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Abstrakt:  Úlohy na algebraických strukturách, v nichž dvojice operací (max, +) 
nebo (max, min) nahrazují operace sčítání a násobení v klasické lineární algebře se 
objevují v literatuře přibližně od šedesátých let minulého století. První výsledky s 
využitím těchto struktur publikovali A. Shimbel v práci [37] s aplikacemi v 
komunikačních sítích, a dále R. A. Cunnighame-Green [12,13], N. Vorobjov [40] a 
B. Giffler [18] s aplikacemi na rozvrhování práce strojů a v teorii spolehlivosti. 
Ucelená systematická teorie takových algebraických struktur byla publikována 
pravděpodobně poprvé v práci [14]. V nedávno publikované knize [4] lze nalézt 
nejnovější stav výzkumu teorie a algoritmů  ve struktuře s operacemi (max,+). 
Protože operace maxima, která v uvedených strukturách nahrazuje operaci sčítání, 
není grupovou, ale pouze pologrupovou operací, je podstatný rozdíl mezi řešením 
soustav s proměnnými pouze na jedné straně rovnic resp. nerovností a soustav, v 
nichž se proměnné nacházejí na obou stranách těchto vztahů. Soustavy s 
proměnnými na jedné straně se nazývají jednostranné a soustavy, v nichž se 
proměnné vyskytují na obou stranách rovnic resp. nerovností nazveme dvoustranné.  
Cílem předkládané dizertace je  poskytnout jednotící teoretický rámec pro prezentaci 
autorem dosažených výsledků v oblasti výzkumu soustav (max, min)-lineárních 
rovnic a nerovností a některých typů optimalizačních problémů s omezeními ve tvaru 
(max,min)-lineárních rovnic a nerovností. Kromě toho jsou navržena některá 
zobecnění na nelineární soustavy, které sjednocují (max,+)- a (max, min)-lineární 
úlohy a rozšiřují získané výsledky za rámec (max,+)- a (max, min)-lineárních 
struktur. V další části práce jsou studovány tzv. nekorektně formulované úlohy a 
uvádějí se efektivní postupy nalezení vhodného řešení těchto úloh pro soustavy 
(max,min)-lineárních rovnic. V práci jsou uvedeny i některé motivační příklady z 
oblasti operačního výzkumu a menší ilustrativní numerické příklady. 
     Prvním oktuhem problémů, jimiž se předložená práce zabývá jsou vlastnosti 
soustav (max,min)-lineárních rovnic a nerovností. Druhým tétatem je řešení 
optimalizačních úloh s omezeními ve tvaru soustav (max,min)-lineárních rovnic a 
nerovností. Třetí skupinu problémů tvoří nekorektně formulované úlohy a přístup k 
jejich řešení pro případ (max,min)-lineárních rovnic. Posledním okruhem problémů, 
jimž se předložená práce věnuje je zobecnění získaných výsledků na širší třídu 
nelineárních tzv. max-separabilních problémů. 
 
Klí čová slova: Optimalizační problémy, (max, min)-lineární omezení. 
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Abstract:  Problems on algebraic structures, in which pairs of operations such as 
(max, +) or (max, min) replace addition and multiplication of the classical linear 
algebra have appeared in the literature approximately since the sixties of the last 
century. The first publications on these algebraic structures appeared by Shimbel [37] 
who applied these ideas to communications networks, Cuninghame - Green [12, 13], 
Vorobjov [40] and Gidffer [18] applied these algebraic structures to problems of 
machine time - scheduling. A systematic theory of such algebraic structures was 
published probably for the first time in [14]. In recently appeared book [4] the 
readers can find latest results concerning theory and algorithms for (max,+)−linear 
systems of equations and inequalities. Since operation max replacing addition is no 
more a group, but only a semigroup operation, it is a substantial difference between 
solving systems with variables on one side and systems with variables occuring on 
both sides of the equations. The former systems will be called ”one-sided” and the 
latter systems ”two-sided”. The aim of this thesis is to provide a unifying survey of 
some recent authar’s results concerning to the investigation of (max,min)− linear 
equations and inequality systems and some optimization problems under 
(max,min)−linear constraints. Besides, we propose some generalizations to non-
linear systems, which unify in one model the (max,+)− and (max,min)− linear 
problems and extend the results beyond the (max,+)− and (max,min)− linear 
structures. Further a special problem called ”incorrectly posed problem” is 
introduced and effective methods for its solutions are proposed for (max,min)− linear 
and non-linear equation systems are considered. We bring also some motivating 
examples from the area of operations research as well as illustrating numerical 
examples. 
The first subject of this thesis is the investigation of properties of systems of 
(max,min)−linear equations or inequalities. The second subject of this thesis is 
solving optimization problems subject to (max,min)−linear equation and inequality 
constraints. The third subject of research of the present thesis is the investigation of 
so called incorrectly posed one-sided (max,min)−linear systems of equations. The 
fourth part of the thesis is devoted to a generalization of the research of 
(max,min)−linear problems on some max-separable nonlinear problems. 
 
Keywords: Optimization Problems, (max, min)- Linear Constraints.  
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1

Introduction

Approximately since the sixties of the last century appeared a number of dif-

ferent problems of interest to the operational researcher and the mathematical

economist - for example, certain problems of optimization on graphs and net-

works, of machine - scheduling, of convex analysis and of approximation theory,

which appeared in the mathematical literature under various name and can be

formulated in a convenient way using special algebraic structures (E,⊕,⊗). The
algebraic structures are represented by a set E, E ⊂ R = (−∞,∞), with two

operations denoted ⊕ and ⊗, which play in the algebraic structures similar

role and behave similarly like the addition and multiplication in the classic lin-

ear algebra. The operation ⊕ is a commutative semigroup operation with the

neutral element 0⊕ and the operation ⊗ is either a commutative group or

a commutative semigroup operation with a neutral element 1⊗. The set E

and operations ⊕ and ⊗ are chosen in such a way that the distributive law

holds. The operations ⊕ and ⊗ can be extended to En and to matrices

over E with appropriate size similarly like in the classical linear algebra the

addition and multiplication are extended to Rn and to real matrices. This make

possible to define (⊕,⊗)−linear function on En and investigate systems of

(⊕,⊗)−linear equations and inequalities as well as some optimization problems

under (⊕,⊗)−linear equations and inequalities constraints.

As triplets appropriate both from the theoretical and from the application

point of view are usually used triplets (R,max,+) or (R,max,min) but

we can encounter also triples (R+,max, ·), (R+,min, ·), where we set R =
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(−∞,∞), R+ = {α ∈ R | α > 0}, (Z,max,+), and (Z,max,min), where

Z = {α ∈ R | α is integer}. ([0, 1] ,max,min) (so called fuzzy algebra),

([0, 1] ,max, ·) (so called boolean algebra) and other.

The first publications on these algebraic structures appeared by Shimbel [34]

who applied these ideas to communications networks, Cuninghame-Green [10, 11]

and Giffler [15] applied these algebraic structures to problems of machine time -

scheduling. The algebraic structures (R,max,+), (R,max,min), (R,max, ·),
were studied by several authors Carre [6, 7], Cuninghame-Green [12] and Vorob-

jov [37]. The authors solve systems of (⊕,⊗)−linear equations and inequalities in

which variables appear on one-side of equations or inequalities, while on the other

side is a constant. Butkovič and Hegedüs [3] introduce an elimination method

for finding all solutions of the system of linear equations over an extremal al-

gebra. Tharwat and Zimmermann [35] introduce the method, which find the

optimal choice of parameters in machine time scheduling Problems, Also Thar-

wat and Zimmermann [36] study separable optimization problems and introduce

some application. Zimmermann [38] introduces a general separation theorem in

extremal algebras, Zimmermann [39] studies disjunctive optimization problems,

max-separable problems and extremal algebras and Zimmermann [40] discusses

class of optimization problems with alternative constraints and its application.

After having extended the operations to vectors and matrices, the authors

[4], [8], [9] and [16] introduce the concept of (⊕,⊗)− eigenvalues and (⊕,⊗)−
eigenvectors and propose effective numerical methods making possible to find the

eigenvalues and eigenvectors.

In [6] we find problems involving the determination of routes on networks arise

in many different contexts. For example network flow problems in operations

research, such as transportation and assignment problems, involve the determi-

nation of a succession of shortest or least-cost paths between commodity sources

and sinks. Again, critical path analysis and certain scheduling problems involve

the determination of longest paths on activity networks. Pathfinding problems of

different kinds also arise in the design of logic networks, and in routing messages

through congested communication networks. [6] presents an algebraic structure

for the formulation and solution of such problems.
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After defining the algebraic structure and giving concrete examples applicable

to different kinds of routing problems, [6] uses in a general analysis of a class of

directed networks, in which each of them has an associated measure (representing

for instance a transportation cost, an activity duration, the state - open or closed

- of a switch, or the probability of a communication link being available). It is

then shown that all the routing problems mentioned above can be expressed in

the same algebraic form, and that they can all be solved by variants of classical

methods of linear algebra, differing from these only in the significance of the

additive and multiplicative operations.

Since the ⊕−operation (i.e. max−operation) is only a semigroup operation,

so that the variables can not be simply transferred from one-sided of the equations

and inequalities to the other like in classic linear algebra, where the operation +

is a group operation. Therefore equations and inequalities with variables on both

sides of the relations must be treated by special methods different from those,

which were used to investigate one-sided equations and inequalities.

The first publications denoted to some special two-sided systems by Butkovič

and Hevery [4] for the (max,+)− case. A detailed survey of the research de-

velopment of the structure (R,max,+) and some of its modifications can be

found in the book [2] published in 2010 by Butkovič. Butkovič and Zimmer-

mann [5] proposed a strongly polynomial algorithm for solving two-sided linear

systems in max-algebra, but after that Bezem et al. [1] studied exponential be-

haviour of the Butkovič - Zimmermann algorithm for solving two-sided linear

systems in max-algebra. Gavalec and Zimmermann [17] solve systems of two-

sided (max,min)-linear equations. Besides Gavalec and Zimmermann [18] study

optimization problems with two-sided systems of linear equations over distribu-

tive lattices.

Further results on (max,+) and (max,min) eigenvalues and eigenvectors can

be found in Gavalec and Plávka [16] and Cechlárová [9] and others. Operations

(⊕,⊗) make possible to introduce the concept of convexity on (En,⊕,⊗). This
concept led to investigating some geometrical problems as e. g. properties of

(⊕,⊗)− convex sets and functions. The corresponding results can be found

e.g. Nitica and Singer [26, 27], which study Max-plus convex sets and max-

plus semispaces, also Nitica and Singer [28, 29], which are contributions to max-
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min convex geometry segments and semispaces and convex sets. Sergeev [33]

introduced algorithmic complexity of a problem of idempotent convex geometry

and Helbig [19] study a Caratheodory’s and Krein-Milman’s theorems in fully

ordered groups. Nitica and Sergeev [30] Study hyperplanes and semispaces in

maxmin convex geometry.

Another type of problems which may be important mainly in the applications

arises from the assumption that the coefficients of the problems are not exactly

given numbers, but may move within closed intervals. This assumption led to

investigation equation and inequality systems and optimization problems under

(⊕,⊗)−linear constraints by making use of the methods of interval mathematics

(see Cechlárová [9], Myšková [25] and other).

The investigation of the structures using methods of mathematical analysis

can be found in the publications by Litvinov and Maslov [22], Litvinov et al.

[23] and Maslov and Samborskij [24]. Some authors proposed explicit form as for

solving some (⊕,⊗)− linear problems (e. g. Kolokoltsov and Maslov [21] and

the references there in).

The present dissertation is devoted to the investigation of (max,min)− lin-

ear equations and inequality systems and some optimization problems under

(max,min)− linear constraints, because these problems has not yet been sys-

tematically investigated in the literature. Besides, the author proposes some

generalizations to non-linear systems, which unify in one model the (max,+)−
and (max,min)− linear problems and extend the results beyond the (max,+)−
and (max,min)− linear structures. Further special problems called ”incorrectly

posed problem” are introduced and effective methods for their solutions are pro-

posed for (⊕,⊗)− linear and non-linear equation systems are considered.

When we extend operations ⊕,⊗, from E to En, where En = E× · · · ×︸ ︷︷ ︸
n times

E,

we can define in a natural way the appropriate inner product of x, y ∈ En,

namely

xT ⊗ y =
n∑

j=1

⊕(xj ⊗ yj)

can be introduced. The inner product makes possible extending the operations
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to matrices of appropriate sizes as

(A⊗ B)ij =
n∑

k=1

⊕(aik ⊗ bkj) ∀ i ∈ I, j ∈ J

where I = {1, · · · ,m}, j ∈ J = {1, · · · , n}. Multiplication A ⊗ x can be

introduced in a similar way as

(A⊗ x)i = max
j∈J

(aij ⊗ xj) ∀ i ∈ I.

Function f : En → E1 for x ∈ En defined as

f(x) =
n∑

j=1

⊕fj(xj)

will be called ⊕−separable and if fj(xj) = cj ⊗ xj, function f is called

(⊕,⊗)−linear. Examples of such functions are for instance:

f (1)(x) = max
j∈J

(cj + xj) is a (max,+)− linear function on (R,max,+),

f (2)(x) = min
j∈J

(cj · xj) is a (min, ·)− linear function on (R+,min, ·),

f (3)(x) = max
j∈J

(cj ∧ xj) is a (max,min)− linear function on (R,max,min).

The first subject of this thesis is the investigation of properties of systems of

(max,min)− linear equations and / or inequalities, i. e. equations or inequalities,

in which (max,min)− linear functions occur. The following examples show how

such inequalities may look like:

max
j∈J

(αj ∧ xj) 2∗ β, (1.1)
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max
j∈J

(αj ∧ xj) 2∗ max
j∈J

(βj ∧ xj), (1.2)

where we assume αj, β, βj ∈ R ∀ j ∈ J and 2∗ is one of the relations

≤, =,≥ where to simplify the expressions we set

(αj ∧ xj) = min(αj, xj).

We will use this notation throughout the next chapters of the thesis. Let us

point out the difference between relations (1.1) and (1.2): relations (1.1) contain

variables on the left side only while in relations (1.2) variables xj occur in both

sides of the relations. Since operation ⊕ = max is only a semigroup operation,

the variables cannot be simply transferred from one side to the other like in

classic linear algebra, where the operation + is a group operation. We will call

relations (1.1) one-sided equations or inequalities and relations having the form

(1.2) two-sided equations or inequalities. The absence of inverse elements leads

to the necessity to investigate one-sided and two-sided inequalities or equations

separately using different methods.

The second subject of this thesis is solving optimization problems, the set of

feasible solutions of which is described by a finite system of (max,min)−linear
equations and inequalities (both one-sided and two-sided relations are consid-

ered). The objective function of the optimization problems are continuous max-

separable functions of the form:

f(x1, x2, · · · , xn) = max
j∈J

fj(xj).

Examples of operations research show that (max,min)−linear optimization prob-

lems studied in this work can be applied to processing time scheduling, network

capacity problems, investigating reliability of complex systems and others as well

as to some problems connected with the fuzzy set theory. Numerical examples

demonstrate the behaviour of the proposed algorithms.

The third subject of research of the present thesis is the investigation of so

called incorrectly posed one-sided (max,min)−linear systems of equations. The

concept of incorrectly posed (or improper posed problem) is used in the literature
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for problems, which have no solutions for given coefficients and we look for a close

set (with respect to a given distance function) of coefficients generating a solvable

problem (see e.g. Eremin et al. [13] and Eremin and Vatolin [14]). In the present

work this concept is introduced for (max,min)−linear equations systems. Various

approaches to solving such incorrectly posed problems are proposed.

The fourth part of the thesis is devoted to a generalization of the research of

(max,min)−linear problems. We consider equations and inequalities, in which

the following max-separable functions occur :

g(x) = max
j∈J

(νj ∧ qj(xj))

where νj ∈ R, qj : R → R, are strictly increasing continuous functions. We

consider finite systems of equations and / or inequalities of the one-sided form:

max
j∈J

(aij ∧ rij(xj)) 2∗ bi, ∀ i ∈ I (1.3)

where 2∗ is one of ≤, =,≥, as well as some special types of two-sided equations

and / or inequalities systems. Properties of the systems are investigated and used

to solve optimization problems with a max-separable objective function and set

of feasible solutions described by the ”non-linear” systems with functions (1.3).

Also the results concerning incorrectly posed problems are generalized for the

one-sided equation systems of the form (1.3).

Before we begin to study the main problem in this thesis, which represented

in solving the optimization problems under (max,min)-linear constraints and

the investigation of properties of systems of (max,min)− linear equations or

inequalities, In the next chapter we will present briefly the idea to solve a two-

sided systems (max,+)− linear equations and we introduce a finite algorithm

for finding the optimal solution of the optimization problems under a two-sided

(max,+)−linear constraints.
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2

Optimization Problems under

(max,+)-Linear Constraints

We consider optimization problems, the objective function of which is equal to

the maximum of a finite number of continuous strictly increasing functions of one

variable. The set of feasible solutions is described by a system of (max,+)-linear

equations with variables on both sides. A finite algorithm for finding the optimal

solution of the problem is proposed.

2.1 Notation, Problem Formulation

We will assume that A, B are two real (m,n)−matrices with entries aij, bij, i ∈
I = {1, 2, . . . , m}, j ∈ J = {1, 2, . . . , n}. Let

ai(x) = max
j∈J

(aij + xj), bi(x) = max
j∈J

(bij + xj), ∀i ∈ I.

We will further assume that fj(xj), ∀j ∈ J are continuous strictly increasing

functions and set

f(x) = f(x1, x2, . . . , xn) = max
j∈J

fj(xj).

If f(x) = fp(xp), then variable xp will be called active variable of function f at

point x. By analogy we will define the concept of active variables of functions
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2.2 Properties of the Set of Feasible Solutions.

ai(x), bi(x), i ∈ I.

Function φ(x) of x = (x1, x2, . . . , xn) having the form φ(x) = maxj∈J φj(xj)

will be called max-separable function. Functions f(x), ai(x), bi(x) are examples

of max-separable functions.

We will consider the following optimization problem:

PROBLEM I.

f(x) −→ min (2.1)

subject to

ai(x) = bi(x), ∀i ∈ I, (2.2)

x ≤ x ≤ x, (2.3)

where x, x are given finite vectors. In the sequel, the set of feasible solutions of

PROBLEM I will be denoted M(x, x).

2.2 Properties of the Set of Feasible Solutions.

Definition 2.2.1 Let L ⊆ Rn, x̃ ∈ L. Then x̃ is called the maximum element

of L, if x ≤ x̃ holds for every x ∈ L.

Theorem 2.2.1 [5] Let M(x) = {x ; ai(x) = bi(x) ∀i ∈ I&x ≤ x}. If M(x) 6= ∅,
there exists always element xmax ∈M(x) such that x ≤ xmax ∀x ∈M(x).

Therefore the following theorem is true:

Theorem 2.2.2

M(x, x) 6= ∅ if and only if x ≤ xmax.

Let us note that element xmax is called the maximum element of M(x, x). Let

us remark further that if M(x, x) 6= ∅, then the maximum element xmax of M(x)

is at the same time the maximum element of M(x, x). The method proposed

in [5] either finds after a finite number of steps element xmax or finds out that

M(x) = ∅. The method of [5]is in general pseudopolynomial (see [1]). Therefore

9



2.3 Algorithm

we can assume for the algorithm solving PROBLEM I that the set of its feasible

solutions is nonempty and we obtained using the method of [5] the maximum

element xmax.

To simplify the description of the algorithm for solving PROBLEM I, we intro-

duce the concept of threshold values of a max-separable function. Let φ(x) =

maxj∈J φj(xj) be a max-separable function, and x̃ an arbitrary point. Let us set:

t1(x̃) = max
j∈J

φj(x̃j), P1(x̃) = {p ∈ J ; φp(x̃p) = t1(x̃)}.

For all k, 2 ≤ k ≤ n, for which Hk−1(x̃) = (J \ ∪1≤r≤(k−1)(Pr(x̃))) 6= ∅ we set:

tk(x̃) = max
j∈Hk−1(x̃)

φj(x̃j), Pk(x̃) = {p ∈ J ; tk(x̃) = φp(x̃p)}.

The values tk(x̃), k = 1, . . . , h obtained in this way are called threshold values

of function φ at point x̃. Let us note that there is always 1 ≤ h ≤ n, i.e. each

such max-separable function has at least one and at most n different threshold

values.

Example 2.2.1

Let n = 4, J = {1, 2, 3, 4}, φ(x) = maxj∈J(xj), x̃ = (1, 1, 3, 5). We obtain the

following theshold values of function φ at point x̃:

t1(x̃) = 5, t2(x̃) = 3, t3(x̃) = 1

We have in this case h = 3, P1(x̃) = {4}, P2(x̃) = {3}, P3(x̃) = {1}, H1(x̃) =

{4}, H2(x̃) = {3, 4}, H3(x̃) = {1, 2, 3, 4}.

2.3 Algorithm

In this section we propose a finite algorithm for finding the optimal solution of

PROBLEM I.

Let tfk(x) denote threshold values of the objective function f , and let similarly

tair (x), tbis (x), ∀i ∈ I be threshold values of functions ai, bi. The correspond-

ing sets of indices of active variables in the threshold values will be denoted

P f
k (x), P

ai
r (x), P bi

s (x) respectively. Note that k, r, s are always smaller or equal

10



2.3 Algorithm

to n.

We will assume further that using the algorithm of [5] we found out thatM(x, x) 6=
∅ and that we have at our disposal maximum element xmax ∈M(x, x). The main

idea of the proposed algorithm consists in successive decreasing active variables

in thresholds of the objective function f without leaving the feasible set until we

cannot decrease the objective function without violating the constraint x ≤ x.

Algorithm 2.3.1

0 x̃ := xmax;

1 V (x̃) := P f
1 (x̃), find P ai

1 (x̃), P bi
1 (x̃) ∀i ∈ I;

2 I1(x̃) := {i ∈ I ; P ai
1 (x̃) 6⊆ V (x̃) & P bi

1 (x̃) ⊆ V (x̃)};
I2(x̃) := {i ∈ I ; P ai

1 (x̃) ⊆ V (x̃) & P bi
1 (x̃) 6⊆ V (x̃)};

I3(x̃) := {i ∈ I ; P ai
1 (x̃) ⊆ V (x̃) & P bi

1 (x̃) ⊆ V (x̃)};

3 V1(x̃) := V (x̃) ∪⋃i∈I1(x̃) P
ai
1 (x̃) ∪⋃i∈I2(x̃) P

bi
1 (x̃);

4 If V1(x̃) 6= V (x̃), set V (x̃) := V1(x̃), go to 2 ;

5 xj(t); = x̃j − t ∀j ∈ V (x̃), xj(t) := x̃j otherwise;

6 αi(x̃) := maxj∈(J\V (x̃))(aij + x̃j) ∀i ∈ I13 ≡ I1(x̃) ∪ I3(x̃),

βi(x̃) := maxj∈(J\V (x̃))(bij + x̃j) ∀i ∈ I23 ≡ I2(x̃) ∪ I3(x̃);

γ(x̃) := maxj∈(J\V (x̃)) fj(x̃j);

7 τ (1) := mini∈I13(ai(x̃)− αi(x̃)),

τ (2) := mini∈I23(bi(x̃)− βi(x̃)),

τ (3) := maxj∈P f
1 (x̃)(x̃j − f−1j (γ(x̃)),

τ (4) := minj∈V (x̃)(x̃j − xj),

τ := min1≤v≤4 τ (v);

8 If f(x(τ)) < f(x̃), Set x̃ := x(τ), go to 1 ;

9 Set xopt := x(τ), STOP;
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Remark 2.3.1

Symbol t in step 5 denotes a nonnegative parameter, which is increased until

a new threshold value is reached. Symbols τ (1), τ (2) denote the value of t, at

which the active variables of ai(x̃), bi(x̃) reach the next threshold yielded by non-

decreased variables x̃j, j ∈ J \V (x̃). Symbols τ (3) denotes the value of t, at which

fj(xj(t)) ≤ γ(x̃) for all active variables of f(x̃). Symbols τ (4) denotes the value of

t, at which for the first time some decreased variable reaches its lower bound i.e.

for the first time xj(t) = xj for some j ∈ V (x̃)

Remark 2.3.2

We used the following convention in algorithm 2.3.1: the maximum over the

empty set is defined as −∞ and if e.g. α(x̃) = −∞ because of J \ V (x̃) = ∅,
we set τ (1) = +∞. Since τ (4) is always finite, the algorithm ends with a finite

optimal value of the objective function.

Remark 2.3.3

The complexity of algorithm 2.3.1 depends in general on the behaviour of the ob-

jective function. If the objective function is (max,+)-linear, the complexity can

be estimated as follows:

The maximal number of thresholds (threshold values) of functions ai(x), bi(x),

∀i ∈ I is 2mn and the evaluation of the threshold values for each i ∈ I re-

quires O(mn) operations, which makes together compledxity O(m2n2). The other

steps have complexity O(n) so that the resulting complexity of algorithm 2.3.1 is

O(m2n2).

We will illustrate the perfomance of algorithm 2.3.1 by the following small nu-

merical example.

Example 2.3.1

Let m = 3, n = 4, matrices A, B will be defined as follows:

A =




4 3 0 2

5 −1 6 3

7 3 0 4



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2.3 Algorithm

B =




0 2 6 1

5 5 0 3

2 10 6 3




We will assume that x = (1, 0, 1, 1), x = (24, 21, 22, 26) and f(x) = max(x1, x2, x3, x4),

(i.e.fj(xj) = xj ∀ j ∈ J = {1, 2, 3, 4}).
Iteration 1:

0 x̃ = (24, 21, 22, 26);

1 V (x̃) = {4};
2 Ir(x̃) = ∅ for r = 1, 2, 3;

3 , 4 V1(x̃) = {4};
5 x(t) = (24, 21, 22, 26− t);

6 γ(x̃) = 24, α(x̃) = β(x̃) = −∞;

7 τ (1) = τ (2) =∞, τ (3) = 2, τ (4) = 21, τ = 2;

8 x̃ = (24, 21, 22, 24), go to 1 ;

Iteration 2:

1 V (x̃) = {1, 4};
2 I1(x̃) = ∅, I2(x̃) = {3}, I3(x̃) = {2};
3 V1(x̃) = {1, 2, 4};
4 V (x̃) = {1, 2, 4};
2 I1(x̃) = ∅, I2(x̃) = {1, 3}, I3(x̃) = {2};
3 V1(x̃) = {1, 2, 3, 4};
4 V (x̃) = {1, 2, 3, 4};
2 I1(x̃) = I2(x̃) = ∅, I3(x̃) = {1, 2, 3};
3 V1(x̃) = {1, 2, 3, 4};
5 x(t) = (24− t, 21− t, 22− t, 24− t);

6 α(x̃) = β(x̃) = γ(x̃) = −∞;

7 τ (v) =∞ for v = 1, 2, 3, τ (4) = 21;

8 x̃ = (3, 0, 1, 3), go to 1 ;

Iteration 3:

1 v(x̃) = {1, 4};
...

4 V (x̃) = {1, 2, 3, 4}, x̃2 = x2 = 0;

13



2.3 Algorithm

...

8 If f(x(τ)) = f(x̃) = 3;

9 xopt = x̃ = (3, 0, 1, 3), STOP.

We obtained the optimal value f(xopt) = 3.

We can easily verify that xmax is a feasible solution: a1(x
max) = b1(x

max) = 7,

a2(x
max) = b2(x

max) = 8, a3(x
max) = b3(x

max) = 10, and inequality xmax ≥ x is

fulfilled.

The following example shows one possible application of the the optimization

problem considered in this section.

Example 2.3.2

Let one group of passangers be transported from places Pj, j ∈ J to places Ri, i ∈
I;

Let another group be transported from places Qk, k ∈ K to the same places

Ri, i ∈ I;

Let aij be traveling times from Pj to Ri, and let bik be travelling times from Qk

to Ri. We require to determine departure times xj, j ∈ J , yk , k ∈ J such that

the last passangers of both groups meet in Ri at the same time. It means

max
j∈J

(aij + xj) = max
k∈J

(bik + yk) ∀i ∈ I.

We require additionally that x ≤ x ≤ x, y ≤ y ≤ y. By introducing new

variables z = (x, y) and appropriate sufficiently small coefficients aij for j > n

and sufficiently small coefficients bik for k < n we obtain the system

max
j∈K

(aij + zj) = max
j∈K

(bij + zj) ∀i ∈ I, z ≤ z ≤ z,

where K = {1, 2, . . . , 2n}. This system has the same form as the system, which

describes the set of feasible solutions of PROBLEM I. We assume that there is

given a panalty function fj(zj) for each time zj, j ∈ K and require that the

maximum of the penalties fj(zj) is minimized. Such problem can be solved by the

algorithm described above.
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3

Optimization Problems under

One-Sided (max,min)-Linear

Inequality Constraints

In this chapter, we will begin our studies by studying one-sided (max,min)-linear

systems of inequalities where the unknowns appear in the left side only of in-

equalities and on the right side of these systems of inequalities we have constant

variables only. Here we will provide an algorithm, which determines whether the

set of all feasible solutions is empty or not, and if the set of feasible solutions

is not empty this algorithm finds the maximum element of the set of all feasible

solutions. Also, we will extend our studies to study one-sided (max,min)-linear

systems of inequalities if there are another boundary conditions on the variables in

the left side of the system of inequalities and we will modify algorithm for approval

the existence boundary conditions as we will see in detail in the following. Also

in this chapter we study an optimization problems under one-sided (max,min)-

linear inequality constraints and we introduce an algorithm, which finds an op-

timal solution of these optimization problems under one-sided (max,min)-linear

inequality constraints under the assumption that the set of all feasible solutions

of one-sided (max,min)-linear systems of inequalities is not empty. We bring

also some motivating examples from the area of operations research as well as

examples illustrating the numerical performance of these algorithms.
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3.1 One-Sided (max,min)-Linear Systems of Inequalities

3.1 One-Sided (max,min)-Linear Systems of In-

equalities

Let us introduce the following notations:

J = {1, . . . , n}, I(1) = {1, . . . ,m}, I(2) = {m + 1, . . . , k}, where n,m and k are

integer numbers, R = (−∞,∞), R = R ∪ {−∞,∞},

Rn = R× · · · × R (n-times), similarly R
n
= R× · · · × R, x = (x1, . . . , xn) ∈ R

n
,

α ∧ β = min{α, β}, α ∨ β = max{α, β} for any α, β ∈ R, we set per definition

−∞∧∞ = −∞, −∞∨∞ =∞,

aij ∈ R, bi ∈ R, ∀ i ∈ I, j ∈ J are given finite numbers,

In what follows we will consider the following system of inequalities:

max
j∈J

(aij ∧ xj) ≥ bi, i ∈ I(1), (3.1)

max
j∈J

(aij ∧ xj) ≤ bi, i ∈ I(2), (3.2)

where I(1) ∪ I(2) = I.

The set of all solutions of system (3.1) and (3.2), will be denoted M . Before

investigating properties of set M , we will bring an example, which shows one

possible application, which leads to solving the system given above.

Example 3.1.1

Let us assume that m places i ∈ I(1) ≡ {1, 2, . . . , m} are connected with n

places j ∈ J ≡ {1, 2, . . . , n} by roads with given capacities. The capacity

of the road connecting place i with place j is equal to aij ∈ R. We have to

extend for all i ∈ I, j ∈ J the road between i and j by a road connecting j

with a terminal place T and choose an appropriate capacity xj for this road. If

a capacity xj is chosen, then the capacity of the road from i to T via j is equal

to aij ∧ xj = min(aij, xj). We require that the connection between places i and

T is for at least one j greater or equal to a given number bi ∈ R and the chosen
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3.1 One-Sided (max,min)-Linear Systems of Inequalities

capacity xj lies in a given finite interval i.e. xj ∈ [xj, xj], where xj, xj ∈ R are

given finite numbers. Therefore feasible vectors of capacities x = (x1, x2, . . . , xn)

(i.e. the vectors, the components of which are capacities xj having the required

properties) must satisfy system (3.1).

In what follows, we will investigate some properties of set M described by system

(3.1), (3.2). Also, to simplify the formulas in what follows we will set

ai(x) ≡ max
j∈J

(aij ∧ xj) for all i ∈ I ,

Let us note that for any fixed i ∈ I(2) the inequality

ai(x) = max
j∈J

(aij ∧ xj) ≤ bi

implies aij ∧ xj ≤ bi ∀j ∈ J .

Lemma 3.1.1 Let us set for all i ∈ I(2)

Vij = {xj ; (aij ∧ xj) ≤ bi & xj ∈ R = (−∞,∞)}

For any fixed i ∈ I(2) and j ∈ J , the following statements hold:

Vij = (−∞,∞) if aij ≤ bi;

Vij = (−∞, bi] if aij > bi;

Proof:

If aij ≤ bi, then aij ∧ xj = aij ≤ bi for arbitrary xj.

If aij > bi, then aij ∧ xj ≤ bi if and only if xj ≤ bi.

It follows from Lemma 3.1.1 that

x ∈M ⇒ xj ∈
⋂

i∈I(2)
Vij ∀j ∈ J.
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3.1 One-Sided (max,min)-Linear Systems of Inequalities

Therefore if for any i ∈ I(2), j ∈ J set Vij is not empty, then M 6= ∅. In other

words, from the above lemma we can find that x ∈M is bounded from above by

x, which specifies from the previous discussion.

Then the set of all solutions of system of inequalities (3.1) and (3.2), M can be

described as follows:

ai(x) = max
j∈J

(aij ∧ xj) ≥ bi, i ∈ I(1), (3.3)

x ≤ x (3.4)

we can specify x from the previous discussion as follows:

xj = min
i∈I(3)j

bi

where I
(3)
j =

{
i; i ∈ I(2) &aij > bi

}
for all j ∈ J and we will set the minimum

equal to ∞ if I
(3)
j = ∅.

Now it is appropriate to define

M(x) = {x ; x ∈M&x ≤ x}

Let xij denote the upper bound of any nonempty set Vij, i.e. xij = −∞ if aij ≤ bi

and xij = bi if aij > bi, then xj ≤ mini∈I(2) xij for all j ∈ J . So that we replace

system (3.2) by introducing new upper bounds xmax
j ≡ mini∈I(2) xij for all j ∈ J .

Let M(x) is nonempty set and x be defined as above, the element x will be the

maximum element of M(x); we denote further this element as xmax, which satisfy

relations (3.3), (3.4), i.e. if x is any element satisfying (3.3), (3.4), then x ≤ xmax.

In what follows, we will solve system (3.3) and (3.4) taking into account that if

x 6≤ x, then some inequalities of (3.2) are not satisfied.

Lemma 3.1.2 Let us define sets Tij, i ∈ I(1), j ∈ J as follows:

Tij ≡ {xj ; aij ∧ xj ≥ bi}.

For any fixed i, j the following equalities hold:
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Tij = [bi, xj] if aij ≥ bi & bi ≤ xj;

Tij = ∅ otherwise, i.e. if either aij < bi or bi > xj.

Proof:

Let aij ≥ bi and bi ≤ xj. Then [bi, xj] 6= ∅ and for any xj ∈ [bi, xj] we have

aij ∧ xj ≥ xj ≥ bi, which proves that Tij = [bi, xj] .

Let us assume now that either aij < bi or bi > xj. Then we have either aij∧xj < bi

or aij ∧ xj ≥ bi > xj so that set Tij must be empty.

Lemma 3.1.3 For any pair of indices i1, i2 ∈ I(1), i1 6= i2 and arbitrary j ∈ J

either Ti1j ⊆ Ti2j or Ti2j ⊆ Ti1j holds .

Proof:

If one of the sets Ti1j, Ti2j is empty, the assertion is evident. Let us assume that

both sets are nonempty so that we have according to Lemma 3.1.2 Tirj = [bir , xj]

for r = 1, 2. We can assume w.l.o.g. that (bi1 ≥ (bi2). Then Ti1j ⊆ Ti2j.

As a consequence of Lemma 3.1.3 we obtain that for any fixed j ∈ J there

exists a permutation of indices {i1, . . . , im} of set I(1) such that the inclusions

Ti1j ⊆ Ti2j . . . , ⊆ Tim,j hold. In the sequel, we will call this property of sets Tij

”chain property”.

Lemma 3.1.4

M(x) 6= ∅ ⇔ ∀i ∈ I(1) ∃ j(i) ∈ J, such that Tij(i) 6= ∅.

Proof:

Let M(x) 6= ∅ and x be an arbitrary element of M(x). Let i ∈ I be arbitrarily

chosen. Then we have:

max
j∈J

(aij ∧ xj) = aij(i) ∧ xj(i) ≥ bi
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so that xj(i) ∈ Tij(i) and therefore Tij(i) 6= ∅.
Let now ∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij(i) 6= ∅ and let us consider

the element x. Let i ∈ I be arbitrary, then xj ∈ Tij for any nonempty set Tij.

Therefore we obtain according to the definition of Tij(i) that

max
j∈J

(aij ∧ xj) ≥ aij(i) ∧ xj(i) ≥ bi.

Therefore x ∈M(x) and thus M(x) 6= ∅. Let Tk = {i ∈ I | j(i) = k} ∀ k ∈ J,

choose x̃k ∈ Tk if Tk 6= ∅, x̃k ≤ xk otherwise and prove that x̃ ∈M(x) so that

M(x) 6= ∅.

As a consequence of Lemma 3.1.4 we obtain:

M(x) = ∅ ⇔ ∃ i ∈ I(1) ∀ j ∈ J Tij = ∅.

It follows further that if M(x) 6= ∅, then x = xmax is the maximum element of

set M(x).

Algorithm 3.1.1 We will provide algorithm, which summarizes the above dis-

cussion and determines whether M(x) = ∅ or finds the maximum element of set

M(x) 6= ∅

0 Input I(1), I(2), J , aij and bi for all i ∈ I(1) ∪ I(2) and j ∈ J

1 For all j ∈ J set I
(3)
j =

{
i; i ∈ I(2) &aij > bi

}

2 xj = min
i∈I(3)j

bi if I
(3)
j 6= ∅ or xj =∞ if I

(3)
j = ∅;

3 For all i ∈ I(1) and j ∈ J set:

Tij = [bi, xj] if aij ≥ bi & bi ≤ xj;

Tij = ∅ otherwise, i.e. if either aij < bi or bi > xj

4 If there exists i ∈ I(1) such that Tij = ∅ for all j ∈ J , then M(x) = ∅,
STOP;

Otherwise x is the maximum element of set M(x) STOP;

20



3.1 One-Sided (max,min)-Linear Systems of Inequalities

We will illustrate the performance of the Algorithm 3.1.1 by the following small

numerical example.

Example 3.1.2

Let J = {1, 2, 3}, I(1) = {1, 2, 3}, I(2) = {4, 5, 6, 7}, and consider the following

system of inequalities:

max(3 ∧ x1, 2 ∧ x2, 1 ∧ x3) ≥ 1,

max(2 ∧ x1, 5 ∧ x2, 4 ∧ x3) ≥ 3,

max(5 ∧ x1, 1 ∧ x2, 3 ∧ x3) ≥ 2,

max(6 ∧ x1, 5 ∧ x2, 1 ∧ x3) ≤ 5,

max(3 ∧ x1, 9 ∧ x2, 7 ∧ x3) ≤ 6,

max(9 ∧ x1, 10 ∧ x2, 3 ∧ x3) ≤ 8,

max(8 ∧ x1, 2 ∧ x2, 11 ∧ x3) ≤ 7,

V41 = (−∞, 5], V42 = (−∞,∞) , V43 = (−∞,∞);

V51 = (−∞,∞), V52 = (−∞, 6], V53 = (−∞, 6];

V61 = (−∞, 8], V62 = (−∞, 8] , V63 = (−∞,∞);

V71 = (−∞, 7], V72 = (−∞,∞) , V73 = (−∞, 7];

I
(3)
1 = {4, 6, 7} I

(3)
2 = {5, 6} I

(3)
3 = {5, 7}

Then we can find that x = (5, 6, 6)

T11 = [1, 5], T12 = [1, 6], T13 = [1, 6];

T21 = ∅, T22 = [3, 6], T23 = [3, 6];

T31 = [2, 5], T32 = [2, 6], T33 = ∅.
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We find ∪j∈JTij 6= ∅ for all i ∈ I(1). Then x = (5, 6, 6) is the maximum

element of set M(x).

Now we will consider the system of inequalities (3.1) and (3.2) with the upper

and lower bounds x and x respectively. Let M(x, x) be the set of all solutions of

system (3.1) and (3.2) with the upper and lower bounds x and x respectively. In

what follows, we will investigate some properties of set M(x, x).

Remark 3.1.1

In fact the inequalities x ≤ x ≤ x could be included in the original system by

introducing new inequalities with appropriately chosen coefficients of the left-hand

sides and appropriately chosen additional b′is in the right-hand sides. i.e. instead

of requiring x1 ≥ x1 we can include in the system additional inequality:

am+1(x) ≥ bm+1

where am+1(x) ≡ maxj∈J(am+1j ∧xj) and am+11 =∞, am+1j = −∞, j = 2, ..., n

and bm+1 = x1, so that this inequality is equivalent to x1 ≥ x1.

Similarly we can proceed with other ≥ , ≤-inequalities. Such a procedure re-

quires including additionally m ≥-inequalities and m ≤-inequalities, which is a

disadvantage of such procedure. Therefore we prefer to take into account inequal-

ities x ≤ x ≤ x explicitly in the process of finding the maximum element xmax.

Such approach simplifies (or shortens) the necessary computations and memory

requirements. In what follows we will introduce the procedures to find the max-

imum element xmax of the system of inequalities (3.1) and (3.2) with the lower

and upper bounds x and x respectively.

Lemma 3.1.5 Let us set for all i ∈ I(2)

Vij = {xj ; (aij ∧ xj) ≤ bi & xj ≤ xj ≤ xj}

For any fixed i, j the following equalities hold:

Vij = [xj, xj] if aij ≤ bi;

Vij = [xj, xj ∧ bi] if aij > bi & bi ≥ xj;

Vij = ∅ if aij > bi & bi < xj.
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Proof:

If aij ≤ bi, then aij ∧ xj = aij ≤ bi for arbitrary xj.

If aij > bi & bi ≥ xj, then aij ∧ xj ≤ bi if and only if xj ≤ bi & xj ≤ xj.

If aij > bi & bi < xj, we obtain: aij ∧ xj ≤ bi if and only if xj ≤ bi < xj so that

in this case xj 6∈ [xj, xj] and therefore Vij = ∅.

It follows that from Lemma 3.1.5 that

x ∈M(x, x) ⇒ xj ∈
⋂

i∈I(2)
Vij ∀j ∈ J.

Therefore if for any i ∈ I(2), j ∈ J set Vij is empty, then M(x, x) = ∅. Or in

other words, if there exist indices i ∈ I(2), j ∈ J such that aij > bi & bi < xj,

then M(x, x) = ∅.
Let xij denote the upper bound of any nonempty set Vij, i.e. xij = xj if aij ≤ bi

and xij = xj ∧ bi if aij > bi & bi ≥ xj, then xj ≤ mini∈I(2) xij for all j ∈ J .

It follows that we can replace system (3.2) by introducing new upper bounds

xmax
j ≡ mini∈I(2) xij for all j ∈ J .

Element xmax is the maximum element satisfying relations (3.1), with the upper

and lower bounds x and x respectively, i.e. if x is any element satisfying (3.1),

with the upper and lower bounds x and x respectively, then x ≤ xmax. We

will redefine therefore the upper bound setting x = xmax and consider only the

subsystem (3.1), with the upper and lower bounds x and x Respectively, with

this new upper bound taking into account that if x 6≤ xmax, relations (3.2) do not

hold.

Lemma 3.1.6 Let us define sets Tij, i ∈ I(1), j ∈ J as follows:

Tij ≡ {xj ; aij ∧ xj ≥ bi & xj ≤ xj ≤ xj}.

For any fixed i, j the following equalities hold:

Tij = [bi ∨ xj, xj] if aij ≥ bi & bi ≤ xj;

Tij = ∅ otherwise, i.e. if either aij < bi or bi > xj.
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Proof:

Let aij ≥ bi and bi ≤ xj. Then [bi ∨ xj, xj] 6= ∅ and for any xj ∈ [bi ∨ xj, xj] we

have aij ∧ xj ≥ (bi ∨ xj) ≥ bi, which proves that Tij = [bi ∨ xj, xj] .

Let us assume now that either aij < bi or bi > xj. Then we have either aij∧xj < bi

or aij ∧ xj ≥ bi > xj so that set Tij must be empty.

As a consequence of Lemma 3.1.3 we obtain that for any fixed j ∈ J there

exists a permutation of indices {i1, . . . , im} of set I(1) such that the inclusions

Ti1j ⊆ Ti2j . . . , ⊆ Tim,j hold. In the sequel, we will call this property of sets Tij

”chain property”.

In the same way as a consequence of Lemma 3.1.4 we can introduce the next

lemma.

Lemma 3.1.7

M(x, x) 6= ∅ ⇔ ∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij 6= ∅.

Proof:

Let M(x, x) 6= ∅ and assume that ∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij 6=
∅ is not fulfilled, i.e. ∃ i0 ∈ I such that Ti0j = ∅ ∀ j ∈ J . Then

for any x ∈ Rn, for each j ∈ J either xj > xj or ai0j ∧ xj < bi0 .

If xj > xj , then at least one inequality of (3.4) is not satisfied and therefore

x /∈ M(x, x). If xj ≤ xj, for all j ∈ J and ai0j ∧ xj < bi0 , ∀ j ∈ J, then

maxj∈J(ai0j ∧ xj) < bi0 so that the i0−th inequality of (3.3) is not satisfied so

that again x /∈ M(x, x). It follows that M(x, x) = ∅. We proved therefore non[
∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij 6= ∅

]
⇒ M(x, x) = ∅ or in other words

M(x, x) 6= ∅ ⇒
[
∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij 6= ∅

]
must be satisfied.

It is remains to prove the implication:

[
∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij 6= ∅

]
⇒ M(x, x) 6= ∅.

We will show that x ∈ M(x, x) if [ ∀ i ∈ I(1) ∃ j(i) ∈ J such that

Tij 6= ∅ ] holds. Let i0 ∈ I be arbitrarily chosen so that according to implication
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3.1 One-Sided (max,min)-Linear Systems of Inequalities

[
∀ i ∈ I(1) ∃ j(i) ∈ J such that Tij 6= ∅

]
, we have Ti0j(i0) 6= ∅ . Note that it

must be xj(i0) ∈ Ti0j(i0) (otherwise it would be Ti0j(i0) = ∅, since if xj(i0) /∈
Ti0j(i0), it must be ai0j(i0) ∧ xj(i0) < bi0 , and thus ai0j(i0) ∧ xj(i0) < bi0 , for any

xj ≤ xj ). Therefore we obtain:

max
j∈J

(ai0j ∧ xj) ≥ ai0j(i0) ∧ xj(i0) ≥ bi0

since i0 ∈ I was arbitrarily chosen, we obtain that x ∈ M(x, x) and therefore

M(x, x) 6= ∅, which completes the proof.

It follows further that if M(x, x) 6= ∅, then x = xmax is the maximum element

of set M(x, x).

Algorithm 3.1.2 We will provide algorithm, which summarizes the above dis-

cussion and determines whether M(x, x) = ∅ or finds the maximum element of

set M(x, x) 6= ∅

0 Input I(1), I(2), J , x, x, aij and bi for all i ∈ I(1) ∪ I(2) and j ∈ J ;

1 For all i ∈ I(2) and j ∈ J set

Vij = [xj, xj] if aij ≤ bi;

Vij = [xj, xj ∧ bi] if aij > bi & bi ≥ xj;

Vij = ∅ if aij > bi & bi < xj.

2 If Vij = ∅ for any i ∈ I(2) and j ∈ J

Then M(x, x) is empty set, STOP.

3 For all j ∈ J and i ∈ I(2) set

xij = xj if aij ≤ bi

xij = xj ∧ bi if aij > bi & bi ≥ xj

4 xmax
j = min

i∈I(2)j
xij For all j ∈ J ;

5 x = xmax;
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6 For all i ∈ I(1) and j ∈ J set:

Tij =
[
bi ∨ xj, xj

]
if aij ≥ bi & bi ≤ xj;

Tij = ∅ otherwise, i.e. if either aij < bi or bi > xj

7 If there exists i ∈ I(1) such that Tij = ∅ for all j ∈ J , then M(x) = ∅,
STOP;

Otherwise x is the maximum element of set M(x) STOP;

We will illustrate the performance of the Algorithm 3.1.2 by the following small

numerical example.

Example 3.1.3

Let J = {1, 2, 3}, I(1) = {1, 2, 3}, I(2) = {4, 5, 6}, x = (0, 0, 0) and x = (7, 7, 7)

and consider the following system of inequalities:

max(4 ∧ x1, 3 ∧ x2, 2 ∧ x3) ≥ 2,

max(3 ∧ x1, 5 ∧ x2, 4 ∧ x3) ≥ 4,

max(5 ∧ x1, 1 ∧ x2, 3 ∧ x3) ≥ 1,

max(6 ∧ x1, 5 ∧ x2, 1 ∧ x3) ≤ 5,

max(3 ∧ x1, 5 ∧ x2, 8 ∧ x3) ≤ 4,

max(2 ∧ x1, 4 ∧ x2, 1 ∧ x3) ≤ 3,

V41 = [0, 5], V42 = [0, 7] , V43 = [0, 7];

V51 = [0, 7], V52 = [0, 4], V53 = [0, 4]

V61 = [0, 7], V62 = [0, 3], V63 = [0, 7]

Then we can find that x = (5, 3, 4)

T11 = [2, 5], T12 = [2, 3], T13 = [2, 4];
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T21 = ∅, T22 = ∅, T23 = {4};
T31 = [1, 5], T32 = [1, 3], T33 = [1, 4].

We find ∪j∈JTij 6= ∅ for all i ∈ I(1). Then x = (5, 3, 4) is the maximum element

of set M(x, x).

Example 3.1.4

Let J = {1, 2, 3}, I(1) = {1, 2, 3, 4, 5}, I(2) = {6, 7, 8, 9}, x = (0, 0, 0) and x =

(20, 20, 20) and consider the following system of inequalities:

max(21 ∧ x1, 16 ∧ x2, 12 ∧ x3) ≥ 16,

max(15 ∧ x1, 16 ∧ x2, 19 ∧ x3) ≥ 13,

max(14 ∧ x1, 13 ∧ x2, 22 ∧ x3) ≥ 14,

max(15 ∧ x1, 15 ∧ x2, 19 ∧ x3) ≥ 17,

max(15 ∧ x1, 15 ∧ x2, 16 ∧ x3) ≥ 13,

max(15 ∧ x1, 26 ∧ x2, 19 ∧ x3) ≤ 16,

max(13 ∧ x1, 15 ∧ x2, 18 ∧ x3) ≤ 14,

max(25 ∧ x1, 17 ∧ x2, 21 ∧ x3) ≤ 17,

max(19 ∧ x1, 18 ∧ x2, 23 ∧ x3) ≤ 18,

V61 = [0, 20], V62 = [0, 16], V63 = [0, 16]

V71 = [0, 20], V72 = [0, 14] , V73 = [0, 14];

V81 = [0, 17], V82 = [0, 20], V83 = [0, 17]
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V91 = [0, 18], V92 = [0, 20], V93 = [0, 18]

Then we can find that x = (17, 14, 14)

T11 = [16, 17], T12 = ∅, T13 = ∅;
T21 = [13, 17], T22 = [13, 14], T23 = [13, 14];

T31 = [14, 17], T32 = ∅, T33 = [14, 14].

T41 = ∅, T42 = ∅, T43 = ∅,.
T51 = [13, 17], T52 = [13, 14], T53 = [13, 14];

We find ∪j∈JT4j = ∅ which means that the inequality 4 does not satisfy, because

a41 = 15 < b4 = 17, a42 = 15 < b4 = 17 and a43 = 19 > b4 = 17 but b4 = 17 >

x3 = 14 . Then the set M(x, x) is empty set.

3.2 Solving Optimization Problems under One-

Sided (max,min)-Linear Inequality Constraints

In this section we will solve the following optimization problem:

f(x) ≡ max
j∈J

fj(xj) −→ min (3.5)

subject to

max
j∈J

(aij ∧ xj) ≥ bi, ∀i ∈ I, (3.6)

x ≤ x ≤ x, (3.7)

where x, x ∈ Rn, I ≡ {1, . . . , m}, J ≡ {1, . . . , ...n}, aij, bi ∈ R ∀i ∈ I, j ∈ J

are given. We assume further that fj : R→ R are continuous functions, M(x, x)

denotes the set of feasible solutions of the problem and M(x, x) 6= ∅ (note that

the emptiness of set M(x, x) can be verified using the considerations of the pre-

ceding section). Let us note further that the formulation of the optimization

problem (3.5), (3.6), (3.7) includes also the case of one-sided ≤-inequality con-

straints,which can be included by adjusting the upper bounds xj, j ∈ J like in

the preceding section and since each equality can be replaced by two inequalities

≤, ≥, the formulation (3.5), (3.6), (3.7) includes also (max,min)-linear equality

constraints.
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Let us define for all i ∈ I, j ∈ J sets Tij as follows:

Tij ≡ {xj ; aij ∧ xj ≥ bi & xj ∈ [xj, xj]}.

Then we have similarly like in the preceding section:

x ∈ M(x, x) if and only if for each i ∈ I there exists at least one j(i) ∈ J such

that xj(i) ∈ Tij(i), or in other words x is a feasible solution of problem (3.5), (3.6),

(3.7) if and only if for each fixed i ∈ I either x1 ∈ Ti1 or x2 ∈ Ti2 or, ... or

xn ∈ Tin. Let us set for i ∈ I, j ∈ J

T̃ij ≡ {x = (x1, . . . , xn) ; xj ∈ Tij}.

Then we can replace problem (3.5), (3.6), (3.7) by the optimization problem

f(x) ≡ max
j∈J

fj(xj) −→ min (3.8)

subject to

x ∈M(x, x) =
⋂

i∈I

⋃

j∈J
T̃ij (3.9)

Let us introduce the following notations:

fj(x
(i)
j ) = min

xj∈Tij

(fj(xj)),

where we set fj(x
(i)
j ) =∞ if Tij = ∅;

fp(i)(x
(i)
p(i)) = min

j∈J
(fj(x

(i)
j ));

Rk ≡ {i ∈ I ; p(i) = k} ∀k ∈ J ;

Tk ≡
⋂

i∈Rk

Tik ∀k ∈ J ;

Let x̂ be defined as follows:

fk(x̂k) ≡ min
xk∈Tk

(fk(xk)),
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for all k ∈ J such that Rk 6= ∅;

fk(x̂k) ≡ min
xk∈[xk,xk]

fk(xk),

if Rk = ∅.

Lemma 3.2.1 x̂ is a feasible solution of problem (3.5), (3.6), (3.7).

Proof:

Let us note that since sets Tij have the chain property (see Lemma 3.1.3), there

exists for any nonempty set Rk, k ∈ J an index i(k) ∈ Rk such that Tk = Ti(k)k

and therefore Ti(k)k ⊆ Tik ∀i ∈ Rk. Since we assumed that M(x, x) 6= ∅, there
exists according to Lemma 3.1.4 for each i ∈ I at least one index j(i) ∈ J such

that Tij is nonempty. Therefore there exists for each i ∈ I an index k(i) ∈ J such

that i ∈ Rk(i) or in other words and x̂k(i) ∈ Tk(i) ⊆ Tik(i).

ai(x̂) = max
j∈J

(aij ∧ x̂j) ≥ aik(i) ∧ x̂k(i) ≥ bi.

Since i ∈ I was arbitrarily chosen, we obtain that x̂ ∈M(x, x), i.e. x̂ is a feasible

solution of problem (3.5), (3.6), (3.7).

Theorem 3.2.1 x̂ is the optimal solution of problem (3.5), (3.6), (3.7).

Proof:

Let us note that x̂ satisfies (3.6), (3.7) according to Lemma 3.2.1 so that it is a

feasible solution of the optimization problem in question. It remains to prove its

optimality. We have to prove that f(x) ≥ f(x̂) for all x ∈M(x, x). Let us assume

on the contrary that there exists a feasible solution x̃ such that f(x̃) < f(x̂). Let

us assume that f(x̂) = fp(x̂p). Since f(x̃) < f(x̂), it must be fp(x̃p) < fp(x̂p)

so that x̃p 6∈ Tp. Let i(p) ∈ I is such that Tp = Ti(p)p so that x̃p 6∈ Ti(p)p.

Therefore it must exist an index r ∈ J such that x̃r ∈ Ti(p)r (otherwise it would

be x̃j 6∈ Ti(p)j ∀j ∈ J and thus ai(p)(x̃) = maxj∈J(aij ∧ x̃j) < bi(p) and x̃ would be

infeasible). But if x̃r ∈ Ti(p)r, we obtain:
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f(x̃) ≥ fr(x̃r) ≥ min
xr∈Ti(p)r

(fr(xr)) ≥ min
xp∈Ti(p)p

(fp(xp)) = fp(x̂p) = f(x̂),

which is a contradiction with the assumed inequality f(x̃) < f(x̂). This contra-

diction proves the optimality of x̂.

Let us note that the complexity of finding the optimal solution of (3.5), (3.6),

(3.7) depends on the complexity of finding the minimum of fj(xj) on a closed in-

terval. Such minimum can be easily found if function fj is for instance increasing,

decreasing, convex, concave or unimodal.

Algorithm 3.2.1 We will provide algorithm, which summarizes the above dis-

cussion and under the assumption that the set M(x, x), which is the set of all a

feasible solutions of system (3.5), (3.6), (3.7) is not empty. This algorithm finds

the optimal solution of problem (3.5), (3.6), (3.7) if set M(x, x) 6= ∅

0 Input I, J , x, x, aij and bi for all i ∈ I and j ∈ J ;

1 For all i ∈ I and j ∈ J set:

Tij =
[
bi ∨ xj, xj

]
if aij ≥ bi & bi ≤ xj;

Tij = ∅ otherwise, i.e. if either aij < bi or bi > xj;

2 Find x
(i)
j ∀i ∈ I and j ∈ J with Tij 6= ∅;

3 Find fp(i)(x
(i)
p(i)) = minj∈J(fj(x

(i)
j )) for all i ∈ I;

4 Find Rk = {i ∈ I ; p(i) = k} ∀k ∈ J ;

5 Find Tk =
⋂

i∈Rk
Tik ∀k ∈ J ;

5 Find x̂k where fk(x̂k) = minxk∈Tk
(fk(xk)), for all k ∈ J & Rk 6= ∅, fk(x̂k) =

minxk∈[xk,xk] fk(xk), if Rk = ∅;

6 Set xopt = x̂, xopt is the optimal solution, STOP.
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We will illustrate the performance of the Algorithm 3.2.1 by the following small

numerical example.

Example 3.2.1

Let J = {1, 2, 3}, I = {1, 2, 3}, x = (0, 0, 0) and x = (10, 10, 10) and consider the

following system of inequalities:

max(7 ∧ x1, 5 ∧ x2, 6 ∧ x3) ≥ 6,

max(6 ∧ x1, 7 ∧ x2, 8 ∧ x3) ≥ 8,

max(8 ∧ x1, 5 ∧ x2, 4 ∧ x3) ≥ 4,

Consider the objective function in the form:

f(x1, x2, x3) = max (f1(x1), f2(x2), f3(x3))

where fj(xj) = cjxj + dj, where c = (0.5, 0.8, 0.7) and d = (1.4, 5.2, 3.1).

By using Algorithm 3.2.1 we find:

T11 = [6, 10], T12 = ∅, T13 = [6, 10];

T21 = ∅, T22 = ∅, T23 = [8, 10];

T31 = [4, 10], T32 = [4, 10], T33 = [4, 10].

x
(1)
1 = 6, x

(1)
3 = 6, x

(2)
3 = 8 x

(3)
1 = 4, x

(3)
2 = 4, and x

(3)
3 = 4.

R1 = {1, 3}, R2 = ∅, and R3 = {2}.
T1 = [6, 10], T2 = [0, 10], T3 = [8, 10].

Then xopt = (6, 0, 8) is the optimal solution of the set M(x, x) and f (xopt) =

max (4.4, 5.2, 8.7), then the objective function is equal to 8.7.

Example 3.2.2

Let J = {1, 2, 3}, I(1) = {1, 2, 3, 4, 5}, I(2) = {6, 7, 8, 9}, x = (0, 0, 0) and x =

(10, 10, 10) and consider the following system of inequalities:

max(11 ∧ x1, 3 ∧ x2, 3 ∧ x3) ≥ 4,

32



3.2 Solving Optimization Problems under One-Sided (max,min)-Linear
Inequality Constraints

max(5 ∧ x1, 6 ∧ x2, 9 ∧ x3) ≥ 5,

max(5 ∧ x1, 3 ∧ x2, 12 ∧ x3) ≥ 4,

max(3 ∧ x1, 5 ∧ x2, 9 ∧ x3) ≥ 2,

max(5 ∧ x1, 5 ∧ x2, 6 ∧ x3) ≥ 5,

max(5 ∧ x1, 16 ∧ x2, 9 ∧ x3) ≤ 6,

max(3 ∧ x1, 5 ∧ x2, 8 ∧ x3) ≤ 5

max(15 ∧ x1, 7 ∧ x2, 11 ∧ x3) ≤ 7,

max(9 ∧ x1, 8 ∧ x2, 13 ∧ x3) ≤ 8,

Consider the objective function in the form:

f(x1, x2, x3) = max (f1(x1), f2(x2), f3(x3))

where fj(xj) = |cjxj − dj| , where c = (1, 0.3, 1.5) and d = (7.2, 1.9, 3.2).

In this example we will use in the beginning Algorithm 3.1.2 to find the new upper

bounds of set M(x, x), which is equivalent to solving the system of ≤-inequalities.
By using Algorithm 3.1.2 we find:

V61 = [0, 10], V62 = [0, 6], V63 = [0, 6]

V71 = [0, 10], V72 = [0, 10] , V73 = [0, 5];

V81 = [0, 7], V82 = [0, 10], V83 = [0, 7]

V91 = [0, 8], V92 = [0, 10], V93 = [0, 8]

Then we find that the new upper bounds of set M(x, x) is x = (7, 6, 5)

T11 = [4, 7], T12 = ∅, T13 = ∅;
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T21 = [5, 7], T22 = [5, 6], T23 = [5, 5];

T31 = [4, 7], T32 = ∅, T33 = [4, 5].

T41 = [2, 7], T42 = [2, 6], T43 = [2, 5],.

T51 = [5, 7], T52 = [5, 6], T53 = [5, 5];

By using Algorithm 3.2.1 we find:

x
(1)
1 = 7, x

(2)
1 = 7, x

(2)
2 = 6, x

(2)
3 = 5 x

(3)
1 = 7, x

(3)
3 = 4, x

(4)
1 =

7, x
(4)
2 = 6, x

(4)
3 = 2.12, x

(5)
1 = 7, x

(5)
2 = 6, x

(5)
3 = 5,.

R1 = {1, 3}, R2 = {2, 5}, and R3 = {4}.
T1 = [4, 7], T2 = [5, 6], T3 = [2, 5].

Then xopt = (7, 6, 2.12) is the optimal solution of the set M(x, x) and f (xopt) =

max (0.2, 0.1, 0.02), then the objective function is equal to 0.2.
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4

Optimization Problems under

One-Sided (max,min)-Linear

Equality Constraints

In this chapter we will consider the optimization problems under one-sided (max,min)-

linear equality constraints. It is evident that problems with one-sided equality

constraints of the form:

max
j∈J

(aij ∧ xj) = bi, i ∈ I,

can be solved by the appropriate formulation of equivalent one-sided inequality

constraints and using the methods presented in the preceding chapter. Namely,

we can consider inequality systems of the form:

max
j∈J

(aij ∧ xj) ≤ bi, i ∈ I,

max
j∈J

(aij ∧ xj) ≥ bi, i ∈ I.

Such systems have 2m inequalities (if |I| = m), which have to be taken into

account. It arises an idea, whether it is not more effective to solve the problems

with equality constraints directly without replacing the equality constraints with

the double numbers of inequalities. In this article, we are going to propose such

an approach to the equality constraints. First we will study the structure of the
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set of all solutions of the given system of equations with finite entries aij & bi,

for all i ∈ I &j ∈ J . Using some of the theorems characterizing the structures

of the solution set of such systems, we will propose an algorithm, which finds an

optimal solution of minimization problems with objective functions of the form:

f(x) ≡ max
j∈J

fj(xj),

where fj, j ∈ J are continuous functions. Complexity of the proposed method of

monotone or unimodal functions fj, j ∈ J will be studied, possible generalizations

and extensions of the results will be discussed.

4.1 One-Sided (max,min)-Linear Systems of Equa-

tions

In this chapter we will consider the following system of equations:

max
j∈J

(aij ∧ xj) = bi, i ∈ I, (4.1)

x ≤ x ≤ x. (4.2)

The set of all solutions of the system (4.1), will be denoted M=. Before

investigating properties of the set M=, we will bring an example, which shows

one possible application, which leads to solving this system.

Example 4.1.1

The practical problem, which be described by system (4.1) and (4.2) may be as

in Example3.1.1 in the previous chapter with a simple change so that, we will

require further to find such capacities xj, j ∈ J that for each i ∈ I the

maximum capacity of the roads connecting i to T via j over all j ∈ J is

exactly equal to a given positive value bi. Therefore feasible vectors of capacities

x = (x1, x2, . . . , xn) (i.e. the vectors, the components of which are capacities

xj having the required properties) must satisfy the system (4.1) and (4.2).
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Remark 4.1.1 Since each equality can be replaced by two inequalities ≤, ≥, so
that the system of equations in formulation (4.1), can be solved by the algorithm

3.1.2 given in chapter 3, but the disadvantage of the this technique is coming from

the fact that we need to solve double the number of inequalities, which need more

time and memory. In this chapter we will introduce a new technique to solve the

system of equations in formulation (4.1) and (4.2), without transforming each

equality to two inequalities.

In what follows, we will investigate some properties of the set M= described

by the system (4.1). Also, to simplify the formulas in what follows we will set

ai(x) ≡ max
j∈J

(aij ∧ xj) for all i ∈ I ,

Let us define for any fixed j ∈ J the set Ij as follows:

Ij = {i ∈ I & aij ≥ bi} ,

and define the set M=(x) as follows:

M=(x) = {x ∈M= & x ≤ x} ,

also we define the set Sj(xj) as follows:

Sj(xj) = {k ∈ I & akj ∧ xj = bk} , ∀j ∈ J.

Lemma 4.1.1 Let us set for all i ∈ I and j ∈ J

T=
ij = {xj ; (aij ∧ xj) = bi & xj ≤ xj}

Then for any fixed i, j the following equalities hold:

(i) T=
ij = {bi} if aij > bi & bi ≤ xj;

(ii) T=
ij = [bi, xj] if aij = bi & bi ≤ xj;

(iii) T=
ij = ∅ if either aij < bi or bi > xj.
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Proof:

(i) If aij > bi, then aij ∧ xj > bi for any xj > bi, also aij ∧ xj < bi for any

xj < bi, so that the only solution for equation aij ∧ xj = bi is xj = bi ≤ xj.

(ii) If aij = bi & bi ≤ xj, then aij∧xj < bi for arbitrary xj < bi, but aij∧xj = bi

for arbitrary bi ≤ xj ≤ xj.

(iii) If aij < bi, then either aij ∧ xj = aij < bi for arbitrary xj ≥ aij, or

aij ∧ xj = xj < bi for arbitrary xj < aij. Therefore there is no solution for

equation aij ∧ xj = bi, which means T=
ij = ∅.

Also if bi > xj, then either xj ≥ bi > xj, so that T=
ij = ∅, or xj < bi there

are two cases, the first is xj ≤ aij and aij ∧ xj = xj < bi and the second

case is xj > aij and aij ∧ xj = aij < xj < bi. therefore there is no solution

for equation aij ∧ xj = bi, which means T=
ij = ∅.

Lemma 4.1.2 Let us set for all i ∈ I and j ∈ J

x
(i)
j =




bi if aij > bi & bi ≤ xj,

xj if aij = bi & bi ≤ xj or T=
ij = ∅,

and let

x̂j =




mink∈Ij x

(k)
j if Ij 6= ∅,

xj if Ij = ∅.

Let

Sj(x̂j) =
{
k ∈ I ; x

(k)
j = x̂j

}
, ∀j ∈ J,

and the following statements hold:

(i) x̂ ∈M=(x)⇔ ⋃
j∈J Sj(x̂j) = I

(ii) Let M=(x) 6= ∅, then x̂ ∈ M=(x) and for any x ∈ M=(x) ⇒ x ≤ x̂, i.e. x̂

is the maximum element of M=(x).

Proof:
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(i) To prove the necessary condition we suppose x̂ ∈M=(x), then maxj∈J(aij∧
x̂j) = bi, for all i ∈ I. So that for all i ∈ I, there exists at least one j(i) ∈ J

such that aij(i) ∧ x̂j(i) = maxj∈J(aij ∧ x̂j) = bi, then either x̂j(i) = bi, if

aij(i) > bi & bi ≤ xj(i), or x̂j(i) > bi, if aij(i) = bi & bi ≤ xj(i), so that

i ∈ Ij(i) ⇒ x̂j(i) = x
(i)
j(i). Otherwise if aik ∧ x̂k < bi, for all k 6= j(i) & k ∈ J,

then x̂k < bi, and aik < bi,⇒ Ik = ∅, therefore we can choose x̂k = xk.

Hence for all i ∈ I there exists at least one j(i) ∈ J such that Sj(i)(x̂j(i)) 6= ∅
and i ∈ Sj(i)(x̂j(i))⇒

⋃
j∈J Sj(x̂j) = I.

To prove the sufficient condition, let
⋃

j∈J Sj(x̂j) = I, then for all i ∈ I there

exists at least one j(i) ∈ J such that Sj(i)(x̂j(i)) 6= ∅ and i ∈ Sj(i)(x̂j(i)).

Therefore x̂j(i) = bi if aij(i) > bi & bi ≤ xj(i), then aij(i) ∧ x̂j(i) = x̂j(i) = bi.

Otherwise x̂j(i) = xj(i) if either aij(i) = bi & bi ≤ xj(i), then aij(i) ∧ x̂j(i) =

aij(i) = bi or T
=
ij(i) = ∅. Then for all i ∈ I there exists at least one j(i) ∈ J

such that maxj∈J(aij ∧ x̂j) = aij(i) ∧ x̂j(i) = bi. Then x̂ ∈M=(x).

(ii) Let M=(x) 6= ∅, then for each i ∈ I, there exists at least one j(i) ∈ J such

that T=
ij(i) 6= ∅, and bi ≤ xj(i) & aij(i) ≥ bi. Therefore there exists at least

one j(i) ∈ J such that either aij(i) > bi & bi ≤ xj(i), then x
(i)
j(i) = bi. Or

aij(i) = bi & bi ≤ xj(i), then x
(i)
j(i) = xj(i) so that x̂j(i) = bi if i ∈ Ij(i) and

aij(i) ∧ x̂j(i) = bi is satisfied. Otherwise if Ij = ∅, we set x̂j = xj. Then

x̂ ∈ M=(x) and for any x ∈ M=(x) we have x ≤ x̂, i.e. x̂ is the maximum

element of M=(x).

Another proof for lemma 4.1.2:

It follows from the definition of x
(i)
j and x̂j for i ∈ I, j ∈ J that

max
j∈J

(aij ∧ x̂j) ≤ bi, i ∈ I, (*)

If x ∈M=(x), then x ≤ x̂ (**)

Further

{
aij ∧ x̂j = bi if x̂j = x

(k)
j ,

aij ∧ x̂j < bi otherwise. (***)
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Let
⋃

j∈J Sj(x̂j) ⊂ I and i0 ∈ I \⋃j∈J Sj(x̂j). Then it follows from (*) - (***)

that ai0j ∧ xj < bi0 ∀ j ∈ J and therefore maxj∈J(ai0j ∧ xj) ≤ bi0 , so that

M=(x) = ∅.
Let now

⋃
j∈J Sj(x̂j) = I and k ∈ I be arbitrary. Then there exists j(k) ∈ J

such that k ∈ Sj(k)(x̂j) and we have akj(k) ∧ x̂j(k) = akj(k) ∧ x
(k)
j(k) = bk so that

maxj∈J(aij ∧ x̂j) = akj(k) ∧ x̂j(k) = bk. Since k ∈ I was arbitrarily chosen it

follows that x̂ ∈M=(x) and therefore M=(x) 6= ∅.
Note that if x ≤ x̂ and Sj(xj) =

{
k ∈ I ; x

(k)
j = xj

}
, then we have x ≤ x̂ and

x ∈ M=(x) ⇔ ⋃
j∈J Sj(xj) = I. It follows that M=(x) 6= ∅, then x̂ ∈ M=(x)

and x̂ is the maximum element of M=(x).

It is appropriate now to define M=(x, x), which is the set of all solutions of

the system describe by (4.1) and (4.2) as follows:

M=(x, x) = {x ∈M=(x) & x ≥ x} ,

Theorem 4.1.1 Let x̂ and Sj(x̂j) be defined as in Lemma 4.1.2 then:

(i) M=(x, x) 6= ∅ if and only if x̂ ∈M=(x) & x ≤ x̂,

(ii) If M=(x, x) 6= ∅, then x̂ is the maximum element of M=(x, x),

(iii) Let M=(x, x) 6= ∅ and J̃ ⊆ J . Let us set

x̃j =




x̂j if j ∈ J̃ ,

xj otherwise ,

then x̃ ∈M=(x, x)⇔ ⋃
j∈J̃ Sj(x̃j) = I

Proof:
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(i) If x̂ ∈ M=(x) & x ≤ x̂, from definition M=(x, x) we have x̂ ∈ M=(x, x),

then M=(x, x) 6= ∅. If M=(x, x) 6= ∅ so that M=(x) 6= ∅ and from lemma

4.1.2, it is verified that x̂ ∈M=(x) and x̂ is the maximum element ofM=(x),

therefore x̂ ≥ x.

(ii) If M=(x, x) 6= ∅, so that M=(x) 6= ∅ and M=(x, x) ⊂ M=(x), and since

x̂ is the maximum element of M=(x), then x̂ is the maximum element of

M=(x, x).

(iii) Let x̃ ∈ M=(x, x) ⇒ x̃ ∈ M=(x), also from definition x̃ we have x̃j = x̂j

for all j ∈ J̃ , so that Sj(x̃j) 6= ∅ ∀ j ∈ J̃ . And x̃j < x̂j for all j ∈ J \ J̃ , so
that Sj(x̃j) = ∅ ∀ j ∈ J \ J̃ . Hence x̃ ∈M=(x), by lemma 4.1.2, we have⋃

j∈J̃ Sj(x̃j) = I.

Let
⋃

j∈J̃ Sj(x̃j) = I, since J̃ ⊆ J we have
⋃

j∈J Sj(x̃j) = I. By lemma

4.1.2, x̃ ∈M=(x) also we have x̃ ≥ x therefore x̃ ∈M=(x, x).

4.2 Solving Optimization Problems under One-

Sided (max,min)-Linear Equality Constraints

In this section we will solve the following optimization problem:

f(x) ≡ max
j∈J

fj(xj) −→ min (4.3)

subject to

x ∈M=(x, x) (4.4)

We assume further that fj : R→ R are continuous and monotone functions (i.e.

increasing or decreasing), M=(x, x) denotes the set of all feasible solutions of the

system described by (4.1) and (4.2) and assuming that M=(x, x) 6= ∅ (note that

the emptiness of the set M=(x, x) can be verified using the considerations of the

preceding section).
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Let J∗ ≡ {j | fj decreasing function} so that

min
xj∈[xj ,x̂j ]

fj(xj) = fj(x̂j), ∀j ∈ J∗.

Then we can propose an algorithm for solving problem (4.3) and (4.4) under the

assumption that M=(x, x) 6= ∅ which means
⋃

j∈J Sj(x̂j) = I, i.e. for finding an

optimal solution xopt of problem (4.3) and (4.4).

Algorithm 4.2.1 We will provide algorithm, which summarizes the above dis-

cussion and finds an optimal solution xopt of problem (4.3) and (4.4), where fj(xj)

are continuous and monotone functions.

0 Input I, J , x, x, aij and bi for all i ∈ I and j ∈ J.

1 Find x̂, and set x̃ = x̂.

2 Find J∗ ≡ {j | fj decreasing function}.

3 F = {p | maxj∈J fj(x̃j) = fp(x̃p)} .

4 If F ∩ J∗ 6= ∅, then xopt = x̃, Stop.

5 Set yp = xp ∀ p ∈ F, & yj = x̃j, otherwise.

6 If
⋃

j∈J Sj(yj) = I, set x̃ = y go to 3 .

8 xopt = x̃, Stop.

We will illustrate the performance of this algorithm by the following numerical

example.

Example 4.2.1 Consider the following optimization problem:

Minimize f(x) ≡ maxj∈J(fj(xj))

where fj(xj) ∀ j ∈ J are continuous and monotone functions in the form

fj(xj) ≡ cj × xj + dj,

C =
[
−0.2057 4.8742 2.8848 0.9861 1.7238 1.1737 −3.3199

]

42



4.2 Solving Optimization Problems under One-Sided (max,min)-Linear
Equality Constraints

and

D =
[
1.4510 1.5346 −3.6121 −0.9143 −2.0145 1.9373 −4.8467

]

subject to

x ∈M=(x, x)

where the set M=(x, x) is given by the system (4.1) and (4.2) where J = {1, 2, . . . , 7},
I = {1, 2, . . . , 6}, xj = 0 ∀ j ∈ J and xj = 10 ∀ j ∈ J and consider the system

(4.1) of equations where aij & bi ∀ i ∈ I and j ∈ J are given by the matrix A

and vector B as follows:

A =




6.1221 9.0983 9.5032 6.0123 6.1112 4.1221 5.5776

8.2984 3.3920 2.5185 1.1925 8.9742 6.7594 8.6777

2.0115 6.3539 4.4317 7.7452 0.6465 9.4098 1.3576

6.4355 1.6404 3.1850 3.7361 7.2605 3.0201 5.3808

8.5668 5.8310 2.5146 8.7804 3.7709 4.4770 2.3007

5.2690 9.6900 5.1598 9.2889 6.1585 1.0786 7.0121




and

BT =
[
6.1221 7.0955 6.3539 6.4355 6.5712 7.0121

]

By the method in section 2 we get x̂, which is the maximum element of M=(x, x),

as follows:

x̂ = (6.5712, 6.1221, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955)

By using algorithm 4.2.1 we find:

Iteration 1:

1 x̃ = (6.5712, 6.1221, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955);

2 J∗ = {1, 7};
3 F = {2};
f (x̃) = 31.3750;

5 y = (6.5712, 0, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955);

6
⋃

j∈J Sj(yj) = I;

x̃ = (6.5712, 0, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955).

Iteration 2:
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3 F = {3};
f (x̃) = 14.0490;

5 y = (6.5712, 0, 0, 6.3539, 6.4355, 6.3539, 7.0955);

6
⋃

j∈J Sj(yj) = I;

x̃ = (6.5712, 0, 0, 6.3539, 6.4355, 6.3539, 7.0955).

Iteration 3:

3 F = {6};
f (x̃) = 9.3946;

5 y = (6.5712, 0, 0, 6.3539, 6.4355, 0, 7.0955);

6
⋃

j∈J Sj(yj) = I;

x̃ = (6.5712, 0, 0, 6.3539, 6.4355, 0, 7.0955).

Iteration 4:

3 F = {5};
f (x̃) = 9.0789;

5 y = (6.5712, 0, 0, 6.3539, 0, 0, 7.0955);

6
⋃

j∈J Sj(yj) = I;

x̃ = (6.5712, 0, 0, 6.3539, 0, 0, 7.0955).

Iteration 5:

3 F = {4};
f (x̃) = 5.3510;

5 y = (6.5712, 0, 0, 0, 0, 0, 7.0955);

6
⋃

j∈J Sj(yj) 6= I;

7 xopt = x̃ = (6.5712, 0, 0, 6.3539, 0, 0, 7.0955), STOP.

In iteration 5 we find that if we set x4 = 0 the third equation of the system

(4.1) is given as follows:

a3 = max (2.0115 ∧ 6.5712, 6.3539 ∧ 0, 4.4317 ∧ 0, 7.7452 ∧ 0, 0.6465 ∧ 0,

9.4098 ∧ 0, 1.3576 ∧ 7.0955) = 2.0115 6= b3 = 6.3539.

Therefore Algorithm 4.2.1 go to step 8 and take

xopt = x̃ = (6.5712, 0, 0, 6.3539, 0, 0, 7.0955) and stop. We obtained the opti-

mal value for the objective function f(xopt) = 5.3510. We can easily verify that

xopt is a feasible solution as follows:
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a1(x
opt) = b1 = 6.1221, a2(x

opt) = b2 = 7.0955, a3(x
opt) = b3 = 6.3539,

a4(x
opt) = b4 = 6.4355, a5(x

opt) = b5 = 6.5712, a6(x
opt) = b6 = 7.0121,

and inequality x ≤ xopt ≤ x is fulfilled.

Remark 4.2.1 By reference to the lemma 4.1.2 and theorem 4.1.1 it is not dif-

ficult to note that the maximum number of arithmetic or logic operations in any

step to get x̂ can not exceed O(nm) operations. This will happen when we

calculate x
(i)
j , ∀ i ∈ I & j ∈ J . Also from the above example we can re-

mark that the maximum number of operations in each step in any iterations from

algorithm 4.2.1 is less than or equal to the number of variables n and the max-

imum number of iterations from step 3 to step 6 of this algorithm can not

exceed O(n). Therefore the computational complexity of the algorithm 4.2.1 is

O(max(n2, nm)).

In what follows let us modify algorithm 4.2.1, which find an optimal solution

for continuous and monotone functions, to be suitable to find the optimal solution

for any general continuous functions fj(xj) as follows:

Algorithm 4.2.2 We will provide algorithm, which summarizes the above dis-

cussion and finds an optimal solution xopt of problem (4.3) and (4.4), where fj(xj)

are general continuous functions.

0 Input I, J , x, x, aij and bi for all i ∈ I and j ∈ J.

1 Find x̂, and set x̃ = x̂.

2 Find minxj∈[xj ,x̂j ] fj(xj) = fj(x
∗
j), ∀ j ∈ J.

3 Set J∗ ≡ {j | fj(x̂j) = fj(x
∗
j)}.

4 F = {p | maxj∈J fj(x̃j) = fp(x̃p)} .

5 If F ∩ J∗ 6= ∅, then xopt = x̃, Stop.

6 Set yp = x∗p ∀ p ∈ F, & yj = x̃j, otherwise.

7 If
⋃

j∈J Sj(yj) = I, set x̃ = y go to 3 .

8 xopt = x̃, Stop.
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We will illustrate the performance of this algorithm by the following numerical

examples.

Example 4.2.2 Consider the following optimization problem:

Minimize f(x) ≡ maxj∈J(fj(xj))

where fj(xj) ∀ j ∈ J are continuous functions given in the following form

fj(xj) ≡ (xj − ξj)
2,

ξ = (3.3529, 1.4656, 5.6084, 5.6532, 6.1536, 6.5893)

subject to

x ∈M=(x, x)

where the set M=(x, x) is given by the system (4.1) and (4.2) where J = {1, 2, . . . , 6},
I = {1, 2, . . . , 6}, xj = 0 ∀ j ∈ J and xj = 10 ∀ j ∈ J and consider the system

(4.1) of equations where aij & bi ∀ i ∈ I and j ∈ J are given by the matrix A

and vector B as follows:

A =




3.6940 0.8740 0.5518 4.6963 2.1230 1.4673

1.9585 8.3470 5.8150 8.5545 8.9532 8.7031

1.3207 8.9610 1.5718 3.7155 0.1555 4.3611

8.4664 9.1324 6.6594 2.5637 6.0204 6.0846

2.4219 9.6081 1.9312 2.5218 1.3976 4.1969

1.1172 3.6992 7.5108 4.7686 4.4845 4.3301




and

BT =
[
4.0195 7.2296 4.2766 6.6594 4.1969 6.9874

]

By the method in section 2 we get x̂, which is the maximum element of

M=(x, x), as follows:

x̂ = (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766) .

By using algorithm 4.2.2 we find:

Iteration 1:

1 x̃ = (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766);

2 x∗ = 3.3297, 1.4689, 5.5899, 4.0195, 6.1452, 4.2766;

3 J∗ = {4, 6};
4 F = {1};
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f (x̃) = 10.9328;

6 y = (3.3297, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766);

7
⋃

j∈J Sj(yj) = I;

x̃ = (3.3297, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766).

Iteration 2:

3 J∗ = {1, 4, 6};
4 F = {2};
f (x̃) = 7.4600;

6 y = (3.3297, 1.4689, 6.9874, 4.0195, 7.2296, 4.2766);

7
⋃

j∈J Sj(yj) = I;

x̃ = (3.3297, 1.4689, 6.9874, 4.0195, 7.2296, 4.2766).

Iteration 3:

3 J∗ = {1, 2, 4, 6};
4 F = {6};
f (x̃) = 5.3488;

5 F ∩ J∗ 6= ∅, then xopt = x̃;

xopt = (3.3297, 1.4689, 6.9874, 4.0195, 7.2296, 4.2766), STOP.

Here we find the algorithm 4.2.2 stop in step 5 since the active variable in it-

eration 3 is x6, and at the same time the objective function has the minimum

value in this value of x6, so that the algorithm 4.2.2 stop. Then we obtained the

optimal value of the objective function, f(xopt) = 5.3488. It is easy to verify that

xopt is a feasible solution:

a1(x
opt) = b1 = 4.0195, a2(x

opt) = b2 = 7.2296, a3(x
opt) = b3 = 4.2766,

a4(x
opt) = b4 = 6.6594, a5(x

opt) = b5 = 4.1969, a6(x
opt) = b6 = 6.9874,

and inequality x ≤ xopt ≤ x is fulfilled.

Example 4.2.3 Consider the following optimization problem:

Minimize f(x) ≡ maxj∈J(fj(xj))

where fj(xj) ∀ j ∈ J are continuous functions given in the following form

fj(xj) ≡ |(xj − ξj)(xj − ~j)|,
where

ξ = (3.3529, 1.4656, 5.6084, 5.6532, 6.1536, 6.5893)

and

~ = (0.7399, −0.1385, −4.1585, 1.1625, −2.1088, 1.2852)

47



4.2 Solving Optimization Problems under One-Sided (max,min)-Linear
Equality Constraints

subject to

x ∈M=(x, x)

where the set M=(x, x) is given in the same way as in example 4.2.2.

By the method in section 2 we get x̂, which is the maximum element of M=(x, x),

as follows:

x̂ = (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766)

By using algorithm 4.2.2 we find:

Iteration 1:

1 x̃ = (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766);

2 x∗ = 0.7325, 1.4689, 5.5899, 1.1656, 6.1452, 1.2830;

3 J∗ = ∅;
4 F = {1};
f (x̃) = 19.5728;

6 y = (0.7325, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766);

7
⋃

j∈J Sj(yj) = I;

x̃ = (0.7325, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766).

Iteration 2:

3 J∗ = {1};
4 F = {3};
f (x̃) = 15.3692;

6 y = (0.7325, 4.1969, 5.5899, 4.0195, 7.2296, 4.2766);

7
⋃

j∈J Sj(yj) = {1, 2, 3, 5} 6= I;

8 xopt = (0.7325, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766) , STOP.

In Iteration 2 algorithm 4.2.2 stops since the fourth and sixth equations in the

system of equations (4.1) can not be verify if we change the value of the variable

y3 to be y3 = (5.5899). If it is necessary to change this value of the variable y3

to minimize the objective function so that our exhortation to decision-maker, it

must be changed both the capacities of the ways a45 and a65 to be a45 = 6.6594 and

a65 = 6.9874 in order to maintain the verification of the system of equations (4.1).

In this case we can complete the operation to minimize the objective function as

follows:

Iteration 2:
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3 J∗ = {1};
4 F = {3};
f (x̃) = 15.3692;

6 y = (0.7325, 4.1969, 5.5899, 4.0195, 7.2296, 4.2766);

7
⋃

j∈J Sj(yj) = I;

x̃ = (0.7325, 4.1969, 5.5899, 4.0195, 7.2296, 4.2766);

Iteration 3:

3 J∗ = {1, 3};
4 F = {2};
f (x̃) = 11.8413;

6 y = (0.7325, 1.4689, 5.5899, 4.0195, 6.1452, 4.2766);

7
⋃

j∈J Sj(yj) = I;

x̃ = (0.7325, 1.4689, 5.5899, 4.0195, 7.2296, 4.2766);

Iteration 4:

3 J∗ = {1, 2, 3};
4 F = {5};
f (x̃) = 10.0481;

6 y = (0.7325, 1.4689, 5.5899, 4.0195, 6.1452, 4.2766);

7
⋃

j∈J Sj(yj) = {1, 3, 5} 6= I;

xopt = (0.7325, 1.4689, 5.5899, 4.0195, 7.2296, 4.2766);

We obtained the optimal value f(xopt) = 10.0481, We can easily verify that xopt

is a feasible solution.

Remark 4.2.2 Step 2 in algorithm 4.2.2 depends on the method, which finds

the minimum for each function fj(xj) in the interval [xj, x̂j], but this appears

in the first iteration only and only once. Also from the above examples we can

remark that the maximum number of operations in each step in any iterations

from algorithm 4.2.2 is less than or equal to the number of variables n and the

maximum number of iterations from step 3 to step 7 of this algorithm can not

exceed n. Therefore the computational complexity of the algorithm 4.2.2 is given

by max
{
O(max(n2, n×m)), Õ

}
, where Õ is complexity of the method, which

finds the minimum for each function fj(xj) in the interval [xj, x̂j].
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5

Optimization Problems under

Two-Sided (max,min)− Linear

Equation Constraints - an

Iteration Method

We consider optimization problems, the objective function of which is equal to the

maximum of a finite number of continuous and unimodal functions of one vari-

able. The set of feasible solutions in described by a system of (max,min)−linear
(or using an alternative notation (max,∧)−linear) equations with variables on

both sides. Finite iteration method for solving these systems of (max,∧)−linear
equations is used to introduce an algorithm for finding the optimal solution of

the problem.

Max-algebras naturally arise in many contexts, such as decision theory, dis-

crete event dynamic systems, and operations research. Namely find the optimal

solution for the min−max objective function subject to systems of two-sided

linear equation in max−algebra. In section 4.4, we will shows one possible ap-

plication of the the optimization problem considered in this chapter.

In recent time, the attention was devoted to systems, in which the variables occur

on both sides in the equations or inequalities (see e.g. [1], [5], [2], [8], [12], [17],

[18], [31], [32], [37], [41]). In this chapter we will consider optimization problems,

the set of feasible solutions of which is described by systems of two-sided (max,
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min)-linear separable equations. The objective functions of the problems consid-

ered are equal to the maximum of a finite number of continuous and unimodal

functions fj(xj) of one variable. The extension to systems of inequalities of the

same structure is a purely technical problem, we simply need to introduce slack

variables on appropriate sides and transform the inequalities to equations. Simi-

larly, the algorithm proposed below can be extended to objective functions with

convex or concave function.

5.1 Two-Sided (max,min)− Linear Systems of Equa-

tions

Let aij, bij ∈ R, i ∈ I, j ∈ J be given numbers, let

ai(x) ≡ max
j∈J

(aij ∧ xj) for all i ∈ I ,

bi(x) ≡ max
j∈J

(bij ∧ xj) for all i ∈ I ,

We will consider the following system of (max,min)-linear equations

ai(x) = bi(x) for all i ∈ I. (5.1)

The set of all solutions of system (5.1) will be denoted by M . We define further

sets M(x), Mi(x) for any x ∈ R
n
, i ∈ I

M(x) ≡ {x|x ∈M & x ≤ x} (5.2)

Mi(x) ≡ {x|ai(x) = bi(x) & x ≤ x} (5.3)

Clearly, M(x), Mi(x) are always nonempty, since e.g. x(α) ≡ (α, . . . , α) ∈
M(x), if α ≤ min(i,j)∈I×J(aij ∧ bij ∧ xj). Moreover, if x = (∞, . . . , ∞), then

evidently M(x) = M , and if x = (−∞, . . . , −∞), then x ≤ x for any x ∈M .

Remark 5.1.1 The algorithm presented in [17] finds the maximum element of

M(x) for any given x, i.e. such an element xmax ∈M(x) that x ≤ xmax for all x ∈
M(x).
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In what follows we will prepare the theoretical background for an algorithm

which finds the maximum element xmax of M(x). Using the results of [17], if

x ∈ M(x)) then we have evidently xmax = x. Therefore we will assume in what

follows that x 6∈ M(x). Further, we can assume w.l.o.g. that the notation was

possibly changed in such a way that ai(x) ≤ bi(x) for all i ∈ I. Since we

assumed that x 6∈ M(x), the set I<(x) ≡ {i ∈ I ; ai(x) < bi(x)} is nonempty.

Let us set further I=(x) ≡ {i ∈ I ; ai(x) = bi(x)}.
Let us introduce the following notation for any given upper bound x

α(x) ≡ min
i∈I<(y)

ai(x),

I<(α(x)) ≡ {i ∈ I<(x) ; ai(x) = α(x)} ,
I=(α(x)) ≡ {i ∈ I=(x) ; ai(x) ≤ α(x)} ,
J(α(x)) ≡ {j ∈ J ; ∃ i ∈ I<(α(x)) such that bij ∧ xj > α(x)} .

To simplify the explanations, we will replace in what follows the notation α(x)

with α, if it does not cause any confusion.

Theorem 5.1.1 Let x 6∈M(x), let vector x̃ be defined as follows

x̃j = α for j ∈ J(α), x̃j = xj for j ∈ J \ J(α). (5.4)

Then x̃ is the maximum element of the set of all solutions of the system

ai(x) = bi(x) for all i ∈ I<(α) ∪ I=(α), (5.5)

x ≤ x for all j ∈ J. (5.6)

Proof: Let k ∈ I<(α) be arbitrarily chosen. Then ak(x) = α < bk(x). Let

us set Jk(α) ≡ {j ∈ J ; bkj ∧ xj > α}. Then Jk(α) 6= ∅, Jk(α) ⊆ J(α).

Note that for any j ∈ Jk(α) both bkj > α and xj > α. It follows immediately

from the definition of x̃ (compare (5.4)) that bkj ∧ x̃j ≤ α for all j ∈ J and

bkj ∧ x̃j = α for all j ∈ Jk(α) so that bk(x̃) = α. Let us remind that ak(x) = α.

Let p be any index of J such that ak(x) = akp ∧ xp so that akp ∧ xp = α and

we have according to (5.4) akp ∧ x̃p = akp ∧ xp = ak(x) = α if p 6∈ J(α), and
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akp ∧ x̃p = akp ∧ α = α if j ∈ J(α). Since akj ∧ x̃j ≤ akj ∧ xj for all j ∈ J , we

obtain that ak(x̃) = α = bk(x̃).

Let us assume now that k is an arbitrary index of I=(α) so that we have

ak(x) ≤ α and ak(x) = bk(x) = βk ≤ α. Let s ∈ J be an index such that

ak(x) = aks ∧ xs. If s 6∈ J(α), then x̃s = xs (compare (5.4)) and thus aks ∧ x̃s =

aks ∧ xs = βk.

Let us assume now that s ∈ J(α). Then there exists index i ∈ I such that

bis ∧ xs > α and therefore it must be xs > α. Since we assumed that ak(x) =

aks ∧ xs = βk ≤ α, and we have xs > α, it must be aks = βk. Since s ∈ J(α), we

have x̃s = α ≥ βk. We have therefore aks ∧ x̃s = βk. Since otherwise for all j ∈ J

the inequality akj ∧ x̃j ≤ akj ∧ xj ≤ βk holds, we obtain ak(x̃) = βk.

Let us derive now value bk(x̃). We assumed that bk(x) = βk ≤ α. Let us

assume that bk(x) = bks ∧ xs. Similarly as above, we have bks ∧ x̃s = bks ∧ xs if

s 6∈ J(α). If s ∈ J(α), then similarly as above xs > α ≥ βk, x̃s = α ≥ βk and

therefore it must be bks = βk, so that bks ∧ x̃s = bks ∧ α = βk. Since otherwise

bkj ∧ x̃j ≤ bkj ∧ xj for all j ∈ J , we obtain that bk(x̃) = βk = ak(x̃), i.e. the

equality with index k ∈ I=(α), which holds at point x, remains satisfied also at

point x̃.

It remains to prove that x̃ is the maximum element satisfying system (5.5),

(5.6). Let us assume for this purpose that x is any point such that x̃ ≤ x ≤ x, x 6=
x̃ so that there exists an index r ∈ J such that x̃r < xr ≤ xr. Therefore it must be

r ∈ J(α) and there exists an index i ∈ I<(α) such that a(x̃) = α < bir∧xr ≤ bi(x)

and according to the considerations above air = α = air∧ x̃r = air∧xr. Since this

equality holds for any index r with the property x̃r < xr ≤ xr and for the other

indices j ∈ J we have xj = x̃j = xj, we obtain that ai(x) = ai(x̃) = α < bir∧xr ≤
bi(x), and therefore x does not satisfy system (5.5), (5.6), which completes the

proof.

Summarizing the considerations above, we propose the following procedure to

find the maximum element xmax of set M(x). Using (5.4), we find x̃, which

is according to Theorem 5.1.1 the maximum element of the set of all solutions
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of system (5.5), (5.6). Therefore, if x̃ ∈ M(x), then x̃ = xmax and we stop.

Otherwise, we use x̃ as the new upper bound and repeat the procedure.

Let us assume that we have changed the notation in such a way that ai(x̃) ≤
bi(x̃) for all i ∈ I. and let x̃ 6∈M(x). Let us return to the notation α(x) for any

upper bound x and let α(x̃) ≡ mini∈I<(x̃) ai(x̃). Since after possibly changing the

notation such that ai(x̃) ≤ bi(x̃) for all i ∈ I, α(x̃) ≡ mini∈I<(x̃ a(x̃) ≥ α(x), we

will have I=(α(x)) ⊆ I=(α(x̃)). Since bij ∧ xj ≤ α(x) for all j ∈ J(α(x)), we

have J(α(x̃) ∩ J(α(x) = ∅. Therefore, if we use x̃ as a new upper bound on the

next iteration, we will decrease in (5.4) at least one new variable.Therefore we

will have at most n such iterations.

Besides, since α(x̃) ≥ α(x), all already satisfied equations with indices i ∈
I<(α(x)) ∪ I=(α(x)) will remain satisfied in accordance with Theorem 5.1.1. It

follows that in the next iteration with the new upper bound x̃ after applying

formula (5.4), the already satisfied equations remain satisfied and at least one

new equation with index i ∈ I<(α(x̃) will be satisfied. Therefore the number of

iterations does not exceed min(n,m). We will describe now the corresponding

algorithm explicitly step by step.

Algorithm 5.1.1

0 Input I, J , x, x, aij and bi for all i ∈ I and j ∈ J ;

1 If x ∈M(x), then xmax := x, STOP;

2 Change of notation such that ai(x) ≤ bi(x) for all i ∈ I;

3 Find α(x), I<(α(x)), I=(α(x));

4 Set x̃j := α(x) if j ∈ J(α(x)), x̃j := xj otherwise;

5 If x̃ ∈M(x), then xmax := x̃, STOP;

6 Set x := x̃, go to 2 ;
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5.2 Solving Optimization Problems under Two-

Sided (max,min)− Linear Equation Constraints

- an Iteration Method

In this section we consider an optimization problem that is a combination of the

problems solved in Section 4.2 and Section 5.1. In other words, we solve the

following optimization problem

f(x) ≡ max
j∈J

fj(xj) −→ min (5.7)

subject to

max
j∈J

(aij ∧ xj) = max
j∈J

(bij ∧ xj), for all i ∈ I, (5.8)

x ≤ x ≤ x, (5.9)

where x, x ∈ Rn, I ≡ {1, . . . , m}, J ≡ {1, . . . , ...n}, aij, bij ∈ R for all

i ∈ I, j ∈ J are given and fj(xj), j ∈ J are continuous and unimodal functions

on [xj , xj].

We use the notation introduced in Section 5.1. In particular, M denotes the

set of all solutions of (5.8), moreover, we use notation

M(x, x) ≡ {x|x ∈M & x ≤ x ≤ x}.

We assume that fj(xj), j ∈ J are continuous and unimodal functions on

[xj , xj] and denote x∗j ≡ argmin(fj(xj)) ; xj ∈ R so that fj is strictly decreas-

ing on [−∞, x∗j ] and strictly increasing on [x∗j ,∞]. To simplify the explanation,

we will assume that x∗j ∈ [xj, xj] for all j ∈ J and set f
j
≡ f(x∗j), fj ≡

max{fj(xj) , fj(xj)}.
In what follows we will propose an iteration algorithm for solving minimization

problem (5.7), (5.8), (5.9).
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Lemma 5.2.1 Let x ≤ x, let xmax be the maximum element of M(x). Then

M(x, x) 6= ∅ if and only if x ≤ xmax.

Proof: If x ≤ xmax, then xmax ∈ M(x, x) and thus M(x, x) 6= ∅. If x 6≤
xmax, then M(x, x) = ∅, since any element of M(x, x) would have to satisfy

the inequalities x ≤ x ≤ xmax, which is impossible under the assumption that

x 6≤ xmax.

Definition 5.2.1 Let xopt be the optimal solution of problem (5.7), (5.8), (5.9).

An element x(ε) is called an ε−approximation of xopt if f(x(ε)) − f(xopt) < ε

and x(ε) ∈M(x, x).

Lemma 5.2.2 Let j ∈ J and α ∈ R. Let us set Vj(α) ≡ {xj ∈ [xj , xj] ; fj(xj) ≤ α}.
Then either Vj(α) = ∅ or Vj(α) = [xj(α) , xj(α)], where xj(α) ≥ xj, xj(α) ≤ xj.

Proof: Since we assumed that functions fj, j ∈ J are continuous and unimodal

and the turning point x∗j is contained in interval [xj, xj] , we have argmin(fj(xj)) =

x∗j . Therefore if fj(x
∗
j) > α, then Vj(α) = ∅ and otherwise Vj(α) = [xj(α), xj(α)]

is a subinterval of interval [xj, xj] with the property fj(xj(α)) = fj(xj(α)) = α.

Algorithm 5.2.1

1 Input x, x, ε > 0, x∗j := argmin{fj(xj) ; xj ≤ xj ≤ xj} for all j ∈ J, f :=

f(x∗), f := max(f(x), f(x));

2 Find the maximum element x̃ of M(x) using the method from [17];

3 If x 6≤ x̃, then M(x, x) = ∅, STOP.

4 f := max(f(x), f(x̃)), find x(α), x(α);
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5 If (f(x̃) − f) ≤ ε, then x̃ is the ε-approximation of the optimal solution,

STOP.

6 α := f + (f − f)/2, find x(α), x(α), f := min{f(x); x(α) ≤ x ≤ x(α)};

7 Find the maximum element x̃(1) of M(x(α)) using the method from [17];

8 If x(α) 6≤ x̃(1), then set f := f(x(α)), go to 6 ;

9 Set x̃ := x̃(1), go to 4 .

5.3 Applications and Numerical Examples

Example 5.3.1

Let us consider a situation, in which transportation means of different size provide

transporting goods from places i ∈ I to one terminal T . The goods are unloaded

in T and the transportation means (possibly with other goods uploaded in T )

have to return to i. We assume that the connection between i and T is only

possible via one of the places (e.g. cities) j ∈ J the roads between i and j are

one-way roads, and the capacity of the road between i ∈ I and j ∈ J is equal

to aij. We have to join each place j with T by a two-way road with a capacity

xj in both directions. The total capacity of the connection between i and T is

therefore equal to maxj∈J(aij ∧ xj).

In the opposite direction, the transport from T to i is carried out via other one-

way roads between places j ∈ J and i ∈ I with (in general, different) capacities

between j and i equal to bij. Since the roads between T and j are two-way roads,

the total capacity of the connection between T and i is equal to maxj∈J(bij ∧xj),

for all i ∈ I.

We assume that the transportation means can only pass through some roads with

the capacity which is not smaller than the capacity of the transportation mean

and our task is to choose appropriate capacities xj, j ∈ J . In order that each of

the transportation means may return to i, it is natural to require for each i that

the maximal attainable capacity of connections between i and T via j is equal to

maximal attainable capacity of connections between T and i on the way back. In

other words, we have to choose xj, j ∈ J in such a way that in the next problems,
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(see [17]).

max
j∈J

(aij ∧ xj) = max
j∈J

(bij ∧ xj) for all i ∈ I .

This system of two-sided (max, min)-linear systems of equations with the same

variable on both sides.

If in a practical problem, we have to join places j with terminal T by a one-way

road with a capacity xj in direction from places j to terminal T and a capacity

yj in direction from terminal T to places j. The total capacity of the connection

between i and T is therefore equal to maxj∈J(aij ∧ xj). The transport from T to

i is carried out via other one-way roads between places j ∈ J and i ∈ I with (in

general, different) capacities between j and i equal to bij. Since the roads between

T and j are one-way roads, the total capacity of the connection between T and i is

equal to maxj∈J(bij ∧yj), for all i ∈ I. We assume that the transportation means

can only pass through some roads with the capacity which is not smaller than

the capacity of the transportation mean and our task is to choose appropriate

capacities xj & yj, j ∈ J . In order that each of the transportation means may

return to i, it is natural to require for each i that the maximal attainable capacity

of connections between i and T via j is equal to maximal attainable capacity of

connections between T and i on the way back. In other words, we have to choose

xj & yj, j ∈ J in such a way that in the next problems,

max
j∈J

(aij ∧ xj) = max
j∈J

(bij ∧ yj) ∀ i ∈ I . (5.10)

This system with different variables on every side. It is easy to change it to

the system with the same variables on both sides by introducing new variables

z = (x, y) and appropriate sufficiently small coefficients aij for j > n on the left

side and sufficiently small coefficients bik for k < n on the right side, we obtain

the system

max
j∈K

(aij ∧ zj) = max
j∈K

(bij ∧ zj) ∀ i ∈ I,

where K = {1, 2, . . . , 2n}. This system has the form as system of two-sided

(max, min)-linear systems of equations with the same variable in both sides.

Let us assume further that the choice of xj, yk is connected with penalties

fj(xj), gk(yk) respectively. The penalties may be connected e.g. with some eco-
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nomic or ecologic requirements (costs, air pollution) so that it is quite natural to

accept that fj, gk with j ∈ J, k ∈ K are continuous strictly increasing functions.

The problem of minimizing the maximum penalty under the constraints given by

(5.10) and by some lower and upper bounds on x, y, can be easily transformed

to an optimization problem of the form (5.7), (5.8)), (5.9).

Example 5.3.2

Let us consider the following optimization problem:

minimize

f(x) ≡ max
(
f1(x1), f2(x2), f3(x3)

)

subject to

max(4 ∧ x1, 5 ∧ x2, 0 ∧ x3) = max(0 ∧ x1, 4 ∧ x2, 5 ∧ x3),

x ≤ x ≤ x,

where x = (5, 3, 4), x = (6, 6, 6) and functions fj(xj), j ∈ J ≡ {1, 2, 3} are defined
by formulas

f1(x1) = max(−x1 + 21/4, x1 − 21/4),

f2(x2) = max(−x2 + 4, x2 − 4),

f3(x3) = (x3 − 5)2.

Thus, x∗ = (21/4, 4, 5).

In accordance with algorithm 5.2.1 described in Section 5.2, we proceed as

follows

1 x = (5, 3, 4), x = (6, 6, 6), , x∗ = (21/4, 4, 5), f := 0, f := 2, ε = 1/2;

2 x̃ = x = (6, 6, 6);

3 x ≤ x̃;

4 f := f(x̃) = 2, α := 0+(2 − 0)/2 = 1, x := x(α) = (17/4, 3, 4)), x(α) =

(6, 5, 6);

5 x̃(1) = (6, 5, 5);
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6 x ≤ x̃(1), x̃ := x̃(1);

8 f(x̃) − f = 1 > ε = 1/2;

4 f := f(x̃) = 1, α = 0 + (1− 0)/2 = 1/2, x(α) = (19/4, , 7/2, 9/2), x :=

x(α) = (23/4, 9/2, 11/2);

5 x̃(1) = (23/4, 9/2, 9/2);

6 x ≤ x̃(1), x̃ := x̃(1);

8 f(x̃)− f = 1/2− 0 = 1/2 = ε;

9 x̃ = (23/4, 9/2, 9/2) is the ε-optimal solution, STOP;

Example 5.3.3

In this example we consider a modification of the above problem - now the penalty

functions are increasing. The problem sounds as follows:

minimize

f(x) ≡ max(2x1, 3x2, x3)

subject to

max(4 ∧ x1, 5 ∧ x2, 0 ∧ x3) = max(0 ∧ x1, 4 ∧ x2, 5 ∧ x3),

x ≤ x ≤ x,

where x = (5, 3, 5), x = (6, 6, 6). For the modified objective function f the

computation gives a different result shown below.

1 x = (5, 3, 5), x = (6, 6, 6), f := 10, f := 18, ε = 1;

2 x̃ = x = (6, 6, 6);

3 x ≤ x̃;

4 f := f(x̃) = 18, f (1) := 10 + (18 − 10)/2 = 14, x(1) := (6, 14/3, 6);

5 x̃ = (6, 14/3, 14/3);

6 x 6≤ x̃;
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7 f := f(x(1)) = 14, x̃ := y, go to 4 ;

4 f := f(x̃) = 18, f (1) := 14 + (18 − 14)/2 = 16, x(1) := (6, 16/3, 6);

5 x̃ = (6, 16/3, 5);

6 x ≤ x̃(1), x̃ := x̃(1) = (6, 16/3, 5);

8 f(x̃) − f = 16− 14 = 2 > ε;

4 f := f(x̃) = 16, f (1) := 14 + (16− 14)/2 = 15, x(1) := (6, 5, 5);

5 x̃ = (6, 5, 5);

6 x ≤ x̃;

8 f(x̃) − f = 15− 14 = 1 = ε;

9 x̃ is the ε-optimal solution, STOP;
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6

Optimization Problems under

Two-Sided (max, min)-Linear

Inequality Constraints - a

Threshold Method

We consider optimization problems, the objective function of which is equal to the

maximum of a finite number of continuous and unimodal functions of one variable.

The set of feasible solutions is described by a system of (max,min)−linear (or

using an alternative notation (max,∧)−linear) inequalities with variables on both

sides. Let us note that any (max,min)-linear inequality can be transformed to

equation by introducing a slack variable having a sufficiently high upper bound

(e.g. greater than all coefficients of the system) on the appropriate side. Therefore

the algorithm described in Chapter 3 can be used also for solving systems of

(max,min)−linear inequalities. Let us consider the simple example to clarify this

technique.

Example 6.0.4

Consider the system of inequalities

max{5 ∧ x1, 7 ∧ x2, 10 ∧ x3} ≤ max{3 ∧ x1, 5 ∧ x2, 6 ∧ x3}
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max{9 ∧ x1, 8 ∧ x2, 1 ∧ x3} ≥ max{5 ∧ x1, 1 ∧ x2, 2 ∧ x3}

xj ≤ 15 ∀j ∈ j = {1, 2, 3}

We can replace this system by the following system of equations by introducing

slack variables x4, x5:

max{5 ∧ x1, 7 ∧ x2, 10 ∧ x3 15 ∧ x4} = max{3 ∧ x1, 5 ∧ x2, 6 ∧ x3}

max{9 ∧ x1, 8 ∧ x2, 1 ∧ x3} = max{5 ∧ x1, 1 ∧ x2, 2 ∧ x3 15 ∧ x5}

xj ≤ 15 ∀j ∈ j = {1, 2, 3, 4, 5}

The maximum element of the first system is xmax = (15, 6, 6). The second system

has the maximum element xmax = (15, 6, 6, 15, 9). Let us note that if the upper

bound of x5 were not high enough (e.g. less than 9), then the second inequality

could have not been transformed to equality by an appropriate choice of the value

x5 and we would have to choose x1 < 15 and the two systems would not be

equivalent.

The transformation of systems of (max,min)-linear inequalities to equivalent sys-

tems of (max,min)-linear equations shows that the systems of inequalities have

similar properties like systems of equations:

(1) If no lower bound and a finite upper bound on variables is given, the sys-

tem is always solvable and the set of solutions of the inequality system has the

unique finite maximum element xmax;

(2) If x is a finite lower bound of the variables, then the system of inequalities

is solvable if and only if x ≤ xmax.

Let us note that if we have variables x on the left hand sides and different

variables y on the right hand sides, the system can be processed like the one-sided

system as in the first Chapter. Including lower and upper bounds on x, y is only

a technical problem.
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The practical application of the problem that will be presented in this chapter,

it will be like the problem that was presented such as Example 5.3.1 in the pre-

vious section with a simple change so that we will choose appropriate capacities

xj, j ∈ J . In order that each of the transportation means may return to i, we

may e.g. require for each i that the maximal attainable capacity of connections

between i and T via j is greater than or equal to maximal attainable capacity of

connections between T and i on the way back. In other words, we have to choose

xj, j ∈ J , which satisfy relation (6.1) below.

In what follows, assume that we have the same variables on the left hand sides

and right hand sides of the inequality system.

6.1 Systems of Two-Sided (max,min)− Linear In-

equality

Let us consider the following system of inequalities:

ai(x) ≥ bi(x), i ∈ I, (6.1)

where similarly as in the preceding section ai(x) = maxj∈J(aij ∧ xj), bi(x) =

maxj∈J(bij ∧xj), and aij, bij ∈ R, i ∈ I, j ∈ J be given numbers. Let M≥ denote

the set of all solutions of system (6.1). We will set for any x, y ∈ Rn : x ≤ y ⇔
xj ≤ yj ∀j ∈ J . Let us set

M≥(x, x) = {x ; x ∈M≥ & x ≤ x ≤ x}

for any finite x ≤ x and let xmax denote the maximum element ofM≥(x, x). So

that M≥(x, x) ⊂M≥, and M≥(x, xmax) ⊂M≥, also it is clear M≥(x, xmax) ⊆
M≥(x, x).

To prove M≥(x, x) ⊆M≥(x, xmax) there are two cases: the first one, if x /∈M≥ ,

then xmax < x . Therefore ∀ x ∈ M≥(x, x) , the inequality x ≤ xmax verified,

i.e. xj ≤ xmax
j ∀ j ∈ J and if x∗ ∈ (xmax, x] , (i.e. xmax < x∗ ≤ x, i.e.

xmax
j0

< x∗j0 ≤ xj0 for at least one j0 ∈ J and xmax
j ≤ x∗j ≤ xj for j ∈ J & j 6= j0 )
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then x∗ /∈ M≥ , otherwise x∗ is the maximum element of M≥(x, x) , but this

contradicts the hypothesis xmax is the maximum element of M≥(x, x). So

that for any x ∈ M≥(x, x), we have x ≤ xmax , and x ∈ M≥(x, xmax),

then M≥(x, x) ⊆ M≥(x, xmax). The second case, if x ∈ M≥ , then xmax = x,

M≥(x, x) ⊆M≥(x, xmax). Then we have

M≥(x, xmax) = M≥(x, x) ⊂M≥.

In this section we will propose an algorithm, which find the maximum ele-

ment of the set M≥(x, x), and calculates the maximum solution of system (6.1),

take in account x ≤ x ≤ x. Note that, since any equation can be replaced by

two inequalities, therefor we can use the next algorithm to find the maximum

element of the set M=(x, x), which is the set of all solutions of a system of equa-

tions, (ai(x) = bi(x), i ∈ I). So that we will adjust the algorithm for systems of

equations described chapter 5, which find the maximum element of the set M=.

This can be done simply by leaving out step 3 of the algorithm in the preceding

chapter and make little change in that algorithm. We will provide this algorithm

after adjusted as the following:

Algorithm 6.1.1 We will provide algorithm, which find the maximum element

of the set of all solutions of system (6.1) with the boundary conditions x ≤ x ≤ x.

0 Input I, J, x, aij and bij for all i ∈ I and j ∈ J .

1 Find I<(x) ≡ {i ∈ I ; ai(x) < bi(x)}.

2 If I<(x) = ∅, then xmax := x, STOP.

3 Find α(x) ≡ mini∈I<(x) ai(x).

4 Find I<(α(x)) ≡ {i ∈ I<(x) ; ai(x) = α(x)}.

5 Find H<
i (x) ≡ {j ∈ J ; bij ∧ xj > α(x)} , ∀ i ∈ I<(α(x)).

6 Set H<(x) :=
⋃

i∈I<(α(x)) H
<
i (x).

7 Set xj := α(x) for all j ∈ H<(x) go to 1 .
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We will illustrate the performance of this algorithm by the following small

numerical example.

Example 6.1.1

Let J = {1, 2, 3, 4}, I = {1, 2, 3}, x = (10, 10, 10, 10), and consider system (6.1)

of inequalities where aij & bij ∀ i ∈ I and j ∈ J are given by the matrices A

and B as follows:

A =




7 5 3 0

4 3 1 2

10 20 10 −1


 , B =



6 13 10 −1
8 0 3 1

1 1 1 −8




By substitution for these values in system (6.1) and using Algorithm (6.1.1):

Iteration 1:

1 I<(x) = {1, 2}.
2 I<(x) 6= ∅.
3 α(x) = min(7, 4) = 4.

4 I<(α(x)) = {2}.
5 H<

2 (x) = {1}.
6 H<(x) = {1}.
7 x1 = 4, x = (4, 10, 10, 10) go to 1 .

Iteration 2:

1 I<(x) = {1}.
2 I<(x) 6= ∅.
3 α(x) = 5.

4 I<(α(x)) = {1}.
5 H<

i (x) = {2, 3}.
6 H<(x) = {2, 3}.
7 x2 = 5, x3 = 5, x = (4, 5, 5, 10) go to 1 .

Iteration 3:

1 I<(x) = ∅, then xmax = (4, 5, 5, 10) STOP.

In the next part of this section we will introduce a method which finds the

minimum upper bound x̃ for solution of system (6.1) such that x̃ ≥ x. In other

words x̃ has the following properties:

(1) x̃ ∈M≥(x, xmax)
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6.1 Systems of Two-Sided (max,min)− Linear Inequality

(2) If x ≤ x̃, x 6= x̃, then there exists x∗ ∈M≥(x, xmax) such that x∗ 6≤ x̃.

It will be clear that x̃ ∈ M≥(x, xmax) and this element is suitable to find the

optimal solution of the minimization problem as we will see in the next section.

Let us set Tij, i ∈ I, j ∈ J be defined as follows:

Tij = {xj ; xj ≤ xmax
j & aij ∧ xj ≥ bi(x) ∨ xj}, ∀ i ∈ I, j ∈ J.

Note that if i1, i2 are two different indices of I, j ∈ J , and bi2(x) ∨ xj ≤
bi1(x) ∨ xj, then evidently Ti1j ⊆ Ti2j. It follows that for any subset of r indices

of I, there exists such permutation i1, , . . . , ir of these indices that the inclusions

Ti1j ⊆ Ti2j ⊆ . . . ⊆ Tirj hold so that
⋂r

h=1 Tihj = Ti1j.

The sets Tij have the following properties:

Tij 6= ∅ ⇔ aij ≥ bi(x) ∨ xj,

Tij 6= ∅ ⇒ Tij = [bi(x) ∨ xj , xmax
j ].

Since we assumed that x ≤ xmax, set M≥(x, xmax) is nonempty. Let us note

that for any x ∈M≥(x, xmax) and any i ∈ I, the inequalities

bi(x) ≥ bi(x) & xj ≥ xj ∀ j ∈ J

hold and further there exists for each i ∈ I an index j(i) ∈ J such that

Tij(i) 6= ∅ (otherwise set M≥(x, xmax) would be empty, because we would have

aij < bi(x) ∨ xj ∀j ∈ J and therefore ai(x) < bi(x) for any x ∈ Rn and

we have x ≤ xmax so that M≥(x, xmax) 6= ∅). Let us note further, that if

aij∧xj < bi(x)∨xj ∀j ∈ J , then we have ai(x) < bi(x) and thus x 6∈M≥(x, xmax).

If for some fixed j ∈ J the inequalities aij < bi(x) ∨ xj hold , then aij ∧ xj <

bi(x)∨ xj ∀ xj ∈ R so that Tij = ∅ and xj will never be ”active” in ai(x) or bi(x)

if x ∈M≥ (i.e. it will never determine the values of ai(x) or bi(x)). Therefore we

will exclude such variables from our considerations and assume that

∀i ∈ I ∃ j(i) ∈ J aij(i) ≥ bi(x) ∨ xj

67
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In such a case we have either aij(i) ≥ bi(x) > xj or aij(i) ≥ xj ≥ bi(x). Assume that

for each j ∈ J there exists at least one ”row” index i ∈ I such that aij ≥ bi(x)∨xj.

Let us choose for each i ∈ I an index j(i) ∈ J such that Tij(i) 6= ∅. Let us set

Vj, j ∈ J be defined as follows:

Vj = {i ∈ I; aij ≥ bi(x) ∨ xj},

in other way Vj = {i ∈ I ; j(i) = j}. It means that Vj is the set of those row

indices i ∈ I, for which nonempty set Tij was chosen in column j ∈ J . Note that

some of the sets Vj may be empty and further

⋃

j∈J
Vj = I

and ⋂

i∈Vj

Tij = [max
k∈Vj

(bk(x)) ∨ xj, x
max
j ],

where we set the maximum equal to−∞ if Vj = ∅. Let us denote maxk∈Vj
(bk(x)) =

bk(j)(x). Let a vector x̃ will be defined as follows:

x̃j = max
k∈Vj

(bk(x)) ∨ xj = bk(j)(x) ∨ xj ∀j ∈ J, (6.2)

so that if Vj = ∅, then x̃j = xj.

The element x̃ defined by (6.2) has the following properties:

(1) M≥(x, x̃) 6= ∅, & x̃ ∈M≥(x, x̃).

(2) ξ ∈M≥(x, x̃)⇒ x ≤ ξ ≤ x̃.

(3) There may exist elements η ∈M≥(x, x̃) such that η 6= x̃.

If x̃ is the minimum element ofM≥(x, xmax), then it would be x̃ ∈M≥(x, xmax)

and for any x ∈M≥(x, xmax)⇒ x ≥ x̃. Therefore, because of the property (3) x̃

is not the minimum element of M≥(x, xmax), but we can say that x̃ is the min-

imum upper bound of M≥(x, xmax) such that M≥(x, x̃) 6= ∅. Let us choose τ ≤
xmax, & τ 6= xmax, and x̌ ∈M≥(x, τ) ⇒ x̌ ≤ xmax and ai(x̌) ≥ bi(x̌) ∀ i ∈ I and
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6.1 Systems of Two-Sided (max,min)− Linear Inequality

x ≤ x̌ ≤ τ . LetH =
{
xmax(τ) | xmax(τ) is the maximum element of M≥(x, τ)

}
,

then x̃ is the minimum element of H.

Theorem 6.1.1

Let x̃ be defined as in (6.2). Then x̃ ∈M≥(x, xmax).

Proof:

Since evidently x̃ ≥ x, we have to prove that only ai(x̃) ≥ bi(x̃), ∀i ∈ I.

Let i ∈ I be arbitrarily chosen. We have

bi(x̃) = max
j∈J

(bij ∧ x̃j) = max
j∈J

(bij ∧ (max
k∈Vj

(bk(x) ∨ xj))) = max
j∈J

(bij ∧ (bk(j)(x) ∨ xj))

Let us assume that

bi(x̃) = max
j∈J

(bij ∧ x̃j) = bij(i) ∧ x̃j(i).

so that

bi(x̃) = bk(j(i))(x̃) ∨ xj(i).

Since in this case i ∈ Vj(i), we have aij(i) ≥ x̃j(i) and we obtain

ai(x̃) ≥ aij(i) ∧ x̃j(i) = x̃j(i) ≥ bij(i) ∧ x̃j(i) = bi(x̃).

Since i ∈ I was arbitrarily chosen, the theorem is proved.

We will clarify the previous discussion about the properties of x̃ through the

following simple example.

Example 6.1.2

Let J = {1, 2, . . . , 6}, I = {1, 2}, x = (3, 5, 1, 2, 9, 9) and consider system (6.1)

of inequalities where aij & bij ∀ i ∈ I and j ∈ J are given by the matrices A

and B as follows:

A =

(
−100 −100 10 20 −10 −20
−50 −50 100 200 −30 −40

)

69
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and

B =

(
7 50 −10 −20 −30 −40
8 9 −15 −25 10 11

)

By substitution for these values in system (6.1) we have

a1(x) = max
1≤j≤6

(a1j ∧ xj) = 2 , b1(x) = max
1≤j≤6

(b1j ∧ xj) = 5

a2(x) = max
1≤j≤6

(a2j ∧ xj) = 2 , b2(x) = max
1≤j≤6

(b2j ∧ xj) = 9

therefore x /∈M≥(x, xmax), and

V1 = V2 = ∅, V3 = {1, 2}, V4 = {1, 2}, V5 = V6 = ∅.
We will find x̃ as follows:

x̃1 = x1 = 3, & x̃2 = x2 = 5 & x̃3 = max1≤i≤2(bi(x)) ∨ x3 = max(5, 9) ∨ 1 = 9

and similarly x̃4 = 9, farther x̃5 = x5 = 9, & x̃6 = x6 = 9,

i.e x̃ = (3, 5, 9, 9, 9, 9) and we have:

a1(x̃) = 9 & b1(x̃) = 5

a2(x̃) = 9 & b2(x̃) = 9

so that x̃ ∈M≥(x, xmax). let us choose ξ = (3, 5, 1, 9, 9, 9) ≤ x̃ and ξ 6= x̃ also we

have

a1(ξ) = 9 & b1(ξ) = 5

a2(ξ) = 9 & b2(ξ) = 9

then ξ ∈M≥(x, xmax). Therefore x̃ because of the property (3) is not the minimum

element of M≥(x, xmax), but it is the minimum upper bound of M≥(x, xmax).

Element x̃ defined by (6.2) shows that the given lower bound x might not be

an element of M≥(x, xmax). Moreover we obtained an explicit dependence of x̃ on

the given lower bound x (compare (6.2)), which can be used for sensitivity anal-

ysis of the set M≥(x, x) or for a post optimal analysis of optimization problems,

the set of feasible solutions of which is equal to M≥(x, xmax). The properties of

x̃ enable us to solve some of the optimization problems mentioned above explicitly.
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6.2 Optimization Problems under Two-Sided (max,

min)-Linear Inequality Constraints

In this section we consider an optimization problem that is a combination of

the problems solved in the above chapters but with a different feasible set. In

other words, let us consider for instance the optimization problem:

f(x) ≡ max
j∈J

fj(xj) −→ min (6.3)

subject to

x ∈M≥(x, xmax),

where fj, j ∈ J are increasing functions. Let indices j(i) ∈ J will be chosen for

each i ∈ I such that

min
j∈J

fj(x
(i)
j ) = fj(i)(xj(i)),

where

fj(x
(i)
j ) = min

xj∈Tij

fj(xj).

Let x̃ be defined as in (6.2) and then we have to proceed as follows:

T̃ij =





∅ if aij < bi(x),

bi(x) if aij > bi(x),

[xj, x̃] if aij = bij.

Let us set fj(x̃
(i)
j ) = minxj∈T̃ij

fj(xj), (if T̃ij = ∅, we set minimum equal to +∞).

Let us set

min
j∈J

fj(x̃
(i)
j ) = fj(i)(x̃

(i)
j(i)).

And R̃j = {i ∈ I | j(i) = j}, ∀ j ∈ J , ( it may be R̃j = ∅ for some j). Then we

have

fk(x
opt
k ) = max

i∈R̃k

fk(x̃
(i)
k ),

if R̃k 6= ∅, but when R̃k = ∅, we set

fk(x
opt
k ) = fk(xk).
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The proof can be carried out in the same way as in the one sided case in

Chapter 3. Direct exact solving of such optimization problems as well as their

sensitivity and parametric analysis are beyond the scope of this chapter and will

be the subject of further research. It is not necessary to pressed this algorithm

in the next section explicitly. It remains to say that we use the same method as

for equation constraints in the above chapter, only xmax is the maximum element

of M≥(x, x), (instead of the the maximum element of M=(x, x)).

We mentioned above that a system of inequalities can be transformed to

a system of equations by making use of slack variables. Let us note that the

other way round, systems of equations considered can be solved alternatively by

the methods in this section, if we replace the equation system by the system of

inequalities of the form

ai(x) ≥ bi(x), i ∈ I

bi(x) ≥ ai(x), i ∈ I

xj ≥ xj, j ∈ J.

In concrete terms, we will describe now the corresponding algorithm explicitly

step by step.

Algorithm 6.2.1 We will provide algorithm, which summarizes the above dis-

cussion and finds the optimal solution xopt of problem (6.3).

0 Input m,n, x, x, A,B, f(x).

1 Find xmax ∈M≥(x, x).

2 If x � xmax, then M≥(x, x) = ∅, STOP.

3 Vj := {i ∈ I ; aij > bi(x) ∨ xj} ∀j ∈ J.

4 x
(i)
j := (bi(x) ∨ xj) ∀i ∈ Vj for all j ∈ J such that Vj 6= ∅.

5 Set x̃j := maxi∈Vj
(x

(i)
j ) if Vj 6= ∅, x̃j := xj if Vj = ∅.

6 Q := {k ∈ J ; f(x̃) = fk(x̃k)}, P := {j ∈ J ; x̃j = xj}.

7 If Q ∩ P 6= ∅, then set xopt := x̃, STOP.
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8 Pk := {i ∈ I ; x̃k = x
(i)
k } ∀k ∈ Q.

9 Vk := Vk \ Pk ∀k ∈ Q.

10 If
⋃

j∈J Vj = I, go to 4 .

11 Set xopt := x̃, STOP.

We will illustrate the performance of this algorithm by the following numerical

examples.

Example 6.2.1

Let J = {1, 2, . . . , 5}, I = {1, 2, 3}, x = (10, 10, 10, 10, 10), x = (0, 3, 0, 0, 1) and

consider system (6.1) of inequalities where aij & bij ∀ i ∈ I and j ∈ J are

given by the matrices A and B as follows:

A =



−10 10 15 −9 −8
5 −8 10 20 7

3 4 −18 19 11


 , B =




7 2 −10 −20 6

8 9 −15 −25 5

13 −17 12 10 9




and consider the objective function

f(x) = max(x1, x2 − 3, x3, x4, x5).

By substitution for these values in system (6.1) and using algorithm (6.1.1) we

have:

a1(x) = max
1≤j≤5

(a1j ∧ xj) = 10 , b1(x) = max
1≤j≤5

(b1j ∧ xj) = 7

a2(x) = max
1≤j≤5

(a2j ∧ xj) = 10 , b2(x) = max
1≤j≤5

(b2j ∧ xj) = 9

a3(x) = max
1≤j≤5

(a3j ∧ xj) = 10 , b3(x) = max
1≤j≤5

(b3j ∧ xj) = 10

Then xmax = x = (10, 10, 10, 10, 10), therefore x ≤ xmax, and

by using the algorithm ( 6.2.1) we have

1 xmax = x = (10, 10, 10, 10, 10).

2 x ≤ xmax.
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3 V1 = {2}, V2 = {1, 3}, V3 = {1, 2}, V4 = {2, 3}, V5 = {2, 3}.

4 x
(1)
1 = 2, x

(1)
2 = 3, x

(1)
3 = 2, x

(1)
4 = 2, x

(1)
5 = 2, x

(2)
1 = 3, x

(2)
2 =

3, x
(2)
3 = 3, x

(2)
4 = 3, x

(2)
5 = 3, x

(3)
1 = 1, x

(3)
2 = 3, x

(3)
3 = 1, x

(3)
4 =

1, x
(3)
5 = 1.

5 x̃ = (3, 3, 2, 3, 3).

6 Q = {1, 4, 5}, , f(x̃) = 3, P = {2} then Q ∩ P = ∅.

8 P1 = {2}, P2 = {1, 2, 3}, P3 = {1}, P4 = {2}, P5 = {2}.

9 V1 = ∅, V2 = ∅, V3 = {2}, V4 = {3}, V5 = {3}.

10
⋃

j∈J Vj = {2, 3} 6= I.

11 xopt = x̃, STOP.

Then xopt = (3, 3, 2, 3, 3) is the optimal solution of the set M≥(x, x) and f (xopt) =

max (3, 0, 2, 3, 3), then the objective function is equal to 3.

Example 6.2.2

Let J = {1, 2, . . . , 5}, I = {1, 2, . . . , 6}, x = (20, 20, 20, 20, 20), x = (0, 3, 0, 0, 0)

and consider system (6.1) of inequalities where aij & bij ∀ i ∈ I and j ∈ J

are given by the matrices A and B as follows:

A =




2 2 6 0 13

8 11 10 7 7

4 3 0 13 8

14 3 3 13 2

1 3 13 4 2

12 15 7 3 14




, B =




0 10 9 −1 5

3 −3 1 −6 −7
4 −8 2 −14 11

14 −7 7 −3 4

6 −8 12 2 0

0 −11 2 −3 5




and consider the objective function

f(x) = maxj∈J(fj(xj),

where fj(xj) = cjxj + dj, c = (6, 3, 7, 3, 7) and d = (10, 0, 5, 1, 7). By substitution

for these values in system (6.1) and using we have:
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Inequality Constraints

a1(x) = max
1≤j≤5

(a1j ∧ xj) = 13 , b1(x) = max
1≤j≤5

(b1j ∧ xj) = 10

a2(x) = max
1≤j≤5

(a2j ∧ xj) = 11 , b2(x) = max
1≤j≤5

(b2j ∧ xj) = 3

a3(x) = max
1≤j≤5

(a3j ∧ xj) = 13 , b3(x) = max
1≤j≤5

(b3j ∧ xj) = 11

a4(x) = max
1≤j≤5

(a4j ∧ xj) = 14 , b4(x) = max
1≤j≤5

(b4j ∧ xj) = 14

a5(x) = max
1≤j≤5

(a5j ∧ xj) = 13 , b5(x) = max
1≤j≤5

(b5j ∧ xj) = 12

a6(x) = max
1≤j≤5

(a6j ∧ xj) = 15 , b6(x) = max
1≤j≤5

(b6j ∧ xj) = 5

Then xmax = x = (20, 20, 20, 20, 20), therefore x ≤ xmax, and by using the

algorithm ( 6.2.1) we have:

1 xmax = x = (20, 20, 20, 20, 20).

2 x ≤ xmax.

3 V1 = {2, 3, 4, 5, 6}, V2 = {2, 6}, V3 = {1, 2, 4, 5, 6},

V4 = {2, 3, 4, 5, 6}, V5 = {1, 2, 3, 4, 5, 6}.

4 find x
(i)
j .

5 x̃ = (0, 3, 3, 0, 3).

6 Q = {5}, f(x̃) = 28, P = {1, 2, 4} then Q ∩ P = ∅.

10
⋃

j∈J Vj = {1, 2, 3, 4, 5, 6} = I go to 4 .

4 find x
(i)
j .

5 x̃ = (0, 3, 3, 0, 0).

6 Q = {3}, f(x̃) = 26, P = {1, 2, 4, 5} then Q ∩ P = ∅.

10
⋃

j∈J Vj = {1, 2, 4, 5, 6} 6= I.

11 xopt = x̃, STOP.

Then xopt = (0, 3, 3, 0, 0) is the optimal solution of the set M≥(x, x) and f (xopt) =

max (10, 9, 26, 1, 7), then the objective function is equal to 26.
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7

Optimization Problems on

Attainable Sets of Systems of

(max,min)-Linear Equations

In preceding sections we studied systems of (max,min)− linear equations and

inequalities and optimization problems under constraints described by such sys-

tems. The first question which has to be raised before solving such problems is

the solvability of given system of equations and inequalities. If the system has a

solution, we can continue and find a special solution of such system (e.g. maxi-

mum solution, optimal solution etc...). the question, which arises in connection

with practical applications is what to do if the given system of equations and

inequalities has no solution. The possible practical applications of such problems

mentioned in the examples above in the preceding chapters show that in case that

the system has no solution, we will have to modify the original system (i.e. to

modify its input coefficients ) in such a way that the new problem has a solution.

In such a situation it is natural to try to modify the problems in such a way that

the original aims of the given system ( e.g. bounds on costs or arrival times)

will be violated as little as possible. In this section we propose an approach

to solving some of such problems in connection with one - sided (max,min)−
linear equation systems. Let us note that problems, the original formulation of

which has no solution were called sometimes in the literature ”incorrectly posed

problems” ( see e.g. I. I. Eremin et al. [13] ). The results in the literature concen-
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trate on mostly incorrectly posed linear and convex optimization problems. This

chapter can therefore be understood as a contribution to this part of operations

research applied to problems, in which (max,min)− linear systems occur. Such

problems are neither linear or convex in usual algebraic sense. One such problem

for (max,+)− linear equation system was considered using a different approach

in [20]. Unlike to the results of [20], our purpose in this section is to present an

approach to incorrectly posed (max,min)− linear one-sided equation systems.

7.1 Notations, Problem Formulation - Case (max,min)

Let us introduce the following notations:

I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}. Let A be a matrix with finite elements

aij ∈ R = (−∞,+∞), ∀ i ∈ I, j ∈ J , let α ∧ β ≡ min(α, β) for any α, β ∈ R.

Vector A⊗ x ∈ Rm for x = (x1, . . . , xn)
T ∈ Rn will be defined as follows:

(A⊗ x)i ≡ max
j∈J

(aij ∧ xj) ∀i ∈ I.

The system of (max,min)-linear equations with right-hand side b ∈ Rm is an

equation system of the following form:

A⊗ x = b.

The set of all solutions of the system will be denoted M(b), i.e.

M(b) = {x ∈ Rn ; A⊗ x = b}.

Definition 7.1.1

Set

R(A) ≡ {b ∈ Rm ; ∃ x ∈ Rn such that A⊗ x = b}

is called attainable set of matrix A.

In what follows we will solve the following optimization problem:

77



7.2 Properties of Attainable Sets and Analysis of PROBLEM I

PROBLEM I.

Minimize ∣∣∣
∣∣∣b− b̂

∣∣∣
∣∣∣ = max

i∈I

∣∣∣bi − b̂i

∣∣∣

subject to

b ∈ R(A)

The optimal solution of PROBLEM I will be denoted bopt. Let us note that if

b̂ ∈ R(A), it is evidently bopt = b̂. Therefore we will assume in what follows that

b̂ 6∈ R(A).

7.2 Properties of Attainable Sets and Analysis

of PROBLEM I

In this section we will study in more detail some properties of attainable sets and

analysis of PROBLEM I.

Lemma 7.2.1

Set R(A) has the maximum element, i.e. an element bmax ∈ R(A) such that

b ≤ bmax ∀ b ∈ R(A).

Proof:

Let αi = maxj∈J aij ∀i ∈ I . Let x ∈ Rn be arbitrarily chosen. Then

aij ∧ xj ≤ aij for all i ∈ J, j ∈ J . Therefore for any i ∈ I we obtain that

max
j∈J

(aij ∧ xj) = max
j∈J

aij = αi.

Therefore if we set bmax
i = αi ∀ i ∈ I, then bmax ∈ R(A), since e.g. if x̂ ∈ Rn

and x̂j ≥ maxi∈I αi we have maxj∈J(aij ∧ x̂j) = αi = bmax
i . For an arbitrary

b ∈ R(A) there exists x ∈ Rn such that b = A ⊗ x ≤ A ⊗ x̂ = bmax, so that

bmax is the maximum element of R(A), which completes the proof.
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Lemma 7.2.2

Let b ∈ Rm, I>j = {i ∈ I ; aij > bi} ∀ j ∈ J . Let M(b) = {x ∈ Rn ; A⊗x = b}
be nonempty. Let vector x(b) ∈ Rn be defined as follows:

xj(b) = min
i∈I>j

bi ∀ j ∈ J if I>j 6= ∅.

We set the minimum equal to infinity if I>j = ∅. Then x(b) is the maximum

element of set M(b).

Proof:

Let us note that if x ∈ M(b), then it must be aij ∧ xj ≤ bi for all i ∈ I, j ∈ J .

Therefore it must be x ≤ x(b) ∀x ∈ M(b) so that x(b) is the upper bound for

elements of M(b). It remains to prove that if set M(b) is nonempty it must be

x(b) ∈M(b).

Let us set

Sj(xj) ≡ {k ∈ I ; akj ∧ xj = bk} ∀j ∈ J.

If I>j 6= ∅, then

Sj(xj(b)) = {k ∈ I ; xj(b) = bk = min
i∈I>j

(bi)}.

If I>j = ∅, then xj(b) =∞ and

Sj(xj(b)) = {k ∈ I ; akj = bk}.

We will show further that

x(b) ∈M(b) ⇐⇒
⋃

j∈J
Sj(xj(b)) = I.

Really if
⋃

j∈J Sj(xj(b)) = I and p ∈ I is arbitrary, then there exists index

j(p) ∈ J such that p ∈ Sj(p)(xj(p)(b)) and therefore apj ∧ xj(b) ≤ bp for all j ∈ J

and apj(p) ∧ xj(p)(b) = bp so that maxj∈J(apj ∧ xj(b)) = bp. Since p was arbitrary,

we obtain that x(b) ∈M(b). To prove the opposite implication let us assume that⋃
j∈J Sj(xj(b)) 6= I so that there exists index i0 ∈ I such that i0 6∈

⋃
j∈J Sj(xj(b))
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and therefore ai0j ∧ xj(b) 6= bi0 ∀j ∈ J and therefore maxj∈J(ai0j ∧ xj(b)) 6= bi0

and thus x(b) 6∈M(b).

Let us note that if xj ≤ xj(b) for any j ∈ J , then Sj(xj) ⊆ Sj(xj(b)). Therefore

if
⋃

j∈J Sj(xj(b)) ⊂ I, then for any x ≤ x(b) we have

⋃

j∈J
Sj(xj) ⊆

⋃

j∈J
Sj(xj(b)) ⊂ I

and thus M(b) = ∅, since all elements of M(b) must satisfy the inequality x ≤
x(b) if x 6>< x(b), x ∈M(b). It follows that

M(b) 6= ∅ ⇐⇒ x(b) ∈M(b).

In other words if M(b) 6= ∅, then x(b) ∈ M(b) and x ≤ x(b) for all x ∈ M(b), so

that x(b) in the maximum element of M(b), what was to be proved.

Lemma 7.2.3

Let bmax be the maximum element of R(A), b̂ ∈ Rm such that b̂p ≥ bmax
p for some

p ∈ I, b an arbitrary element of R(A). Then

∣∣∣bp − b̂p

∣∣∣ ≥
∣∣∣bmax

p − b̂p

∣∣∣ .

Proof:

Since bmax is the maximum element of R(A), and b̂p ≥ bmax
p , the following in-

equalities hold for any b ∈ R(A) :

bp ≤ bmax
p ≤ b̂p.

It follows that bp − b̂p ≤ bmax
p − b̂p ≤ 0 so that we obtain

∣∣∣bp − b̂p

∣∣∣ ≥
∣∣∣bmax

p − b̂p

∣∣∣ .

As a consequence of Lemma 7.2.3 we obtain that if b̂ ≥ bmax, (i.e. b̂s ≥
bmax
s , ∀s ∈ I) then bopt = bmax.
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Example 7.2.1

Let m = n = 3, b̂ = (8, 8, 8)T ,

A =




3 1 5

4 4 6

7 7 3




In this case bmax = (5, 6, 7)T ≤ b̂ = (8, 8, 8)T . Taking into account Lemma 7.2.3,

we obtain that the optimal solution of PROBLEM I is equal to bmax. The op-

timal value of the objective function of PROBLEM I is therefore
∥∥∥bmax − b̂

∥∥∥ =

max(3, 2, 1) = 3.

7.3 Algorithm - A Parametric Version

In what follows we will replace PROBLEM I with the following parametric op-

timization problem:

PROBLEM II

Minimize t

subject to
∥∥∥b− b̂

∥∥∥ ≤ t, b ∈ R(A)

where
∥∥∥b− b̂

∥∥∥ = maxi∈I

∣∣∣bi − b̂i

∣∣∣
this problem is equivalent to the next problem:

PROBLEM III

Minimize t

subject to b̂i − t ≤ maxj∈J(aij ∧ xj) ≤ b̂i + t, ∀ i ∈ I.

Let M(t) denote the set of feasible solutions of PROBLEM II. We have then

M(t) = {x ; b̂i − t ≤ xj ≤ b̂i + t, ∀ i ∈ I}.

And let us set for all i ∈ I, j ∈ J .

Tij(t) ≡ {xj | b̂i − t ≤ aij ∧ xj ≤ b̂i + t}. (7.1)
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Note that maxj∈J(aij ∧xj) ≤ b̂i+ t, ∀ i ∈ I, implies that for each fixed j ∈ J

it is aij ∧ xj ≤ b̂i + t, ∀ i ∈ I, so that for each fixed j ∈ J and t it must be

xj ≤ xj(b̂+ t) ≡ mini∈Ij(t)(b̂i + t) (7.2)

where Ij(t) ≡ {i ∈ I | aij > b̂i + t}, and we set the minimum equal to infinity

if I>j (t) = ∅. Let us note that if aij > b̂i + t i.e. t < aij − b̂i, then b̂i + t is the

upper bound for xj ∈ Tij(t) and if t ≥ aij − b̂i, then aij ≤ b̂i + t so that also

aij ∧xj ≤ b̂i+ t and b̂i+ t is no more an upper bound for xj, i.e. the upper bound

for xj is higher. Let us note further that if Tij(t) 6= ∅, then it must be fulfilled

two inequalities

aij ≥ b̂i − t and b̂i − t ≤ xj(b̂i + t) (7.3)

If either aij < b̂i − t or b̂i − t > xj(b̂i + t), then Tij(t) is empty.

We will find minimum value of t, for which the inequalities of (7.3) hold. The

minimum value of t, for which aij ≥ b̂i − t holds is evidently

τ
(1)
ij ≡ b̂i − aij.

To define the minimal value of t, for which b̂i − t ≤ xj(b̂i + t) holds, we will

investigate xj(b̂i + t) as a function of t. We have for any fixed j ∈ J and

t ≥ 0 :

xj(b̂+ t) = min
i∈Ij(t)

(b̂i + t) = b̂k(j,t) + t, (7.4)

where we set xj(b̂ + t) = ∞, if Ij(t) = ∅. Note that xj(b̂ + t) = ∞, for all

t ≥ maxi∈I(aij− b̂i). We will consider therefore only values t ≤ maxi∈I(aij− b̂i).

Let us set

I
(1)
j ≡

{
k | max

k∈I
(aij − b̂i) = akj − b̂k = α

(1)
j

}
,

I
(2)
j ≡

{
k | max

k∈I\I(1)j

(aij − b̂i) = akj − b̂k = α
(2)
j

}
,

I
(3)
j ≡

{
k | max

k∈I\(I(1)j ∪I(1)j )

(aij − b̂i) = akj − b̂k = α
(3)
j

}
,
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...
...

I
(p)
j ≡

{
k | max

k∈I\⋃p−1
h=1 I

(h)
j

(aij − b̂i) = akj − b̂k = α
(p)
j

}
,

where I \ ⋃p−1
h=1 I

(h)
j 6= ∅, and

⋃p
h=1 I

(h)
j = I. Values α

(p)
j , h = 1, · · · , p

are therefore different values, which occur in the set aij − b̂i, i ∈ I and holds

α
(1)
j > α

(2)
j > · · · > α

(p)
j , 1 ≤ p ≤ m. The following numerical example enlightens

the definition of I
(k)
j , k = 1, ..., p .

Example 7.3.1

Let m = 5, (a1j, a2j, a3j, a4j, a5j)
T = (5, 8, 8, 16, 20)T , b̂ = (3, 5, 5, 12, 14)

so that (a1j − b̂1, a2j − b̂2, a3j − b̂3, a4j − b̂4, a5j − b̂5)
T = (2, 3, 3, 4, 6)T , and we

obtain p = 4 and I
(1)
j = {5}, with α

(1)
j = 6, I

(2)
j = {4}, with α

(2)
j = 4

I
(3)
j = {2, 3}, with α

(3)
j = 3 I

(4)
j = {1}, with α

(4)
j = 2.

Having determined values α
(1)
j , α

(2)
j , · · · , α(p)

j , we can find explicitly Ij(t) in

dependence of t :

Ij(t) = ∅ if t ≥ α
(1)
j ,

Ij(t) = I
(1)
j if α

(2)
j ≤ t < α

(1)
j ,

Ij(t) = I
(1)
j ∪ I

(2)
j if α

(3)
j ≤ t < α

(2)
j ,

...
...

...
...

Ij(t) =

p−1⋃

h=1

I
(h)
j if α

(p)
j ≤ t < α

(p−1)
j

Ij(t) =

p⋃

h=1

I
(h)
j = I if t < α

(p)
j .

Now we can find the explicit form of xj(b̂+ t) as a function of t :

xj(b̂+ t) =∞ where t ≥ α
(1)
j ,

xj(b̂+ t) = mini∈Ij(t)b̂i + t = b̂k(j,t) + t where α
(2)
j ≤ t < α

(1)
j ,

and k(j, t) ∈ I
(1)
j
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xj(b̂+ t) = mini∈Ij(t)b̂i + t = b̂k(j,t) + t where α
(3)
j ≤ t < α

(2)
j ,

and k(j, t) ∈ I
(1)
j ∪ I

(2)
j

...
...

...
...

xj(b̂+ t) = mini∈Ij(t)b̂i + t = b̂k(j,t) + t where α
(p)
j ≤ t < α

(p−1)
j ,

and k(j, t) ∈
p−1⋃

h=1

I
(h)
j

xj(b̂+ t) = mini∈Ij(t)b̂i + t = b̂k(j,t) + t where 0 ≤ t < α
(p)
j ,

and k(j, t) ∈
p⋃

h=1

I
(h)
j = I

Example 7.3.1 (continued)

Let us find Ij(t) and xj(b̂+ t) for the numerical data of this example, we obtain

Ij(t) = ∅, xj(b̂+ t) =∞ if t ≥ 6,

Ij(t) = {5}, xj(b̂+ t) = 14 + t if 4 ≤ t < 6,

Ij(t) = {4, 5}, xj(b̂+ t) = 12 + t if 3 ≤ t < 4,

Ij(t) = {2, 3, 4, 5}, xj(b̂+ t) = 5 + t if 2 ≤ t < 3,

Ij(t) = {1, 2, 3, 4, 5} = I, xj(b̂+ t) = 3 + t if 0 ≤ t < 2.

It follows that xj(b̂+ t) is for each j ∈ J a strictly increasing, partially continu-

ous function of t with at most m discontinuity points, in which it is continuous

from above). Graph of xj(b̂+ t) is as Figure 6.1.
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t

xj(b̂+ t)

Figure 6.1: Graph of xj(b̂+ t)
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The explicit expression of xj(b̂ + t) makes possible to find τ
(2)
ij such that

b̂i − τ
(2)
ij ≤ xj(b̂ + τ

(2)
ij ) and b̂i − t > xj(b̂ + t) if t < τ

(2)
ij . In detail the

following ideas as Figure 6.2 a , b:

Possibility (1) as in Figure 6.2 a: in this case b̂i − τ
(2)
ij = xj(b̂+ τ

(2)
ij ) .

Possibility (2) as in Figure 6.2 b: in this case b̂i − τ
(2)
ij < xj(b̂ + τ

(2)
ij ) and

b̂i − t > xj(b̂+ t) if t < τ
(2)
ij .
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t

b̂i − t

xj(b̂+ t)

τ
(2)
ij

Figure 6.2 b: Graph of xj(b̂+ t) and b̂i − t
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τ
(2)
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Figure 6.2 b: Graph of xj(b̂+ t) and b̂i − t
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Let us set

τij ≡ max(τ
(1)
ij , τ

(2)
ij ),
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Since we obtained that

Tij(t) 6= ∅ if and only if t ≥ τij.

In other words τij is the optimal solution of the minimization problem

Minimize t subject to Tij(t) 6= ∅.

Note that it follows from Lemma 3.1.4 of chapter 2 that for any fixed t ,

M(t) 6= ∅ if and only if ∀ i ∈ I ∃ j(i) ∈ J such that Tij(i)(t) 6= ∅ (7.5)

Which leads us to provide the next lemma.

Lemma 7.3.1 Let us set I>j = {i ∈ I ; aij > b̂i + t}, Tij(t) = {xj ; b̂i − t ≤
aij ∧ xj ≤ mink∈I>j b̂k + t = b̂k(j) + t} for any i ∈ I, j ∈ J . Then

M(t) 6= ∅ ⇐⇒ ∀i ∈ I ∃ j(i) ∈ J,

such that

Tij(i)(t) 6= ∅ & x ≤ x(b̂+ t),

where we set b̂+ t = (b̂1 + t, · · · , b̂m + t).

Proof:

Let t be arbitrary and fixed. Since according to Lemma 7.2.2 x(b̂ + t) is the

maximum element of set M , then M(t) 6= ∅ if and only if xj ≤ xj(b̂+ t) ∀ xj ∈
Tij(t) or in other words the upper bound of Tij(t) must not be violated if x

is in M(t) . Let us assume know that x ∈ M(t) and at the same time there

exists index k ∈ I such that Tkj(t) = ∅ ∀ j ∈ J . Since x ∈ M(t) , it

must be xj ≤ xj(b̂ + t) for all j ∈ J and therefore if Tkj(t) ∀ j ∈ J is

empty, we have akj ∧ xj < b̂k − t ∀ j ∈ J and therefore maxj∈J(akj ∧ xj) <

b̂k − t and x 6∈ M(t), which is a cotradiction. To prove the oppsite assertion, we

assume that for each i ∈ I, there exists at least one index j(i) ∈ J such that

Tij(i)(t) 6= ∅ and x ≤ x(b̂+ t). We will prove that M(t) 6= ∅. In this case it is e.g.

maxj∈J(aij ∧xj(b̂+ t)) ≥ b̂i− t. Since x(b̂+ t) evidently satisfies the upper bound

condition xj ≤ x(b̂+ t), we obtain that x(b̂+ t) ∈M(t) and thus M(t) 6= ∅, which
completes the proof.
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7.4 The Algorithm - Case (max,min) - Threshold Version.

As a consequeance of (7.5) and lemma 7.3.1 we obtain:

M(t) 6= ∅ if and only if t ≥ τ ≡ maxi∈I minj∈J τij.

Therefore the necessary and sufficient condition of Lemma 7.3.1 will be satisfied

for t ≥ maxi∈I minj∈J τij. Therefore the optimal solution topt of PROBLEM II

is

topt = max
i∈I

min
j∈J

τij.

We will illustrate the theoretical result by a small numerical example.

Example 7.3.2

Let m = n = 3, b̂ = (0, 1, 1)T ,

A =




3 1 5

4 4 6

7 7 3




In this case bmax = (5, 6, 7)T and

minj∈J τ1j = min(0, 0, 0) = 0,

minj∈J τ2j = min(1/2, 1/2, 1/2) = 1/2,

minj∈J τ3j = min(1/2, 1/2, 1/2) = 1/2,

so that topt = maxi∈I minj∈J τij = max(0, 1/2, 1/2) = 1/2 and the optimal solution

of PROBLEM I is: bopt = A ⊗ (0, 1/2, 1/2)T = (1/2, 1/2, 1/2)T . Note that since

for x̃ = (1/2, 1/2, 1/2)T we have A ⊗ x̃ = bopt, we obtain that bopt ∈ R(A).

The optimal value of the objective function of PROBLEM I is
∥∥∥bopt − b̂

∥∥∥ =

max(1/2, 1/2, 1/2) = 1/2

In the next section, we will propose an algorithm for solving PROBLEM I.

7.4 The Algorithm - Case (max,min) - Threshold

Version.

Let us introduce the following notations (we assume that b ∈ R(A), b̂ 6∈ R(A), i ∈
I):
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7.4 The Algorithm - Case (max,min) - Threshold Version.

H+(b) = {i ∈ I ; bi > b̂i}, H−(b) = I \H+(b),

Let us define x̂(b) ∈ Rn as follows:

x̂j(b) =





mini∈I>j bi, if I>j 6= ∅,
maxi∈I=j bi, if I=j 6= ∅ and I>j = ∅,
∞ otherwise,

we set I>j = {i ∈ I ; aij > bi} ∀j ∈ J , I=j = {i ∈ I ; aij = bi} ∀j ∈
J such that I>j = ∅.
Let us set further

Gi(b) = {h ∈ J ; aih ∧ x̂h(b) = max
j∈J

(aij ∧ x̂j(b))},

P (b) = {i ∈ I ; aih ∧ x̂h(b) = x̂h(b) ∀h ∈ Gi(b).}

We will call terms aih ∧ x̂h(b) in the definition of Gi(b) ”active terms of Gi(b)”.

If i0 ∈ P (b), then all active terms of Gi0(b) are equal to x̂h(b), or in other words

ai0h ∧ x̂h(b) = x̂h(b), which means that ai0h ≥ x̂h(b) ∀h ∈ Gi0(b).

F+(b) = {k ∈ H+(b) ∩ P (b) ;
∣∣∣bk − b̂k

∣∣∣ = max
i∈I

∣∣∣bi − b̂i

∣∣∣},

F−(b) = {k ∈ H−(b) ∩ P (b) ;
∣∣∣bk − b̂k

∣∣∣ = max
i∈I

∣∣∣bi − b̂i

∣∣∣},

The main idea of the proposed algorithm is that we will begin the calculations

with the maximum element bmax and will try to decrease the value of the objective

function of PROBLEM I. by decreasing components of b in such a way that we

stay within attainable set R(A). We will assume I>j 6= ∅ for all j ∈ J to avoid

infinite components of x̂(b). Let

G ≡
⋃

k∈F+(b)

Gk(b)

Algorithm 7.4.1

89



7.4 The Algorithm - Case (max,min) - Threshold Version.

0 Input m, n , I, J, A, b̂, bmax, b := bmax

1 Determine H+(b), H−(b), x̂(b), Gi(b) ∀i ∈ I, P (b), F+(b), F−(b).

2 If F−(b) 6= ∅, go to 8 .

3 F̃ (b) := {i ∈ (I \ F+(b)) ∩ P (b) ; Gi(b) ⊆
⋃

k∈(F+(b)∩P (b)) Gk(b)}.

4 T (b) := F+(b) ∪ F̃ (b); if T (b) = ∅, go to 8 .

5 set for t ≥ 0: bi(t) := bi − t ∀i ∈ T (b), bi(t) := bi otherwise.

6 Increase t until a value τ > 0, for which for the first time one of the following

events will occur:

(a) bi(τ) = b̂i for some i ∈ T (b);

(b) bi(τ) = bp for some i ∈ T (b), p ∈ I \ T (b);
(c)

∣∣∣bi(τ)− b̂i

∣∣∣ = maxk∈(I\T (b))

∣∣∣bk − b̂k

∣∣∣ for some i ∈ T (b). It may happen

that Gp(b) 6⊆ G so that p /∈ F̃ (b), but Gp(b − t) ⊆ G so that

p ∈ F̃ (b− t) ∩ P (b− t);

(d)
∣∣∣bi(τ)− b̂i

∣∣∣ =
∣∣∣bk(τ)− b̂k

∣∣∣, where i ∈ F̂+(b) and k ∈ T (b) ∩H−(b).

(e) P (b) may change, i.e. until for some t = τ may be P (b(τ)) 6= P (b),

bi − t = maxj∈J\Gi(b)
aij for some i ∈ T (b).

– Find τ by making use of algorithm (7.4.2).

7 Set b := b(τ), go to 1 .

8 Set bopt := b, STOP.

In what follows we will bring an algorithm (7.4.2) for determining τ in step 7

of algorithm (7.4.1). For this purpose we will introduce the following simplifying

notations:

α(b) ≡
∥∥∥b− b̂

∥∥∥ ,

β(b) ≡ max
i∈I\T (b)

∣∣∣bi − b̂i

∣∣∣ .

90



7.4 The Algorithm - Case (max,min) - Threshold Version.

Let us recall that bi(t) = bi − t ∀i ∈ T (b), bi(t) = bi ∀i ∈ I \ T (b). We have then:∣∣∣bi(t)− b̂i

∣∣∣ = bi(t)− b̂i = bi − t− b̂i ∀i ∈ F+(b)∣∣∣bi(t)− b̂i

∣∣∣ = b̂i − bi(t) = b̂i − bi + t ∀i ∈ H−(b) ∩ T (b).

We will analyze in detail cases (a) - (d) from step 6 .

Case (a)

We have for i ∈ T (b)

bi(t) = b̂i if t = τ
(1)
i ≡ (bi − b̂i). Case (a) takes place for the first time if

t = τ (1) ≡ min
i∈T (b)

τ
(1)
i .

Case (b)

We have bi(t) = bp for some i ∈ T (b), p ∈ I \ T (b) if t = τ
(2)
ip ≡ bi − bp. Case (b)

takes place for the first time if

t = τ (2) = min
i∈T (b), p 6∈T (b)

τ
(2)
ip .

Case (c)

We have
∥∥∥b(t)− b̂

∥∥∥ = α(b)− t, so that
∥∥∥b(t)− b̂

∥∥∥ = β(b) if

t = τ (3) ≡ (α(b)− β(b)).

Case (d)

We have for k ∈ T (b) ∩ H−(b) the equality
∣∣∣bk(t)− b̂k

∣∣∣ = b̂k − bk + t so that∥∥∥b(t)− b̂
∥∥∥ =

∣∣∣bk(t)− b̂k

∣∣∣ if α(b)− t = (b̂k− bk + t) , i.e. if t = τ
(4)
k ≡ (α(b)− b̂k +

bk)/2. Case (d) takes place for the first time if

t = τ (4) ≡ min
k∈(T (b)∩H−(b))

τ
(4)
k .

91



7.4 The Algorithm - Case (max,min) - Threshold Version.

Case (e)

bi − t = max
j∈J\Gi(b)

(aij), for some i ∈ T (b)

i.e.

t = τ 5i = bi − max
j∈J\Gi(b)

(aij)

for some i ∈ T (b).

We set then τ (5) = mini∈T (b) τ
(5)
i .

One of the Cases (a) - (e) takes place for the first time if

t = τ ≡ min
1≤k≤5

τ (k)

Value τ > 0 will be inserted in step 6 of algorithm (7.4.1). We will summarize

these considerations in the following

Algorithm 7.4.2

1 Input b̂, b, α(b), β(b).

2 τ
(1)
i ≡ (bi − b̂i) ∀i ∈ T (b),

τ (1) := min
i∈T (b)

τ
(1)
i .

3 τ
(2)
ip ≡ bi − bp, ∀i ∈ T (b), p 6∈ T (b),

t = τ (2) = min
i∈T (b), p 6∈T (b)

τ
(2)
ip .

4 τ (3) ≡ (α(b)− β(b)).

5 τ
(4)
k ≡ (α(b)− b̂k + bk)/2 ∀k ∈ T (b) ∩H−(b),

τ (4) ≡ min
k∈(T (b)∩H−(b))

τ
(4)
k .

6

τ (5) ≡ min
i∈T (b)

(bi − max
j∈J\Gi(b)

(aij)).
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7.4 The Algorithm - Case (max,min) - Threshold Version.

7

τ ≡ min
1≤k≤5

τ (k).

Let us solve the same problem using the threshold algorithm from the preceding

section. The iterations of this algorithm will be the following:

1 m = n = 3, I, J, A, b̂, b; = bmax = (5, 6, 7)T ;

Iteration 1

2 b = (5, 6, 7), H+(b) = I,H−(b) = ∅, x̂(b) = (7, 7, 6)T , G1(b) = {3}, G2(b) =

{3}, G3(b) = {1, 2}, P (b) = {2, 3}, F+(b) = {3};
3 F−(b) = ∅;
4 F̃ (b) = ∅;
5 T (b) = {3};
6 b(t) = (5, 6, 7− t)T

7 τ = min(7, 1, 1,+∞) = 1;

8 b := b(τ) = (5, 6, 6)T

Iteration 2

2 b = (5, 6, 6), H+(b) = I, H−(b) = ∅, x̂(b) = (6, 6, 6), maxj∈J(a1j ∧ xj(b)) =

a13 = 5, so that G1(b) = {3}, maxj∈J(a2j ∧ xj(b)) = x3(b) = 6, G2(b) = {3},
maxj∈J(a3j ∧ xj(b)) = x1(b) = x2(b) = 7 so that G3(b) = {1, 2}, futher we have

P (b) = {2, 3} so that F+(b) = {2, 3}, F−(b) = ∅, ; 3 F−(b) = ∅;
4 F̃ (b) = ∅;
5 T (b) = {2, 3};
6 b(t) = (5, 6− t, 6− t);

7 τ = 1;

8 b = b(τ) = (5, 5, 5)T ;

Iteration 3

2 b = (5, 5, 5), H+(b) = I, H−(b), x̂(b) = (5, 5, 5), F+(b) = {1};
3 F−(b) = ∅;
4 F̃ (b) = {2};
5 T (b) = {1, 2};
6 b(t) = (5− t, 5− t, 5);

7 τ = 1;

8 b = b(τ) = (4, 4, 5)T ;

Iteration 4
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7.4 The Algorithm - Case (max,min) - Threshold Version.

2 b = (4, 4, 5)T H+(b) = I,H+(b) = ∅, x̂(b) = (5, 5, 4), G1(b) = {3}, G2(b) =

{1, 2, 3}, G3(b) = {1, 2}, P (b) = {1, 3}, F+(b) = {1, 3};
3 F−(b) = ∅;
4 F̃ (b) = ∅;
5 T (b) = {1, 3};
6 b(t) = (4− t, 4, 5− t);

7 τ = 1;

8 b = b(τ) = (3, 4, 4)T ;

Iteration 5

2 b = (3, 4, 4), H+(b) = I, H−(b) = ∅, x̂(b) = (4, 4, 3), P (b) = {2, 3}, F+(b) =

{2, 3};
3 F−(b) = ∅;
4 F̃ (b) = ∅
5 T (b) = {2, 3};
6 b(t) = (3, 4− t, 4− t);

7 τ = 1;

8 b := b(τ) = (3, 3, 3);

Iteration 6

2 b = (3, 3, 3), H+(b) = I, H−(b) = ∅, x̂(b) = (3, 3, 3), P (b) = (1, 2, 3), F+(b) =

{1};
3 F−(b) = ∅;
4 F̃ (b) = ∅;
5 T (b) = {1};
6 b(t) = (3− t, 3, 3);

7 τ = 1;

8 b; = b(τ) = (2, 3, 3);

Iteration 7.

2 b = (2, 3, 3), H+(b) = I, H−(b) = ∅, x̂(b) = (2, 3, 2), P (b) = {1, 2, 3}, F+(b) =

{1, 2, 3};
3 F−b = ∅;
4 F̃ (b) = ∅;
5 T (b) = {1};
6 b(t) = (2− t, 3− t, 3− t);

7 τ = 1;
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8 b := b(τ) = (1, 2, 2);

Iteration 8.

2 b = (1, 2, 2), H+(b) = I, H−(b) = ∅, x̂(b) = (1, 2, 1), G1(b) = {1, 2, 3}, G2(b) =

{2}, G3(b) = {2}, P (b) = {1, 2, 3}, F+(b) = {2, 3};
3 F−(b) = ∅;
4 F̃ (b) = ∅;
5 T (b) = {1, 2, 3};
6 b(t) = (1, 2− t, 2− t);

7 τ = τ (5) = 1;

8 b := b(τ) = (1, 1, 1);

Iteration 9

2 b := (1, 1, 1), H+(b) = {1}, H−(b) = {2, 3}, x̂(b) = (1, 1, 1), Gi(b) = I ∀ i ∈
I, P (b) = I, F+(b) = {1}; 3 F−(b) = ∅;
4 F̃ (b) = {2, 3};
5 T (b) = {1, 2, 3};
6 b(t) = (1− t, 1− t, 1− t);

7 τ = τ (4)1;

8 b := b(τ) = (1/2, 1/2, 1/2);

Iteration 10

2 b = (1/2, 1/2, 1/2), H+(b) = {1}, H−(b){2, 3}, x̂(b) = (1/2, 1/2, 1/2),

F+(b) = {1};
3 F−(b) = {2, 3} 6= ∅;
9 bopt := b = (1/2, 1/2, 1/2), STOP.
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8

Generalization Optimization

Problems under One-Sided max−
Separable Equation and

Inequality Systems

In this chapter, we will introduce a generalization of one-sided (max,min)-linear

systems of inequalities where the unknowns appear only in the left side of inequal-

ities and on the right side of these systems of inequalities we have constants.

Results obtained for one-sided (max,min)− or (max,+)−linear systems can

be generalized for the system of the form:

max
j∈J

(aij ∧ rij(xj)) ≥ bi, i ∈ I, (8.1)

max
j∈J

(aij ∧ rij(xj)) ≤ bi, i ∈ I1, (8.2)

where J = {1, ..., n}, I = {1, ...,m} and I1 = {m + 1, ...,m + m1} are finite

index sets, bi, aij ∈ R∀i ∈ I ∪ I1, j ∈ J, and rij : R → R are strictly increasing

continuous functions with the range equal to R (i.e. {rij(x)|xj ∈ R} = R).

Systems (8.1) and (8.2) encompass also equalities. Note that the inequalities

(8.2) can under our assumptions be replaced by upper bounds on variables xj,
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i.e. we have

xj ≤ xj ≡ min
k∈Iij

r−1ij (bk) ∀ j ∈ J, (8.3)

where I1j = {k ∈ I1 | akj > bk} ∀ j ∈ J . Besides, an appropriate choice of

aij, rij(xj) for i ∈ I, j ∈ J makes possible to include also lower bounds on xj. It

remains to choose for some i0 ∈ I, j0 ∈ J values ai0j sufficiently small for j 6= j0

and ai0j0 sufficiently large and ri0j0(xj0) = xj0 . Then we have

maxj∈J(ai0j ∧ ri0j(xj)) = ai0j0 ∧ ri0j0(xj0) = xj0 ,

and the i0−th inequality of (8.2) is equivalent with xj0 ≥ bi0 . Therefore in what

follows we will simplify system (8.1) and (8.2) and will consider only the system

max
j∈J

(aij ∧ rij(xj)) ≥ bi, i ∈ I, (8.4)

xj ≤ xj ≤ xj, j ∈ J, (8.5)

where J = {1, ..., n}, I = {1, ...,m} and x, x are finite elements of Rn and

b ∈ Rm. The set of all solutions of system (8.4) and (8.5) will be denoted M(b).

In what follows, we will study properties of the set M(b). For this purpose, we

will define sets

Tij(bi) = {xj|xj ≤ xj ≤ xj &aij ∧ rij(xj) ≥ bi} ∀ j ∈ J. (8.6)

If xj ∈ Tij(bi), then it must be fulfilled the following conditions:

xj ≥ xj ≥ max(xj, r
−1
ij (bi)), & aij ≥ bi. (8.7)

In other words inequalities (8.7) are necessary and sufficient for Tij(bi) 6= ∅ and

if Tij(bi) =
[
max(xj, r

−1
ij (bi)), xj

]
(i. e. Tij(bi) is closed interval).

Theorem 8.0.1

M(b) 6= ∅ if and only if [ ∀ i ∈ I ∃ j(i) ∈ J such that Tij(i)(bi) 6= ∅ ]

Proof:

Let M(b) 6= ∅ and let the condition[ ∀ i ∈ I ∃ j(i) ∈ J such that Tij(i)(bi) 6= ∅
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] is not fulfilled. Then there exists i0 ∈ I such that Ti0j(bi0) = ∅ ∀ j ∈ J.

In this case we have for any x ∈ Rn and either there exists j0 ∈ J such that

xj0 /∈
[
xj0

, xj0

]
so that x /∈ M(b), or aij ∧ rij(xj) < bi0 ∀ j ∈ J so that

maxj∈J(ai0j ∧ ri0j(xj)) < bi0 and thus x /∈ M(b) again. It follows that if the

condition [ ∀ i ∈ I ∃ j(i) ∈ J such that Tij(i)(bi) 6= ∅ ] is not fulfilled it must

be M(b) = ∅.
Let now the condition [ ∀ i ∈ I ∃ j(i) ∈ J such that Tij(i)(bi) 6= ∅ ] be fulfilled,
let i0 ∈ I be arbitrary. We have Ti0j(i0)(bi0) 6= ∅ for some j(i0) ∈ J . Let us

set p = j(i0) and let Vp ≡ {i ∈ I | j(i) = p}, where j(i) is defined by condition [

∀ i ∈ I ∃ j(i) ∈ J such that Tij(i)(bi) 6= ∅ ]. Since i0 ∈ Vp, we have Vp 6= ∅ and
Tp(b) ≡

⋂
i∈Vp

Tip(bi) =
[
maxi∈Vp(xp, r

−1
ip (bi)), xp

]
6= ∅. If we choose xp ∈ Tp(b)

arbitrary, we have xj ∈ Ti0p(bi0) ⊆ Tp(bi0) so that a conditions (8.6) are fulfilled

for i = i0, j = p and we obtain maxj∈J(ai0j∧ri0j(xj)) ≥ ai0p∧ri0p(xp) ≥ bi0 . Since

i0 ∈ I was arbitrary chosen, it follows M(b) 6= ∅, which completes the proof.

Remark 8.0.1

Lut us note that if M(b) 6= ∅, then x ∈ M(b) and therefore x defined by (8.3)

is the maximum element of M(b) in the sense that x ≤ x for all x ∈ M(b). If

relations (8.1) and (8.2) represent a system of equations (i.e. I = I1), then it

holds also that the system of equations is solvable if and only if x ∈M(b).

We will use Theorem 8.0.1 to solve the following optimization problem:

Problem P:

f(x) ≡ max
j∈J

fj(xj) −→ min

subject to

x ∈M(b),

where fj : R→ R are for all j ∈ J continuous functions.

In the sequel we will derive an explicit formula for the optimal solution of Prob-

lem P:. We will assume further that x is defined by (8.3), Tij(bi) are defined by

(8.5) and M(b) 6= ∅. The non-emptiness of M(b) can be easily verified by Remark

8.0.1.

98



Theorem 8.0.2

Let M(b) 6= ∅, x
(i)
j = argmin{fj(xj) | xj ∈ Tij(bi)} for all nonempty sets

Tij(bi), i ∈ I, j ∈ J. Let us set

Ji = {j | Tij(bi) 6= ∅} ∀ i ∈ I (8.8)

min
j∈Ji

fj(x
(i)
j ) = fj(i)(x

(i)
j(i)) ∀ i ∈ I (8.9)

Vj = {i ∈ I | j(i) = j} ∀ j ∈ J (8.10)

Tj(b) =





⋂
i∈Vj

Tij(bi) ∀ j ∈ J, such that Vj 6= ∅,
[
xj, xj

]
otherwise,

(8.11)

x̂j = argmin{fj(xj) | xj ∈ Tj(b)} ∀ j ∈ J such that Vj 6= ∅ (8.12)

x̂j ∈ Tj(b) arbitrary if Vj = ∅. (8.13)

Then x̂ is the optimal solution of Problem P:

Proof: It follows from the monotonicity of rij
′s that for any j ∈ J, for which

Vj 6= ∅ there exists an index k(j) ∈ I, for which

Tj(b) = Tk(j)j(bk(j)) and Tij(bi) ⊆ Tk(j)j(bk(j)) = Tj(b).

Let i0 ∈ I be arbitrarily chosen, let j(i0) be defined as in (8.9). Let us set p = j(i0)

to simplify the notation. Then we have x̂j(i0) = x̂p ∈ Tp = Tk(p)p(bk(p)) ⊆ Ti0p(bi0)

so that x̂p ∈ Ti0p(bi0) and therefore x̂p ∈
[
xp, xp

]
and ai0p ∧ x̂p ≥ bi0 . It follows

that

max
j∈J

(ai0j ∧ ri0j(x̂j)) ≥ ai0p ∧ ri0p(x̂p) ≥ bi0 . (8.14)

Since i0 ∈ I was chosen arbitrarily and x̂j ∈
[
xj, xj

]
∀ j it follows that x̂ ∈M(b).

It remains to prove that x̂ is the optimal solution of Problem P: i.e. f(x̂) ≤
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f(x) ∀ x ∈ M(b). Let us assume that f(x̂) = fs(x̂s) and let us assume that

there exists x̃ ∈ M(b) such that f(x̃) < f(x̂). It is then fs(x̃s) ≤ f(x̃) < fs(x̂s)

so that x̃s /∈ Ts = Tk(s)s(bk(s)), where k(s) ∈ I. Let us set k(s) = h to simplify

the notation. Then we have x̂s = x
(h)
j(h) = argmin{fj(x(h)

j ) | j ∈ Jh} according

to (8.9) for i = h = k(s) or in other words s = j(h), where j(h) is defined as in

(8.9). Since x̃s /∈ Ths(bh) and x̃ ∈ M(b), it must exist an index v ∈ J, v 6= s such

that x̃v ∈ Thv(bh) with Vv 6= ∅ (otherwise it would be maxj∈J(ahj ∧rhj(x̃j)) < bh).

Then we obtain

f(x̃) ≥ fv(x̃v) ≥ minxv∈Thv(bh)fv(xv) = fv(x
(h)
v )

≥ minj∈Jhfj(x
(h)
j ) = fs(x

(h)
s ) = fs(x̂s). (8.15)

It follows that f(x̃) ≥ fs(x̂s) = f(x̂), which is contradiction with the assumed

inequality f(x̃) < f(x̂). This contradiction completes the proof.

Remark 8.0.2

Relations (8.12) and (8.13) give an explicit formula for x̂ and f(x̂) because we

have for each j ∈ J with Vj 6= ∅

Tj =

[
max
i∈Vj

(xj, r
−1
ij (bi)), xj

]

and if Vj = ∅
Tj =

[
xj, xj

]

so that Tj, j ∈ J are closed nonempty intervals in R1 and x̂j are points of

minimum of continuous functions fj(xj) on such intervals, which always exist.

The concrete algorithms for finding x̂j and their complexity depend on concrete

form of functions fj. For example:

• If fj is an increasing function, we have

x̂j =




maxi∈Vj

(xj, r
−1
ij (bi)), if Vj 6= ∅,

xj otherwise.
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• If fj is a decreasing function, then x̂j = xj.

• If fj is a concave function,

fj(x̂j) =




min

(
fj(maxi∈Vj

(xj, r
−1
ij (bi)), fj(xj)

)
, if Vj 6= ∅,

min
(
fj(xj), fj(xj)

)
otherwise.

• If fj is a convex function, then x̂j can be obtained by one of the known convex

function minimization techniques (e.g. binary search on closed intervals for

minimum of unimodal functions).

Remark 8.0.3

The results of this section make possible to obtain some results of the previous

sections as a special case. If we set aij sufficiently large and rij(xj) = cij + xj

for cij ∈ R, we obtain (max,+)− linear systems. If we set rij = xj, we obtain

(max,min)− linear systems.
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9

Conclusions

In this chapter we will introduce a summary of what has been accomplished in

the previous chapters of the thesis.

In the first chapter, we have introduced the historical background since the

beginning of this idea in the sixties of the last century and a brief summary of

what has been done in previous studies on these topics about max-min algebra

and optimization problems, where the set of feasible solutions of it is described

by a system of (max,+) or (max,min) equations or inequalities with variables

on one sided or both sides, also introduce some practical applications to these

topics.

In the second chapter, we introduced for example a finite algorithm for finding

the optimal solution of optimization problem in which the set of feasible solutions

is described by a system of (max,+)− linear equations with variables on both

sides. The main idea of the proposed algorithm consists in successive decreasing

active variables in thresholds of the objective function f without leaving the

feasible set until we cannot decrease the objective function without violating the

constraint x ≤ x.

The actual beginning of the study of the topic of this thesis was in the third

chapter, in which we study optimization problems under one-sided (max,min)-

linear inequality constraints. We begin our studies by investigating properties of

one-sided (max,min)-linear systems of inequalities where the unknowns appear

in the left side only of inequalities and on the right side of these systems of

inequalities we have constant variables only. We introduce Algorithm 3.1.1, which
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determines whether the set of all solutions of system (3.1) and (3.2), M(x) = ∅ or
finds the maximum element of setM(x). As well as in the case if there is boundary

conditions we introduce Algorithm 3.1.2, which performs the same process as in

Algorithm 3.1.1. After that we solve optimization problems under one-sided

(max,min)-linear inequality constraints and we introduce Algorithm 3.2.1, which

finds an optimal solution of these optimization problems under the assumption

that the set of all feasible solutions of one-sided (max,min)-linear systems of

inequalities is not empty. We give Example 3.1.1, which shows one possible

application of the system of one-sided (max,min)-linear systems of inequalities.

Since each equality can be replaced by two inequalities ≤, ≥, so that the

system of equations in formulation (4.1), can be solved by the algorithm 3.1.2

given in chapter 3, but the disadvantage of the this technique is coming from the

fact that we need to solve double the number of inequalities, which need more time

and memory. So we introduce chapter four, in which we consider the optimization

problems under one-sided (max,min)-linear equality constraints. First we study

the structure of the set of all solutions of the given system of equations, which

describe by (4.1) and (4.2) with finite entries aij & bi, for all i ∈ I &j ∈ J and

we determine the maximum element of this set. We propose Algorithm 4.2.1,

which finds an optimal solution xopt of problem (4.3) and (4.4), where fj(xj) are

continuous and monotone functions. The idea in Algorithm 4.2.1, was modified

as in Algorithm 4.2.2 to be suitable to find the optimal solution for any general

continuous functions fj(xj).

The study has been expanded to include systems of two-sided (max,min)−
linear equations and inequalities, where the methods have been introduced in

the previous chapters can not solve these systems since the max− and min−
operations are only a semigroup operations, so that the variables can not be

simply transferred from one-sided of the equations or inequalities to the other.

Therefore two-sided (max,min)−linear equations and inequalities with variables

on both sides of the relations have been studied and investigated in chapters

fifth and sixth. In the fifth chapter of this thesis, we introduce Algorithm 5.2.1,

which is depend on an iteration method to find the optimal solution of problem of

optimization problems under two-sided (max,min)−linear equation constraints.

Example 5.3.1 is an important practical application for the systems of two-sided
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(max,min)− linear equations and inequalities. In the sixth chapter, we introduce

Algorithm 6.2.1, which is depend on a threshold method for find the optimal

solution of optimization problems under two-sided (max,min)−linear inequality
constraints. We can summarize the properties of the systems of (max,min)-linear

inequalities studied in chapter 6 as follows:

(1) Any system of two-sided (max,min)-linear inequalities is solvable and has a

unique maximum element xmax(A,B) depending on the matrices A, B with finite

elements aij, bij (note that including infinite elements can cause nonsolvability

of the system).

(2) If we include an additional requirement x ≤ x, then the system is also solvable

and has the maximum element xmax(A, B, x) ≤ xmax(A,B) if no lower bound

are given.

(3) The system with a finite lower bound on variables (i.e. with an additional

constraint x ≥ x) is solvable if and only if x ≤ xmax(A,B), or in case of the

additional upper bound x if and only if x ≤ xmax(A, B, x).

In the seventh chapter of the thesis, the concept of incorrectly posed is intro-

duced for one-sided (max,min)−linear equations systems, where there is no solu-

tions for the problem for given coefficients and we look for a close set (with respect

to a given distance function) of coefficients generating a solvable problem. We

introduce the concept the attainable set. Various approaches to solving such in-

correctly posed problems are proposed. In section 7.3, we use a parametric version

method to solve the incorrectly posed problem for one-sided (max,min)−linear
equations systems. Also in section 7.4, we use a threshold version method to

solve the same problem.

In the eighth chapter of the thesis, generalization optimization problems under

one-sided max− separable equation and inequality systems have been studied.

Future studies

We will focus our studies in the future on applied problems and how can use

the methods introduced in this study to solve practical problems.

We will try to make generalization for optimization problems under two-sided

(max,min)-linear inequality and equalty constraints.

We will try to study:
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• Parametric optimization problems under (max,min)-linear inequality and

equality constraints.

• The sensitivity study of the methods that were introduced to solve optimiza-

tion problems under (max,min)-linear inequality and equalty constraints.

• Inverse problems of systems of max− Separable equation and inequality

systems.

• Duality for optimization problems under (max,min)-linear inequality and

equalty constraints.
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[6] Carré, B. A.: An Algebra for Network Routing Problems, Journal of the

Institute of Mathematics and its Applications 7 (1971), 273–294. 2, 3
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