Al from (Ferric or mixed valence) Fe Sy + 62 Fa + 32 HyO —» B3 Fei* + B 50,% + 64 H*

silicates
CuFeS, + 16 Fe™ + 8 H,0 —% Cu?* + 17Fe? + 2 80,2+ 16 H*
+—

Fo2* ) + 80,50 + T HO —» FeSO, 7 Hy0 hd

(E]
(melanterite)
Charges In lessparstuvs, \ Hydralysis and echre precipitation
ralative hurmidity

AtpH~1.5to 3, [50,] = 3,000 pg mL-, K* from sificates:

FeS0,+ T HyO—» FeS0, & Hy0p, + 3 H,0 et 2 50,7 + K+ 6 H0— KFey (80, )5(0H)s + B H
{melanterite) (rozenite) ’ {jarosite)
¥ Al pH~ 3 to 4, [SO 4] ~ 1,000 to 3,000 pg mL-1:
3
Fo™ oyt 4 Fe™ agy* 6 50,70+ 21 H;0 + 050, BFe™  + 50,2 + 14 H,0—p Fe,0,{0H), (SO, }+ 22 H*
{aq) g
Fel*Fe, (S0, )s(OH); » 20H,0 {schwertmannite)
[copiapite)
Al pH=5, [SO, <1,000 pg mL-1:
4 - p +
' Fe - 3 Hzo—h- Fe-IDH_13+ 3H

(ferribydrita)

Fed* g + 450,70, + 2A137 4 + 22H,0 —»

FeAl, (S0, 22H,0

-
,,,e
s} -
{haletrichite} o
B F

izsolution, cridation, hydrolysis
Over a wide pH range, [SO,] < 1,000 pg mL7:
Fals (S04l 22H,0,,,+ 0.25 O, —» Fe™aq+ 24 1,0— FeGOH + 3H"

Fe(OH)y + 2Al(OH), + 4 SO, + 8 H* + 135 H,0 {goathite)

Figure 1.2: Model of the accumulation of secondary Fe minerals in Fe sulfide-rich mine-waste environments
according to pH values from field data. Modified by Montero et al. (2005) from model by Bigham (1994).

The ferrihydrite structure has similarities to that of hematite except that some of the Fe sites are

vacant and some oxygen sites are occupied by H,0 and OH (Sherman et al., 1982). Electron and
paired-electron transitions in Fe** cause strong absorption centered at approximately 0.50 um and
broad absorption at wavelengths greater than 0.95 um, respectively (Bishop et al., 1993). Goethite
has edge-sharing FeOg octahedra; paired and single Fe** electron transitions (Sherman et al., 1982)
cause strong absorption at 0.45 um (edge at 0.55 um) and broad asymmetric absorption between

0.90 and 1.00 um (Morris et al., 1985).

In schwertmannite [FesOg(OH)sS0O,], the presence of S0,> bridges between some edge-sharing
FeO3(OH); octahedra creates two sites for Fe** (Bishop et al., 1993), which are reflected in a very
broad asymmetric absorption feature at 0.9 um and strong absorption with a steep edge at

wavelengths of less than 0.5 um (Bishop et al., 1993).
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Jarosite has edge-sharing FeOg octahedra bridged by hydroxyl and sulfate groups that form sheets

separated by K" ions (Rossman, 1976). Bridging of Fe by both OH™ and SO,”” gives rise to four electron
and paired-electron transitions observed in the spectrum of well-crystallized jarosite (Morris, 1998).
Spectral features diagnostic of jarosite include a narrow absorption feature near 0.43 um and a
broad feature near 0.92 um. An inflection past 1.0 um affects the symmetry of the broad absorption

feature.

In copiapite, Fe** octahedra are linked by corner-sharing OH™ and SO, molecules to form chains, and
Fe®* occupies the center of an isolated and weakly connected Fe(H,0)s octahedron at the origin of
the unit cell (Fanfani et al., 1973). The strong magnetic interaction of ferric ions through the hydroxyl
bridge gives rise to intense, narrow and symmetric absorption features at approximately 0.43 and

0.87 um (Rossman, 1975).

Cr}lpiapite
Jarosite

7\ A oo

{0676

. 0,373

Figure 1.3: Laboratory reflectance spectra of selected secondary Fe minerals reference minerals (Montero et al.,
2005). Spectra are offset vertically for clarity. Light arrows indicate absorption features used in the
identification of spectra, and the center of that feature (in um) obtained by the continuum removal method of
Clark et al. (1990).

1.2.1.2Mineral identification and mixing problem
The real world is a complex mixture of materials on any possible scale. In general, there are four

types of mixtures (Clark et al., 1999):

e Linear Mixture. The materials in the field of view are optically separated so there is no
multiple scattering between components. The combined signal is simply the sum of the
fractional area times the spectrum of each component. This is also called an areal mixture.

e Intimate Mixture. An intimate mixture occurs when different materials are in intimate
contact in a scattering surface, such as the mineral grains in a soil or rock. Depending on the
optical properties of each component, the resulting signal is a highly non-linear combination

of the end-member spectra.
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e (Coatings. Coatings occur when one material coats another. Each coating is a
scattering/transmitting layer whose optical thickness varies with the material properties and
wavelength.

e Molecular Mixtures. Molecular mixtures occur on a molecular level, such as two liquids, or a
liqguid and a solid mixed together (e.g., water adsorbed on a mineral; gasoline spilled onto
soil). The close contact of the mixture components can cause band shifts in the adsorbate,

such as the interlayer water in montmorillonite, or the water in plants.

In spite of being weak absorbers by themselves, many minerals can dominate the final signal if
present as submicrometer coatings on a substrate that is a strong absorber (Montero et al., 2005;
Sherman et al., 1982). This particular example illustrates the difficulty in identifying minerals in the
spectra of geological materials, many of which are intimate mixtures of fine-grained to amorphous
minerals. In addition, natural geologic surfaces are often partially covered with non-geological
materials (e.g., vegetation). The reflectance spectra of mixtures are a nonlinear expression of the
combined spectra of the pure mineral end-members and their abundances, in a way that reflects the
accessibility of light to each mineral grain, the complexity of inter-grain and intra-grain light
reflection and scattering, and the optical properties of each type of mineral grain (Adams and Filice,
1967). While studying secondary minerals, variations in grain size that affect the relative intensities
of overlapping absorption features must be considered because small secondary minerals commonly

coat larger particles and dominate the reflectance spectra (Gaffey et al., 1993; Montero et al., 2005).

Mixing can exist on various scales and also affects the measured infrared spectral properties of an
area (Clark, 1999). Even high-spatial-resolution (2-m pixel) images can have contributions from
multiple sub-pixel-scale components. Based on these findings, the most efficient and valid methods
are those taking in account the spectral mixture models, where the end members (set of reference
spectra for known materials) must first be defined. Proper end-member selection as an input to un-
mixing is crucial if we want to avoid singularity and orthogonality problems with matrix inversion of

linear systems (Van der Meer and De Jong, 2000).

1.2.2 Spectral response of vegetation to environmental stress

Absorption of light in the visible spectrum by plant pigments produces a unique spectral reflectance
signature. Leaf pigments absorb strongly across the visible region from 0.35 to 0.70 um. (Kokaly et
al., 2009) (Fig. 1.4). Light is captured in the process of photosynthesis (Govindjee and Krogmann,

2004) and the light energy is stored as carbohydrates, through a series of electron transfers that
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occur on the thylakoid membranes in chloroplasts. In the intact chloroplast, pigment—protein
complexes are organized in two photosystems that harvest light and transfer energy to the reaction
centers. In addition to chlorophyll a and b, the photosynthetic antenna (the organized association of
pigments that capture photons and transfer energy to the reaction centers) contain other
membrane-bound accessory pigments that include B-carotene, lutein and xanthophyll cycle pigments

(Lichtenthaler, 1987).

The spectral responses of plants exhibit significant changes as the leaves transform from actively
photosynthetic to total senescence and as the stress agents influence this process. The spectral
response of healthy plants to solar radiation is, in general, similar though differences exist between
plants due to their morphology and physiology, background soil types, and the climate. Healthy
plants have diagnostic high reflectance in the near-infrared region of solar radiation because of
strong internal scattering of incident light from cell walls and intercellular spaces. An example of the
mean spectral response of healthy vegetation in the visible and NIR region of the electromagnetic

spectrum is shown in Fig.1.4.

When plants become senescent or stressed, however, the mesophyll tissue begins to desiccate and
cell walls collapse, which results in substantially reduced intercellular surface area and air space.
Senescent and stressed plants thus reflect more red light, but much less in the near-infrared region
compared to healthy green plants. Greater reflection of red light is due to the loss of photosynthetic

pigments, resulting in less absorption (Fig. 1.4).

Better knowledge of pigment distributions and estimation of their concentrations could provide a
basis for monitoring physiological and ecological processes (Ustin et al., 2009). Currently, a variety of
techniques have been used for detecting early-stage vegetation stress in airborne and satellite

imagery. These techniques frequently include “red-edge” detection.

The “red edge” explicitly refers to the wavelength of the “red-edge” inflection point (REIP), the sharp
reflectance change observed in the spectrum of green plants in the 680-740-nm wavelength range
(Ustin et al., 1999). It is the long-wavelength edge of the chlorophyll absorption feature, sensitive to
the amount of chlorophyll or leaf area visible to the sensor, and thus has been used as an indicator of
stress and senescence of vegetation (Dawson and Curran, 1998; Ustin et al., 1999), where it was
applied to variation within one vegetation type. Chlorosis increases reflectance across the visible
spectrum and causes a shift to shorter wavelengths (blue-shift) of the red edge, due to narrowing of

the chlorophyll absorption feature and a reduction in depth (Ustin and Curtiss, 1990). Gates et al.
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(1965) and Collins (1978) described early observations of a blue shift of the red edge, which was
attributed to the loss of chlorophyll. In contrast, with increased chlorophyll content, the chlorophyll
absorption feature deepens and broadens (e.g., Buschmann and Nagel, 1993) causing a red shift

(Collins, 1978).
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Fig. 1.4: Representative reflectance spectra for healthy and stressed plants and bare soil in the visible (400—
700 nm) to NIR (700—1000 nm) regions of the spectrum. Bars indicate the primary chlorophyll band at 680 nm
and the region of the red-edge inflection point (Modified from Yang et al., 2008).

In addition to chlorophyll, the carotenoid content (carotenoids represent different chemical
compounds such as xanthophylls and anthocyanis) is also an indicator of vegetation stress. The
Photochemical Reflectance Index (PRI) (Gamon et al., 1997) is frequently used to detect foliar stress
(Ustin et al., 2009) and the basis for the PRI is that short-term changes in reflectance response to the
light are observed at 531 nm, reflecting reversible changes in the distribution of xanthophyll cycle
pigments (Demming-Adams, 1990). The relationship between the PRI and photosynthetic light-use
efficiency has been explored on multiple scales (leaf to stand-level) (Gamon, 2001; Drolet et al.,
2005; Nakaji et al., 2005). In addition, carotenoids and anthocyanis are pigments that are not
associated with the chloroplast but are often observed during environmental stresses and during
senescence (Schaberg et al., 2008). These pigments have a single absorption maximum around 529
nm and can be detected by reflectance changes in the green region (Ustin et al., 2009). Various
empirical approaches have been used to estimate carotenoids; the spectral indexes used as

chlorophyll and carotenoid indicators were summarized by Ustin et al. (2009).

In addition to the empirical methods described above, radiative transfer (RT) modeling has proven to
be a powerful tool in understanding the interaction of light with plant canopies and in inferring the

biochemical and biophysical characteristics from the reflectance spectra of vegetation. This
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understanding leads to the development of more reliable remotely sensed information about
vegetation health (Ganapol et al., 1998; Jacquemoud and Baret 1998; van de Tol, 2009; Verhoef,
1984). However, these models are computationally demanding and require a large number of leaf
and canopy variables, which are often difficult to estimate (Fang et al., 2003). Furthermore, physical
models can suffer from ill-posed problems or can lead to a bias in the retrieved biophysical

parameters and all these limitations make them difficult to use on a regional scale.

1.3 Purpose of this study

Although the principles of spectroscopy are well known and methods for analysis have been widely
developed, particularly for spectra collected in laboratory environments, the heterogeneity of
landscapes and earth surface features in extensive environmental studies still presents new
challenges and opportunities for analysis of HS imagery. Image spectroscopy (HS remote sensing) is
potentially the best approach for assessing diverse environmental issues; however very little
research has been performed on a regional scale and on long-term monitoring, mainly because of the
rather high costs related to HS data acquisition and the expert knowledge which is still required for
HS data pre-processing and processing. Therefore, even today there is still a lack of multi-stripe
and/or time-series HS data and reliable methods for extracting the required information for these
datasets. Based on the concept described in the chapter 1.2 the following hypothesis was

formulated:

Hypothesis

1. Image spectroscopy has been used for modeling the physical and chemical properties of
targeting surfaces. Therefore, these methods can be used as a tool to monitor the
environmental conditions in regions affected by mining activities via estimating both
geochemical and biochemical parameters over large areas.

2. At mining sites, Acid Mine Drainage (AMD) is a common environmental problem resulting in
the discharge of acid solutions from the pyritic waste piles and the subsequent accumulation
of secondary precipitates by hydrolysis reactions. Mineral spectroscopy, both high and low
altitude, allows identification of the minerals that serve as indicators of sub-aerial oxidation
of pyrite (‘hot spots’) and the subsequent formation of AMD. Furthermore, the surface pH
can be modeled using image spectroscopy while identifying indicative minerals and

estimating their abundances.
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3. At mining sites, negative physio-chemical changes under soil conditions (e.g., heavy metal
contamination and low pH) are stress factors that lead to changes in the contents of
important leaf/foliage compounds, which can be used as non-specific indicators of plant
stress. These indicators can be estimated by means of image spectroscopy and can detect
vegetation stress before these phenomena can be observed visually. From this point of view,
these novel methods can give early warning information, especially if multi-date

hyperspectral image datasets are processed.

Objectives

Accordingly, to investigate the hypothesis, the main purpose of this thesis is to use airborne
hyperspectral (HS) data for estimation of parameters which can be further used for environmental

monitoring. The specific thesis objectives are as follows:

(i) To formulate mineral spectroscopy-based techniques allowing identification of acidity
sources and surface pH estimation for exposed surfaces in extremely heterogeneous
environments characteristic for mining sites.

(ii) To formulate a HS remote sensing technique allowing early detection of vegetation stress
on a regional scale.

(iii) To validate one of the latter techniques using an additional temporal HS image dataset.

(iv) To assess the applicability of using diverse needle biochemical parameters as biological
indicators of adverse soil condition parameters and select the most sensitive ones with

the greatest potential for future HS Remote Sensing monitoring.
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1.4 Thesis structure

The thesis is divided into two major parts. Chapters 2 and 3 are both thematically devoted to
applications of Image Spectroscopy to Acid Mine Drainage mapping and its related issues. Chapter 2
deals with the ability to identify sources of acidity using ASTER satellite data, as this represents an
easily accessible and low-cost data source. Chapter three focuses on the development of a new
technique to quantitatively estimate the pH for exposed surfaces in mining and post mining

environments.

In chapters 4-5, Image Spectroscopy is employed to monitor vegetation stress. Chapter 4 describes a
novel monitoring technique integrating selected spectral indexes to assess subtle changes in the
physiological status of macroscopically undamaged Norway spruce foliage. This technique is
validated using an additional temporal HyMap dataset and forest stand specific geochemical

parameters (chapter 5).

In chapter 6, the potential of diverse foliar biochemical parameters used as stress indicators is
assessed and the most sensitive ones with the greatest potential for future HS Remote Sensing

monitoring are suggested.
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Abstract

Mineral spectroradiometry, both from airborne/spaceborne sensors and ground measurements,
represents an alternative to conventional methods and an efficient way to characterize mines and
assess the potential for AMD (Acid Mine Drainage) discharge. High-altitude spectroradiometry
(ASTER - Advanced Spaceborne Thermal Emission and Reflection Radiometer satellite data) together
with ground and laboratory-based spectroradiometry (ASD Filedspec spectroradiometer) were
employed in order to identify the locations of the most significant sources of AMD discharge at the
Sokolov lignite open-pit mines, Czech Republic. As a result, a map with delineated low-pH zones was

created and validated by the ground truth data.

Key words: Acid Mine Drainage (AMD), spectroradiometry, ASTER, mining waste, Sokolov open-pit

mine, mineral spectroscopy
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2.1 Introduction

Mines (abandoned, still-active) are one of the most challenging environmental problems faced by
governments, communities and the mining industry worldwide. The typical mineral acid mine
drainage (AMD)/acid rock drainage (ARD) results in acid solutions discharged from the pyritic waste
piles and the subsequent accumulation of secondary precipitates by hydrolysis reactions. Those
processes lead to the accumulation of Fe minerals, where centres of such low-pH forming minerals as
copiapite and jarosite (pH< 3) are surrounded successively by goethite and hematite, the minerals
marking progressive increases in the pH (Swayze et al., 2000). Because of the lack of uniform
legislative and economic strategies for management of mine waste, inadequate characterization of
AMD, is a major obstacle to remediation of post-mining sites and complete inventorization and

assessment of their environmental impacts are far from complete.

Numerous studies have demonstrated the high potential of the use of Hyperspectral (HS) data for
diverse geological applications, such as mineral exploration (Rowan et al. 2000, Bedini et al. 2009),
drill core analysis (Kruse et al. 1996, Bolin & Moon, 2003), hydrothermal alteration (Gersman et al.,
2008) and geological mapping (Dadon et al.,, 2011). Mineral spectroscopy, both high and low
altitude, represents an alternative to conventional methods (chemical analyses-based assessment
tools, Gomes & Favas, 2006) and an efficient way to characterize mines and assess the potential for
AMD discharge while focusing on minerals that serve as indicators of subaerial oxidation of pyrite
(“hot spots”) and the subsequent formation of AMD. HS data, both field and image data sets, were
successfully utilized to identify AMD sources (Swayze et al., 2000, Montero et al., 2005) and to
quantify heavy metal concentrations in acid surfaces (Choe et al., 2008; Kemper & Sommer, 2002;

Kopackova et al., 2011; Pandit et al. 2010).

Nonetheless, valuable results can still be achieved using multispectral data (Robins et al., 2000).
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Abrams, 2000) is a
spaceborn sensor that has frequently been used by the geologic remote sensing community because
of its unique design. ASTER is designed with three bands in the visible/near-infra red (VNIR, a 15 m
spatial resolution) and six bands in the short-wave infrared (SWIR, 30 m spatial resolution) spectral
range, and it also has five thermal bands (TIR, 90 m spatial resolution). Although the ASTER data
don’t provide users with hundreds of narrow and contiguous spectral bands, the main advantage of
hyperspectral remote sensing that allows quantitative analysis of surface components, this data still

has a high potential to identify diverse minerals and map relative abundances (Van Der Meer at el.,
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2012). The VNIR bands have been shown to be capable of mapping the relative abundances of iron
oxides/hydroxides (Vicente & de Souza Filho, 2011), and SWIR bands can be used to separate
advanced mineral groups including argillic minerals (kaolinite, alunite, dickite), phyllic alteration

minerals (sericite) and propylitic minerals (calcite, epidote, chlorite) (Mars & Rowan, 2010).

In this study, we tested the ability to indentify sources of acidity using satellite ASTER data, as they
represent an easily accessible and incomparably cheaper data source. In addition to conventionally
used laboratory analyses, we utilized ground-based spectrometry and imaging spectroscopy, to
assess the capability of these two techniques in mapping areas of high acidity in the Sokolov basin, as
the pH is a predominant factor in heavy metal mobilization and distribution. More specifically, we
investigated how the pH indicating minerals/components can be identified using ASTER optical (VNIR

and SWIR) bands and how sub-pixel abundances can be spatially mapped.

2.2 Site description

The study was performed in the Sokolov basin in the western part of the Czech Republic (Fig. 2.1), in
a region affected by long-term extensive lignite mining. The Sokolov basin, containing rocks of
Oligocene to Miocene age, is 8 — 9 km wide and up to 36 km long, with a total area of about 200 km?.
The basin is limited by the Krusné Hory Fault (NNE-SSW trending) and is also characterized by a
system of minor parallel faults, forming a significant tectonic zone of lithospheric extent (Ziegler,
1990). Another significant fault system of the Ohfe Rift consists in the faults running in the NNW-SSE
to NW-SE direction (Rajchl et al., 2009).

The basement of the Sokolov Basin is formed of Variscan and pre-Variscan metamorphic complexes
of the Eger, Erzgebirge, Slavkov Forest, Thuring-Vogtland Crystalline Units and granitoids of the
Karlovy Vary Pluton. The upper portions of these rocks are frequently weathered to kaolinitic
residue. The basal late Eocene Staré-Sedlo-Formation is formed of well-sorted fluvial sandstones and
conglomerates and is overlain by a volcano-sedimentary complex up to 350 m thick, which contains
three lignite seams: the Josef seam (up to 20 m thick), the Anezka seam (5-12 m thick) and Antonin
seam (20-30 m thick, reaching up to 62 m) (Rojik, 2004). The brown coal (lignite) contains 5 to 8%
sulfur (S), and belongs among coal seams enriched in As (Yudovich and Ketreis, 2005) and other

heavy metals, such as Cd, Ni, Cu, Zn, Pb (Bouska and Pesek, 1999).

Dumped material consists mostly of Cypris clays, which can be characterized as well-laminated clays

with different varieties of mineralogical composition: kaolinite, montmorillonite, illite with
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admixtures of Ca-Mg-Fe carbonates, sulphates, sulphides, analcite, Mg-micas and bitumen (Rojik,
2004). Due to the presence of S in the coal, the lignite mines both still active and abandoned, are

largely affected by acid mine drainage (AMD) (Kopackova et al., 2011).

2.3 Data

2.3.1 Material sampling and analysis

Over 60 points (Fig. 2.1) distributed in still-active (Jiti, Medard and DruZba) and abandoned (Litov,
Lomnice, Sylvestr and PVS - Podkrusnohorska vysypka) open-pit mines were documented in the field.
Particular attention was paid to the abandoned mines with significant AMD-affected areas. At the
sampling points spectroradiometric measurements were collected in natural illumination conditions
using an ASD FieldSpec 3® portable spectroradiometer (in situ spectroscopy measurements). The ASD
instrument uses three separate spectrometers to measure the radiance between wavelengths of
0.350 pm and 2.500 pum. Radiance spectra were normalized against a 99% Spectralon® white
reference to produce relative reflectance spectra for each measurement. The spectra for each point
represented an average calculated from at least three point measurements distributed within

petrologically homogenous material.

Samples of the surface material (0-1 cm depth) reflecting all the major mineral varieties were
collected at selected points (in total 57 samples). They were dried and sieved to < 2 mm, and the
abundance of trace elements including major heavy metals was measured using a portable Innov-x
Alpha RFA spectrometer. Furthermore, the samples were subjected to selected X-Ray Diffraction
analysis and determination of laboratory pH, sulphur (S total wt %), and Total Organic Carbon

(TOC_%).

In the Laboratory, further spectra were obtained by measuring the samples of all the facies
encountered in the Sokolov basin in artificial illumination conditions, using the spectroradiometer’s

contact probe (laboratory spectroscopy measurements).
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Figure 2.1: Topographic scheme of the Sokolov mining area, Czech Republic, showing main pit lakes, dump
areas, and sampling points (green — vegetation based on the 1: 10,000 topographic map).

2.3.2 ASTER image data

ASTER covers a wide spectral region with 14 bands from the visible to the thermal infrared. In our
study, we worked with 9 bands covering the visible (VIS), near infrared (NIR) and short wave infrared
(SWIR) spectral regions. The available cloudless ASTER image (acquisition date 2004-09-19, 1B
processing level) has been corrected for atmospheric effects using ATCOR 2 software. The best result

was achieved using the following setting:

e Middle latitude summer rural type of atmosphere was chosen
e Aster metafile was used to set up the calibration coefficients (Bias [c0] and Gain [c1]) for
each band

e The in-flight calibration method was employed using the tuff spectrum

Conversion of data from radiance to reflectance enabled comparison of the image spectra with the

reference spectral libraries, once the latter were resampled to the ASTER spectral range and bands.
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For the further analysis, the water bodies and vegetated areas were masked out by calculating the
NDVI and thresholding the NDVI image values. The following analysis was performed only on the

surface with no or sparse vegetation cover and outside of water bodies (0.0 <NDVI <0.4).

2.4 Methods

2.4.1 Spectral libraries

Spectra conducted with the ASD spectrometer during the field campaign and in the laboratory were
re-sampled to the ASTER band wavelength. For these spectra, we obtained XRD analysis to elucidate
the mineralogy. It was then possible to study the spectral absorption features of the variables (AMD
indicating minerals, lignite abundance, clay minerals) and the feasibility of detecting them using an

ASTER satellite image.

2.4.2 ASTER end-member definition and image unmixing

In the Sokolov basin, the anthropogenic materials exhibited extreme heterogeneity (Kopackova et al.,
2009), especially jarosite was present in the site material as a secondary or accessory mineral. Lignite
was found to have major abundances and was also found in all the possible forms of mixtures with

other minerals.

In the case of the ASTER satellite data (spatial resolution of 15 and 30 m in the VNIR and SWIR region,
respectively), the majority of the pixels were spectral mixtures of diverse minerals. Therefore, prior
to material mapping, it was necessary to derive the pure end members for the fundamental physical

components (mineral/organic constituents).

Pure end-member spectra can be extracted either directly from image pixels of known target
materials or from spectral libraries measured in the field. The use of reflectance end members from
spectral libraries can be problematic because they can suffer mainly from spatial and temporal
variability in the reflectance properties of the cover types (Asner & Heidebrecht, 2002). The second
approach is more realistic, as end-member spectra are derived directly from the image by extracting
the reflectance from relatively pure pixels. Taking in account the spatial resolution of the ASTER data
(15-30 m) and the fact that the ASTER image and spectral libraries were not acquired simultaneously,
we decided to use the image-derived end members for further image processing. The method
consisting of the Minimum Noise Fraction transformation (MNF) (Boardman & Kruse, 1994; Green et

al., 1988) and Pixel Purity Index (PPl) (Boardman et al., 1995) procedures was employed to select the
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“pure” image end members. In this routine, the image data are subjected to spectral and spatial
reduction in order to identify the end members of spectrally unique pixels which are assumed to be

the most pure pixels.

The MNF uses two opposite orthogonal linear transformations based on Principal Components
Analysis (PCA) to reduce the inter-band correlation and isolate noise. The MNF transformation allows
not only reduction of the data dimensionality which is required mainly for hyperspectral image
datasets, but also estimation of the noise level in the data. Similarly to Vincente and de Souza Filho
(2011), we used the MNF transformation to reduce possible sets of end members that can be
separated and expressed in the set of MNF images (9 MNF bands can be calculated in case of using

the ASTER VNIR-SWIR bands).

The PPI procedure randomly and repeatedly reprojects a pixel's array into an n-dimensional scatter
plot arrangement using a vector unit. The pixels in the extreme position in each projection are
recorded. These pixels are assumed to be spectrally unique and ,,pure” and are therefore called end

members, and their reflectance property is used for further material mapping in the image data.

After inspection of the image-derived end members and their comparison with the measured spectra
of the samples with known mineralogy (identified by XRD), we were able to identify the image end
members that characterized the fundamental mineral components of the Sokolov mining dump

surfaces (Fig. 2.4): lignite, clay, jarosite and goethite.

To relatively estimate the selected end-member abundances it was highly desirable to use a sub-pixel
method rather than hard classifier (e.g., Spectral Angle Mapper (SAM); Kruse et al., 1993) while
taking into account the extreme heterogeneity of the Sokolov surfaces and diverse material mixing
level present in the ASTER pixels. Therefore we took advantage of the linear spectral unmixing (LSU)
(Settle and Drake, 1993) method, as it allows identification of sub-components of the spectrum and

determination of the abundance of different materials for each pixel.

Although this method was designed primarily for hyperspectral image data analysis, it has frequently
been used even for mapping sub-pixel abundances using multispectral data (Dawelbait & Morari,
2012; Parente et al., 2009; Pacheco & McNairn, 2010; Shanmugam et al., 2006; Vicente & de Souza
Filho, 2011). The only condition is that the number of derived fractions (end members) is equal to or
less than the number of bands. Spectral mixture analysis is also based on the principle that the

reflectance recorded for each pixel within an image is a combination of the reflectance from all the
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pure end members found in that image. This condition cannot be fulfilled in work with multispectral
images. However, our analysis is based on the assumption that linear mixing is a sufficient first order
approximation to constrain the mineralogy but not the absolute abundances of the selected
indicative minerals discussed here. To derive abundance images constrained linear unmixing was
computed in the ENVI software. Constrained unmixing assumes that the sum of the fractions is one
and that each fraction is greater than or equal to zero (Bateson & Curtiss, 1996; Dennison & Roberts,
2003). The output is a fraction image, with coefficients lying between 0 and 1 and summing to 1, for

each end member along with an image containing an error of fit.

2.5 Results

2.5.1 Linking sample’ pH and mineralogy

The typical AMD pattern leads to accumulation of Fe sulfates, oxy-hydroxides and oxides in a spatial
and temporal sequence that represents the buffering of an acidic solution as it moves away from its
source (Swayze et al., 2000). Spectroscopic AMD approaches are based on the mapping of those
minerals that occur on the surface of waste-rock piles and their surroundings, focusing on minerals
that serve as indicators of sub-aerial oxidation of pyrite (“hot spots”) and the subsequent formation

of AMD (Montenero et al., 2005; Swayze et al., 2000).

Studying the results of the chemical/mineral analysis, two AMD scenarios were found (Fig.2). Very
low to low pH characterized (i) material rich in lignite (2.5 <pH <3.9) and (ii) material with the
presence of jarosite as a part of a mixture (1.8 <pH <2.8). Montero et al. (2005) obtained similar
results and found that jarosite is present near the source of the acidity and that it is formed at pH
values <3. On the other hand, Montero et al. (2005) found that goethite is formed at pH values
generally less than 6. In our case goethite was present as part of a mixture throughout a wide pH
range (3.0 <pH <8.5) and thus this mineral, by itself, did not indicate any specific pH value (Fig. 2.2).
Based on these findings, we selected lignite and jarosite, the constituents present in the material
with very low to low pH, to be indicators of the material that needs closer examination and should

thus be spatially mapped.

2.5.2 Spectral characteristics of the selected minerals/constituents

Clay minerals (e.g., kaolinite,illite) display combinations of an AI-OH bend overtone and an OH
stretch (Clark et al., 1990) that arise within an edge-sharing Al(OH)¢ octahedral layer (gibbsite layer)

linked to sheets of SiO, tetrahedra. In case of kaolinite, the most common clay mineral found in the
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surface material of the Sokolov basin, the vibration of the AI-OH molecule create double absorption
features around 2.1 and 2.2 um. The strong absorption feature at 2.206 um can be detected using
ASTER band 6 (Fig 3). Additionally, OH vibration stretch overtones create another doublet near 1.4

pum, but ASTER spectral resolution does not allow detection of this absorption (Fig. 2.3).

In accordance with other studies (Montero et al., 2005), iron oxy-hydroxides (e.g., goethite, hematite,
ferrihydrite) exhibited diagnostic absorption before 1.000 um. The wavelengths and intensities of the
absorption features in this region depend on the nature of the crystal field around the Fe atom and
on the nature of the bonds around it, because the nature of the magnetic coupling between the Fe3"
ions (as influenced by the crystal field) facilitates the transition of electrons between energy states
(Sherman & Waite, 1985). Thus, in Fe3" minerals, subtle differences in the shapes and wavelengths of
the absorption features reflect the crystal structure of the minerals and allow their identification
(Montero et al., 2005). Goethite was found to be the most frequent iron oxy-hydroxide identified in
the samples and exhibited strong absorption around 0.500 um, but this absorption cannot be
detected using the ASTER data. However, ASTER spectral resolution allows detection of the other
absorption features — less distinctive absorption around 0.660 pum (ASTER band 2) and a broad
asymmetric absorption between 0.90 and 1.00 um (ASTER band 3).
pH
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Figure 2.2: Box plots of the pH values of the material with the presence of lignite, jarosite and goethite.
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Jarosite, similar to other hydroxysulfates (e.g., schwertmannite, copiapite) and iron oxy-hydroxides,
exhibits diagnostic absorption before 1.000 um (Montero et al., 2005), and additionally exhibits an
absorption feature between 2.2 -2.3 um (Fig. 2.3). After resampling the spectra to ASTER band
resolution, jarosite and the associated mineral spectra still exhibit diagnostic absorption round 0.90
pum (ASTER band 3) and a supplementary typical absorption feature at 2.262 um (ASTER band 7) (Fig.
2.3).

As already mentioned above, goethite and jarosite both exhibit a diagnostic absorption feature
before 1.000 um. However, jarosite has an absorption maximum at shorter wavelengths (at
approximately 0.910 um, Fig. 2.3) than goethite (approximately at 0.950 um). After resampling the
spectra of these two minerals to ASTER spectral resolution, we can see different trends between
bands 2 (central wavelength at 0.661 um) and 3 (central wavelength at 0.807 um). As goethite has its
absorption maximum shifted to longer wavelengths, there is still a steep increasing slope between
bands numbers 2 and 3. On the other hand, jarosite, which has an absorption maximum close to the
central wavelength of band 3, exhibits a rather flat or decreasing trend between these two bands

(Fig. 2.3).

Material with high lignite content (> 5 %) exhibited a characteristic, very small slope of the spectral
curve between 0.800 — 1.200 um (Fig. 2.3) with an absorption maximum at approximately 0.640 pum.
This trend can also be observed after resampling to ASTER spectral resolution, as the slope between
ASTER bands 1, 2, 3 and 4 is similarly very small. In addition, absorption was identified at 2.309 um,
indicating humic acid (Ben-Dor & Chen, 1997). In ASTER resolution, the humic acid content affects
the slope between bands 7 and 8 (Fig. 2.3).

2.5.3 End-member mapping using ASTER image data

By inspecting the spectral libraries, both low-pH indicators, jarosite and lignite, were clearly
identified as part of the AMD material, which is generally formed at pH below 4.0. Furthermore, their
equivalent end members were successfully derived from the ASTER image data (image end-
members, Fig. 2.4). In accordance with the lab/field spectral libraries, image-derived end-members
exhibited the opposite trends between ASTER bands 2 and 3 for goethite (steep and increasing trend)
and jarosite (decreasing trend). Lignite exhibited the typical low reflectance and characteristic small
slope between bands 1 and 2. Clay exhibited a distinct absorption feature at 2.206 um (ASTER band
6). In the SWIR2 region, all the image-derived end"members had clay (2.206 um) absorption

predominating over the other less prominent absorptions (jarosite: 2.263 pum and lignite: 2.309 um).
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Figure 2.3: A) Diagnostic absorption features of jarosite-rich material compared to the material rich in iron oxy-
hydroxides, kaolinite and lignite. ASTER resampled spectra are plotted together with the full spectra acquired
with the ASD FieldSpec 3® spectroradiometer. B) Laboratory continuum-removed (CR, Clark & Roush 1984,
Kruse et al. 1993) spectra of the selected end members.

This can be explained by rather coarse spatial resolution of ASTER data and a high degree of material
heterogeneity. Clays (mainly kaolinite) were identified as minerals with major abundances in most of
the samples collected in the field; thus the other, less distinctive SWIR absorptions indicating jarosite
or lignite could not be identified using ASTER image data. However, all four image end members

exhibited large enough differences in the spectral range between 0.5 and 1.5 um (Fig. 2.4).
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Figure 2.4: Image-derived end-members used for further unmixing.

The relative abundance maps of the major end-members (jarosite, clay, goethite and lignite) were
calculated via applying linear unmixing. However, as only two of them can clearly indicate low pH,
the jarosite and lignite abundance maps were further statistically classified using the standard
deviation classification system after image unmixing. Generally, this classification expresses how
much the particular value varies from the mean, respectively how far from the mean the particular
value is in terms of the standard deviations (o). The mean values and the standard deviations from
the mean (o) were calculated for the jarosite and lignite abundance maps. As a result, the low pH
zones from both abundance maps were delineated as the mean + 1 0. Matrix analysis was employed
to create a single map from these two datasets. Matrix analysis yielded a new thematic map that
contained separate classes for (i) a low pH zone with an abundance of jarosite, (ii) a low pH zone with

an abundance of lignite, and (iii) a low pH zone with an abundance of jarosite and lignite (Fig. 2.5).

2.5.4 Map validation

The map associated with this article was validated using the ground truth (57 pH measurements). As
it was not possible to derive a pH map from the ASTER image, we could not validate the map by
comparing the pH pixel values directly with the pH in situ measurements. Our goal was to identify
the low-pH zones and therefore the validation was performed in the following way. The in-situ pH
measurements were classified into two classes: class 1 (pH< 4.0) and class 2 (pH>4.0) and the ground
truth Regions of Interest (ROI’s) were then created. Similarly, the map was reclassified into two

classes: class 1 (delineated low pH zones) and class 2 (the other pixels). The confusion matrix
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(Congalton, 1991) was then calculated to show how well the pixels of the final map with delineated

low pH zones match the ground truth data.
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Figure 2.5: A): Aster image, bands 6, 3, 1 as RGB. B): pH sampling points used for validation. C, D): Result of the

spectral unmixing.

Table 2.1: Confusion matrix statistics

Class Producer | User Producer | User
accuracy | accuracy | accuracy | accuracy
(%) (%) (Pixels) (Pixels)

Class1 (pH< 4.0) 70.83 70.83 17/24 17/24

Class2 (pH>4.0) 78.13 78.13 25/32 25/32

Overall Accuracy

(42/56) 75.00%

Kappa Coefficient 0.45
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2.6 Conclusions

The VNIR-SWIR spectral region provides valuable information on diverse material properties, which
cannot be acquired using any other conventional field/laboratory method. The spectral property of
both constituents, jarosite (AMD indicating mineral) and lignite (the organic component) occurring as
part of mixtures, can be identified using ground/laboratory-based and imaging spectroscopy (ASTER).
The map with the low pH zones delineated, the result of ASTER image unmixing, achieved sufficient
overall accuracy (75%), especially if we take in account the high dynamics of the mining environment
and the fact that the ASTER data were acquired in 2004 and the ground truth data were collected in
2009. Our study shows the high potential of multispectral data such as ASTER in the field of mapping
and monitoring the hazardous wastes from mining activities. This kind of maps, especially if the
method is applied as multi-temporal approach, could be useful for land-use planners and local
authorities, as well as for the mining company itself, as the company is responsible for successful

reclaiming of abandoned mines and environmental monitoring of mines in general.
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Abstract

The pH is one of the major chemical parameters affecting the results of remediation programs
carried out at abandoned mines and dumps and one of the major parameters controlling heavy
metal mobilization and speciation. This study is concerned with testing the feasibility of estimating
surface pH on the basis of airborne hyperspectral (HS) data (HyMap). The work was carried on the
Sokolov lignite mine, as it represents a site with extreme material heterogeneity and high pH
gradients. First, a geochemical conceptual model of the site was defined. Pyrite, jarosite or lignite
were the diagnostic minerals of very low pH (<3.0), jarosite in association with goethite indicated
increased pH (3.0-6.5) and goethite alone characterized nearly neutral or higher pH (>6.5). It was
found that these minerals have absorption feature parameters which are common for both forms,
individual minerals as well as parts of the mixtures, while the shift to longer wavelengths of the
absorption maximum centered between 0.90-1.00 um is the main parameter that allows
differentiation among the Fe** secondary minerals. The Multi Range Spectral Feature Fitting (MRSFF)
technique was employed to map the defined end-members indicating certain pH ranges in the HS
image datasets. This technique was found to be sensitive enough to assess differences in the desired
spectral parameters (e.g., absorption maximum wavelength position, absorption depth).
Furthermore, the regression model using the fit images, the results of MRSFF, as inputs was
constructed to estimate the surface pH and statistical significant accuracy was attained (R*=0.61,
Rv’=0.76). This study represents one of the very first approaches employing image spectroscopy for
guantitative pH modeling in a mining environment and the achieved results demonstrate the
potential application of hyperspectral remote sensing as an efficient method for environmental

monitoring.

Key words: Acid Mine Drainage (AMD), pH modeling, mineral spectroscopy, mining impacts,

environmental monitoring, Multiple Spectral Feature Fitting
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3.1 Introduction

Mining activities, both underground and open cast mining, are still associated with many
environmental problems such as Acid Mine Drainage (AMD) (Akcil et al., 2006), generation of large
guantities of toxic substances (Kemper and Sommer, 2003) and consequent release of heavy metals
into the environment (Gomes and Favas, 2006). As AMD can severely contaminate surface and
groundwater, as well as soils, these anthropogenic activities can have serious human health and
ecological implications (Grimalt et al.,, 1999a, 1999b) if the mines are not monitored and the

necessary environmental treatment is not in place.

AMD release from mine waste rock, tailings and mine structures, such as pits and underground
workings, is primarily a function of the mineralogy of local rock material (mainly secondary minerals
associated with sulfide-bearing material) and the availability of water and oxygen. The typical AMD
pattern leads to accumulation of Fe sulfates, oxy-hydroxides and oxides in a spatial and temporal
sequence that represents the buffering of an acidic solution as it moves away from its source
(Montero et al., 2005; Swayze et al., 2000). Therefore, these minerals can serve as pH indicators
(indicative minerals). Because mineralogy and the other factors affecting AMD formation are highly
variable within a site as well as from site-to-site, predicting the potential for AMD using conventional
laboratory analysis can be exceedingly challenging and costly. However, modern remote sensing has
become a novel tool, not only for detecting and quantifying geological materials (Plaza et al., 2009;
Van der Meer, 2012), but also for monitoring dynamic processes and induced changes in
physical/chemical properties (Ben-Dor et al., 2009; Chabrillat et al., 2002; Escribano et al., 2010;
Haubrock et al., 2008; Kokaly et al., 2003).

In a mining environment, the use of multispectral imagery has been effectively used to monitor
environmental impacts (De Marais et al.,2012; He et al., 2009; Kalifa and Arnous, 2012; Maté&jicek
and Kopackova, 2010) as well as to detect AMD generating material (Kopackova et al., 2012a; Robins
et al,, 2000). However, the low spectral resolution of multispectral imagery is a major limitation. On
the other hand, data with very high spectral resolution — hereafter referred to as imaging
spectroscopy (IS) data, which is also known in the remote sensing community as hyperspectral (HS)
data, has been successfully used in earlier studies to detect diverse mining environmental factors.
Reflectance spectroscopy, both ground and image-based methods, has been successfully used to
locate acid-generating minerals at mine sites (Kopackova et al., 2012b; Montero et al., 2005; Quental
et al., 2013; Riaza et al., 2011a, 2011b; Richter et al., 2008, 2009; Swayze et al., 2000, 2006) and to

determine heavy metal concentrations (Chloe et al., 2008, 2009; Kemper and Sommer, 2002;
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Kopackova et al.,, 2011; Pandit et al., 2010). However, very few studies have been published on
guantitative pH mapping in a mining environment. Particularly the extreme heterogeneity and the
fact that the material is present in the form of mixtures rather than pure minerals (Montero et al.,
2005; Riaza et al., 2011a) make these environments too complex and quantitative pH mapping still

remains challenging. Therefore, the objectives of this paper are to:

- link the mineral, geochemical and spectral properties of the material at abandoned lignite
mines and dumps

- find spectral parameters reflecting the pH conditions which remain even if the minerals are
present in the form of mixtures

- employ a spectral mapping method that allows identification of the indicative minerals
(based on the above considerations) even if present in mixtures and enable mapping of the
pH spatial patterns using airborne multi-flight line hyperspectral data

- build a pH model and validate the estimated pH using ground truth data

3.2 Material and methods

3.2.1 Testsite

General description on the test site is given in the chapter 2.2.

3.2.2 Data
3.2.2.1 Aerial HS image datasets

The hyperspectral image data was acquired in 2009 (July 27") during the HYEUROPE 2009 flight
campaign using the HyMap (HyVista Corp., Australia) airborne imaging spectrometer. The HyMap
sensor records image data in 126 narrow spectral bands covering the entire spectral interval
between 0.450-2.480 um spectral range with Full Width Half Maximum (FWHM) of 15 nm and
ground field of view of 4 m. The resulting ground pixel resolution of the image datasets was 5 m. In
order to successfully pre-process the hyperspectral data, a supportive calibration and validation
ground campaigns were organized simultaneously with the HyMap data acquisition in 2009 and
2010. At the selected homogenous targets the ground measurements were acquired by the ASD
FielSpec-3 spectroradiometer to properly calibrate as well as validate the image data and to enable:
(i) atmospheric correction of the airborne hyperspectral images and ii) retrieving at surface
reflectance values for the further verification. The selected targes met the following conditions: (i)

spatial homogeneity for a minimum area of 5x5 image pixels and (ii) natural or artificial nearly
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Lambertian ground surfaces. The hemispherical-conical reflectance factor (HCRF) (Schaepman-Strub
et al., 2006) was measured for each reference target. Raw spectroradiometric data were transformed
into the HCRF using the calibrated white spectralon panel. In addition, Microtops Il Sunphotometer
(Solar Light Comp., USA) measurements were taken approximately every 30 seconds during the
HyMap data acquisition. Data acquired by the Sunphotometer was used for estimation of the actual

atmospheric conditions (AOT - aerosol optical thickness, WV- water vapor content).

Nine individual HyMap stripes covered the entire area of the Sokolov lignite basin (Fig. 3.1). The
orientation and geometry of the HyMap strips followed the SW-NE orientation of the lignite basin.
This setting represented an optimal solution from the economic point of view; on the other hand,
this setting (relative solar azimuth at the acquisition hour was about 73 deg) caused that the data
suffered from strong cross-track illumination and bi-directional reflectance distribution function
effects (Verrelst et al.,, 2008). Therefore, prior to atmospheric correction, the data had to be
preprocessed to minimize these effects. The specific pre-processing focused on correcting the cross
track illumination effect via (i) calculating the polynomial coefficients for the gases located in
different spectral regions (O, at 760 nm, H,0 at 930 nm), (ii) interpolating between the calculated
polynomial coefficients for all the wavelengths (full spectral configuration), and (iii) using
interpolated polynomial coefficients to correct differences across the image (for each image
separately). After the preprocessing described above, radiometric rectification suggested by Brook

and Ben-Dor (2011) was applied.

Final atmospheric correction was performed in the ATCOR-4 software package (Richter, 2009). This
software was designed for atmospheric correction of airborne hyperspectral image data using the
MODTRAN 4 physical model of the atmosphere (Adler-Golden et al., 1999). The data obtained during
the supportive ground campaign were used to improve the results of the atmospheric correction.
Direct ortho-georectification was performed using the PARGE software package (Schlapfer et al,
1998). Finally, the hyperspectral image data was georeferenced to the UTM 33N (WGS-84)
coordinate system. To assess the final accuracy, the product was compared to the very high spatial
resolution aerial orthophotos (pixel size = 0.5 m) and a resulting standard positional accuracy of 3.7

m was defined. Prior to image analysis, the water bodies and vegetated areas were masked out.
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Figure 3.1: Test site: sampling/measuring points displayed on the HyMap 2009 data (corrected reflectance,
true color coding).

3.2.2.2  Field data: material sampling and analysis

Over 170 points (Fig. 3.1) distributed in still-active (Jifi, Medard and Druzba) and abandoned (Litov,
Lomnice, Sylvestr and PVS - Podkrusnohorska vysypka) open-pit mines were documented in the field
during the 2008 and 2009 field campaigns. Particular attention was paid to the abandoned mines
with significant AMD-affected areas. At the sampling points spectroradiometric measurements were
collected in natural illumination conditions using an ASD FieldSpec 3® portable spectroradiometer (in
situ spectroscopy measurements). The ASD instrument uses three separate spectrometers to
measure the radiance between wavelengths of 0.350 um and 2.500 um. Radiance spectra were
normalized against a 99% Spectralon® white reference to produce relative reflectance spectra for

each measurement.

Samples of the surface material (0-2 cm depth) were collected at 80 selected points. They were dried
and sieved to < 2 mm and the abundance of trace elements including major heavy metals was

measured using a portable Innov-x Alpha RFA spectrometer. Furthermore, the samples were
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subjected to selected X-Ray Diffraction analysis and determination of laboratory pH, sulphur (S total

wt %), and Total Organic Carbon (TOC_%).

Further spectra were obtained by measuring the sieved samples as well as the samples of all the
minerals and facies encountered in the Sokolov basin (Rojik, 2004) in artificial ilumination conditions,

using the spectroradiometer’s contact probe (laboratory spectroscopy measurements).

3.2.3 Methods

Firstly, the geochemical and mineral properties were linked with the reflectance spectra acquired in
the field and laboratory as well as with the reflectance of the corresponding HyMap pixels. The
obtained spectra were normalized employing the continuum removal (CR) method (Kruse et al.,
1993). This method is a standard transformation in the field of spectroscopy (Van der Meer, 2006), as
it removes the continuum contribution from the reflectance spectrum. Multiple absorption features
within the VIS/NIR/SWIR region were enhanced after the normalization. Additionally, spectra were
convolved to the HyMap spectral resolution using a Gaussian convolution and the FWHM value for
each band. The effect of mineral mixtures and heterogeneity on the spectral properties was studied.
It was then possible to identify the spectral ranges and parameters of the indicative minerals which
remain the same either at the level of pure minerals (laboratory spectra) or at the level of mineral

mixtures (field and image spectra).

Prior to material mapping using HS images, it is necessary to derive the pure end members for the
fundamental physical components (mineral/organic constituents). Pure end-member spectra can be
extracted either directly from the image pixels or from spectral libraries measured in the field. The
use of reflectance end-members from spectral libraries can be problematic because they can suffer
mainly from spatial and temporal variability in the reflectance properties of the cover types (Asner
and Heidebrecht, 2002). On the other hand, using end-members from spectral libraries also has some
benefits. Their composition is known, and in addition, the standard procedure used for deriving
image end-members consists of several time consuming steps: the minimum noise fraction
transformation (MNF) (Boardman and Kruse, 1994; Green at al., 1988) and pixel purity index (PPI)
calculation (Boardman, 1995). Nonetheless, success still depends on individual skills and the
experience of the expert. For the reasons described above, it was preferred to select representative

field spectra end-members and to use these for further mapping using HyMap image data.

There are many commonly used analytical techniques for mapping the target material in

hyperspectral images: the entire pixel method (called hard classifiers), such as spectral angle
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mapping (SAM) (Kruse et al., 1993) and spectral feature fitting (SFF) (Clark et al., 1991); sub-pixel
methods, such as spectral mixture analysis (SMA) (Adams et al., 1995) and mixture-tuned matched
filtering (MTMF) (Boardman, 1998). However, in order to model the pH, it was necessary to identify
the specific minerals typical for the AMD patterns (mainly Fe sulfates and iron oxy-hydroxides). All
these minerals exhibit diagnostic absorptions before 1.000 um. (Kopackova et al., 2012a; Montero et
al.,, 2005; Murphy et al., 2013; Swayze et al., 2000, 2006). The wavelengths and intensities of the
absorption features depend on the nature of the crystal field around the Fe atom and on the nature
of the bonds around it, because the nature of the magnetic coupling between the Fe3" ions facilitates
the transition of electrons between energy states (Sherman and Waite, 1985). Thus, in Fe** minerals,
subtle differences in the shapes and wavelengths of the absorption features reflect the crystal
structure of the minerals and allow their identification, such parameters should be used for the

spectral mapping.

The HS image data differ from the field spectral measurements, as they have lower spectral
resolution; moreover, the measured spatial domain is also different. Pixel reflectance in
heterogeneous environment has a significant mixing problem as it is a result of spectral reflectance
of different materials present within the pixel; on the other hand, filed spectra tend to represent
rather point measurements. Therefore, it was necessary to select a mapping technique/method
which is robust enough to identify the targeting minerals even if present as part of mixtures.
Optimally, a desire technique should enable setting of specific spectral ranges where characteristic
absorptions of target minerals are exhibited and it should be sensitive to subtle absorption features

and their parameters (e.g., absorption maximum wavelength, depth).

The Spectral Feature Fitting (SFF) technique is a method that was successfully used to map minerals
in multispectral/hyperspectral image data (Debba et al., 2005; Haest et al., 2012; Mars and Rowan,
2010). The advantage of SFF over other methods, such as spectral angle mapping (SAM), is that it is
sensitive to subtle absorption features (Tangestani et al., 2011; Van der Meer, 2004) and also
minimizes the influence of the effects of variations in mineral grain size and illumination (Kruse et al.,
1993; Kruse and Lefkoff, 1993). This method is available in ENVI software and compares the fit of the
image spectra to the reference spectra using a least-squares technique (Clark et al., 1991). The
reference spectra (whether the laboratory or field measurements or extracted directly from the
image) are scaled to match the image spectra after the continuum is removed from both data sets. A
least-squares fit is calculated band-by-band between each reference (end-member) spectra and the

unknown spectra of an image pixel (Clark et al., 1991; Van der Meer, 2004). The total root mean
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square error (RMSE) is used to generate an RMS error image for each end-member. The output is
represented by a “fit” image, which is a measure of how well the unknown spectrum matches the

reference spectrum on a pixel-by-pixel basis (Van der Meer, 2004).

0 50100 200m
[

A training A \alidation

Figure 3.2: Homogenous targets used for training and validation.

An improved multiple feature-based technique, multi range spectral feature fitting (MRSFF), was
employed in this study. MRSFF provides a promising classification technique as yielded higher
accuracy than SAM (Judd and Steinberg, 2007) or than SAM and NDVI (Pan et al., 2013). The user can
choose the Multi Range SFF function to define multiple and different wavelength ranges around each
end-member's absorption features, which is very useful for mineral identification. From this point of
view, such an approach is highly suitable for pH mapping, as specific mineral associations indicating

certain pH ranges exhibit multiple absorptions.

The ground truth data, pH measured for the homogenous targets (3x3 pixel size: 15x15 m in extent),
were used to build and validate a pH model. The data were divided into two different datasets (Fig.
3.2): (i) training (12 samples) and (ii) validation (14 samples). Both the calibration and validation
targets were selected in the way to cover the high mineral variability characterizing the studied sites.
To estimate the pH, a multiple regression model was constructed between the end-member fit
images and the training dataset. The results were then statistically assessed using 14 validation
targets/samples and the coefficients of determination (Rv’) together with the Std. Error of the

Estimate were defined (Fig. 3.7, Tab 3.3).
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3.3 Results

3.3.1 Linking the pH with mineral and spectral properties

Spectroscopic AMD approaches are based on mapping of those minerals that occur on the surface of
waste-rock piles and their surroundings, focusing on minerals that serve as indicators of subaerial
oxidation of pyrite (‘hot spots’) and the subsequent formation of AMD (Fe sulfates, oxy-hydroxides,
and oxides accumulating in a spatial and temporal sequences, Montero et al., 2005; Swayze et al.,
2000). However, the concept is more complex at lignite open-pit mines, as low pH values also
characterize organic material represented by lignite and its weathering products (Kopackova et al.,

2012a).

The results of the chemical/mineral analysis were studied in detail and a site-specific conceptual
model describing the relationship between the mineral composition and the pH is presented in Fig.
3.3. The pH of the studied samples varied between 2.5 and 8.5. Low pH (<3.0) characterized the
material containing pyrite, jarosite or lignite, which were present either individually or as a part of
mixtures. When the pH increased (3.0<pH< 6.5), jarosite was always present in association with
goethite. Once the pH exceeded 6.5, jarosite was no longer present in the material, and goethite was
the most common ferric mineral. Unlike reported by Montero at al. (2005), goethite was present
throughout a wide pH range (pH between 2.5 and 8.5); however if together with jarosite, this
corresponded to acid to nearly neutral pH (pH between 3.0 and 6.5). Clays (mainly kaolinite) were
the most frequent minerals present in all kind of abundances and mixtures throughout the whole pH
and did not indicate any specific pH conditions. Based on these findings, further investigations were

focused on minerals or mineral associations described above.

The most frequent mineral constituents typical for diverse material type sorted by pH are
summarized in Tab. 3.1. Not all of the minerals identified by XRD exhibit diagnostic absorption within
the VNIR-SWIR spectral region (e.g., feldspar, quarts) and can be mapped using optical data.
Nevertheless, the fundamental pH-indicative minerals can be identified using their reflectance
properties, except for pyrite. Pyrite is not stable and quickly oxidizes when it reaches the surface,
where it is replaced by secondary minerals (e.g., hydroxysulfates and oxy-hydroxides). Consequently,

this mineral would not be detectable by optical methods as they only allow analysis of the surface.

The spectral properties of selected mineral constituents are depicted in Fig. 3.4. Clearly, pure
minerals measured in the lab (3.4A, 3.4B) exhibit multiple diagnostic absorption features throughout

the whole spectral range (VNIR/SWIR). These absorptions have higher separability compared to the
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spectra of the same mineral constituents present as mixtures (field spectra acquired in the field

under natural conditions) (Figs. 4C and 4D).
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Figure 3.3: Mineral conceptual model: Sokolov case study.

Secondary minerals with Fe** (hydroxysulfates and oxy-hydroxides) exhibit absorption features
around 0.45 um and before 1.00 um (Clark et al., 1990; Montero et al., 2005; Murthy et al., 2013). If
present as pure minerals (Fig. 3.4A), goethite show a strong and rather wide absorption centered at
around 0.500 pm, on the other hand the diagnostic absorption for jarosite is narrow and centered at
slightly shorter wavelength (around 0.450 um). The absorption feature centered between 0.900—
1.000 um differs for these two minerals as well. The absorption maximum is shifted, reflecting
differences in crystal structure (Sherman and Waite, 1985), goethite absorption maximum is
centered at longer wavelengths (closer to 1.000 um) while jarosite exibit maximum absorption at
shorter wavelengths (closer to 0.900 um). The same trend in the shift of the absorption maximum
wavelength remains for jarosite and goethite even if they are present as mixtures (Fig. 3.4C). Jarosite,

if present in a pure form, exhibits an additional absorption feature around 2.260 pum in the SWIR
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region (Fig. 3.4B). Material with high lignite content (>5%) exhibited a characteristic, very small slope
of the spectral curve between 0.800 pum and 1.200 um (Fig. 3.4A) with an absorption maximum at
approximately 0.600 um. Additionally, absorption at 1.700 and 2.309 um indicating humic acid (Ben-
Dor et al., 1997) can be identified (Fig.3.4B).

Table 3.1: Most frequent mineral constituents typical for diverse material type sorted by pH (minerals
detectable by the means of optical spectroscopy are in bold).

Minerals o -
= [} [J] L S o
> =] E= ) S Q ] £
Bl 8|2 |2 |8 |% |3 |e|8 |52
S| 28l E 8|8 |S|8 5|88 s
> € | x @ & S Q| x Q | .5 & | =
Material: lignite-rich, very low | x X X X X X X X X X
pH (< 3)
Material: without lignite, very | x X X X X X X X X
low pH (< 3)
Material: without lignite, pH X X X X X X X
between 3.0 and 6.5
Material: without lignite, X X X X X X X X
nearly neutral or higher pH
(6.5-8.5)

In terms of the predominant absorption in SWIR for mineral mixtures (Fig. 4D), the doublet between
2.100 and 2.200 um caused by the vibration of the AI-OH molecule (Clark et al., 1990) indicates the
presence of kaolinite. The jarosite absorption at 2.260 um is not present if jarosite is part of mixtures.
The absorptions at 1.700 and 2.309 typical for the lignite-rich material remained; however, the

absorption depth is smaller and the shape is simplified.

The field spectra of the mineral constituents described above were compared to the reflectance
spectra of the corresponding pixels of the HyMap images (Fig. 3.5). The same trend in the shift of the
absorption maximum wavelengths before 1.000 um could be seen even with the HyMap decreased

spectral and spatial resolution; where the maximum is shifted even to the longer wavelengths.
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3.3.2 Employing Multi Range Spectral Feature Fitting

To select the end-members for spectral mapping, the field spectral libraries were assessed together
with the results of XRD analysis and grouped into (Fig. 3.6) (i) the spectral libraries of the fresh lignite
which characterize the deep absorption at 0.640 um (end-member 1); this material is characterized
by very low pH values (<3.0), (ii) the spectral libraries of clays rich in lignite which still exhibit the
typical absorption at 0.640 um (end-member 2); this material is also characterized by very low pH
values (<3.0), (iii) the spectra of the material where high abundance of jarosite was identified and the
absorption maximum of the absorption feature centered between 0.900-1.000 um was located at
the shorter wavelengths (end-member 3); this material is characterized by very low pH (<3.0), (iv) the
libraries of materials where a high abundance of goethite was identified and the maximum of the
absorption feature centered between 0.900-1.000 um was located at the longer wavelengths; this
material is characterized by pH>6.5, Aside these, additional group was created containing (v) the
material where the secondary Fe minerals represented a minimal fraction and where muscovite and

chlorite were the major minerals present in the samples.

The spectral libraries were averaged to generate representative spectra for each mineral group
defined above (Fig. 3.6). These represented the end/members further employed for spectral
mapping using MRSFF. The end-member fit images were derived and further statistically assessed to
test whether acceptable regression models can be obtained to model the surface pH. Different
scenarios were tested including different numbers of end-members as well as setting different

spectral ranges (Tab. 3.2).

The best result in identification of selected minerals as well as in predicting the surface pH (R?=0.63,
Rv’=0.77) was achieved when all five end-members were included (scenario 6, Fig.3.7) and when the
spectral ranges were defined separately for the diagnostic absorptions between 0.460-0.780 um,

0.780-1.200 um, 1.600-1.790 pm and 2.080-2.400 pm (Tab.3.2).
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Figure 3.6: The end-members (resampled to the HyMap data spectral resolution) used for Multi Range Spectral
Feature Fitting (MRSFF).

Table 3.2: Different scenarios tested under the MRSFF analysis (scenario 6 achieving the best result is in bold).

End-member EM1 EM3 EM4 EM5

Range 0.460-1.200 pm

Scenario 1 X X X

Range 0.460-1.200 pm; 2.080-2.400 pm

Scenario 2 X X X

Range 0.460-1.200 pm

Scenario 3 X X X X X

Range 0.460-1.200 pm; 2.080-2.400 pm

Scenario 4 X X X X X

Range 0.460-0.780 pm; 0.780-1.200 pm; 2.08-2.400 pm

Scenario 5 X X X X X

Range 0.460-0.780 pm; 0.780-1.200 um; 1.600-1.790 um; 2.080-
2.400 pm

Scenario 6 X X X X X
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Figure.3.7: pH training/validation regression models.
Table 3.3: Prediction statistics for the scenario 6 (add Tab. 3.2).
R R? Adjusted g2 | St¢- Errorof ) o
the Estimate
Training
,779 ,606 ,567 1,140 ,003
Validation
,873 ,763 , 744 1,138 ,000

3.4 Discussion

In this study, the pH is quantitatively estimated using hyperspectral image data (HyMap). Good
performance of hyperspectral image analysis depends on accurate atmospheric correction (Brook
and Ben-Dor, 2011; Pan et al., 2013), which has a strong influence on the mineralogical spectral
diagnoses (Riaza et al., 2011). Big attention was paid to this issue and the data were also corrected
for the BRDF effect and radiometric rectification suggested by Brook and Ben-Dor (2011) was also

implemented.

Based on the observations in this study, the minerals that reflect the specific site conditions and
indicate a certain pH can be identified by assessing the subtle differences in absorption feature

parameters (e.g., absorption maximum wavelength position, symmetry, depth). For jarosite and
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goethite the same trend in the shift of the absorption maximum (the feature centered between
0.900-1.000 um) is visible whether they are present individually or as mixtures. Lignite-rich material
has a characteristic small slope of the spectral curve between 0.800 — 1.200 um with an absorption
maximum around 0.640 um, and also exhibits absorptions centered at 1.700 and 2.309 um. These

characteristics also remain the same even if lignite is present in mixtures.

Using hyperspectral data for mapping purposes, the key issue still remains in selection of proper end-
members. The field spectral libraries were used to map the indicative minerals. The field spectra of
five fundamental mineral groups defined under the site-specific conceptual model were averaged to
derive the representative end-members, which were further utilized for the MRSFF. To succeed on
this, it was necessary to acquire field spectral libraries which reflect the all major mineral varieties of
the site. Alternatively, the end-members could be extracted from hyperspectral images. Although
diverse techniques for this extraction exist, success still depends on the proper identification of pure
pixels (Zontea and Plaza, 2009). The spatial resolution of the HyMap data was 5x5 m and in such a
heterogeneous environment, it can be a difficult task to derive real pure pixels. The presented
approach is built on systematic field work and field data collection, so the representative field
spectra can be used for image spectral mapping. In such a case no procedure to extract pure pixels is
requested, moreover, the same end-members can be used if multi-date hyperspectral data are
available, and thus this approach may be more universal than, for instance, partial least squares

regression (PLSR).

The Multi Range Spectral Feature Fitting (MRSFF) technique was tested to identify the selected
minerals or their associations defined under the conceptual model. For instance, this technique was
successfully used to map diverse vegetation types in Yellowstone National Park (Kokaly et al., 2003).
The vegetation also differed in the shapes and depths of absorptions present in the spectra and these
were the key characteristics that enabled species mapping. Montero et al. (2005) used spectral
libraries and the spectral feature technique for identification of Fe-bearing minerals, sheet and other
silicates to study patterns representing the evolution of acid solutions discharged from the pyritic
waste piles and the subsequent accumulation of secondary precipitates. Haest et al. (2012) employed
the Multiple spectral feature fitting technique to identify and quantify minerals (iron (oxyhydr-) oxide
and clay contents) in drill cores, achieving promising results (RMSE between 3,9-9.1 wt %). De Jong
(2011) employed the Spectral Feature Fitting (SFF) and Linear Spectra Unmixing (LSU) techniques to
map soil surface crusts and compared the results. They judged that spectral unmixing was superior to

spectral feature fitting. However, the main differences between crusted and non-crusted soils were
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in the overall albedo, brightness and shape and depth of the absorption feature at 2.200 um. Unlike
SFF, LSU is a method that is sensitive to albedo and color differences and this may explain why better
results were obtained when this technique was employed. The wavelength of the absorption
maximum centered between 0.900-1.000 um and its shift were the key factors for mapping the
indicative ferric minerals; this approach employing MRSFF, a method that is sensitive to the
absorption feature parameters (shape, depth and absorption maximum wavelength), seems to be

highly suitable.

The MRSFF technique yielded reliable results in identification of the selected minerals within the
mineral mixtures. Fit images, where the pixel values indicate the closeness of the match between the
pixel spectrum and the end-member library spectrum, could be combined into thematic maps (Fig.
3.8A) to identify, for instance, material with low pH. However, the quantitative pH map (Figs. 3.8B,
3.9) clearly has significant advantages over simple material identification. Estimating the pH via
application of the regression modeling to the fit images resulting from MRSFF analysis seems to be

feasible, as reliable results were obtained for both validation and training datasets (Fig. 3.7, Tab 3.3).

<25 25-35 3.5-45 4560 >6.0
Figure 3.8: Example of the thematic output (A: end-member fit images were thresholded to depict the pixels

with the closest spectral match; B: estimated pH).

Too few quantitative image-spectroscopy based approaches have been made in estimating the pH at
mining sites. Zabcis et al. (2009) used Hymap airborne hyperspectral data to generate predictive pH
maps of AMD for the Sotiel-Migollas mine complex, Southwest Spain, using PLSR analysis. Validation
of the model for an independent data set results in an R® value of 0.71 between the actual and
predicted pH values. Quenatal et al. (2013) mapped material associated with acid AMD using HyMap
data and the final map displayed the mineralogical assemblage correlations > 0.8 of variable pH

indicators, particularly pinpointing a low-pH relationship to the contamination in the area. The
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limited number of such studies demonstrates that quantitative pH mapping is still a challenging task

and the presented approach seems to be promising.
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Figure 3.9: The Sokolov lignite basin: estimated pH.

3.5 Conclusions

The mining environment is characteristic for its high heterogeneity and complexity. Therefore, Acid
Mine Drainage (AMD) mapping should be tailored to the specifics of the tested mining site. In this
study, a conceptual model depicting the minerals that reflect the specific site conditions and indicate
a certain pH was first defined. It was found that pH <3.0 characterized the material with the presence
of pyrite, jarosite or lignite whether present individually or in mixtures. Jarosite in association with
goethite indicated increased pH (3.0-6.5), while goethite alone indicated nearly neutral or higher pH

(>6.5).

The spectral properties of these minerals or their mineral associations were further analyzed and
common absorption feature parameters were identified. The shift to longer wavelengths of the
absorption maximum centered between 0.900-1.000 um is the main parameter allowing
differentiation among Fe** secondary minerals and this trend is still visible if the minerals are part of

mixtures. Lignite-rich material exhibits a characteristic small slope of the spectral curve between
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0.800 — 1.200 um with absorption maximum around 0.640 um, and additional minor absorptions at

1.700 and 2.309 um.

The Multi Range Spectral Feature Fitting (MRSFF) technique, allowing setting of different spectral
ranges for multiple diagnostic absorptions, was successfully employed to identify and map the
indicative minerals specified above using the hyperspectral images and proved to be a sufficiently
sensitive method for assessing the desired spectral parameters (e.g., shape, maximum absorption
wavelength position, absorption depth). A multiple regression model using the fit images, i.e. the
results of MRSFF, as inputs was constructed to estimate the surface pH and a statistical significant

accuracy was attained (R’=0.61, Rv’=0.76).

This study still represents one of the very first approaches employing image spectroscopy for
guantitative pH modeling in a mining environment. As the results seem to be promising, further

testing and validation using multi-temporal hyperspectral data is planned.
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Abstract

The work is concerned with assessing the health status of trees of the Norway spruce species using
airborne hyperspectral (HS) data (HyMap). The study was conducted in the Sokolov basin in the
western part of the Czech Republic. First, statistics were employed to assess and validate diverse
empirical models based on spectral information using the ground truth data (biochemically
determined chlorophyll content). The model attaining the greatest accuracy (D718/D704: RMSE =
0.2055 mg/g, R* = 0.9370) was selected to produce a map of foliar chlorophyll concentrations (Cab).
The Cab values retrieved from the HS data were tested together with other nonquantitative
vegetation indicators derived from the HyMap image reflectance to create a statistical method
allowing assessment of the condition of Norway spruce. As a result, we integrated the following
HyMap derived parameters (Cab, REP, and SIPI) to assess the subtle changes in physiological status of
the macroscopically undamaged foliage of Norway spruce within the four studied test sites. Our
classification results and the previously published studies dealing with assessing the condition of
Norway spruce using chlorophyll contents are in a good agreement and indicate that this method is
potentially useful for general applicability after further testing and validation.

Key words: photosynthetic pigments, chlorophylls a and b, optical indices, Norway spruce, statistical
methods, continuum removal, HyMap, actual physiological status, pre-visual damage symptoms,
Sokolov basin, forest management, ICP Forests
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4.1 Introduction

Forests play an important role in regulation of the global climate via the global carbon cycle,
evapotranspiration, and earth surface albedo."”> Moreover, forests provide humans with the whole
range of ecosystem services including provision of food and forest products, regulation of the
hydrological cycle, protection of soil resources, etc.’ Forest health and ecosystem functioning have
recently been influenced by anthropogenic activities and their consequences, such as air pollution,
surface mining, heavy metal contamination,4 and other biotic and abiotic stress factors such as pest
invasions and soil acidification,” which had an especially high effect on central Europe. Therefore,
large-scale monitoring of forest health and its methodologies are in the forefront of interest to
scientists as well as forest managers. The condition of forests in Europe is monitored under the
International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests
(ICP Forests).® The monitoring consists of two levels: monitoring Level | provides an annual overview
of crown condition (defoliation, discoloration, and damage visible on the trees), soil conditions, and
foliar survey (contents of nutrients in soil and foliage);” monitoring Level Il consists of 11 additional
assessments (e.g., tree growth, phenology, litterfall, and others, see http://icp-
forests.net/page/level-ii), which provide a better insight into the causes affecting the condition of
forest ecosystems and into the effects of various stress factors. Our study aims to contribute to
improving regional methods for Level Il assessments, as both surveys— remote sensing and foliar
chemistry—should be included in the overall evaluation.?

Biochemical parameters, such as foliage leaf pigments,’ nitrogen, lignin, and contents of other
polyphenols,10 reflect and determine physiological processes in plants, such as photosynthetic
capacity and net primary production. On the other hand, foliar chemistry also governs other
processes in the ecosystem, such as nutrient cycling and litter decomposition.11 Therefore accurate
estimation of the biochemical contents of vegetation is a key factor in understanding and modeling
forest ecosystem functions and dynamics. The chlorophyll content is an indicator of leaf
photosynthetic activity and can be directly linked to the phenology and health status of plants.” Leaf
chlorophyll content can be used to detect actual vegetation stress; however, as shown by Ref.", the
chlorophyll content retrieved from Proba/CHRIS images differs according to the canopy and the leaf
architecture of the examined crops. Therefore, at the canopy level, the leaf area index (LAI) and also
canopy architecture should be taken into account for a particular canopy. Furthermore, chlorophyll
can be used to measure vegetation stress, life stage, productivity, and CO2 sequestration. Remote

sensing of the chlorophyll content has been studied extensively on both the leaf"***

15-18

and the canopy
scales.

Many aspects of the physiological state of trees are more or less connected with the concentrations
of two main groups of leaf photosynthetic pigments: chlorophylls and carotenoids. Vegetation with a
high concentration of chlorophyll is considered to be healthy, as the chlorophyll content is linked to

greater light-use efficiency, photosynthetic activity, and carbon dioxide uptake.’*™

Chlorophyll
generally decreases under stress and during senescence.” Carotenoids play the main role in the
process of incident light absorption, transportation of energy to the reaction center of the

photosystems, and heat dissipation of energy in case of high irradiances.”” The combination of the
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influences of chlorophylls and carotenoids is thus connected with light-use efficiency.” However,

higher carotenoid to chlorophyll ratios indicate vegetation stress and senescence.”**

Canopy reflectance depends not only on leaf chemistry but also on vegetation type and function and

162> To obtain a spatially explicit vegetation biochemical content, it

canopy structure and composition.
is necessary to scale leaf-level biochemical measurement to canopy level. Increasing availability of
airborne and spaceborne hyperspectral data has enabled the development of accurate methods for
scaling of biochemical properties from the leaf to the canopy scale.”**’

Currently, there are three remote-sensing approaches used to scale biochemical content from the
leaf to the canopy level: (i) the direct extrapolation method, (ii) the canopy-integrated method, and

10,28,29

(iii) physical models. The direct extrapolation and canopy-integration methods rely on statistical

analyses to establish a relationship between the targeted biochemical parameter and a spectral

3931 The direct extrapolation method (the simplest) is

parameter (e.g., spectral indices, derivatives).
based on the assumptions that all the leaves in the plant have the same biochemical content and
only a fine layer of the leaves covers an entire pixel in an image. The relationships between the
spectral parameter and the biochemical content are applied directly. Using the canopy-integrated
method, the biochemical content is obtained by multiplying the leaf content by the corresponding

152932) "|n addition, new spectral indices taking

canopy biophysical parameter (e.g., LAl or biomass
into account species heterogeneity and non-green canopy components were developed and further
tested.” Physical methods employ inverted radiative transfer (RT) models (e.g., PROSPECT,*
LEAFMOD,?® SAIL,* SCOPE34) to estimate the biochemical content at the leaf level.® RT modeling
simulates the transfer of radiation in the canopy by computing the interaction between a plant and

*738 |n comparison with the direct extrapolation and the canopy-integrated

solar radiation.
approaches, inversion models offer the potential of a more generic approach to quantify the

biochemical parameters of vegetation based on spectral data.

The main goal of the study was retrieval of the chlorophyll content and development of a statistical
classification method allowing objective assessment of the physiological status of macroscopically
undamaged foliage on a regional scale. To simplify the problem, we focused on single-species
(Norway spruce) homogenous forests of a similar age and tested only the direct extrapolation and
canopy-integrated methods.We did not test physical models at this stage as the computation
remains time-consuming and can suffer from ill-posed problems or can lead to a bias in the retrieved
biophysical parameters.*>*°

In the Sokolov area, NW Bohemia, we selected four homogenously covered Norway spruce (Picea
abies L. Karst) forest stands with trees of similar ages (40 to 60 years) exhibiting no visible symptoms
of damage. Although these forests are situated near lignite open-pit mines, they have not been
directly affected by intensive mining activities or by the massive air pollution and acid rains in the
late 1990s, which were factors in the Krusné Hory Mountains, part of the heavily polluted Black
Triangle region. Since 1996, the atmospheric concentrations of SO2 in Sokolov area have not
exceeded 30 pg/m-3 and since 2000 have not exceeded 15 pg/m~> on average (data available at
Czech Hydrometeorological Institute®').
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Statistics were employed to analyze the relationship between diverse vegetation indices and other
types of spectral transformations [e.g., first derivatives, continuum removal (CR), and banddepth
normalizations] and the ground truth data for the foliage sampled in stands of Norway spruce. These
diverse approaches were validated, and, as a result, a map of foliar chlorophyll concentrations (Cab)
was derived. The Cab values, together with another three optical parameters [the position of the
inflection point on the spectral curve in the red-edge part of the spectrum (REP),** the photochemical

44
1,

reflectance index,*” and the Structure Insensitive Pigment Index (SIP1)*'], were then used to assess

the actual health status of the Norway spruce forests.

4.2 Study Sites

The study was conducted in the Sokolov basin in the western part of the Czech Republic, in a region
affected by long-term extensive mining (Fig. 1). The Sokolov basin in the Czech Republic is composed
of rocks of Oligocene to Miocene age and is 8 to 9 km wide and up to 36 km long, with a total area of
about 200 km?2. It contains 60% volcanic ejecta originating from fissures and volcanic cones and 40%
sediments.” The average altitude of the study region is about 470 m. Due to the fact that the basin is
surrounded by the Krusné Hory Mountains, precipitation is above the average for the Czech Republic,
and the local climate in the region belongs among the more extreme conditions, characterized by
colder and wetter conditions.

The selected forest stands surround the lignite open pit mines in Sokolov but have not been directly
affected by the mining activities. However, the soil in all of the stands exhibits low pH and high heavy
metal content. We selected four research sites dominated by mature Norway spruce forests of
similar age (Table 4.1; Erika, Habartov, and Studenec: 40 to 60 years; Mezihorska: 60 to 80 years).
The stands were located at a maximum distance of 12 km from the active lignite open pit mines (Fig.
4.1, Table 4.1). None of the selected sites showed any severe symptoms of macroscopic damage, and
they were all classified as damage class 1 with total crown defoliation not exceeding 25% and
average needle retention of 8 to 10 needle age classes.

In relation to soil conditions, we assume that our four study sites are good representatives of the
spruce forests in the region. The pH of the study sites (2.53 to 3.31) is slightly below the average for
the Czech Republic (3.2) but in accordance with local conditions (3.0).* In addition to Norway spruce
monocultures, mixed spruce forests (with birch or pine) are characteristic of the region. We selected
study sites considering the spatial resolution of the HyMap sensor (5 x5 m), and thus homogeneity of
spruce canopy was the main criterion for site selection.

4.3 Data

4.3.1 Ground Truth Data

The source for ground truth data was foliage sampled in the Norway spruce stands. The samples of
Norway spruce needles were collected in each forest stand during the ground campaign (August 27
to 30, 2009) to define statistical regression models for estimation of canopy chlorophyll content and
to validate the obtained statistical models.
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At each of the four test sites, 10 to 15 representative trees were selected in clearly definable groups
of five (Erika: two groups A and B; Habartov: three groups C, D, and E; Mezihorska: three groups F, G,
and H; and Studenec: two groups | and J). Sample branches were taken from the upper and middle
portion of the sunlit canopy; the needles age classes were identified, and representative samples of
the first- and third-year needles were collected. Two sample sets of the needles were generated: one
for pigment determinations and one for dry matter determinations. Each set contained 200 samples
(50 trees x two positions in the crown x two age classes (first and third-year needles).

A foresttestsitt =] closed coal mine

“\_ stream - active coal mine  m—— S——

N\ road dump
P railway [ built-up areas

S5 waterbody [ forest

xxxxxxxxxxxxxxxxxx

Figure 4.1: Scheme of the Sokolov lignite basin with the four selected forest stands covered by homogenous
Norway spruce (Picea abies L. Karst.) forests: Erika, Habartov, Mezihorskd and Studenec.

Photosynthetic pigments (e. g. chlorophyll a, b, and total carotenoids) were extracted following the

procedure outlined by Ref. .

spectrophotometrically, using equations published by Re

The amounts of photosynthetic pigments were determined
f. %,

In each forest stand, five representative sampling points were chosen to collect soil samples.
Material was collected from four soil horizons (two organic and two lithological horizons, the depth
of forest floor ranged between 0 and 40 cm). The four horizons have the following characteristics:
horizon 1: organic horizon (largely undecomposed); horizon 2: organic horizon (poorly decomposed);
horizon 3: mineral, mixed with humus, usually darkened; horizon 4: zone of maximum eluviation of
clays and iron and aluminum oxides. The organic material was dried in the air prior to sieving
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(fraction <2 mm). Ground sub-samples were analyzed for total organic carbon and nitrogen (Perkin
Elmer CHN analyzer). In addition, the pH was determined in the laboratory using an ion-selective
electrode in 1M KCl solution.

Table 4.1: Norway spruce test sites and their basic characteristics

Norway spruce test sites
elevation

site latitude (N) | longitude (E) forest age (years) | distance from the open-pit mines (km)
(ma.s.l.)

Erika 50°12'25” 12°36’17” 495 40-60 6.4

Habartov 50°09'48” 12°33'28” 477 40-60 11.2

Mezihorska | 50°15’50” 12°38'17” 678 60-80 5.8

Studenec 50°14’'09” 12°33'00” 722 40-60 8.5

4.3.2 High Spectral Resolution Data

4.3.2.1 HyMap airborne hyperspectral data

The hyperspectral image data was acquired on July 27, 2009, during the HYyEUROPE 2009 flight
campaign using the HyMap (HyVista Corp., Australia) airborne imaging spectrometer. The HyMap
sensor records image data in 126 narrow spectral bands (with full-width half maximum ca. 15 nm)
covering the entire spectral interval between 450 to 2500 nm. The resulting ground pixel resolution
of the image data was 5 m. To cover the entire area of interest (approx. 15 x 22 km), nine cloudless
flight lines were acquired in the NE-SW direction.

4.3.2.2  Supportive ground measurements

In order to successfully pre-process the hyperspectral data, a supportive calibration and validation
ground campaign were organized simultaneously with the HyMap data acquisition. The ground
measurements are essential to properly calibrate as well as validate the image data and to enable: (i)
atmospheric correction of the airborne hyperspectral images and (ii) retrieving at surface reflectance
values for the further verification. The study area was investigated in advance to find the reference
targets, which must meet the following conditions: (i) spatial homogeneity for a minimum area of 5 x
5 image pixels and (ii) natural or artificial nearly Lambertian ground surfaces. Consequently, six
appropriate targets with different values of the surface reflectance were chosen, covering the range
of reflectivity from ca. 0 up to 70% (water pool, artificial grass, two asphalt plots, concrete, and
beach-volleyball court). The hemispherical-conical reflectance factor (HCRF)* was measured by an
ASD FielSpec-3 spectroradiometer for each reference target. Raw spectroradiometric data were
transformed into the HCRF using the calibrated white spectralon panel.
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In addition, Microtops Il Sunphotometer (Solar Light Comp., USA) measurements were taken
approximately every 30 s during the HyMap data acquisition. These data was used for estimation of
the actual atmospheric conditions (aerosol optical thickness; water vapor content).

4.3.2.3  Hyperspectral image data pre-processing

The HyMap multiple flight-line data were atmospherically corrected using software (SW)
package ATCOR-4 version 5.0,”° which is based on the MODTRAN®! radiative transfer model and
enables atmospheric correction of the aerial hyperspectral images. The known reflectances of the
specific reference target as well as of WV were utilized for fine-tuning of the model, as facilitated by
ATCOR-4. The remaining reference targets were used for validation of the corrected image.

The orientation and geometry of the HyMap strips followed the SW-NE orientation of the lignite
basin. However, this setting represented an optimal solution from the economic point of view; on the
other hand, this setting (relative solar azimuth at the acquisition hour was about 73 deg) caused that
the data suffered from strong cross-track illumination and bi-directional reflectance distribution
function effects.’>>* Therefore, in addition to the atmospheric correction, the data had to be further
processed to minimize these effects, and semi-empirical nadir normalization using the kernel-based

54
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Ross-Li model™ was performed for all the flight lines.

Table 4.2: Image-derived signal-to-noise ratios (SNR) calculated for the chlorophyll absorption domain bands.

Image derived Signal-to-noise ratio (SNR)

SNR SNR SNR SNR SNR SNR
Line

(646 nm) (660 nm) (675 nm) (690 nm) (704 nm) (718 nm)
1 30.66 28.77 33.80 30.48 43.53 53.23
2 21.61 20.42 19.79 17.01 16.71 16.64
3 17.62 15.81 13.15 15.86 14.02 23.21
4 24.95 23.18 20.69 29.25 30.22 22.90
5 20.27 19.35 18.63 18.781 19.81 23.22
6 22.95 20.01 22.4 29.21 38.38 35.32
7 31.64 30.39 32.36 29.75 30.34 24.95
8 17.58 18.23 17.60 18.68 20.61 19.68
9 8.882 8.508 8.045 8.77 10.94 13.74
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Figure 4.2 Upper: The first MNF component of the studied localities, the high amount of noise is visible
particularly for flight line No. 9. Bottom: MNF Eigenvalues calculated for the whole flight line images—flight
lines numbers 05 and 09. They also show that flight line No. 9 suffers from significantly higher noise levels.

Direct ortho-georectification was performed using the PARGE software package.’® Data from the on-
board inertial measurement unit/global positioning system unit and digital elevation model with
ground resolution of 10 m were used as the input parameters for the orthogeorectification. Finally,
the hyperspectral image data was georeferenced to the UTM 33N (WGS-84) coordinate system. To
assess the final accuracy the ortho-rectified HyMap, the product was compared to the very high
spatial resolution aerial orthophotos (pixel size % 0.5 m) and a resulting standard positional accuracy
of 3.7 m was defined.

Finally, we assessed the radiometric quality of each flight line by calculating the signal-to noise ratios
(SNR).® To calculate this parameter, a dark and homogenous surface (deep clean water body) was
identified for each flight line and set as a region of interest (ROI). Subsequently, the ratio of the mean
radiance and the standard deviation were calculated for each ROI (Tab. 4.2). In addition, we
employed the minimum noise fraction transformation®’ to assess the level of noise present in each
flight line image (Fig. 4.2). Based on this assessment, we could see that two flight lines (8 and 9) had
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significantly lower radiometric quality and high amounts of noise, especially flight line number 9
(Table 4.2), (Fig. 4.2).

4.4 Methods

Figure 4.3: Data processing workflow.
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The general workflow of the completed research is outlined in Fig. 4.3. Cab was determined by
testing numerous empirical models utilizing the original (nontransformed) reflectance data as well as
its transformed products. Initially we defined the extent of the Norway spruce forests to which the
further computation was applied. To create and validate the empirical models, we divided our
ground truth data into training and validation datasets. The relationship between the predicted and
measured values was described by the linear regression model and the coefficient of determination
(R2 and Rv2) and root mean square errors (RMSE) were determined. To assess the vegetation health
status, we also tested the following indicators: the red-edge part of spectrum (REP),*” photosynthetic
reflectance index,” and structure insensitive pigment index (SIP1).*

4.4.1 Definition of the Norway Spruce Forest Extends

We focused on homogenous Norway spruce forests, and it was thus necessary to mask out other
surfaces. We used a hierarchical classification approach, which we found more efficient than simple
supervised classification (Fig. 4.5). First we identified vegetated and non-vegetated areas using
simple threshold classification of the red-edge normalized difference index (NDVI705 % 0.3).”® The
vegetated surfaces were then classified into grasslands and forest areas using the maximum
likelihood classification (MLC) applied to the first five components the results from the MNF
transformation of the HyMap data. The forests were subsequently divided into coniferous and
deciduous by applying the MLC method to the selected spectral ratios (R742/R558, R1062/R558,
R1652/R558, R2192/R558).

To classify exclusively the Norway spruce forests, the MNF transformation and MLC were then
applied again, this time only to the HyMap reflectance pixels that were previously identified as
coniferous. Finally, the resultant classification was filtered using a sieve filter to remove very small
clumps of pixels. The derived Norway spruce forest mask was then used for all the following
calculations and transformations applied to the HyMap data.

4.4.2 Statistical Background

Although the positions of all the trees in each group were measured by a FieldMap laser rangefinder,
it was not possible to distinguish individual tree crowns within the HyMap image data due to the
relatively low spatial resolution (5 m). This issue needed to be resolved prior to the empirical
modeling as an image pixel value could not be associated with the corresponding ground truth data
value. Therefore we defined 10 tree groups as the least circumscribed rectangle defined by a cluster
of trees (ROI) (Fig. 4.4). Then the average ground truth value (the average laboratory chlorophyll
content calculated for each tree group) could be directly compared with the average pixel value
falling within the defined group (ROI).

Basic statistics for each group defined in the following order (Erika: 2 groups A and B; Habartov: 3
groups C, D, and E; Mezihorska: 3 groups F, G, and H; Studenec: 2 groups, | and J, were calculated
(Table 4.3) to ensure the proper definition of training and validation datasets. Studying the data
variability within each group and spatial variability within each site, we defined the following two
datasets required for further statistical treatment:
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¢ The training dataset that was used to define the regression models: groups A, C, D, F, G, and .

* The validation dataset that was used to validate the obtained models for Cab: groups B, E, H, and J.

Figure 4.4: Examples of the defined ROIs.

HyMap
data

thresholding

<0.3 >0.3
non-vegetation vegetation
mask mask
Q—@
grass forest
mask mask

deciduous coniferous

mask mask
MNF
othgr Norway
species spruce
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Norway spruce mask

Figure 4.5: HyMap data classification workflow. MNF-minimum noise fraction, MLC-maximum likelihood
classifier.
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4.4.3 Retrieval of the Chlorophyll Content

For the further empirical modeling of chlorophyll content (Cab), we used the spectral
transformations as follows:

* Vegetation indices.
* Stepwise multiple regression (SMR) models.
¢ Ratio indices derived from the first-derivative spectra.

* Normalized reflectance models.

4.4.3.1 Vegetation indices

The vegetation indices models are based on the simple linear relationship between the chlorophyll
content concentration and the vegetation index. The first group of vegetation indices is based on the
(normalized) ratios of a few selected bands. We selected the NDVI705 *®
Vogelmann red-edge index (VOG).> Furthermore, we calculated the position of the inflection point
of the spectral reflectance curve in red-edge part of the spectra red-edge position (REP)** as it allows

and a simple ratio

assessing the shape of the spectral curve in chlorophyll absorption in the red-edge domain. The
calculated point separates the convex and concave parts of the spectral curve (in the red-edge part
of the spectrum) and lies on the part with the maximum slope. Therefore it also identifies a point
where the first derivative of the spectrum exhibits a maximum. To calculate the position of the red-
edge inflection point, we used the four-point interpolation technique described in Ref. .

Besides the well-known indices, we tested a new index “chlorophyll absorption depth normalized
area under curve between 543 and 760 nm (CADAC543-760)” to retrieve the chlorophyll content of
the Norway spruce based on similar principles as the ANMB650-725 index.”* The CADAC543-760
index also utilizes the continuum-removed spectrum and is defined as the area under the reflectance
curve between 543 and 760 nm, while each band within this interval is normalized to the maximum
depth of the chlorophyll absorption feature (at 675 nm) (Fig. 4.6):

IS BD. BD.
CADAC =05 > 4,4 ) "1y )
e JZ=1:( " j) BDg;s  BDegrs

[eq. 6]

where: A;...A,.; refers to the central wavelength of the absorption feature between 543-760 nm and
BD;...BD,.; is the band depth of continuum removed reflectance.

75



Chapter 4

Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status

T T T T T —
10 P Y ]
L //h i
b

g o8 A \ ]
[ ¢ i
§ o8| =
5 B T
5 [ ]
s i -
k] 04 H -
N r i -
® - : 4
E i E
- N 3 3 e 2 e 3 I3 —
Y/ B glElRE | I :
L/ 3 i i3 2 5y 1% i e i3 E
i i g i7 2 i i | i .

oo 12 © SAE 2 E e HE = ® : :
0.55 0.60 0.65 0.70 0.75

Wavelength (micrometers)

Figure 4.6: Chlorophyll absorption and depth normalized area under the curve between 543 to 760 nm
(CADAC543-760).

Table 4.3: Description statistics of the laboratory chlorophyll content values.

Training and validation chlorophyll content laboratory values

group | locality use Cab (min) [mg/g] | Cyp (Max) [mg/g] | Cyp (mean) [mg/g] | Cyp (std) [mg/gl
A Erika calibration 1.7260 3.4439 2.7146 0.6251
C Habartov calibration 2.1862 3.5375 2.8805 0.4930
D Habartov calibration 2.0755 3.1775 2.6008 0.3646
F Mezihorska | calibration 1.8657 2.3356 2.1417 0.1699
G Mezihorska | calibration 1.6008 2.3668 2.0292 0.2780
I Studenec calibration 2.3670 3.2668 2.9070 0.3121
calibration (the whole dataset) 1.6008 3.5375 2.5456 0.5373
B Erika validation 2.0485 3.3826 2.5832 0.4995
E Habartov validation 1.8710 2.9022 2.1765 0.3738
H Mezihorska | validation 1.5004 2.7110 2.3043 0.4260
J Studenec validation 2.6293 3.2483 2.8959 0.2321
validation (the whole dataset) 1.5004 3.3826 2.4899 0.4949

4.4.3.2  Stepwise multiple regression models

In addition to the vegetation indices, we tested two multivariate approaches that utilize the bands
between 543 to 760 nm to estimate the chlorophyll content.®> We used SMR® to construct a model
defining a relationship between the chlorophyll content and (i) spectral derivatives: the first
derivatives of the image spectra between 543 and 760 nm, (ii) BD normalization: the continuum-
removal transformation® was applied to the spectrum between 543 and 760 nm, and then the BD of
each spectral band was divided by the depth maximum of the chlorophyll absorption (675 nm for the
HyMap data).
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4.4.3.3  Ratio indices derived from the first-derivative spectra

We used two spectral derivative indices based on the ratios of the transformed (first derivation)
reflectance D718/D704 and D718/D747.%

4.4.3.4 Normalized reflectance models

Another tested approach was based on the normalization of the reflectance to the reflectance
minimum at 675 nm (maximal absorption of the chlorophyll) and to the reflectance maximum at 744

nm.*

4.4.4 Statistical Assessment of the Relationship Between the Canopy
Chlorophyll Content and the Spectral Indices Calculated from the
HyMap Data

To test if there is a linear relationship between the chlorophyll content determined in the laboratory
for the collected needle samples and the spectral indices derived from the HyMap data, we
calculated Pearson’s correlation coefficient (see Sec. 4.5.1) using the training dataset of the group
trees (A, C, D, F, G and 1). All the independent variables (see 4.3) as well as the dependent variable
(laboratory chlorophyll content, Cab) have passed the Shapiro-Wilk normality test®® (p-value > 0.05)
and proved to have normal distributions (Table 4.4).

Table 4.4: Shapiro-Wilk normality test: Results of the Shapiro-Wilk normality test for chlorophyll content (C,)
values (laboratory determined) and the spectral indices of the C,, content (image derived). p-value —
significance, W — Shapiro-Wilk test statistic.

Shapiro-Wilk normality test (a=0.05)
variable p-value w

Cap 0.1862 0.8936
NDVlygs 0.4348 0.9287
VOG 0.4745 0.9327
REP 0.1667 0.8893
CADACs43.760 0.3900 0.9238
Continuum removal BD normalization model 0.1877 0.8939
D718/D701 0.6273 0.9465
D718/D7a7 0.7430 0.9563
Neoo 0.0599 0.8512
Nyos 0.2197 0.9001
Y 0.2393 0.9035
N33 0.5920 0.9435
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After the normal distribution of all the variables was demonstrated, we could test whether the value
of the correlation coefficient was large enough to reject the zero-value hypothesis stating the
correlation coefficient is equal to 0. By rejecting this hypothesis, we demonstrated that the spectral
indicators and the chlorophyll content are not independent. The confidence level was set at 98.5%.
Following the statistical testing described above, the linear regression models were then applied to
the spectral indices data to predict the canopy chlorophyll content.

Using the training dataset (tree groups A, C, D, F, G, and |), the coefficient of determination (R2)
between each spectral index and the Cab content was calculated (Tab. 4.5), describing the amount of
data variability explained. The validation dataset (tree groups B, E, H, and J) was then used to validate
the accuracy and consistency of the chlorophyll prediction models by calculating the RMSE and
coefficients of determination of predicted versus measured Cab values (Rv?) (Tab. 4.6).

Table 4.5: Training dataset: Pearson’s correlation coefficient (r,), coefficient of determination (R°) and the t-
test results.

Correlation between the tested spectral indices and canopy chlorophyll content

spectral indicator r. (Pearson) critical value (a=0.05) t R
NDVI;¢s 0.8517 2.776 3.2509 0.7254
VoG 0.9085 2.776 4.3494 0.8255
REP 0.9397 2.776 5.4932 0.8830
CADACs43.760 0.8899 2.776 3.9026 0.7920

-0.9225
SMR spectral derivative model® -0.6931 X X 0.99998
0.2558
;Z:;';‘I'I::;;imn:’;’:ﬁo 0.9398 2.776 5.5003 0.8831
D718/D0a 0.9555 2.776 6.4782 0.9131
D;18/D747 -0.8807 2.776 3.7186 0.7756
Neso -0.9013 2.776 4.1612 0.8124
Nyoq -0.9306 2.776 5.0847 0.8660
N8 -0.9563 2.776 6.5413 0.9146
N33 -0.8914 2.776 3.9337 0.7946

1partial correlation coefficients between canopy chlorophyll content and each variable of the multivariate regressions

78



Chapter 4
Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status
Table 4.6: Validation dataset: Validation of the total canopy chlorophyll content retrieved from the HyMap

image data. RMSE — Root Mean Square Error, RV — coefficient of determination of the predicted vs. measured
values of the chlorophyll content.

Canopy chlorophyll content retrieval validation

spectral indicator RMSE (mg/g) Rv
NDVl,g5 0.2278 0.8960
VOG 0.2269 0.9340
REP 0.3840 0.9050
CADAC:43.760 0.3395 0.9114
SMR spectral derivative model 0.7962 1-10”
normalzation model 02832 09328
D718/D704 0.2055 0.9370
D;18/D747 0.2456 0.9880
Neso 0.4305 0.8254
Nyos 0.2833 0.9293
Ny1g 0.2664 0.9440
N33 0.2736 0.9905

4.4.5 Vegetation Health Status Classification Method

The main aim of the study was to develop a statistical method allowing qualitative classification of
the forest stands based on their health status. We selected four indicators of vegetation health that
are based on the plant/forest spectral property:

1. Total canopy chlorophyll content (Cab) (D718/D704)%
2. Position of the inflection point of the spectral curve in the red-edge part of spectrum (REP)*
3. Photosynthetic reflectance index (PRI)*

4. Structure insensitive pigment index (SIP1)*
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Figure 4.7: The selected indicator variability within the studied test sites/groups of trees. C,, — content of
chlorophyll a+b, REP — position of the inflection point of the spectral curve in the red-edge part of the spectrum,
PRI — Photochemical Reflectance Index, SIPI — Structure Insensitive Pigment Index, A —J 10 groups of 5 sampled
trees.

The canopy chlorophyll content was estimated using the empirical model that yielded the best
results after the validation (see Results, part 5.1). The amount of green biomass and canopy
chlorophyll content primarily determine the position of the inflection point of the spectral curve in
the red-edge region. Increasing chlorophyll concentration causes broadening of the major
chlorophyll absorption feature around 675 nm and thus causes a shift in the inflection point towards

longer wavelengths.®"*

On the other hand, vegetation stress (e.g., the presence of heavy metals in
the soil) might cause a shift in the inflection point to shorter wavelengths.”” Therefore we also
included REP (described in 4.3.1) in the further statistics, as it can serve as an indicator of the

12717374 The PRI was originally defined by Ref. ** and proposed as an indicator of the

vegetation stress.
de-epoxidation of the carotenoids—xanthophyll pigments; they are related to light-absorption
mechanisms and closely linked with light use efficiency and carbon dioxide uptake;**” and Refs. ”°
and 77 propose to use this index as an indicator of water stress. The SIPI was designed by Ref. * to
maximize the sensitivity of the index to the ratio of bulk carotenoids to chlorophyll while decreasing
sensitivity in the canopy structure. Due to the relative low dynamic range of the SIPI values, we used

its exponential transformation (expSIPI) in further analysis.

We must emphasize that, except for the canopy chlorophyll content, none of these indices give direct
guantitative information on any particular vegetation biochemical parameter. Instead, they are
intended to map only relative amounts, which can be further interpreted in terms of the condition of
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the ecosystem. The statistical relationship between the estimated canopy chlorophyll content and
the selected indicators (e.g., REP, PRI, and SIPI) was assessed (Fig. 4.7).We found that the value of PRI
did not change much for the Norway spruce in the entire area of interest and thus didn’t show high
enough variability. In addition, the direct relationship of PRI to the chlorophyll content was also
relatively weak. Therefore we decided to exclude the PRI index from further investigations. The
values of the three selected indices were transformed into standardized z-scores (Tab. 4.7) to ensure
their comparability and independence of their physical dimensions (units). Z-scores generally express
how far from the mean the particular value is in terms of the standard deviations (o). Two products
were created using the obtained normalized z-score values. First the map of chlorophyll content was
classified into five classes defined by the following threshold values (Fig. 4.8):

Class 1: values < mean - 1.00
Class 2: mean — 1.00 < values < mean - 0.50
Class 3: mean - 0.50 < values < mean p 0.50
Class 4: mean - 0.50 < values < mean p 1.0c;
Class 5: values > mean p 1.0c.

Table 4.7: Threshold values of selected indicators (see abbreviation list and chapter 2) used for the further
health status assessment. Mean (u) and Standard Deviation (o).

Threshold values of the selected indicators
health status indicator -1.00 -0.50 +0.50 -1.00 U1
C.p [me/gl 1.914 2.219 2.828 3.132 2.523
REP [nm] 715.508 | 716.107 | 717.306 | 717.905 | 716.706
SIPI 0.944 0.980 1.053 1.090 1.017
expSIPI 2.683 2.724 2.806 2.847 2.765

In addition to the classified chlorophyll content map, we created another raster product that
combined the information from both indicators REP and expSIPl. REP has the same directly
proportional relationship with the vegetation health as the chlorophyll content, and REP was
therefore classified identically. On the other hand, expSIPl needed to be classified in the reverse
order as the higher values reflect higher carotenoid-to-chlorophyll contents and thus worse
vegetation health (in this case Class 1 was calculate as values > mean + 1.0g; ....., Class 5 as values <
mean - 1.00). To create the final raster combining the information from REP and expSIPI, they were
both summarized and one raster ranging from 2 to 10 was obtained. These values were finally
linearly reclassified into the 1 to 5 range to make this output comparable with the Cab raster (Fig.
4.9). As a result, in both maps (Cab and REP p exp SIPI) the Class 1 indicates worse health status for
the trees without visible damage symptoms and Class 5 represents the values indicating the
healthiest trees.
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Figure 4.8: Scheme showing how the suggested statistical method was constructed. The z-normalized values of
all the three selected indicators are classified into classes 1-5 using the standard deviation (o) classification
method. The studied groups of trees (A-J) are projected on an absolute scale for each indicator. The colors
correspond to the locations of the studied groups of trees (green A, B = Erika, orange C, D, E = Habartov, blue H,
G = Mezihorskd and red I, J = Studenec). C,, — content of chlorophyll a+b, REP — Position of the inflection point of
. SIPI . oy .
spectral curve in red-edge part of spectrum, e — exponentially transformed Structure Insensitive Pigment
Index.
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Figure 4.9: Statistical classification of the Norway spruce health status by integrating the Cab, REP, and expSIPI.
E % Erika; H % Habartov; M % Mezihorskd; S % Studenec study sites; A through J;10 defined tree groups. Color
scale 1 through 5—health status classes for the trees without visible damage symptoms; 1 = the worst and 5 =
the best result (see Fig. 4.7).

4.5 Results and Discussion

4.5.1 Validation and Prediction of the Canopy Chlorophyll Content (Cab)

In both multivariate approaches, the SMR spectral derivative and the continuum removal BD
normalization models, the null hypothesis was tested. As a result, three different derivative variables
(the derivative of the bands with central wavelengths 632, 661, and 544 nm) and only one
normalized band (RCRo/m705) passed this test and where further used (Tab. 4.5).

Using the training dataset (A, C, D, F, G, and 1), we obtained the models that all attained rxy high
enough to pass the initial t-test (Tab. 4.5). For the validation dataset (groups B, E, H, and J), the
statistical parameters, Rv2 and RMSE (Tab. 4.6), were used to test how well the linear models can
predict the chlorophyll content, and the image average values were compared with the average
values of the chlorophyll content obtained in the laboratory (ground truth).

In general, we obtained rather high coefficients of determination for the linear models calculated
between the tested spectral indices and the ground truth dataset (canopy chlorophyll content) on
both the training and the validation datasets (R2, Rv2). These results confirmed the assumption of a
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strong dependence between the selected spectral indicators and the canopy chlorophyll contents.
The scatterplots between ground (laboratory) chlorophyll content value and selected image derived
spectral indices are shown in Fig. 4.10. For the training dataset (Tab. 4.5), the highest correlation
coefficients (strongest linear relationship) were obtained for the normalized reflectance (N718) and
the derivative ratio (D718/D704) models. The weakest correlation was found for the NDVI705 index.
The strong negative correlations between the canopy chlorophyll content and the normalized
reflectances (N690, N704, N718, and N733) are in accordance with the theoretical background. The
higher the chlorophyll concentration, the higher is the absorption of radiation and the lower is the
observed reflectance. SMR analysis found a valid result only for the multiple linear regression of
spectral derivatives. For this particular case, we were able to calculate only the partial correlation
coefficients between each independent variable (spectral index) and the dependent variable
chlorophyll content (chlorophyll content). Therefore the general coefficient (rxy) was not defined for
this model.

Comparing R2 (Tab.4. 5) to RMSE (Tab. 4.6) indicates that the model exhibiting the highest R2 does
not necessarily give the best result. This can be demonstrated on the example of the multiple linear
model calculated from the spectral derivatives. Despite the very high value of R* (R* = 0.99998), the
model has the highest RMSE (RMSE = 0.7962 mg/g, relative RMSE = 32%). We assume this is due to
the rather high noise level, which was multiplied by calculating the first derivatives from the image
spectrum. The variability and the dynamic range of the predicted values for the chlorophyll contents
were compared with the ground truth dataset using box plot diagrams. The box plots constructed for
the predicted Cab values (D718/D708) and the ground truth Cab data (Fig. 4.11) exhibit good
agreement for the Studenec and Erika sites. In contrast, a worse match was found for the Mezihorska
test site, where extremely high variability of the predicted values can be observed. This can be
explained by the low radiometric quality of the HyMap line (line No. 9) where the site is located. This
particular line No. 9 suffers from a very high noise level compared with the other HyMap lines
acquired in 2009 (see Chap. 4.3, Table 4.2, Fig. 4.2).

The best result taking in account R2, Rv2, and RMSE was obtained using the model based on the
D718/D708 ratios (R2 = 0.9131, Rv2 = 0.9370, RMSE = 0.2055 mg/g, and relative RMSE = 8%).
Therefore the D718/D708 model was applied to the all HyMap image data (lines 1 through 9) to
retrieve the map of the canopy chlorophyll content (Fig. 4.12). This output was further used to assess
the canopy health status.
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Figure 4.10: Scatterplots between ground (laboratory) measured chlorophyll content and selected image
derived hyperspectral indices.
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Figure 4.11: Box plots of the Measured (ground truth) and the predicted (HyMap) canopy chlorophyll contents
for the derivative ratio index (D;;5/D70g). C,» — content of chlorophyll a+b (g of pigment related to dry mass).

1.1.1 Assessment of the Norway spruce Health Status

Two statistical scenarios, Cab and REP p exp SIPI, were tested to assess and classify the Norway
spruce health status (see Chap. 4.5). Both scenarios were applied to all the pixels classified as
homogenous Norway spruce forest in the HyMap image data (lines 1 through 9) (Fig. 4.9).

In both cases, Cab and REP p exp SIPI, the frequency histograms (Figs. 4.13 and 4.14) show rather
symmetrical distribution that is close to the Gaussian normal distribution. However, the histograms
computed for each test site (Erika, Habartov, Mezihorskd, and Studenec) show significant
asymmetries. At the Erika site, we can identify slight asymmetry toward the higher-class values,
indicating the higher frequencies of average and above-average values. On the other hand, for the
Habartov site we can observe slight asymmetry toward the lower-class numbers, indicating the
higher frequencies of average and below-average values. For the Mezihorska site, a very strong
asymmetry can be observed. The majority (almost 75%) of the pixels were classified into the Classes
1 and 2, while Classes 4 and 5 have very low frequencies. The opposite situation can be observed for
the Studenec site, where a strong asymmetry toward the high classes can be observed.
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Figure 4.12: Map of the Norway spruce canopy chlorophyll content derived by applying the D;,5/D4 regression
model. E — Erika, H — Habartov, M — Mezihorskd, S — Studenec. C,, — content of chlorophyll a+b (g of pigment
related to dry mass), A-J — 10 groups of 5 sampled trees.

Erika, Habartov, Mezihorskd, and Studenec (below).Comparing the two tested classification
scenarios (Cab and REP p exp SIPl), the Cab method shows higher data variability. The Cab scenario
has higher frequencies of extreme values (Class 1 and Class 5) in contrast with the REP p exp SIPI
scenario, where the values are more frequently classified in the average Class 3. This can be
explained by the higher variability of the Cab values compared with the expSIPI values. The
laboratory analysis of the Norway spruce needles, collected during the project described in Ref.*,
indicated that higher needle chlorophyll content is not automatically connected with a better health
status. Therefore the chlorophyll content itself cannot be the only indicator of damage to the Norway
spruce. To take in account this fact, the expSIPIl index was used as a correcting factor in the selected
model. If the Norway spruce stands have very high Cab and REP values, and the expSIPI values don’t
indicate any health damage, the pixels fall into average Class 3 instead of being classified in Class 4 or
5.
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Figure 4.13: Relative frequencies (%) of the Norway spruce health status classes obtained for the Cab
classification scenario. The entire Sokolov lignite basin area (top) and the individual sites Erika,Habartov,
Mezihorskd, and Studenec (below).
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Figure 4.14: Relative frequencies (%) of the Norway spruce health status classes obtained by the statistical
scenario REP p expSIPI. The entire Sokolov lignite basin area (top) and the individual sites.

All the studied sites exhibited soil solution pH values under 3.5 (Tab. 4.8), which correspond to low
pH threshold for forest soils in the Czech Republic.”* We assume that soil acidity is the main stress
factor in the studied locality. This finding is supported by the fact that Central Europe and Denmark
were considered to be the areas with the highest exceeding of limits for soil acidification indicators,
pH and base cations-to-Al ratios in 2010.” Soil conditions, especially nutrient availability and balance,
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determine the physiological status of forest trees. Nutrient imbalances and deficiencies may result in
increased susceptibility to a number of stress factors, such as weather extremes or pest invasions.”
Thus determination of the health status of trees should include evaluation of numerous parameters
and should also take into account other factors such as soil pH and the base cations-to-Al ratios, used
to estimate the risk of damage to the vegetation from acidified soil (ICP Forests Executive Report,
2010). High values of the organic horizon C:N ratios (above 22) also imply the possibility of lower
nitrification™* and thus slower nutrient turnover or misbalance.

Table 4.8: The soil solution pH (in KCl) and C:N ratio for the two organic top horizons. One-way ANOVA, *
significant difference at 0.05, ** significant difference at 0.01. Different letters indicate significant differences
between sites according to the Turkey-Kramer multiple comparison test.

pH and C:N ratio in two organic horizons

Site pH (KCI) C:N ratio

upper lower both upper lower both

horizont | horizont | horizonts | horizont | horizont | horizonts

%k ik o ikl

Erika 2.55 2.50 2.53 28.06° | 27.10™ 28.40™
Habartov 318" | 3.437 3317 | 26.68° | 31.80™ | 29.24™
Mezihorska | 2.87° | 2.76° 2815 | 28657 | 27.24™ | 27.65™
Studenec 3337 | 299" 3.16° | 29.70° | 26.80™ | 27.73™

1.2 Conclusions

According to the ICP Forest methodologies, the main indicators for forest health assessment at Level
| consists in evaluation of crown defoliation and foliage discoloration; however several limitations of
these indicators have been discussed recently.® Although the chlorophyll content could serve as a
relevant quantitative forest health indicator, it is not included either in the foliage chemistry
indicators of the ICP Forest manual® or in the US Forest Service’s Forest Inventory and Analysis
program.®! This could be explained by the fact that large-scale assessment of the chlorophyll content
could be problematic due to laboriousness and high costs of the needle sampling and biochemical
analyses. At the present time, hyperspectral technologies provide an opportunity to retrieve a
reliable continuous chlorophyll model while requiring only a reasonable number of samples.

Although the chlorophyll content in foliage is quite often declared to be an indicator of plant
physiological status,® the uniform classification of chlorophyll contents for Norway spruce needles is
not yet very well established. To date, no fixed threshold values of needle chlorophyll content for
determination exact classes of forest health status exists. The actual chlorophyll content in the
needles of coniferous trees depends on the local and microclimatic conditions, including
geographical factors such as latitude and altitude.® Particularly the altitude correspond with a

17,18

combination of several environmental factors, such as irradiance, temperature, water, and

nutrient availability, which are all factors that influence the chlorophyll content in foliage.®***
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Oleksyn et al.® reported that seedlings of high-altitude Norway spruce populations in colder regions
contained higher chlorophyll concentrations in needles than trees at low elevations. According to
Ref. ®, the chlorophyll content in needles of healthy mature (60 years and older) Norway spruce
(altitude 840 m) ranges between 2.2 to 2.7 mg per gram of dry mass and other authors state even
higher chlorophyll contents: 3.21+0.30 mg per gram of dry mass (altitude 400 m)® or 4.30+1.06 mg
per gram of dry mass (altitude 700 m).?® Therefore it is necessary in each case to adjust the threshold
values of the chlorophyll content to local conditions. We assume that our model could be applied to
other spruce or coniferous species, but at least minimal ground truth calibration and laboratory
analyses of pigment contents are advisable. It appears that local environmental conditions affect the
chlorophyll content even more strongly than the difference between two spruce species. According
to Barsi et al.,* the difference in chlorophyll content in needles of early succession black spruce (1.6
mg per gram of dry mass) and late succession red spruce (1.44 mg per gram of dry mass), both grown
under the same controlled conditions, was on average only 10%.

We evaluated the numerous approaches to determine the chlorophyll content empirically. The
individual models were statistically assessed using the ground truth training/validation datasets and
the best model based on the spectral derivative ratio (D718/D704, RMSE = 0.2055 mg/g, R2 = 0.9370)
was chosen to estimate the chlorophyll (Cab) content for the Norway spruce species using the
HyMap multiflight line data. Then we developed a new statistical method to assess the physiological
status of macroscopically undamaged foliage of Norway spruce. As the chlorophyll content alone
may not correspond sufficiently well to the physiological/health status, the suggested method
utilizes three indicators (Cab, REP, expSIPl). Thus the suggested method takes in account the two
major biochemical parameters that are closely connected with photosynthetic functions
(chlorophylls and carotenoids), and it allows assessing of the vegetation stress in a more objective
way. Based on our z-score classification of the needle chlorophyll content, the medium health status
class of trees lacking visible damage symptoms (Class 3, chlorophyll content 2.22 to 2.83 mg per gram
dry mass) corresponds well with the chlorophyll values reported by Ref. 3. This accordance suggests
the possibility of the general applicability of our model after further testing and validation.
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Abstract

Forests play an important role in regulation of the global climate; moreover, they provide human
beings with a whole range of ecosystem services. Forest health and ecosystem functioning have been
influenced by anthropogenic activities and their consequences, such as air pollution, surface mining,
heavy metal contamination, and other biotic and abiotic stress factors, which had an especially
serious effect on central Europe. Many aspects of the physiological state of trees are more or less
related to the concentrations of two main groups of leaf photosynthetic pigments: chlorophylls and
carotenoids. Therefore, their contents can be used as non-specific indicators of the actual tree
physiological status, stress and the pre-visible tree damage. Variations in leaf biochemical
composition affect foliar optical properties and can be assessed remotely using high spectral
resolution data (hyperspectral data). These data were successfully used in earlier studies to detect
vegetation stress and damage. However, only a few approaches have dealt with the use of
hyperspectral remote sensing to assess vegetation physiological status on a regional scale. Moreover,
little or no research has been done on assessing vegetation health while utilizing multi-date

hyperspectral images.

In this study, the method for assessing forest health conditions using optical indices retrieved from
hyperspectral data was applied to the two temporal HyMap date sets acquired in 07/2009 and
08/2010 to detect stress for the Norway spruce forests in Sokolov, NW Bohemia, a region affected by
long-term extensive mining. The classification results were validated by ground truth data (total
chlorophyll - Cab, carotenoids - Car and carotenoid to chlorophyll ratio - Car/Cab) and were
associated with the geochemical conditions of the forest stands. Both biochemical analysis of the
sampled foliage and classification of 2009 and 2010 hyperspectral image identified the same sites
affected by vegetation stress. In addition to higher Car/Cab, which enabled detection of the stressed
trees using hyperspectral image data, these sites showed critically low pH and lower values for the
macronutrient parameters in both organic horizons and, in addition, both sites exhibit critically low
base cation to aluminum ratios (Bc/Al) for lower organic and top mineral (0-20 cm) soil horizons. The
results of this study demonstrate (i) the potential application of hyperspectral remote sensing as a
rapid method of identifying tree stress prior to symptom expression, and (ii) the added value of
multi-temporal approaches for hyperspectral data and its further potential for monitoring forest

ecosystems.
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5.1 Introduction

Forests play an important role in regulation of the global climate via the global carbon cycle,
evapotranspiration, and earth surface albedo (Bonan, 2008; Jackson et al., 2008). Moreover, forests
provide humans with a whole range of ecosystem services including provision of food and forest
products, regulation of the hydrological cycle, protection of soil resources, etc. (Hassan and Scholes,
2005). Forest health and ecosystem functioning have recently been influenced by anthropogenic
activities and their consequences, such as air pollution, surface mining, heavy metal contamination
(Aznar et al.,, 2009), and other biotic and abiotic stress factors such as pest invasions and soil
acidification (Sebesta et al., 2011), which had an especially high effect on central Europe. Therefore,
large-scale monitoring of forest health and its methodologies are in the forefront of interest for

scientists as well as forest managers.

Many aspects of the physiological state of trees are more or less connected with the concentrations
of two main groups of leaf photosynthetic pigments: chlorophylls and carotenoids (Ustin et al.,
2009). Vegetation with a high concentration of chlorophyll is considered to be healthy, as the
chlorophyll content is linked to greater light-use efficiency, photosynthetic activity and carbon
dioxide uptake (Blackburn, 2007; Kramer, 1981; Wu et al., 2008). Chlorophyll generally decreases
under stress and during senescence (Blackburn, 2007). Carotenoids play the main role in the process
of incident light absorption, transportation of energy to the reaction center of the photosystems, and
heat dissipation of energy in case of high irradiation (Demmig-Adams and Adams, 1996).
Combination of the influences of chlorophylls and carotenoids is thus connected with light-use
efficiency (Landsberg et al., 1997). However, higher carotenoid to chlorophyll ratios indicate

vegetation stress and senescence (Demmig-Adams and Adams, 1996; Young and Britton, 1990).

Therefore, the content of biochemical compounds such as photosynthetic pigments can be used as
non-specific indicators of the actual tree physiological status, stress and the pre-visible tree damage.
Moreover, the contents of photosynthetic pigments are closely related to photosynthetic
performance and can serve as non-specific stress indicators in a very early stage, when the needles
do not yet show any microscopic or macroscopic damage symptoms (Lepedus et al., 2005;
Soukupova et al., 2000; Tzvetkova and Hadjiivanova, 2006). When dealing with photosynthetic
pigments as vegetation stress indicators, seasonal dynamics in pigment contents in evergreen
conifers must be taken into account. Changes in pigment levels reflect the normal physiological

responses in the plant as well as the responses to environmental stress (Gamon and Surfus, 1999;
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Gitelson et al., 2001, 2002, Grisham et al. 2010).The chlorophyll content in needles increases in the
spring (from May/June) and during the summer (July-September) and then remains relatively
constant until October, when it again decreases during the frost hardening process (Oquist and
Huner, 2003). Some of the carotenoids (e.g. lutein, B-carotene) exhibit stable contents during the
seasons in contrast to several groups of xanthopylls (e.g. antheraxanthin, zeaxanthin; Yatsko et al.,
2011), which increase significantly during the winter and serve as effective protection of the
photosynthetic apparatus under conditions of high irradiance and low temperature during the winter
and spring (Maslova, 2009). The total carotenoid to total chlorophyll ratio decreases in parallel with

the chlorophyll increase in the spring (Martz et al., 2007).

Conventional laboratory analyses of leaf biochemical parameters can be very precise, although they
have a number of disadvantages (e.g., limited number of samples, high labor and cost demands). It
has been demonstrated that variations in leaf biochemical composition affect foliar optical
properties (Carter and Knapp, 2001; Kokaly et al., 2009; Sims and Gamon, 2002; Ustin et al., 2009).
The spectral reflectance characteristics of plant canopies are influenced by the chemical composition,
internal leaf structure and spatial distribution of the leaves (Asner, 1998; Ollinger, 2011; Zwiggelaar,
1998). Leaf pigments are well positioned to absorb incident light and can be assessed with spectral
reflectance. The more important absorption pigments and their characteristic absorption

wavelengths/wavebands were reviewed by Zwiggelaar (1998).

Modern remote sensing has become a novel tool not only for detecting target materials and also for
monitoring dynamic processes and physical-property induced changes. The use of multispectral
imagery has been demonstrated to effectively map the distribution of ecosystem types and
vegetation systems (Everitt et al., 2002; Gould, 2000; Knorn et al., 2009; Lamb and Brown, 2001;
Vogelmann et al., 2012); however, the low spectral resolution of multispectral imagery is a major
limitation. On the other hand, imagery with higher spectral resolution (e.g., hyperspectral) provides
sufficient spectral resolution to describe diagnostic absorption signatures and allows sufficiently
detailed species discrimination and biochemical differentiation (Aspinall et al., 2002; Feret and Asner,
2013; Kokaly, 2009; Lass and Prather, 2004; Majeke et al., 2008; Odagawa & Okada, 2009;
Underwood et al., 2003; Ustin et al., 2004; Zhao et al., 2013).

Data with very high spectral resolution — also referred to as imaging spectroscopy (IS) data, which is
also known in the remote sensing community as hyperspectral data — has been successfully used in

earlier studies to detect vegetation stress and damage (Campbell et al., 2004, 2007; Hamzeh et al.,
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2013; Hernandez-Clemente et al., 2011; Pu et al., 2008; Romer et al., 2012). In the forestry context,
most published precedents used IS data as a basis for identification of stress-sensitive wavelengths
(e.g. Ahern, 1988), for development of stress-sensitive vegetation indices (e.g. Carter and Miller,
1994; Carter and Knapp 2001) and for integrating stress-sensitive indices in more complex models

(e.g. Pontius et al., 2008; Shafri et al., 2012; Zarco-Tejada et al., 2004; Zhao et al., 2013).

In contrast, only a few approaches (Asner and Martin, 2009; Kampe et al., 2010) have dealt with the
use of hyperspectral remote sensing (image spectroscopy) to assess vegetation physiological status
on a regional scale. Moreover, little or no research has been done on assessing vegetation health
utilizing multi-date hyperspectral image data, as a time-series of hyperspectral data and reliable

methods to extract change/stress information for remotely sensed data analysis are still lacking.

We recently proposed a new method for assessing forest health condition via statistical integration
of optical indices retrieved from HS image data (Misurec, Kopackova et al., 2012). To assess subtle
changes in the physiological status of macroscopically undamaged foliage of Norway spruce, this
method integrated the following HyMap derived parameters: quantitative retrieval of chlorophyll
concentrations (Cab); Red-Edge Position (REP) (Curran et al.,, 1995) — the inflection point of the
spectral curve in the red-edge region, which is shifted to shorter wavelengths under vegetation stress
(e.g., the presence of heavy metals in the soil) (Chang and Collins, 1983; Clevers et al., 2002; Curran
et al., 1995; Horler et al., 1983; Rock et al., 1988); and the Structure Insensitive Pigment Index (SIPI)
(Pefiuelas et al., 1995) which is sensitive to the ratio of bulk carotenoids to chlorophyll. Although
reliable results were obtained, further testing and validation was requested to confirm the general

applicability of this method.

Therefore, in this study the same method (Misurec, Kopackova et al., 2012) was employed while

using two temporal HS image data sets (HyMap 2009 and 2010 image data) in order to:

- validate the new method using an additional temporal HS image dataset

- study the forest Norway Spruce variations in biochemical parameters while comparing the
foliar pigment content from the samples collected in two subsequent growing seasons 2009
(28™-29" July) and 2010 (2"*-3"September)

- assess vegetation stress within the selected Norway spruce sites while putting together
information on forest stand geochemical conditions, foliar biochemistry (pigment contents)
and the temporal differences detected by classifying the two HS image datasets acquired one

year apart
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5.2 Material and methods

5.2.1 Testsite

The study was performed in the Sokolov basin in the western part of the Czech Republic, in a region
affected by long-term extensive lignite mining (Fig. 5.1). Due to the mining activities and coal burning
power plants that were built in the immediate vicinity of the mined area, this region is one of the
most contaminated areas of the Czech Republic where high abundances of trace elements have been
detected (Suchara et al., 2011). The average altitude of the study region is about 470 m. Because the
basin is surrounded by the Krusné Hory Mountains, precipitation is above the average for the Czech
Republic and the local climate in the region is subject to more extreme weather, characterized by
colder and wetter conditions. According to the data of the meteorological station situated nearby
(Karlovy Vary, 606 m a.s.l.), long-term (1962-2006) annual temperature and precipitation were 6.7°C

and 589 mm, respectively.

The Sokolov basin in the Czech Republic is composed of rocks of Oligocene to Miocene age and is 8 -
9 km wide and up to 36 km long, with a total area of about 200 km?>. The basement of the Sokolov
Basin is formed of Variscan and pre-Variscan metamorphic complexes of the Eger, Erzgebirge,
Slavkov Forest, Thuring-Vogtland Crystalline Units, and granitoids of the Karlovy Vary Pluton (Fig.
5.1). The basal late Eocene Staré-Sedlo-Formation is formed of well-sorted fluvial sandstones and
conglomerates and is overlain by a volcano-sedimentary complex up to 350 m thick, which contains
three lignite seams (Rojik, 2004). The brown coal (lignite) contains 5 to 8% sulfur (S), and belongs
among coal seams enriched in As (Yudovich and Ketris, 2005) and other heavy metals, such as Cd, Ni,
Cu, Zn, Pb (Bouska and Pesek, 1999). Due to the presence of S in the coal, the lignite mines both still

active and abandoned, are largely affected by acid mine drainage (AMD) (Kopackova et al., 2012).

The selected forest stands surround the lignite open pit mines in Sokolov, but have not been directly
affected by the mining activities. However, the soil in all of the stands exhibits low pH, additionally Al
and As were identified as toxic elements with high bio-availability (Kopackova, under review).
Norway spruce was selected as it represents the predominant forest species in this region; in
addition, spruce needles were confirmed to be well-suited for detection of contamination (Suchara
et al., 2011). We selected four research sites dominated by mature Norway spruce forests of similar
age (Tab. 1); this was important criteria as the stand age is the most important factor for defoliation.

The stands were located at a maximum distance of 12 km from the active lignite open-pit mines (Fig.
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Tab. 5.1). None of the selected sites exhibited any severe symptoms of macroscopic damage and
they were all classified as damage class 1 with total crown defoliation not exceeding 25% and

average needle retention of 8-10 needle age classes.

Czech Republic

Elevation (m)

1 2°3§'0"E 12°40'0"E 12°45'0"E

50°15'0"N

50°10'0"N

4 km

[T ] Paleogene: Staré Sedlo strata

| Neogene sediments (assorted) [~ " Granite - high-grade kaolinization
[ Volcanic rocks (assorted) [ Granite - variscan intrusive complex
| Paleogene: Nové Sedlo strata | Paragneiss, mica schist

12°35'0"E 12°40'0"E 12°45'0"E

Figure 5.1: Scheme showing the topography and simplified geological situation of the studied area.
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undamaged foliage on a regional scale

Elevation

Distance from

Geological unit

Site Latitude (N) Lon(gEi;ude F?;ii[rs)ge the_: open-pit
(ma.s.l.) mines (km)
Erika 50°12°25” 12°36°17” 495 40-60 6.4 Staré Sedlo
sandstones
Habartov 50°09°48” 12°33°28” 477 40-60 11.2 paragneiss,
mica shist
Mezihorska 50°15°50” 12°38°17” 678 60-80 5.8 Granite
Studenec 50°14°09” 12°33°00” 722 40-60 8.5 paragneiss,
mica shist

5.2.2 Field data

5.2.2.1 Foliar sampling

In 2009 Norway spruce needle samples were obtained in the week when the HyMap flight campaign
(27" July 2009) was performed under unchanged weather conditions (27" —30" July). In 2010 due to
the heavy rain the needles from the same trees were samples approximately 2 weeks after the
HyMap data acquisition (21°* August 2010). At each of the 4 test sites, 10-15 representative trees
were selected in clearly definable groups of five (Erika: 2 groups (E,, E;), Habartov: 3 groups (Hi, H,,
Hs), Mezihorska: 3 groups (M;, M,, M3) and Studenec: 2 groups (S4, S,)). Sample branches were taken
from the sun-exposed (sunlit) and transitive portion of the canopy by tree climbers, the needles age
classes were identified, and representative samples of the 1st and 3rd year needles were collected.
Each set then contained 200 samples (50 trees x 2 positions in the crown x 2 age classes (1st and 3rd
year needles). The samples were placed in plastic Eppendorf vials in a portable freezer (at 0° C), and
transported within 2 hours to a nearby laboratory for further processing. The dry matter of the

needles was acquired after drying in an oven for 48 hours at 80°C.

Photosynthetic pigments (e. g. chlorophyll a, b and total carotenoids) were extracted in
dimethylforamide (DMF) for 7 days at 4°C under dark conditions, following the procedure outlined by

(Porra et al., 1989). The amounts of photosynthetic pigments were determined

spectrophotometrically, using equations published by (Welburn et al., 1994). The pigment

concentrations were then expressed as weight of pigment per gram of needle dry matter (mg/g).
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saturated

Figure 5.2: Foliage sampling scheme.
5.2.2.2 Soil sampling

In each forest stand, five representative sampling pits were chosen to collect soil samples. Material
was collected from four soil horizons (two organic and two mineral). The sampled horizons have the
following characteristics: horizon 1 — organic horizon (OI+Of); horizon 2 — organic horizon (Oa);
horizon 3 — mineral soil 0-10cm, mixed with humus, usually darkened (Aq.1); horizon 4 — mineral soil
10-20cm (A1g.20). The total depth of mineral soil (20 cm) was chosen to reflect the majority of tree
root distribution. The collected material was dried in the air prior to sieving. Exchangeable cations
and selected trace elements were determined in all four horizons. Exchangeable cations (Ca, Mg, K)
and Al were analyzed in 0.1 M BaCl,-extracts by the AAS method. To measure selected trace
elements (Cu, Zn, As, Hg), samples were sieved (<5 mm for Ol, Of and Oa; and <2 mm for mineral soil)
and homogenized using a portable Innov-x Alpha RFA spectrometer. Furthermore, for the first two

horizons, the pH, total exchangeable acidity (TEA) and total C and N were measured. Taking in
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account the character of the parent lithologies together with the fact that total C was analyzed only
for two organic horizons, in our case the total C can be entirely related with organic carbon (Corg).
Soil pH was determined in distilled water and in 1 M KCl. To measure TEA BaCl2-extracts were
titrated by 0.025 M NaOH to pH = 7.8. Total C and N were determined simultaneously using a Carlo-

Erba Fisons 1108 analyzer.

Cation exchange capacity (CEC) was calculated as the sum of exchangeable base cations
(Bc=Ca+Mg+K+Na) and TEA. Base saturation (BS) was determined as the fraction of CEC associated

with BC.

5.2.3 Aerial HS image datasets

The hyperspectral image data was acquired in 2009 (July 27) and in 2010 (21°* August 2010) during
the HYyEUROPE 2009 and 2010 flight campaigns using the HyMap (HyVista Corp., Australia) airborne
imaging spectrometer. The HyMap sensor records image data in 126 narrow spectral bands (with full-
width half maximum ca. 15 nm) covering the entire spectral interval between 450 to 2500 nm. The
resulting ground pixel resolution of the image datasets was 5 m. In order to successfully pre-process
the hyperspectral data, a supportive calibration and validation ground campaigns were organized
simultaneously with the HyMap data acquisition in 2009 and 2010. At the selected homogenous
targets the ground measurements were acquired by the ASD FielSpec-3 spectroradiometer to
properly calibrate as well as validate the image data and to enable: (i) atmospheric correction of the
airborne hyperspectral images and ii) retrieving at surface reflectance values for the further
verification. The selected targets meet the following conditions: (i) spatial homogeneity for a
minimum area of 5x5 image pixels and (ii) natural or artificial nearly Lambertian ground surfaces. The
hemispherical-conical reflectance factor (HCRF) (Schaepman-Strub et al., 2006) was measured for
each reference target. Raw spectroradiometric data were transformed into the HCRF using the
calibrated white spectralon panel. In addition, Microtops Il Sunphotometer (Solar Light Comp., USA)
measurements were taken approximately every 30 seconds during the HyMap data acquisition. Data
acquired by the Sunphotometer was used for estimation of the actual atmospheric conditions (AOT -

aerosol optical thickness, WV- water vapor content).

5.2.4 Image data preprocessing

The 2009 and 2010 HyMap multiple flight line data were atmospherically corrected using software
(SW) package ATCOR-4 version 5.0 (Richter, 2009). This SW is based on MODTRAN radiative transfer
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model (Adler-Golden et al., 1999) and enables atmospheric correction of the aerial hyperspectral
images. The aerosol optical thickness (AOT) estimated by the Sunphotometer measurements was
used as an input parameter for the model. The known reflectances of the specific reference target as
well as of water vapor (WV) were utilized for fine tuning of the model, as facilitated by ATCOR-4. The

remaining reference targets were used for validation of the corrected image.

The orientation and geometry of the HyMap strips followed the SW-NE orientation of the lignite
basin. However, this setting represented an optimal solution from the economic point of view; on the
other hand, this setting (relative solar azimuth at the acquisition hour was about 73°) caused that the
data suffered from strong cross track illumination and BRDF effects (Verrelst et al., 2008). Therefore,
in addition to the atmospheric correction, the 2009 and 2010 reflectance data had to be further
processed to minimize these effects employing semi-empirical nadir normalization using the kernel-

based Ross-Li model (Schaaf et al., 2002).

Direct ortho-georectification was performed using the PARGE software package (Schldpfer et al,
1998). Data from the on-board Inertial measurement unit/GPS (IMU/GPS) unit and digital elevation
model (DEM) with ground resolution of 10 m were used as the input parameters for the ortho-
georectification. Misalignment angles between the IMU/GPS unit and the HyMap sensor were
determined specifically for the Sokolov site. Finally, the hyperspectral image data were

georeferenced to the UTM 33N (WGS-84) coordinate system.

5.2.5 Hyperspectral data processing: Vegetation health classification and
change detection

The processing workflow for both image datasets followed the method described by Misurec,
Kopackova et al. (2012). A general description is given in this section. Initially, the extent of the
Norway spruce forests was defined by employing a hierarchical classification approach combining
thresholding of the normalized difference vegetation index (NDVI) and the maximum likelihood
classification (MLC), which was applied to the first five components, and the results from the MNF
transformation of the HyMap data. The canopy chlorophyll content (Cab) was estimated using the
empirical model based on the derivative indices (D;15/Dgg). To validate the 2009 and 2010 empirical
models, ground truth biochemical data were divided into training and validation datasets. The
relationship between the predicted and measured values was described by the linear regression
model and coefficient of determination (training: R* and validation: Rv’, respectively) and the root

mean square errors (RMSE) were determined. In addition, to assess the vegetation health status, two
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selected indicators of vegetation health (REP and SIPI) were calculated from the HS 2009 and 2010
image datasets. Due to the relative low dynamic range of the SIPI values, we used its exponential

transformation (expSIPI) in further analysis.

The Cab, Rep and expSIPI were further statistically classified. The values of the three selected indices
were transformed into standardized z-scores to ensure their comparability and the independence of
their physical dimensions (units) and further classified into five classes defined by the threshold
values given in Tab. 5.5. Two products were created using the obtained normalized z-score values:
the map of chlorophyll content (histograms in Fig. 5.7) and a raster combining the information from
REP and expSIPI (both were summarized and then linearly reclassified into 5 classes, however expSIPI
needed to be classified in the reverse order as the higher values reflect higher carotenoid-to-
chlorophyll contents and thus worse vegetation health; Figs 5.8, 5.9). For both products a relative
classification was used based on the histogram dynamic ranges, averages and standard deviations.
Consequently, no hard threshold values were required. The only condition to be fulfilled was normal
distribution of all the data classified (entire scene) (Figs. 5.7, 5.8). In both maps, Class 1 indicates
worse health status for the trees without visible damage symptoms and Class 5 corresponds to the

values indicating the healthiest trees (Figs. 5.7, 5.8, 5.9).

The difference image was calculated to enable comparison of the 2009 and 2010 class values and to
detect changes in health status. To minimize the effect of miss-rectification errors, the input
classified data were resampled to 15x15 m spatial resolution (3x3 original pixel size). This made it
possible to compute an image showing the class change. Fig. 5.10 depicts negative changes in the
following manner: class 1 (1-class decreases), class 2 (2-class decreases) and class 3 (3-class

decreases and higher).
5.3 Results

5.3.1 Site soil characteristics

The soil chemistry at all the sites was characterized by low exchangeable pH in both organic (OI+Of,
Oh) and mineral soils (Ag.10,A10.20) (Fig. 5.3). However, the mineral soil chemistry reflected the
composition of the parent material. Erika, the most acidic site, is underlain by sandstone and
quartzite characterized by extremely low base cation contents. As a consequence, the lowest base
saturation (2-2.5%) and Bc/Al ratio (0.04-0.06) were measured in the top mineral soil (0-20 cm).

Slightly higher pH in the organic horizons (Fig. 5.3) and higher BS were measured at Mezihorska. This
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site is underlain by granite with a low content of base cations and low weathering rate. A higher
concentration of base cations, compared to Erika, is reflected in slightly higher BS in the mineral soil
(3.3-3.9%). Both sites, Erika and Mezihorska, had higher total exchangeable acidity compared to
Habartov and Studenec. The latter two sites, Habartov and Studenec, are both underlain by more
easily weathed mica schist which is, however, low in base cations. Both sites were characterized by
higher exchangeable pH in both the organic and mineral soils, with significantly higher BS in the
mineral soil (Fig. 5.3) compared to Erika and Mezihorska. Higher concentration of base cations led to
more favourable Bc/Al ratios (0.19-0.26) (Fig. 3) which were, however, still below the critical
threshold of 1 (Cronan and Grigal, 1995). Regarding the content of trace metals (Tab. 5.2), two toxic

elements, Al and As, were detected as mobile in the studied soils (Kopackova et al., under review).
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Figure 5.3: Average soil characteristics and standard deviations of exchangeable pH (a), base saturation (b),
exchangeable aluminium (c) and Bc/Al ratio (d) across sites.
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5.3.2 Biochemical characteristics

Table 5.2: Average * standard deviation of soil characteristics across all sites.
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Erika
Ol+Of
Oa
0-10ecm
10-20cm
Habartov
ol+Of
Oa
0-10ecm
10-20cm
Mezihorska
ol+Of
Oa
0-10cm
10-20cm
Studenec
Ol+0f
Oa
0-10cm
10-20 cm

Erika
Ol+0f
Oa
0-10cm
10-20 cm
Habartov
Ol+0f
Oa
0-10cm
10-20 cm
Mezihorska
ol+of
Oa
0-10cm
10-20 cm
Studenec
ol+of
Oa
0-10cm
10-20 cm

pPHya Ca Mg Al TEA BS Bc/Al
mmol., kg’ mmol, kg’ mmolkg” mmol. kg” % mol mol™

2,55 = 0,14 43 * 6,8 13 + 1,9 92 + 38 80 * 20 46 + 7,8 4,94 £ 25
2,50 = 0,01 9,5 £ 3,0 52 £ 080 29 x84 131 = 31 14 + 30 043 £ 0,1
2,92 + 0,18 0,5 £ 0,0 0,6 + 0,2 19 + 36 72 + 14 2,5 * 0,2 0,06 = 0,00
3,51 = 0,21 0,2 £ 0,2 0,2 + 0,1 12 + 34 46 £ 9,2 2,0 % 06 0,04 £ 0,01
3,18 = 0,16 99 + 34 12 + 4,2 15 + 7,7 69 * 21 62 + 15,2 6,46 * 6,2
3,43 = 0,07 26 = 14 36 £ 1,0 36 £ 51 117 = 16 22 £+ 90 049 £ 0,2
3,24 = 0,06 6,4 £ 5,4 1,1 + 0,8 16 + 2,7 56 + 84 12 = 73 0,26 = 0,2
3,39 + 0,07 3,7 £ 29 0,7 + 0,5 13 £+ 1,5 47 £ 51 9,8 % 5,2 0,20 £ 0,1
2,87 + 0,14 38 = 3,8 11 + 14 57 2,7 61 = 16 52 + 75 8,08 = 4,2
2,76 + 0,12 46 £ 1,0 4,3 + 0,5 28 £+ 25 110 + 86 12 + 19 0,35 = 0,1
3,38 £ 0,23 0,5 £ 0,0 0,7 £ 0,2 18 + 30 65+ 11 33 04 006 £ 0,01
3,93 + 0,16 04 = 0,2 0,3 + 0,1 87 37 35 %11 39 % 1,1 0,09 = 0,04
3,33 = 0,11 70 £ 23 13 + 3,9 55 23 46 * 8,0 65 % 12 11,5 = 8,0
2,99 + 0,13 36 £ 11 81 + 2,1 14 + 3,8 72 %= 13 40 = 11 2,06 £ 1,3
3,42 £ 0,02 2,2 £ 0,5 1,1 £ 0,1 12 + 05 48 + 13 84 t 13 021 £ 0,05
3,84 + 0,14 1,4 £ 0,2 0,5 + 0,1 76 £+ 1,1 34 +32 71+ 1,1 0,19 = 0,04

N C/N Cu Zn Hg As

% ge’ mgkg  mgkg’ mg kg mg ke

31 = 3,0 1,06 £ 0,03 30 * 3,7 31 £52 6967 10 %01 30 = 6,7
26 + 2,5 0,95 + 0,08 27 * 2,1 36 + 40 50 * 4,2 26 * 0,3 53 * 46
N.D. £ N.D. N.D. £ N.D. N.D. £ N.D. 23 £ 46 27 t 28 1,0 £ 0,3 27 £ 3,2
N.D. = N.D. N.D. £ N.D. N.D. £+ N.D. 25 +# 2,1 38 +* 79 08 % 0,6 18 £ 2,5
32 + 3,6 1,21 £ 0,13 27 + 1,2 95 + 47 78 + 89 1,8 + 0,3 69 = 19
23 + 2,6 0,74 £ 0,10 32 * 24 166 * 20 47 + 35 25 * 04 84 = 5,3
N.D. £ N.D. N.D. £ N.D. N.D. £ N.D. 23 £ 35 24 t 39 11 t 04 19 £ 4,6
N.D. = N.D. N.D. £ N.D. N.D. £+ N.D. 21 *# 1,2 25 % 60 1,0 * 0,1 11 + 3,9
34 + 24 1,21 £ 0,05 28 + 1,2 29 = 11 60 + 6,2 0,7 £ N.D. 13 + 3,4
23 + 2,5 0,86 £ 0,09 27 % 3,7 47 = 10 73 + 68 14 * 0,3 38 * 6,3
N.D. £ N.D. N.D. £ N.D. N.D. £ N.D. 18 £ 0,0 94 £ 20 0,9 % 0,1 21 £ 6,1
N.D. = N.D. N.D. £ N.D. N.D. £+ N.D. 23 % 2,8 107 *+ 7,8 1,2 * 0,2 14 = 3,5
29 + 4,7 1,01 £ 0,15 29 * 0,7 29 + 44 227 + 40 09 * 0,1 31 = 10
24 + 3,5 0,92 = 0,14 27 * 4,3 32 £+ 26 213 + 45 1,0 + 0,1 36 + 3,8
N.D. £ N.D. N.D. £ N.D. N.D. £ N.D. 33 £ 14 377 £ 64 1,2 £ N.D. 40 £ 9,5
N.D. = N.D. N.D. # N.D. N.D. £+ N.D. 29 % 5,0 477 * 191 1,1 * 0,1 31 £ 7,9

As the Norway spruce needle samples were collected from two different years, statistics were

employed to test whether there are statistically significant differences in the biochemical properties

of the samples taken in 07/ 2009 and 09/2010. First the Shapiro-Wilk test (Shapiro and Wilk, 1965)

was employed to test the normal distribution. For Car and Cab, the normally distributed parameters,

analysis of variance (ANOVA) was used to test whether there are statistically significant differences.
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For Car/Cab, as this parameter was not normally distributed, the two-sample Kolmogorov-Smirnov
(K-S) non-parametric test was employed (Tab. 5.3).The increasing trend with increasing needle age in
foliar photosynthetic pigment contents was observed. The Cab and Car contents did not exhibit
significant deviations between the 2009 and 2010 seasons (Tab. 5.3) but, in general, the chlorophyll
content was slightly higher and the carotenoid content slightly lower in July 2009. Assessing
differences among the sites, the lowest Cab and Car values are characteristic for the Mezihorska site
(Figs. 5.4 and 5.5). This site also exhibits the largest changes between the 2009 and 2010 chlorophyll
(position L3) and carotenoid contents (position U1l) (Tab. 5.3). Erika exhibits higher carotenoid
contents and higher variability in both pigment contents. Additionally, the trees at Erika exhibit
statistically significant changes between the 2009 and 2010 current-year needles at both positions
(U1 and L1, Tab. 3). Except for these cases, there are no significant changes in the photosynthetic

pigment contents at the studied sites.

Larger differences can be observed in the Car/Cab ratios (Fig. 5.6, Tab. 5.3). Clearly, higher values
characterize the samples taken in 09/2010. In most of the cases, the Car/Cab ratios significantly differ
for the 2009 and 2010 samples (Tab.5.3), where the largest differences were exhibited by the
current-year needles (L1 and U1). Erika exhibits the highest Car/Cab for both years followed by the
Mezihorska site, which has higher Car/Cab values mainly for 2010. Moreover, the Erika site had the
smallest variations in its gradients among all the positions and years sampled. In 07/2009, the higher
Car/Cab values are characteristic for the older needles (L3, U3) but the trend was the opposite in
09/2010, where the current year needles (U1, U1) have higher Car/Cab values than the older once
(U3, L3).

Table 5.3: statistically tested differences in the biochemical properties between the samples taken in 07/ 2009
and 09/2010; statistically significant differences are in bold; (K-S: two-sample Kolmogorov-Smirnov test); (H:

habartov, E: Erika, M: Mezihorskd, S: Studenec; U and L refer to upper and lower level of the production part
respectively; 1 and 3 refer to the first- and third-year needles).

ANOVA Cab ANOVA Cab ANOVA Car K-S Car/Cab
Sig. Sig. Sig. (2-tailed)
HU1 Between 2009-10 ,855 ,011 ,000
HU3 Between 2009-10 ,224 ,349 ,076
HL1 Between 2009-10 ,910 ,006 ,000
HL3 Between 2009-10 ,241 ,288 ,076
EUl Between 2009-10 ,618 ,637 ,055
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EU3 Between 2009-10 ,432 ,845 ,001
EL1 Between 2009-10 ,143 ,330 ,001
EL3 Between 2009-10 ,535 ,656 ,000
M U1l Between 2009-10 ,625 ,041 ,000
M U3 Between 2009-10 ,935 ,596 ,097
MLl Between 2009-10 ,466 ,078 ,000
M L3 Between 2009-10 ,023 ,173 ,001
Su1 Between 2009-10 ,565 ,216 ,003
Su3 Between 2009-10 ,127 ,449 ,015
SL1 Between 2009-10 ,522 ,485 ,001
SL3 Between 2009-10 ,282 ,500 ,164
[mg/g]
4507 Mezihorska o  07/2009
4,001 X 09/2010
o AVG 2009
a _ AVG 2010
‘z 3,001
/
15 250 //
s
2,001
1,501 4
1,00
**1 Habartov
4,00
a 3,50
W)
‘T 3,00
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D 250-
2
2,00
1,50~
1,00

L1 L3
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L3
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Figure 5.4: Cab foliage content for 07/2009 and 09/2010 — Means and Standard Deviations are displayed per
each site (U and L refer to upper and lower level of the production part respectively while 1 and 3refer to the
first- (1) and third-year (3) needles. AVG 2009: overall average for 2009, AVG 2010: overall average for 2010.
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Figure 5.5: Car foliage content for 07/2009 and 09/2010 — Means and Standard Deviations are displayed per
each site (U and L refer to upper and lower level of the production part respectively while 1 and 3refer to the
first- (1) and third-year (3) needles. AVG 2009: overall average for 2009, AVG 2010: overall average for 2010.
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Figure 5.6: Car/Cab ratio — Means and Standard Deviations are displayed per each site (U and L refer to upper
and lower level of the production part respectively. 1 and 3refer to the first- (1) and third-year (3) needles. AVG
2009: overall average for 2009, AVG 2010: overall average for 2010.
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5.3.3 Vegetation health: site differences between HyMap 2009 and 2010
classifications

The chlorophyll content estimation achieved higher accuracy using the 2009 datasets (Tab. 5.4). This
can be explained by the longer period between the HS data acquisition and the tree sampling in
2010, as unfavorable weather conditions (heavy rains) developed immediately after the acquisition

day and the trees were sampled approximately two weeks after the HS image data were acquired.

Identifying the most significant changes between 2009 and 2010, the places where the trees were
cut down can be easily identified, where these areas fall in the class 1 (worse vegetation health) of
the vegetation health map (Fig. 9), or in classes 2 or 3 (decreases about 2 classes and more) of the
change detection map (Fig. 10). To detect less visible changes, both the chlorophyll content and the
vegetation health class histograms can be compared and the class frequencies and asymmetries

calculated can be studied for each site.

Table 5.4: Chlorophyll content estimation: regression models (measured vs. predicted).

Chlorophyll content estimation model (linear regression)
2009 2010

R% (training) 0,9131 0,5340

RMSE (mg/g) 0,2055 0,2174

Rv? (validation) 0,9370 0,7305

Table 5.5: Threshold values used for image classifications.

Threshold values
indicator (year) 1] c -1.00 -0.50 +0.50 +1.00
Cab (2009) 2.5996 | 0.6126 1.9871 2.2934 2.9059 3.2122
Cab (2010) 2.4394 | 0.3944 2.0450 2,2422 2.6366 2.8338
REP (2009) 716.8650 | 1.2242 | 715.6409 | 716.2530 | 717.4772 | 718.0893
REP (2010) 717.5770 | 1.2673 | 716.3097 | 716.9434 | 718.2107 | 718.8443
expSIPI (2009) 2.7668 | 0.0967 2.6701 2.7185 2.8152 2.8635
expSIPI (2010) 2.7137 | 0.1200 2.5937 2.6532 2.7738 2.8338
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Tab. 5.6: Descriptive statistics on optical indices retrieved from hyperspectral image data.

undamaged foliage on a regional scale

Optical indices

range: 5.1922

range: 12.2448

Cab (mg/g) REP (nm) expSIPI
2009
mean: 2.5980 | mean:716.9967 | mean: 2.5980
Erika std.: 0.5597 std.: 1.1122 std.: 0.1087
range: 5.9681 range: 15.2957 range: 2.0174
mean: 2.4606 | mean: 716.5647 | mean: 2.7461
Habartov std.: 0.4259 std.: 0.8615 std.: 0.0977
range: 4.6724 range: 9.0443 range: 2.2605
mean: 2.4465 mean: 716.5236 | mean: 2.7898
Mezihorska std.: 0.6840 std.: 1.3648 std.: 0.1226
range: 6.8480 range: 12.2448 range: 5.5991
mean: 2.4807 mean: 716.6943 mean: 2.8021
Studenec std.: 0.6277 std: 1.2707 std: 0.1842

range: 6.5375

entire scene

mean: 2.5996

std.: 0.6126

range: 9.7289

mean: 716.8650

std.: 1.2242

range: 99.2157

mean: 2.7668

std.: 0.0967

range: 8.8227

2010

Erika

mean: 2.2108

std.: 0.2987

range: 3.3349

mean: 716,8093

std.: 0.9755

range: 11.2010

mean: 2.7187

std.: 0.1558

range: 3.4459

Habartov

mean: 2.3387

std.: 0.2950

range: 3.6363

mean: 717.1238

std.: 0.9389

range: 13.7618

mean: 2.6335

std.: 0.1088

range: 1.8463

Mezihorska

mean: 2.2488

std.: 0.4166

range: 3.7887

mean: 716.9843

std.: 1.3637

range: 13.1354

mean: 2.7902

std.: 0.2066

range: 3.7386

Studenec

mean: 2.4392

std: 0.4177

range: 3.3104

mean: 717.5986

std: 1.2890

range: 10.9415

mean: 2.7146

std: 0.1393

range: 2.5776

entire scene

mean: 2.4394

std.: 0.3944

range: 7.1953

mean: 717.5770

std.: 1.2673

range: 88.2487

mean: 2.7137

std.: 0.1200

range: 6.4288
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Comparing the HyMap indices statistics (Tab. 5.6), the chlorophyll content decreased slightly for the
entire scene in 2010, but there were no other significant differences. However, if each site is
assessed separately, Erika is the site with the largest decreases in Cab content and largest increases
in the SIPI index, followed by the Mezihorska site (Tab. 5.6, Figs. 5.7 and 5.8). These trends can be
easily depicted on the basis of the classified maps (Fig. 5.9), as health classes 1 and 2 were more
populated for Erika and Mezihorska in 2010 than in 2009. In addition, these two sites exhibit
frequent negative changes in their health status (Fig. 5.10). On the other hand, the Studenec site is
the most stable site of all, as the 2009 and 2010 histograms of the chlorophyll content and heath
class status (Figs. 5.7 and 5.8) look almost the same. In terms of the negative changes (decreases in
health class) in health status for the Studenec site, mainly class 1, indicating smallest changes in tree
health, is present and sparsely distributed (Fig. 5.10).The Habartov site was partially covered by
clouds in 2010 (Fig. 5.9), However, similarly as the Studenec site, the cloudless parts available for the
analysis exhibit very similar histograms of the chlorophyll content and health classes for 2009 and

2010 (Figs. 5.7 and 5.8) and sparse health change patterns (Fig. 5.10).
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Figure 5.7: chlorophyll content retrieved from the HyMap data: Relative frequencies (%) compared for 2009 and
2010.
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Figure 5.8: Norway spruce health status classes: Relative frequencies (%) compared for 2009 and 2010.

6 Discussion

All the sites are located in the vicinity of the Sokolov basin, an area with historically high emissions of
acidifying compounds (SO,, NO,). Unfavourable low Bc/Al ratios across all the sites might be
connected to the high deposition of S and N in the past and subsequently to the anthropogenic
acidification of forest soils in this region (Kram et al., 1997; Oulehle et al., 2006). Soil acidification
promotes leaching of base cations and mobilization of aluminium (Kram et al.,, 2009). Thus,
anthropogenic acidic deposition, spruce forest plantations and naturally acidic parent bedrock
promoted acidification of forest soils across the investigated sites. The C/N ratios in organic horizons
were similar at all the sites, ranging from 27 to 32 in the Oa horizon. Based on the close relationship
between the C/N ratio in the forest floor and N leaching in catchments across the Czech Republic
(Oulehle et al,. 2008) we can expect relatively low N leaching as the C/N ratio of the organic soil is

above the critical threshold of approx. 25 when N leaching could be expected. In general, soils with
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the lowest base cation nutrient availability and low Bc/Al ratios are found at Erika and Mezihorska,
where the soils are underlain by the most acidic bedrocks (sandstone/quartzite and granite,

respectively).

In accordance with the previously published results (Albrechtova et al., 2008; Homolova et al., 2013)
the content of photosynthetic pigments (Cab and Car) increased with the needle age of the sampled
foliage. The chlorophyll content in mature coniferous foliage is known to be relatively constant or
increases moderately during the summer (July-September) (Kirchgessner et al., 2003; Thomas et al.,
2009). The first-year needles (U1 and L1) also exhibit minimal changes in chlorophyll a and b contents
after June after the needles gain their final length and fresh weight (Silkina et al., 2009), and thus the
slightly shifted sampling dates in 2009 (end of June) and 2010 (early September) should not affect

the needle chlorophyll contents.

In contrast to the pigment contents alone, Car/Cab values exhibit more dynamic changes during the
growing season, and are positively correlated in the majority of cases with the intensity of
photosynthetically active radiation and negatively are correlated with the temperature (Kirchgessner
et al., 2003). The significant increase in the average Car/Cab values between the 2009 and 2010
seasons may reflect the season-specific weather conditions or canopy microclimate. The carotenoids
in needles play a dual role: on the one hand they are important for light-harvesting, but on the other
hand they protect the pigment-protein complexes from photodamage (Demmig-Adams, 1998). The
average monthly temperature and monthly sum of sunlight hours during the months of the sampling
were higher in 2009 than in 2010 (16.2°C and 180 sunlight hours; 15.0°C and 140 sunlight hours
respectively, data from the nearby meteorological station at Karlovy Vary, www.chmi.cz). Thus it
appears that the lower temperature in August 2010 compared to July 2009 could be the
predominant factor causing the higher Car/Cab ratio in the 2010 season. The increase in the Car/Cab
ratio mainly due to chlorophyll degradation may indicate the onset of leaf senescence in deciduous
trees (Garcia-Plazaola et al., 2001). However, for the long-lived foliage of evergreen conifers, in
relation to one- or three-year old needles, we do not think that senescence could explain the above-

discussed changes in Car/Cab.

The opposite effect of needle age on Car/Cab in two studied seasons may be explained by the
different response speed of first-year and older needles to the environmental conditions, particularly
irradiance, as shown by Kirchgessner et al. (2003), who observed the fast-type response (<20days) in

changes in the chlorophyll a to b ratio in last year’s needles in comparison with the slow-type change
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(>30days) in the current-year needles of Norway spruce. The total carotenoid pool in coniferous
needles is represented by several chemical species, including, e.g., lutein and B-carotene, rather
stabile pigments during the growing season (Yatsko et al., 2011) and a dynamic pool of xanthophyll
cycle carotenoids (Kirchgessner et al., 2003; Yatsko et al., 2011). Thus, the adjustment of carotenoid
composition may be more relevant parameter than the size of total carotenoid pool (Demmig-

Adams, 1998).

Habarto

¥ I ciass 1

<! [ class 2
- ¥ [ class3
o :ﬁ,q; v [ class 4
ot I cass 5

400 m
'

Figure 5.9: Studied sites— HyMap true color combination showing the actual situation of the site A) 2009 and
B) 2010. Statistical classification of the Norway spruce health status C) classification of 2009 data, D)
classification of 2010 data; color scale 1 through 5—health status classes; 1 - the worst and 5 - the best result.
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Figure 5.10: Depicted negative changes (2009-2010): class 1 (1-class decreases), class 2 (2-class decreases) and
class 3 (3-class decreases and higher).

The foliar laboratory results show that the chlorophyll content (Car) should not be the only indicator
considered when assessing forest health. The absolute carotenoid contents (Car) alone also do not
reflect the differences among the studied sites. On the other hand, the Car/Cab ratio allowed site
sorting by comparison with the mean annual values for all the sites, as is shown in Fig. 5.6 and was
consistent for all the sites in both years in the following order (sorted from least to most healthy):

Erika, Mezihorska, Habartov and Studenec.

The same sorting was depicted using the HyMap 2009 and 2010 classification products, while the
differences among the sites are considered the best in the map of the health status (Fig. 5.9). This
map combines the two indices - REP (sensitive to vegetation stress) and index SIPI (sensitivity to the
ratio of bulk carotenoids to chlorophyll) - and also supports the idea that, in addition to the
chlorophyll content, it is important to take into account the carotenoid content when assessing
forest health. The increased Car/Cab content of first-year needles (U1, L1) (Fig. 5.6) sampled at the
beginning of September 2010 may have enabled better detection of forest health status using the
2010 HS dataset, as the difference among the sites are more pronounced in 2010. These needles
contribute the most to the total foliage area (Porté et al., 2000; Weiskittel et al., 2006), the area that

can be sensed from the sky.
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To summarize the results, both biochemical analysis of the sampled tree needles and hyperspectral
image data have been shown to reflect the soil chemistry. Higher Car/Cab ratios in spruce needles
and lower health status derived from HyMaps were related to the lowest Bc/Al ratio in mineral soil.
The strong linkage between soil chemistry and parent bedrock indicated that bedrock geochemical
reactivity (Chuman et al., in press) should be considered to be important factor in the assessment of

forest health status.

7 Conclusions

In this study, the recently proposed method for assessing forest health conditions using optical
indices retrieved from HS data (Misurec, Kopackova et al. 2012) was applied to the two temporal
HyMap date sets acquired in 07/2009 and 08/2010 for detecting stress in Norway spruce forests on a
regional scale. The classification results were validated by ground truth data (foliar biochemistry:
Cab, Car and Car/Cab) and were associated with the geochemical conditions of the forest stands (pH,
macronutrient parameters, base saturation, exchangeable aluminium, Bc/Al ratio). The method
proved suitable as the HyMap classification results were in accordance with the statistical
assessment of the biochemical properties of the sampled trees as well as with the geochemical
properties of the forest sites. It is apparent that, in both years, differences detected by biochemical
and hyperspectral methods remained consistent among spruce stands and only mild changes in the
physiological condition of the stands under study were detected by both approaches. This finding

supports the validity of the previously presented model.

Both the biochemical analysis of the sampled foliage and classification of the 2009 and 2010
hyperspectral image data indicate that Erika and Mezihorska are sites with higher vegetation stress.
In addition to higher Car/Cab, which enabled the detection of stressed trees using hyperspectral
image data, these sites exhibited critically low pH and lower values for the macronutrient parameters
in the organic horizons (Ol+Of and Oh). Moreover, both sites exhibit critically low Bc/Al ratios for the

organic and top soil mineral horizons (Ol+Of, Oh, Ag.10,A10-20)-

The results of this study demonstrate: (i) the potential application of hyperspectral remote sensing as
a rapid method of identifying tree stress prior to symptom expression and (ii) the added value of
multitemporal approaches for hyperspectral data and its further potential for monitoring forest

ecosystems. These distance methods could be the most cost-effective long-term tool available for
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forest management in the future, when the space-born HS missions (e.g., EnMap or PRISMA) will be

in operation.
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Abstract

The transfer of chemical elements/compounds within the soil-plant chain is a part of the biochemical
cycling and this system is controlled by biotic and abiotic factors which determine the final mobility
and availability of chemical variables. Heavy metal contamination and low pH are stress factors that
lead to changes in the contents of important foliage compounds, which can be used as non-specific
indicators of plant stress. In this study, Norway spruce forests in the Sokolov region, being a part of
the “Black Triangle”, were selected to assess geochemical and biochemical interactions in the natural
soil/plant system. The authors studied the relationship between soil and spruce needle contents of
macronutrients and potentially toxic elements and tested whether the soil parameters and their
vertical distribution within a soil profile (two organic and two mineral horizons) affect foliage
biochemical parameters (contents of photosynthetic pigments, phenolic compounds and lignin).
Factor analysis was used to identify underlying variables that explained the pattern of correlations
within and between the biochemical and geochemical datasets. Al and As were identified as toxic
elements with high bio-availability for spruce trees and both were taken up by trees and translocated
to the foliage. The correlations between two toxic element contents in needles (aluminum (Al) and
arsenic (As)) and the contents of soluble phenolic compounds and total carotenoid to chlorophyll
(Car/Cab) ratio suggest that these latter two biochemical parameters, which both proved to be

sensitive to the soil geochemical conditions, can serve as suitable non-specific stress markers.

Keywords: Norway spruce (Picea abies L. Karst) health; non-specific stress markers; heavy metal

stress; factor analysis; phenolic compounds; photosynthetic pigments
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6.1 Introduction

The transfer of trace elements within the soil-plant continuum is a part of the biogeochemical
cycling of chemical elements. Plant species vary in their ability to withstand exposure to heavy metals
from hyperaccumulation known for phytoextraction species to prevention of uptake characteristic
for phytostabilisation species (Salt et al. 1998; Nwoko 2010; Mani et al. 2012a and 2012b). Heavy
metal contamination and other negative physio-chemical changes under soil conditions, such as low

pH are often a consequence of long-term industrial pollution (Lepedus et al. 2005; Tuzhilkina 2009).

Changes in the contents of important plant compounds can be used as non-specific indicators of
plant stress; these include the contents of photosynthetic pigments, phenolic compounds and lignin,
as shown for coniferous trees by many authors (e.g. Soukupova et al. 2000; Lepedus et al. 2005;
Tzvetkova and Hadjiivanova 2006). Additionally, these parameters can be monitored by the means of
hyperspectral (HS) remote sensing and enable large-scale monitoring of forest health (Campbell et al.

2004; Misurec, Kopackova et al. 2012; Kupkova et al. 2012).

Limited work has been performed under field conditions exploring the effects of accumulated
sediment/soil-borne metals on biochemical processes in plant tissues and assessment of their
suitability as potential biomarkers of metal stress (MacFarlane 2002; Bialonska et al. 2007).
Additionally, the contents of available macronutrients (Ca**, Mg”*, K*) can also play an essential role
in the tree physiology. Therefore, there is an urgent need for the development of methodologies for
assessing the sub-lethal effects of trace elements in conjunction with macronutrient availability and

the way in which these soil characteristics affect leaf biochemical parameters in situ.

The biochemical composition of spruce needles with their longevity and exposure to environmental
conditions is often used as a bioindicator of soil or air contamination (Ollerova et al. 2010; Tuzhilkina
2009). Particularly the contents of photosynthetic pigments are closely related to photosynthetic
performance and can serve as early-warning symptoms of plant stress, before macroscopic changes
are detected (e.g. Lepedus et al. 2005; Soukupova et al. 2000). The chlorophyll content of needles
generally decreases under stress conditions, including nutrient deficiency and the presence of heavy
metals (Huang and Tao 2004; lvanov et al. 2011; Maestri et al. 2010). In general, conifers allocate
relatively high ratios (7.3-12.3%) of the whole-tree carbon to foliar phenolics (Aspinwall et al. 2011).
Phenolic compounds represent a very heterogeneous group playing a role in defense mechanisms
against pathogenes and herbivores (Klepzig et al. 1996) and environmental stress conditions, often

serving as a non-specific stress marker. Tannins are involved in chelating heavy metals in plant cells
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(Lavid et al. 2001); in addition, polyphenols such as tannins not only inhibit decay of soil organic
matter, but they may also impede soil N mineralization—immobilization reactions (Northup et al.
1998; Yu et al. 2003). Lignin is a structural compound of polyphenolic nature and its content in
foliage plays an important role in litter decomposition and nutrient cycling (Ushio et al. 2009). Thus
changing the content of phenolics in litter may alter wider biogeochemical carbon cycling in forest

soils.

In this study, Norway spruce forests in the Sokolov region, the north-western part of the Czech
Republic, were selected to assess geochemical and biochemical interactions in the natural soil/plant
system. This region is exceptional for its long-term excessive lignite mining history and was also
greatly affected by air pollution and soil acidification during the second half of the 20th century
(Moldan and Schnoor 1992). Even today, this part of the country with its open-pit lignite mining is
considered to be one of the most polluted regions in the Czech Republic. Norway spruce (Picea abies
L. Karst) is a dominant species in the silviculturally managed coniferous forests in Central Europe and
particularly in the Czech Republic. However, this tree species has proven to be prone to
environmental stresses. Long-term industrial pollution resulted in large-scale spruce forest dieback
observed in many regions of Central Europe, particularly in the area of the so-called Black Triangle
(Moldan and Schnoor 1992), the well know region in Europe heavily polluted in the second half of
the 20th century. Therefore, monitoring of the health condition of spruce forests remains important
for forest management in Central Europe. Particularly the response of tree species to adverse soil
conditions (e.g., contents of trace elements, basic cations depletion, and acidification) is of great

importance.

The authors analyzed a wide range of biochemical parameters in the Norway spruce needles serving
as non-specific stress markers (biochemical dataset): photosynthetic pigments, soluble phenolic
compounds, lignin and water content. Furthermore, around the sampled-trees the contents of
selected macronutrients, which are present in the form of exchangeable cations (Ca**, Mg**, K) and
Al as well as selected heavy metals (e.g., Zn, Cu, As and Hg) were determined in the corresponding
soil profiles (geochemical dataset). Ca has a signaling role and structural involvement, Mg is a central
atom of the chlorophyll molecule and K is a principal cation in establishing cell turgor and
maintaining cell electroneutrality. Zn and Cu are classified as micronutrients involved in redox
reactions in plant cells, while As and Hg are considered to be non-essential, potentially very toxic

metals for plants affecting plant water status (Javot and Maurel 2002; Czech et al. 2010).
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Mobilization of ionic Al under acid conditions may have negative effects on Ca and Mg uptake by

trees (Schroder et al. 1988; de Wit et al. 2010).

In addition to basic statistics, factor analysis was used to identify underlying variables or factors, that
explain the pattern of correlations within and between the biochemical and geochemical sets of the
variables described above. Factor analysis was previously successfully employed using environmental
data and was particularly tested for the purposes of mineral exploration (Harraz et al. 2012) and to
interpret diverse geochemical datasets (Tripathi 1979; Ijmker et al. 2012) as well as water or soil
chemical data (Fitzpatrick et al. 2007). The authors assume this method is also well suited to studying
relationships and chemical/biochemical interactions in the soil/plant system and, to our knowledge,

has not yet been used for this purpose.

As the present study quantitatively correlates a wide range of spruce needle biochemical parameters
with macronutrient and accumulated heavy metal contents determined for four soil horizons in the

polluted region, the aims have been to:

o Determine macronutrient/heavy metal abundances and their associations present in four

different soil horizons (including organic and mineral soil horizons).

o Investigate whether these associations and their vertical distribution within a soil profile

affect the accumulation of the same chemical elements in foliage.

o Assess the applicability of using selected needle biochemical parameters (photosynthetic
pigment contents, phenolic and lignin contents, and selected nutritional and trace element contents)
as biological indicators of adverse soil conditions (low pH, high concentrations of trace elements) in

Norway spruce forest ecosystems.

This work was carried out at the Czech Geological Survey and at the Faculty of Science (Charles

University in Prague) within 2009-2011.

6.2 Material and methods

6.2.1 Testsite
General description on the test site is given in the chapter 5.2.1.
6.2.2 Soil samples

General description on the test site is given in the chapter 5.2.2.2.
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6.2.3 Norway spruce samples

At each of the four test sites, 10 to 15 representative trees were selected. A tree-climber cut
branches from the production part of the crown, which means that all the sampled branches were
sunlit and contributed significantly to the photosynthetic production of the tree. One branch was
sampled in the upper level of the production part (U) of the crown almost at the boundary with the
most upper juvenile part of the crown and the second branch in the lower level of the production
crown part (L). Needles of the first- (1) and third-year (3) were sampled from each branch for

subsequent chemical and biochemical analyses.

Photosynthetic pigments (chlorophyll a and b: Cab, total carotenoids: Car) were extracted in dimethyl
formamide according to (Porra et al. 1989) and determined spectrophotometrically based on
equations from (Wellburn 1994). Soluble phenolic compounds were determined according to
(Singleton 1965). Frozen needles were homogenized in liquid nitrogen. Phenolics (FFW = fresh
weight, FDW = dry weight) were extracted in 80% methanol (v/v) in a water bath (50°C) and the
concentrations were determined spectrophotometrically at a wavelength of 750 nm using a Helios a
spectrophotometer (Unicam, Cambridge, UK) with Folin-Ciocalteau phenol reagent and gallic acid as

a standard (for details see Soukupova et al. 2000).

The lignin (Lig) content was determined by thioglycolate solubilization according to (Lange et al.
1995) and the amount of lignin was determined spectrophotometrically at a wavelength of 280 nm

using hydrolytic lignin (Aldrich Chemical Company, USA; [8672-93-3]) as a standard.

Analyses of Ca, K, Mg, Al, Cu, Zn, As and Hg were performed for the first-year needles sampled from
the lower production part of the crown (L1). Needle samples were slowly combusted (550°C) and
then digested in concentrated HF (40%, p.a., 15ml) and HCIO, (70%, p.a., 2 ml) on a hot plate. The
following evaporation residue was digested in 5ml of HCl (37%, p.a.). Destiled water was used to
make a 100 ml solution which was used for cations measurements at AAS (Perkin-Elmer AAnalyst
100). Hg was determined by AAS after pyrolysis of the samples and As was analyzed using HGAAS

(hydride generation of arsenic species coupled with atomic absorption).

The overall statistics of the needle properties were further statistically assessed and are presented in

the Appendix: Tabs 3 and 5.
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6.2.4 Statistical methods

First the Shapiro-Wilk test (Shapiro and Wilk 1965) was employed to test the normal
distribution of both the geochemical and biochemical datasets and some of the variables were not
normally distributed according to this test (Appendix: Tabs 1 and 5). However, since the ratios
between the maximum and minimum measurement concentrations are generally high enough, log-
transformation was employed to squeeze/stretch the values on the logarithmic (loge) scale with the
exception of the pH, as this parameter is already log-transformed and exhibits normal distribution.
After this transformation, distributions with skewnesses varied between -0.8 and 0.8, or with kurtosis
between -3 and 3 for all of the geochemical and most of the biochemical parameters. Such datasets
more or less behave like normally distributed (ljmker et al. 2012). However, the water content at
both levels (L1, L3) and Hg content at level L1 did not fulfill this condition and this fact was taken into
consideration when interpreting the results. Further statistics was applied to the log-transformed

data.

As the Norway Spruce needle samples were collected from two different crown positions (U-upper,
L-lower) and needle ages (1-3 years old), analysis of the variance (two-way ANOVA) was employed to
test whether there are statistically significant differences in the biochemical properties of the
Norway Spruce needles with regard to their position within a crown and their age. In further
statistical assessments (PCA and factor analysis), only the age effect was considered (L1 and L3
samples were statistically assessed), because the needle age significantly influenced all the examined

biochemical characteristics (Appendix: Table 4).

The relationships between (i) the geochemical parameters within the four soil horizons, (ii) the
biochemical parameters (photosynthetic pigment contents, phenolic and lignin contents) conducted
for two different needle ages (1-3 years old) from position L and (iii) biochemical parameters
including selected nutritional and trace element content of the sampled trees (1st year needles,
lower position: L1) were assessed using the Pearson correlation coefficient. The bivariate correlation
was attained at a 95% confidence level (2-tailed). As a great number of soil parameters were
assessed, the Pearson correlation coefficients were transformed into the form of color-coded

correlation matrix (Figs. 2, 5, 6) for easer interpretation.

Afterwards, factor analysis was employed. In our case, factor analysis was employed on the sets of
variables that represented (i) chemical variables uncounted for each soil horizon, (ii) the common

chemical variables determined for both soil horizons and the tree needles (macronutrients and
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selected heavy metals) and (iii) biochemical variables determined for the Norway spruce needles
(macronutrients and selected heavy metals). Factor analysis of the soil parameters enabled study of
the correlations between elements, forming groups with similar behavior (natural associations) in
each horizon and of how these associations change with soil depth (Appendix: Tabs. 8 and 9, Fig.
6.2). The approach comparing the abundances of the common chemical variables, which were
determined for all the four soil horizons as well as for the tree needle samples, enabled the authors
to study which chemical elements present in the soil have been taken up by the vegetation and thus
have the most significant impact on the vegetation health and physiological functions (Appendix:
Tabs. 10 and 11, Fig. 6.4). Finally, factor analysis of the biochemical parameters allowed
determination of the correlating biochemical parameters that can affect specific physiological

functions of the trees (Appendix: Tabs. 12 and 13).

Factor analysis produces factor loadings that represent the correlation of a variable (in our case
geochemical and biochemical) with a factor. It calculates a factor score for every single observation,
showing the weight of a specific factor for that specific observation. Factor analysis was performed
by the SPSS program (version 14.0). Principle Component Analysis was used to extract the factors
and to form uncorrelated linear combinations of the observed variables. An orthogonal rotation
method (varimax), which is the most common orthogonal rotation criterion (Davis 2002), was
employed to rotate the factors. The varimax rotation fits the axes to the maximum direction of
variance, thereby spreading the explained variance more evenly over the different factors (Hartmann
and Winnemann 2009). This rotation method minimized the number of variables that have high

loadings on each factor and in that way simplified the interpretation of the factors.

New data were derived from these linear combinations, forming the principal components, (PC)
which can be displayed as scores and weights. The first PC, or factor, accounts for the greatest
variability in the data, and there can be an infinite number of new factors, with each accounting for
less data variability than the previous one (Webster 2001). Factor loadings are correlation
coefficients between the original variables and factors and are intended to investigate the processes
that control data variability. A loading on one variable close to 1 indicates a strong correlation
between the variable and the factor. Similarly to Hu et al. (2012), the authors considered the

variables that exhibited a loading of >0.4 or <-0.4 to be statistically significant.
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6.3 Results and discussion

6.3.1 Geochemical properties and their changes across the soil profile

The pH of the sampled soils was low (2.96-3.65) with a slight increase towards deeper mineral soils
(Appendix: Table 1). According to Kabata-Pendias (2004) several trace metals (especially Cd, Zn, Co,
Cu and Ni) are readily mobile in such acid soils, which are generally characterized by oxidizing
conditions, and are available to plants. In addition, low pH is also a serious problem as it facilitates
the release of aluminium (Al) from Al-containing minerals into the soil solution forming toxic
conditions for forest vegetation or downstream aquatic organisms (Kram et al. 2009). In particular, it
is a matter of concern that soil acidification caused by acid deposition, together with the consequent
depletion of labile pools of nutrient cations (e.g. Ca**, Mg”) and enhancing leaching of Al from the
soil, could contribute to forest dieback (Driscoll et al. 2001; Juice et al. 2006). To assess the possible
aluminium mobilization via using the Ca/Al ratio (Hruska and Kram 1994), the molar concentrations
were calculated for Ca and Al (Appendix: Tabs 2). Only in the most top horizon (OI+Of) did the Ca/Al
ratios fall above the critical value = 1, previously reported to be the threshold for damage to plant

roots (Matzner and Prenzel 1992).

For each soil horizon, the concentration ranges (min., max.), mean values and standard deviations
are shown in Appendix: Table 1. As regards the exchangeable cations, Ca was the most abundant
cation in all four horizons, followed by Al, K, Mg. Comparing the total concentrations of trace
elements, Zn was the most abundant metal, followed by Cu, As and Hg. The basic statistics also show
that elements such as Mg, Ca, K and As have significantly higher concentrations in the topmost
horizon (OI+Of) and their abundances decrease with increasing soil depth. On the other hand, the
abundances of Zn increase with increasing soil depth and this indicates that this element is most
probably of lithological origin. Elements such as Al, Cu and Hg exhibit the highest abundances in the
second horizon (Oa) as does the TEA parameter. High concentrations of Cu, Hg and As in the humus-
rich horizons point to strong binding of these elements to the soil organic matter (Blaser et al. 2000;

Mani and Kumar 2005).

The measured concentrations of exchangeable cations and trace elements (organic horizons together

(Ol+0f and Oa), A0-10 and A10-20) were compared with the

mean values classified and published for the Czech Republic (Fabidnek 2004). In general, the cation

concentrations were found to correspond to low values on the scale for the Czech Republic.
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The contents of exchangeable Ca were low in the organic horizons (Ol+Of and Oa: 1307.4 and 379.5
mg/kg) or rather low in A0-10 and A10-20. Exchangeable K in all the studied horizons was estimated
as low and corresponded to the lowest values found in the Czech Rep. The mean contents of
exchangeable Mg in mineral horizons were low, but in accordance with the mean values (A0-10: 10.5
mg/kg), or close to the minimum values found in the Czech Republic (A10-20: 5.6 mg/kg).
Considering the C/N ratio, there are no significant differences between the two organic horizons. The
average C/N ratio in the studied forest stands ranged between 24.9 and 35.0 in Ol+Of and between

21.8 and 34.4 in Oa.

In terms of the trace element gradients, the organic horizons contained moderate amounts of Cu
(50.1 and 78.9 mg/kg, respectively) and Zn (102.7 and 89.3 mg/kg). In both organic horizons and in
A0-10 the contents of As exceeded the limit value given by the regulations issued by the Ministry of
the Environment of the Czech Republic (382/2001 Sb.). Additionally, high contents of Hg were

detected across the whole soil profile (max in Oa: 1.63 mg/kg).

Analysis of the color-coded matrix (Fig. 6.1) reflects strong positive correlations across the entire soil
profiles for Zn, indicating that this element is of lithological origin. This corresponds to the results
published by Borlivka et al. (2005) as they found that most topsoil and subsoil Zn was bound in
silicates. Naturally, significant positive correlations for all four horizons exist between Al —TEA, as Al
cation content is one of the parameters contributing to TEA, and for Mg-Ca; enrichment in these two
elements is a result of organic material decomposition. On the other hand, a generally significant

negative correlation exists between Zn-TEA.

Factor analysis is a powerful tool for identifying relationships that are not readily evident from simple
correlation analysis. Therefore, further statements are formulated, interpreting together both the
results of the correlation matrix and also the results of factor analysis (Fig. 6.1, Appendix: Tabs 8 and
9). Factor analysis was conducted for each soil horizon separately; they represent different
material/mineral compositions and physical-chemical conditions; therefore, the authors expected to
find different element associations. The result of the factor analysis shows that, after varimax
rotation, the first three components explain the majority of the variance in the studied soil variables
(Appendix: Tab. 8). Statistically significant variables which exhibited loading of >0.4 or <-0.4 are
shown in bold (positive- black, negative-white), the closer numbers of loadings correspond to the

closest relationships between studied variables.
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Figure 6.1: Pearson correlation color coded matrix (the values were log,. transformed): Soil profile geochemical
properties; the coefficients were assigned colors according to their values (color scale from dark blue
(correlation= -1) to dark red (correlation= 1)). (** Correlation is significant at the 0.01 level, * Correlation is
significant at the 0.05 level).

Horizon 1 (Ol+0f)

Factor 1 accounts for 42% of the data variability. There are two associations of this factor: Al-As-Hg-
Cu (high positive loadings above 0.750) representing mainly toxic elements, and the correlation
between Ca and the pH (positive loadings around 0.460). Factor 2 accounts for 22% of the data
variability and, in this case, a strong relationship was found between Zn and pH as well as between
AI-TEA-Corg. Factor number 3 covered about 19% of the data variability and correlation between the
C/N and Mg-Ca association was identified, corresponding to parameters that have their origin in the

organic material and related decomposition processes.

Horizon 2 (Oa)

Factor 1 accounts for 44% of the data variability. One main association, Ca-Cu-As, characterizes this
factor and correlates with the C/N ratio and the pH. Surprisingly, Ca fell into this group and the
authors assume that Ca originates mainly from the decomposition of organic material coming from
the litter. The affinity of Cu and As for soil organic matter and the stability of organic complexes were
demonstrated by Berthelsen et al. (1994) and by Yudovich and Kertris (2005), respectively. However,

as Cu and As correlate with C/N but not with the organic matter content (Corg) by itself, we assume
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these elements in this horizon originate mainly from poorly decomposed organic material, which is
typically characterized by a high C/N ratio (Egli et al. 2010). Two major associations were identified
in factor 2 (27% of the data variability), a group of mainly toxic elements (Al-Hg-As-Cu) correlating
with TEA and the Mg-Ca-Zn association. Ca and Mg correspond to nutrients and Zn is also an
essential element if not present in high concentrations (Pallardy 2008). Factor 3 (9% of the data
variability) is explained mainly by the variability in Hg (high positive loadings) and Corg (high negative

loadings) and has not allowed any other associations to be identified.
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Figure 6.2: Factor analysis: 3D plot of the first three components calculated for the four different horizons.

Horizon 3 (A0-10)

Factor 1 accounts for 65% of the data variability and two major groups were found; the Mg-Ca-K and
Zn-As associations, which have a strong relationship to the soil pH. The authors assume that both
associations are products of the weathering of diverse minerals (e.g., alluminosilicates, feldspars,
biotite). Factor 2 (22% of the data variability) indicated a relationship between Mg-Ca-K, nutrient
association that most likely has organic origin. A correlation between Mg-Hg, the elements with the

same charge, was identified in factor 3 (13% of the data variability).
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Horizon 4 (010-20)

The lithology of the parent rock material affects this horizon more when the overlying horizons
described above, in this profile the mineral products of weathering, have common occurrence. Factor
1 accounts for 61% of the data variability and one major group — Mg-Ca-Zn and Hg — correlating with
the pH — explains this factor. The major Zn-Cu-As associations was identified in factor 2 (19% of the
data variability) and, also in this group, correlated with the pH. The relationship between Mg-Ca-K
was identified in factor 3 (12% of the data variability), the same nutrient association detected in the

overlying horizon A0-10.

6.3.2 Linking chemical properties of the soil and Norway spruce

To link the gradients of the same nutrients/heavy metals in the soil and their contents in needles was
a key aspect as the total abundances of these chemical constituents/elements cannot, in itself,
predict their uptake by tree roots and the potential risk they represent for plants (Bussinow et al.
2008; Aznar et al. 2009). The authors assumed that, if a statistically significant relationship is found
between the soil and needle abundances of the same chemical elements, transfer exists between the
soil and the root systems. These elements should be further considered as mobile in the soil, with

high potential bioavailability.

Principle component 1 (49% of the data variability) indicated relationships between soil and needle
element contents for Al, Hg and As (Fig. 6.3, Appendix: Tabs 10 and 11): (i) the amounts of Al in
needles correlated positively with the soil contents in all four soil horizons, (ii) Hg in the needles had
a strong correlation with Hg abundances in the two organic horizons, although it needs to be taken in
account that Hg in the sampled needles did not exhibit normal distribution and optimally this result
should be further tested using a new dataset. However to support the relationship, a similar
distribution of Hg in the soil profile and foliage was also described by (Obrist et al. 2012) in Douglas
fir and red alder stands. These results can be explained by a strong affinity of Hg for the soil organic
matter, as reported by Kolka et al. (1999) or Mani and Kumar (2005). Nevertheless, it is still not clear
whether Hg is taken up by the trees preferentially from the upper soil horizons and transported to
the needles or whether it accumulates in the needles and surface soil profile from atmospheric
deposition, as mentioned, e.g., by (Brun et al. 2010). Hg is reported to be immobile in soils (Adriano
2001); thus the authors assume that Hg is loaded into the upper soil profile mainly by atmospheric
deposition, (iii) the As content in the needles correlated with the As contents in A0-10 and A10-20,

the mineral horizons already influenced by the parent rock material. This was in accordance with
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findings that roots take up As mainly in inorganic forms (arsenate and arsenite) and As is transported
to the above-ground organs in the form of arsenite (Zhao et al. 2010). Similarly, a study of the spatial
distribution of trace elements in Norway spruce stands showed that As is mainly associated with the

mineral horizons in Norway spruce forest soil (Brun et al. 2010).

PC1 PC2 PC3

Figure 6.3: Color-coded matrix of the loading factors for the first free components: Element abundances in the
soil horizons (organic horizons: OI+Of and Oa, Al: mineral soil 0-10 cm, A2: mineral soil 10-20 cm) and the
Norway spruce needles (marked as n).

Principle component 2 (39% of the data variability) identified the following relationships (Fig. 6.3,
Appendix: Tabs 10 and 11): (i) Ca: correlations between the needle contents and the abundances in
all four soil horizons, (ii) K: the abundances in needles correlate with the abundances in the first two
organic horizons, as K is enriched in the forest floor horizons through the decomposition of K-rich
litter. During the decomposition of organic matter (OM) monovalent ions are released relatively

quickly and are thus available for uptake by trees. The high turnover rate of K between the forest
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floor and foliage is thus responsible for the close relationship, (iii) Zn: correlation between the needle
content and the Zn content in the first soil horizon was detected, (iv) Cu: a relationship was found
between the needle content and the Cu abundances in the Ol+ Of, Oa and A1-10 soil horizons. This
result demonstrates that, in acid soils, the Cu content is more often related to organic matter pools

(Egli et al. 2010).

Component 3 (12% of the data variability) additionally allowed identification of a relationship
between the needle abundances of Cu and mainly the lower mineral horizons (A0-10 and A10-20).

6.3.3 Variability of biochemical parameters according to the needle
position in a crown and the age

In general, the mean pigment contents of the sampled trees (2.6 + 0,8 mg/g DW of chlorophyll a+b:
Cab) correspond to healthy Norway spruce (Siefermannharms 1994). Assessing vertical gradients,
only the contents of photosynthetic pigments and their ratio depended on the needle position within
the production crown part, while the other biochemical parameters (soluble phenolics and water/
lignin contents) were independent of the needle vertical position (Appendix: Tab. 4). The needles
from the lower position of the production part of the crown received less direct radiation and tend to
have higher pigment concentrations like the needles from the , transition" canopy level (Homolova et
al. 2012). Similarly, in this case needles sampled from the lower position (L) exhibited higher pigment
contents. In contrast to the needle crown position, the needle age had a significant effect for all the
investigated biochemical parameters. Therefore, the authors decided to keep the different needle

age classes separated regardless of the needle vertical position in further statistical assessments.

The first component (31% of the data variability, Appendix: Tabs. 6 and 7) is explained mainly by the
variances in the water (W), chlorophyll (Cab) and carotenoid (Car) contents of the L1 needles (higher
production crown part, younger needles). Similarly, component 2 (18% of the data variability) is
explained mainly by the variance in the Cab and Car values in the L3 needles (lower production
crown part, older needles). The same relationship shows the correlation color-coded matrix (Fig.
6.4). A strong positive correlation between the contents of chlorophylls and carotenoids was
expected, as both types of pigments cooperate in light harvesting in primary photosynthetic
reactions (Demmig-Adams and Adams 1996). Although the first-year needles are assumed to be
mature at the time of sampling (late July), the contents of Cab and Car in these needles usually
increase in the subsequent one or two seasons (Albrechtova et al. 2008) and the water content

decreases (Homolova 2012), which may both change the strength of the relationships between these
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biochemical parameters and explain the stronger correlation between photosynthetic pigments and
needle water contents in L1. Additionally, the Car/Cab ratio is influenced by needle age: in the first-
year needles, the pigment ratio was more dependent on the carotenoid content in comparison with
3rd year needles, where the value of the Car/Cab ratio was driven by increasing chlorophyll content
(Fig. 6.4).
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Figure 6.4: Pearson correlation color-coded matrix (values were log. transformed): chemical and
biochemical properties of the Norway Spruce at the position of L1, the coefficients were assigned colors
according to their values (color scale from dark blue (correlation= -1) to dark red (correlation= 1)). (**
Correlation is significant at the 0.01 level, * Correlation is significant at the 0.05 level).

Component 3 (13% of the data variability) indicated a relationship between Car/Cab ratio and soluble
phenolic contents (both L1 position). In addition to the accessory light-harvesting function,
carotenoids protect photosynthetic membranes and chlorophyll from reactive oxygen species
(Pallardy 2008), and thus the Car/Cab ratio may increase under oxidative stress caused by excessive
light (Tauzs et al. 2007) or heavy metal stress (Martinez-Penalver et al. 2012). Similarly phenolic
compounds play a protective role due to their antioxidant properties (Bialonska et al. 2007). The
synergic effect in scavenging reactive oxygen species may explain the positive loading of both the

Car/Cab ratio and soluble phenolics in component 3.

Component 4 (11% of the data variability) as well as color coded matrix (Fig. 6.4) identified the

relationship between lignin and soluble phenolic compounds for the L3 position. Lignin and soluble
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phenolic compounds are both important protective secondary metabolites (Moura et al. 2010),
although soluble phenolics are more connected with non-specific stress reactions and defense (being
synthetized much faster after stressor effects), while lignin tends rather to play a structural role (less

mobile).

The last component (8% of the data variability) identified the relationship between the water and
lignin contents in both positions (L1, L3), as both the water and lignin contents decrease with needle
age if related to the total needle dry mass. Further testing is necessary also in this case, as the water

content data didn’t follow a normal distribution.

6.3.4 Chemical and biochemical properties of Norway spruce

Although the Sokolov region is considered to be one of the most heavily contaminated in the
country in terms of the wide range of metals, the studied trees did not exhibit either visible damage
caused by metal contamination or high accumulation of trace elements in the needles (Appendix:
Tabs. 3 and 5). The medians of Ca, Cu, K and Hg in the first-year spruce needles corresponded well
with the values presented by Suchara et al. (2011), while the medians of Mg and Zn were higher.
Assessing the contents of selected mineral elements (Mg, Ca and K), the first-year Norway spruce
needles exhibited moderate values with no signs of deficiency (Fabidnek 2004). In relation to
potentially toxic elements, the As content in almost half of the needle samples was below the
detection limit. It seems that Norway spruce tend rather to accumulate As in the roots, as shown by
Brun et al. (2010), while As was almost undetectable in the wood, green needles and litter. The
critical loads of Al in plant tissues have not been generally established, however the content of Al in
needles in our study (87mg/kg) was higher than that described by Suchara et al. (2011) and
comparable with other studies on Norway spruce conducted in polluted areas, e.g. 30-120 mg/kg Al

(Jonard et al. 2012) and 30-200 mg/kg (Bussinow et al. 2008).

The correlation matrix (Fig. 6.5) shows that there are statistically significant positive correlations
between Zn-Cu, which are both essential for many enzymatic functions and similarly both are
required in very small quantities. The next positive association was found between Ca-Mg-Al and Zn-
Ca-Mg. A significant negative linear relationship was found between K-Zn and K-Ca. The chlorophyll
content exhibits a positive correlation with Cu and Zn, which suggest that Cu and Zn do not play the
role of contaminants here but are a suitable source of micronutrients. Further statements are based
on analyzing the results of both correlation matrix (Fig. 6.5) and factor analysis (Appendix: Tabs. 12

and 13).
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The second component (13% of the data variability) identified the relationship between the K
content and phenolic compounds in the wet matter (both negative loadings) and between Zn-Al
(positive loadings). The third component (13% of the data variability) depicted the relationship
among the contents of As, phenolic compounds (dry and wet matter) and Car/Cab ratios. Component
4 (10% of the data variability) indicated the relationship between Cu-Zn and confirmed the
relationship among the Al concentrations and the contents of phenolic compounds and the Car/Cab
ratios. Thus, components 3 and 4 identified the most sensitive biochemical parameters —phenolic
compounds and Car/Cab ratios — both were positively correlating with As and Al, the elements
considered to be toxic for coniferous forests (Zhao et al. 2010; Collignon et al. 2012). Component 5
(8% of the data variability) can be explained mainly by the data variability of Hg (high positive

loadings) and lignin (high negative loadings).
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Figure 6.5: Pearson correlation color-coded matrix (the values were log. transformed): chemical and
biochemical properties of the Norway at the positions of L1 and L3, the coefficients were assigned colors

according to their values (color scale from dark blue (correlation= -1) to dark red (correlation= 1 (** Correlation
is significant at the 0.01 level, * Correlation is significant at the 0.05 level).
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6.4 Conclusions

The studied spruce sites can be generally characterized by low-pH soils depleted of exchangeable
cations with moderate concentrations of Zn and Cu and rather high contents of Hg and As. In spite of
the low Ca/Al ratios, moderate contents of selected nutrients (Mg, Ca and K) in the first-year needles
are high enough and the chlorophyll needle content proves that their availability in such acidified
soils is still sufficient for Norway spruce, pointing out that the Ca/Al ratio alone might be a weak
predictor of the foliage nutrient status. High concentrations of Al in the first-year needles are in

accordance with acid soil conditions that facilitate Al uptake by the roots.

Using factor analysis, the authors were able to determine diverse nutrient/heavy metal associations
that characterize the four studied horizons; among them, the Al-As-Hg-Cu association of mainly toxic
elements was identified in both organic horizons (Ol+Of and Oa). For two mineral horizons (A0-10
and A10-20), similar associations depending on the soil pH, Zn-As and Zn-As-Cu were identified.
Considering the potentially toxic elements, the authors found correlations between soil and tree
concentrations for Al (needle Al content correlated with the Al concentrations in all four horizons), As
(needle As content correlated with the As concentrations in the mineral horizons (A0-10 and A10-20)

and Cu in the organic horizons (Ol+Of and Oa).

For Al and As, the elements detected as mobile in the studied soils, a correlation between
concentrations in the Norway spruce tissues and the two biochemical parameters —soluble phenolic
compounds and Car/Cab ratios was found. This finding shows that the production of phenolic
compounds in the biomass could be stimulated and subsequently affect litter decomposition and
overall soil carbon balance in regions with current or historic acidification and consequent
mobilization of toxic elements (Al and As). Soluble phenolic compounds and the Car/Cab ratio
appeared to be the most sensitive biochemical parameters of all those assessed and the authors

suggest that they can serve as suitable non-specific stress markers.

In addition to the statements formulated above, the study contributes to better understanding of the
relationships between soil and foliar chemistries, particularly in coniferous forests affected by

anthropogenic pollution.
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7.1 Research findings

The main purpose of this thesis was to use Image Spectroscopy as a tool to monitor the
environmental conditions in a region affected by anthropogenic activities via estimating both
geochemical and biochemical parameters on a regional scale. The thesis was divided into two
thematic parts. First part was devoted to applications of Image Spectroscopy into Acid Mine Drainage
mapping and its related issues while in the second part Image Spectroscopy was applied into

monitoring of vegetation stress.

Major research findings relevant to the specific research objectives defined in section 1.3 are

described below:

To formulate mineral spectroscopy-based techniques allowing identification of acidity sources and
surface pH estimation for exposed surfaces in extremely heterogeneous environments

characteristic for mining sites.

e In chapter 2, high-altitude spectroradiometry (ASTER - Advanced Spaceborne Thermal
Emission and Reflection Radiometer satellite data) together with ground-based
spectroradiometry were employed in order to identify the locations of the most significant
sources of Acid Mine Drainage (AMD) discharge at the Sokolov lignite open-pit mines. The
equivalent mineral end-members were successfully derived from the ASTER image data
(Advanced Spaceborne Thermal Emission and Reflection Radiometer satellite data) and a
sub-pixel method (Linear Spectral Unmixing, LSU) was employed to relatively estimate the
selected end-member abundances and to identify low-pH zones. The sub-pixel method (LSU)
was selected due to the the extreme heterogeneity of the Sokolov surfaces and diverse
material mixing level present in the ASTER pixels (VNIR: 15 m, SWIR: 30 m). The LSU analysis
was a sufficient first order approximation to constrain the mineralogy as the absolute
abundances of the indicative minerals were not required. The map with the low pH zones
delineated achieved sufficient overall accuracy (75%).

e In the following study (chapter 3) pH was estimated on the basis of mineral and image
spectroscopy. First, a geochemical conceptual model of the site was defined. Diagnostic
minerals of very low pH (<3.0) as well as increased pH (3.0-6.5) and nearly neutral or higher
pH (>6.5) were identified. In heterogeneous environment characterizing mining sites, the
pixel reflectance (in this case HyMap pixel size was 5x5 m) has a significant mixing problem.

Therefore, it was necessary to identify such absorption feature parameters which are
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common for individual minerals as well as mineral mixtures and select a mapping
technigue/method which is robust enough to identify the targeting minerals even if present
as part of mixtures. The Multi Range Spectral Feature Fitting (MRSFF) technique was found to
be sensitive enough to assess differences in the desired spectral parameters (e.g., absorption
maximum wavelength position, absorption depth) and to be scalable in the way that field
spectra end-members were successfully used for the HS image mapping. Furthermore, the
multiple regression model using the fit images, the results of MRSFF, as inputs was
constructed to estimate the surface pH and statistical significant accuracy was attained
(R’=0.61, Rv*=0.76). This study represents one of the very first approaches employing image
spectroscopy for quantitative pH modeling in a mining environment and the achieved results
demonstrate the potential application of hyperspectral remote sensing as an efficient

method for environmental monitoring.

To formulate a HS remote sensing technique allowing early detection of vegetation stress on a

regional scale.

e A new statistical method was developed to assess the physiological status of macroscopically
undamaged foliage of Norway spruce (chapter 4). As the chlorophyll content alone may not
correspond sufficiently well to the physiological/health status, the suggested method utilized
three indicators (Cab, REP, expSIPl). Two products were created using HyMap 2009 multi-
flight line data: the map of chlorophyll content (Cab) and a raster combining the information
from REP (sensitive to vegetation stress) and expSIPl (sensitivity to the ratio of bulk
carotenoids to chlorophyll). For both products a relative classification (normalized z-scores)
was used based on the histogram dynamic ranges, averages and standard deviations.
Consequently, no hard threshold values were required. The only condition to be fulfilled was
a normal distribution of the classified data. In both maps, Class 1 indicates worse health
status for the trees without visible damage symptoms and Class 5 corresponds to the values
indicating the healthiest trees. As this method takes in account the two major biochemical
parameters that are closely connected with photosynthetic functions, it allows assessing of
the vegetation stress in a more objective way. However it is necessary to emphasize that this
method is suitable for one-species (monoculture) forests. Norway spruce was selected as it
represents the predominant forest species in the studied region; in addition, spruce needles

were confirmed to be well-suited for detection of contamination.
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To validate one of the latter techniques using an additional temporal HS image dataset.

e In the following study (chapter 5) the same method described above was employed and
validated while using additional temporal HS image data set (HyMap 2010 data) in order to
(i) validate the new method (chapter 4), (ii) study the forest Norway Spruce variations in
biochemical parameters while comparing the foliar pigment content from the samples
collected in two subsequent growing seasons, (iii) assess vegetation stress within the
selected Norway spruce sites while putting together information on forest stand geochemical
conditions, foliar biochemistry (pigment contents) and the temporal differences detected by
classifying the two HS image datasets acquired one year apart. To summarize the results,
both biochemical analysis of the sampled tree needles and hyperspectral image data have
been shown to reflect the soil chemistry. Higher Car/Cab ratios in spruce needles and lower
health status derived from HyMaps were related to the lowest Bc/Al ratio in mineral soil. The
strong linkage between soil chemistry and parent bedrock indicated that bedrock
geochemical reactivity should be considered to be important factor in the assessment of
forest health status.

e The method proved suitable as the HyMap classification results were in accordance with the
statistical assessment of the biochemical properties of the sampled trees as well as with the
geochemical properties of the forest sites. Apparently, in both years, differences detected by
biochemical and hyperspectral methods remained consistent among spruce stands and only
mild changes in the physiological condition of the stands under study were detected by both

approaches. This finding supports the validity of the previously presented model.

To assess the applicability of using diverse needle biochemical parameters as biological indicators
of adverse soil condition parameters and select the most sensitive ones with the greatest potential

for future HS Remote Sensing monitoring.

e In chapter 6 the relationship between soil and spruce needle contents of macronutrients and
potentially toxic elements was studied and tested whether the soil parameters and their
vertical distribution within a soil profile (two organic and two mineral horizons) affect foliage
biochemical parameters (contents of photosynthetic pigments, phenolic compounds and
lignin). Factor analysis identified Al and As as toxic elements with high bio-availability for
spruce trees, whereas acid soil conditions facilitate the heavy metal uptake by the roots. For
these toxic elements detected as mobile in the studied soils, a correlation between

concentrations in the Norway spruce tissues and the two biochemical parameters — soluble
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phenolic compounds and Car/Cab ratios was found. This finding suggests that these latter
two biochemical parameters, which both proved to be sensitive to the soil geochemical
conditions, can serve as suitable non-specific stress markers. The results demonstrated in
chapters 4 and 5 also point out that Car/Cab is more suitable indicator of forest health than

using just absolute contents of both photosynthetic pigments.

7.2 Conclusions and future remarks

The presented studies demonstrate the potential application of hyperspectral remote sensing as an
efficient method for environmental monitoring. The presented research resulted in the following

overall conclusions:

e Good performance of hyperspectral image analysis depends on accurate atmospheric
correction, which has a strong influence on the spectral diagnoses. If multi-flight line and
multi-date hyperspectral data are used, additional corrections for the BRDF effect may need
to be implemented; esecialy if sensors with wide field of view are utilized. To minimize the
BRDF effect flight lines should follow the N-S directions. Although this thesis doesn’t address
this issue, the HS image data were corrected for the atmospheric and BRDF effects.

e The mining environment is characteristic for its high heterogeneity and complexity.
Therefore, Acid Mine Drainage (AMD) mapping should be tailored to the specifics of the
tested mining site and a simplified concept needs to be set out first. A conceptual model
depicting the minerals that reflect the specific site conditions and indicate a certain pH needs
to be defined prior spectral mapping.

e Even high-spatial-resolution (5-m pixel) images have contributions from multiple sub-pixel-
scale components. Based on these findings, the most efficient and valid methods are those
taking in account the spectral mixture models or methods which are scalable as a pixel is
represented by an area on the ground whereas a sample is a point on the ground.

e The shift to longer wavelengths of the absorption maximum centered between 0.90-1.00 pum
was found to be the main parameter that allows differentiation among the Fe** secondary
minerals even if they are present as mixtures. Alternatively, other techniques which allow
absorption feature wavelength estimation (e.g., derivative analysis, quadratic method)
should be tested and results compared.

e The Multi Range Spectral Feature Fitting (MRSFF) technique was employed for mineral
mapping and was found to be sensitive enough to assess differences in the desired spectral

parameters (e.g., absorption maximum wavelength position, absorption depth). Additionally,
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this technique was found to be scalable as the field spectra of fundamental mineral end-
members were successfully utilized for mineral mapping within the HS image data.
Physiological status of macroscopically undamaged foliage can be assessed by the means of
image spectroscopy and stress can be detected prior the symptoms are visually expressed.
The suggested method to classify health status of the Norway spruce forests proved suitable
as the HyMap classification results were in accordance with the statistical assessment of the
biochemical properties of the sampled trees as well as with the geochemical properties of
the forest sites. If Multi-date HS data are utilized, this method has further potential for
monitoring of forest ecosystems.

Too few studies have been devoted to estimation of phenolics for forest canopy but the
published results show that these compounds are detectable by means of optical remote
sensing as they were successfully predicted using PLSR. Therefore further research should be
done in this field to investigate how phenolics could be estimated and further used for

detecting forest stress using imaging spectroscopy.
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8.1 Mathematical expression for the spectral mapping techniques
used in this thesis

The linear spectral mixture modeling (e.g., Linear Spectral Unmixing, chapter 2) framework can be
mathematically expressed:

Ri(/l)ZszRf(/l)i +¢&  (Eq.1)
-1
j (Eq. 2)

Where R;is the composite reflectance of the mixed spectrum in band j, F; the fraction of end-member
(/) in the mixture, Ry is the reflectance of that end-member in band i, n the number of end-members,
€ the error in the sensor band j and A is the wavelength. Eq. (2) constraints the fractions allowed to
be between 0 and 1. Implicit in the above equations is the assumption that each cover type
contributes linearly to pixel reflectance, and thus non-linear interactions between end-members are

negligible.

The spectral feature fitting (chapter 3) expresses the relationship between image spectra and end-
member spectra for each band by the linear function y = ax + b, in the form of a vector. In a sense of

least squares problem the mathematical description is described below (Eq. 3):

Xj = (Xij (1)1 X;; (2)’ eer X (n))
xu(n) x,(n) ... x;(n)
Xij(n): X21§(n) Xzzs(n) XZjS(n)
xs(n) x,(n) ... Xij(n)
y, =ax()+b
Y = ax(2)+b (Eq. 3)
'yn:ax(n)+b

2 ~ 2 ~ 2 ~ 2
E?=(y, =9 +(y, = 9.) +. .+ (v, = 9,)
Where x;; represents a hyperspectral dataset, x;(n) is a single band in an image, y is estimated pixel

value based on the regression function, ¥ is the reference spectra or actual observation value, n is
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the band number of the image, and i and j correspond to a band’s row and column, respectively.

Parameters a and b are the fitting coefficients of a single band, respectively.
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8.2 Descriptive statistics for the chapter 6
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Table 1: Descriptive statistics of soil properties calculated for each horizon (numbers 1-4 refer to the relevant
soil horizon: 1- the topmost, 4- the deepest).

Std. p (Sh-W) Kurtosis | Skewnes Units
N | Minimum | Maximum Mean Deviation l0ge s loge
Al; 19 73,00 703,00 249,84 | 165,68 0,01 -0,62 0,15
Al, 19 | 240,00 | 1112,00 | 744,11 | 246,95 0,05 1,56 -1,17 mg/kg
Aly 19 | 308,00 635,00 436,68 94,92 0,05 -1,05 0,06
Al, 19 | 123,00 408,00 288,21 92,65 0,05 -0,33 -0,87
Ca, 19 | 660,00 | 2890,00 | 1307,37 | 672,70 - -1,32 0,49
Ca, 19 60,00 1020,00 | 379,47 | 306,40 0,01 -1,54 0,00 mg/kg
Cas 19 10,00 270,00 54,74 77,92 - -0,43 0,87
Cay 19 1,00 140,00 32,32 43,37 - -0,48 -0,44
Mg, 19 66,00 223,00 149,95 36,51 0,01 2,95 -1,30
Mg, 19 29,00 130,00 61,47 25,13 0,01 0,28 0,42 mg/kg
Mgs 19 4,00 30,00 10,53 5,82 - 0,81 0,55
Mg, 19 1,00 19,00 5,58 4,06 - 0,84 -0,14
Ky 19 | 123,00 619,00 364,84 | 136,10 0,05 0,00 -0,81
K, 19 61,00 276,00 146,63 59,78 0,05 -0,70 -0,35 mg/kg
Ks 19 12,00 45,00 21,58 7,82 - 0,77 0,72
Ka 19 8,00 23,00 15,37 4,18 0,05 0,05 -0,45
Cu, 19 16,00 168,00 50,05 40,15 - 0,34 0,97
Cu, 19 29,00 203,00 78,89 61,82 - -1,41 0,69 mg/kg
Cus 19 18,00 53,00 16,18 14,78 - 3,03 1,54
Cu, 19 20,00 36,00 15,79 12,88 - 0,81 0,77
Zn, 19 49,00 271,00 102,74 68,70 - 0,42 1,34
Zn, 19 43,00 265,00 89,32 69,08 - 0,19 1,25 mg/kg
Zn, 19 20,00 455,00 117,16 | 143,66 - -1,03 0,70
zZn, 19 19,00 758,00 144,58 | 195,75 - -0,70 0,69
Hg, 19 0,00 2,20 0,95 0,71 0,05 -1,35 0,37
Hg> 19 0,00 3,00 1,68 0,83 0,05 -0,71 -0,43 mg/kg
Hgs 19 0,00 1,50 1,03 0,26 - -0,85 0,65
Hgs 19 0,00 1,30 0,97 0,51 - -0,38 0,66
As; 19 8,00 97,00 37,84 25,38 0,05 -0,83 -0,14
As; 19 32,00 90,00 55,16 21,43 - -1,54 0,28 mg/kg
As; 19 13,00 50,00 25,53 9,90 0,05 -0,46 0,29
As, 19 7,00 38,00 17,53 8,87 0,01 -0,33 0,17
pH; 19 2,36 3,43 3,00 0,32 0,05 - -
pH, 19 2,49 3,53 2,96 0,37 0,01 - - -
pH; 19 2,75 3,66 3,25 0,23 0,05 - -
pH, 19 3,33 4,09 3,65 0,27 0,01 - -
Corg, | 19 22,13 19,84 31,90 3,68 0,05 2,74 -1,46 %
Corg, | 19 36,38 28,77 24,04 2,70 0,05 -0,99 -0,04 %
CiN; | 19 24,87 34,99 28,09 2,09 - -0,97 -0,10
Cy/N, | 19 21,83 34,42 28,54 3,69 0,05 -0,78 -0,30 -
TEA; | 19 37,80 102,10 64,25 19,84 0,05 1,33 0,03
TEA, | 19 53,80 175,50 108,81 26,61 0,05 1,66 -0,78 | mmol/kg
TEA; | 19 43,60 90,80 59,98 12,80 0,05 -0,73 0,42
TEA, | 19 23,20 52,50 40,65 9,26 0,05 0,05 -0,37
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Table 2: Descriptive statistics of Ca/Al ratio calculated for each horizon (numbers 1-4 refer to the relevant soil
horizon: 1- the topmost, 4- the deepest).

N Minimum Maximum Mean
Caj/Aly 19 0,79 14,02 3,64
Cay/Al, 19 0,05 1,15 0,33
Ca3/Al; 19 0,01 0,37 0,04
Cau/Al, 19 0,03 4,64 0,04

Table 3: Descriptive statistics of the Norway spruce biochemical parameters (all samples together: U1-U3 and
L1-L3), FW = fresh weight, DW = dry weight.

N Min. Max. Median | Mean Desit:t.ion Units
200 | 20,57 78,80 55,71 | 55,51 8,10 % FW
Water content
Chlorophyll a 197 | 0,45 4,21 1,85 | 1,91 0,61 mg.g" DW
Chlorophyll b 197 | 0,14 1,48 0,62 | 0,65 0,22 mg.g" DW
Chlorophyll a+b 197 | 0,59 5,69 246 | 2,56 0,83 mg.g” DW
'Total carotenoids 197 0,08 0,92 0,34 0,35 0,11 mg.g'1 DwW
Phenolics-FW 200 | 48,38 293,14 96,22 [100,02 30,23 mg.g'1 FW
Phenolics-DW 200 | 114,79 | 1082,76 | 351,97 |365,56| 11563 | mg.g- DW
Lignin 157 | 29,73 | 62,56 | 44,43 | 44,87 7,40 mg.g”— DW
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Table 4: ANOVA: Effect of needle crown position and needle age on needle biochemical parameters. Three-way
ANOVA, F-ratios and significance are shown. Significance at: 0.05 *, 0.01**, 0.001***,

Effect
Crown position (U,L) Needle Age (1,3)

Biochemical parameter

Chlorophyll a+b (Cab, mg/g DW) 9.84 ** 68.17 ***
Carotenoids (Car, mg/g DW) 6.32* 99.83 ***
Carotenoids / Chlorophylls (Car/Cab) 9.84 ** 326.80 ***
Water content 1.47 ns 18.03 ***
Phenolics (FW) 0.02 ns 221.06 ***
Phenolics (DW) 0.04 ns 90.66 ***
Lignin (mg/g DW) 2.90 ns 117.30 ***

Table 5: Descriptive statistics of the Norway spruce biochemical parameters. L1 and L3, FW = fresh weight, DW

= dry weight.
p .
Std. Kurtosis |Skewness
N Min. | Max. |Median| Mean [Deviation|(Sh-W) loge loge Units
L1
50 | 25,46 | 78,80 | 60,03 | 59,79 | 8,04 - 15,41 -3,30 % FW
Water content
-0,90 | mg,g”
Chlorophyll a+b 50 | 059 | 4,89 | 2,29 | 2,32 0,81 - 2,45 DW
-0,79 | mg,g”
Total carotenoids | 50 | 0,08 | 0,67 | 0,30 | 0,37 0,10 - 3,28 DW
-0,29 mg,g”
Phenolics-FW 50 | 48,38 |103,37| 78,05 | 79,33 | 13,73 | 0,05 -0,39 Fw
-1,01 | mg,g”
Phenolics-DW 50 (114,79|435,59(293,42(299,87| 75,66 | 0,01 1,20 DW
Lignin 50 | 35,76 | 62,56 | 79,63 | 50,77 | 5,74 0,05 -0,23 mg,g'1
0,28

169



Chapter 8

Appendix

DW

Al 50 49 175 87 | 88,76 | 24,74 - -0,01 mg/kg
-0,12

Mg 50 | 0,87 | 153 | 1,13 | 1,15 0,15 0,05 0,30 mg/kg
-0,37

Ca 50 | 1,34 | 7,51 | 3,62 | 3,92 1,63 0,05 -0,31 mg/kg
-0,77

K 50 | 2,89 | 8,13 | 6,03 | 581 1,26 0,01 0,24 mg/kg
1,26

Cu 50 2,3 3,9 31 3,10 0,41 0,05 -0,06 mg/kg
-0,68

Zn 50 | 17,2 | 60,3 | 3545 | 36,35 | 11,12 | 0,05 -0,23 mg/kg
-0,95

Hg 50 | 0,014 | 0,05 | 0,02 | 0,02 0,01 - 4,31 mg/kg
19,75

As 22 | 0,20 | 0,81 | 0,11 | 0,15 0,15 0,01 1,10 mg/kg
2,63

L3

Water content 50 | 20,57 | 60,65 | 54,20 | 52,80 | 6,37 - -4,41 % FW
22,52

-1,14 mg,g-1

Chlorophyll a+b 50 | 1,23 | 4,71 | 3,19 | 2,32 0,70 0,01 DW
2,72

-1,55 mg,g-1

Total carotenoids | 50 | 0,17 | 0,61 | 0,43 | 0,31 0,10 - DW
2,73

-0,01 mg,g-1

Phenolics-FW 50 | 75,32 |{192,00(119,57|119,73| 23,30 | 0,05 FW
0,17

-0,43 mg,g-1

Phenolics-DW 50 |208,84|753,56|434,65|436,69| 105,05 | 0,05 DW
0,59

0,15 mg,g-1

Lignin 50 | 30,90 | 51,65 | 39,43 |39,90| 4,84 0,05 DW
-0,36

Table 6: Explained total variance of the studied biochemical variables for L1 and L3 .

Initial Eigenvalues
% of Cumulative

Component Total Variance %

1 4,275 30,533 30,533
2 2,548 18,200 48,733
3 1,781 12,718 61,451
4 1,479 10,563 72,014
5 1,138 8,129 80,143
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Table 7: Biochemical variables (L1 and L3): rotated Component Matrix (h1= horizon 1, ..., h4=horizon 4),

statistically significant variables that exhibited a loading>0.4 or <-0.4 are given in bold (positive-black, negative-

white).
Component
1 2 3 4 5

Cab 1, 0,926 0,273 -0,125 0,046 0,026
Car 4 0,926 0,248 -0,029 0,040 -0,047
Car,/Caby, -0,369 -0,238 0,523 -0,060 -0,372
Wiy 0,693 -0,049 0,065 0,176 0,528
FFW, -0,168 -0,118 0,860 0,229 0,087
FDW, 0,108 -0,056 0,920 0,017 -0,060
Lig 11 -0,057 0,188 0,107 0,237 0,807
Cab 3 0,194 0,953 -0,119 -0,028 0,109
Car 3 0,193 0,916 -0,123 0,025 0,073
Car 1s/Cab 3 | -0,102 -0,638 0,044 0,250 -0,213
W3 0,324 0,190 -0,151 -0,280 0,733
FFW 3 0,101 -0,055 0,225 0,859 0,090
FDW 3 0,105 -0,149 0,022 0,884 0,030
Lig 13 -0,132 0,098 -0,331 0,495 0,544

Table 8: Factor analysis: Explained total variance of soil variables (h1= horizon 1,

Component Initial Eigenvalues
% of Cumulative
Total Variance %
h1: Ol+Of
1 5,075 42,292 42,292
2 2,654 22,118 64,410
3 2,301 19,176 83,586
h2: Oa
1 5,386 44,880 44,880
2 3,185 26,542 71,421
3
1,421 11,843 83,264
h3: Aog.10
1 6,509 65,088 65,088
g 2,197 21,971 87,059
1,294 12,941 100,000
1 6,161 61,607 61,607
g 1,905 19,047 80,654
1,145 11,453 92,107

..., hd=horizon 4).
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Table 9: Soil variables: rotated Component Matrix (h1= horizon 1, ..., h4d=horizon 4), statistically significant

variables that exhibited a loading>0.4 or <-0.4 are given in bold (positive-black, negative-white).

Component Component
1 2 3 1 | 2 3
Ol+of Oa
Al 0,778 -0,287 0,191 0,925 0,119
Mg -0,288 0,038 0,847 -0,328 0,186
Ca 0,469 0,462 0,713 0,700 0,390
K -0,847 0,062 0,374 -0,108 -0,264
Cu 0,925 -0,094 -0,125 0,823 0,439 0,137
Zn -0,197 0,788 -0,108 -0,172 -0,399
Hg 0,969 -0,038 0,174 0,009 0,517 0,764
As 0,933 -0,008 -0,066 0,704 0,512 0,358
pH 0,466 0,831 -0,067 .0,951 -0,021 -0,089
Corg 0,268 0,577 -0,058 -0,014
CIN -0,233 -0,158 0,707 0,768 0,076 -0,189
TEA 0,374 -0,310 -0,161 0,900 0,203
Ao10 Alp2o

Al 0,027 -0,301
Mg 0,467 0,627 0,624 0,612 0,185 0,671
Ca 0,677 0,716 0,174 0,579 -0,160 0,740
K 0,401 0,845 0,354 -0,107 0,116 0,966
Cu 0,195 -0,976 -0,099 0,287 0,888 0,057
Zn 0,854 0,352 0,384 0,599 0,747 0,274
Hg 0,089 0,229 0,969 0,935 0,110 0,007
As 0,983 0,083 0,162 0,008 0,935 0,039
pH 0,754 0,502 -0,424 0,820 0,503 0,113
TEA -0,099 0,065 -0,245

Table 10: Explained total variance of the common chemical variables determined for both soil horizons and the

tree needles at L1.

Initial Eigenvalues
% of Cumulative
Component Total Variance %
1 19,533 48,833 48,833
2 15,595 38,988 87,821
3 4,872 12,179 100,000
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Table 11: Common chemical variables determined for both soil horizons and the tree needles at L1: rotated
Component Matrix (h1=horizon 1, ..., hd=horizon 4), statistically significant variables that exhibited a
loading>0.4 or <-0.4 are given in bold (positive-black, negative-white).

Component Component
1 2 3 1 2 3
Aly 0,925 0,314 -0,216 | Cu; 0,653 | 0,671| -0,351
Al, 0,658 -0,136 -0,741 | Cu, 0,530 0,607 | -0,593
Aly 0,410 -0,713 -0,569 | Cus -0,079 0,496 0,865
Aly 0,987 0,036 -0,157 | Cuy -0,456 | -0,174 0,873
Al, 0,960 0,157 -0,231 | Cu, 0,133 0,577 0,806
Mg, 0,343 -0,583 0,736 | Zny -0,398 0,521 0,755
Mg, -0,497 -0,050 0,866 | Zn2 -0,763 0,294 0,575
Mgs -0,342 0,913 0,222 | Zn3 -0,882 0,198 0,428
Mg, 0,055 0,998 0,008 | Zny4 -0,867 0,134 0,480
Mgn 0,909 0,204 -0,363 | Zn, -0,117 0,797 0,593
Cay 0,359 0,927 0,111 | Hg 0,735 0,675 | -0,058
Ca; 0,110 0,778 0,619 | Hg2 0,893 | -0,403| -0,203
Cas 0,200 0,974 0,105 | Hgs -0,107 0,620 0,777
Ca, -0,084 0,992 -0,093 | Hg, -0,976 0,142 | -0,163
Can 0,182 0,983 -0,003 | Hg, 0,988 0,112 | -0,108
Ki -0,713 -0,043 | As; 0,723 0,658 0,209
Kz -0,594 0,099 | As; 0,886 0,374 | -0,276
Ks -0,766 0,074 0,639 | Asz -0,020 0,931
Ka -0,169 0,971 0,167 | Asy -0,082 0,873
Kn 0,179 -0,082 | As,, 0,283 0,382

Table 12: Explained total variance of the studied biochemical variables at L1.

Component Initial Eigenvalues
% of Cumulative
Total Variance %

1 4,204 28,024 28,024
2 2,707 18,048 46,072
3 2,007 13,380 59,452
4 1,534 10,227 69,678
5 1,181 7,872 77,550
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Table13: Biochemical variables (L1): rotated Component Matrix (h1= horizon 1, ..., hd=horizon 4), statistically
significant variables that exhibited a loading>0.4 or <-0.4 are given in bold (positive-black, negative-white).

Component
1 2 3 4 5

Cu 0,292 0,140 -0,108 0,720 0,030
Zn 0,222 0,538 -0,263 0,659 -0,156
Al 0,221 0,555 -0,136 0,050
Mg -0,029 0,113 0,057 0,074
Ca -0,096 0,860 0,211 -0,036
K 0,048 -0,048 0,047 0,012
Hg 0,108 0,023 0,097 0,065 0,841
As -0,481 0,065 0,644 0,243 0,118
Cab 0,956 -0,078 -0,056 0,208 0,037
Car 0,956 -0,136 0,039 0,144 0,090
Car/Cab -0,208 -0,321 0,564 0,307
w 0,858 0,228 -0,125 -0,037 -0,160
FFW -0,108 0,573 -0,058 -0,240
FDW 0,181 0,103 0,577 0,227
Lig 0,312 0,083 0,189 0,405
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