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1. INTRODUCTION

Obesity is characterized as an excessive accumulation of adipose tissue (AT) due to
the imbalance between calorie intake and energy expenditure. It is defined as body
mass index (BMI, i.e. ratio of weight in kg divided by the square of height in meters)
above 30 kg/m2. In western countries, the upsurge of obesity is presumably driven by
high availability of low-cost energy-dense food abundant in fat and sugar in
connection with a dramatic shift from physical to sedentary work/leisure activities.
Nowadays similar changes in lifestyle are observed also in developing countries [1].
According to World health organization (WHO) prevalence of obesity increased more
than two times since the 1980s and in the European region more than 50% of people
are overweight or obese (prevalence of obesity in Czech republic is higher than 60%)
(http://www.who.int/topics/obesity/en/). This means that in 2008 (when the data for
the most recent WHO report were gathered) more than 1.4 billion adults were
overweight and more than half a billion were obese. Importantly, overweight and
obesity are associated with the development of metabolic comorbities and additional
disorders, for example 44% of cases of type Il diabetes mellitus (T2DM), 23% of
ischaemic heart disease and 7-41% of certain cancers are globally attributable to
overweight and obesity (http://www.who.int/topics/obesity/en/). Classification of the
degrees of obesity according to BMI and their connection with severity of
comorbidities that have to be treated by medications (high blood pressure, diabetes,

stroke, etc.) is summarized in Table 1.

Table 1: Classification of human weight according to BMI (adapted from www.who.int).

Classification BMI [kg/m?] | Risk of comorbidities

Underweight >18.5 Malnutrition, osteoporosis

Normal weight 18.6-24.9

Overweight 25-29.9 . . Moderate
Cardiovascular diseases,

Obesity | class 30-34.9 hypertension, Increased
atherosclerosis, insulin

Obesity Il class 35-39.9 resistance, T2DM and Severe

Obesity Il class | >40 others Very severe

Accordingly, in a recent systematic review of the economic burden of obesity
worldwide, Withrow and colleagues concluded that obese individuals have medical

costs 30% higher than those with normal weight and that obesity accounts for 0.7—
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2.8% of a country’s total health-care costs [2]. Moreover, at least 2.8 million people
die each year as a result of being overweight or obese and thus overweight and obesity
are linked to more deaths worldwide than underweight.

Therefore, obesity became one of the major health and socio-economic problems of
21%t century [3]. Alarmingly increasing numbers of people suffering from weight
excess, and amounts of money that are spent on medical care connected to obesity, are
very strong reasons to deepen our understandings of AT function and its obesity-
associated changes leading to deterioration of health. Then, new findings can be used
to improve public education about prevention and treatment of obesity. The
introduction of this thesis thus provides a concise insight into current knowledge of

AT function with emphasis on its immune properties in lean and obese subjects.

1.1 Adipose tissue

A major and primary function of AT is to accumulate lipids upon energy excess and
to release energy-rich substrates in response to energy needs. Nevertheless, last three
decades of intensive research have contributed to the appraisal of AT as a truly
multifunctional organ with important immune, endocrine and paracrine, regenerative,
mechanical, and thermal function [4]. This multifunctionality is based on AT specific
cellular composition and also various anatomical localizations. Accordingly to its
complex properties and also size, AT is now recognized as an organ greatly
contributing to the whole body metabolic homeostasis.

1.1.1 Distribution of adipose tissue

AT is one of the largest organ of the body (it represents 10-20% of body weight in
lean up to 70% of body weight in obese [5]). The major anatomical AT depots (shown
in Figure 1) are:

e upper-body subcutaneous depot

¢ intra-abdominal (omental and mesenteric depots, also termed visceral fat)

o lower-body (gluteal, subcutaneous leg or gluteo-femoral depot)

e ectopic fat deposited in atypical locations
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Figure 1: Adipose tissue depots (adapted from Tchokina 2013 Mechanisms and Metabolic Implications
of Regional Differences [4])

The distribution of AT is affected by race, gender, aging and disease states, or
physiological condition (e. g. starvation) and in response to drugs and hormones.
Importantly, different anatomical depots of AT exhibit diverse ability to respond to
external signal (e. g. insulin, lipolytic agents), secretory profile, as well as different
composition of stromal vascular fraction (mainly AT resident immune cells) [4].
These variances result in distinct metabolic properties of the depots. Therefore, the
distribution and size of AT depots in each individual can have an impact on his/her
overall metabolic health.

An accumulation of AT in abdominal (upper) region is associated with an increased
risk of displacement of AT into visceral region and ectopic depots and thus with an
increased risk of cardiovascular and metabolic disorders development, as well as liver
steatosis [6-8]. On the other hand, gluteal depot seems to be metabolically inert with
low blood flow and low rate of fatty acid (FA) release [9]. A higher accumulation of
AT in gluteo-femoral depot was shown to be linked with the reduction of metabolic
[10], cardiovascular risk [11-14] and with lower morbidity and mortality [15-17].
Exact reason of predominantly protective role of gluteo-femoral depot is mostly
unknown and only few studies paid attention to this topic. Recently, it was
hypothesized that the differences in metabolic impact of gluteal when compared to
abdominal AT depot are related to the differences in the inflammation-related
characteristics, which were suggested as one of the key player in obesity-related health

disturbances [18-20]. Hence, the characterization of the immune status of these two



Different subcutaneous AT depots (abdominal and gluteal) is one of the issues of this

thesis.

1.1.2 Adipocytes

AT is composed mainly of its functional units, i.e. adipose cells or adipocytes, and
mixture of other cells together called stromal vascular fraction (SVF). SVF contains
preadipocytes, mesenchymal stem cells, endothelial cell and various immune cells
[21] (details on immune cells of SVF are provided in Chapter 1.1.5.5, page 17).
Mature adipocytes capable of lipid storage arise from fibroblast-like AT precursors -
preadipocytes - through multistep process called adipogenesis (Figure 2). Crucial
determinants of this process are transcriptional factors peroxisome proliferator-
activated receptor gamma (PPARY) and CCAAT/enhancer-binding proteins (C/EBPS)
[22]. During adipogenesis PPARy orchestrates a cascade of several changes in
morphology and gene expression resulting in activation of many enzymatic pathways
necessary for adipocyte metabolic function. Ability of preadipocytes to undergo
adipogenesis is important not only for the development of AT but also for its
regeneration or hyperplastic expansion. The regulation of this process in adult humans
seems to be highly important for the functionality of AT but it remains mostly
unknown.

<— Development—>» ¢— Differentiaton———>

Myocytes Osteoblasts Adipogenic factors SREBP1c Lipogenesis

(Insulin, cortlsol etc.) (FAS. ACC,
l GPAT, AGPAT, DGAT)
C/EBPB ——
C/EBPB PPARV / RXRa
Transcription
factors') C/EBPa
Feeding
—, > —p
Seipin/AKT2 ¢ Fasting
Mesenchymal Pre-adipocyte Adipocyte Mature adipocyte
Stemcells

Figure 2: Schematic presentation of adipocyte differentiation (adapted from Garg 2011
Lipodystrophies Genetic and Acquired Body Fat)

In mammals different types of adipocytes are described: “classical” white adipocytes

(characteristic for so called white adipose tissue, WAT) and brown adipocytes (located



in brown adipose tissue, BAT). These adipocytes are structurally and functionally
divergent and are of different cellular origins [23, 24].

White adipocytes are nucleated cells comprising a lipid droplet which occupies most
of the cell and a thin rim of cytoplasm displaced to the periphery [25]. WAT is
responsible for energy-handling function of AT and represent major type of AT found
in humans.

Brown adipocytes are multilocular, i.e. they contain several smaller lipid droplets, and
they have higher mitochondria content. These mitochondria are specific by high
expression of uncoupling protein 1 (UCP1) that allows dissipation of the proton
electrochemical gradient generated by respiration in the form of heat [26]. Thus, BAT
plays crucial role in nonshivering thermogenesis. BAT is mainly presented in small
and hibernating mammals and human newborns, but the studies performed in last
decade documented BAT activity also in adults [27].

Recently a “third” type of adipose cells was described; beige or brite adipocytes arise
in WAT depots but represent rather BAT phenotype with plenty of lipid droplets and
high mitochondrial activity [28, 29].

1.1.3 Lipid metabolism in adipose tissue

Lipids are extensive group of bio-functional, structurally heterogeneous molecules
that play essential roles in multiple spheres of vital processes. Importantly, lipids serve
as a source of energy that can be efficiently stored. Lipids from food are transported
to AT through the blood stream in the form of chylomicrons and lipoproteins. FA are
released from them by lipoprotein lipase (LPL), enzyme secreted by adipocytes and
present on endothelial cells [30-32] and then transported inside the cells. FA are then
used for synthesis of triglycerides (TAG). FA and subsequently TAG can be in
adipocytes synthetized also from the carbohydrates in the process called de novo

lipogenesis (DNL, Figure 3).
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Figure 3: De novo lipogenesis (adapted from Shi 2004 Lipid metabolic enzymes: emerging drug targets
for the treatment of obesity [33]). DNL pathway includes Krebs cycle (tricarboxylic acid cycle, citric
acid cycle) and its product — acetyl coenzyme A — that is incorporated into the newly synthetized FA in
the cytoplasm. Enzymes involved in transformation of citrate to FA are ATP-citrate lyase (ACLY),
acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN). FASN is the key rate-limiting
enzyme of DNL. Elongation of FA chain is catalyzed by FA elongases (ELOVL) and desaturation is
under the control of stearoyl-CoA desaturase (SCD). FA from food or de novo synthesized are
subsequently esterified to glycerol to form TAG. The initial esterification step is under control of
enzyme glycerol-3-phosphate acyltransferase (GPAT). The esterification of second FA is processed by
acylglycerol-3-phosphate acyltransferase (AGPAT) and finally diacylglycerol acyltransferase (DGAT)
connect third FA. Both saturated (palmitate, stearate, myristate,) and unsaturated FA (oleate,
palmitooleate) can be incorporated into lipids. [34]

In the opposite process called lipolysis, TAG are hydrolyzed to FA and glycerol
(Figure 4). These metabolites are then released into the blood stream and delivered to
peripheral tissues (especially skeletal muscle and heart), where they are used for ATP
production in the process of B-oxidation. Three key lipases participate in lipolysis
within AT. Adipose triglyceride lipase (ATGL) selectively performs the first and rate-
limiting step hydrolyzing TAG to generate diacylglycerol (DAG) and FA [35].
Hormone sensitive lipase (HSL) is a multifunctional enzyme capable of hydrolyzing
preferentially DAG but also TAG and monoacylglycerol (MAG) [36, 37]. Finally,
monoglyceride lipase (MGL) efficiently cleaves MAG into glycerol and non-esterified
FA [38].
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Figure 4: Schematic view of lipolysis (adapted from Altarejos 2011 CREB and the CRTC co-
activators: sensors for hormonal and metabolic signals [39])

Both, lipogenesis and lipolysis, are under tight physiological control including
hormonal and other means of regulation and usually their activation are mutually
exclusive. For instance, insulin released from 3 cells after food intake inhibits lipolysis
and via insulin receptor stimulates glucose transport into the cell and FA formation.
Other signals regulating TAG formation/degradation (metabolism) are glucagon,

catecholamines, glucocorticoids, cytokines, glucose and FA levels.

1.1.4 Adipose tissue as endocrine organ

Since the discovery of AT endocrine potential, this aspect of AT has been under huge
scientific interest that resulted in an assembly of an extensive list of AT produced
molecules important for metabolic and immune homeostasis. These cytokines and/or
adipokines affect several organs responsible for lipid handling on central (brain) and
peripheral (liver, muscle) level as well as immunologically active cells and AT itself
[40]. Key adipokines are described further and summary of AT secretory products is

presented in Table 2.
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Table 2: Major factors secreted by adipose tissue and its predominant effect on immune system

Category Factors

AdipoQ [41], apelin [42, 43], CD163 [44, 45], IL1Ra [46], IL10 [47],

Anti-inflammatory
IL13 [48], Omentin [49], Vaspin [50], CTRP [51, 52]
Leptin [53], adipsin [54], Visfatin [55, 56], Resistin [57, 58], TNFa [40],
Pro-inflammatory IL1B [59], IL6 [60], IL8 [59], PAIL [61], CCL5 (or RANTES) [62],
CCL2 (or MCP1) [63], TGFp [64], RBP4 [65], DPP4 [66], VEGF-A [67]

Ambivalent effect SFRP5 [68]

Adiponectin (AdipoQ); chemokine (C-C Motif) ligand (CCL); cluster of differentiation (CD);
Clg/Tumor Necrosis Factor Related Protein (CTRP); dipeptidyl-peptidase 4 (DPP4); interleukin (IL);
intracellular interleukinl receptor antagonist (IL1Ra); plasminogen activator inhibitor 1 (PAIL); retinol
binding protein 4 (RBP4); secreted frizzled-related protein 5 (SFRP5); transforming growing factor
(TGFp); tumor necrosis factor a (TNFa); vascular endothelial growth factor A (VEGF-A)

1.1.4.1 Leptin

Leptin was discovered in 1994 as a factor enabling communication between AT and
hypothalamus and thus crucial for the regulation of the appetite and consequently the
size of body fat depot [53]. It is a 16 kDa protein product of ob gene. Leptin is
produced almost exclusively by adipocytes [53] (weak production from stomach [69],
lungs [70], placenta [71] and brain [72]). In hypothalamus, leptin activates receptors
in anorexigenic neurons [73] and thus reduces appetite and increases energy
expenditure [74]. The concentration of leptin in circulation is tightly and positively
related to amounts of AT, and thus its levels are elevated in obese subjects. Prolonged
exposure to increased leptin levels however leads to leptin resistance, which results in
inability of higher leptin concentration to suppress efficiently appetite in obese. Leptin
receptors are present not only in brain but also in peripheral organs and tissues, such
as the liver, skeletal muscle, AT, heart and pancreas [75, 76]. Importantly, leptin
receptors are expressed also by T cells [77], B cells [78], monocytes and macrophages
[74] and, in these cells, effects of leptin are mainly pro-inflammatory (see Chapter

1.1.5, page 14 for more details).

1.1.4.2 Adiponectin

One year after the discovery of leptin, in 1995, another important adipokine

adiponectin (AdipoQ, apML1 - adipose most abundant gene transcript 1, GBP28 -

12



gelatin-binding protein, or Acrp30 - adipocyte complement-related protein 30) was
identified concurrently by four independent research groups [79-82]. AdipoQ is

a 30 kDa protein product of adipoQ gene secreted from mature adipocytes into the
circulation where it reaches a concentration much higher (3-30 pg/ml) than typical for
other cytokines [80, 83]. AdipoQ is secreted in distinct homo-multimeric isoforms
including trimeric low molecular weight (LMW), hexameric medium molecular
weight (MMW), and oligomeric high molecular weight (HMW) complexes [84, 85].
The major biological effects of AdipoQ are attributed to HMW isoform [86, 87].
AdipoQ acts as an insulin sensitizing and anti-inflammatory agents and plays a role in
the regulation of glucose and lipid metabolism in muscle and liver. Although AdipoQ
is produced mainly by adipocytes, its levels are dramatically diminished in obese
subjects [88]. This suppression is associated with worsening of whole body insulin
sensitivity and consequently with higher fasting glucose levels [89]. Signaling of
AdipoQ is mediated via two main forms of its receptor with different affinity to
isoforms of AdipoQ. AdipoR1 is expressed in many tissues and its activation
stimulates 5'-AMP-activated protein kinase (AMPK) signaling pathway. AdipoR2 is
predominantly expressed in liver and mediates AdipoQ effect on PPARy pathway

implemented in inhibition of inflammation and oxidative stress [90-92].

1.1.4.3 Cytokines/chemokines

Produced by both adipocytes and SVF, cytokines represent important proportion of
AT secretory output. The whole body and AT pro-inflammatory state is suggested as
one of important contributors to metabolic disorders (insulin resistance (IR), T2DM)
associated with obesity [93]. In general, levels of AT cytokines with pro-inflammatory
properties are elevated in obesity. This group of cytokines/chemokines includes for
example TNFa [40], CCL2 also known as monocyte chemoattractant protein 1
(MCP1) [63, 94], IL6 [60] and IL8 [59].

TNFa plays a role not only in acute and chronic inflammation but also in necrosis,
apoptosis and other processes [95]. It is a first AT-derived cytokine found to directly
cause IR. Levels of TNFa are elevated in obese subject and indeed correlate with the
degree of IR [96]. Importantly, TNFa potentiates secretion of other inflammatory
cytokines [97]. CCL2 attracts macrophages into the site of inflammation and similarly
to TNFa, its association with IR and T2DM was shown [98, 99].
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On the other hand, AT is also a source of anti-inflammatory factors. Their levels
decrease with obesity (e. g. omentin [49]) or they go hand in hand with the levels of
pro-inflammatory cytokines (e. g. apelin [100], IL1Ra [46], IL10 [101]). The later
suggests a negative feedback regulation, which is typical for a resolution phase of
acute inflammation [102, 103].

1.1.5 Adipose tissue as immune organ

1.1.5.1 General aspects of immune system and reactions

Immune system consists of numerous cellular as well as non-cellular compounds and
is essential for homeostasis maintenance. In healthy conditions, its key role is to
defend organism against exogenous pathogens as well as endogenous potentially
dangerous elements (e. g. cancer cells, necrotic cells). This is achieved by a co-
operation of multiple components of immune system in highly regulated machinery.
It seems that similar type of cooperation occurs also in AT in response to metabolic
stress. Nevertheless, its exact steps and regulation have still not been fully elucidated

and are solved in this Ph. D. thesis.

Different types of classification of immune components/processes are possible:
e humoral vs. cell-mediated
e innate vs. adaptive

e pro- vs. anti-inflammatory

The last mentioned type of classification appears to be the most appropriate for this
thesis, which is focused on pro-inflammatory processes in response to obesity. In
general but also specifically in AT, inflammatory response is characterized by the
accumulation of phagocytic cells (macrophages, neutrophils) and presence of higher
levels of pro-inflammatory cytokines including TNFa, IL6 etc. released from the
inflamed tissue in order to attract effector immune cells. Anti-inflammatory response
is mediated especially by Tu2 and B lymphocytes. The details about immune cells and

their contribution to AT immune status are described in the following chapters.
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1.1.5.2 Monocytes and macrophages

Monocytes, hematopoietic cells from myeloid lineage, circulate in the blood stream.
After adequate stimulation, they are able to move through the vascular wall, infiltrate
the infected or damaged tissue and transform into effector cells — macrophages —
capable of phagocytosis and secretion of a large spectrum of cytokines. From broad
range of functionally and metabolically different groups of macrophages the major are
described: classical “M1” macrophages are considered as one of the key elements in
inflammation, while patrolling or alternative “M2” macrophages are involved in
healing, tissue repair and regeneration [104-106]. The polarization of macrophages
into these two phenotypes is regulated mainly by cytokines. Human M1 polarization
is induced in vitro by IFNy or IFNy in combination with lipopolysaccharide or TNFa.
After polarization, M1 macrophages produce cytokines and other molecules (reactive
oxygen and nitrogen intermediates) to activate and recruit additional immune cells or
to kill pathogens [107, 108]. M1 palette of cytokines consists of interleukins (IL):
IL1pB, IL6, IL12, chemokines: CCL2, chemokine (C-X-C motif) ligand (CXCL) 9,
CXCL10 and classic inflammatory cytokines: TNFa. M2 alternative activation of
macrophages is triggered by IL4, IL10 and I1L13. M2 macrophages highly express for
example interleukins: IL1Ra, IL10, cytokines: TGFB and chemokines: CCL24 and
CCL17 [109, 110]. Nevertheless, it should be mentioned that while the in vitro
polarization is induced via effect of one or two cytokines, in vivo cells are exposed to
highly complex and constantly changing mixture of cytokines, which stimulates their
differentiation into several intermediate phenotypes [106]. The phenotypes of
macrophages can be distinguished by the expression of specific surface markers. In
rodents, M1 and M2 macrophages can be easily distinguished by the presence or
absence of CD11c membrane marker [111]. In humans, phenotype-specific markers
of macrophages are however not so clear. Mannose receptor (CD206) was suggested
as one of the possible M2 markers [109], but it also represents a marker of tissue
resident macrophages [112-115]. Other possible M2 markers in humans are dendritic
cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-Sign,
CD209) [46], hemoglobin-haptoglobin scavenger receptor (CD163) and Fc Gamma
Receptor 1l (CD16) [116-118]. All three markers exhibit anti-inflammatory
properties associated with M2 phenotype of macrophages, but for instance CD163 is
expressed also on blood monocytes. On the other hand, CD86, one of the possible M1
marker is also expressed in comparable levels on M2 macrophages [44]. Similarly,
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another putative M1 marker CD11c, which was clearly defined in rodents, is expressed

on more than 80% of human monocytes (not shown, Kraémerova 2014).

1.1.5.3 Granulocytes

Granulocyte group consists of three different cell types: basophils, eosinophils and
neutrophils. All three types are rich in cytoplasmic granules that, after signal, are
spilled outside the cells to defense against pathogens. Basophils contain histamine and
serotonin in their granules and often are connected to allergic reactions. Neutrophils,
as most abundant immune cells, play primary role in pro-inflammatory response, thus
it is not a surprise that numbers of infiltrating neutrophils are elevated in obese subjects

[119]. However, study of granulocytes is out of focus of this thesis.

1.1.5.4 Lymphocytes

Lymphoid lineage of immune cells includes T and B lymphocytes, natural killer (NK)
cells and NK T cells.

T lymphocytes are divided into two main groups according to their function and to the
expression of typical surface markers. Cytotoxic T (T¢c) lymphocytes express a unique
marker T-cell surface glycoprotein CD8 (further only CD8). Tc are part of innate
immune system and are able to induce apoptosis in cells infected with intracellular
pathogens and damaged cells. In contrast, T helper (Tw) lymphocytes express specific
membrane marker glycoprotein CD4 and their function is “to help” other cells to
acquire fully active phenotype. Pro-inflammatory Twl lymphocytes assist M1
macrophages to destroy phagocyted/engulfed pathogens, while Tu2 lymphocytes are
anti-inflammatory and, by coordination with B lymphocytes, participate on
antibodies-mediated immune response. It was shown that balance between Tnl and
Tn2 lymphocytes is crucial for the proper functionality and homeostasis of immune
system. There are several minor groups of Tw lymphocytes with both pro- and anti-
inflammatory effects. In last few years, attention was paid mainly to two groups of TH
lymphocytes - Ty17 and T regulatory (Trea) cells. Tul7 differentiation is induced by
TGFp and IL6 and these cells are characterized with high production of IL17.
Proposed role of Th17 cells is to potentiate inflammation via stimulation of pro-
inflammatory cytokines release from several types of cells, i. e. macrophages,

epithelial and endothelial cells. Moreover, IL17 stimulates production of chemokines
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(e. g. CXCL1, CXCLS5, IL8) that are responsible for recruitment of neutrophils to the
site. of inflammation [120, 121]. Indeed, Tw17/IL17 levels are increased in
autoimmune inflammatory diseases, such as Crohn’s disease, rheumatoid arthritis,
type | diabetes mellitus and others. In opposite, Trec cells, characterized by high
expression of a subunit of receptor for IL2, were suggested to play an essential role in
self-tolerance mechanisms and inhibition of auto-reactive species of lymphocytes
[122]. Lowered levels of Treg are associated with autoimmune disease development,
while higher levels are related to increased risk of cancer, due to immunological
suppression. Similarly as described for Th1/TH2, the ratio between Tn17/Trec Seems
to play a key role in the balance between autoimmune diseases and immune
suppression [123, 124].

Major function of B lymphocytes is, in collaboration with Tu2 lymphocytes, a
production of antibodies as a part of anti-inflammatory immune reaction [125]. Other
members of lymphoid lineage - NK cells — are considered as cells contributing to
innate immunity. Its role is especially in the protection against viral infections and
tumor patrolling [126]. Although role of B lymphocytes and NK cells in immune
defense is essential, this work is in particular based on study of pro-inflammatory
alterations of macrophages and T lymphocytes, thus B lymphocytes and NK cells are

not described in more details.

1.1.5.,5 Immune cells and adipose tissue

AT is infiltrated with a panoply of immune cells including both innate and adaptive
components [97]. Phenotype and activity of them is affected by cytokines that are
direct products of adipocytes. For instance, leptin stimulates macrophage activation
and induces proliferation of Tu1l lymphocytes [127, 128]. It also triggers a release of
pro-inflammatory cytokines (TNFa, IL1p, IL6) from various immune cells [77, 129].
On the other hand, AdipoQ exhibits anti-inflammatory properties, such as ability to
suppress NF«B target genes (C-reactive protein (CRP), TNFa, and IL6) and to induce
secretion of anti-inflammatory cytokines by macrophages. Moreover, AdipoQ
stimulates macrophage switch toward M2 phenotype [130-134]. Effects of metabolites
frequently deregulated in obesity, such as FA and glucose, on immune cells
polarization are one of the problems investigated in this thesis and are in more detail
described further (Chapter 1.1.6.3, page 22)
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In accordance with the above described modulatory effects of AT cytokines, AT
immune cells from lean subjects exhibit anti-inflammatory phenotype, as mainly
alternative M2 macrophages [44], eosinophils [135], TH2 and Trec lymphocytes are
presented [136]. On the other hand in obese/metabolically unhealthy subjects a switch
to pro-inflammatory classical M1 macrophages and Twl phenotype occurs and
numbers of cytotoxic Tc lymphocytes are amplified (see Figure 7). For a long time it
was assumed that the main and first players in AT “colonization” by immune cells in
obesity are macrophages that are attracted by dysfunctional or dying adipocytes [111,
137]. Contrary to expectations, Duffaut et al. [138] showed that the accumulation of
macrophages in AT is preceded by T lymphocytes infiltration in response to high fat
diet. Lymphocytes react to metabolic disturbances earlier than macrophages and thus
they may regulate subsequent macrophage infiltration and activity [86, 138-141].
Analysis of dynamics of immune cells infiltration into AT under obesity-related

circumstances is one of the aims of this thesis.
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Figure 7: Adipose tissue immune cells in lean and obese (adapted from Osborn 2012 The cellular and
signaling networks linking the immune system and metabolism in disease [142])

1.1.6 Adipose tissue dysfunction in obesity

During energy surplus, there are two strategies used by AT to handle excess nutrients.
Hyperplastic expansion is characterized by enlargement of AT depot via recruitment
of new preadipocytes with high potential to store lipids. This type of expansion is not
associated with disrupted AT functionality and metabolic complications but is rather
limited in adulthood [143-145]. The most common type of AT expansion in adults is
therefore based on hypertrophic growth of adipocytes. Hypertrophied adipocytes are
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however exposed to stressful conditions; e. g. increased mechanical tension, local
hypoxia or increased needs for synthesis of lipids. Consequently, hypertrophied
adipocytes exhibit signs of stress, such as expression of markers of endoplasmic
reticulum stress (ERS) and higher activation of pathways that may contribute to
inflammation [146-148]. These stress-activated pathways probably trigger worsening
of adipocyte, and consequently AT function and thus prime adverse changes of the

whole body metabolism. They are described in following chapters.

1.1.6.1 Insulin resistance

Insulin is a hormone produced solely by pancreatic 3 cells and its major function is
the regulation of carbohydrates metabolism. Postprandially increased levels of glucose
induce a production/secretion of insulin. The action of insulin in the cells is mediated
via its receptor with intrinsic tyrosine kinase activity [149]. After autophosphorylation
of insulin receptor, insulin receptor substrates (IRS1/2) are recruited. These initial
tyrosine phosphorylations convey insulin signals to a complex network of intracellular
lipid and serine-threonine kinases that mediate the specific insulin biological effects.
One of them is the triggering of membrane expression of glucose transporter 4
(GLUT4), a high-affinity glucose transporter that is expressed in the insulin sensitive
tissues, such as AT and skeletal muscle [150] (see Figure 8). Except the glucose
transport, insulin stimulates glycolysis, glycogen synthesis and inhibits the rate of
glycogenolysis and gluconeogenesis in the liver. These effects are essential for the
maintenance of normoglycaemia. Insulin also affects lipid metabolism, e. g. decreases
the rate of lipolysis in AT and FA oxidation in liver and muscle, stimulates FA and
TAG synthesis and TAG uptake into the AT and muscle [151].
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Insulin resistance (IR) is defined as a lower capacity of cells to respond to insulin than
expected for a given insulin concentration [153]. IR is thus frequently associated with
increased plasma insulin levels and longer postprandial hyperglycemias (HG).
Because of less efficient import of glucose, cells utilize other energy-rich molecules
as a fuel and glucose remains longer in the circulation. Due to higher glucose values,
B cells produce more insulin and prolongation of this state can lead to B cells damage
and subsequently to T2DM development [153, 154]. Although impaired insulin
sensitivity was observed also in lean subjects, obese are in much higher risk of IR
development [155].

Nevertheless, it is only partially known why obesity frequently leads to whole body
IR. Several mechanisms were suggested: dietary fluctuations, elevated FA levels and
inflammatory changes [156]. Alterations in circulating FA and inflammatory
cytokines are indeed consequences of impaired AT function and secretory production
[157]. AT products can affect insulin action in the cells directly via disruption of
insulin signaling pathway. This was documented on several occasions. TNFa levels
influence transcription of insulin signaling molecules (insulin receptor, IRS1, and
GLUT4) in adipocytes [158, 159]. Similarly, levels of other inflammatory cytokines
(e. g. IL1B [160], IL6 [161], CCL2 [162]) are associated with worsening of IR.
Another AT product, RBP4 reduces phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K) signaling in muscle [163]. On the other hand, levels of AdipoQ, which was

shown to have insulin sensitizing and anti-inflammatory effects, decline during
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obesity. Elevated FA are associated with a reduction IRS1 phosphorylation and IRS1-
associated PI3K activity and may directly damage f3 cells [156, 157]

1.1.6.2 Endoplasmic reticulum stress

In healthy adipocytes, endoplasmic reticulum (ER) is responsible for protein folding,
maturation, quality control, trafficking and importantly also for lipid synthesis. In
hypertrophic adipocytes, there is an augmented demand on ER synthesis of proteins
and lipids. Overwhelming of ER capacity leads to ERS that is characteristic by the
activation of unfolded protein response (UPR), [164] (see Figure 9). UPR has three
arms that are dependent on ER-located transmembrane proteins: inositol-requiring
protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating
transcription factor 6 (ATF6). Upon their activation, signal is then transduced into the
nucleus via spliced form of messenger RNA (mMRNA) coding X-box binding protein
(XBP1; IRE1 arm), maturated ATF6 (ATF6 arm) and ATF4 (PERK arm). These
transcription factors increase expression of proteins that are involved in the ER folding
machinery to augment protein folding and to reduce the load in the ER. Prolonged
exposition to ERS can however cause cell death [165].
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Figure 9: Unfolded protein response in ER stress (adapted from Wang 2014 The impact of the
endoplasmic reticulum protein-folding environment on cancer development [166])

Importantly, UPR also triggers a variety of inflammatory and stress signaling systems
including NFkB and Jun N-terminal kinase pathway, as well as networks activated by

oxidative stress, all of which can influence metabolism [147, 167-169].
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As suggested previously, ERS in adipocytes and immune cells could be caused by
exposure of cells to saturated lipids and a high concentration of glucose [147, 170].
Nevertheless, putative effects of high postprandial levels of nutrients on UPR
activation have not been elucidated in vivo in humans yet. Therefore one of the
subjects of this thesis is to follow up the relationship between postprandial
inflammation in both myeloid and lymphoid lineages of human peripheral blood
mononuclear cells (PBMC) and ERS.

1.1.6.3 Role of elevated glucose and lipid metabolites in obesity associated

inflammation

As noted earlier, western diet is abundant of energy-dense food with high levels of
glucose and lipids. Food intake per se is associated with temporarily altered levels of
nutrients (glucose, TAG, FA) and insulin but also with temporary inflammatory
response, also known as postprandial inflammation. It is manifested as an increase of
plasma concentration of pro-inflammatory cytokines (IL6, PAI1) [171, 172]. In obese
(human and animal) subjects this postprandial inflammation is however prolonged.
The protraction of postprandial inflammation in obese with already higher basal levels
of pro-inflammatory cytokines may represent a “Molotov cocktail” igniting the
development of T2DM.

It was shown previously that both high levels glucose and FA affects various types of
cells including immune cells, adipocytes and pancreatic B cells [170, 173-176].
Detrimental effects of hyperglycemia, in humans defined as fasting blood levels of
glucose above 5.5 mmol/l or 100 mg/dl [177], might be mediated through induction
of oxidative stress and through the activation of inflammatory pathways resulting in
increased secretion of pro-inflammatory cytokines[175, 178]. Still, only a few reports
addressed responses of cells of adaptive and innate immunity to this metabolic
stimulus in vivo in obese individuals [179, 180].

Role of FA in the development of pro-inflammatory state and macrophage
accumulation have been investigated predominantly in experimental animal models or
in cell cultures in vitro. In vitro, saturated FA induce increased mRNA expression and
secretion of pro-inflammatory cytokines and chemokines (CCL2, IL6, IL8) in
adipocytes, macrophages and other cell types [181, 182]. In rodents, FA regulate
macrophage accumulation in AT [183]. Saturated FA were found to activate classical
inflammatory responses in immune cells and to regulate secretion of pro-inflammatory
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cytokines in both, immune cells and adipocytes. Furthermore, long saturated FA
induce ERS stress in B cells and thus mediate their apoptotic death in vivo and in vitro
[181, 184, 185].

Studies in human subjects are rare and monitor mainly the impact of glucose and FA
on adipokines levels in plasma. Therefore PART ONE of this thesis is based on in vivo
human experiments focused on influence of acutely altered levels of nutrients on pro-

inflammatory status and immune system response in blood and AT.

1.2 Treatment of obesity

As discussed above, health problems related to obesity are closely linked with the
impaired function of hypertrophied AT. Therefore, weight loss (based on the reduction
of AT) is an obvious strategy to treat obesity-related metabolic disturbances.

Modification of life style represents a physiological approach with the lowest health
risks compared to medical or surgical intervention and therefore it is usually a first-
choice method to reduce weight. Indeed, it was observed that even moderate diet-
induced weight loss (5-10%) has beneficial effects on metabolic parameters [186-
188]. This can be achieved by various types of diets (for overview see Table 3). PART
Two of this thesis is focused on the immune response of AT to the modest weight loss

induced by multiphase dietary interventions (DI) in obese women.

Table 3: Types of dietary interventions (according to Tsigos 2008 [189])

Type of dietary intervention Daily energy intake

Hypocaloric balanced diet >1200 kcal/day

Low calorie diet (LCD) 800 — 1200 kcal/day

Very low calorie diet (VLCD) <800 kcal/day

Multiphase diet Combination of the above listed diets
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2. AIMS

General aim of this thesis was to elucidate the connection among impaired levels of

nutrients/metabolites and pro-inflammatory state, immune system activation and

metabolic status in healthy (obese and lean) subjects. In the Part one, acute effects of

experimentally increased levels of nutrients on content and phenotype of immune cells

in both circulation and AT were elucidated. Part two of thesis is focused on the effects

of weight reduction on secretory state of adipocytes and immune cells in AT in relation

to the improvement of insulin sensitivity.

Specific aims:

PART ONE

To analyze the inflammation induced by a single high fat meal (HFM) in
peripheral blood mononuclear cells including cells of innate and adaptive
immunity and to test whether this HFM-induced inflammation is linked with
ERS

To elucidate the effect of short term interventions simulating levels of nutrients
and lipid metabolism products (i. e. hyperglycemia, hypertriglyceridemia) seen
in metabolically unhealthy obese on inflammation and immune system

activation in blood and AT in healthy obese subjects

PART TWO

To compare expression of pro-inflammatory markers in subcutaneous
abdominal and gluteal adipose tissue in steady state and during weight
reducing dietary intervention

To clarify the relationship between serum concentrations of soluble form and
adipose tissue mRNA levels of macrophage marker CD163 and to evaluate its
possible utilization as a marker of insulin resistance in cross-sectional design
and during weight reducing dietary intervention

To compare the secretory profile of adipocyte precursors before and after

weight reducing dietary intervention
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3. RESULTS AND DISCUSSION

3.1 Listof original publications
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in PBMC from healthy lean men
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PART TWO
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3.2 Comments to the results and discussion

Since obesity and its associated metabolic comorbidities are one of the major health
problems of 21% century, research of links leading from impaired function of AT in
obese patients to IR development is in the center of interest of many research groups.
It was shown that hypertrophied adipocytes release higher amounts of FA as well as
pro-inflammatory cytokines and other molecules that disrupt sensitivity of cells to
insulin. In contrast, amount of released insulin sensitizing molecules, such as AdipoQ,
is reduced. In studies on cell cultures and rodent models, negative effect of high levels
of glucose and FA [183] on immune status of AT cells was indicated, but exact
influence of their action in humans was not elucidated yet. Therefore, the aim of the
first part of my thesis was to investigate effects of experimentally increased levels of
glucose and lipid metabolites (FA, TAG) on immune cells in blood and AT and
systemic markers of inflammation in human volunteers.

In contrast to pro-inflammatory effects of overfeeding and high circulating levels of
glucose and lipids, even moderate weight loss has beneficial impact on AT function
and secretory profile, as well as on whole body immune status and insulin sensitivity,
although the mechanisms of these benefits are not clear. Thus, the goal of the second
part of this thesis was to improve our understanding of relationship between changes
of immunity-related characteristics of AT and improvement of metabolic parameters

triggered by weight loss.

PART ONE
Obese subjects have impaired function of AT manifested by its insufficient ability to
store energy that leads to increased levels of nutrients, such as glucose and lipid
compounds (free FA and glycerol) in blood stream. The raised levels of these
metabolites are one of possible triggers of increased inflammatory state of obese
subjects that can finally lead to impairment of insulin signaling and T2DM
development. Nevertheless, even in lean subjects, plasma levels of glucose and FA,
TAG etc. increase after meal consumption. This rise is associated with inflammatory
state (so called postprandial inflammation), that is manifested by increased plasma
levels of inflammatory cytokines and leukocyte activation [190, 191]. This effect of
meal, especially of meal with high levels of nutrients, is however protracted in obese
subjects and may contribute to aberrant immune system activation. Indeed, prolonged
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exposure to nutrients can cause ERS that may activate classic inflammatory regulatory
molecules such as NFkB and Jun N-terminal kinase [168]. Nevertheless, it remains
unknown whether ERS is prerequisite for the development of postprandial
inflammation. Therefore, in the first study, effect of HFM on PBMC and
inflammatory state was examined, with emphasis on association between ERS and
postprandial inflammation.

10 lean men consumed a high energy, high-fat meal (McDonalds, Prague, Czech
Republic, 6151 kJ (1469 kcal), 32.8% carbohydrates, 47.4% lipids, 11.3% proteins)
within 15 minutes. Blood samples were drawn each hour up to the 4" hour. Activation
of immune system was monitored by flow cytometry of peripheral blood and by
quantitative real time polymerase chain reaction (qQRT-PCR) of mRNA from CD14+
cells (monocytes). These cells were separated from PBMC isolated by
Histopaque/Accuspin density system.

In this study, we confirmed the postprandial elevation of IL6 levels in plasma as was
shown previously by several studies [192-194]. Also in accordance with previous
studies [191, 195], HFM intake induced postprandial increase of all main leukocyte
groups - granulocytes, monocytes and lymphocytes — in blood. Moreover we
confirmed the finding by Gower et al.[196] showing increased CD11c expression on
the surface of monocytes after ingestion of the HFM by healthy volunteers. CD11c is
considered as an activation marker of monocytes because it enhances their adhesion
to endothelial cells and the potential to migrate into target tissues. Importantly, high-
fat diet feeding results in the infiltration of CD11c+ monocytes into AT in mice [111,
197], and these monocytes/macrophages exhibit a pro-inflammatory M1 phenotype.
CD11c expression has also been found to increase in blood monocytes of obese
subjects and to positively correlate with homeostasis model assessment of insulin
resistance (HOMA-IR) [198]. We then focused on gene expression in CD14+
monocytes from peripheral blood i.e. cells that are intimately exposed to metabolite
fluctuations and upon activation may contribute to the development of AT
inflammation. Remarkably, the mRNA expression of all tested pro-inflammatory
cytokines was in CD14+ monocytes enhanced after the HFM challenge. As noted
already for CD11c expression, postprandial changes in the expression pro-
inflammatory cytokines were similar to the changes in their expression associated with
obesity [199, 200]. Therefore, a single HFM may activate monocytes in a similar

direction to a long-term overfeeding or obesity.
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To determine whether postprandial inflammation could be triggered by enhanced
ERS, we analyzed ERS markers representing all three arms of UPR: heat shock 70kDa
protein 5 (HSPAS5), ATF4, ER degradation enhancer, mannosidase alpha-like 1
(EDEM1), XBP1 (spliced vs. total) and DnaJ (Hsp40) homolog, subfamily C, member
3 (DNAJC3). Following the HFM challenge, mRNA expression of a majority of ERS
markers was not altered in PBMC. Thus, the classic activation of UPR does not seem
to be the driver of the postprandial increase in the expression levels of inflammatory
cytokines in CD14+ monocytes. The only ERS marker whose expression was
postprandially elevated was ATF3. It mostly acts as a transcriptional repressor and
may thus be part of a counterbalance system in healthy individuals, protecting them
from over-activation of pathways induced by stress [201-203]. Therefore, it could be
envisioned that this counterbalance system is impaired in obese and/or diabetic
subjects who suffer from intensified and prolonged postprandial inflammation [146,
190, 204]. ATF3 is, however, activated not only by ERS but also by other various
stresses [205], and the absence of the upregulation of ATF4 (classic UPR pathway,
which in turns induces expression of ATF3 [206]) in the analyzed CD14+ cells
suggests that the up-regulation of ATF3 is not associated with the activation of UPR.
In conclusion, we demonstrated that inflammation induced by the HFM challenge in
CD14+ monocytes was not accompanied by an activation of classic UPR. These
results are presented in Paper 1 (Page 40).

Consumption of high fat/high energy meal is the most physiological but difficult-to-
control experimental way to increase plasma levels of glucose and lipid metabolites.
Thus, to test the effect of a single nutrient, a preferred experimental approach is an
intravenous infusion of the selected compound. It was shown that acute hyperglycemia
can activate inflammatory pathways in various cells resulting in increased secretion
of pro-inflammatory cytokines [173-175]. Therefore, the objective of the second
study was to investigate whether acute experimental HG, imitating increased
glycaemia found in obese with metabolic syndrome , has an impact on phenotype and
relative content of monocytes/macrophages and lymphocytes in circulation and the
subcutaneous abdominal AT (SAAT).

30 healthy obese premenopausal women without signs of metabolic syndrome were
recruited and divided into 3 groups (n=10 per group): one was exposed to

hyperglycemic- euinsulinemic clamp (where the endogenous insulin release was

29



blocked by octreotide infusion) and two control groups were exposed to the infusion
of octreotide or saline. SAAT was obtained using needle biopsy. Blood and SAAT
samples were collected before and after the 3-hours lasting intervention and used for
flow cytometry analysis. Moreover, SAAT was used to examination of mRNA levels
of chemokines (CCL2, CCL5, CXCL12, IL1B, IL8, TNFa), markers of macrophages
(CD14, CD206, matrix metalloproteinase 9 - MMP9, toll-like receptor (TLR) 2,
TLR4) and T lymphocytes subtypes (CD3g, CD4, T-Box 21 - TBX21/TH1, GATA
binding protein 3 - GATA3/TH2, RAR-related orphan receptor C - RORC/TH17,
forkhead box P3 - FoxP3/Trec) by qRT-PCR.

We documented that HG induced an increase in CD45+/14+ monocyte/macrophage
population in SAAT. It was shown previously that HG treatment of monocytes in vitro
increases expression of Toll-like receptors [207] and also monocytes from patients
with T2DM show a higher expression of TLR2 and TLR4 compared to healthy
subjects [180] , thus the expression of these two receptors was investigated. In SAAT,
only TLR4+ monocyte population was increased. This selective effect of HG on
TLR4+ monocyte population could point to a specific physiological function of this
subtype of monocytes in HG-affected SAAT. Indeed, recent findings suggest that
TLR4 and TLR2 activation in macrophages results in the differential expression and
secretion of pro-inflammatory cytokines [208, 209]. In accordance, HG clamp induced
increase of mRNA expression of TLR4 along with TNFa, which has been shown to
be up-regulated after TLR4 but not TLR2 stimulation in macrophages [208].
Contrary to monocyte population, a population of resident AT macrophages did not
show any changes in response to HG in terms of relative content and TLRS expression
(i.e. content of CD45+/14+/ +/TLR2+ and TLR4+). Therefore, it seems that SAAT
microenvironment, changed by HG, activated only monocytic cells that are not fully
differentiated into macrophages. Such a population of CD206- monocytic cells was
described by Wentworth et al. [113] and was shown to be elevated in human obesity.
It is plausible that these monocytes represent “the newest arrivals” into AT but then
later can mature into CD206+ macrophages. Nevertheless, CD206 marker used to
identify resident AT macrophages was previously suggested to be preferentially
expressed by M2 macrophages [112], and thus it is also possible that observed increase
in CD45+/14+/206- population could be attributed to M1 macrophages.
Lymphocytes play a key role in infiltration of immune cells into AT [139, 210, 211].

We found an increased content of total T lymphocytes and both major subpopulations
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of T lymphocytes, i.e. Th CD4+ and Tc CD8+ in SAAT of obese women in response
to short-term HG. In animal studies, CD8+ T cells direct macrophage infiltration into
AT [210] and CD4+ T cells have both anti- and pro-inflammatory roles based on their
further specialization [212]. In line with previous data showing that HG modulates
expression of genes related to immune response in SAAT of lean subjects [179, 213],
we observed that mMRNA levels of CD3g, CD4 and CD8a increased in the experimental
condition of HG in obese women, which nicely supports the FACS results.
Furthermore, we found the up-regulation of TBX21, GATA3 and FoxP3 mRNA levels
in SAAT (corresponding to Twl, Th2 and Trec Subtypes) after HG condition in obese
women. It has been shown that Tnl, Trec are increased and T2 subpopulation is
decreased with obesity [214, 215]. Based on our results, one can hypothesize that HG
enhanced infiltration of both pro- and anti-inflammatory T cells in order to maintain
immune homeostasis in AT.

In summary, our results show that the short-term HG induces an increase in the content
of monocytes and T lymphocytes in SAAT of healthy obese women and thus may
contribute to the worsening of an immune status of AT in obese individuals. These

results are presented in Paper 2 (Page 51).

Beside glucose, another possible contributor to inflammation development appears to
be elevated levels of FA. In mice, FA blood concentration and increased mobilization
of FA during fasting was associated with increased macrophages content in AT [183].
In vitro, saturated FA induce increased mRNA expression and secretion of pro-
inflammatory cytokines and chemokines (CCL2, IL6, IL8) in adipocytes,
macrophages and other cell types. Objective of the third study was to describe the
impact of artificially increased circulating concentration of FA on immune system
activation in blood and SAAT.

17 obese premenopausal women were recruited into the intervention: 10 subjects were
included in the treatment group with 7 hours lasting infusion of 20 % Intralipid
solution (lipid emulsion of soya-bean oil (20%) stabilized with egg yolk phospholipids
(1.2%) and glycerol (2.5%). The FA composition of Intralipid is as follows: palmitic
acid 11.3%, stearic acid 4.9%, oleic acid 29.7%, linoleic acid 46.0% and linolenic acid
8.1%). 7 subjects participated in the control trial with infusion of glycerol (2.5%). To
determine the effect of FA on relative content and phenotype of immune cells in blood

and SAAT, blood and biopsied SAAT samples were collected before and after the
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interventions and analyzed by flow cytometry. Moreover, SAAT was used to
examination of mMRNA levels of chemokines (CCL2, IL8), angiogenesis marker
(VEGF-A), markers of macrophages activation (CD14, CD206, TLR4) and T
lymphocytes subtypes (TBX21/Tnl, GATA3/TH2, RORC/Tul7, FoxP3/Tres) by
qRT-PCR.

In our study, we found a trend to increased relative content of total T lymphocytes and
an increase of Tw subpopulation in blood in response to lipid infusion. This
observation is in agreement with previous studies showing that FA modulate T cells
proliferation [216] and that lymphocyte counts increase postprandially in healthy as
well as in hyperlipidemic subjects with coronary artery disease [217, 218]. Intralipid-
induced increase of Ty lymphocyte content in blood is of particular interest as TH cells
appear to be essential players in the development of atherosclerosis [219]. Despite no
detectable changes in the content of lymphocytes in SAAT (evaluated by flow
cytometry), we have observed an upregulation of SAAT mRNA expression of RORC
(THl7 marker). As mentioned earlier, Thl7 cells are pro-inflammatory and its
increased numbers in AT of metabolically unhealthy obese subjects or in diet-induced
obesity in mice were observed [220]. Thus, Th17 lymphocytes could be the first cells
in AT responding to elevated FA concentration. Together, our data suggest that acute
hyperlipidemia induced by Intralipid infusion induce pro-inflammatory changes in
lymphocyte populations.

In contrast to lymphocytes, the relative blood content of CD45+/CD14+ monocytes
and the subpopulations of “non-classical” CD16+ activated monocytes was decreased.
This trend could be possibly explained by the enhanced adherence of monocytes to
the endothelial surface of vascular wall after the lipid infusion. Likewise, the enhanced
adhesion of monocytes was observed in response to postprandial hypertriglyceridemia
in rats [221]. Indeed, levels of soluble adhesion molecules (intercellular adhesion
molecule - ICAM, vascular cell adhesion molecule - VCAM) and angiogenic factor
VEGF-A, expressed by the endothelial cells [222], were increased in response to lipid
infusion. Increased levels of adhesion molecules moreover suggest that lipid infusion
in obese induced the endothelial activation, which is the first step in the development
of atherosclerosis [196].

In SAAT, the relative content of monocytes was not changed, however the subset of
CD45+/14+/206+/16+ resident macrophages was decreased. In some studies, CD206

is, similarly as CD16, considered as marker of non-classical —“M2” activated
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macrophages [44]. Therefore we can hypothesize that Intralipid infusion stimulated
the switch of macrophages to “classical” activated pro-inflammatory phenotype. This
switch could be supported by increased mRNA expression of CCL2 and IL6
cytokines.

In conclusion, the acute hyperlipidemia induced by Intralipid infusion was associated
with pro-inflammatory and pro-atherogenic changes in monocyte and lymphocyte
populations and soluble mediators in blood in obese women. Moreover, pro-
inflammatory changes — represented by a decrease of M2 macrophages content and
increased expression of inflammatory cytokines and marker of TH17 cells - were
observed in SAAT.

These results thus point at the processes that could contribute to the initiation of
atherosclerosis and worsening of AT immune status in obese patients exposed to high

circulating lipid levels. These results are presented in Paper 3 (Page 65).

PART TWO

The obesity-related metabolic disturbances are linked with pro-inflammatory state of
AT characterized by enhanced recruitment of macrophages into AT and modified AT
secretion of cytokines [18-20]. Weight reduction induced by hypocaloric diet is the
key approach for non-pharmacological treatment of obesity. Already a moderate loss
of initial body weight induces an adaptation of human AT associated with
improvement of whole-body metabolic status and suppression of low-grade
inflammation [223, 224]. Therefore, purpose of the fourth study was to elucidate
impact of weight reduction on macrophage content and cytokines production in two
different subcutaneous fat depots: subcutaneous gluteal AT (SGAT) and SAAT.
Additional goal was to evaluate whether previously described protective role of SGAT
is attributable to different inflammation-related characteristics of this depot.

14 pre-menopausal women underwent 6 months DI consisting of 3 periods: 1 month
of VLCD, 2 months of LCD, followed by 3 months of weight maintenance (WM)
phase. The paired samples of subcutaneous AT were obtained from the abdominal and
gluteal region using needle biopsy in three phases of DI and used for RNA isolation.
A gene expression of 17 genes related to immune status of AT was analyzed by gRT-
PCR. Genes were selected according to their origin or function: cytokines (IL6, TNF,
CCL2, CXCLI1, IL10, TGFp1, IL receptor o subunit - IL10Ra) and cytokine receptor

(chemokine (C-C motif) receptor 2 - CCR2) and macrophage markers (secreted
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phosphoprotein 1 - SPP1, CD68, macrophage scavenger receptor 1 - MSRI,
phospholipase A2, group VII - PLA2G?7, acid phosphatase 5 - ACP5, Fc fragment of
IgG binding protein - FCGBP, CD14, TLR4, TLR2).

Although protective role of AT accumulation in the lower body was suggested [10,
12, 15], our data, similar to findings of other groups [6, 225], did not show major
difference in cytokines and macrophage markers between these depots in basal state,
with exception of two macrophage markers ACP5 and MRS1 and two cytokines
IL10Ra and CCL2. Taken together, our and previously published [226] results do not
support the hypothesis of the lower pro-inflammatory profile of SGAT. This is in line
with the finding reported by Tchoukalova et al. [225] that subcutaneous abdominal
and femoral fat depot did not differ in number of macrophages in lean men and
women.

The main novelty of this study lies in the comparison of gene regulation in SAAT vs.
SGAT during dynamic condition represented by two phases of a 6 months’ DI. The
bi-phasic pattern of the expression of macrophage markers and cytokines derived
predominantly from the SVF cells observed in this study is in line with previous results
obtained in SAAT in different cohorts of subjects [187, 188]. In both groups of genes
(macrophage markers and cytokines), pattern of gene expression did not differ
markedly in SAAT vs. SGAT, except for three cytokines — IL6, IL10 and CCL2. The
reason for differential depot-related response of the three cytokines remains unknown
but we speculate that it might be linked to differential response of endocannabinoid
system [227]. In fact, endocannabinoids were shown to inhibit production of several
pro-inflammatory cytokines in primary human Muller cells and it was reported that
the expression of cannabinoid receptor type 1 during the weight reducing diet was
different between SGAT and SAAT [228]. In light of our and others results
demonstrating the absence of major differences between SGAT and SAAT it has been
suggested that the deleterious effect of upper body obesity could be mediated by the
excess of visceral adipose tissue (VAT) and not excess of SAAT. Furthermore, it
should be noted that the present study compared SGAT and SAAT on transcriptional
level and that the results of this study are limited to women. Female AT shows
different metabolic and endocrine characteristics [229, 230] when compared with
men. Moreover, the initial fat distribution in our set of women (mean waist/hip ratio

0.861+0.0) might play a role in the diet-induced response of the two fat depots
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although the reports on the effect of initial fat distribution on the body fat reduction
are not unequivocal [231, 232].

In conclusion, we did not find major differences in mRNA levels of macrophage
markers and cytokines between SAAT and SGAT at baseline condition or in the
pattern of their regulation in response to two phases of hypocaloric weight-reducing
DI. Therefore, our results do not bring evidence of an altered pro-inflammatory status
or an altered “responsiveness” of immune cells in SGAT when compared with SAAT.

These results are presented in Paper 4 (Page 87).

The fifth study was focused on macrophage marker CD163 and its soluble form
sCD163. CD163 is predominantly expressed by tissue macrophages and it is cleaved
and released to circulation by similar enzyme as TNFa — TNFa converting enzyme
(TACE, also known as ADAM Metallopeptidase Domain 17) [233]. Thus, circulating
sCD163 could be produced by AT macrophages similarly as soluble TNFa. Levels of
sCD163 were shown to be elevated in obese subjects and were found to represent a
marker of IR due to its association with impaired insulin sensitivity [234, 235].
Moreover, sCD163 concentration was predicted as a marker of macrophages
infiltration to AT, but this hypothesis was not validated. Hence, the aim/goal of this
study was to extend our knowledge about coherence of CD163 in circulation and AT
with IR not only in steady state, but also during dynamic weight reducing conditions
that are associated with the improvement of metabolic health.

Two cohorts of subjects were examined in the study. Cohort 1 included 42 women
with a wide range of BMI (17-48 kg/m2) divided into three groups according to their
BMI and presence or absence of metabolic syndrome (lean, obese, obese with
metabolic syndrome). Samples of VAT and SAAT were obtained during abdominal
surgery. The values of glucose disposal rate (GDR; determinant/index of insulin
sensitivity) were acquired from the euglycemic-hyperinsulinemic clamp method
performed according to De Fronzo et al. [236].

Cohort 2 included 27 obese women who followed a DI consisting of 1 month of a
VLCD and 5 months of a weight-stabilization period (consisted of 2 months of LCD
and 3 months of a WM period). The biopsied samples of SAAT were obtained in three
phases of DI. A gene expression of two macrophage markers (CD163, CDG68),

classical inflammatory marker TNFa and two genes responsible for sSCD163 shedding
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(TACE and tissue inhibitor of metalloproteinases 3 - TIMP3) in SAAT was analyzed
by gRT-PCR.

In a Cohort 1, our finding supported previous suggestion that plasma sCD163 levels
are associated with mRNA expression in SAAT [234, 237] and furthermore a similar
association of sCD163 and VAT was found. Moreover, the correlation of SCD163
levels with mRNA expression of macrophage marker CD68 suggests that serum
sCD163 might be perceived as a possible indicator of macrophage activation in AT.
Next, we documented a strong relationship between insulin sensitivity, expressed as
GDR, and circulating sCD163. These results extend the previously reported findings
of a close relationship between sCD163 and HOMA-IR [234, 238]. In our study,
insulin sensitivity correlated also with CD163 mRNA expression in both SAAT and
VAT depots. Thus, we confirmed a validity of SCD163 and CD163 expressed in AT
as a biomarker of insulin sensitivity at steady-state condition.

However, in a dynamic condition represented by the weight-reducing hypocaloric diet
in Cohort 2, the above-mentioned associations were not present: the diet-induced
change of sCD163 showed different pattern and did not correlate with the change of
CD163 mRNA levels in SAAT either during the initial dynamic phase of the DI
(VLCD) or during the WM phase. The mRNA CD163 expression pattern was in line
with magnitude of mMRNA CD68 in AT and other macrophage markers analyzed in
our previous publications [187, 188, 239]. The discrepancy between the dynamics of
soluble and AT mRNA levels of CD163 could be based on the translational or
posttranslational regulation of expression. Among factors influencing sCD163
production could be the efficiency of shedding of the CD163 from the macrophage
surface that is mediated/regulated by the enzyme TACE and its inhibitor TIMP3
[240]. However, no relevant change of TACE or TIMP3 mRNA expression in AT
throughout the DI was found. Therefore, the changes in the shedding of CD163 in AT
during DI probably do not contribute to the changes of sCD163 in circulation. Other
possible explanation of this discrepancy is that CD163 is expressed in several other
tissues, such as liver, muscle, kidney [235, 241-243], and also in blood monocytes
[244]. Unfortunately, to our knowledge, there are no studies that evaluate direct
contribution of other tissues to circulating levels of SCD163 or investigating CD163
expression in other tissues or cells during DI.

In this study the evolution of sSCD163 during weight-reducing DI paralleled that of the

GDR measured by a hyperinsulinemic clamp. However, the direct correlations

36



between the diet- induced changes of sCD163 and those of GDR were not found.
Similarly, no correlation was found between the diet-induced changes of CD163
MRNA expression and insulin sensitivity. These findings suggest that circulating
levels of SCD163 and AT mRNA expression of CD163 are probably not in a cause-
effect relationship with insulin sensitivity.

In conclusion, in this study we demonstrated a quantitative association between the
circulating levels of sSCD163 and mMRNA expression of macrophage markers CD163
and CD68 in SAAT and VAT in the steady-state condition. Furthermore, in the steady-
state condition, we found a negative correlation between sCD163 levels and insulin
sensitivity. However, in a dynamic condition represented by a weight-reducing DI,
there is no such relationship between the diet-induced changes of the above-mentioned
variables. Thus, there is no evidence that sSCD163 might be used as a quantitative
biomarker of the diet-induced changes of AT CD163 expression or changes of insulin

sensitivity. These results are presented in Paper 5 (Page 98).

Worsening of metabolic state in obesity is associated with impaired endocrine function
of adipocytes. The current knowledge on intrinsic endocrine potential of these cells is
based on and limited to cross-sectional studies. We hypothesized that cell cultures of
adipose precursors established from SAAT acquired before and after the diet-induced
weight loss would reflect two distinct metabolic and nutritional stages of the donor
and could provide information about the intrinsic endocrine potentials of obese and
post-obese AT. Thus, in the sixth study, effect of moderate weight loss on the
secretory profile of adipocyte precursors was examined.

23 premenopausal women underwent 5-6 lasting weight reducing intervention
consisted of 3 months of LCD and subsequent 3 months of WM phase. Paired cell
cultures of human preadipocytes were established from SAAT samples obtained by
needle biopsy before and after the entire DI. To determine whether weight loss affects
the intrinsic secretory potential of adipocytes, the secretion and mRNA expression of
several cytokines (CCL2, IL6, IL8) and adipokines (AdipoQ, leptin) was measured in
in vitro differentiated preadipocytes.

We showed that secretory capacity of in vitro cultured preadipocytes derived from
adipocyte precursors is affected by moderate weight loss. This was documented by
comparing secretion and expression of IL8, CCL2, leptin, and AdipoQ by cells

isolated from paired subcutaneous AT biopsies from obese women undergoing long-
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term DI. In obesity, hypertrophied adipocytes produce prevalently pro-inflammatory
cytokines and chemokines such as TNFa, IL6 and CCL2 [245]. These cytokines may
affect the phenotype of the macrophages already residing in the AT and stimulate
infiltration and activation of macrophages from circulation [246]. On the other hand,
secretion of insulin sensitizing AdipoQ is diminished [88] in obese subjects.

We observed an increase of expression and secretion of AdipoQ and its HMW form
in adipocytes after DI. Leptin mRNA levels were also elevated in adipocytes after
weight loss. In contrast, CCL2 and IL8 mRNA levels in adipocytes obtained after DI
were reduced compared to baseline.

Importantly, the secretion of adipokines with the exception of leptin by in vitro
cultivated adipocytes reflected in general changes seen at the level of AT explants
[188]. Lower secretion of CCL2 from adipocytes reprogrammed by weight loss could
contribute to a lower infiltration of macrophages into AT described earlier [187, 247].
Selective increase of HMW AdipoQ secretion might underlie beneficial effects of
weight loss on insulin sensitivity.

Studies performed on cell culture models may be influenced by culture conditions.
Although we cannot completely exclude possible effects of sub-cultivation on
secretory potential of cells, it has been shown that in vitro conditions preserve the
original phenotype of a donor as shown previously for preadipocytes and adipocytes
[248, 249]. Moreover, sub-cultivation of stromal vascular cells eliminates
contaminating cells like macrophages and results in more homogenous population
than primary cells [250, 251]. It is also unlikely that the observed differences were
based on dissimilar starting numbers of cells as there was no difference in the length
of cultivation or yield of cells before and at the end of DI.

In conclusion, our study shows that weight loss alters secretory potential of
preadipocytes. This effect may be associated with the improvement of the metabolic
status of obese. We believe that the analysis of a distinct cellular population, such as
preadipocytes subjected to uniform in vitro conditions, can offer a focused and unique
image of an intrinsic adaptation of AT to weight loss. These results are presented in
Paper 6 (Page 107).
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Abstract

The emnsumpdion of lipids and simple sugars indwces an inflammasory response whose o@c moleoular migger remains ehusive. The aims
of the pressnt sudy wemre o investigate {13 whether inflmmation induced by a singl & high-energy, high-fat meal (HPM) is sssociated wigh
endo ssmic regoulum siress (ERS) in peripheral blood mononuclesr oels (PEMOC) and () whether these inflamma sory and FRS responses
could be prevented by the chemical chaperone ursodecaydholic ackd (UIDCA)L A toral of t=n heakhy kean men were recruised to 2 random-
tsed, blind, cross-over mial. Subjects were given two doses of placsho (lectose) or UIDCA before the consumption of 3 HPM (6151 kf; 474 %
lipdds). Blood was odleced a2 baseline and 4 h after the HPM challenge. Cell populasons and their activasgon woere anahsed wing floor
cytomestry, and plsma levels of inflammamry cptokines wene smesed by FLISA and Luminex sechnoogy. (ene expression levels of
inflammascry and FRS markers wene analysed in CD14Y and CDi4 ~ PEMC using quansimsive RT-PCR. The HPFM induced an increases in
the miENA expression levels of prosinflamms ey cyinldnes (f2- 78, 2-1-fnld; §-8, 2-d-fod; Thifa, 1-4iodd; monocye chemossmcant pros
wein 1, 2-1-fad) and a decrease in the expression levels of miR? 87 ((-8-0dd) in CD14+ monocytes. The HFM challenge did not up-regulate
the expresion of FRS markers (XEF?, HEPAS, BDEW1, DVAKTT and ATFY) in either CO14Y or CO04™ cell populasions, except fior ATFS
(2-3fiold). The adminisration of UDCA before the consumipsion of the HPM did not aker the HPM-induced change in the expression levels
of FRS o inflammasnry markers. In conchsion, HPM-indured inflammasion detsctable on the level of gene sxpression in PEME was not
amodaed with the conoomd@nt increase in the expeession lkevels of ERS maskers and could not be prevensed by TDCA.

Key words: Peripheral blood monsouclear cells: Urss deooopcholic aclkd: Postprandial bnfl
rethoulum stress

inn: Endopk A
F

The pandemic of ohesty n the Westem world has been
atributed to the ok of physical aciviy and availabiliy of
highly palamhle, easily digesible and ewergy-dense food.
Palatahility is based on a high content of lipids and smple
s However, the overoomsumption of lpids and simple
sugam is amocited with the exaggemtion of posgprandial
blood ghecose amd lipid level™ . The protced devasions
oof bl metabolites are the signs of postgrandial dy=metabo-
limm assxized with socalled postpramdial inflammation™ —,
Postprandial inflammation is manifested by inoeased plaana
levels of nflammatory cytokines and lucocyte actvation™ ™,
although the precize contribution of blood monocyes aod

lymphoctes @ these pro-inflammatory changes remains
unkncrwm. While in heakhy people, postprandial inflammation
is mansiens, it i prodonged in obese proplke and in sbjsas
with type 2 dishewed™ ) Thus, prolnged possprandial
inflarmmation has been sggested o promote insulin resiss-
mnce and atheracksosis, The exmc moleoular trigger of
postprandial inflammation s not fully shcidated yet NMever-
theless, & has been shown previously that exposine of cells
to saturated lipids and 2 high concentaton of ghoose may
came endoplemic reticulim sress (ERS), a5 doouwmended
by the incressed mBNA levels of several ERS markers or
by the incressed activity of an ERSresponsive LacE reporter

Abbrevisions: ATF, st Maoreison Gaos DNAG, Dea] Hydl) homoog, schfendy © mesber 3 FDEMI, FR degradarion esihasnces,
smsewsitise aliaHe | FRS, endoplae: stouber ssevs HPM, highfar seeal HEPAS, hear shock 70 kDa geolein 5 (glicrse segolied peoein,
TEkTa): BMOP], adeocyte o ol stase paceedn 1; endRA, siceafA; FRMC, pesphesl hiood secesockeds ool RANTES, spobared on acivarion,
sl Tocell exgresed and secened; TLR, TolHEke sevepics; UDCA, waodenwpdhobe ackd PR, wdobdad geotesn sesgiene ¥BPI, Xhon bidg

pronein & XBFL, X-box binding pecgein | aphiced
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systern’ 7. ERS lemds o the acivatin of pathways that
eliminate te offected cell Meamwhile, however, & leads o
the simulstion of dessic nflammanry regulrry moleoules
such as NExB and Jun MN-terminal kinase™". Thus, post-
prandial inflammation could be triggered by ERS. Notahly,
ERS-induced inflammation may be alleviated by chemical cha-
perones such 25 bile acids™ One awh cheamical chapenome,
urasieoxycholic ackd (TDCA), cumently used theapeutically
for the trestment of cholesami has been shown i prevent
chemically induced ERS in oitro™™ Y Given these facis
we anatysed inflammation induced by a single high-fat mesal
(HFM) in two subpopulstions of peripheral blood mono-
muckar cells (PEBMC) representing cells of innate and adaptive
immumity, amd tested whether this HFM-induced inflamma tion
is amociated with ERS. Furthermone, we investigated whether
the inflammatory or ERS response may be modified or pre-

Experimental methods
Swhjeds and study design

A total of ten heabthy lean male sibjecs were reonited o
2 mndomied, blind, com-over mal consisting of two 1d
stuchies, sepomated by = kms | week (when the subjecs
fralbowesed thesr habimual diet and level of exercise). Exclusion
crieria were a5 jullows: weight changes of >3kg within the
3 months before the st of te sady; participation in other
trials; hypperhilinsh ingemia; smoking; aloohol or dneg abese.
The characterigios of the sbjecs ame provided in Table 1.
Subjerts were given 10mg/ky of placsho (acose) or UDCA
{Umoran; PROMEDLCS) in gelatin capsules with the last
evening meal (00 hours) before the experimensl day.
Upon sdmismion (0800 hours), 2 catheter was placed in the
aniecubital vein, Afer bmeline blood smpling, subjecs
wene given 15mykyg of ploebo or Usomn, Within 15min,
they consumed a high-energy, HFM coneisting of 2 hrea kast
sandwich with pork mest snd egy omeleze, French fries,
kewhup, Nuelh spresd, owimant, e tea  (McDonalds;
6151k]; 328% carbohydrates, 474% lipids and 113% pro-
teine). After the meal was conmmed, blood was deemn each

Table 1. Characteistios of e subjects
i walues: with Sheir standanrd eroes, o 10)

Wbosmn L]
Aga | 263 104
-] m 231 05
‘Waigit (ko) TrE 248
Wais? circurderance jom) a1 E- ]
Fat mass | %) 1345 108
Gl oo o) 477 a1
Imzaiin §mUiA) 54 0458
HOMA-IR 118 015
TAG jmmioift) oa2 013
HDL-cholesterol ymmioif) 1458 015

Total chomseml {mmol) 4 om

HOMA: L, B i
sl P R e,

hour up to the dth hour. During the intervention, subjects
had fres sccess to drinking-water, The present sudy was
conducted sooonding to e pudelines id down in e
Dedamtion of Helsnki, and all procedures ol ving human
subjects were approved by the ethical commitiee of the
Third Faculy of Medicine of Chardes Univemsity in Prague,
Crech Republic. Whigen informed consent was obtined
from all subjects befone the study.

Determination of plasma levels of biochemical parameters

Flosma gluoose levels were determined using the gheoose
o e fechmicue {Beckmam Instruments, Inc). Plasma nsakin
level was memmmed using an Immumnotech Insulin Fma kit
{ Troruenctech 1. Homenstsis modes] asemament of the meulin
revigomese (HOMATR) ndex was calowlsed on follows:

HOMATR = (fasting insulin {mll}1)

® fasting ghecose (mmal 13,225,

Flasma levels of glyoenl, NEFA and TAG were messured by
colorimetric encymatic amays using kits from Ramdon.

Flow cytometry analysis

To determmne the abaolte numbers of oells i e hiood,
TrulDUNT whes conmining defined numbers of beads
detectable by flow cpomesry were wed scconding o the
manufacturer’s prosool (B0 Bicsciences). Subpopulstions of
blood cells representing  lymphooytes, gmnulocytes  and
iy tes were amal ysed sooomding i thedr sine omd granular-
ity. Th detect specific muface antigens, whole-hlood =mples
were sained with fuorescence-bhelled monodonal ans-
bodies (fluorescein iscyanate-conjugated antibodies: (T,
CI4, COLG and (36; phycosnythrin-conjugated antibodies:
CT¥, (Ml 1e, (D14, TolHlike recepor (TLRXZ oned TIR4; allo-
phyoocyanin-conjugated anthodies: (D8 and (D56) or the
appropriste ixtype contols (AD Bioscenoss) for 30min =t
room empersture. Afer cell smining, erythmootes wee
lymed by erythroc yte hysis buffer fior 15 minst room emperature,
Thee cedls weere: then washed with PBS amd analysed on o FACS-
Calibur flow cyiometer and Celluest Pro Software (BD Bios-
cimces). The number of immune cells n e ama hymed
populatons was expressed a5 2 percentage of gated evens or
the absclute numbers akulaed from dat obtained by T
COUNT analysis. Background was set up to 5% of postve
cells of the isntype control.

Isplation of perpheral blood mononuckear cells and
CON eells

PHRMC were isolated by gadient centrifugation. Briefly, 9ml of
umcosguilated biood were diluted in PRS to 16mil and spplied
onfn Levomep fwbes (Greiner Bio-Ome) filledd with 3ml of
Hisiopagque-1077 sepamton medivm (Sigma-Akdrich). Aker
centrifuggion for 15min at 800g, plhsma wes discanded
amd PHM C loscated above the frit were ransfemed i whe con-
t@ining endothelial od] baal medivm (PromoCell). The cdls
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Indl afbom and

wemwmhuiﬂn:cthn::diltdh:bdﬂhhﬁr{?ﬂim
plemented with 1% bovine srum albumin and 2ms-
EDTA, pH 74) and coumted. Tp to 10 millon cells were
iz with 25l CTN 4 Dynabeads (Tnvitnogen) and inoubated
m::rﬂnﬁrﬂ}miﬂﬂfﬂ.:rﬂl}unfﬂl#]’“mm
amated with 3 magmnetand hysed in RLT (Qiagen). (D14~ FEMC
were ool leced by centrifugation and lysed in BLT. Both frac-
tiomes of PHMC were themn used for R NA isnlation, Sepamtion «fi-
cency was confirmed by both fluonescen ce-activated cell
sorting and quamtitative RT-PCR analysis (data net shown).

Gene expression analysis

Total BNA was isplated using 2 miEN ezsy Mind Kit {Qiagen).
Genomic DHA was removed by Tiase | mestment
(Invitrogen). Complementary DNA was obined by revemss
traneription (High-Capacity cDNA Reverse Tansaription Ki;
Applied Bicsystems) of 300 or 600 ng of iotal BN A Complemen-
tary DN A equivalent i 5 ng of BNA was uwed for realtime PCR
analysis wsing the Gene Expression Master Mix and Gene
Expremion Assay for heat shock 70 e protein 5 (ghioose-
regulated protein, 78 kDa ) (FSPA 5) (Hs99999 174_ml ), activar-
ing transcipion factor 4 (ATFRd) (H00M09560_gl), ATF3
U-Iﬂmjlm&_mlj. ER degradatin enhancer, manmosdzse
alpha-tike 1 (EDEMT) (Ha00976004_m1), Dnal (Hspdl) homo-
ey, subifamily O, member 3 (DNARE) (Ha005 34 483_m1), regu-
aed on mdtivation, nommal T-cell expressed amd seoreted
(RANTES, Hs0M 575 ml), 78 (Ha01555410 ml), -8
(Ha0L T 105 _ml), monooge cemostmoont proten 1
CMCPT;, Ha234 140 _ml), PRARx (Hs0SH7539 _ml), FRARy
(Ha)1115515_ml), TIR2 (H=00152952_ml) amd TIRY (H=010
G0a_ml)  Appled Biosystems), TS, X-box hinding pro-
tein | {XBPT) wotal and XBPT spliced (XAPTx) wene detected
by specific primens (THRq: forward 5-TCTOGAACCODGAGT-
GACA-F and revense SGGODOGGOGGTTCA-S; XEPT totl:
forward  F-OGCTGAGGAGGAAACTGAA-F  ond  reverse
F-CACTTGCTGTTOCAGCTCACTCAT-Y;  XBPIs  forwand
FGACTODGCAGCAGETECA-F and reverse F-ACTGGETOC
AAGTTGTOCAG-F) using a SVBR Green technology (P ower
SYBR™ Green Master Mix; Applied Biosystems), The micoRNA
{miRMA) were transcribed by a miSoript T RT kit (Qiagen) with-
ot prior DN ese Tireatment. Com plementary TNA egquivalent o
mifript SYBR Green PCR Fit and miScript Primer Assay for
mifiiba and miRl8la (HsymiB-l46*_] and Hs_miR-
181a*_1; CQriagen). All samples wene run in duplicate ona 7500
Fast AT PRISM imstrument (Applied Biosysems). Gene
equresmsion of target gemes was nommalized to the expression
of ribomomal proein 513 (RPSLE (mENA, HaO1011487_g1) or
RNA, 1% small nuclar 2 (RNTG-2) (miRMA, Hs_RNIG-Z_1)
(Qimgpen), and eoquressed a5 fold changes ol oulsted wsing the
AN e thasd,

Piasma cytokine analysis

Plasma levels of leptin and adiponectin were messuned by
EIISA (DucSe; RED Systems), with o lmit of detection of
G625 py/ml. Plasana ThF-e, 4, LG and T8 levels were

1
]

e retiouhem stress 5

memsured by the MIILTPLEX MAP Human High Sensitiviy
Cyokine Panel (Merck), with a lme of detcion of
13 pgsmil.

Statitical analyses

Seatistical anal yses were performed using Grap hPad Prism 6and
SPRS 12,0 for Windows (SPS8, Inc.). Det of plasna mesholites,
were oy mansformed, and normality of the data was smessed
by the Shapino="Wilk nommality test. The effects of the HFM in
the: placebo and TIDCA reatmenss wene tested wsing the ome-
way and two-way AMOVA with Bonferrond fos boc analysis.
Comeations among the relativwe mENA levels were analysed
using Spesrman’s comelaton. Deta are preseniéed 25 means
with thesir stmdand emmom, TDiffenenoss of the level of P 005
woere comesdered to be statistically = gndficant.

Results
Postprandial changes in plasma metabolifes

Evohtion of pospandial plasm levels of ghoeeml, NEFA,
TAG, gheoose and insulin in response @ the HRM challenge
is shown in Fig. 1. NEFA levels declined after the consumption
of the HFM and then gadually incessed during the time
coumse of the experiment but not shove the Gsting levels
(Fig. Wa)) Ghoenl ond TAG concentrations reached peak
vales 3h after ingestion of the HPM (Fg Wh) and c))
Ghuoome levels did not alter significangly during the whols inter-
vention (Fg 1(d)), whersas inmulin kevels moreased 1h after
ingestion of the HFM and remained elevated above the fasting
levels (Fig 1(e)). Baseline plaana kevels of NEFA and glyoernoal
woere bower in the TIDNCA trestment, thowgh this difference did
not reach a :'g'u'ﬁmi lovel, Thues, mo differemces in boseline
or postprandial plaana levels of the esed metabolites betwesn
the: placeko and TIDCA trea tments were detected.

Postprandial changes in blood cell populations

At the Gsting state, numbers of leuoocytes per pl of blood
were not different between the placebo and DDA treatments
{placebo: 9821 (2 704) cells/ppl; TDCA: 9580 (38 T63) cellsjul).
The HFM challenge significandy inerezsed the absolue num-
hers of monocytes, mphooytes and ganbocyes and the
hﬁ]mnﬂxm&hmﬁig.ﬂﬂ:nﬂ{hjj.ﬂﬁhmem
wms'mﬂwinllbem!menfmh!ddﬁuxﬂumhjv\e
distribution of two main kewcooyte populstions, nemely m-
phocytes and gronulocytes, inthe hlood chemged pospramn-
dially, ie. the reative proportion of hmphocytes deceased,
while that of granulocyies decesmed recproally in esponse
to the test meal in the plcebo restment (dat mot shown ).
The: relathve prop ortion of monocytes within the whoale laoo-
cyie populstion remained unakered o response o e HFM
challenge. Given that both the reative distibusion of the les-
coryte populaton snd the sbsohte couns of cells wens
afferted by the commumption of the test meal, the numbers
of events represntng ged cel wee nommalised by
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Fiig 1. Evduion of plasma lewsis of |4 MEFA, i) giycsmi, i) TAG, i) gl
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from St of bassling levels I T wscdstechalc acid (i) Seatment
1 P CS, 11 P01, T Pooom.

TrulDTUNT data (the pecenage of positive cells multiplied
niﬂtﬂuﬂrdlgmﬂur&ewrﬁhd}urﬂumm
lymphocyte or gemulocyie gate).

The HPM imressed the oamts of 1451 ad
CTHAYTIRY monoofes i both placebe and TIDCA
tregtments. The counss of CTHAT/TLRET monocytes wee
imcrensed after ingestion of the s meal in the plceibo meat-
ment only. However, only in the TIDCA frestment, the HRM
challenge incressed the counts of (DM and CDAT ympheo-
cytes (Fig. 2(c) and (d)).

The evahmtion of the expression levels of individual surface
markers (expremed @ geometric mesn fluonescence: intensity)
revealed that the HFM enhanced the expression levels of the
acivation marker (Illc in monocyies This inoease was
significant in both placebo and TIDCA treatments (Fg, 2el).

Postprandial changes in plasma adipokines and
inflammatory cytokimes

PFlasma levels of leptin, adiponedin, L8 and THF-c did not
aker during the HFM intervention in either the plhoebo or
UDCA trestment (data mot shown)., Plem 04 kewls
imeremsed gradually owver the 4h period in both placebo and
UDCA tremtmenss (Fg 3. However, in most samples,
plsma levels of TL-1E were under the detection lmie

Postprandial changes in the gene expression levels of
cytokines in peripheral blood mononudear cells

At hasedine levels, CDI4T colls expremesd sibstansally higher
mANA levels of IT-18, IT-8, MCPT and THFa and lower mENA
leveds of RANTES compared with the CD14” cell populaton
(Fig 4(a)). Thenefore, the effect of the HFM on the expresson
lesveds of T-18, T8, MCPT arel TNFa was analysed in CTH4T
cells, and of RANTES in CD4 ™~ cells,

In (D47 cells, gene expression levels of all e messumed
cytokines wene incressed in response o the HFM challenge
(Fg 4h)=(e)). This inkrease was similar in hoth frestments
except for THF-c that was not akered in response to the
HFM challenge i the TDCA frestment Subsegquendy, the
expression kevel of two miBNA (m@ 8k md mildd6a)
implicated in e negative regulsion of the expresson of
TIR2/4 pathway members were analysed (Fig. 400 and (g
The expression level of miRi8fa, but not miBfd6a, was
decrezsed by the consumption of the test meal in both pla-
cebo and TIDCA trestments. The mENA expression level of
Rm:qlnﬁupnﬂmdhyﬂ:ﬂ-+huqimt;wm
decrezed in CT4 -~ cells affer ingestion of the HFM in the
UDCA westment only (Fig. 4thl). This resuk was also cone-
firmed when the expression of BANTES was nomalised to
the pan T-hmphocyte marker CO4e (dat mot shown), Howe-
ever, the changes in the mBMA expresion kevels of all the
meammed cytokines i response o the HFM challenge wene
not different between the placebo and UDCA restmenss a5
revealed by the two-way ANOVA.

The expresson kevels of other genes potentially activated by
dictary fatty acids (ie. TIRY, TLR2, PPARa and FPARY) were
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ot akered significandy in response to the HPM challenge
(Fig. 400 =10,

Postprandial changes in the gene expresson of
endop Bsmic reticw/uom markers in CO147 and CO4

pevipheral blood mononudear cells

Fist, we compared the expresion levels of ERS markers
hetween the two subpopulstions of PEMC Compared with
the €4~ cell popubton, CTHAT cell expremed higher
mRNA kevels of ATR, FHSPAS and DNARCE, while both ol
populations expressed the levels of EOEMT and XBPT to the
same degres (Fig. 5(2)). The expresmion of ATFS was restricted
o (T4 T cells, In responee i the HFM challenge, FEMC did
ot aler the expresson levels of HSPAS, ATE, EDEM 1, XBPT
(splived r. totl) and DVARCS in either e plcsho or TIDCA
tremtment (Fig, 3b)~(). Meverthelms, the HFM challenge
led to @ significant increase in the mENA levels of ATF3
in CIM4T cells in both phosho and UDCA tesmments
(Fig. S(g)). The relative change in ATFS expression incduced
by the test mesl comelsted with thet in -8 expression
(R G745, P=0017), but did not oomelate with the change in
the expresson of the other cyinkines. In addition, haseline
miNA levels of DVARTS, EDEMT, ATFd, XBPIs amd FEPAS
cormelated with those of BANTES (all comelbtions nesched
E =07, P (0 Fig. S0hil

Discussion

The: aims of the: present swdy were to (1) examine 2 potental
manciation between inflammaiory and ERS responses to a
HPM in two subpopultons of PEMC representing cells of
inmate and sdapve immunity and (2) zmes e poenstal of
IDCA, 3 chemical chapenome, i modify or prevent these
responses. Posprandial responses to the test meal wene

saucdied in heakhy kan malke subjects to mode the situation
that precedes and could contribute to the development of
ohesity and the metabolic syndome.

First, we doxumended the effects of the e meal, which was
sedecied as a typical example of 2 Westen Yo foud type
of diet, on prstprandial plasma changes in major mesbolites.
The ewolution of NEFA plesm concentaton  followed
2 kmown patten in response 0 3 single mixed meal, ie
mn immediate shamp demesse in NEFA levels duwe o the
antilipalytic action of neulin, followed by increzsed NEFA
levels dependent om the spillover fagy acids from chykomi oron
TAG™. In contras, ghoose levels remained unakersd in
resgponse i the HPM challenge, a5 desoribed previowdy™™ ",
even though some publizhed fudiesd™ haye shown pesk
ghoose levels after a 30 » G0min period folowing 2 mixed
meal challnge. The observed blunted hyperghosemic
respomse could be cumed by sSgnificant absolue and reltive

IL& (pgirrl)

Time [h]

Fig. & Evolfion of plasma levels of IL46 following & High-4at meal chadenge.
Vialnes are mears, win T Sariar o mpmeenised by vl brs
* Mo vialun was sigrificaniy dFesen from that of basslins e [n e fa-
cabo {0} Seatmant (P005) T Mean valne was cany dtenn fom
fhiat of b adres kvl n S oSccscycholic acid |- Seatment (P<00S)
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amounts of fat and proteins in the 2 meal that have heen
due o delayed gasric empying Y. Thus, the oomplexity
of the meal, despite its high absclte (not relative) crbo-
hydrate content, may lesd o the peadodol suppression of
poeprandial guoose plesma oonoentTsion.

In acoondance with  previous st ¥, P pram ciial
lewcoc yioeds was observed i the present shudy. In lne wigh
thee remuls by Hansen of al™?, the s meal wsed in the pressnt
study inremed the abaolute numbers of gramulootes n the
hilood. These G2 changes observed in granulocyte mumbens
are probably caused by the relesse of cells from the manginal
pool (cells residing in the sowdflowing lining fluid of the
\lma.l]:lne]';'“. e have abo observed an incremse in the
abanlue camis of ymphootes and monocytes n the
bloxd. Tt should be noted that the increas: in lymphocye
coumss may be smocaed with the ccadin rhythm 53
Neverthelems, the meal used in the pressnt shdy hod higher
total e gy, @imhydrae and proten contentss than meals

wed in the previosly cted sadies by van Oostrom
e al PR Thaes, these metabolic variables may have 3 mone
imporant role in the observed activation of hymphooyes
anad monocytes than in the credian rhythm.

Postprandial inflammation was previously chamcterised by
the ncressed ciroulating levels of svenl nflammarry ogo-
kines™ We confimmed the posprandial devation of L&
levels Posprandial inceass in plasma L6 levels wee
reported by others™ 2%, As mENA levels of 16 were barely
deeciable in (14" or CTNA™ cells (cdat et shown), the
elevation of TL-6 levels in the ciroulation was driven by other
TL-eprosducing cells or Gmwes.

Concerming HFM-induced changes in blood cdls, we con-
firmed the finding by Gower of al*™® showing incresed
CTH ¢ expression on the surfce of monocyies afer ingestion
of the HPM by heakhy volhmteem, CD1 e s considersd as
an activation marker of monocytes beonse it enhanoes their
adhesion to endothelial cells omed the potental to migae
inn mrget mues. npotandy, high-fat diet feeding resks
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in the infiltration of CO1c™ monocytes into adipose thme in
i ™Y 3 theme monooytes'macrophages exhibit a pro-
inflarmatay M1 phenctype. CD1lc expremion has als
heen foumed i increase in blood monocytes of chese mubjecs
of the nsulin resistance index™, Therefore, 2 sngle HFM
may ithat monocytes in 2 similar diredtion o long-term
overfeeding or ohesity. This observation is imporant with
respect to the fact thet 3 majority of Fuopean and Morth
American people are in a postprandial st most of e day,
amid thesefore they might be exposed i 2 potentially harmiul
comdiion long, before they become obese.

W them focumed on gene expresdon in CIAT (monooytes)
and CTH4 ™ (lymphocoytes) PEMC, ie. cells that ane intimady
exposad to megmholite flucustions, but upon activation also
condribute to the development of inflammation in adipose
timue in response D ovedesding. Unél now, changes in
e expression nduced by 2 meal wene onalysed only in
the whole PEMC population™ % gnglyic of mch 2 mix
tures of cedl types could mask the presible differences hetwesn
the postpramdial responses of mononucdear cells of nmate and
s ptive immumity. Theefone, we opted o separate these to
categories of PEMC before gene expression analysis. Remark-
ahly, the expression levels of all the tested pro-inflammatory

47



“ British Journal of Mutrition

A J- Kmimerovd o o,

cytokines were enhanced afier the HPM challenge in T4
monocyies. Moreover, we alsn deteced decreased expression
leweds of miRi81a, a negative regulstor of the TIRA/NF-xB
pathway™, This deresss in miRifla expresion folkwing
the HRM challenge could reinforce the synthess of pro-
inflammatory cywkines. The observed downeregulstion of
T8 a expremion may be specific for inflammation: induced
postprandially, given that the expression level of another
miENA, mikid6a ™ imohed in the negative regulstion of
several pro-inflammatory cyiokines remained unebeed. As
moied alresdy for CT lc expression, postprandial changes in
the expresion of m@Ef&la and pro-inflammaory cytokines
wene similar to the conges in their expresson asocaied
with obesiy @3,

Interestingly, we did not defext oy changes in the
expression of genes poentally sdiaed by dieary fony
ackds (PPARy amai PPAR) in CTH4T cells, abhough thes
cells were postprandially exposed i high leveds of lipids
Tredeedd, it was reported previously that a fatty meal induced
an increase in the content of TAG in lascooytes™, suggesing
the upake of NEFA by leucorytes. Howeves, the present dag
sugge that several hours of expomme to dietary lipids are not
sufficient to induce mibstmtal expression changes in e reg-
ulztors of lipid metsholism in (D147 cells. The mREMA levels
of TIRZ and TIR4 wers not alered in DY monocytes by
the HPM challenge, even though we deterted higher oounts
of (DA/TIR2- and (D4/TIRd-positive monocyies in the
hlood. Mevershelems the lovel of fluonescence (mean fluor-
escence ntensity) of TIRZ and TIRA on the monocyte surface
was not akered (dota not shown), which confirms the resulis
of mANA analyss.

T determine whether pstprandial inflammation could be
triggered by enhanced FRS, we analysed FRS markers repre-
senting all three arms of unfolded protein response (LTPRL
The activation of inositolrequirng encyme 1 (TRE) leads o
XBP1 splicing, which in tum stimulbtes the expression of
DNARCS amad EDEM Y and partally HEPAS ™ HEPAS is primar-
ily 2 targes of the ATRS UPR arm™@™, The sctivation of PRER-
like emdopla=mic reticulum knese (PERK) is ssaociated with
the up-regulation of ATR, which in wrn induces the
expremsion of ATFI™. Following the HFM challenge,
mBMA expression of 2 majority of FRS markers wasmot akered
in PEMC. Thus, the clessic acivation of TPR doss not seem to
he the driver of the stprandial incresse n the expression
levels of inflammatory cytokines in (14" monocyies. The
abmence of XAP] spliding was mther surprising =s it m be
stimulzted by inmdin®®, ond inmulin kevels werne raissd in
respomnse i the HFM challnge. It was also meported that
higher activation of XAP1 i detecable in monooytes from
obese subjeds and subjects with the metabolic smdome ™,
The finding that the HFM challenge doss not initiste ERS in
PEMC alsn explins the minor effeds of UIDCA on the
expresson levels of nflammarry cytokines, These minor
effects could not be based on the bw biavailability of
UDCA in the hlond as phamacokinetic data show that
UDCA reaches 2 pesk concentation at Gdmin afer ol
adminigration and its half-life & more than 3d. The ahility
of TIDCA o modulate the expresmion levels of inflammatory

cytokines observed in the cme of TWP-x in CIA4T cells and
RANTES in (D014 cells is therefore probably unnelsted o is
chaperone-like property. Imporandy, DA has been shown
to have an immunmosuppressve potential different from is
eflect on ERS due to its shility o acdhate ghoooortonid recep-
ors amed to inhibit the TIR synalling pathoay™™. UDCA may
abn inflhuence blood cels throwgh binding to the G-protein-
coupled bile acid receptor TGRES™™, However, thes: offects
wene ested mostly i oo or in patientss with primary biliary
cirthosis, and therefore they annot be easly exrapolaed to
an im pips oondition in heakby men.

Thee only ERS marker whose expression was postpramndial by
elevaied was AT, It mostly acis @5 2 e e ptional nepressor
and may thus be part of 3 countertalance system in heakhy
imaiividuals, protecting them from ovesdhation of pathways
imchuced by srems™ ~ Therefore, it could be envisionesd
that this counterbalance smystam is impaired in obese andfor
dishetic subjects who suffer from intensified and prolonged
posprandial nflamma ton ®?, Indeed, careful evahmson of
differenoes in the expresson kevels of any pustve regulaor
of pretprandial nflammation hetween lean and ohese subjects
will be oucal for idemtificaton of mechanians keading to
pathological deregulstion of this prooss in metsboliclly
immpa ined individuals.

Interestingly, the change in ATFS expression induced by the
HFM challenge comelated specifically with a change in -8
expresson. -4 has recently been desaribed a5 a oytokine
whose expression is altered specifially by the HFM chal-
lemege ™. ATF3 s, however, activaied ot only by ERS but
also by other various sreses ™ ond the absenoe of the up-
regulation of ATF4 in the snalysed (D147 cells of ATF3 in
the camic PR pathway siggests that the up-regulstion of
ATEE i not ssancisted with the actvation of TPR. Moreover,
the lack of an inoease in blood ghoose concentaton afer
the: HFM cha llenge suggests that hyperg yoa amiz-induwoed ood-
dative sress is not the mgper of ATE expresson.

Alhongh we did ot fined arelationship between HPM-indwoed
changes in the expression kavels of inflammatory cytokines and
et ERS markesrs, the strildmg co-re guilation of mit MA expresson
leveds of RANTES andd all ERS markers opens the question as to
whether the higher FRS levels in (T4~ cells {probably (DF*
T cells that ame the main produens of RANTE ™ coukd be a
marker of their activation as was previously sugessed for te
conditons of soute pathogn nfersion™?

In oomclwsion, we demonstaie the evidenoe that nflam-
mation induced by the HFM challenge in (T4 monocytes
was not acoompanied by an activation of 2 majority of the
inmvestigated ERS markems (HSPAS, XHPI, DNARTI, EDEMT
and ATE4). Adminisration of TIDCA before the consump Son
of the HFM did not aker the expremion level of these ERS
markers. The putative molecular trigger of  postprandial
inflammation remains o be established.
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Abstract

Bac kground/Objectives
Hyperghycamia represaents one of possible mediators for activation of immune system and
may confribute to worsaning of inflammatory state associated with obesity. Tha aim of our
study was toinvestigate the effect of a shart-\2rm hyperghycemia (HG) an e phenotype
and relative content of immune callsin cinculation and suboutaneous abdominal adiposs tis-
sue [SAAT) in obese women without metabolic complications.

Subjects/Methods
Thres hour HG damp with infusion of octreotide and control imeesfigations with infusion of
octreoiide or saline were performed in three groups of obese women (Group: HG, Group
2: Octreofide, Group 3: Saline, n=10 per group). Before and atthe and ofthe interwentions,
samples of SAAT and blood were obtgined. The relative content of immune cellsin blood
and SAAT was detleminad by flow cytometry. Gene expression analysis of immunity-
related markers in SAAT was parformed by quaniitative realHime PCRH.

Results

In blood , no changes in analysed immune cell population were obsaned in response

o HG. In 5AAT, HG induced an increasse in the content of CD206 negafive monocytes/
macrophages (p=0.05) and T ymphocytes (both T helper and T cytotoic rmphocyies,
p=0.01). Further, HG promoted an increase of mANA levels of immune response markers
(CCL2, TLR4, TNFa) and lymphooyte markers (CDSg, CO4, CD8a, TBX21, GATAS,
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Compting Infemsts: The autorshave decbrad FoxP3)in SAAT (p=0.05 and 0.01). Under both control infusions, none of thesa changes
il no mompaing infenesis s wene obsaned.

Conclusions

Acute HG significanly increased the contentof monogytes and lymphocyiesin SAAT of
healthy ob ese women. This result suggests that the short-term HG can modulate anim-
mune status of AT in obese subjects.

Introduction

Ohbesity represents a high Ak factor for the development of varous metabolic and candiovascn-
lar diseases such as insulin resistance, type 2 diabetes, Iver steat osls oratheroscemsis. The
compon festure of these complications ks a low-grade inflam matlon characte dzed by increased
circulating levels of pro-inflammatory cytoldnes and chemokines (eg. IL-6, TNF-a OCL2,
COCLS) and enhanced accurnulation of immune cells (macrophages, lymphocytes) in adipose
thssue (ATH[1-3].

Inn a previous study focused on subcutan eows abdominal AT (SAAT), we found 2 progres-
sive increase in the mRNA expression of macrophage markers from obese towandsobese with
metabolle syndmme (MS) indbvldwals [4]. Smilar fndings based ona comparison of inslin-
resitant with insulin-sensitive subjects were presented by other aborstories [ 5-7]. However,
the cause of higher AT inflammation inobese subjects with metabolic syn drome com pared to
metabolically healthy obese rerma ins only partly elucldated. The altered contrl of glycaembs on
the obese background might be one factor that plays a role in the further deterioration of AT
functions. Indeed, it was suggested that the deterioration of postprandial glecose control pre-
cedes long-term elevatlon of fasting glucose concentration [£,9]. Moreover, it was shown that
fuctuations in glscose levelsare more kol than chronlc hype rglycemia (HG) per se [100.
Deetrimental effects of acute HG might be mediated through induction of oxidative stress (via
production of glycosylation end product and activation of proteln kinase C) and through the
activation of inflamems tory pathways in vadous cells resulting in incressed secretion of pro-
in flam matory cytokines [10-13]. Stll, onlya few reports addressed responses of cells of adap-
thve and innate ety to this metabolle stmulus in v in obese Individeals [14,15].

Therefore, the abjective of this study was to lnvestigate whethe racute experimental HG has

an imypact on phenotype and relative content of monocytes/macrophages and lymphocytesin
clreulation and the SAAT of heal thy obese women.

Subjects and Methods

Subjects

The ¢o-author and the head of the Department of Sport Medicine, Viadimir Stich, MD, PhD,
recrulted subjects for this study among the sulsjects consulting at the Obesity unlt of the Uni-
versity Hospital Kralovske Vinohrady. 30 healthy obese premenopansal women were recruited
and divided into 3 growps(n = 10) matched for BMI and age (group 1- HG damp with octreo-
tide infusion, group 2—octrestlde |nfusion, group 3- saline infusion study). The subjects wer
oatched for BMIand age (range 27-32 kg/m® and 40-44 years, respectively) and then they
were assdgned to ane of the three experimental procedures without systematic randomization
Al wornen were drug-free and without signs of metabolle syndrome [16], except for obesity.

FLOS ONE | DOE 10 137 1§oumal pone 01 22872 Apl 240, 2015 213
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To exclude subjects with metabolic syndrome we followed MCEP-ATP I guidelines (hitpe /!
v o blb i fhy e lees e s grund el i s Faitgla e pudf), L e only women exerting lessthan 3 out
5 sk factors (walst droumference > B8cm, TAG > 1.7mmol/l, HD Lcholesterol < L 3mmoll,
blood pressure > 130y 85rmm Hg, fasting glcose = 5.6mmol)1) were admitted to the study.
Their body weight had been stable for 3 months prior to the examination. Participant s signed a
written infrmed corsent before the study. The study was performed scconding tothe Declara-
thon of Helslnkl and approved by the Ethical Committee of the Thind Faculty of Medicine
(Charles University in Prague, Crech Republic).

Design of clinical investigation

Qinical investigation was performed before intervention in the Fsting state and at the end of
the 3-hour HG damp, or ectrestide, or saline infuslon. Anthropometri messuremenis and
blood procesing were performed aspreviously reported [17,18]. Body composition was as-
sessed using mult-frequency blodmpedance (Bodystat, Quad scan 40040, Isde of Man, British
Isles). 1-2 ml of un-coagulated blood samples was wed for flow cytometry analysis. SAAT was
obtained by needle biopsy carded out in the sbd omdnal region ( 10 co laterally from wembilicus)
under local anesthesia | 1% Xylocain) as previoudy described [17]. Blopsies were performed 30
idn before the start of the experimental Infusions and within the last 15 min of infudons on
the contralateral side of sbdomen. 1-2 g of SAAT was used forisolstion of stromal vascular
fraction (SVF) cells to perform flow cytometry amlyses. Ina subgroup of & women in HG and
in % wornen from the two remalin ing expedmental groups, 0.1 g of SAAT was immediately fro-
zen in lguid nitrogen and stored at -80°Cunti] RN A isolation

Hypemlycemic clamp

A bolus injection of (033 g/kg glucose followed bya varying 20% glucose infusion was used to
achieve steady-atate plasma glucose concentrations of 15 mmolf] for 180 minutes. Conti nuous
infuslon dose was ad justed every 5 to 10 minutes according to the messured plasma glucose. 5
roinutes before the primdng ghyoose, actrectide ( Sandostatin, Novartis) infusion was started in
onder to block the rel ease of endogenous insulin. The initial 25 g TV bolus ad minstered over 1
min was followed by an infusion at the rte 30 ng/minfkg body welght. To prevent hypokale-
roda, 026 mmol /1 KC1 was added to the glucose infusion.

To exdude any direct effect of infuson itself or infudon of octreotide on dreulating cells
and on SAAT characteristics, 2 groups of subjects & control groups (B= 10 per each group)
different from those partici pating in the HG damp receved infusion of saline or octreotide
alone (Le. inthe absence of the glicose infugon) at the duration, resp. dose identical to the

hiyperglyce mde condition.

Isolation of SVF cells

SAAT was washed with saline, further minced and digested with type 1 collagenace 300 Ujml
in PBS/ 2%B35A ( SERV A, Heldelberg, Germany) for 1h in 37%C shaking water bath. Digested
thssue was subsequen tly centrifuged at 200 g for 10 minutes and fltered through 1040- and 40-
e sdeves to dsolate SVE cells.

Flow cytometry analysis
The whole blood and freshly kolated SV cells were wsed for invmediate fow cytometry amaly-

ses. SVF cells were resmspenided in 106 pl PBS solution containing 0.5% BSA and 2 mM EDTA
and incubated with Auoresce nee- hibeled monodonal antiodies (FITC-conjugated antibody

FLOS ONE | DOE 10 137 1§oumal pone 01 22872 Apl 240, 2015 ETRE]
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CI 14, CDd; PEconjugated antibody CD 14, TLR2, TLRA, CD3; PerCPconjugated antibodies
(D45 and APC~conjugated antibodies CD206 and CD8) or the app roprate kotype contmols
(BD Blosclence, Bedford, MA) for 30 min at 4°C acconding to protecol of Curat et al. [19]. The
whole blood samples were stalned with the same set of Aucrescence labelled monoclonal antl-
bodies a5 wsed for SVE cells (exce pt for CD2X06) for 30 min at room temype rature. After staining,
erythrocytes wene lysed by erythrocyte lyss buffer for 15 min at room tem perature. Cells were
washed with PBS and analysed on FACS Calibur flow cytometer with Cell Quest Pro Software
(BD Biosclences, NJ, USA). The number of immune cells belonging to specified populaticns

was exprested as percentage of gated events.

Quantitative real ime PCR (RT-gPCR)

Total RNA extraction and reverse transcption (RT-PCR) were performed a5 previousy de-
scribed [ 17]. Before reverse transcdption, genomic DN A was elminated by DNase I (Invitro-
gen, Carkbad, CA, USA). Real-time quantitat ive PCR (RT-gPCR) was performed using an ABI
FRISM P and 7500 instrument {Applied Blosystems, Foster City, CA, USA)L Primersand
TagMan probes were obtalned from Applied Blosysterms. Resulis are presented as fold change
values caloulated by Ad Ct method normalized to geom etdc mean of two endogenous controls
{185 AN A and GUSE).

Determination of plasma levels of biochemical parameters

Flasma glucose and insulin were determined using the ghscose -oockd ase tech mique | Becknman
Instruments, Fullerton, CA) and an Immunotech Insulln Irma kb, resp. (Immunotech, Prague,
Cmech Republic). Homeostasts model asessment of the lmnsulin redstance index (HOMA-IR)
was calculated as follows ((fasting insulin in miU)T) x (fasting ghwose in mmol/T) / 22.5).
Clrculating levels of selected bloactive molecules were measured by commerclal ELISA kits:
RANTESAOCLS { Ducset, R &D Systerns, Minneapolis, MN, USA) and MCP-1 (Ready-SET -Go,
eBioscience, San Diego, CA, USA). Plasma levels of other paramete rs were determined using
stanctand bdoc herndcal methods.

Statistical analyses

Statistical analyshs was performed wdng SPSS 13.0 for Windows (SP5S Inc., Chilcago, 1L, USA)

and Graph Pad Prsm & (GraphPad Software, Inc, San Diego, Califormis, USA). The data wene

log-transformed for the analyses. The effect of HG camp or octreotide/saline infusion was test-
ed using parametdc t-test. Differences of basellne dinkeal data between the three groups of pa-

tients were analysed by ane-way ANOVA with Tukey multiple comparison tests. To oom pare

the effect of HG va control infisions, the data were anmalysed by two-way ANOVA with repeat-
ed measures. Diata are presented asmean + SEM. Differences at the level of p < (.05 were con-
sdered statistically slgnificant.

Results
Clinical characteristics of ohese subjects

The clinical data of subsjects participating inthee short-term interventions are shown in
Table 1. There were no dgnificant differences in anthnpometric and labortory parameters
(induding fasting blood gucose, plsma insulin levels, and HOMA-IR) between HG and
octreotide group of subjects Fasting glucose levels were lower in the saline group (v HG
group) but no other differences were found between the two groups.
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Table 1. Characterisfics of obes s subjests in experimentl groupe.

Cha rac e istics Hyparglycemis HE) Oewreobde Zalling
N 10 10 10

Age fyears) 4211 4222 4422
Weight (ig) BED 42T BT5244 Ba0 a2
BMI {kgim?) 208 2 08 319215 316211
Fat fig) 332416 345230 58421
Waiel dir cumie rence (am) 952498 10082 24 85423
Sysilic bieod pressure {mm Hg) 117.2 48 1243223 1244228
Diasiolic biood pressure {mm H) TEeaD 173215 75423
Glucose (mmoll) 54201 62401 S0s01"
insulin (miLiL) 65209 73+ 08 66408
C-peptide [mLAL) 0.7 20,1 08401 07401
HOMAAR 16202 17202 14202
Cholesternl [mmoliL) 47202 44200 48s 03
Triglycerides (mmolL) 09201 12s02 11201
HOL-C (mmoliL) 13201 14201 14201

Dt ane pesariad & maan + SEM
"p = 005

Iypanglycenia ve caing; BM: body mass indea;, HOMA-IA: homeost asiz modal asossament of e insulin meistancs indes; HDL-C: HDL chalestaml

LT Ypurral e R2ET2 001

Plasma insulin, C peptide and glucose levels during hyperglycemic
clamp, octreotide and saline infusions

Throughout the HG damp plasma glecose was malntained at 15 mnol'] (coefficient of varia-
thon 7.2 £ 0.7%), belng ap proximately three times higher compared with baseline values. The
addition of sctrestide preven ted hyperglycemia-stimulated en dogenous prsduction of insulin
except at the end of the 3-hours hyperglycemia when plasma insulin and C-peptide concentra-
thons were modestly increased (lnsulin 6.45 £ 0,86 mlU/] at baseline vs. 107 £ 2.1, p < 005 C-
peptide 0.72 = 0,06 mll/1at baseline ve 108 = 0L18, p < O5).

The infusion of octrectide alone decreased plasma insulin and C-peptide belowbasal levels
(irsuliey, 7.34 £ (084 e U] ot base e v, 242 £ 039 mU at the end of Infuson, p < 0001, C-
peptide (.76 + 084 mU/Lat baseline va (027 £ 000 mU/ at the end of infusion, p < (001) and
thiswasaccompanied with a slight devation of glucose levels (baseline 5.23 = L 11 mmol], end
of infuston 595 = 027 memoll, p < 001).

Glscose, insulinand C-peptide levels remained stable durng the saline infusion (data not
shown ).

Monocyte/macrophage and T ymphocyte content in peripheral blood
and SAAT of cbese women in response to hyperglycemic clamp,

octreotide and saline infusion

The content of monocytes'm acrophages characte dzed by expression of CD45+/14+ did not
change in response to HG in blood but significantly increased in SAAT (Fig 1A)L Similady, no
changes in relitive content of monocytes/macrop hages expressing Toll-lke receptor ( TLR) 2
and 4 were induced by HG in blood, while there was a dgnificant HG-induced incresse in rels-
thve content of CD45+/14+ TLR4+ population in SAAT (Fig 1A} These changes were indepen-
dent of the content CD45+ cells with high granularty (granulocytes), in SAAT bopsy samples,
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Fg1. Effectof hyperglyoemic clamp (A), ootreofde infusion {B), and salfine infusion {C)on relstie content of manos yteimacrophage and T-
e populations in peripheral blood and siromal vasoularfract an (SVF) of suboutaneous shdominal sdiposs tissue of obese wormen. A

pepulstinn of TLF.« monacyses in Boad is not ehewn dua o 8 low Sequency. While bars- bafoss infusion, biack bas- slerinkision Data are presensed o
rraan & SEM, aach invesigated gou n= 10, %o < 00S ** b <0.01: belom ve afler camp.

b1 17 Wpurral poaa d EEET g

becanse their content was not different before or at the end of the HG damp ar other experi-
eerital infiidons (178 = 2.3% before and 17.4 = 1.9% after infusion, n = 30). Resident AT
acroplage populations were Lden tifled by the expresion of mannoe receptor CD206 on
CDA5+CD1 4+ cells (Le. CDM5+/14+/ 206+, CDM5+/14+/206+TLR2+ and CD45/14+/206+/
TLR4+ cells) i SAAT (Elg 1A) and they were not affectedby HG.

Populitions of T lymphocytes (CD45/3+ cells; T helper subpopulstion- CD45+/ 3204+, T
cytotoxic subpopult ion- CDM5+/3+/8+) remained unchanged in response to HG in blood but
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significantly increased in SAAT (Elg 14) The ratio between subpopulations of T helper and T
cytotoxic lymp hocytes (CDM-+/CD8+) in SAAT did not change during HG damp (data not
shown ). Importantly, nelther octrectide norsaline infusion had a significant effect on relathve
content of monocyte/mac rophage and T lymphocyte populations inbleed and/or SAAT (Fig
1B and 10). Of note, HG-specific increases in total T cell and T helper cell content in SAAT
was confirmed by two-way ANOVA

SAAT mRMA levels of macrophage, ymphocyte and inflammatory
markers in response to hyperglycemic clamp, octrectide and saline
infusion

To extend the results of fow cytometry, mBNA levels of chemoldnes/c yiold nes ( OC13/MCPL,
CCLS/RANTES, CXCL12/SDF- 1 ILS, IL1, TNFa), markers of macrophages(CD 14,
CD206), Toll lke receptoms ( TLRZ, TLR4), lymphocyte markers (CD3g, CD4, CD#a) and re-
enodeling marker (MMPY) were analysed in SAAT. Levels of CCL2 and OCLS chemokines

we e also evaluated in plasma. The mBN A levelsof OCL2, TLR4, TNFa and all measured T
lymphoc yte markers (CD3g, CD4, CD84) incuding Thi (TBX21), Th (GATAI) and T regs
(FoxP3) maders sgnificantly increased in response to HG (Fig 2A) but not after octreotide or
saline infuslon (Fig 2B and 2C, confirmed also by two-way ANOVA).

Plasma levels of chemokines in response to hyperglycemic clamp,
octreotide and saline infusion

Circulating levelsof two chermakines imvolved in attraction of monocytes and lym phocytes, Le.
CC12 and CCLS, were not changed in response to either cond itlons | data pot shown ).

Discussion

Obesity-related inflammation has been consldered one of the major risk factors for the devel-
opnent of metabolic and candiovascular diseases. Short-term HG representsone of the possible
triggers to sbe rrant activation of the immune system [ 20]. This could contribute to the further
worsenling of the inflammat ory state in obese subjects resultingin metshbolle syndrome or type
2 diabetes. Thus, we investigated the efect of HG an immune cell phenotype and content in
circulation and SAAT. The present study was carried out in healthy obese wiomen representing
an optimal model for studying the processes contribu ting to the d eterloration of metabolic sta-
tus of obese subjects.

We documented that HG induced an increase in CD 45+ 14+ mono yte/ma crophage popula-
thon i SAAT. Upon the octretide or saline lnfusion, no cdanges (o mono: ytema crophage
population in SAAT were detected; therefore the above-mention ed increased nurnbers of
monocyteymacrophage in SAAT cannot be attributed to octrectide or infusion per s

Since It was shown previousy that HG treatrment of monocytes (6 vitre Increses expresion
of Tall-like receptors [21] and lso monocytes from patients with type 2 d iabetes show ahigher
expression of TLR2 and TLRA compared to healthy subjects [ 15], we investigated the expes-
slon of these two receptorns Ln droulating blood cells and SAAT in obese women. While the
relative content of activated monocytemacrophage population defined 5 a triple positive pop-
ulation CD45+/14+/TLR 4+ wasincreased in response to HG, oo significant changes in
CD45+/14+/ TLR2+ population were observed in SAAT. Thus, the selective effect of HG on

TLRA+ monocyte/macrophage population could point to aspecific physiological function of
thissubtype of meonocytes/macopheges in HG-affected SAAT. Indeed, recent findings suggest
that TLRA and TLR2 activation in macroplages mesults in the differen tial expression and
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secretion of pro-inflammmatory oytokines [22,23]. We found increased mRNA levels of TLRA
along with THF in the AT of obese women afier HG damp, which has been shown to be up-
regulated after TLR4 but not TLR2 stirmulation in macrophages [ 23]. This mechanism of e yto-
kine regulstion is consdered tobe imyportant for the control of migration and subsequent acti-
vation of inflamematory monocytlc cells Notably, we observed that the surface expression of
both TLR2 and TLR 4 was detectable in the majority of maonoc yes present in SAAT despite

low expression of TLRA in circulating monocytes {low expression of TLR4 on circulating
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monocytes was also docurme nted by Kashiwagl et al [24]) Thus, we speculate that the expres-
slon of TLR4 on monocvtes could either be stimulated by the SAAT microenvinomment or, al-
tematively, only those monocytes expressing TLRA could reach the SAAT. However, further
studies will be needed to darify this hypothesis

Contrary to monacyte population, a population of resident AT moe sophages did not show
any changes in response to HG in terms of relat ve content and TLRs expression (Le. content
of CD45+/14+/206+/TLR 2+ and TLR4+). Therefore, it seems that SA AT mdcme mviromnme nt,
changed by HG, activated only monoscytic cells that are not fully differentiated into mocno-
plages. Such a population of CD206- monocytic cell was described by Wentworth et al [25]
and was shown to be eevated in human obesity. Ii |s plausible that these monocytes represent
“the newest ardvals” into AT but then later can mature into CD206+ macrophages. Neverthe-
less, CD206 marker wed to identify reddent AT macrophages was previoudy suggested tobe
preferentially expressed by M2 macrophages [26], and thus it s dlso possible that observed in-
crease in CD45+ 14+/206- populition could be attributed to M1 macropheges. This hypothesis
however could not be tested as M1 macrophage marker CD 40 [ 15] is expressed aleo on 6% of
clreulating monocytes (not shown ).

The pro-inflammatory state associated with metabol ic complications represe nts a bridging
of innate and adaptive immune systems in AT physiology. Previous studies investigating the
dynardes of immune cell infiltmtlon of AT durlng the onset of obeslty suggested that lympho-
cytesare the first playvers of immun ity which infiltrate the AT [27-29] Inowrstudy, we founsd
an increased content of total T lym phocytes and both major subpopulations of T lym phocytes,
Le. Thelper (IM+ and T cytotoosde CDB+ in SAAT of obese women In response to short-term
HG. Importantly, the role of CD4+ and CD8-+ T cells in modulating AT inflamemation and
overall metabolic status has been documented previously in both anima] models and homan.
According to animal studles [28], CD8-+ T cells direct macrophege lnfil mtlon into AT.
(D= T cells hawve both anti- and pro-inflammatory moles based on their further specialization
[30]and the balance between these individua]l CTM-+ subpopulstions is responsible for the con-
trol of metabollc inflammation [31]. Notably, at least two of the CDM+ subpopulations, Le. Th1
and Thi7 celk, are pro-inflammatony and thelr numbers are significantly elevated in AT of
metabolically unhealthy obese subjects or in diet-induced obeslty in mice [31.32]. Thus, we
could speculate that the increase of CD4+ cells upon HG could be atidbuted to these two sub-
populations (Thl and Th17 cells) bowever this hypothesis has to be proven in further study.

Inn blosod, short-term HG caused no alteration in relative content of immun e cell populations
of thelr phenotype, ong with po change in croulating levels of chemoldnes, Le. OCL2 and
COCLS, invobved in chero-at traction of monocytes and lymphoc vtes. Thus, 2 short metabolic
stirmulus of 3-hour HG i probably inssfficient to slter relative content of vadous leukocyte
populations in cireulation but it has 2 dgnificant effect on imemun e resporse in SAAT of obese
healthy women. In fact, relative content of immune cell populations in SAAT was amalysed in
the context of other cell types (Le preadipocytes, endothel ] cells) whose numbers in AT are
presumably | nsenstive to shom-term metabolic irsults, which may faclitate 3 detection of even
armall changes in numbers of immune cells.

It was shown that HG modolates expresion of genes related to immune response in SAAT
of lean subjects [14.33]. We observed that mRMA levels of TLRA (s expresed onadipocytes
and endothelial cells [34); [35]), CD3g, CD4 and CD8a increased in the experime nital condition
of HG in obese women, which nicely supports the flow cytometry results Unlike circulating
levelsof OCL2, mBNA levels of OCL2 in SAAT were increased after a short -term HG. One
could hypothesize that these local changes of immune response genes in the AT could affect
monscytelmacrophage population. Indeed, recent paper of Amano et . [38], suggested that
CC12 promotes proliferation of resldent macrophages in AT in obesity. Likewise, other clinlcal
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studies have reported an increase d expresslon of actlvation markers on monocytes and peutro-
phils in type 2 diabetic patients [15.37,38].

Unlike other studies analysing T cell subpopulations in mice [39], we did not analyse
among T cell subtypes by flow cytometry due to the limited mumbers of SVF cells derbved from
needle biopsy samples. However, we found the up-regulstion of TBX21, GATA3S and FoxP3
mBNA levels ( representing major differentiation factors of Thl, Th2 and Tregs subtypes) in
SAAT afier HG conditlon in obese women. It has been shown that Th, Tregs are increased
and Th subpopulation isdecressed with obesity [40.41]. Based on the combin tion of our re-
sults from flow cytometry and mRN A analysis, one can hypothesize that HG enhanced infiltra-
thon of both pro- and antl-laflameatory T cells in order to maintaln immune homeostasts in
AT. However, to determine a comprehensive picture of the sequence of the immune cells
activation in droulation, accumulation in AT, and thelr role inthe Induction of the AT pro-
in flarn matory state further analyses need to be performed. In fact, the role of mmune cell infil-
tration in AT is not uneguivocal: it stll remvalng unknown whether it reflects the dysfunction of
AT metabolismn or prevents thisevent. The study of Duffaul etal. [42] documented that early T
cells infltration into AT has protective role since it inhibits pro-infammatory reaction of in-
ruite cells. Sim lar finding by Sultan etal [413] showed that adaptive cells alone are not regpons-
ble for the impairment of insulin senstivity in obesity.

For charcterkzation of particular immune cell populations o blood and SAAT, we wed
flow cytometry. This method enables simultaneous detection of several surface marders and
provides results superior over immunchistocherdstry or gene expresdion aralyss alone. How-
ever, the flow cytometry analysis of needle blopsy-dedved samples may ralse concems of a pos-
sible contamination of SAAT sample by blood cells. Similar to our previous study [18], where
this possible limitation was already discussed, the content of granulocytes, Le. CDM5+ cells
with high granuladty, in SAAT samples, was not difierent before or at the end of the HG damp
or other experim ental infusions weed in thisstudy. This suggests that blood contarmd et ion
does not affect the outcome of the flow cytometric dats in SAAT. Another possible limitation
of thisstudy was a dight increase of plasma lnsulin levels at the end of the HG clamp. Notewor-
thy, this final concentration of insulin remained within the range of normal fasting levels and
was negligihle when compared with the wssl postprand sl concentrations In add ition, the re-
ports showlng an acute effect of Insulin on the deoulsting levels of pro-inflam matory cytokdnes
[44.45) were based on the exposure to 4 fold higher levels of insulin than those detected in the
present study. Moreover, crculating resting T lymphocytes are devold of insulin receptor [34].
Thius even though we cannot completely rule out the possibility that the slight incresse of
plasma insulin may contibute to the observed effect of HG on immune cells, it seems rather
urlikeely.

I s preary, our results show that the short-term HG induces an increase in the content of
monocytes and T lymphocytes in SAAT of heal thy obese women and thus suggest that the os-
clllations in ghycsermia levels may modulate an immune status of AT in obese ind vidwals
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ABSTRACT

Objective: Increased levels of lipids in circulation represent one of the possible
mediators for activation of immune system and may contribute to worsening of
inflammatory state associated with obesity and endothelial dysfunction. The aim of
our study was to investigate the effect of a short-term lipid infusion on the relative
content and phenotype of immune cells and pro-inflammatory markers in circulation
and subcutaneous abdominal adipose tissue (SAAT) in obese women.

Approach and Results: Seven-hour intravenous lipid infusion and control
investigation were performed in two groups of obese women (n=10, n=7,
respectively). Before and at the end of the infusion, samples of SAAT and blood were
obtained and relative content and phenotype of immune cells were determined using
flow cytometry. Analysis of immune cell markers, inflammation and angiogenesis
markers was performed in SAAT by RT-PCR and in plasma by ELISAs. Relative
content of monocytes (CD45+/14+ and CD45+/14+/16+ population) was reduced in
circulation in response to high lipid levels, which suggested the increased adhesion of
these cells to endothelium. In line with this, the levels of SICAM, sVCAM and VEGF-
A in plasma were increased. Relative content of T-helper lymphocytes
(CD45+/3+/4+) increased in blood. In SAAT the relative content of
monocyte/macrophages subpopulation CD45+/14+/206+/16+ decreased. Intralipid
infusion promoted an increase of RORC (pro-inflammatory Th17 lymphocytes), IL6,
MCP1, VEGF-A and CD36 mRNA levels in SAAT.

Conclusions: Acute hyperlipidemia induces a pro-atherogenic response associated
with altered relative content of immune cells in blood and with pro-inflammatory
changes in SAAT in obese women.

Keywords: hyperlipidemia; free fatty acids; human adipose tissue; T-lymphocytes;

monocytes; intercellular adhesion molecules;
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INTRODUCTION

Obesity represents a high risk factor for the development of cardiovascular diseases
and atherosclerosis. The common feature of these complications is a low-grade
inflammation and activation of immune cells. It was proposed that one of the triggers
of these pro-inflammatory processes are circulating free fatty acids (FFA) and
triglycerides (TG) . Lipids, namely saturated FFA, were found to activate classical
inflammatory responses in immune cells and to regulate secretion of pro-inflammatory
cytokines in several types of cells #®. The ability of lipids to activate immune cells
was documented also in vivo upon the postprandial increase of lipid metabolites: the
consumption of high-fat meal was accompanied with an increase of pro-inflammatory
cytokine plasma levels %! and increased circulating leukocyte counts 2 13,
Importantly, the postprandial increase of circulating lipids (TG, FFA) as well as the
signs of systemic postprandial inflammatory response were higher in obese 1416

The effects of lipids on immune processes within the whole adipose tissue are known
only partially. Saturated FFA may induce an increased expression of pro-
inflammatory cytokines in adipocytes similarly to what was shown in immune cells 1"
18, Moreover, FFA appeared have been suggested as an important driver of
macrophage accumulation in AT in mice *°. Nevertheless, it remains unknown
whether acute hyperlipidemia can alter the content and phenotype of immune cells in
adipose tissue in humans and thus contributes to the progression of metabolic and
cardiovascular disturbances associated with obesity.

Effects of FFA on cells can be mediated through binding to the receptors/sensors, such
as toll like receptor 4 (TLR4) and fatty acid translocase (CD36), that control
inflammatory signaling pathways %. Indeed, in humans, increased circulating levels
of FFA were associated with increased expression of CD36 on monocytes, which led
to lipid accumulation in these cells 2. Such a lipid overload caused monocytes to form
foam cells that are implicated in the development of atherosclerosis 22. In vivo and in
vitro experiments provided evidence that the activation of monocytes by high FFA
and TG levels led to an increased expression of receptors of adhesion molecules
(ICAM, VCAM) and to foam cells formation 2 3 2% 24" Furthermore, it was
documented that postprandial triglyceridemia increases levels of soluble cell adhesion
molecules (sICAM, sVCAM), which regulate the infiltration of monocytes to the
endothelium 2526, Therefore, the aims of the current study were to examine the effect

of acute experimentally-induced hyperlipidemia on relative content and phenotype of
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immune cells in circulation and in subcutaneous adipose tissue (SAAT) and on
circulating levels of adhesion molecules in obese women. The results of this study
suggest that the hyperlipidemia modulates systemic and adipose tissue inflammatory
status and may contribute to the adipose tissue dysfunction and pro-atherogenic

changes in obese.

MATERIAL AND METHODS

Subjects

Ten obese healthy premenopausal women were recruited into the intervention group
with Intralipid infusion (age 40 £ 2 year, BMI 31.2 £ 0.8 kg/m?) and seven obese
women participated in the control group with infusion of Glycerol (age 43 + 3 years,
BMI 32.0 + 1.0 kg/m?). Exclusion criteria were weight changes of more than 3 kg
within the 3 months before the study, hypertension, impaired fasting glucose, diabetes,
hyperlipidemia, drug-treated obesity, drug or alcohol abuse, pregnancy or
participation in other studies. Subjects did not take any medications and did not suffer
from any disease except for obesity. All subjects were fully informed about the aim
and the protocol of the study and signed an informed consent approved by the Ethical
committee of the Third Faculty of Medicine (Charles University in Prague, Czech

Republic).

Experimental protocol

The subjects entered the laboratory at 7.00 a.m. after an overnight fast. A complete
clinical investigation was performed, anthropometric parameters were measured and
body composition was determined with multifrequency bioimpedance (Bodystat
QuadScan 4000; Bodystat Ltd., Isle of Man, British Isles). Subsequently, the subjects
were placed in a semi-recumbent position and a catheter was placed in the antecubital
vein. To increase plasma FFA and TG concentration intravenous infusion of lipid
emulsion was applied. Intralipid 20% (Fresenius Kabi, Bad Hamburg, Germany)
consists of soya-bean oil (20%) stabilized with eggyolk phospholipids (1.2%) and
glycerol (2.5%). The fatty acid composition was as follows: palmitic acid 11.3%,
stearic acid 4.9%, oleic acid 29.7%, linoleic acid 46.0% and linolenic acid 8.1%. The
infusion of Intralipid 20% was administered through cannula at a rate 60 ml/hod for

one hour and then it was continued at constant rate 90 ml/h for following six hours. In
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the control group, saline infusion with 2.5% glycerol was administered at the same
rate for seven hours.

Before the start of infusions and every 60 minutes during infusions venous blood was
collected into 50 pl of an anticoagulant and antioxidant cocktail (Immunotech SA,
Marseille, France) and immediately centrifuged (1300 rpm, 4°C). The plasma samples
were stored at -80°C until analyses.

The needle biopsies and 2 ml of un-coagulated blood samples were taken 30 min
before the start of the experimental infusions and 15 min before the end of infusions.
Needle biopsies of SAAT were obtained approximately 10-15 cm lateral to the
umbilicus under local anesthesia (1% Mesocain, Zentiva, Prague, Czech Republic), as
previously described?’. Approximately 1g of SAAT and 2ml of blood were used for
isolation of stroma-vascular fraction (SVF) to perform flow cytometry analyses. An
aliquot of SAAT (approx. 0.1g) was immediately frozen in liquid nitrogen and stored

at -80°C until gene expression analyses.

Determination of plasma levels of biochemical parameters

Plasma glucose was determined using the glucose-oxidase technique (Beckman
Instruments, Fullerton, CA). Plasma insulin was measured using an Immunotech
Insulin Irma kit (Immunotech, Prague, Czech Republic). Homeostasis model
assessment of the insulin resistance index (HOMA-IR) was calculated as follows:
((fasting insulin in mU/I) x (fasting glucose in mmol/l) / 22.5). Plasma levels of FFA
and TG were measured using enzymatic colorimetric kits (Randox, Crumlin, UK). The
concentrations of SVCAM, sICAM, VEGF-A, IL8, IL6, TNFo and MCP1 in plasma
were measured by ELISAs (eBioscience, San Diego, USA; R&D Systems,
Minneapolis, USA) according to manufacturer’s protocol. Plasma levels of other

parameters were determined using standard clinical biochemical methods.

Isolation of SVF cells

SAAT was washed with saline, minced/cut into small pieces and digested with type |
collagenase (SERVA, Heidelberg, Germany) for 1h in 37°C shaking water bath and
subsequently centrifuged at 200 g for 10 minutes and filtered through 100- and 40-pm
sieves to isolate SVF cells.
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Flow cytometry analysis

The whole blood and isolated SVF cells were analyzed immediately after isolation for
flow cytometry analyses as described before 2. Briefly, 10* SVF cells were
resuspended in 100 pl PBS solution containing 0.5% BSA and 2 mmol/l EDTA and
incubated with fluorescence- labelled monoclonal antibodies (FITC-conjugated
antibody CD14, CD16, CD4; PE-conjugated antibody CD14, TLR4, CD3; PerCP-
conjugated antibodies CD45 and APC-conjugated antibodies CD206 and CD8) or the
appropriate isotype controls (BD Bioscience, Bedford, MA) for 30 min at 4°C.

The whole blood samples were stained with the same set of fluorescence-labelled
monoclonal antibodies as used for SVF cells for 30 min at room temperature. After
cell staining, erythrocytes were lysed by erythrocyte lysis buffer for 15 min at room
temperature. Cells were washed with PBS and analyzed on FACS Calibur flow
cytometer and CellQuest Pro Software (BD Biosciences, NJ, USA). The number of
immune cell populations was expressed as percentage of gated events. Background
was set up to 5% of positive cells of isotype control.

Gene expression analysis

Total RNA extraction and reverse transcription (RT-PCR) were performed as
previously described 28. Before reverse transcription, genomic DNA was eliminated
by DNase I (Invitrogen, Carlsbad, CA, USA). Real-time quantitative PCR (RT-qPCR)
was performed using an ABI PRISM 7000 Sequence Detection System (Applied
Biosystems, Foster City, CA, USA). Primers and TagMan probes were obtained from
Applied Biosystems. Results are presented as fold change values based by the AA Ct

method normalized to endogenous control GUSB.

Statistical analyses

Statistical analysis was performed using SPSS 13.0 for Windows (SPSS Inc., Chicago,
IL, USA) and GraphPad Prism 6 (GraphPad Software, Inc., San Diego, California,
USA). Differences of baseline clinical data between the two groups of patients were
assessed using nonparametric Mann-Whitney test for unpaired observations. The
effect of Intralipid infusion or control infusion on biochemical, gene expression and
flow cytometry-derived variables was assessed using a nonparametric Wilcoxon test

for paired observations. The changes of variables (fold change) during Intralipid
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compared to control experiment were analyzed using Mann-Whitney non-parametric
test. Correlations between anthropometric data and flow cytometry-derived variable
was analyzed using Spearman’s correlation. Data are presented as mean + SEM.

Differences at the level of p < 0.05 were considered statistically significant.

RESULTS
Subject characteristics and levels of free fatty acids and triglycerides during the

experimental infusions

The anthropometric and biochemical data of subjects participating in the interventions
are shown in Table 1. There were no significant differences in anthropometric and
laboratory metabolic indices (including fasting blood glucose, plasma insulin levels,
HOMA-IR, cholesterol, FFA and TG) between Intralipid and control group. Lipid
infusion resulted in a continuous significant increase of plasma levels of FFA and TG
(p < 0.001). In control intervention, no changes in FFA and TG levels compared to

basal levels were observed (Fig. 1).

Effect of lipid infusion on monocyte/macrophage content in blood and SAAT of obese

women
Monocyte/macrophage content was identified by CD45+ (common leukocyte antigen)
and CD14+ (co-receptor of Toll like receptor 4, TLR-4) markers. Two populations of
monocytes/macrophages were distinguished by CD16 expression. CD16- are defined
as “classical” activated pro-inflammatory monocytes/macrophages (M1) and CD16+
as non-classical activated (M2). In blood, lipid infusion reduced the relative content
of whole monocyte population and CD16+ monocytes, respectively (Fig. 2A). In
SAAT, the relative content of total and CD16+ monocyte/macrophage population was
not significantly changed (Fig. 2A). The relative content of resident macrophages in
SAAT was evaluated using an expression of a mannose receptor CD206. The relative
contents of resident populations CD206+ and 206+/CD16+ macrophages were
reduced in response to lipid infusion (Fig. 2A), while the subset of non-resident
CD206- cells had a tendency to increase (p=0.06) (Fig. 2A). Control infusion did not
exert any effect on monocyte/macrophage content in SAAT (Fig. 2B).
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Effect of lipid infusion on T-lymphocyte content in peripheral blood and SAAT of obese

women
T-lymphocytes were identified by the combination of general leukocyte and T-cells
marker CD45+/3+. Within the population of T lymphocytes, T-helper cells were
detected by a presence of CD4+ marker and T-cytotoxic cells by CD8+ marker. The
total T-cells population in blood had a tendency to increase in response to lipid
infusion (p=0.08) (Fig. 2A). This increase was associated with a rise of T-helper cells
sub-population (p<0.05) (Fig. 2A), while no change in T-cytotoxic cells population
was observed. In SAAT, the increase of T-lymphocytes populations in response to
lipid infusion was not consistent (Fig. 2A). The control infusion did not exert any

effect on any T-cells content either in blood or in SAAT (Fig. 2B).

Effect of lipid infusion on plasma levels of cytokines, VEGF-A and adhesion molecules

The observed decrease of monocyte populations in blood led us to the hypothesis that,
in response to hyperlipidemia, these cells adhere to endothelium of vascular wall.
Therefore, we analyzed the plasma levels of molecules related to adhesion of immune
cells to endothelial surface (SICAM, sVCAM) and to angiogenesis (VEGF-A). In
response to lipid infusion the plasma levels of sICAM, sVCAM and VEGF-A
markedly increased (p< 0.001), while no change was observed during control infusion
(Fig. 3).

Moreover, we investigated plasma levels of selected cytokines and chemokines related
to immune cells migration and activation (IL6, IL8, MCP1, and TNFa). Plasma levels
of IL8, IL6 and MCP1 were increased in response to lipid infusion while no such
change was observed during control infusion (Fig. 3). The levels of TNFa were not

changed during either lipid or control infusion.

Effect of lipid infusion on expression of genes related to immune response in SAAT

To extend the results of flow cytometry analysis, mMRNA expression of markers of
monocytes/macrophages (CD14, CD206), and markers of Tw lymphocytes subtypes
(TH1: TBX21, TH2: GATAS, Trec: FOXP3, Th17: RORC) were determined in SAAT.
Among these markers, the expression of RORC (p<0.01) — marker of Thl7
lymphocytes - was increased after lipid infusion. The other immune cells markers were
not changed during either lipid or control infusion (Fig 4). Further, mRNA levels of
chemokines/cytokines (MCP1, ILS8, IL6, TNFa), angiogenic marker (VEGF-A), fatty
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acid translocase (CD36) and toll like receptor 4 (TLR4) were analyzed. The mRNA
levels of MCP1, IL6, CD36, (p<0.05), and VEGF-A (p<0.01) were increased in
response to lipid infusion (Fig. 4), while the mRNA expressions of the other markers
were not different from the baseline. No significant changes were observed in the

control experiment.

DISCUSSION

In this study, we have shown that the lipid infusion, associated with an increased levels
of circulating FFA and TG, induced modifications of relative content of particular sub-
populations of monocytes/macrophages and/or T-lymphocytes in blood and SAAT in
obese women, modified expression of several pro-inflammatory cytokines in SAAT
and changed circulating levels of cytokines and adhesion molecules.
Monocyte/macrophages and T-lymphocytes are among the most abundant immune
cells invading both adipose tissue and atherosclerotic lesions and appear to be essential
for the initiation and/or progression of the metabolic pro-atherogenic disturbances in
obese 3031,

The present study provides evidence that acute systemic elevation of lipids induced
by Intralipid infusion decreased the relative content of monocytes in circulation. This
result led us to hypothesis that these cells adhere to the endothelium of vascular wall.
This is in agreement, and further extends, the previous findings showing that
monocytes in circulation increasingly adhered to the vascular wall in response to
repeated postprandial hypertriglyceridemia in rats 2*. Similarly, it was shown in vitro
that treatment of endothelial cells with TG-rich lipoproteins increased adherence of
human monocytes to these cells 32 23. Moreover, the increased expression of surface
adhesion molecules (CD11b, CD62L etc.) in immune cells was demonstrated
postprandially in lean and obese men 21332 Among the two analyzed subpopulations
of monocytes, we observed a decrease specifically in CD16+ subpopulation. These
monocytes might be identified as “non-classical” activated cells (M2), i.e. exhibiting
anti-inflammatory properties. Auffray et al. postulated that these “non-classical”
activated monocytes patrol healthy tissue through crawling along the endothelium .
It was suggested that CD16+ monocytes/macrophages are present also as reparative
mechanism in reaction to the damaged vessel in the early stage atherosclerotic lesions

30 Thus, we may speculate that CD16+ monocytes represent the first cells that react
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to an acute hyperlipidemia and that adhere to endothelium damaged by high
concentrations of lipids in order to protect it. Indeed, the dysfunctional endothelium
was suggested as one of the first steps in atherosclerosis development 3% % 3|t has
been shown previously, that the exposure to high concentration of FFAs and TG

induces oxidative stress in endothelium leading to an impairment of its function & 37-
39 and to elevated expression and secretion of chemokines and adhesion molecules
(ICAM, VCAM) 2432 Similarly, in this study we found an increase of plasma levels
of soluble adhesion molecules (sSICAM, sVCAM), chemokines (IL8 and MCP1) and
also angiogenic factor VEGF-A in response to lipid infusion in obese subjects. The
increased expression of angiogenic marker VEGF-A and chemokine MCP1 was
detected also in SAAT. Moreover, the increased levels of adhesion molecules support
the above mentioned hypothesis of monocytes adhesion to endothelia.

In SAAT, the relative content of CD16+ monocytes remained unchanged, but the
subset of CD206+/16+ macrophages was decreased. CD206 is considered not only as
a marker of AT resident macrophages but also a marker of “non-classical” activated,
i.e. M2, macrophages “°, similarly as CD16. Therefore the decrease in these CD206+
and CD16+/CD206+ populations may suggest a switch from M2 to “classical” M1
activated pro-inflammatory phenotype of macrophages in response to lipid infusion.
The switch to M1 pro-inflammatory phenotype in SAAT could be indeed supported
by the observed upregulation of MCP1 expression in SAAT. In addition, the
subpopulation of CD206- monocytes had a tendency to increase in response to lipid
infusion. Such a population of CD206- monocytic cells was described by Wentworth
et al. ** and was shown to be elevated in human obesity. It is plausible that these
monocytes represent “the newest arrivals” into AT and later can mature into pro-
inflammatory macrophages.

In our study, we found an increase of T helper cell content and a trend to an increase
of total T lymphocyte content (p=0.08) in circulation in response to lipid infusion.
This finding is in line with previous studies, in which lymphocyte counts were shown
to be increased postprandially in healthy as well as in hyperlipidemic subjects with
coronary artery disease > “2. Moreover, intra-venous administration of CD4+ cells
enhanced atherosclerosis in immunodeficient ApoE knockout mice “* and the
development of atherosclerosis was significantly reduced in CD4/ApoE deficient mice
4 Thus based on our data one can hypothesize that adaptive immune system in obese

reacts to hyperlipidemia in the pro-atherogenic way.
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In SVF of SAAT, no changes of T lymphocyte relative counts in response to Intralipid
were detected. Similarly mRNA levels of the T lymphocyte markers that were used in
FACS analysis, were not altered. However, mMRNA analysis of SAAT revealed an
increase in the expression of RORC, a TH17 lymphocyte marker. TH17 cells represent
a subtype of CD4+ T-lymphocytes with a pro-inflammatory phenotype. Their numbers
were found to be elevated in adipose tissue of metabolically unhealthy obese subjects
or in adipose tissue of mice with diet-induced obesity >4, Therefore the increase of
expression of TH17 marker (RORC) might suggest a selective activation/recruitment
of TH17 lymphocytes, which may be interpreted as a pro-inflammatory change in
SAAT in response to high lipid levels.

The activation and lipid overload in leukocytes were shown to be mediated by several
scavenger receptors, i.e. SRA, CD36 2447, In this study, we observed increased mRNA
expression of CD36 in SAAT in response to increased FFAs, similarly to previous
studies on adipocytes 48 and leukocytes 2% 4. This increased expression of CD36
could thus induce enhanced fatty acid flux and lipids accumulation in the immune cells
and their switch to the pro-inflammatory phenotype 2% 22, However, it is to be noted
that the origin of the increased expression of CD36 in SAAT cannot be ascribed only
to immune cells: changes in CD36 expression on preadipocytes and adipocytes have
to be taken into account as well.

In conclusion, the acute hyperlipidemia induced by Intralipid infusion was associated
with pro-inflammatory and pro-atherogenic changes in monocyte and lymphocyte
populations as well in soluble mediators in obese women. The pro-inflammatory
changes are represented by a decrease of M2 macrophages content and increased
expression of several pro-inflammatory cytokines and of the marker of TH17 cells in
SAAT.

Together, these results point at the processes that could contribute to the development
of atherosclerosis and metabolic complications in obese exposed to higher chronically,
as well as the postprandially, increased levels of FFA and TG.
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Table 1. Anthropometric and biochemical characteristics of two experimental groups

of obese women

Intralipid Glycerol P
Controls
Age (years) 40.0+ 2 43+3 NS
Weight (kg) 87.7+ 2.4 89.8 +£ 2.3 NS
BMI (kg/m?) 312+ 0.8 320+ 1.0 NS
Waist circumference (cm) 96.0 + 2.1 96.3+2.2 NS
Waist-to-hip ratio 0.8+0.0 0.8+0.0 NS
Fat mass (%) 389+1.0 403+1.6 NS
Fat-free mass (%) 61.1+£1.0 59.7+1.6 NS
Cholesterol (mmol/L) 5.1 £0.2 49+04 NS
HDL-C (mmol/L) 1.5+ 0.1 1.4£0.1 NS
Triglycerides (mmol/L) 1.2+ 0.1 1.0+0.1 NS
Glucose (mmol/L) 5.1+ 0.1 5.0+0.1 NS
Insulin (mU/L) 6.4+0.7 6.1+0.8 NS
HOMA-IR 1.3+0.1 1.4+ 0.2 NS

Data are presented as mean + SEM;
BMI, body mass index; HOMA-IR, homeostasis model assessment of the insulin

resistance index; HDL-C, HDL cholesterol
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Figure 1. Evolution of plasma levels of (A) FFA, (B) TG during experimental
condition. Values are means with their standard errors. Mean value was
significantly different from that of basal state in Intralipid treatment: * p<0.05, **
p<0.01, *** p<0.001. Mean value was significantly different from that of
controls: T p<0.05, 11 p<0.01, t11 p<0.001.
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Figure 2. Relative content of monocyte/macrophage and T-lymphocyte populations
in blood and subcutaneous adipose tissue (SAAT) after Intralipid (A) or glycerol (B)
infusion in obese women. Data are presented as mean + SEM, *p < 0.05; ** p < 0.01.
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Figure 3. Evolution of plasma levels of cytokines (A) IL6, (B) IL8, (C) MCP1, (D)
TNFa, (E) VEGF-A, (F) sVCAM, (G) sICAM during experimental conditions. Data
are presented as mean fold change £ SEM. Mean value was significantly different
from that of basal state: * p<0.05, *** p<0.001 or from control group: 1 p<0.05, Tt
p< 0.01, 11 p<0.001
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Figure 4. Effect of Intralipid on gene expression of selected macrophage and T
lymphocytes markers in SAAT of obese women. Data are presented as mean fold
change = SEM. Relative mRNA levels are normalized to housekeeping gene GUSB.
Mean value was significantly different from that of basal state: * p<0.05, *** p<0.001
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Summary
Accumuilation of adipose tesue In ower body lowers risk of

canfiovasidae and metabolc disorders. The moleular bads of
Hhis probective effect of ghitecfemonsl depot i not dear. The aim
of this shidy wad to compare the profle of expresgon of
irflam mation-related gendd in substBresis ghteal (SGAT) and
abdeminal (2AAT) adipeie tiasue bt bassline and in reponss o
mubiphase  welght-reducing  diefary  intervention  (DI).
14 premenopaticsl healty ohese women underwent B 6 months’
DI consigting of 1 month verylow-caloriediet (VLCD),
subsequent 7 monts’ low-calodedist and 3 moethe” welght
maintenance dist (WM). Paired samples of SGAT and SAAT were
aibtaines before Bnd & the end of VLCD and WM pesiods. miRtNA
expression of 17 genes (Macrophage markess, cytokines) was
measured using RT-qPCR on chip-platfoem. Al bassline, Hhere
were no diffierences in gene expression of macrophage markers
and cytokines between SGAT and <AAT. The dynamic charges
ireluscsd by D wene gimilar in bobh depots for 8 genes exespt for
three cytokines (ILG, TL10, OCLZ) thak differed in their response
during welght maintenance phase The results show that, in
Mmmammnﬁmm:;ﬂmﬂ
SAAT I expression of inflarmation-relasten genes at basaline
eneditions Bnd in resporse to the weight-reduing DL
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Introduction

Chesity is =ssocisted with higher risk of
metabolic and cardicvasoular dicesses. In addition o body
mass index (BMI), body fat distribution plays a major role
in the development of the above mentioned diseases. While
upper body fat acounmilation s associated with increased
obesity-related health risk, the lower body fat acoummibation
was shown to be linked with the reduction of metsholic
(Sofjder @ al. 2004), cardiovasoular sk (Canoy & all
2007, Faloia et al. 2009, Seidell e al 2001) and with
lower morbidity and mortality (Folsom o al 1993,
Pischom et al. 2008). The increased amowmt of lower body
fat — expressed as hip croomierence — was associated with
lower triscylglycerol and higher HDL cholesterol levels
(Puige and Van Gasl 2000).
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Possible mechanisms that may confribute to the
subrutaneous ghotes] adipose tissue (3GEAT) protective role
have not been fully elucidsted Different uptske and
relesse of farty acids in the subcutsnecous shdominal
(sAAT) when compared to 5GAT have been suzgested as a
candidate mderlying canse (Berman of al. 1998, Berman et
ol 2004} In seversl smdies, the activity of lipoprotein
lipase (LPL) was found to be hizher (Amer af al. 1901,
Ferrara of al. 2002) in 5GAT in obese women This might
suggest a higher capacity of GAT for lipid accumulstion.

In addition to alterstion of adipose tissue (AT)
fatty @cid handling, the obesity-related metsbolic
disturbances are linked with pro-inflammatory stte of
AT characterized by enhsnced recroitment of
macophages m AT and modified AT secetion of
cytokines (Elimcakova e al. 2011, O'Hara e al. 2009,
Suganami and Ogawa 2010, Traybum and Wood 2004).
Thuos, it may be hypothesized that differences im the
inflammation-related  characteristics underlis  the
differences in metabolic role of sGAT when compared
with sAAT Few smdies paid attention to this topic
Recently, Evans et al (2011) showed that sGAT had
contrary to the expectation, greater mBMA expression of
a set of pro-inflammatory genes than sAAT.

Thus the first aim of our study was fo compare, in
obese women, expression of wider range of cytokines and
macrophage markers i sGAT ws. sAAT  (selected
acconding to our previous stodies of Capel & al. 2009,
Elimcakova et al. 2011, Siklova-Vitkova ef al. 2012) and
second aim was to explore the resulation of expression of
the sbove mentioned pemes n 3 dymamic comdition that
was realized by a dietary imtervention (DI) wusing
hypocalonic diet. It was showmn previously that hypocalonic
diet-mduced changes m adipocyte lipolysis (Mauriege ot
ol 1999) or in adipocyte size (Bjormborp of all 1975) wese
less promowmced in sGGAT when compared with sAAT. We
hypothesized that this impaired responsiveness, or
“inflexibility™, of 2GAT might alo sppesar in respect to the
diet-induced modulation of gene expression of immmmity-
related genes. Thos, we messured mPMA expression of the
respective genes in the paired samples of 9GAT and sAAT
obtzined in obese women before and during mmitiple
phases of 3 § months" hypocaloric DL

Materials and Methods
Suljects

14 premencpansal obese women (BMI 34.2=2 6
kz'm’, range 2749 vyears) withowt medication and

Their body weight had been stable for 3 months prior to
from each patiemt before the smdy The smdy was
performed according to the Declaration of Helsinki
protocols and was approved by Ethical Committes of the
Third Faculty of Medicine, Charles University in Prague.

The entite DI lasted 6 months During the first
dietary perind, obese subjects received a very low calorie
diet (VLCD) of 800 kcaliday (liguid formmla diet, Redita,
Promil, Czech Republic) for 1| month The subsequent
period consisted of a 2 months” low-calorie diet (LCD)
followed by 3 months’ weight maintenance (WhI) diet.
LCD was designed to provide 600 kcal'day less than the
individually estimated energy requirement based om an
initial resting metsbolic rate muliplied by 1.3, the
coefficient of comection for physical actvity level
Patients consulted a dietician once a week during the first
3 months of the program and once 3 month during
subsequent phase. They provided a written 3 days’
dietary record at each dietary consultation.
anthropometric measurements, blood sampling and AT
biopsies was performed in the moming in the fasting state
before the beginning of the diet and at the end of VLCD
and Wi periods.

The whole body composition was evaluated by
4000, Isle of Man, TUE). The blood was collected and
centrifuged at 1300 BPM, 4 °C, separated plasma was
stored at —B0 °C until snalysiz. The paired samples of
suboutansous AT were obtained from the suboutanmeons
sbdominal (10 cm lateral to the wmbilios) and ghrteal
(right upper quadrant) region wsing needle biopey under
local anesthesia (1 % Xylocaine). AT samples were
obtained from superficial sAAT, as we verified on several
oCcasions using ultrasonography. AT was washed in
phyziological saline. aliguoted, mmap-frozen in Liquid
nitropen and stored at —80 °C until processing.

Laboraiory measuremenis

Plasma ghcose was determined wusing the
Elucose-oridase  techmigue (Beckman Instuments,
Fullerton, CA). Plasma insulin was measured wsing an
Immumotech Insuolin Ima kit (Immuonotech, Praguoe,
Czech Republic). Homeostasis model assessment of the
insmlin resistance index (HOMA-IR) was caloulated as
follows: {(fasting insulin in mUAT) x (fasting ghocose in
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Tablke 1. Oirical characteristics of subjects and plasma levels of cyfokines before dietary inbervention [besal) and i the end of VLCD

and weight maintenance (WM) phate of the dietany inberertion.

Basal VLCD WM

Age (year) 2748

BAMI (keim’) 342202 I3 2%ee 30.4=0.271T
Weight (k) 93.5=0.6 B5.0=0. 6% 83.1=0.711T
Waist circumprence (cm) 102304 05 4 e 03 60 6TTT
Hip circumference fem) 119.1=0.5 114 1) Sos 112,10 51
Waist to hip ratio (cm) 0.861=0.0 0.838=0.0% 0836007
Fat mass (%) 410203 30,4 4ee 3720 411
FFM (%) 581203 60,1240 4% 6300 5T
Glucase (mmoll) 48204 4 620 0% 4700
Insulin (mIU/) 117208 8,020 3 9.0:041
FFA (umali) 842460 1 119038 2% ST6+13 51
Trighicarides (mmall) 16200 122000 1.5<0.0
HDL cholesterol jmmal) 20200 122000 1.6<0.0
Total cholesterol jmmal/l) 53200 4320 pren 52:00
HOMA-IR 26201 1720 1# 190171
hs-CRP (me) 58204 42203 40=031
ILI0 (pgmil) 14204 1.520.6 15£0.6

IL6 (peimi) 37201 31201 2601

TNF (pe/ml) 20201 2,320 4w 2001
CCL2 (peimi} 104354 7 103.1=3.2 8545271

Valees are means & SEM, =14, Significance was set as folows: VLD va. basal: * p<0.0S, ** p<0.01, *** p<0.001, WM phase vs.
bl T p005, 17 pell0l, H11 p<000L. BMI, body mass index; OCL2, chemoking [C-C motif) Bgand 2: FRM, fat-fres mass; HOMA-
homecstass model assssement of the nsulin resistance Index; he-CRP, high-sensitiity C-reactive protein: ILE, Interesiin 6; 110,

®
irterlein 10; FFA, free fatty acids; TMF, tumor necroos factor

mmolT) ¢ 22.5). Plasma levels of other relevant
substances were determined wusing standard clindcal
biochemisiry methods. Plasma levels of cyiokines were
panels (Millipore-Merck, Bedford, M4, TUSA).

Total BHA was isolated from 100-300 mg
aliquots of AT using BMeasy Lipid Tissoe BMNA Mind kit
(Qiagen, Hildem, Germany). FMA concentration was
measured by ManodroplOM) (Thermo Fisher Scientific,
Wilmington, Delaware, USA) Genomic DMA was
removed by DMAse I treatment (Invitvogen, Carlshad,
CA, USA). cDNA was obtzained by reverse franscription
(High Capacity <DHNA PReverse Transcription Eit
Applied Biosystem, Carlsbad, CA, TUSA) using 20 ng of
total ENA. 1 nz of cDNA was then preamplified to
improve detection of target penes during subsequent Fesl
Time gPCE (1§ cycles, Taghfan Pre Amp Master Mix
Eit, Applied Biosystem)). For the preamplification, 20 x

Taghan zene expression assays of all target genes were
pooled together and diluted with 1x TE buffer to the final
concentration 0.2x (each probe). The RTgPCE was
performed on Biomark Feal Time gPCE system and
o606 chip (Fludipm, USA) in triplicates, This part of
analysis was camed owt as & paid service by
Biotechnology Institute, A5 CE.

Expression of 17 genes grouped according to
their origin or finction was measured: cytokines (IL4,
TWF, CCL2, CXCL1, IL10, TGFpl, IL10RA) and
cytokine receptor (CCFR2), macophage markers (SFPL,
CDaE, MSE], PLAZGT, ACP5, FOGBP, CD14, TLE4,
TLEZI). Macrophage markers were selected according to
the work of Capel @t al. (2009) and Elimcakowva et al
{2011) and cytokines produced predominantly by cells
of stromavascular fraction were chosen according to
smdy of Siklova-Vitkowa e al (2013) so that
comparisons of outcomes between this and our previous
studies were enabled Expression dats were normalized
to expression of reference geme PPIA and delta Ct was
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Statistical analysis

The data from RT-gPCE were analyzed with
Genex software (MultiD) Analysic AB, Sweden) and
SPS5 wersiom 13.0 (5P5S Inc., Chicago, IL, USA). For
all the smalyses the data were log-ransformed. Omne way
ANOVA was used for comparison of gene expression
separately in each depot, the effect of sAAT vs. sGAT on
the diet-induced chsnpes was estimated by two way
ANOVA with repetitive measures and Tuokey's posthoc
amalysis. The level of significance was set at p<20.05.
Clinical and anthropomeirical data were analyzed with
GraphPad Prism 5.0. (La Jolla, CA TSA). Cormelations
were performed using Pearson’s paramedric fest.

Results

Effect qf dwtary mierveniion on anthropometrical amd
plazmg variables

The climical data of the entite group of subjects
at baseline and during the DI are presented in Table 1.
When compared to baseline, the subjects” body weight
decreased by 8.0 % after the VLCD and decreased firther
during subsequent period so that the weight loss at the
end of W represented 11.1 % of the original weight

LIRS

* p<il 05, ** pel.OL

BMI, fat mass, waist and hip ciroumference showed a
similar pattern. The relative decresse of waist
ciroumference was greater tham that of hip circumference
at the end of VLCD as well as at the end of the entire DI
(VLCD: waist: —§.8=03 %5, hip: —4.2+0.3 %, P=0.05, the
end of DI: waist: —8.6=0.2 %, hip: —5.9=0.3 %, P=0.01).
Plasma levels of insulin were lower at the end of VLCD
when compared to baseline condition and remained lower
at the end of WM. (Aycemis snd totsl cholestarsl
decreased after VLCD and returned to the basaline levels
at WA Free fatty acid levels were increased after VLCD
and decressed below the baseline values at the end of the
Wi Insulin resistance assessed by HOMA-IR. decreased
during VLCD and remained reduoced at the end of W
phase. The changes of plasma levels of cytokines IL10,
IL4, THF, CCL? were in line with our previous stody
(Siklova-Vitkowa et al. 2012).

Comparizon af pene axpression n ghuteal and abdominal
subcutaneous AT i obase women of pre-dier condifion
Fig. 1)

To compare pene expression profile im sAAT
and 9GAT, we measured mPMNA expression of 17 genes
divided into 2 fimctional groups: macophage markers
(P penes), cytokines (8 genes), and reference gene PPLA.
The expression of macrophaze markers was similar in
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Fig. 2 Profile of gene expression in subcutanecus sbdominal [SAKT) and ghitesl (sGAT) adipose Hesue during the bwo phases (VLCD and

WM) of dietary

intervertion. & and B: Expression of macrophage markers in SAAT (A) and sGAT (B). € and D: Expression of cytokres in

AT [C) e SGAT (D). The dets are presented & fold change in respect b5 Bhe pre-diet (beeal) levels. Dets Gre presened 52 means & SEML

both depots except for two genes, ACPS and MSR1 that
had higher expression im 5GAT compared W sAAT
(Fig. 1A). There were o depot-related differences in the
expression of all measured cytokines (TIF, ILS, CCR2,
CHCL1, IL10, TGFBl) with exception of ILIORA
(higher in 5GZAT) and CCL2 (Jower in 5GAT) (Fig. 1B).

Effect of dietary int@-vention on gene expression i
pluteal and abdominal subotaneous AT (Fig. 2, Table 2)
The evolutiom of the mPMA expression for
individus] genes during D is shown in Figure 2. Schematic
representation of the direction and sigpificance of the dist-
induced changes of gene expression durmg VLCD and
during the entire [} in each depot is presented in Table 2.

Macrophage markers (Fig. 24-28)

The expression of § macophage markers
(CD6E, ACPS, FCGEP, MSE1, PLAXGT, S5PPI)
increased during VLCD in both depots while expression
of 3 remaining markers (CD14, TLE4, TLEZ) was not
changed in both depots. At the end of W, the mBMNA
levels of all macrophage markers were not different from
the baseline wales in both depots (Fig. 24-2E).

Cytokines (Fig. 20-1D}
Durinz VLCD, the mBENA levels of 5 cytokines
(TNF, IL6, ILI0R-A, TGFBL, CXCLI) did not change in
either depot, CCL2 increased and CCR? decreased in
both depots and IL10 showed a significant increase
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Table 2. Changes of gene expression in subcutanecus abdemingl (SAAT) Bnd subctanecus gluteal (SGAT) adipose tisue during VLOD
and weight maktenance (WM) phasss of dietary intervention in reltion to e prediel (hac) level_

SAAT SGAT
Name of gene VLCD WM VLCD WM
Macraphage markers
D68 asy —_ T —
ACPS i — ] —
D14 - - - -
FOGRP i — ] —
AMSEI i — ] —
PLAIGT as - 1 -
SPP1 | — *f —
TLR4 - - - -
TLR? - - - -
Cyiokines
INF — . — —
g *T *1 = T
IL§ - *1 = = (#)
MioRd — e — —
L e *T *1 *T T
Cm ‘.l —+ ..l —+
TGFf - - — -
CXCLI - - - -

1 denctes a higher level of gene expression at the end of respective distary phase (WVLCD or WH) in redation to the pre-diet (basal)

leved: | dencles & ower level of gene

in relation to the pre-diet (hesal) level; o dencles no change in gene expression in

relabion bo the pre-chet (bedal) level; %% %% genoles M leved of signficance (p=0.05, p<0.01, p<0LD0L, respectively) of the
Bfferance batwesn the vakie at the end of respective distary phase va pro-dist [bedal) level; §8 denotes M level of

sigrificance
(p=0.01) of the difference betwean oGAT and SAAT in respert i the change of gene expression during respective dietary phase (Bs

essasser] by hwo-way AMDVA)

selectively in sAAT.

At the end of DI, IL10 and CCL2 mBNA levels
were higher than baseline valmes in sGAT while, i
sAAT, the mEMA levels of these two cytokines as well
a5 those of ILG, IL10RA and TWF were lower when

The diet-indwced changes of mEMA levels were
similar in the two depots for all of the cytokine genes
with 3 exceptions: during the entire DI, expression of
10, IL6, and CCL2 decressed im sAAT while it
increased or was unaltered in SGAT.

Summuary gf the comparizon gf the diet-induced responses
of the pene expression in 5EAT and s44T

For majority of measured genes no differences im
the diet-induced changes between sGAT and sAAT were
found. Different respomses were found ooly for the

3 cytokines (IL10, LG, CCLY): their decresce during the
entite DI was pronounced in sAAT bat not in sGGAT.

Correlations

N comelations between the dist-indoced changes
of mEMNA expression of examined genes in $GAT ws.
sAAT were foumd. Mo comelations were found betwesn the
diet-indured changes of plasma levels of IL10, ILG, THF,
CICL? and the changes in the expression of these zenes in
either sGAT or sAAT. In addiion, no comelations between
the diet-indured changes of mBMNA expression of
examined penes and those of BMI or HOMA-TR were
foumnd.

Discussion

It was hypothesized that the protective role of
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AT acoummlstion in the lower body, in mespect to
cardigvascnlar risk and metabolic distorbances, mizht be
based on the lower pro-inflammatory profile of sGAT.
However, recent work of Evans er al. (2011) reported that
the expression of several pro-inflammatory markers was
higher in 3GAT compared to sAAT in 3 mixed group of
lean and obese black and white South African women
COur work extended the range of explored genes and
showed that in 3 wide group of cytokines amd
macrophage markers, there were, with excepion of 4
zenes, no differences between sAAT and sGAT at
baseline. Taken topether, our and Evans’ results do not
support the hypothesis of the lower pro-inflammatory
profile of sGAT. This is in line with the finding reported
by Tchoukslova o al (20100 that suboutanecus
sbdominzl and femoral fat depot did not differ in number
of macrophapes in lean men and women.

The main interest of this stdy lies in the
comparison of gene repulation in sAAT ws. sGAT in
dynamic condition represented by two phases of a
§ months® dietary intervention The pattern of the
expression of macrophage markers observed in this stady,
inchoding the increase during initis]l VLCD phase is in
agreement with our previous work carmed out in sAAT in
another cohort of subjecis (Capel of al. 2009). The patiern
is bi-phasic, characterized by an incressed expression
during VLCD and a decrease towards baseline valmes
during subsequent weight maimtenance phase of the diet
Increased expression of macophspe markers during
VLCD mizht be associsted with enhanced fatty acids
release from adipocytes as a possible mgger of
macrophage activation and infiltration mediated by TLE4
signaling as shown before (Eosteli of al. 2010, Sozanami
e al 2005). Importsntly, this bi-phasic response of
macrophage martkers expression was similar im sGAT
when compared with sAAT (Fig 2, Table 2) and the
magnimdes of the diet-indwced changes were not
different in the two fat depots (Table ). This finding
snEgests the same regolation of maophage infiltration in
SGAT and sAAT during weight-reducing dietary
imtervention.

The bi-phasic pattern of the diet-induced
regulation was fiound also in the expression of cytokines
derived predominantty from the cells of stromavascular
fraction. This pattern was in accordance with previous
results obtzined in sAAT in a different cohort of subjects
(Siklova-Vitkova &f al. 2012). The mapnimdes of the
diet-indnced chanpes were not different between sGAT
and sAAT — except for three cytokines — ILG, IL10 and

CCL2. The observed wvarisbility in respect to the
sbove mentioned smdy of Siklova-Vitkova et al. (2012):
in that shady the same three cytokine zenes were the only
ones that showed 3 significant decrease in sAAT at the
related response — limited o the expression of the three
cyiokines — might be linked to differential respomse of
endocanmabingdd system as observed i the smady of
Bemnetzen &f al. (2011). In fact, during the weight-
reducing diet the asuthors found different change of
expression of cannabinoid recepior type 1 in sGAT when
compared with sAAT And endocanmabingids were
shown to inhibit production of several proinflammatory
cyiokines in primary homan Muller cells {FKrishnan and
Chatterjes 2012). This mechsnizm counld be taken into
account, althouzh no such regulation has been reported in
adipose  tssue.  Moreover, in  resting condition,
Rantalainen et ai. (2011) found differentisl expression of
12 % of measured microRMA (e gz miR146-5b, miF-21,
miR155) in sGAT when compared with sAAT which
conld imply a differential expression of targets of these
microBHA such as IL10 (Quinn and O'neill 2011) in the
two fat depots.

The lack of comelations in gene expression
changes between sAAT and sGAT mggests that, in spite
of the similar pattern of the diet-indwced response of the
pene expression in the two fat depots, there is no direct
between these two depots. In light of our and others
remlic demomstrating the absence of major differences
bemeen sGAT and sAAT it has been mzgested that the
deleterions effect of upper body obesity could be
mediated by the excess of visceral adipose tssue (WVAT)
and not excess of AAT. Nevertheless, several smdies
showed that both, VAT and sAAT, are associated with
the imcressed risk of metsbolic profile snd pro-
inflammatory stafus (although the sssociation was
stronger with VAT) (Fox & al. 2007, Oka o al. 2010,
Pou & al. 2007).

Furthermaore, it should be noted that the present
smdy compared sGAT and sAAT on transcriptional level.
Drue to the lack of sufficient amount of adipose tssue we
did not explore the protein levels of cytokines in adipose
tissues or thedir levels of secretion. It is not excluded that
the underlying causes of different physiological impact of
SGFAT ws. sAAT may be at the level of ranslation or post-
translational repulstions of cytokine productiom or
Telease.
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It i= to be noted that the results of this sady are
lirmited to women Femsle adipose tissue shows different
metsbolic and endocrine characteristics (Fem et al. 2003,
Montazme et all 1997) when compared with men
Morecwver, the initial fat distribution in our et of women
(mean WHE=)261+0.0) might play a role in the diet-
induced respomse of the two fat depots slthough the
reports on the effect of initial fat distribution on the baody
fat rednction are not unequivecal (Svendsen ef al. 1995,
Jones and Edwards 19949).

In conclusion, we did not find major differences
in mEMA levels of macrophaze markers and cytokines
between sAAT and sGAT at baseline condition or in the
pattern of their regulation in response to two phases of
exception of 3 cytokines that were differentially regulated
during weight maintenance phase). Therefore, our results
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Soluble CD163 Is Assoclated With CD163 mRNA
Expression in Adipose Tissue and With Insulin
Sensltivity In Steady-5tate Condition but Not Iin
Response to Calorie Restriction

Jana Kratmerovd, Lenka Rossmeislova, Zuzana Kovatovd, Eva Klimtakova,
lan Polik, Michaela Tencerova, Luda MalBova, Viadimir Stich, Dominique Langin,
and Michaela Sikiova

Department of Sport Medidne (LK, LA, ZK., EK, LP,, M.T., LM, V.5, M.5} and Franco-Czech
Laboratory for Clinkcal Research on Obesity (1K, LR., ZK., EK., MT., LM, V5, DL, M.5.), Third
Faculty of Medicine, Charles University, 100 00 Prague 100 00 Czech Republic; INSERM, 31053
Toulouse, France; INSERM, Unité Mixte de Recherche 1048 {D.L), Obesity Research Laboratory, instiute
of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; University of Toulouse, Unité Mixie
de Recherche 1048 (D.L.), Paul Sabatier University, 31432 Toulouse, France; and Department of Clinical
Biochemistry (D.L.), Toulouse University Hospitals, 31000 Toulouse, Franoe

Context Soluble CD163 (sCD163) was suggested as a blomarker of insulin sensitivity and CD163
mRAMNA expression representing macrophage content In adipose tissue (AT).

Dbjecthve: The aim of this study was to Investigate, In oross-sectional and prospective design, the
relationship between sC0163 droulating levels and CD163 mANA expression In adipose tissue and

Insulin senstivity assessed by euglycemic-hyperinsulinemic clamp.

Design, Setting, Partidpants, and Interventions: Two cohorts of subjeds were examined In the
study. Cohort 1 Included 42 women with a wide range of body mass index (17-48 kg/m?); cohort
2 Included 27 obese women who followed a dietary Intervention consisting of 1 month of a very
low-calorie diet and 5 months of & weilght-stabllization period.

Main Outcome Measures: Serum levels of CD163 and mRNA expression of CD163 and (D68 In sc and
wisceral fuisc) ATwere determined, and Insulin sens ity [expressed as glucose disposal rate (GDR) was
measured In cohort 1. In mhort 2, se=rum levels of 00163, mANA expressions of CD163, CDGE, and
CD163-shedding factors [TMF-e-comverting enzyme (TACE) and tissue Inhibstor of metalloproteinase
(TIMP3)] In sc AT were examined and GDR was measured before and during dietary Intervention.

Results: in cohort 1, drculating sCD163 correlated with CD163 mRMA levels In both sc and visc AT.
sCDM63 and CO163 mRNA expression in both fat depots correlated with GDR. In cohort 2, the
diet-induced changes of sCD163 levels did not correlate with those of OD163, CDES, TACE, and
TIMP3 mANA levels. Although the pattern of the diet-induced change of 500163 paralleled that of
DR, there was no correlation between the changes of these two varlables.

Condusion: 500163 comrelates with CD163 mAMNA expression Inscandvisc AT and with whole-baody
Insulin sensttivity In the steady-state conditlon. These assocations are not observed with respect
to the diet-Induced changes during a weight-reducing hypocaloric diet. (1 Olin Endoorinol Metab
99: E528-E535, 2014)
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besity is associated with systemic and adipose tisswe
low-grade inflammation that has been postulated
to be involved in the development of insulin resistance,
type 2 diabetes mellitus | T2DM ) and other obesity-related
comorbidities {1). This low-grade inflammation is char-
acterized by an increased recruitment of monocytes/mac-
rophages in adipose tissue (AT) (2). Macrophages in AT
produce and secrete proinflimmatory cytokines, eg,
THNFe or IL-6. THFa is expressed as a membrane-bound
protein (3] and is cleaved into a soluble form by THF-a-
converting enzyme { TACE) also called as a disintegrin and
metalloproteinase domain 17 (ADAM 17} (3). Recently it
was shown that TACE/ADAM 17 acts also as a shedding
enzyme for haptoglobin-hemoglobin complex receptor
CIDv63 4, 5). This glycosylated protein expressed pre-
dominantly by tissue macrophages may be released from
cellular surface as soluble CD&3 (sCD163). Thus, circu-
lating =CDV163 could be produced by AT macrophages
similarly as soluble THFe sCDM63 levels in circulation
were found to be increased in obese and T2DM patients
(6—8), and its serum levels correlated with body fat mass
{&). Moreover, sCD 63 was found to be a strong predictor
of a risk of the development of T2DM (8, 9). Circulating
levels of sCD &3 were recently proposed as a biomarker
of the whole-body insulin resistance and other indices of
metabolic syndrome (MS) {8, 10). Moreover, based on the
cellular origin of CD163, Parkner et al {10) hypothesized
that circulating sCD163 levels are linked to CD163 ex-
pression and macrophage content in AT. However, up
until today, no studies investigating this relationship are
available.

Therefore, the first aim of this study was to investigate
the relationship between serum sCD163 levels and CD163
mRMNA levels in both cross-sectional and prospective de-
sign. Circulating sCD163 and CD163 mRNA expression
in sc and visceral (visc) adipose tissue were determined in
a cohort of women with a wide range of body mass index
(BMI) and in a cohort of obese women submitted to long-
term dietary intervention. In addition, to further examine
the production of soluble form of CD163, mRMA expres-
sion of enzrymes involved in the regulation of CD163 shed-
ding [TACE and tissuc inhibitor of metalloproteinase 3
(TIMP3})] was explored during dietary intervention. The
second aim of the study was to investigate, in both cohorts,
the association between circulating sCD163 and insulin
sensitivity when measured by euglycemic-hyperinsuline-
mic clamp.

Materials and Methods

Subljects
Two cohorts nfulbicch-p:rﬁ:i'p\:h:d'in the sh.ldy.
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Cohort 1

Forty-two women with a widc range of BMI (aged 21-66 y,
BMI 17-49 kgfm®) scheduled o have abdominal surgery (lapa-
rmmcopsc cholocystoctomy, hystorocctomy, or gastric bandmng)
wrre included in the study. Exclusion crtena were malignancy,
mflammatory condstions, congestive heart faihure, chronic hver
or kidncy discasc, psychiatric disorders, and body weight fluc-
tuations greater than 3 kg over the procoding 3 months. Accord-
myg to the BMI, the presence or absence of the M5 [evaluarcd
according to the International Dhabotes Federation cratera (111,
42 participants were stratificd mmto three groups [kan (n = 10
subjects), obesc (n = 18], and obesc with M5 (n = 14}].

Cohort 2

This cohort consisted of 17 obosc promenopansal womeon
faged 38 + 1 y; BMI 38 + 2 kg/m®). Exclusion ertcrnia were
malignancy, inflammatory conditions, hypertonsion, diaberes,
hypcrhipidomia treated by drogs, weaght change of greater than
3 kg within the 3 months prior to the study, drug-treated obesity,
prognancy, participation i othor tmals, and alcohol or dreg
abusc. Written informed consont was obtained from all subjoces.
This study was conducted according to the guidelines laid down
m the Declaration of Holsnky, and all procedures imvolving huo-
man subjccts were approved by the Ethical Committec of the
Third Faculty of Mcdicine of Charles University in Praguc, Croch
Repuhlic.

Study design

Study 1 (cohort 1)

Clmical investigation was realeed 7-14 days prior to the sur-
gery. Anthropomctric measuramcnts, blood sampling, and cu-
E],mni.chhypcri:ml]in:rnicclnmpwcrrpcrfnnutﬂ atrost aftcran
overnght fast. Body composition was cvaluarcd using baocloc-
trical impedance (Quadican 4000; Bodyseat). Visc and sc far
arcas were asscsscd using computcd tomography scans at the
lewel L4-5{12). The two-dimensional anca caboulation was uscd;
throc shdcs were taken into conssderation. Blood samples were
ohtaincd bofore the clamp and plasma paramcters were meca-
surcd using standard procedures. Insulin sonsitivity was asscsed
wsing cuglycomic hypocnnsulinemic clamp according to Do
Fromzo ot al {13). Durng the surgical procodure, paired samples
of sc abdominal and omental visc adiposc tssuc wore obtainod
and procosscd immediatcly. AT was washod n physielogical
salinc, homogenized in RLT hysis buffer (QIAGEMN) and stored ax
—B0PC wntil total RMA cxtraction.

Study 2 (cohort 2}

Partscipants underwent dictary intcrvention consisting of a
1-maomnth very low-calone-dact (VLCI) (800 kealld, liquid for-
mula Redita; Promil) and a subscquent weoight-stmabibzation
phasc. The lagter conssted m a 2-month low-calone dict (600
kcalid less than the cstimated cncrgry requiremecnt) followed by a
3-maomth I'r-g]'lt-mm'buun:rp}um Patscnts consulted a dich-
tian omoe a wock during encrgy restnction (VLCD and low cal-
ornc dict) and once @ month dunng the woght-mamtonance
phasc. They provided a wotten 3-day dictary rocord at cach
dictary consubation during the weight stabilmaon,

Clmical mvestiganon, anthropomctnic mcasurcments, and
blood sampling were performed in the moming at a fasting stac
at bascline [bcfnn: the ﬂ.il:hrr in‘bcr\ru'rhnn] and at the end of
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VLCD and weight-stabihzation phascs. Necdke biopsy of =cab-
dominal AT was performed under local ancsthesia (1% xylo-
@inc; Astrafiencea PLC) from the abdominal regron (14-20 cm
latcral to the umbilicus) (14). In 23 women, the cuglycomic-
hypermsulinemic clam p was performed accordng to the mcthod
of Dic Froneo ot al {13). The homcostaxis model asscsment of
msubin resistance (HOMA-IR) was calculated as fasting blood
glucose (millimoles) ¥ fasting msolin {milliunits per hrerf22.5.

Blood analysis

Masma kevels of glucose, mswhing hpids, and C-reactiee pro-
trin wore determined using standard mcthods. Scrum concen-
tration of s{IME3 was detcrmmed by a human CD163 quan-
tikinc ELISA kit [R.Ed] Spirms]. The in‘h:mm.r 'p'ru:mm'n of the
currcnt assay was L.63 % = 0.9%, and the lmit of detoction was
1.55 ngfml. The THFa concentration in plasma was analyzcd
u.:ing a hid':-suu-i.ﬁrit;r human q‘tukim: Lirmp]n: kat
[Merck-Millipore).

Quantitative RT-PCR

Total RMA solation was performed as proviously described
{14). Genomic DNA was removed by doosyribonucloase | ocat-
mant {Invitrogen). IYMNA was obtaincd by roversc transcription
{high capacity cOMNA roversc transcnption kit Apphed Buosys-
tems). The mMA cxpression of CDME3, CDAE, THFe, TACE
ADAMI7, and TIMP3 was amcmcd by roal-time quantitative
PMCR on ABI PRISM 7900 or 7500 scquomce dotoction systom
using custom Taghan low-donsity armays or a TagMan genc
cxprossion assay | Applcd Biosystoms). The lovel of cxpression of
the tarpet goncs was normabized to plucuronidase bota or pep-
tidylprolyl isomerasc A, and fold change of cxprossion was cal-
culated using the AA-cycle threshold {Cr) method.

CD163 mRMNA Expression and Insulin sensithty

JChn Endocringl Metab, March 2014, 993 E528-£535

statistical analysls

Study 1

To CCHTUpAr: 'p]u-m.'l and mRMA lowcls hotwoon the three
groups of individuals, log-transformed data were analyacd by
onc-way AMOVA with Bonforroni post hoc analysis using
Graphlad Prism version £.00 for Windows (Graphlfad Sofe-
warc). Corrclations berweoen the rospoctive varables wore as-
scssod using the Peamon’™s paramctric tost.

Study 2

To cvaluar the dict-induccd evolution of chnical varablos
amd 'pl:.n'lu and mRMNA |.C|||'|:|.:,II data were 1n1; transformed and
amalyrcd wsing ANOYA with repoated measures. Correlanons
berwoen the dict-induced relative changes of respective variables
wrre assossed using the Pearson’s paramctric test (GraphPad
Softwarc). Data wore cxprosscd as means = SEM. P = 05 was
considered statstscally significant.

Results

Study 1: cross-sectional

Clinical and metabolic characteristics of the three
groups of subjects (lean, obese, and obese with MS) are
shown in Table 1. The glucose disposal rate related to
body weight or fat-free mass was lower in both obese and
obese with MS, when compared with the lean

Serum levels of sCD163 were higher in both obese and
obese with MS than in the lean group (Fipure 1A). The
plasma levels of TNFe were not different between the

Table 1. Chnical and Metabolic Characteristics of Cohort 12 42 Women Included in Cross-Sectional Study
Obese Obase With MS
{n =10} {n = 18} n =14}
Age, y ET] 42+32 49 + 3"
Waight, 63+ 2 102 + 4* 92 + 7=
EMI.kgﬁ:S 22+04 I|=1b M1k
Fat mass, % 765+ 58 454 + 1.1% 423+1.3"
Fat-free mass, % TAG+ 18 LR+ 11" TR+ 12k
CT vischtotal fat 019 + 0.02 019+12 027 + 165
Waist, om 75 +1 110 + 3% 107 + 2¢
Glucose, mM A48+ 01 54+ 01 63+ 05
Irsulin, phd 3 £5 70 = 10° 98 + 108
Glycerol, ph 81«10 104 =0 130 + 11°
Triacylghycescd, mh 0.8 =+ 004 12+ 0.1 215+ 0.4
MEFAs, pM 526 + 66 €35 = 50 783 + 67°
HOL-cholesteral, mhd 15+ 01 14 =01 12 +01
Tatal cholasterol, mii a44+032 4F+03 46+ 0.4
HOMAJIR 10+ 01 34 +09" 4.0 + 06
GDRy, mafkg-min T0+07 36 = 04° 2803
GO, makgmin 96+ 10 67+ 07" 49+ 058

Anbreviations: CT, computed tomagraphys GDRere, gleos: dispasal rate related to fat-free mass GDRy,, glucose disposal rate reiated o body
welght: HOL, high-densiy Ipoprotedr; M3, metabolic syndrome: NEFA, nonesterified free Tatty acid.

* P« 105 compared with iean.
" P = 001 compared with lean.
*P < 01 compared with lean.
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published on The Endocrine Soci-
ety’s Jourmals Online web site at
http:ifjcem.endojournale org). CDEE
mRMNA correlated  with CD1&3
mRMNA levels in both fat depots { Table
2). Interestingly, when adjusted to
BML, the correlation betworn sCD 63
lewels and mRMNA expressioninsc AT
remained significant [r = 044, P =
[004), whereas the correlation be-
tweensCD163 and mRMNA expression
in visc AT disappeared r= 0.23; P =
.8). Positive correlations were found
between both sCD63 and CI163
mRMA expression in AT, and with
most of the varables related to the

Halr Yal

0 = 14). mANA expression I sC(SAT) and wisc (VAT) AT was normalized to GUSE, and fold

change of expression was Calculated using the AACE method. Values are mears + SEM. =% P =
.07 compared with lean; ===, F < 0401 compared with [ear; §, P < .05 compared with SAT.

proups. CDME3, CDeE, and TNFe mRNA levels were
higher in obese and obese with MS subjects than in lean in
both fat depots (Figure 1B).

Correlations

Circulating sCD163 levels correlated positively with
CD63 mRNA and also with CD68 mRMA expression in
both visc and sc AT {Table 2 and Supplemental Figure 1,

amoumt of body fat mass, but not with
the amount of visc AT (Table 2).
Importantly, imverse correlations
were found between both sCD63 and CD163 mRMNA
levels in AT, and glucose disposal rate related either to the
body weight or fat-free mass (Table 2 and Supplemental
Figure 1).
Study 2: dietary Intervention
Clinical and metabolic characteristics of subjects in co-
hort 2 before and during dictary intervention are summa-

Table 2. Comelations Betwesn sCD163 or CD163 mRNA Expression In Subcutaneous Abdominal and Visceral
Adipose Tissues With Respect to Clinical Parameters In a Group of 42 Lean, Obese, and Obese With MS Women

D163 mRMA D163 mRNA
sCD163 Suboutaneous AT Visceral AT
Weight, kg 03s7 0.452* 0.598°
BN, kgfm 0.458" 0.578" 0.617"
Fat mass, % 0.450~ 0.590= 0.583~
Waist, cm 0.457 0.589% 0.618°
€T 9% visc AT in total o115 0279 0252
Glucosa, mi 0352 0339 0.427~
Insulin, ph 0.454" 0.515* 0.434"
MEFAs, uM 0213 0279 0.453"
HDL-cholestarol, mM —0.283 —-0.339 -0.324
Triacybghycerol, mid 0305 0.409= 0.490"
HOMA-IR 0314 0370 0.405"
GOR,_ mofkgmin —0.433° —0.507" —0.575%
sCD163, nghml 0.586° 0.420"
CD163 mANA (SAT) 0.586" 0.575"
CDME3 mitMA (VAT) 0.420" 0.575*
CIDEE mANA (SAT) 0.543% 0.909~ 0.574"
CDEE mRMA [VAT) 03n 0.485% 0917t
THFa, pgfml 0333 —0.003 0.142
TNFx mRNA (SAT} 021 0.668% 0385
THFa mRtNA [VAT) 0.453" 0.430° 0255

Abbreviztiors: CT, Computed tomography: DRy, gucose diposal r3te comectad for body welghts HOL, high-gensity Ipoprotein: NEFA,
nonestertiied frea tatty aci; SAT, sCAT: VAT, visC AT. [ta are presentad a5 PRArsON’s coMmeiation mericent. Boid represents statshcaly

significant comelations.
Ip= .
ip= D.
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Table 3. Clinkcal Characteristics of Cohort 2: 27 Obese Women Before the Diet and at the End of VLCD and
Welght stabilization Phase of a 6 Months® Dietary Intervention

Basal After VLCD After WS
Age, y EEES]
Waight, 05 = 2 BE + 2" 85+ 714
EMI.I:;‘I:? 35 =1 32" ENER L
Fat mass, kg 406 + 1.6 353 + 15" 23+ 16
Fat-free mass, kg 555+ 00 530 = 0.8 526 + &
Waist, cm 103+2 07 + 3" 95 + 3
Ghuoose, mM 537+01 49 =01 49 +01°
Insulin, phi BT =19 G7 4 5" 56 + 6°
Glycarol, pM 170 + 14 130 + 10% 135 + 14
Triacylglycerol, mM 1.47 + 01 119 = 0.1° 1328 + 01
MEFAs, pM 767 + 45 96E + 76" B4 + 41°
HOL-cholesterol, mi 271+03 1.1 +£01% 14 + 017
Total chobestarnl, mikd 51402 42+02" 50+02
HOMAIR 29+03 18+02" 18 +03"%
GDA,,, mggmin an=03 35 = 04° 4.1 04"
GOR.,. mafkgmin 49+05 57 +05° 6.4 + 05°

Anbreviations: Gl glucose dispasal rate coaracied Tor body welght; HOL, high-denstty lpaprotein; NEFA, nonestenifiad fres fatty add: WS,

Welgt stanlization.
3 P2 001 when compared with baselne (prediet) valuss (ANCVA}
b P 0 when compared with baseline {prediet) valies (AROVA).
© Pz 05 WREN mmpansd with Baseling (pradiet) valies (ANOVA)L

rized in Table 3. The body weight was decreased by 11.3%
at the end of dietary intervention. The whole-body insulin
sensitivity improved asmeasured by HOMA-IR or glucoss
disposal rate. The AT sensitivity to antilipolytic effect of
insulin (measured as a decrease of plasma free fatty acids
levels during hyperinsulinemic clamp) was not changed
during the dict {data not shown).

Dietary intervention induced a decrease of sCDV 163 se-
rum concentration at the end of the VLCD and weight
stabilization when compared with the baseline values (Fig-
ure 2A). Plasma levels of TFa were higher than baseline
at the end of VLCD and decreased to the baseline levels at
the end of weight stabilization (Figure 24).

mRMNA levels of CD163 and CDE8 were higher at the
end of VLCD when compared with the baseline and both
of them decreased to the levels not different from baseline
at the end of weight stabilization (Figure 2B). THFa and
TACE mRMNA expression did not change significantly
throughout the entire dietary intervention, whereas that of
TIMP3 increased above the baseline at the end of weight
stabilization (Figure 2B).

Correlations

At baseline, serum sCDM &3 correlated positively with
CD163 and CDe8 mEMNA in sc AT (r = 0.579, F < .001:
r= 0.383, P < .05), similarly to Study 1. However, the
diet-induced change of circulating sCD 63 did not corre-
late with the CD 163 or CI8 mRNA levels cither during
VLCD or during the entire dietary intervention [Table 4).
The diet-induced chanpes of CD163 mRNA expression

s s e

are presented a5 mean + SEM. Gluoose disposal rate was measured |n a subgroup of 23 subjects.

correlated with the mANA changes of CD6S, TNFa,
TIMP3, or TACE (Table 4).

In addition, despite the fact that baseline values of
sCDM63 and CD163 mRNA correlated inversely with glu-
cose disposal rate (r = —0.625, P < .01;r = —0.845, F <
.01, respectively), the diet-induced changes of sCDH&3
and CD1M63 mRMNA during the VLCD or during the entire
dietary intervention did not correlate with the changes of
insulin sensitivity (Table 4).
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FAgure 2. Study 2 (dietary Intervention): plasmadsenim leves (&) of
CI0163 and THR: and mAEMA levels (B) of CD163, COEE, THFa, TACE,
and TIMF2 In sC AT. MANA expression was narmalzed to peptioyiprobyi
tsomerase A, and fold change of expression was cakulated wsing the
AACH methiod. Data are means + SEM {0 = 27). **_ P =01
compared with bassline (before the diet); ***, P < 001 compared
with baseline (befare the diet).
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Table 4. Comelations (Pearson’s) Between Relative
Changes of sCD163 or CD163 mMRMA EXpression in
Subcutaneous Abdominal AT With Relevant Changes of
Glucose Disposal Rate, Clrculating sCD163, and THFe
and mRMA Expression of SCD163, CD6SE, TMFe, TACE,
and TIMF3

VLOD W5
D163 D163
sCD163 mRNA sCD163 mBRMA
sCD163 0.1& 0.0ED
COMe3 mAMA 0160 0.08D
THFx —0165 —0.005
THFx mANA 0677 0.364
CDEE mAMA 0.038 0827 _0pi19 0.763R
TACE mRMA 0. 746~ 0.449
TIMP mRAMNA D603~ 0522~
GDE! -0393 -0.37 022 -0.22
Apbreviation: GOR,.., gluoose disposal Iate comected for body wakghts
WS, welght stanlizTton. Data are presemted s Pearson's comelation

coefficent. Bokl Indicates statistcaly significant comelations.
g .
Up= D

The dict-induced changes of CD63 mRNA levels also
did not correlate with the changes of body weight, BMI, or
fat mass |data not shown).

The aim of this study was to elucidate whether the con-
centration of sCDE3 in blood reflects the CD63 mRMNA
expression in adipose tissue and whether sCD63 plasma
concentrations and AT mRMNA levels are associated with
insulin sensitivity. In a cohort of women with a wide range
of BMI and insulin sensitivity, we found a positive corre-
lation betwesn mRMA expressions of CD163 in both sc
and visc AT, in respect to circulating sC0 63 levels. Thus,
we bring an evidence for a previous suggestion of a link
berween circulating sCI63 and C63 expression in sc
AT (10, 15), and, in addition, we find the same link with
respect to CDME3 expression in visc AT. Moreover, the
correlation of sCD&3 levels with mRMNA expression of
macrophage marker CD68 suggests that serum sCD163
might be perceived as a possible imndicator of macrophage
activation in AT. Interestingly, the correlation of sCD 163
with CI3163 mRNA expression in visc AT disappeared
after adjustment to BMI, whereas the correlation with ex-
pression in sc AT remained significant. This finding may
sugpest that sc AT is a more important contributor to
sCD63 when compared with visc fat.

Mext, we documented a strong relationship between
insulin sensitivity, measured by the gold standard method
of euglycemic hyperinsulinemic clamp, and circulating

|EmentopumEsory £33

sCD163. These results extend the previously reported
findings of a close relationship between sCD163 and
HOMA-IR (£, 10]. In this study, insulin sensitivity corre-
lated also with CDME3 mRMNA expression in both fat de-
pots. Thus, we demonstrate the capacity of sCD163 as a
biomarker of insulin sensitivity measured by the clamp
method at steady-state condition.

However, in a dynamic condition represented by the
weight-reducing hypocaloric dict, the above-mentioned
associations were not present: the diet-induced change of
sCD163 showed different pattern and did not correlate
with the change of CD163 mRNA levels in sc AT either
during the imitial dynamic phase of the dictary imterven-
tion (VLY or during the phase of the weight stabiliza-
tion. Indeed, although the sCID63 serum levels were
lower than bascline at the end of both phases of the dict,
the mRMA levels increased during VLCD and then de-
creased to the baseline at the end of the weight stabiliza-
tion. The same pattern of evolution was found for the
other macrophage marker CD&8. This time course is in
agreement with our previous results showing the dict-in-
duced responses of macrophage markers in adipose tissue
during multiphase dictary intervention (14, 16,17 ). Itisto
be noted that CIVE3 is considered as M2 macrophage
marker, similarly as lymphatic vessel endothelial receptor
1, which expression during dietary intervention exhibited
the same pattern (data not shown). The increased expres-
sion of these markers after strong caloric restriction could
be associated with active remodeling of AT during this
intervention (18). However, in humans, the phenotypic
diversity of AT macrophages s now known to include
more than two types of macrophage states (19).

The discrepancy between the dynamics of CD163 in
circulation and in AT could be caused by dict-induced
adaptations at the translational or posttranslational level
of the specific protein. Among factors influencing sCHE3
production could be the efficiency of shedding of the
(D163 molecule from the macrophage surface. Both
(D163 and TNFe are shed from the cellular surface by
TACE that is inhibited by the metalloproteinase inhibitor
TIMP3 (20). However, no relevant change of TACE
mRMNA expression in AT throughout the dictary interven-
tion was found, and the TIMP3 mREMNA level slightly in-
creased at the end of weight stabilization, ie, later than the
decrease of sCD163 levels occurred. Therefore, the
changes in the shedding of CD163 in AT during dietary
intervention probably do not contribute to the chanpes of
sCD163 in cinculation.

The difference between the serum and expression of
{163 by AT macrophages during diet might be therefore
related to contributions of other tissues to circulating
sCD163. CD63 is expressed in macrophages resident in
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many nonadipose tissues, o, liver, muscle, kidney (21—
24}, and also in blood monocytes (25). Unfortunately, to
our knowledge, there are no studies that evaluate direct
contribution of other tissues to crculating levels of
sCD163 or investigating CIV63 expression in other tis-
sues or cells during dictary intervention.

Ini this study the evolution of s$CD 163 paralleled that of
the glucose disposal rate when measured using a hyper-
insulinemic clamp during weight-reducing dietary inter-
vention. However, the direct correlations between the di-
ct-induced changes of sCD163 and those of glucose
disposal rate were not found. Similarly, no correlation was
found between the dict-induced changes of CDE3mRNA
expression and insulin sensitivity. Consequently, we con-
clude that, in a dynamic condition of a weight-reducing
hypocaloric diet, the change of sCD 163 in circulation and
D163 mRMA expression in sc AT is not a quantitative
biomarker of the change of the whole-body insulin sensi-
tivity. These findings sugpest that circulating levels of
sCD163 and AT mRNA expression of CD63 are prob-
ably not in a cause-effect relationship with insulin sensi-
tivity. But we believe that it does not invalidate the as-
sumption that sCD163 could be wsed as a biomarker of
insulin resistance under steady-state conditions.

As mentioned above, the variations in CD163 mRNA
expression in AT measured in this study reflect the mac-
rophage content in adipose tissue as well as the very ex-
pression of CIME3 in each of the macrophages resident in
AT. Thus, no direct conclusions abouwt the relationship
between sCI0163 and macrophage content in AT may be
made based on this study. However, it is to be noted that
the pattern of evolution of CD163 mRNA expression in
AT in this study was similar to the pattern of macrophage
marker CD68 and to other macrophape markers observed
during the same multiphase dietary intervention in our
recent study (14).

In conclusion, in this study we demonstrated a quan-
titative association between the circulating levels of
sCD163 and mRMA expression of macrophage madkers
D163 and CIéE in sc and visc adipose tissue in the
steady-state condition. Furthermore, in the steady-state
condition, we found a negative correlation between
sCD163 levels and insulin sensitivity as assessed using a
hyperinsulinemic euglycemic clamp. However, in a dy-
namic condition represented by a weight-reducing hy-
pocaloric dict, there is no such relationship between the
dict-induced changes of the above-mentioned variables.
Thus, there is no evidence that sCD&3 might be used as
a quantitative biomarker of the diet-induced changes of
AT CD1&3 expression or chanpes of insulin sensitivity.
Therefore, further research of the translational or post-

CD163 mRMNA Expression and Insulin sensithty
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translational processes involved in sCD63 production
during dict and other phorsiological stimuli is warranted.
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Weight Loss Improves the Adipogenic Capacity of Human
Preadipocytes and Modulates Their Secretory Profile

Lenka Rossmeislovi,® Locia Malifovi,™ Jana Krafmerovi,

* Michasla Tencerowi, ™

Zuzana Kovitovd,” Michal Koc,'® Michaela Siklovi-Vitkova,!” Nathalie Vigoerie,

Dominigee Langin,"*** and Viadimir Stich™®

Calorie restriction-induced weight loss is accompanied by poo-
Fiounad chamges in adipose Gsswe characteristics. To determine the
elTect of weight e on differentistion of presdipootes and se
oretory capacity of in vitro differentiated adipocyies, we estal-
lished oultwres of these cells fom paired sulscutaneous adipose
s hiopsies Olstained before and b the end of wed ght-reducing
dietary intervention (D) in 23 obese women Based on Bpid ac
ourenalation dmd the expression of @Terentiation markers, in vilro
adipogeness i reased after weight boss and it was acoompanied
%ﬂmnhﬂbﬁ:d exgression of gens invohoed in de novo Bpsogenesis

et of welight loss was not diven by canges of penosi-
sme prolifemtor-activated moeptor v sensifvity o posigits
wme. Weight loss alko enhanced the expression of adipanedin
anad Jepdin while reducing that of monocye chemoatitactant poo-
tein 1 and interleulin-g by culiured adipocites Thus, the weight-
reducing (D) increased adipogenic capacity of preadipocytes
and shifbed their seoretion towand lower inflummabory prodile
Beprogramming of preadipoeytes could represent an adaptation
o weight loss leading to partial restoration of preobese adipose
e trits and thus contribate Do the impaoove ment of metahso i
status. However, enhanded adipogenesis could alao oontribute to
the unwanted weight regain afer initial weight loss. IDNabeles
6] -1 805, 2013

orsening of metabolic health in obesity &
associated with the hypertrophy of adipo-
cytes (1) Indeed, the recruitnent of new and
small adipocytes improves insulin sensitvity
(Z). These cellk have a high potential to store lipids and
whaole-body irgulin resistance. However, adipose stroma-
vasrular cells derived from obese donors exhibit impaired
adipogenic capacity (3), and the factors influencing sen-
gitivity of human preadipocytes to adipogenic stimuli in
Vivo remain unkmowT
Weight reduction induced by hypncabncdmtnﬂ'elnear
approach for treatment of obesify-related metabolic dis-
nrbances. A moderate loss of body weight induces an

From the 'FaneoCsech Lab inry for Clnbrad Hi hon (hesity, Thisd
Faroliy of Medidne, Fragoe, Coech Hepoblie, and INSERM, Too ko,
Pranee:, S o Sprart edirine Thisd Parolly of Mafieine. Charles
Undverslly, Pragoe, Coeeh %ml.mm Mm

adaptaticn of uman adipose tissue associated with im-
proved whole-body metabolic stats (4,5, We 113[:»1:&1&
sized that cell cultures of preadipocytes established
subcutaneous adipose tissue collected before a‘.ndafter
a weight less—inducing dietary intervention (DI} corre-
gpond to two distinet metabolic and nuiritonal stages of
the donor. The cwrrent knowledge on intrinsic adipogenic
amd endocrine potential of these cells is based on and
limited to crosssectional studies. Here, we show that DI
induced weight loss increased the differentiation capacity
dmmmmdmmmmmmmdlm
inflammatory profile. This of preadipocytes
by weight loss could represent a cellular mechanism leading
to the restomtion of precbese traits of adipose tissue and
correction of infammat ory status

REESEARCH DESIGN AND METHODS

Sobjects (hese premenopassal women (0= 55 were reoaited at the Thind
Facully of Medicine of Craries University and University Hospital Kradovsle:
Vinohmsdy, Fragoe, Czoch RepohBe. Fxvinsion cviioria were set & presonsly
dmathed (B) The sindy wes peformed according to S Decluration of
Helsinld and was approved by he efies commiee of the Third Facully of

Modicine of Charies Univarsity. Vobonieas. signed infonmed & bafore

In the: stndy.
nnuﬂlwumnwumumm
duced Shelr calorie Infake by SO ¥ 0 #he In

wwmgmwgm_mmmmm
coefichont of comerson for physbml aeovily) Weight bow wns acliceved
wiihin S firsi 2 monde, and en women were pdvised o koep S dat
Iaaching b S wokghi ool adicifian onee 3 wek
during e first 3 mongs and onee @ month during G welgh bmalnierance

{Brdeal rvves Egason was perfarmed after anovernght fus befre and atthe
and of DL AnStwopomatric i, bioond sammgling, and medie biop sy
of adipres thwmne were parformed as previoody deseribed (5). Briefly, afier
adminstwtion of kneal areathonta (1% Tyloming), & 1- i Smm ineldon was
m.uem:mun-;mmnnmnmmpmmm
s e i aspirate fr rfictal
-uqr_.mgum:-mnmms—ug.
Lsolation and enlture of preslipoeytes. Adipoas thwe was digsted In 15
el om0 § ecillagenase: | (700 on S L3 Bio chrom | Berlin, (ermany ) for &0 min
I BT shaking water bah and [ d as deserihed (T)
Iigonted Samoe wan difuted wish PESiganumsein and spm at 130 rpn for
Emin Cols wore ghan shalon Sreetally i somplte S dsociiton fom
matwre adipocpies and condrifoged Pellet condaining cells famm e siroma-
nlar fracfion was ncobated n ery@rocyis: lyss bofar for 10 min at room

o Irestibote of Metabolie and |

el were cenirifogad, and wisha ot any fration siep, ey wre

Prazee: S Uinivarsity of Toukoss, UME 1085, ard n-:lam:ﬂ
af {nicad Beochemisry, Centre Homph-

afiakerdegpniarTals
= 0 by S AT uﬂﬁﬂﬂ-
B wark b properly died, S s edorasonal and not for profit,
ﬂ:.:m B8 mot aliered. auh::'ﬂ'ﬂ.mwgin:lnh
ne-ndfE 0 for defadls.

EE0 DIABETES, V0L @ JUNE 503

pended in PY4 madiom @) with D2 rancdl. eolin. P was mplaced
avery other day. Cells wem sohenithated at T confloenes; experimens
e perfrmed & passags 3. DEEratiason of 2-day poaieondioent cdls was
imuend by Dok modified Eaghea¥12 mediom sqpp kmanted with 66
momacdL. fresaling, 1 ol devasethasone 1 nmodf. T2, 001 gug/ml. traes ferrin,
mmﬂ.nmmmﬂlm&.mﬂmmsm
Focigitazne and itied and d
—wmmlpmmmummmmmm
ﬂnehnmmfu&h-lmmlﬂ.d.mdtﬂlmm
fior HM A and progein salysis. Proten A by BOA
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et of peroxisome: prolfoator-aetvated roeptor (PPAR )y activation, cdls
were indoeed to Sffmentite in e modia sontaining dfher 1 pmold. rosk
munmummmmwmm
fod with Fransfemin and insolin were mod.
m-umlmmm“mm wdng an Khcasy Mind kit
{iEagen, Hiden, Germany) mENA beveds were measmed wng roverse tran-
seripfion quanStasve PCH (Appbed Biospstems, Carldad, CA) @) GUSE
m-:m}nwummurﬂmn
a5 ALY (Bnesho b eyee) valnes.
Cyiokine anslysis. Cyickins d by EELES A (i PIL}S and
eyl dhamo atiractnt protdn |MOP] 1, Beady-Gosas, diicecimes, San

INegn, Ci 115 Qoanskine HE, E&D Sy Abfrgndon , 11K and adip i
Diocfiet, RAD Systems, Min i, MN) Deferion of adig i e
ﬂpﬂmw A dymueryl i 1 ot phoresis axed Wessiern ot

(10} Chemiumineseent siyral was deterted on Kodak bmage Snson 400K
and anatyrod by associated sofware

Nl Ball O s BODIPY steining. Cells were fived, sfined with (8 Hed O
(R, and analyed as previooly described (1) or stained wigh 1 wmali
BODFY 45500 (Life Technodogies) and DAFL Standard corve from OHO
sinck was wad 0 nomaive date The OO of doates from 10095 diffanent iated
ummumummnmmmnmmnm
acvyoired o fh g DMIE00 coopled with CCD mmens
{Labea M borospetems, Wetzlar, (ermany)

Stw thetiesl analyeis Dot were aralysed wing (raphFad Frism G0 sofwane
with Willeowon maiehed palr signed rank or Sann Whileey [F iosd a8 appm-
prigte. The bewed of sigrifieance was et @t P < 005

RESTLTS

Clinical characteristics of obese subjects. The clinical
data of subjects before and after DI are listed in Table 1.
Compared with baseline values, the subjects’ body weight
decreased by 9.7% and irsulin resistance assessed by
homeostasis model assessment of insulin resistance was
reduced.

Preadipocytes derived from adipose tissue after
weight loss exhibit increased adipogenesis. The stmo-
mavascular cell from adipose tissue samples were iso-
lated, expanded, and differentiated into adipocytes. Cell
loss exhibited increased different iation as evahiated by the
0RO staining and mENA expression of differentiation mark-
as aP2 and PPARy (Fig. 14 and B} Moreover, the expres-
gion of stearoyl-CoA desatwrase 1| (S00T), diacylglyceml
(-acyltransferase Z (IMIATE), fatty acid synthase (FASV),

TAHLE 1
Clinical clamderistcs of e subjects before and after detary
intervendion

Baseline il P
Age (years) HATE LT
ij:gl 9140+ 212 825+ 193 =001
BMI (kgim HLO7 £ 08 2071 =082 20,001
m:mum 9712 11 3647 £ 111 <001
Waist {cm) LG+ 224 2504 =213 <0001
WHR 086+ E 084 002 0011
Ghucose {momolL) A8 011 506013 0012
Irsuldin {mlLVL) Q62+ 087 7270852 0002
HOMAIR 286+ 027 171027 0002
Ttal cduol esterol
{remnol’L) 538+ 027 463018 0006
HOLA {mmolL) Lé6 £ 0 144 2007 00T
Trig yeerides { mmaoll) L8+ 0@ 078 £ 005 <001
L { il L8+ 0l 082 + 009 0881
MCP1 (pgimlL) 2561 £ £72 TR 282 QUNS
Addiponectin (pgiml) LEDE: 012 182 +004 072

mm-hp:i:n.?whumhnhmhdd:]nﬂ of signifiramee

iahitca bl CROITAI Org

ATP citrate lyase (ACLY), ChREBPz, and GLUTH was also
upregulated, confimming higher capacity of cells for Epo-
genesis (Fig. 1H). Although mENA levels of martkers of
mitochondrial biogenesis raclear respiratory factor 1 and
FPAR+y coactivator la were not altered, DCPT expression
was notably upregulated (Fig. 1H). Interestingly, cell dif
ferentiation into adipocytes was associated with an in-
crease in total protein content that was more pronounced
after weight loss (Fig. 1) The ratio between protein
content in adipocytes versus preadipocytes correlated with
the degree of differentiation measred by ORD (Fig. 1D
Motahly, there was a positive link between changes in
protein content and mBENA levels of differentiation mark-
em, lipogenic genes, and LAOPT (Fig. LE and Supplemsen-
tary Table 1). The enhancement of adipopenesis was not
caised by the alteration of proliferative capacity of pre-
ginee there was no difference in the yield of
the cells at passage 3 and length of cultivation period
preceding the experiments (Supplementary Table 2.

To decipher the putative role of PPAR+y in the reprog-
mmming of preadipocytes induced by weight loss, pre-
adipocytes were stimulated with differentiation medium
supplemented either with DMS0 (control) or 1 pmolT
msigliazone (FPARy ligand). As expected, rosiglitazone
ernhanced markedly the expression of FASN, SCDJ, and
aPEnmpmedwihmrmlnﬂla{Fﬁg_Zﬁ},hm the
upregulation of ipogenic markers FASN and 5007 in cells
derived after the DI was more pronoumeed in the absence
of maiglitazone (Fig. 24). Furthermaore, the ratio of FASN
amnd SCD]1 expression under rosigditazone versus contml
treatment was not different between the cell obtained
before amd after the DI (Fig. 28). In addition, the per-
centage of cells accumulating neutral lipids after & days of
differentiation in the presence or absence of PPARy ligand

was in both cases higher after weaight loss (Fig. 207). Again,
the ratio between the numbers of celk dif ferentiated in the

presence of msigliazone versus DMS0 was unchanged
after the DI (not shown) These data sugpest that weight
loss did not alter the sensitivity of celk to rosiglitazone
amd, rather, affected pathways upstream of FPAR+y. In-
deed, the expression of PPARy itself as wel as the ex-
pression of ALFY (Kruppel-ike factor 8), the transcription
factoms that regulate PPARy transcription, was not differ-
ent in preadipocytes derived before or after weight loss
(Fig. 2. However, cells derived after mght loss
exhihited a marked downregulation of expression of nmnt-
related trarscription factor 2 (RUNEZ), the transcrption
factor favoring csteogenic differentiation (12), both prior
to and during differentiation (Fig. 2007

Expression and secretion of cytoldnes by in witro
differentiated preadipocytes are altered after weight
loss. For determination of whether weight loss affects the
mmmuymﬂdaﬁpﬂmt}emmﬁ

tissue before and after weight losa. Both expression and
secretion of adiponedtin and its high-molecular weight
form were higher in adipocytes after DI compared with
baseline (Fig. 3. However, when the secretion of total
adiponectin was adjusted to the degree of differentiation
assessed by ORD, the effect of DI was lost, suggesting
a close relationship between adiponectin secretion and the
differentiation state of adipocyes (not shown). Leptin
mENA levels were also elevated in adipocytes after weight
loass (Ag. 34), and this change was not related to the degree
of differentiation. In contrmast, MOPI and IT-8 mENA levels
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WELHT LDSE AFFECTS ADEPOCYTE DIFFERENTIATION
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FIGE 1. Welght ks -mmlniﬂﬂu alli ke O lls ware J ifTerent sted for 12 days, and then e ulation of lipkds, peote in o ntent, oF gend
expresdon wis analysed A: Effect of we Mmlplmmunnnqrw“-quuuwmm g donor befors and after DI
b o] Wi b CFEDCF ]l i it oo, Nigsid il s peronnt of stock OBO (8 = 22). B Effect of welght loss on gens
xpresson. mENA & Spress on | arh irary mn|m|}nupnepmm_“ to GFESE expression (m = 15 ) 2 Effect of weight kss on protein
snmient Batho betwesn botel protein sontent in sl poeytes va presd poeytes (8 = 22 ) Dats are means £ 5E; "F < LOG, "*F < 001, **"F < 0001
I: Limear regression betwesn Of O secmmis ton. sl pmumm in sllipoeytes {A) ve. presdipocyies {F) st baseline. £ Linesr regresson
between relutive Aprotein (adipocytes v, protein) s AmENA spress on of aF2 sl PPAR y.
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in adiporytes obtained after DI were reduced companed
with haseline (Fig. 34). Secretion of MCP1 was lower (Fig.
3H) compared with baseline even after adjustments to the
degree of differentiation (not shown), but no significant
changes in secretion or expression of L6 were ohserved
(Fig. 34 and B).

MESCUSS N

It has been hypothesized that worsening of metabolic health
in obesity is related to dysfunction of hypenrophic adipo-
cyes or dimindished ability of adipose tissue to react to en-
erpetic surphs by the enhanced adipogenesis from available
precursors. The latter 8 evidenced by 1) insulin-resistant
subjects exhibiting lower expression of adipogenic genes
(13) and &) the insulin-sersitidng drugs thiazolidinediones
alleviating irsulin resistance by the recrnutment of new
adipocytes with a high potential to store lipids (14,15).

iahitca bl CROITAI Org

In this smdy using celb derived from paired sub-
cutaness adipose tissue biopsies from obese women un-
dergoing long-tersn DI, we showed that adipogenic
potential of preadipocytes was increased by modemte
weight loss. Obesity was shown to be associated with
lower differentiation capacity of preadipocytes (3 16). Our
data cbtained in the prospective study therefore not only
are in agreement with the cross-sectional observations but
also provide evidence that the lowering of adipose tissue
mass is associated with higher preadipocyte differentiation
capacity and sensitivity to adipogenic stiomili. This implies
that the effect of weight loss on adipose tissue fiimetion
should be ascribed not only to changes in size and me-
tabolism of mature adipocytes and in proinflammatory
potential/rumbers of infitrated itmume cells (6, 17) bt
alko to reprogramming of preadipocytes. Lower RUNE
expression in cells derived after weight loss suggests
that weight loss inhibits alternative lineage programs
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(e.g., osteogenesia ), which in turn favors the adipogenic  and adiponectin Lower secretion of MOPL from adipo-

differentiation.

Nevertheless, the impact of in vivo changes of pre-
adipocytes, which are m'pcﬁarut for the maintenance or
development of AT (17), emains unlmown It is tempting
to speculate that upon fat mass reduction, a higher sensi-
tivily of precumor cellk to adipogenic stimuli could en-
hance fatty acil storage and therefore indirectly lower
lipotoxcity at the whole-body level while mproving
insulin sensitivity. On the other hand, increased adipo-
penesis after previows weight loss could compromise long-
term weight loss maintenance. Indeed, studies on obese
and then calore-resiricted rats showed that short owver-
feeding after calorie restriction was accompanied with
appearance of small adipocytes (18).

Development of mature adipocytes is dependent on ac-
tive lipogenesis. In serum-free culture conditions, all ac-
cumulated lipids are synthesized de novo (19). De novo
lipogenesis in adipose tissue, possibly orchestrated by
ChREBPR (20, was downregulated in subjects with hy-
pertrophied adipocytes who are more insulin resistant
compared with subjects with smaller adipocytes (21).
Sinee we observed that weight loss was accompanied with
a higher expression of lipogenic penes FASN, INZATZ,
SCDI, ACLY, and ChREEBPx (a regulator of ChEEBPR
expression) in in vitro differentiated cells, it can be sug-
gested that de novo lipogenesis capacity linked to higher
insulin sensitivity represents intrirsic characteristics of
adipocytes reprogrammahle by weight loss.

In obesity, adipocytes produce more proinflammatory
cytokines and chemoatt ractants while secretion of ingulin-
sergitizing adiponectin is diminished (22). In our study, we
show that weight loss altered the capacity of in vitro
differentiated adipocytes to express IL-8, MCPI, leptin,

e DIABETES, V0L @ JUNE 503

cytes reprogrammed by weight loss could contribute to
a lower infiltration of macrophages into AT. Selective
increase of high-molecular weight adiponectin secretion
might nderlie beneficial effects of weight loss on irsulin
sensSitivity.

Studies performed on cell culiure models may be influ-
enced by culbure conditions. Akhough we cannot com-
pletely exclude possible effects of subcultivation on
adipogenic amnd secretory potential of cells, it has been
shown previously that in vitro condiions preserve the
original phenotype of a donor in preadipocytes and adi-
pocytes (13,23} Moreover, subcultivation of stromavascular
resultsin a more homogenous population than primary cells
(3,24} It is also unlikely that the cbserved differences were
hased on dissimilar starting rmmbers of cells, as there was
no difference in the length of cultivation or yield of cellk
before and at the end of DL

In conclusion, owr study shows that weight loss
improves the adipogenic capacity of preadipocytes and
alters their secretory potential This effect may be associ-
ated with the improvement of the metabolic status of
obese as well as with an increased tendency for weight
regain. We believe that the analysis of a distinet cellular
population, such as preadipocytes subjected to uniform in
vitmo conditions, can offer a focused and unique image of
an intrinsic adaptation of AT to weight loss.
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4. CONCLUSIONS

This thesis analyzed immune status of AT and circulating leukocytes under various
physiological and pathophysiological interventions in lean and obese humans. First
part examined acute effects of elevated levels of nutrients on inflammation and
representation of immune cells. Second part investigated beneficial effects of
moderate weight reduction on immune attributes of AT, with respect to improvement
of pro-inflammatory state and sensitivity to insulin action.

The major conclusions of this thesis are:

e Ingestion of HFM induced postprandial inflammation detectable on the level
of gene expression in CD14+ PBMC. This inflammation was not associated
with the concomitant increase in the expression levels of ERS markers.

e Acute short-term HG induced an increase in the content of monocytes and T

lymphocytes in SAAT of healthy obese women.

e Acute hyperlipidemia induced a pro-inflammatory response associated with
alteration of relative content of immune cells in blood and SAAT and enhanced

release of pro-atherogenic mediators.

e No major differences were found in mMRNA levels of selected immunity related
genes between SAAT and SGAT in basal conditions. During weight reduction,
majority of genes changed with similar pattern thus refuting the hypothesis that
protective role of SGAT is given by lower expression of pro-

inflammatory/immune system related genes.

e sCD163 correlated with CD163 mRNA expression in SAAT and VAT and
with whole-body insulin sensitivity in the steady-state condition. These
associations were not observed with respect to the diet-induced changes during

a weight-reducing hypocaloric diet.

e Secretory potential of human in vitro cultured pre/adipocytes was altered to

the less inflammatory after the weight reduction
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5. SUMMARY

Obesity and overfeeding are associated not only with increased circulating levels of
nutrients and metabolites, but also with increased risk of the development of additional
disorders, such as cardiovascular diseases, cancer or insulin resistance. Plausible link
between obesity and its comorbidities is inflammatory state, observed on the whole
body level as well as in AT. As possible initiators of this inflammation, hypertrophied
adipocytes were suggested. Adipocytes per se secrete a spectrum of heterogeneous
molecules including cytokines. Under the stress conditions, adipocytes and
subsequently AT resident immune cells switch to pro-inflammatory state and via
secretory signaling attract additional immune cells. Furthermore, hypertrophic
adipocytes release higher levels of metabolites that may also contribute to pro-
inflammatory polarization of immune cells, mainly macrophages.

General aim of this thesis was to investigate connection between impaired levels of
nutrients and pro-inflammatory statue and activation of immune cells in healthy (obese
and lean) subjects.

In the Part one of this thesis, we analyzed acute reaction of immune cells in circulation
and AT on artificially elevated levels of nutrients, imitating its increased values typical
for metabolic syndrome. HFM ingestion led to inflammatory reaction detectable in
circulating monocytes but not associated with ER stress. Similarly, short-term HG and
hyperlipidemia induced a pro-inflammatory response associated with altered relative
content of immune cells in blood and SAAT. Moreover, changes induced by acute
hyperlipidemia were associated with enhanced release of pro-atherogenic mediators.

In the studies included in the Part two, we extended our knowledge about beneficial
effects of weight reduction on pro-inflammatory and metabolic statue of obese
patients. Moderate weight loss was accompanied by amelioration of levels of pro-
inflammatory markers in circulation and in AT. The effect on mRNA levels of
immunity-related markers was similar in abdominal and gluteal subcutaneous AT.
Expression changes of one of these markers, CD163, which were induced by weight
loss, were not associated with changes of insulin sensitivity. Furthermore, weight loss
reprogrammed precursors of adipocytes and reduced their intrinsic inflammatory
potential.

In conclusion, in short-term interventions we confirmed that impaired levels of

glucose and lipid metabolites (FA, TAG) are associated with activation of immune
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cells in humans. On the other hand, weight reduction led to improvement of secretory
function of adipocytes per se and inflammatory status of AT on mRNA level. Results
of this thesis thus contribute to understanding of obesity and overfeeding associated
inflammation, even so further investigation of the functional changes in AT by

nutrients and obesity is warranted.
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6. SHRNUTI

Obezita, charakterizovand zvySenou akumulaci tukové tkdné (TT), i pfejidani jako
takové jsou spojeny nejen se zvysenymi plasmatickymi hladinami zivin a metabolitt,
ale 1 s nartstajicim rizikem vzniku dalSich chorob, napft. chorob kardiovaskularniho
systému, rakoviny nebo insulinové rezistence. Pravdépodobnym pojitkem mezi
obezitou a chorob s ni spojenych je zanétlivy stav organismu, pozorovany jak na
systémové urovni jako zvySené hladiny plasmatickych cytokinti, tak na trovni TT.
Pfi¢inou tohoto zanétlivého stavu muiize byt naruseny metabolismus TT. Adipocyty
sekretuji Sirokou paletu rtznorodych molekul vcetné cytokinl. Za stresujicich
podminek (hypoxie, stres endoplasmatického retikula) za¢nou adipocyty a nasledné i
rezidentni imunitni buiiky produkovat prozanétlivé cytokiny, které atrahuji dalsi
imunitni bunky. Adipocyty mohou navic uvoliiovat zvySené mnozstvi metabolitil
(mastné kyseliny, glycerol), které rovnéz ptispivaji k polarizaci imunitnich bunék,
zejména makrofagi.

Cilem této prace bylo nalézt spojeni mezi zvySenymi hladinami nutrientd (glukosa,
mastné kyseliny) a zanétlivym stavem, resp. aktivaci imunitnich bun¢k u zdravych
(obéznich i §tihlych) jedinct.

V prvni ¢asti této prace byla sledovana akutni reakce imunitnich bunék na
experimentalné zvySené hladiny nutrienti. Pokrm s vysokym obsahem tuku a energie
zpisobil postprandidlni leukocytozu a vedl k prozanétlivé reakci detekované v
krevnich monocytech. Obdobné kratkodoba hyperglykemie a hyperlipidemie
indukovaly prozanétlivou odpovéd’, spojenou se zménou zastoupeni imunitnich bun¢k
na urovni krve 1 TT. Zmény indukované akutni hyperlipidemii byly navic spojeny s
uvolnénim aterogennich mediatort.

Cilem druhé ¢asti bylo prohloubit znalosti o pozitivnich efektech redukce hmotnosti
na prozanéctlivy a metabolicky stav obéznich pacientii. Mirny vahovy ubytek byl
provazen sniZzenim hladin cytokinii v plasmé a TT. Efekt redukce hmotnosti na
imunitni markery byl obdobny jak v abdominalnim tak glutealnim tukovém depu. V
prabéhu dietni intervence nebyla pozorovana spojitost mezi zménami v hladinach
jednoho ze stanovovanych markeri, CD163, a insulinovou sensitivitou. Mimoto se
vlivem véhové redukce upravil 1 sekre¢ni potencial samotnych adipocytt.

Lze shrnout, ze na zaklad¢ analyz efektl kratkodobych intervenci byla potvrzena

hypotéza, Ze zvySené hladiny glukosy a mastnych kyselin v krvi jsou asociovany s
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aktivaci imunitniho systému. Oproti tomu, redukce hmotnosti vedla ke zlepseni jak
sekre¢niho profilu samotnych adipocyti tak K sniZeni prozanétlivého stavu TT na
urovni mRNA, ale tyto zmény nebyly pfimo asociovany se zlepSenim insulinové
senzitivity. Vysledky této prace piispély k pochopeni prozéanétlivych pochoda
asociovanych s obezitou a ptejidanim, i presto je dalsi vyzkum funk¢nich zmén na

urovni TT nezbytny.
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/. ANNEX

List of co-authored articles not included in the thesis:

Stress of endoplasmic reticulum modulates differentiation and lipogenesis of
human adipocytes

Michal Koc, Veronika Mayerova, Jana Kracmerové, Aline Mairal, Lucia MaliSova,

Vladimir Stich, Dominique Langin, Lenka Rossmeislova
Biochemical and Biophysical Research Communications. 2015 Mar. [Epub ahead of
print]. IF 2.3

Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation
and differentiation of human subcutaneous adipocytes.

Lucia MaliSova, Zuzana Kovacova, Michal Koc, Jana Kra¢merova, Vladimir Stich,

Lenka Rossmeislova

PLoS ONE. 2013 Dec, 8(12): e82086. IF 3.5

Adaptation of human adipose tissue to hypocaloric diet.
Lenka Rossmeislova, Lucia Mali$ova, Jana Kraémerova, Vladimir Stich

International Journal of Obesity (London). 2013 May, 37(5): 640-50. IF 5.2
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