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ABSTRACT 

The complexes of the oxidative phosphorylation (OXPHOS) system in the inner mitochondrial 

membrane are organised into structural and functional super-assemblies, so-called supercomplexes. 

This type of organisation enables substrate channelling and hence improves the overall OXPHOS 

efficiency. ATP synthase associates into dimers and higher oligomers. Within the supercomplex of ATP 

synthasome, it interacts with ADP/ATP translocase (ANT), which exchanges synthesised ATP for 

cytosolic ADP, and inorganic phosphate carrier (PiC), which imports phosphate into the mitochondrial 

matrix. The existence of this supercomplex is generally accepted. Experimental evidence is however 

still lacking. 

In this thesis, structural interactions between ATP synthase, ANT and PiC were studied in detail. In 

addition, the interdependence of their expression was examined either under physiological conditions 

in rat tissues or using model cell lines with ATP synthase deficiencies of different origin. Specifically, 

they included mutations in the nuclear genes ATP5E and TMEM70 that code for subunit ε and the 

ancillary factor of ATP synthase biogenesis TMEM70, respectively, and a microdeletion at the interface 

of genes MT-ATP6 and MT-COX3 that impairs the mitochondrial translation of both subunit a of ATP 

synthase and subunit Cox3 of cytochrome c oxidase. 

Functional and structural characterisation of the cell lines with ATP synthase defects revealed that 

nuclear mutations in the genes TMEM70 and ATP5E (the first reported mutation in a nuclear gene 

coding for a structural subunit of ATP synthase) lead to a reduced content of fully functional ATP 

synthase. In contrast, a mutation in MT-ATP6 is accompanied by a normal amount of incomplete ATP 

synthase that is non-functional due to the lack of subunit a. In this case, the pathological phenotype 

manifests itself above 90 % heteroplasmy of mutated mtDNA. At all the studied defects, a 

compensatory up-regulation of ANT and PiC was found, likely due to an adaptive mechanism at the 

post-transcriptional level. Under physiological conditions, however, the expression of ATP synthase, 

ANT and PiC appears to be co-regulated at the level of transcription.  

Although structural analyses revealed the existence of ATP synthasome in rat heart mitochondria, the 

majority of ATP synthase, ANT and PiC were found as separate entities. The functional significance of 

ATP synthasome therefore still remains controversial. The analyses also detected an association of ATP 

synthase with succinate dehydrogenase that had been previously reported as the so-called 

mitochondrial ATP-sensitive K+ channel. 

KEYWORDS: Mitochondria; oxidative phosphorylation; ATP synthase; ADP/ATP translocase; 

phosphate carrier; mitochondrial supercomplexes; mitochondrial disorders. 
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ABSTRAKT 

Komplexy oxidativní fosforylace (OXPHOS) se ve vnitřní mitochondriální membráně sdružují ve vyšší 

strukturní a funkční celky, tzv. superkomplexy. Jejich význam spočívá v cíleném směrování substrátu 

z jednoho komplexu na druhý. V případě ATP syntázy byly popsány její dimery i vyšší oligomery a také 

ATP syntazom, v rámci nějž dochází k seskupení ATP syntázy s přenašečem adeninových nukleotidů 

(ANT), zajišťujícím výměnu syntetizovaného ATP za cytosolické ADP, a fosfátovým přenašečem (PiC), 

umožňujícím import fosfátu do matrix mitochondrie. I když je existence tohoto superkomplexu obecně 

přijímána, experimentální důkazy nejsou dostatečné. 

V rámci této práce byly detailně zkoumány strukturní interakce ATP syntázy, ANT a PiC. Jejich vzájemné 

vztahy byly sledovány nejprve na úrovni exprese jednotlivých komponent ATP syntazomu, ať již za 

fyziologických podmínek v různých tkáních potkana, nebo na modelu deficiencí ATP syntázy v buňkách 

pacientů s různými genetickými defekty ATP syntázy. Konkrétně se jednalo o mutace v jaderných 

genech ATP5E a TMEM70, které kódují podjednotku ε, respektive pomocný faktor v biogenezi ATP 

syntázy TMEM70, a o mikrodeleci na rozhraní genů MT-ATP6 a MT-COX3, která negativně ovlivňuje 

mitochondriální translaci podjednotek a ATP syntázy a Cox3 cytochrom c oxidázy. 

Funkční a strukturní charakterizace buněčných linií s defekty ATP syntázy ukázala, že jaderné mutace 

v genech TMEM70 a ATP5E (první jaderný gen kódující podjednotku ATP syntázy, v němž byla objevena 

mutace) mají za následek snížené množství jinak plně funkční ATP syntázy, kdežto v případě 

mitochondriální mutace v MT-ATP6 je přítomno normální množství neúplné ATP syntázy, u níž 

chybějící podjednotka a vede k její nefunkčnosti. Patologický fenotyp této mutace se projeví až při 

překročení 90% heteroplazmie mutované mtDNA. U všech zkoumaných defektů bylo pozorováno 

kompenzační zvýšení přenašečů ANT a PiC, které je pravděpodobně způsobeno zatím neznámým 

adaptivním posttranskripčním mechanismem. Za fyziologických podmínek se ovšem zdá, že ATP 

syntáza, ANT a PiC jsou společně regulovány na úrovni transkripce. 

Strukturní analýzy ukázaly přítomnost ATP syntazomu v mitochondriích izolovaných ze srdce potkana. 

Většina ATP syntázy, ANT a PiC ale vzájemně neasociuje, což ještě více podtrhuje otázku funkčního 

významu ATP syntazomu. Analýzy odhalily také interakci ATP syntázy se sukcinát dehydrogenázou. 

Seskupení těchto dvou komplexů už dříve byla přisouzena funkce tzv. mitochondriálního 

ATP-senzitivního K+ kanálu. 

KLÍČOVÁ SLOVA: Mitochondrie; oxidativní fosforylace; ATP syntáza; přenašeč adeninových nukleotidů; 

fosfátový přenašeč; mitochondriální superkomplexy; mitochondriální onemocnění. 
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ABBREVIATIONS 

ADP  adenosine diphosphate 

ANT  ADP/ATP translocase, adenine nucleotide translocator 

ATP  adenosine triphosphate 

BAT  brown adipose tissue 

BNE  blue native electrophoresis 

CAT  carboxyatractyloside 

CNE  clear native electrophoresis 

CoQ  coenzyme Q 

COX  cytochrome c oxidase 

cyt c  cytochrome c 

CsA  cyclosporine A 

CyPD  cyclophilin D 

DDM  n-dodecyl β-D-maltoside 

IMM  inner mitochondrial membrane 

mitoKATP mitochondrial ATP-sensitive K+ channel 

mPTP  mitochondrial permeability transition pore 

MS  mass spectrometry 

mtDNA  mitochondrial deoxyribonucleic acid 

nDNA  nuclear deoxyribonucleic acid 

OSCP  oligomycin-sensitivity conferring protein 

OXPHOS oxidative phosphorylation 

PiC  phosphate carrier 

RC  respiratory chain 

ROS  reactive oxygen species 

rRNA  ribosomal ribonucleic acid 

SDS  sodium dodecyl sulphate 

SDS-PAGE denaturing polyacrylamide gel electrophoresis in the presence of SDS 

tRNA  transfer ribonucleic acid 

VDAC  voltage-dependent anionic channel 

Δp  proton-motive force 

ΔpH  proton gradient 

ΔµH+  electrochemical proton gradient 

Δm  mitochondrial membrane potential  
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INTRODUCTION 

 

1. Mitochondria 

Energy supply is essential for all cells, regardless of whether a cell represents a unicellular organism or 

a component of a larger multicellular entity. The cell needs to transform the chemical energy released 

by the metabolic conversion of substrates into a form of energy that the cell itself is able to utilize. 

Therefore, the final goal of energetic metabolism is to produce ATP (adenosine triphosphate), a 

molecule that can be regarded as a universal source of energy in the cell. Under anaerobic conditions, 

any cell is able to gain only two ATP molecules from one glucose molecule in the process of glycolysis, 

which takes place in the cytosol. If a cell is capable of utilising molecular oxygen in the reaction steps 

following the glycolysis, it can gain approximately 15-times more ATP using the process called oxidative 

phosphorylation (OXPHOS). In prokaryotes, it takes place on the plasma membrane. In eukaryotes, 

however, it is situated in a specialised organelle – the mitochondrion, where glucose oxidation is 

completed with the production of CO2 and H2O. Because of the presence of the OXPHOS enzyme 

system, mitochondria are the key producer of ATP in the cell, which makes them “cellular power 

plants”.  

The origin of mitochondria (as well as plastids, specialised organelles in the plant cell, which include 

chloroplasts), is explained by the so-called endosymbiotic theory (Margulis, 1968). It defines 

mitochondria as direct descendants of a eubacterial endosymbiont that was originally taken up by a 

protoeukaryotic host cell with an anaerobic type of heterotrophic metabolism in the process of 

endocytosis. Specifically, the rickettsial group of α-proteobacteria were identified as the closest 

relatives of mitochondria based on the phylogenetic analysis of the mitochondrial genome (Gray et al., 

2001). 

1.1. Mitochondrial genetics and biogenesis 

1.1.1. Mitochondrial genome 

The mitochondrial genome is usually a circular DNA molecule of varying size (15–60 kbp), similar to a 

typical bacterial genome. In many organisms, however, the mitochondrial DNA (mtDNA) adopts other 

types of architecture different from the circular one (Burger et al., 2003). 

Compared to the genome of their microbial relatives, the mitochondrial genome is markedly reduced 

in its coding capacity since the evolution of mitochondria from the α-proteobacterial endosymbiont 
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was accompanied by transfer of some genes into the host genome and loss of others due to their 

redundancy (Gray et al., 2001). Based on the gene content in the mitochondrial genome, the 

evolutional divergence of an organism can be roughly assessed. The most gene-rich, and hence most 

ancestral, least derived mitochondrial genome described so far is that of the protist Reclinomonas 

americana. Its 69-kbp mtDNA contains 97 genes in total, 92 with an assigned function, including 44 

protein-coding genes (Lang et al., 1997). In contrast, human mtDNA (16 569 bp) only contains 13 

protein-encoding genes, altogether membrane-embedded OXPHOS components, 2 rRNA molecules 

and a set of 22 tRNA molecules, which fully ensures mitochondrial translation. 

Unlike the nuclear genome, mitochondria and their DNA are maternally inherited. Cells typically 

contain hundreds of mitochondria. Since each of them usually possesses multiple mtDNA molecules, 

the mtDNA copy number varies from about ten to several thousand molecules per cell (Burger et al., 

2003). Therefore, mutations can arise only in a mtDNA sub-population, which leads to the co-existence 

of two or more different mitochondrial genotypes (heteroplasmy) within a single cell, organ, or 

individual. The proportion of mutated molecules (mutational load) then affects the biochemical 

phenotype, often with a threshold level of heteroplasmy. Only after getting over the threshold, the 

cell is not able to further cope with the load of mutated mtDNA (DiMauro, 2013). 

1.1.2. Mitochondrial proteome 

Mitochondria not only play a key role in energy transduction, but also participate in several other 

important functions, such as assembly of iron-sulphur clusters, biosynthesis of hemes and other 

metabolites, calcium homeostasis, and apoptosis. The proteins that execute these functions are mostly 

encoded by nuclear genes. Therefore, the majority of 1100–1400 distinct mitochondrial proteins 

(Calvo & Mootha, 2010) are synthesised on cytosolic ribosomes and then imported into mitochondria 

in a co- or post-translational manner (Fox, 2012). 

A number of proteins are synthesised as precursors with an N-terminal signalling sequence 

(mitochondrial targeting sequence, MTS) that is cleaved by an enzyme called signal peptidase in the 

matrix. In addition to this N-terminal sequence that targets proteins into the mitochondrial matrix, 

they may contain other inner signalling sequences, cleavable or cryptic, that specify their 

mitochondrial localisation and target them to a specific mitochondrial compartment. The import of 

proteins into mitochondria as well as the recognition of signalling sequences is ensured by specialised 

multisubunit import machineries in both the outer (translocase of the outer mitochondrial membrane, 

TOM) and inner (translocase of the inner mitochondrial membrane, TIM) membrane (Rehling et al., 

2004; Neupert & Herrmann, 2007).  
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1.2. Mitochondrial structure 

Using electron microscopy, mitochondria were revealed to possess a double membrane in the 1950’s 

(Palade, 1953). As double membrane-bound organelles, mitochondria are spatially divided into two 

functionally distinct inner compartments. The space between the outer and inner membrane is called 

the intermembrane space. The mitochondrial matrix, where the Krebs cycle, fatty acid oxidation etc. 

are localised, is completely separated by the inner membrane.  

The inner mitochondrial membrane (IMM) is composed of two distinguishable components, as 

evidenced by the electron tomography (Frey et al., 2002) (Fig. 1). The first one, called the inner 

boundary membrane, follows exactly the shape of the outer membrane. They are connected by 

contact sites that are formed by a complex of mitochondrial membrane proteins, the MICOS complex 

(mitochondrial contact site complex) (Harner et al., 2011). The other IMM component creates cristae, 

membrane projections into the matrix, which profoundly increase the surface of the inner membrane 

where OXPHOS complexes are localised. The cristae and the inner boundary membrane are connected 

by cristae junctions. The regulation of cristae junctions is believed to contribute to and maintain the 

functional compartmentalisation of the IMM. For example, it has been shown that the cristae 

membrane is enriched especially in the cytochrome c oxidase (COX). Furthermore, ATP synthase 

dimers appear to be localised predominantly in the flexures of cristae membrane. In fact, they most 

likely play a role in shaping the cristae membrane and hence in establishing the morphology of the 

IMM (Davies et al., 2012). 

Fig. 1  A three-dimensional reconstruction of the mitochondrion. 

The 3D model of the mitochondrion was created using electron tomography. (A) The outer membrane 
displayed in translucent dark blue, the inner boundary membrane in translucent light blue, and the 
cristae in yellow. (B) Four cristae displayed in different colours to illustrate the variety of their shapes 
(e.g. lamellar, tubular, or a combination of both). Adapted from Frey et al. (2002). 
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Mitochondria used to be schematically depicted as isolated elongated cylindrical structures in the 

cytoplasm, with a diameter of 0.5–1.0 μm. In reality, they often form highly dynamic networks that 

constantly fuse and divide (Bereiter-Hahn, 1990). Mitochondrial dynamics is a combination of two 

antagonistic processes – mitochondrial fusion and fission (Westermann, 2010). These alter the 

mitochondrial morphology in order to optimize the mitochondrial function while meeting the 

immediate metabolic requirements of the cell (Westermann, 2012). Mitochondrial dynamics also 

ensures proper inheritance and distribution of mitochondria and quality control (Narendra et al., 2012; 

Stotland & Gottlieb, 2015), leading to autophagic degradation of damaged mitochondria that are 

recognised and excluded from the networking process (Westermann, 2010, 2012). 

1.3. Oxidative phosphorylation system (OXPHOS) 

The oxidation of substrates releases electrons that are captured in the form of reduced coenzymes 

NADH and FADH2. Being transported via the so-called respiratory chain (RC), these electrons reach 

their final destination, the molecular oxygen. The RC is composed of four enzyme complexes localised 

in the IMM (Tab. 1) and two mobile electron carriers coenzyme Q (CoQ) and cytochrome c (cyt c) 

(Saraste, 1999).  

Tab. 1  Components of the respiratory chain. 

The features of four complexes of the mammalian RC are presented: their enzymatic function, the 
number of subunits in the enzyme complex, including the number of subunits encoded by mitochondrial 
genes, and the molecular weight of fully assembled complex. 

 

 Complex I      
(Sazanov, 2015) 

Complex II               
(Sun et al., 2005) 

Complex III             
(Iwata et al., 1998) 

Complex IV 
(Tsukihara et al., 1996) 

 
NADH 

dehydrogenase 
succinate 

dehydrogenase 
cytochrome bc1 

complex 
cytochrome c 

oxidase 

Catalytic 
function 

NADH:ubiquinone 
oxidoreductase 

succinate:ubiquinone 
oxidoreductase 

ubiquinol: 
ferricytochrome c 

oxidoreductase 

ferrocytochrome c: 
oxygen 

oxidoreductase 

Number of 
subunits 

45 4 11 13 

mtDNA 
encoded 

7 0 1 3 

Molecular 
weight (kDa) 

1000 124 240 204 
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Electron transport via the RC complexes runs in the direction of rising redox potential. It is 

accompanied by a release of free energy that is transformed into an electrochemical proton gradient 

across the IMM. Specifically, three of the four enzyme RC complexes (Complex I, III, and IV) couple the 

electron transport to pumping of protons from the mitochondrial matrix, which leads to the 

establishment of a proton gradient on the IMM that is impermeable for ions. This proton gradient has 

two compounds – chemical (a higher concentration of protons in the intermembrane space compared 

to the matrix, ΔpH) and electrical (the mitochondrial matrix is negatively charged compared to the 

intermembrane space where the protons are accumulated, Δψm). This electrochemical gradient (ΔµH+) 

is used by the F1Fo-ATP synthase (also referred to as Complex V) for ATP synthesis from ADP and 

inorganic phosphate (Mitchell, 1961). The RC complexes and ATP synthase together form the so-called 

OXPHOS system (Hatefi, 1985) (Fig. 2). In addition to the key electron pathway via the RC, other 

dehydrogenases also participate in the supply of electrons to the pool of reduced CoQ (e.g. glycerol-3 

phosphate dehydrogenase, or electron transferring-flavoprotein dehydrogenase).  

Besides ATP synthesis, the energy in the form of ΔµH+ can be used for heat dissipation by uncoupling 

proteins or for the transport of ions, metabolites, and other macromolecules across the IMM. 

Fig. 2  The OXPHOS system. 

The key components of the oxidative phosphorylation (OXPHOS) system are four RC complexes 

(Complex I–IV, CoI–CoIV) and ATP synthase (Complex V, CoV).  

  



14 
 

2. Mitochondrial ADP-phosphorylating apparatus 

The electrochemical proton gradient generated by the RC enzyme complexes is utilised by F1Fo-ATP 

synthase in the key process of energy metabolism in the cell, i.e. mitochondrial ATP synthesis (Boyer, 

1997; Walker, 2013). F1Fo-ATP synthase catalyses the actual phosphorylation of ADP. To fulfil this 

function, it requires supply of the substrates, ADP and inorganic phosphate, which is mediated by two 

specialised carriers in the IMM. ADP/ATP translocase (also referred to as adenine nucleotide 

translocator, ANT) transports ADP into the mitochondrial matrix in exchange for newly synthesised 

ATP (Itoh et al., 2004). Inorganic phosphate carrier (PiC) ensures supply of inorganic phosphate from 

the cytosol, utilising symport with protons or antiport with hydroxyl ions (Seifert et al., 2015). 

Together, they form the mitochondrial ADP-phosphorylating apparatus. 

 

2.1. F1Fo-ATP synthase 

The mitochondrial F1Fo-ATP synthase (EC 3.6.3.14) in mammalian mitochondria is a large multisubunit 

enzyme complex with a molecular weight of 650 kDa (Fig. 3). It consists of about 30 subunits of 18 

different types (Lee et al., 2015). 

2.1.1. Structure of ATP synthase 

In the multisubunit complex of ATP synthase, two large subcomplexes can be distinguished – the 

globular catalytic F1 domain, that has been described in detail and is conserved among different 

species, and the proton-pumping membrane-embedded Fo domain, whose subunit composition 

depends on the evolutionary progress of a specific species. These two main subcomplexes are 

interconnected via two stalk domains – the central stalk works as a rotor that couples pumping of 

protons by the transmembrane Fo domain and ATP synthesis by the catalytic F1 domain and the 

peripheral stalk plays a role of a stator that anchors the F1 domain to the Fo domain (Walker, 2013).  

Until 2007, it was widely accepted that the mammalian ATP synthase consists of 15 different structural 

and one regulatory subunit. Then, two other accessory subunits, DAPIT (diabetes associated protein in 

insulin sensitive tissues; also known as USMG5, up-regulated during skeletal muscle growth 5 

homolog) and 6.8PL (6.8 kDa proteolipid; also known as MLQ according to its N-terminal sequence 

Met-Leu-Gln), were identified in the membrane-embedded Fo domain (Chen et al., 2007; Meyer et al., 

2007). The contemporary view on the subunit composition of mammalian ATP synthase takes into 

account 17 different structural subunits (Tab. 2) and one regulatory subunit (inhibitory factor 1, IF1). 

Only two of them (A6L and a) are encoded in the mammalian mtDNA (Fearnley & Walker, 1986).  
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2.1.1.1. F1 domain 

The F1 domain (350 kDa) is composed of 5 different subunits with the stoichiometry of α3β3γδε 

(Walker et al., 1995; Orriss et al., 1996). It is localised on the matrix side of the IMM. All of the three 

α/β interfaces form the catalytically active sites in the subunit β where ATP synthesis takes place. The 

subunit γ, specifically its two antiparallel helices with the coiled-coil structure, forms the asymmetric 

central stalk that interacts with the heterohexamer α3β3 on the one end and with the membrane-

embedded ring of subunits c on the other end (Gibbons et al., 2000).  

2.1.1.2 Fo domain 

The name of this domain reflects the fact that this part of the enzyme confers sensitivity to oligomycin. 

The mammalian Fo domain consists of 12 different subunits of the membrane domain and a peripheral 

stalk. For the structure of the membrane-embedded domain, the phospholipids in the lipid bilayer play 

an important role, especially cardiolipin (Eble et al., 1990). Its core is formed by a ring of 8 subunits c 

(there can be up to 15 of them in other species). Each subunit c forms an α-helical hairpin and the 

matrix interhelical loops are in close contact with the subunits γ and δ (Stock et al., 1999). 

Fig. 3 Structure of mammalian F1Fo-ATP synthase. 

The upper part of the model contains the subunits (α, β, γ, δ, ε) of the F1 catalytic domain that protrudes 
into the mitochondrial matrix. Subunit γ is in contact with the Fo membrane domain that contains the 
c-ring and the associated subunit a. The number of c subunits in the c-ring differs between species. The 
Fo domain contains a number of supernumerary subunits with single transmembrane α-helices (e, f, g, 
A6L, DAPIT, 6.8PL). The peripheral stalk is on the right (subunits OSCP, b, d, and F6). (A) One of the three 
subunits α has been removed to expose the elongated α-helical structure of subunit γ. (B) The molecular 
structure of the bovine ATP synthase has been determined by X-ray crystallography. The green region 
is the residual region of the membrane domain where no high-resolution structures have been 
determined. This region contains subunit a, the membrane domain of subunit b, and subunits A6L, e, f, 
g, DAPIT, and 6.8PL. Adapted from Walker (2013). 
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Other subunits are closely associated to the c-ring, especially subunit a that is essential for proton 

pumping by ATP synthase. The structure of this subunit has been very recently partially described by 

single-particle electron cryomicroscopy in the mitochondrial ATP synthase of Polytomella. Subunit a is 

composed of six α-helices and four of them are arranged almost horizontally in the membrane and 

form two aqueous half-channels that participate in proton translocation (Allegretti et al., 2015). 

Other membrane subunits that associate closely with the c-ring and subunit a contain a single 

transmembrane α-helix (A6L, e, f, g, DAPIT, 6.8PL). They are connected to the peripheral stalk and 

attach to the membrane. These subunits of Fo domain, however, are very difficult to crystalize due to 

their hydrophobicity. Therefore, their structure and arrangement within the domain is not yet clear 

(Fig. 3B) (Walker, 2013). Their topology and mutual proximity has been studied by cross-linking. They 

are oriented with their N-termini into the matrix with the exception of mitochondrially encoded A6L. 

Tab. 2  Structural subunits of mammalian F1Fo-ATP synthase. 

The structural subunits of the mammalian enzyme are listed together with their respective yeast 

counterparts from Saccharomyces cerevisiae (Ackerman & Tzagoloff, 2005; Antoniel et al., 2014).  

 
Protein Gene 

Molecular 
weight (kDa) 

Yeast homologue 

 Protein Gene 

F 1
 d

o
m

ai
n

 

α ATP5A1 55.1 α ATP1 

β ATP5B 51.6 β ATP2 

γ ATP5C1 30.2 γ ATP3 

δ ATP5D 15.1 δ ATP16 

ε ATP5E 5.7 ε ATP15  

F o
 d

o
m

ai
n

 

c  ATP5G1,2,3 14.7 Atp9 (c) MT-ATP9 

a MT-ATP6 24.8 Atp6 (a) MT-ATP6 

OSCP ATP5O 23.2 OSCP ATP5 

b ATP5F1 24.6 Atp4 (b) ATP4 

d ATP5H 18.4 d ATP7  

e  ATP5I 7.0 e  TIM11/ATP21 

f  ATP5J2 10.7 f  ATP17 

g  ATP5L 11.4 g  ATP20  

F6 ATP5J2 12.6 h  ATP14  

A6L MT-ATP8 7.9 Atp8 MT-ATP8 

DAPIT (USMG5) USMG5 6.4 — — 

6.8 kDa proteolipid (MLQ) C14ORF2 6.8 — — 

 — — 6.7 i (j) ATP18 

 — — 7.5 k ATP19 
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Its C-terminus extends into the peripheral stalk where it interacts with subunit b. This way, it likely 

stabilises the connection between the Fo domain and peripheral stalk (Lee et al., 2015). In yeast, 

subunits e and g were shown to play an essential role in the formation of ATP synthase dimer (Arnold 

et al., 1998) and some evidence suggest that they also have a similar function in mammals (Bisetto et 

al., 2008). In general, the role of the supernumerary membrane subunits of ATP synthase is still 

unknown. 

The peripheral stalk is composed of single copies of subunits OSCP (oligomycin-sensitivity conferring 

protein), b, d, and F6. It interacts with the heterohexamer α3β3 via the N-terminal part of OSCP. The 

C-terminal part of OSCP then associates with subunit b (Carbajo et al., 2007).  

2.1.2. ATP synthase function 

The mitochondrial ATP synthase usually produces the majority of ATP in the cell. It can, however, work 

in two opposite modes, which depends on the energy state and energy demands of the cell. As a 

nanoscopic rotational motor, it is able to perform both ATP synthesis and ATP hydrolysis. For ATP 

synthesis, it utilises the electrochemical proton gradient across the IMM generated by the RC 

complexes. Proton translocation in the direction of proton gradient generates rotation of the central 

stalk, which, in turn, generates conformational changes of the heterohexamer α3β3 that catalyses ATP 

synthesis. So, the proton-motive force is coupled indirectly to ATP synthesis by a mechanical rotary 

mechanism (Xu et al., 2015). On the contrary, ATP hydrolysis triggers rotation of the central stalk that 

drives proton pumping from the matrix to the intermembrane space against the proton gradient. 

2.1.2.1. ATP synthesis and its molecular mechanism 

The mitochondrial ATP synthase works as a molecular motor that is composed of both a stator – the 

peripheral stalk, and a rotor – the central stalk associated with the c-ring. The rotation of the c-ring is 

driven by protonation and deprotonation of its amino acid residues.  

The anticlockwise rotation of the asymmetrical subunit γ occurs in three 120° steps and makes the 

catalytic α/β interfaces form 3 different conformations cyclically (Abrahams et al., 1994). These 

conformations of the α/β interface differ in their affinity to adenine nucleotides as well as catalytic 

properties. In the “loose” conformation (βDP-), ADP (in complex with Mg2+) and Pi bind to the subunit β 

in this α/β interface. After adopting the “tight” conformation (βTP-), the synthesis of a macroergic bond 

between ADP and Pi is catalysed. Another turn of subunit γ leads to adopting the conformation that is 

known as the “empty” or “open” state (βE) and the newly synthesised ATP is released from the α/β 

interface (Walker, 2013). The rotation was directly visualised in vitro as a movement of actin filaments 
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fixed to subunit γ of bacterial F1 domain (Noji et al., 1997) and subsequently proven by demonstration 

of ATP synthesis driven by physical rotation of the rotor (Itoh et al., 2004; Rondelez et al., 2005).  

Each 360° rotation provides the energy to generate three ATP molecules in the F1 domain. The number 

of protons required to generate each 360° rotation of the c-ring corresponds to the number of subunits 

c that form the ring. The most efficient one is the c-ring composed of eight subunits c. In this case, the 

synthesis of three ATP molecules requires eight translocated protons, which corresponds to the cost 

of 2.7 protons per one ATP. The octameric c-ring is found in all vertebrates and the majority of 

invertebrates. ATP synthases in other organisms (fungi, eubacteria, plant chloroplasts) are less efficient 

and their c-rings contain 10–15 subunits c, which corresponds to the energetic cost of up to five 

protons per one ATP (Watt et al., 2010). 

According to the two-channel model, protons from the intermembrane space reach a negatively 

charged aspartate or glutamate of a subunit c on the interface of subunit a and c-ring. This carboxyl 

group is neutralised and loses an electrostatic interaction with a positively charged arginine of subunit 

a. As a result, it is released into the hydrophobic milieu of lipid bilayer and the c-ring is turned around 

by one monomer. Another negatively charged carboxyl group is revealed and the rotation of c-ring is 

fuelled by its protonation and release (Stock et al., 2000). Subunit a was suspected to contain two half-

channels, both on the intermembrane and matrix side of the inner membrane, that mediate the 

transport of protons to and from the c-ring (Fig. 4A). It was confirmed by electron cryo-tomography 

when the structure of subunit a was solved (Allegretti et al., 2015). Unexpectedly, four α-helices of 

subunit a were found to be localised almost horizontally in the membrane (Fig. 4B−C). 

Fig. 4  Coupling of proton translocation and rotation of ATP synthase. 

(A) The two-channel model of proton translocation in ATP synthase. (B) The structure of subunit a 
solved by electron cryo-tomography. (C) The model of coupling of proton translocation and ATP 
synthase rotation utilising the new structure of subunit a. Protons (red) reach the conserved glutamate 
in subunit c via the aqueous half-channel in the intermembrane space (lumen in Polytomella). The 
proton competes with the strictly conserved arginine (blue) for interaction with c-ring glutamates, 
which carry the proton around the c-ring. When the c-subunit approaches the hydrophilic half-channel 
on the matrix side, the glutamate becomes hydrated and adopts an open conformation, from which 
the proton can escape into the matrix. Adapted from Allegretti et al. (2015). 
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2.1.2.2. ATP hydrolysis 

In cases where the RC function is compromised (for example during oxygen deprivation under 

ischemia) ATP synthase can operate in a reverse mode as a proton pump, i.e. hydrolyse cytosolic ATP 

produced in glycolysis, in an effort to maintain the mitochondrial membrane potential. During ATP 

hydrolysis, the direction of rotation is reversed and it is assumed that the order of structural changes 

accompanying it is reversed as well (Dummler et al., 1996; Bason et al., 2015). 

Since performing the majority of mitochondrial functions requires a sufficient mitochondrial 

membrane potential, ATP hydrolysis by ATP synthase can help the cell to overcome malignant 

conditions (Bason et al., 2011; Baker et al., 2012). However, it reduces the pool of available ATP and 

might turn out to be harmful rather than beneficial (Campanella et al., 2008). Therefore, the cell has 

evolved mechanisms to avoid excessive ATP hydrolytic activity. Specifically, it can be inhibited by a 

regulatory protein called inhibitory factor 1 (IF1) (Faccenda & Campanella, 2012). Furthermore, the 

reversal of ATP synthase is not always accompanied by the reversal of ANT, which also protects the 

cell from depletion of ATP that occurs in the cytosol (Chinopoulos et al., 2010; Chinopoulos, 2011). 

The active form of IF1 is a homodimer that can bind two ATP synthase moieties. IF1 and ATP synthase 

form a stable complex depending on pH levels (Cabezon et al., 2000; Cabezon et al., 2001). If the pH 

values in the mitochondrial matrix are lower than 7.0, the affinity of IF1 to the F1 subcomplex of ATP 

synthase rises, and IF1 binds into the α/β catalytic interface (Bason et al., 2014). At pH values higher 

than 8.0, the IF1 dimers form dimers of dimers and higher aggregates, which makes them inactive 

because the inhibitory regions are masked (Cabezon et al., 2000). Since intramitochondrial pH differs 

under conditions when ATP synthase works in the synthetic and hydrolytic mode, it likely represents 

the mechanism that ensures that IF1 inhibits only ATP hydrolysis and not ATP synthesis (Xu et al., 2015).  

2.1.3. ATP synthase biogenesis 

The mammalian ATP synthase is composed of 16 subunits encoded by the nuclear genome, which are 

synthesised on the cytosolic ribosomes and then imported into mitochondria, and 2 subunits (a, A6L) 

encoded by the mitochondrial genome. The biogenesis of ATP synthase complex is therefore very 

complicated and requires the assistance of several ancillary factors.  

As for the mammalian ATP synthase, the process of biogenesis has not been completely elucidated. In 

yeast, however several assembly and protein-modifying factors have been identified as well as their 

interacting partners (Ackerman & Tzagoloff, 2005; Ruhle & Leister, 2015). Since some of the yeast 

biogenetic factors have not been found in mammals and vice versa, it is widely accepted that the 
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biogenesis of the yeast ATP synthase complex differs in some steps from the biogenesis of the 

mammalian one, starting with the fact that the yeast subunit c (Atp9) is translated from a 

mitochondrial gene unlike in mammals (Zeng et al., 2008). However, individual yeast strains also differ 

from each other in some aspects of ATP synthase biogenesis, e.g. the localisation of ATP9 gene. 

Therefore, it is important to point out that Saccharomyces cerevisiae is the model organism in this 

field.  

The assembly of heterohexamer α3β3 seems to be a conserved process among eukaryotes, as opposed 

to the assembly of Fo domain whose both composition and complexity varies among different 

organisms. Most likely, the F1 domain and the c-ring are built up independently of each other in the 

matrix and inner membrane, respectively. The formation of a F1-c-ring intermediate is followed by 

association with the subunits forming the peripheral stalk. In the next step, membrane subunits join 

the c-ring. The mitochondrially encoded subunits a and A6L are incorporated last, which likely protects 

from dissipation of proton gradient by an incompletely assembled ATP synthase (Tzagoloff et al., 2004; 

Wittig et al., 2010; Rak et al., 2011) (Fig. 5). 

2.1.3.1. Ancillary factors of ATP synthase biogenesis 

As the yeast Saccharomyces cerevisiae is a model organism for studying the mitochondrial ATP 

synthase (Law et al., 1995), the first assembly factors were discovered in this organism. 

Fig. 5  The postulated assembly of mammalian ATP synthase. 

Red asterisks mark nuclear-encoded structural subunits and ancillary factors of ATP synthase 
biogenesis whose mutations are responsible for isolated defects of ATP synthase. Blue crosses mark 
structural subunits of ATP synthase associated with mitochondrial mutations. Adopted from Hejzlarova 
et al. (2014).  
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Specifically, Atp11 and Atp12 that participate in the assembly of F1 domain were described in 1990 

(Ackerman & Tzagoloff, 1990; Bowman et al., 1991; Ackerman et al., 1992). A decade later, their 

homologues were found also in the human genome (Wang et al., 2001). Both genes are extremely 

conserved among eukaryotes, which most likely reflects their importance for assembly of the 

heterohexamer α3β3. Atp11 associates specifically with subunits β (Wang & Ackerman, 2000) whereas 

Atp12 binds subunits α (Wang et al., 2000). As a consequence of binding of free subunits α and β to 

Atp12 and Atp11, respectively, their aggregation into homooligomers αn and βn is prevented (Wang et 

al., 2000; Ludlam et al., 2009). The release of the chaperones from subunits α and β is most likely 

initiated by subunit γ in an unknown manner (Ludlam et al., 2009). The assembled heterohexamer α3β3 

then associates with the components of the central stalk. 

In yeast, two factors have been described (Atp23, Atp10) that participate in the process of subunit a 

maturation and incorporation into the Fo domain (Rak et al., 2009). Atp23, a metalloprotease localised 

in the intermembrane space (Osman et al., 2007), processes the precursor of subunit a (Michon et al., 

1988) into a mature protein (Osman et al., 2007; Zeng et al., 2007). ATP10, a protein of the IMM, then 

assists Atp23 in incorporation of mature subunit a into the membrane-embedded Fo domain (Tzagoloff 

et al., 2004). In mammals, only a partial homologue of Atp23 was found even though subunit a is not 

synthesised as a precursor, which suggests that only its role in association of subunit a with the Fo 

domain is required (Zeng et al., 2007). The function of ATP23 in mammals, however, has not been 

studied in detail. The self-assembly of c-ring seems to be determined by the primary structure of 

subunit c (Arechaga et al., 2002). 

In 2008, a new ancillary factor of the mammalian ATP synthase biogenesis, TMEM70, was identified 

(Cizkova et al., 2008; Houstek et al., 2009). TMEM70 is a protein of the IMM (Hejzlarova et al., 2011) 

with two transmembrane helices and both N- and C-termini are localised in the matrix (Jonckheere et 

al., 2011; Kratochvilova et al., 2014). A direct interaction of TMEM70 with the ATP synthase complex 

has been reported in one study (Torraco et al., 2012). Another study, however, failed to detect such 

an interaction and described only formation of TMEM70 dimers (Kratochvilova et al., 2014). Its 

expression is very low compared to other mitochondrial proteins and its role in the ATP synthase 

biogenesis remains unclear (Hejzlarova et al., 2011). Since the absence of TMEM70 reduces the 

content of fully assembled ATP synthase, it seems that it is not essential for ATP synthase biogenesis 

but it profoundly improves its efficiency. 

Recently, a protein complex INAC (the inner membrane assembly complex) that is involved in the 

assembly of the peripheral stalk of yeast F1Fo-ATP synthase has been described. A model has been 

proposed where INAC facilitates attachment of the F1 domain already associated with peripheral stalk 
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components to the Fo domain (Lytovchenko et al., 2014). However, a further work will be required to 

validate it. Furthermore, INAC components, Ina17 and Ina22 lack homologues in mammals and thus 

the assembly of peripheral stalk differs between yeast and mammals. 

2.1.3.2. Tissue-specific regulation of ATP synthase biogenesis 

In mammals, the content of subunit c seems to be indicative of the total content of ATP synthase 

complex. Brown adipose tissue (BAT), a specialised mammalian thermogenic organ that utilises a high 

oxidative capacity to produce heat instead of ATP, is characterised by a low content of ATP synthase 

(Cannon & Nedergaard, 2004). This reduction in the total amount of ATP synthase correlates with a 

down-regulated expression of subunit c whereas transcript levels of other ATP synthase subunits, both 

nuclear and mitochondrial, are high (Houstek et al., 1995). Subunit c is encoded by three genes 

(ATP5G1, ATP5G2, and ATP5G3 coding for the isoforms P1, P2, P3, respectively) that differ in the 

transport pre-sequence. Their expression, however, results in identical mature proteins (De Grassi et 

al., 2006). P2 and P3 mRNA appears to be expressed constitutively whereas P1 isoform responds to a 

number of physiological stimuli as a means of regulating the relative content of ATP synthase 

(Andersson et al., 1997; Sangawa et al., 1997). In a transgenic mouse, overexpressing of P1 isoform in 

BAT led to an increase in the total amount of functional ATP synthase in this tissue, thus confirming 

that the levels of P1 isoform of subunit c are crucial for defining the final content of ATP synthase in 

BAT (Kramarova et al., 2008). 

2.1.4. Genetic defects of ATP synthase 

Deficiencies in mitochondrial energy metabolism are usually associated with severe multisystem 

diseases. They are often referred to as mitochondrial encephalo-cardiomyopathies since the nervous 

system, heart and skeletal muscle are the most affected organs. Mitochondrial dysfunction has been, 

however, recognised also as a major contributing factor in metabolic and neurodegenerative diseases, 

ageing and cancer (Greaves et al., 2012). 

Primary mitochondrial diseases are caused by mutations in both mitochondrial and nuclear genes. The 

pathogenesis of mtDNA mutations does not follow the rules of Mendelian genetics. Instead, they are 

maternally inherited and the resulting phenotype depends on the level of heteroplasmy (DiMauro, 

2013). On the other hand, nuclear mutations follow the Mendelian genetics for gene transfer to 

another generation and their inheritance is often autosomal recessive. They are more frequent since, 

firstly, the majority of OXPHOS components is encoded by the nuclear genome; and secondly, many 

processes that govern the correct structure and function of OXPHOS complexes are under control of 

nuclear genome (Tuppen et al., 2010).  
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Isolated defects of ATP synthase can be classified into two groups with different pathogenic 

mechanisms, biochemical phenotypes and clinical presentations. On the one hand, qualitative defects 

are characterised by normal levels of incomplete and non-functional ATP synthase and have been 

described for mtDNA mutations. Quantitative defects, on the other hand, underlie mitochondrial 

disorders of nuclear genetic origin and are characterised by a reduction in the content of fully 

assembled and functional ATP synthase (Houstek et al., 2006). In both cases, ATP synthase is not able 

to utilise the mitochondrial membrane potential, and consequently, its increase stimulates 

mitochondrial reactive oxygen species (ROS) production. Therefore, energy deprivation and ROS 

production represent important factors in the pathogenesis of isolated defects of ATP synthase 

(Mracek et al., 2006). 

2.1.4.1. Mutations in mitochondrially encoded subunits of ATP synthase 

Point mutations in the mtDNA gene MT-ATP6 encoding subunit a are a predominant cause of 

maternally inherited ATP synthase defects. The most frequent missense mutations are m.8993T>G 

(p.L156R) (Holt et al., 1990) and m.8993T>C (p.L156P) (de Vries et al., 1993). The clinical phenotype 

manifests as NARP (neuropathy, ataxia, retinitis pigmentosa) or the more severe MILS (maternally 

inherited Leigh’s syndrome), depending on the level of heteroplasmy (Jonckheere et al., 2012). In 

addition to the numerous point mutations in MT-ATP6 that usually lead to substitution of amino acids 

involved in the function of the proton channel, two cases with a unique microdeletion of two base 

pairs (m.9205delTA) at the interface of MT-ATP6 and MT-COX3 genes in the polycistronic 

mitochondrial transcript MT-ATP8/MT-ATP6/MT-COX3 have been reported (Seneca et al., 1996; Jesina 

et al., 2004). This microdeletion removes the stop codon in the MT-ATP6 gene, which impairs the 

translation of both subunit a of ATP synthase and subunit Cox3 of cytochrome c oxidase (Jesina et al., 

2004).  

Mutations in the other mtDNA gene associated with ATP synthase, MT-ATP8, coding for the subunit 

A6L are extremely rare – only three have been reported so far: a nonsense mutation (Jonckheere et 

al., 2008) and two missense mutations (Ware et al., 2009; Mkaouar-Rebai et al., 2010), one of them 

localised in the region of the bicistronic transcript MT-ATP8/MT-ATP6 where these two genes overlap 

and hence affecting both subunits a and A6L (Ware et al., 2009). 

Neither missense nor nonsense mutations in the mtDNA genes encoding subunit a and A6L usually 

lead to a reduction in the content of ATP synthase. However, ATP synthesis by this kind of ATP synthase 

is impaired. Biochemical and clinical manifestations depend on the mutation load and the majority of 

cases develop some symptoms only if the heteroplasmy of mutated mtDNA reaches 80–90 % 

(Hejzlarova et al., 2014). 
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2.1.4.2. Mutations in nuclear encoded subunits and ancillary factors of ATP synthase 

The biochemical manifestations of these defects are very homogenous. They are characterised by a 

reduced content of fully assembled and functional ATP synthase complex (Hejzlarova et al., 2014). 

Lactic acidosis and methyl glutaconic aciduria are major clues in the diagnosis (De Meirleir et al., 2004). 

The clinical manifestation, however, differs between individual cases. 

Since the first demonstration of an ATP synthase defect of unknown nuclear origin in 1999 (Houstek 

et al., 1999), mutations in four nuclear genes have been associated with an isolated deficiency of 

ATP synthase so far. Two of them, ATP5A1 and ATP5E, code for the structural subunits α and ε, 

respectively, and are discussed in the following parts of this thesis (Mayr et al., 2010; Jonckheere et 

al., 2013). The other two, ATPAF2 and TMEM70, encode ancillary factors that play specific roles in the 

biogenesis of ATP synthase (Hejzlarova et al., 2014). 

A homozygous mutation in ATPAF2 coding for the assembly factor ATP12 was the first reported 

pathogenic mutation in a nuclear gene associated with an isolated defect of ATP synthase (De Meirleir 

et al., 2004). No other patient with a mutation in this gene has been found since then. On the other 

hand, mutations in TMEM70 represent one of the most frequent causes of ATP synthase deficiencies. 

In fact, TMEM70 as an ancillary factor of ATP synthase biogenesis was identified on the basis of an 

analysis of a group of patients with an unknown defect that presents itself with a reduced content of 

assembled ATP synthase (Cizkova et al., 2008). The TMEM70 gene contains 3 exons. In these patients, 

the substitution 317-2A>G leads to a loss of the splice site in the second intron, so it is not recognised 

by the splicing machinery. As a result, aberrant TMEM70 transcripts are produced that are not 

translated. For a recent review of all reported TMEM70 mutations, see Hejzlarova et al. (2014). 

2.2. ADP/ATP translocase (ANT) 

ANT belongs to the mitochondrial carrier family (MCF) encoded by the SLC25 genes (Palmieri, 2004; 

Palmieri et al., 2011; Gutierrez-Aguilar & Baines, 2013). The size (30–34 kDa) and structure of all SLC25 

transporters are very similar. They contain three tandem-repeated homologous domains, and each of 

these consists of two transmembrane helices (Pebay-Peyroula et al., 2003; Palmieri, 2004) (Fig. 6). The 

members of SLC25 family are extremely hydrophobic proteins with several tissue-specific isoforms. In 

mammals, each isoform is usually encoded by a unique nuclear gene (Rondelez et al., 2005).  

Specifically in rodents, three genes coding for tissue-specific ANT isoforms have been described 

whereas four genes have been identified in humans so far (Dahout-Gonzalez et al., 2006) – SLC25A4 

(ANT1, a heart-type isoform), SLC25A5 (ANT2, a liver-type isoform, expressed ubiquitously), SLC25A6 



25 
 

(ANT3, expressed in highly proliferative cells, present only as a pseudogene in rodents), and SLC25A31 

(ANT4, a testes-specific isoform) (Dolce et al., 2005; Brower et al., 2007). Each ANT isoform has a tissue-

specific expression pattern that may be related to specific energy requirements (Stepien et al., 1992). 

For example, the transient expression of ANT1, possessing a higher catalytic activity than ANT2, in the 

neonatal liver has been associated with increased supply of mitochondrial ATP to the cytosolic ATP 

consumption initiated at birth (Xu et al., 2015).  

Moreover, expression of the same isoform may be regulated by different transcriptional mechanisms 

in different tissues. For example, the expression of ubiquitous ANT2 under stimulation by thyroid 

hormones is increased in rat heart and liver but not in other tissues (Dummler et al., 1996). It seems 

that one isoform is not able to completely substitute loss of function of another one since ANT1 knock-

out mice are characterised by mitochondrial myopathy and cardiomyopathy and manifest severe 

exercise intolerance (Graham et al., 1997). However, loss of ANT1 function is still compatible with adult 

Fig. 6 Structure of the ADP/ATP carrier solved by X-ray crystallography at a resolution of 2.2 Å. 

a. A schematic diagram of the secondary structure. b. A view from the side. c. A view from the inside. 
Two cardiolipin molecules are depicted. d. A view from the outside. 
Transmembrane helices, surface helices, intermembrane space loops and matrix loops are labelled H, 
h, C, and M, respectively. Adopted from Pebay-Peyroula et al. (2003). 
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life (Palmieri, 2008), as in the case of a patient with a homozygous mutation in ANT1 (Palmieri et al., 

2005). Beside insufficient energy provision in heart and skeletal muscle mitochondria with 

predominant expression of ANT1 isoform, loss-of-function mutations of ANT1 are associated also with 

increased ROS production in these tissues, which leads to accumulation of mtDNA rearrangements and 

deletions (Esposito et al., 1999; Palmieri et al., 2005).  

Under physiological conditions, ANT catalyses the electrogenic exchange of cytosolic ADP3– for 

mitochondrial ATP4–, which is driven by the mitochondrial membrane potential (Dahout-Gonzalez et 

al., 2006). A potent inhibitor of ANT is carboxyatractyloside (CAT). As the CAT-ANT complex can be 

relatively easily purified, ANT was the first carrier from the SLC25 family that was isolated and 

characterised (Brandolin et al., 1974; Riccio et al., 1975). These purification studies also revealed that 

ANT is one of the most abundant mitochondrial proteins and represents up to 12 % of the total 

mitochondrial protein mass (Boxer, 1975; Riccio et al., 1975; Klingenberg et al., 1978; Hackenberg & 

Klingenberg, 1980). The atomic structure of bovine ANT was also solved in complex with CAT, namely 

at a resolution of 2.2 Å (Pebay-Peyroula et al., 2003) (Fig. 6.). Because CAT binds into ANT from the 

side of intermembrane space, the resolved ANT structure is in the so-called cytosolic conformation 

where ANT is opened to the intermembrane space. 

Whether mitochondrial carriers function as monomers or dimers is still a matter of debate (Trezeguet 

et al., 2008; Monne & Palmieri, 2014). The early ANT purification studies indicated that ANT molecules 

might associate into dimers in the lipid bilayer (Klingenberg et al., 1978; Hackenberg & Klingenberg, 

1980). Kinetic studies also favours the dimeric organisation of ANT since a positive cooperativity in the 

binding of substrates has been observed (Dahout-Gonzalez et al., 2006). The most recent evidence 

however supports the monomeric state of ANT (Bamber et al., 2006; Bamber et al., 2007; Nury et al., 

2008; Crichton et al., 2013). 

2.3. Phosphate carrier (PiC) 

The physiological role of PiC is to catalyse the uptake of phosphate (Pi) into the mitochondrial matrix, 

either by proton co-transport or in exchange for hydroxyl ions at the expense of the electrochemical 

proton gradient (Palmieri, 2004). Either way, the uptake of Pi is electroneutral (Seifert et al., 2015). 

Phosphate carrier, as well as ANT, belongs to the SLC25 gene family (Runswick et al., 1987), but unlike 

ANT, its two tissue-specific isoforms, PiC-A (a heart-type isoform) and PiC-B (a liver-type isoform that 

is expressed ubiquitously), originates from alternative splicing of a single gene transcript (SLC25A3) 

(Dolce et al., 1996; Palmieri, 2004). SLC25A3 contains nine exons and two of them are alternatively 

spliced in a mutually exclusive manner, which results in two isoforms that differ from each other by 
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nine amino acids in the N-terminal part and share >70 % homology (Dolce et al., 1994). Their catalytic 

Michaelis constants Km are different and most likely reflect energy demands of the tissues that they 

are expressed in (Dolce et al., 1996; Fiermonte et al., 1998). Indeed, the cell can modulate the intensity 

of mitochondrial ATP production by changing the level of expression of individual PiC isoforms. PiC-B, 

expressed ubiquitously, takes care of the routine energy demands of the cell. PiC-A, characterised by 

a lower substrate affinity (higher Km) and a lower maximum transport rate (Vmax) (Fiermonte et al., 

1998) is required to operate under increased energy demands when PiC-B is overwhelmed by high 

cytosolic concentrations of Pi (e.g. during muscle contractions) (Dolce et al., 1996; Fiermonte et al., 

1998; Palmieri, 2004). 

Upon PiC depletion in mouse models, cardiac hypertrophy is observed, which is likely a consequence 

of insufficient Pi uptake and inadequate mitochondrial ATP production (Gutierrez-Aguilar et al., 2014; 

Kwong et al., 2014). In human, mutations that affect the heart-specific PiC-A isoform have been also 

reported to lead predominantly to cardiomyopathy (Mayr et al., 2007; Mayr et al., 2011). The cardiac 

phenotype is shared by mice as well as patients with a loss of function for the SLC25A4 gene encoding 

the ANT1 protein (Graham et al., 1997; Palmieri et al., 2005; Narula et al., 2011).  
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3. Mitochondrial supercomplexes 

The RC complexes associate into larger structures that are called RC supercomplexes (respirasomes). 

They were reported both in the bacterial plasma membrane and in the IMM of eukaryotes (Dudkina 

et al., 2015). The existence of supercomplexes significantly reduces the distances between the 

consecutive RC complexes that their substrates, i.e. CoQ and cyt c, must surpass using only diffusion. 

Consequently, the efficiency of the RC is increased due to substrate channelling (Bianchi et al., 2004) 

and ROS production by the RC complexes is attenuated (Acin-Perez et al., 2008; Lenaz & Genova, 2009). 

Similarly, the key OXPHOS component, ATP synthase, is also able to organise itself into more complex 

structures, such as dimers and higher oligomers (Wittig & Schagger, 2009; Seelert & Dencher, 2011; 

Habersetzer et al., 2013). Furthermore, substrate channelling was suggested to favour the assembly 

of ATP synthase, ANT and PiC into a supercomplex called ATP synthasome. Supercomplexes of ATP 

synthase with other mitochondrial proteins have been reported to perform an array of mitochondrial 

functions, including mitochondrial permeability transition (Bernardi & Di Lisa, 2015; Bernardi et al., 

2015) or mitochondrial ATP-sensitive K+ import (Ardehali et al., 2004). 

3.1. Supramolecular structures within the respiratory chain 

To describe the organisation of RC enzymes in the IMM, two models have been suggested – the so-

called solid state model (Chance & Williams, 1955) and more recently, the fluid state model 

(Hackenbrock et al., 1986). The fluid state model is defined by free movement of individual OXPHOS 

components in the IMM. It is accompanied by their spontaneous and transient interactions with each 

other and also with the mobile electron carriers CoQ and cyt c. This model regards electron transport 

as a diffusion-based random collision process. On the contrary, the solid state model suggests a stable, 

at least for a limited period of time, organisation of RC complexes into higher molecular structures that 

ensure substrate channelling from one complex to another. This model is supported, among others, 

by repeated purifications of the same supercomplexes with the same composition and even 

stoichiometry. In reality, mutual co-existence of isolated RC complexes and supercomplexes is 

expected with dynamic conversions between each other in order to optimize OXPHOS performance 

(Boekema & Braun, 2007). Therefore, the plasticity model has been developed as a combination of 

both extreme situations (Enriquez & Lenaz, 2014). In fact, the content of supercomplexes in the cell 

was shown to depend on its energy demands and growth conditions in yeast (Schagger & Pfeiffer, 

2000).  

Among eukaryotes, several types of supercomplexes have been described. They differ from each other 

in their protein composition, their stability and/or the stoichiometry between individual RC complexes. 
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Supercomplexes are composed of the RC complexes I, III, and IV. The RC complex II (succinate 

dehydrogenase) that represents an alternative input of electrons into the RC is believed not to be 

involved in the formation of RC supercomplexes (Schagger & Pfeiffer, 2001), possibly because of its 

concomitant involvement in the tricarboxylic acid cycle (Chaban et al., 2014).  

In mammals, two types of functionally active RC supercomplexes have been described – I1III2 and 

I1III2IV1–4 (the latter one being referred to as a respirasome) (Schafer et al., 2006). The first and also 

smaller one was even the first supercomplex whose existence was reported. With the molecular 

weight of approximately 1500 kDa, it is regarded as a building block of the larger respirasome. It is 

mostly studied in Arabidopsis thaliana (Dudkina et al., 2005a) since this supercomplex is much more 

abundant and stable in this model plant in comparison to the mammalian mitochondria (Eubel et al., 

2004). The respirasome with the molecular weight of 1700–2100 kDa, depending on the number of 

complex IV monomers involved in the structure, represents the largest detected form of association 

of OXPHOS complexes that can autonomously carry out respiration in the presence of CoQ and cyt c 

(Schagger & Pfeiffer, 2000).  

Information on what determines the structure and composition of these supercomplexes is very 

limited. In the case of the mammalian supercomplex I1III2, the complex I is stabilised by the mutual 

interaction with the complex III dimer, which might be the reason for an almost complete absence of 

free complex I in the mammalian mitochondria (Schagger & Pfeiffer, 2000). There is still approximately 

a third of complex III that is not bound to complex I, hence available as an electron acceptor for other 

dehydrogenases, such as complex II or glycerol-3 phosphate dehydrogenase (Schagger & Pfeiffer, 

2001). In the most studied yeast, Saccharomyces cerevisiae, that lacks complex I, the majority of 

complex IV is associated with the complex III dimer to form III2IV1 or III2IV2 supercomplexes (Cruciat et 

al., 2000; Schagger & Pfeiffer, 2000).  

Characterisation of supercomplexes relies on their solubilisation as an intact structure from the IMM. 

The efficiency of solubilisation depends on the type of detergent used. To study supercomplexes, 

digitonin and Triton X-100 are usually applied because they are mild enough not to disrupt the non-

covalent protein-protein interactions inside supercomplexes (Schagger & Pfeiffer, 2000; Eubel et al., 

2004). The composition of solubilised supercomplexes can then be revealed by using a type of native 

electrophoresis (Schagger & Pfeiffer, 2000; Eubel et al., 2004), immunoprecipitation (Cruciat et al., 

2000), or sucrose density ultracentrifugation (Dudkina et al., 2005a).  
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3.2. Supramolecular organisation of ATP synthase 

3.2.1. ATP synthase oligomerization 

The ATP synthase dimers were first described in yeast (Arnold et al., 1998). Afterwards, not only stable 

dimers in different species (Schagger & Pfeiffer, 2000; Eubel et al., 2004; Dudkina et al., 2005b; van Lis 

et al., 2007) but also higher oligomers of ATP synthase were characterised (Allen et al., 1989; Giraud 

et al., 2002; Dudkina et al., 2006; Strauss et al., 2008).  

In yeast, four subunits of ATP synthase that associate with its Fo domain were identified to contribute 

to the stability of dimeric organisation, namely the subunits e, g, k, and i (j) (Arnold et al., 1998; Wittig 

et al., 2008; Wagner et al., 2010). In fact, the subunits e, g and k seem to be dimer-specific in yeast 

since they were not found in the monomeric form of ATP synthase (Arnold et al., 1998; Arselin et al., 

2003). Furthermore, subunits e and g were proposed to be the actual dimerization elements 

connecting two ATP synthase monomers. Both of these subunits contain a conserved dimerization 

motif GXXXG within their transmembrane segment that was proposed to be involved in their 

heterodimerization (Arselin et al., 2003; Bustos & Velours, 2005). In addition, subunit e also contains 

a coiled-coil region in its C-terminal segment in the intermembrane space that might be involved in 

the homodimerization of two subunits e (Everard-Gigot et al., 2005). However, ATP synthase oligomers 

were proposed to display two different intermolecular interfaces (Dudkina et al., 2006). In the other 

one, Atp4 (b) most likely plays a key role (Spannagel et al., 1998). 

What is the purpose of ATP synthase dimerization? Dimers seem to possess a higher catalytic efficiency 

but it is not their intrinsic characteristic (Bisetto et al., 2007). Dimerization might enhance the stability 

of ATP synthase since the monomer appears to be more labile and susceptible to proteolysis (Arnold 

et al., 1998). Since the c-rings in ATP synthase dimers rotate in opposite directions with respect to the 

dimerization axis, it was proposed that dimerization could play a role in balancing the forces generated 

in individual ATP synthase molecules due to the torque and also strengthen peripheral stalks 

connected within the dimer (Chaban et al., 2014). 

In the last decade, other physiological roles of ATP synthase dimers have been proposed, such as 

mitochondrial membrane permeability transition (Bernardi et al., 2015) (see chapter 3.2.5.) and 

shaping of the IMM. The association of two molecules of ATP synthase happens via the Fo domains 

that are in the angle of 35–90° to each other. This angle between two ATP synthase molecules in the 

dimer appears to be specific to each species (Dudkina et al., 2006) and might trigger bending of the 

IMM, and hence affects to establishment of the IMM morphology. Yeast mutants carrying deletions in 

the subunits e, g, b, and h lack ATP synthase dimers (Arnold et al., 1998; Arselin et al., 2003) and exhibit 
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an altered morphology of the IMM (Paumard et al., 2002; Arselin et al., 2003; Arselin et al., 2004; 

Goyon et al., 2008), which might be further proof that the ATP synthase dimers play a role in shaping 

the mitochondrial cristae (Giraud et al., 2002; Paumard et al., 2002; Arselin et al., 2004; Dudkina et al., 

2005b; Strauss et al., 2008; De los Rios Castillo et al., 2011). This is supported by alterations of 

mitochondrial morphology in human pathological states that are characterised by a reduced content 

of ATP synthase dimers (Mourier et al., 2014).  

Using advanced electron microscopic techniques, e.g. electron cryo-microscopy (cryo-EM), the 

globular F1-domains are recognised as 9-nm projections into the mitochondrial matrix in Paramecium 

(Allen et al., 1989), Saccharomyces cerevisiae (Dudkina et al., 2006), Polytomella (Dudkina et al., 2006), 

or bovine mitochondria (Rubinstein et al., 2003). These techniques allow us to observe ATP synthase 

dimers in a double row along the curve of a cristae (Strauss et al., 2008; Thomas et al., 2008; Davies et 

al., 2011; Davies et al., 2014). In tubular-shaped cristae, the rows of ATP synthase dimers appear to be 

arranged in a helical fashion (Allen et al., 1989; Dudkina et al., 2006). Some cryo-EM studies suggest 

that the ability to induce the membrane curvature is an intrinsic feature of ATP synthase monomer 

(Baker et al., 2012).  

3.2.2. ATP synthasome 

While the association of ATP synthase with a 29 kDa protein (likely ANT) in bovine heart was already 

reported at the end of the 1970’s (Galante et al., 1979; Montecucco et al., 1980), ATP synthasome, a 

putative supercomplex of ATP synthase, ANT, and PiC (Fig. 7), was first described by Pedersen and his  

Fig. 7 ATP synthasome. 

ATP synthasome, a supercomplex composed of ATP synthase, ANT (also known as ANC, adenine 
nucleotide carrier), and PiC (phosphate carrier). Adapted from Timohhina et al. (2009). 
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co-workers in 2003. They detected co-localisation of its components in highly purified vesicles of 

mitochondrial cristae membrane isolated from rat liver (Ko et al., 2003; Chen et al., 2004). Since then, 

ATP synthasome has been reported in digitonin-solubilised bovine heart mitochondria on clear native 

(Wittig & Schagger, 2008) or blue native gels (Seelert & Dencher, 2011) as well as in the protozoan, 

Leishmania (Detke & Elsabrouty, 2008). This would suggest that the ATP synthasome is an 

evolutionarily conserved structure that would form a single catalytic unit responsible for mitochondrial 

ATP production. However, a targeted search for ATP synthasome in a close relative of Leishmania, 

Trypanosoma brucei, was unsuccessful (Gnipova et al., 2015). The results of complexome profiling, a 

recently developed approach to detect novel mitochondrial supercomplexes, are also heterogeneous. 

In mitochondria from HEK293 cells solubilised with DDM, ATP synthasome was found (Wessels et al., 

2013). On the other hand, another profiling analysis of digitonin-solubilised rat heart mitochondria 

failed to detect any association of ATP synthase with neither ANT nor PiC (Heide et al., 2012). Since 

complexome profiling is a method based on resolution of solubilised proteins on blue native gels 

followed by mass spectrometric (MS) analysis of individual parts of the gel and both ANT and PiC are 

highly hydrophobic, which complicates their detection by MS, it is difficult to conclude that their 

absence in the region of the gel containing ATP synthase is a proof against the existence of ATP 

synthasome. The existence of this supercomplex therefore remains controversial. 

Not only has the structural association of ATP synthase, ANT, and PiC been questioned, but also the 

functional significance of ATP synthasome. The proposed 1:1:1 stoichiometry of the ATP synthasome 

constituents may not be so beneficial for substrate channelling in the process of ATP synthesis (Chen 

et al., 2004), given the slow catalytic turnover of ANT as compared with other carriers (e.g. PiC) that 

seems to be compensated for by its high abundance in mitochondria (Clemencon, 2012), 

3.2.3. Mitochondrial interactosome 

Yet another supercomplex, mitochondrial interactosome, was suggested to contain ATP synthasome 

in the inner membrane, creatine kinase in the intermembrane space, and voltage-dependent anion 

channel (VDAC) in the outer membrane and reported in cardiac, skeletal, and brain cells. Such a 

complex would physically link ATP synthesis and production of another high-energy compound, 

phosphocreatine (Saks et al., 2010; Guzun et al., 2012). Cytoskeletal proteins tubulins were shown to 

interact with VDAC and selectively restrict its channel permeability for adenine nucleotides but not for 

phosphocreatine or creatine, which would favour the phosphocreatine pathway for energy transfer to 

the cytosol (Timohhina et al., 2009; Guzun et al., 2012). In cancer cells, however, creatine kinase is 

down-regulated and tubulin is replaced by hexokinase, which results in direct utilisation of 
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mitochondrial ATP for glycolytic lactate production and hence contributes to the manifestation of 

Warburg’s effect (Saks et al., 2010). 

3.2.4. Mitochondrial KATP channel 

ATP-sensitive potassium channels (KATP) in the plasma membrane have been reported to play a role in 

a number of processes in different tissues. Their activity is regulated by adenine nucleotides, namely 

ATP inhibits their opening (Szabo & Zoratti, 2014; Tinker et al., 2014). For many years, a mitochondrial 

ATP-sensitive K+ (mitoKATP) channel, especially its opening, has been proposed to play an important 

role in cardioprotection and ischemic pre-conditioning, without its precise molecular identity being 

known (O'Rourke, 2004; Szabo & Zoratti, 2014). Among others, a large multiprotein complex whose 

components include ATP synthasome, succinate dehydrogenase (RC complex II) and one ABC 

transporter (mitochondrial ATP-binding cassette protein 1, mABC1) has been suggested to confer the 

mitoKATP
 channel activity (Ardehali et al., 2004), however, it was never validated. The pursuit of 

structural information on the mitoKATP channel, nevertheless, continues even though its existence is 

still controversial (O'Rourke, 2004; Garlid & Halestrap, 2012; Szabo & Zoratti, 2014).  

3.2.5. Mitochondrial permeability transition pore 

Mitochondrial permeability transition is defined as a non-selective increase in the permeability of the 

IMM to solutes with molecular masses up to 1.5 kDa that is usually induced by intramitochondrial Ca2+ 

accumulation (Bernardi et al., 2015). This process was linked to reversible opening of an unknown high-

conductance channel (Dahout-Gonzalez et al., 2006; Bernardi & Di Lisa, 2015). As a consequence of 

mitochondrial permeability transition, the transmembrane proton gradient is dissipated, ATP synthesis 

stops, and substrates and nucleotides are lost from the matrix due to mitochondrial swelling and 

rupture. Eventually, these events lead to cell death through necrosis (Szabo & Zoratti, 2014). 

The molecular nature of mitochondrial permeability transition pore (mPTP) has been a mystery for a 

long time, although studied intensively. A desensitising effect of cyclosporine A (CsA) directed the 

research to its mitochondrial target – cyclophilin D (CyPD), mitochondrial peptidyl-prolyl cis-trans 

isomerase that assists in protein folding. Several proteins were suggested to contribute to the pore 

formation. At first, the peripheral benzodiazepine receptor (today called mitochondrial translocator 

protein, TSPO) and the VDAC, both proteins of the outer membrane, in association with ANT were 

assigned the mPTP function. An alternative model was represented by a complex of PiC, ANT and CyPD 

(Szabo & Zoratti, 2014). With the exception of CyPD that was confirmed as an important modulator, 

genetic deletions of the respective genes excluded their involvement in the mPTP formation (Kokoszka 

et al., 2004; Gutierrez-Aguilar et al., 2014; Kwong et al., 2014). CyPD sensitises mPTP to Ca2+ and 
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confers sensitivity to CsA, but it is not an essential structural component of mPTP (Bernardi & Di Lisa, 

2015). 

In 2012, a new hypothesis on the molecular nature of mPTP was postulated. As the channel-forming 

component of mPTP, the ATP synthase complex was identified due to the interaction of its peripheral 

stalk with CyPD under permeability transition stimuli (Giorgio et al., 2009). Importantly, CsA 

counteracted this association. As the actual interacting partner of CyPD, OSCP was identified and 

characterised (Giorgio et al., 2013; Antoniel et al., 2014). The role of ATP synthase in the mPTP 

formation was also indirectly supported by other studies. Down-regulation of c subunit of ATP synthase 

using siRNA technology resulted in mPTP inactivation (Bonora et al., 2013; Alavian et al., 2014) whereas 

its overexpression accelerated mitochondrial permeability transition and onset of its effects on cellular 

physiology (Bonora et al., 2013). Some even suggested that the actual channel is located within the c-

ring of Fo-subcomplex after separation from the F1 domain, between the individual c-monomers 

(Alavian et al., 2014; Bonora et al., 2015; Jonas et al., 2015). 

Dimers but not monomers of ATP synthase have been shown to possess the mPTP activity in bovine 

hearts (Giorgio et al., 2013), Saccharomyces cerevisiae (Carraro et al., 2014) and Drosophila 

melanogaster (von Stockum et al., 2015). It indicates that mitochondrial membrane permeability 

transition and the involvement of ATP synthase is an evolutionarily conserved phenomenon. mPTP 

might be formed by ATP synthase dimers as a consequence of their conformational change that follows 

replacement of Mg2+ for Ca2+ at the catalytic site. The presence of Ca2+ instead of Mg2+ uncouples the 

proton pumping and ATP-hydrolytic activities of ATP synthase (Papageorgiou et al., 1998). Binding of 

CyPD to OSCP in mammalian mitochondria would promote this cofactor exchange on condition that 

the intramitochondrial Ca2+ concentration is sufficiently high. The conformational change would then 

result in pore opening at the interface between dimers, which is consistent with the phenotype of 

yeast mutants in the dimer-specific subunits e and g that are strikingly resistant to mPTP opening 

(Carraro et al., 2014). This transformation is fully reversible and ATP synthase can return to its basal 

state after its catalytic site is re-occupied by Mg2+. Therefore, it seems that the mPTP may provide 

mitochondria with a fast mechanism of Ca2+ release and thus take part in physiological regulation of 

Ca2+ homeostasis. In the case of prolonged pore opening, a series of events results in matrix swelling 

and eventually rupture of the outer mitochondrial membrane. Ca2+ induced formation of mPTP might, 

in the end, lead to release of cytochrome c and other pro-apoptotic factors, which contributes to 

apoptosis (Bernardi & Di Lisa, 2015; Bernardi et al., 2015; Bonora et al., 2015).  

The molecular identity of mPTP is, however, still uncertain (Fig. 8). Even if the involvement of ATP 

synthase itself or in association with ANT and PiC in the form of ATP synthasome is validated, it is 
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unclear whether the pore is formed from a novel conformation of one or more of these proteins or is 

located at an interface between them (Halestrap & Richardson, 2015). 

Fig. 8 Suggested models for mPTP structure. 

(A) According to one of the first mPTP models, the pore is formed by ANT in the inner membrane and 
VDAC in the outer membrane (BRP, benzodiazepine peripheral receptor; CK, creatine kinase; HK, 
hexokinase; Cph. D, cyclophilin D). Adapted from Desagher & Martinou (2000). 
In most recent models, the pore-forming component in the inner membrane has changed. The dimer of 
ATP synthase in association with ANT and PiC (ATP synthasome) that directly interacts with the main 
mPTP regulator, CyPD via its OSCP subunits has been suggested to form the channel at the interface of 
two ATP synthase monomers in the dimer (B). The channel was also proposed to be formed after an 
induced change in the ATP synthase conformation in the middle of the c-ring (C). Adapted from Bernardi 
et al. (2015) and Jonas et al. (2015), respectively. 
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AIMS OF THE THESIS 

The first objective of my thesis was to characterise structural-functional relationships accompanying 

ATP synthase defects of a different genetic origin. The investigated cell lines were used to achieve my 

second objective, i.e. to study the association of ATP synthase, ANT and PiC into ATP synthasome. 

The specific aims of my thesis were: 

 To examine in detail structural interactions in the putative supercomplex of ATP synthasome 

in mammalian mitochondria 

 To analyse the expression of ATP synthasome components in rat tissues and to test whether 

their expression is affected by different genetic defects of ATP synthase in patient cells 

 To characterise molecular pathogenic mechanisms underlying the genetic defects of ATP 

synthase due to mutations in the following genes 

 ATP5E (coding for subunit ε) 

 MT-ATP6 (coding for subunit a) 

 TMEM70 (coding for the ancillary factor of ATP synthase biogenesis TMEM70) 
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SUMMARY OF THE RESULTS 

During my studies, I have co-authored fourteen articles published in peer-reviewed journals. Six of 

them are included and briefly summarised in my PhD thesis. A complete list of my publications in 

chronological order is detailed at the end of this section. 

My first-author publication focuses on the components of mitochondrial ADP-phosphorylating 

apparatus, their expression and structural interactions (Article 1). We showed limited association of 

ATP synthase not only with ANT and PiC (into a supercomplex called ATP synthasome) but also with 

succinate dehydrogenase (Article 2). To study expression of ATP synthasome components and their 

interdependence, we used several cell lines with different genetic defects of ATP synthase resulting in 

a low content of the enzyme or an alteration of its structure. In the other four articles these model cell 

lines are characterised with regard to impacts of the defect they harbour on mitochondrial functions. 

Specifically, we described structural and functional consequences of genetic defect of subunit ε in cells 

of a patient (Article 3) as well as in model cells with down-regulated expression of this subunit 

(Article 4). The reported missense mutation in the gene ATP5E coding for subunit ε was the first 

reported mutation in a nuclear encoded structural subunit of ATP synthase and it inspired us to 

develop a model cell line with a knock-down of this subunit in an effort to elucidate its function in 

human cells. Compared to defects in nuclear encoded subunits of ATP synthase, mutations in the 

mitochondrial gene MT-ATP6 coding for subunit a are reported more regularly. We also characterised 

one mutation, specifically m.9205delTA that does not only affect ATP synthase but also cytochrome c 

oxidase (Article 5). In the last article, we investigated adaptive changes in the expression of 

mitochondrial proteins in patients with a mutation in TMEM70 coding for an ancillary factor of ATP 

synthase biogenesis (Article 6). 
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1. Mitochondrial ATP synthasome: expression and structural interaction of its 

components 

Nůsková, H., Mráček, T., Mikulová, T., Vrbacký, M., Kovářová, N., Kovalčíková, J., Pecina, P., 

Houštěk, J. (2015). Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2015.07.034 

IF 2.297 (2014) 

To characterise the relationships in the expression of ATP synthase, ANT, and PiC in mammalian cells, 

we used two models of isolated ATP synthase deficiency – rat BAT with a physiological down-regulation 

of ATP synthase, and fibroblast cultures of patients with different types of ATP synthase deficiency. In 

rat tissues, both transcript and protein levels of ANT and PiC correlate with the content of ATP 

synthase. Therefore, ANT and PiC levels appear to be transcriptionally controlled in accordance with 

the biogenesis of ATP synthase. In contrast, the content of ANT and PiC is increased in the ATP synthase 

deficient patient fibroblasts compared to control cells. Since there is no significant change in the 

transcript levels of ANT and PiC, the observed adaptive responses are likely regulated post-

transcriptionally, possibly at the level of protein synthesis or stability. 

To describe further the structural interactions of ANT, PiC, and ATP synthase, we analysed rat heart 

mitochondria solubilised with different mild non-ionic detergents. We characterised the association of 

ATP synthasome components by immunoprecipitation, blue native and SDS polyacrylamide gel 

electrophoresis combined with immunodetection and MS analysis. Our results indicate that both 

carriers can be found attached to monomeric and dimeric forms of ATP synthase. However, the 

majority of immunodetected PiC and especially ANT did not associate with the ATP synthase, 

suggesting that while ATP synthasome is present in heart mitochondria, most of the PiC, ANT, and also 

ATP synthase probably exist as separate entities. 
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2. High molecular weight forms of mammalian respiratory chain complex II. 

Kovářová, N., Mráček, T., Nůsková, H., Holzerová, E., Vrbacký, M., Pecina, P., Hejzlarová, K., 

Kl’učková, K., Rohlena, J., Neužil, J., Houštěk, J. (2013). PLoS One 8, e71869. 

IF 3.534 

While studying the association of ATP synthase, ANT and PiC, we uncovered an unexpected connection 

between ATP synthase and succinate dehydrogenase (RC complex II). This revelation is included in this 

publication. 

In general, the OXPHOS complexes are arranged into supramolecular structures that can be preserved 

under solubilisation with mild detergents and resolved by native electrophoretic systems. The 

involvement of complexes I, III and IV in supercomplex formation and also multimeric forms of ATP 

synthase have been studied quite thoroughly. However, the association of complex II, which links the 

RC with the tricarboxylic acid cycle, with other OXPHOS enzymes is questionable.  

In this publication, we reported the existence of structures of high molecular weight that contained 

complex II (CIIhmw) and were preserved only under specific conditions, i.e. under the combination of 

solubilisation by digitonin and resolution by clear native electrophoresis (CNE). We showed that CIIhmw 

structures are enzymatically active and differ in the electrophoretic mobility between rat tissues (500–

1000 kDa) and cultured human cells (400–670 kDa). Furthermore, they are destabilised in mtDNA-

depleted rho0 cells whereas their formation is unaffected by isolated defects in the other OXPHOS 

complexes. Electrophoretic studies and immunoprecipitation experiments of CIIhmw did not reveal any 

specific interactions with the RC complexes I, III or IV or enzymes of the tricarboxylic acid cycle. 

However, they suggest a specific interaction between complex II and ATP synthase. Their association 

has been previously reported in a supercomplex that was suggested to confer the activity of 

mitochondrial ATP-sensitive K+ channel (Ardehali et al., 2004). 
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3. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the 

F1 epsilon subunit.  

Mayr, J.A., Havlíčková, V., Zimmermann, F., Magler, I., Kaplanová, V., Ješina, P., Pecinová, A., 

Nůsková, H., Koch, J., Sperl, W., Houštěk, J. (2010). Hum Mol Genet 19, 3430-3439. 

IF 8.058 

This publication was a result of our collaboration with the Paediatric Department of Prof. Wolfgang 

Sperl at the Paracelsus Medical University in Salzburg, Austria. Similarly to the next publication, it 

demonstrates the importance of subunit ε for the biogenesis of ATP synthase. 

 In 2008, a common mutation in the gene TMEM70 coding for an ancillary factor of ATP synthase 

biogenesis was identified in a group of patients with an isolated ATP synthase defect (Cizkova et al., 

2008). However, there was a single patient with a distinct clinical phenotype and no detected mutation 

in TMEM70. In this publication, we reported that the underlying genetic cause of ATP synthase defect 

in this patient was a homozygous mutation c.35A>G in the nuclear gene ATP5E coding for subunit ε. 

The identified mutation was the first mutation reported in a nuclear encoded structural subunit of ATP 

synthase. It leads to an amino acid substitution (p.Tyr12Cys) that affects a tyrosine residue at the N-

terminus highly conserved among eukaryotes. 

Biochemical analysis of the patient’s fibroblasts showed a reduction of both oligomycin-sensitive ATP-

hydrolytic and ATP-synthesising activity to ∼30 % when compared to controls. The mitochondrial 

content of fully assembled ATP synthase was equally reduced. However, its molecular weight is 

unchanged due to incorporation of the mutated subunit ε and its catalytic activity seems to be 

preserved. The insufficient capacity of ATP synthase then leads to a decrease in respiration and to an 

increase in mitochondrial membrane potential under ADP stimulation, compared to control cells. 

Similarly to the down-regulation of subunit ε in the HEK293 cells, a detailed protein analysis revealed 

a decrease in the content of both F1 and Fo subunits of ATP synthase with the only exception of subunit 

c that was accumulated in a detergent-insoluble form. Furthermore, the content of RC complexes I, II, 

III, and IV were unchanged or slightly increased compared to controls. 

Finally, data obtained from metabolic labelling were indicative of a decreased de novo synthesis of ATP 

synthase. Therefore, this isolated defect of ATP synthase most likely results from an impairment of ATP 

synthase biogenesis that leads to a reduced content of ATP synthase that is fully functional despite the 

incorporation of mutated subunit ε.   
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4. Knockdown of F1 epsilon subunit decreases mitochondrial content of ATP synthase 

and leads to accumulation of subunit c.  

Havlíčková, V., Kaplanová, V., Nůsková, H., Drahota, Z., and Houštěk, J. (2010). Biochim 

Biophys Acta 1797, 1124-1129. 

IF 5.132 

Subunit ε is the smallest and functionally least characterised subunit of the F1 domain of mammalian 

ATP synthase. It lacks the N-terminal targeting sequence and there are no known homologues in 

bacteria and chloroplasts (Xu et al., 2015).  

To characterise the function of mammalian subunit ε, we knocked down the expression of the 

respective nuclear gene ATP5E in the HEK293 cell line, using the technique of RNA interference. As a 

consequence, the content and activity of ATP synthase dropped to ∼40 % of controls, which was 

accompanied by a decrease in the ADP-stimulated respiration and by an increase in the mitochondrial 

membrane potential.  

A more detailed investigation of changes at the protein level revealed that the decrease in subunit ε 

was followed by a decrease in other ATP synthase subunits, except subunit c. The accumulated subunit 

c was incorporated into the fully assembled ATP synthase and also into other subcomplexes with the 

molecular weight of 200–400 kDa that contained neither F1 subunits (α, β) nor Fo subunits (a, b, d). 

Subunit ε seems to play an important role in the biosynthesis and assembly of the F1 domain of ATP 

synthase and to be involved in the incorporation of hydrophobic subunit c to the rotor structure (F1-c-

ring) of the mammalian enzyme. 
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5. Alteration of structure and function of ATP synthase and cytochrome c oxidase by 

lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. 

Hejzlarová, K., Kaplanová, V., Nůsková, H., Kovářová, N., Ješina, P., Drahota, Z., Mráček, T., 

Seneca, S., Houštěk, J. (2015). Biochem J 466, 601-611.  

IF 4.396 (2014) 

Severe mitochondrial disorders are frequently caused by mutations in the MT-ATP6 gene coding for 

subunit a of ATP synthase. The majority of them are missense mutations (Hejzlarova et al., 2014). In 

this publication, we studied a unique microdeletion (m.9205delTA) in the polycistronic mitochondrial 

transcript MT-ATP8/MT-ATP6/MT-COX3. This microdeletion removes the stop codon in the MT-ATP6 

gene, which interferes with the processing of this mRNA and negatively affects the cleavage site 

between MT-ATP6 and MT-COX3 and as a result also the translation of both subunit a of ATP synthase 

and subunit Cox3 of cytochrome c oxidase (COX) (Jesina et al., 2004). 

So far, this rare mutation has been found in two unrelated patients whose clinical phenotypes differed 

strikingly. While the first patient was characterised by mild transient lactic acidosis (Seneca et al., 

1996), the other one suffered from fatal encephalopathy (Jesina et al., 2004). Nevertheless, both 

patients were reported as homoplasmic. Therefore, we set to compare the cells of both patients to 

search for another factor that could modulate the outcome of the m.9205delTA microdeletion. In the 

fibroblasts obtained from the first patient with a milder phenotype, a heteroplasmy of this mutation 

was revealed after a prolonged time of cultivation, most likely due to negative segregation of the 

mutation. To gain more insight into the effect of m.9205delTA heteroplasmy, we prepared 

transmitochondrial cybrids with a varying mutation load (52–99 %). All parameters that were 

determined, i.e. the content of subunits a and Cox3, ADP-stimulated respiration, mitochondrial ATP 

production, and COX activity, were found to be strongly dependent on the mutation load with a 

heteroplasmy threshold at ∼90 % mutation. Therefore, the distinct phenotypes of the two reported 

patients most likely resulted from a different mutation load with a critical threshold for the severity of 

disease manifestation at a very high heteroplasmy level. 

While comparing the control and m.9205delTA homoplasmic cybrid lines, we found that a lack of 

subunit a alters the structure but not the content of ATP synthase, which assembles into a labile 

∼60 kDa smaller complex retaining the ATP-hydrolytic but not ATP-synthesising activity. On the 

contrary, a lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. 

The reduced content of COX leads to a decrease in the respiratory rates and the total H+-pumping 

activity of the RC as evidenced by a reduced mitochondrial membrane potential.   
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6. Compensatory upregulation of respiratory chain complexes III and IV in isolated 

deficiency of ATP synthase due to TMEM70 mutation. 

Havlíčková Karbanová, V., Čížková Vrbacká, A., Hejzlarová, K., Nůsková, H., Stránecký, V., 

Potocká, A., Kmoch, S., Houštěk, J. (2012). Biochim Biophys Acta 1817, 1037-1043. 

IF 4.624 

Mutations in TMEM70 that codes for an ancillary factor of ATP synthase biogenesis are the most 

frequent genetic cause of isolated ATP synthase deficiencies. Medical symptoms usually fall into the 

category of early-onset mitochondrial encephalo-cardiomyopathies. As a consequence of decreased 

content of functional ATP synthase, patient cells are characterised by a lower ATP production and an 

elevated mitochondrial membrane potential (Cizkova et al., 2008) that often leads to an increase in 

ROS production. To investigate adaptive mechanisms of patient cells under such metabolic imbalance, 

we analysed the expression of OXPHOS complexes and intramitochondrial proteases that are involved 

in their turnover.  

We investigated primary fibroblasts derived from skin biopsies of 10 patients with the common 

homozygous mutation c.317-2A>G in TMEM70. In patient fibroblasts, the content of fully assembled 

ATP synthase was reduced to 11 % of controls on average. On the other hand, we found an increase in 

the content of complex III and IV to 153 % and 184 % of controls, respectively. The absolute content 

of individual OXPHOS subunits that was analysed under denaturing conditions followed this pattern. 

The reduced content of fully assembled ATP synthase that was accompanied by a decrease in the 

content of individual ATP synthase subunits indicated that the synthesised but not assembled ATP 

synthase subunits are subject to degradation. Therefore, we analysed the protein levels of 

mitochondrial proteases Lon, paraplegin, and prohibitin 1 and 2, in which we did not find any 

significant change. 

Whole-genome expression profiling revealed generalized up-regulation of transcriptional activity in 

patient fibroblasts but did not show any consistent changes in mRNA levels of structural subunits or 

specific assembly factors of OXPHOS complexes that would correspond to the protein data. Therefore, 

the reported compensatory increase in the RC complexes III and IV (as well as ANT and PiC as reported 

in Article 1) in response to the ATP synthase deficiency is most likely a result of an adaptive mechanism 

at the post-transcriptional level.  
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MY CONTRIBUTION TO THESE PUBLICATIONS: 

The presented data resulted from a team effort of all co-authors detailed in the above mentioned 

publications. Here, my experimental involvement in the individual publications is summarised:  

1. Characterisation of structural interactions of ATP synthase, ANT, and PiC using blue-native 

and multidimensional electrophoreses and immunoprecipitation; quantitative analysis of 

ATP synthasome components at the protein level using Western blots; preparation of 

samples for MS analysis; isolation of mitochondria from rat tissues and patient fibroblasts; 

cell cultivation 

2. Detection of structural interactions between ATP synthase and succinate dehydrogenase 

by means of immunoprecipitation; isolation of mitochondria from rat tissues 

3. Evaluation of mitochondrial functions, specifically cell respiration (oxygraph 

measurements) 

4. + 5.  Evaluation of mitochondrial functions, specifically mitochondrial membrane potential 

(TPP+-selective electrode) 

6. Quantitative analysis of the protein content of OXPHOS components using the combination 

of SDS-PAGE and immunodetection on Western blots; cell cultivation 
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DISCUSSION 

Cell lines obtained from ATP synthase-deficient patients represent a valuable model to study the 

biogenesis, function and regulation of ATP synthase as well as of the whole ADP-phosphorylating 

apparatus. Specifically, we studied nuclear mutations in ATP5E (Article 3 and 4) and TMEM70 

(Article 6) that affect subunit ε of ATP synthase and the ancillary factor of its biogenesis TMEM70, 

respectively. These genetic defects of ATP synthase result in a markedly reduced content of fully 

assembled and functional ATP synthase. On the other hand, a normal amount of incomplete and non-

functional ATP synthase complex lacking subunit a is a result of the unique mitochondrial 

microdeletion m.9205delTA that impairs the translation of both subunit a of ATP synthase and subunit 

Cox3 of cytochrome c oxidase (Article 5). Unlike the nuclear mutations, the pathological outcome of 

this mutation depends on the level of heteroplasmy (mutational load). 

When we described a pathogenic homozygous mutation in the ATP5E gene in 2010 (Article 3), it was 

the very first reported patient with a mutation in a nuclear encoded structural subunit of ATP synthase 

(Mayr et al., 2010). Three years later, a mutation in ATP5A1 coding for subunit α was reported in two 

siblings (Jonckheere et al., 2013). Currently, no other mutations in the nuclear genes encoding ATP 

synthase subunits have been described. The two cases that were published indicate that pathogenic 

nuclear mutations are usually recessive and likely very rare. As a consequence, the frequency of ATP 

synthase defects of this kind is extremely low. Furthermore, the functional outcomes of mutations in 

the structural subunits of ATP synthase may be so severe that they are embryonically lethal for their 

homozygous carriers, which would also contribute to the fact that more cases are not recorded. 

Therefore, the prevalence of all pathogenic mutations in mitochondrial components may be 

significantly underestimated (Seifert et al., 2015). 

The yeast subunit ε is required for the functional coupling of proton translocation and ATP synthesis 

(Tetaud et al., 2014). We have shown in the patient with a mutation in ATP5E (Mayr et al., 2010) 

(Article 3) and also in our model of ATP5E knock-down (Havlickova et al., 2010) (Article 4) that the 

mammalian and yeast ATP synthase differs in this regard. Whereas a reduction in the content of 

subunit ε results in uncoupling of proton translocation from ATP synthesis in yeast, it leads to a 

decrease in the total amount of ATP synthase that is otherwise fully functional and coupled in humans. 

As a consequence, the mitochondrial membrane potential is partially depleted in yeast but increased 

in humans due to a decreased capacity of ATP synthase to consume it. The pathogenic mutation 

p.Tyr12Cys in ATP5E that we had reported was later studied in detail in Saccharomyces cerevisiae 

(Sardin et al., 2015). A yeast equivalent of the reported mutation did not affect the assembly or stability 
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of ATP synthase complex, as opposed to the patient, which suggests that the biogenesis of ATP 

synthase differs substantially between humans and yeast.  

Another example of this difference is the importance of TMEM70, an ancillary factor of ATP synthase 

biogenesis in mammals, whose homologue has not been found in yeast. We found a compensatory 

up-regulation of CoIII and CoIV in patient fibroblasts (Havlickova Karbanova et al., 2012) (Article 6) and 

the same was later observed also by Torraco et al. (2012). A similar adaptive response was found in 

tissues (Mayr et al., 2004) and fibroblasts of the ATP5E patient (Mayr et al., 2010) (Article 3). However, 

these changes obviously cannot compensate for the energetic dysfunction originating from the lack of 

functional ATP synthase. The same applies for the compensatory increase in the content of other 

components of mitochondrial phosphorylation apparatus, ANT and PiC, that we observed in TMEM70, 

ATP5E, and MT-ATP6 patients (Nuskova et al., 2015) (Article 1). A compensatory up-regulation in the 

total mitochondrial content, another adaptive mechanism reported in mice lacking PiC (Kwong et al., 

2014) and also in hearts of patients lacking PiC-A (Mayr et al., 2011), was not associated with any of 

the studied mutations. Since the transcript levels of up-regulated proteins were not changed, a post-

transcriptional adaptive mechanism is likely involved. Under physiological conditions in rat tissues, in 

contrast, the protein content of ATP synthase, ANT, and PiC appears to be co-regulated at the level of 

transcription. 

The supercomplex of ATP synthasome is generally accepted although the interaction of its components 

has not been studied as thoroughly as other mitochondrial higher molecular structures. Two key 

publications from Pedersen’s laboratory that established ATP synthasome as a mitochondrial 

supercomplex are based on the fact that all its components co-localized in vesicles of enriched 

mitochondrial cristae membrane from rat liver (Ko et al., 2003; Chen et al., 2004). The evidence for its 

existence is therefore lacking and the functional advantages that it would provide for ADP 

phosphorylation are also questionable. We were able to detect this supercomplex in rat heart 

mitochondria by BNE and immunoprecipitation experiments but its prevalence was strikingly low 

(Nuskova et al., 2015) (Article 1). Reasons for this observation may be found in the recent plasticity 

model of protein organisation in the IMM (Enriquez & Lenaz, 2014). The ratio between ATP 

synthasome and its separate components may be indeed very low. ATP synthasome could also 

represent an intermolecular association that is extremely short-lived and thus difficult to capture by 

biochemical methods. Nevertheless, its functional significance still remains elusive.  

While we were studying the putative supercomplex of ATP synthasome, we found an association of 

ATP synthase with another mitochondrial protein – succinate dehydrogenase (Kovarova et al., 2013) 

(Article 2). The interaction of the entire ATP synthasome with succinate dehydrogenase had been 
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reported and assigned the function of mitoKATP channel (see chapter 3.2.4.). Despite all controversies, 

strong evidence links the functional properties of mitoKATP channel with succinate dehydrogenase 

(Garlid & Halestrap, 2012). Diazoxide, an inhibitor of succinate dehydrogenase, has been used by many 

as an opener of mitoKATP channel, which is proposed to mediate its cardioprotective effects (O'Rourke, 

2004). Taking into account recently published findings (Chouchani et al., 2014), the cardioprotective 

effect might result not from the mitoKATP channel opening but from a reduction of ROS production in 

the ischemic heart. After reperfusion, rapid oxidation of succinate accumulated under hypoxia 

saturates the RC with electrons, which leads to reverse electron flow to complex I. ROS production by 

this enzyme is then responsible for the ischemia/reperfusion injury. The complex II inhibitors might 

therefore protect the heart from oxidative damage without any involvement of mitoKATP channel. 

In conclusion, my thesis shows that studying the phenotype of patients and molecular and biochemical 

processes in their cells can not only shed light on the pathogenic mechanism of their disease but also 

contribute to elucidating the function of the affected gene and its protein product. In a broader picture, 

we can learn more about associations of the affected protein with other partners and the 

interdependence of their regulation. 
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CONCLUSIONS 

 

 Structural analyses indicate presence of ATP synthasome in rat heart mitochondria. However, 

the majority of PiC, ANT, and ATP synthase exist as separate entities. In addition, ATP synthase 

was found to interact with succinate dehydrogenase. This association had been suggested to 

confer the activity of mitochondrial ATP-sensitive K+ channel. 

 In rat tissues, levels of ATP synthase correlate with those of ANT and PiC. On the other hand, 

human ATP synthase deficiencies lead to a compensatory increase in the content of ANT and 

PiC, likely due to a post-transcriptional adaptive mechanism. Similarly, complex III and IV are 

also up-regulated in the patients harbouring a mutation in TMEM70. 

 The ATP5E gene was identified as the first nuclear gene coding for a structural subunit of ATP 

synthase responsible for deficiency of this enzyme in human patients. The respective subunit 

ε is required for assembly and/or stability of the F1 catalytic domain of the mammalian ATP 

synthase and plays a role in the incorporation of the hydrophobic subunit c into the F1-c 

oligomer during the process of ATP synthase assembly. 

 The unique microdeletion m.9205delTA in the mitochondrial gene MT-ATP6, affecting the 

function of both ATP synthase and cytochrome c oxidase, only leads to a mitochondrial disease 

phenotype when heteroplasmy is over 90 %. The lack of subunit a does not affect the amount 

of ATP synthase. The incomplete enzyme is, however, unstable and unable to produce ATP.  
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