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Néazev prace:Optimalizani problémy pi (max,min)-linearnich omezenich &které
souvisejici ulohy.
Autor: Mahmoud Gad
Katedra/Ustav: Katedra pravépodobnosti a matematické statistiky
Vedouci disert&ni prace: I- Prof. RNDr. Karel Zimmermann, DrSc
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Abstrakt: Ulohy na algebraickych strukturach, v nichz dvejioperaci (max, +)
nebo (max, min) nahrazuji operacgtdni a nasobeni v klasické linearni aligebe
objevuji v literatile priblizné od Sedesatych let minulého stoleti. Prvni vyslegky
vyuzitim ®chto struktur publikovali A. Shimbel v praci [37] aplikacemi v
komunikanich sitich, a dale R. A. Cunnighame-Green [12,M3]Vorobjov [40] a
B. Giffler [18] s aplikacemi na rozvrhovani praceofi a v teorii spolehlivosti.
Ucelend systematicka teorie takovych algebraickgttuktur byla publikovana
pravcEpodobré poprvé v praci [14]. V nedavno publikované knizg [ze nalézt
nejnowjsi stav vyzkumu teorie a algoritm ve struktiéie s operacemi (max,+).
ProtoZe operace maxima, kterd v uvedenych struktturéhrazuje operactiani,
neni grupovou, ale pouze pologrupovou operaciogstatny rozdil mezieSenim
soustav s progmnymi pouze na jedné stramovnic resp. nerovnosti a soustav, v
nichz se pronné nachazeji na obou strandckchto vztali. Soustavy s
promgnnymi na jedné str&nse nazyvaji jednostranné a soustavy, v nichZz se
proménné vyskytuji na obou stranéch rovnic resp. nerstintazveme dvoustranné.
Cilem gedkladané dizertace je poskytnout jednotici tekgramec pro prezentaci
autorem dosazenych vysledk/ oblasti vyzkumu soustav (max, min)-linearnich
rovnic a nerovnosti aékterych typi optimaliz&nich probléni s omezenimi ve tvaru
(max,min)-linearnich rovnic a nerovnosti. Krédntoho jsou navrzena éktera
zobecrni na nelinearni soustavy, které sjednocuji (maxatjmax, min)-linearni
Ulohy a roz&uji ziskané vysledky za rdmec (max,+)- a (max, #imarnich
struktur. V dalSicasti prace jsou studovany tzv. nekorékformulované ulohy a
uvadji se efektivni postupy nalezeni vhodnéteseni &chto Gloh pro soustavy
(max,min)-linearnich rovnic. V praci jsou uvedenyekteré motivani priklady z
oblasti oper&niho vyzkumu a mensi ilustrativni numerickékiady.

Prvnim oktuhem probléim jimiz se gedloZzend prace zabyva jsou vlastnosti
soustav (max,min)-linearnich rovnic a nerovnostitulym tétatem jefeSeni
optimaliza&nich Uloh s omezenimi ve tvaru soustav (max,mmgdrnich rovnic a
nerovnosti. Teti skupinu problérintvoii nekorekt® formulované ulohy affstup k
jejich feSeni pro fipad (max,min)-lineérnich rovnic. Poslednim okruhamblént,
jimz se pedlozena praceénuje je zobecini ziskanych vysledk na SirSi ttidu
nelinearnich tzv. max-separabilnich probiém

Kli ¢éova slova:Optimaliz&ni problémy, (max, min)-linearni omezeni.
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Abstract: Problems on algebraic structures, in which pafremgerations such as
(max, +) or (max, min) replace addition and muitation of the classical linear
algebra have appeared in the literature approxignaiace the sixties of the last
century. The first publications on these algebraiectures appeared by Shimbel [37]
who applied these ideas to communications netw@ksjnghame - Green [12, 13],
Vorobjov [40] and Gidffer [18] applied these algeior structures to problems of
machine time - scheduling. A systematic theory wéhsalgebraic structures was
published probably for the first time in [14]. Incemtly appeared book [4] the
readers can find latest results concerning theodyadgorithms for (max,+)-linear
systems of equations and inequalities. Since dperatax replacing addition is no
more a group, but only a semigroup operation, & gibstantial difference between
solving systems with variables on one side andesystwith variables occuring on
both sides of the equations. The former systemksbeilcalled "one-sided” and the
latter systems "two-sided”. The aim of this thdsiso provide a unifying survey of
some recent authar’s results concerning to thestigegion of (max,min)- linear
equations and inequality systems and some optimizaproblems under
(max,min)-linear constraints. Besides, we proposmes generalizations to non-
linear systems, which unify in one model the (m&x,and (max,min)- linear
problems and extend the results beyond the (maxane (max,min)- linear
structures. Further a special problem called “inedity posed problem” is
introduced and effective methods for its solutiares proposed for (max,min)- linear
and non-linear equation systems are considered.bkivg also some motivating
examples from the area of operations research disawseillustrating numerical
examples.

The first subject of this thesis is the investigatiof properties of systems of
(max,min)-linear equations or inequalities. Theosel subject of this thesis is
solving optimization problems subject to (max,miimjear equation and inequality
constraints. The third subject of research of tresgnt thesis is the investigation of
so called incorrectly posed one-sided (max,mingdmsystems of equations. The
fourth part of the thesis is devoted to a genemtbn of the research of
(max,min)-linear problems on some max-separablémear problems.
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1

Introduction

Approximately since the sixties of the last century appeared a number of dif-
ferent problems of interest to the operational researcher and the mathematical
economist - for example, certain problems of optimization on graphs and net-
works, of machine - scheduling, of convex analysis and of approximation theory,
which appeared in the mathematical literature under various name and can be
formulated in a convenient way using special algebraic structures (F,®,®). The
algebraic structures are represented by a set E, E C R = (—00,00), with two
operations denoted @ and ®, which play in the algebraic structures similar
role and behave similarly like the addition and multiplication in the classic lin-
ear algebra. The operation @ is a commutative semigroup operation with the
neutral element (g and the operation ® is either a commutative group or
a commutative semigroup operation with a neutral element 1g. The set FE
and operations ¢ and ® are chosen in such a way that the distributive law
holds. The operations @ and ® can be extended to FE™ and to matrices
over FE with appropriate size similarly like in the classical linear algebra the
addition and multiplication are extended to R" and to real matrices. This make
possible to define (@, ®)—linear function on E™ and investigate systems of
(®, ®)—linear equations and inequalities as well as some optimization problems
under (&, ®)—linear equations and inequalities constraints.

As triplets appropriate both from the theoretical and from the application
point of view are usually used triplets (R,max,+) or (R, max,min) but

we can encounter also triples (R, max,-), (Ry,min,-), where we set R =



(—00,@), Ry ={a € R|a >0}, (Z,max,+), and (Z,max,min), where
Z ={a € R | a isinteger}. ([0,1], max, min) (so called fuzzy algebra),
([0,1],max, ) (so called boolean algebra) and other.

The first publications on these algebraic structures appeared by Shimbel [34]
who applied these ideas to communications networks, Cuninghame-Green [10, 11]
and Giffler [15] applied these algebraic structures to problems of machine time -
scheduling. The algebraic structures (R, max,+), (R, max,min), (R,max,-),
were studied by several authors Carre [6, 7], Cuninghame-Green [12] and Vorob-
jov [37]. The authors solve systems of (@, ®)—linear equations and inequalities in
which variables appear on one-side of equations or inequalities, while on the other
side is a constant. Butkovi¢ and Hegediis [3] introduce an elimination method
for finding all solutions of the system of linear equations over an extremal al-
gebra. Tharwat and Zimmermann [35] introduce the method, which find the
optimal choice of parameters in machine time scheduling Problems, Also Thar-
wat and Zimmermann [36] study separable optimization problems and introduce
some application. Zimmermann [38] introduces a general separation theorem in
extremal algebras, Zimmermann [39] studies disjunctive optimization problems,
max-separable problems and extremal algebras and Zimmermann [40] discusses
class of optimization problems with alternative constraints and its application.

After having extended the operations to vectors and matrices, the authors
[4], [8], [9] and [16] introduce the concept of (B, ®)— eigenvalues and (B, ®)—
eigenvectors and propose effective numerical methods making possible to find the
eigenvalues and eigenvectors.

In [6] we find problems involving the determination of routes on networks arise
in many different contexts. For example network flow problems in operations
research, such as transportation and assignment problems, involve the determi-
nation of a succession of shortest or least-cost paths between commodity sources
and sinks. Again, critical path analysis and certain scheduling problems involve
the determination of longest paths on activity networks. Pathfinding problems of
different kinds also arise in the design of logic networks, and in routing messages
through congested communication networks. [6] presents an algebraic structure

for the formulation and solution of such problems.



After defining the algebraic structure and giving concrete examples applicable
to different kinds of routing problems, [6] uses in a general analysis of a class of
directed networks, in which each of them has an associated measure (representing
for instance a transportation cost, an activity duration, the state - open or closed
- of a switch, or the probability of a communication link being available). It is
then shown that all the routing problems mentioned above can be expressed in
the same algebraic form, and that they can all be solved by variants of classical
methods of linear algebra, differing from these only in the significance of the
additive and multiplicative operations.

Since the @—operation (i.e. max —operation) is only a semigroup operation,
so that the variables can not be simply transferred from one-sided of the equations
and inequalities to the other like in classic linear algebra, where the operation -+
is a group operation. Therefore equations and inequalities with variables on both
sides of the relations must be treated by special methods different from those,
which were used to investigate one-sided equations and inequalities.

The first publications denoted to some special two-sided systems by Butkovic
and Hevery [4] for the (max,+)— case. A detailed survey of the research de-
velopment of the structure (R, max,+) and some of its modifications can be
found in the book [2] published in 2010 by Butkovi¢. Butkovi¢ and Zimmer-
mann [5] proposed a strongly polynomial algorithm for solving two-sided linear
systems in max-algebra, but after that Bezem et al. [1] studied exponential be-
haviour of the Butkovi¢ - Zimmermann algorithm for solving two-sided linear
systems in max-algebra. Gavalec and Zimmermann [17] solve systems of two-
sided (max, min)-linear equations. Besides Gavalec and Zimmermann [18] study
optimization problems with two-sided systems of linear equations over distribu-
tive lattices.

Further results on (max, +) and (max, min) eigenvalues and eigenvectors can
be found in Gavalec and Pldvka [16] and Cechldrova [9] and others. Operations
(®,®) make possible to introduce the concept of convexity on (E",®,®). This
concept led to investigating some geometrical problems as e. g. properties of
(®, ®)— convex sets and functions. The corresponding results can be found
e.g. Nitica and Singer [26, 27|, which study Max-plus convex sets and max-

plus semispaces, also Nitica and Singer [28, 29], which are contributions to max-



min convex geometry segments and semispaces and convex sets. Sergeev [33]
introduced algorithmic complexity of a problem of idempotent convex geometry
and Helbig [19] study a Caratheodory’s and Krein-Milman’s theorems in fully
ordered groups. Nitica and Sergeev [30] Study hyperplanes and semispaces in
maxmin convex geometry.

Another type of problems which may be important mainly in the applications
arises from the assumption that the coefficients of the problems are not exactly
given numbers, but may move within closed intervals. This assumption led to
investigation equation and inequality systems and optimization problems under
(@, ®)—linear constraints by making use of the methods of interval mathematics
(see Cechlarové [9], Myskova [25] and other).

The investigation of the structures using methods of mathematical analysis
can be found in the publications by Litvinov and Maslov [22], Litvinov et al.
[23] and Maslov and Samborskij [24]. Some authors proposed explicit form as for
solving some (@, ®)— linear problems (e. g. Kolokoltsov and Maslov [21] and
the references there in).

The present dissertation is devoted to the investigation of (max, min)— lin-
ear equations and inequality systems and some optimization problems under
(max, min)— linear constraints, because these problems has not yet been sys-
tematically investigated in the literature. Besides, the author proposes some
generalizations to non-linear systems, which unify in one model the (max,+)—
and (max, min)— linear problems and extend the results beyond the (max,+)—
and (max, min)— linear structures. Further special problems called ”incorrectly
posed problem” are introduced and effective methods for their solutions are pro-
posed for (@, ®)— linear and non-linear equation systems are considered.

When we extend operations @, ®, from £ to E", where " = Ex --- X E,

—

n times
we can define in a natural way the appropriate inner product of z, y € E",

namely
n

TRy=> %z;0y)

Jj=1

can be introduced. The inner product makes possible extending the operations



to matrices of appropriate sizes as

n

(A®B)”:Z®(alk®bk]) Viel, j€eJ
k=1

where [ = {1,---,m}, j € J = {1,---,n}. Multiplication A ® x can be

introduced in a similar way as
(A® I)l = maJx(aZ] ®CL’]) vV iel.
JE

Function f:E™ — E' for o € E™ defined as

Fl)=> ()
j=1
will be called @—separable and if f;(z;) = ¢; ® x;, function f is called

(b, ®)—linear. Examples of such functions are for instance:

fO(x) = maji(cj +2z;) isa (max,+)— linear function on (R, max,+),
je

fA(x) = mi}l(cj -x;) isa (min,-)— linear function on (R, min,-),
je

) = I?g((cj Ax;) isa (max, min) — linear function on (R, max, min).

The first subject of this thesis is the investigation of properties of systems of
(max, min)— linear equations and / or inequalities, i. e. equations or inequalities,
in which (max, min)— linear functions occur. The following examples show how

such inequalities may look like:

max(a; Ax;) OF B, (1.1)
jed



Ax;) O i\ 1.2
I?él}((a] ;) I?EaJX(ﬁj ), (1.2)

where we assume «;, 8, 8 € R V j € J and 0" is one of the relations

<, =,> where to simplify the expressions we set
(o A wj) = min(oy, ;).

We will use this notation throughout the next chapters of the thesis. Let us
point out the difference between relations (1.1) and (1.2): relations (1.1) contain
variables on the left side only while in relations (1.2) variables x; occur in both
sides of the relations. Since operation & = max is only a semigroup operation,
the variables cannot be simply transferred from one side to the other like in
classic linear algebra, where the operation + is a group operation. We will call
relations (1.1) one-sided equations or inequalities and relations having the form
(1.2) two-sided equations or inequalities. The absence of inverse elements leads
to the necessity to investigate one-sided and two-sided inequalities or equations
separately using different methods.

The second subject of this thesis is solving optimization problems, the set of
feasible solutions of which is described by a finite system of (max, min)—linear
equations and inequalities (both one-sided and two-sided relations are consid-
ered). The objective function of the optimization problems are continuous max-

separable functions of the form:

f(@1, @, mn) = max fj(x;).
jed

Examples of operations research show that (max, min)—linear optimization prob-
lems studied in this work can be applied to processing time scheduling, network
capacity problems, investigating reliability of complex systems and others as well
as to some problems connected with the fuzzy set theory. Numerical examples

demonstrate the behaviour of the proposed algorithms.
The third subject of research of the present thesis is the investigation of so
called incorrectly posed one-sided (max, min)—linear systems of equations. The

concept of incorrectly posed (or improper posed problem) is used in the literature



for problems, which have no solutions for given coefficients and we look for a close
set (with respect to a given distance function) of coefficients generating a solvable
problem (see e.g. Eremin et al. [13] and Eremin and Vatolin [14]). In the present
work this concept is introduced for (max, min)—linear equations systems. Various
approaches to solving such incorrectly posed problems are proposed.

The fourth part of the thesis is devoted to a generalization of the research of
(max, min)—linear problems. We consider equations and inequalities, in which
the following max-separable functions occur :

g(w) = max (v; A g(z;))

where v; € R, ¢; : R — R, are strictly increasing continuous functions. We
consider finite systems of equations and / or inequalities of the one-sided form:

r?g]x(aij Arig(z;)) OF b, VYV iel (1.3)
where O* isone of <, =, >, as well as some special types of two-sided equations
and / or inequalities systems. Properties of the systems are investigated and used
to solve optimization problems with a max-separable objective function and set
of feasible solutions described by the "non-linear” systems with functions (1.3).
Also the results concerning incorrectly posed problems are generalized for the
one-sided equation systems of the form (1.3).

Before we begin to study the main problem in this thesis, which represented
in solving the optimization problems under (max,min)-linear constraints and
the investigation of properties of systems of (max, min)— linear equations or
inequalities, In the next chapter we will present briefly the idea to solve a two-
sided systems (max,+)— linear equations and we introduce a finite algorithm
for finding the optimal solution of the optimization problems under a two-sided

(max, +)—linear constraints.



2

Optimization Problems under

(max,+)-Linear Constraints

We consider optimization problems, the objective function of which is equal to
the maximum of a finite number of continuous strictly increasing functions of one
variable. The set of feasible solutions is described by a system of (max,+)-linear
equations with variables on both sides. A finite algorithm for finding the optimal

solution of the problem is proposed.

2.1 Notation, Problem Formulation

We will assume that A, B are two real (m,n)—matrices with entries a;;, b;;, i €
I={1,2, ..., m}, jeJ={1,2, ..., n}. Let

a;(z) = max(a;; + z;), bi(r) = max(b;; +z;), Vi e I.
jed jed

We will further assume that f;(z;),Vj € J are continuous strictly increasing

functions and set
f(x) = f(x1, zo, ..., x,) = max f;(z;).
jeJ
If f(z) = fp(xp), then variable =, will be called active variable of function f at

point . By analogy we will define the concept of active variables of functions



2.2 Properties of the Set of Feasible Solutions.

a;(x), bj(x), i € I.

Function ¢(x) of © = (z1, z2, ..., x,) having the form ¢(z) = max;e; ¢;(z;)
will be called max-separable function. Functions f(x), a;(x), b;(z) are examples
of max-separable functions.

We will consider the following optimization problem:

PROBLEM L
f(z) — min (2.1)
subject to
a;(z) = bi(x), Viel, (2.2)
z < x < T, (2.3)

where T, x are given finite vectors. In the sequel, the set of feasible solutions of
PROBLEM I will be denoted M (Z, z).

2.2 Properties of the Set of Feasible Solutions.

Definition 2.2.1 Let L. C R", & € L. Then 7 is called the maximum element
of L, if x < x holds for every x € L.

Theorem 2.2.1 [5] Let M(%) = {x ; a;(x) = b;(x) Vi € [&x <T}. If M(Z) # 0,
there exists always element x™* € M(Z) such that v < z™> Vx € M(Z).

Therefore the following theorem is true:

Theorem 2.2.2

M(z,x) # 0 if and only if x < 2™,

Let us note that element x™** is called the maximum element of M (Z,z). Let
us remark further that if M (7, z) # (), then the maximum element ™ of M(T)
is at the same time the maximum element of M (Z,z). The method proposed
in [5] either finds after a finite number of steps element ™** or finds out that

M(z) = (). The method of [5]is in general pseudopolynomial (see [1]). Therefore



2.3 Algorithm

we can assume for the algorithm solving PROBLEM I that the set of its feasible
solutions is nonempty and we obtained using the method of [5] the maximum
element x™**.

To simplify the description of the algorithm for solving PROBLEM I, we intro-
duce the concept of threshold values of a max-separable function. Let ¢(z) =

max;es ¢j(x;) be a max-separable function, and & an arbitrary point. Let us set:
1) = max (), PE) = {9 €75 6y(5) = 1(9)).
For all k, 2 < k < n, for which H,_1(Z) = (J \ Ui<,<(e—1)(Pr(Z))) # 0 we set:

() = max ¢;(7;), Pu(@) ={p € J; t(T) = dp(Tp)}-
JEHR1(Z)
The values (%), k=1, ..., h obtained in this way are called threshold values
of function ¢ at point Z. Let us note that there is always 1 < h < n, i.e. each
such max-separable function has at least one and at most n different threshold

values.

Example 2.2.1
Let n =4, J ={1,2,3,4}, ¢(z) = max;es(x;), T = (1,1,3,5). We obtain the
following theshold values of function ¢ at point Z:

t1<£) - 57 tQ(‘%) - 37 t3(i.) =1

We have in this case h = 3, P(Z) = {4}, P(Z) = {3}, P3(z) = {1}, Hi(z) =
{4}, Hy (%) = {3,4}, H3(x) ={1,2,3,4}.

2.3 Algorithm

In this section we propose a finite algorithm for finding the optimal solution of
PROBLEM 1.

Let ti () denote threshold values of the objective function f, and let similarly
t%i(x), t%(x), Vi € I be threshold values of functions a;, b;. The correspond-
ing sets of indices of active variables in the threshold values will be denoted

P/(x), P%(x), P (x) respectively. Note that k, 7, s are always smaller or equal

10



2.3 Algorithm

to n.

We will assume further that using the algorithm of [5] we found out that M (z, z) #
() and that we have at our disposal maximum element ™ € M (Z,z). The main
idea of the proposed algorithm consists in successive decreasing active variables
in thresholds of the objective function f without leaving the feasible set until we

cannot decrease the objective function without violating the constraint z < .

Algorithm 2.3.1

e max.
[0] 7 := amo.

V(%) := Pl(&), find P¥(%), P (%) Vie I;

I'N@)={iel; PI(¥) L V(&) & PP'(¥) CV(¥)};
@) :={iel; Pli) C V(@) & P'(3) € V()};
B#):={iel; P“%)CV(z) & P(z) CV(2)};

Vi(z) =V (2)U Uie]l(i:) P (z) U Uieﬂ(:z) Plb(i’)f
If Vi(%) # V (%), set V(&) := Vi(&), go to|2];

Sl x;(t);=a;,—t V7€ V(x), x;(t):=T; otherwise;
(1) J J (T), x;(t) j ;

@ OZZ({Z') = maxje(J\V(i))(aij + i']) Vi € ]13 = Il(i') U 13(.’2'),
ﬁl("f) = mane(!]\V(i))(bij + .Ci']) Vie I = 12({%) U [3(f),

V(&) = maxjenva f5(%5);

0 wir(05) - ),
7@ = min;e s (b (%) — Bi(T)),
73 max; pr ;) (Z; — fi (@),
7@ .= minjev(j) (jj - &j);

T 1= MiNj<y<4 7 ;

If f(x(7)) < f(2), Set & := z(T), go to ;
19| Set 2o := x(7), STOP;

11



2.3 Algorithm

Remark 2.3.1

Symbol t in step denotes a nonnegative parameter, which is increased until
a new threshold value is reached. Symbols TV 72 denote the value of t, at
which the active variables of a;(%),b;(Z) reach the next threshold yielded by non-
decreased variables i, j € J\ V(). Symbols 73 denotes the value of t, at which
fi(z;(t)) < ~(F) for all active variables of f(i). Symbols T¥) denotes the value of
t, at which for the first time some decreased variable reaches its lower bound i.e.
for the first time x;(t) = x; for some j € V(%)

Remark 2.3.2

We wused the following convention in algorithm 2.3.1: the maximum over the
empty set is defined as —oco and if e.g. a(Z) = —oo because of J\ V(&) = 0,
we set TV = +oo. Since 7™ is always finite, the algorithm ends with a finite

optimal value of the objective function.

Remark 2.3.3

The complezity of algorithm 2.3.1 depends in general on the behaviour of the ob-
jective function. If the objective function is (mazx,+)-linear, the complexity can
be estimated as follows:

The mazimal number of thresholds (threshold values) of functions a;(x), b;(x),
Vi € I is 2mn and the evaluation of the threshold values for each i € I re-
quires O(mn) operations, which makes together compledrity O(m?n?). The other
steps have complexity O(n) so that the resulting complexity of algorithm 2.3.1 is
O(m*n?).

We will illustrate the perfomance of algorithm 2.3.1 by the following small nu-

merical example.

Example 2.3.1
Let m = 3, n =4, matrices A, B will be defined as follows:

4 3 0
A=15 -1
7 3 0

12



2.3 Algorithm

™
I
RS

We will assume that x = (1,0,1,1), T
(t.e.fi(zy) =a; V jeJ={1,23,4}).
Iteration 1:

7= (24,21,22,26);

V(r) = {4};

I"(z) =0 forr=1,2,3;

1(2) = {4}

x(t) = (24,21,22,26 — t);

V(Z) =24, a(Z) = B(T) = —oo;
1) — )
18] 7 = (24,21,22,24), go to | 1];

Iteration 2:

H@HFII@

2 61
5 0 3
10 6 3

= (24,21,22,26) and f(r) = max(zy, 9, T3, x4),

=00, 7® =2 W =21 7=2;

{2},

V(z) = {14}

(2] I'(2) = 0, (%) = {3}, I*(¥) = {2};
‘/:l(i‘) {17 27 4}’

V(@) = {1.2,4);

12| I'(z) =0, I*(2) ={1,3}, I’(z) =
(3] Va(@) = {1,2,3,4};

V(@) = {1.2,3,4);

2| INz) = I*(2) =0, I’(z) ={1,2,3};
(3] Vi(7) = {1,2,3,4};

(5] z(t) = (24 — 1,21 — 1,22 — 1,24 — t);
6] (55) B(x) = 7(¥) = —oo;

®) =00 forv=1,2,3, 7™ = 21;
x— 3,0,1,3,got0,

Iteration 3:

() = {1,4};

V(i) ={1,2,3,4}, 59 = 2, = 0;

13



2.3 Algorithm

If f(x()) = f(&) = 3;

[9] 2" = & = (3,0,1,3), STOP.

We obtained the optimal value f(x°") = 3.

maX s a feasible solution: ap(z™*) = by (™) = 7,
s (™) = by(2™*) = 8, az(a™™) = by(x™) = 10, and inequality z™* > x is

Fulfilled.

We can easily verify that x

The following example shows one possible application of the the optimization

problem considered in this section.

Example 2.3.2

Let one group of passangers be transported from places P;, j € J to places R;, i €
I:

Let another group be transported from places Qi, k € K to the same places
R, iel;

Let a;; be traveling times from P; to R;, and let by, be travelling times from Qy,
to R;. We require to determine departure times x;, j € J, yr ,k € J such that

the last passangers of both groups meet in R; at the same time. It means
?Ea}(aij +1z;) = Iilg}(blk +uyr) Viel.

We require additionally that x < v < T, y < y < y. By introducing new
variables z = (x,y) and appropriate sufficiently small coefficients a;; for j > n

and sufficiently small coefficients b;k for k < n we obtain the system

JE%?((aij + z;) = r]ne%?((bl‘j +2z) Viel, 2<z2<7%,

where K = {1, 2, ..., 2n}. This system has the same form as the system, which
describes the set of feasible solutions of PROBLEM I. We assume that there is
giwen a panalty function f;(z;) for each time z;, j € K and require that the
mazimum of the penalties f;(z;) is minimized. Such problem can be solved by the

algorithm described above.

14



3

Optimization Problems under
One-Sided (max, min)-Linear

Inequality Constraints

In this chapter, we will begin our studies by studying one-sided (max, min)-linear
systems of inequalities where the unknowns appear in the left side only of in-
equalities and on the right side of these systems of inequalities we have constant
variables only. Here we will provide an algorithm, which determines whether the
set of all feasible solutions is empty or not, and if the set of feasible solutions
is not empty this algorithm finds the maximum element of the set of all feasible
solutions. Also, we will extend our studies to study one-sided (max, min)-linear
systems of inequalities if there are another boundary conditions on the variables in
the left side of the system of inequalities and we will modify algorithm for approval
the existence boundary conditions as we will see in detail in the following. Also
in this chapter we study an optimization problems under one-sided (max, min)-
linear inequality constraints and we introduce an algorithm, which finds an op-
timal solution of these optimization problems under one-sided (max, min)-linear
inequality constraints under the assumption that the set of all feasible solutions
of one-sided (max, min)-linear systems of inequalities is not empty. We bring
also some motivating examples from the area of operations research as well as

examples illustrating the numerical performance of these algorithms.
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

3.1 One-Sided (max, min)-Linear Systems of In-
equalities
Let us introduce the following notations:

J={1,...,n}, IV ={1,....m}, I® = {m +1,...,k}, where n,m and k are

integer numbers, R = (—o0,00), R = RU {—00, 00},

R" =R x - x R (n-times), similarly R" = Rx --- x R, z = (x1,...,2,) € R,
a A B =min{a, 8}, aV B = max{a, 3} for any a, 3 € R, we set per definition

—00 N 00 = —00, —00 V 00 = 00,

a;; € R, by e R,Viecl, jec Jare given finite numbers,

In what follows we will consider the following system of inequalities:

max(aij A Z’j) > bi, 1€ I(l), (31)
jedJ
max(aij VAN [L’j) S bi, 1€ 1(2), (32)
JjeJ

where TW U 13 =T,

The set of all solutions of system (3.1) and (3.2), will be denoted M. Before
investigating properties of set M, we will bring an example, which shows one

possible application, which leads to solving the system given above.

Example 3.1.1

Let us assume that m places i € IV = {1, 2, ..., m} are connected with n
places j € J = {1, 2, ..., n} by roads with given capacities. The capacity
of the road connecting place i with place j is equal to a;; € R. We have to
extend for all i € I, j € J the road between i and j by a road connecting j
with a terminal place T and choose an appropriate capacity x; for this road. If
a capacity x; is chosen, then the capacity of the road from i to T' via j is equal
to a;; A\ x; = min(a,j, z;). We require that the connection between places i and

T is for at least one j greater or equal to a given number b; € R and the chosen
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

capacity x; lies in a given finite interval i.e. x; € [z;,7;], where x;,T; € R are
given finite numbers. Therefore feasible vectors of capacities x = (x1, To, ..., Ty)
(i.e. the vectors, the components of which are capacities x; having the required

properties) must satisfy system (3.1).

In what follows, we will investigate some properties of set M described by system

(3.1), (3.2). Also, to simplify the formulas in what follows we will set

a;(x) = %Jea}(aij Nz;) forall iel,

Let us note that for any fixed i € I® the inequality

a;(z) = max(a; AN x;) < b;
jeJ
implies a;; ANx; < b; VjeJ.
Lemma 3.1.1 Let us set for alli € I
‘/ij = {Ij ; (aij /\.TJ) S bl & Ij S R = (—O0,00)}
For any fired i € I® and j € J, the following statements hold:
Vij = (—00,00) if a;; < by,

Vij = (—o00,b] if a;; > bi;

Proof:
If a;; < b;, then a;; A x; = a;; < b; for arbitrary x;.
If a;; > b;, then a;; A x; < b; if and only if z; < b;.

It follows from Lemma 3.1.1 that

reM = z;€ ﬂV;j vy e J.

ieI(2)

17



3.1 One-Sided (max, min)-Linear Systems of Inequalities

Therefore if for any i € I?, j € J set V;; is not empty, then M # (). In other
words, from the above lemma we can find that € M is bounded from above by
T, which specifies from the previous discussion.

Then the set of all solutions of system of inequalities (3.1) and (3.2), M can be
described as follows:

a;(z) = maJx(a,-j Awj) > b, i€ IW, (3.3)
VIS

<7 (3.4)

we can specify T from the previous discussion as follows:
T = mmig](_a)bi

where I](-g) = {z,z e I® &a;; > bi} for all j € J and we will set the minimum
equal to oo if I](»g) = (.

Now it is appropriate to define
M) ={z; v € M&x <7}

Let ;; denote the upper bound of any nonempty set V;;, i.e. 7;; = —ooif a;; < b;

and T;; = b; if a;; > b;, then x; < min; ;e T;; for all j € J. So that we replace
;nax
Let M (Z) is nonempty set and T be defined as above, the element T will be the

system (3.2) by introducing new upper bounds ™ = min; ;) 7;; for all j € J.

maximum element of M (Z); we denote further this element as ™**, which satisfy
relations (3.3), (3.4), i.e. if x is any element satisfying (3.3), (3.4), then x < x™**.
In what follows, we will solve system (3.3) and (3.4) taking into account that if

xr £ T, then some inequalities of (3.2) are not satisfied.
Lemma 3.1.2 Let us define sets T;;, i € I, j e J as follows:
Ej = {l’j ; Qg4 N €T Z bl}

For any fized i, j the following equalities hold:

18



3.1 One-Sided (max, min)-Linear Systems of Inequalities

=
I

bi, 7] if a; > by & by < Tj;

T;; = 0 otherwise, i.e. if either a;; < b; or b; > T;.

Proof:
Let a;; > b; and b; < ;. Then [b;,7;] # 0 and for any z; € [b;,T;] we have
a;; N x; > xj > b;, which proves that T;; = [b;, 7] .
Let us assume now that either a;; < b; or b; > T;. Then we have either a;; Az; < b;

or a;; AN xj > b; > x; so that set T;; must be empty.

O

Lemma 3.1.3 For any pair of indices iy,i5 € IV, iy # iy and arbitrary j € J
either T, ; C T,,; or Ti,; C T ; holds .

Proof:

If one of the sets T, ;, Ti,; is empty, the assertion is evident. Let us assume that
both sets are nonempty so that we have according to Lemma 3.1.2 T; ; = [b;,, 7]
for r = 1,2. We can assume w.l.o.g. that (b; > (b;,). Then T;,; C T;,;

1] = 2]

O

As a consequence of Lemma 3.1.3 we obtain that for any fixed j € J there
exists a permutation of indices {iy, ..., i} of set [ (1) such that the inclusions
T,; €T

1]

C T, ; hold. In the sequel, we will call this property of sets T;

2j"'7

”chain property”.
Lemma 3.1.4
M@ #0 < VielV 3 j(i)eJ, suchthat Ty # 0.

Proof:
Let M(Z) # () and x be an arbitrary element of M(T). Let ¢ € I be arbitrarily

chosen. Then we have:

max(ai; A\ x;) = i) A i) 2 bi
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

so that x4y € Tj;;) and therefore Tj;;) # 0.

Let now V i€ I 3 j(i) € J such that Ty, # 0 and let us consider
the element 7. Let ¢ € I be arbitrary, then 7; € Tj; for any nonempty set T;.
Therefore we obtain according to the definition of Tj;(; that

max(a; AT;) 2 i) A Ti) 2 bis

Therefore T € M(Z) and thus M(Z) # 0. Let T, ={i el | jli)=k} V ke J,
choose &y, € T, if Ty #0, %) < 7T otherwise and prove that & € M(T) so that

M(z) # 0.

As a consequence of Lemma 3.1.4 we obtain:
M@ =0 < 3icIVV jeJ T;=0.

It follows further that if M(z) # 0, then T = 2™ is the maximum element of
set M (7).

Algorithm 3.1.1 We will provide algorithm, which summarizes the above dis-

cussion and determines whether M(Z) = 0 or finds the mazimum element of set

M(z) #0

@ Input IW, 1® | J a;; and b; for alli € Y UIP and j € J
For all j € J set I](-?’) = {z,z cI® &a;j > bz-}
fj = mini61§3>bi ZfI](S) ?é @ 07’@- = o0 ’Lffj(?)) = @;

For alli € IV and j € J set:
Tij = [bi,7;] tf a;j > b; & by <7Ty;

Ti; = 0 otherwise, i.e. if either a;; < b; or b; > T;

If there ezists i € IV such that Ty; = 0 for all j € J, then M(T) = 0,
STOP;
Otherwise T is the mazimum element of set M () STOP;
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

We will illustrate the performance of the Algorithm 3.1.1 by the following small

numerical example.

Example 3.1.2
Let J = {1,2,3}, IV = {1,2,3}, I® = {4,5,6,7}, and consider the following

system of inequalities:

max(3 A z,2 Az, 1 Axg) > 1,
max(2 A x1,5 A x9,4 A xg) > 3,
max(b Az, 1 Axg,3Ax3) > 2,
max (6 A z1,5 A zg, 1 Axg) <5,
max(3 A x1,9 A xe, 7N x3) <6,
max(9 A xy, 10 A 29,3 A xg) < 8,

max(8 Axy,2 A xg, 11 Axg) <7,

(—00,5], Vig=(—00,00), Viz=(—00,00);
Vs1 = (—00,00), Vs = (—00,6], Vi3 =(—00,6];
(—00,8], Vi2=(—00,8], Vg3 = (—00,00);
Vi = (00,7, Vi =(—00,00), Viz=(—00,7];
1 =467 1Y ={56}) I¥={51}
Then we can find that 7 = (5,6,6)
Ty =[1,5], Tie=][1,6], Ti3=1[1,6];
Toy =0, Toy=[3,6], To3=13,6];
Iy = [27 5]7 T3 = {276]7 Ty =10.
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

We find  UjesTij # 0 for alli € IV, Then 7 = (5,6,6) is the mazimum
element of set M (T).

Now we will consider the system of inequalities (3.1) and (3.2) with the upper
and lower bounds T and x respectively. Let M (x,Z) be the set of all solutions of
system (3.1) and (3.2) with the upper and lower bounds T and z respectively. In

what follows, we will investigate some properties of set M(z, ).

Remark 3.1.1

In fact the inequalities x < x < T could be included in the original system by
introducing new inequalities with appropriately chosen coefficients of the left-hand
sides and appropriately chosen additional b;s in the right-hand sides. i.e. instead

of requiring x1 > x, we can include in the system additional inequality:

am+1(x) > b1

where apy1(x) = maxjey(Ami1; Ax;) and Qi1 = 00, Gpy1j = —00,7 = 2,...,1
and by, 11 = 1, so that this inequalily is equivalent to x1 > x;.

Similarly we can proceed with other > | <-inequalities. Such a procedure re-
quires including additionally m >-inequalities and m <-inequalities, which is a
disadvantage of such procedure. Therefore we prefer to take into account inequal-
ities x < x < T explicitly in the process of finding the mazimum element ™.
Such approach simplifies (or shortens) the necessary computations and memory
requirements. In what follows we will introduce the procedures to find the mazx-
imum element ™ of the system of inequalities (3.1) and (3.2) with the lower

and upper bounds x and T respectively.

Lemma 3.1.5 Let us set for all i € I

Vig = {5 (ai; Aj) < bi & z;

z; < <7}

For any fized i, 7 the following equalities hold:
Vi = [z, %] if ag; < bi;

Vij = [2;, T ANb] if aig > b & by > x5

Vij =0 if a; > b & b; < z;.
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

Proof:

If a;; <b;, then a;; A x; = a;; < b; for arbitrary x;.

If ai; > b; & by > xz;, then a;; A x; < b; if and only if z; < b; & z; <Tj.

If a;; > b; & b; < z;, we obtain: a;; A z; < b; if and only if z; < b; < z; so that

in this case z; & [gj,fj] and therefore V;; = 0.

It follows that from Lemma 3.1.5 that

reMxT) = x,€ (| Vi Vi€l

ieI(2)

Therefore if for any i € I®, j € J set Vi; is empty, then M(z,7) = 0. Or in
other words, if there exist indices i € I®®, j € J such that a;; > b &b < Z;,
then M(z,T) = (.

Let @;; denote the upper bound of any nonempty set Vj;, i.e. T;; = @, if a;; < b;
and Ty = 7; A b; if a; > b & b > x;, then x; < ming e T;; for all j € J.
It follows that we can replace system (3.2) by introducing new upper bounds
T = minge e Ty for all j € J.

max

Element 2™ is the maximum element satisfying relations (3.1), with the upper
and lower bounds T and x respectively, i.e. if x is any element satisfying (3.1),
with the upper and lower bounds T and x respectively, then z < z™**. We

max-and consider only the

will redefine therefore the upper bound setting 7 = «
subsystem (3.1), with the upper and lower bounds T and x Respectively, with
this new upper bound taking into account that if z £ 2™ relations (3.2) do not

hold.

Lemma 3.1.6 Let us define sets T;;, i € I, j e J as follows:
Ty ={z; 5 aij Nwy > b & x; < ay <75}

For any fized i, j the following equalities hold:

Tij = [bi V2,75 if aij > by & by <75

Ti; = 0 otherwise, i.e. if either a;; < b; or b; > ;.
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

Proof:
Let a;; > b; and b; < ;. Then [b; \/gj,fj] # 0 and for any z; € [b; V gj,fj] we
have a;; A x; > (b V x;) > b;, which proves that Ti; = [b; V 2, 7] .
Let us assume now that either a;; < b; or b; > T;. Then we have either a;; Az; < b;

or a;; AN xj > b; > T; so that set Tj; must be empty.

O

As a consequence of Lemma 3.1.3 we obtain that for any fixed j € J there
exists a permutation of indices {i1, ..., i,,} of set I such that the inclusions
T,; €T

i i, © 15, ; hold. In the sequel, we will call this property of sets T;;
”chain property”.

’7717]
In the same way as a consequence of Lemma 3.1.4 we can introduce the next

lemma.

Lemma 3.1.7
Mz, %) #0 < V il 3 j@i)eJ suchthat Tj; # 0.

Proof:

Let M(z,7) # () and assume that V i € IV 3 j(i) € J such that Tj; #
0 is not fulfilled, i.e. 3 4y € I such that T;; =0 V j € J . Then
for any x € R", for each j € J either x; > T; or a;; Az; < b.

If x; > 7; , then at least one inequality of (3.4) is not satisfied and therefore
r¢ M(z,7). If z; <7, forall j€J and a;; Az; <by,, VYV je€.J then
maz;ey(a,; A ;) < by, so that the ip—th inequality of (3.3) is not satisfied so
that again « ¢ M(z,7). It follows that M (z,7) = (). We proved therefore non
[V ieI® 3 j(i) e J suchthat T;; #0] = M(z,Z) =0 or in other words
M(z,Z)#0 = [V i€IW 3 j(i) € J suchthat T;; # 0] must be satisfied.

It is remains to prove the implication:
[V ieI® 3 j(i) e J suchthat Tp; #0] = M(z,7) #0.

We will show that 7 € M(z,z) if [V ¢ € I® 3 j(i) € J such that
Ti; # 0] holds. Let iy € I be arbitrarily chosen so that according to implication
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

IV i€ 1Y 3 j(i) € J such that Tj; # 0], wehave Tjji,) # 0 . Note that it
must be Zjq,) € Tipjgi,) (otherwise it would be T ;i) = 0, since if T, €
on(ﬁ))? it must be ) A fj(io) < bio, and thus Qigj(ip) A\ Zj(io) < bio, for any

x; <T; ). Therefore we obtain:
max(aiyj AT;) 2 Ginjlio) A Tjio) 2 big

since g € I was arbitrarily chosen, we obtain that Z € M(z,T) and therefore
M (z,T) # (), which completes the proof.

O

It follows further that if M (z,T) # (), then T = 2™ is the maximum element

of set M(z,T).

Algorithm 3.1.2 We will provide algorithm, which summarizes the above dis-

cussion and determines whether M(z,T) = () or finds the maximum element of
set M(z,T) #0

@ Input IW, 1? | J, z. 7, a;j and b; for alli € IMUI® and je J;

For alli € I'® and j € J set
Vij = 2,75 if aij < by;
Vij = [2;, T ANb] if ag > b & by > x;;
Vii=01ifa; > b & b < zj.

IfVij =0 for anyi € I® and j € J
Then M (z,T) is empty set, STOP.

Forallj € J andi€ I? set
Tij :fj ifaij sz
fij :fj/\bi if(lij > bl & bl 2%—

maxr __ : == : .
T = mmielj(_z)x” For all j € J;

E — l,max}.
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@ For alli e IV and j € J set:
Ty = [bs \/gjvfj} if a;j > b & b <7j;

Tij = 0 otherwise, i.e. if either a;; < b; or b; > T;

If there ezists i € IV such that Ty; = () for all j € J, then M(T) = 0,
STOP;
Otherwise T is the mazimum element of set M(z) STOP;

We will illustrate the performance of the Algorithm 3.1.2 by the following small

numerical example.

Example 3.1.3
Let J = {1,2,3}, IV = {1,2,3}, I® = {4,5,6}, z = (0,0,0) and T = (7,7,7)

and consider the following system of inequalities:

max(4 A x1,3 A x9,2 A xg) > 2,
max(3 A 1,5 Az, 4 A\ x3) > 4,
max(5 Az, 1 Axg, 3N\ xg) > 1,
max(6 A xq1,5 A xa, 1 Axg) <5,
max(3 A x1,5 A\ xe, 8 A x3) < 4,
max(2 A xq1,4 A xe, 1 A x3) < 3,

Vzll = [07 5]; V;LQ = [07 7] 3 ‘/213 = [07 7]7

V:’)l = [07 7]; ‘/52 = [074]) ‘/53 = [014]

%1 - [07 7]; ‘/62 = [07 3]7 ‘/63 = [Oa 7]

Then we can find that T = (5, 3,4)
Tll = {27 5]7 T12 = {273]7 T13 = {274]a
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3.1 One-Sided (max, min)-Linear Systems of Inequalities

Ty =0, Tw=»0 Ts={4};

T3 =[1,5], T3 =11,3], T33=1[1,4].

We find  Uje Ti; # 0 for alli € IV, Then@ = (5,3,4) is the mazimum element
of set M(x,T).

Example 3.1.4
Let J = {1,2,3}, IM = {1,2,3,4,5}, I® = {6,7,8,9}, z = (0,0,0) and T =
(20,20, 20) and consider the following system of inequalities:

max (21 A z1, 16 A zg, 12 A x3) > 16,

max (15 A xq, 16 A z9,19 A x3) > 13,

max (14 A xq, 13 A 29,22 A x3) > 14,

max (15 A z1, 15 Az, 19 A x3) > 17,

max(15 A xq, 15 A z9,16 A x3) > 13,

max (15 A z1,26 A 29,19 A x3) < 16,

max (13 A z1, 15 A xg, 18 A x3) < 14,

max(25 A xq, 17T A 29,21 A x3) < 17,

max(19 A zq, 18 A 29,23 A x3) < 18,
‘/61 - [07 20}; ‘/62 - [07 16]7 ‘/63 - [07 16]

V}l = [O, 20}, V72 = [O, 14] 3 V73 = [O, 14],
Vél = [07 17}7 V82 = [07 20]7 %3 - [0; 17]
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3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

Vor = [0,18],  Vio =1[0,20], Vi = [0, 18]

Then we can ﬁnd that T = (17,14, 14)

Ty, = [16,17], 0, Tyz=0;

Ty = [13,17], T22 = [13,14], Ta3 =[13,14];

Ty = [14,17), Ty =0, Ty = [14,14].

T41 = @7 T42 = @; T43 = @,-

Tsy = [13,17], Tso = [13,14], T53 = [13,14];

We find  Uje;Ty; = 0 which means that the inequality 4 does not satisfy, because
agy = 15 < by =17, ago = 15 < by = 17 and as3 = 19 > by = 17 but by = 17 >
T3 =14 . Then the set M(x,T) is empty set.

3.2 Solving Optimization Problems under One-

Sided (max, min)-Linear Inequality Constraints

In this section we will solve the following optimization problem:

flz) = fax fi(z;)  — min (3.5)
j
subject to
max(a;; ANz;) > b, Viel, (3.6)
jeJ
z<x<T, (3.7)
where z, T € R", I ={1, ..., m}, J={1, ..., .n},a,b € RViel,jeJ

are given. We assume further that f; : R — R are continuous functions, M (z, )
denotes the set of feasible solutions of the problem and M (xz,7) # 0 (note that
the emptiness of set M (z,T) can be verified using the considerations of the pre-
ceding section). Let us note further that the formulation of the optimization
problem (3.5), (3.6), (3.7) includes also the case of one-sided <-inequality con-
straints,which can be included by adjusting the upper bounds z;, j € J like in
the preceding section and since each equality can be replaced by two inequalities
<, >, the formulation (3.5), (3.6), (3.7) includes also (max, min)-linear equality

constraints.
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3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

Let us define for all i € I, j € J sets T;; as follows:
T‘ij = {.Tj y Qg4 /\.Tj > bz‘ & T € [&j,jj]}.

Then we have similarly like in the preceding section:

x € M(z,7) if and only if for each ¢ € I there exists at least one j(i) € J such
that x;(;) € T}j¢), or in other words x is a feasible solution of problem (3.5), (3.6),
(3.7) if and only if for each fixed i € I either 1 € Tj; or x9 € T} or, ... or
zy, €Ty, Let usset foriel, jeJ

Ty ={r = (21,...,2,) ; z; € Tj;}.

Then we can replace problem (3.5), (3.6), (3.7) by the optimization problem
f(a) = max fj(z;) — min (3-8)
je
subject to

reMz,z)= ﬂ U T (3.9)

il jeJ
Let us introduce the following notations:
(@) = min (f;(x;)),
z,; €T

where we set fj($§i)) =o0 if T;; = 0;

Fo () = min(f;(2{"));

jed
R.={iel; p(i) =k} Vke J,

1€Ry

Let 2 be defined as follows:

fe(Zx) = min (fr(zr)),

€T},
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3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

for all k € J such that Ry # (;

TR €[y, T
if Ry = 0.
Lemma 3.2.1 & is a feasible solution of problem (3.5), (3.6), (3.7).

Proof:
Let us note that since sets 7;; have the chain property (see Lemma 3.1.3), there
exists for any nonempty set Ry, k € J an index i(k) € Ry, such that T}, = T
and therefore T;y, C Tiy Vi € Ry,. Since we assumed that M (z,7) # 0, there
exists according to Lemma 3.1.4 for each i € I at least one index j(i) € J such
that 7;; is nonempty. Therefore there exists for each i € I an index k(i) € J such
that i € Ry;) or in other words and Zyg) € Ty € Tixgs)-

a;(z) = glea}(aij NZj) 2> agy N Ty = by
Since i € I was arbitrarily chosen, we obtain that & € M(z,), i.e. Z is a feasible
solution of problem (3.5), (3.6), (3.7).

Theorem 3.2.1 Z is the optimal solution of problem (3.5), (3.6), (3.7).

Proof:

Let us note that & satisfies (3.6), (3.7) according to Lemma 3.2.1 so that it is a
feasible solution of the optimization problem in question. It remains to prove its
optimality. We have to prove that f(x) > f(z) for all z € M(z, 7). Let us assume
on the contrary that there exists a feasible solution # such that f(z) < f(Z). Let
us assume that f(z) = f,(z,). Since f(Z) < f(z), it must be f,(Z,) < fp(Zp)
so that &, ¢ T,. Let i(p) € I is such that T, = Ty, so that &, & Ty,
Therefore it must exist an index r € J such that Z, € Tj,), (otherwise it would
be Z; & Tip); Vi € J and thus a;p) (%) = maxjecs(ai; AZ;) < by and T would be

infeasible). But if Z, € Tj(,),, we obtain:
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3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

f(@) > fo(%,) > min (fo(2,)) > min (fy(x,)) = f,(2,) = f(2),

2r€Ti(pyr o€ i(p)p

which is a contradiction with the assumed inequality f(Z) < f(&). This contra-
diction proves the optimality of Z.
OJ

Let us note that the complexity of finding the optimal solution of (3.5), (3.6),
(3.7) depends on the complexity of finding the minimum of f;(z;) on a closed in-
terval. Such minimum can be easily found if function f; is for instance increasing,

decreasing, convex, concave or unimodal.

Algorithm 3.2.1 We will provide algorithm, which summarizes the above dis-
cussion and under the assumption that the set M (z,T), which is the set of all a
feasible solutions of system (3.5), (3.6), (3.7) is not empty. This algorithm finds
the optimal solution of problem (3.5), (5.6), (3.7) if set M(z,T) # ()

@ Input I, J, z,7, a;; and b; for alli € I and j € J;

Foralli eI and j € J set:
Ty = [b:i Va7 if aij > b; & b; < T;

Tij = 0 otherwise, i.e. if either a;; < b; or b; > Tj;
Find 2V Vi e I and j € J with T;; # 0
Find f,q (xs()i)) = minje,(f; (l’;z))) for alli e I
Find R, ={iel; pti)=k} VkeJ,
Find Ty = (N;ep, Tie Vk € J;

Find &), where fi(Zy) = ming, et (fe(xr)), for allk € J & Ry # 0, fi(ix) =

[6] Set x"' = &, a2 is the optimal solution, STOP.

31



3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

We will illustrate the performance of the Algorithm 3.2.1 by the following small

numerical example.

Example 3.2.1
Let J ={1,2,3}, I = {1,2,3}, 2 = (0,0,0) and T = (10, 10, 10) and consider the

following system of inequalities:

max (7 A z1,5 A\ x9,6 A x3) > 6,
max(6 A x1,7 A x2,8 Axg) > 8,

max(8 A x1,5 A x9,4 A x3) > 4,

Consider the objective function in the form:

f(xlu 552,553) = maxr (f1($1)7 f2(552)7 f3($3))

where f;(z;) = cjx; + d;, where ¢ = (0.5,0.8,0.7) and d = (1.4,5.2,3.1).
By using Algorithm 3.2.1 we find:

Ty = 16,10, T2 =0, Ti3=1[6,10];

Ty = @, Th = @, To3 = [87 10];

Ty = [4,10), Ty = [4,10], T = [4,10].
xgl) =6, azg) =0, J:Ef) =38 xg?’) =4, xg?’) =4, and xé?’) =4.

Ry ={1,3}, Ry=0, and R3={2}.

T, =[6,10], Tp=1[0,10], T =[8,10].

Then z°P* = (6,0,8) is the optimal solution of the set M(x,T) and f (z°") =
max (4.4,5.2,8.7), then the objective function is equal to 8.7.

Example 3.2.2
Let J = {1,2,3}, IV = {1,2,3,4,5}, I® = {6,7,8,9}, z = (0,0,0) and T =
(10,10, 10) and consider the following system of inequalities:

max(11 Az, 3 A x9,3 A x3) >4,
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3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

max(5 A z1,6 A 29,9 A xg) > 5,

max (b A xy, 3 A 2, 12 A xg) > 4,
max (3 A x1,5 A 22,9 A x3) > 2,

max(5 A x1,5 A xe,6 A x3) > 5,

max(5 A xy, 16 A 22,9 A x3) < 6,
max(3 Az, 5Axe, 8 Ax3) <5
max(15 Az, 7T A xe, 11 A xg) < 7,

max(9 Az, 8 A xg, 13 A ) <8,
Consider the objective function in the form:

f(x1, 29, 23) = max (fi(z1), fo(2), f3(23))

where f;(z;) = |cjx; —d;|, where ¢ = (1,0.3,1.5) and d = (7.2,1.9,3.2).

In this ezample we will use in the beginning Algorithm 3.1.2 to find the new upper

bounds of set M(z,T), which is equivalent to solving the system of <-inequalities.
By using Algorithm 3.1.2 we find:

Ve =[0,10], Ve =[0,6], Vg3 =10,6]

Vi =10,10], Vi =10,10] , Vi3 =10,5];

Var =1[0,7, Ve =[0,10], Vs5=10,7]

Vor =1[0,8], Voo =1[0,10], Vo3 = [0, 8]

Then we find that the new upper bounds of set M(z,T) is T = (7,6, 5)

Ty = {47 7]7 T, =0, Tiz=10;
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3.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Inequality Constraints

Toy = [5,7], Ty =15,6], To3=[5,5];
T =4,7, Ts=0, T35 =1[4,5

Ty =1[2,7], Twp=1[2,6], Ti=1I25],.
Ts1 = [5,7], Tso=15,6], T53=155];

By using Algorithm 3.2.1 we find:

xgl) =7, ac(12) =7, ng) = 6, xz(f) =9 J;&g) =1, x?) =4, J:YL) =
7, =6, =212, V=7 2P =6 =5,

Ry ={1,3}, Ry =1{2,5}, and R3={4}.

T, =[4,7, Ty=15,6], T3=1[25].

Then x°P" = (7,6,2.12) is the optimal solution of the set M(z,T) and f (x°") =
max (0.2,0.1,0.02), then the objective function is equal to 0.2.
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4

Optimization Problems under
One-Sided (max, min)-Linear

Equality Constraints

In this chapter we will consider the optimization problems under one-sided (max, min)-
linear equality constraints. It is evident that problems with one-sided equality
constraints of the form:

max(aij AN l‘j) = bi7 1€ [,

jeJ
can be solved by the appropriate formulation of equivalent one-sided inequality

constraints and using the methods presented in the preceding chapter. Namely,

we can consider inequality systems of the form:

max(aij VAN CL’]‘) S bi, 1€ I,

jeJ

max(aij AN ZL']‘) 2 bi, 1€ 1.

jeJ
Such systems have 2m inequalities (if |I| = m), which have to be taken into
account. It arises an idea, whether it is not more effective to solve the problems
with equality constraints directly without replacing the equality constraints with

the double numbers of inequalities. In this article, we are going to propose such

an approach to the equality constraints. First we will study the structure of the
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4.1 One-Sided (max, min)-Linear Systems of Equations

set of all solutions of the given system of equations with finite entries a;; & b;,
for all i € I &j € J. Using some of the theorems characterizing the structures
of the solution set of such systems, we will propose an algorithm, which finds an

optimal solution of minimization problems with objective functions of the form:
f(z) = max f;(z;),
jeJ

where f;, j € J are continuous functions. Complexity of the proposed method of
monotone or unimodal functions f;, j € J will be studied, possible generalizations

and extensions of the results will be discussed.

4.1 One-Sided (max, min)-Linear Systems of Equa-

tions

In this chapter we will consider the following system of equations:

max(aij AN .Ij) = bi, 1€ I, (41)
jed

z<zx<T. (4.2)

The set of all solutions of the system (4.1), will be denoted M=. Before
investigating properties of the set M=, we will bring an example, which shows

one possible application, which leads to solving this system.

Example 4.1.1

The practical problem, which be described by system (4.1) and (4.2) may be as
in Example3.1.1 in the previous chapter with a simple change so that, we will
require further to find such capacities xj, j € J that for each i € I the
mazimum capacity of the roads connecting i to T wvia j over all j € J s
exactly equal to a given positive value b;. Therefore feasible vectors of capacities
x = (r1, 9, ..., x,) (i-e. the vectors, the components of which are capacities

x; having the required properties) must satisfy the system (4.1) and (4.2).
J g q prop Y Y
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4.1 One-Sided (max, min)-Linear Systems of Equations

Remark 4.1.1 Since each equality can be replaced by two inequalities <, >, so
that the system of equations in formulation (4.1), can be solved by the algorithm
3.1.2 given in chapter 3, but the disadvantage of the this technique is coming from
the fact that we need to solve double the number of inequalities, which need more
time and memory. In this chapter we will introduce a new technique to solve the

system of equations in formulation (4.1) and (4.2), without transforming each

equality to two inequalities.

In what follows, we will investigate some properties of the set M= described

by the system (4.1). Also, to simplify the formulas in what follows we will set

a;(x) = ?Ea}(aij Nzj;) forall iel,

Let us define for any fixed j € J the set I; as follows:
L ={iel&a;>b},
and define the set M=(7) as follows:
M= (z)={zre M &z <7},
also we define the set Sj(x;) as follows:
Si(x;)={kel & ag Nz;=0by}, Vje
Lemma 4.1.1 Let us set for alli € I and j € J
Ty =Axj 5 (ag Nwj) = bi & x5 <75}

Then for any fixed ©, 7 the following equalities hold:

(i) Ty ={b:} if ay;>b & b <7y

(i) T = [bi, 7] if ayy=0b; & b <7y

(i) T; =0 if either aj; <b; or b >7T;.
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4.1 One-Sided (max, min)-Linear Systems of Equations

Proof:

(i)

If a;; > b;, then a;; A x; > b; for any x; > b;, also a;; A x; < b; for any

x; < b;, so that the only solution for equation a;; A x; = b; is x; = b; < T;.

If a;; = b; & b; < T, then a;; Ax; < b; for arbitrary z; < b;, but a;; Az; =b;

for arbitrary b; < z; <7;.

If a;; < b;, then either a;; A x; = a;; < b; for arbitrary x; > a;;, or
a;j N\ xj = x; < b; for arbitrary xz; < a;;. Therefore there is no solution for

equation a;; A x; = b;, which means T;; = 0.

Also if b; > T, then either z; > b; > T;, so that T;; = 0, or x; < b; there
are two cases, the first is x; < a;; and a;; A x; = x; < b; and the second
case is x; > a;; and a;; A x; = a;; < x; < b;. therefore there is no solution

for equation a;; A x; = b;, which means T; = 0.

Lemma 4.1.2 Let us set for alli € I and j € J

(i) by if  ay>b; &b <7,
T; Zf Qjj = b; & b; < x; or T = (D,

)

and let

Let

MiNgey; $§k) if I #0,

& =
’ fj ’Lf Ij:@

S (i;) = {k el; 2™ = @J} e,

and the following statements hold:

(1) & € M=(z) & U;e, Si(35) =1

(ii) Let M=(T) # 0, then & € M=(T) and for any x € M=(T) = = < &, i.e.

is the mazimum element of M=(T).

Proof:
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4.1 One-Sided (max, min)-Linear Systems of Equations

(i)

To prove the necessary condition we suppose & € M=(T), then max;es(a;; A
Zj) = b;, for all i € I. So that for all i € I, there exists at least one j(i) € J
such that a;;i;) A 24 = maxjes(a; A ;) = b;, then either Z;4) = b;, if
agay > bi & by < Tjey, or Tie > by, if a5 = by & by < Tj(), so that
i € Ly = ;) = 2. Otherwise if a A @y < by, for all k # j(i) & k € J,
then #, < b;, and a;, < b;,= I, = (), therefore we can choose %, = 7.
Hence for all i € I there exists at least one j(i) € J such that S;()(Z;4)) # 0
and i € Sjo)(54)) = Ujes 95(85) = 1.

To prove the sufficient condition, let |, ; Sj(#;) = I, then for all i € I there
exists at least one j(i) € J such that S (%;4)) # 0 and i € Sj4)(Z;0))-
Therefore ;) = b; if a;j) > b; & by < T, then a6 A Tj6) = Tj6) = bi.
Otherwise ;) = T if either a;;i) = b; & b; < Ty, then a;u) A T4 =
aiji) = b; or TS0 = (). Then for all i € I there exists at least one j(i) € J
such that max;ecs(ai;; A ;) = aijiay) A &) = b;. Then & € M=(T).

Let M=(T) # 0, then for each i € I, there exists at least one j(i) € J such
that T;.(i) # (), and b; < Ty & ag) = bi. Therefore there exists at least
one j(i) € J such that either a;u) > b; & b; < Zj), then x%) =b;. Or
aijiy = by & by < Ty, then xgz()l) = Tj() so that 2, = b; it i € ;) and
aijiy N\ Tjq) = b; is satisfied. Otherwise if I; = (), we set &; = T;. Then
Z € M=(Z) and for any z € M=(Z) we have x < &, i.e. Z is the maximum
element of M=(T).

Another proof for lemma 4.1.2:

It follows from the definition of :cg-i) and z; for i€, j€J that

max(aij VAN Z%J) S bi, 1€ _[, (*)
jeJ
If x€ M=(x), then <2 (**)
. eoa (k)
Further @i /\ %ﬁj =b it *a _ i
a;j \&; <b; otherwise. (Fx*)
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4.1 One-Sided (max, min)-Linear Systems of Equations

Let U;c;5(%;) C I and ip € I'\U;c; S;j(#;). Then it follows from (*) - (***)
that a;; ANz; < b, V j€J and therefore max;ec;(a;; Axz;) < b, so that
M=(z) = 0.

Let now J;c;5;(2;) =1 and k €I be arbitrary. Then there exists j(k) € J
such that &k € Sjuy(2;) and we have agj) A Tjm) = Arjir) A 3:%)6) = b, so that
max;ey(ai; A Z;) = agj) N Tjwy = br. Since k € I was arbitrarily chosen it
follows that & € M=(Z) and therefore M=(T) # 0.

Note that if x <2 and Sj(z;) = {k el x§»k) = x]-} , then we have x <2 and
r€ M=(T) © Uje;Sj(r;) =1 Tt follows that M=(Z) # 0, then & € M~(7)

and 7 is the maximum element of M=(7).

O

It is appropriate now to define M=(x,7), which is the set of all solutions of
the system describe by (4.1) and (4.2) as follows:

M= (z,7) ={r e M= (%) & = > z},

Theorem 4.1.1 Let & and Sj(&;) be defined as in Lemma 4.1.2 then:
(i) M=(z,@) # 0 if and only if € M=(T) & z < &,
(ii) If M=(z,T) # 0, then & is the mazimum element of M~ (x,T),

(iii) Let M=(z, %) # 0 and J C J. Let us set

- i.j Zf jejv

ycj:

x; otherwise

then & € M=(z,7) < U7 Si(%;) = 1

Proof:

40



4.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Equality Constraints

(i) f 2 € M=(Z) & z < &, from definition M~(z,7) we have z € M~=(z,T),
then M=(x, @) # 0. If M=(x,%) # () so that M=(T) # () and from lemma
4.1.2, it is verified that & € M=(Z) and & is the maximum element of M=(T),

therefore z > z.

(i) If M=(x,7) # 0, so that M=(Z) # () and M~(x,7) C M=(T), and since
Z is the maximum element of M=(Z), then Z is the maximum element of
M=(z,T).

(ili) Let # € M=(z,7) = & € M=(Z), also from definition Z we have Z; = z;
for all j € J, so that S;(Z;) #0 V j€J. And &; < &; for all j € J\ J, so
that S;(#;) =0 V j € J\J. Hence & € M=(%), by lemma 4.1.2, we have
Ujej Sj(;) =1. .

Let U7 S;(;) = I, since J C J we have {J;.; S;(Z;) = I. By lemma
4.1.2, ¥ € M=(x) also we have & > x therefore T € M=(z,T).

4.2 Solving Optimization Problems under One-

Sided (max, min)-Linear Equality Constraints

In this section we will solve the following optimization problem:

flw) =max fj(z;) — min (4.3)
subject to
re M (z,7) (4.4)

We assume further that f; : R — R are continuous and monotone functions (i.e.
increasing or decreasing), M= (x,T) denotes the set of all feasible solutions of the
system described by (4.1) and (4.2) and assuming that M= (z,T) # () (note that
the emptiness of the set M~(z,T) can be verified using the considerations of the

preceding section).
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4.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Equality Constraints

Let J*={j | f; decreasing function} so that

min fi(v;) = f;(2;), Vi€ J"

zj€lz;,25]

Then we can propose an algorithm for solving problem (4.3) and (4.4) under the
assumption that M= (z,7) # () which means (J;.; S;(%;) = I, i.e. for finding an
optimal solution %" of problem (4.3) and (4.4).

Algorithm 4.2.1 We will provide algorithm, which summarizes the above dis-
cussion and finds an optimal solution x°P* of problem (4.3) and (4.4), where f;(z;)

are continuous and monotone functions.

@ Input I, J, 2,%, a;; and by forall i€l and jecJ
Find 2z, andset T =2z.

Find J*={j | f; decreasing function}.

F=A{p | maxje; f;(Z;) = f(Zp)}.

If FnJ*#0, then z°° =z, Stop.

Set y,=xz, ¥V peF, & y;=1I;, otherwise.

6] If Ujes Silu)) =1, set &=y goto[3].

xPt =%, Stop.

We will illustrate the performance of this algorithm by the following numerical

example.

Example 4.2.1 Consider the following optimization problem:

Minimize f(z) = max;es(f;(z;))

where fi(x;) ¥V j € J are continuous and monotone functions in the form
[i(z;) = ¢ x x5 +dj,

C = [—0.2057 4.8742 2.8848 0.9861 1.7238 1.1737 —3.3199}
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4.2 Solving Optimization Problems under One-Sided (max, min)-Linear
Equality Constraints

and
D= [1.4510 1.5346 —3.6121 —0.9143 —2.0145 1.9373 —4.8467}

subject to
r € M~ (z,7T)

where the set M~ (x, @) is given by the system (4.1) and (4.2) where J = {1,2,...,7},
I={1,2,...,6}, z; =0V je€Jandz; =10 V j € J and consider the system
(4.1) of equations where a;; & b; ¥ i €I and j € J are given by the matriz A

and vector B as follows:

6.1221 9.0983 9.5032 6.0123 6.1112 4.1221 5.5776
8.2984 3.3920 2.5185 1.1925 8.9742 6.7594 8.6777
2.0115 6.3539 4.4317 7.7452 0.6465 9.4098 1.3576

A —
6.4355 1.6404 3.1850 3.7361 7.2605 3.0201 5.3808
8.5668 5.8310 2.5146 &.7804 3.7709 4.4770 2.3007
5.2690 9.6900 5.1598 9.2889 6.1585 1.0786 7.0121
and

BT = [6.1221 7.0955 6.3539 6.4355 6.5712 7.0121

By the method in section 2 we get &, which is the maximum element of M~ (x,T),
as follows:

T =(6.5712, 6.1221, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955)

By using algorithm 4.2.1 we find:

Iteration 1:

T = (6.5712, 6.1221, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955);
Jr = {1’ 7};

F={2);

f (&) =31.3750;

y: (6.5712, 0, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955);

@ UjeJ Sily;) =1;

T =(6.5712, 0, 6.1221, 6.3539, 6.4355, 6.3539, 7.0955).
Iteration 2:
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F={3};

f (&) = 14.0490;

y: (6.5712, 0, 0, 6.3539, 6.4355, 6.3539, 7.0955);
@ UjeJ Sily;) =1;

T =1(6.5712, 0, 0, 6.3539, 6.4355, 6.3539, 7.0955).
Iteration 3:

F={6};

f(z) =9.3946;

y: (6.5712, 0, 0, 6.3539, 6.4355, 0, 7.0955);
@ UjeJ Sily;) =1;

T =(6.5712, 0, 0, 6.3539, 6.4355, 0, 7.0955).
Iteration 4:

F={5};

f (&) =19.0789;

y: (6.5712, 0, 0, 6.3539, 0, 0, 7.0955);

@ UjeJ Sily;) =1;

T =(6.5712, 0, 0, 6.3539, 0, 0, 7.0955).
Iteration 5:

F={4};

f(z) = 5.3510;

y: (6.5712, 0, 0, 0, 0, 0, 7.0955),

@ UjeJ Si(y;) # I

P =7 = (6.5712, 0, 0, 6.3539, 0, 0, 7.0955), STOP.

In idteration 5 we find that if we set x4 = 0 the third equation of the system
(4.1) is given as follows:

as = max(2.0115 A 6.5712,6.3539 A 0,4.4317 A 0,7.7452 A 0,0.6465 A 0,
9.4098 A 0, 1.3576 A 7.0955) = 2.0115 # b3 = 6.3539.

Therefore Algorithm 4.2.1 go to step and take
' =1 = (6.5712, 0, 0, 6.3539, 0, 0, 7.0955) and stop. We obtained the opti-
mal value for the objective function f(x°P') = 5.3510. We can easily verify that

opt

x°P* is a feasible solution as follows:
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ar(z°P") = by = 6.1221, as(x°P') = by = 7.0955, az(z?') = by = 6.3539,
a4(x0pt) == b4 = 64355, CL5(.'L'Opt) == b5 = 65712, a6(x0pt) == b6 = 70121,
and inequality x < x°P* < T is fulfilled.

Remark 4.2.1 By reference to the lemma 4.1.2 and theorem 4.1.1 it is not dif-
ficult to note that the mazimum number of arithmetic or logic operations in any
step to get & can not exceed O(nm) operations. This will happen when we
calculate :cgi), V i€l & je J. Also from the above example we can re-
mark that the mazimum number of operations in each step in any iterations from
algorithm 4.2.1 is less than or equal to the number of variables n and the max-
imum number of iterations from step to step @ of this algorithm can not
exceed O(n). Therefore the computational complezity of the algorithm 4.2.1 is

2

O(maz(n®, nm)).

In what follows let us modify algorithm 4.2.1, which find an optimal solution
for continuous and monotone functions, to be suitable to find the optimal solution

for any general continuous functions f;(x;) as follows:

Algorithm 4.2.2 We will provide algorithm, which summarizes the above dis-
cussion and finds an optimal solution x°P* of problem (4.3) and (4.4), where f;(z;)

are general continuous functions.
@ Input I, J, z,%, a;; and b; forall 1€l and jeJ
Find 2z, andset T =2.
Find  ming ey ;) fi(2;) = fi(}), ¥V je T
Set  J ={j | fi(&;) = fi(z])}.
F=A{p | maxje; f;(Z;) = f(Zp)}.
If FNnJ*#0, then z°'=2, Stop.
(6] Set vy, = T, ¥V peF, & y;=1; otherwise.
If UjesSily)) =1, set &=y goto3]
Pt =7,  Stop.
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We will illustrate the performance of this algorithm by the following numerical

examples.

Example 4.2.2 Consider the following optimization problem:
Minimize f(z) = max;es(f;(z;))
where fij(x;) VY j € J are continuous functions given in the following form
filwg) = (x5 — &),
& = (3.3529, 1.4656, 5.6084, 5.6532, 6.1536, 6.5893)
subject to
r € M~ (z,T)

where the set M= (z,T) is given by the system (4.1) and (4.2) where J = {1,2,...,6},
I={1,2,...,6}, z; =0V j€Jandz; =10 V j € J and consider the system
(4.1) of equations where a;; & b; ¥V i€ 1 and j € J are given by the matriz A
and vector B as follows:

3.6940 0.8740 0.5518 4.6963 2.1230 1.4673
1.9585 8.3470 5.8150 8.5545 8.9532 8.7031
1.3207 8.9610 1.5718 3.7155 0.1555 4.3611

A=
8.4664 9.1324 6.6594 2.5637 6.0204 6.0846
2.4219 9.6081 1.9312 2.5218 1.3976 4.1969
1.1172 3.6992 7.5108 4.7686 4.4845 4.3301
and

BT = [4.0195 7.2296 4.2766 6.6594 4.1969 6.9874

By the method in section 2 we get &, which is the mazximum element of
M=(z,T), as follows:
T = (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766) .
By using algorithm 4.2.2 we find:
Iteration 1:
56: (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766),
x* = 3.3297, 1.4689, 5.5899, 4.0195, 6.1452, 4.2766;

J* = {4,6);
F={1);
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f (&) =10.9328;

@y: (3.3297, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766),

UjeJ Siy;) =1;

T =(3.3297, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766).

Iteration 2:

J*={1,4,6};

F ={2};

f(z) = 7.4600;

@y: (3.3297, 1.4689, 6.9874, 4.0195, 7.2296, 4.2766),

Ujes Siy;) = 1;

T =(3.3297, 1.4689, 6.9874, 4.0195, 7.2296, 4.2766).

Iteration 3:

J*={1,2,4,6};

F = {6};

f(Z) = 5.3488;

FnJ #0, then x%=z;

%Pt = (3.3297, 1.4689, 6.9874, 4.0195, 7.2296, 4.2766), STOP.

Here we find the algorithm 4.2.2 stop in step since the active variable in it-
eration 8 is xg, and at the same time the objective function has the minimum
value in this value of xg, so that the algorithm 4.2.2 stop. Then we obtained the
optimal value of the objective function, f(x°P') = 5.3488. It is easy to verify that
Pt s q feasible solution:

ar(z°P") = by = 4.0195,  as(x°P') = by = 7.2296, agz(z°P') = by = 4.2766,
ay(z°P') = by = 6.6594, az(z°P") = by = 4.1969, ag(zP") = bg = 6.9874,
and inequality x < x°P* < 7T is fulfilled.

X

Example 4.2.3 Consider the following optimization problem:

Minimize f(z) = max;es(f;(z;))

where fij(x;) VY j € J are continuous functions given in the following form
filzy) = 1@y — &) @ — Iy)l,

where

¢ = (3.3529, 1.4656, 5.6084, 5.6532, 6.1536, 6.5893)

and

h=(0.7399, —0.1385, —4.1585, 1.1625, —2.1088, 1.2852)
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subject to
r e M (z,7)

where the set M=(x,T) is given in the same way as in example 4.2.2.

By the method in section 2 we get &, which is the maximum element of M~=(x,T),
as follows:

T = (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766)

By using algorithm 4.2.2 we find:

Iteration 1:

:E: (6.6594, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766),

x* = 0.7325, 1.4689, 5.5899, 1.1656, 6.1452, 1.2830;

J* = 0);

F={1};

f(z) =19.5728;

@y: (0.7325, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766),

Ujes Siy;) = 1;

T = (0.7325, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766).

Iteration 2:

Jr=A{1};

F= {3})

f(Z) = 15.3692,

@y: (0.7325, 4.1969, 5.5899, 4.0195, 7.2296, 4.2766),

UjEJ Sj(yj) = {17 2, 3, 5} #1;

%' = (0.7325, 4.1969, 6.9874, 4.0195, 7.2296, 4.2766), STOP.

In Iteration 2 algorithm 4.2.2 stops since the fourth and sixth equations in the
system of equations (4.1) can not be verify if we change the value of the variable
ys to be y3 = (5.5899). If it is necessary to change this value of the variable y3
to minimize the objective function so that our exhortation to decision-maker, it
must be changed both the capacities of the ways ass and ags to be ass = 6.6594 and
ags = 6.9874 in order to maintain the verification of the system of equations (4.1).
In this case we can complete the operation to minimize the objective function as
follows:

Iteration 2:
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Jr={1}

F={3};

f(z) = 15.3692,

@y: (0.7325, 4.1969, 5.5899, 4.0195, 7.2296, 4.2766),
UjeJ Sily;) =1;

T =(0.7325, 4.1969, 5.5899, 4.0195, 7.2296, 4.2766);
Iteration 3:

J = {1, 3);

F ={2};

f(z) =11.8413;

@y: (0.7325, 1.4689, 5.5899, 4.0195, 6.1452, 4.2766),
UjeJ Sj(y]) - ]7'

T = (0.7325, 1.4689, 5.5899, 4.0195, 7.2296, 4.2766);
Iteration 4:

Jr={1, 2, 3};

F = {5};

f () =10.0481;

@y: (0.7325, 1.4689, 5.5899, 4.0195, 6.1452, 4.2766);,
%Pt = (0.7325, 1.4689, 5.5899, 4.0195, 7.2296, 4.2766);
We obtained the optimal value f(x°") = 10.0481, We can easily verify that z°P

s a feasible solution.

Remark 4.2.2 Step in algorithm 4.2.2 depends on the method, which finds
the minimum for each function f;(x;) in the interval [x;,Z;], but this appears
in the first iteration only and only once. Also from the above examples we can
remark that the mazimum number of operations in each step in any iterations
from algorithm 4.2.2 is less than or equal to the number of variables n and the
maximum number of iterations from step | 3| to step of this algorithm can not
exceed n. Therefore the computational complexity of the algorithm 4.2.2 is given
by max {O(max(nQ, n x m)),é}, where O s complezity of the method, which

finds the minimum for each function f;(x;) in the interval [x;, Z;].
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5]

Optimization Problems under
Two-Sided (max, min)— Linear
Equation Constraints - an
Iteration Method

We consider optimization problems, the objective function of which is equal to the
maximum of a finite number of continuous and unimodal functions of one vari-
able. The set of feasible solutions in described by a system of (max, min)—linear
(or using an alternative notation (max, A)—linear) equations with variables on
both sides. Finite iteration method for solving these systems of (max, A)—linear
equations is used to introduce an algorithm for finding the optimal solution of
the problem.

Max-algebras naturally arise in many contexts, such as decision theory, dis-
crete event dynamic systems, and operations research. Namely find the optimal
solution for the min — max objective function subject to systems of two-sided
linear equation in max —algebra. In section 4.4, we will shows one possible ap-
plication of the the optimization problem considered in this chapter.

In recent time, the attention was devoted to systems, in which the variables occur
on both sides in the equations or inequalities (see e.g. [1], [5], [2], [8], [12], [17],
(18], [31], [32], [37], [41]). In this chapter we will consider optimization problems,

the set of feasible solutions of which is described by systems of two-sided (max,
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min)-linear separable equations. The objective functions of the problems consid-
ered are equal to the maximum of a finite number of continuous and unimodal
functions f;(x;) of one variable. The extension to systems of inequalities of the
same structure is a purely technical problem, we simply need to introduce slack
variables on appropriate sides and transform the inequalities to equations. Simi-
larly, the algorithm proposed below can be extended to objective functions with

convex or concave function.

5.1 Two-Sided (max, min)— Linear Systems of Equa-

tions
Let a;;,b;; € R, i € I, j € J be given numbers, let

a;(r) = max(a;; Ax;) forall iel,
jed

bi(z) = max(bj; Az;) forall iel,
jed
We will consider the following system of (max, min)-linear equations

a;(x) =b;)(x) foralliel. (5.1)

The set of all solutions of system (5.1) will be denoted by M. We define further
sets M(T), M;(T) foranyZ € R, i € [

M@)={zlr e M &z <T} (5.2)

M;(z) = {z|a;(z) = bi(z) & x < T} (5.3)
Clearly, M(Z), M;(Z) are always nonempty, since e.g. z(a) = (o, ..., «a) €
M(z), if @ < mingjyerxs(ai; A bjj A ;). Moreover, if T = (oo, ..., 00), then
evidently M(7) = M, and if x = (—o0, ..., —00), then z < x for any x € M.

Remark 5.1.1 The algorithm presented in [17] finds the maximum element of

M (7) for any given T, i.e. such an element ™ € M(T) that x < 2™ for all x €
M(z).
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In what follows we will prepare the theoretical background for an algorithm
which finds the maximum element ™ of M(Z). Using the results of [17], if
T € M (7)) then we have evidently ™ = Z. Therefore we will assume in what
follows that T ¢ M (Z). Further, we can assume w.l.o.g. that the notation was
possibly changed in such a way that a;(Z) < b;(z) forall i € I. Since we
assumed that T & M(T), the set I<(T) = {i € I ; a;(T) < b;(T)} is nonempty.
Let us set further I=(Z) ={i € I ; a;(T) = b;(T)}.

Let us introduce the following notation for any given upper bound =

a(z) = Z_€r§1<ir(1y) a;(T),
IS(a() ={i € I7(7) 5 ai(T) = (D)},
IH(a(?) ={i € I"(7) ; a:(T) < (T)},
J(a(@)={je J; Fiel(a(T)) such that bj; AT; > a(T)}.

To simplify the explanations, we will replace in what follows the notation «(7)

with «, if it does not cause any confusion.

Theorem 5.1.1 Let T ¢ M (), let vector & be defined as follows
Tj=aforje J(a), z;=7; forjeJ\ J(a). (5.4)

Then T is the mazimum element of the set of all solutions of the system

bi(z) forallie IS(a)UI™(a), (5.5)
<7z for all j € J. (5.6)

a;(x)

Proof: Let k € I<(a) be arbitrarily chosen. Then ax(Z) = a < bi(7). Let
us set Ji(o) = {j € J; by; AT; > a}. Then Jy(a) # 0, Ju(a) € J(a).
Note that for any j € Ji(«) both by; > o and 7; > «a. It follows immediately
from the definition of Z (compare (5.4)) that by; A Z; < a forall j € J and
bpj NT; =a forall je Jy(a) so that by(Z) = a. Let us remind that a;(7) = a.
Let p be any index of J such that a,(T) = ax, A T, so that ag, AT, = @ and

we have according to (5.4) agy A Tp = agy ANTp = ax(T) = a if p € J(«), and

52



5.1 Two-Sided (max, min)— Linear Systems of Equations

app N Tp = agp N v = a if j € J(a). Since apj AN T; < ag; ANT; forall je J, we
obtain that ax(Z) = o = by (7).

Let us assume now that k is an arbitrary index of I=(«) so that we have
ap(T) < a and ai(T) = b(T) = fr < a. Let s € J be an index such that
ap(T) = ags NTs. If s & J(a), then T, = Ty (compare (5.4)) and thus ags A Ts =
aps NTs = B

Let us assume now that s € J(a). Then there exists index i € I such that
bis N Ts > « and therefore it must be T, > «. Since we assumed that a(T) =
axs NTs = Br < a, and we have T, > «, it must be ags = fi. Since s € J(«), we
have T, = a > ;. We have therefore a,s A T3 = Sg. Since otherwise for all j € J
the inequality ax; A Z; < ag; AT; < B holds, we obtain ay(z) = fy.

Let us derive now value by(z). We assumed that b,(T) = B < a. Let us
assume that by(Z) = brs A T. Similarly as above, we have bys A T = bys A Ty if
s & J(a). If s € J(a), then similarly as above Ty > a > i, Ts = o > [ and
therefore it must be by, = [, so that by, A Ty = bys A @ = B. Since otherwise
by N T; < bg; ANx; forall j € J, we obtain that by(Z) = [ = ax(Z), i.e. the
equality with index k& € I=(«), which holds at point Z, remains satisfied also at
point Z.

It remains to prove that Z is the maximum element satisfying system (5.5),
(5.6). Let us assume for this purpose that z is any point such that T < z <7,z #
T so that there exists an index r € J such that Z, < x, < Z,. Therefore it must be
r € J(a) and there exists an index 7 € I<(a) such that a(Z) = o < by, Az, < bi(x)
and according to the considerations above a;, = o = a4 A%, = a4 Ax,.. Since this
equality holds for any index r with the property z, < x, < 7, and for the other
indices j € J we have z; = &; = T;, we obtain that ¢;(z) = a;,(Z) = o < b Az, <
b;(z), and therefore = does not satisfy system (5.5), (5.6), which completes the

proof.

O

Summarizing the considerations above, we propose the following procedure to
find the maximum element ™ of set M(z). Using (5.4), we find #, which

is according to Theorem 5.1.1 the maximum element of the set of all solutions
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of system (5.5), (5.6). Therefore, if £ € M(Z), then & = 2™ and we stop.
Otherwise, we use T as the new upper bound and repeat the procedure.

Let us assume that we have changed the notation in such a way that a;(z) <
b;(z) forallie I. and let & ¢ M(T). Let us return to the notation a(x) for any
upper bound 7 and let «(Z) = min,es<(s) a;(Z). Since after possibly changing the
notation such that a;(Z) < b;(z) for all i € I, a(Z) = miner<; a@) > a(T), we
will have I=(a(7)) C I=(a(z)). Since bj; AT; < a(z) forall j € J(a(T)), we
have J(a(Z) N J(a(Z) = 0. Therefore, if we use & as a new upper bound on the
next iteration, we will decrease in (5.4) at least one new variable. Therefore we
will have at most n such iterations.

Besides, since a(z) > «(Z), all already satisfied equations with indices i €
I=(a(7)) U I (a(7)) will remain satisfied in accordance with Theorem 5.1.1. It
follows that in the next iteration with the new upper bound Z after applying
formula (5.4), the already satisfied equations remain satisfied and at least one
new equation with index ¢ € I=(a(Z) will be satisfied. Therefore the number of
iterations does not exceed min(n,m). We will describe now the corresponding

algorithm explicitly step by step.

Algorithm 5.1.1

@ Input I, J, z,%, a;; and b, forall 1€l and jeJ;
If z € M(x), then z™> =7, STOP;

Change of notation such that a;(T) < b;(T) for all i € I,
Find (), I<(a(z)), I=(a(T));

Set T, = a(T) if j € J(a(T)), &; :=T; otherwise;

If & € M(%), then x™ := &, STOP;

[6] Set T := 7, go to|2];
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5.2 Solving Optimization Problems under Two-
Sided (max, min)— Linear Equation Constraints
- an Iteration Method

In this section we consider an optimization problem that is a combination of the
problems solved in Section 4.2 and Section 5.1. In other words, we solve the

following optimization problem

f(a) = max fj(z;) — min (5.7)
je
subject to
I?gf(aij ANxj) = r?g}((bij Nz;), forall iel, (5.8)
z<uxz<T, (5.9)
where z, 7 € R*, I = {1, ..., m}, J = {1, ..., .n}, a;j,b; € R for all

i€l,j e Jare given and f;(x;), j € J are continuous and unimodal functions
on @j . Tj].
We use the notation introduced in Section 5.1. In particular, M denotes the

set of all solutions of (5.8), moreover, we use notation
M(z,7)={zjlr e M & x <x <T}.

We assume that f;(x;), j € J are continuous and unimodal functions on
[z; , 7;] and denote z} = argmin(f;(z;)) ; z; € R so that f; is strictly decreas-
ing on [—oo, ;] and strictly increasing on [z}, 00]. To simplify the explanation,
we will assume that 2} € [z;,7;] forall j € J and set f = f(), fi =
max{ f;(z;) . f;(T;)}

In what follows we will propose an iteration algorithm for solving minimization
problem (5.7), (5.8), (5.9).
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Lemma 5.2.1 Let z < 7, let 2™ be the maximum element of M(Z). Then
M(z,7) # 0 if and only if z < 2™,

Proof: If x < 2™ then 2™ € M(z,7) and thus M(z,7) # 0. If 2 £
™ then M(xz,7) = (), since any element of M(z,T) would have to satisfy
the inequalities z < z < 2™*, which is impossible under the assumption that

T g xmax.

O

Definition 5.2.1 Let z°P* be the optimal solution of problem (5.7), (5.8), (5.9).
An element z(¢) is called an e—approximation of x°* if f(z(e)) — f(2°") < e
and z(e) € M(z, ).

Lemma 5.2.2 Let j € Janda € R. Letusset Vj(«o) = {z; € [z, , T4 ; fi(z;) < a}.

L/ I
Then either Vj(a) = 0 or Vj(a) = [z;(a) , T;(a)], where z,(a) > z;, Tj(a) < T;.

Proof: Since we assumed that functions f;, j € J are continuous and unimodal
and the turning point z7 is contained in interval [z, 7;] , we have argmin(f;(z;)) =

. Therefore if f;(2}) > a, then Vj(a) = 0 and otherwise Vj(a) = [z;(), T;(a)]

is a subinterval of interval [z;, Z;] with the property f;(z;(a)) = f;(7;(a)) = a.

O

Algorithm 5.2.1

Input x, T, € >0, a} := argmin{ f;(z;) ; z; <a; <T;} foralljeJ, f =
f@*), fi=max(f(z), f(2));

Find the mazimum element T of M(T) using the method from [17];
If x £ %, then M(z,7) =), STOP.

f=max(f(z), f(2)), find z(a),7(a);
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5.3 Applications and Numerical Examples

If (f(%) — f) < e, then T is the c-approzimation of the optimal solution,
STOP.

(6] o= f + (F ~ 1)/2. find 2(a), T(a), f == min{f(z): z(0) < z < T(a)};

Find the mazimum element 3V of M(T(a)) using the method from [17];
I 2(0) £ 30, then set f == f(¥(a)), go 106}
[9] Set z:= 2, go to .

5.3 Applications and Numerical Examples

Example 5.3.1

Let us consider a situation, in which transportation means of different size provide
transporting goods from places i € I to one terminal T'. The goods are unloaded
in 7" and the transportation means (possibly with other goods uploaded in T)
have to return to . We assume that the connection between ¢ and 7' is only
possible via one of the places (e.g. cities) j € J the roads between ¢ and j are
one-way roads, and the capacity of the road between i € I and j € J is equal
to a;;. We have to join each place j with T" by a two-way road with a capacity
x; in both directions. The total capacity of the connection between ¢ and T is
therefore equal to maxjec;(a;; A ;).

In the opposite direction, the transport from 71" to ¢ is carried out via other one-
way roads between places j € J and i € I with (in general, different) capacities
between j and ¢ equal to b;;. Since the roads between 7" and j are two-way roads,
the total capacity of the connection between T" and i is equal to mawx ;e (b;; A x;),
for all i € I.

We assume that the transportation means can only pass through some roads with
the capacity which is not smaller than the capacity of the transportation mean
and our task is to choose appropriate capacities z;,j € J. In order that each of
the transportation means may return to ¢, it is natural to require for each 7 that
the maximal attainable capacity of connections between ¢ and 7" via j is equal to
maximal attainable capacity of connections between T' and i on the way back. In

other words, we have to choose x;,j € J in such a way that in the next problems,
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5.3 Applications and Numerical Examples

(see [17]).
r?eajc(aij ANxj) = %13}((6” Nxz;) forall iel.

This system of two-sided (max, min)-linear systems of equations with the same
variable on both sides.
If in a practical problem, we have to join places j with terminal T" by a one-way
road with a capacity x; in direction from places j to terminal 7" and a capacity
y; in direction from terminal 7" to places j. The total capacity of the connection
between i and T is therefore equal to max;es(a;; A z;). The transport from T to
i is carried out via other one-way roads between places j € J and ¢ € I with (in
general, different) capacities between j and 7 equal to b;;. Since the roads between
T and j are one-way roads, the total capacity of the connection between T" and i is
equal to maz ;e (b;; Ay;), for all i € I. We assume that the transportation means
can only pass through some roads with the capacity which is not smaller than
the capacity of the transportation mean and our task is to choose appropriate
capacities x; & y;,j € J. In order that each of the transportation means may
return to ¢, it is natural to require for each ¢ that the maximal attainable capacity
of connections between ¢ and T via j is equal to maximal attainable capacity of
connections between 1" and ¢ on the way back. In other words, we have to choose
zj & y;,7 € J in such a way that in the next problems,

I?G%X(aij Nxj) = I?ea;]}((bij Ny;) ¥V iel. (5.10)
This system with different variables on every side. It is easy to change it to
the system with the same variables on both sides by introducing new variables
z = (x,y) and appropriate sufficiently small coefficients a;; for j > n on the left
side and sufficiently small coefficients b;;, for £ < n on the right side, we obtain

the system
i N\ zj) = bij Nzj) V¥V i€l
Ijnez}?((aj zj) rjnez}g(( i N %) ?
where K = {1, 2, ..., 2n}. This system has the form as system of two-sided

(max, min)-linear systems of equations with the same variable in both sides.
Let us assume further that the choice of z;, y; is connected with penalties

fi(x;), gr(yx) respectively. The penalties may be connected e.g. with some eco-
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5.3 Applications and Numerical Examples

nomic or ecologic requirements (costs, air pollution) so that it is quite natural to
accept that f;, g with j € J, k € K are continuous strictly increasing functions.
The problem of minimizing the maximum penalty under the constraints given by
(5.10) and by some lower and upper bounds on z, y, can be easily transformed
to an optimization problem of the form (5.7), (5.8)), (5.9).

Example 5.3.2
Let us consider the following optimization problem:
minimize

f(@) = max(fi(21), fa(x2), fs(3))

subject to
max(4 A x1,5 A 22,0 A xg) = max(0 A xq1,4 A 2,5 A x3),

r<ur<7T,

where z = (5,3,4), T = (6,6, 6) and functions f;(z;),j € J = {1,2,3} are defined

by formulas

fi(z1) = max(—x; + 21/4, 2, — 21/4),
fo(xe) = max(—zy + 4,29 — 4),
f3(l'3> = (1’3 — 5)2

Thus, x* = (21/4, 4, 5).
In accordance with algorithm 5.2.1 described in Section 5.2, we proceed as

follows
z=(53.4), T=(6,6,6), , 2" = (21/4,4,5), =0, f:=2, e=1/2;
i=17=(6,6,6);
18] <37
F=f@)=2 a:=0+(2 - 0)/2=1, z:=z(a) = (17/4, 3, 4)), T(a) =
(6, 5, 6);

(]
Eg_l\
=
I

_
(@)}

7575);
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]

(VAN
S
=

o= iW;

~

f(@) — f=1> e=1/2;

[~] [oo] [
8| |
i

f@)=1 a=0+(1-0)/2=1/2, z(a) =(19/4, , 7/2, 9/2), z :=
=(23/4, 9/2, 11/2);

~—

(a
#U = (23/4, 9/2, 9/2);

1.

)

S

x < FV oz o=

— )

@) —f=1/2-0=1/2=¢;

T =1(23/4, 9/2, 9/2) is the e-optimal solution, STOP;

(o] [=] [ [

Example 5.3.3

In this example we consider a modification of the above problem - now the penalty
functions are increasing. The problem sounds as follows:

minimize

f(z) = max(2z1, 329, x3)

subject to
max(4 A x1,5 A 22,0 A xg) = max(0 A xq1,4 A 2,5 A x3),

r<ux<T,

where z = (5,3,5), T = (6,6,6). For the modified objective function f the

computation gives a different result shown below.

= (5,3,5), T=(6,6,6), f:=10, f:=18, e =1;

—_
8
|

=
I
]
Il
—~
=2
=z
(@)}
~—

= f(@) =18, fW:=10+ (18 — 10)/2 =14, 2V := (6,14/3,6);

x|

= (6,14/3,14/3);

ISH

€,

(=] [o] [=] [e] [o] [=]
153
VAN
=

1=
A
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7

4

5

[©] [o] [o] [« [&] [¢] [o] [=] [=] [

f=f@EY) =14, =7, go to [4];

f=f(@) =18, fOU =14+ (18 — 14)/2 =16, 7 := (6,16/3,6);
i =(6,16/3,5);

z < 20 7 = 31 =(6,16/3,5);

f@) — f=16—-14=2>¢

f=f@ =16, fY =14+ (16 —14)/2 = 15, 7 := (6,5, 5);

i =(6,5,5);

z < I

f@) — f=15-1d4=1=¢;

Z is the e-optimal solution, STOP;
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6

Optimization Problems under
Two-Sided (max, min)-Linear
Inequality Constraints - a
Threshold Method

We consider optimization problems, the objective function of which is equal to the
maximum of a finite number of continuous and unimodal functions of one variable.
The set of feasible solutions is described by a system of (max, min)—linear (or
using an alternative notation (max, A)—linear) inequalities with variables on both
sides. Let us note that any (max, min)-linear inequality can be transformed to
equation by introducing a slack variable having a sufficiently high upper bound
(e.g. greater than all coefficients of the system) on the appropriate side. Therefore
the algorithm described in Chapter 3 can be used also for solving systems of
(max, min)—linear inequalities. Let us consider the simple example to clarify this

technique.

Example 6.0.4
Consider the system of inequalities

max{b A x1,7 Az, 10 Az} < max{3 Ax1,5Ax2,6Ax3}
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max{9 A x1,8 Axo, 1 Axz} > max{b Az, 1 Az, 2\ w3}
2, <15 Vjej={1,23}

We can replace this system by the following system of equations by introducing

slack variables x4, x5:

max{b A x1,7 Az, 10 Ax3 15 Ay} = max{3 Ax1,5 A 22,6 A x3}

max{9 A x1,8 AN za, 1 Az} = max{bAx,1 Axe,2 Axg15 A x5}
v, <15 Vjej=1{1,234,5}

The mazximum element of the first system is ™ = (15,6,6). The second system
has the mazimum element ™ = (15,6,6,15,9). Let us note that if the upper
bound of x5 were not high enough (e.g. less than 9), then the second inequality
could have not been transformed to equality by an appropriate choice of the value
x5 and we would have to choose x1 < 15 and the two systems would not be

equivalent.

The transformation of systems of (max, min)-linear inequalities to equivalent sys-
tems of (max, min)-linear equations shows that the systems of inequalities have

similar properties like systems of equations:

(1) If no lower bound and a finite upper bound on variables is given, the sys-
tem is always solvable and the set of solutions of the inequality system has the

max.

unique finite maximum element x™*;

(2) If x is a finite lower bound of the variables, then the system of inequalities

max

is solvable if and only if x < x

Let us note that if we have variables x on the left hand sides and different
variables y on the right hand sides, the system can be processed like the one-sided
system as in the first Chapter. Including lower and upper bounds on x, ¥ is only

a technical problem.
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6.1 Systems of Two-Sided (max, min)— Linear Inequality

The practical application of the problem that will be presented in this chapter,
it will be like the problem that was presented such as Example 5.3.1 in the pre-
vious section with a simple change so that we will choose appropriate capacities
xj,j € J. In order that each of the transportation means may return to i, we
may e.g. require for each ¢ that the maximal attainable capacity of connections
between i and T via j is greater than or equal to maximal attainable capacity of
connections between 7" and ¢ on the way back. In other words, we have to choose

x;,j € J, which satisfy relation (6.1) below.

In what follows, assume that we have the same variables on the left hand sides

and right hand sides of the inequality system.

6.1 Systems of Two-Sided (max, min)— Linear In-
equality
Let us consider the following system of inequalities:
a;(z) > bi(x),i €1, (6.1)

where similarly as in the preceding section a;(z) = max;es(a;; A z;), bi(z) =
max;e (b Ax;), and a;;, bij € R, i € I, j € J be given numbers. Let M= denote
the set of all solutions of system (6.1). We will set for any z,y € R" : 2 <y &
r; <y; Vj€J. Let us set

M=(2,7)={z; € M* & 2z <2 <7}

for any finite z < 7 and let x™* denote the maximum element of M=(z, 7). So
that M=(z,7) C M=, and M=(z,z™>) C M=, also it is clear MZ=(x, 2™>) C
M=(z,T).
To prove MZ(z,7) C M=(z, 2™%) there are two cases: the first one, if T ¢ M= |
then 2™* < T . Therefore V x € M=(z,7) , the inequality x < 2™ verified,
ie. x; <oV e andif z* € (2 7], (ie. 2™ < 2" <7, e

i < g% <y, foratleast one jo € J and 2™ < <7; for j € J&j # jo)
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6.1 Systems of Two-Sided (max, min)— Linear Inequality

then z* ¢ M= | otherwise z* is the maximum element of MZ=(z,Z) , but this
contradicts the hypothesis 2™ is the maximum element of MZ=(z,Z). So
that for any = € M=(z,7), we have z < 2™ and z € MZ(x, ™),
then M=(z,7) C M=(z,x™>). The second case, if T € M= | then 7™ =T,
M=(z,7) C M=(z, 2™*). Then we have

M= (z, ™) = M=(z,T) C M=.

In this section we will propose an algorithm, which find the maximum ele-
ment of the set M=(xz,T), and calculates the maximum solution of system (6.1),
take in account x < x < 7. Note that, since any equation can be replaced by
two inequalities, therefor we can use the next algorithm to find the maximum
element of the set M=(x,7), which is the set of all solutions of a system of equa-
tions, (a;(z) = bi(x),7 € I). So that we will adjust the algorithm for systems of
equations described chapter 5, which find the maximum element of the set M=.
This can be done simply by leaving out step | 3 | of the algorithm in the preceding
chapter and make little change in that algorithm. We will provide this algorithm

after adjusted as the following:

Algorithm 6.1.1 We will provide algorithm, which find the maximum element
of the set of all solutions of system (6.1) with the boundary conditions x < x < T.

@ Input I, J, @, a;j and b;; for allt € I and j € J.

Find I<(Z)={i €I ; a;(Z) < bs(T)}.

If I<(T) = 0, then 2™ :=%, STOP.

Find o(T) = miner< (7 a;(T).

Find I<(a(7)) = {i € I<(Z) ; a:(T) = a(T)}.

Find HS (@) = {j € J ;bi; AT; > a(T)}, Vi€ I<(a(T)).
6] Set H=(T) := Use 1< () Hi (@)

Set T; := a(T) for all j € H<(T) go to[1].
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6.1 Systems of Two-Sided (max, min)— Linear Inequality

We will illustrate the performance of this algorithm by the following small

numerical example.

Example 6.1.1
Let J ={1,2,3,4}, I = {1,2,3}, T = (10, 10, 10, 10), and consider system (6.1)
of inequalities where a;; & b;; YV i €1 and j € J are given by the matrices A

and B as follows:

7 5 3 0 6 13 10 -1
A=14 3 1 2|, B=|8 0 3 1
10 20 10 -1 1 1 1 =8

By substitution for these values in system (6.1) and using Algorithm (6.1.1):
Iteration 1:

1<) = {12},

I<(@) # 0.

o(T) = min(7,4) = 4.

I<(a(@)) = {2}.

(5] H5 (@) = {1},

(6] B<(@) = {1}.

T =4, T = (4,10,10,10) go to[1].
Iteration 2:

1<) = {1}.

I<(z) #0.

o(T) = 5.

I=(e()) = {1}

H(7) ={2,3}.

[6] H=(z) = {2,3}.

@ =575 =5, T=(4,5,5,10) go to[1].
Iteration 3:

I<(T) = 0, then 2™ = (4,5,5,10) STOP.

In the next part of this section we will introduce a method which finds the
minimum upper bound # for solution of system (6.1) such that £ > z. In other
words Z has the following properties:

(1) & € M=(z, 2™>)
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6.1 Systems of Two-Sided (max, min)— Linear Inequality

(2) If x < 7,z # 7, then there exists z* € M=(x, ™) such that z* £ 7.
It will be clear that & € M=(x,2™) and this element is suitable to find the

optimal solution of the minimization problem as we will see in the next section.

Let us set T35, i € I, j € J be defined as follows:
Tij =A{xj ;05 < aj™& ag Ny > bi(z) V oz}, Viel, je

Note that if i), iy are two different indices of I, j € J, and by, (z) V z; <
by (x) V x;, then evidently T;,; C T;,;. It follows that for any subset of 7 indices
of I, there exists such permutation 7y, ,..., 7, of these indices that the inclusions
T,; € Ti,; € ... CT;,; hold so that (,_, Ti,; = Ti;-

The sets T;; have the following properties:
T #0 < a;; > bi(z) vV,

Ty #0 = T = [biz) vV, , i,

J

Since we assumed that x < 2™ set M=(z,z™%) is nonempty. Let us note

that for any x € M=(z, 2™>) and any i € I, the inequalities

bi(x) > bi(z) & vy >, Vjed

hold and further there exists for each ¢ € I an index j(i) € J such that
Tiji) # 0 (otherwise set M=(z,z™™) would be empty, because we would have
aij < bi(z) Vz; Vj € J and therefore a;(z) < bj(z) for any x € R" and
we have z < 2™ so that M=(z,2™>) # ()). Let us note further, that if
a;j ANz; < bi(g)\/% Vj € J, then we have a;(z) < b;(z) and thus x ¢ M= (x, 2™).
If for some fixed j € J the inequalities a;; < bi(z) V z; hold , then a;; A z; <
bi(z) Vz; V x; € R so that Tj; = () and x; will never be "active” in a;(z) or b;(x)
if v € M= (i.e. it will never determine the values of a;(z) or b;(z)). Therefore we

will exclude such variables from our considerations and assume that

Viel 3 j(i)eJ aya > bi(z)Vr;
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6.1 Systems of Two-Sided (max, min)— Linear Inequality

In such a case we have either a;;;y > b;(z) > T 0T Qg > T; > b; (x). Assume that
for each j € J there exists at least one "row” index i € I such that a;; > bi(z)Vz;.
Let us choose for each i € I an index j(i) € J such that Tj;;) # 0. Let us set
Vj, j € J be defined as follows:

Vi ={iel;a; > bi(x) V&j}y

in other way V; = {i € I ; j(i) = j}. It means that V; is the set of those row
indices 7 € I, for which nonempty set 7;; was chosen in column j € J. Note that

some of the sets V; may be empty and further

-

jeJ

and

Q Tij = [gé%/i((bk (@)) vV x;, x;nax]’

where we set the maximum equal to —oo if V; = ). Let us denote maxyey, (bi(z)) =

br(j)(x). Let a vector Z will be defined as follows:
T = Iknee‘t/:jc(bk(g)) Vi = by(z) Ve Vije (6.2)
so that if V; = 0, then 7; = z;.
The element Z defined by (6.2) has the following properties:
(1) M=(z,2) #0, & 7 € M>(z, ).
(2) e M2(z,7) =2 < EL T

(3) There may exist elements n € M=(x, ) such that n # 7.

If 7 is the minimum element of M= (x, 2™%), then it would be & € M= (xz, z™X)
and for any z € M= (z, ™) = x > &. Therefore, because of the property (3) Z
is not the minimum element of M= (z, z™%), but we can say that Z is the min-
imum upper bound of M=(z,x™*) such that M=(xz,7) # 0. Let us choose 7 <
pU &7 A M and ¥ € M2 (x,7) = & < 2™ and a;(%) > b;(Z) Vi € I and
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z <& <7. Let H={a™(r) | 2™(7) is the mazimum element of M=(z,7)},

then Z is the minimum element of H.

Theorem 6.1.1
Let 7 be defined as in (6.2). Then & € M=(x,x™).

Proof:
Since evidently & > z, we have to prove that only a;(Z) > b;(z), Vi € 1.
Let ¢ € I be arbitrarily chosen. We have

i(%) = max(bi; A Z;) = max(bi; A (max(by(z) V 2;))) = max(bij A (b (2) V 25))

Let us assume that
bi(7) = Djﬁlg]X(bij AN T5) = bijay N T
so that

bi(Z) = br(jan (T) V 25

Since in this case i € Vj(;), we have a;;;) > ;) and we obtain

ai(T) = aiji) N Tja) = Ty = bijy A Ti) = 0i(T).
Since ¢ € I was arbitrarily chosen, the theorem is proved.

O

We will clarify the previous discussion about the properties of Z through the

following simple example.

Example 6.1.2

Let J ={1,2,...,6}, I = {1,2}, z = (3,5,1,2,9,9) and consider system (6.1)
of inequalities where a;; & by; V¥V i€ 1 and j € J are given by the matrices A
and B as follows:

A —-100 —-100 10 20 —-10 -20
=50 =50 100 200 —30 —40
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6.1 Systems of Two-Sided (max, min)— Linear Inequality

and
5o (7 50 —10 —20 —30 —40
8 9 —-15 =25 10 11
By substitution for these values in system (6.1) we have

ai(z) = max(ay; Ag;) =2, bi(e) = max (by; Ag;) =5

ay(z) = max(ag; Ag;) =2, bo(z) = max(by Agy) =9

therefore x ¢ M=(z, z™>), and

Vi=Vo=0,Va={1,2},V, ={1,2}, V5 = V5 = 0.

We will find & as follows:

Ty =a,=3, & Ty =2, =5 & T3 = maxj<;<2(bi(z)) V23 = max(5,9) V1=9
and similarly 24 =9, farther T5 = 1, =9, & T =24 =9,

i.e = (3,5,9,9,9,9) and we have:

so that T € M= (z, z™). let us choose & = (3,5,1,9,9,9) < T and £ # T also we
have

a1(§) =9 & bi(§) =5
az(§) =9 & by(€) =9

then & € M= (z, ™). Therefore @ because of the property (3) is not the minimum

element of M= (x, z™), but it is the minimum upper bound of M= (z, x™).

Element # defined by (6.2) shows that the given lower bound z might not be
an element of M= (x, 2™*). Moreover we obtained an explicit dependence of Z on
the given lower bound z (compare (6.2)), which can be used for sensitivity anal-
ysis of the set M=(xz,T) or for a post optimal analysis of optimization problems,
the set of feasible solutions of which is equal to M=(z, ™). The properties of

Z enable us to solve some of the optimization problems mentioned above explicitly.
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Inequality Constraints

6.2 Optimization Problems under Two-Sided (max,

min)-Linear Inequality Constraints

In this section we consider an optimization problem that is a combination of
the problems solved in the above chapters but with a different feasible set. In
other words, let us consider for instance the optimization problem:

f(z) = max f;(z;) — min (6.3)

subject to
v € M= (z, 2™™),

where f;, j € J are increasing functions. Let indices j(i) € J will be chosen for
each ¢ € I such that

. (1) —
1}161}1 fj(xj ) = fit(@j@),

where
(@) = min f(x;).

IjETij

Let & be defined as in (6.2) and then we have to proceed as follows:

@ if Qi < bi(@),
Tz‘j = ¢ bi(z) if Qjj > bi(z),

[gj,i] if Aij = b”

Let us set f; (f;l)) =min, .7 fi(x;), (if Tij = (), we set minimum equal to +00).
Let us set
; ~(0)y ~ (i)
Ifelyfj(xj ) = fj(i)(xj(i))'
And R; = {i € I| j(i) =3}, Vj € J, (it may be R; = () for some j). Then we
have

(@) = max fi(z})),
1€ERy

if R, # 0, but when Ry, = 0, we set

fe(@') = filzy).
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Inequality Constraints

The proof can be carried out in the same way as in the one sided case in
Chapter 3. Direct exact solving of such optimization problems as well as their
sensitivity and parametric analysis are beyond the scope of this chapter and will
be the subject of further research. It is not necessary to pressed this algorithm
in the next section explicitly. It remains to say that we use the same method as

max

for equation constraints in the above chapter, only ™ is the maximum element
of M=(z,T), (instead of the the maximum element of M= (z,7)).

We mentioned above that a system of inequalities can be transformed to
a system of equations by making use of slack variables. Let us note that the
other way round, systems of equations considered can be solved alternatively by
the methods in this section, if we replace the equation system by the system of

inequalities of the form

a;(z) > bi(x), i€l
b(x) > az), i€ T

In concrete terms, we will describe now the corresponding algorithm explicitly

step by step.

Algorithm 6.2.1 We will provide algorithm, which summarizes the above dis-

cussion and finds the optimal solution z°P* of problem (6.3).

@ IHPUt m,n,x,T, A7Ba f(.I)

Find 2™ € M=(z, 7).

If @ & 2™ then M=(z,7) =0, STOP.

Vie={i€l; ay>bi(z)Va} Vje

xy) = (bi(z) V ;) VieVj foralljeJ such that Vi # 0.
Set :T:j = maxzevj(w;')) va; 75 @, .fj = Qj Zf‘/; = @

6] Q:={keJ; f(&)=ful@n)}, P:={jcJ; &=z}
If QNP #0, then set z°P' := 1, STOP.
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(8] Po={iel; fr=a} VkeqQ.
(9] Vi = Vi \ P VE € Q.
[20] If U,e, Vi = 1, go to[4]

Set x°"" := &, STOP.

We will illustrate the performance of this algorithm by the following numerical

examples.

Example 6.2.1
Let J ={1,2,...,5}, I ={1,2,3}, T = (10, 10, 10, 10, 10), z = (0,3,0,0,1) and
consider system (6.1) of inequalities where a;; & by; ¥ i€ I and j € J are

given by the matrices A and B as follows:

-10 10 15 -9 -8 7 2 =10 =20 6
A= 5 -8 10 20 71|, B=|8 9 —15 =255
3 4 —-18 19 11 13 =17 12 10 9

and consider the objective function
f(l') - max(xl, XTo — 3a €3, $4,$5)~

By substitution for these values in system (6.1) and using algorithm (6.1.1) we
have:

al(f) == 1I£1]3J<)(5(a1j A fj) =10 s bl(f) == 1r£1]z:m<><5(b1] VAN fj) =7

ag(f) == 1r£1ja<x5(a2j N fj) =10 s bz(f) == 1I£1ja<X5(b2J N fj) =9
a3(7) = max (ag; ATj) =10, b3(T) = max (by; A T;) = 10

Then ™ =7 = (10, 10, 10, 10, 10), therefore x < 2™, and
by using the algorithm ( 6.2.1) we have

™ =7 = (10, 10, 10, 10, 10).

T S pax.
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Vi= {2}7 Vo = {1a3}av3 = {172}7‘/21 = {273}7‘/5 = {2?3}'

:c(ll) = 2, xél) = 3, ajgl) = 2, a:fll) = 2, xél) = 2, x&g) = 3, 3352) =
3, xz(f) =3, 3:4(12) =3, xéz) =3, 3:53) =1, xf) =3, J:z(;’) =1, :1:4(5’) =

1, 29 =1.
i=(3,3,2,3,3).
6] Q={1,4,5},,f(&) =3, P={2} then QNP =0,
P ={2}, P,=1{1,2,3}, Py = {1}, P, = {2}, P = {2}.
9] Vi=0, Va=0,V5 = {2}, Vi = {3}, V5 = {3}.
Ujes Vi = {23y # .
z" = &, STOP.

Then z°Pt = (3, 3,2, 3, 3) is the optimal solution of the set M=(z, %) and f (z°P') =
max (3,0,2,3,3), then the objective function is equal to 3.

Example 6.2.2
Let J ={1,2,...,5}, I ={1,2,...,6}, T = (20,20, 20,20,20), z = (0,3,0,0,0)
and consider system (6.1) of inequalities where a;; & by; ¥V i€l and j € J

are given by the matrices A and B as follows:

2 2 6 0 13 0O 10 9 -1 5

§ 11 10 7 7 3 -3 1 -6 -7
e 4 3 0 13 8 . B- 4 -8 2 —-14 11

14 3 3 13 2 4 -7 7 =3 4

1 3 13 4 2 6 -8 12 2

12 15 7 3 14 0 -1 2 -3 5

and consider the objective function
f(x) = mazjes (fi(z;),

where f;(z;) = cjx;+d;, c=(6,3,7,3,7) and d = (10,0,5,1,7). By substitution

for these values in system (6.1) and using we have:
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al(f) = 11"£1ja<x5(a1j /\fj) =13 N bl(f) = 1I£l]a<X5(b1] /\f]) =10

as(T) = 1@}55(@2]' ANT;) =11, by(T) = fgj%(b% ANT;) =3

ag(f) = 1127_8,<X5(CL3J‘ /\EJ) =13 s bg(f) = 1<]a<X5(b3j /\fj) =11

ay(T) = 1r£1]a<x5(a4j ANTj) =14 | by(T) = lrgja<x5(b4j ANT;) =14

a5(f) = 11'2]&2%(@@ /\fj) =13 s b5(j) = 11'2]82(5(65] /\Ej) =12

ag(T) = 1I£1]a<x5(a6j ANT;) =15, be(T) = 112?2(5(663' ANT;) =5

Then x™> =T = (20,20, 20,20,20), therefore z < a™**, and by using the
algorithm ( 6.2.1) we have:

™ =7 = (20, 20, 20, 20, 20).

£ < gmex,

Vi=1{2,3,4,5,6}, Vo ={2,6}, Vs ={1,2,4,5,6},

Vi={2,3,4,5,6},V5 = {1,2,3,4,5,6}.

find 7.

i=1(0,3,3,0,3).

6] Q={5}, f(Z) =28, P={1,2,4} then QN P = .
Ujes Vi ={1,2,3,4,5,6} = I go to.

find 27,

i =(0,3,3,0,0).

(6] @ ={3}, f(&) =26, P={1,2,4,5} then QN P = 0.
Ujes Vi = {1,2,4,5,6} # I.

z" =7, STOP.

Then z°" = (0, 3, 3,0,0) is the optimal solution of the set M=(z,T) and f (z°P') =
max (10,9,26,1,7), then the objective function is equal to 26.
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7

Optimization Problems on
Attainable Sets of Systems of

(max, min)-Linear Equations

In preceding sections we studied systems of (max, min)— linear equations and
inequalities and optimization problems under constraints described by such sys-
tems. The first question which has to be raised before solving such problems is
the solvability of given system of equations and inequalities. If the system has a
solution, we can continue and find a special solution of such system (e.g. maxi-
mum solution, optimal solution etc...). the question, which arises in connection
with practical applications is what to do if the given system of equations and
inequalities has no solution. The possible practical applications of such problems
mentioned in the examples above in the preceding chapters show that in case that
the system has no solution, we will have to modify the original system (i.e. to
modify its input coefficients ) in such a way that the new problem has a solution.
In such a situation it is natural to try to modify the problems in such a way that
the original aims of the given system ( e.g. bounds on costs or arrival times)
will be violated as little as possible. In this section we propose an approach
to solving some of such problems in connection with one - sided (max, min)—
linear equation systems. Let us note that problems, the original formulation of
which has no solution were called sometimes in the literature ”incorrectly posed

problems” ( see e.g. I. I. Eremin et al. [13] ). The results in the literature concen-
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trate on mostly incorrectly posed linear and convex optimization problems. This
chapter can therefore be understood as a contribution to this part of operations
research applied to problems, in which (max, min)— linear systems occur. Such
problems are neither linear or convex in usual algebraic sense. One such problem
for (max, +)— linear equation system was considered using a different approach
in [20]. Unlike to the results of [20], our purpose in this section is to present an

approach to incorrectly posed (max, min)— linear one-sided equation systems.

7.1 Notations, Problem Formulation - Case (max, min)

Let us introduce the following notations:

I=A12,....m}, J=A{1,2,....,n}. Let A be a matrix with finite elements
a;; € R=(—00,+00), V i€l, je J, let a A =min(a, ) for any o, 5 € R.
Vector A@x € R™ for # = (21,...,7,)7 € R" will be defined as follows:

(A®zx), = njgg}x(aij Nz;) Viel.

The system of (max, min)-linear equations with right-hand side b € R™ is an

equation system of the following form:
A®x =0b.
The set of all solutions of the system will be denoted M (b), i.e.

M) ={zx € R"; A®x =b}.

Definition 7.1.1
Set
R(A)={be R™; 3 x € R" such that A® z = b}

1s called attainable set of matriz A.

In what follows we will solve the following optimization problem:
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7.2 Properties of Attainable Sets and Analysis of PROBLEM I

PROBLEM 1.
Minimize
] -
subject to
be R(A)

The optimal solution of PROBLEM I will be denoted 0°?!. Let us note that if

b e R(A), it is evidently b%" = b. Therefore we will assume in what follows that

b & R(A).

7.2 Properties of Attainable Sets and Analysis
of PROBLEM 1

In this section we will study in more detail some properties of attainable sets and
analysis of PROBLEM 1.

Lemma 7.2.1
Set R(A) has the mazimum element, i.e. an element b™ € R(A) such that
b<bvm™ V be R(A).

Proof:
Let «; = maxjeya;; Vi € I . Let x € R"™ be arbitrarily chosen. Then
a;j Nx; < a;; forall 1€ J, jeJ. Therefore for any ¢ € I we obtain that

max(a;; A\ x;) = maxa;; = Q.
jEJ( 1] ]) jed ] 1

Therefore if we set b = «; V ¢ € I, then 0™ € R(A), since e.g. if & € R"

R max
= b

and Z; > max;er oy we have maxjes(a; A Zj) = oy . For an arbitrary

be R(A) there exists x € R" such that b=A®zr < A® T = b™, so that

b™?* is the maximum element of R(A), which completes the proof.
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Lemma 7.2.2
Let be R™, I7 ={ie€l;ay>0b} ¥V jeJ. Let M(b)={r € R"; A®x = b}
be nonempty. Let vector x(b) € R™ be defined as follows:

xj(b):g}gbi vV ojedJifI; #0.

We set the minimum equal to infinity if I7 = 0. Then x(b) is the mavimum
element of set M(b).

Proof:
Let us note that if z € M(b), then it must be a;; Ax; < b; foralli e I, j € J.
Therefore it must be z < z(b) Va € M(b) so that x(b) is the upper bound for
elements of M (b). It remains to prove that if set M (b) is nonempty it must be
z(b) € M(b).
Let us set

Si(x;)={kel; ajNz;j=0b} Vje

If I # 0, then

Sj(ib'](b» = {k’ el; ili'j(b) =b, = mm(bl)}

iel?
If I7 =0, then z;(b) = oo and
Sj(x;(b)) ={k € I; ar; = b}.
We will show further that

x(b) € M(b) <= | JS;(z;(0) =1.
jeJ
Really if J;c; Sj(7;(b)) = I and p € I is arbitrary, then there exists index
J(p) € J such that p € Sjp) (24 (b)) and therefore ay; A x;(b) < b, for all j € J
and ayj(p) A Tj(p) (D) = by, so that max;es(ay; A x;(b)) = b,. Since p was arbitrary,
we obtain that 2(b) € M(b). To prove the opposite implication let us assume that
Ujcs Si(w;(b)) # I so that there exists index 4o € I such that io & (J;c; S;(2;(b))
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and therefore a; ; A z;(b) # b;, Vj € J and therefore max;e (a;; A z;(b)) # b,
and thus x(b) & M (D).

Let us note that if z; < x;(b) for any j € J, then S;(z;) C S;(z;(b)). Therefore
if Uje;8i(x;(b)) C I, then for any z < x(b) we have

U Sitz) < U Sila;0) € 1

jedJ jeJ

and thus M (b) = (), since all elements of M (b) must satisfy the inequality z <
xz(b) if x 7>é x(b), © € M(b). It follows that

M®) £0 < x(b) € M(b).

In other words if M (b) # ), then x(b) € M(b) and x < x(b) for all x € M(b), so

that 2(b) in the maximum element of M (b), what was to be proved.

O

Lemma 7.2.3
Let ™ be the mazimum element of R(A), b € R™ such that l;p > by for some
p € 1, b an arbitrary element of R(A). Then

by| >

max 7
pmex 5, |

b, —

Proof:
Since b™* is the maximum element of R(A), and b, > by, the following in-
equalities hold for any b € R(A) :

by < b2 < by,

It follows that b, — l;p < bglax — l;p <0 so that we obtain

by — by| > (b7 — b, |

O

~

As a consequence of Lemma 7.2.3 we obtain that if b > 0 (le. by >
b Vs € ) then bPF = pmax,
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Example 7.2.1
Let m=n =3, b= (8,8,8)7,

o

I
- e w
- e e
wW O Ot

In this case b™™> = (5,6, 7)1 < b= (8,8,8)T. Taking into account Lemma 7.2.3,
we obtain that the optimal solution of PROBLEM 1 is equal to b™**. The op-
timal value of the objective function of PROBLEM 1 is therefore Hbma" — EH =
max(3,2,1) = 3.

7.3 Algorithm - A Parametric Version

In what follows we will replace PROBLEM 1 with the following parametric op-

timization problem:

PROBLEM II
Minimize ¢
subject to Hb - lSH <t, be R(A)

~

b — by

this problem is equivalent to the next problem:

where Hb — ?)H = maX;ecs

PROBLEM III

Minimize t

subject to by —t < max;es(a; A x;j) < b; + t, Viel.

Let M(t) denote the set of feasible solutions of PROBLEM II. We have then
M@#)={z; bj—t<z; <b+t Viel}

And let us set for all ¢ €1, j € J.

Ty(t) = {a; | bi—t < ag; Ay < b+ 1t} (7.1)
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Note that maxje(a;; Ax;j) < b;+t, V i€ I, implies that for each fixed j € .J
itis ajjANw; < b, +t, V i€, sothat for each fixed j € J and t it must be

Z; < .I‘J(b + t) = miniefj(t)(bi + t) (72)

where  [;(t) = {i € I | a;; > b; +t}, and we set the minimum equal to infinity
if If(t) = (. Let us note that if a;; > bi +tie t< a;; — bi, then b; + t is the
upper bound for z; € T;;(t) and if ¢ > a;; — b;, then a;; < b; + ¢ so that also
aij Nxy < b+t and b; + ¢t is no more an upper bound for z;, i.e. the upper bound
for x; is higher. Let us note further that if 7;;(¢) # 0, then it must be fulfilled
two inequalities

ag; > b —t and b, —t < x;(b; +1) (7.3)

If either a;; < bi—t or bi—t> z;(b; +t), then Tj;(t) is empty.
We will find minimum value of ¢, for which the inequalities of (7.3) hold. The

minimum value of ¢, for which a;; > b; —t holds is evidently
m _ 7
Tij = bz‘ - CLij.

To define the minimal value of t, for which b; — ¢ < x;(b; +t) holds, we will
investigate xj(l;z + 1) as a function of ¢. We have for any fixed j € J and
t>0 :

2;(b+t) = min (b; +t) = by +t, (7.4)

where we set x;(b+t) = co, if I;(t) = 0. Note that z;(b+1t) = co, for all

t > max;er(a;; —b;). We will consider therefore only values ¢ < max;es(a;; —b;).

Let us set

~

" 2 1
1= {1 maxtasy — b) =y~ b = "},

(2) — 7 7 (2)
;7 = {k | kma>({1)(aij —b) =ap — b, = ; } ,
eI\I].

(3) _ TN P 3
;" = k | . max (aij —b;) = agj — by = o 5,
en(aMur)
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I(p) {k! max (aij—l;)—akj—bk—oz(p)},

ken\UpZt 14

where I\Uzlllj(h);é@, and (J)_ 1[(h)—I Values ozp) h=1--,p

J Y
are therefore different values, which occur in the set a;; — bl, 1 € I and holds

(1) > ozg Vs> oz;p ), 1 < p < m. The following numerical example enlightens

the definition of I](k)7 k=1,..,p

Example 7.3.1

Let m = 5, (alj,agj,agj,a4],a5]) (5 8,8,16,20)7, b = (3,5,5,12,14)

so that (ay; — bl,agj bg,agj b3,a4] b47a5] b5) =(2,3,3,4,6)T, and we

obtain p =4 and ](1 = {5}, with a(l) = 06, ;2) = {4}, with af) =4
3) ={2,3}, with qj ® _ =3 I 4 = = {1}, with a(4) = 2.

Having determined values a§1), a§2), cee (p ) , we can find explicitly 7;(¢) in

dependence of t :

Now we can find the explicit form of fc](l; +1t) as a function of ¢ :

zj(b+t) =00 where t> a§-1)

?

~

zj(b+1t) = mmiefj(t)gi +t= l;k(j,t) +1 where a;z) <t< ag.l),

and  k(j,t) € ]j(l)
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zi(b+1) = miniGIj(t)I;i +t= l;k(j,t) +t  where a§-3) <t< 045-2),

and  k(j,t) e I,V UI®

2;(b+1t) = minier,mbi +t = by +t  where a§p) <t< ozg-p*l),
p—1
and  k(j,t) € U I](h)
h=1

xj(l; +1) = minielj(t)gi +1= Bkm) 4+t where 0<t< ag.p),

P
and  k(j,t) € U I](h) =1
h=1

Example 7.3.1 (continued)
Let us find 7,;(t) and z;(b+t) for the numerical data of this example, we obtain

Lit)y={5}, a;(b+t)=14+t if 4<t<6,

L(t)={4,5}, a;(b+t)=12+t if 3<t<4,

L(t)=1{2,3,4,5}, z;(b+t)=5+1t if 2<t<3,
Lt)={1,2,3,4,5} =1, xz;(b+t)=3+t if 0<t<2

It follows that a;(b+1) is for each j € J a strictly increasing, partially continu-
ous function of ¢ with at most m discontinuity points, in which it is continuous

from above). Graph of z;(b+t) is as Figure 6.1,
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20 4 /
18

16 ./®

10

0 1 2 3 4 5 6
Figure 6.1: Graph of z;(b+t)

The explicit expression of l’j(?) + ¢) makes possible to find Ti(jQ) such that
b; — Ti(]»Q) < (b + Ti(f)) and b —t > z;(b+1) if ¢ < Ti(jz) . In detail the
following ideas as Figure 6.2 a , b:

Possibility (1) as in Figure 6.2 a: in this case b; — Ti(f) = z;(b+ Ti(f)) .
Possibility (2) as in Figure 6.2 b: in this case b — 77 < (b + Ti(jz)) and

]
bi—t>a;(b+t) if t <7,
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>

0 Ti(]g)

L 4
~

Figure 6.2 b: Graph of xj(l; +1) and b; —t

>

b_t\./@

/>\

0 ey

ij

Figure 6.2 b: Graph of z;(b+t) and b; —t

Let us set

(1 (2))

7,5 = max (7, T

iy 0 g

86



7.3 Algorithm - A Parametric Version

Since we obtained that
T;;(t) #0 if and only if t > 7.

In other words 7;; is the optimal solution of the minimization problem
Minimize ¢  subject to  T;;(t) # 0.

Note that it follows from Lemma 3.1.4 of chapter 2 that for any fixed t ,
M(t) #0 if and only if Vi e I 3 j(i) € J such that Tj;)(t) # 0 (7.5)

Which leads us to provide the next lemma.

Lemma 7.3.1 Let us set I7 = {i € I ; a;; > b+ 1}, Ty(t) ={z;; b —t <
a;; A\ x; < ming > b+t = I;k(j) +t} foranyi € I,j€ J. Then
J

M) #£0 < Viel3 ) e,

such that

where we set lA7+t:(lA)1+t7-u ,Bm+t),

Proof:

Let t be arbitrary and fixed. Since according to Lemma 7.2.2 2(b+t) is the
maximum element of set M , then M(t) # (0 if and only if z; < a;(b+1)V z; €
T;;(t) or in other words the upper bound of T;;(¢) must not be violated if z
isin M(t) . Let us assume know that x € M(¢) and at the same time there
exists index k € I such that Ty;(t) =0 ¥V j € J. Since z € M(t) , it
must be z; < x;(b+1t) forall j € J and therefore if Ti;(t) V j € J is
empty, we have ay; A x; < by —t VY j € J and therefore max;c;(ar; A z;) <
by —t and = & M(t), which is a cotradiction. To prove the oppsite assertion, we
assume that for each ¢ € I, there exists at least one index j(i) € J such that
Ty (t) # 0 and @ < x(b+t). We will prove that M (t) # 0. In this case it is e.g.
max;e;(ai; Axj(b+1)) > b;—t. Since z(b+1) evidently satisfies the upper bound
condition z; < x(b+1), we obtain that z(b+t) € M(t) and thus M(t) # 0, which

completes the proof.
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As a consequeance of (7.5) and lemma 7.3.1 we obtain:

M(t) # 0 if and only if ¢ > 7 = max;e; minje; 75

Therefore the necessary and sufficient condition of Lemma 7.3.1 will be satisfied
for t > max;e; minjey 7;5. Therefore the optimal solution t* of PROBLEM II
is

P! = max min Tij-
el jeJ

We will illustrate the theoretical result by a small numerical example.

Example 7.3.2
Letm=n=3,b=(0,1,1)7,

o

I
- o w
S -
w O Ot

In this case b™> = (5,6,7) and

min ey 74, = min(0,0,0) = 0,

minje; 7; = min(1/2,1/2,1/2) =1/2,

min ey 73; = min(1/2,1/2,1/2) =1/2,

s0 that t°P" = max;e; minjey 7;; = max(0,1/2,1/2) = 1/2 and the optimal solution
of PROBLEM I is: b"' = A® (0,1/2,1/2)T = (1/2,1/2,1/2)T. Note that since
for @ = (1/2,1/2,1/2)7 we have A ® & = b, we obtain that bP' € R(A).
The optimal value of the objective function of PROBLEM T is ||b°P" — ISH =
max(1/2,1/2,1/2) = 1/2

In the next section, we will propose an algorithm for solving PROBLEM 1.

7.4 The Algorithm - Case (max, min) - Threshold

Version.

Let us introduce the following notations (we assume that b € R(A), b & R(A), i €

1):
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HY(b)={i€l; b>b}, H (b)=1I\H"(b),

Let us define  z(b) € R™ as follows:

minielf bi, Zf .[]> 7é @7
#;(b) = { maxer= by, if I; #0 and I7 =0,
%) otherwise,

we set I7 = {i € I ; aj; > b} VjeJ, Iy ={ie€l;a;=>0b} Vje
J such that I; = .
Let us set further

Gi(b) ={h € J; ain Niy(b) = meajc(aij ANz(0))},
J

P(b) = {Z el ; apN i‘h(b) = i‘h(b) Vh € Gl(b)}

We will call terms a;, A 2, (b) in the definition of G;(b) “active terms of G;(b)”.
If ip € P(b), then all active terms of G;,(b) are equal to &;,(b), or in other words
aion N Tp(b) = @1(b), which means that a;,, > @, (b) Vh € Gy, ().

bi — b;

Fr(b) ={k € H*(b) N P(D) ; 12

b, — bk‘ = max
icl

F=(b) ={k € H™(0) N P(b) ; bi — b},

The main idea of the proposed algorithm is that we will begin the calculations

b, — bk‘ = max
icl

with the mazimum element 0™ and will try to decrease the value of the objective
function of PROBLEM 1. by decreasing components of b in such a way that we
stay within attainable set R(A). We will assume I7 #0 forall j € J to avoid
infinite components of z(b). Let

éE U Gk(g)

Algorithm 7.4.1

89



7.4 The Algorithm - Case (max, min) - Threshold Version.

(0] Input m, n, I, J, A, b, b™> b= pmax

Determine H*(b), H—(b), &(b), G;(b) Vi € I, P(b), F+(b), F~(b).
If F~(b) # 0, go to[8].

Fb):={ie (I\FT (1) N P®) ; Gi(d) € Ureir+mpnrm) GrO)}-
T(b) := F*(b) U F(b); if T(b) =0, go to|8].

set for t > 0: b(t) :==b; —t Vi € T(D), bi(t) := b; otherwise.

@ Increase t until a value 7 > 0, for which for the first time one of the following

events will occur:
(a) bi(t) = b; for some i € T(b);
for some i € T(b), p€ I\ T(b);

= MaAXye(1\1 (b))

by — Ek‘ for somei € T(b). It may happen

peF(b—t)NnP(b—1t);
(@) |r) = bi| = [pu(r) b
(e) P(b) may change, i.e. until for some t = 7 may be P(b()) # P(b),

. where i € F+(b) and k € T(b) N H~(b).

bi —t = max;c g5 @ for some i € T(D).

— Find 7 by making use of algorithm (7.4.2).
Set b:=b(r), go to[1].
Set b¥ :=b, STOP.

In what follows we will bring an algorithm (7.4.2) for determining T in step
of algorithm (7.4.1). For this purpose we will introduce the following simplifying

notations:
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7.4 The Algorithm - Case (max, min) - Threshold Version.

Let us recall that by(t) = b; —t Vi € T'(b), bi(t) = b; Vi € I\ T(b). We have then:
bi(t) — b; () by =b; —t—b; Vie Ft(b)
o (1) = b =B+ ¥i € H-(B) N T(F).
We will analyze in detail cases (a) - (d) from step [ 6].
Case (a)

We have fori € T(b

bi(t) = b; if t = 7'(1 = (b — b;). Case (a) takes place for the first time if

t =71 = min 7(1)

i€T(b)

Case (b)
We have b;(t) = b, for somei € T(b), p € I\T(b) if t = 7‘ =0b;, —b,. Case (b)
takes place for the first time if

t =73 = min T(Q)

ieT®), peT@) T

Case (c)
We have Hb(t) — l;)‘ = a(b) —t, so that Hb(t) - IA)H = B(b) if

t =79 = (a(b) - BE).

Cuase (d)

We have for k € T(b) N H=(b) the equality ‘bk(t) - Ek‘ = by — b+t so that
\Ww—w:pmyﬁq#Ma—ﬁqm—m+w,m¢ﬁ:¢@zm@—h+
by)/2. Case (d) takes place for the first time if

t=70 = min 7'(4).

ke(T(b)nH~ (b))
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7.4 The Algorithm - Case (max, min) - Threshold Version.

Case (e)
b —t= max_(a;),for some i€ T(b)
JEING(b)
1.€.
t=1"=0b — max (a;)
JEI\G(b)

for some i € T(b).
We set then 70 = minieT@ Ti(5).
One of the Cases (a) - (e) takes place for the first time if

t=7= min 7®
1<k<5
Value T > 0 will be inserted in step @ of algorithm (7.4.1). We will summarize

these considerations in the following

Algorithm 7.4.2
Input b, b, a(b), B(b).

V=B —b) VieT®d),

7= min Y.
ieT®) '
72 =0, by, Yie T(b), p & T(b),
t=71® = min 73

ieT(®), pgT(®) "

@ = min 7(4).

ke(T(b)NH— (b))

7% = min (b; — max_(aj;)).
i€T(b) JEJ\G;(b)
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7.4 The Algorithm - Case (max, min) - Threshold Version.

[7]

7= min 7.
1<k<5
Let us solve the same problem using the threshold algorithm from the preceding
section. The iterations of this algorithm will be the following:
m=n=31,JAbb=>b"=(5677;
Iteration 1
120 =(5.6,7), HT(b) = I,H-(b) = 0, #(b) = (7,7,6)", G1(b) = {3}, Ga(b) =
(b)) = {3}

{3}, Gs(B) = {1,2}, P(5) = {2,3}, F

F~=(b) = 0;

l F(b) = 0;

5) = {3);

(6] b(t) = (5.6,7— )7

(7] 7 = min(7,1,1,400) = 1;

18] b:=b(r) = (5,6,6)"

Iteration 2

(28 = (5,6.6), H*(F) = I, H-(5) = 0, &(5) = (6,6.6), maxses(ar; A ;(B)) =

(6,
a1z = 5, so that G1(b) = {3}, maxjcs(az; A z;(b)) = x3(b) = 6, Ga2(b) = {3},
max,e s(az; A x;(b)) = 21(b) = 22(b) = 7 so that G3(b) = {1 2} futher we have
b) = {2,3} so that F*(b) = {2,3}, F~(b) =0, ;[ 3] F~(b) = 0;

P(

7 F(g) = @,’

5] T(b) = {23},

(6] b(t) = (5,6 —t,6 — t);
7N T=1;

8|5 =1b(r) = (5,5,5)
Iteration 3

= (5,5,5), H*(b) = I, H~(b), &(b) = (5,5,5), F*(b) = {1};

\]
I
=

e EEEER
’jj fopll
‘TT’

oy
3
S
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Q
3
NN

S

|
=
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\]
~—

|
—
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N
Ot
~—
e
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7.4 The Algorithm - Case (max, min) - Threshold Version.

[2]b = (4,4,5)" H*(b) = I, H*(b) = 0, &(b) = (5,5,4), G1(b) = {3}, Ga(b) =
{1,2,3}, Gs(b) ={1,2}, P(b) ={1,3}, F'*(b) = {1 3}

F=(b) =0;

F(b) = 0;

T(b) = {1,3};

b( (4 —t,4,5—1);

NS
~ T
~— O

=
I
—

(oo ][] [sn] +[se]

b=0b(r) = (3,4,4)T;
Iteration 5

[2]5=(3,4,4), H*®) =1, H-(b) =0, @(b) = (4,4,3), P(b) = {2,3}, F*(b) =

o] § [

=8 =

s

AS'

(O8] —
2

wz\_/

@

~ —~

m w

+ w

= &

~—

|

~

|

—

=3

~—

I

=

8

=

~—

=(3,3,3), P(b) = (1,2,3), Fr(b) =

—
—_
—

\]
I
=

I%H\IIEIUWH*\IH
/’}j\z

b;=b(1) = (2,3,3);

S
g -
g
<
Q
3
<

2|b=(2,3,3), H*(b) = I, H-(b) = 0, #(b) = (2,3,2), P(b) = {1,2,3}, F*(b) =
{1,2,3};

F~b=0;
F(b) = 0;
T(b) = {1};
(6] b(t)=(2—1t,3—1t,3—1);
T=1;
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7.4 The Algorithm - Case (max, min) - Threshold Version.

18] b:=b(r) = (1,2,2);

Iteration 8.

[2]b=(1,2,2), H(b) = I, H-(b) = 0, 2(b) = (1,2,1), G1(b) = {1,2,3}, Ga(b) =
{2}, Ga(b) = {2}, P(b) = {1,2,3}, F*(b) = {2,3};

3| F~(b) =0;

F(b) =0

T(b) ={1,2,3};

b(t) = (1,2 — t,2 — t);

=
I
=
G}
|
—

@‘
I
S
/—\
\_/

= (L 11);

H-
1
IS
(ol
S,
Q
S
NS

H E! H R [oo] s[> ][ef ] 7 [ee] F o] QIEIWHMI
2237

5 = (1,1,1), H+( )={1}, H- ()—{2 3}, 2(b) = (1,1,1), G;(b) =1V i€
P) =1, Fr(b) = {1};[3] F~(b) = 0;
b) =1{2,3};
T(b) ={1,2,3}
b(t) = (1 —t,1—t,1—1t);
T = 7'(4)1;
b:=b(r) =(1/2,1/2,1/2);
eration 10
b=(1/2,1/2,1/2), H*(b) = {1}, H(b){2,3}, 2(b) = (1/2,1/2,1/2),
< = {1},
F~(b) = {2,3} #0;

9] Pt .= b =(1/2,1/2,1/2), STOP.
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8

Generalization Optimization
Problems under One-Sided max —
Separable Equation and
Inequality Systems

In this chapter, we will introduce a generalization of one-sided (max, min)-linear

systems of inequalities where the unknowns appear only in the left side of inequal-

ities and on the right side of these systems of inequalities we have constants.
Results obtained for one-sided (max, min)— or (max, +)—linear systems can

be generalized for the system of the form:

maX(aij VAN Tij(-xj)) Z bi, 1€ ], (81)
JjeJ

maJX(aij AN Tij(xj)) < bi, 1€ Il, (82)
VIS

where J = {1,...,n}, I = {1,...m} and I; = {m + 1,...,m + my} are finite
index sets, b;,a;; € RVi € I UI,5 € J, and r;; : R — R are strictly increasing
continuous functions with the range equal to R (i.e. {rj(z)lz; € R} = R).
Systems (8.1) and (8.2) encompass also equalities. Note that the inequalities

(8.2) can under our assumptions be replaced by upper bounds on variables x;,
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i.e. we have

1, <T; = irel}r; riit(bk) ¥ je (8.3)

where [1; = {k € I | ax; > by} V j € J. Besides, an appropriate choice of
a;;,7ij(x;) for i € I, j € J makes possible to include also lower bounds on x;. It
remains to choose for some iy € I, jo € J values a;,; sufficiently small for j # jo

and a;,j, sufficiently large and r;,j,(xj,) = z;,. Then we have
mazje(@io; A Tigj(75)) = Gigjo N Tiogo(Tjo) = Lo,

and the ig—th inequality of (8.2) is equivalent with x;, > b;,. Therefore in what
follows we will simplify system (8.1) and (8.2) and will consider only the system

majc(aij N Tij(xj)) > bi, 1€ I, (84)
Je

z; <x; <Tj, jEJ, (8.5)

where J = {1,...,n}, I = {1,..,m} and z, T are finite elements of R" and
b € R™. The set of all solutions of system (8.4) and (8.5) will be denoted M (b).
In what follows, we will study properties of the set M (b). For this purpose, we

will define sets
T;](bl) = {{L']‘|§j < M < T, &aij /\Tij(l'j) > bl} A ] e J. (86)
If z; € T;;(b;), then it must be fulfilled the following conditions:

T; > r; > max(z; T’i_jl(bi)), & ay > b;. (8.7)

In other words inequalities (8.7) are necessary and sufficient for T;;(b;) # 0 and
if T;;(b;) = [max(gj,rigl(bi)),@] (i. e. T;(b;) is closed interval).

Theorem 8.0.1

M(b) #0 if and only if [Viel 3 j(i) e J suchthat Tiju)(b;) #0 ]

Proof:
Let M (b) # () and let the condition[ Vi € I 3 j(i) € J such that Tj;u)(b;) # 0
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| is not fulfilled. Then there exists ig € I such that T;;(b;,) =0 V j € J
In this case we have for any © € R" and either there exists jo € J such that
zj, & [2;,.Tj) so that @ & M(b), or a; Ariyj(z;) < by, V j € J so that
max;ej(@i; A Tigj(2;)) < b, and thus = ¢ M(b) again. It follows that if the
condition [V i€ I 3 j(i) € J such that Tj;i(b;) # 0 | is not fulfilled it must
be M(b) = (.

Let now the condition [Vi € I 3 j(i) € J such that Ty (b;) # 0] be fulfilled,
let 49 € I be arbitrary. We have T} ;) (b,) # 0 for some j(ig) € J. Let us
set p = j(ip) and let V, = {i € I | j(i) = p}, where j(i) is defined by condition |
Viel 3 j(i)eJ suchthat Tj;;)(b;) # 0 ]. Sinceig € V,, we have V,, # () and
T,(0) = Niey, Tip(bi) = [maziev, (z,.r5, (b:)),T,] # 0. If we choose x, € T,(b)
arbitrary, we have z; € Tj,(b;,) € T,(b;,) so that a conditions (8.6) are fulfilled
for i =g, j = p and we obtain maxe j(@i,; ATi; () > Qigp ATigp(2Tp) > by, Since

igp € I was arbitrary chosen, it follows M (b) # (), which completes the proof.

Remark 8.0.1

Lut us note that if M(b) # 0, then T € M(b) and therefore T defined by (8.3)
is the mazimum element of M(b) in the sense that x < T for all x € M(b). If
relations (8.1) and (8.2) represent a system of equations (i.e. I = 1), then it
holds also that the system of equations is solvable if and only if T € M(b).

We will use Theorem 8.0.1 to solve the following optimization problem:
Problem P:

f(ﬂf)EI?g}fj(fﬂj) — min

subject to
x € M(b),

where f; : R — R are for all j € J continuous functions.

In the sequel we will derive an explicit formula for the optimal solution of Prob-
lem P:. We will assume further that 7 is defined by (8.3), T;;(b;) are defined by
(8.5) and M (b) # (). The non-emptiness of M (b) can be easily verified by Remark
8.0.1.
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Theorem 8.0.2
Let M(b) # 0, 2 = argmin{ f;(z;) | z; € Ti;(b;))} for all nonempty sets

j
Tij(b;), i € I, j € J. Let us set

Ji={i | Tyo) #0} V il (8.8)
win f5(a}") = f(e5)) Vi€l (8.9)
Vi={iel|j@)=4} Vv jelJ (8.10)

Micv, Ti(bi) ¥ G €J,  such that V; # 0,

[gj, Ij] otherwise,

(0) = (8.11)

&; = argmin{f;(z;) | x; € T;(b)} Y jeJ suchthat V; #0 (8.12)

z; € T;(b)  arbitrary if V; =10. (8.13)
Then T is the optimal solution of Problem P:

Proof: It follows from the monotonicity of 7;; 's that for any j € J, for which
V; # 0 there exists an index k(j) € I, for which

T;(b) = Ti(j)j(br()) and Ti(bi) C Ty (brey) = T5(b).

Let ig € I be arbitrarily chosen, let j(ip) be defined as in (8.9). Let us set p = j (i)
to simplify the notation. Then we have ;) = &, € T), = Ti(p)p(bk(P)) S Tiop(bio)
so that 2, € T;,,(b;,) and therefore 2, € [gp,fp] and a;,, A\ 2, > b,. It follows
that

I?ea}((ai()j AT (Z5)) = Qigp A Tigp(Tp) = biy- (8.14)

Since iy € I was chosen arbitrarily and #; € [z;,7;] V j it follows that & € M(b).

It remains to prove that & is the optimal solution of Problem P: ie. f(z) <
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f(z) V x € M(b). Let us assume that f(Z) = fs(Zs) and let us assume that
there exists & € M (b) such that f(z) < f(&). It is then fi(Z,) < f(Z) < fo(Ts)
so that &, & Ty = Ti(s)s(br(s)), where k(s) € I. Let us set k(s) = h to simplify
the notation. Then we have ; = xy(l,)l) = argmin{ fj(xg-h)) | j € Jn} according
to (8.9) for ¢ = h = k(s) or in other words s = j(h), where j(h) is defined as in
(8.9). Since Ty & Ths(bp) and T € M (D), it must exist an index v € J,v # s such
that &, € Tp,(by) with V,, # 0 (otherwise it would be max;e j(an; Arri(Z;)) < by).

Then we obtain

f(j) > fv(‘%v) > minwueThv(bh)fU(xv) = fv(xq(;h))
> minjes, fi(@") = f(2V) = fi(2,). (8.15)

It follows that f(z) > fs(Zs) = f(&), which is contradiction with the assumed
inequality f(Z) < f(&). This contradiction completes the proof.

Remark 8.0.2

Relations (8.12) and (8.13) give an explicit formula for & and f(Z) because we
have for each j € J with V; # 0

-1
Ty = |max(z; iy (b)), 7
and if V; =10
T = [z;,7)]

so that T;, j € J are closed nonempty intervals in R' and &; are points of
minimum of continuous functions f;(x;) on such intervals, which always exist.
The concrete algorithms for finding &; and their complexity depend on concrete
form of functions f;. For example:

o If f; is an increasing function, we have

) maxiey, (z;,r;' (b)), if Vi #0,

otherwise.

8

=j

100



o If f; is a decreasing function, then T; = T;.

o If f; is a concave function,

f(f) _ min (fj(maxiev}-@j»ﬁ;l(bi)%fj(fj)) ) Zf ‘/j 7& 07
o min (f;(z;), f;(Z;)) otherwise.

o [f f; is a convex function, then &; can be obtained by one of the known convex

function minimization techniques (e.g. binary search on closed intervals for

minimum of unimodal functions).

Remark 8.0.3

The results of this section make possible to obtain some results of the previous
sections as a special case. If we set a;; sufficiently large and rij(z;) = ¢;j + x;
for ¢;; € R, we obtain (max, +)— linear systems. If we set r;; = x;, we obtain

(max, min)— linear systems.
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9

Conclusions

In this chapter we will introduce a summary of what has been accomplished in
the previous chapters of the thesis.

In the first chapter, we have introduced the historical background since the
beginning of this idea in the sixties of the last century and a brief summary of
what has been done in previous studies on these topics about max-min algebra
and optimization problems, where the set of feasible solutions of it is described
by a system of (max,+) or (max,min) equations or inequalities with variables
on one sided or both sides, also introduce some practical applications to these
topics.

In the second chapter, we introduced for example a finite algorithm for finding
the optimal solution of optimization problem in which the set of feasible solutions
is described by a system of (max,+)— linear equations with variables on both
sides. The main idea of the proposed algorithm consists in successive decreasing
active variables in thresholds of the objective function f without leaving the
feasible set until we cannot decrease the objective function without violating the
constraint z < .

The actual beginning of the study of the topic of this thesis was in the third
chapter, in which we study optimization problems under one-sided (max, min)-
linear inequality constraints. We begin our studies by investigating properties of
one-sided (max, min)-linear systems of inequalities where the unknowns appear
in the left side only of inequalities and on the right side of these systems of

inequalities we have constant variables only. We introduce Algorithm 3.1.1, which
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determines whether the set of all solutions of system (3.1) and (3.2), M (%) = 0 or
finds the maximum element of set M (7). As well as in the case if there is boundary
conditions we introduce Algorithm 3.1.2, which performs the same process as in
Algorithm 3.1.1. After that we solve optimization problems under one-sided
(max, min)-linear inequality constraints and we introduce Algorithm 3.2.1, which
finds an optimal solution of these optimization problems under the assumption
that the set of all feasible solutions of one-sided (max,min)-linear systems of
inequalities is not empty. We give Example 3.1.1, which shows one possible
application of the system of one-sided (max, min)-linear systems of inequalities.

Since each equality can be replaced by two inequalities <, >, so that the
system of equations in formulation (4.1), can be solved by the algorithm 3.1.2
given in chapter 3, but the disadvantage of the this technique is coming from the
fact that we need to solve double the number of inequalities, which need more time
and memory. So we introduce chapter four, in which we consider the optimization
problems under one-sided (max, min)-linear equality constraints. First we study
the structure of the set of all solutions of the given system of equations, which
describe by (4.1) and (4.2) with finite entries a;; & b;, for all i € I &j € J and
we determine the maximum element of this set. We propose Algorithm 4.2.1,
which finds an optimal solution 2" of problem (4.3) and (4.4), where f;(z;) are
continuous and monotone functions. The idea in Algorithm 4.2.1, was modified
as in Algorithm 4.2.2 to be suitable to find the optimal solution for any general
continuous functions f;(z;).

The study has been expanded to include systems of two-sided (max, min)—
linear equations and inequalities, where the methods have been introduced in
the previous chapters can not solve these systems since the max — and min —
operations are only a semigroup operations, so that the variables can not be
simply transferred from one-sided of the equations or inequalities to the other.
Therefore two-sided (max, min)—linear equations and inequalities with variables
on both sides of the relations have been studied and investigated in chapters
fiftth and sixth. In the fifth chapter of this thesis, we introduce Algorithm 5.2.1,
which is depend on an iteration method to find the optimal solution of problem of
optimization problems under two-sided (max, min)—linear equation constraints.

Example 5.3.1 is an important practical application for the systems of two-sided
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(max, min)— linear equations and inequalities. In the sixth chapter, we introduce
Algorithm 6.2.1, which is depend on a threshold method for find the optimal
solution of optimization problems under two-sided (max, min)—linear inequality
constraints. We can summarize the properties of the systems of (max, min)-linear
inequalities studied in chapter 6 as follows:

(1) Any system of two-sided (max, min)-linear inequalities is solvable and has a
unique maximum element £™*( A, B) depending on the matrices A, B with finite
elements a;;, b;; (note that including infinite elements can cause nonsolvability
of the system).

(2) If we include an additional requirement z < 7, then the system is also solvable
and has the maximum element 2™**(A, B, 7) < 2™*(A, B) if no lower bound
are given.

(3) The system with a finite lower bound on variables (i.e. with an additional
constraint x > x) is solvable if and only if z < 2™*(A, B), or in case of the
additional upper bound Z if and only if x < 2™*(A, B, 7).

In the seventh chapter of the thesis, the concept of incorrectly posed is intro-
duced for one-sided (max, min)—linear equations systems, where there is no solu-
tions for the problem for given coefficients and we look for a close set (with respect
to a given distance function) of coefficients generating a solvable problem. We
introduce the concept the attainable set. Various approaches to solving such in-
correctly posed problems are proposed. In section 7.3, we use a parametric version
method to solve the incorrectly posed problem for one-sided (max,min)—linear
equations systems. Also in section 7.4, we use a threshold version method to
solve the same problem.

In the eighth chapter of the thesis, generalization optimization problems under
one-sided max — separable equation and inequality systems have been studied.

Future studies

We will focus our studies in the future on applied problems and how can use
the methods introduced in this study to solve practical problems.

We will try to make generalization for optimization problems under two-sided
(max, min)-linear inequality and equalty constraints.

We will try to study:
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Parametric optimization problems under (max, min)-linear inequality and

equality constraints.

The sensitivity study of the methods that were introduced to solve optimiza-

tion problems under (max, min)-linear inequality and equalty constraints.

Inverse problems of systems of maxr— Separable equation and inequality

systems.

Duality for optimization problems under (max, min)-linear inequality and

equalty constraints.
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