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Introduction

The float process is the standard industrial scale process for making flat glass
developed in the late 1950s. An excellent historical overview of earlier techniques
for making flat glass, and the development of the float glass process is given in the
survey by Pilkington (1969). Pilkington (1969) describes the process as follows:

In the float process, a continuous ribbon of glass moves out of
the melting furnace and floats along the surface of an enclosed bath
of molten tin [. . . ]. The ribbon is held in a chemically controlled
atmosphere at a high enough temperature for a long enough time for
the irregularities to melt out and for the surfaces to become flat and
parallel. Because the surface of the molten tin is dead flat, the glass
also becomes flat.

The ribbon is then cooled down while still advancing across the
molten tin until the surfaces are hard enough for it to be taken out of
the bath without the rollers marking the bottom surface; so a ribbon
is produced with uniform thickness and bright fire polished surfaces
without any need for grinding and polishing.

Naturally, the importance of the process leads to the need to develop a mathe-
matical model for the process.

The process starts by pouring glass on a melted tin, where it is bounded by
restrictors. After a few meters glass leaves the restrictors and can spread freely
on the tin bath. Approximately between 10 m and 20 m from the begin of the
bath is located so called stretching region, where can be placed wheels, which
helps to adjust thickness of the glass. About 60 m from the pouring area glass
pulls out a device called lehr. We will focus on the part between the restrictors’
tip and the lehr.

In what follows we model the process by viscous film type approximation
and solve the model by finite element method. Then discuss the results and the
influence of several parameters of the model to the result.
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Chapter 1

Viscous film type approximation

In this part is presented some results concerning simplified viscous film type
models for the description of float glass forming process. Models of this type were
introduced by Narayanaswamy (1977, 1981), Popov (1982, 1983), M. and Mase
(1991) and Kamihori T. (1994) to name a few.

1.1 Governing equations

The full system of governing equations describing motion of an incompressible
fluid with non-constant density in a given domain reads

∂ (ρv)

∂t
+ div (ρv ⊗ v) = divT + ρb, (1.1a)

∂ρ

∂t
+ div (ρv) = 0, (1.1b)

where v denotes the velocity, ρ the density, b external volume force and T the
Cauchy stress tensor. In the following derivation of the simplified governing
equations, we will consider the glass melt to be an incompressible fluid. The
Cauchy stress is assumed to have the form

T = −pI + S, (1.2)

where S is a symmetric traceless tensor.

1.1.1 Boundary conditions

The fluid is assumed to occupy the domain shown in Figure 1.1. The lighter
fluid (glass) is assumed to form a thin film flowing in a bath formed by the heavier
fluid (tin). The lighter fluid is dived in the heavier fluid by H1(x, y) and the height
which floats above heavier fluid level is H2(x, y). Both heights are measured with
respect to the free surface of the heavier fluid, and the coordinate system is
chosen in such a way that the free surface of the heavier fluid is located at z = 0.
Functions H1(x, y) and H2(x, y) are assumed to be slowly varying functions of x
and y. This means that the partial derivatives ∂H1

∂x
, ∂H1

∂y
and similarly for H2 can

be neglected in the appropriate formulae.
The boundary condition on the top surface (fluid–gas interface) reads

Tgn = Tan, (1.3a)
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vẑ

vŷ

Figure 1.1: Problem geometry.

where n is the outward normal to the surface, Ta denotes the stress in the ambient
gas and Tg denotes the Cauchy stress tensor for the lighter fluid. (It is assumed
that no surface tension effects are acting on this surface.) Concerning the bottom
surface, the boundary condition reads

Tgn = Ttn, (1.3b)

where n is the outward normal to the surface and Tt denotes the Cauchy stress
tensor for the heavier fluid. This means that we assume the continuity of the
stress across the surface. (This boundary condition will not be, as we shall see
later, enforced exactly.)

The (artificial) inflow and outflow boundary conditions will be specified later.

1.2 Auxiliary tools

Let us now recall some basic facts concerning the motion of surfaces, which
will be crucial for capturing the motion of the fluid–fluid and fluid–gas interface.
and some properties of the integral with respect to differentiation, because we
will use these facts in following derivation.

Lemma 1. A surface described by an implicit relation f(x, t) = 0 is a material
surface if and only if

∂f

∂t
+ v · ∇f = 0 (1.4)

is satisfied for all points on the surface.

Lemma 2. Outward normal to the surface → Φ : [u, v] ∈ R2 7→ [x, y, z] ∈ R3

described by the parametric equations

x = u, (1.5a)

y = v, (1.5b)

z = Φ(u, v), (1.5c)

is given by the following formula

n =



−∂Φ

∂x

−∂Φ
∂y

1


 . (1.6)
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The outward normal is understood in the sense that it is directed outward from
the body {x ∈ R3 : z ≤ Φ(x, y)}.

The simplified model will be essentially obtained by averaging the governing
equations with respect to z variable, therefore we mention some properties of
the integral with respect to differentiation. The following Lemma allows one to
change the order of differentiation and integration which is the basic tool the
averaging approach.

Lemma 3.

∂

∂x

∫ b(x)

ξ=a(x)

g(x, ξ) dξ =

∫ b(x)

ξ=a(x)

∂

∂x
g(x, ξ) dξ + g(x, b(x))

∂b

∂x
− g(x, a(x))

∂a

∂x
(1.7)

Proof. Let G(x, ξ) be a primitive function to g(x, ξ) with respect to ξ variable,
that is ∂G

∂ξ
(x, ξ) = g(x, ξ). Then we have

∂

∂x

∫ b(x)

ξ=a(x)

g(x, ξ) dξ =
∂

∂x
(G(x, b(x))−G(x, a(x)))

=

(
∂

∂x
G(x, ξ)

∣∣∣∣
ξ=b(x)

+
∂

∂ξ
G(x, ξ)

∣∣∣∣
ξ=b(x)

∂

∂x
b(x)

)
−

−
(
∂

∂x
G(x, ξ)

∣∣∣∣
ξ=a(x)

+
∂

∂ξ
G(x, ξ)

∣∣∣∣
ξ=b(x)

∂

∂x
a(x)

)

=

(∫ b(x)

ξ=ξ0

∂

∂x
g(x, ξ) dξ + g(x, b(x))

∂

∂x
b(x)

)
−

−
(
−
∫ ξ0

ξ=a(x)

∂

∂x
g(x, ξ) dξ + g(x, a(x))

∂

∂x
a(x)

)

=

∫ b(x)

ξ=a(x)

∂

∂x
g(x, ξ) dξ + g(x, b(x))

∂b

∂x
− g(x, a(x))

∂a

∂x
. (1.8)
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1.3 Derivation of a simplified two-dimensional

model

If we rewrite the governing equations (1.1) in Cartesian coordinates, we get
the following system of equations,

∂ (ρgv
x)

∂t
+
∂ (ρgv

xvx)

∂x
+
∂ (ρgv

yvx)

∂y
+
∂ (ρgv

zvx)

∂z
= −∂p

∂x
+
∂Sxx

∂x
+
∂Sxy

∂y
+
∂Sxz

∂z
,

(1.9a)

∂ (ρgv
y)

∂t
+
∂ (ρgv

xvy)

∂x
+
∂ (ρgv

yvy)

∂y
+
∂ (ρgv

zvy)

∂z
= −∂p

∂y
+
∂Syx

∂x
+
∂Syy

∂y
+
∂Syz

∂z
,

(1.9b)

∂ (ρgv
z)

∂t
+
∂ (ρgv

xvz)

∂x
+
∂ (ρgv

yvz)

∂y
+
∂ (ρgv

zvz)

∂z
=

−∂p
∂z

+
∂Szx

∂x
+
∂Szy

∂y
+
∂Szz

∂z
− ρgg,

(1.9c)

∂ρg
∂t

+
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z
= 0, (1.9d)

where we have used the notation

Tg = −pgI + Sg = −pg




1 0 0
0 1 0
0 0 1


+



Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


 (1.10)

and consider external gravitational force

b = −ezg, (1.11)

where g denotes gravitational acceleration.
In further derivation we assume the density ρg to be a known function of given
temperature field θ, which is constant with respect to variable z.

ρg = ρg (θ(x, y, t)) . (1.12)

1.3.1 Balance of mass

Let us now integrate the last equation (balance of mass) with respect to z
variable, that is

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ρg
∂t

+
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z

)
dz = 0. (1.13)
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First, we focus on a equation without time derivative, which we add later. Ex-
ploiting Lemma 3 yields

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z

)
dz

=

(
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
x dz − ρgv

x|z=H2(x,y,t)

∂H2

∂x
− ρgv

x|z=−H1(x,y,t)

∂H1

∂x

)

+

(
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
y dz − ρgv

y|z=H2(x,y,t)

∂H2

∂y
− ρgv

y|z=−H1(x,y,t)

∂H1

∂y

)

+
(
ρgv

z|z=H2(x,y,t) − ρgv
z|z=−H1(x,y,t)

)
, (1.14)

which can be rewritten as
∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z

)
dz

=
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
x dz +

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
y dz

+

(
ρgv

z|z=H2(x,y,t) − ρgv
x|z=H2(x,y,t)

∂H2

∂x
− ρgv

y|z=H2(x,y,t)

∂H2

∂y

)

−
(
ρgv

z|z=−H1(x,y,t) + ρgv
x|z=−H1(x,y,t)

∂H1

∂x
+ ρgv

y|z=−H1(x,y,t)

∂H1

∂y

)
, (1.15)

where
f |z=H(x,y,t) =def f(x, y,H(x, y, t), t) (1.16)

denotes the value of function f at point [x, y,H(x, y, t)]. The top and bottom sur-
faces, that is surfaces z = H2(x, y, t) and z = −H1(x, y, t), are material surfaces,
therefore they must obey condition (1.4), which reads

(
−ρg

∂H2

∂t
− ρgvx

∂H2

∂x
− ρgvy

∂H2

∂y
+ ρgv

z

)∣∣∣∣
z=H2(x,y,t)

= 0, (1.17a)

(
ρg
∂H1

∂t
+ ρgv

x∂H1

∂x
+ ρgv

y ∂H1

∂y
+ ρgv

z

)∣∣∣∣
z=−H1(x,y,t)

= 0. (1.17b)

These equalities imply that (1.15) can be rewritten as

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z

)
dz

=
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
x dz +

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
y dz + ρg

∂H2

∂t
+ ρg

∂H1

∂t
. (1.18)

If we introduce the notation

H =def H1 +H2, (1.19a)

vx(x, y, t) =def
1

H

∫ H2(x,y,t)

z=−H1(x,y,t)

vx(x, y, z, t) dz, (1.19b)

vy(x, y, t) =def
1

H

∫ H2(x,y,t)

z=−H1(x,y,t)

vy(x, y, z, t) dz (1.19c)
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and apply independence ρg of z, we can finally rewrite (1.18) in the form

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z

)
dz

= ρg
∂H

∂t
+

∂

∂x
(Hρgvx) +

∂

∂y
(Hρgvy) . (1.20)

Now we complete the balance of mass by the term with time derivative

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ρg
∂t

dz =
∂

∂t

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgdz−ρg|z=H2(x,y,t)

∂H2

∂t
−ρg|z=−H1(x,y,t)

∂H1

∂t

=
∂ (Hρg)

∂t
− ρg

∂H

∂t
, (1.21)

where in the last equation we again used the fact that ρg is constant with respect
to the z variable. Finally, together we get

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ρg
∂t

+
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ (ρgv

z)

∂z

)
dz

=
∂ (Hρg)

∂t
+

∂

∂x
(Hρgvx) +

∂

∂y
(Hρgvy) . (1.22)

Apart from notation (1.19) it will be also convenient to introduce the “fluc-
tuations” of the involved quantities with respect to its z averaged values

ṽx =def v
x − vx, (1.23a)

ṽy =def v
y − vy, (1.23b)

(1.23c)

By elementary observation we can see that the definition implies
∫ H2(x,y,t)

z=−H1(x,y,t)
ṽx dz =

0 and
∫ H2(x,y,t)

z=−H1(x,y,t)
ṽy, dz = 0.

1.3.2 Balance of linear momentum

Let us now consider x component of the balance of linear momentum, that
is (1.9a). We want to evaluate the z average of the equation (1.9a). Left hand
side terms is

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂t
+
∂ (ρgv

xvx)

∂x
+
∂ (ρgv

yvx)

∂y
+
∂ (ρgv

zvx)

∂z

)
dz

=

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
x)

∂t
dz +

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
xvx)

∂x
dz

+

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
yvx)

∂y
dz +

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
zvx)

∂z
dz. (1.24)
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Using Lemma 3 the time derivative can be rewritten as

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
x)

∂t
dz

=
∂

∂t

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
x dz − ρgv

x|z=H2(x,y,t)

∂H2

∂t
− ρgv

x|z=−H1(x,y,t)

∂H1

∂t

=
∂

∂t
(Hρgvx)− ρgv

x|z=H2(x,y,t)

∂H2

∂t
− ρgv

x|z=−H1(x,y,t)

∂H1

∂t
. (1.25)

The spatial derivatives can be rewritten as follows

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
yvx)

∂y
dz

=
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgv
xvy dz − ρgv

xvy|z=H2(x,y,t)

∂H2

∂y
− ρgv

xvy|z=−H1(x,y,t)

∂H1

∂y

=
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
vx + ṽx

) (
vy + ṽy

)
dz

− ρgv
xvy|z=H2(x,y,t)

∂H2

∂y
− ρgv

xvy|z=−H1(x,y,t)

∂H1

∂y

=
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

(ρgvxvy) dz +
∂

∂y


ρgv

y

=0︷ ︸︸ ︷∫ H2(x,y,t)

z=−H1(x,y,t)

ṽx dz




+
∂

∂y


ρgv

x

=0︷ ︸︸ ︷∫ H2(x,y,t)

z=−H1(x,y,t)

ṽy dz


+

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz

− ρgv
xvy|z=H2(x,y,t)

∂H2

∂y
− ρgv

xvy|z=−H1(x,y,t)

∂H1

∂y

=
∂

∂y
(Hρgvxvy)− ρgv

xvy|z=H2(x,y,t)

∂H2

∂y
− ρgv

xvy|z=−H1(x,y,t)

∂H1

∂y

+
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz (1.26)

where we have used the fact that the z averages of the “fluctuations” ṽx and ṽy

vanish. Later on we will neglect the last term as a part of the approximation,
but for now let us keep the term in the computations in order to have a chance
to explicitly track the “error” in the simplified model. (The term is quadratic in
the “fluctuations” and therefore it is presumably small with respect to the other
terms that contain either the averaged quantities or that depend linearly on the
“fluctuations”.) The remaining terms on the right hand side of (1.24) can be
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manipulated analogously, and we get

∫ H2(x,y,t)

z=−H1(x,y,t)

∂ (ρgv
x)

∂t
dz =

∂

∂t
(Hρgvx)− ρgv

x|z=H2(x,y,t)

∂H2

∂t

− ρgv
x|z=−H1(x,y,t)

∂H1

∂t
, (1.27a)

∫ H2(x,y,t)

z=−H1(x,y,t)

∂

∂x

(
ρg(v

x)2
)
dz =

∂

∂x

(
Hρg (vx)

2
)
− ρg (vx)2

∣∣
z=H2(x,y,t)

∂H2

∂x

− ρg (vx)2
∣∣
z=−H1(x,y,t)

∂H1

∂x

+
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽx
)2
dz, (1.27b)

∫ H2(x,y,t)

z=−H1(x,y,t)

∂

∂y
(ρgv

xvy) dz =
∂

∂y
(Hρgvxvy)− ρgv

xvy|z=H2(x,y,t)

∂H2

∂y

− ρgv
xvy|z=−H1(x,y,t)

∂H1

∂y

+
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz, (1.27c)

∫ H2(x,y,t)

z=−H1(x,y,t)

∂

∂z
(ρgv

xvz) dz = ρgv
xvz|z=H2(x,y,t) − ρgv

xvz|z=−H1(x,y,t) . (1.27d)

Summing all the terms yields

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂t
+

∂

∂x
ρg (vx)2 +

∂

∂y
(ρgv

yvx) +
∂

∂z
(ρgv

zvx)

)
dz

=
∂

∂t
(Hρgvx) +

∂

∂x

(
Hρg (vx)

2
)

+
∂

∂y
(Hρgvxvy)

+
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽx
)2
dz +

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz

+ ρgv
x|z=H2(x,y,t)

(
−∂H2

∂t
− ρgvx

∂H2

∂x
− ρgvy

∂H2

∂y
+ ρgv

z

)∣∣∣∣
z=H2(x,y,t)

− ρgv
x|z=−H1(x,y,t)

(
∂H1

∂t
+ ρgv

x∂H1

∂x
+ ρgv

y ∂H1

∂y
+ ρgv

z

)∣∣∣∣
z=−H1(x,y,t)

. (1.28)

Now we can again exploit the fact that the top and bottom surface are material
surfaces, see (1.17), and we see that the last two terms vanish. Finally, the
formula for the averaged left hand side of the x component of the balance of
linear momentum reads

∫ H2(x,y,t)

z=−H1(x,y,t)

(
∂ (ρgv

x)

∂t
+

∂

∂x
ρg (vx)2 +

∂

∂y
(ρgv

yvx) +
∂

∂z
(ρgv

zvx)

)
dz

=
∂

∂t
(Hρgvx) +

∂

∂x

(
Hρg (vx)

2
)

+
∂

∂y
(Hρgvxvy)

+
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽx
)2
dz +

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz. (1.29)
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It remains to find the average of the right hand side of (1.9a), that is
∫ H2(x,y,t)

z=−H1(x,y,t)

(
−∂pg
∂x

+
∂Sxx

∂x
+
∂Sxy

∂y
+
∂Sxz

∂z

)
dz. (1.30)

We will again use Lemma 3. In particular
∫ H2(x,y,t)

z=−H1(x,y,t)

∂

∂x

(
−pg + Sx̂x̂g

)
dz =

∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

(
−pg + Sx̂x̂g

)
dz

−
(
−pg + Sx̂x̂g

)∣∣
z=H2(x,y,t)

∂H2

∂x

−
(
−pg + Sx̂x̂g

)∣∣
z=−H1(x,y,t)

∂H1

∂x
, (1.31a)

∫ H2(x,y,t)

z=−H1(x,y,t)

∂

∂y
Sx̂ŷg dz =

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

Sx̂ŷg dz

− Sx̂ŷg

∣∣
z=H2(x,y,t)

∂H2

∂y
− Sx̂ŷg

∣∣
z=−H1(x,y,t)

∂H1

∂y
,

(1.31b)
∫ H2(x,y,t)

z=−H1(x,y,t)

∂

∂z
Sx̂ẑg dz = Sx̂ẑg

∣∣
z=H2(x,y,t)

− Sx̂ẑg

∣∣
z=−H1(x,y,t)

. (1.31c)

Summing up all the terms yields

∫ H2(x,y,t)

z=−H1(x,y,t)

(
−∂pg
∂x

+
∂Sx̂x̂g

∂x
+
∂Sx̂ŷg

∂y
+
∂Sx̂ẑg

∂z

)
dz

= − ∂

∂x
(Hpg) +

∂

∂x

(
HSx̂x̂g

)
+

∂

∂y

(
HSx̂ŷg

)

+

(
−
(
−pg + Sx̂x̂g

)∣∣
z=H2(x,y,t)

∂H2

∂x
− Sx̂ŷg

∣∣
z=H2(x,y,t)

∂H2

∂y
+ Sx̂ẑg

∣∣
z=H2(x,y,t)

)

+

(
−
(
−pg + Sx̂x̂g

)∣∣
z=−H1(x,y,t)

∂H1

∂x
− Sx̂ŷg

∣∣
z=−H1(x,y,t)

∂H1

∂y
− Sx̂ẑg

∣∣
z=−H1(x,y,t)

)
.

(1.32)

Here we extend the averaging notation as S••(x, y, t) =def
1
H

∫
S••(x, y, z, t)dz.

The last two terms can be rewritten in the form

−
(
−pg + Sx̂x̂g

)∣∣
z=H2(x,y,t)

∂H2

∂x
− Sx̂ŷg

∣∣
z=H2(x,y,t)

∂H2

∂y
+ Sx̂ẑg

∣∣
z=H2(x,y,t)

= ex · Tg|z=H2(x,y,t)n2,

(1.33a)

−
(
−pg + Sx̂x̂g

)∣∣
z=−H1(x,y,t)

∂H1

∂x
− Sx̂ŷg

∣∣
z=−H1(x,y,t)

∂H1

∂y
− Sx̂ẑg

∣∣
z=−H1(x,y,t)

= ex · Tg|z=−H1(x,y,t)n1,

(1.33b)

where

n2 =def



−∂H2

∂x

−∂H2

∂y

1


 , n1 =def



−∂H1

∂x

−∂H1

∂y

−1


 , (1.34)
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denote the outward normal to the surface z = H2(x, y, t) and z = −H1(x, y, t)
respectively, see Lemma 2. This means that these terms can be specified using
the boundary conditions (1.3a) and (1.3b). Finally,

∫ H2(x,y,t)

z=−H1(x,y,t)

(
−∂pg
∂x

+
∂Sx̂x̂g

∂x
+
∂Sx̂ŷg

∂y
+
∂Sx̂ẑg

∂z

)
dz

= − ∂

∂x
(Hpg)+

∂

∂x

(
HSx̂x̂g

)
+
∂

∂y

(
HSx̂ŷg

)
+ex·

(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)
.

(1.35)

Using (1.29) and (1.35) we can write down the averaged balance of linear
momentum in ex direction,

(
∂

∂t
(Hρgvx) +

∂

∂x

(
Hρg (vx)

2
)

+
∂

∂y
(Hρgvxvy)

)

= − ∂

∂x
(Hpg) +

∂

∂x

(
HSx̂x̂g

)
+

∂

∂y

(
HSx̂ŷg

)

+ ex ·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)

−
(
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽx
)2
dz +

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz

)
. (1.36)

A similar manipulation can be also done for the balance of linear momentum in
ey direction. In this case we get

(
∂

∂t
(Hρgvy) +

∂

∂x
(Hρgvxvy) +

∂

∂y

(
Hρg (vy)

2
))

= − ∂

∂y
(Hpg) +

∂

∂x

(
HSx̂ŷg

)
+

∂

∂y

(
HS ŷŷg

)

+ ey ·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)

−
(
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz +
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽy
)2
dz

)
. (1.37)

1.3.3 Summary

The averaged counterparts of (1.9a), (1.9b) and (1.9d) read

(
∂

∂t
(Hρgvx) +

∂

∂x

(
Hρg (vx)

2
)

+
∂

∂y
(Hρgvxvy)

)

= − ∂

∂x
(Hpg) +

∂

∂x

(
HSx̂x̂g

)
+

∂

∂y

(
HSx̂ŷg

)

+ ex ·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)

−
(
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽx
)2
dz +

∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz

)
. (1.38a)

12



(
∂

∂t
(Hρgvy) +

∂

∂x
(Hρgvxvy) +

∂

∂y

(
Hρg (vy)

2
))

= − ∂

∂y
(Hpg) +

∂

∂x

(
HSx̂ŷg

)
+

∂

∂y

(
HS ŷŷg

)

+ ey ·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)

−
(
∂

∂x

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽxṽy dz +
∂

∂y

∫ H2(x,y,t)

z=−H1(x,y,t)

ρg
(
ṽy
)2
dz

)
. (1.38b)

and
∂ (Hρg)

∂t
+

∂

∂x
(Hρgvx) +

∂

∂y
(Hρgvy) = 0. (1.38c)

Or in vector notation
∂ (Hρg)

∂t
+ div (Hρgv) = 0 (1.39a)

∂

∂t
(Hρgv) + div (Hρgv ⊗ v) = div

(
−HpgI +HS

)

+ I
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)
− div

∫ H2(x,y,t)

z=−H1(x,y,t)

ρgṽ ⊗ ṽdz (1.39b)

Note that so far we have not made any simplification, the averaged governing
equations are exact.

1.3.4 Simplification of the governing equations

Concerning the balance of linear momentum in ez direction, see (1.9c), we
will assume that all terms except the gravitational force and the pressure can be
neglected. Equation (1.9c) is therefore considered in the form

0 = −∂pg
∂z
− ρgg (1.40)

and all other terms are ignored. This implies that

pg = −ρggz + C, (1.41)

where C is a function of x, y and t. If we further assume that the stress field in
the heavier fluid is given by the formula

Tt = −ptI, (1.42)

and that the stress field in the ambient gas is

Ta = −paI, (1.43)

13



then the terms in the boundary conditions (1.3a) and (1.3b) read

Tgn2 =



−
(
−pg + Sx̂x̂g

)
∂H2

∂x
− Sx̂ŷg

∂H2

∂y
+ Sx̂ẑg

−Sx̂ŷg
∂H2

∂x
−
(
−pg + S ŷŷg

)
∂H2

∂y
+ S ŷẑg

−Sx̂ẑg
∂H2

∂x
− S ŷẑg

∂H2

∂y
+
(
−pg + S ẑẑg

)


 (1.44a)

Tan2 = −pa



−∂H2

∂x

−∂H2

∂y

1


 (1.44b)

Tgn1 =



−
(
−pg + Sx̂x̂g

)
∂H1

∂x
− Sx̂ŷg

∂H1

∂y
− Sx̂ẑg

−Sx̂ŷg
∂H1

∂x
−
(
−pg + S ŷŷg

)
∂H1

∂y
− S ŷẑg

−Sx̂ẑg
∂H1

∂x
− S ŷẑg

∂H1

∂y
−
(
−pg + S ẑẑg

)


 (1.44c)

Ttn1 = −pt



−∂H1

∂x

−∂H1

∂y

−1


 (1.44d)

The z component of the boundary condition (1.3a) reads

−Sx̂ẑg

∣∣
z=H2(x,y,t)

∂H2

∂x
−S ŷẑg

∣∣
z=H2(x,y,t)

∂H2

∂y
+
(
− pg|z=H2(x,y,t) + S ẑẑg

∣∣
z=H2(x,y,t)

)
= −pa.

(1.45)
We further assume that the first two terms can be neglected, therefore the bound-
ary condition on the top surface can be rewritten as

− pg|z=H2(x,y,t) + S ẑẑg

∣∣
z=H2(x,y,t)

= −pa. (1.46)

If the fluid under consideration is the Navier–Stokes fluid (possibly with temper-
ature dependent viscosity) then

S ẑẑg = 2µ
∂vz

∂z
. (1.47)

The balance of mass (1.9d) implies that

ρg
∂vz

∂z
=
∂ (ρgv

z)

∂z
= −

(
∂ (ρgv

x)

∂x
+
∂ (ρgv

y)

∂y
+
∂ρg
∂t

)
, (1.48)

that can be rewritten as

ρg
∂vz

∂z
= −

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+

(
∂
(
ρgṽx

)

∂x
+
∂
(
ρgṽy

)

∂y

)
+
∂ρg
∂t

)
. (1.49)

Note that the first term does not depend on the z variable. If we neglect the
“fluctuations”, then we can substitute back into (1.46), which yields

− pg|z=H2(x,y,t) −
2µ

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

)
= −pa. (1.50)

Let us now consider the z component of the boundary condition (1.3b), that is
the equality

−Sx̂ẑg

∣∣
z=−H1(x,y,t)

∂H1

∂x
−S ŷẑg

∣∣
z=−H1(x,y,t)

∂H1

∂y
−
(
− pg|z=−H1(x,y,t) + S ẑẑg

∣∣
z=−H1(x,y,t)

)
= pt.

(1.51)
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Here we neglect the first two terms as well. The boundary condition then reads

−
(
− pg|z=−H1(x,y,t) + S ẑẑg

∣∣
z=−H1(x,y,t)

)
= pt. (1.52)

Using the same arguments as above we can approximate (1.52) by

pg|z=−H1(x,y,t) +
2µ

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

)
= pt (1.53)

If we assume that the pressure in the heavier fluid is the hydrostatic pressure,
then pressure on the bottom surface is given by the formula

pt = pa + ρtgH1. (1.54)

Under this assumption the conditions (1.53) and (1.50) can be used to derive a
relation between H1 and H2 and to determine the constant C in (1.41). Indeed,
the sum of (1.53) and (1.50) reads

− pg|z=H2(x,y,t) + pg|z=−H1(x,y,t) = −pa + (pa + ρtgH1) , (1.55)

that, upon substituting (1.41) for the pressure, yields

ρggH2 + ρggH1 = ρtgH1, (1.56)

that is
H1 =

ρg
ρt
H. (1.57)

Further, substituting (1.41) into (1.50) reveals that

C = pa + ρggH2 −
2µ

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

)
. (1.58)

The formula for the pressure pg is therefore

pg = pa + ρgg(H2 − z)− 2µ

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

)
, (1.59)

and the averaged pressure pg = 1
H

∫ H2(x,y,t)

z=−H1(x,y,t)
pg dz is given by the formula

Hpg = paH + ρgg
H2

2
− 2µH

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

)
. (1.60)

In order to close the system of the equations, it remains to evaluate product ex·(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)
and ey·

(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)

in equation (1.38a) and (1.38b) respectively. Let us consider the first product.
The boundary conditions (1.3) imply that

ex·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)
= ex·

(
Ta|z=H2(x,y,t) n2 + Tt|z=−H1(x,y,t) n1

)

(1.61)
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which under our assumptions simplifies to

ex ·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)
= −paex · n2 − ptex · n1

= pa
∂H

∂x
+ρtgH1

∂H1

∂x
= pa

∂H

∂x
+gHρg

∂

∂x

(
Hρg
ρt

)
= pa

∂H

∂x
+
∂

∂x

(
(Hρg)

2 g

2ρt

)
,

(1.62)

where we have used (1.54) and (1.57). Similar manipulation yields

ey ·
(
Tg|z=H2(x,y,t) n2 + Tg|z=−H1(x,y,t) n1

)
= pa

∂H

∂y
+

∂

∂y

(
(Hρg)

2 g

2ρt

)
. (1.63)

1.3.5 Model

Now we are ready to go back to the system (1.38). Neglecting the terms
quadratic in the “fluctuations” and using (1.59), (1.62) and (1.63), where we
assume constant pa, we arrive to the simplified system of governing equations

(
∂

∂t
(Hρgvx) +

∂

∂x

(
Hρg (vx)

2
)

+
∂

∂y
(Hρgvxvy)

)
=

− ∂

∂x

(
ρg

(
1− ρg

ρt

)
g
H2

2
− 2µH

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

))

+
∂

∂x

(
HSx̂x̂g

)
+

∂

∂y

(
HSx̂ŷg

)
, (1.64a)

(
∂

∂t
(Hρgvy) +

∂

∂x
(Hρgvxvy) +

∂

∂y

(
Hρg (vy)

2
))

=

− ∂

∂y

(
ρg

(
1− ρg

ρt

)
g
H2

2
− 2µH

ρg

(
∂ (ρgvx)

∂x
+
∂ (ρgvy)

∂y
+
∂ρg
∂t

))

+
∂

∂x

(
HSx̂ŷg

)
+

∂

∂y

(
HS ŷŷg

)
, (1.64b)

∂ (Hρg)

∂t
+

∂

∂x
(Hρgvx) +

∂

∂y
(Hρgvy) = 0 (1.64c)

where

Sx̂x̂g =def 2µ
∂vx

∂x
, (1.64d)

S ŷŷg =def 2µ
∂vy

∂y
(1.64e)

Sx̂ŷg =def µ

(
∂vx

∂y
+
∂vy

∂x

)
. (1.64f)

This definition is motivated by the fact that for the Navier–Stokes fluid we have
Sx̂x̂g = 2µ∂v

x

∂x
and similarly for the other components of the extra stress ten-

sor. Clearly, (1.64d) is a good approximation of the exact constitutive relation
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Sx̂x̂g = 2µ∂v
x

∂x
. Note that the last equation (balance of mass) is still exact, no ap-

proximations have been made in this equation. System (1.64) has been derived,
in the context of float glass processing, by Popov (1982), but it is the standard
system of governing equations for thin fluid film flows.

Let us further remark that if we denote

P =def ρg

(
1− ρg

ρt

)
g
H2

2
, (1.65a)

v =def

[
vx

vy

]
, (1.65b)

Tgs =def −P I +
2µH

ρg

(
div (ρgv) +

∂ρg
∂t

)
I + 2µHD (1.65c)

where D =def
1
2

(
∇v + (∇v)T

)
denotes the symmetric part of the velocity gradi-

ent, then we can rewrite the system as

∂ (Hρg)

∂t
+ div (Hρgv) = 0, (1.66a)

∂

∂t
(Hρgv) + div (Hρgv ⊗ v) = divTgs. (1.66b)

If we further consider constant density ρg we will get in fact to equations for a
“compressible” fluid with “density” dependent material coefficients

∂H

∂t
+ div (Hv) = 0, (1.67a)

ρg

[
∂

∂t
(Hv) + div (Hv ⊗ v)

]
= div [−P I + 2µH (div v) I + 2µHD] . (1.67b)

1.4 boundary conditions of simplified model

The governing equations must be solved in domain

Ωx,y,t =def

{
x ∈ R2 : 0 ≤ y ≤ L,−W (y, t) ≤ x ≤ W (y, t)

}
,

where L declares the length of the domain from restrictors’ tip to the lehr, where
the glass is pulled out. The shape of the domain is specified by the function
W (y, t), which is a part of the problem. (Symmetry along y axis is assumed.)

1.4.1 Position of lateral free boundary

Since the position of lateral boundary is specified by a priori unknown function
W (y, t), we need a condition for its evaluation. The implicit equation of the
boundary is f+(x, y, t) = x − W (y, t) = 0 and f−(x, y, t) = x + W (y, t) = 0,
therefore we obtain the condition from Lemma 1

∂f+

∂t
+ v · ∇f+ = −∂W

∂t
+ vx|x=W (y,t) − vy|x=W (y,t)

∂W

∂y
= 0, (1.68a)

and similarly for the other boundary

∂f−

∂t
+ v · ∇f− =

∂W

∂t
+ vx|x=−W (y,t) + vy|x=−W (y,t)

∂W

∂y
= 0. (1.68b)
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Since we assume symmetry along y axis we do not need to consider the
other boundary condition because it is automatically fulfilled. The symmetry
of the problem further implies that vx|x=W (y,t) = − vx|x=−W (y,t) and vy|x=W (y,t) =

vy|x=−W (y,t) .

1.4.2 Lateral boundary condition

For better understanding how the fluid spreads in space, let us consider con-
stant amount of glass dipped in tin with no movement in equilibrium state. It
means that we have 1.67a zero velocity field v = (0, 0) and linear momentum
equation 1.66b reduces to

0 = div (Tgs) (1.69)

and Cauchy stress tensor reads

Tgs = −P I +
2µH

ρg

∂ρg
∂t

. (1.70)

If we further assume constant glass density, then previous relations and 1.65a
implies

∇
(
ρg

(
1− ρg

ρt

)
g
H2

2

)
= 0, (1.71)

which means

ρg

(
1− ρg

ρt

)
g
H2

2
= γ. (1.72)

Physical meaning of constant γ can be seen from [γ] = kg/s2 = N/m and fact
that equation 1.72 declares a relation between fluid’s height H and γ, which can
be also rewritten as

H2 = γ
2ρt

gρg(ρt − ρg)
. (1.73)

It means, that γ is intensity of a force acting on unit length and reflects how the
fluid spreads. So from now on we refer to γ as a spreading coefficient.

Relation 1.73, which we derived from linear momentum equation, can be also
found in ?? ”Pilkington”, where is used for evaluating equilibrium thickness of
the film.

The direction of the force acting on lateral boundary is equal to the spread-
ing coefficient γ and its direction is normal to the boundary. Therefore we can
generalize relation 1.72 and gain a dynamic boundary condition, which reads

Tgsn = −γn, (1.74)

where n denotes the outward normal to the film boundary. As we can see
from 1.73 the spreading coefficient should be positive if the height of the film
is positive, therefore the force acting on the unit length of the boundary points
inside the fluid film.
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1.4.3 Inflow boundary condition

As an inflow boundary condition, we use Dirichlet condition for heightH(x, 0, t) =
Hin(x, t) as well as for velocity v(x, 0, t) = vin(x, t). Since function H(x, y, t),
which describes height of the glass, suppose to slowly vary, we use constant inflow
height Hin. This constant should be slightly bigger then equilibrium thickness
described in 1.73, because the glass enters the domain from restrictors and should
fill all space between them. It also means we have inflow condition for width of
the domain W (0, t) = Win, which completes equation 1.68b.

The restrictors are two diverging walls meeting at given angle 2α. That is
why it seems reasonable to use Jeffery-Hamel flow to capture the inflow velocity
vin.

Jeffery Hamel flow

The flow between two planes that meet at an angle was first analyzed by Jef-
fery (1915) and Hamel (1916). Under suitable assumptions, the problem can be
reduced to the solution of an ordinary differential equation. We shall use polar
coordinates (r, θ), where θ ∈ [−α, α] and assume purely radial and steady flow,
i.e., v = vr(r, θ)er. Under these assumptions the continuity equation reduces to

∂

∂r
(rvr) = 0, (1.75)

which implies

vr =
νF (θ)

r
, (1.76)

where F is a function of θ only and ν represents kinematic viscosity. Linear
momentum equations simplifies to

vr
∂vr

∂r
= −1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2
+

1

r2

∂2vr

∂θ2
+

1

r

∂vr

∂r
− vr

r2

)
, (1.77a)

0 = − 1

ρr

∂p

∂θ
+ ν

2

r2

∂vr

∂θ
. (1.77b)

Substituting into the azimuthal momentum equation 1.77b, we obtain

∂

∂θ

(
p

ρ

)
=

∂

∂θ

(
2ν2F

r2

)
(1.78)

and after integration
p

ρ
=

2ν2F

r2
+G(r), (1.79)

where G(r) is independent from θ. With combination of 1.76 and 1.79 we can
rewrite radial momentum equation 1.77a as

ν2F 2

r

∂

∂r

(
1

r

)
= −2ν2F

∂

∂r

(
1

r2

)
− ∂G

∂r

+ ν

(
νF

∂2

∂r2

(
1

r

)
+
ν

r3

∂2F

∂θ2
+
νF

r

∂

∂r

(
1

r

)
− νF

r3

)
. (1.80)
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Because F andG are functions of only one variable, we shell use prime notation for
differentiation F ′ = ∂F

∂θ
and G′ = ∂G

∂r
respectively. When we apply the derivations,

we have

− ν2F 2

r3
=

4ν2F

r3
−G′ + 2ν2F

r3
+
ν2

r3
F ′′ − ν2F

r3
− ν2F

r3
, (1.81)

which is equivalent to
r3G

ν2
= F ′′ + 4F + F 2. (1.82)

Left hand side of this equation is a function of r only, while right hand side
depends on θ. It means, that each side equals to the same constant C and for F
we obtain ordinary differential equation

F ′′ + 4F + F 2 = C. (1.83)

Constant C should be determined with respect to the fact, that the same mass of
fluid Q passes per unit time through any cross-section r = const., where Q could
be evaluated as

Q = ρ

∫ α

−α
vrrdθ = ρν

∫ α

−α
Fdθ. (1.84)

Equation 1.83 should be completed with lateral boundary condition. Physical
experiments suggests, that free slip boundary condition should be used.

As a simplification, we shall consider in the following the function F (φ) to be
constant

vr = vr(r) =
νF

r
. (1.85)

From the geometry of the problem, Fig. 1.2, we can easily see that r =
√
x2 + r2

c ,
rc = Win

tanα
and the following relations hold

vx = vr sinφ =
νF

r

x

r
=

νFx

x2 + r2
c

, (1.86a)

vy = vr cosφ =
νF

r

rc
r

=
νFrc
x2 + r2

c

, (1.86b)

Concerning the mass of fluid that passes per unit time through any cross-
section y = rc = constant, we obtain

Q = ρ

∫ W (y)

−W (y)

vy dx = ρ

∫ W (y)

−W (y)

νFrc(y)

x2 + r2
c (y)

dx = ρνF

[
arctan

(
x

rc(y)

)]W (y)

−W (y)

= 2ρνF arctan

(
W (y)

rc(y)

)

︸ ︷︷ ︸
tanα

= 2αρνF. (1.87)

Only vy is responsible for the mass flux, since
∫W (y)

−W (y)
vx dx = 0. Therefore we

have a relation

Fν =
Q

2αρ
(1.88)

and inflow velocity vin can determined only from given mass inflow Q and angle
α under which the restrictiors meet. Indeed we have

vin = (vx, vy) =

(
νFx

x2 + r2
c

,
νFrc
x2 + r2

c

)
, (1.89)
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Figure 1.2: Jeffery Hamel flow geometry.

where Fν = Q
2αρ

and rc = Win

tanα
.

The problem of the Jeffery-Hamel flow can be also found in Rosenhead (1940)
and Batchelor (2000).

1.4.4 Outflow boundary condition

At the end of the tin bath the glass is pulled out by a huge roller called lehr.
By manipulating with speed of the lehr we can modify height and width of the
ribbon, but for us it is important as a Dirichlet boundary condition at the outflow
of the domain. Because the lehr moves with the same constant speed vout over
whole outflow, we can write the outflow boundary condition as

v(x, y, t)|y=L = (0, vout) = vout. (1.90)
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Chapter 2

Numerical solution

We have system

∂ (Hρg)

∂t
+ div (Hρgv) = 0, (2.1a)

∂

∂t
(Hρgv) + div (Hρgv ⊗ v) = divTgs, (2.1b)

∂W (y)

∂t
+ vx(−W (y), y) + vy(−W (y), y)

∂W (y)

∂y
= 0. (2.1c)

where Tgs is declared in 1.65c. These equations will be solved in domain Ω =
{(x, y) ∈ IR2; 0 ≤ y ≤ L,−W (y, t) ≤ x ≤ W (y, t)} with following Dirichlet
boundary conditions

W (0, t) =Win, (2.2)

H(x, 0, t) =Hin −W (0, t) ≤x ≤ W (0, t) (2.3)

v(x, 0, t) =vin(x) −W (0, t) ≤x ≤ W (0, t), (2.4)

v(x, L, t) =vout −W (L, t) ≤x ≤ W (L, t), (2.5)

and Neumann condition for sides of the ribbon

Tgsn+ = −γn+ (2.6)

Tgsn− = −γn− (2.7)

where n± = (±1,−∂W
∂y

) is outer normal of the ribbon. We further mark four
parts of the boundary: inflow as Γin, outflow as Γout and lateral boundaries as
Γ±free.

We will solve the system 2.1 by finite element method. For that purpose we
need the equations in weak formulation.

2.1 Weak formulation

For further manipulation we neglect all terms with time derivative ∂
∂t

from
model 2.1, because want to study steady state of the ribbon. In this case, equa-
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tions simplifies as follows

div (Hρgv) = 0, (2.8a)

div (Hρgv ⊗ v) = divTgs, (2.8b)

∂W (y)

∂y
= −v

x(−W (y), y)

vy(−W (y), y)
(2.8c)

and Cauchy stress tensor reads

Tgs = −P I +
2µH

ρg
(div (ρgv)) I + 2µHD. (2.9)

Moreover right hand side of the equation 2.8b can be rewritten with using con-
tinuum equation 2.8a in coordinates notation as follows

∂Hρgv
ivj

∂xi
=
∂Hρgv

i

∂xi
vj +Hρgv

i∂v
j

∂xi
=

=0︷ ︸︸ ︷
div (Hρgv) vj +Hρgv

i∂v
j

∂xi
. (2.10)

Therefore equation 2.8b is equivalent to

HρG (∇v)v = divTgs. (2.11)

If we want rewrite equations 2.1 in weak formulation, we multiply first equa-
tion 2.8a and third 2.8c by test functions G ∈ Φ̃ and ψ ∈ Ψ̃ respectively and on
second 2.8b we use scalar multiplication by u ∈ Ṽ , where Φ̃ and Ψ̃ are function
space and Ṽ vector function space, which will be specified later. Then, after
integrating equations 2.8a and 2.8b over domain Ω and , we get

∫

Ω

div (Hρgv)Gdv =0, (2.12a)
∫

Ω

(HρG (∇v)v) · udv =

∫

Ω

div (Tgs) · udv, (2.12b)

∫ L

0

∂W (y)

∂y
ψ(y)dy =−

∫ L

0

vx(−W (y), y)

vy(−W (y), y)
ψ(y)dy. (2.12c)

On the right hand side of second equation 2.12b we use Green’s theorem which
yields

∫

Ω

(HρG (∇v)v) · udv = −
∫

Ω

(Tgs) : ∇udv +

∫

∂Ω

Tn · udS. (2.13)

The boundary integral vanishes for the inflow and outflow, because test function
u equals to zero, due to Dirichlet boundary condition on velocity. However on
the rest of the boundary we have Neumann boundary condition Tn± = −γn±,
which reflects in equation as

∫

Ω

(HρG (∇v)v) · udv = −
∫

Ω

(Tgs) : ∇udv −
∫

Γ±
free

γn± · udS, (2.14)

where Γ±free denotes lateral parts of the boundary and n± outward normals.
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Now we get to weak formulation of the problem. We define function spaces

V =
{
v(x, y) ∈ R2, v|Γin

= vin, v|Γout
= vout

}
, (2.15a)

Φ =
{
H(x, y) ∈ R, H|Γin

= Hin

}
, (2.15b)

Ψ = {W (y) ∈ R, W (0) = Win} (2.15c)

such that all previous integrals are finite. Then we seek H ∈ Φ, v ∈ V and
W ∈ Ψ that

∫

Ω

div (Hρgv)Gdv =0, (2.16a)
∫

Ω

(Hρg (∇v)v) · udv =−
∫

Ω

(Tgs) : ∇udv −
∫

Γ±
free

γn± · udS, (2.16b)

∫ L

0

∂W (y)

∂y
ψ(y)dy =−

∫ L

0

vx(−W (y), y)

vy(−W (y), y)
ψ(y)dy (2.16c)

holds for all G ∈ Φ̃, u ∈ Ṽ and ψ ∈ Ψ̃, where

Ṽ =
{
u(x, y) ∈ R2, u|Γin

= 0, u|Γout
= 0

}
, (2.17a)

Φ̃ =
{
G(x, y) ∈ R, G|Γin

= 0
}
, (2.17b)

Ψ̃ = {ψ(y) ∈ R, ψ(0) = 0} (2.17c)

are function spaces for test functions.

2.2 Domain transformation

Let us assume that we have a mapping χ that transforms a fixed domain
ΩX ⊂ R2 to the evolving domain Ωx,t ⊂ R2, see Figure 2.1. The relation between
the position X in the fixed domain ΩX and the position x in the evolving domain
Ωx,t is

x = χ(X, t). (2.18)

In what follows will investigate transformation rules for certain volume and
surface integrals that appear in the weak formulation of the problem. Using the
derived transformation rules, we will be able to rewrite the weak formulation in a
fixed computational domain, which will be convenient for the numerical solution
of the problem.

Any function φ(x, t) defined in the evolving domain Ωx,t can be rewritten as
a function on the fixed domain ΩX in terms of the following simple substitution,

φ̂(X, t) =def φ(x, t)|x=χ(X,t) . (2.19)

The derivatives of φ̂(X, t) with respect to X can be easily found using the chain
rule,

∂φ̂

∂Xi

(X, t) =
∂

∂Xi

(
φ(x, t)|x=χ(X,t)

)
=

∂φ

∂xj
(x, t)

∣∣∣∣
x=χ(X,t)

∂χj
∂Xi

(X, t). (2.20)
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Figure 2.1: Change of variables.

If we define the transformation matrix F as follows,

F(X, t) =def
∂χ

∂X
(X, t), (2.21)

which means that the matrix elements are given by the formula

F(X, t) =
[
Fij(X, t)

]
i,j=1,...,3

=
[
∂χi

∂Xj
(X, t)

]
i,j=1,...,3

(2.22)

then the transformation rule (2.20) can be rewritten as

∇Xφ̂(X, t) = FT (X, t) ∇xφ(x, t)|x=χ(X,t) , (2.23)

or, in a compact notation, as ∇Xφ̂ = FT (∇xφ). (Note that (2.21) is frequently
written as F = ∂x

∂X
.) It turns out that for transforming equations in weak formu-

lation 2.16 we need to evaluate (∇xφ). For that purpose instead of F it is more
convenient to work with the inverse of this matrix,

A(X, t) =def F−1(X, t). (2.24)
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The standard manipulation yields—with a slight abuse of the notation—the for-
mula

A(X, t) =
∂X

∂x
(x, t)

∣∣∣∣
x=χ(X,t)

=
∂χ−1

∂x
(x, t)

∣∣∣∣
x=χ(X,t)

(2.25)

and by similar manipulation as in 2.20 we see that

∂φ

∂xi
(x, t) =

∂

∂xi

(
φ̂(X, t)

∣∣∣
X=χ−1(x,t)

)
=

∂φ̂

∂Xj

(X, t)

∣∣∣∣∣
X=χ−1(x,t)

∂χ−1
j

∂xi
(x, t), (2.26)

which we can write as

∇xφ(x, t) = AT (X, t) ∇Xφ̂(X, t)
∣∣∣
X=χ−1(x,t)

. (2.27)

Concerning the vector valued functions, the counterpart of the transformation
rule (2.19) reads

f̂(X, t) =def f(x, t)|x=χ(X,t) . (2.28)

The application of the chain rule yields

∂f̂i
∂Xj

(X, t) =
∂

∂Xj

(
fi(x, t)|x=χ(X,t)

)
=

∂fi
∂xk

(x, t)

∣∣∣∣
x=χ(X,t)

∂χk
∂Xj

(X, t), (2.29)

which can be rewritten as

∇Xf̂(X, t) = ∇xf(x, t)|x=χ(X,t) F(X, t). (2.30)

Similar relation holds for

∇xf(x, t) = ∇Xf̂(x, t)
∣∣∣
X=χ−1(x,t)

A(X, t). (2.31)

We can easily see, how to transform div Xf̂ from previous relation by simple
manipulation

div Xf̂(X, t) = Tr
(
∇Xf̂(X, t)

) 2.30︷︸︸︷
= Tr

(
∇xf(x, t)|x=χ(X,t) F(X, t)

)
(2.32)

or we have with inverse transformation

div xf(x, t) = Tr

(
∇Xf̂(x, t)

∣∣∣
X=χ−1(x,t)

A(X, t)

)
. (2.33)

The weak formulation of the governing equations will in principle include vol-
ume integrals such

∫
Ωx,t

f(x, t) dv and
∫

Ωx,t
f(x, t) dv , where f , f are some scalar

valued or vector valued functions on Ωx,t respectively. Let us now investigate
what needs to be done if one wants to integrate over the fixed domain ΩX in-
stead of the evolving domain Ωx,t. Since Ωx,t = χ(ΩX, t), the straightforward
application of the substitution theorem yields

∫

Ωx,t

f(x, t) dv =

∫

χ(ΩX,t)

f(x, t) dv =

∫

ΩX

f(χ(X, t), t)detF(X, t) dV

=

∫

ΩX

f̂(X, t)detF(X, t) dV (2.34)
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and

∫

Ωx,t

f(x, t) dv =

(∫

Ωx,t

f1(x, t) dv,

∫

Ωx,t

f2(x, t) dv

)

=

(∫

ΩX

f̂1(X, t)detF(X, t) dV,

∫

ΩX

f̂2(X, t)detF(X, t) dV

)

=

∫

ΩX

f̂(X, t)detF(X, t) dV. (2.35)

The integration by parts that is used in the weak formulation of the problem
will lead to the following integral over the boundary of the physical domain,

∫

∂Ωx,t

a · n dl, (2.36)

where a is a vector valued function on Ωx,t, n is the unit outward normal to the
boundary and dl is the length of the infinitesimal element of the boundary. The
transformation rule for this integral can be best found by the following trick.
All quantities considered so far are two dimensional objects. We will formally
“extend”, see Figure 2.2, all the quantities to three dimensional objects, in the
following manner

x3D =def

[
x
z

]
, (2.37a)

X3D =def

[
X
Z

]
, (2.37b)

a3D(x3D, t) =def

[
a(x, t)

0

]
, (2.37c)

χ3D(X3D, t) =def

[
χ(X, t)
Z

]
, (2.37d)

F3D(X3D, t) =def
∂χ3D

∂X3D

=

[
F(X, t) 0

0 1

]
, (2.37e)

Ωx3D,t =def Ωx,t × (−l, l), (2.37f)

ΩX3D
=def ΩX × (−l, l), (2.37g)

where l is a positive number. Using this notation, we see that

∫

∂Ωx3D,t

a3D(x3D, t) ·n3D(x3D, t) ds =

∫ l

z=−l

(∫

∂Ωx,t

a(x, t) · n(x, t) dl

)
dz. (2.38)
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dL
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ΩX3D
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l

X1

X2

dS

N3D =

[
0
1

]

N3D =

[
N
0

]

Figure 2.2: Formal extension to three dimensional space.

On the other hand, the substitution theorem for surface elements yields

∫

∂Ωx3D,t

a3D(x3D, t) · n3D(x3D, t) ds =

∫

χ3D(∂ΩX3D)
a3D(x3D, t) · n3D(x3D, t) ds

=

∫

∂ΩX3D

a3D(χ3D(X3D), t) ·
(
detF3D(X3D, t)F−T3D (X3D, t)N3D(X3D)

)
dS

=

∫

∂ΩX3D

â3D(X3D, t) ·
(
detF3D(X3D, t)F−T3D (X3D, t)N3D(X3D)

)
dS

=

∫

∂ΩX3D

detF(X, t)
(
F−1(X, t)â(X, t) ·N(X)

)
dS

=

∫ l

Z=−l

(∫

∂ΩX

detF(X, t)
(
F−1(X, t)â(X, t) ·N(X)

)
dL

)
dZ, (2.39)

where we have used the fact that, informally, dS = dLdZ. The dot product
in (2.39)—in the integration over the lateral surfaces of ΩX3D

—has been simplified
by in virtue of the identity

â3D(X3D, t) ·
(
detF3D(X3D, t)F−T3D (X3D, t)N3D(X3D)

)

= detF3D(X3D, t)
(
F−1

3D(X3D, t)â3D(X3D, t) ·N3D(X3D)
)

= det

[
F(X, t) 0

0 1

]([
F−1(X, t) 0

0 1

] [
â(X, t)

0

]
·
[
N(X)

0

])

= detF(X, t)
(
F−1(X, t)â(X, t) ·N(X)

)
(2.40)

that holds on the lateral surfaces of ΩX3D
. Concerning the top and bottom surface

of ΩX3D
, the integrand in (2.39) vanishes on these surfaces since

â3D(X3D, t)·
(
F−T3D (X3D, t)N3D(X3D)

)
=

[
â(X, t)

0

]
·
[
F−T (X, t) 0

0 1

] [
0
1

]
=

[
â(X, t)

0

]
·
[
0
1

]
= 0.

(2.41)
Finally, comparing the right hand sides of (2.38) and (2.39), we see that

∫

∂Ωx,t

a(x, t) · n(x, t) dl =

∫

∂ΩX

detF(X, t)
(
F−1(X, t)â(X, t) ·N(X)

)
dL, (2.42)
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which can be rewritten in a compact form and with using relation (detF)F−T =
cofF as ∫

∂Ωx,t

a · n dl =

∫

∂ΩX

(Aâ) ·NdetF dL =

∫

∂ΩX

â · cofFN dL. (2.43)

2.3 Summary

When we define transformation x = χ(X, t)

x = W (y, t)X (2.44a)

y = Y (2.44b)

we we obtain a fixed computational domain

ΩX =def

{
[X, Y ] ∈ R2, −1 < X < 1, 0 < Y < L

}
(2.45)

with lateral boundaries

Γ+
free,X =def {[X, Y ] ∈ ∂ΩX, X = 1} , Γin,X =def

{
[X, Y ] ∈ R2, Y = 0

}
,

Γ−free,X =def {[X, Y ] ∈ ∂ΩX, X = −1} , Γout,X =def

{
[X, Y ] ∈ R2, Y = L

}
,

where each lateral boundary Γ+
free,X and Γ−free,X has a unit outward normal N+ =

(1, 0) and N− = (−1, 0), respectively. From relation 2.44 we obtain transforma-
tion matrices

F =

[
Ŵ X ∂Ŵ

∂Y

0 1

]
, A =

[
1

Ŵ
−X

Ŵ

∂Ŵ
∂Y

0 1

]
. (2.46)

Before we define function spaces on computational domain, we need to trans-
form Dirichlet boundary conditions. Since Win, Hin and vout are constants, the
only function that will be changed is vin. Applying 2.44 on condition 1.89 implies
(

νFx

x2 + r2
c

,
νFrc
x2 + r2

c

)
= vin(x) = vin(χ(X, t))

=

(
νFXW (Y, t)

(XW (Y, t))2 + r2
c

,
νFrc

(XW (Y, t))2 + r2
c

)
= v̂in(X). (2.47)

Now we define function spaces on transformed fixed domain

V̂ =

{
v̂(X, Y ) ∈ R2, v̂

∣∣∣
Γin,X

= v̂in, v̂
∣∣∣
Γout,X

= v̂out

}
, (2.48a)

Φ̂ =

{
Ĥ(X, Y ) ∈ R, Ĥ

∣∣∣
Γin,X

= Ĥin

}
, (2.48b)

Ψ̂ =
{
Ŵ (Y ) ∈ R, Ŵ (0) = Ŵin

}
(2.48c)

and test function spaces

̂̃V =
{
̂̂u(X, Y ) ∈ R2, û|Γin,X

= 0, û|Γout,X
= 0

}
, (2.49a)

̂̃Φ =

{
Ĝ(X, Y ) ∈ R, Ĝ

∣∣∣
Γin,X

= 0

}
, (2.49b)

̂̃Ψ =
{
ψ̂(Y ) ∈ R, ψ̂(0) = 0

}
. (2.49c)
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Weak formulation of the governing equations for the motion inside the fixed
computational domain ΩX means to find v̂ ∈ V̂ and Ĥ ∈ Φ̂ such that the
equations hold

∫

ΩX

Tr
[(
∇X

(
Ĥρ̂gv̂

))
A
]
ĜdetF dV = 0 (2.50a)

∫

ΩX

(
Ĥρ̂g

[(
∇Xv̂

)
A
]
v̂
)
· ûdetF dV = −

∫

ΩX

T̂gs : [(∇Xû)A] detF dV

−
∫

Γ+
free,X

γ̂û ·
(
cofFN+

)
dL−

∫

Γ−
free,X

γ̂û ·
(
cofFN−

)
dL (2.50b)

for any û ∈ ̂̃V and Ĝ ∈ ̂̃Φ. Cauchy stress tensor T̂gs in the fixed computational
domain ΩX reads

T̂gs = −P̂ I + 2µ̂
Ĥ

ρ̂g
Tr
[(
∇X(ρ̂gv̂)

)
A
]
I + 2µ̂ĤD̂, (2.51a)

D̂ =
1

2

((
∇Xv̂

)
A + AT

(
∇Xv̂

)T)
, (2.51b)

P̂ = ρ̂g

(
1− ρ̂g

ρ̂t

)
g
Ĥ2

2
. (2.51c)

Position of the free boundary, f±(x, t) = 0, in physical domain and f̂±(X, t) =
0, in computational domain reads

f±(x, t) = x∓W (y, t), f̂±(X, t) = (X ∓ 1) Ŵ (Y, t). (2.52)

If we define areal Jacobian as

− = detF

∣∣∣F−T
(
∇Xf̂

−
)∣∣∣

∣∣∣∇Xf̂−
∣∣∣

(2.53)

then we can write weak formulation of the governing equations for the motion of
the free boundary Γ−free,X. We need to find Ŵ ∈ Ψ̂ such that the equation

∫

Γ−
free,X

(
Av̂
)
·
(
∇Xf̂

−
)
ψ̂− dL = 0 (2.54)

holds for any ψ̂ ∈ ̂̃Ψ. Since we have

∇Xf̂
−(−1, Y, t) =

(
Ŵ (Y, t), (−1 + 1)

∂Ŵ (Y, t)

∂Y

)
=
(
Ŵ (Y, t), 0

)
,

(2.55a)

detF∣∣∣∇Xf̂−
∣∣∣
(−1, Y ) =

Ŵ (Y, t)

Ŵ (Y, t)
= 1, (2.55b)

∣∣∣F−T
(
∇Xf̂

−
)∣∣∣ (−1, Y, t) =

∣∣∣AT
(
∇Xf̂

−
)∣∣∣ (−1, Y, t) =

[
1

Ŵ
0

1

Ŵ

∂Ŵ
∂Y

1

][
Ŵ
0

]
= 1

(2.55c)
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on boundary Γ−free,X, we also have for areal Jacobian −(−1, Y ) = 1. We can
similarly compute

(
Av̂
)
·
(
∇Xf̂

−
)

(−1, Y ) =

[
1

Ŵ

1

Ŵ

∂Ŵ
∂Y

0 1

][
v̂x

v̂y

]
·
[
Ŵ
0

]

=
1

Ŵ
v̂xŴ +

1

Ŵ

∂Ŵ

∂Y
v̂yŴ = v̂x +

∂Ŵ

∂Y
v̂y. (2.56)

Therefore equation 2.54 for the motion of the free boundary Γ−free,X reduces to

∫

Γ−
free,X

(
v̂x +

∂Ŵ

∂Y
v̂y

)
ψ̂ dL = 0. (2.57)

2.4 Finite element method

The transformed problem is solved by finite element method. First step when
using finite element methodis to declare a mesh on which we compute the so-
lution. However while finding function W , which gives us the position of the
free boundary, from equation 2.57 is one dimensional problem, finding velocity
field v and height of the ribbon H from system 2.50 is problem two dimensional.
Therefore it seems reasonable to separate these two problems and iterate between
them as described below.

Two dimensional problem requires a rectangle mesh, which represents a trans-
formed fixed domain ΩX 2.45. The viscosity µ depends on temperature exponen-
tially and inflow temperature is about 500◦C higher then outflow temperature.
It means that viscosity at inflow is significantly lower so it seems appropriate
to make mesh denser towards inflow. On the other hand one dimensional prob-
lem 2.57 is much smaller, so we can afford denser mesh on whole 1D domain
without significant lose of computational time. It means that 1D mesh is an
equidistantly divided interval with length L.

In second step we define finite dimensional function spaces. We use quadric
Lagrange elements on 2D mesh for approximating velocity v, linear Lagrange
elements also on 2D mesh for height of the ribbon H and linear Lagrange elements
on 1D mesh for width of the ribbon W .

Since we separated the problem in two parts we need to iterate between them.
At first we define initial conditions, which we use as an initial approximation for
unknown functions. Because it is desirable to preserve boundary conditions, we
declare initial velocity vinit as linear interpolation between inflow velocity vin 1.89
and outflow velocity vout 1.90

vinit = vin + (vout − vin)
Y

L
. (2.58)

Initial height could be declared as inflow height Hin, however when we use equi-
librium height Heq 1.73 we receive smaller initial residuum and save some com-
putational time. Width W starts as constant Win, which means that for first
iteration we have a straight channel.

Now we find piecewise quadric velocity v̂ap and piecewise linear height Ĥap

from above defined Lagrange spaces, which satisfy system 2.50 discretisated in
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virtue of finite element methodwith given width Ŵap. Then we substitute com-

puted velocity v̂ap into equation for position of the free boundary 2.57 again
dicretisated in virtue of finite element methodand evaluate new piecewise linear
width Ŵap. After that we use new width Ŵap in equations 2.50 and again solve

them with respect to v̂ap and Ĥap. And then repeat whole process again. Each
time, after computing new width, we assemble the system 2.50 with new height
Ĥap, velocity v̂ap and new width Ŵap and find L2 norm of the residuum. When

the residuum is sufficiently small, we stop the process and proclaim v̂ap, Ĥap and

Ŵap an approximated solution.
Algorithm is implemented using FEniCS. FEniCS is a software for solving

differential equations by finite element method.
Somewhere in ribbon are placed wheels, which stretches the glass in order to

obtain appropriate thickness. These wheels gives us an inner Dirichlet condition,
which can be easily implemented in FEniCS.

However a slight problem is, that even we have a given placement of the
wheels in the physical domain, we do not know their position in computational
domain, since we change transformation function Ŵap during calculation. For
example if we have a wheel placed in physical domain at (x, y) = (2.4, 15.5)

and start iteration with Ŵap = 1.6, then the wheel should be placed in the

computational domain at (X, Y ) = (x/Ŵap(Y ), y) = (1.5, 15.5), which in fact is
not in the domain, since it has a property X ∈ [−1, 1]. But even in this case
it seem reasonable to place the wheel at the edge of the domain, because this
way glass stretches more to next iteration and more likely we end up with wheel
inside the domain. Now each time we recalculate width of the physical domain
Ŵap we need to adjust position of wheels. For example if we obtain width with

property Ŵap(15.5) = 3.2 then the wheel moves in computational domain to point

(X, Y ) = (x/Ŵap(Y ), y) = (2.4/3.2, 15.5) = (0.75, 15.5).
In FEniCS we represent the wheel as a pointwise Dirichlet condition. It means

that we prescribe a velocity in given node of the mesh. Since we use quadric
Lagrangian elements for velocities, the nodes are vertices of the triangulated
mesh or middle of the triangle’s facet. So we find the closest node to the given
point and place the condition there.

In the end the whole cycle looks like this:

> move wheel

> solve velocity

> apply velocity on boundary to width equation

> solve width

> apply width on system for velocity and height equations

> compute residuum of velocity and height equations

> store computed solution to file

> if residuum < tolerance then stop cycle

After the iteration stops we can transform the computational rectangle domain
to the physical domain according to computed width.
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Chapter 3

Results

There are plenty of parameters it he system, we wnat to solve, such as spread-
ing coefficient γ, outflow velocity vout, inflow velocity, which is characterized by
inflow mass Q and angle α at which the glass enters the domain. Some parame-
ters are not easily measured and some could be changed, while different thickness
of glass is required.

3.1 Spreading coefficient

First mentioned was the spreading coefficient γ. One way, how to determine
this value, was suggested in 1.73 as it has a direct connection to equilibrium height
of the glass. Another way, how to measure γ, can be obtained by considering the
balance of forces acting on a drop of glass poured in tin bath. This way, γ
depends on measured angles α, β and θ shown in figure 3.1. and the partial

Figure 3.1: Drop of glass

surface tensions between glass-air γga, glass-tin γgt and tin-air γta. Then we have
γ = γga+γgt−γta. See for example Popov (1981) and Langmuir (1933). However
both methods proves to be inaccurate, because liquid glass is photographed in
closed container, since it needs high temperatures to melt down. And from these
photographs is hard to get precise data.

Therefore we calculated several results with slightly and even roughly different
values fo γ. The most important results of the model is final width of the ribbon
over the domain and height of the glass which we gain at the outflow. In figure 3.2
is shown dependence of the half-width of the ribbon according to various γ. As
we can see, the smaller is the γ the wider is the ribbon. So the representation
of γ as a force acting on unit length of the edge of the ribbon seems correct. In
virtue of supporting this hypothesis, a table 3.1 is attached. There is a position of
maximal width for case. And again the larger is the force, the closer is maximum
from beginning of the domain.
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Figure 3.2: Ribbon width with different γ

Half-width [m]
Position [m] γ = 0.19 γ = 0.27 γ = 0.29 γ = 0.31 γ = 0.39

kg/s2 kg/s2 kg/s2 kg/s2 kg/s2

1.94 (max γ = 0.39kg/s2) 2.0373 1.9215 1.8965 1.8728 1.7886
2.26 (max γ = 0.31kg/s2) 2.0708 1.9356 1.9065 1.8791 1.7825
2.37 (max γ = 0.29kg/s2) 2.0796 1.9376 1.9072 1.8785 1.7778
2.49 (max γ = 0.27kg/s2) 2.0869 1.9383 1.9066 1.8767 1.7719
3.13 (max γ = 0.19kg/s2) 2.1036 1.9226 1.8847 1.8492 1.7268

57.91 (exit) 1.5737 1.3346 1.2892 1.2478 1.1137

Table 3.1: Ribbon width with different γ

Height of the ribbon at the end of the domain is a crucial result, because it
refers to the final profile of the glass. In figure 3.3 we observe the influence of
spreading coefficient γ to the outflow height. Again appears significant depen-
dence of height on γ. For example, when we increase γ by 6%, the height increase
by 3%, what can be calculated from table 3.2 with hard data received from the
program.

3.2 Inflow velocity

The condition for velocity at the inflow is quiet delicate problem, since we
don’t exactly know, what happens, when glass leaves the restrictors. It is not
easy to determine accurate rule for any situation, anyway we chose the Jeffery-
Hamel flow approximation. With this approximation we can easily change inflow
angle α. It means that the fluid enters the domain from channel in the shape of
’V’ and at different angles. First attempt was to copy the angle of restrictors. But
physical measuring of the shape of the ribbon shows, that around the restrictors’
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Figure 3.3: Ribbon height at the end of the domain with different γ

Height [m]
γ = 0.19 γ = 0.27 γ = 0.29 γ = 0.31 γ = 0.39

kg/s2 kg/s2 kg/s2 kg/s2 kg/s2

Centre, position [m] 0.0 0.0 0.0 0.0 0.0
Centre, value [m] 0.00430 0.00510 0.00528 0.00546 0.00614
Edge, position [m] 1.5737 1.3346 1.2892 1.2478 1.1137

Edge, value [m] 0.00451 0.00525 0.00542 0.00559 0.00623

Table 3.2: Ribbon height at the end of the domain with different γ

tip the angle opens a little bit.
First graph 3.4 represents ribbon’s half-width while we change the angle

at which the glass enters the domain. As we can see in the graph 3.4 or also
in table 3.3, width at the end of the domain is not so sensitive to inflow angle α
as the maximal width. However different shape of the ribbon reflects in outflow
height. Besides the fact that height is slightly different through whole outflow,
which reflects different outflow width, important are differences between height
at the edge and height at the centre of the ribbon. Or in other words how much
is the glass bent. When we increase angle α we also increase a little the rate of
bending. This effect is illustrated in graph 3.5 and in table 3.4.

3.3 Lehr speed

Lehr pulls glass out of the tin bath at the end of the domain. It’s speed
generates for us outflow velocity. The speed of the lehr can be easily adjust during
the process in order to influence the outflow height. Therefore it is one of the
parameters, which we want to study and learn how it influence our calculations.

Again first we present figure 3.6 and table 3.5 how outflow speed changes
half-width of the ribbon, where we can see how different velocities spreads back
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Figure 3.4: Ribbon width with different inflow angle

Half-width [m]
Position [m] 37.5◦ 47.5◦ 57.5◦ 67.5◦

1.01 1.6817 1.7698 1.8637 1.9587
2.35 (max for 67.5◦) 1.8057 1.9072 2.0163 2.1254
2.43 (max for 37.5◦) 1.8061 1.9071 2.0158 2.1247

5.01 1.6903 1.7598 1.8356 1.9132
57.91 (exit) 1.2730 1.2892 1.3060 1.3224

Table 3.3: Ribbon width with different inflow angle

through domain and has an effect on ribbon’s width.
Main reason, why to change outflow velocity is to influence height of the glass

exiting the domain. In figure 3.7 we can see, that this way height moves by 1mm
on any side. This way we can also observe in table 3.6 that with increasing speed
the glass becomes more bent.

3.4 Wheels

The industry demands thinner and even thicker glass then was presented
above. For that purpose wheels are dug in the glass on sides of the ribbon
approximately in the middle of the domain, in the stretching region, where glass
gain larger viscosity. The wheels stretches the glass and make it thinner and
wider or thicker and more narrow.

Figures 3.8 with half width of glass and 3.9 with height at the outflow shows
that wheels are very effective, when we want to obtain different thickness of the
glass. But sometimes appears little waves on the glass, so the glass is not so plane
and it is really undesirable.
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Figure 3.5: Ribbon height at the end of the domain with different inflow angle

Height [m]
Position [m] 37.5◦ 47.5◦ 57.5◦ 67.5◦

Centre, position [m] 0.0 0.0 0.0 0.0
Centre, value [m] 0.00536 0.00528 0.00521 0.00515
Edge, position [m] 1.2730 1.2892 1.3060 1.3224

Edge, value [m] 0.00548 0.00542 0.00537 0.00531

Table 3.4: Ribbon height at the end of the domain with different inflow angle
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Figure 3.6: Half-width of the ribbon with different lehr speed
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Half-width [m]
Position [m] 0.08m/s 0.22m/s 0.32m/s

1.01 1.8559 1.7686 1.7502
2.20 2.1485 1.9023 1.8512
9.99 2.5632 1.5218 1.3289
20.01 2.7247 1.3184 1.0609

57.91 (exit) 2.7630 1.2712 0.9971

Table 3.5: Ribbon width with different outflow speed
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Figure 3.7: Ribbon height at the end of the domain with different lehr speed

Height [m]
Position [m] 0.08m/s 0.22m/s 0.32m/s

Centre, position [m] 0.0 0.0 0.0
Centre, value [m] 0.00646 0.00525 0.00459
Edge, position [m] 2.7630 1.2712 0.9971

Edge, value [m] 0.00654 0.00539 0.00474

Table 3.6: Ribbon height at the end of the domain with different outflow speed
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Figure 3.8: Half-width of the ribbon with wheels
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Figure 3.9: Ribbon height at the end of the domain with wheels
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