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1. Introduction 

In comparison with other tissues, bone has a robust healing capacity. However, large 

bone defects regenerate only to a limited extent, and it remains a substantial 

therapeutic challenge to deal with this issue (Zhang et al. 2012). Critical bone defects 

observed in a variety of conditions, e.g. acute injuries, major fractures, hip implant 

revision, fall fractures in osteoporotic patients, and tumours all require resection of 

the affected bone. After removal of the bone, autograft or allograft bone tissue and 

prosthetic implants are commonly implanted. However, these methods have several 

limitations, including patient pain, the risk of an immune reaction, disease 

transmission, and a non-optimal interaction between the body and the implanted 

materials (Pearce et al. 2007; Tu et al. 2009). Bone tissue engineering is a promising 

novel discipline dealing with ways to bridge a bone defect with healing procedures 

that are stable and durable, and that do not introduce any new problems or 

complications (Bose et al. 2012; Hutmacher 2000). 

 

1.1. Bone composition 

Bone is a composite material consisting of collagen (17–20 wt.%) stiffened by an 

extremely dense filling and surrounded by calcium phosphate Ca10(PO4)6(OH)2 

crystals of hydroxyapatite (HA) (69–80 wt%), and other components, notably water, 

proteins and polysaccharides, living cells and blood vessels (Currey 2012; Ferreira et 

al. 2012; Marks and Odgren 2002). HA crystals are precipitated on the surface of the 

nanofibrils of type I collagen (Currey 2012). Apatite compounds in natural bone are 

needle-like or rod-like in shape, 40–60 nm in length, 10–20 nm in width, and 1–3 nm 
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in thickness (Abdal-hay et al. 2013). The outer surface of the bone is organized into a 

dense fibrous layer called the periosteum. The inner surface of the bone, including 

the inner surface of the trabeculae of cancellous bone, is lined with a delicate layer 

called endosteum. Cells of a different type are found in periosteum and in 

endosteum. All of them play an important role in the formation of bone tissue. The 

main types of cells include osteoblasts, osteocytes and osteoclasts. Osteoblasts are 

derived from osteoprogenitor cells. These cells are originated from mesenchymal 

stem cells (MSCs). Osteoblasts secrete type I collagen and some non-collagenous 

proteins, such as osteocalcin (OC), bone sialoprotein and osteopontin. Osteoblasts 

also promote the process of mineralization, which is thought to be initiated by the 

matrix vesicles that build from the plasma membrane of osteoblasts to create an 

environment for the concentration of calcium and phosphate, allowing crystallization 

(Höhling et al. 1978). Collagen serves as a template, and may also initiate and 

propagate mineralization independent of the matrix vesicles (Mackie 2003). 

Osteocytes are cells of fully-formed bone. Osteocytes originate from osteoblasts, and 

are located in small chambers called lacunae, which consist of products secreted by 

osteoblasts. Cytoplasmic processes of communication between osteocytes take 

place via small channels called canaliculi. Nutrients and waste products are 

exchanged through these channels. Osteocytes are also involved in bone 

remodeling, which is influenced by muscle activity. Osteocytes provide alerts to 

increase muscle activity by signaling to other osteocytes, and start the whole process 

of transforming the bone tissue in response to the load. For example, bone becomes 

compacted and stronger with frequent physical exertion or exercise, and becomes 

weaker with inactivity or a low level of physical activity. 

http://www.britannica.com/EBchecked/topic/72869/bone
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Osteoclasts are large branched bone cells which are capable of movement. 

Osteoclasts are multinucleated cells, mostly with up to 50 nuclei. Their origin is still 

not completely clear. Scientists initially thought that osteoclasts have the same origin 

as other bone cells, but recent studies have suggested that they originate from 

monocytes, apparently by merging several of these cells. The main function of 

osteoclasts is to degrade the bone mass using various collagenases and other 

enzymes that produce hydrogen ions and cause degradation of calcium crystals. The 

activity of osteoclasts is tightly regulated by various cytokines and hormones, and 

also by parathyroid hormone and calcitonin (Young et al. 2013). 

1.1.1. Two forms of bone that can be found in the human body 

Woven bone – this is an immature form with randomly arranged collagen fibers in 

the osteoid. Woven bone is formed when osteoblasts produce osteoid rapidly, as in 

fetal development, and in adult bone when pathologically rapid formation of new 

bone occurs, e.g. in fracture healing. The rapidly formed woven bone is eventually 

remodeled to form lamellar bone, which is physically stronger and more resilient. 

Virtually all bones in a healthy adult  are lamellar.  

Lamellar bone – this is composed of regular parallel bands of collagen arranged in 

sheets.  

Two forms of lamellar bone are known: 

Compact bone – this is composed of parallel bony columns which, in long bones, are 

disposed parallel to the long axis, i.e. in the line of stress exerted on the bone. Each 

column is formed from concentric bony layers or lamellae arranged around a central 

channel containing blood vessels, lymphatics and nerves. These neurovascular 

channels are known as Haversian canals, and together with their concentric lamellae 
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they form Haversian systems. Neurovascular bundles interconnect between 

themselves and also with the endosteum and periosteum through Volmann channels, 

which pierce the columns at right angles to the Haversian canals. Every Haversian 

system (osteon) develops by osteoclasts tunneling solid bone mass to form a broad 

channel in which blood vessels and nerves grow. It subsequently becomes internally 

lined with active osteoblasts, which provide a concentric lamellar bone.  

Trabecular (cancellous) bone is a network of interconnecting trabecules orientated in 

a position to provide maximum strength for minimum mass. Trabeculae have a thin 

external layer of endosteum containing flat inactive osteoblasts. They are composed 

of lammelar bone with scanty lacunae containing osteocytes. These spaces 

exchange metabolites via canaliculi, which communicate with each other and with 

blood sinusoids in the haematopoietic (red) marrow spaces.  

For most bones, we can determine a thick rigid outer shell of compact bone, the 

cortex, and a central medullary or cancellous zone of thin interconnecting narrow 

bone trabeculae. The number, thickness and orientation of the trabecular bone 

depends on the stress to which a particular bone is exposed. For example, there are 

many thick intersecting trabeculae in the constantly weight-bearing vertebrae, but 

very few in the centre of the ribs, which are not subjected to constant stress (Young 

et al. 2013). 

1.1.2. Types of bones 

Long bones – these are the bones of the extremities. The middle part of the bone is 

called the diaphysis, and the two ends of the bones are called the epiphysis. The 

external surface of the bone is enveloped in a dense fibrous layer called the 

periosteum, into which muscles, tendons and ligaments are inserted. The articular 



13 

 

surfaces of the epiphyses of long bones are protected by a layer of specialized 

hyaline cartilage, called articular cartilage. In the middle of the bone there is a pulp 

cavity, which in adulthood is filled with yellow bone marrow. Lengthening of the long 

bones by the process of endochondral ossification occurs at a epiphyseal plate 

situated at each end of the bone at the junction of the diaphysis and the epiphysis 

(for example the femur).  

Short bone – the structure is no different from that of the long bones, but all the 

dimensions are approximately the same. For example, vertebrae.  

Flat bone - on the outer and inner parts, flat bone has compact bone of different 

strengths, filled with cancellous bone with large trabeculae. Well into old age, the 

spaces are filled with red bone marrow (for example, shoulders, ribs and the pelvis) 

(Young et al. 2013). 

1.1.3. Bone repair and remodeling 

Bone regeneration is a complex of physiological processes of bone induction and 

conduction, involving several following stages with a numerous cell types and 

intracellular and extracellular molecular-signalling pathways (Dimitriou et al. 2011).  

At the bone healing site, a blood clot first forms. During bone fracture integrity of 

bone tissue is damaged associated with rupture of blood vessels. The blood flowing 

into the site of injury forms hematoma (Kolar et al. 2010). Platelets activate 

coagulation cascade and mediate fibrin clot formation and provide hemostasis 

(Figure 1). They also stimulate inflamantation process by interaction with immune 

cells (May et al. 2008) and secretion of numerous growth factors (Karshovska et al. 

2013). Growth factors bind to the cell surface and stimulate cell proliferation and 

differentiation. Main growth factors present in bone regeneration include basic 
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fibroblast growth factor (bFGF) which stimulates mesenchymal stem cell proliferation 

and maintain their differentiation potential (Ahn et al. 2009). Bone morphogenic 

proteins (BMPs) which play crucial role during early phases of osteogenic 

differentiation. Proosteogenic BMPs promote expression of early osteogenic markers 

(e.g. connective tissue growth factor (CTGF), inhibitor of DNA binding (ID) and Core 

binding factor alpha 1(Cbfa1)/Runt related transcription factor 2 (RunX2) in MSCs 

and stimulate their proliferation (Mehta et al. 2012). Among the most prominent 

proosteogenic BMPs we include BMP-2 and BMP-7. In addition, insulin-like growth 

factor – I (IGF-I), an antiapoptotic growth factor, also plays an important role in 

osteogenic differentiation of MSCs. The combination of rapid growth factor production 

and hypoxic conditions in the site of injury stimulate angiogenesis, which facilitates 

better distribution of nutrients, oxygen, pro-healing factors and exchange of waste 

products. Beside inflamantory and pro-angiogenetic role, the secreted cytokines and 

chemokines also stimulate activation and migration of progenitor cells. MSCs then 

differentiate into chondroblasts and progressively replace the fibrous granulation 

tissue with hyaline cartilage. This bridge, which is still flexible, is known as a 

provisional callus. The provisional callus then has calcium salts deposited within the 

cartilage matrix. Meanwhile, activated osteoprogenitor cells in the endosteum and 

periosteum lay down a meshwork of woven bone within and around the provisional 

callus. The provisional callus is transformed into a bony callus. Bony union is 

completed when the fracture site is fully bridged by woven bone. The remodelling of 

the bony callus to form mature lamellar bone is dependent on functional stresses 

(Pivonka et al. 2008). 
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Figure 1: Cell signalling and cell proliferation during wound healing cascade. PDGF, VEGF, 

and TGF play integral role in the cell migration. BMP releasing from the bone matrix play key 

role during early phases of osteogenic differentiation into osteoblast and chondrocytes 

(Hollinger et al., 2008). 

 

In the first year of life, the rate of turnover of the skeleton approaches 100% per 

year. The rate declines to about 10% per year in late childhood, and then usually 

continues at approximately this rate, or more slowly, throughout life, up to the age of 

a hundred years. After skeletal growth has been completed, bone turnover results 

primarily from remodeling. Remodeling is a coordinated cycle of tissue resorption and 

formation over extensive regions of bone and over prolonged periods. Physiological 

remodeling, removal and replacement of bone, at the same location, without affecting 

the shape or the density of the bone, through a sequence of events, is a process that 

includes osteoclast activation, bone resorption, osteoblast activation and also the 

formation of new bone at the resorption site (Figure 2) (Pivonka et al. 2008).  
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Figure 2: Bone tissue adaption by basic multicellular units executing bone remodelling 

(Pivonka et al., 2008). 

1.1.4. Mechanical properties of bone 

The combination of hard inorganic components and resilient organic components 

results in the excellent mechanical properties of bones. It is fascinating that compact 

bone specimens have tensile strength in the range of 700 to 1400 kg/cm2, and 

compressive strength in the range of 1400 to 2100 kg/cm2, which is the same 

magnitude as for aluminum or mild steel, but bone is much lighter. However, bones 

are characterized not only by significant stiffness. Stiffness, defined by initial modulus 

of elasticity in pressure. Initial modulus is the slope of the stress-strain curve between 

strain 2-10%), defines the edurance of material to the pressure loading. In other 

words, the high value of stiffness (modulus) is related to the high edurance of 

material to pressure, the low value of stiffness is related to the low edurance of 

material to pressure. The same value of pressure deforms more the material with low 

stiffness when compared with high stiffness material.but also by a high degree of 

elasticity, which is important for the ability of the skeleton to withstand mechanical 

stresses. Estimates of the modulus of elasticity of bone samples are of the order of 

420 to 700 kg/ cm2. These are much lower than the values for steel. The great 
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strength of bone is principally along its axis, and is therefor roughly parallel both to 

the axis of the collagen fiber and to the long axis of the mineral crystals (Young 

2013).  

1.1.1.1. Methods for measuring the biomechanical properties of bone 

From the point of view of its structure, bone is a very complex, anisotropic material. 

Here we find structures with macro, micro and nano dimensions. Therefore, there are 

many approaches for investigating and understanding the mechanical properties of 

bone. The greatest advances over old methods have probably been achieved with 

the use of ultrasonic measurements. After some disputes, it is now considered that 

this method is suitable for distinguishing between different types of bone from a 

histological point of view (Malik et al. 2003). Fatigue tests are another approach, 

which is now often applied using a calculation with the Young's modulus. These 

methods work well for materials with a smooth surface and an isotropic structure, but 

they are not fully functional in measuring the properties of materials such as bone. 

Real bones have complicated shapes, rough surfaces, and are more or less tough. 

Fracture mechanics has developed a method that can deal with these problems. The 

method attempts to characterize the tendency of a material to fracture as a material 

property, independent of the geometry of the specimen. It also attempts to determine 

how the actual geometry of the specimen, including the presence of flaws, will affect 

the fracture behavior. An interesting recent development is the concept of the ‘‘R-

curve’’ (Oliver and Pharr 1992). 

Oliver and Pharr (2004) described nanoindentation, a method that has recently 

become widely used for determining the Young’s modulus of very small parts of 

materials. Nanoindentation involves pressing a tiny probe onto the bony surface and 
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simultaneously measuring the load and the deformation. Finite Element Analysis 

(FEA) is one of the most widely used engineering analysis techniques in the world 

today. It originated in the 1970s, when powerful computers began to be widely 

available. FEA is a computer method for determining the strains in loaded models. 

FEA programs range from those that allow only two Young’s moduli in the whole 

system, and assume that the bone material is isotropic, to those that allow many 

Young’s moduli, anisotropy, etc. FEA is particularly useful for determining the strains 

in bones of complex shapes, like skulls and cancellous bone. In the ideal case, we 

can take a shape, digitize it in some way, turn it into an FEA model, attribute elastic 

material properties to each element, load the model with any loading, and see the 

distribution of strains produced in the model. Computer-aided tomography (CT) was a 

technological advance that enabled FEA to progress greatly in studies of bone. In 

micro-CT, the specimen is scanned in virtual slices with an x-ray beam, and an 

algorithm allows the density of various parts of the object to be calculated. The slices 

are then amalgamated to produce a 3- dimensional (3D) density image of the object. 

Each part of the object has both its density and its 3D position rendered objectively in 

numbers, and this data can be turned, almost directly, into an FEA model (Currey 

2012). Interferometry (ESPI, or electronic speckle pattern interferometry) is another 

method that can measure extremely small displacements, but extensive statistical 

techniques must be used to determine strains (Zaslansky et al. 2006). 

1.2. Current treatments for bone defects 

Under physiological conditions of the remodeling process, bone is able to repair itself 

until there is a defect of a critical size. Situations where the critical size is exceeded 

result mostly from trauma, congenital abnormities, infection or tumor resection. 
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Schmitz and Hollinger (1986) defined critical defects for animals as a defect of a size 

that will not heal during the lifetime of the animal. For large defects, human 

interventions are necessary in order to help or stimulate the healing process (Barrere 

et al. 2006). 

The introduction of bone banks and the development of standards in bone 

transplantation raised the false hope that a final solution to the treatment of bone loss 

had been found. However, the use of allografts is unsatisfactory, due to negative 

effects such as allergic reactions, rejection reactions, inflammation and other 

problems. The current standard treatment for damaged tissue is an autograft tissue 

transplant. The material is usually harvested from the iliac crest, the distal femur or 

the greater trochanter. The proximal tibia can also be used (Perry 1999). 

However, this method has several limitations including patient pain, morbidity at 

the harvesting site, and limited availability (Hutmacher 2007). 

Xenografts acquired from animal bone offer another option. However, the 

morphology of the bone is different from that of human bone, and there is a  risk of 

cross-species infection (de la Caffiniere et al. 1998). At the present time, well-

established substitutes are demineralized bone matrix (DBM), composites and 

calcium phosphates (hydroxy apatite and tri-calcium phosphate). These substances 

are widely used for their osteoconductive properties, and have been shown to 

improve the formation of new bone. Although clinical application of these materials 

has been successful where there are favorable bone health conditions, it is not 

effective for large and critical bone defects (Schlickewei and Schlickewei 2007). 

For regenerating critical bone defects, a promising future lies in improving of our 

knowledge about bone healing, osteoconductive and osteoinductive materials, and 

stem cell biology (Hutmacher 2000).  
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1.3. Bone Tissue Engineering 

Better knowledge in material science and technologies, and also in the area of MSCs 

and bioactive molecules has led to new opportunities in the treatment of large bone 

defects. Current approaches involve a combination of osteoconductive, 

osteoinductive and osteogenetic substances, in a biocompatible, bioresorbable, and 

cost-effective bone graft substitute to enhance the advantages and reduce the 

disadvantages of the concepts. 

The term “tissue engineering” first appeared in the literature in the mid 1980s with 

reference to surgical manipulation of tissues and organs or, in a broader sense, when 

prosthetic devices or biomaterials were used. The term “tissue engineering”, as it is 

used nowadays, was introduced into medicine in 1987. The agreed definition was: 

“Tissue engineering is the application of the principles and methods of engineering 

and life sciences toward the fundamental understanding of structure and function 

relationships in normal and pathologic mammalian tissue and the development of 

biological substitutes to restore, maintain, or improve function.” The early years of 

tissue engineering were based on cell and tissue culture approaches (Vacanti 2010; 

Vacanti and Langer 1999). 

Tissue engineering has been considered one of the most promising biomedical 

technologies of the 21st century, since the time when the BBC showed photos of the 

“mouse with a human ear”, which originated in the laboratory of Dr. Charles Vacanti 

from the University of Massachusetts Medical School, published in 1997 (Cao et al. 

1997). This work catapulted tissue engineering to the attention of the research world 

and also to attention of the general public. 
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One of the current strategies is to harvest stem cells from a patient, expand them 

in a cell culture, and seed them on to a scaffold. Current  challenges in tissue 

engineering are how to optimize the isolation, proliferation and differentiation of cells, 

and how to develop osteoconductive and osteoinductive scaffolds. When given 

specific biological stimuli, stem cells can develop into many types of specific mature 

cells via a process called cell differentiation.The scaffold should then support 

proliferation and differentiation of stem cells into the specific cells that will generate 

specific new tissue. The new tissue should grow on a scaffold that will gradually be 

completely resorbed as the new tissue grows. After implantation, the tissue-

engineered construct must be able to survive, restore normal function, e.g. 

biochemistry, mechanical integrity and structural integrity, and integrate with the 

surrounding tissues. In addition, the use of autologous cells eliminates the problem of 

immunorejection that can occur with transplants from donors (Boccaccini 2005). 

1.3.1. Bone tissue engineering scaffolds 

An ideal scaffold should meet the critical parameters needed for bone regeneration, 

e. g. appropriate mechanical, structural, chemical and surface properties. It should be 

biocompatible,  biodegradable at a rate adequate for the remodelling of the bone, 

and also osteoconductive and osteoinductive (Hutmacher 2007; Karageorgiou and 

Kaplan 2005).  

A biocompatible scaffold has a positive influence on cellular activity, facilitating 

molecular and mechanical signalling systems to optimise tissue regeneration, without 

eliciting any undesirable effects in those cells, and without inducing any undesirable 

local or systemic responses in the eventual host. 
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Biodegradable materials are solid polymeric materials which break down due to 

macromolecular degradation and are dispersed in vivo , but it is important to ensure 

that they remove themselves safely from the body after they are dispersed. The mass 

loss is accompanied by an increase in acidic byproducts. Massive release of acidic 

degradation and respiration byproducts can result in inflammatory reactions in vivo. 

Osteoconductive materials stimulate the growth of bone tissue on the implant 

surface. 

An osteoinductive material stimulates osteoprogenitor cells to differentiate into 

osteoblasts, which then initiate new bone formation. 

An osteoinductive and osteoconductive scaffold will serve as a scaffold for existing 

osteoblasts  as well as trigger the formation of new osteoblasts and promote faster 

integration of the graft (Boccaccini 2005; Hutmacher 2007; Karageorgiou and Kaplan 

2005).  

1.3.1.1. Materials and fabrication methods for bone tissue scaffolds 

Increasing knowledge about polymers has led to new opportunities with materials 

and also in fabricating suitable scaffolds for tissue engineering.  

Several biomaterials, including bioceramics, biopolymers, metals and composites, 

have been described as suitable materials for bone tissue engineering scaffolds 

(Bose et al. 2012; Dawson and Oreffo 2008; Hutmacher 2000; Karageorgiou and 

Kaplan 2005). Natural polymers (e.g. collagen, alginate, chitosan, hyaluronic acid, 

fibrin, silk fibroin) have a great advantage because of their biocompatibility and 

biodegradability, and because of their basic original function as the structural 

materials of tissues. However, they have low mechanical strength and high rates of 

degradation, so they have to be used in composites, or to be chemically  modified by 
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cross-linking (Hutmacher 2007). High producibility, controlled reproducibility and low 

cost are major advantages of synthetic polymers (e.g. poly(ε-caprolactone) (PCL), 

poly(lactic-co-glycolic acid) (PLGA), poly(L-lactide-co-ε-caprolactone) (PLCL), 

polyurethanes) (Bose et al. 2012; Hutmacher 2000; Karageorgiou and Kaplan 2005). 

However, limited biocompatibility and a low rate of biodegradability can be limiting 

factors for their use.  

Brittleness and slow degradation rates are disadvantages associated with ceramic 

implants, based mainly on HA (Hutmacher 2000).  

The disadvantages of any material for osteogenic applications can be overcome 

by using it in combination with other materials, i.e. by designing a so-called 

composite material. For example, the addition of HA particles into a collagen scaffold 

improved the mechanical properties of the scaffold (Kim et al. 2004; Lickorish et al. 

2004; Zhao et al. 2002). A number of fabrication technologies have been applied to 

produce 3D polymeric scaffolds with high porosity and a large surface area from 

biodegradable and bioresorbable materials. Solvent casting, particulate leaching, 

freeze drying, membrane lamination and melt holding, as well as rapid prototyping 

technologies, are conventional techniques for fabricating scaffolds fabricated in 

several structural forms such as hydrogels, porous foams and electrospun 

nanofibers.  The fabrication method and use of polymeric scaffolds for bone tissue 

engineering has been reviewed by Bose et al. (2012) and by Rezwan et al. (2006).  

The fabrication process influences the properties of the scaffold. For example, Hu 

et al. (2002) observed that a different morphology of the scaffold caused a different 

amount of water co-solvent content in dioxane. Dioxane contents above 3% (v/v) led 

to interconnected circular pores, but dioxane contents higher than 7% led to fibrous 

polymers with poor handling qualities. Increasing the concentration of the polymer 
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solution led to a smaller pore size and to diminished porosity  (Hu et al. 2002). 

O’Brien et al. (2004) desribed in their study an influence of freezing rate on pore 

structure in freezedried collagen scaffolds. Higher polymer molecular weight 

increased the median pore size and the porosity (Karageorgiou and Kaplan 2005). 

An ideal scaffold would not only act as a template for tissue growth and have 

control resorbability, but should also promote the activity and migration of cells of the 

tissue for self-regeneration. The scaffold can serve as a delivery system for the 

controlled release of cell- and gene-stimulating agents. A number of different 

bioactive substances can be agents of this kind. Bioactive substances could be 

incorporated into resorbable polymer or hydrogel scaffolds, which would release the 

substances into the body as the scaffold resorbs. Bioactive glasses and silicon-

substituted HA scaffolds could also release silicon and calcium ions in low 

concentrations. These ions have been found to stimulate seven families of genes in 

osteoblasts, increasing proliferation and bone extracellular matrix production 

(Frohbergh et al. 2012). Several techniques are used for chemically modifying the 

surfaces by releasing bioactive molecules such as HA or bioactive glass, for 

example, plasma-sprayed HA coatings and ion beam sputtering (Yang and Chang 

2001; Zyman et al. 1994).Heat treatment then needs to be applied to facilitate 

crystallization of amorphous coated HA to a bioactive crystalline form (Choi et al. 

2000; Yoshinari et al. 1994). However, the very high temperatures that are necessary 

for crystallization are not favorable for nonmetallic materials, such as polymers and 

bioactive molecules. Pulsed laser deposition (PLD) can be an alternative technique 

for HA coating and a more suitable method for non-metallic materials (Prosecka et al. 

2012). 
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1.3.1.2. Porosity and pore size  

Porosity and pore size, at the macroscopic level and also at the microscopic level, 

are important morphological properties of a biomaterial scaffold for bone 

regeneration. They play a critical role in bone formation in vitro and in vivo 

(Karageorgiou and Kaplan 2005). 

Porosity is defined as the percentage of void space in a solid (Leon 1998), and as 

a morphological property not dependent on the material. Pores are necessary for 

bone tissue formation and for integration of the surrounding tissue in vivo, because of  

the migration and proliferation of osteoblasts and mesenchymal cells, and also 

because of vascularization (Kuboki et al. 1998). The most common techniques used 

for creating porosity in a biomaterial are salt leaching, gas foaming, phase 

separation, freeze-drying and sintering, depending on the material used to fabricate 

the scaffold (Kuboki et al. 1998).   

On the basis of many studies, the minimum pore size required to regenerate 

mineralized bone is in general considered to be 100 μm, after the study by Hulbert et 

al. (1970). However, subsequent studies have shown better osteogenesis for 

implants with pores ˃300 μm (Gotz et al. 2004; Kuboki et al. 2001; Prosecka et al. 

2011; Tsuruga et al. 1997).  Large pores (100–150 and 150–200 μm) showed 

substantial bone ingrowth. Even pores of smaller size (75–100 μm) resulted in 

ingrowth of unmineralized  osteoma tissue. Smaller pores (10–44 and 44–75 μm) 

were penetrated only by fibrous tissue (Hulbert et al. 1970). These results were 

correlated with normal Haversian systems that reach an approximate diameter of 

100–200 μm (Hulbert  et al. 1970). 
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1.3.1.3. Mechanical properties of scaffolds for bone tissue engineering 

The mechanical properties of the 3D bone scaffold at the time of implantation should 

match that of the host tissue as closely as possible (Hollister et al. 2005). 

The mechanical properties of scaffolds are generally measured by way of their 

compressive properties. A widely-used method for measuring the mechanical 

properties of bone scaffolds is via the Young's modulus, also known as the tensile 

modulus or the elastic modulus, when the Young’s modulus is computed by 

determining the slope of the stress-strain curve along the elastic portion of the 

deformation (Hou et al. 2003; Xiong et al. 2002).  

1.3.2. Nanofibers in bone tissue engineering 

The main reasons why nanofibers are suitable materials for tissue engineering and 

regenerative medicine are the diameters and the orientation of the fibers, which 

correlate with the fibers of the extracellular matrix (ECM) (Liao et al. 2006; Pham et 

al. 2006). Electrospinning is a recent fiber-forming nanotechnology that enables us to 

create submicron fibers drawn from polymer solutions and melts by electrical forces. 

Electrospinning technology can be divided into needle, needleless and core-shell 

methods (Lukas et al. 2009). Electrospun nanofibers are characterized by high 

porosity and by an abundance of interconnected pores. In addition, nanofibrous 

scaffolds exhibit a nanotopography with a large surface-to-volume ratio, facilitating 

cell adhesion and proliferation (Liang et al. 2007; Liao et al. 2006). Due to this unique 

property, nanofibrous scaffolds offer numerous contact points for cells. Further 

advantages of nanofibrous constructs are the versatility of the polymeric materials 

that are used, and the fact that the surface can be chemically modified. Nanofibers 

have diameters similar to the diameter of natural extracellular matrix,  and they can 

http://en.wikipedia.org/wiki/Elastic_modulus
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be prepared from biocompatible and biodegradable synthetic polymers, e.g. poly 

(lactic acid) (PLA), PCL, Polyvinyl alcohol (PVA), polyurethanes, or natural polymers, 

such as chitosan, silk fibroin, collagen, hyaluronic acid and cellulose (Li et al. 2005; 

Liang et al. 2007). 

Alongside the favourable properties of nanofibers, there are some major limitations 

to the use of electrospun nanofibers for regenerating critical size defects, due to their 

insufficient mechanical stiffness and their 2- dimensional (2D) structure. It remains a 

challenging task to prepare functional 3D nanofiber scaffolds (Rampichova et al. 

2013). 

More promising systems for 3D tissue regeneration involve the use of nanofibers 

in composite systems, such as polymeric foam/nanofiber composites and 

hydrogel/nanofiber composites. Albanna et al. (2012) used chitosan fibres to improve 

the mechanical properties of chitosan-based heart valve scaffolds. In this study, PCL 

nanofibers prepared in our laboratory improved the mechanical properties of a 

collagen/HA scaffold for bone tissue engineering (Prosecka et al. 2014). 

Many fabrication methods, combinations of materials as well as functionalization of 

scaffolds for bone tissue regeneration for improving of their properties were 

described in recent studies. For their examples please see Table 1. 
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Table 1: Osteoinductive scaffolds for bone tissue engineering. 

 

Chemical 
composition 

Modification 
Bioactive 
molecules 

Method of 
preparation 

Reference 
Scaffold 
type 

 

 
Collagen type I 

 
VEGF 

Crosslinking by 
PEG 

Koch et al. 2006 

Hydrogel 
Collagen type I 

 
TGF-β 

Crosslinking by 
PEG 

Bentz et al.1998 

 
Blood 

PLGA 
microspheres 

IGF-I Blood clotting Meinel et al.2003 

 
Collagen type I 

PCL 
nanofibers 

PRP Freeze-drying Prosecká et al.2014 

 Chitosan/PLA 
 

PDGF Freeze-drying Lee et al. 2002 

Foam 
PLA Alginate fibers 

VEGF/BMP-
2 

Supercritical 
CO2 

Kanczler et al.2010 

 Poly(propylene 
fumarate) (PPF) 

Gelatin 
microparticles 

VEGF/BMP-
2 

Particulate 
leaching 

Patel et al. 2008  

 
PCL Nanoparticles 

BMP-2/BMP-
7 

3D printing Huri et al. 2013 

 
PCL 

Silk fibroin 
hydrogel 

BMP-2 Electrospinning Diab et al. 2012 

Nanofibers PCL Fibrin gel PRP/BMP-7 Electrospinning Berner et al. 2012 

 Silk fibroin 
 

BMP-2 Electrospinnig Li et al. 2006 

 
PLA-PEG 

 
protease K 

Emulsion 
electrospinnig 

Li et al. 2008 

 PLGA HA particles BMP-2 Electrospinning Nie et al. 2008 

 
PLGA 

 
bFGF 

Coaxial 
electrospinnig 

Sahoo et al. 2010 

 

1.3.2.1. Electrospun nanofibers as a drug delivery system 

Nanofibers have been utilized for delivering both water-soluble and water-insoluble 

substances, and serve as drug delivery systems (Blakeney et al. 2011; Liang et al. 

2007). Due to their enormous surface area, nanofibers enable the adhesion of 

diverse bioactive agents, such as growth factors, enzymes or nucleic acids (Albanna 

et al. 2012; Schofer et al. 2008). The kinetics of the release of the content is 

determined by the form of the interaction between the fibers and the adhered drug. 

However, drugs dissolved or dispersed in the materials from which nanofibers are 

produced are quickly released. Healing processes often require a slower release, 

over a period of days or even weeks. This is especially important in vivo. To 

overcome this obstacle, bioactive substances have been incorporated in the interior 
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of the nanofiber (Sill and von Recum 2008).  Coaxial electrospinning was introduced 

as a novel method for drug delivery, resulting in the production of core/shell 

nanofibers (Jiang et al. 2006). Buzgo et al. and Míčková et al. successfully developed 

a time-regulated drug delivery system based on coaxially incorporated platelet α -

granules for biomedical use (Buzgo et al. 2013) and a drug delivery system based on 

core/shell nanofibers with embedded liposomes (Mickova et al. 2012). 

A very promising approach for 3D tissues, such as bone, is to prepare composite 

scaffolds from microspheres and to combine them with various scaffolding systems, 

including hydrogels, ceramics, titanium implants and polymeric foams (Sahoo et al. 

2010; Venugopal et al. 2008). Microspheres have been used for delivering bioactive 

molecules, e.g. growth factors and drugs (Kempen et al. 2008; Wenk et al. 2009).  

A promising new approach, described by Knotek et al., was a suitable method for 

preparing a nano-/micro-mesh via cryogenic grinding (Knotek et al. 2012). 

The release of substances from nanofibers in vitro and in vivo has been described 

in recent studies (Kouhi et al. 2013; Martins 2010; Su et al. 2012; Zhu et al. 2013). 

1.3.3. Growth factors 

Improved understanding of growth factor action and molecular signalling pathways 

has opened opportunities for novel therapeutic options. General growth and 

differentiating factors involved in bone regeneration include BMPs, transforming 

growth factor-β1 (TGF-β1) and TGF-β2, IGF-1, platelet-derived growth factor 

(PDGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor 

(VEGF) and epidermal growth factor (EGF). Other proteins, such as fibrin, fibronectin 

and vitronectin support cell adhesion, osteoconduction and matrix formation. In 

addition, small molecules, such as hydrocortisone, dexamethasone, and β-glycerol 
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phosphate and synthetic growth factor are involved in osteogenesis (Dohan 

Ehrenfest et al. 2009; Wasterlain et al. 2012). 

Novel approaches are focused on the application of autologous platelet rich 

plasma (PRP) and its derivatives, mainly α-granules (Blair and Flaumenhaft 2009). 

These blood derivatives contain autologous growth factors that are involved in 

cartilage and bone growth, and that in addition eliminate adverse immunogenic 

reactions. Autologous PRP has already been used in clinical applications for their 

stimulating effect on cells and tissue healing, even without cell therapy (Mazor et al. 

2004).  

The positive effect of a combination of MSCs and PRP on bone healing and 

remodeling have been described in many studies (Chen et al. 2012; Kitoh et al. 

2004). Clearly, TGF-β1 and TGF-β2, as a part of PRP, are general growth and 

differentiating factors involved in bone regeneration via the mitogenesis of osteoblast 

precursors, and are also involved in inhibiting osteoclast formation and bone 

resorption. IGF-1 accelerates bone formation  via increasing the number of 

osteoblasts. In addition, PRP contains three important proteins in blood - fibrin, 

fibronectin, and vitronectin - which act as cell adhesion molecules for 

osteoconduction and as a matrix for bone, connective tissue, and epithelial 

development (Dohan Ehrenfest et al. 2009; Wasterlain et al. 2012; Wrotniak et al. 

2007).  

 Currently, several key factors, such as the positive effect of leucocytes or fibrin 

and a suitable and reproducible way to prepare PRP, are still under discussion. 

(Wasterlain et al. 2012). In several studies whole PRP has been compared, for 

example, with PPP (platelet poor plasma), which includes only blood plasma. 
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Pietrzak et al. (1997) found improved wound healing for PPP in comparison with 

untreated controls in vivo, but it was not as effective as PRP.  

Injecting growth factors into the site of the defect is one of many approaches. 

However, these systems are rather difficult to apply in clinical practice,  due to rapid 

diffusion of active substances away from the site of tissue regeneration (Tabata 

2000). This problem can be solved by using a suitable biocompatible scaffold, which 

is able to carry the particular growth factors. The functionalization of biomaterials with 

growth factors has been well documented in several studies. For example, 

Swiontowski et al. used high doses of osteo-inductive BMP-2 loaded onto degradable 

collagen sponge matrices for bone regeneration (Swiontkowski et al. 2006). 

However, no system has yet been devised that can deliver the growth factors directly 

into the defect, protect the bioactivity of the growth factors and control their release in 

a suitable manner. 

1.3.4. Cells in bone tissue engineering 

Primary osteoblasts, osteosarcoma cell lines and osteoprogenitor cells have been 

used for in vitro or in vivo testing of bone tissue engineered constructs (Mendes et al. 

2002). Each of them has its pros and cons. For example, the pluripotency of 

osteoprogenitor cells decreases with passage numbers. However, cell lines that 

provide more reproducible results may not represent the real situation (Rochet et al. 

2003).  

Stem cell biology has become an important topic in regenerative medicine. Stem 

cells are undifferentiated cells with the ability to divide in a culture and give rise to 

different forms of specialized cells. They are found in multicellular organisms. 

According to their source, stem cells are divided into "adult" and "embryonic" stem 

http://en.wikipedia.org/wiki/Organisms
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cells. Embryonic stem cells are isolated from the inner cell mass of blastocysts, and 

adult stem cells are found in various tissues. In adult organisms, stem cells and 

progenitor cells act as a repair system for the body, replenishing adult tissues 

(pluripotent cells). In a developing embryo, stem cells can differentiate into all the 

specialized cells (ectoderm, endoderm and mesoderm), but they also maintain the 

normal turnover of regenerative organs, such as blood, skin, and intestinal tissues 

(multipotent cells) (Vernon et al. 2012).  

Although embryonic stem cells seem to be the gold standard in stem cell research, 

there is still a large ethical debate about their use (Melville et al. 2006). Therefore, 

Bone-marrow derived MSCs are considered to be the most researched post-natal 

stem cells. They can be isolated from numerous tissues throughout the body, e.g. 

bone marrow, adipose tissue, muscle, periosteum, dental tissue, umbilical cord, etc. 

(Campagnoli et al. 2001; Gronthos et al. 2002; Seo et al. 2004; Schugar et al. 2009; 

Zuk et al. 2002).  

Under suitable conditions, stem cells clearly have the potential to differentiate cell 

lineages and thus to play a key role in tissue engineering and regenerative medicine.  

Stem cells can differentiate into osteogenic lineages when cultured in the presence of 

dexamethasone, ascorbic acid and β-glycerophosphate (Dawson and Oreffo 2008) 

and can potentially be used for treating large bone defects (Vernon et al. 2012). 

Autologous stem cells as a source of donor cells have numerous advantages for 

regenerative medicine. These include low donor site morbidity, a diminished or 

absent immune response, and high proliferative potential (Cancedda 2003; Stevens 

et al.  2008).  

It is still an open question which cell type to focus on in order to understand the 

whole process of bone regeneration, and which cell type is the most suitable for a 

http://en.wikipedia.org/wiki/Embryonic_stem_cell
http://en.wikipedia.org/wiki/Inner_cell_mass
http://en.wikipedia.org/wiki/Blastocyst
http://en.wikipedia.org/wiki/Adult
http://en.wikipedia.org/wiki/Progenitor_cell
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tissue engineering approach. A new strategy is focused on co-culture systems. For 

example, Rochet et al. solved the problem of insufficient vascularization of bone 

tissue-engineered constructs via co-cultures of  MSCs with endothelial cells. Co-

cultures are initiated in order to stimulate vascularization and bone formation 

simultaneously (Rochet et al. 2002).  

De Boer et al. have recently addressed another example of co-cultures, the 

application of transgenic luminescent cell cultures coupled with MSCs (de Boer et al. 

2006).  

1.3.4.1. Static and dynamic cultivation of cells 

Control of the hydrodynamic and biochemical environment is essential for the 

successful in vitro engineering of 3D scaffold/tissue constructs for potential clinical 

use (Hutmacher 2000).  

Gradients in tissue quality emerge, including inhomogeneous cellular proliferation 

and differentiation from outer areas of the scaffolds toward the center with increasing 

size of the cell-seeded scaffold.  In vivo, the distance between cells and capillaries, 

which provide nutrients and oxygen and at the same time account for waste 

elimination, ranges from 20 to 200 um (Malda et al. 2007; Malda et al. 2004; Malladi 

et al. 2006; Muschler et al. 2004). In vitro, sufficient nutrition and oxygenation of cells 

by diffusion is limited to a distance of 100–200 um, because of poor difusion capacity 

and solubility in aqueous solutions of oxygen (Carrier et al. 2002; McClelland and 

Coger 2000).  

 It has been hypothesized that hypoxia is the limiting factor in scaling up 3D 

cultures in vitro. Various cellular mechanisms, including the cell cycle, cell 

proliferation, apoptosis, and the glucose metabolism are influenced by oxygen 
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concentration (Wang et al. 2007). Recent studies have observed that the process of 

osteogenic differentiation and new bone tissue development are also highly 

dependent upon the oxygen level (Wang et al. 2007). Bioreactors offer a a promising 

solution to the diffusional limitations of a static culture, and a way to control the 

cultivation environment (Abousleiman and Sikavitsas 2006; Martin and Vermette 

2005; Schumacher et al. 2010). A fluid dynamic microenvironment provided by a 

bioreactor can mimic the interstitial fluid conditions present in natural bone in a 

macroporous scaffold architecture. Bioreactors serve larger and better organized 3D 

cell communities in in vitro cultures than can be achieved using standard tissue 

culture techniques (Freed et al. 1998; Goncalves Fda et al. 2012; Schumacher et al. 

2010).  

In general, bioreactors are designed to perform at least one of the following 

functions: provide uniform cell distribution, continuously supply physiological nutrients 

and gases and regulate the required cell/tissue culture conditions for a long period of 

time, provide mass transport to the tissue, expose tissue to physical stimuli, provide 

information about the formation of 3D tissue (Barron et al. 2003). Many systems have 

been developed for the specialized requirements of targeted tissue, including spinner 

flask bioreactors, rotating wall bioreactors, compression bioreactors, strain 

bioreactors, hydrostatic pressure bioreactors and flow perfusion bioreactors (Kasper 

et al. 2007). In addition, numerous combinations of various types of bioreactor have 

been used in order to better mimic the in vivo environment in vitro. For example, a 

combination of compression, tensile strain or hydrostatic bioreactors with added 

perfusion (Carver and Heath 1999; Watanabe et al. 2005). Plunkett and O'Brien 

(2011) described how a combination of a perfusion period for nutrient delivery and 

waste removal and a stimulation period may deliver enhanced fluid transport with 
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enhanced stimulation of cells and act as a suitable combined bioreactor for bone 

cells. 
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2. The aims of the study 

The work presented in this thesis is focused on the following topics: 

1. Find the optimal composition for a bone scaffold 

2. Functionalize the scaffold with bioactive molecules 

3. Test the scaffold in vitro and in vivo 

4. Design a suitable scaffold with potential for clinical use, as an outcome of the   

    experiments  

 

The experimental part of the manuscript describes three experiments, two in vitro and 

one in vivo. 
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3. Experiments  

As has been mentioned above, bone is a structure composed of a mineral phase 

formed by Ca10(PO4)6(OH)2 crystals of HA deposited within an organic matrix (≈95% 

is type I collagen) (Marks and Odgren 2002). Collagen and HA are widely used 

scaffold materials for bone regeneration, because of their excellent biocompatibility 

with hard tissues, high osteoconductivity, bioactivity, and noncytotoxicity 

(Karageorgiou and Kaplan 2005; Sukhodub et al. 2004). However, although many 

reports have been presented, the optimal collagen/HA ratio for bone regeneration, 

especially for MSCs, remains unclear (Bandyopadhyay-Ghosh 2008; Liu et al. 2007; 

Roveri et al. 2003; Serre et al. 1993; Wahl and Czernuszka 2006). In addition, the 

effect of the collagen/HA ratio on the mechanical parameters of a scaffold, and also 

on cell adhesion and proliferation, is not well established. The main focus of the first 

experiment (Experiment I) presented here was therefore to determine the effect of 

the collagen/ HA ratio on the scaffold structure, and also on the seeding, adhesion 

and proliferation of MSCs differentiated into osteoblasts. 

Cells, especially autologous cells, and smart (functionalized) scaffolds enriched 

with bioactive molecules, preferentially serving as a controlled delivery device, 

represent a new approach in bone tissue engineering (Cancedda 2003). 

Improved understanding of growth factor action and molecular signalling pathways 

has opened opportunities for novel therapeutic options. For most tissue engineering 

approaches, it is necessary to apply appropriate growth factors concentrations with 

cells and an optimal scaffold to trigger the sequence of overlapping events required 

for tissue formation and growth (Prosecka et al. 2014). 
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PRP has excellent properties for tissue engineering and regenerative medicine (Bi 

et al. 2010; Kitoh et al. 2004). PRP releases multiple growth factors such as PDGF, 

TGFβ, FGF, VEGF, IGF-1, and EGF, and is expected to have a tissue regeneration 

rate higher than that of single growth factors (Bi et al. 2010; Everts et al. 2006). 

Platelets also have an important role in the complex local inflammatory response, 

promote angiogenesis (Simpson et al. 2006), and recruit mesenchymal cells (Veillette 

and McKee 2007).  

The key parameters for scaffolds for suitable bone regeneration are their 

mechanical properties. A combination of 3D matrix and nanofibers can improve the 

mechanical properties of the scaffold (Albanna et al. 2012).  The aim of the second 

experiment (Experiment II) was to optimise the previously reported composite 

collagen/HA foam scaffolds (Prosecka et al. 2011) from a biomechanical point of 

view, and enrich them with proliferation and differentiation factors suitable for clinical 

applications. A 3D scaffold of type I collagen and HA functionalized with PCL 

nanofibers (Coll/HA/PCL) to strengthen the mechanical properties of the scaffold and 

enriched with autologous MSCs in osteogenic media, and a thrombocyte rich solution 

(TRS) to increase the osteoinduction and osteoconduction of the scaffold was 

prepared and tested in vivo in an experimental rabbit model.  

The nanofibers can not only be modified on their surface but also enriched in their 

core with various drugs that can be released slowly over the course of days or 

weeks. The aim of the third Experiment (Experiment III) was to find a suitable surface 

modification, which an essential step in constructing artificial cell-seeded systems. 

HA, which is similar to the apatite of living bone, can be used as a suitable material 

for improving cell proliferation and differentiation into osteoblasts (Karageorgiou and 

Kaplan 2005; Kuboki et al. 1998). Coating bone implants with HA improves the 
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osteoinductivity of the scaffolds and promotes ingrowth of the surrounding bone 

tissue into the implant (Ducheyne et al. 1990; Klein et al. 1991; Tisdel et al. 1994). A 

number of techniques are used for producing thin HA films. Each of them has its pros 

and cons. For example, plasma-sprayed HA coatings, where the HA is bound 

mechanically, have limited chemical bonding, and cracks, pores and other impurities 

limit their mechanical strength in contact with a substrate and the stability of the layer 

(Yang and Chang 2001; Zyman et al. 1994). Another coating technique is ion beam 

sputtering, which produces an amorphous coating. Heat treatment is subsequently 

necessary to produce crystals (Choi et al. 2000; Yoshinari et al. 1994). The very high 

temperatures that are necessary for crystallization are not favourable for thermo 

sensitive materials, such as polymers and bioactive molecules. Pulsed laser 

deposition (PLD) is used as an alternative HA coating technique (Bao et al. 2005; 

Blind et al. 2005). PLD employs an intense laser beam to evaporate the material. 

Subsequent condensation on a mat can form a very thin layer (only a few atoms in 

depth).  

A comparison of different thicknesses of the HA layer deposited on the surface of 

nanofibers was studied in Experiment III. In addition, the study confirmed the 

promising potential of coaxial PCL/PVA nanofibers, e.g. as a drug delivery system 

(Prosecka et al. 2012). 
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3.1. Experiment I  

Optimized conditions for mesenchymal stem cells to differentiate 

into osteoblasts on a collagen/ hydroxyapatite matrix 

Collagen/HA composite scaffolds are known to be suitable for seeding with MSCs 

differentiated into osteoblasts, and for the in vitro production of artificial bones. 

However, the optimal collagen/HA ratio remains unclear. We demonstrate in our work 

the influence of the different collagen/HA ratio on cell adhesion, proliferation and 

differentiation, and the mechanical properties of the scaffold.  

3.1.1. Methods I 

3.1.1.1. Scaffold preparation  

Bovine collagen type I was supplied as an 8 wt % aqueous solution (VUP, Brno, CZ) 

and was freeze-dried (ALPHA 1-4 LSC, CHRIST, -55º C, 15 Pa, and 24 h) to obtain 

100% pure collagen I. HA was used in the form of a nanoparticle powder with an 

average particle size of 350 nm (Research Institute of Inorganic Chemistry, Usti nad 

Labem, CZ). N-(3-dimethylamino propyl)-N’-ethylcarbodiimide hydrochloride (EDC) 

and N-hydroxysuccinimide (NHS) (Sigma Aldrich, Germany), used as cross-linking 

agents, and Na2HPO4.12 H2O, used as a washing agent, were diluted in water and 

used as received. Collagen solutions with concentrations of 0.5 (Col0.5/HA50), 1 

(Col1.0/HA50), 1.5 (Col1.5/HA50), or 2 (Col0.5/HA50) wt% were prepared from 

lyophilized collagen in distilled water using an IKA disintegrator at 8000 rpm. The 

solutions were subsequently centrifuged for 5 min at 2879 x g to remove air bubbles. 

Defined collagen solutions were then mixed in the disintegrator with a calculated 

amount of HA powder for 1 min to prepare 30 (Col0.5/HA30), 40 (Col0.5/HA40), 50 
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(Col0.5/HA50), 60 (Col0.5/HA60), or 70 (Col0.5/HA70) wt% mixtures of HA in the 

collagen solutions. The mixtures were placed in a glass Petri dish and were allowed 

to remain until the air bubbles disappeared without centrifugation. The homogenized 

mixtures were frozen at -35º C in 24-well culture plates  for 24 h and were then 

lyophilized at -55º C and 15 Pa for 24 h. The lyophilized porous collagen-based 

scaffolds were cross-linked by an ethanol solution containing EDC and NHS. After 

cross-linking, the samples were washed in a solution of Na2HPO4.12 H2O and finally 

in distilled water, followed by lyophilization at -55º C and 15 Pa for 24 h. The 

morphology of the lyophilized cross-linked collagen scaffolds was observed with a 

Philips Quanta 200 scanning electron microscope (SEM) (Figure I/1). On the sample 

surface, a conductive layer of 3–4 nm was steamed by a Polaron SC7640 sputter 

coater before analysis. The pore size of the collagen matrices and the size of the 

pores were characterized from the images, using the MATLAB image analysis 

program.  

3.1.1.2. Isolation, separation, and cultivation of pig MSCs 

Blood marrow aspirates were obtained from the os illium (tuber coxae ala osis illi) of 

anesthetized miniature pigs (age 6–12 months). The bone marrow blood was 

aspirated into a 10-mL syringe with 5 mL Dulbecco’s phosphate-buffered saline 

(PBS), 2% fetal bovine serum (FBS, StemCell Technologies), and 25 IU heparin/mL, 

connected to a bioptic needle (15 G/70 mm). Under sterile conditions, the bone 

marrow blood (about 20 mL) was deposited over 15 mL of Ficoll-Paque PLUS 

(StemCell Technologies). After centrifugation at 400 x g for 30 min at room 

temperature, the dense gradient separated erythrocytes and granulocytes as a pellet 

in the bottom part of the tube; mononuclear cells were localized in an opalescent 

layer between the Ficoll and the blood plasma. This layer was removed, washed in 
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culture medium (see below), and used for propagation under in vitro conditions. Cell 

numbers and viability were analyzed using a Vi-CELL (Series Cell Viability 

Analyzers), and about 99% viable cells were found. The cells were seeded in tissue 

culture flasks at a density of 800.000 cells/cm2 and cultured at 37º C in a humidified 

atmosphere with 5% CO2 Minimum Essential Media (MEM) medium with Earle’s salts 

with L-glutamine (PAA), supplemented with 10% FBS, and penicillin/streptomycin 

(100 I.U./mL and 100 μg/mL, respectively) was used as the culture medium. MSCs 

seeding on scaffolds 6 mm in diameter and 10 mm in thickness were sterilized using 

plasma sterilization. Before seeding with MSCs, the scaffolds were de-aerated and 

incubated in a differentiation medium (MEM with L-glutamine, 20% FBS, 100 I.U./mL 

penicillin, and 100 μg/mL streptomycin), supplemented with 100 nM dexamethasone, 

40 μg/mL ascorbic acid-2-phosphate, and 10 nM glycerol 2-phosphate disodium salt 

hydrate, at 4–8ºC for 14 days. Cells were seeded on scaffolds at a density of 70 x 

103/ cm2 in 96-well plates and centrifuged at 7 x g for 20 min. Scaffolds with seeded 

MSCs were cultivated in differentiation media supplemented with 10% FBS. The 

medium was changed every 3 days. 

3.1.1.3. Cell adhesion on scaffolds 

Staining with the DiOC6 (3,3-diethyloxacarbocyanine iodide) fluorescent probe was 

used to detect the adhesion of cells on the scaffolds. Samples were fixed with frozen 

methyl alcohol (-20ºC) for 10 min and rinsed with PBS. Subsequently, DiOC6 (0.1–1 

μg/mL in PBS, pH 7.4) was added and incubated with the samples for 45 min at room 

temperature. The samples were rinsed with PBS (pH 7.4), and proprium iodide (5 

μg/mL in PBS, pH 7.4) was added for 10 min; they were then rinsed with PBS (pH 

7.4) again and visualized using a confocal microscope (Zeiss LSM 5 DUO) (Figure I/ 

2).  
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3.1.1.4. Cell viability analysis by the MTT test 

The MTT test was used for in vitro measurements of the metabolic activity of the 

cells. MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] is 

reduced to purple formazan by mitochondrial dehydrogenation in cells, indicating a 

normal metabolism. 50 μL of MTT (1 mg/mL in PBS, pH 7.4) were added to the 

medium (150 μL), and the samples were further incubated at 37ºC for 4 h. Formazan 

crystals were solubilized with 100 μL of 50% N,N-dimethylformamide/20% sodium 

dodecyl sulfate (SDS)/H2O, pH 4.7. 200 μL of the suspension were removed, and the 

optical density of the formazan was measured (sample 570 nm and reference 690 

nm). The absorbance of the samples incubated without cells was deducted from the 

absorbance of the cell-seeded samples (Figure I/ 3). 

3.1.1.5. Cell viability analysis by the Live/dead staining 

Confocal microscopy and live/dead staining (BCECF-AM/ propidium iodide) were 

used to determine cell viability. 2,7-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein 

acetoxymethyl ester (BCECF-AM, diluted 1:100 in medium) was added to scaffolds 

containing seeded cells and incubated for 45 min at 37ºC and 5% CO2 for live cell 

detection. After rinsing with PBS (pH 7.4), propidium iodide (5 μg/mL in PBS, pH 7.4) 

was added for 10 min, and then the scaffolds were rinsed again with PBS (pH 7.4) 

and visualized using a Zeiss LSM 5 DUO confocal microscope. For each scaffold, the 

number of live/dead cells was counted (Ellipse software) and averaged. Viability was 

calculated as the percentage of live cells from the total cell number in a defined area 

(Figure I/ 4 a, b, c, d).  
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3.1.1.6. Detection of osteogenic marker by Imunofluorescent staining 

Using indirect immunofluorescent staining, OC and type I collagen were detected as 

markers of osteogenic differentiation. Samples were fixed with 10% 

formaldehyde/PBS for 10 min, washed in PBS, and then incubated in 3% FBS in 

PBS/0.1% Triton at room temperature. The primary antibody against OC (mouse anti- 

OC, Abcam, USA) or against type I collagen (mouse antiprocollagen type I, 

Developmental Studies Hybridoma Bank, USA) was diluted 1:20 and added to the 

samples for 1 h at room temperature. Then, the samples were washed with 

PBS/0.05% Tween for 3, 10, and 15 min. The secondary antibody (Alexa Fluor 635-

conjugated goat anti-mouse IgG, Invitrogen) was diluted 1:300 and added for 45 min 

at room temperature. After washing, an antifading solution was added [PBS/90% 

glycerol/2.5% 1,4-diazabicyclo( 2,2,2)octane]. OC staining was visualized using a 

ZEISS LSM 5 DUO confocal microscope (Figure I/ 4 e, f, g, h).  

3.1.1.7. Quantitative real-time PCR analysis 

Total RNA was extracted using an RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. This kit is based on a technology that combines the 

selective binding properties of silica-gel-based membranes with the speed of 

microspin technology. After the end of the procedure, total RNA was stored at -20ºC. 

The cDNA from 1μg of total RNA was used as a template. Synthesis of cDNA was 

performed by a standard procedure described in our previous work (Tvrdik et al. 

2005). OC and bone sialoprotein (BS) mRNA expression levels were quantified by 

means of a LightCycler 480 (Roche Diagnostics, Mannheim, Germany) using the 

double-strand-specific dye SYBR Green I (Roche Diagnostics, Mannheim, Germany) 

according to the manufacturer’s protocol. The following primers were used: BS, 
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sense 5-CGA CCA AGA GAG TGT CAC-3, antisense 5-GCC CAT TTC TTG TAG 

AAG C-3 (498 bp); OC, sense 5-TCA ACC CCG ACT GCG ACG AG-3, antisense 5-

TTG GAG CAG CTG GGA TGA TGG-3  (204 bp) and beta-actin, sense 5-AGG CCA 

ACC GCG AGA AGA TGA CC-3, antisense 5-GAA GTC CAG GGC GAC GTA GCA 

C-3 (332 bp). The quantitative real-time polymerase chain reaction (real- time PCR) 

conditions were as follows: initial denaturation at 95ºC for 10 min, followed by 45 

cycles of denaturation at 95ºC for 15 s, annealing at 54ºC for 10 s, and extension at 

72ºC for 20 s. The expression levels of OC and BS mRNA were adjusted using the 

level of beta-actin or phosphogycerate kinase (PGK) mRNA as housekeeping genes 

and expressed as the ratio of OC or BS to actin or PGK, respectively. The evaluation 

of the expression of OC and BS mRNA was performed using quantitative real-time 

PCR analysis (p < 0.05, two-sided t-test) (Figure I/ 5, 6). 

3.1.1.8. Mechanical testing of the scaffolds 

The Young’s moduli of elasticity of the porous bone scaffolds under compression 

were obtained at room temperature, using a Zwick/Roel traction machine equipped 

with a 1 kN load cell. The loading velocity was 1 mm/min, in accordance with the 

studies of Narbat et al. (2006) and Olah et al. (2006). 

The specimens were cylindrical in shape (about 12 mm in height and 12 mm in 

diameter). Five samples and 10 measurements were performed in each experiment. 

Mechanical loading was applied until the scaffold was compressed to 75% of its 

original thickness. The compressive moduli were determined by applying linear 

regression to part of the stress–strain curves at 2–10% strain (initial modulus Einit). 

The stress was defined as the force divided by the initial area, and the strain was 

defined as the deformation of the sample (thickness) divided by the initial thickness of 
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the specimen. Our own software written in Python, an Open Source object-oriented 

programming language, was used for the evaluation (elfpy2010). This software 

enables a semiautomatic evaluation of mechanical measurements, namely finding 

the moduli of elasticity, ultimate stresses, and strains. Pressure or tension loading 

with various loading variations can be used, e.g. cyclic loading, loading with linear 

elongation, or loading up to rupture. Text files obtained from the measurement device 

with force, elongation, and time records can be loaded and processed by the 

software. The stresses and strains can be determined by defining the initial areas of 

the measured specimens, as was mentioned above. The software can be left to find 

the almost-linear parts of the stress–strain curves automatically and, by using the 

linear approximation of these parts, to determine the moduli of elasticity. The regions 

used for the linear approximation can also be set by the user. For ressure 

measurements of the bone scaffolds, a user-defined region was used, determined as 

the region of strain between 2 and 10%, and the initial modulus was computed (Table 

I/  1). 

3.1.1.9. Statistical analysis 

Quantitative data is presented as mean/standard deviation (SD). For the in vitro tests, 

the average values were determined from at least three independently prepared 

samples. The results were evaluated statistically using one-way analysis of variance 

(ANOVA) and the Student–Newman–Keuls method. Statistica base 9.1 (Statsoft, 

Tulsa, OK) was applied to the results of the mechanical measurements. The 

normality of the data was tested with the Shapiro–Wilk W test. The correlation 

between the Young’s moduli of elasticity and the amount of collagen and HA, 

porosity, and pore size was determined by the Spearman Rank Order Correlation 

test.  
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3.1.2. Results I 

3.1.2.1. SEM of the Col I/ HA composite scaffold 

The morphology of the lyophilized cross-linked collagen scaffolds was observed with 

a Philips Quanta 200 scanning electron microscope (SEM) (Figure I/1).  

 

Figure I/ 1: SEM of the Col I/ HA composite scaffold. The presence of Col 0.5/HA 50 in a 

composite scaffold (a) resulted in a pore size of 405±74, while Col 2.0/HA 50 (b) resulted in 

an average pore size of 108±28. Quantitative data is presented as mean ± SD. Average 

values were determined from at least three independently prepared samples. 

3.1.2.2. Adhesion of MSCs 1 day after scaffold seeding 

MSCs were adhered on all of the samples. The significantly greatest adhesion was 

observed at sample Col0.5/HA50 in comparison with the other samples (Figure I/ 2).  
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Figure I/ 2: Adhesion of MSC 1 day after scaffold seeding. The MSCs on the scaffolds 

were stained with a DiOC6 fluorescent dye to vizualize the living cells. The areas covered by 

adhered cells were measured using a confocal microscope and Ellipsa software. Areas 

containing 100 cells were measured and averaged for each scaffold. Error bars refer to SD. 

The results were evaluated statistically using one-way analysis of variance (ANOVA) and the 

Student–Newman–Keuls method. Significant differences (p < 0.05) were observed: 

Col0.5/HA50 > Col0.5/HA40 > Col0.5/HA60 > Col0.5/HA70> Col1.0/HA50 > Col1.5/HA50> 

Col0.5/HA30, Col2.0/HA50.   

3.1.2.3. Cell proliferation by the MTT test 

Despite the lower cell adhesion, the composite scaffold containing 40% HA 

(Col0.5/HA40), displayed similar cell proliferation 28 days after seeding as did the 

scaffolds composed of Col0.5/HA50. Similar results were also observed for the 

composite samples containing 50% HA in the presence of 1.0% collagen 

(Col1.0/HA50). By contrast, the composite scaffolds containing 70% HA and, in 

particular, 30% HA (Col0.5/HA70 and Col0.5/HA30) were much less efficient in terms 
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of cell proliferation. The Col0.5/HA30 scaffolds were eliminated from further testing 

because of insufficient cell adhesion and proliferation (Figure I/ 3). 

 

 

Figure II/ 3: Cell proliferation by the MTT test. Proliferation of differentiated MSCs (MTT 

test) 7, 14, 21, and 28 days after scaffold seeding. The error bars refer to SD. The results 

were evaluated statistically using one-way analysis of variance (ANOVA) and the Student–

Newman–Keuls method. Significant differences (p < 0.05) were observed: day 7: 6 > 2 > 7 > 

8 > 3 > 1 > 4 > 5; day 14: 6 > 7 > 2, 3, 4 > 5 > 1, 8; day 21: 2 > 3 > 6, 4 > 5 > 7 > 1; day 28: 2 

> 3, 6 > 4 > 5 > 1, 7, 8. 

3.1.2.4. Cell viability and osteogenic differentiation 

Cell viability and osteogenic differentiation were detected by confocal microscopy. 

The highest viability was again detected on the Col0.5/HA50 scaffolds after 28 days 

of cultivation and deteriorated with higher concentrations of both collagen and HA. 

Both OC and type I collagen were present in all samples. The highest concentration 

of proteins was again detected on the Col0.5/HA50 scaffolds 28 days after seeding, 

and was reduced with higher concentrations of both collagen and HA (Figure I/ 4).  
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Figure I/ 4: Cell viability and osteogenic differentiation by confocal microscopy. 

Fluorescence confocal microscopy of differentiated MSCs. Viability of cells by live/dead 

staining (BCECF-AM/propidium iodide) 28 days after seeding: Col0.5/HA50 scaffold (a), 

Col0.5/HA70 (b), and Col2.0/HA50 (c). Immunofluorescent detection of OC 28 days after 

seeding: Col0.5/HA50 scaffold (d), Col0.5/HA70 (e), and Col2.0/HA50 (f). 

3.1.2.5. Quantitative Real-time PCR analysis  

The concentration of OC and BS were analyzed by quantitative real-time PCR 

analysis at scaffolds with different amounts of HA and Collagen. The increasing 

concentration of OC observed over time demonstrated the gradual differentiation of 

MSCs into osteoblasts. The highest production of OC was observed for the 

composite scaffolds containing Col0.5/HA40 and Col0.5/HA50 and also Col1.0/HA50. 

However, the Col0.5/HA60 and Col0.5/HA70 scaffolds were also characterized by a 

comparable production of OC. The significantly greatest production of BS was 

observed for the Col0.5/HA50 composite scaffolds 28 days after seeding. The 
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Col0.5/HA 40 samples were also characterized by a significantly elevated production 

of BS compared to the Col0.5/HA60 and Col0.5/HA70 samples (Figure I/ 5, 6).  

 

 

Figure I/ 5: Real-time PCR analysis of scaffolds with different amounts of HA.  

The evaluation of OC and BS mRNA expression 7 and 28 days after seeding, performed by 

quantitative real-time PCR analysis (p < 0.05, two-sided t-test). Beta-actin was used as a 

housekeeping gene control. Due to the very different values, the scale on the Y axis is 

logarithmic. The error bars refer to SD. Significantly different (p < 0.05) values on a given day 

were identified using one-way analysis of variance (ANOVA) and the Student–Newman–

Keuls method: OC: day 7: Col0.5/HA40> Col0.5/HA60, Col0.5/HA70; Col0.5/HA50> 

Col0.5/HA60, Col0.5/HA70; day 28: Col0.5/HA50 > Col0.5/HA40, Col0.5/HA60, Col0.5/HA70; 

BS: day 7: Col0.5/HA40> Col0.5/HA60> Col0.5/HA50, Col0.5/HA70; day 28: Col0.5/HA50> 

Col0.5/HA40> Col0.5/HA60, Col0.5/HA70.  
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Figure I/ 6: Real-time PCR analysis of scaffolds with different amounts of collagen. The 

evaluation of OC and BS mRNA expression 7 and 28 days after seeding, performed by 

quantitative real-time PCR analysis (p < 0.05, two-sided t-test). Beta-actin was used as a 

housekeeping gene control. Due to the very different values, the scale on the Y axis is 

logarithmic. The error bars refer to SD. Significantly different values (p < 0.05) on a given day 

were identified using one-way analysis of variance (ANOVA) and the Student–Newman–

Keuls method: OC: day 7: Col1.0/HA50> Col1.5/HA50> Col2.0/HA50; day 28: Col1.0/HA50> 

Col1.5/HA50> Col2.0/HA50; BS: day 7: Col1.0/HA50> Col2.0/HA50; Col1.5/HA50> 

Col2.0/HA50; day 28: Col1.0/HA50> Col1.5/HA50> Col2.0/HA50.  
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3.1.2.6. Mechanical properties and porosity of the scaffolds 

Scaffolds from different collagen/HA mixtures were tested and the initial Young’s 

moduli of elasticity Einit in compression were determined at strain 2-10%. Note a 

strong positive correlation between collagen concentration and Young’s modulus 

(Spearman R = 0.84) and also a strong negative correlation between pore diameter 

and Young’s modulus (Spearman R = -0.84), i.e. enlargement of the pore size led to 

a decrease in the stiffness of the composite. The mean values and standard 

deviations were determined from 5 independent experiments (Table I/ 1). 

Table I/ 1: Mechanical properties and porosity of the scaffolds. 

Scaffold Percentage 
of collagen 

Percentage 
of HA 

Pore 
diameter 
[µm] 

Young’s moduli of 
elasticity [kPa] 

Col 0.5/HA 30 0.5 30 502±24 1.41±0.76 

Col 0.5/HA 40 0.5 40 468±38 3.10±0.63 

Col 0.5/HA 50 0.5 50 405±74 4.65±1.57 

Col 0.5/HA 60 0.5 60 298±69 5.13±0.23 

Col 0.5/HA 70 0.5 70 205±72 6.09±0.11 

Col 1.0/HA 50 1.0 50 267±74 62.02±23.62 

Col 1.5/HA 50 1.5 50 195±28 168.74±36.94 

Col 2.0/HA 50 2.0 50 108±28 289.98±161.89 

3.1.3. Discussion I 

We have demonstrated in our work the influence of the collagen/HA ratio on cell 

adhesion, proliferation and differentiation, and the mechanical properties of the 

scaffold. The mixtures of 40 and 50% HA with 0.5% collagen (Col0.5/HA40 and 

Col0.5/HA50) were be found the most suitable for cell adhesion, proliferation and 
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differentiation. The explanation for the results seem to lie in the porosity of the 

scaffolds. Pores have been reported to play a key role in bone tissue formation. They 

allow the migration and proliferation of osteoblasts and/or MSCs, and also 

vascularization (Kuboki et al. 1998). The reported minimum pore size is around 100 

μm; however, the recommended diameters are larger than 300 μm (Hulbert et al. 

1970). Dawson and Orefo (2008) prepared composite type I collagen/ HA scaffolds 

from a 1 wt % solution of type I collagen and 70% HA. Their scaffold was suitable for 

proliferation and osteal differentiation of human bone MSCs, and was characterized 

by an average pore size of 135 μm. However, larger pores undisputedly promote 

better adhesion and proliferation of MSCs (Dawson and Oreffo 2008). The optimal 

pore diameter in our study was found to be around 400 μm, and was characteristic of 

the optimal mixture of 40–50% HA with 0.5% collagen (Col0.5/HA40 and 

Col0.5/HA50). This size evidently enables sufficient cell and nutrition diffusion and, 

simultaneously, maintains adequate scaffold solidity and firmness. The effect of pore 

size seems to be crucial, and decreasing the pore diameter below 200 μm resulted in 

dramatically lower proliferation. The main conclusion of this study is that the optimal 

collagen/HA mixture of 40–50% HA with 0.5% collagen (Col0.5/HA40 and 

Col0.5/HA50) was able to induce osteogenic differentiation of MSCs. Naturally, this 

scaffold could be further modified and improved. Modification of the surface charge 

would probably improve cell adhesion and the mechanical properties of the scaffolds. 

However, one of the important findings of this study is our observation that any 

potential scaffold for seeding with MSCs differentiated into osteoblasts has to be 

tested over a longer time scale. Clearly, neither cell adhesion nor data obtained 14 

days after seeding can be taken as sufficiently reliable. Results 28 days after seeding 

are needed. 
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3.1.4. Conclusion I 

Our study confirmed that a higher collagen content increased scaffold stiffness, but 

that the greater stiffness was not sufficient for bone tissue formation. Bone tissue 

formation is a complex process, evidently also dependent on scaffold porosity. In 

addition, we found that the scaffold pore diameter was dependent on the 

concentration of collagen and HA, and that it could play a key role in cell seeding. 

The suitable pore size for optimal cell proliferation was evaluated to be around 400 

μm. In conclusion, the optimal composite scaffold for new bone formation and cell 

proliferation was found to be formed from 50 wt % HA in 0.5 wt % collagen type I 

solution. 
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3.2. Experiment II  

Collagen/hydroxyapatite scaffold enriched with polycaprolactone 

nanofibers, thrombocyte-rich solution and mesenchymal stem cells 

promotes regeneration in large bone defect in vivo 

A 3D scaffold Col0.5/HA50 (Coll/HA) prepared in our previous work (Experiment I) 

was enriched with polycaprolactone nanofibres (Coll/HA/PCL), autologous MSCs in 

osteogenic media, and thrombocyte-rich solution (TRS) in this study as an optimal 

implant for bone regeneration in vivo in white rabbits. Nanofibres were used to 

optimize the viscoelastic properties of the Coll/HA scaffold for bone regeneration. 

MSCs and TRS in the composite scaffold were used to promote new bone tissue 

formation. Three types of Coll/HA/PCL scaffold were prepared: an MSCs-enriched 

scaffold, a TRS-enriched scaffold, and a scaffold enriched with both MSCs and TRS. 

These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 

10 mm in depth. Untreated defects were used as a control. Macroscopic and 

histological analyses of the regenerated tissue from all groups were performed 12 

weeks after implantation. 

3.2.1. Methods II 

3.2.1.1. Scaffold composite preparation  

Our previous study describes the preparation of a Coll/HA scaffold without PCL 

nanofibres (Prosecka et al., 2010). Briefly, bovine collagen type I as an 8 wt% 

aqueous solution (VUP, Brno, Czech Republic), HA as a 350 nm nanoparticle powder 

(Research Institute of Inorganic Chemistry, Usti nad Labem, Czech Republic), N-(3-

dimethylamino propyl)-N’-ethylcarbodiimide hydrochloride, and N-hydroxysuccinimide 
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(Sigma Aldrich, Germany) were used as received. A collagen solution (0.5 wt% 

concentration) was mixed with a calculated amount of HA powder to prepare a 50 

wt% mixture of HA powder in a collagen solution. In this study, 0.065 g PCL 

nanofibres (prepared as described below) were added to the Coll/HA mixture (10 x 

10 cm of PCL nanofibres were cut into approximately 2mm pieces and mixed into the 

Coll/HA solution) (Coll/HA/PCL). The homogenized mixture was frozen on 12-hole 

culture plates and lyophilized (-55°C, 15 Pa, 24 h; CHRIST ALPHA 1-4 LSC). 

The lyophilized porous collagen-based scaffolds were cross-linked with an ethanol 

solution containing N-(3-dimethylamino propyl)-N′-ethylcarbodiimide hydrochloride 

and N-hydroxysuccinimide in a molar ratio of 2:1. The samples were then washed in 

a 0.1 M solution of Na2HPO4∙12 H2O and subsequently in distilled water and freeze-

dried at -55°C and 15 Pa for 24 h.  

The morphology of these scaffolds was observed using a scanning electron 

microscope (Philips Quanta 200) (Figure II/ 3). The pore size of the Coll/HA and 

Coll/HA/PCL matrices were characterized using the MATLAB image analysis 

program. Quantitative data are presented as mean ± SD. Average values were 

determined from at least 3 independently prepared samples. 

3.2.1.2. Mechanical testing of the scaffolds 

The initial moduli of elasticity of the Coll/HA and Coll/HA/PCL porous bone scaffolds 

under compression were obtained at room temperature using a traction machine 

(Zwick Roell, Ulm, Germany) equipped with a 1-kN load cell as was already 

mentioned in previous section 3.1.1.8. The loading velocity was 1 mm/min, in 

accordance with the studies of Narbat et al. (2006) and Olah et al. (2006). Statistica 

base 9.1 (StatSoft, Inc., Tulsa, OK, USA) was used for the statistical analysis of the 
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initial moduli of elasticity. Normality was tested with the Shapiro-Wilk W test. The 

difference in the initial moduli between the Coll/HA and Coll/HA/PCL scaffolds was 

tested with the Mann-Whitney U test. The initial moduli are presented as mean value 

± standard error (Table II/ 2). 

3.2.1.3. Fabrication of PCL nanofibres 

The fabrication of PCL nanofibres has been described in our previous study 

(Jakubova et al. 2011). Briefly, we used an electrospinning method (Sachlos et al. 

2006) or prepared PCL nanofibres from PCL with a molecular weight of 40 000 

(Wako Chemicals GmbH, Neuss, Germany). Electrospinning was performed using 

10% PCL dissolved in chloroform:ethanol (9:1). A high-voltage source generating 

voltages of up to 50 kV was applied to the polymer solution. Electrospun nanofibres 

were deposited on the grounded collecting electrode. The nanofibres were stored in 

a desiccator until use.  

3.2.1.4. Isolation of rabbit autologous MSCs 

Blood marrow aspirates were obteined from the os illium (tuber coxae ala osis illi) of 

anesthetised rabbits (age 3 months) into a 10-mL syringe with 1 mL PBS and 25 IU 

heparin/mL (Zentiva, Czech Republic) connected to a bioptic needle (16 gauge) as 

was already mentioned in previous section 3.1.1.2.  

3.2.1.5. Preparation of TRS 

Preparation of TRS took place through the Hematology Service of the General 

Teaching Hospital, Prague, Czech Republic. PRP (volume, 400 mL; thrombocyte 

concentration, 225 x 109) was centrifuged (2250 x g, 15 min), and the supernatant 

was discarded. The resulting thrombocytes were washed in washing buffer (pH 6.5, 
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113 mM NaCl, 4.3 mM K2HPO4, 4.3 mM Na2HPO4, 24.4 mM NaH2PO4, and 5.5 mM 

glucose), as described by Baenziger et al. (1971). Thrombocyte washing was 

repeated 3 or 4 times. Contaminating leukocytes and erythrocytes were removed 

through further centrifugation (120 x g, 7 min). The thrombocytes were then 

resuspended in 40 mL washing buffer and centrifuged again at 120 x g for 7 min to 

recover those that were sedimented in the first spin. The thrombocytes were pelleted 

via centrifugation (2000 x g, 15 min), washed once, and finally resuspended in buffer 

(109 mM NaCl, 4.3 mM K2HPO4, 16 mM Na2HPO4, 8.3 mM NaH2PO4, and 5.5 mM 

glucose, pH 7.5).  

A TRS concentration of 1.35 x 106/μL was used for each sample. Thrombocytes 

and TRS were manipulated in a sterile tissue culture hood in a clean room. TRS was 

stored in centrifuge tubes in a clean room until use. The temperature in the room was 

set at 22°C.  

3.2.1.6. Preparation of scaffold types 

MSCs-enriched scaffolds 

Scaffolds with a diameter of 10 mm and a height of 20 mm were sterilized using 

plasma sterilization. Two weeks before seeding with MSCs, the scaffolds were de-

aerated and incubated in differentiation medium (MEM with L-glutamine, 10% FBS, 

100 IU/mL penicillin, and 100 μg/mL streptomycin) supplemented with 100 nM 

dexamethasone, 40 μg/mL ascorbic acid-2-phosphate, and 10 nM glycerol 2-

phosphate disodium salt hydrate at 4–8°C for 14 days. One day before surgery, the 

autologous cells in the culture medium were trypsinated, and in a second passage 

were seeded on the scaffolds at a density of 2 x 106/cm2 on a 24-well plate. The 
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differentiation medium was added. The plate was centrifuged at 7x g for 20 min and 

cultured at 37°C in a humidified atmosphere with 5% CO2. 

TRS-enriched scaffolds  

Scaffolds on the 24-well plate were immersed in TRS (1.35 x 106 thrombocytes/μL) 

for 2 h for adhesion. After incubation, the functionalized scaffolds were rinsed twice in 

PBS (pH 7.4). The differentiation medium was added and cultured at 37°C in a 

humidified atmosphere with 5% CO2. 

MSCs- and TRS-enriched scaffolds 

Scaffolds on the 24-well plate were immersed in TRS (1.35 x 106 thrombocytes/μL) 

for 2 h to enable adhesion. After incubation, the functionalized scaffolds were rinsed 

twice in PBS (pH 7.4). Then, the autologous cells were seeded on the scaffolds at a 

density of 2 x 106/cm2 and differentiation medium was added. The plate was 

centrifuged at 7 x g for 20 min and cultured at 37°C in a humidified atmosphere with 

5% CO2. 

3.2.1.7. Surgical procedure and scaffold implantation  

Thirty 3-month-old male New Zealand white rabbits weighing 3.0 ± 0.5 kg were 

obtained from a conventional breeder (BioTest, Czech Republic) and housed in 

standard cages without bedding. The rabbits were fed ad libitum using a standard 

granular mixture for rabbits (TM-MaK 1, Bergman, Czech Republic). The 

maintenance and handling of the experimental animals followed European Union 

Council Directive 86/609 EEC and the Ethical Principles and Guidelines for Scientific 

Experiments on Animals. The study was approved by the expert committee of the 

Institute of Physiology at the Academy of Sciences (Prague, Czech Republic) and 

conformed to Czech Animal Protection Law No. 246/92.  
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The surgical procedure was conducted under general anaesthesia using ketamine 

(35 mg/kg-1) and xylazine (3 mg/kg-1) and subsequent inhalation of O2 + 1.5–2.0% 

halothane during surgery. A critical size defect (Katthagen 1986) was made in the 

femoral condyles using a 3.2-mm drill gradually expanded to obtain a 6-mm defect 

that was 10 ± 0.5 mm in depth (Figure II/1). The defects in 7 rabbits were filled with 

MSCs-enriched scaffolds, 8 rabbits received TRS-enriched scaffolds, and MSCs- and 

TRS-enriched scaffolds were placed in 8 rabbits. The defects were left empty in 7 

rabbits (control group). Before implantation, the scaffolds were sized to fit the defect 

exactly. Wound healing was uncomplicated in all cases throughout the postoperative 

period. Antibiotics (10 mg/kg/day i.m. cefalexin monohydrate ad us. vet.) and 

analgesic (0.1 mg∙kg-1∙day-1 s.c. of butorphanol tartrate ad us. vet.) were 

administered during the first 5 days. The rabbits were not limited in their movement 

after surgery. The rabbits were euthanized 12 weeks later, and their femoral condyles 

were examined. All of the harvested samples were fixed in 4% phosphate-buffered 

formaldehyde.  
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Figure II/ 1: Surgical procedure. Critical size defects were made in femoral condyles using 

a 3.2-mm drill gradually expanded to obtain defects 6 mm in diameter and 10 ± 0.5 mm in 

depth.  

3.2.1.8. Histological processing  

All of the fixed samples were demineralised in 12.5% ethylenediaminetetraacetic acid 

solution (Komplexon III, Penta, Prague, Czech Republic) for 3 months and embedded 

in paraffin.  

Qualitative analyses 

Five serial histological sections 5 µm in thickness (between-section distance, 50 µm) 

were processed from each paraffin-embedded tissue block. In a randomly selected 

tissue block, another series of 20 consecutive sections was cut to examine the 

variability among the serial sections. The sections were stained with hematoxylin-

eosin, blue Mallory trichrome, and green trichrome (Kocova 1970). 

Bone quantification 

Four serial histological sections 5 µm in thickness (between-section distance, 50 µm) 

were processed from each paraffin-embedded tissue block. In a randomly selected 



63 

 

tissue block, another series of 20 consecutive sections was cut to examine the 

variability among the serial sections. The sections were stained with blue Mallory 

trichrome and green trichrome.  

Four micrographs per tissue block (i.e. 1 micrograph per section) were taken using 

a 2× objective. The image field was broad enough to capture the regenerating bone 

defect, which was centred in the micrographs. Using Ellipse software (Košice, Slovak 

Republic), 3 concentric circles of increasing diameter (2, 4, and 6 cm) were projected 

onto each micrograph. The outer circle delineated the borders of the original 6-cm 

defect (area A) drilled within the femoral condyle. The 3 compartments defined by 

these circles were 2 annuli (A1 was the area between the outer and the inner 

concentric circles; A2 was the area between the inner and the central concentric 

circles) and the area of the central circle (A3). The geometric characteristics of these 

areas are summarised in Table II/ 1, and their positions are illustrated in Figure II/ 2A. 

The outer compartment close to the borders of the original bone defect was 

represented by the area of A1, the inner compartment by the area of A2, and the 

central compartment of the original bone defect by the area of A3.   

Next, a randomly positioned uniform grid of equidistant points was placed on the 

micrographs in an overlay (Figure II/ 2B), so the number of points striking each 

compartment was proportional to its area (see Table II/ 1). In each of the 4 

micrographs per tissue sample, we counted the number of points striking the bone 

tissue within the total area of bone defect A, and also within the individual 

compartments (A1, A2, and A3). The area of bone was calculated by multiplying the 

number of counted points by the area corresponding to each point (Mouton et al. 

2002). The volumes of the corresponding three-dimensional compartments were 

calculated by multiplying the areas by the number and the thickness of the sections 
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(see Table II/ 1). We calculated the volume fraction of each compartment within the 

total examined volume (see Table II/ 1). The bone volume was expressed as the 

volume fraction of bone tissue within the whole defect and within the outer, inner, and 

central compartments. If the bone tissue had regenerated equally within all 3 

compartments (i.e. in the same manner within the whole volume of the defect), the 

volume of bone tissue found within the individual compartments was proportional to 

the volume of these compartments, and we predicted that all 3 compartments would 

harbour the same concentration of bone tissue. 

To test which of the compartments was preferentially occupied by bone tissue, we 

divided the total number of points striking the bone tissue by the volume fraction of 

each compartment within the examined volume of the defect. In this way, we 

calculated the expected number of points (Pexp) striking the bone tissue within each 

volume-occupying compartment, provided that the bone tissue had regenerated 

equally within all 3 compartments. The ratio between the observed number of points 

striking the bone tissue (Pobs) and Pexp was the relative deposition index (RDI = 

Pobs/Pexp), which was used to compare the outer, inner, and central compartments. 

For uniform bone regeneration, RDI was equal to 1, but for preferential bone growth, 

the index was >1. This principle for quantifying the preferential distribution of 

immunogold nanoparticles using electron microscopy has been described and 

thoroughly evaluated by (Mayhew et al. 2002; Mayhew et al. 2009). However, the use 

of RDI is not limited to electron microscopy, because between-compartment 

comparisons and mathematical apparatus are scale independent. 

We then calculated the partial chi-squared values for each pair using the following 

equation: (Pobs – Pexp)
2/Pexp. The total chi-squared values were compared with the 

chi-squared distribution to test the null hypothesis stating that the distribution pattern 
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among the compartments was random. Our study had 2 degrees of freedom (Table 

II/ 3). Estimates of bone volume were based on 4 tissue sections per tissue block 

sampled from the approximate middle of the bone defect. However, the bone content 

might have differed among the histological sections. We therefore assessed the bone 

area in a series of 20 equidistant sections in a randomly selected tissue sample. The 

variation in the bone area quantified in the serial sections was estimated using the 

error coefficient calculated with the quadratic approximation formula of Matheron, 

which was modified for use in a stereological context (Gundersen and Jensen 1987). 

The resulting value was <0.1, which quantified the sampling error in our study (Figure 

II/ 2C). 

The data was processed with Statistica Base 9.1 (StatSoft, Inc., Tulsa, OK, USA). 

The tests on the randomness of the bone distribution among compartments was 

based on a chi-squared distribution. The Man-Whitney U test was used to test the 

equality of population medians among the groups under study. All results were 

considered statistically significant if p was <0.05. 

 

Table II/ 1. Outer, inner, and central compartments of bone defects under examination.  

 Compartment 

Parameter Outer Inner Central 

Circle diameter (mm) 6 4 2 

Area per section (mm
2
) 15.71 9.42 3.14 

Area label A1 A2 A3 

Volume in 4 sections (mm
3
) 3.142 1.884 0.628 

Volume fraction  0.552 0.331 0.114 
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Figure II/ 2: Histological assessment of 

bone quantity and distribution. (A) The 

total area of bone defect A on the 

histological sections was divided with 3 

concentric circles (radius r1 = 3 cm, r2 = 2 

cm, and r3 = 1 cm) into 3 arbitrary 

compartments. The outer compartment (dark 

grey) was designated A1, the inner 

compartment (light grey) was A2, and the 

central compartment (white) was A3. (B) A 

stereological point grid was superimposed 

on the histological micrographs, and the 

points striking the bone tissue within the total 

area of the bone defect were counted. (C) 

The area of bone (estA) estimated with a 

stereological point grid varied within the 

series of adjacent histological sections 

(green dashed line, left y-axis), thus 

affecting the moving average (blue dotted 

line, left y-axis). The coefficient of error 

(estCE), which was estimated according to 

the method of Gundersen and Jensen 

(1987), decreased as the number of serial 

sections included in the study increased (red 

line, right y-axis), thus illustrating the effect 

of histological sampling on the resulting 

data. This graph demonstrates that taking 4 

sections for quantification reduced the 

sampling error to an acceptable value of 

<0.1. 

affecting the moving average (blue dotted line, left y-axis). The coefficient of error 

(estCE), which was estimated according to the method of (Gundersen and Jensen 1987), 

decreased as the number of serial sections included in the study increased (red line, right 

y-axis), thus illustrating the effect of histological sampling on the resulting data. This 

graph demonstrates that taking 4 sections for quantification reduced the sampling error to 

an acceptable value of <0.1. 
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3.2.2. Results II 

3.2.2.1. Morphological characterization of scaffolds 

The morphology of these scaffolds was observed using a scanning electron 

microscope (Philips Quanta 200) (Figure II/ 3). 

 

 

Figure II/ 3: Morphology of a collagen and HA (Coll/HA) scaffold enriched with 

polycaprolactone nanofibres (Coll/HA/PCL). The scaffold morphology was analysed using 

scanning electron microscopy (A, B) and macroscopic evaluation (C, D). 
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3.2.2.2. Characterization and mechanical testing of scaffolds 

The pore size of the scaffolds was observed using scanning electron microscopy and 

the MATLAB image analysis program. The initial moduli of elasticity under 

compression for the Coll/HA/PCL scaffolds were higher than the moduli of the 

Coll/HA scaffolds (Table II/ 2).  

Mechanical testing of scaffolds: Our results clearly proved that the presence of PCL 

nanofibre at a low concentration was sufficient to stiffen the collagen scaffold. The 

initial modulus of elasticity under compression was higher for the Coll/HA/PCL 

scaffolds namely 8.5 ± 3.3 kPa than for the collagen/HA scaffolds (3.5 ± 0.4 kPa). 

The goal of our in vivo study and histology analysis was to determine whether such 

scaffold strengthening is optimal for bone regeneration (Table II/ 2).  

 

Table II/ 2: Characterization and mechanical testing of a collagen and HA (Coll/HA) 

scaffold enriched with polycaprolactone nanofibres (Coll/HA/PCL).  

Scaffold Percentage 

of collagen 

Percentage 

of HA 

Pore 

diameter 

(µm) 

Amount of 

PCL 

nanofibers (g) 

Young’s 

modulus of 

elasticity 

(kPa) 

Coll/HA 0.5 50 402 ± 52 0 3.5 ± 0.4 

Coll/HA/PCL 0.5 50 397 ± 24 0.065 8.5 ± 3.3 

 



69 

 

3.2.2.4. Macroscopic evaluation 

A macroscopic evaluation of samples from all groups was made after the joint 

capsule in the articular cavity had been removed to obtain a small amount of synovial 

fluid. The joint capsule and the articular surface showed no signs of inflammation in 

any of the groups (Figure II/ 4). 

 

Figure II/ 4: Macroscopic evaluation.  The defects in rabbits in the groups treated with 

MSCs-enriched (A), TRS-enriched (B), and MSCs- and TRS-enriched (C) scaffolds were 

completely healed. The same result was observed in the control group (D), but the 

localization of the defect revealed deformation of the condyles. 

3.2.2.3. Histological evaluation 

Qualitative analyses 

Qualitative histological analysis revealed the formation of new bone trabecules in the 

enriched scaffold groups but not in the control group, which had no scaffolds (Figure 

II/ 5). The differences among the scaffold types were further quantified. 
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Figure II/ 5: Histology of the healing bone defects with implanted MSCs- and TRS-

enriched scaffolds (A-C) compared with the defects in the control group (D-F). (A) 

Newly formed bone trabecules were found growing from the periphery of the healing bone 

defect toward its centre. Eosinophilic remnants of bone scaffolds were partially incorporated 

into the bone trabecules. The space among the trabecules was filled with granulation 

connective tissue and adipose tissue. (B, C) Newly formed bone (stained green) contained 

partially resorbed scaffold trabecules (stained reddish). In some parts of the bone, the 

lamellae formed concentric layers with embedded osteocytes. Most of the surface of the 

bone was covered with osteoblasts. (D) Bone trabecules were found predominantly at the 

periphery of the healing defects. (E, F) Central parts of the healing defects were often 

occupied by bone marrow and adipose tissue without any signs of bone formation. 

Hematoxylin-eosin (A, E), green trichrome (B, C, F), and Mallory blue trichrome (D) staining.  

Bone quantification 

With the exception of the samples with scaffolds enriched with both TRS and MSCs, 

the distribution of the bone tissue was not random, and the null hypothesis of no 

difference in bone deposition among the compartments was rejected (p < 0.001; see 

Table II/ 3). The use of scaffolds enriched with MSCs, scaffolds enriched with TRS, 
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or no scaffolds resulted in preferential bone deposition in the outer compartment of 

the experimental defect (RDI > 1). Only samples containing bone scaffolds enriched 

with both MSCs and TRS showed uniform bone deposition in all 3 compartments.  

The intersections represent the numbers of points of a stereological grid striking 

the bone tissue. The relative deposition index (RDI) was calculated as the ratio 

between observed intersections (Pobs) and expected intersections (Pexp), according to 

the volume fraction of each compartment within the bone defect. Partial chi-squared 

values were summed to the total chi-squared value, which was tested against the chi-

squared distribution for degrees of freedom = (3-1) rows*(2-1) columns = 2. In the 

TRS-enriched scaffold, MSCs and TRS-enriched scaffold, in MSC-enriched scaffold 

samples and in samples without scaffolds, total the chi-squared value was p < 0.001. 

With the exception of the distribution in the MSC- and TRS-enriched scaffold 

samples, the distribution of bone tissue was nonrandom, and bone was deposited 

preferentially in the outer compartment (RDI > 1). The proportion of the partial chi-

squared value is given in the last column for the compartments in groups with 

significantly preferential bone deposition (Table II/ 3). 
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Table II/ 3: Distribution of bone tissue within individual volume compartments in the 

groups under study.  
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Outer 1558 1447.78 1.08 8.39 33.32 

Middle 823 868.67 0.95 2.40   

Central 225 289.56 0.78 14.39   

Column totals 2606 2606 1 

25.18 

p < 0.001   

MSCs- and TRS-enriched scaffold compartment 

  

  
 

Outer 2128 2093.33 1.02 0.57 
 

Middle 1212 1256.00 0.96 1.54 
  

Central 428 418.67 1.02 0.21 
  

Column totals 3768 3768 1 2.32 
  

MSCs-enriched scaffold compartment 

 

Outer 1491 1197.22 1.25 72.09 43.65 

Middle 521 718.33 0.73 54.21   

Central 143 239.44 0.60 38.85   

Column totals 2155 2155 1 

165.14 

p < 0.001   

      

No scaffold compartment     

Outer 444 338.89 1.31 32.60 44.20 

Middle 129 203.33 0.63 27.17   

Central 37 67.78 0.55 13.98   

Column totals 610 610 1 73.75 p < 0.001   
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The highest bone volume fraction within the healing defect was found in the 

samples with scaffolds enriched with both MSCs and TRS. The bone volume fraction 

was comparable between the samples with TRS-enriched scaffolds and MSCs-

enriched scaffolds, and the samples without scaffolds contained the lowest bone 

volume fraction (Figure II/ 6A). A comparison of individual compartments revealed 

that the bone volume fraction was highest in the samples with scaffolds enriched with 

both MSCs and TRS. The variability of the bone volume fraction increased from the 

outer compartment toward the centre of the healing defects (Figure II/ 6 B, C, and D).  

 

 

 



74 

 

 

Figure II/ 6: Between-group comparison of bone volume. Bone quantity was expressed 

as volume fraction (Vv) of the bone tissue within the whole reference volume of the defect (A) 

or within the outer (B), inner (C), and central (D) compartments. Data is presented as 

medians. The boxes span the limits of the first and third quartiles, and the whiskers show the 

non-outlier range for each group. The differences were considered statistically significant as 

follows: *p < 0.05, **p < 0.01, and ***p < 0.001 (Mann-Whitney U test, only significant results 

are presented here).   

Whereas  Figure II/ 7 demonstrates examples of good and poor bone regeneration 

at low magnification in the whole defect (see Figure II/ 7 A, B) and also in the outer, 

inner, and central compartments (see Figure II/ 7 C-F). 

  



75 

 

 

Figure II/ 7: Histology of healing bone defects. (A) In most samples with scaffolds 

enriched with both TRS and MSCs, bone formation was visible within the whole volume of 

the healing defect. (B) In some bone defects with MSCs-enriched scaffolds, the centre of the 

bone defect lacked newly formed bone trabecules. (C) In most samples of the outer 

compartment, advanced bone formation was found with all scaffold types. Remnants of the 

scaffolds (yellow arrow) were well integrated with thick bone trabecules. (D,E) The inner (D) 

and central (E) compartments of samples treated with scaffolds enriched with both TRS and 

MSCs contained growing bone trabecules covered with osteoblasts (orange [D] and black [E] 

arrows). (F) Several samples with MSCs-enriched scaffolds lacked bone within the central 

compartment, and the scaffold remnants (red arrow) were surrounded by connective tissue. 

Green trichrome (B-D, F) and Mallory stain (A, E). Scale bars: 1 mm (A, B), 100 µm (C-F). 



76 

 

3.2.3. Discussion II 

Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone 

regeneration. The correlation between scaffold stiffness and cell behavior is a key 

factor in the fabrication of scaffolds for tissue engineering (Hutmacher 2000; 

Karageorgiou and Kaplan 2005). Scaffold stiffness influences the migration and 

differentiation of MSCs (Reilly and Engler 2010). Our study is in accordance with 

several studies which have reported that fibers can improve scaffold mechanical 

properties (Albanna et al. 2012; Chen et al. 2013). Clearly, the moduli of elasticity 

under compressive testing increased significantly when PCL nanofibers were added 

to the Coll/HA scaffold.  

Moreover, recent studies have shown that there is promising potential for drug 

delivery from nanofibers embedded in a composite foam or gel. In an analogous 

study focusing on chondral regeneration, we showed that the addition of PVA 

nanofibers with adsorbed growth factors simultaneously improved the biomechanical 

properties and cell proliferation on scaffolds in cartilage regeneration (Filova et al. 

2013).  

Our data showed clearly that bone healing throughout the defects was promoted 

when our novel Coll/HA/ PCL composite scaffold enriched with TRS and seeded with 

MSCs was applied. This result is in accordance with several previous clinical and 

animal studies, which have proved that a combination of PRP and autogenous bone 

grafting can improve osteogenesis and enhance bone formation (Kitoh et al. 2004; 

Martins et al. 2010). 

However, PRP has several shortcomings. The first concerns standardization of the 

preparation process, i.e. whether to apply a simple and cheap two-step centrifugation 

method or to use plasmaphaeresis. While the definition of the parameters for the 
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centrifugation method seems to be empirical, for plasmaphaeresis we can clarify the 

content of the product, although the procedure is much more expensive and is 

uncomfortable for patients. (Prosecká et al., 2014). Another much discussed topic 

concerns the PRP content, i. e. the presence of leucocytes and fibrin. Whereas 

leucocytes influence cell proliferation, differentiation, immunity and infection, fibrin 

changes the biomechanical properties (Dohan Ehrenfest et al. 2009). Promotion of 

bone regeneration in rabbits, even with the use of human TRS was shown in our 

study. This outcome clearly suggests a minimal immunological negative response, 

and favors TRS for further preclinical and clinical studies. The application of TRS is 

also more reproducible than the use of autologous PRP from whole blood. Also, 

several studies have discussed and compare the effect of synthetic growth factors 

and PRP. Calori et al. (2008) compared the efficacy of recombinant BMP-7 and PRP 

as bone promoting agents. They support the view that the application of recombinant 

BMP-7 as a bone-stimulating agent is superior to the application of PRP in terms of 

clinical and radiological efficiency in the treatment of persistent long bone non-

unions. 

Many problems remain to be solved, e.g. an effective PRP concentration, donor-

based changes, the presence or absence leucocytes or other activators, and 

differences in scaffold structure. These parameters, and also the time-dependent 

release of growth factors, may influence bone formation. The relationship between 

platelet concentration and growth factor liberation seems to provide a key to bone 

regeneration, but its mechanism is still unclear (Dohan Ehrenfest et al. 2009). The 

effect of various PRP concentrations on tissue healing was reviewed by Wasterlain et 

al. (2012). They described a positive effect of a low PRP number (2 million 
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platelets/μL) on the promotion of anastomotic wound healing, whereas a higher 

amount (5 million platelets/μL) inhibited healing (Wasterlain et al. 2012). 

In our study, we used a TRS concentration of 1.35 x 106 thrombocytes/μL, in 

accordance with the definition of PRP as a minimum of 1 x 106 platelets/μL 

suspended in plasma (Dohan Ehrenfest 2009; Kitoh et al. 2004; Wasterlain et al. 

2012)  and 2-h incubation with our composite Coll/HA/PCL scaffold. This TRS 

concentration promotes bone regeneration and is one of the main outputs of this 

study (Prosecka et al.  2014). 

Moreover, calcium ions contained in biomaterials based on bone cement likely 

work as thrombocyte activators.This is an important consideration in the use of PRP 

in bone regeneration (Chen et al. 2012; Kasten et al. 2008). 

3.2.4. Conclusion II 

The highest volume and the most uniform distribution of newly-formed bone while 

scaffold biodegradation was gradually taking place was found in defects treated with 

scaffolds enriched with both MSCs and TRS. There were lower values in defects 

treated with scaffolds enriched by either component alone. The modulus of elasticity 

in compressive testing was significantly higher in the Coll/HA/PCL scaffold than in the 

scaffold without nanofibres. The composite collagen/HA scaffold functionalized with 

PCL nanofibres and enriched with MSCs and TRS offers a novel, promising 

treatment for bone defects which could meet the rules for human use. 
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3.3. Experiment III  

Thin-layer hydroxyapatite deposition on a nanofiber surface 

stimulates Mesenchymal stem cell proliferation and their 

differentiation into osteoblasts 

The aim of the study was to introduce a modern system which will serve as a source 

of bioactive molecules suitable for regenerating bone defects. The system is based 

on MSCs and functionalized nanofibers. The nanofibers can be modified on their 

surface and also enriched in their core with various drugs that could be released 

slowly over the course of days or weeks.  

Pulsed laser deposition was shown to be a suitable method for HA coating of 

coaxial poly-ε-caprolactone/polyvinylalcohol (PCL/PVA) nanofibers. Thin layers 200, 

400, or 800 nm in thickness were deposited onto the nanofiber surface. HA 

deposition clearly modified the nanofiber surface and significantly influenced the 

surface properties. 

3.3.1. Methods III 

3.3.1.1. Coaxial electrospinning of PCL/PVA nanofibers  

A 14% (w/v) PCL solution was prepared as the shell solution by dissolving 7 g PCL in 

50mL chloroform/ethanol (8 : 2) and Journal of Biomedicine and Biotechnology 3 

stirring at room temperature. The core solution consisted of 5% PVA (v/v). The 

coaxial spinneret apparatus consisted of two needles placed together coaxially 

(Lukáš et al. 2009). Two syringe pumps were used to deliver the core solution and 

the shell solution. A high-voltage power supply was used to generate voltages of up 
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to 60 kV, and a span bond was used as the receiving plate to collect the electrospun 

nanofibers. The distance between the tip of the syringe needle and the collecting 

plate was 12 cm. All electrospinning processes were performed at room temperature 

with 56% humidity. In the release study, the core solution consisted of FITC-dextran  

(2 mg/mL, 10,000 MW) dissolved in 1%, 3%, or 5% (v/v) PVA. The process was 

performed on the apparatus described above at room temperature with 52% 

humidity. 

3.3.1.2. HA coatings of nanofibers  

The prepared nanofibers were coated by HA layers of various thicknesses. HA 

[Ca10(PO4)6(OH)2] films were formed by a KrF epimer laser (COMPexPro 205 F) with 

248 nm wavelength, frequency 10 Hz, and energy 600 mJ. The energy density of the 

laser beam was 2 Jcm−2. The deposition proceeded in an H2O + Ar atmosphere at a 

pressure of 40 Pa. The substrate was fixed at a distance of 5 cm from the target HA 

material (cake of pressed powder). The substrate was at room temperature. HA films 

of 200 (PCL/PVA200HA), 400 (PCL/PVA400HA), and 800 nm thickness 

(PCL/PVA800HA) were grown. Pure PCL/PVA core-shell nanofibers were used as a 

control (PCL/ PVA). 

3.3.1.3. Characterization of the scaffolds  

The prepared nanofibrous scaffolds were characterized by scanning electron 

microscopy. Air-dried samples of electrospun HA-coated nanofibers were mounted 

on aluminum stubs and sputter-coated with a layer of gold approximately 60 nm in 

thickness using a Polaron sputter coater (SC510, Polaron, now QuorumTechnologies 

Ltd.) The samples were examined in an Aquasem (Tescan) scanning electron 

microscope in the secondary electron mode at 15 kV (Figure III/ 1 a, b, c, d). 
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3.3.1.4. Mechanical characterization of the scaffolds 

The Young’s moduli of elasticity, the ultimate stresses and the ultimate strains of the 

scaffolds were obtained at room temperature using a Zwick/Roell traction machine 

equipped with a 1 kN load cell. Due to difficulty in producing a layer of PCL/PVA 

nanofibers of uniform thickness, only the samples with the same thickness of the 

basic layer of PCL/PVA nanofibers of pure samples and also with the layer of HA 

were used for mechanical testing. The samples without a layer of HA were therefore 

marked as type I (n = 4), and the samples with the HA layer were marked as type II 

(n = 7). The samples themselves were thin strips of the nanofibers. The initial length 

of all samples was 10 mm. All samples were 10 mm in width. The individual samples 

were about 60 μm in thickness. The samples were prepared in accordance with 

Narbath et al. (2006) and Olah et al. (2006).The template of paper 20 x 50 mm 

(height x width) with a centered rectangular hole 10 x 40 mm was cut, and lines 

marking sample strips 10 mm in width were drawn on its top and bottom stripes. 

Then it was glued to the sheet of composite, and two other strips of paper 5 x 50 mm 

were glued to the back faces of the top and bottom stripes. The individual scaffolds 

were then cut, resulting in four 20 x 10 mm strips consisting of a 10 x 10 mm sample 

between two 5 x 10 mm strips of paper. A tensile test with a loading velocity of 10 

mm/min was applied to the samples. The load was applied until the scaffold ruptured. 

The Young’s moduli of elasticity were determined using linear regression of the 

stress-strain curves at a strain of approximately 1–6% (linear region depending on 

the shape of the curve). The ultimate stress and the ultimate strain were determined 

at the start of the rupture. The stress was defined as the force divided by the initial 

area, and the strain was defined as the elongation of the specimen divided by its 
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initial length. Our own software written in Python programming language was used 

for the evaluation (Figure III/ 2). 

3.3.1.5. Isolation and cultivation of MSCs  

Blood marrow aspirates were obtained from the os ilium (tuber coxae Ala ossis iili) of 

anesthetized miniature pigs (age 6–12 months) as was already mentioned in 

previous section 3.1.1.2.  

3.3.1.6. Seeding MSCs on the scaffolds  

The scaffolds were cut into a round shape with a diameter of 6mm and were 

sterilized using ethylene oxide. Cells were seeded on the scaffolds at a density of 70 

× 103/cm2 in a 96-well plate. Scaffolds with seeded MSCs were cultivated in 

differentiation media: MEM supplemented with 10% FBS, penicillin/streptomycin (100 

IU/ mL and 100 μg/mL, resp.), 100nM dexamethasone, 40 μg/ mL ascorbic acid-2-

phosphate and 10nM glycerol 2-phosphate disodium salt hydrate. The medium was 

changed every 3 days. 

3.3.1.7. Cell viability analysis by the MTT test  

50 μL of [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), and 

1mg/mL in PBS (pH 7.4) were added to 150 μL of sample medium and incubated for 

4 hours at 37°C as was already mentioned in previous section 3.1.1.4. The results 

were examined by spectrophotometry in an ELISA reader at 570 nm (reference 

wavelength 690 nm) (Figure III/ 3). 
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3.3.1.8. Cell viability analysis by the Live/dead staining 

Live/dead staining (BCECF-AM/propidium iodide) and visualization using confocal 

microscopy were performed to determine cell viability as was already mentioned in 

previous section 3.1.1.5. Zeiss LSM 5 DUO confocal microscope (wavelengths: 

BCECF-AM λex = 488 nm and λem = 505– 535 nm; propidium iodide λex = 543 nm and 

λem = 630– 700 nm) (Figure III/ 1 e, f, g, h). 

3.3.1.9. Cell proliferation analysis by the PicoGreen  

The PicoGreen assay was carried out using the Invitrogen PicoGreen assay kit 

(Invitrogen Ltd., Paisley, UK). The proliferation of MSCs on the scaffolds was tested 

on days 1, 7, and 14. The material for an analysis of the DNA content, 250 μL of cell 

lysis solution (0.2% v/v Triton X-100, 10mM Tris (pH 7.0), 1mM EDTA), was added to 

each well containing a scaffold sample. To prepare the cell lysate, the samples were 

processed through a total of three freeze/thaw cycles. A scaffold sample was first 

frozen at −70°C and then thawed at room temperature. Between each freeze/thaw 

cycle, the scaffolds were roughly vortexed. The prepared samples were stored at 

−70°C until analysis. To quantify the cell number on the scaffolds, a cell-based 

standard curve was prepared using samples with known cell numbers (range 100–

106 cells). The DNA content was determined by mixing 100 μL of PicoGreen reagent 

and 100 μL of the DNA sample. The samples were loaded in triplicate, and the 

florescence intensity was measured on a multiplate fluorescence reader (Synergy 

HT, λex = 480–500 nm, λem = 520– 540 nm). The measured data was used to derive 

the absorbance values measured by the MTT assay to the cell counts on the 

scaffolds (Figure III/ 3).  
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3.3.1.10. Quantitative real-time PCR Analysis  

Total RNA was extracted using an RNeasy Mini Kit according to the manufacturer’s 

protocol. Total RNA was stored at –20°C. The cDNA from 1 μg of total RNA was 

used as a template. cDNA synthesis was performed by a standard procedure 

described in our previous work (Tvrdik et al. 2005). BS and OC mRNA expression 

levels were quantified by means of a LightCycler 480 (Roche Diagnostics, 

Mannheim, Germany) using the double-strand specific dye SYBR Green I according 

to the manufacturer’s protocol. The following primers were used: BS, sense 5-CGA 

CCA AGA GAG TGT CAC-3, antisense 5-GCC CAT TTC TTG TAG AAG C-3 (498 

bp); OC, sense 5-TCA ACC CCG ACT GCG ACG AG-3, antisense 5-TTG GAG CAG 

CTG GGA TGA TGG-3  (204 bp) and beta-actin, sense 5-AGG CCA ACC GCG AGA 

AGA TGA CC-3, antisense 5-GAA GTC CAG GGC GAC GTA GCA C-3 (332 bp) as 

was already mentioned in previous section  3.1.1.7. (Figure III/ 4). 

3.3.1.11. Measurement of the FITC-Dextran release profile 

In order to study the release profile of FITC-dextran, core-shell nanofiber meshes 

with 1% PVA, 3% PVA, or 5% PVA were cut into round patches and incubated with 

1mL of TBS buffer at room temperature. At specific intervals, the TBS buffer was 

withdrawn and replaced with a fresh buffer. The time interval was determined 

keeping in mind the balance between the release of a detectable amount of FITC-

dextran and maintenance of the sink condition. Drug release was quantified using 

fluorescence spectroscopy. Briefly, 200 μL of samples and blank samples were 

measured on a multiplet fluorescence reader (Synergy HT, λex = 480–500 nm, λem = 

520–540 nm) and background subtraction was performed. The cumulative release 

profile of FITC-dextran was obtained, and the half time of release was determined as 
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the time at which the initial fluorescence intensity I0 decreased to I = I0 x e−1 (Figure 

III/ 5). 

3.3.1.12. Statistical analysis  

Quantitative data are presented as mean SD. For the in vitro tests, average values 

were determined from at least three independently prepared samples. The results 

were evaluated statistically using one-way analysis of variance (ANOVA) and the 

Student-Newman-Keuls Method and the Shapiro-Wilk W test was used to determine 

the normality of the Young’s moduli of elasticity, the ultimate strains and the ultimate 

stresses. The t-test was used to determine the differences between values. The 

Student t-test was used to evaluate the statistical significance of the results of 

quantitative real-time PCR analysis. Differences with P values <0.05 were considered 

significant. 

3.3.2. Results III 

3.3.2.1. Visualization of scaffolds 

Scanning electron microscopy revealed the fibrous morphology of the PCL/PVA 

nanofibers (Figure III/ 1a). Pulsed laser deposition of an HA layer 200 nm in 

thickness did not affect the fibrous morphology or the porosity of the nanofibers 

(Figure III/ 1b). However, the fibrous character of the samples with an HA layer 400 

nm in thickness (Figure III/ 1c) was less well preserved, and the porosity of the 

scaffold decreased. The fibrous morphology disappeared completely in samples with 

an HA coating 800 nm in thickness (Figure III/ 1d). 

 



86 

 

 

Figure III/ 1: Visualization of scaffolds by SEM and confocal microscopy. The prepared 

scaffolds were visualized using SEM (a, b, c, d). On day 7, MSCs were stained using 

BCECF-AM and propidium iodide for live/dead staining and the samples were visualized by 

confocal microscopy (e, f, g, h); PCL/PVA (a, e), PCL/PVA200HA (b, f), PCL/PVA400HA (c, 

g) and PCL/PVA800HA (d, h). 

3.3.2.2. Mechanical characterization of the scaffolds 

There is a significant difference in the moduli of elasticity between these groups 

(determined by the T-test; p = 0.04) (Figure III/ 2a) and also in the ultimate strain 

(p<0.001) (Figure III/ 2b), but not in the ultimate stress (p = 0.26) (Figure III/ 2c). We 

found significant differences in Young’s moduli of elasticity between samples without 

an HA layer and those with an HA layer (P = 0.04). The Young’s modulus of elasticity 

in the case of pure PCL/PVA nanofibers was 1.76 ± 0.50 Mpa, while the modulus for 

the samples with an HA layer was 5.40 ± 3.09 MPa; the difference was significant 

(see Figure III/ 2a). Significant differences between these two groups were also found 

in the case of ultimate strains (P < 0.001). Here, the value obtained for pure 

PCL/PVA scaffolds was 0.23 ± 0.03, while for scaffolds with an HA layer the value 
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was 0.09 ± 0.04, (see Figure III/ 2b). No significant differences were found when 

analyzing the ultimate stresses (P = 0.26), although the value for the group with an 

HA layer, 0.36 ± 0.27 MPa, was higher than the value for the pure PCL/PVA 

scaffolds, 0.19 ± 0.07 MPa (see Figure III/ 2c).  
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Figure III/ 2: The moduli of elasticity, the ultimate strain and ultimate stress of the 

group of the pure PCL/PVA composite (type I) and the group of the PCL/PVA 

composite covered by an HA layer (type II). Mean indicates the mean value, SE is the 

standard error. 
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3.3.2.3. Cell metabolic activity and viability 

The metabolic activity of viable MSCs was detected by MTT assay on day 1, 7, and 

14 (Figure III/ 3). 

 

Figure III/ 3: Cell metabolic activity and viability. Results of the MTT assay for PCL/PVA, 

PCL/PVA200HA, PCL/PVA400HA, PCL/PVA800HA samples (a).  Cell viability calculated as 

derivation of absorbance values from the MTT assay to the cell counts determined by Pico 

Green assay (b).  (Mean ± SD). Statistical significant differences between scaffolds were 

observed by MTT test on day 14:  PCL/PVA800HA> PCL/PVA, PCL/PVA200HA; 

PCL/PVA400HA> PCL/PVA, PCL/PVA200HA.The significant differences between scaffolds 



90 

 

were also  found on day 14 after MTT/Pico Green results derivation: PCL/PVA400HA> 

PCL/PVA, PCL/PVA200HA, PCL/PVA800HA; PCL/PVA800HA> PCL/PVA, PCL/PVA200HA. 

3.3.2.4. Expression of bone tissue markers 

Osteogenic differentiation of MSCs was detected by real-time PCR analysis of OC 

and BS expression on day 7 and 14. Interestingly, the samples with an HA coating 

800 nm in thickness were characterized by a significantly higher expression of BS 

and OC genes than the pure PCL/PVA samples (Figure III/ 4). 

 

Figure III/ 4: Expression of bone tissue markers. The expression levels of BS and OC 

mRNAs, osteogenic markers, were detected on day 7 and 14 for all samples. (Mean ± SD).  

Expression of Osteocalcin 

Expression of Bone Sialoprotein 
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3.3.2.5. Time-dependent release profile of coaxial PCL/PVA nanofibers 

The release of FITC-dextran from samples with a different content of PVA core was 

analyzed using fluorescence spectroscopy. Samples were analyzed for 240 h, 

supernatants were collected at intervals of 24 h. The half-time of release from coaxial 

nanofibers was strongly dependent on the presence of a hydrophilic core polymer 

(Figure III/ 5). 

 

0

10

20

30

40

50

60

70

80

90

100

0 24 48 72 96 120 144 168 192 216 240

C
u

m
u

la
ti

v
e

 r
e

le
a

se
 o

f 
F

IT
C

-d
e

x
tr

a
n

 (
%

)

Time (h)

Time depend release profile of coaxial PCL/PVA nanofibers

PCL/1% PVA PCL/3% PVA PCL/ 5% PVA
 

Figure III/ 5: Time-dependent release profile of coaxial PCL/PVA nanofibers. Core/shell 

nanofibers containing FITC-dextran dissolved in 1% PVA showed the highest burst release 

(79% of FITC-dextran released in 24 h). The half time of release was calculated as τr = 18 h. 

The release of FITC/dextran from fibers with 3% PVA showed a slower release; however, an 

intense burst release was observed (65% of FITC-dextran released in 24 h). The half-time of 

release was prolonged to 24 h. Interestingly, samples with 5% PVA as the core polymer 

showed the most sustained release profile. The burst release was reduced to 52% of FITC-

dextran release in 24 h, and the half-time of release was shifted to 54 h. The results show 
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clearly that different concentrations of the water-soluble core significantly affect the release 

profiles of incorporated substances. (Mean ± SD).  

3.3.3. Discussion III 

Coaxial core-shell nanofibers were prepared from PCL as a shell material and PVA 

as a core material. PCL has good biocompatibility and enables the successful 

cultivation of MSCs (Jakubova et al. 2011) and osteogenic cells (Rampichova et al. 

2013). However, PVA is a water-soluble material and has been employed as a 

suitable substance for the delivery of bioactive compounds from the nanofiber core 

(Buzgo et al. 2013). To improve the surface parameters for MSCs seeding, coaxial 

nanofibers were further functionalized by pulsed laser deposition of HA. Thin layers 

200, 400, or 800 nm in thickness were deposited onto the nanofiber surface. HA 

deposition clearly modified the nanofiber surface and significantly influenced the 

surface properties. Scanning electron microscopy revealed the fibrous morphology of 

PCL nanofibers (Figure III/ 1a). Pulsed laser deposition of an HA layer 200 nm in 

thickness did not affect the fibrous morphology or the porosity of the nanofibers 

(Figure III/ 1b). However, the fibrous character of samples with an HA layer 400 nm in 

thickness (Figure III/ 1c) was less well preserved, and the porosity of the scaffold 

decreased. The fibrous morphology disappeared completely in samples with an HA 

coating 800 nm in thickness (Figure III/ 1d). 

The proliferation and the differentiation of MSCs on HA coated scaffolds are 

separate processes. Our HA-coated nanofiber scaffolds clearly displayed a positive 

effect on the differentiation of MSCs into osteogenic cells, but not on cell proliferation.  
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On the basis of these results, the HA layer 800 nm in thickness has been 

demonstrated to be optimal for osteogenic differentiation of cells and for bone tissue 

engineering applications. 

3.3.4. Conclusion III 

The more positive effect of HA coated nanofiber scaffolds on cell proliferation 

observed in our study could be improved. Core/shell nanofibers offer a promising 

new approach as a system for delivering bioactive molecules directly into a tissue 

defect site. Proliferation and stimulating factors can be encapsulated into the core of 

the nanofibers. The encapsulation of bioactive agents inside the nanofibers can 

increase their ability to stimulate proliferation and thus further improve the positive 

effect of nanofiber scaffolds on MSCs proliferation and differentiation. HA coated 

coaxial PCL/PVA nanofibers seems to be a promising novel drug delivery system 

suitable for bone tissue engineering. 

In addition, the biomechanical properties were improved after HA deposition on 

PCL/PVA nanofibers, as the value of the Young’s modulus of elasticity increased 

significantly after HA deposition (Prosecka et al. 2012). 
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4. Conclusion 

The causes of large bone defects include tumours, infectious diseases and traumas. 

There is a medical need for bone regeneration as a way to treat these defects. It is 

well known nowadays that the successful treatment of bone loss requires a 

combination of an osteoinductive signal, an osteoconductive matrix, and cell 

response to the osteogenic potential (Bose et al. 2012; Cancedda 2003). 

Therefore, there is a major clinical need to promote the development of strategies 

to replace diseased bone tissue with a graft capable of integrating with the 

surrounding healthy tissue (Kitoh et al. 2004). 

Many materials have been reported to fulfil these requirements, including 

natural/synthetic polymers, metals and ceramics (Cancedda 2003; Liu et al. 2007). 

Many of them, e.g. HA and collagen, are known as osteoinductive and 

osteoconductive materials and they enhance osteogenic differentiation when seeded 

with MSCs (Heino et al. 2004; Kraus and Kirker-Head 2006; Mao et al. 2005; Marks 

and Odgren 2002). 

The current standard in tissue engineering is to combine cells, especially 

autologous cells, and osteoconductive scaffolds, which can be functionalized with 

growth factors, preferentially serving as a controlled delivery device (Bose et al. 

2012).  

On the basis of a study of current literature, we prepared a promising new smart 

scaffold with potential for clinical use. We found an optimal ratio of biocompatible, 

biodegradable, osteoconductive and also osteoinductive materials for a 3D scaffold 

with optimal pores for cell ingrowth and vascularization (Prosecka et al. 2014). During 

our in vitro and in vivo studies, we found that a 0.5% Type I collagen and 50% of HA 
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(1:1 wt%) 3D scaffold with pore size around 400 um is the most suitable for cell 

proliferation, viability and differentiation of MSCs differentiated into osteoblasts, while 

the mechanical properties were still good (Prosecka et al. 2011). However, we also 

wanted to improve the mechanical properties of the scaffold, and make it more 

suitable for in vivo testing. We found that PCL nanofibers mixed into the 3D Coll/HA 

scaffold significantly improved the mechanical properties of the scaffold. We also 

wanted to know the effect of PRP on accelerating bone healing. We found in the in 

vivo study, that Coll/HA scaffolds enriched with MSCs or with TRS, or with both 

MSCs and TRS, promoted much better formation of new bone tissue throughout the 

defect than when the defect was left to heal without treatment. However, the scaffold 

enriched with both MSCs and TRS supported the best formation of new bone tissue 

and also the most uniform distribution of newly-formed bone (Prosecka et al. 2014).  

We went on to investigate a fabrication process, and we prepared a scaffold from 

materials that meet the European Medicines Agency requirements and can be 

developed for human applications.  

We also found pulsed laser deposition, a suitable method for modifying the surface 

of high temperature sensitive materials, and a suitable thickness (800 nm) of the HA 

layer for MSCs differentiation (Prosecka et al. 2012).  

However, one of the most discussed issues in the area of tissue engineering is the 

ability to generate appropriate numbers of cells when too many cells can be just as 

detrimental as too few, and the capacity for those cells to differentiate from, and 

maintain, the correct phenothype and perform specific biological functions. Other 

issues are invasivity and site morbidity due to cell harvesting, in vitro cultivation, 

sterility, high costs, the use of fetal bovine serum, time duration, etc. (Filova et al. 

2013). 
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It is nowadays increasingly accepted that there is a “wound healing cascade” 

thanks to which the self-healing capacity of patients can be supported by artificial 

acceleration of the proliferation and differentiation of the recruited cells by applying 

growth factors and cytokines (Andreadis and Geer 2006; Varkey 2004; Vasita and 

Katti 2006). 

However, a complication caused by a burst release of high doses of growth factors 

has led to extensive ongoing studies to develop a drug delivery system that can 

provide efficacy of growth factors at lower doses, or release them gradually, or retard 

their release. Controlled delivery of growth factors can be achieved by using a 

scaffold which prevents proteolysis and loss of bioactivity, and thus enables a 

prolonged therapeutic effect (Babensee et al. 2000). 

Controlled release could lead to a more physiological healing cascade and be of 

significant importance for the tissue regeneration outcomes. For example, TGF-β 

plays a critical role in bone fracture healing through the production of ECM during the 

late phases, while SDF-1 acts in the early phases. In order to achieve improved 

healing effects, it is therefore beneficial to produce a system enabling fast release of 

SDF-1 and delayed release of TGF-beta. The delivery system should provide time- 

and dose-controlled release of the bioactive growth factor, should offer a scaffold that 

enhances cell recruitment and attachment, and should promote cell migration and 

angiogenesis. Natural growth factors from platelets deliver numerous growth factors 

in a balanced physiological ratio, and have been shown to successfully regenerate 

bone defects in clinical practice (Kitoh et al. 2004; Saluja et al. 2011; Simman et al. 

2008). However, there are some disadvantages, e.g. short retention and delivery time 

of platelets, which do not correspond with the requirements for slowly-healing 
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fractures (Saluja et al. 2011). A combination of platelets with advanced drug delivery 

systems could solve this problem (Puppi et al. 2014). 
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5. Future perspectives 

Controlled release of proliferation and growth factors in situ is a promising 

bionanotechnological approach to tissue regeneration. Nanofibers with controlled 

release of proliferation and differentiation factors are undoubtedly a suitable tool for 

tissue engineering. The incorporation of nanofibers functionalized with bioactive 

agents, such as PRP derivatives or growth factors, into 3D composite scaffolds has a 

positive effect not only on the biomechanical properties of the scaffold, but also on 

enhancing bone or osteochondral regeneration, mainly by recruiting stem cells from 

the subchondral bone and subsequently differentiating them. In addition, the 

development of functionalized scaffolds mimicking and fitting to the bone part of the 

defect is an important task for the future that has an impact on successful healing.  
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6. Summary 

A promising new smart scaffold with potential for clinical use was prepared during our 

experiments. The biocompatible, biodegradable, osteoconductive and also 

osteoinductive 3D scaffold contains 0.5% type I collagen and 50% of hydroxyapatite 

with pore size around 400 um suitable for cell ingrowth and vascularization. 

Subsequently added poly-ɛ-caprolactone nanofibers improved the mechanical 

properties of the scaffold. The scaffold was enriched with mesenchymal stem cells 

and thrombocyte rich solution. The functionalized scaffold promoted new bone tissue 

formation throughout the defects, with uniform distribution of the newly-formed bone 

in vivo in a rabbit model, while the scaffold gradually degraded and was replaced by 

newly-formed bone tissue. In addition, we have found a fabrication process and 

materials which meet the European medicines agency requirements and can be 

developed for human applications. Hydroxyapatite-coated coaxial poly-ɛ-

caprolactone/polyvinylalcohol nanofibers have been developed as a promising novel 

drug-delivery system suitable for bone tissue engineering. 
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7. Abstrakt 

Výsledkem in vitro a in vivo studií je nový, biokompatibilní, biodegradabilní, 

osteokonduktivní a osteoinduktivní 3D scaffold s vysokým potenciálem pro klinické 

použití. Scaffold složený z 0.5% kolagenu typu I s 50 % hydroxyapatitu s velikostí 

pórů v průměru 400 μm, je vhodný pro buněčnou migraci, proliferaci, diferenciaci a 

vaskularizaci. Následně přidaná poly-ɛ-kaprolaktonová nanovlákna zlepšila 

mechanické vlastnosti scaffoldu. Scaffold byl dále obohacen mesenchymálními 

kmenovými buňkami a trombocytárním koncentrátem jako přírodním zdrojem 

růstových faktorů. Tento funkcionalizovaný scaffold byl postupně nahrazen novou 

kostní tkání po implantaci in vivo, a to v celém objemu defektu, v kondylu femuru 

králíka za jeho postupné biodegradace. Pro výrobu tohoto scaffoldu byly navíc 

použity materiály a výrobní postupy splňující podmínky Evropské lékové agentury pro 

humánní použití. V průběhu experimentů byl též vyvinut slibný systém pro dodávání 

bioaktivních látek pro regeneraci kostní tkáně založený na koaxiálních nanovláknech 

z poly-ɛ-kaprolaktonu a polyvinylalkoholu. 
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