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SUMMARY 

The cerebellum is traditionally considered a structure responsible for the 

control of motor function. Nevertheless, during the last three decades, it has been 

revealed that the cerebellum is also involved in attention, perception, mood, speech, 

nonmotor learning, and memory. Hereditary cerebellar ataxias represent a 

heterogeneous group of neurodegenerative disorders with a variety of neurological 

and systemic symptoms. Variability of human hereditary ataxias is also reflected in 

animal models of cerebellar disorders. The most frequently used animal models are 

Lurcher and Purkinje cell degeneration (pcd) mutant mice. 

The main aim of this thesis was to analyze and compare the spatial and 

emotional behavior of these cerebellar mutants. Additional aims were to study the 

impact of abnormal behavior on breeding capacity in Lurcher mice and to assess the 

applicability of cerebellar mutants as models for experimental therapy of cerebellar 

degeneration. 

We have confirmed several behavioral impairments in both Lurcher and pcd 

mutant mice. Nevertheless, we have found that the manifestation of spatial behavior 

deficit is different in these two cerebellar mutants. Based on our findings, we propose 

that the deficit of spatial performance in cerebellar mutants may potentially arise 

from a combination of 1) cognitive disturbances, 2) sensory deficits, 3) motor 

impairments, and finally, 4) affective disorder. Moreover, resulting spatial behavior 

could also be modified by the specific effect of mutation, genetic background, and 

sex. We have also shown that abnormal behavior, e.g. maternal infanticide leads to 

decreased breeding capability in Lurcher females. Although we have shown that 

embryonic cerebellar grafts survive well in both Lurcher and SCA2 mice, the 

morphology of the graft did not promise any strong specific behavioral effects. 
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SOUHRN 

Mozeček je tradičně spojován s kontrolou a exekucí motorických funkcí. 

Nicméně, poslední tři dekády výzkumu ukazují, že mozeček hraje svou roli i v řízení 

pozornosti, percepce, nálady, řeči, nemotorického učení a paměti. Hereditární 

mozečkové ataxie představují heterogenní skupinu neurodegenerativních onemocnění 

s širokou škálou neurologických a systémových symptomů. Variabilita dědičných 

ataxií je také reflektována v širokém spektru zvířecích modelů. Nejčastěji 

používanými jsou mutantní myši Lurcher a Purkinje cell degeneration (pcd). 

Hlavním cílem této práce bylo analyzovat a porovnat prostorové a emoční 

chování u myší typu Lurcher a pcd. Dalšími cíli bylo zkoumat vliv abnormálního 

chování myší typu Lurcher na jejich reprodukční úspěšnost a ověřit využitelnost 

mozečkových mutantů jako modelů pro experimentální terapii olivocerebelární 

degenerace. 

Výsledky této práce potvrdily řadu behaviorálních poruch u myší typu Lurcher 

a pcd. Nicméně ukázali jsme, že poruchy prostorového chování se u těchto mutantů 

liší. Na základě našich výsledků se domníváme, že deficit v prostorovém chování u 

mozečkových mutantů může vznikat kombinací těchto faktorů: 1) kognitivního 

deficitu, 2) senzorických poruch, 3) motorických obtíží a 4) afektivních změn. 

Výsledné projevy prostorového chování mohou být navíc dále determinovány 

specifickým efektem mutace, genetického pozadí a/nebo pohlavím. Ukázali jsme 

také, že abnormální chování, např. mateřská infanticida u samic myší typu Lurcher 

vede k jejich sníženému reprodukčnímu potenciálu. Navzdory dobré schopnosti 

embryonálního transplantátu přežívat v mozečku myší typu Lurcher i SCA2, 

morfologie transplantátu nenaznačovala žádný silný specifický behaviorálně-funkční 

efekt. 
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1 INTRODUCTION 

Cerebellum, “little brain” in Latin, has always been seen as a distinct 

subdivision of the brain (Glickstein et al., 2009). It is located in the posterior cranial 

fossa, underneath the occipital and temporal lobes of the cerebral cortex. The 

cerebellum is present in all vertebrates (Larsell, 1967; Nieuwenhuys, 1967). Most of 

them have even one or more additional structures that are histologically similar to the 

cerebellum and are known as cerebellum-like structures (Bell, 2002). 

1.1 Gross anatomy 

The gross anatomy of the cerebellum varies from a simple dome-like structure 

in amphibians and reptiles, to the more complicated shapes in fish, birds and 

mammals (Voogd and Glickstein, 1998). The internal organization of the mammal 

cerebellum is similar to the cerebral hemispheres. It consists of three major parts: 1) 

cortex, repeatedly folded around, 2) the four-pairs of cerebellar nuclei deeply buried 

3) in the middle of cerebellar white matter. In the sagittal section, the white matter 

branches into the highly folded gray matter of the cortex and creates a typical pattern, 

termed arbor vitae (tree of life). The cerebellum is morphologically distinguished 

into three lobes: rostral lobe, caudal lobe and flocculonodular lobe. The 

flocculonodular lobe (also known as the vestibulocerebellum or archicerebellum) is 

the phylogenetically oldest portion and is located on the inferior surface. The 

vestibulocerebellum receives vestibular, visual, and motor information, and sends its 

output exclusively to the brainstem vestibular nuclei (Naito et al., 1995; Barmack, 

2003). The vestibulocerebellum is involved in the maintenance of body balance, 

coordination of eye movements and transforms the head-centered vestibular afferent 

information into earth-referenced self-motion and spatial orientation signals 

(Yakusheva et al., 2007). 

The remaining two lobes, rostral and caudal lobes reflect the phylogenesis as 

well as functions of the cerebellum only partially. For this reason, longitudinal zones 

also distinguish the cerebellum into the 1) vermis, the most medial portion, 

2) paravermis, intermediate parts and 3) hemispheres, the largest and most lateral 
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parts of the cerebellum. The vermis and paravermis constitute a structure termed 

spinocerebellum (or paleocerebellum). The spinocerebellum receives information 

from a wide range of sensory systems, including vestibular, visual, somatosensory, 

proprioceptive, and auditory, as well as information from the motor cortex via 

pontocerebellar nuclei. The spinocerebellum also processes signals related to the 

autonomic, visceral, cardiovascular, and immune functions. Its axons target cerebellar 

nuclei, e.g. interpositus nuclei and fastigial nuclei, which in turn send outputs to the 

vestibular and reticulospinal systems, as well as to the thalamus and superior 

colliculus. There are also a sparser number of collaterals projecting to the spinal cord 

and pons (Bagnall et al., 2012). The spinocerebellum regulates muscle tone and 

adapts the body to changing circumstances. 

The most lateral part of the cerebellar cortex is termed cerebrocerebellum (or 

neocerebellum). This phylogenetically youngest structure receives diverse 

information from various areas of the cerebral cortex. The cerebrocerebellum projects 

to the cerebellar nuclei, particularly the dentate nuclei, whose predominant output is 

to the thalamus and reticular formation (Bagnall et al., 2012). Lateral portions of the 

cerebellum play an important role in motor learning and cognitive processes (see 

review Timmann et al., 2010). Three prominent stalks, cerebellar peduncles, connect 

the cerebellum to the rest of the brain. Afferent fibers come by this way to the 

cerebellar cortex, from where the circuit continues to the cerebellar nuclei and their 

axons form the efferent pathways leaving the cerebellum through the cerebellar 

peduncles. 

1.2 Cerebellar development 

The cerebellar primordium arises from dorsal rhombomere 1 of the anterior 

hindbrain (Millen and Gleeson, 2008). Early cerebellar development requires a 

contribution from the posterior mesencephalon (Martinez and Alvarado-Mallart, 

1989) and the alar plate of rhombomere 2 (Marin and Puelles, 1995) as well as 

adjacent fourth ventricle roof plate signaling (Chizhikov et al., 2006; Wilson et al., 

2007). Between mouse embryonic days 9 and 12, the rostral-caudal axis of dorsal 

rhombomere 1 rotates 90 degrees into the medial-lateral axis of the wing-like bilateral 

cerebellar primordium (Sgaier et al., 2005). As cerebellar development progresses, 
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the two lateral primordia fuse on the dorsal midline over the fourth ventricle to 

establish the medial vermis and lateral cerebellar hemispheres (Louvi et al., 2003; for 

review see Millen and Gleeson, 2008). 

Cerebellar patterning is dependent on morphogenic factors secreted by the 

rhombic lip and roof plate, leading to the formation of two germinal centers that will 

give rise to multiple cerebellar neuronal types and subtypes (for review see Consalez 

et al., 2007). These neurogenic centers, the upper rhombic lip and ventricular zone, 

contain gene expression microdomains, and regulate the genesis of neuronal 

precursors fated to adopt GABAergic and glutamatergic phenotypes, respectively (for 

review see Consalez et al., 2007). Upper rhombic lip and ventricular zone 

segmentation therefore reflect the origin of the two main neuronal types of the adult 

cerebellum, Purkinje cells and granule cells, respectively. The mutual exclusivity of 

Purkinje cell and granule cell precursors is defined by the expression of Ptf1a 

(Hoshino et al., 2005) and Atoh1 (Math1) genes (Ben-Arie et al., 1997; Machold and 

Fishell, 2005), respectively (for review see Butts et al., 2007).  

Purkinje cells are born at the onset of cerebellar neurogenesis (for mouse 

between embryonic days 10.5 (E10.5) and E12.5; Miale and Sidman, 1961; for 

review see Sotelo and Rossi, 2007). The adult Purkinje cell phenotype is acquired 

through a complex sequence of processes, including migration from the ventricular 

zone to the cortex, formation of the Purkinje cell plate and arrangement into the final 

monolayer, axonal growth, and expansion of the dendritic tree (for review see Sotelo 

and Rossi, 2007). The mouse granule cell precursors begin to proliferate in the upper 

rhombic lip in E10 and thereafter start to migrate tangentially in latero-medial and 

postero-anterior directions to cover the superficial zone of the cerebellum, called the 

external granular layer (Miale and Sidman, 1961; for review see Komuro et al., 

2007). After clonal expansion in the external granular layer, the granule cell 

precursors begin to produce postmitotic granule cells which start to migrate toward 

their final destination within the internal granular layer located underneath of 

Purkinje cell layer (Komuro and Yacubova, 2003). During the migration, granule 

cells transform their shape from a vertically elongated spindle to spherical (Komuro 

and Rakic, 1998; for review see Komuro et al., 2007). The transit amplification of 

granule cell precursors within the external granular layer is driven by sonic hedgehog 
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(Shh) morphogenic factor secreted by Purkinje cells (Dahmane and Ruiz i Altaba, 

1999; Lewis et al., 2004) that determines the size of the external granular layer and 

hence, the degree of cerebellar foliation (Corrales et al., 2004; Corrales et al., 2006). 

1.3 Cerebellar circuits 

The cerebellar cortex is functionally built from Purkinje cells that are large 

projection neurons, and several types of interneurons: granule cells, Golgi cells, 

stellate cells, basket cells, unipolar brush cells, Lugaro cells and candelabrum cells 

(Jaarsma et al., 1998; Laine and Axelrad, 1998; Voogd and Glickstein, 1998; 

Schilling et al., 2008). The three-layer cortex receives information from three 

extracerebellar afferent inputs: the mossy fibers, the climbing fibers, and diffusely 

organized monoaminergic and cholinergic afferents (Voogd and Glickstein, 1998). 

Granule cells are small glutamatergic neurons, and are the most common cells 

in the cerebellum as well as in the entire brain (2.7 × 107 in mouse; 1.1 × 1011 in 

human) (Voogd and Glickstein, 1998; Huang and Ricklefs, 2007). Granule cells 

create the deepest layer of the cerebellar cortex. Excitatory mossy fibers ascend to the 

granular layer and their terminals (rosettes) contact dendrites of ~20-30 granule cells 

in complex synapses (glomeruli) (Voogd and Glickstein, 1998; Bagnall et al., 2012). 

Granule cells mostly have 3-5 short dendrites each terminating in a glomerulus; thus 

each granule cell receives inputs from 3 to 5 mossy fibers (Bagnall et al., 2012). 

Unmyelinated axons of granule cells ascend toward the superficial, cell-poor 

molecular layer of the cerebellar cortex, where they bifurcate into long T-shaped 

branches, termed parallel fibers. Each parallel fiber reaches up to 0.2 cm and 1 cm in 

the mouse and human, respectively, through the cortex and makes up to 400 and 

2,000 synapses with Purkinje cells in the mouse and human, respectively (Voogd and 

Glickstein, 1998; Huang and Ricklefs, 2007; Bagnall et al., 2012).  

Purkinje cells are large γ-aminobutyric acid (GABA)-ergic neurons, which 

serve as the sole output of the cerebellar cortex (Voogd and Glickstein, 1998). Their 

somas are located in a single row, between the deep granular layer and superficial 

molecular layer. The flattened dendritic trees of Purkinje cells are oriented to the 

perpendicularly running parallel fibers. The long parallel fibers may arise from the 

granule cells of different cerebellar zones (see above), thus each Purkinje cell might 
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receive information about sensory conditions (Voogd and Glickstein, 1998), and 

hypothetically also about internal states, and the plans of the individual (Bagnall et 

al., 2012). It is hypothesized that Purkinje cells respond to the stimulation from 

parallel fibers with the modulated discharge of short simple spikes (20-60 impulses/s) 

(Barmack and Yakhnitsa, 2008). The second major input to the cerebellum are 

climbing fibers, which originate from contralateral inferior olivary neurons. After 

birth, each Purkinje cell is innervated by multiple climbing fibers with similar 

synaptic strength, but during development, a one-to-one connection between a 

climbing fiber and Purkinje cell is established in an activity-dependent manner (see 

review Hashimoto and Kano, 2013). A single climbing fiber comprises a number of 

synaptic contacts onto the soma and dendrites of Purkinje cell. The simultaneous 

release of glutamate from each of these synapses results in a postsynaptic current that 

evokes a low-frequency multi-peak action potential termed “complex spike”. Each 

complex spike consists of a burst of five to six action potentials (Llinas and Sugimori, 

1980; Barski et al., 2003; Bagnall et al., 2012). 

The myelinated axons of Purkinje cells project ipsilaterally in cerebellar nuclei 

and certain brainstem nuclei. In cerebellar nuclei, axonal terminations of Purkinje 

cells diverge into three types of neurons: 1) GABAergic neurons, which project to the 

inferior olive subregions and closing an inhibitory feedback loop, 2) large excitatory 

neurons and 3) short-axon inhibitory neurons with an unknown function (Bagnall et 

al., 2012). 

There are several types of cerebellar interneurons, which modulate the 

functional circuit of the cerebellum. The Golgi cell terminals contribute to the 

cerebellar glomeruli and provide a feed-backward inhibition to the granule cells 

(Voogd and Glickstein, 1998; Barmack and Yakhnitsa, 2008). They also inhibit 

unipolar brush cells (Dugue et al., 2005). Stellate and basket cells are localized in the 

molecular layer and provide a feed-forward inhibition to the Purkinje cells (Voogd 

and Glickstein, 1998; Barmack and Yakhnitsa, 2008). Unipolar brush cells amplify 

vestibular primary afferent mossy fiber projections through synaptic feed-forward 

excitation onto the granule cells (Barmack and Yakhnitsa, 2008). Lugaro cells are 

found between the Purkinje cell layer and upper part of the granule cell layer 

(Schilling et al., 2008). Simat et al. (2007) showed that Lugaro cells account for about 
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one third of all inhibitory neurons in the granular layer. It is thought that Lugaro 

interneurons are the primary targets of the serotonergic inputs into the cerebellar 

cortex (Dieudonne and Dumoulin, 2000). Candelabrum cells are the most recently 

delineated distinct neuronal phenotype of the cerebellar cortex (Laine and Axelrad, 

1994; Schilling et al., 2008). Candelabrum cell somas are located within the Purkinje 

cell layer. Typically, these cells have one or two long dendrites which ascend almost 

vertically to the molecular layer, and several short dendrites, which project onto the 

granular layer (Schilling et al., 2008). The afferent inputs of the candelabrum cells or 

their targets have not been elucidated. Nevertheless, recent studies from a monkey 

(Macaca) cerebellum showed that candelabrum cells are immunoreactive for glycine, 

GABA, and GAD (the GABA-synthesizing enzyme glutamate decarboxylase), and 

thus indicated that candelabrum cells use GABA and glycine as transmitters (Crook 

et al., 2006). 

Although, the structure of the cerebellar circuit is highly stereotyped, the 

topography of the cerebellar circuit is described at least by three distinct maps, 

defined by different patterns of climbing fiber input, mossy fiber input, and Purkinje 

cell phenotype (Cerminara et al., 2013). According to this notion, the cytoarchitecture 

of the cerebellar cortex is divisible into a number of 1 to 2 mm wide sagittal zones, 

each receiving climbing fibers from a circumscribed part of the inferior olive and 

projecting to a specific deep cerebellar nuclei (see reviews Voogd and Bigare, 1980; 

Garwicz et al., 1998). High-resolution electrophysiological mapping experiments 

have shown that these zones can be further divided into narrower (0.1 – 0.3 mm) 

longitudinal strips, termed “microzones” (Ekerot et al., 1991; for reviews see Garwicz 

et al., 1998; Cerminara et al., 2013). It is thought that climbing fiber microzones and 

their associated input and output connections represent basic operational units of the 

cerebellum (see review Ruigrok, 2011). In addition, the micromapping of mossy fiber 

projections suggests that they form a “patched” mosaic of receptive fields within the 

cerebellar cortex (Cerminara et al., 2013). Besides the climbing fiber microzones and 

mossy fiber patches, Purkinje cells are also organized into rostro-caudally extended 

bands defined by the expression of aldolase C (zebrin II) enzyme (Brochu et al., 

1990). This Purkinje cell compartmentalization corresponds with the organization of 

cerebellar nuclei and it is speculated that aldolase C-positive and -negative 
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compartments are generally associated with somatosensory and other functions, 

respectively (Sugihara, 2011). 

1.4 Cerebellar functions 

1.4.1 Motor control and learning 

From an historical point of view, the cerebellum has been primarily considered 

a motor structure. Patients with cerebellar lesions often display symptoms related to 

inappropriate force production (Holmes, 1917), difficult compensation of torque 

interaction during multi-joint movements (Bastian et al., 1996; Bastian et al., 2000), 

and/or individual muscle activity (Thach, 1968; Smith, 1981; Frysinger et al., 1984; 

for review see Ebner et al., 2011). The cerebellum is also important for motor 

learning. Cerebellar motor learning is required to obtain procedural skills 

(Schonewille et al., 2010). 

The conceptual framework for the generation of fast, coordinated movements is 

based on the central nervous system (CNS) implementing internal models that can 

mimic the input/output information, or their inverses, of the motor apparatus (for 

reviews see Kawato, 1999; Ebner, 2007). There are two main classes of internal 

models. Forward internal models can use efferent copies of motor commands and 

predict the sensory consequences of actions (for reviews see Wolpert et al., 1998; 

Ebner, 2007). Inverse internal models calculate necessary feedforward motor 

commands from desired trajectory information (for review see Kawato, 1999). The 

internal model hypotheses propose that the brain needs to predict feedback control, 

since biological feedback loops are slow and have small gains (for reviews see 

Kawato, 1999; Ebner, 2007). 

Ito (1970) proposed that the cerebro-cerebellar communication loop 

constitutes a unique internal feedback that simulates the kinematics of the controlled 

object and in this way, the primary motor cortex should be able to perform a precise 

movement using this internal forward model instead of external feedback from the 

real controlled object. Miall et al. (2007) also suggested another closely related idea, 

that the cerebellum calculates a “state estimate” by combining sensory information 

about the last known position of the arm with predictions of its responses to recent 
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movement commands, and thereby accurately plans and controls movements. Motor 

learning by repeated practice can be considered to be a process whereby the internal 

forward model is formed and remodeled in the cerebellum through modification of 

the input-output relationship of the involved microcomplex (Ito, 2012). During motor 

learning, the first execution of movement is very slow because it cannot be 

adequately preprogramed and instead it is performed largely by cerebral intervention 

using long-loop sensory feedback. Nevertheless, with practice a greater amount of 

movement can be preprogramed and thus, executed more rapidly (Kawato et al., 

1987). 

Based on the theoretical frameworks of Marr (1969) and Albus (1971), Ito et 

al. (1982) suggested long-term depression at parallel-fiber Purkinje cell synapses 

(PF-PC LTD) as an essential cellular mechanism of motor learning (for review see 

Hirano, 2014). Over the past decades, the PF-PC LTD as a primary cellular 

mechanism of cerebellar-dependent motor learning has been studied in different 

cerebellar conditioning tasks, e.g. adaptation of the vestibulo-ocular reflex (VOR) 

(Ito, 1982; De Zeeuw et al., 1998) or eyeblink conditioning (Delgado-Garcia and 

Gruart, 2002; De Zeeuw and Yeo, 2005; Thompson, 2005). Although many studies 

have supported the involvement of PF-PC LTD in motor learning (for details see Ito, 

2012), there are also reports suggesting that motor learning can occur without PF-PC 

LTD (van Alphen and De Zeeuw, 2002; Welsh et al., 2005; Schonewille et al., 2011; 

for review see Hirano, 2014). Therefore, the contribution of other mechanisms, e.g. 

changes in basal electrophysiological function and/or use-dependent neuronal 

plasticity, to cerebellar motor learning cannot be excluded (Schonewille et al., 2011). 

1.4.2 Perceptual functions 

Observations from anatomical and electrophysiological studies as well as 

clinical reports showed that the cerebellum is also involved in perceptual processes 

(for review see Baumann et al., 2015). While damage to the cerebellum does not lead 

to complete loss of sensory function, it is apparent that it affects some sensory and 

perceptual processes, such as motion and time perception, or the ability to recognize 

perceptual sequences (for review see Baumann et al., 2015). 
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Yakusheva et al. (2007) found that Purkinje cell activity in vermal lobules 9 

(uvula) and 10 (nodulus) reflects the critical computation of transforming 

head-centered vestibular signals into earth-referenced self-motion and spatial 

orientation information. Since our motion sensors are fixed to the head, they measure 

linear acceleration and angular rotation within the head- and not earth-centered 

reference frame (Angelaki et al., 1999; Green and Angelaki, 2004; Yakusheva et al., 

2007). Cerebellar Purkinje cells seem to be crucial for this computational step that 

encodes inertial motion perception (Yakusheva et al., 2007). Moreover, there are 

several considerable lines of evidence that the cerebellum contributes to visual and 

auditory processing (Snider and Stowell, 1944; Thier et al., 1999; Parsons et al., 

2009; Yakusheva et al., 2013; for review see Baumann et al., 2015), as well as timing 

perception (Perrett et al., 1993; Koekkoek et al., 2003; Bares et al., 2007; Rahmati et 

al., 2014; for review see Baumann et al., 2015). 

Currently, there are three hypotheses that explain the role of the cerebellum in 

information processing. A prominent hypothesis is a form of internal model of 

sensory events that predict input/output information (see above; for reviews see 

Kawato, 1999; Ebner, 2007; Baumann et al., 2015). An alternative hypothesis 

proposes that the cerebellum facilitates perception by monitoring and coordinating 

the acquisition of sensory inputs (Bower, 1997; for review see Baumann et al., 2015). 

The last hypothesis suggests that the cerebellum plays a role of internal timing device 

that provides separate timing computations for different tasks (Keele and Ivry, 1990; 

for review see Baumann et al., 2015). 

It was also found that the cerebellum is one of the most consistently responsive 

brain structures to nociceptive stimuli (Saab and Willis, 2003; Moulton et al., 2010). 

Moulton et al. (2010) speculated that the cerebellum is an integrator of multiple 

effector systems, including affective processing, pain modulation, and sensorimotor 

processing, and plays a cross-modal modulatory role in adaptation to pain and/or 

injury. 

1.4.3 Cognitive and affective functions 

The results from neuroanatomical, neuroimaging and experimental as well as 

clinical studies from the past decades have substantially extended the functional role 
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of the cerebellum to cognitive and affective regulation (for reviews see Baillieux et 

al., 2008; Leiner, 2010). The mapping of the human cerebellum with regard to 

cognitive and emotional processing began in the 1980s (Leiner et al., 1986; Petersen 

et al., 1989), however some earlier studies already reported some behavioral 

anomalies occurring in association with cerebellar lesions or disorders (for reviews 

see Baillieux et al., 2008; Buckner, 2013). Despite sporadic findings supporting a 

more general role of the cerebellum in non-motor functions, the first comprehensive 

study in patients with disease confined to the cerebellum was conducted by 

Schmahmann and Sherman (Schmahmann and Sherman, 1997). The Schmahmann’s 

syndrome (or cerebellar cognitive affective syndrome) in terms of cognitive and 

affective operations is characterized by 1) executive dysfunction such as disturbances 

in planning, set-shifting, abstract reasoning and working memory, 2) visuo-spatial 

deficits, such as impaired visuo-spatial organization and memory, 3) mild language 

symptoms including agrammatism and anomia and finally 4) behavioral-affective 

disturbances, consisting of blunting of affect or disinhibited and inappropriate 

behavior (Schmahmann and Sherman, 1997; for reviews see Schmahmann, 2004; 

Baillieux et al., 2008; Bodranghien et al., 2015). Another well-known clinical entity 

with a cognitive and behavioral profile closely resembling Schmahmann’s syndrome 

is the posterior fossa syndrome (PFS, for reviews see De Smet et al., 2007; Baillieux 

et al., 2008). Although PFS is an etiologically heterogeneous clinical condition that 

may develop following acute cerebellar damage, it mostly occurs after posterior fossa 

tumor surgery in children or adolescents (for review see De Smet et al., 2007). 

However, adult patients have also been reported (De Smet and Marien, 2012; Marien 

et al., 2013). PFS consists of a broad spectrum of linguistic, especially transient 

mutism, and cognitive as well as behavioral-affective disturbances (for reviews see 

Pollack, 1997; Baillieux et al., 2008). 

The clinical as well as anatomical and functional imaging studies have shown 

that separated and topographically-organized cerebellar subsystems are involved in 

cognitive functions, sensorimotor and emotional processing (Kalashnikova et al., 

2005; Lie et al., 2006; Stoodley and Schmahmann, 2010). Functional and anatomical 

tracing studies have indicated that the cerebellum is linked with autonomic (Andrezik 

et al., 1984; Haines and Dietrichs, 1984), limbic (Anand et al., 1959; Harper and 
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Heath, 1973; Heath, 1973; Annoni et al., 2003), associative as well as sensorimotor 

regions of the cerebral cortex (Schmahmann and Pandya, 1997b, a; for review see 

Glickstein and Doron, 2008). The bidirectional connections of the cerebellum with 

cortex regions involved in perception of socially salient emotion material, including 

the posterior parietal cortex and prefrontal cortex were also revealed (Schmahmann, 

1991; Middleton and Strick, 2001; Dum and Strick, 2003; Kelly and Strick, 2003; for 

review see Turner et al., 2007). In addition, reciprocal connections link the 

cerebellum with brainstem areas containing neurotransmitters involved in mood 

regulation, including serotonin, norepinephrine, and dopamine (Dempesy et al., 1983; 

Marcinkiewicz et al., 1989; for review see Turner et al., 2007). 

Strong fronto-cerebellar connectivity, consisting of closed cortico-cerebellar 

loops in which the dorsolateral part of the prefrontal cortex connects to the 

cerebellum via pontine nuclei while the cerebellum projects back to the prefrontal 

cortex via the dentate nucleus and thalamus (Schmahmann and Pandya, 1997b), 

elucidates cerebellar involvement in executive functions, including multitasking, 

problem-solving and inhibition, necessary to plan and direct goal-oriented behavior 

(for review see Baillieux et al., 2008). Although, the cerebellar contribution to motor 

learning is well known (see above), the last studies also extended the role of the 

cerebellum in non-motor learning tasks (Drepper et al., 1999; Neau et al., 2000) and 

memory (Appollonio et al., 1993; Paulesu et al., 1993; Gottwald et al., 2004; Ziemus 

et al., 2007). Moreover, experimental studies with various mouse models of cerebellar 

disorders showed the disruption of spatial behavior (for reviews see Cendelin and 

Vozeh, 2007; Lalonde and Strazielle, 2007; Cendelin, 2014). The subsequent studies 

demonstrated that cerebellar Purkinje cells play a critical role in the integration of 

internal (idiothetic) signals generated by vestibular cues, optic flow and 

proprioception (Angelaki and Hess, 2005; Yakusheva et al., 2007; Brooks and 

Cullen, 2009; Yakusheva et al., 2013). Rochefort et al. (2011; 2013) also found that 

the disruption of cerebellar self-motion signal processing affects the hippocampal 

place cells’ spatial code and showed that the cerebellum participates in the 

construction of a hippocampal spatial representation map (Passot et al., 2012; Onuki 

et al., 2015). 
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In the 1920s, Sir Gordon M. Holmes reported that the patients with cerebellar 

lesions manifested abnormal speech (Holmes, 1922) and currently, the cerebellar 

contribution to motor speech regulation is widely accepted (for review see Baillieux 

et al., 2008). Nevertheless, the data from the last decades has indicated that the 

cerebellum is also involved in non-motor linguistic processes, such as language 

perception, speech motor planning, word production, verbal working memory, 

phonological and semantic verbal fluency, reading and writing (for review see Marien 

et al., 2014). 

1.5 Cerebellar disorders 

With regard to multiple functions of cerebellum, its dysfunction can manifest 

itself in terms of a variety of clinical signs. Usually the main motor signs are 

cerebellar ataxia, i.e. lack of motor coordination, kinetic tremor, passivity, dysmetria 

and oculomotor deficit (e.g. nystagmus, macrosaccadic oscillation). Furthermore, 

cerebellar affection is also manifested with cognitive inefficiency, and psychiatric 

disturbances (Schmahmann and Sherman, 1997; Schmahmann, 2004; Manto, 2005; 

Massaquoi, 2012). In most of the progressive cerebellar disorders, pathogenesis of 

dysfunction is due to degeneration of cerebellar cortex and its afferent or efferent 

fiber connections (Klockgether, 2007). 

The classification of ataxias (wide spectrum of progressive cerebellar disorders 

with ataxia as the leading symptom) distinguishes between hereditary and non-

hereditary ataxias. Hereditary ataxias are related to a genetic deficit and can be 

divided into four groups: autosomal dominant ataxias, autosomal recessive ataxias, 

mitochondrial ataxias, and X-linked ataxias (Brusse et al., 2007). The non-hereditary 

ataxias are separated into sporadic degenerative ataxias, such as multiple system 

atrophy (MSA), and acquired ataxias, such as alcoholic cerebellar degeneration 

(Klockgether, 2007). This classification is strictly based on etiology but does not take 

into consideration pathogenic aspects. According to pathogenic factors the ataxias can 

be classified into five categories: mitochondrial, metabolic, defective DNA repair, 

abnormal protein folding and degradation and channelopathies (Filla and De Michele, 

2012). None of these classifications is optimal. Furthermore, some authors combine 

both classifications and thus could be related to more than one category and the 
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terminology becomes confusing, e.g. Friedreich’s ataxia is autosomally recessively 

inherited with affection of mitochondrial functions (see below) and therefore 

sometimes categorized as mitochondrial ataxia together with mitochondrially 

inherited ataxias. For the next section of this paper, the classification with priority to 

the genetic point of view will be used. 

1.5.1 Cerebellar ataxias 

Autosomal dominant ataxias 

Autosomal dominant ataxias comprise spinocerebellar ataxias (including 

dentatorubral-pallidoluysian atrophy, abbreviated DRPLA) and the episodic ataxias 

(for reviews see  Di Donato, 1998; Manto, 2005; Jen, 2008; Matilla-Duenas, 2008). 

Spinocerebellar ataxias (SCAs, previously named autosomal dominant cerebellar 

ataxias, ADCAs) represent a genetically and clinically heterogeneous group of 

cerebellar disorders where the age of onset of clinical symptoms is usually between 

30 and 50 years of age. However, early onset in childhood and onset in later decades 

after 60 years have been reported for specific SCA subtypes (Matilla-Duenas et al., 

2006; Matilla-Duenas, 2008). SCAs were initially classified according to clinical and 

neuropathological descriptions (Harding, 1993), but current numbering corresponds 

to the order of gene description (Di Donato, 1998; Manto, 2005). This molecular 

classification is currently the most accepted by the scientific and medical community. 

The pathogenesis of SCAs is still poorly understood, the genetic analyses, 

epidemiologic data, neuropathological investigations as well as experiments with 

animal models have provided important new insights into the pathogenic 

mechanisms. At least 30 dominantly inherited SCA subtypes have been described up 

to now, and the genes and molecular defects are identified and characterized in 17 of 

them (Matilla-Duenas et al., 2006). 

In seven SCA subtypes, the causative molecular defects result from translation 

of CAG trinucleotide (DNA sequence coding for glutamine) expansions encoding a 

polyglutamine (polyQ) repeat in encoded proteins. This group comprises SCAs 1, 2, 

3 (or Machado-Joseph disease), 6, 7, 17 (or Huntington’s disease-like 4), and DRPLA 

(Kanazawa, 1999; Matilla-Duenas, 2008). These diseases belong to a larger group of 

progressive neurodegenerative disorders, such as Huntington’s disease, with a 



 20 

synthesis of polyQ-containing protein aggregates forming characteristic nuclear or 

cytoplasmic inclusions (Zoghbi and Orr, 2000). In the second group of SCAs, 

including SCAs 8, 10, 12, and the chromosome 16q22.1-linked ADCA (16q-ADCA), 

the mutations are located outside of the coding region of the disease-related genes 

apparently leading to alternations in gene expression (SCA12 and 16q-ADCA) or to 

trans-dominant RNA gain-of-function effects (SCAs 8 and 10) (Matilla-Duenas, 

2008). In SCA8, recent evidence suggests that an expanded polyQ within SCA8 gene 

(resulting from the translation of the opposite strand) might also contribute to disease 

pathogenesis and therefore the hypothesis that SCA8 may be caused by both RNA 

and protein dominant gain-of-function mechanisms (both CUG and CAG expansion 

induce toxicity) has been proposed (Moseley et al., 2006). A third group of SCA 

subtypes including SCAs 5, 11, 13, 14, 27 and 28 are caused by mutations resulting 

in alterations of amino acid composition leading to dysregulation of protein function 

(Matilla-Duenas, 2008). In the remaining 13 types of SCAs (SCAs 4, 9, 15, 16, 18, 

19, 20, 21, 22, 23, 24, 25 and 26), the genes and thus mutations still remain to be 

identified and characterized. 

Hereditary episodic ataxias (EAs) represent a phenotypically and genetically 

heterogeneous group of rare monogenic disorders that manifest as attacks of 

imbalance and incoordination, often with associated progressive ataxia (Jen et al., 

2007; Jen, 2008). The genes affected by mutation comprise neuronal voltage-gated 

potassium and calcium channels, which are widely distributed in the nervous system, 

but are particularly abundant in the cerebellum (Jen et al., 2007). Although, the 

molecular identification of these genes have broadened the clinical spectrum of EAs 

(up to now 7 EAs have been described), mechanisms for how mutations in the ion 

channel genes cause a wide spectrum of paroxysmal neurological symptoms (e.g. 

epilepsy, migraine, dystonia, myasthenia and even intermittent coma) and lead to 

progressive neurodegeneration is still poorly understood (Jen et al., 2007; Jen, 2008). 

Autosomal recessive ataxias 

Autosomal recessive cerebellar ataxias constitute a heterogeneous group of rare 

neurodegenerative disorders associated with various neurologic, ophthalmologic and 

systemic symptoms (see reviews Di Donato et al., 2001; Palau and Espinos, 2006). 

Most of the recessive ataxias have childhood onset, but a minority of them can also 
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have adult onset, often associated with milder phenotypes (Di Donato et al., 2001; 

Palau and Espinos, 2006). Some types of recessive ataxia show a regional 

distribution, e.g. ataxia oculomotor apraxia type I (AOA1) is the most frequent in 

Portugal and Japan (Brusse et al., 2007). The most frequent recessive ataxias are 

Friedreich’s ataxia and ataxia telangiectasia (Brusse et al., 2007). 

Besides Friedreich’s ataxia and ataxia telangiectasia, there is a wide spectrum 

of other autosomal recessive ataxias, e.g. AOA1, AOA2, ataxia with vitamin E 

deficiency, Niemann-Pick C disease and Wilson’s disease. Moreover, the increasing 

quality of diagnostic and molecular methods have still broadened the group of 

autosomal recessive ataxias. For example, Hills et al. (2013) reported a recessively 

inherited syndrome caused by mutation in the gene encoding δ2 glutamate receptor 

(GRID2) leading to cerebellar ataxia and eye movement abnormalities. Surprisingly, 

a similar loss-of-function mutation in GRID2 ortholog gene has been previously 

described and studied as a spontaneous mutation in an animal model, hotfoot 

(Grid2ho) mice (Lalouette et al., 1998). For a detailed description of the function of 

the receptor see below in chapter 1.5.1 Lurcher mice. 

Mitochondrial ataxias 

Mitochondrial ataxias constitute a group of disorders caused by mutations in 

mitochondrial genes with matrilineal inheritance or sporadic occurrence. Some 

authors also include this group of ataxias with defects in nuclear DNA encoded 

mitochondrial proteins (Brusse et al., 2007), but this classification could lead to 

inexact categorization (see above). Most of the mitochondrial genes are involved in 

energy production. Mutations in mitochondrial DNA cause different diseases with 

ataxia as a main symptom, especially in Kearns–Sayre syndrome, May–White 

syndrome, mitochondrial neurogastrointestinal encephalomyopathy, Leigh syndrome 

and retinitis pigmentosa, mitochondrial encephalomyopathy, lactic acidosis with 

stroke-like episodes, and myoclonus epilepsy with ragged red fibers (Manto and 

Marmolino, 2009; Filla and De Michele, 2012). 

X-linked ataxias 

X-linked ataxias are related to the X chromosome inheritance. The most 

common is fragile X-associated tremor/ataxia syndrome (FXTAS), caused by 
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premutation size expansion of CGG trinucleotide (55 to 200 CGG repeats) in fragile 

X mental retardation 1 gene (FMR1). The FXTAS is a neurodegenerative disorder 

with neuropathological hallmarks, such as brain atrophy, white matter lesions in the 

cerebellar peduncle and/or brain stem and intranuclear inclusion bodies (Hall et al., 

2014). The clinical symptoms of FXTAS are characterized by intention tremor, 

cerebellar gait ataxia and parkinsonism (Hall et al., 2014). More than 50% of FXTAS 

patients show cognitive and behavioral changes, including executive function 

impairments, mood dysregulation, and risk of mood and anxiety disorders (Bourgeois 

et al., 2007; Bourgeois et al., 2011; Juncos et al., 2011). 

Non-hereditary ataxias 

There is also a wide spectrum of sporadic degenerative ataxias and acquired 

ataxias. In many cases of sporadic adult-onset ataxias, a genetic or a specific acquired 

cause cannot be found (Klockgether, 2010). The multiple system atrophy (MSA) is 

the most common cause (30%) of isolated late-onset cerebellar ataxia (Brusse et al., 

2007). MSA is a sporadic, adult disease with progressive neurodegeneration in the 

cerebellum, basal ganglia, brain stem and intermediolateral cell columns of the spinal 

cord encompassing the former disease categories striatonigral degeneration, sporadic 

olivopontocerebellar atrophy (OPCA) and Shy-Drager syndrome (Abele et al., 2002). 

MSA can be clinically classified by motor presentations into two major categories. 

Parkinsonian features predominate in 80% of patients (MSA-P subtype), and 

cerebellar ataxia is the main motor feature in 20% of patients (MSA-C subtype) 

(Wenning et al., 1994; Wenning et al., 2004). MSA-C is characterized by gait ataxia, 

limb kinetic ataxia, scanning dysarthria, and cerebellar oculomotor disturbances 

(Wenning et al., 2004).  

Sporadic degenerative ataxias that are distinct from MSA-C have recently been 

designated as sporadic adult-onset ataxia of unknown etiology (SAOA) or idiopathic 

late-onset cerebellar ataxia (Abele et al., 2002). SAOA is defined by: progressive 

ataxia, disease onset after the age of 20 years, no acute or subacute disease onset, no 

evidence of a causative gene mutation, no established symptomatic cause and no 

possible or probable MSA according to established clinical criteria (Klockgether, 

2012). These criteria enable distinguishing SAOA from the hereditary ataxias, the 

acquired ataxias and MSA. SAOA also cannot be considered as a distinct disease 



 23 

entity, but rather as a heterogeneous group of disorders with unknown etiology 

defined by a characteristic clinical syndrome and exclusion of known diseases. 

Acquired ataxias represent a heterogeneous group of diseases with known 

causes including autoimmune, toxic, infectious factors and vitamin deficiency and 

manifesting with ataxia as a predominant clinical symptom. 

1.5.2 Therapeutic strategies 

Although there is increasing insight into the genetic and pathophysiological 

mechanisms underlying hereditary ataxias, therapeutic options modifying 

neurodegenerative process are still very limited (Brusse et al., 2007). Vitamin 

deficiency, intoxication, autoimmune processes, some endocrine disorders or some of 

the autosomal recessive ataxias (e.g. ataxia with vitamin E deficiency) are often 

treatable causes of ataxia. Treatment of underlying malignancy may also improve or 

cure paraneoplastic syndromes. While for most of the patients with cerebellar ataxia, 

symptomatic therapy (e.g. dopaminergic, anticholinergic or beta-blockers therapy) 

may relieve symptoms (Brusse et al., 2007), an effective causal therapy for most of 

the hereditary ataxias is still lacking. 

One of the potential approaches to therapy of cerebellar degenerative disorders 

is neurotransplantation. Although this therapy still represents more likely 

experimental possibilities, there are first attempts to introduce this approach into 

human medicine (e.g. Wu et al., 1991; Lee et al., 2008; Tian et al., 2009). 

1.6 Mouse models of cerebellar degeneration 

The broad spectrum of human cerebellar degenerative disorders is also reflected 

in animal models of cerebellar ataxias (see reviews Lalonde and Strazielle, 2007; 

Manto and Marmolino, 2009; Cendelin, 2014). Mouse models are widely used to 

study symptoms, pathogenesis, and cell death mechanisms, as well as to develop and 

test therapeutic approaches for these diseases (Cendelin, 2014). Depending on the 

origin of pathological mutation, there are either spontaneous or transgenic/induced 

mouse mutants. Spontaneous mutations constitute models of cerebellar disorders, but 

mostly they do not represent identical mutations to those known in human medicine. 
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Contrary to the naturally occurring ataxic mice, there are a substantial number of 

transgenic mice with induced mutations (Manto and Marmolino, 2009). 

For the purpose of this thesis, three mouse models of hereditary cerebellar 

ataxia will be reviewed. Lurcher mice represent a spontaneous semi-dominant 

mutation, Purkinje cell degeneration (pcd) mice represent a spontaneous recessive 

mutation and the mouse model of SCA2 represents transgenic dominant mutation. 

1.6.1 Lurcher mice 

Description of the mutant 

Lurcher (Lc) mice were discovered and described as a spontaneous mutation 

in a Miwh homozygous male in Medical Research Council’s Radiological Research 

Unit at Harwell, England in 1954 (Phillips, 1960). Lurcher mutation (gene symbol: 

Grid2Lc) is a base-pair substitution (G-to-A) that changes a nonpolar alanine into a 

polar threonine in the transmembrane domain III of the mouse ionotropic δ2 

glutamate receptor (GluRδ2; gene symbol Grid2) (Zuo et al., 1997). Locus of the 

Grid2Lc mutation was found on chromosome 6 (Zuo et al., 1995; De Jager et al., 

1997). The allele was described as autosomal semi-dominant (Phillips, 1960). 

Homozygous mutants are not viable and die shortly after birth due to the massive loss 

of mid- and hindbrain neurons (Cheng and Heintz, 1997; Resibois et al., 1997). Later 

a second Lc allele (LcJ; gene symbol: Grid2Lc-J), which is phenotypically 

indistinguishable from the original Grid2Lc, was found as a spontaneous mutation in 

the inbred strain BALB/cByJ at The Jackson Laboratory in 1993 (De Jager et al., 

1997). There are several strains of Lurcher mice, e.g. B6 x B6CBCa 

Aw-J/A-Grid2Lc T(2;6)7Ca MitfMi-wh/J, B6CBACa Aw-J/A-Grid2Lc/J, 

B6 x BALB/cByJ-Grid2Lc-J/J, and C3H (Cendelin and Vozeh, 2007). Lurcher mice 

are fertile and mating capable cerebellar mutants, but their breeding capacity is 

limited due to litter size reduction (Phillips, 1960). 

Morphological and cellular changes 

The cerebellar cytoarchitecture in Lurcher mutants is severely disrupted by 

progressive postnatal loss of virtually all Purkinje cells and the vast majority of 

granule cells and inferior olivary neurons (Caddy and Biscoe, 1975; Caddy and 
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Biscow, 1976; Wilson, 1976). Neurodegeneration in Lurcher mice is initially seen in 

all four transverse zones: the anterior (lobules I–V), central (lobules VI, VII), 

posterior (lobules VIII, dorsal IX), and nodular (ventral lobule IX and lobule X) zone 

(Duffin et al., 2010). Due to this massive degeneration, the cerebellum of adult 

Lurcher heterozygotes is considerably macroscopically reduced (Wilson, 1976; 

Cendelin and Vozeh, 2007; Vogel et al., 2007). For a comparison of Lurcher mutant 

and wild type cerebellum see Figure 1A,B. 

 

 
Figure 1: Sagittal sections of the cerebellum of [A] Lurcher (B6CBA), [B] wild type 

(B6CBA), [C] pcd (B6.BR) and [D] wild type (B6.BR) males. 

 

Lurcher mutants show severe defects in Purkinje cells and granule cells soon 

after birth. Purkinje cell abnormalities appear at postnatal day 3 or 4 (P3-P4) in the 

form of crowding failure of nuclear growth, and condensed or lessened cytoplasm; 

Purkinje cell death is apparent at P4-P6 depending on the cerebellar lobule (Swisher 

[D] wild type (B6.BR)[C] pcd (B6.BR)

[B] wild type (B6CBA)[A] Lurcher (B6CBA)



 26 

and Wilson, 1977). Caddy and Biscoe (1979) described that intensive reduction of 

Purkinje cells proceeds between P8 and P25 and practically all of the Purkinje cells 

degenerate by 3 months after birth. Surviving Purkinje cells are restricted to the 

paraflocculus/flocculus and the nodular zone and could be detected as late as at P146 

(~5 months) (Duffin et al., 2010). 
Perishing Purkinje cells show various structural and ultrastructural changes 

characteristic of various cell death mechanisms (see above): necrosis (dilatation of 

cytoplasmic organelles, fragmentation of the nuclear membrane without chromatin 

condensation and characteristic destruction of the cytoplasm by non-lysosomal 

degradation), apoptosis (nuclear pyknosis, DNA fragmentation, cytoplasmic 

membrane blebbing, late rupture of the nuclear membrane, cell shrinkage, and 

removal by phagocytes) and autophagy (sequestration of cytoplasmic organelles by 

autophagosomes and their further degradation by delivery to the lysosomes) 

(Dumesnil-Bousez and Sotelo, 1992; Norman et al., 1995; Dusart et al., 2006; Wang 

et al., 2006; Purkartova and Vozeh, 2013). Despite the abnormalities in early 

developing Purkinje cells, the onset of the synaptogenesis between Purkinje cells and 

their specific inputs (parallel fibers, climbing fibers and basket cell axons) takes place 

on schedule, and at P8 no defect has been detected. Nevertheless, on and after P10, 

the rate of parallel fiber synaptogenesis declines, only a few climbing fibers 

translocate from their initial soma contacts to their peridendritic locations, and basket 

cell axons fail to completely surround the Purkinje cell somas (Heckroth et al., 1990; 

Dumesnil-Bousez and Sotelo, 1992). Based on these findings, Dumesnil-Bousez and 

Sotelo (1992) suggested that the Grid2Lc mutation delays the neuron maturation. 

Extensive degeneration of Purkinje cells, the key neurons in the 

olivocerebellar circuitry, also induces retrograde degeneration of their primary 

afferents, granule cells and inferior olivary neurons. Granule cell death is common 

before and during granule cell migration, from P2 to P18. A decrease of these cells in 

the generative layers of the external granular layer is seen as early as P2 in the 

lobulus simplex and by P6 in the uvula (Swisher and Wilson, 1977). Loss of granule 

cells is greater than the proliferation and migration from the external granular layer 

since there is never an increase in cell number seen in the internal granule layer of the 

wild type mice (Caddy and Biscoe, 1979). The cell extinction, reflected in reduced 
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growth of the molecular and granular layers (Swisher and Wilson, 1977), affects 

almost 90% of the granule cells in Lurcher mice (Caddy and Biscoe, 1979). Loss of 

inferior olivary neurons is apparent at P11 and in adult Lurcher mutants represents 

70-75% of complete neuronal population (Caddy and Biscoe, 1979). In contrast to 

reduced synaptogenesis between climbing fibers and Purkinje cells, the synapses 

between climbing fibers and Golgi, granule, basket and stellate cells seem to be 

unaffected (Caddy and Biscoe, 1979). 

A quantitative analysis of the deep cerebellar nuclei in Lurcher mutant mice 

revealed an overall 60% decrease in volume (Heckroth, 1994a). The principal 

neurons are slightly reduced in number (20% decrease) in the nuclear complex, while 

the population of small neurons is reduced by 37% in the interposed nucleus and 

dentate nuclei, but is unchanged in the fastigial nucleus (Heckroth, 1994a). In a later 

study, Sultan et al. (2002) confirmed the mild degeneration (a reduction by 20%) of 

glutamatergic principal neurons and more pronounced GABAergic (by 42%) and 

glycinergic neurons (by 45%). From the point of view of cytological components, the 

loss of myelinated axons and boutons accounts for 59% of the cerebellar nuclei 

atrophy, an additional 2% represents loss of nuclear neurons and another 8.3% 

represents reduction in dendritic arbors. The remaining 30.7% of the lost nuclear 

volume results from reduced volume of glial processes, vascular elements, and 

intercellular space (Heckroth, 1994b). These findings suggest that the massive 

deafferentation of cerebellar nuclei occurring between P10-P30 in Lurcher mutant 

mice has a relatively mild effect on the principal neurons of cerebellar nuclei 

(Heckroth, 1994a). 

Role of GluRδ2 and cell death mechanism 

The Grid2Lc is a gain-of-function mutation that changes GluRδ2 into a leaky 

membrane channel leading to chronic cell depolarization (Zuo et al., 1997). The 

δ-subfamily of ionotropic glutamate receptors (iGluRs) consists of the GluRδ1 and 

GluRδ2. Although the δ receptors have been considered as “orphan receptors” 

because they do not form functional glutamate-gated ion channels, later studies have 

demonstrated that the GluRδ2 plays a crucial role in cerebellar function 

(Kashiwabuchi et al., 1995). In situ hybridization and immunogold electron 

microscopy revealed that GluRδ2 are selectively expressed in parallel fiber-Purkinje 
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cell synapses (Araki et al., 1993) and show close spatial association with AMPA 

GluR2/3 receptors (Landsend et al., 1997). Although, the GluRδ2 can form 

heteromeric receptors with AMPA and kainate receptors in vitro (Kohda et al., 2003) 

the vast majority of the GluRδ2 were not coassembled with AMPA or kainate 

receptors in vivo (Mayat et al., 1995; Kohda et al., 2003). Nevertheless, it has been 

found that GluRδ2 regulates AMPA receptor endocytosis during cerebellar PF-PC 

LTD induction (Kohda et al., 2013), which is an important cellular mechanism for 

memory formation (Ito, 2002). Uemura (2010) also showed that the N-terminal 

domain of GluRδ2 interacts with presynaptic neurexins (NRXNs) cerebellin 1 

precursor protein (Cbln1) and suggested that the GluRδ2 mediates cerebellar parallel 

fiber-Purkinje cell synapse formation (Kashiwabuchi et al., 1995; Kurihara et al., 

1997; Takeuchi et al., 2008). These results indicated that GluRδ2 plays a direct role 

in synapse formation and synaptic plasticity (Yuzaki, 2004), which underlie 

development, learning and memory (Ito, 1989; Bliss and Collingridge, 1993). 

Although the GluRδ2 is probably not a functionally active ion channel (see 

above), the Grid2Lc mutation indicates that the receptor can act as an ion channel. The 

ability of Grid2Lc mutation to form GluRδ2 into a channel pore may just be a function 

that was lost during evolution (Yuzaki, 2004). Although the Grid2Lc mutation and its 

effect on GluRδ2 is well characterized, the mechanism of cell death is still being 

discussed (Armstrong et al., 2011). The cell-autonomous Purkinje cell death has been 

alternately described as necrotic (Dumesnil-Bousez and Sotelo, 1992), apoptotic 

(Norman et al., 1995; Wullner et al., 1995; Selimi et al., 2000b) and autophagic (Yue 

et al., 2002; Wang et al., 2006; Yue, 2010) depending on morphological and 

molecular criteria (Vogel et al., 2007; Armstrong et al., 2011). Necrotic cell death 

hypothesis based on some ultrastructural evidence was suggested before the Grid2Lc 

mutation had been identified. Dumesnil-Bousez and Sotelo (1992) described necrotic 

process based on the morphological abnormalities of Purkinje cells seen after P12, 

such as axonal swelling, perinuclear clumps of chromatin and altered mitochondria 

(enlarged, with dilated cristae) as well as a generally delayed process of maturation 

evidenced in dendritic trees (hyperspinous dendrites, delayed formation of proximal 

and distal compartments) and in cell bodies (incomplete development of basal 

polysomal mass). 
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Since the Grid2Lc mutation changing the GluRδ2 into a constitutively opened 

membrane channel was identified, the mode of cell death was characterized as 

excitotoxic with apoptosis as an endpoint (Norman et al., 1995; Zuo et al., 1997; 

Armstrong et al., 2011). Moreover, Norman et al. (1995) demonstrated that dying 

Lurcher Purkinje cells exhibit characteristic morphologic features of apoptosis, 

including nuclear condensation, axon beading, membrane blebbing and the presence 

of mRNA for sulfated glycoprotein 2 (SGP2), a marker for apoptotic death in T-cells 

and prostate epithelial cells. Using the TUNEL labelling method, additional studies 

identified DNA fragmentation resulting from apoptotic signaling cascades (Norman 

et al., 1995; Wullner et al., 1995; Selimi et al., 2000a). Furthermore, increased 

expression of the pro-apoptotic Bax protein along with c-Jun phosphorylation and 

caspase-8 and -9 expression from P9 to P30 in Lurcher Purkinje cells was found 

(Wullner et al., 1998; Lu and Tsirka, 2002). However, it is not known if all of these 

proteins are overexpressed in the same Purkinje cells (Armstrong et al., 2011). 

Contrary to these findings, Selimi et al. (2000a) found that activated caspase-3, a key 

mediator of apoptotic cell death, is expressed only in few scattered Lurcher Purkinje 

cells. Zanjani et al. (1998a; 1998b) also showed that blockade of apoptosis by 

manipulating the expression of pro- and anti-apoptotic proteins has had limited 

success in Lurcher Purkinje cell survival. All of these reports demonstrated that 

apoptosis could play only a limited role in Lurcher Purkinje cell death (Armstrong et 

al., 2011). 

Autophagy hypothesis, as the second form of programmed cell death asserted 

in Lurcher neurodegeneration, arose from the study by Yue et al. (2002). 

Autophagy-related programmed cell death is a dynamic process involving 

rearrangement of subcellular membranes into autophagosomes and autophagic 

vacuoles, which engulf the cytoplasmic matrix and organelles and deliver them to 

lysosomes for degradation (Klionsky and Emr, 2000; Yue et al., 2002). Although, the 

autophagic pathways might be a phylogenetically older programmed cell death 

mechanism than apoptosis (Schwartz et al., 1993), both apoptosis and autophagy 

share several common regulatory elements (Xue et al., 1999; Tukaj, 2013). Once 

these signals are activated, autophagy may be able to cause cell death even in the 

presence of apoptosis inhibitors (Klionsky and Emr, 2000). These findings are in 
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accordance with a report of limited success to maintain Lurcher Purkinje cell survival 

after blocking apoptosis using increased expression of anti-apoptotic proteins 

(Klionsky and Emr, 2000). Autophagic pathways for bulk degradation of subcellular 

constituents are hyperactivated in many neurodegenerative disorders such as 

Huntington’s disease (Sapp et al., 1997; Kegel et al., 2000; Petersen et al., 2001), 

Alzheimer’s disease (Cataldo et al., 1996; Nixon et al., 2000) and Parkinson’s disease 

(Anglade et al., 1997). 

Autophagic cell death hypothesis postulated for Lurcher mutants supposes 

that GluRδ2 induces autophagy by the interaction via its C-terminus with the 

PSD-95/Dlg/ ZO-1 (PDZ)-domain-containing protein n-PIST (neuronal isoform of 

protein-interacting specifically with TC10) that forms a complex with the autophagy-

related protein Beclin1, thereby regulating the formation of autophagosomes (Yue et 

al., 2002; Yue, 2010). The expression of GluRδ2Lc, but not GluRδ2wt, has been shown 

to lead to the formation of Beclin1-positive autophagosome-like vesicles and to an 

increase of cell death (Yue et al., 2002). Nevertheless, Zanjani et al. (2009) pointed 

out that the accumulation of autophagosomes in Lurcher Purkinje cell axon terminals 

(Wang et al., 2006) is due to the chronic depolarization of the cell body or is directly 

linked to the release of Beclin1 from the mutant receptor. The reevaluation of the 

“autophagic cell death” hypothesis in Lurcher mutants showed that the expression of 

GluRδ2Lc decreased intracellular ATP (adenosine triphosphate) levels in a manner 

that was dependent on the extracellular Na+ concentrations and activated AMPK (5' 

adenosine monophosphate-activated protein kinase) before autophagy was activated 

(Nishiyama et al., 2010). Based on these findings, Nishiyama et al. (2010) proposed 

that decreased ATP levels, which were probably caused by the overactivation of 

Na+/K+ ATPase in response to constitutive Na+ currents associated with GluRδ2Lc 

channels, activate AMPK and autophagy pathways. Therefore, activation of 

autophagy might have a homeostatic protective role in maintaining intracellular ATP 

and the Lurcher Purkinje cell death is rather necrotic with autophagic features 

(Nishiyama and Yuzaki, 2010).  
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Neurochemical abnormalities  

Besides the abnormality of GluRδ2, Lurcher mutant mice also show changes 

in concentrations of several neurotransmitters, their metabolites and densities of 

receptors. A selective reduction of glutamate concentration was found in the 

cerebellum, hippocampus and entorhinal-piriform area (Reader et al., 1998). 

Strazielle et al. (2000) also reported lower density of AMPA, N-methyl-D-aspartic 

acid (NMDA) and kainate glutamate receptors, in the cerebellar cortex of Lurcher 

mutants compared to the wild type mice, while in the cerebellar nuclei only KA 

receptors were diminished. In other brain regions (limbic system, motor cerebral 

cortical regions, neostriatum and thalamus), the alterations always followed the same 

pattern characterized by a decrease of NMDA and kainate receptors but with an 

increase of AMPA sites (Strazielle et al., 2000). While the concentrations of GABA, 

Glycine, Aspartate, Dopamine and Taurine remain unchanged in Lurcher’s 

cerebellum, their levels were significantly lower in the entorhinal-piriform area 

compared with wild type mice (Reader et al., 1998). On the other hand, higher 

concentrations of noradrenaline and serotonin in the mutant cerebellum were 

described (Strazielle et al., 1996; Le Marec et al., 1999; Reader et al., 2000). Apart 

from neurotransmitter systems, Lurcher mutants also showed changes in 

concentration of some metabolites, enzyme activity and expression of certain genes in 

the cerebellum or even in some other brain regions (for details see reviews Cendelin 

and Vozeh, 2007; Lalonde and Strazielle, 2007; Vogel et al., 2007). 

Behavioral characteristics 

The progressive cerebellar degeneration in Lurcher mutant mice affects a 

broad spectrum of behavioral functions and provides insights into the role of the 

cerebellum in circuitries related to motor, cognitive and emotional processing. 

Heterozygous mutants develop more slowly than control mice of the same strain 

(Vogel et al., 2007). They show lower body weight from the end of the first postnatal 

months compared to the healthy littermates and this reduced body weight remains 

during adulthood (Thullier et al., 1997) 

Lurcher mice are characterized with marked cerebellar ataxia. The gait is 

wobbly, lurching and with tendency to fall to either side (Phillips, 1960). The ataxic 
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gait is not accompanied by trembling to the extent shown by other cerebellar mutants, 

but rather by jerky up and down movements (Phillips, 1960). The step ratio and 

interlimb coupling are more variable in Lurchers animals than in healthy animals 

(Fortier et al., 1987). The disorganization of the cyclic limb movements as well as 

irregular EMG pattern seen in the Lurcher mutants during walking were not observed 

during swimming (Fortier et al., 1987). Gait analysis showed differences in some gait 

components (e.g. stand, stride length, swing speed); however these differences could 

be partially explained by different speeds of movement (Cendelin et al., 2010).  

Skeletal muscles of Lurcher mice are more fragile due to reduced muscle 

protein content (Hartmann et al., 2001). Motor disabilities of Lurcher mice result in 

poor performance in several motor skill tests. Affected dynamic equilibrium and 

motor coordination were observed in the treadmill (Le Marec and Lalonde, 2000) and 

rotarod test (Thullier et al., 1997; Hilber and Caston, 2001). The wooden beam (Le 

Marec et al., 1997), slanted ladder (Krizkova and Vozeh, 2004; Cendelin et al., 2008) 

and unstable platform (Hilber et al., 1999) tests showed impaired static equilibrium. 

Furthermore, Lurcher mice exhibited a decrease of muscular strength observed in the 

horizontal wire (bar) or coat-hanger tests (Lalonde et al., 1992; Hilber and Caston, 

2001). In spite of their motor deficits, Lurcher mutants have an ability for motor 

learning and their performance improves when the task is repeated (Lalonde, 1994; 

Lalonde and Thifault, 1994; Lalonde et al., 1996; Hilber and Caston, 2001; Cendelin 

et al., 2008). However their ability to learn decreases with age (Hilber and Caston, 

2001). Lurcher mice also showed changes in the oculomotor system. Although they 

possess both optokinetic (OKR) and VOR compensatory reflexes, they are unable to 

modify either of these reflexes in the course of training (van Alphen et al., 2002). 

Massive loss of Purkinje cells induces various cognitive and behavioral 

disturbances in Lurcher mice. They show poor performance in spatial tasks, mainly in 

the Morris water maze (Lalonde et al., 1988; Hilber et al., 1998; Porras-Garcia et al., 

2005; Cendelin et al., 2008). While in the task with a hidden escape platform, healthy 

controls decrease their escape latencies (or trajectory lengths) with training, Lurcher 

mice showed only mild or no improvement (Lalonde et al., 1988; Porras-Garcia et al., 

2005; Cendelin et al., 2008). They also have difficulties in the visible platform task 

(Lalonde et al., 1988). Therefore, the deficit in visuomotor coordination has been 
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suggested as a key factor in the acquisition of spatial tasks (Lalonde et al., 1988; 

Lalonde and Thifault, 1994). Lurcher mutants show impaired simultaneous spatial 

discrimination learning (Lalonde et al., 1993a), spatial working as well as reference 

memory (Belzung et al., 2001) and long-term spatial memory (Hilber et al., 1998). 

All of these findings suggest that Lurcher mice are unable to construct a cognitive 

map and they use an associative route strategy rather than true spatial strategy based 

on cognitive mapping (Hilber et al., 1998). 

The poor performance of Lurcher mutants in spatial tests could also be partially 

explained by their decreased motivation to explore the novel environment (Lalonde et 

al., 1993b; Monnier and Lalonde, 1995; Caston et al., 1998). Not only spatial learning 

disturbances, but also changes in classical conditioning of eyelid response were 

reported in Lurcher mice (Porras-Garcia et al., 2005; Porras-Garcia et al., 2010). 

Despite the learning curves of Lurcher mice during classical conditioning of eyelid 

responses being similar to normal mice, the amplitudes of the learned response are 

significantly lower (Porras-Garcia et al., 2005). Moreover, electrophysiological 

recordings of the interpositus and red nuclei in Lurcher mutants during eyeblink 

conditioning suggested compensatory mechanisms in the absence of the cerebellar 

cortex during performance of learned movements (Porras-Garcia et al., 2010; Porras-

Garcia et al., 2013). 

Lurcher mice exhibited not only motor and cognitive deficits (see above), but 

also alteration in emotional processing (Monnier and Lalonde, 1995; Hilber et al., 

2004). Frederic et al. (1997) showed that exposure of Lurcher mutants to a novel 

environment increased adrenocorticotropic hormone (ACTH) and corticosterone 

plasma levels (hormonal stress indicators) 3.5-fold and 1.8-fold, respectively, in 

Lurcher compared to normal mice, while the basal levels of circulating ACTH and 

corticosterone were similar to wild type mice. The exposure to anxiogenic situations 

induced less anxious behavior with higher blood corticosterone level than in the wild 

type mice (Hilber et al., 2004; Lorivel et al., 2010). The contrast between less 

anxiety-like behavior and elevated levels of corticosterone during stressful situations 

suggest that Lurcher mice have reduced capacity to inhibit selective components of 

natural behaviors (Frederic et al., 1997; Hilber et al., 2004). An inhibition deficit was 

demonstrated by their decreased ability to produce prepulse inhibition of the acoustic 



 34 

startle response (Porras-Garcia et al., 2005) or the immobility response (Lalonde, 

1998). The discrepancy between the HPA axis reaction and the disproportional neural 

control of behavior could be due to an affection of the sensorimotor gating 

mechanism (Porras-Garcia et al., 2005). 

Lurcher mice in experimental therapy 

Lurcher mice do not constitute an identical model of a known human disease, 

but their neurological similarities with the human spinocerebellar atrophy allow for 

considering heterozygous Lurchers animals as a partial model of this pathology 

(Hilber et al., 2004). Moreover, Coutelier et al. (2015) recently reported similar 

putative gain-of-function mutation of GRID2 gene in human patients with congenital 

and mild adult-onset cerebellar ataxia. Lurcher mutants are also used as an animal 

model for the study of autistic spectrum disorders due to their developmental loss of 

Purkinje cells and some behavioral abnormalities (Dickson et al., 2010; Rogers et al., 

2013). 

While Heckroth et al. (1998) described some advantages of this mouse model 

for the cerebellar neurotransplantation therapy, Triarhou (1996) remarked that the 

restoration of developmental perturbed cerebellar circuit of the Lurcher mice by 

means of neural transplantation poses some serious limitations. The Lurcher host 

cerebellum was used for the graft of embryonic cell suspension (Tomey and 

Heckroth, 1993), solid pieces of embryonic cerebellum (Dumesnil-Bousez and 

Sotelo, 1993; Cendelin et al., 2009b, a; Cendelin et al., 2012) and various types of 

stem cells (Jones et al., 2010; Houdek et al., 2012). The graft survival rate depends on 

the grafted cells as well as on the properties of the host tissue (Rossi and Cattaneo, 

2002). Despite grafted embryonic cerebellar cells being able to survive and 

differentiate into Purkinje neurons, their dendrites fail to adopt a characteristic planar 

disposition inside the host cerebellum (Triarhou, 1996). Moreover, there is very little 

evidence for functional recovery (Jones et al., 2010). 
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1.6.2 Purkinje cell degeneration mice 

Description of the mutant 

Purkinje cell degeneration (pcd) mice occur as spontaneous autosomal 

recessive mutants in the C57BR/cdJ strain at The Jackson Laboratory (Mullen et al., 

1976). Pcd mice carry a mutation that affects the Agtpbp1 gene located on 

chromosome 13 (Fernandez-Gonzalez et al., 2002). Agtpbp1 gene encodes the 

cytosolic carboxypeptidase 1 (CCP1) that belongs to the metallocarboxypeptidase 

gene family. Several spontaneous (Agtpbp1pcd-1J, Agtpbp1pcd-2J, Agtpbp1pcd-3J, 

Agtpbp1pcd-5J, Agtpbp1pcd-7J), induced (Agtpbp1pcd-4J, Agtpbp1pcd-6J) and transgenic 

(Agtpbp1pcd-Tg(Dhfr)1Jwg ) mutants with similar phenotypes have been discovered or 

generated, respectively (for reviews see Wang and Morgan, 2007; Cendelin, 2014). 

Morphological and cellular changes 

The deficiency of CCP1 in pcd mice leads to a number of cellular defects, 

including abnormal accumulation of polysomes in Purkinje cells (Landis and Mullen, 

1978), affected transcription, and DNA repair in Purkinje cells and mitral cells of the 

olfactory bulb (Valero et al., 2006; Baltanas et al., 2011), endoplasmic reticulum 

stress in Purkinje cells (Kyuhou et al., 2006), formation of axonal spheroids (Baurle 

and Grusser-Cornehls, 1994), mitochondrial dysfunction (Chakrabarti et al., 2010), 

elevated autophagy (Berezniuk et al., 2010), and abnormal dendritic development (Li 

et al., 2010). Although CCP1 was originally described as an ATP/GTP-binding 

protein related to zinc carboxypeptidase (Harris et al., 2000), there is no experimental 

evidence for this, and the purported ATP/GTP-binding pocket is only distantly related 

to that of well-studied ATP/GTP-binding proteins (Berezniuk et al., 2012). Berezniuk 

et al. (2012) demonstrated that CCP1 processes glutamate residues from C-terminus 

of α- as well as β-tubulin. Rogorowski et al. (2010) also showed that the removal of 

gene-encoded glutamic acids from the C-termini of proteins is not specific to tubulin 

but affects a range of substrates including myosin light chain kinase 1 (MLCK1). 

Consistent with the enzymatic activity of CCP1, it has been shown that tubulin 

polyglutamination is highly increased specifically in brain areas, such as the 

cerebellum and olfactory bulb which degenerate in the pcd mice (Rogowski et al., 

2010). Cartelli et al. (2010) described that disruption in tubulin dynamics could 
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consequently induce mitochondrial dysfunction and cause neurodegeneration. 

Abnormalities in mitochondria in pcd mice were also reported by Chakrabarti et al. 

(2010). Downregulation of tubulin polyglutamination subsequently leads to partial 

prevention of neurodegeneration in these mutants (Rogowski et al., 2010). 

The predominant pathology in pcd mutants is the loss of Purkinje cells (Figure 

1C,D). The pathogenic process may be summarized as abnormal inclusions and 

organelles within the soma of Purkinje cells (for review see Wang and Morgan, 

2007). These changes are well marked before the onset of ataxia and extinction of the 

first Purkinje cells, the number of which is within normal range before P21 (Landis 

and Mullen, 1978). In addition, affected Purkinje cells also possess unusual 

configurations of endoplasmic reticulum with associated electron-dense particles 

similar to but larger than ribosomes, mature and forming intracisternal A particles and 

nematosomes (Landis and Mullen, 1978). 

The death of Purkinje cells in pcd mice has been suggested as apoptotic via the 

activation of caspase-3 and subsequent fragmentation of DNA (Kyuhou et al., 2006). 

In addition to the activation of apoptosis in Purkinje cells, many activated microglia 

were found in the molecular layer of the cerebellar cortex (Kyuhou et al., 2006). 

Chakrabarti et al. (2009) later reported that pcd mice on the Bax null background 

obtained by the intercrossing of pcd5J with Bax knock-out mice did not show any 

differences in the onset of ataxia. In neurons, both the intrinsic as well as extrinsic 

pathways of apoptosis require Bax activation for execution of cell death. Based on 

these findings, the pcd phenotype is not modified by Bax gene dosage and the classic 

apoptosis is not responsible for Purkinje cell death. The subsequent ultrastructural 

studies indicated increased autophagy pathway in Purkinje cells, and yielded evidence 

for mitophagy (Chakrabarti et al., 2009). 

The loss of Purkinje cells occurs over a relatively brief period of time. 

However, the progress of cell extinction shows a different tempo in individual 

regions of the cerebellum (for review see Wang and Morgan, 2007). In 22- and 24-

day old mutants, 25-50% of the Purkinje cells in the vermis had degenerated (Mullen 

et al., 1976). In 29-day old pcd mice, the only surviving Purkinje cells were found in 

the nodulus, flocculus, paraflocculus and ventral side of the uvula of the vermis, 

where many Purkinje cells were still present at this time. At 5 weeks of age, some 



 37 

Purkinje cells still survived in these regions, but by 7 weeks only a few of them 

remained, mainly in the lobule X (Mullen et al., 1976; Landis and Mullen, 1978). 

Before the pcd Purkinje cells became extinct, they appeared to receive all their 

appropriate synaptic contacts (Landis and Mullen, 1978). However, some disruption 

of synaptogenesis between parallel fibers and Purkinje cell spines occurred at late 

stages of development. Some Purkinje cell spines lacked presynaptic elements (naked 

spines) and postsynaptic thickenings were present along the Purkinje cell dendritic 

shafts with parallel fibers appearing to make synaptic contacts directly onto the shafts 

(Landis and Mullen, 1978). Heterozygous pcd mutants also showed progressive and 

age-related loss of Purkinje cells. 17-month old both male and female heterozygous 

mice lost ~18% of their Purkinje cells. Contrary to the homozygous mice, the loss of 

Purkinje cells in heterozygous pcd mutants apparently occurred evenly throughout the 

cerebellum. Nevertheless, this degree of Purkinje cell degeneration did not lead to 

any detectable locomotor deficit (Doulazmi et al., 2002). 

The degeneration of Purkinje cells triggers a secondary loss of cerebellar 

granule cells. Reduction of cerebellar granule cells is exponentially progressive 

(Triarhou, 1998). In 3-month old pcd mice the granule cell layer appeared relatively 

normal in thickness; however, pyknotic nuclei were evident and there was a mild to 

moderate reduction in granule cell number (Triarhou, 1998). Subsequently, the loss of 

granule cells progressed through the mutant lifespan so that by 20 months of age 

~95% had degenerated (Triarhou, 1998; for review see  Wang and Morgan, 2007). 

There was no obvious reduction of Golgi II cells in the granular layer or of neurons in 

the deep cerebellar nuclei (Mullen et al., 1976). The loss of Purkinje cells in pcd mice 

also deprived inferior olivary neurons, which are their major presynaptic inputs 

(Ghetti et al., 1987). Ghetti et al. (1987) reported that the decline of inferior olivary 

neuron number in pcd mutants was 49% between P17 and P300 and depending on the 

state of their postsynaptic Purkinje cells. Moreover, Purkinje cell disappearance 

stimulated the development of a severe gliosis characterized by enhanced glial 

proliferation, as well as the release of pro-inflammatory mediators (Baltanas et al., 

2013). For a comparison of pcd mutant and wild type cerebellum see Figure 1C,D. 

Pcd mutants also showed a rapid degeneration of discrete populations of 

thalamic neurons between P50 and P60 (O'Gorman and Sidman, 1985). Severely 
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affected nuclei, in which a majority of neurons degenerated, include the central 

division of the mediodorsal nucleus, the ventral medial geniculate, posterior, 

posterior ventrolateral and posteromedial nuclei, and those portions of the 

ventrolateral and posteromedial nuclei which immediately surround the medial 

division of the ventrobasal complex (O'Gorman and Sidman, 1985). Electron and 

light microscopy revealed the same cytology of thalamic neuron degeneration as in 

Purkinje cells. At P30, the general cytological organization of thalamic neurons in 

medial geniculate nucleus closely resembled that of neurons in littermate controls, but 

neurons in pcd mutants were distinguished by the presence of small aggregates of 

fine granules, approximately 9 nm in diameter (O'Gorman, 1985; O'Gorman and 

Sidman, 1985). By P50 the neurons were more affected and large areas of cytoplasm 

were occupied exclusively by polysomes, while profiles of endoplasmatic reticulum 

and the Golgi apparatus appeared to be reduced (O'Gorman, 1985). Pcd mice also 

suffered from degeneration of olfactory bulb mitral cells, detectable after the second 

postnatal month (Greer and Shepherd, 1982). The application of the 2-deoxyglucose 

technique indicated that the Agtpbp1pcd mutation causing the loss of mitral cells did 

not affect the ability of olfactory receptor cells to respond in a normal manner to the 

odor (Greer and Shepherd, 1982). However, a later study using the precise 

olfactometry revealed that the mutant mice exhibited a deficit in odorant detection 

and discrimination (Diaz et al., 2012).  

Pcd mutants lose about 50% of their retinal photoreceptor cells between 3 and 5 

weeks of age, and thereafter slowly lose the remaining photoreceptor cells during the 

first year of life (Blanks and Spee, 1992). The first sign of the retinal degeneration 

appearing between P13-P18 is characterized by a large number of vesicles, ranging in 

diameter from 150 to 350 nm, which are located in the extracellular space adjacent to 

the photoreceptor inner segment (Blanks et al., 1982b). By P25 there was an 

abundance of pyknotic photoreceptor nuclei and many outer segments were clearly 

disorganized. Thereafter, as the photoreceptor cells are lost, their outer segments 

slowly become shorter and more variable in length (LaVail et al., 1982). The 

electroretinographic records revealed that the retina’s rod and cone systems showed a 

reduction in the amplitude of the electrical signal (Marchena et al., 2011). Although, 

the most obvious abnormality in the retina of pcd mice was degeneration of 
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photoreceptor cells, Müller cells also appeared to be affected, having swollen apical 

processes often seen coursing through the outer nuclear layer (Blanks et al., 1982b). 

Behavioral characteristics 

As found in Lurcher mice (see above), cerebellar degeneration in pcd mutants 

affects a wide spectrum of behavioral functions. The major neurological symptom is 

cerebellar ataxia that can be behaviorally detected at P22 (Mullen et al., 1976). The 

ataxic phenotype becomes more obvious after P28 (Mullen et al., 1976; for review 

see Wang and Morgan, 2007). Le Marec and Lalonde (1997) showed that pcd mice 

have shorter falling latencies and spend more time in passive rotation on the 

accelerating rotarod compared to the healthy control littermates. Contrary to the 

control mice, pcd mutants were not able to improve their performance on the 

accelerating rotarod with repeated trials (Le Marec and Lalonde, 1997). The 

disruption of sensorimotor skills in pcd mice was demonstrated during the acquisition 

of the slow treadmill task at low slopes. In this test, longer time spent walking, an 

indication of a decreased ability of coordinating whole body movements, was 

observed in pcd mice (Le Marec and Lalonde, 1998). Goodlett et al. (1992) found that 

despite gait abnormalities in pcd mice, their swimming ability was surprisingly 

competent. Mutants could at times adopt a normal swimming posture comparable to 

healthy mice, with their head above the water, forepaws inhibited, propelling with 

alternating hind limb kicks and using the tail in the water. Nevertheless, they did not 

maintain this swimming pattern for long distances, and frequently broke into a “dog-

paddle” in which they used both forelimbs and hind limbs for swimming (Goodlett et 

al., 1992). 

Besides motor disabilities, pcd mice have been reported to have additional 

behavioral deficits. 30-, 60- and 110-day old pcd mutants were impaired in distal-cue 

(spatial) navigation, but not proximal-cue (visual guidance) task in the Morris water 

maze (Goodlett et al., 1992). The ability to perform the proximal-cue but not distal-

cue task in all three tested age groups indicates that the deficit in spatial navigation is 

not simply due to motor dysfunction and/or visual sensory deficits (Goodlett et al., 

1992). Apart from spatial learning disturbances, pcd mice also have impaired 

eyeblink conditioning (Chen et al., 1996) that appears to be result of a deficiency in 

cerebellum-mediated learning (Chen et al., 1999). 
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Agtpb1pcd mutations were reported for several mouse strains, e.g. C57BL/6J 

(Marchena et al., 2011), C57BR/cdJ (Mullen et al., 1976), B6C3Fe-a/a (Le Marec and 

Lalonde, 1997), BALB/cByJ (Rogowski et al., 2010), DBA/2J (Chakrabarti et al., 

2009), SM/J (Fernandez-Gonzalez et al., 2002). Although the mice with Agtpb1pcd 

mutation can survive to at least 17 months, generally older mutants are in poorer 

health, being lighter in weight and less active than littermates (Mullen et al., 1976). 

The adult pcd females are fertile, but have difficulties in rearing the few litters they 

produce (Mullen et al., 1976). Male pcd mice are sterile, because they have reduced 

numbers of sperm that are abnormally shaped and non-motile (Mullen et al., 1976; 

Handel et al., 1988). Nevertheless, they are capable of mating, as evidenced by 

vaginal plugs in estrus females (Mullen et al., 1976). 

Pcd mice in experimental therapy 

Like Lurcher mice, pcd mutants do not constitute an identical model of a 

known human disease. Nevertheless, due to their multiple system disorders, pcd 

mutants are often used as an animal model for studying the developmental loss of 

Purkinje cells (for review see Wang and Morgan, 2007), olfactory bulb degeneration 

(Diaz et al., 2012) and retinal degeneration (Chang et al., 2002).  

A number of studies have shown that transplantation of wild type cerebellar 

primordia into the pcd mice either as cell suspensions (Sotelo and Alvarado-Mallart, 

1986; Chang and Ghetti, 1993; Triarhou et al., 1995; Zhang et al., 1996) or as solid 

graft (Sotelo and Alvarado-Mallart, 1987a, b) can mitigate some aspects of the pcd 

phenotype. Although the normal mouse cerebellum contains about 200,000 Purkinje 

cells, in engrafted experiments as few as 3,000 Purkinje cells per cerebellum were 

sufficient to improve motor function (for review see Wang and Morgan, 2007). Diaz 

et al. (2012) also showed that the transplantation of adult wild type bone marrow-

derived cells into the pcd mouse tail vein generated a large population of microglial 

cells in the olfactory bulb and reduced the degenerative process of this structure. The 

alleviation of mitral cell degeneration was accompanied by functional recovery 

witnessed by significantly improved olfactory detection and enhanced odor 

discrimination (Diaz et al., 2012). Moreover, several transplantation therapy 

approaches have been taken to actually prevent Purkinje cell degeneration in pcd 

mutants (for details see review Wang and Morgan, 2007). It has been reported that 
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the subcutaneous implantation of neuroprotectant insulin-like growth factor I (IGF-I) 

microspheres improved motor coordination of pcd mice (Carrascosa et al., 2004). 

1.6.3 Mouse model of spinocerebellar ataxia type 2 (SCA2 mice) 

Description of the mutant 

Transgenic SCA2 mice carrying human ataxin-2 gene (ATXN2), with an 

enlarged CAG repeat sequence was first developed by the team of prof. Stefan Pulst 

in Cedar-Sinai Medical Centre in Los Angeles, USA (Huynh et al., 2000). The first 

mouse transgenic model of SCA2 was generated by microinjection of transgenic 

construct containing a full length human ATXN2 (formerly SCA2) cDNA (with a 58 

CAG repeat) as well as the mouse Purkinje cell protein 2 (Pcp2) promoter into 

pronuclei of the B6D2F1 mouse strain, a C57BL/6J x DBA/1J hybrid (for details see 

Huynh et al., 2000). Using this method, 4 human mutant founder lines carrying 58 

CAG repeats (Pcp2-ATXN2Q58), Q58-5, Q58-5B, Q58-11 and Q58-19, were 

generated, but only Q58-5B, Q58-11 and Q58-19 were able to produce offspring 

(Huynh et al., 2000). Later, several other SCA2 models have been generated. Besides 

Pcp2-ATXN2Q58 mice, expression of full-length ATXN2 is targeted to Purkinje cells 

using Pcp2 promoter also in the Pcp2-ATXN2Q127 mouse model with 127 CAG 

triplets (Hansen et al., 2013). Aguiar et al. (2006) developed a SCA2 mouse model 

with 75 CAG repeats under the ATXN2 self-promoter control (ATXN2Q75). Damrath et 

al. (2012) generated another SCA2 mouse model carrying 42 CAG triplets under the 

control of the endogenous murine ATXN2 promoter (ATXN2Q42). The last developed 

mouse transgenic model of SCA2 at this time was created by transgenesis using 

human bacterial artificial chromosomes (BACs) (Dansithong et al., 2015). BAC 

approach enables introducing an entire human gene including introns and regulatory 

regions into the mouse genome. Models generated by BAC approach often have 

lower genomic copy numbers than conventional cDNA models resulting in more 

physiological expression levels and potentially more faithful late onset of disease 

(Dansithong et al., 2015). Mice with the ATXN2 BAC transgene have 72 CAG repeats 

in the ATXN2 gene (BAC- ATXN2Q72) (Dansithong et al., 2015). 
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Cellular and morphological changes 

ATXN2 protein is widely expressed in the mammalian nervous system (Pulst et 

al., 1996; Kiehl et al., 2000). It is involved in the regulation of epidermal growth 

factor receptor (Nonis et al., 2008) and inositol 1,4,5-triphosphate receptor whereby 

increased cytosolic calcium occurs with CAG triplet expansion (Liu et al., 2009). The 

functions of ATXN2 protein are also associated with the endoplasmic reticulum (van 

de Loo et al., 2009), Golgi complex (Huynh et al., 2003) and translational regulation 

(Ciosk et al., 2004). Furthermore, ATXN2 is important in energy metabolism, weight 

regulation (Kiehl et al., 2006; Lastres-Becker et al., 2008) and also demonstrates its 

role in RNA metabolism due to the interaction with multiple RNA binding proteins 

(Shibata et al., 2000; Ciosk et al., 2004; Nonhoff et al., 2007; Elden et al., 2010). 

In SCA2, expansion of CAG triplets in exon 1 of the ATXN2 gene causes 

expansion of polyQ domain in ATXN2 protein (Dansithong et al., 2015). It is thought 

that the toxic gain-of-function protein aggregation affects RNA processing, resulting 

in degenerative processes affecting preferentially cerebellar neurons (Damrath et al., 

2012). Larger polyQ expansions have been associated with greater pathology (van de 

Warrenburg et al., 2005; Matilla-Duenas et al., 2014). The expression of human 

cytosolic protein ATXN2 with polyQ tract in transgenic SCA2 mouse lines leads to 

formation of cytoplasmic, but not nuclear, microaggregates (Huynh et al., 2000; 

Damrath et al., 2012). Microaggregate accumulation resulting in impaired RNA 

processing as well as protein synthesis (Thangima Zannat et al., 2011) is possibly 

critical for Purkinje cells with their large ribosomal machinery (Damrath et al., 2012). 

The accumulation of microaggregates is accompanied with progressive loss of 

Calbindin-28K in Purkinje cells (Huynh et al., 2000; Aguiar et al., 2006; Hansen et 

al., 2013). Huynh et al. (2000) showed that whereas at four weeks Calbindin-28K 

labeling was strong in healthy Pcp2-ATXN2Q22 and wild type mice, in the Pcp2-

ATXN2Q58 homozygotes it had already been reduced. The progressive reduction of 

Calbindin-28K protein was also confirmed by decreased Calb1 gene transcription 

until 8 weeks in Pcp2-ATXN2Q127 and 9 weeks in BAC-ATXN2Q72 mouse lines, 

respectively (Hansen et al., 2013; Dansithong et al., 2015). Transcriptional changes 

were also observed in other Purkinje cell specific genes, such as Pcp2 and Grid2 

(Hansen et al., 2013; Dansithong et al., 2015). Although Calbindin reduction has also 



 43 

been reported in SCA1 mutant mice (Vig et al., 1998) and abnormalities in handling 

of calcium fluxes have been implicated in neurodegenerative process in general (for 

reviews see Felix, 2000; Bidaud et al., 2006), there is a debate as to whether elevated 

calcium is a primary contributor to subsequent loss of Purkinje cells (Schwaller et al., 

2002). Cellular changes in SCA2 transgenic mice are followed by decrease of firing 

frequency of Purkinje cells, first shown at 6 weeks, loss of dendritic arbor, soma 

shrinkage and finally by extinction of Purkinje cells (Aguiar et al., 2006; Hansen et 

al., 2013). At 24-27 weeks, Purkinje cell number is reduced by 50-53% in Pcp2-

ATXN2Q58 lines (Huynh et al., 2000). In Pcp2-ATXN2Q127 mice the reduction in 

Purkinje cell number as well as reduction of thickness of molecular layer was not 

seen until after 12 weeks (Hansen et al., 2013). 

Functional changes 

The loss of the Purkinje cells in SCA2 mouse model is accompanied by a 

progressive functional deficit. The SCA2 mice with Pcp2-ATXN2Q58 have a 19% 

reduction of stride length at 8 weeks (Q58-19 line) and at 16 weeks (all three Q58 

lines) respectively (Huynh et al., 2000). Huynh et al. (2000) also found that 

Pcp2-ATXN2Q58 mice with neurodegenerative phenotypes had a tendency to fold their 

hind legs when held by the tail for at least one minute. Clasping was observed at 16-

20 weeks in the Q58-19 line and at 8-12 months in the Q58-11 line. In Q58-5B line, 

no clasping was observed up to 26 weeks of age (Huynh et al., 2000). The mice with 

human Pcp2-ATXN2Q22 did not show clasping up to 12 months of age (Huynh et al., 

2000). In the rotarod test, Q58-11 and Q58-5B lines confirmed progressive functional 

deficits observed in transgenic Pcp2-ATXN2Q58 mice (see above). At 6 weeks, motor 

performance of transgenic animals was not different from that of wild type mice, at 

16 weeks homozygous Pcp2-ATXN2Q58 mice already performed poorly on rotarod 

testing, whereas heterozygous Pcp2-ATXN2Q58 animals performed like wild type 

mice did (Huynh et al., 2000). At 26 weeks, both heterozygous and homozygous 

Pcp2-ATXN2Q58 mice showed severely impaired motor performance compared to the 

wild type mice and animals expressing Pcp2-ATXN2Q22 (Huynh et al., 2000). In 

ATXN2Q75 mice, the rotarod test revealed significant differences in motor 

performance compared to the healthy littermates at 20 weeks of age (Aguiar et al., 

2006). In BAC-ATXN2Q72 the motor deficit began at 16 weeks of age (Dansithong et 
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al., 2015). The earliest onset of SCA2 motor symptoms was found in the transgenic 

mouse line with the longest polyQ repeats. The deterioration of motor performance in 

mice with Pcp2-ATXN2Q127 began at 8 weeks with progressive worsening of 

symptoms with age (Hansen et al., 2013). It seems that the morphological changes as 

well as motor decline in SCA2 transgenic mice was more severe in lines with longer 

CAG repeats (for review see  Cendelin, 2014). This phenomenon is in agreement 

with inverse association observed between the size of polyQ repeat and the age of 

onset in SCA2 human patients (Pulst et al., 1996; Pulst et al., 2005). 

SCA2 mice in experimental therapy 

SCA2 transgenic mice constitute an animal model of human pathology. 

Therefore they serve as an ideal model for experimental therapy. Nevertheless, there 

are only a few studies with a therapeutic approach. Liu et al. (2009) demonstrated that 

glutamate exposure induced more pronounced Purkinje cell death in Pcp2-ATXN2Q58 

cell cultures compared to the wild type cells and that the application of dantrolene, a 

calcium stabilizer, attenuated the glutamate-induced cell death. Furthermore, in 

animal experiments it has been shown that long-term feeding of Pcp2-ATXN2Q58 mice 

with dantrolene alleviated age-dependent motor deficits and reduced loss of Purkinje 

cells observed in untreated Pcp2-ATXN2Q58 animals by 12 months of age (Liu et al., 

2009). Chang et al. (2011) also reported that intravenous transplantation of human 

mesenchymal stem cells effectively improved rotarod performance of SCA2 

transgenic mice and delayed the onset of motor function deterioration. On the other 

hand, intracranial transplantation failed to achieve such a therapeutic effect (Chang et 

al., 2011). 
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2 AIMS 

The general aim of this thesis was to contribute to the understanding of the 

cerebellar involvement in behavioral processes, particularly spatial behavior and the 

impact of cerebellar degeneration. For this purpose, mouse models of olivocerebellar 

degeneration were used. Most of this work was focused on the analysis of spatial and 

emotional behavior in Lurcher and pcd mutant mice. The second part of this thesis 

was to elaborate on the breeding capacity of Lurcher mice and the therapeutic 

potential of cerebellar mutants as models for experimental therapy of cerebellar 

degeneration. 

 

The specific aims of this thesis were the following: 

1) Cognitive and emotional processing in Lurcher mice 

To assess exploratory behavior of Lurcher mice 

To assess visual guidance and spatial learning of Lurcher mice 

To assess anxiety and depressive-like behavior of Lurcher mice 

2) Comparison of cognitive and emotional processing in Lurcher and pcd 

mice 

To compare exploratory behavior of the mutants 

To compare visual guidance and spatial learning of the mutants 

To compare anxiety and depressive-like behavior of the mutants 

3) Fertility and maternal behavior in Lurcher mice 

To test fertility of Lurcher females 

To test maternal behavior of Lurcher females 

4) Experimental therapy in mouse models of cerebellar degeneration 

To test applicability of mouse models of cerebellar degeneration in experimental 

therapy 
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Abstract OBJECTIVE: One of the common, but less studied deficiencies in mouse models 
of cerebellar disorders is impaired breeding capacity. Nevertheless, there is no 
extensive study in Lurcher (Grid2Lc) mice, a model of olivocerebellar degenera-
tion. The aim of this work was to analyze a breeding capacity of these mutants. 
METHODS: Lurcher females mated with healthy wild type males were compared 
with two control groups: wild type females mated with wild type males and wild 
type females mated with Lurcher males. The breeding capacity of Lurcher mice was 
analyzed using a fertility rate, mating capability and pups survival rate through 
three consecutive litters.
RESULTS: Lurcher dams did not show significantly reduced fertility and mating 
capability. Nevertheless, their breeding capacity was affected by reduced litter size, 
maternal infanticide and higher pup mortality during the maternal care period.
CONCLUSION: Lurcher mice are fertile and mating capable cerebellar mutants, but 
their breeding capacity is reduced due to the postpartum behavioral abnormali-
ties. With regard to hyper-reactivity of the hypothalamo-pituitary-adrenal axis 
followed by behavioral disinhibition during stressful events in Lurcher mutants, 
we hypothesize that the lower breeding capacity is associated with these endocrine 
and behavioral abnormalities.

Abbreviations:
Agtpbp1pcd  - purkinje cell degeneration mutation
BCa  - bias corrected and accelerated method
CMH  - Cochran-Mantel-Haenszel test
GluRδ2  - δ2 glutamate receptor
Grid2Lc  - Lurcher mutation
HPA  - hypothalamic-pituitary-adrenal axis
Lc(wt)  - Lurcher females mated with wild type males
nr  - nervous mutation
PP1  - postpartum day 1
PP2  - postpartum day 2
PP30  - postpartum day 30
Relnrl  - reeler mutation
Rorasg  - staggerer mutation
SEM  - standard error of the mean
wt(Lc)  - wild type females mated with Lurcher males
wt(wt)  - wild type females mated with wild type males
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INTRODUCTION
Cerebellar disorders are associated with ataxia, dys-
arthria and difficulty with eye movements. Structural 
and/or functional cerebellar abnormalities also affect 
cognition, regulation of emotion and social interac-
tion processing (Schmahmann 2004). A less expected, 
but common deficiency in mouse models of cerebel-
lar disorders is impaired reproductive performance 
and offspring productivity. Aberrations in the vaginal 
estrous cycle and ovarian abnormalities have been 
found in staggerer (Rorasg) mice (Guastavino et al. 2005; 
Guastavino & Larsson 1992). Reduced reproductive 
performance has also been found in reeler (Relnrl) and 
nervous (nr) mutants (Guastavino et al. 1993; Sidman & 
Green 1970). Smaller litter size and difficulties with pup 
care have been described in Purkinje cell degeneration 
(pcd; Agtpbp1pcd) mice (Mullen et al. 1976). It has been 
assumed that affected motor coordination in cerebellar 
mutants influences sexual activity, nest-building behav-
ior and pup rearing (Chen et al. 2007; Guastavino et al. 
1993), but other authors have suggested that this behav-
ioral deficiency could be caused by a global effect of 
the mutation on other systems (e.g. endocrine system) 
(Bulloch et al. 1982).

Although mating success, reproductive performance 
and maternal ability in cerebellar mutant mice have 
occasionally been studied for a long time, none of these 
studies focused on Lurcher mice. Lurcher (Grid2Lc/+) 
mutants constitute a natural model of hereditary olivo-
cerebellar degeneration (Phillips 1960). The degenera-
tive process is caused by a mutation of the δ2 glutamate 
receptor (GluRδ2) gene (Zuo et al. 1997). GluRδ2 is 
predominantly expressed by cerebellar Purkinje cells 
and, at lower levels, in some hindbrain neurons (Araki 
et al. 1993). Constitutive activation of GluRδ2Lc causes 
an inward current and consequent excitotoxic death of 
Purkinje cells (Norman et al. 1995); this is followed by 
the death of granule, basket and stellate cells and inferior 
olive neurons due to the disappearance of connective 
pathways (Caddy & Biscoe 1979; Heckroth & Eisen-
man 1991; Zanjani et al. 2006). The mutant mice are 
semi-dominant heterozygous. Homozygous individuals 
(Grid2Lc/Lc) die shortly after birth due to massive loss of 
mid- and hindbrain neurons (Cheng & Heintz 1997). 
Lurcher mice are characterized by the cerebellar ataxia 
(Hilber & Caston 2001), cognitive deficits (Hilber et al. 
1998), behavioral disinhibition (Hilber et al. 2004) and 
hyper-reactivity of the hypothalamic-pituitary-adrenal 
(HPA) axis (Frederic et al. 1997).

Lurcher mutants are fertile, although the litter size 
of Lurcher females is reduced (Phillips 1960); however, 
the breeding capacity of Lurcher females has not been 
extensively studied yet. In view of this fact, our objective 
was to test the reproductive performance and maternal 
ability of Lurcher dams over the course of three con-
secutive litters and to compare them with their healthy 
littermate controls.

MATERIALS AND METHODS
Animals
Lurcher (Lc) mutants and their healthy wild type (wt) 
littermates (B6CBA strain) were used. Females were 
housed separately in plastic cages (20 x 25 cm) with 
wooden shavings in a temperature and humidity con-
trolled room with a standard 12/12 hours light/dark 
cycle. Standard commercial pellet diet and water were 
available ad libitum. The experiment was performed in 
compliance with EU Guidelines for scientific experi-
mentation on animals and with permission of the Ethics 
Committee of the Faculty of Medicine in Pilsen, CZ.

Reproductive performance, maternal ability and 
breeding capacity assessment
Three experimental groups of female mice were used. 
Lurcher females were mated with wild type males 
(Lc(wt), n=13). Two control groups consisted of wild 
type females mated with wild type males (wt(wt), n=13) 
and wild type females mated with Lurcher males (wt(Lc), 
n=13). Dams from Lc(wt) and wt(Lc) groups should have 
theoretically breed in Mendelian ratios, i.e. 50% Lurcher 
and 50% of wild type pups. Therefore, the wt(Lc) group 
served as an ideal control for both litter size and pup 
viability assessment. Lurcher and control females were 
followed through three reproduction cycles. Females 
were mated for the first time at the age of 2 months. 
Each reproduction cycle consisted of a maximum of 
3 weeks of mating (the male was removed when the 
female became obviously pregnant, or at the end of the 
3 week mating period), the residual period of gravidity 
(i.e. delivery would theoretically occur 0–3 weeks after 
the male was removed), 4 weeks of pup-rearing and 2 
weeks of rest time after the pups were weaned.

The reproductive performance was evaluated using 
the fertility rate, mean delivery day and litter size on 
the second postpartum day (PP2). The fertility rate was 
the percentage of mated females giving birth to pups 
(born dead or alive). The delivery day was calculated as 
the sum of the mating time and the residual period of 
gravidity and served as an indicator of the mating time 
necessary for conception (assuming that the pregnancy 
duration was constant). Mean litter size on PP2 was 
calculated only for dams with at least 1 live pup at that 
time point. To avoid stressing the mothers, especially 
Lurcher dams, pups were not counted immediately after 
parturition; instead they were counted on PP2.

Maternal ability was evaluated as maternal infan-
ticide rate and pup survival rate. The maternal infan-
ticide rate was calculated as the percentage of dams 
giving birth to pups which cannibalized their com-
plete litter on PP1. Since the pups were counted on 
PP2, cannibalizing only individual pups on PP1 was 
undetectable. Pups survival rate was calculated as the 
percentage of pups surviving from PP2 until weaning 
on PP30. To lessen the emotional hyper-reactivity of 
Lurcher mutants during stressful situations, dams were 
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not separated (e.g. pup weighing, nest-building behav-
ior scoring) from their pups to avoid modifying natural 
maternal behavior.

Breeding capacity was the number of live pups at 
weaning time (PP30). All mated females were involved 
in the assessment of this parameter. The number repre-
sents the number of pups produced in one litter per one 
female of the group and it is the final measure of both 
reproductive performance and maternal care ability.

Statistical analysis
The comparison of Lurchers (Lc(wt)) fertility rate and 
maternal infanticide rate for three consecutive litters 
with each control group of wild type dams (wt(wt), 
wt(Lc)) was performed using the Cochran-Mantel-
Haenszel (CMH) test for 2 × 2 × K contingency tables. 
CMH statistics allows for the analysis of three nominal 
variables (2 × 2 × K), where two variables are inde-
pendent (groups) and the third variable identifies 
the repeats (litters). The homogeneity of odds ratios, 
assumptions for the CMH test, was verified using the 
Breslow-Day test. The analysis of each litter was done 
separately using the Freeman-Halton extension of 
Fisher’s exact test for 2 × 3 tables and Fisher’s exact test 
for post-hoc analyses to find any differences between 
two groups. The mean delivery day, pup survival rate 
and mean litter size were evaluated using the Kruskal-
Wallis ANOVA. Multiple comparisons were performed 
using the bootstrapping 95% confidence intervals (95% 
CI) for the difference in the means and two-sample per-
mutation test. The 95% CI for the difference in means 
was estimated using the bias corrected and accelerated 
(BCa) method. The BCa method can be applied to the 
construction of nonparametric confidence intervals. 
The two-sample permutation test requires few assump-
tions (e.g. normal distribution) and thus can be used 
for post hoc analysis with Kruskal-Wallis ANOVA. 
Both resampling procedures were based on 10,000 rep-
licates. Violation of Gaussian distribution assumption 
was verified using the Shapiro-Wilk test. Differences 
were considered statistically significant if p<0.05. Sta-
tistical analyses were performed using R 2.14.0 (GNU) 
for Mac OS X. Quantitative data are presented as mean 
± standard error of the mean (SEM).

RESULTS
Results of the reproductive performance assessment are 
presented in Table 1. Lurcher dams did not show any 
significant changes in fertility rate (CMH test: Lc(wt) 
vs. wt(wt): χ2=2.46, p=0.117; Lc(wt) vs. wt(Lc): χ2=0.05, 
p=0.825). Mutant fertility rates were not been signifi-
cantly changed over three consecutive litters compared 
to both control groups (see Table 1). Lurcher dams also 
did not show significantly increased delivery day com-
pared to control dams (see Table 1).

Although, mutant dams had no problems with 
mating and pregnancy, the CMH test showed a higher 
maternal infanticide incidence in Lurchers, within all 
three litters (Lc(wt) vs. wt(wt): χ2=7.62, p=0.006; Lc(wt) 
vs. wt(Lc): χ2=12.10, p=0.001), with the most prominent 
incidence in the 1st litter (see Table 2). Maternal infan-
ticide was observed on PP1, and probably occurred 
immediately after parturition. Although the cause of 
pup death on PP1 could not be specified, pieces of car-
cass were not found; therefore the missing pups were 
assumed to be cannibalized. Since almost all litters of 
Lurcher females, during the first reproduction cycle, 
were cannibalized, pup survival rate as well as mean 
litter size on PP2 and PP30 could not be evaluated for 
the first litter. Consequently both of these parameters 

Tab. 1. Fertility rate and mean delivery day (± SEM) of Lurcher and wild type control dams in individual litters.

Fertility rate [%] Delivery day

Lc(wt) wt(Lc) wt(wt) p-value a Lc(wt) wt(Lc) wt(wt) p-value b

1st litter 83.33 83.33 92.31 0.717 28.82 (±2.78) 24.42 (±1.70) 24.08 (±0.87) 0.349

2nd litter 72.73 80.00 100.00 0.129 26.29 (±2.77) 23.22 (±1.33) 24.08 (±1.73) 0.445

3rd litter 70.00 70.00 83.33 0.679 21.71 (±0.42) 26.86 (±3.09) 27.90 (±2.54) 0.315

Note: Fertility rate = total number of females giving birth to pups (born dead or alive)/total number of mated females ×100; Delivery day 
= number of days after start of mating to delivery; Lc(wt) = Lurcher female mated with wild type male; wt(Lc) = wild type female mated with 
Lurcher male; wt(wt) = wild type female mated with wild type male 
a Freeman-Halton extension of Fisher’s exact test; b Kruskal-Wallis ANOVA.

Tab. 2. Maternal infanticide rate of Lurcher and wild type control 
dams in individual litters. Data are presented as a mean (± SEM).

Maternal infanticide rate [%]

Lc(wt) wt(Lc) wt(wt) p-value a

1st litter 80.00 0.00 8.33 <0.001 *

2nd litter 25.00 0.00 7.69 0.431

3rd litter 42.86 14.29 30.00 0.393

Note: Maternal cannibalism rate = total number of maternal 
cannibalism incidence/total number of parturitions × 100; Lc(wt) = 
Lurcher female mated with wild type male; wt(Lc) = wild type female 
mated with Lurcher male; wt(wt) = wild type female mated with wild 
type male
a Freeman-Halton extension of Fisher’s exact test
* Lc(wt) vs. wt(Lc): p<0.001; Lc(wt) vs. wt(wt): p=0.002; wt(wt) vs. wt(Lc): 
p=1.000 (Fisher’s exact post-hoc test).
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were analyzed for all three litters together. The results 
from the mean litter size and pup survival rate are pre-
sented in Table 3. Lurcher dams showed significantly 
lower litter size on PP2 and PP30 as well as a lower 
pup survival rate compared to both groups of wild type 
controls. Breeding capacity of wt(Lc) and wt(wt) control 
groups was similar since no significant differences in: 
(1) fertility rate (CMH test: wt(wt) vs. wt(Lc): χ2=1.70, 
p=0.192; see Table 1), (2) delivery day (see Table 1), 
(3) maternal infanticide (CMH test: wt(wt) vs. wt(Lc): 
χ2=0.76, p=0.384; see Table 2) or (4) pups survival rate 
and litter size on PP2 and PP30 (see Table 3) were found.

DISCUSSION
Reproductive performance, maternal ability and over-
all breeding capacity of Lurcher females were studied. 
Although, Lurcher dams did not show any changes in 
reproductive performance compared to both control 
groups, maternal ability to progress pups from delivery 
to weaning was significantly affected. This behavioral 
disruption led to an overall decrease in breeding capac-
ity of mutants.

Lurcher females did not show significantly altered 
fertility rate or delivery day. The reproductive system, 
namely conception capability and course of pregnancy 
in Lurcher females, does not seem to be markedly 
affected by the mutation. Mutation related motor dis-
turbances present in Lurchers probably do not inter-
fere with mating and sexual activity. Furthermore, the 
absence of differences between wild type females mated 
with wild type males and those mated with Lurchers 
suggest normal fertility and sexual activity in Lurcher 
males. These results are in contrast with previous 

findings for other cerebellar mutants, where mating 
impairment was likely, at least in part, a consequence 
of gait abnormalities, problems with body balance and 
reduced male fertility (Guastavino 1982; Guastavino et 
al. 1993). The only impairment of reproductive perfor-
mance in Lurcher females was smaller litter size on PP2. 
The present study was not focused on prenatal exami-
nation of the number of fertilized oocytes or number 
of embryos. Therefore it is difficult to associate the 
reduced litter size, shortly after birth, as being prena-
tal related or perinatal related, i.e. natural pup death or 
maternal cannibalism.

Increased maternal infanticide, especially in primip-
arous dams and lower pup survival rate indicated poor 
maternal ability in Lurcher mutants. With regard to pre-
viously published results for other cerebellar mutants 
(Boufares et al. 1993; Bulloch et al. 1982) and unpub-
lished observations, it was not assumed that maternal 
ability impairment was due to motor disorder in Lurcher 
dams. More likely it is indicative of a deficit in senso-
rimotor integration and affected emotionality of Lurcher 
mutants (Hilber et al. 2004; Porras-Garcia et al. 2005).

The cerebellar cortex can exert tonic inhibition on 
the amygdala, hippocampus and septum relative to the 
Papez circuit (Snider & Maiti 1976). Disruption of this 
suppression, by the mutant-related disappearance of 
Purkinje cells in Lurcher mutants, can induce changes 
in emotional behavior followed by an inability to select 
information during stressful events and the consequent 
loss of dependence on the environmental context. 

Although, Lurcher mice have normal basal levels 
of adrenocorticotropic hormone (ACTH) and corti-
costerone (CORT), both hormones are dramatically 
elevated during mild stressful situations including 
common daily low stress events (Frederic et al. 1997), 
e.g. home-cage cleaning, handling or transfer to labo-
ratory. Increased levels of corticotropin-releasing hor-
mone (CRH), followed by increased CORT secretion, 
in cerebellar mutants (Frederic et al. 1997; Frederic et 
al. 2006), can influence the function of the amygdala 
and hippocampus, which are sensitive to both of these 
hormones (Giesbrecht et al. 2010; Maras & Baram 2012; 
Kavushansky & Richter-Levin 2006). The amygdala as 
well as hippocampus are also involved in the sensorim-
otor gating system (Miller et al. 2010), and play a role 
in stress and anxiety-related behavior. Therefore, affec-
tion of the central inhibitory system, together with the 
HPA axis hyper-reactivity, in Lurcher mutants can trig-
ger a disproportionate behavioral reaction (Lorivel et 
al. 2010) and abnormal maternal behavior, e.g., neglect-
ing, eating or killing their own pups. This hypothesis is 
supported by Poley (1974) who described higher stress 
reactivity to environmental stimuli as a factor causing 
maternal infanticide or cannibalism in rodents. The 
effect of CORT could be potentiated by the physiologi-
cal increase in CORT level after the parturition (Zarrow 
et al. 1972) which has been suggested to modulate ongo-
ing maternal behavior (Rees et al. 2004). 

Tab. 3. Litter size and pup survival rate of Lurcher and wild type 
control dams. Data are presented as mean (± SEM).

Litter size PP2 Litter size PP30 Pup survival rate

Lc(wt) 3.92 (±0.47) 1.78 (±0.72) 49.21 (±17.84)

wt(Lc) 6.65 (±0.31) 6.15 (±0.35) 91.86 (±3.59)

wt(wt) 5.81 (±0.61) 5.61 (±0.60) 95.37 (±2.89)

p-value a 0.008 * 0.002 † 0.015 ‡

Note: Pup survival rate = number of weaned pups/number of live 
pups at PP2 × 100; PP2 = post-partum day 2; PP30 = post-partum 
day 30 (the weaning time); Lc(wt) = Lurcher female mated with wild 
type male; wt(Lc) = wild type female mated with Lurcher male; wt(wt) 
= wild type female mated with wild type male
a Kruskal-Wallis ANOVA with difference of means (95% CI for 
difference) and two-sample permutation test as a post-hoc analysis 
* Lc(wt) vs. wt(Lc): –2.74 (–3.96, –1.72), p<0.001; Lc(wt) vs. wt(wt): –1.89 
(–0.49, –2.15), p=0.028; wt(wt) vs. wt(Lc): 0.85 (–0.44, 2.22), p=0.229 
† Lc(wt) vs. wt(Lc): –4.38 (–5.84, –2.65), p<0.001; Lc(wt) vs. wt(wt): –3.83 
(–5.66, –1.89), p<0.001; wt(wt) vs. wt(Lc): 0.54 (–0.82, 1.84), p=0.433 
‡ Lc(wt) vs. wt(Lc): –42.65 (–79.17, –5.56), p=0.001; Lc(wt) vs. wt(wt): 
–46.16 (–82.32, –10.33), p<0.001; wt(wt) vs. wt(Lc): –3.52 (–12.02, 
5.61), p=0.806.
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Finally, the altered litter size on PP2 could be also 
related to the HPA axis being much more sensitive to 
environmental stimuli in Lurcher mutants compared to 
wild type mice (Frederic et al. 1997; Hilber et al. 2004). 
Chronically increased levels of ACTH and CORT 
inhibit follicle development, luteinizing hormone secre-
tion and ovulation (Brann & Mahesh 1991). Therefore 
HPA axis hyper-reactivity may negatively influence 
oocyte development in Lurcher females.

In conclusion, Lurcher females showed reduced 
breeding capacity compared with healthy littermates. 
We hypothesize that, unlike other cerebellar mutants, 
anatomical disturbances of the reproductive system 
and motor impairment probably play a minor role in 
Lurcher mutant mice. Reduced numbers of offspring 
from Lurcher females is likely due to fewer pups being 
born and poor pup survival. Both these factors can be 
explained by HPA axis hyper-reactivity affecting oocyte 
development and triggering behavioral disinhibition 
caused by disruption of the central inhibitory system. 
The high incidence of maternal infanticide in Lurchers 
was probably a consequence of their behavioral disinhi-
bition and abnormal stress reactivity, the pathogenesis 
of which involves the disappearance of cerebellar Pur-
kinje cells. The hypothesis that HPA axis abnormalities 
and their secondary endocrine and behavioral conse-
quences are probably responsible for the majority of 
reproduction disturbances in Lurchers is worth further 
examination using prenatal and behavioral studies.
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The cerebellum is not only essential for motor coordination but is also involved in

cognitive and affective processes. These functions of the cerebellum and mechanisms

of their disorders in cerebellar injury are not completely understood. There is a wide

spectrum of cerebellar mutant mice which are used as models of hereditary cerebellar

degenerations. Nevertheless, they differ in pathogenesis of manifestation of the particular

mutation and also in the strain background. The aim of this work was to compare spatial

navigation, learning, and memory in pcd and Lurcher mice, two of the most frequently

used cerebellar mutants. The mice were tested in the open field for exploration behavior,

in the Morris water maze with visible as well as reversal hidden platform tasks and in the

forced swimming test for motivation assessment. Lurcher mice showed different space

exploration activity in the open field and a lower tendency to depressive-like behavior in

the forced swimming test compared with pcd mice. Severe deficit of spatial navigation

was shown in both cerebellar mutants. However, the overall performance of Lurchermice

was better than that of pcd mutants. Lurcher mice showed the ability of visual guidance

despite difficulties with the direct swim toward a goal. In the probe trial test, Lurcher mice

preferred the visible platform rather than the more recent localization of the hidden goal.

Keywords: Lurcher, olivocerebellar degeneration, pcd, spatial learning, water maze

Introduction

Neurodegenerative disorders affecting the olivo-cerebellar system are manifested by
well-characterized motor disorders. Nevertheless, the cerebellum is also involved in cognitive
and behavioral processes, abnormalities of which have been described in humans (Schmahmann
and Sherman, 1997; Cooper et al., 2010; Fancellu et al., 2013; Marien and Beaton, 2014), as well
as in a wide spectrum of cerebellar mutant mice (for review see Manto and Marmolino, 2009;
Cendelin, 2014). Cerebellar mutants are variable relative to the feature and extent of the cerebellar
and extra-cerebellar neuronal degeneration. Moreover, the mutations appear in different mouse
strains and these mutants retain specific phenotypic traits of the original strains. The importance
of the genetic background for behavioral manifestation has been shown in gain-of-function
(Cendelin et al., 2014) as well as loss-of-function mutations (Lalouette et al., 2001). Furthermore,
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the review by D’hooge and de Deyn (2001) showed that
sex differences, age, nutrition, stress, infections as well as
experimental protocol, apparatus, and data analysis could
markedly influence results in theMorris water maze task (Morris,
1984). With respect to these facts, it is therefore difficult to
compare the behavioral phenotype of various mutations in mice
of different background strains from different studies. On the
other hand, the identification and understanding of specific
impairments related to a particular mutation should be of
interest regarding the variability of human hereditary cerebellar
degenerations (Manto, 2005) and the use of mousemodels for the
development of disease-targeted therapeutic approaches.

In the present study, the behavioral phenotype of two of
the most frequently used mouse models of olivocerebellar
degeneration, Lurcher and Purkinje cell degeneration (pcd), were
studied. Lurcher mice (Phillips, 1960) constitute the semi-
dominant gain-of-functionmutation in the δ2 glutamate receptor
(GluRδ2) gene that changes the receptor into a leaky membrane
channel, which chronically depolarizes the cell membrane (Zuo
et al., 1997). GluRδ2 is expressed predominantly by Purkinje cells
(Araki et al., 1993) and therefore, cell-autonomous degeneration
of Purkinje cells is a primary effect of the mutation (Wetts
and Herrup, 1982a,b). Virtually all Purkinje cells disappear by
3 months of age (Caddy and Biscoe, 1979). Fast reductions
of cerebellar interneurons and inferior olive neuron numbers
are due to secondary target-related cell death (Caddy and
Biscoe, 1979; Wetts and Herrup, 1982a,b; Zanjani et al., 2006).
Lurchers are characterized by ataxia (Fortier et al., 1987),
spatial orientation impairments (Lalonde et al., 1988; Cendelin
et al., 2008), and alterations of anxiety-related behaviors (Hilber
et al., 2004). Lurcher mutation exists in two phenotypically
undistinguishable alleles, the original one, Grid2Lc (Zuo et al.,
1997), and Grid2Lc−J (de Jager et al., 1997). For experiments,
Grid2Lc mutants have been used, e.g., in B6CBA and C3H (Caddy
and Biscoe, 1979; Cendelin et al., 2014) strain backgrounds.

Pcd mice (Mullen et al., 1976) carry a recessive loss-of-
function mutation in the gene encoding the cytosolic ATP/GTP
binding protein 1 (Agtpb1), a.k.a. Nna1 (Fernandez-Gonzalez
et al., 2002). Nna1 is expressed throughout the brain and retina
with prominence in cerebellar Purkinje cells (Mullen et al., 1976;
Baltanas et al., 2011), mitral cells of the olfactory bulb (Greer and
Shepherd, 1982), thalamic neurons (O’Gorman, 1985; O’Gorman
and Sidman, 1985), and retinal photoreceptors (Blanks et al.,
1982; Lavail et al., 1982). Histopathological analysis of pcd
mice revealed rapid Purkinje cell loss between the third and
fourth postnatal week (Baltanas et al., 2013), slowly progressive
cerebellar granule cell degeneration, moderate reduction of the
deep cerebellar nuclei, and slow degeneration of inferior olivary
neurons that are supposed to be secondary to the loss of Purkinje
cells (Ghetti et al., 1987; Triarhou et al., 1987). The photoreceptor
decrease progresses slowly and even after 9 months of life, some
photoreceptors are retained (Marchena et al., 2011). Pcd mice
suffer from ataxia (Mullen et al., 1976; Goodlett et al., 1992) and a
deterioration of spatial navigation learning (Goodlett et al., 1992).
The pcd mutation exists in several different alleles (Wang and
Morgan, 2007). Pcd mice carrying the original allele Agtpbp1pcd

have been used for experiments, e.g., in B6.BR (Vinueza Veloz

et al., 2014), C57BL/6J (Zhang et al., 1996), or B6C3Fe (Rotter
et al., 2000) strains.

Both mutants constitute a distinct type of mutation affecting
the olivo-cerebellar system either exclusively (Lurcher) or
inclusively (pcd) and determining a strong pathological
phenotype. Distinct histopathological similarities predestine
them to frequent mutual comparisons, mostly often indirect
(Furuya et al., 1994; Lalonde and Thifault, 1994; Le Marec
and Lalonde, 1997, 2000), but none of these studies have
involved systematic experiments. Therefore, the aim of this
study was to test the behavioral phenotype of pcd and Lurcher
mice with particular attention paid to cognitive and emotional
disturbances under the same environmental conditions. We also
aimed to assess the comparability of the mutants, which are
not commercially available in identical strains. Thus, healthy
littermates were also tested to assess the role of the genetic
backgrounds.

Materials and Methods

Animals
Two cohorts of adult (3 months) B6.BR pcd1J and B6CBA
Lurcher mutants and their healthy wild type littermates of
both sexes were used (for n, see Table 1). Both B6.BR pcd
and wild type mice were obtained by crossing heterozygous
males and females. Both B6CBA Lurcher and wild type mice
were obtained by crossing wild type females with heterozygous
Lurcher males. All animals were housed in the same breeding
facility under standard laboratory conditions in a temperature
and humidity controlled room with a 12/12 h light/dark cycle
(6 a.m. to 6 p.m.). The tests were performed during the light
phase of the cycle. Animals were kept in plastic cages with
wooden shavings and maintained with a standard commercial
pellet diet and water ad libitum. All experimental procedures
were performed in compliance with the EU Guidelines for
Scientific Experimentation on Animals and with the permission
of the Ethical Commission of the Faculty of Medicine in
Pilsen.

Experimental Design
To eliminate the influence of the tests on behavior, two cohorts of
mice were used. Cohort A was used for analysis of the explorative
behavior in the open field and spatial learning, orientation and
navigation in the Morris water maze. Cohort B was used for
assessment of motivation and depressive-like behavior in the
water environment. The body weight of mice from both cohorts
was measured on the first day of the experiment before the
tests. For behavioral tests and body weight evaluation, male and
female mice were considered separate experimental groups. Since
pcd mice are known to suffer from retinal degeneration (Blanks
et al., 1982; Lavail et al., 1982), the retinas of samples of pcd
mutants were examined stereologically and compared with those
from their B6.BR wild type littermates as well as with retinas of
B6CBA Lurcher and wild type mice to assess the presence and
extent of photoreceptor degeneration at the time of finishing the
behavioral testing.
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TABLE 1 | Mean ± SEM (n) body weight of 3-month-old pcd and Lurcher mice and their healthy littermate controls (separately for both cohorts).

B6.BR B6CBA

pcd wild type Lurcher wild type

COHORT 1

Females (g) 15.96± 1.262 (16) 21.57± 0.986 (22) 20.49±1.847 (17) 22.00± 1.887 (21)

Males (g) 19.56± 2.350 (16) 26.51± 2.509 (17) 24.79±1.847 (19) 27.89± 1.885 (18)

COHORT 2

Females (g) 15.53± 2.911 (14) 22.32± 1.052 (13) 20.01±1.507 (14) 22.92± 1.168 (12)

Males (g) 19.03± 3.199 (11) 27.81± 1.519 (16) 24.56±1.272 (12) 28.47± 1.574 (15)

Behavioral Testing
Open Field
Explorative behavior and spontaneous motor activity were
analyzed using the open field test. The apparatus consisted
of a white open top plastic box (50 × 50× 50 cm) with an
illumination intensity of 20 lux at the box floor level. The
subject was placed in the center of the open field and left
undisturbed for 5min. The apparatus was cleaned with 70%
ethanol between subjects. The activity was recorded using
EthoVision R⃝ XT 7.1 (Noldus Information Technology b.v.,
Netherlands). The locomotion activity (% of the test duration),
distance moved (cm), thigmotaxis (% moved distance in the
3 cm border zone), and mean walking speed (cm/s) were
evaluated.

Morris Water Maze Task
The goal-directed navigation and spatial learning were evaluated
using a Morris water maze task (Morris, 1984). The apparatus
consisted of a circular white plastic pool (100 cm in diameter ×
55 cm in height), with the water level set at a height of 35 cm
above the base. The pool was filled with water (26 ± 2◦C) and
illuminated with 70 lux at the water surface. Escape from the
water was provided by a transparent circular PlexiGlass platform
(7.5 cm in diameter; 0.5 cm below the water level). Four starting
points around the circumference of the pool were arbitrarily
designated: North (N), South (S), West (W), and East (E). Each
animal performed four trials per day-session with 16min inter-
trial intervals. The subject was introduced into the pool facing
the wall in one of four starting positions. The maximal time for
the platform location was 60 s. If the mouse did not locate the
platform within the allotted time, it was manually placed on the
platform. After each trial, the mouse was left on the platform
for 30 s.

The water maze test consisted of 12 consecutive day-sessions
arranged into three phases: visible platform test (day-sessions
1–5), reversal hidden platform test (day-sessions 6–11), and
probe trial (day-session 12). For the visible platform test, the
hidden escape platform position was highlighted by a cylindrical
label (3 cm in diameter; 5 cm in height) with vertical black and
white stripes mounted 12 cm above the submerged platform. The
label served as a cue for visual goal-directed navigation. Platform
position and starting point order is schematically depicted in
Figure 1. For the probe trial, the escape platform was removed,
and each mouse was allowed to swim freely for 60 s per trial.

FIGURE 1 | Scheme of the Morris water maze protocol indicating time

schedule, platform position and starting point sequence. The red circle

indicates a visible platform position. An empty circle indicates a hidden

platform position. Dashed lines represent imaginary quadrant borders.

The movement of the mice in the maze was recorded
using EthoVision R⃝ XT 7.1. Escape latencies (s) and distance
moved (cm) were measured as the basic parameters of the
performance in the Morris water maze task. Swimming speed
during periods of activity (i.e., excluding floating periods) was
calculated to assess the swimming ability of the mice and to
evaluate the relationship between latency and distance moved.
Mouse navigation and orientation relative to the escape platform
position was determined as the heading angle error and direct
swim percentage. The heading angle error was measured as a
deviation from a direct line from the starting point to the center
of the platform. As direct swim, those trials with a shorter
distance moved than the length of a direct line connecting the
starting point and the platformmultiplied by 1.3 were considered
(Cendelin et al., 2014). The exploration strategy was evaluated
using thigmotaxis (% moved distance in the 10 cm margin zone
of the maze). Floating (% of time spent inactive) was assessed as
a specific behavioral event. Spatial learning and memory were
assessed using the preference for the NW or SW quadrant,
respectively (% of distance moved), for the first 30 s of the first
start of the probe trial only to avoid the effect of adaptation on
the missing platform.

Forced Swimming Test
The motivation to swim and depressive-like behavior were
analyzed using the Porsolt’s forced swimming test (Porsolt et al.,
1979). Mice were immersed in a glass water tank (diameter:
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18 cm; height: 26 cm; water depth: 19 cm). The water was
maintained at 26 ± 2◦C and illuminated with 70 lux at the water
surface. The mouse was left to swim without any possibility of
escape for 15min per day-session for three consecutive days.
Immobility periods were recorded using EthoVision R⃝ XT 7.1,
and relative immobility (% of total time) was calculated. To
assess the development of depressive-like behavior within a day-
session, immobility periods were evaluated separately in three
5-min time-bouts for each day-session.

Quantitative Histology of the Retina
The presence and extent of retinal degeneration in pcd mutants
(n = 8) compared with their healthy littermates (n = 8) and
B6CBA mice (Lurcher: n = 8; WT: n = 8) was assessed using
stereological analysis. Paraformaldehyde-fixed right eyes of four
females and four males per group were processed into 10µm
thick serial sections with random orientation. Every fifteenth
section was stained with Gill’s hematoxylin and scanned as a stack
of four 2.5µm optical sections using an Olympus C-5060 digital
camera coupled to an Olympus CX31 microscope (Olympus,
Tokyo, Japan) using an 60× objective with a numerical aperture
of 1.35. To count the retinal photoreceptor cell nuclei, nine
dissector-counting frames were randomly imposed on each stack
(Glaser et al., 2007), taking into account only those optical
dissectors located in the outer nuclear layer (ONL) of the retina
(352 ± 15 dissectors for each animal). The volume of the retina
and total number of photoreceptor nuclei were estimated using
the fractionator method. Finally, the number of photoreceptor
nuclei was related to the retina volume and numerical density
was determined (Gundersen, 1986; Boyce et al., 2010). The
mean coefficient of sampling error (CE) was 4.7% for the ONL
volume and 4.4% for the retina volume (Gundersen and Jensen,
1987).

Statistical Analysis
Data were analyzed using traditional statistical tests extended
with a non-parametric permutational approach (Pesarin and
Salmaso, 2010). Three-Way ANOVA or Three-Way ANOVA
with repeated measurements were evaluated, and the following
factors were analyzed: type—cerebellar mutant (CM)/wild type
(WT), strain—B6CBA/B6.BR, sex—female/male, and within-
group factors day-session and/or time-bout (session, bout; if
applicable). Interactions of these factors were also assessed.
All ANOVA-tests were followed by planned comparisons
performed using t-tests with a Bonferroni correction for repeated
measurements (day-session and/or time-bout). The data ordered
in a paired design were analyzed using the paired t-test. The
preference for the selected quadrants was verified using the
one-sample t-test against a value of 25%, which represents a
random occurrence. The data are presented as mean ± SEM.
p < 0.05 was considered statistically significant. Reported F
and t-values are considered as F0 and t0, respectively, before the
start of permutational tests. ANOVAs and t-tests were performed
with maximal 5000 and 10,000 permutations, respectively.
Statistical analyses were conducted using the R version 3.1.2 for
Mac OS.

Results

Body Weight
The mean body weight of mice is presented in Table 1. Both pcd
and Lurcher mutants showed significantly reduced body weights
compared to their healthy counterparts. Moreover, pcd mice
showed significantly lower body weights compared to Lurchers,
even though the wild typemice for both groups were not different
(for statistics see Supplementary Table 1).

Open Field
Spatial distribution of the exploratory activity in the open field is
presented in Figure 2A. Despite an evident preference for corners
of the square arena in all experimental groups, B6CBA mice, and
especially B6CBA Lurchers, showed a higher tendency to explore
the entire arena. The significance of individual parameters
measured in the open field on individual factors (type, strain, sex)
and their interactions are shown in Table 2.

Distance moved is shown in Figure 2B. While pcd females
moved a shorter distance in the open field than B6.BR wild type
females, Lurcher females walked longer distances than B6CBA
wild type females. In males, no significant differences were found
between mutant and wild type mice. Wild type females and pcd
and wild type males of the B6.BR strain had longer distances
moved than did their B6CBA counterparts. Pcd males moved
longer distances than pcd females (t = −3.68, p < 0.001) and
B6CBA wild type males moved longer distances than females
(t = −2.40, p < 0.020).

Locomotion activity is shown in Figure 2C. The activity was
higher in Lurcher females than in B6CBA wild type females and
in pcd males than in B6.BR wild type males. Strain comparison
showed higher activity in B6.BR wild type females, mutant and
wild type males than in their B6CBA counterparts. Pcd males
had higher locomotion activity than pcd females (t = −3.76,
p < 0.001), and B6CBA wild type males were more active than
females (t = −2.52, p < 0.013).

Thigmotaxis is displayed in Figure 2D. Thigmotaxis was
significantly lower in Lurcher males than in B6CBA wild type
males. B6.BR males showed higher thigmotaxis than B6CBA
males. There was no effect of sex on thigmotaxis in the open field.

The parameter walking speed is shown in Figure 2E. Walking
speed in the open field arena was lower in pcd females than
in B6.BR wild type females, in pcd males than in B6.BR wild
type males, and in Lurcher males than in B6CBA wild type
males. Strain comparison showed that pcd females walked slower
than Lurcher females, but pcd males were faster than Lurcher
males. Both B6.BR wild type females and males achieved a higher
walking speed than B6CBA wild type mice. Pcd males showed
higher walking speed than pcd females (t = −3.59, p <

0.001), and B6CBA wild type males walked faster than females
(t = −2.02, p < 0.048).

Morris Water Maze
Parameters measured in the Morris water maze are displayed
in Figures 3–5. For the significance of the effect of individual
factors (type, strain, sex, day-session) and their interactions on
parameters measured in the Morris water maze, see Tables 3, 4.
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FIGURE 2 | Open field test: (A) Superposition of trajectories

(frequency of animal presence) for females and males in the

arena; (B) Total distance moved (cm); (C) Percentage of time

spent with locomotion activity (%); (D) Percentage of

thigmotaxis (% moved distance in the 3cm border zone) and

(E) Mean walking speed (cm/s) during locomotion activity

periods. Statistical significance was evaluated using a permutational

t-test. Within-strain comparison: *p < 0.05, **p < 0.01, and ***p < 0.001.

Between-strain comparison: #p < 0.05, ##p < 0.01, and
###p < 0.001. Data are presented as mean ± SEM.

Typical examples of trajectory shapes observed during the
experiment are shown in Figures 6A–F.

Escape Latencies
Escape latencies in the Morris water maze (Figure 3A) were
significantly longer in both types of cerebellar mutants than in
their wild type littermates during the test with the visible as well
as the hidden platform. The only day on which the difference was
low (for the B6.BR mice, it was insignificant) was the first day
with the hidden platformmoved into the opposite quadrant (D6).
Strain comparison showed smaller differences in both mutant as
well as wild type mice. Compared with Lurchers, pcd mice (both
males and females) had longer latencies in the visible platform

task, while no differences between themutants were found during
the hidden platform task. In addition, B6.BR wild type mice
achieved worse results than their B6CBA counterparts did (for
females, only at the beginning of the visible platform task, but
for males also at the end of the hidden platform task). The direct
comparison of females and males showed differences in B6.BR
wild type mice only on the day-session 3 (t = −5.28, p < 0.001)
and day-session 5 (t = −2.72, p = 0.023).

Distance Moved
Distance moved (Figure 3B) was significantly longer in Lurcher
mice compared with wild type B6CBA mice on all days of the
test. On the other hand, pcd mice showed a markedly longer
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TABLE 2 | Open field test: statistical significances of the between-group factors (type, strain, and sex) and their interactions.

Between-group factors Distance Locomotion Thigmotaxis Walking speed

F(1, 138) p F(1, 138) p F(1, 138) p F(1, 138) P

Type 3.24 0.045 18.12 <0.001 6.32 0.007 55.21 <0.001

Strain 48.45 <0.001 37.04 <0.001 15.63 <0.001 49.22 <0.001

Sex 4.14 n.s. 2.80 n.s. 1.48 n.s. 4.28 0.020

Type:Strain 21.06 <0.001 6.12 0.005 0.54 n.s. 31.48 <0.001

Type:Sex 0.66 n.s. 1.76 n.s. 0.70 n.s. 0.30 n.s.

Strain:Sex 2.08 n.s. 0.00 n.s. 4.41 0.032 4.77 0.023

Type:Strain:Sex 12.46 <0.001 8.38 0.004 0.33 n.s. 13.01 <0.001

Permutational Three-Way ANOVA.

trajectory than wild type B6.BR mice only in the visible platform
task, except for on the first day, while the difference appeared
only occasionally in the next phase. In wild type mice, mild
strain differences appeared only in the visible platform task.
Nevertheless, in the mutants, a significant difference appeared in
the hidden platform task when the distance moved was markedly
longer in Lurchers than in pcd mice. Sex differences were found
only on the day-session 3 in B6.BR wild type mice (t = −2.72,
p = 0.037).

Swimming Speed
Swimming speed (Figure 3C) was significantly lower in pcdmice
than in other mice.

On the other hand, Lurchers did not swim slower than their
wild type littermates. Lurchermales were even significantly faster
than wild type ones on day-session 1. Strain comparison showed
a slower swimming speed in B6.BR wild type mice than in
B6CBA ones, namely in the visible platform phase. There were
no significant sex differences in swimming speed.

Heading Deviation
Heading deviation error (Figure 4A) was significantly higher in
mutant mice than in their wild type littermates. In the B6.BR
strain, the differences were mainly seen in the visible platform
task, while, in the B6CBA strain, they were significant for
almost the entire course of the experiment. In females, no strain
differences were seen. B6.BR wild type males were occasionally
worse than B6CBA males. The only sex difference in heading
deviation error was found on the day-session 10 in B6.BR wild
type mice (t = −3.42, p = 0.011).

Direct Swim
The percentage of direct swim trials (Figure 4B) was high in wild
type mice of both strains in the visible platform task except for
the first day session. Also, on some days of the hidden platform
task, wild type mice showed a significantly higher percentage
of direct swim trials than their mutant littermates. In mutant
mice, direct swim trials were rare in both phases of the test.
Strain differences showing better performance in B6CBA mice
were only seen for a few day-sessions and mainly for wild
type mice. Males and females did not differ in direct swim
percentage.

Thigmotaxis
Thigmotaxis (Figure 5A) was significantly higher in both
cerebellar mutants than in wild type animals on most days of the
water maze test. Strain differences, on the other hand, were poor.
The only difference between males and females was found on the
day-session 5 in B6.BR wild type mice (t = −3.19, p = 0.010).

Floating Analysis
Floating analysis (Figure 5B) revealed almost no differences in
the percentage of time spent without activity between mutant
and wild type mice. Nevertheless, in cerebellar mutants, a strain
difference was observed, since floating behavior was very rare in
Lurcher mutants. B6.BR wild type males spent significantly more
time floating than females on the day-session 3 (t = −3.47,
p = 0.003), day-session 4 (t = −2.86, p = 0.015), day-session
5 (t = −2.87, p = 0.013), and day-session 7 (t = −2.87,
p = 0.035).

Morris Water Maze Task Acquisition
Significance of the within factor (day-session) indicated the
importance of development of the parameters during the course
of the Morris water maze test (Tables 3, 4). Learning process,
which was manifested as a shortening of escape latencies
(Figure 3A, Table 5) and distance moved (Figure 3B, Table 5),
was detectable for the visible platform task in all groups of mice
and for the hidden platform task for both B6CBA and B6.BR
wild type mice and B6CBA Lurcher males. Lurcher females and
both pcd males and females did not learn the hidden platform
task (Table 5). Wild type mice of both strains also showed
a significant decrease of heading deviation error (Figure 4A,
Table 5) and an increase of the direct swim percentage
(Figure 4B, Table 5) during both visible and hidden platform
tasks. Lurcher mice improved heading deviation and direct swim
percentage (males only) during the visible platform task, but
not during the hidden platform task. Pcd mice did not improve
their heading deviation or direct swim percentage in either of the
tasks.

Change of the platform position and its concealment
(compare day-sessions 5 and 6) led to significant prolongation
of both latencies and distance moved in all groups of mice
(Figures 3A,B,Table 5), an increase in heading deviation error in
all groups except pcd females (Figure 4A, Table 5) and a decrease
in the direct swim percentage in wild type mice and Lurcher
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FIGURE 3 | Morris water maze: (A) Mean escape latency (s); (B) Total

distance moved (cm) and (C) Mean swimming speed during periods

of active swimming (cm/s). Statistical significance was evaluated using

permutational t-test with Bonferroni correction for the repeated measurement

for within-strain comparisons (pcd vs. B6.BR wild type, Lurcher vs. B6CBA

wild type) as well as for between-strain comparisons of cerebellar mutants

(CM; pcd vs. Lurcher) and wild types (WT; B6.BR WT vs. B6CBA WT). Data

are presented as mean ± SEM.
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FIGURE 4 | Morris water maze: (A) Heading deviation (◦) from the

direct swim to the platform and (B) Percentage of direct swim trials

(%). Statistical significance was evaluated using permutational t-test with

Bonferroni correction for the repeated measurement for within-strain

comparisons (pcd vs. B6.BR wild type, Lurcher vs. B6CBA wild type) as well

as for between-strain comparisons of cerebellar mutants (CM; pcd vs.

Lurcher) and wild types (WT; B6.BR WT vs. B6CBA WT). Data are presented

as mean ± SEM.

males (Figure 4B, Table 5). The effect of change of the platform
position and its concealment is also shown in Supplementary
Figure 1.

Probe Trial
Probe trial on the last day of the Morris water maze test
showed a mild preference for the NW quadrant in which
the hidden platform was localized for the previous 6 day-
sessions in B6CBA and B6.BR wild type mice. Surprisingly,
both types of cerebellar mutants showed a significant
preference for the SE quadrant, where the visible platform
was localized during the first phase of the water maze
test (Figure 6G). These findings were confirmed by the
measurement of latency of the first occurrence in the former
position of the visible and hidden platform (Supplementary
Figure 2).

Forced Swimming Test
Depressive-like behavior, which manifested as a state of
immobility in the Porsolt’s forced swimming test, is presented
in Figure 7. The analysis showed a significant between-group
effect of the type and strain, but not their interaction (Table 6).
Nevertheless, a Three-Way ANOVA showed a significant effect of
type:sex as well as type:strain:sex factor interactions (Table 6). A
repeated measurement ANOVA also showed a significant within-
group factor effect of the time-bout and day-session (Table 6).

Total length of immobility in pcd females did not significantly
differ from that in B6.BR wild type females (except the first 5min
time-bout in day-session 3). On the contrary, pcd males showed
less immobility than B6.BR wild type males (Figure 7). In B6CBA
mice, both Lurcher females and males had a shorter duration
of immobility than did wild type mice in most time-bouts of
day-session 2 and 3 (Figure 7). The occurrence of immobility
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FIGURE 5 | Morris water maze: (A) Percentage of thigmotaxis (% of

distance moved in 10cm border zone) and (B) Percentage of floating

(% of time spent without swimming). Statistical significance was

evaluated using permutational t-test with Bonferroni correction for the

repeated measurement for within-strain comparisons (pcd vs. B6.BR wild

type, Lurcher vs. B6CBA wild type) as well as for between-strain

comparisons of cerebellar mutants (CM; pcd vs. Lurcher) and wild types (WT,

B6.BR WT vs. B6CBA WT). Data are presented as mean ± SEM.

periods was very low in Lurchermice; thus, their immobility state
duration was significantly shorter than in pcd mice in each day-
session for females and the last 2 day-sessions for males. B6CBA
wild type females showed less immobility than B6.BR wild type
females in the first time-bout for day-session 1 and 2 as well as the
first two time-bouts on day-session 3. The sex differences were
found in pcd mice; males showed less immobility than females
(Figure 7).

Furthermore, while the immobility was permanently rare in
Lurchers, its duration increased from the day-session 1 to 3 in
other mice (Table 7). For pair comparison of time-bout 1 vs.
time-bout 3 for each day-session, see Supplementary Table 2.

Quantitative Histology
Stereological analysis showed only an insignificant reduction in
the density of retinal photoreceptors nor ONL volume relative

to whole retina volume in pcd mutants compared with their
healthy littermates, or with B6CBA Lurcher and wild type mice
(Figure 8).

Discussion

In this study, we have shown specific features of spatial
performance and behavioral differences in response to the
Morris water maze task in pcd and Lurcher mice, the most
frequently used mouse models of olivocerebellar degeneration
(for review, see Lalonde and Strazielle, 2007; Cendelin, 2014).
Although it has been described that the neurodegenerative
process disrupts spatial learning in bothmutants, specific features
of their spatial performance, which are presented here, have
not been reported and sufficiently explained before, and even
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TABLE 3 | Morris water maze—escape latency, distance moved, and swimming speed: statistical significances of the between-group factors (type,

strain, and sex) and within-group factors (session) as well as their interactions.

VISIBLE PLATFORM TASK

Between-group factors Latency Distance moved Swimming speed

F(1, 138) p F(1, 138) p F(1, 138) p

Type 665.03 <0.001 424.95 <0.001 15.29 <0.001

Strain 100.00 <0.001 0.01 n.s. 148.94 <0.001

Sex 0.70 n.s. 1.18 n.s. 2.41 n.s.

Type:Strain 31.43 <0.001 15.00 <0.001 58.87 <0.001

Type:Sex 0.11 n.s. 0.03 n.s. 1.62 n.s.

Strain:Sex 4.91 n.s. 0.07 n.s. 3.88 0.043

Type:Strain:Sex 0.57 n.s. 0.17 n.s. 0.01 n.s.

Within-group factors F(4, 552) p F(4, 552) p F(4, 552) p

Session 221.38 <0.001 251.08 <0.001 13.52 <0.001

Type:Session 15.50 <0.001 17.14 <0.001 2.22 n.s.

Strain:Session 1.66 n.s. 0.47 n.s. 7.08 <0.001

Sex:Session 1.62 n.s. 0.95 n.s. 0.90 n.s.

Type:Strain:Session 14.23 <0.001 11.25 <0.001 0.95 n.s.

Type:Sex:Session 0.68 n.s. 2.79 <0.001 0.09 n.s.

Strain:Sex:Session 2.01 n.s. 0.80 n.s. 0.21 n.s.

Type:Strain:Sex:Session 2.62 0.037 1.50 n.s. 0.85 n.s.

REVERSAL HIDDEN PLATFORM TASK

Between-group factors Latency Distance moved Swimming speed

F(1, 138) p F(1, 138) p F(1, 138) p

Type 291.22 <0.001 192.35 <0.001 57.66 <0.001

Strain 6.71 0.005 89.06 <0.001 163.72 <0.001

Sex 0.66 n.s. 3.50 n.s. 2.72 n.s.

Type:Strain 11.03 0.008 176.79 <0.001 60.70 <0.001

Type:Sex 0.07 n.s. 0.48 n.s. 0.14 n.s.

Strain:Sex 4.45 0.025 0.01 n.s. 2.48 0.048

Type:Strain:Sex 0.05 n.s. 1.50 n.s. 0.43 n.s.

Within-group factors F(5, 690) p F(5, 690) p F(5, 690) p

Session 28.67 <0.001 43.91 <0.001 16.82 <0.001

Type:Session 15.68 <0.001 20.09 <0.001 5.42 <0.001

Strain:Session 1.13 n.s. 1.33 n.s. 0.47 n.s.

Sex:Session 1.09 n.s. 1.11 n.s. 0.62 n.s.

Type:Strain:Session 1.21 n.s. 1.75 0.025 0.45 n.s.

Type:Sex:Session 0.13 n.s. 0.82 n.s. 0.92 n.s.

Strain:Sex:Session 2.07 n.s. 0.90 n.s. 1.05 n.s.

Type:Strain:Sex:Session 1.79 n.s. 1.26 n.s. 0.18 n.s.

Permutational Three-Way ANOVA with repeated measurements.

contradict some earlier opinions (Goodlett et al., 1992; Lalonde
and Thifault, 1994). With regard to many factors that could
influence the performance of the mice in behavioral tests, e.g.,
specificmutations, genetic background, sex, and the environment
(for review, see Wolfer and Lipp, 2000; D’hooge and de Deyn,
2001), we performed a detailed comparative behavioral analysis
of spatial navigation, learning and memory in pcd and Lurcher
mutants. In order to assess specific behavioral abnormalities that

could influence performance in the spatial navigation task, open
field and forced swimming tests were done.

Behavior of Pcd and Lurcher Mutants in the
Open Field and Forced Swimming Test
The type of the mutation, background strain and sex influenced
behavior in both open field and forced swimming tests. The
effect of sex of experimental animals was relatively stronger in
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TABLE 4 | Morris water maze—heading deviation, direct swim percentage, thigmotaxis, and floating: statistical significances of the between-group

factors (type, strain, and sex) and within-group factors (session) as well as their interactions.

VISIBLE PLATFORM TASK

Between-group factors Heading Direct swim Thigmotaxis Floating

F(1, 138) p F(1, 138) p F(1, 138) p F(1, 138) p

Type 314.21 <0.001 553.17 <0.001 101.37 <0.001 0.29 n.s.

Strain 1.45 n.s. 80.97 <0.001 0.39 n.s. 16.35 <0.001

Sex 0.02 n.s. 2.87 n.s. 1.89 n.s. 12.13 <0.001

Type:Strain 1.17 n.s. 37.56 <0.001 1.80 n.s. 5.82 0.037

Type:Sex 2.08 n.s. 2.46 n.s. 1.78 n.s. 1.11 n.s.

Strain:Sex 0.52 n.s. 0.03 n.s. 0.73 n.s. 13.43 <0.001

Type:Strain:Sex 0.10 n.s. 2.21 n.s. 0.05 n.s. 0.42 n.s.

Within-group factors F(4, 552) p F(1, 138) p F(4, 552) p F(4, 552) p

Session 43.71 <0.001 75.07 <0.001 214.95 <0.001 7.79 <0.001

Type:Session 11.01 <0.001 52.12 <0.001 60.72 <0.001 3.11 0.003

Strain:Session 0.96 n.s. 7.20 <0.001 1.65 n.s. 3.61 <0.001

Sex:Session 0.23 n.s. 0.46 n.s. 3.58 n.s. 1.44 n.s.

Type:Strain:Session 2.57 0.034 3.13 <0.001 3.61 <0.001 6.90 <0.001

Type:Sex:Session 0.91 n.s. 0.19 n.s. 3.39 <0.001 0.45 n.s.

Strain:Sex:Session 0.14 n.s. 0.61 n.s. 1.20 n.s. 6.03 <0.001

Type:Strain:Sex:Session 1.44 n.s. 0.81 n.s. 0.73 n.s. 0.55 n.s.

REVERSAL HIDDEN PLATFORM TASK

Between-group factors Heading Direct swim Thigmotaxis Floating

F(1, 138) p F(1, 138) p F(1, 138) p F(1, 138) p

Type 174.80 <0.001 113.05 <0.001 124.96 <0.001 0.07 n.s.

Strain 0.90 n.s. 16.52 <0.001 6.76 0.008 13.07 <0.001

Sex 0.36 n.s. 0.51 n.s. 0.62 n.s. 5.87 0.018

Type:Strain 8.64 <0.001 13.26 <0.001 10.45 <0.001 6.64 <0.001

Type:Sex 0.30 n.s. 0.16 n.s. 2.31 n.s. 0.00 n.s.

Strain:Sex 6.36 0.014 1.40 n.s. 1.39 n.s. 4.40 n.s.

Type:Strain:Sex 0.02 n.s. 0.39 n.s. 0.00 n.s. 0.01 n.s.

Within-group factors F(5,690) p F(5,690) p F(5,690) p F(5,690) p

Session 16.00 <0.001 12.51 <0.001 3.28 n.s. 2.14 0.022

Type:Session 5.30 <0.001 9.32 <0.001 7.53 <0.001 0.51 n.s.

Strain:Session 2.77 <0.001 1.96 <0.001 1.77 n.s. 1.28 n.s.

Sex:Session 3.62 0.005 0.72 n.s. 2.07 <0.001 1.36 n.s.

Type:Strain:Session 0.82 n.s. 0.83 n.s. 0.94 n.s. 1.27 n.s.

Type:Sex:Session 1.65 n.s. 1.26 n.s. 2.65 0.024 1.23 n.s.

Strain:Sex:Session 2.78 0.013 1.26 n.s. 0.43 n.s. 1.17 n.s.

Type:Strain:Sex:Session 0.15 n.s. 2.55 0.005 3.01 0.004 0.62 n.s.

Permutational Three-Way ANOVA with repeated measurements.

these tests than in the Morris water maze and was, in this case,
sufficient to completely invert the differences. In the open field,
B6.BRmice showed typical preference to the corners of the arena,
while, in B6CBA mice, the activity was more dispersed through
the arena. Such higher dispersion of the activity was more
marked in Lurchers than in their wild type littermates. Abnormal
exploration has been reported also by Caston et al. (1998) who

found significantly reduced exploratory behavior in Lurchers
despite an increase in spontaneous activity. The most obvious
phenomenon observed in the forced swimming test was the
absence of floating even during later phases of each day-session
of the forced swimming test and the absence of an increase of
floating duration across the day-sessions in Lurcher mice. While
tendency toward inactivity and depressive-like behavior were
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FIGURE 6 | Examples of typical trajectories (A–F) of cerebellar

mutants and wild type mice. (A) Thigmotaxis (e.g., B6.BR WT female,

day-session 1, trial 1) was typical for Lurcher (Lc) and both B6.BR and

B6CBA wild type (WT) mice on the first day-session. (B) Rotation (e.g.,

pcd male, day-session 1, trial 1) was an abnormal trajectory pattern that

occurred in both cerebellar mutants in all day-sessions. (C) Focal search

(e.g., B6.BR WT male, day-session 6, trial 1) in area of previous platform

position appeared in WT and Lc mice immediately after change of the

platform position (day-session 6). (D) Scanning (e.g., B6.BR WT male,

day-session 6, trial 3) or (E) circling (e.g., B6.BR WT female, day-session

7, trial 1) strategy was used by WT mice before they learned the new

platform position. (F) Direct swim (e.g., B6CBA WT male, day-session 11,

trial 3) typical for WT mice in day-sessions 2–5 (visible platform) and

appearing also in WT mice at the end of hidden platform task, but not in

cerebellar mutants. Hatched circles indicate position of visible platform

empty circles indicate position of hidden platform. (G) Morris water maze

(probe trial): Percentage of distance moved through individual quadrants

during the first 30 s of the first trial (E-starting position) of day-session 12.

Statistical significance was evaluated using one-sample permutational

t-test against 25% value, which represents a random occurrence:

*p < 0.05 and **p < 0.01, ***p < 0.001. Data are presented as mean ±

SEM.

observed in pcd mice, Lurchers showed rather inadequate high
activity.

Features of behavior seen in both open field and forced
swimming tests comply with behavioral disinhibition affecting
Lurcher mice (Frederic et al., 1997; Lalonde, 1998; Hilber et al.,
2004; Porras-Garcia et al., 2005). The discrepancy between
less fear-related behavior and elevated levels of corticosterone
during stressful situations (Frederic et al., 1997; Hilber et al.,
2004; Lorivel et al., 2014), a lack of prepulse inhibition and an
inability to produce the immobility response suggest that Lurcher
mice have a reduced capacity to inhibit selective components
of natural behaviors due to an affection of the sensorimotor
gating mechanism (Lalonde, 1998; Porras-Garcia et al., 2005).
In pcd mice, only indirect evidence suggesting the possibility of
some level of behavioral disinhibition and perseveration were
reported in studies of spontaneous alternation, exploration and
habituation (Lalonde et al., 1987, 1989). Since more dispersed
activity in the open field and less frequent immobility in the
forced swimming test were also in B6CBA wild type mice as
compared with B6.BR wild type mice, these phenomena are not

only due to the Lurcher phenotype, but might be at least a
partially strain-related phenomenon.

Performance of Pcd and Lurcher Mutants in the
Morris Water Maze Tests
Both pcd and Lurcher cerebellar mutants showed poor
performance in the Morris water maze. Despite finding a marked
improvement in Lurcher mice during the visible platform task,
the results were worse than in wild type controls, and there were
only a few trials with a direct swim toward the goal. The results
for learning the hidden platform position were much worse,
and among cerebellar mutants, it was detectable only in Lurcher
males. This complies with earlier findings (Lalonde and Thifault,
1994; Cendelin et al., 2014), and may support the hypothesis that
Lurcher mice have impaired visuomotor integration suggested
by Lalonde and Thifault (1994). Nevertheless, visuomotor
integration ability seems to be partially preserved in Lurchers,
since they are able to learn the visual platform task. Preference
for the zone of the previous platform position during the first
trial after changing the platform position (analogy of probe trial)
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TABLE 5 | Morris water maze: statistical significances of change between or during individual phases.

VISIBLE PLATFORM TASK (DAY-SESSION 1VS. DAY-SESSION 5)

Latency Distance moved Heading Direct swim

Females t p t p t p t p

pcd B6.BR 4.90 <0.001 7.43 <0.001 1.39 n.s. −1 n.s.

Wild type B6.BR 14.25 <0.001 13.28 <0.001 9.46 <0.001 −7.51 <0.001

Lurcher B6CBA 8.82 <0.001 7.83 <0.001 3.06 0.007 −0.81 n.s.

Wild type B6CBA 11.44 <0.001 9.52 <0.001 4.93 <0.001 −9.55 <0.001

Males t p T p t p t p

pcd B6.BR 3.80 0.002 7.99 <0.001 2.06 n.s. 0 n.s.

Wild type B6.BR 9.54 <0.001 9.26 <0.001 5.50 <0.001 −6.67 <0.001

Lurcher B6CBA 9.23 <0.001 8.74 <0.001 3.68 0.001 −2.96 0.016

Wild type B6CBA 7.27 <0.001 6.68 <0.001 5.11 <0.001 −14.75 <0.001

REVERSAL HIDDEN PLATFORM TASK (DAY-SESSION 6VS. DAY-SESSION 11)

Latency Distance moved Heading Direct swim

Females t p T p t p t p

pcd B6.BR 1.14 n.s. 0.22 n.s. 1.17 n.s. −0.56 n.s.

Wild type B6.BR 6.00 <0.001 7.52 <0.001 4.09 <0.001 4.55 <0.001

Lurcher B6CBA −0.58 n.s. −0.15 n.s. −1.47 n.s. 1.73 n.s.

Wild type B6CBA 6.23 <0.001 7.27 <0.001 4.35 <0.001 11.12 <0.001

Males t p t p t p t p

pcd B6.BR −0.43 n.s. 1.12 n.s. 1.96 n.s. 0 n.s.

Wild type B6.BR 3.63 0.004 4.38 <0.001 3.66 0.002 7.32 <0.001

Lurcher B6CBA 3.16 0.004 3.65 0.002 1.41 n.s. 1.68 n.s.

Wild type B6CBA 5.62 <0.001 6.22 <0.001 4.50 <0.001 7.62 <0.001

PLATFORM TRANSITION (DAY-SESSION 5VS. DAY-SESSION 6)

Latency Distance moved Heading Direct swim

Females t p t p t p t p

pcd B6.BR −3.23 0.006 −2.93 0.011 −1.78 n.s. 0 n.s.

Wild type B6.BR −13.71 <0.001 −13.16 <0.001 −15.43 <0.001 7.8 <0.001

Lurcher B6CBA −8.76 <0.001 −9.28 <0.001 −2.51 0.025 1.14 n.s.

Wild type B6CBA −10.42 <0.001 −12.56 <0.001 −8.48 <0.001 11.78 <0.001

Males t p t p t p t p

pcd B6.BR −2.64 0.020 −2.19 0.042 −2.80 0.016 −1.46 n.s.

Wild type B6.BR −11.81 <0.001 −12.63 <0.001 −10.13 <0.001 7.91 <0.001

Lurcher B6CBA −8.55 <0.001 −8.35 <0.001 −4.55 <0.001 2.96 0.016

Wild type B6CBA −8.36 <0.001 −9.60 <0.001 −6.91 <0.001 13.83 <0.001

Permutational paired t-test.

also supports the idea that Lurcher mutants have some level of
spatial learning ability that seems to be strongly dependent on
the possibility of visual guidance training, which was constituted
in our study by the 5 day-sessions of the visual platform task.
Poor performance in the hidden platform task, on the other
hand, may suggest a severe spatial learning deficit.

Although it has been reported in pcd mice that their
performance in the visual platform task is not impaired

compared to wild type controls (Goodlett et al., 1992), we
observed poor performance of pcdmice in both visual and hidden
platform tasks. The first study of spatial navigation in pcd mice
used quite small experimental groups of male mice (Goodlett
et al., 1992). In the present study, the results are based on larger
samples, and males and females were analyzed separately.

An interesting phenomenon seen in the probe trial was
the marked preference for the quadrant in which the visible
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FIGURE 7 | Forced swimming test: percentage of immobility state (%

of time spent without moving). Statistical significance was evaluated

using a permutational t-test with a Bonferroni correction for the repeated

measurement for within-strain comparisons (pcd vs.B6.BR wild type, Lurcher

vs. B6CBA wild type) and for between-strain comparisons of cerebellar

mutants (CM; pcd vs. Lurcher) and wild types (WT; B6.BR WT vs. B6CBA

WT). Sex differences were significant in pcd mutants only from day-session

1, time-bout 2 until day-session 3, time-bout 1 (t = 3.13, p = 0.011; t = 4.05,

p = 0.003; t = 3.89, p = 0.004; t = 2.90, p = 0.030; t = 3.67; p = 0.005;

t = 2.93, p = 0.019, respectively). Data are presented as mean ± SEM.

platform was localized, and the omitting of the quadrant of
the more recent localization of the hidden platform in both
types of cerebellar mutants. In pcd mice, this is an artifact
of spending a long time in the proximity of the starting
point due to low activity. Furthermore, the reversal hidden
platform task seemed to be extremely difficult for Lurchers. The
preference of the original target quadrant could be explained
by the behavioral inflexibility of Lurcher mice (Dickson et al.,
2010). Behavioral flexibility, inhibitory response, and working
memory are high-level cognitive skills, which enable the effective
execution of goal-directed behaviors (Dalley et al., 2004). These
skills have consistently been shown to be dependent on the
prefrontal cortex (Dalley et al., 2004; Robbins and Arnsten,
2009). It has been demonstrated that the cerebellum modulates
the prefrontal cortex activity (Strick et al., 2009; Rogers et al.,
2013). Behavioral inflexibility, as well as behavioral disinhibition,
which are closely related to inhibitory response (Young et al.,
2009), suggested the affection of higher cognitive skills in
Lurcher mutants. Thus, the poor performance of cerebellar
mutants in the water maze task could be caused by at least
four types of factors or their combinations: (1) Cognitive
disorders, (2) Sensory disorders, (3) Motivation and behavioral
abnormalities, and (4) Motor deficits. The performance is further
modified by differences in manifestation of the mutations, strain,
and sex.

Role of Cognition
The Morris water maze task requires at least two types of
non-motor learning. First, association between the platform
and escape from the maze must be created. Second, the
animal must start to learn the position of the platform.

Associative learning processes are supposed to be strongly
related to the cerebellum (Gruart et al., 1997; Jimenez-Diaz
et al., 2004; for review, see Thompson and Steinmetz, 2009;
Perciavalle et al., 2013) and its abnormalities have been
described in both Lurcher and pcd mutants (Chen et al., 1996;
Porras-Garcia et al., 2005, 2010; Brown et al., 2010). Thus,
delayed association between the platform and water escape
could affect the motivation to learn its position in cerebellar
mutants.

Traditionally, spatial cognition is related to the hippocampus
(O’Keefe and Nadel, 1978). Nevertheless, the cerebellum
participates in the construction of hippocampal spatial
representation and, thus, plays an important role in goal-
directed navigation (Rochefort et al., 2011, 2013; Onuki et al.,
2013). Therefore, it could be assumed that the absence of
Purkinje cells in both pcd and Lurcher mice might have a strong
impact on the hippocampal processes involved in solving spatial
tasks.

Role of Sensory Impairments
Since good vision is crucial for spatial navigation, retinal
degeneration could be an important factor that strongly
influences behavior, namely spatial performance in pcd mice.
Nevertheless, the retinal degeneration in pcd mice is only slowly
progressive (Blanks et al., 1982; Lavail et al., 1982; Blanks and
Spee, 1992; Marchena et al., 2011), and we have found only an
insignificant reduction of photoreceptor density in the retinas
of pcd mice at the age at which they were tested for spatial
orientation. Despite this, some impact of vision problems on
behavior during spatial tasks could not be excluded due to the
possible functional imperfection of a degenerating retina even
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TABLE 6 | Forced swimming test: statistical significances of the

between-group factors (type, strain, and sex) and within-group factors

(bout, session) as well as their interactions.

Immobility

Between-group factors F(1, 99) p

Type 39.45 <0.001

Strain 76.79 <0.001

Sex 0.03 n.s.

Type:Strain 0.43 n.s.

Type:Sex 18.15 <0.001

Strain:Sex 2.10 n.s.

Type:Strain:Sex 7.17 0.013

Within-group factors F(2, 198) p

Bout 23.02 0.011

Type:Bout 2.65 0.025

Strain:Bout 1.69 n.s.

Sex:Bout 1.37 n.s.

Type:Strain:Bout 17.60 <0.001

Type:Sex:Bout 2.87 0.023

Strain:Sex:Bout 1.13 n.s.

Type:Strain:Sex:Bout 1.67 n.s.

Within-group factors F(1, 99) p

Session 29.48 <0.001

Type:Session 12.91 <0.001

Strain:Session 5.00 0.005

Sex:Session 0.72 n.s.

Type:Strain:Session 0.24 n.s.

Type:Sex:Session 0.27 n.s.

Strain:Sex:Session 0.10 n.s.

Type:Strain:Sex:Session 0.03 n.s.

Within-group factors F(2, 198) p

Bout:Session 1.83 n.s.

Type:Bout:Session 1.08 n.s.

Strain:Bout:Sesion 1.22 n.s.

Type:Strain:Bout:Session 1.15 n.s.

Sex:Bout:Session 0.30 n.s.

Type:Sex:Bout:Sesion 3.56 n.s.

Strain:Sex:Bout:Sesion 0.41 n.s.

Type:Strain:Sex:Bout:Session 2.63 n.s.

Permutational Three-Way ANOVA with repeated measurements.

before a reduction of photoreceptor number becomes evident
(Marchena et al., 2011).

However, in addition, the cerebellar disorder itself may lead
to severe sensory dysfunctions by at least two mechanisms—
affection of perceptual processes and oculomotor abnormalities.
The cerebellum is associated with perceptual systems including
vision, proprioception and self-motion perception, and cerebellar

TABLE 7 | Forced swimming test: paired comparison of day-session 1 and

3 for each time-bout.

Groups Time-bout (min) Females Males

t p t p

pcd B6.BR 00− 05 −4.60 <0.001 −0.86 n.s.

05− 10 −0.53 n.s. −1.44 n.s.

10− 15 0.01 n.s. −3.22 0.006

Wild type B6.BR 00− 05 −4.07 0.003 −7.48 <0.001

05− 10 −3.30 0.012 −2.46 0.028

10− 15 −5.17 0.001 −2.93 0.011

Lurcher B6CBA 00− 05 −1.22 n.s. 1.04 n.s.

05− 10 0.14 n.s. 0.66 n.s.

10− 15 −0.51 n.s. 0.60 n.s.

Wild type B6CBA 00− 05 −2.93 0.011 −4.24 <0.001

05− 10 0.14 n.s. 0.66 n.s.

10− 15 −1.36 n.s. −2.41 0.033

Permutational paired t-test.

lesions lead to a wide range of sensory impairments (for review,
see Baumann et al., 2015). Therefore, cerebellar disorders may
severely affect spatial orientation ability due to the inappropriate
acquisition and processing of information necessary for space
navigation.

Control of oculomotor function is important for sighting
fixation and for the visual following of an object by a moving
individual. In Lurchers, abnormalities of the optokinetic and
vestibuloocular reflexes were described by van Alphen et al.
(2002). Since cerebellar Purkinje cells control oculomotor
coordination, including optokinetic and vestibuloocular reflexes
(for review, see Angelaki and Hess, 2005; Yakusheva et al., 2007),
oculomotor problems could be expected also in pcd mice, in
which, however, the vestibuloocular reflex has been found to be
almost normal (Killian and Baker, 2002).

For all of these reasons, sensory problems can be expected
to play a significant role in navigation difficulties in cerebellar
mutants. In the visible goal task, these problems may be less
important than in the case of the hidden goal task, since the
goal represents a single and marked intramaze object of interest
instead of multiple extramaze landmarks necessary for hidden
goal location.

Role of Motivation and Behavioral Abnormalities
Paradoxically, pcd mice showed short distances moved. This
fact can be explained by low swimming activity and longer
periods of floating compared with Lurchers. Therefore, their
trajectory was relatively short, even in the case where they
did not reach the platform and spent the entire trial slowly
swimming with floating periods, while Lurcher mice spent this
time intensively swimming. Higher tendency of inactivity in
pcd mice and higher swimming activity in Lurcher mice were
also seen in the forced swimming test. Floating is a behavioral
phenomenon that may substantially influence the results of
the water maze tasks (Llano Lopez et al., 2010) or may be a
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FIGURE 8 | (A) Histology of the retina in pcd and B6.BR wild type (WT) mice

stained with Gill’s hematoxylin. The bars indicate 50µm. (B) Mean number of

photoreceptors in outer nuclear layer (ONL) per mm3 of the retina and (C)

mean volume of ONL expressed as percentage of whole retina volume in pcd,

B6.BR WT, Lurcher (Lc) and B6CBA WT mice. Values of individual animals are

indicated by △ for females and ⃝ for males.

response to a difficult task as a manifestation of depressive-
like behavior and learned helplessness (Porsolt et al., 1979).
Potential sight impairment due to retinal degeneration and
poor fitness related to low body weight may make the spatial
task too difficult for pcd mice, which might induce learned
helplessness.

Role of Motor Impairment
For performance in the water maze task, swimming and direction
maintenance abilities are required. Motor impairment has been
shown many times in cerebellar mutants (Fortier et al., 1987;
Lalonde et al., 1996; Le Marec and Lalonde, 1997, 1998; Cendelin
et al., 2008, 2014). On the other hand, Fortier et al. (1987)
showed a normal EMG pattern in swimming Lurcher mice, but
not in walking ones, suggesting that swimming is not as affected
by the ataxia as gait. Furthermore, Lurcher mice achieved the
same swimming speed as wild type mice. In pcd mice, low
swimming speed could account for their abnormal swimming
pattern (Goodlett et al., 1992), but also for lower activity or worse
fitness. Nevertheless, in both Lurcher and pcd mice, we have
observed a high incidence of rotating, but almost no direct swim
trials. A low frequency of direct swim was even seen in Lurcher
mice at the end of the visible platform task when they showed
an improving ability to reach the visible goal. Therefore, motor
deficiency does not seem to affect swimming ability, but rather,

could influence trajectory shape and disable the maintenance of a
straight course toward the goal in cerebellar mutants.

Role of the Mutation, Strain Background and Sex
Poor spatial performance is a strong phenotypic manifestation of
particular mutations in pcd and Lurcher mice. These symptoms
are easily detectable by the tests, and other factors, such as
strain and sex, seem to only slightly modulate performance.
Sex dimorphism as a function of brain structures related to
both behavioral processes and motor control has been described
(Arvidsson et al., 2014), and significant sex differences were even
reported in neurological manifestations of mutations in mice
(Walton et al., 2012; Truong et al., 2013).

More problematic is the comparison of the manifestation of
mutations. Despite the main features and extent of cerebellar
degeneration being similar, pcd and Lurcher mice differ in a
number of aspects. The overall performance of pcd mice in
the Morris water maze was worse than in Lurchers. Grid2Lc

and Agtpb1pcd mutations not only differ in the mechanism of
cell death activation, but the spectrum of extracerebellar brain
damage and the affection of other tissues was wider with the
Agtpb1pcd mutation. Therefore, in this case, modifying factors
have a broader range of targets. Particularly, retinal degeneration
(Blanks et al., 1982; Lavail et al., 1982; Blanks and Spee,
1992; Marchena et al., 2011) and expression of Nna1 in the
skeletal muscles (Harris et al., 2000) are important. Since strain
differences between B6CBA and B6.BR wild type mice were also
observed in the present study, genetic background plays a role.
Pcd and Lurchermice are not commercially available on the same
strain background. Therefore, it is difficult to unambiguously
distinguish a specific mutation effect from the modifying effect
of strain-specific phenotypic traits, the importance of which was
particularly shown for floating behavior.

Recently, we have shown that, despite the Lurcher mutation
having a strongmanifestation, the phenotype could bemodulated
by genetic background (Cendelin et al., 2014). Considering the
magnitude of differences between the same mutants in different
strains and between different mutants, we could conclude that
strain differences could be sufficient to cover or mitigate some of
the mutation-related differences.

Conclusion

We have confirmed the severe impairments in cognitive and
behavioral tests in both pcd and Lurcher mutant mice. Contrary
to previous studies (Goodlett et al., 1992; Lalonde and Thifault,
1994), we found that visuomotor integration is only partially
disabled in Lurchers, and that pcd mice failed in both visual
and hidden goal tests, using large samples of mice. Overall
performance in the Morris water maze test was better in
Lurcher mutants than in pcd mice. The effect of the mutation
as well as of the genetic background was seen. The deficit
of spatial performance in cerebellar mutants may potentially
arise from a combination of cognitive, sensory, emotional, and
motor disturbances, all of which are expected to be of different
importance in various mutants. Mutation-related differences
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could be potentiated by specific phenotypic traits of different
strains of origin than these mutants.
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Supplementary Figure 1 - Effect of transition between visible platform and reversal 

hidden platform task in the Morris water maze. (A) Superposition of trajectories in the 

first trial (N-starting position depicted with arrows) of the day-session 5 (visible 

platform task). Hatched circles indicate the position of the visible platform. B6.BR 

wild type mice and both B6CBA Lurcher and wild type mice showed either&direct&or&
indirect&swim&toward&the&visible&platform swim to the visible platform, while pcd 

mice spent most of the time floating in the start area. (B) Superposition of trajectories 

in the first trial (E-starting position depicted with arrows) of day-session 6 (reversal 

hidden platform task). Empty circles indicate current position of the hidden platform 

and hatched circles indicate the previous position of visible platform (visible platform 

task). Mice of each experimental group showed a preference for the SE quadrant with 

previous localization of the visible platform. Nevertheless, in pcd mice the area of 

maximum activity was focused rather in the proximity of the starting point, while in 

wild type mice and in Lurchers the center of their activity corresponded more with the 

previous platform position. (C) Rose graphs show trajectory vector dispersion. Blue 

vectors demonstrate trajectories in the first trial of day-session 5 and red vectors 

demonstrate trajectories in the first trial of day-session 6. Lengths of the vectors 

indicate distance moved in logarithmic scale (dashed circles). Directions of the 

vectors indicate mean deviation from direct course toward the platform (0° represents 

direct swim). Higher dispersion of the heading direction vectors and longer 

trajectories in pcd mice at the end of the visible platform task (day-session 5), as well 

as immediately after changing the platform position and its concealment (day-session 

6) suggest that pcd mice did not search the platform in the appropriate area despite 

spending a lot of time there (A, B). In Lurcher mice, both vector direction dispersion 

and length in the visible platform task (day-session 5) were lower than in pcd mice 

but higher than in B6CBA and B6.BR wild type mice. The difference in vector 

direction dispersion and length between day-sessions 5 and 6 was also much more 

marked in Lurcher and both wild type mice than in pcd mice. 
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Supplementary Figure 2 - Morris water maze (probe trial): Latency of the first occurrence in the 
zone of former localization of the visible (center of the SE quadrant) and hidden (center of the NW 
quadrant) platform in the first trial (E-starting position) of day-session 12. Latencies of the first 
occurrence in hypothetical platforms localized in the middle of SW and NE quadrants, where the 
platform has never been placed are also shown. Both B6.BR and B6CBA wild type mice appeared 
earlier in the zone of previous localization of the hidden platform. On the other hand, cerebellar 
mutants showed shorter latency of first occurrence for the zone of former localization of the visible 
platform than for the hidden platform zone. For comparison of individual zones with visible 
platform zone: * p < 0.05, ** p < 0.01 and *** p < 0.001. For comparison of individual zones with 
hidden platform zone: # p < 0.05 and ## p < 0.01. Data are presented as mean ± SEM.



Supplementary Table 1 – Statistical significances of the between-group factors 
(type, strain and sex) and their interactions for body weight (pooled cohorts 1 and 2) 
as well as following planned comparisons. Permutational three-way ANOVA with 
repeated measurements and permutational two sample t-test. 
 
Three-way ANOVA   
Between-group factors F(1,245) p 
Type 463.97 < 0.001 
Strain 159.43 < 0.001 
Sex 450.75 < 0.001 
Type:Strain 86.47 < 0.001 
Type:Sex 11.88 < 0.001 
Strain:Sex 2.33 n.s. 
Type:Strain:Sex 0.13 n.s. 
   
Two sample t-test   
Planned comparisons t p 
Females   
pcd vs. wild type B6.BR -20.56 < 0.001 
Lurcher vs. wild type B6CBA -4.85 < 0.001 
pcd vs. Lurcher -11.58 < 0.001 
WT B6.BR vs. wild type B6CBA -1.42 n.s. 
   
Males   
pcd vs. wild type B6.BR -12.48 < 0.001 
Lurcher vs. wild type B6CBA -8.16 < 0.001 
pcd vs. Lurcher -9.33 < 0.001 
WT B6.BR vs. wild type B6CBA -2.10 0.037 
 



Supplementary Table 2 – Forced swimming test: paired comparison of the first 
(time-bout 1) and the last (time-bout 3) 5 min intervals for each day-session. 
Permutational paired t-test. 
!
Groups Day-session   Females  Males 

 t p  t p 
pcd B6.BR 1  -3.69 0.005  1.14 n.s. 
 2  -3.86 0.004  -1.95 n.s. 
 3  -2.22 0.05  -3.26 0.004 
        
wild type B6.BR 1  0.36 n.s.  -2.16 0.045 
 2  0.48 n.s.  0.13 n.s. 
 3  -1.22 n.s.  0.46 n.s. 
        
Lurcher B6CBA 1  -1.48 0.029  0.82 n.s. 
 2  -1.17 n.s.  -1.05 n.s. 
 3  -0.37 n.s.  -1.78 n.s. 
        
wild type B6CBA 1  -2.70 0.009  -2.54 0.021 
 2  -2.40 0.034  -2.26 0.044 
 3  -0.92 n.s.  -1.05 n.s. 
!
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• Embryonic  cerebellar  graft  survives  for  12 weeks  in  both  SCA2  and  control  mice.
• The  grafts  contained  numerous  Purkinje  cells.
• Long  distance  graft-to-host  axonal  connections  were  rarely  seen.
• Size  of  the cerebella  and  density  of PCs did  not  seem  to  be  reduced  in  SCA2  mice.
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a  b  s  t  r  a  c  t

SCA2  transgenic  mice  are  thought  to  be a useful  model  of  human  spinocerebellar  ataxia  type 2. There
is no  effective  therapy  for cerebellar  degenerative  disorders,  therefore  neurotransplantation  could  offer
hope. The  aim  of this  work  was  to assess  the  survival  and  morphology  of embryonic  cerebellar  grafts
transplanted  into  the  cerebellum  of  adult  SCA2  mice.  Four  month-old  homozygous  SCA2  and  negative
control  mice  were  treated  with  bilateral  intracerebellar  injections  of  an  enhanced  green  fluorescent
protein-positive  embryonic  cerebellar  cell  suspension.  Graft  survival  and  morphology  were  examined
three  months  later.  Graft-derived  Purkinje  cells  and  the  presence  of  astrocytes  in the  graft  were  detected
immunohistochemically.  Nissl and  hematoxylin–eosin  techniques  were  used  to  visualize  the  histological
structure  of  the  graft and  surrounding  host  tissue.  Grafts  survived  in all experimental  mice;  no differ-
ences  in  graft  structure,  between  SCA2  homozygous  and  negative  mice,  were  found.  The  grafts  contained
numerous  Purkinje  cells  but  long  distance  graft-to-host  axonal  connections  to the deep  cerebellar  nuclei
were rarely  seen.  Relatively  few  astrocytes  were  found  in  the  center  of the  graft.  No  signs  of inflammation
or  tissue  destruction  were  seen  in  the  area  around  the  grafts.  Despite  good  graft survival  and  the  presence
of  graft-derived  Purkinje  cells,  the  structure  of  the  graft did  not  seem  to promise  any  significant  specific
functional  effects.  We  have  shown  that  the  graft is  available  for long-term  experiments.  Nevertheless,  it
would  be  beneficial  to  search  for ways  of  enhancement  of  connections  between  the  graft  and  host.

© 2013 Elsevier Ireland Ltd. All rights reserved.

Abbreviations: ATXN2Q127, ataxin 2 with 127 glutamine repeats; DNA, Deoxyri-
bonucleic acid; EGFP, enhanced green fluorescent protein; GAFP, glial fibrillary
acidic protein; PC, Purkinje cell; pcd, Purkinje cell degeneration; PCR, polymerase
chain reaction; SCA, spinocerebellar ataxia.
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1. Introduction

The wide spectrum of human hereditary cerebellar degenerative
diseases [1] is also reflected by the large number of mouse models
of these diseases used for investigation of cerebellar functions and
pathology [2]. Human autosomal dominant spinocerebellar atax-
ias (SCA) SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 are caused
by an enlarged region of CAG trinucleotide repeats in the gene,
resulting in an expansion of the polyglutamine tract (poly-Q) in
the corresponding protein [1].

Transgenic mice carrying the human ataxin 2 gene, with
enlarged CAG repeat sequence, are used as a model of human
spinocerebellar ataxia 2 (SCA2) [3–6]. SCA2 mice suffer from a
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reduction in Purkinje cell (PC) number and show progressive motor
deficits [3–5]. In the most frequently used natural mutant mouse
models of hereditary cerebellar degeneration, such as pcd and
Lurcher mice, functional deficits appear early on [7–9], while in
SCA2 mice, it develops later and the onset varies based on: (1)
the number of glutamine repeats, (2) line of mice and also dif-
fers between (3) homozygotes and heterozygotes [4,5]. In the SCA2
mouse line, expressing Q58 ataxin 2 (Q58-11 line), motor deficits
on the rotarod test become evident at the age of 26 weeks in het-
erozygotes and at 16 weeks in homozygotes and the number of PCs
have declined by 50% by the age of 6 months [5]. SCA2 mice, in the
line expressing ataxin 2 with 127 glutamine repeats (ATXN2Q127),
have a more obvious pathological phenotype with an earlier onset
[4].

Currently, therapy for hereditary cerebellar degenerations is
ineffective; however, cerebellar transplantation could be promis-
ing. Several studies have shown long-term graft survival [10] and
improvement of motor performance due to treatment with var-
ious neurotransplantation methods [11–14] in mouse models of
cerebellar degeneration. Particularly, in C57BL/6J SCA2 transgenic
mice Chang et al. [15] found that intravenous injection of human
mesenchymal stem cells increased the survival of host PCs, delayed
onset of disease and improved motor function. Despite the abun-
dant research, there are no studies regarding the fate of embryonic
cerebellar grafts in SCA2 mice.

The aim of this work was to assess the survival and morphology
of embryonic cerebellar cell suspension grafts transplanted into the
cerebellum of adult SCA2 mice.

2. Materials and methods

2.1. Animals

Cerebellar transplantation was studied in SCA2 transgenic mice
of the B6D2-Tg(Pcp2SCA2)11Plt/J strain [5]. The C57BL/6-Tg(ACTB-
EGFP)1Osb/J male mice were used to get graft donor embryos
expressing enhanced green fluorescent protein (EGFP). Mice of both
strains were purchased from The Jackson Laboratory (Bar Harbor,
USA) and the colonies were then maintained in the animal facility
at the Faculty of Medicine, Pilsen, CZ. The mice were kept under
standard conditions with a 12:12 h light:dark cycle and water and
food available ad libitum.

All experiments described in this article were conducted in full
compliance with EU Guidelines for scientific experimentation on
animals and with the permission of the Ethics Commission of the
Faculty of Medicine, Pilsen, CZ. All efforts were made to minimize
the number of animals used and their suffering.

2.2. Genotyping

The genotyping of SCA2 transgenic mice was performed on the
basis of The Jackson Laboratory Genotyping protocols database
(web page: http://www.jax.org). The Jackson Laboratory Genotyp-
ing protocol (Tg(Pcp2SCA2)11Plt-alternate1) has been designed as
end point polymerase chain reaction (PCR) with the result trans-
gene is present or not. This protocol was  modified for quantitative
assessment and the mice were classified into three subgroups
“negative”, “heterozygote”, and “homozygote” according to ampli-
fication Ct. We  are aware of the limitations of this approach relative
to the unknown number of transgene copies inserted.

Deoxyribonucleic acid (DNA) was isolated from a piece of the
mouse tail using DNeasy Blood & Tissue Kit (QIAGEN). DNA con-
centration was determined, and all DNA samples were diluted
to a concentration of 60 ng/!l. The sequence of primers used for
quantification of the transgene was  as follows: transgene forward
primer 13867 5′- AAT ACC TAT GAC GCC CAT GC -3′; transgene
reverse primer 13868 5′- ATG AGC CCC GTA CTG AGT TG -3′. For the
reference gene (internal positive control Reverse) forward primer
oIMR7338 5′- CTA GGC CAC AGA ATT GAA AGA  TCT-3′ and reverse
primer oIMR7339 5′- GTA GGT GGA AAT TCT AGC ATC ATC C -
3′ synthesized by GeneriBiotech (Hradec Kralove, Czech Republic)
were used. DNA amplification was  monitored with 0.5x Sybr-Green
I (Molecular Probes, USA). The results of genotyping (“negative”,
“heterozygote”, and “homozygote”) were obtained according to
!Ct values (Ct for transgene minus Ct for reference gene).

For the experiment, only mice showing the maximal number of
copies of the transgene, which were considered to be “homozy-
gous” for SCA2 (n = 15), and negative (n = 23) individuals (both
males and females) were used. The study was  performed as a
blinded-study since at the time of transplantation and histological
examination the genotype of the mice was not known.

2.3. Transplantation

Embryonic cerebellar tissue was  obtained from day 12 (E12,
embryonic day 12) EGFP-expressing mouse embryos, which were
obtained from the cross-breeding of females from the host strain
with EGFP-expressing males. Donor females, with conception-
timed pregnancies, were deeply anesthetized with Thiopental.
Embryos were removed from the uterus, the embryonic cerebella
were dissected, treated with trypsin for 10 min and mechanically
suspended in the vehicle (0.9% NaCl and 0.6% glucose). The suspen-
sion concentration was  adjusted to 50,000 cells/!l.

Four-months-old host mice were anaesthetized with Ketamine
(100 mg/kg of the body weight) and Xylazine (16 mg/kg of the body

Fig. 1. A host cerebellum with the bilateral graft; the graft is located in the white matter close to the deep cerebellar nuclei and in the host cerebellar cortex; EGFP-positive
fibers  sprout from the right graft through the molecular layer of the cerebellar cortex and EGFP-positive Purkinje-like cells are distributed along the fissure (A; objective 4×).
A  subcortical graft with EGFP-positive fibers growing toward the deep cerebellar nuclei area (B; objective 10×). Native specimens, EGFP-fluorescence.

http://www.jax.org/
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weight). The cell suspension was injected bilaterally (2 !l per site)
into the host cerebellum (injection coordinates were 6.3 mm pos-
terior to bregma, 1.5 mm lateral, 3.3 mm below the bregma) using
a glass microcapillary. Injection speed was 0.5 !l/min.

2.4. Histological examination

The mice were sacrificed 12 weeks after transplantation by
overdosing with thiopental and transcardially perfused with
Ringer solution and 4% phosphate-buffered paraformaldehyde (pH
7.4). The brains were stored for 2 h in 4% phosphate-buffered
paraformaldehyde for post-fixation and then incubated in sucrose
for cryoprotection. Frontal 40 !m frozen sections were prepared.
Graft identification and assessment of graft localization and pres-
ence of interactions between graft and host tissue (graft sprouting)
were done in native specimens based on the natural green flu-
orescence of EGFP. Immunohistochemistry was used to identify
PCs with anti-calbindin staining and to identify astrocytes with
anti-glial fibrillary acidic protein (GFAP) staining in selected free-
floating sections. In preparation for anti-calbindin staining, sections
were incubated with anti-calbindin primary antibody (ab 11426,
Abcam, Cambridge, United Kingdom, dilution 1:1000), overnight
at room temperature and then with AlexaFluor® 594 secondary
antibody (ab150076, Abcam, Cambridge, United Kingdom, dilution
1:400), for 2 h at room temperature. In preparation for anti-GFAP
staining, sections were incubated with anti-GFAP primary antibody
(clone G-A-5 Cy3 conjugate, Sigma–Aldrich, Saint Louis, USA, dilu-
tion 1:800), overnight at 4 ◦C. Remaining sections were stained
using the Nissl or hematoxylin–eosin techniques, to visualize struc-
tures of the graft and surrounding host tissue.

For the basic specimen examination, an Olympus BX41 micro-
scope (Olympus Corporation, Japan), with an epifluorescent
accessory was used. Details of EGFP-positive (graft-derived) cells
were imaged using a Leica TCS SP2 confocal microscope (Leica
Microsystems GmbH, Germany). Co-localization of EGFP fluores-
cence and calbindin or GFAP positivity, indicating graft-derived PCs
or astrocytes, respectively, was detected using an Olympus IX81
confocal microscope (Olympus Corporation, Japan).

2.5. Statistics

The presence of graft-derived PCs and the presence of EGFP-
positive nerve fibers sprouting from the graft in homozygous SCA2

Fig. 2. Details of EGFP-positive Purkinje-like cells and EGFP-positive fibers (indi-
cated by the arrow) perpendicular to the dendrites of the cells. Native specimen,
EGFP-fluorescence, Leica TCS SP2 laser confocal microscope (objective 63×,  super-
position of 21 scans).

mice and negative animals were compared using Fisher’s exact test.
In all cases, P < 0.05 was  considered to be statistically significant.

3. Results

Grafts survived in all experimental mice and there were no obvi-
ous and significant differences in graft structure between SCA2
homozygous and negative mice. In one SCA2 homozygous and one
negative mouse the graft survived only unilaterally. Grafts usually
consisted of a compact mass localized in the white matter close to
the deep cerebellar nuclei or partially inside the nuclei. The grafts
often propagated vertically into the cerebellar cortex and, in some
cases, a large part of the graft was  also in the cortical area (Fig. 1). In
all mice the graft contained large EGFP-positive cells with cell bod-
ies having a shape and dendritic tree arrangement typical of PCs
(Fig. 2). The PC phenotype of these graft-derived cells was demon-
strated by calbindin positivity (Fig. 3A and B). Graft-derived PCs

Fig. 3. Details of Purkinje-like cells showing both calbindin and EGFP-positivity. Anti-calbindin staining (A), EGFP-fluorescence (B), Olympus IX81 laser confocal microscope
(objective 40×, superposition of 16 scans).
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were also found outside the main graft mass, mostly along the
fissures in extraparenchymal localization or in the molecular layer.

There was no significant difference in the presence of EGFP-
positive fibers sprouting from the mass of the graft into the host
tissue between SCA2 homozygous and negative mice (Fig. 1 A,B).
Such fibers were found in 8 (53%) homozygous SCA2 mice. In 2 of
them, cell fibers sprouted into the host cerebellar cortex, in 5 mice,
fibers grew toward the deep cerebellar nuclei and in one mouse
the fibers grew in both directions. In negative mice, cell fibers were
found in 8 cases (35%). In 5 cases the fibers were in the host’s cor-
tex, in 2 mice, fibers grew toward the nuclei and in 1 mouse the
fibers grew in both directions. The fibers growing into the host’s
cerebellar cortex were arranged in the molecular layer parallel to
the cortex layer surface (Fig. 1A, Fig. 2). However, the grafts did not
show the typical three-layer organization that is characteristic of
the cerebellar cortex.

No signs of inflammation or destruction of host tissues were
observed at the graft sites (figure not shown). In the central part of
the graft, a slight increase in the density of astrocytes was observed
compared with surrounding tissue of the deep cerebellar nuclei or
cortex (Fig. 4A and B). The astrocytes in the graft were not EGFP-
positive (Fig. 4C).

No sex differences in graft morphology were observed.
Surprisingly, the cerebella of host homozygous SCA2 mice were

not markedly reduced in size and also the density of PCs did not
seem to be decreased in comparison with negative animals.

4. Discussion

The embryonic cerebellar graft survived for 12 weeks in con-
trol negative as well as in SCA2 homozygous mice. There were no
marked differences in graft structure between SCA2 and negative
mice. The main mass of the graft was usually located in the white
matter between the cortex and the deep cerebellar nuclei or in the
upper part of the nuclei. Localization of embryonic cerebellar grafts
under the granular layer of the cerebellar cortex, has been shown to
be essential for connecting grafted PCs to the host’s deep cerebel-
lar nuclei, which is necessary for restoration of neural circuitries
and cerebellar function in Purkinje cell degeneration (pcd) mice
[16,17]. The granular layer acts as a barrier preventing nerve fiber
sprouting toward the deep cerebellar nuclei when grafts are placed
in the molecular layer [18,19]. In SCA2 mice, grafts developed into
a compact mass with few nerve fibers sprouting into the host tis-
sue; making our results similar to those described in B6CBA mice
treated with the same type of graft [20]. In some cases the fibers
were found in the part of the graft extending into the host’s cere-
bellar cortex and the fibers were arranged in the molecular layer
parallel to its surface like in Lurcher mice treated with solid embry-
onic cerebellar grafts [19,21]. Also, graft-derived PCs, which were
not inside the main graft mass, were found mainly in the host cere-
bellar cortex. The propagation of graft-derived PCs into the host
molecular layer agrees with the findings of Dumesnil-Bousez and
Sotelo [19] and supports their idea that the host molecular layer
exerts a positive neurotropism specific for grafted PCs. Contrary to
SCA1 mice treated with similar graft [13], organization of grafted
PCs into typical layer was not so obvious and targeting the deep
cerebellar nuclei by graft-derived axons was not frequent in SCA2
mice. In SCA1 mice, it has been shown that grafted neural precursor
cells migrated into the cerebellar cortex only in mice with signifi-
cant cell loss [11]. Lack of significant PCs reduction in homozygous
SCA2 mice could explain poor and rather disorganized colonization
of the host cerebellar cortex by grafted PCs.

In Lurcher mutant mice, as well as wild type mice of the B6CBA
strain, treated with an embryonic cerebellar cell suspension or
with a neuroprogenitor graft, experienced a massive increase in the

Fig. 4. Astrocytes in the graft area. Anti-GFAP staining showing astrocytes (A; objec-
tive 10×)  and EGFP-fluorescence showing the graft position (B; objective 10×). The
arrow indicates cluster of astrocytes inside the graft. GFAP-positive cells do not
show EGFP positivity (C, Olympus IX81 laser confocal microscope, objective 20×,
2× zoom, superposition of 16 scans).
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density of astrocytes inside the entire graft mass [20,22]. However,
in SCA2 mice, we found relatively few astrocytes, and these tended
to be in the central part of the graft, not in its periphery. These
astrocytes were host-derived as they were not EGFP-positive.

Compared with most other graft types, embryonic neural cells
are relatively well differentiated. When an E12 embryonic cerebel-
lum is used as a donor, PCs are established before grafting [23]
as, in the mouse cerebellum, this type of cell begins to appear
between E11-13 (for review see [24]). The present study confirmed
that grafted embryonic (E12) cerebellar tissue is a potent source of
PCs. Donor tissue of higher embryonic age would be suitable for
example for substitution of granular cells. Also the age of the graft
recipient could influence the development of the graft, because pro-
gressive neurodegeneration could change the neurogenicity [25] of
the recipient tissue in unknown manner.

Nevertheless, the embryonic cerebellar graft in SCA2 mice did
not develop rich long-distance connections with the host’s deep
cerebellar nuclei, which is necessary for specific behavioral effects
based on replacing lost PCs and rewiring cerebellar pathways.

On the other hand, the graft could also produce trophic effects,
mediated by trophic factors (for example brain-derived neu-
rotrophic factor, nerve growth factor, insulin-like growth factors
1 and 2, glial-derived neurotrophic factor). This mechanism could
explain the development of functional restoration, despite a lack
of reconnection of neural circuitries [13]. Trophic activity may  be
one of the main mechanisms that accounts for the prevention PCs
extinction seen in association with grafted mesenchymal stem cells
in mouse models of cerebellar degeneration [12,26] including SCA2
mice [15].

5. Conclusion

We  have shown that the embryonic cerebellar grafts survive
well in SCA2 mice and provide numerous PCs but the morphol-
ogy of the graft does not promise any strong specific behavioral
effects. The graft is available for long-term experiments. Neverthe-
less, it would be beneficial to search for ways of enhancement of
connections between the graft and host.
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• C3H  mice  had  worse  performances  in  the  water  maze  than  their  B6CBA  counterparts.
• Lurcher  mice  showed  impairment  of  motor  skills  and  water  maze  performance.
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a  b  s  t  r  a  c  t

Mutant  mice  are commonly  used  models  of hereditary  diseases.  Nevertheless,  these  mice have  phe-
notypic  traits  of  the  original  strain,  which  could  interfere  with  the  manifestation  of  the  mutation  of
interest.  Lurcher  mice  represent  a model  of  olivocerebellar  degeneration,  which  is  caused  by  the  Grid2Lc

mutation.  Lurchers  show  ataxia  and  various  cognitive  and  behavioral  abnormalities.  The  most  commonly
used  strains  of  Lurcher  mice  are  B6CBA  and C3H,  but there  is no information  about  the  role  of  genetic
background  on  the  Grid2Lc manifestation.  The  aim of  this  work  was  to compare  spatial  navigation  in the
Morris  water  maze,  spontaneous  activity  in the  open  field  and  motor  skills  on the  horizontal  wire,  slanted
ladder and  rotarod  in  B6CBA  and  C3H  Lurcher  mutant  and  wild type  mice.  The  study  showed  impaired
motor  skills  and  water  maze  performance  in  both  strains  of  Lurcher  mice.  Both  C3H  Lurcher  and  C3H
wild  type  mice  had  poorer  performances  in the water  maze  task  than  their  B6CBA  counterparts.  In  the
open  field  test,  C3H  mice  showed  higher  activity  and  lower  thigmotaxis.  The  study  showed  that  genetic
backgrounds  can  modify  manifestations  of  the Lurcher  mutation.  In this  case,  B6CBA  Lurcher  mice  models
probably  have  more  validity  when  studying  the behavioral  aspects  of  cerebellar  degeneration  than  C3H
Lurcher  mice,  since  they  do  not  combine  abnormalities  related  to the Grid2Lc mutation  with  strain-specific
problems.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Mutant, transgenic and knock-out mice have become com-
monly used models of human diseases (for review see [36]).

Abbreviations: B6CBA+/Lc, B6CBA Lurcher mice; B6CBA+/+, B6CBA wild type mice;
C3H+/Lc, C3H Lurcher mice; C3H+/+, C3H wild type mice; df, degree of freedom; E,
East; MWM,  Morris water maze; N, North; NE, North-East; NS, non-significant; OF,
open field test; S, South; SEM, standard error of the mean; SW,  South-West; vs.,
versus; W,  West.
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Nevertheless, these mice have the phenotypic traits of the orig-
inal strain, which could interfere with the manifestation of the
mutation of interest. In many mouse strains specific genetically
determined abnormalities, such as sensory deficits, are standard
components of the phenotype. Strain differences relative to brain
morphology and physiology [20,57,58], level of anxiety and stress
response [2,25,54], exploratory behavior, locomotor activity [56]
and motor abilities [1,42,53] have been described. It is not surpris-
ing that strain differences in cognitive tests have also been reported
[3,24,44] since these tests could easily be influenced by the varia-
tions mentioned above.

Some mutations causing specific disorders are found in sev-
eral strains. The Lurcher mutant mouse [46], a commonly used
model for olivocerebellar degeneration, is a good example.

http://dx.doi.org/10.1016/j.bbr.2014.06.023
0166-4328/© 2014 Elsevier B.V. All rights reserved.
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Neurodegeneration in Lurcher mice is caused by a mutation
(Grid2Lc) in the !2 glutamate receptor (GluR!2) gene, which
changes the receptor into a leaky membrane channel that chroni-
cally depolarizes the cells [60].

Homozygous mutants (Grid2Lc/Lc) are not viable [11]. In het-
erozygous Lurcher mice (Grid2+/Lc) the total loss of Purkinje cells
and a reduction in cerebellar cortex interneurons and inferior
olive neurons occurs by three months of age [4,59]. Lurcher
mice suffer from ataxia [16,30], fail in spatial learning and ori-
entation tasks [6,21,29,31] and exhibit changes in conditioned
eyelid responses [47,48]. Additionally, hypothalamo-pituitary-
adrenal axis hyper-responsiveness [17], increased plasma levels
of adrenocorticotropin and corticosterone together with abnor-
mal  emotional behavior and behavioral disinhibition [23,34] and
a high incidence of maternal infanticide [55] have been described
in Lurcher mice, particularly of the B6CBA background strain. For
review see [9].

The most frequently used Lurcher mouse strains are the C3H
and B6CBA. C3H is a widely used strain. Some C3H individuals
suffer from retinal degeneration determined by a homozygous
combination of the Pde6brd1 allele, which leads to a loss of the
photoreceptors [10]. C3H Lurcher mice were used in the first
detailed description of morphological changes in the cerebellum
[4], although, rarely for behavioral studies [29]. The B6CBA strain
is less common. Nevertheless, this strain is often used for sponta-
neous or transgenic neurological mutants, e.g. the weaver cerebellar
mutant and the Huntington disease mouse model [18,19]. Lurchers
of the B6CBA (B6CBACa/a, C57BlxCBA) strain have been used in
most behavioral and neurochemical studies [6,7,22,49]. Addition-
ally, they have been used in recent morphological studies [11,51]
as well as in some studies in Lurcher-wild type chimeras [14,39].
Other strains of Lurcher mice are seldom used. The B6AKR strain
was used e.g. by Zanjani et al. [59] to study survival of interneurons
and parallel fiber synapses. In the inbred strain BALB/cByJ a second
Lurcher allele (LcJ), which was phenotypically indistinguishable
from Grid2Lc, was found [12].

The retinal degeneration, which impairs visual orientation, is a
crucial difference between the C3H and B6CBA strains of Lurcher
mice. The question is whether there are additional differences
between C3H and B6CBA Lurcher mice that are not related to retinal
degeneration. The role of genetic background has yet to be studied
in Lurcher mutant mice. There are no studies directly comparing
the two strains of Lurchers using identical experimental proto-
cols. Moreover, there are no comparable studies describing similar
parameters in different strains of Lurchers using similar methods.
Therefore, we can only conclude that the main features of the mor-
phological manifestation of the degeneration and motor deficit are
present in both C3H and B6CBA strains of Lurcher mice.

Nevertheless, for an appropriate interpretation of findings of
studies using mutant mouse models of human diseases it is nec-
essary to understand all factors involved in their phenotype. The
aim of this work was to assess the influence of genetic background
on the manifestation of the Grid2Lc mutation on cognitive func-
tion. Spatial performance in the Morris water task was  studied and
was of particular interest. Exploratory behavior and motor skills
were also examined since they are essential substrates for spatial
behavior.

2. Material and methods

2.1. Animals

Adult Lurcher mutants (Grid2+/Lc) and healthy wild type
(Grid2+/+) littermates (both males and females equally) of the
B6CBA and C3H strains were used. C3H mice were kindly provided

by Dr. K. W.  T. Caddy from the University College London [4,5].
B6CBA mice were kindly provided by Prof. A. Resibois from the Uni-
versiteı́ Libre de Bruxelles in 1998; these mice were derived from
those used by Sotelo and collaborators [15,50].

Mice of both strains were housed in the same room of the breed-
ing facility under identical conditions. Mice were kept in a room
with controlled temperature (22–23 ◦C) and humidity (50–60%),
12/12 h light/dark cycle (6 am–6 pm)  and housed 2–4 mice per
cage (22 × 25 × 14 cm). The experiments were performed during
the light period (8 am–2 pm). Food (standard commercial pellet
diet) and water were available ad libitum.

Mice used in this study were obtained by crossing wild type
females with Lurcher males. In C3H mice, the presence of retinal
degeneration was  determined histologically by the absence of the
outer nuclear layer of the retina in hematoxylin-eosin stained sec-
tions prepared on completion of the experiments (post mortem).
Animals affected with retinal degeneration were excluded from the
study since they were not comparable with B6CBA animals.

Based on type and strain, the mice were distributed into
four experimental groups: B6CBA Lurcher (B6CBA+/Lc, n = 16, mean
body weight = 24.6 g), B6CBA wild type mice (B6CBA+/+, n = 26,
mean body weight = 27.6 g), C3H Lurcher (C3H+/Lc, n = 16, mean
body = weight 26.7 g) and C3H wild type mice (C3H+/+, n = 18, mean
body weight = 29.5 g). Mean mouse age at the time of the study was
180 days.

All experiments reported here were conducted in full com-
pliance with the EU Guidelines for scientific experimentation on
animals and with the permission of the Ethics Commission of the
Faculty of Medicine in Pilsen. All efforts were made to minimize
discomfort.

2.2. Design of the experiment

Spatial orientation and learning were tested using a modified
protocol of the Morris water maze [41], spontaneous explorative
activity was examined in the open field test and motor skills were
examined with a battery of standard tests. The main aim of the work
was to assess spatial orientation and learning; therefore, the above
mentioned tests were performed in the order mentioned to avoid
any influence that ‘experience with the motor tests’ might have on
performance in the water maze. The scheme of the experiment is
shown in Fig. 1.

2.3. Experimental procedures

2.3.1. Morris water maze task
For the Morris water maze a round pool with a diameter of

95 cm,  with a rim 10 cm above the water level, was used. A circu-
lar escape platform, with a diameter of 7.5 cm,  was hidden 0.5 cm
under the water level. Labels on the room walls served as distant
visual cues. Four starting points around the circumference of the
pool were arbitrary designated: North (N), South (S), West (W)  and
East (E). Four trials a day were performed with inter-trial intervals
of 8 min. If the mouse did not reach the platform within 60 s it was
manually placed upon it. After each trial the mouse was left on the
platform for 30 s.

The procedure consisted of 5 phases (I–V). For the first nine days
(D1–9, phase I) the starting positions were in the order N–S–W–E
and the hidden platform was  located in the middle of the SW quad-
rant of the maze. This is a common Morris water maze protocol to
evaluate basal performance of mice on this task. On day 10 (D10,
phase II) the platform was  still in the middle of the SW quadrant,
but the sequence of starting positions was  E–W–S–N to change the
order of the four spatial relationships between the starting point
and the goal.
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Fig. 1. Experimental protocol: The experiment lasted for 31 days (D1-D31) and consisted of 5 phases (I: hidden platform test, II: changed starting point sequence, III: changed
position of the hidden platform, IV: visible platform test, V: changed position of the visible platform) involving the Morris water maze test (MWM), open field tests (OF) and
motor tests.

On day 11 and 12 (D11–12, phase III) the platform was  moved to
the opposite quadrant (NE) and the order of the starting positions
was N–S–W–E to test the ability to relearn the new goal position.

Because changes in experiment arrangement during D10–12
could confuse the mice, for the next 10 days the mice were not
exposed to the maze to reduce the influence of these changes in
performance of the mice in the following phase of the experiment.

On days 22–25 (D22–25, phase IV) the platform, which was in
the SW quadrant, was made visible with a cylindrical label (3 cm
in diameter, height of 5 cm)  with vertical black and white stripes
mounted 12 cm over the platform. The order of the starting pos-
itions was N–S–W–E. The purpose of this phase was  to examine
the ability to navigate to a visible goal.

On day 26 (D26, phase V), the visible platform was placed in the
NE quadrant. The order of the starting positions was N–S–W–E. This
change of visible platform position was to assess whether the mice
prefer the navigation toward memorized platform position or visi-
ble goal navigation. Since the mice had experience with changes in
platform position, and to avoid experience with a missing platform,
no probe trials were used before the visible platform phase of the
experimental procedure.

The movement of the mice in the maze was  recorded using
an automatic tracking system EthoVision 3.1 (Noldus Information
Technology bv, Netherlands). Escape latencies (s), trajectory length
(cm) and swimming velocity (cm/s) were measured as basic param-
eters. To assess the exploration strategy, thigmotaxis [52] was
examined (i.e. the percentage trajectory length moved in the 5 cm
margin zone of the maze) and percentage of direct finding type of
trajectory. Trials with trajectory lengths shorter than 1.3 times the
length of the shortest distance between the starting point and the
platform were considered as direct finding of the platform. Mean
values of four trials, done in 1 day, were calculated for each animal
and each parameter.

To quantify the change in performance during or between indi-
vidual phases of the experiment, ratios of trajectory lengths as the
main parameter were calculated: D9/D1 – the learning effect during
the initial hidden platform task, D10/D9 – the effect of changing the
order of the starting positions, D11/D9 – the effect of changing the
platform position, D12/D11 – the ability to learn a new platform
position, D25/D22 – the learning effect during a visible platform
task, D26/D25 – the effect of changing the position of the visible
platform.

For the first trial (N-starting point) on D11, trajectories that
moved through individual quadrants of the maze were compared
in order to assess the preference for the SE quadrant, in which the
platform has been originally located.

2.3.2. Open field test
Space exploration activity, which can also be influence by anx-

iety level, was examined in the open-field test. It was performed
on day 28 (D28) and repeated in the same way on day 29 (D29).
The apparatus consisted of a plastic box (40 cm × 40 cm × 40 cm)
with white walls and floor. The animal was placed in the middle
of the square arena and allowed to freely explore for 5 min. The

apparatus was cleaned with 70% ethanol and dried between sub-
jects. The movement of the mice was  recorded using an automatic
tracking system EthoVision 3.1. (Noldus Information Technology
bv, Netherlands). Trajectory length (cm), locomotion activity (per-
centage of time spent moving) and the thigmotaxis (percentage
of time spent in the 3 cm margin zone of the arena) [52] were
measured.

2.3.3. Motor tests
Motor skill tests on the horizontal wire, slanted ladder and

rotarod were performed on day 30 (D30) and repeated on day 31
(D31). For each mouse, each day’s session consisted of four trials on
the horizontal wire, slanted ladder and rotarod tasks (done in this
order). Between trials mice were placed back in their home-cage
for 5 min.

For the horizontal wire test the animal grasps, using its
forepaws, the middle of a wire (43 cm length, 1 mm diameter) sus-
pended 39 cm above a table between two  wooden columns. The
area beneath the wire was cushioned with a soft pillow. For the
slanted ladder test the mouse was  placed, facing up the incline, in
the middle of a slanted ladder (30 cm long, 4 cm wide, inclination of
53◦, with the upper end 24 cm above the table). For the rotarod test
the mouse was  placed on a cylinder with its head in the direction
of rotation, as such, its first task was to orient itself in the oppo-
site direction. The cylinder length was  20 cm and the diameter was
17 cm.  The rotation speed was  one turn per minute.

In all tests, fall latencies were measured. If the mouse did not
fall or actively leave the apparatus within 60 s the trial was stopped.
Mean fall latencies of the four trials were calculated for each animal,
test and day. When there was  active departure from the apparatus,
a maximal latency of 60 s was assigned. For the wire test, active
departure was  by means of climbing down using one of the two
wooden columns between which the wire was suspended. In the
ladder test, climbing down onto the table was  considered active
departure. In the rotarod test, jumping from the rod was considered
active departure.

2.4. Statistical analysis

A violation of the Gaussian distribution assumption was ver-
ified using the Kolmogorov–Smirnov test of normality. Because
most of the analyzed parameters did not have a normal distri-
bution, non-parametric permutation tests were used [45]. The
repeated measurements in the Morris water maze, open field as
well as motor function assessment were evaluated using a permu-
tational unbalanced ANOVA with repeated measurement with two
between-group factors (strain and mutation) and one within-group
factor (day). Each day was then analyzed separately using a per-
mutational two-way ANOVA. If any significance was  found, post
hoc tests using permutational t-test with Bonferroni correction for
repeated measurement were calculated. To assess the difference
between performances on two  individual days of the tests within
one group, the permutational paired t-test was used. To assess the
significance of the change of parameters within a phase of the water
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Fig. 2. Morris water maze: Mean trajectory length in cm (A) and swimming velocity in cm/s (B) in the Morris water maze (MWM)  in B6CBA+/Lc, B6CBA+/+, C3H+/Lc and C3H+/+

mice. Error bars represent SEM. I.-V. indicate individual parts of the MWM  test. P < 0.05 is indicated by * for B6CBA+/+ vs. B6CBA+/Lc, by + for C3H+/+ vs. C3H+/Lc, by ! for B6CBA+/+

vs. C3H+/+ and by ♦ for B6CBA+/Lc vs. C3H+/Lc.

maze test, a permutational ANOVA with repeated measurement
was used. The preference for the SW quadrant was  verified using
a permutational one-sample t-test against 25%, which represents a
random occurrence.

All permutational t-tests were done with 10,000 permutations.
The ANOVA tests were performed with maximum of 5,000 per-
mutations. Differences were considered statistically significant if
P < 0.05. Statistical analyses were performed using R 2.14.0 (GNU)
for Mac  OS X. The data are presented as mean ± standard error of
the mean (SEM).

3. Results

3.1. Morris water maze

Trajectory length, swimming velocity and statistical significance
of differences in these parameters between individual experimen-
tal groups are shown in Fig. 2. Thigmotaxis and percentage of direct
finding trials and statistical significance of differences in these
parameters between individual experimental groups are shown
in Fig. 3. Significance of the between-group effect of strain and
mutation factors and their interaction on trajectory length, swim-
ming velocity, tigmotaxis and percentage of direct finding trials
is shown in Table 1. Ratios of trajectory lengths on crucial days
of the experiment and significance of the between-group effect of
strain and mutation factors and their interaction on the ratios is
shown in Table 2. Statistical significance of changes of trajectory
length between these days is shown in Table 3. Escape latencies
were determined by the trajectory length and swimming veloc-
ity. The data shows that escape latencies significantly correlated
with the trajectory length (for B6CBA+/+ R = 0.946, P < 0.0001, for
B6CBA+/Lc R = 0.967, P < 0.0001, for C3H+/+ R = 0.941, P < 0.0001, for
C3H+/Lc R = 0.860, P < 0.0001). Therefore the data for escape laten-
cies are not shown.

Lurcher mice of both strains (B6CBA+/Lc, C3H+/Lc) achieved longer
trajectories during all parts of the experiment (Fig. 2A) compared to
their wild type counterparts (B6CBA+/+, C3H+/+). B6CBA+/+ showed

shorter trajectories than C3H+/+ during both hidden and visible
platform task. B6CBA+/Lc, however, only had shorter trajectories
than C3H+/Lc during the visible platform phase (Fig. 2A). Signifi-
cant shortening of the trajectory length during the initial phase
with the hidden platform (D1–D9) in the Morris water maze test
was observed in B6CBA+/+, B6CBA+/Lc and C3H+/+ mice (Table 3).
B6CBA+/+ and C3H+/+ mice also showed shortening of the trajectory
during the visible platform task (D22–D25). In C3H+/Lc mice, a sig-
nificant shortening of the trajectory was not observed. Lurcher mice
of both strains (B6CBA+/Lc, C3H+/Lc) achieved a higher D9/D1 ratio
of trajectories (t = 7.586, P < 0.0001; t = 6.242, P < 0.0001 respec-
tively, Table 2) compared to their wild type counterparts (B6CBA+/+,
C3H+/+). B6CBA mice had a lower D9/D1 ratio for trajectories than
C3H mice (for wild type mice t = 4.526, P < 0.0001; for Lurchers
t = 2.918, P = 0.005; Table 2).

Change of starting point sequence (D9 vs. D10) did not influ-
ence the performance of the mice in the water maze. Changing
the hidden platform position (D9 vs. D11) led to a prolonged tra-
jectory length in all experimental groups (Table 3). The D11/D9
ratio (Table 2) showed that the prolongation was  higher in the
wild types than in Lurcher mice (for B6CBA: t = −3.06, P = 0.003,
for C3H: t = −3.211, P < 0.0001) and in B6CBA+/Lc than in C3H+/Lc

mice (t = −2.558, P < 0.011). In the first trial (N-starting position) on
D11, both B6CBA+/+ and C3H+/+ mice swam a significantly higher
percentage of the total trajectory length (P = 0.0007, P = 0.0141
respectively) inside the SW quadrant, where the platform had been
located on all previous days, compared to 25% of the trajectory
length, as would be expected in a random search (Fig. 4). In Lurcher
mice, preference for the SW quadrant was  statistically insignificant.
Fig. 5 also shows a preference for the SW quadrant by both B6CBA+/+

and C3H+/+ mice on the first trial of D11.
Learning the new position of the platform resulted in signifi-

cantly shortened trajectory lengths (D11 vs. D12) in B6CBA+/+ and
B6CBA+/Lc mice (Table 3), but not in C3H mice. The D12/D11 ratio
(Table 2) was significantly smaller in B6CBA+/+ mice compared to
B6CBA+/Lc (t = 3.902, P < 0.0001). Changing the position of the visible
platform (D25 vs. D26) led to a longer trajectory length in B6CBA+/+
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Fig. 3. Morris water maze: Mean thigmotaxis in % (A) and percentage of direct finding trials in % (B), in the Morris water maze (MWM)  in B6CBA+/Lc, B6CBA+/+, C3H+/Lc and
C3H+/+ mice. Error bars represent SEM. I–V indicate individual parts of the MWM  test. P < 0.05 is indicated by * for B6CBA+/+ vs. B6CBA+/Lc, by + for C3H+/+ vs. C3H+/Lc, by ! for
B6CBA+/+ vs. C3H+/+ and by ♦ for B6CBA+/Lc vs. C3H+/Lc. Examples of thigmotaxis in a Lurcher mouse in the first trial on D1 (C), random search (D) and scanning (E) strategy
typical  for Lurcher mice on D9, direct finding typical for wild type mice on D9 (F), and searching in zone of original platform location in a wild type mouse on D11 (G).

and B6CBA+/Lc mice (Table 3), but not in C3H mice. While the tra-
jectory length on the first day of the phase with a visible platform
(D22) was significantly shorter than the trajectory on the last day
of the phase with a hidden platform (D9) in both B6CBA Lurcher
(t = 5.126, P = 0.0001) and C3H Lurcher mice (t = 3.464, P = 0.0049),
wild type mice did not perform any better when the platform was
visible.

Lurcher mice showed more thigmotaxis in the water maze than
their wild type counterparts during both the hidden and visible
platform task (Fig. 3A). Thigmotaxis was occasionally, but not con-
sistently higher in C3H than in B6CBA mice (Fig. 3A).

Lurcher mice of both strains had a very low percentage of direct
finding trials compared with their wild type counterparts. B6CBA+/+

mice had a significantly higher percentage of direct finding trials
than C3H+/+ mice, but only on D9 and D22 (Fig. 3B). In wild type mice
of both strains the percentage increased during phase I (B6CBA+/+:
F(8,200) = 26.043, P < 0.0001; C3H+/+: F(8, 136) = 6.234, P < 0.0001) as
well as phase IV (B6CBA+/+: F(3, 75) = 10.454, P = 0.0228; C3H+/+:
F(3, 57) = 10.064, P = 0.0016) of the water maze task. In C3H+/+

mice the percentage increased during phase IV (F(3, 45) = 3.284,
P = 0.0273). Changes in both hidden (D9 vs. D11) and visible (D25
vs. D26) platform position led to a marked drop in the percentage of
direct finding in wild type mice (D9 vs. D11 - B6CBA+/+: t = 10.923,
P = 0.0001, C3H+/+: t = 3.306, P = 0.0087; D25 vs. D26 - B6CBA+/+:

t = 5.024, P = 0.0002, C3H+/+: t = 3.123, P = 0.0109). Changes in
the trajectory shape between D9 and D11 is also shown in
Fig. 5).

The only difference in swimming velocity was found in the
visible platform phase; B6CBA+/Lc mice were observed to have
slower swimming velocities compared to B6CBA+/+ mice (Fig. 2B).
Swimming velocity did not differ significantly between strains
(Fig. 2B).

3.2. Open field

Trajectory length, locomotion activity and thigmotaxis and sta-
tistical significance of between-group differences are shown in
Fig. 6. Dependence of the parameters on mutation and strain fac-
tors and their interactions are shown in Table 4. Locomotion and
thigmotaxis were significantly dependent on strain and muta-
tion factors, but not on their interaction. Trajectory length was
dependent only on mouse strain. B6CBA+/Lc showed higher loco-
motion than B6CBA+/+ on D29 (t = 2.8725, P = 0.015). In the C3H
strain, no differences between Lurcher mutants and wild type
mice were found. Strain comparisons showed higher locomotion
in C3H+/+ compared to B6CBA+/+ (day 28: t = −3.8445, P = 0.0014,
day 29: t = −4.0464, P = 0.0008). In Lurcher mice, no significant dif-
ference in locomotion activity between the strains was found;
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additionally, no significant differences in trajectory length and thig-
motaxis between individual groups were found.

In B6CBA+/+ mice, locomotion activity was higher in the first
(D28) compared to the second open field trial (D29) (t = 2.3667,
P = 0.028). B6CBA+/Lc mice showed significantly higher thigmo-
taxis on D29 than on D28 (t = −4.4184, P = 0.0002). Trajectory
length did not change significantly between the first and the
second trial of the open field test in any of the experimental
groups.

3.3. Motor tests

Fall latencies for the horizontal wire, slanted ladder and rotarod
test are shown in Fig. 7. Dependence of fall latencies on strain and
the presence of mutation and interaction of these two  factors is
shown in Table 4. Fall latencies in all three tests were significantly
dependent on mutation, but not on strain. Only the horizontal wire
test showed a significant dependence on strain × mutation interac-
tion. In all three tests of motor skills, Lurcher mice had shorter fall
latencies than their wild type counterparts, except for C3H+/Lc on
the wire test (Fig. 7). B6CBA+/+ mice had longer fall latencies than
C3H+/+ on the wire test (Fig. 7). Significant motor learning effects
manifested as extended latencies between the first and second test-
ing day (D30 vs. D31) was seen only in C3H+/Lc mice on the rotarod
test (t = −3.2674, P = 0.003).

4. Discussion

4.1. The effect of the Grid2Lc mutation

We  found severe impairment of performance in the spatial nav-
igation task and motor tests in Lurcher mice of both strains (B6CBA
and C3H). These abnormalities were in agreement with findings
described in other studies of B6CBA [8,22,29,33,37,38,47] or C3H
[28,29] Lurcher mice.

Both strains of Lurcher mice performed much worse on the Mor-
ris water maze with both hidden and visible platform compared
to their wild type littermates, although slower swimming velocity

Table 1
Statistical significance (P-value) of the between-group effect of strain and muta-
tion  factors and their interaction (strain × mutation) across the level of repeated
measurement (if any) on trajectory length, swimming velocity, thigmotaxis and per-
centage of direct finding trial parameters on individual phases of the Morris ware
maze test. Permutational unbalanced ANOVA with repeated measurement for phase
I,  III and IV, two-way permutational ANOVA for phases II and V.

Strain Mutation Strain × mutation

F(1,72) P F(1,72) P F(1,72) P

Trajectory length
I (D1–9) 23.66 <0.0001 190.29 <0.0001 0.04 NS
II  (D10) 8.62 0.0146 66.54 <0.0001 0.93 NS
III  (D11–12) 10.02 NS 106.84 <0.0001 0.05 NS
IV  (D22–25) 17.56 <0.0001 34.58 <0.0001 6.58 0.0132
V  (D26) 5.35 0.0237 53.25 <0.0001 2.22 NS

Swimming velocity
I (D1–9) 0.37 NS 1.16 NS 0.03 NS
II  (D10) 2.06 NS 1.71 NS 1.18 NS
III  (D11–12) 0.45 NS 2.70 NS 1.12 NS
IV  (D22–25) 0.81 NS 8.29 0.0078 2.59 NS
V  (D26) 0.06 NS 6.98 0.0040 0.03 NS

Thigmotaxis
I  (D1–9) 14.92 0.0156 52.83 <0.0001 1.01 NS
II  (D10) 7.23 0.0026 36.97 <0.0001 5.64 0.0174
III  (D11–12) 8.78 0.0048 40.20 <0.0001 2.76 NS
IV  (D22–25) 6.96 0.0128 31.45 <0.0001 5.81 0.0086
V  (D26) 5.35 0.0182 45.23 <0.0001 5.04 0.04

Percentage of direct finding trials
I  (D1–9) 9.79 0.0470 83.55 <0.0001 3.12 NS
II  (D10) 2.57 NS 50.24 <0.0001 3.57 NS
III  (D11–12) 0.61 NS 18.98 <0.0001 1.03 NS
IV  (D22–25) 15.16 0.0223 200.46 <0.0001 4.60 0.0232
V  (D26) 1.41 NS 28.61 <0.0001 0.06 NS

Morris water maze – effect of strain and mutation factors.

was only seen in B6CBA Lurcher mice and only during the visible
platform task. The higher D9/D1 ratio for trajectories in Lurcher
mice indicated reduced learning during the hidden platform task.
When the platform location was changed, wild type mice of both
strains searched the area of its previous position, while Lurchers did

Table 2
Mean ratios of trajectory length on individual days ± SEM showing the quantity of the change of the parameter between or during individual phases of the Morris water maze
test  and statistical significance (P-value) of the between-group effect of strain and mutation factors and their interaction (strain × mutation) on ratio of trajectory length in
the  Morris water maze on individual days. Permutational two-way ANOVA.

B6CBA+/Lc

(n = 16)
B6CBA+/+

(n = 26)
C3H+/Lc

(n = 16)
C3H+/+

(n = 18)
Strain Mutation Strain × mutation

F(1,72) P F(1,72) P F(1,72) P

Hidden platform learning D9/D1 0.54 ± 0.07 0.11 ± 0.01 0.87 ± 0.09 0.27 ± 0.04 21.73 <0.0001 92.19 <0.0001 2.65 NS
Changed starting position D10/D9 1.17 ± 0.14 1.04 ± 0.05 0.93 ± 0.10 1.25 ± 0.31 0.01 NS 0.32 NS 1.73 NS
Changed platform position D11/D9 2.40 ± 0.42 5.49 ± 0.74 1.28 ± 0.12 3.81 ± 0.74 4.50 0.0262 18.16 <0.0001 0.18 NS
New  platform position learning D12/D11 0.90 ± 0.09 0.45 ± 0.07 1.03 ± 0.10 0.73 ± 0.21 2.58 NS 8.86 <0.0001 0.34 NS
Visible platform learning D25/D22 0.96 ± 0.18 0.64 ± 0.06 0.99 ± 0.13 0.65 ± 0.11 0.04 NS 8.21 0.0102 0.02 NS
Changed visible platform position D26/D25 1.78 ± 0.26 1.67 ± 0.12 1.28 ± 0.24 1.50 ± 0.18 3.07 NS 0.07 NS 0.76 NS

Morris water maze – trajectory length ratios.

Table 3
Statistical significance (P-value) of the change of trajectory length between or during individual phases of the Morris water maze test. Permutational ANOVA with repeated
measurement for D1 D9 and D22–D25, permutation paired t-test for D9 vs. D10, D9 vs. D11, D11 vs. D12 and D25 vs. D26.

B6CBA+/Lc (n = 16) B6CBA+/+ (n = 26) C3H+/Lc (n = 16) C3H+/+ (n = 18)

Hidden platform learning D1–D9 F(8,120) = 7.17 P = 0.0014 F(8,200) = 87.20 P < 0.0001 F(8,120) = 1.36 NS F(8,136) = 28.34 P < 0.0001
Changed starting position D9 vs. D10 t = −0.24 NS t = 0.06 NS t = 0.51 NS t = −0.40 NS
Changed platform position D9 vs. D11 t = −3.75 P = 0.0033 t = −7.12 P = 0.0001 t = −2.27 P = 0.0379 t = −4.75 P = 0.0004
New  platform position learning D11 vs. D12 t = 2.47 P = 0.0259 t = 5.88 P = 0.0001 t = 0.26 NS t = 2.02 NS
Visible  platform learning D22–D25 F(3,45) = 2.07 NS F(3,75) = 18.71 P < 0.0001 F(3,45) = 1.63 NS F(3,51) = 6.45 P = 0.003
Changed visible platform position D25 vs. D26 t = −2.23 P = 0.0422 t = −5.66 P = 0.0001 t = 0.47 NS t = −1.86 NS

Morris water maze – change of trajectory length.
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Fig. 4. Percentage of trajectory length moved through individual quadrants in the
first  trial (N-starting position) of the D11 (the first day with a new NE platform
position) in B6CBA+/Lc, B6CBA+/+, C3H+/Lc and C3H+/+ mice. Error bars represent SEM.
The  horizontal line indicates 25% level expected in random occurence. Asterisk (*)
indicates P < 0.05 for difference of the percentage of trajectory length moved within
the  SW quadrant, where the platform was located previously, and expected 25%
level.

not. This suggests that contrary to Lurchers, wild type mice effec-
tively memorized the platform position. The fact that the change
of the starting point sequence in the maze did not influence the
performance of the mice, suggests that both wild type and Lurcher
mice used rather allothetic navigation.

The performance of wild type mice of both strains on the last
day of the initial hidden platform task was excellent (i.e. charac-
terized by mostly direct swims toward the goal) and was  similar
to the performance on the visible platform task. This shows that
after adequate training, wild type mice of both strains were able to
locate a hidden goal with similar efficiency as a visible goal. Lurcher
mice, on the other hand, achieved much better results when the
platform was visible compared to the hidden platform task. These
findings suggest that Lurcher mice had difficulty locating the posi-
tion of the hidden goal. On the other hand, they were able to use
direct visual navigation to a visible goal and were able and moti-
vated to achieve it, though with lower efficiency than wild type
mice. The difficulty in guiding themselves toward a visible goal
could have been due to a deficit in visuomotor coordination [32].
The performance of Lurcher mice in the water maze could also
be negatively influenced by their abnormal stress reactivity and
behavioral disinhibition [23,35]. In this regard, failures with the
hidden platform test could be attributed not only to spatial learning
impairment in Lurcher mice, but performance could have also been
influenced by higher levels of stress and anxiety during this difficult
task.

Higher locomotion activity in B6CBA Lurcher mice, in the open
field test, is in agreement with behavioral disinhibition. Despite
the higher activity, Lurcher mice did not walk significantly longer
distances compared to wild type mice, probably due to slower
locomotion velocity, which could have been linked to ataxia and
impairment of motor skills, which were obvious on the rotarod,
ladder and horizontal wire tests.

4.2. The effect of the strain background

We  found strain differences in performance on the Morris water
maze test, independent of obvious retinal degeneration. C3H mice
had poorer results than their B6CBA counterparts. The B6CBA strain
was derived from the C57BL/6 and CBA strains. Mice of the C57BL/6
strain are known to perform well in the Morris water maze [26,58]
and therefore they are recommended for such experiments [13].

Fig. 5. Superposition of trajectories (frequency of mouse presence) in the first trial
(N-starting position) on D9 and D11 respectively in B6CBA+/Lc, B6CBA+/+, C3H+/Lc

and C3H+/+ mice. The arrows indicate starting position. The empty circle indicates
present platform position. For D11, the hatched circle indicates previous platform
position.

They are also considered to be suitable for studying memory deficits
in mutant mice [24]. We  have shown that the B6CBA strain retained
this quality from one of its parental strains. The C3H strain, on
the other hand, is one of those in which retinal degeneration lead-
ing to functional blindness is known to occur. Several studies have
demonstrated that this strongly modifies the behavior of mice and
leads to poor performances, by C3H mice, in tasks requiring visual
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Fig. 6. Open field test: Mean trajectory length in cm (A), locomotion activity in % (B) and thigmotaxis in % (C) in B6CBA+/Lc, B6CBA+/+, C3H+/Lc and C3H+/+ mice. Error bars
represent SEM. P < 0.05 is indicated by * for B6CBA+/+ vs. B6CBA+/Lc, by + for C3H+/+ vs. C3H+/Lc, by ! for B6CBA+/+ vs. C3H+/+ and by ♦ for B6CBA+/Lc vs. C3H+/Lc.

orientation [2,3]. Vision problems worsen performance of C3H mice
in the spatial orientation and learning tests [27]. Therefore vision
impairment could interfere with assessment of the Grid2Lc muta-
tion and prevents reliable interpretations of these cognitive tests
when comparing C3H mice with other mouse strains. In our study,
we used only C3H mice with intact retinas (mutation non-carriers
or heterozygotes). This allowed a direct comparison between the
C3H and B6CBA strains.

Using this approach, we have shown that strain specific proper-
ties were also reflected in the performance of Lurcher mutant mice.
While Lurcher B6CBA mice showed a marked learning effect dur-
ing the hidden platform task, C3H Lurcher mice showed little or no
learning. Despite eliminating the influence of retinal degeneration,
C3H Lurcher mice had more difficulties navigating to a visible plat-
form compared with B6CBA Lurchers. Therefore, poor performance
of C3H mice cannot be simply attributed to lack of spatial learn-
ing ability; other factors probably play a role. Because swimming
velocity did not differ between the strains it cannot be explained
by different swimming ability; the absence of influence of motor
problems was also supported by the motor tests results. Changes
in visuomotor integration, level of anxiety or behavioral abnor-
malities influencing the motivation to learn the position of the
platform, which have been suggested as mechanisms to explain the
impairment in Lurcher mice, could be involved in the strain differ-
ences, too. The presence of behavioral differences between strains
is supported by higher locomotion activity on the open field test
in C3H wild type mice. C3H/He mice have been shown to exhibit
relatively low anxiogenic behavioral profiles in the elevated plus
maze compared to 5 other strains, including C57BL/6J and CBA/Ca
[2]. However, the meaning of this is difficult to interpret without
eliminating the effects of visual impairment in C3H/He mice, since
homozygosity for the Pde6brd1 allele has been shown to result in
increased activity in the open field test [40]. Functional blindness
could prevent detection of anxiogenic factors in the maze. On the
other hand, Ohkura et al. [43] found higher plasma levels of stress
hormone corticosterone in C3H/HeN mice compared with three
other mouse strains. Since Lurcher mice also show corticosterone
elevation [23] both these factors could be mutually potentiated in
C3H Lurcher mice.

We cannot exclude the possibility that photoreceptors in C3H
mice that are heterozygous for the Pde6brd1 allele, with morpho-
logically intact retina, are functionally abnormal in such a way that
it could impair their visual navigation using extra-maze cues, as
well as direct navigation to the visible goal. Nevertheless, Owen
et al. [44] found poor performance on both the hidden and visi-
ble platform Morris water maze tasks in the C3H/Ibg inbred strain
carrying the retinal degeneration gene, while C3B6 F1 hybrids per-
formed well on both tasks. This suggests that visual orientation is
probably not markedly impaired in mice that are heterozygous for
the Pde6brd1 allele. To verify this hypothesis, a thorough functional
examination of the visual system in C3H mice heterozygous for
Pde6brd1 allele would be necessary. The importance of visual abil-
ities for water maze performance has been shown by Brown and
Wong [3] who  found a correlation between performance on visual
detection tasks and the Morris water maze task with a hidden, as
well as a visible platform.

The present study did not show marked strain differences in
motor skills, except for the wire test, in which better performances
by B6CBA wild type mice could be accounted for by their lower
body weight. The ladder and rotarod tests were quite easy for wild

Table 4
Statistical significance (P-value) of the between-group effect of strain and mutation
factors and their interaction (strain × mutation) across the level of repeated mea-
surement on parameters measured in the open field test and fall latencies in the
motor tests. Permutational unbalanced ANOVA with repeated measurements.

Strain Mutation Strain × mutation

F(1,72) P F(1,72) P F(1,72) P

Open field test
Trajectory length 4.09 0.0398 0.01 NS 0.72 NS
Locomotion activity 24.59 <0.0001 11.58 0.0038 0.84 NS
Thigmotaxis 6.44 0.0307 4.81 0.0345 0.90 NS

Motor tests
Horizontal wire 7.01 NS 57.68 <0.0001 10.54 0.0016
Slanted ladder 5.47 NS 298.95 <0.0001 0.16 NS
Rotarod 0.50 NS 78.85 <0.0001 0.07 NS

Open field test and motor tests – effect of strain and mutation factors.
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Fig. 7. Motor test: Mean fall latencies in s on the horizontal wire (A), slanting ladder (B) and rotarod (C) tests in B6CBA+/Lc, B6CBA+/+, C3H+/Lc and C3H+/+ mice. Error bars
represent SEM. P < 0.05 is indicated by * for B6CBA+/+ vs. B6CBA+/Lc, by + for C3H+/+ vs. C3H+/Lc, by ! for B6CBA+/+ vs. C3H+/+ and by ♦ for B6CBA+/Lc vs. C3H+/Lc.

type mice, which achieved the maximum fall latency in most trials.
Therefore improvement in these tests could not be seen and subtle
strain differences in wild type mice could be masked.

5. Conclusion

We  found performance differences in the Morris water maze
task between the B6CBA and C3H strain, which were not dependent
on retinal degeneration affecting some C3H mice. Strain-dependent
impairment of C3H mice was analogous in both Lurcher mutants
and wild type mice. This way, genetic background modified man-
ifestation of the Grid2Lc mutation. However, the final phenotype
seems to be a product of the superposition of the strain and
Grid2Lc mutation effects, without any specific interference between
the strain-related genetic background and the mechanism of the
Grid2Lc mutation expression. These findings indicate that the
Grid2Lc mutation induces a strong and quite stable pathological
phenotype. Nevertheless, a combination of the Lurcher phenotype
and C3H strain prevented learning in the hidden platform task.
Strain-specific characteristics of the mice should be taken into
account when used as a model of cerebellar degeneration. In this
regard, B6CBA Lurcher mice seem to be a more suitable tool for
investigation of behavioral aspects of cerebellar degeneration, since
they do not combine abnormalities related to the Grid2Lc mutation
with strain-specific problems.
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Abstract Hereditary cerebellar ataxias are severe diseases for
which therapy is currently not sufficiently effective. One of the
possible therapeutic approaches could be neurotransplantation.
Lurcher mutant mice are a natural model of olivocerebellar de-
generation representing a tool to investigate its pathogenesis as
well as experimental therapies for hereditary cerebellar ataxias.
The effect of intracerebellar transplantation of embryonic cere-
bellar solid tissue or cell suspension on motor performance in
adult Lurcher mutant and healthy wild-type mice was studied.
Brain-derived neurotrophic factor level wasmeasured in the graft
and adult cerebellar tissue. Gait analysis and rotarod, horizontal
wire, andwooden beam tests were carried out 2 or 6months after
the transplantation. Higher level of the brain-derived neurotroph-
ic factor was found in the Lurcher cerebellum than in the

embryonic and adult wild-type tissue. A mild improvement of
gait parameters was found in graft-treated Lurcher mice. The
effect was more marked in cell suspension grafts than in solid
transplants and after the longer period than after the short one.
Lurcher mice treated with cell suspension and examined
6 months later had a longer hind paw stride (4.11 vs.
3.73 mm, P<0.05) and higher swing speed for both
forepaws (52.46 vs. 32.79 cm/s, P<0.01) and hind paws
(63.46 vs. 43.67 cm/s, P<0.001) than controls. On the
other hand, classical motor tests were not capable of
detecting clearly the change in the motor performance.
No strong long-lasting negative effect of the transplantation
was seen in wild-type mice, suggesting that the treatment has
no harmful impact on the healthy cerebellum.

Keywords Ataxia . Cerebellar transplantation . Gait
analysis . Lurcher . Olivocerebellar degeneration

Introduction

Hereditary cerebellar degenerations represent a wide group of
diseases [1] that may have a detrimental impact on patients
since the cerebellum not only plays a key role in motor coor-
dination control but is also involved in cognitive and affective
functions. (For a review, see [2]). The effectiveness of therapy
for cerebellar ataxias was mostly insufficient, but interesting
approaches have started to appear in recent years in exper-
imental studies [e.g., 3–5]. One of the hopeful therapies for
cerebellar degenerations could be neurotransplantation,
which, however, still needs in-depth investigation before
it can become a routine method in humans. The variability
of human hereditary cerebellar ataxias is also reflected in a
wide spectrum of animal models [6]. Mutant ataxic mice are
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used to investigate symptoms, pathogenesis, and cell death
mechanisms, as well as to develop and test therapeutic ap-
proaches for these diseases [7].

One of the most frequently used natural models of ge-
netically determined cerebellar degeneration is the
Lurcher mutant mouse [8]. Lurcher mice are heterozygous
for Grid2Lc semi-dominant gain-of-function mutation in
the δ2 glutamate receptor (GluRδ2) gene [9], which is
predominantly expressed in cerebellar Purkinje cells and
several hindbrain neurons [10]. The nature of the affec-
t i o n i n Lu rc h e r mi c e i s s im i l a r t o h uman
olivopontocerebellar atrophy, and although the same
mutation does not appear in humans, loss-of-function
mutation of the same receptor causes cerebellar degen-
eration in humans [11]. Lurcher mice suffer from early
onset postnatal Purkinje cell degeneration [12], which is
cell autonomous and is a primary effect of the mutation
[13, 14]. The extinction of Purkinje cells is accompa-
nied by a secondary reduction of cerebellar interneurons
and inferior olive neurons [12–15]. Three months after
birth, Lurcher mice have lost almost every Purkinje cell,
some 90 % of granule cells, and some 75 % of the
inferior olive neurons [12]. The most evident manifesta-
tion of the cerebellar degeneration in Lurchers is cere-
bellar ataxia [16], and they fail in various motor tests
[17–21].

Tomey and Heckroth [22] considered Lurcher mice to
be advantageous for neurotransplantation research. They
were used several times for investigating the transplanta-
tion of embryonic cerebellar tissue [22–27] or various
types of stem cells [25, 28, 29]. Nevertheless, the func-
tional effect of the transplantation has been examined only
in a minority of the studies [26, 28], and for embryonic
cerebellar cell suspension, it has not been assessed yet
despite the fact that functional recovery is the crucial goal
of neurotransplantation treatment.

The aim of this study was to assess the effect of
intracerebellar transplantation of embryonic cerebellar solid
tissue or cell suspension grafts on gait, motor skills, and motor
learning ability in adult Lurcher mutant mice. The same pro-
cedure was accomplished with wild-type mice in order to
assess the potential negative effect of transplantation into the
healthy cerebellum.

Materials and Methods

Animals

Lurchermutant and wild-type mice of the B6CBA strain were
used. The mice were kept in standard conditions with a
12:12 h light/dark cycle (6 am to 6 pm), at a temperature of
22–24 °C. Food and water were available ad libitum. Donor

embryos were obtained by cross-breeding enhanced green
fluorescent protein (EGFP)-positive C57BL/6-Tg(ACTB-
EGFP)1Osb/J males with B6CBAwild-type females. All ex-
perimental procedures were performed in compliancewith EU
guidelines for scientific experimentation on animals and with
the permission of the Ethical Commission of the Faculty of
Medicine in Pilsen. All efforts were made to minimize the
number of animals used and their suffering.

Design of the Experiment

The mice were treated with transplantation of solid embryonic
cerebellar grafts or embryonic cerebellar cell suspensions at the
age of 90–120 days. Two or 6 months after the transplantation,
spontaneous gait was analyzed and motor skills and motor
learning were tested with a rotarod, horizontal wire, and wood-
en beam tests for 3 days. The mice were then euthanized for
histological examination of the graft presence and structure.
The scheme of the experiment is shown in Fig. 1. Only mice
with surviving grafts were used for the behavioral data analysis.
Untreated control mice were examined at a corresponding age.
The numbers of mice involved in the individual experimental
groups are indicated in Table 1. Next, six mice with a graft and
two sham-operated controls were euthanized 3 days after the
surgery to examine cell proliferation early after engraftment
and/or injection of the vehicle. Levels of brain-derived neuro-
trophic factor (BDNF) were determined in the embryonic cere-
bellum and adult cerebellum, mesencephalon, and brainstem
using an enzyme-linked immunosorbent assay (ELISA).

Transplantation

Donor females with conception-timed pregnancies were eu-
thanized by overdose of thiopental on the 12th day of gesta-
tion, and the embryos were removed. Only EGFP-positive
embryos were used. The embryonic cerebellum was dissected
in the form of two pieces of tissue, and the pieces were then
pooled in a cold aqueous solution of 0.9 % sodium chloride
and 0.6 % glucose, which also served as a vehicle for graft
administration. For the cell suspension preparation, the tissue
was treated with trypsin for 10 min, washed with the vehicle,
andmechanically dissociated. Cell concentration was adjusted
to 50,000 cells/μl.

The host mice were anesthetized with an intraperitoneal
administration of ketamine (100 mg/kg body weight (bw))
and xylazine (16 mg/kg bw). A solid cerebellar graft (one
piece of tissue per host in 5 μl of the vehicle) was injected
with a glass capillary, with the wide orifice toward the host
cerebellum (bregma—6.2 mm, midline, depth bregma—
2 mm). Cell suspension (1 μl per host) was injected into the
cerebellum (bregma—6.2 mm, midline, depth bregma—
3 mm) with a glass microcapillary (inner diameter 60 μm).
The injection speed was 0.5 μl/min.
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Six mice with the graft and two sham-operated mice were
injected with bromodeoxyuridine (BrdU) at the time of
the surgery and then for the next 2 days in order to
follow newly arising cells in the graft and at the site
of the injection. BrdU (Sigma-Aldrich, Saint Louis,
USA) was injected intraperitoneally in dose of 50 mg/kg.
BrdU-treated mice were euthanized 3 days after the sur-
gery, as described below.

Motor Function Examination

For automated gait analysis, CatWalk 7.1 (Noldus Information
Technology BV, Wageningen, the Netherlands) was used.
Animals were placed on a glass walkway (85 cm long and
8.5 cm wide) and allowed to move freely across the walkway.
For each mouse, two tracks with a straight walking direction

and without any interruption were analyzed, and data from
these two tracks were averaged. The following parameters
were assessed: walking speed (cm/s), stand (s), stride length
(cm), and swing speed (cm/s). (For details, see [20]).

Motor skills were examined on the rotarod (RotaRod Ad-
vanced, TSE Systems Ltd., Germany), horizontal wire, and
wooden beam for three consecutive day sessions (D1–D3).
For the rotarod test, the cylinder diameter was 3.5 cm, rod
width 6.5 cm, and rotation speed 5.5 rotations per minute.
For the horizontal wire test, the mouse was hung by its fore-
paws on a wire (length 30 cm, diameter 1 mm) 55 cm above a
table. For the wooden beam test, the mouse was placed on a
horizontal cylindrical wooden rod (length 106 cm, diameter
7 cm). In all cases, fall latencies were measured. If the mouse
reached a latency of 120 s, the trial was stopped. Four trials per
day session were performed on individual tests, and for each

Table 1 Mean walking speed, stand, stride length, and swing speed ± SEM for forepaws and hind paws in Lurcher mutant and wild-type mice 2 or
6 months after transplantation of embryonic cerebellar cell suspension or solid graft and in age-matched controls

Experimental group Speed (cm/s) Stand (s×10−2) Stride length (cm) Swing speed (cm/s)

Forepaws Hind paws Forepaws Hind paws Forepaws Hind paws

Lurcher 2 months

Cell suspension (n=17; 85 %) 28.63±1.94 12.3±0.6 14.3±1.0 4.14±0.10 4.17±0.09 53.18±3.90* 60.53±2.86

Solid graft (n=14; 64 %) 33.45±2.92 14.0±0.5 17.2±0.6 3.88±0.12 3.93±0.11 39.21±2.02 51.96±2.77

Control (n=20) 25.61±1.68 14.0±0.8### 16.9±1.0### 3.96±0.12### 3.99±0.12### 42.80±2.81### 53.40±2.91###

Lurcher 6 months

Cell suspension (n=13; 68 %) 17.00±1.93 14.6±0.1 17.9±1.9 3.93±0.17 4.11±0.15* 52.46±7.01** 63.46±5.30***

Solid graft (n=8; 62 %) 18.39±1.22 14.8±1.3 17.5±1.6 3.82±0.13 3.89±0.10 41.00±3.80 53.69±4.90*

Control (n=24) 20.42±1.86 14.8±0.7### 18.1±0.9### 3.76±0.10### 3.73±0.10### 32.79±1.96### 43.67±1.88###

Wild-type 2 months

Cell suspension (n=22; 100 %) 28.75±1.55 10.4±0.4 11.8±0.5 5.22±0.12 5.17±0.12 77.52±4.52 96.61±4.65

Solid graft (n=17; 77 %) 25.80±2.18 11.6±0.6 13.1±0.6 5.04±0.11* 5.01±0.10 65.82±3.90* 80.35±4.46*

Control (n=26) 26.08±1.38 9.8±0.3 11.0±0.4 5.37±0.11 5.32±0.11 80.10±4.16 96.31±4.52

Wild-type 6 months

Cell suspension (n=20; 95 %) 16.31±1.33 11.2±0.5 12.1±0.7 5.37±0.19** 5.26±0.18** 86.40±6.08** 96.98±5.18

Solid graft (n=16; 76 %) 18.34±1.19 10.8±0.3 11.4±0.3 5.09±0.12* 5.08±0.12* 75.88±2.91* 85.88±4.04

Control (n=28) 23.22±1.26 11.1±0.3 12.6±0.4 4.71±0.10 4.67±0.10 64.07±3.84 78.41±3.97

Numbers of mice in individual experimental groups (n) are indicated. In the case of graft-treated mice, n shows number of mice with surviving grafts and
this is followed by graft survival rate (in %)
# vs. control in the wild-type experimental group; *vs. control in the same experimental group

*P<0.05; **P<0.01; ***P<0.001; ###P<0.001

D1D1 D2D2 D3D3 SCWCW

D1D1 D2D2 D3D3 SCWCW

T

6 months

2 months

Fig. 1 Scheme of the experimental design. Transplantation day (T) was followed by 2 or 6 months of recovery. Then, the CatWalk gait test (CW) and
three motor test day sessions (D1, D2, D3) were performed. Finally, the mice were sacrificed for histological examination (S)
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test and mouse, the values were averaged. Motor learning was
quantified using the ratio of latencies on D3 and D1 (D3/D1).

Histological Examination

Finally, the mice were sacrificed by overdose of thiopental,
before then being transcardially perfused with Ringer’s solu-
tion and 4 % phosphate-buffered paraformaldehyde (pH 7.4).
The frontal 40 μm frozen sections of the cerebella and adja-
cent structures were prepared. The graft presence and mor-
phology were assessed according to natural EGFP fluores-
cence of grafted and graft-derived cells.

An immunohistochemistry was used to verify the presence
of Purkinje cells with anti-calbindin and to identify astrocytes
with anti-glial fibrillary acidic protein (GFAP) staining in se-
lected free-floating sections. For anti-calbindin staining, the
sections were incubated with anti-calbindin primary antibody
(ab11426, Abcam, Cambridge, UK; dilution 1:1000) over-
night at room temperature and then with AlexaFluor® 594
secondary antibody (ab150076, Abcam, Cambridge, UK; di-
lution 1:400) for 2 h at room temperature. For anti-GFAP
staining, sections were incubated with anti-GFAP primary an-
tibody (clone G-A-5 Cy3 conjugate, Sigma-Aldrich, Saint
Louis, USA, dilution 1:800) overnight at 4 °C.

The BrdU labeling was performed according to the modi-
fied protocol described by Kempermann et al. [30]. After the
blocking in Tris-bufferred saline containing 2 % Triton X-100
and 10 % donkey serum (ab7475, Abcam, Cambridge, UK),
the sections were treated with hydrochloric acid (2.0 M) for
30 min at 37 °C before being incubated in primary antibody
anti-BrdU (ab1893, Abcam, Cambridge, UK; dilution 1:500)
overnight at 4 °C. Finally, the sections were incubated with
DyLight® 594 secondary antibody (ab96941, Abcam, Cam-
bridge, UK; dilution 1:400) for 4 h at room temperature.

The specimens were visualized using a fluorescent Olym-
pus BX41 microscope (Olympus Corporation, Japan) and an
Olympus FV10I-DOC confocal laser scanning microscope
(Olympus Corporation, Japan).

BDNFAssay

The level of BDNF was determined in the tissue cerebella of
12-day-old (e.g., the age of graft gaining) embryos and in the
cerebella, mesencephalons, and brainstems of 3-month-old
(e.g., the age of transplantation) Lurcher and wild-type mice.
The adult tissue samples were taken from six Lurcher and six
wild-type mice. The brainstem was processed only in five
mice per group for technical reasons. Because the amount of
tissue obtained from one embryo was too small for the pro-
cessing, the cerebella of 32 embryos were collected and divi-
ded into three equal samples.

The level of BDNF was measured using the ELISA kit
(Elmeca Bioscience, Breda, the Netherlands), according to

the manufacturer’s protocol. Data were normalized to the pro-
tein content using a bicinchoninic acid assay (Sigma-Aldrich,
Saint Louis, USA). The specimens were processed in dupli-
cates, and the values were then averaged.

Statistical Evaluation

Most of the data did not show normal distribution (verified
with the Kolmogorov-Smirnov test). Therefore, nonparamet-
ric statistics was used. For walking speed, a permutational
ANOVA (with mouse type, treatment, and time period as
between-group factors) was used. Since other gait parameters
showed correlation with walking speed, a permutational
ANCOVA, with walking speed as a covariate, was used for
the analysis of these data, rather than using an ANOVA. For
the between-group planned comparison, a permutational t test
was used. For motor test evaluation, a permutational ANOVA
(with mouse type, treatment, and time period as between-
group factors) with repeated measurements (with day session
as a within-group factor) was used, and the between-group
planned comparison was carried out using a permutational t
test with Bonferroni correction for repeated measurements.
For the evaluation of the BDNF level in adult mice, a two-
way permutational ANOVAwith mouse type and brain struc-
ture as between-group factors was used. For assessment of the
BDNF level in the Lurchermutant, a wild-type and embryonic
cerebellum one-way permutational ANOVAwas used. For the
between-group planned comparison, a permutational t test
was used. The reported F and t values were considered as
F0 and t0 before the start of the permutational tests. The per-
mutational ANOVA/ANCOVA and t tests were performed
with a maximum of 5000 and 10,000 permutations, respec-
tively [31]. P<0.05 was accepted as statistically significant.
The data are presented as mean ± SEM.

Results

Graft Morphology

The number of mice with surviving grafts and the graft
survival rate in individual experimental groups are shown
in Table 1. Most of the cell suspension and the solid cere-
bellar grafts contained Purkinje cell-shaped cells (Fig. 2).
Immunohistochemistry verified that such cells were
calbindin-positive. Nevertheless, massive colonization of
the host cerebellum with graft-derived cells was not seen,
and EGFP-positive fibers connecting the graft with the host
tissue were rare (Fig. 2). Furthermore, in Lurcher mice, the
graft was mostly outside the cerebellum and did not show a
tendency to invade it (Fig. 2a). Both types of grafts
contained numerous GFAP-positive cells (astrocytes) of
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both host (EGFP-negative) and donor (EGFP-positive)
origin (Fig. 3).

The grafts that were examined 3 days after engraftment
appeared as small clusters of EGFP-positive tissue. They did
not yet contain Purkinje cell-shaped cells. While in the sur-
roundings of these grafts, a higher density of GFAP-positive
cells was seen, and the graft mass was almost free of them
(Fig. 4e). The BrdU immunohistochemistry showed ac-
cumulation of positive cells in the area of these graft
injections but much less in the place of vehicle injection
(compare Fig. 4a and Fig. 4c). Inside the graft, several
cells were found that were positive for both BrdU and
EGFP (Figs. 4b–d, f–h). On the other hand, there were many
cells that were positive for BrdU but not for EGFP in the graft
area (Figs. 4b–d, f–h).

BDNF Level

Significant effects of brain structure (F(2,28)=8.96, P=0.0022)
as well as the interaction of the brain structure and mouse type

factors (F(2,28)=7.79, P=0.0012) on BDNF level were found
in adult mice. The sample origin had a significant effect on the
BDNF level (F(2,12)=31.72, P<0.0001) when comparing
adult Lurcher mutants, wild-type and embryonic cerebella.
The levels of BDNF were nearly identical in both wild-type
and Lurchermutant mesencephalon and brainstem, as well as
in the wild-type cerebellum (Fig. 5). The Lurcher mutant cer-
ebellum showed significantly higher BDNF levels than did the
wild-type one. Embryonic cerebella, on the other hand,
contained less BDNF than did the wild-type, as well as
Lurcher mutant cerebellar tissue.

Gait Analysis

Walking speed, stand, stride length, and swing speed are
shown in Table 1. Gait analysis did not show a significant
effect of mouse type and treatment on walking speed. Stand
(forepaws: F(1,211)=75.63, P<0.0001; hind paws: F(1,211)=
100.28, P<0.0001), stride length (forepaws: F(1,211)=234.39,
P<0.0001; hind paws: F(1,211)=226.13, P<0.0001), and

Fig. 2 A solid graft in a Lurchermouse avoiding the host cerebellum (a).
Detail of a solid graft containing Purkinje cell-shaped cells in a wild-type
mouse (b). Detail of a Purkinje-shaped cell with deviated dendrite in a cell

suspension graft (c). Natural EGFP fluorescence. Fluorescent Olympus
BX41 microscope (a, b), Olympus FV10I-DOC confocal laser scanning
microscope (c)

Fig. 3 Astrocytes in the embryonic cell suspension graft in a wild-type
mouse—na t i v e f l uo r e s c enc e o f EGFP (a ) , a n t i -GFAP
immunohistochemistry (b), and merged figure (c). Only some of the

astrocytes are EGFP-positive. Large EGFP-positive Purkinje cell-
shaped cells are present. Olympus FV10I-DOC confocal laser scanning
microscope
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swing speed (forepaws: F(1,211)=141.93, P<0.0001; hind
paws: F(1,211)=176.27, P<0.0001) showed a significant effect
of the mouse-type factor. Control Lurcher mice had a longer
stand, shorter stride, and lower swing speed than control wild-
type mice (Table 1).

Only stride length (forepaws:F(2,211)=3.37, nonsignificant;
hind paws: F(2,211)=4.76, P=0.0276) and swing speed (fore-
paws: F(2,211)=10.05, P<0.0001; hind paws: F(2,211)=9.07,
P<0.0001) showed a significant effect of the treatment factor.
The results of between-group comparison are shown in

Fig. 4 Anti-BrdU immunohistochemistry (a, c, g), native fluorescence of
EGFP (b, f), merge figure for anti-BrdU immunohistochemistry and
native EGFP fluorescence (d, h), merge figure for anti-GFAP
immunohistochemistry and native EGFP fluorescence (e), 3 days after
surgery. BrdU-positive cells in the place of vehiculum injection (a).
EGFP-positive cell suspension graft (b), BrdU-positive cells in the

same localization (c), and merge figure (d). GFAP-positive cells in the
area of EGFP-positive graft injection (e). A detail of EGFP-positive cells
in the cell suspension graft (f), BrdU-positive cells in the same
localization (g), and merge figure (h). Olympus FV10I-DOC confocal
laser scanning microscope
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Table 1. Cell suspension-treated Lurcher mice tested
2 months after the transplantation had only a higher fore-
paw swing speed than controls. Lurcher mice treated with
cell suspension and examined 6 months later had a longer
hind paw stride and higher swing speed for both forepaws
and hind paws than controls. Solid graft-treated Lurchers
achieved a higher hind paw swing speed than controls only
when examined 6 months after the transplantation.

Wild-type mice treated with cell suspension and examined
2 months later did not differ from controls. However, when
tested after 6 months, they had a longer stride and higher
swing speed. Solid graft-treated wild-type mice tested
2 months after the surgery had a shorter forepaw stride and

lower swing speed of both forepaws and hind paws than con-
trol mice. Those examined after 6 months had a longer fore-
paw and hind paw stride and higher forepaw swing speed.

Motor Skills

Fall latencies on the motor skill tests are shown in Fig. 6. For
fall latencies on the rotarod (F(1,212)=1634.15, P<0.0001),
horizontal wire (F(1,212)=77.34, P<0.0001), and wooden
beam (F(1,212)=683.71, P<0.0001) tests, a significant effect
of the mouse type was found. Lurcher mice achieved shorter
fall latencies than wild-type mice in all tests (compare Fig. 6).
No significant effect of the treatment factor was detected in
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Fig. 6 Mean fall latencies (s) in 3 day sessions (D1–D3) of the rotarod (a,
d), horizontal wire (b, e), and wooden beam (c, f) tests in Lurchermutant
and wild-type mice treated with suspension or solid grafts and tested 2 (a,

b, c) or 6 months (d, e, f) later and in control groups. Error bars represent
SEM. For comparison of control Lurcher and wild-type mice, P<0.05 is
indicated by *, P<0.01 by **, and P<0.001 by ***
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any motor test. For the D3/D1 ratio, no significant effect of the
mouse type was found, but for the wooden beam test, signifi-
cant effects of treatment (F(2,212)=2.61, P=0.0338) and inter-
action of mouse type:treatment (F(2,212)=7.49, P<0.0001)
were found. Lurcher mice treated with cell suspension
achieved a higher D3/D1 ratio of fall latencies than control
mice (2 months after treatment: t=−2.44, P=0.0011;6 months
after treatment: t=−2.38, P=0.0137). Solid graft-treated wild-
type mice examined 2 months after the transplantation
achieved a higher D3/D1 ratio than controls (t=−2.34, P=
0.0192). On the other hand, cell suspension-treated wild-type
mice tested after 6 months had a lower D3/D1 ratio than con-
trols (t=2.13, P=0.0277) (Table 2).

Discussion

We found significant improvement in some gait parameters in
adult ataxic Lurchermutant mice after intracerebellar transplan-
tation of embryonic cerebellar grafts. Up until now, embryonic
solid cerebellar graft transplantation has been shown to have
only a mild and inconsistent effect in Lurchermice [26]. On the
other hand, Jones et al. [28] observed a significant improvement
in the performance on motor tests and increased Purkinje cell
survival after transplantation of mesenchymal stem cells into
the cerebellum of newborn Lurchers. It was suggested that
grafted mesenchymal stem cells produced neurotrophic factors
that supported the surviving Purkinje cells [28].

Among other cerebellar mutant mice, alleviation of ataxia
was seen after transplantation of embryonic or fetal cerebellar
cells in Purkinje cell degeneration (pcd) [32, 33] and
spinocerebellar ataxia type 1 (SCA1) [34] mice. In pcd mice,
the functional effect was explained by reconstruction of the
neural circuitries [35]. However, proximity of the grafted
Purkinje cells to the deep cerebellar nuclei is necessary [36]
since the granular layer acts as a barrier that prevents nerve

fibers from sprouting toward the deep cerebellar nuclei [37].
Transplantation of various types of stem cells also led to the
improvement of motor function, e.g., in nervous [38], SCA1
[39], and spinocerebellar ataxia type 2 (SCA2) [40] mice.

In the present study, graft structure examination confirmed our
previous findings [24–27]. The grafts were able to survive for
6months in bothwild-type andLurchermice, and therefore, both
their short- and long-term effects on the cerebellar ataxia could be
examined. Most of the 2- or 6-month-old grafts seemed to be
much larger than were the grafts that were examined 3 days after
the transplantation. Growth of the graft was confirmed by the
presence of newly generated EGFP-positive cells. In wild-type
mice, the cell suspension graft showed some dispersion of the
Purkinje-shaped cells andwas similar to the graft seen recently in
SCA2 mice [41]. In Lurcher mice, the grafts showed a tendency
to avoid the cerebellum, and fiber sprouting from the graft was
rare. Therefore, numerous functional synaptic contacts between
the graft and host cerebellum cannot be expected, and the graft
structure in Lurchers did not promise any strong specific func-
tional effects mediated by Purkinje cell replacement and neural
circuitry reconnection. Since no abundant connections between
the graft and the host structureswere seen, the functional effect of
the graft would probably be at least partially mediated by the
supporting intrinsic brain plasticity through the presence of the
grafted tissue. (For a review, see [42]). It has been reported se-
veral times that grafted cells do not substitute for the lost ones but
instead prevented their degeneration, supported the function of
surviving host Purkinje cells [28, 40, 43] in cerebellar mutant
mice, or reduced glial activation and inflammatory responses in
the cerebellum in theNiemann-Pick disease type Cmousemodel
[44, 45]. These approaches, however, require timely engraftment
before the extinction of the intrinsic Purkinje cells, and therefore,
it would not be applicable in adult Lurchermicewith no Purkinje
cells. The effect of the grafted tissue could be complex and may
not be explained by one mechanism. There are large numbers of
various trophic and morphogenetic factors that could be

Table 2 Mean D3/D1 ratios of
fall latencies ± SEM in the
rotarod, suspension wire, and
wooden beam tests in Lurcher
mutant and wild-type mice 2 or
6 months after transplantation of
solid embryonic cerebellar graft
or cell suspension and in age-
matched controls

Time period Treatment Rotarod Horizontal wire Wooden beam

Lurcher 2 months Cell suspension 4.88±2.31 1.53±0.39 6.07±2.24

Solid graft 1.17±0.18 1.01±0.15 1.36±0.37

Control 2.04±0.70 1.46±0.51 1.01±0.18

6 months Cell suspension 1.88±0.62 2.18±1.02 3.19±1.06

Solid graft 1.97±0.35 1.32±0.26 2.21±0.94

Control 1.68±0.35 1.95±0.45 1.27±0.24

Wild type 2 months Cell suspension 4.53±1.94 1.49±0.18 1.96±0.68

Solid graft 4.87±1.83 1.51±0.22 2.00±0,41

Control 3.47±1.58 1.50±0.17 1.17±0.10

6 months Cell suspension 1.70±0.35 2.36±0.44 1.17±0.10

Solid graft 1.81±0.37 1.40±0.26 2.16±0.58

Control 2.42±0.88 1.58±0.40 3.90±1.08
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produced by the graft. Moreover, production of various factors
could be induced in the host tissue due to the presence of the
extraneous grafted tissue. Nevertheless, the induction of elevated
levels of certain factors may not be required. We demonstrated
that in the Lurcher cerebellum, BDNF is increased compared
with the healthy cerebellar tissue and with both wild-type and
Lurcher mutant mesencephalon and brainstems. Furthermore,
the embryonic cerebellum contains less BDNF than does the
postnatal one [46], and therefore, it does not seem to be a source
of this factor delivery into the diseased host tissue.

Lurchermice are well known for their severe motor deficits
[16, 17, 19, 21], and in accordance with previous findings
[20], we found a significant impact of the Lurcher phenotype
on performance in the rotarod, horizontal wire, and wooden
beam tests, as well as on several basic gait parameters. Al-
though in the classical motor tests, no benefit of the transplan-
tation was detected in Lurchermice (except for slightly better
learning on the wooden beam in cell suspension-treated ones),
the gait analysis showed significant amelioration in graft-
treated Lurchers, which was more marked in those treated
with cell suspensions.

Since no significant difference was found in walking speed,
improvements of swing speed and/or stride length parameters
were not just artifacts due to faster walking. Examination of
spontaneous gait as a natural movement appeared to be more
sensitive for detecting the functional effect of the transplanta-
tion therapy. On the other hand, classical motor tests were not
capable of clearly identifying those cases where only mild
changes had already been seen [26]. After a longer interval
between the transplantation and function examination, the im-
provement was more marked. This suggests that a long
enough period is necessary to develop changes in the neural
circuitries that determine functional manifestation.

Mild gait parameter changes were also seen in wild-type
mice after cerebellar transplantation. In solid graft-treated
ones, the changes were negative when examined 2 months
after the surgery. This suggests a possible moderate negative
effect of a solid piece of tissue growing in the cerebellum or of
the trauma caused by its introduction. In our previous studies,
we used double doses of solid cerebellar grafts, which in some
cases, led to compression of the host cerebellum [26, 27].
Nevertheless, when the graft amount was reduced in the pres-
ent experiment, such a negative phenomenon was not ob-
served and the negative effect of the solid graft seemed to be
transient only because after 6 months, the gait parameters
were not worse than they were in untreated control mice.

Conclusion

A mild beneficial effect of embryonic cerebellar tissue trans-
plantation into the cerebellum of Lurcher mice on spontane-
ous gait was found. Cell suspension seems to be more

effective than solid grafts. Although in wild-type mice, no
severe or long-lasting negative effects of the transplantation
were observed, cell suspension application would probably
also be a more gentle approach. Nevertheless, functional im-
provement is probably a slow and long-lasting process.
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4 DISCUSSION 

4.1  Spatial behavior of cerebellar mutants 

Because cerebellar disorders are associated with complex behavioral 

disturbances, deep behavioral analysis of cerebellar mutant mouse models is 

necessary to understand all of the factors involved in their phenotype. A detailed 

description of the specific features of their cognitive, emotional and motor functions 

is necessary to understand the involvement of the cerebellum in behavioral processes 

as well as for the assessment of their suitability as models of experimental therapy. It 

has already been shown that mouse models of olivocerebellar degeneration suffer 

from ataxia and cognitive and affective impairments (for details see above). 

Nevertheless, modern tracking and analysis systems, new statistical approaches, and 

the involvement of previously neglected factors, e.g. genetic background and sex, 

enable us to verify and extend our knowledge about the functional disturbances 

caused by olivocerebellar degeneration. 

The main topic of this thesis was to assess a behavior deficit in two mouse 

models of olivocerebellar degeneration, Lurcher and pcd mice, with particular 

attention paid to their cognitive and emotional disturbances. Lurcher and pcd mice 

are two of the oldest and frequently used cerebellar mutants. Based on current 

knowledge, both mutants constitute a distinct type of mutation affecting the 

olivocerebellar system either exclusively (Lurcher) or inclusively (pcd) and 

determining a noticeable pathological phenotype. Their history and distinct 

histopatological similarities predestine these mutants to frequent mutual comparisons 

(for reviews see Vogel et al., 2007; Wang and Morgan, 2007). However, these 

comparisons were mostly indirect and none of the studies involved systematic 

behavioral analysis. Except for strong ataxia, spatial behavior impairment was one of 

the first behavioral deficits described in both Lurcher and pcd mice (Lalonde et al., 

1988; Goodlett et al., 1992). 

Orienting and navigating relative to the environment constitute fundamental 

tasks common to all organisms (Etienne and Jeffery, 2004; Wiltschko and Wiltschko, 

2012; Collett et al., 2013). Gallistel (1990) defined spatial navigation as “a process of 
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determining and maintaining a course or trajectory from one place to another with 

respect to the known world”. The capacity to plan and execute a goal-directed path 

consists of two elementary processes. First, dead reckoning (originally a nautical 

term), or path integration (biological term) (Mittelstaedt and Mittelstaedt, 1982), is 

the continuous process of determining a change in position by integrating directed 

speed with respect to time and second, an episodic process gives the position using 

fixed, visible cues (Gallistel, 1990). From this point of view, cerebellar degeneration 

could affect more particular components of spatial behavior. With regard to the type 

of mutation and extent of cerebellar degeneration in Lurcher and pcd mice, we 

primarily aimed to assess and compare spatial navigation and orientation as well as 

spatial learning and memory in these mutants. 

Spatial behavior in Lurcher and pcd mice was tested using a Morris water maze 

(Morris et al., 1982; Morris, 1984; for reviews see D'Hooge and De Deyn, 2001; 

Wahlsten, 2011). The Morris water maze consists of a simple task with aversive 

stimulus (water) that motivates an animal to find an escape platform (hidden or 

visible). Despite the aversive nature of the task that could provoke unpredictable 

behavior in cerebellar mutants, we decided to use this test for the following reasons: 

1) it is broadly accepted that swimming in these mice is less affected than gait by 

cerebellar ataxia (Fortier et al., 1987; Goodlett et al., 1992) and 2) for comparability 

with previously published studies. Nevertheless, we also tested exploration and 

anxiety in the open field (Hall and Ballachey, 1932; Hall, 1934; for reviews see 

Walsh and Cummins, 1976; Wahlsten, 2011), as well as depressive-like behavior in 

the Porsolt’s forced swimming test (Porsolt et al., 1977; Porsolt et al., 1978; Porsolt et 

al., 1979; for reviews see Wahlsten, 2011; Slattery and Cryan, 2012) to describe a 

complex behavioral profile and to avoid a misleading interpretation of results 

obtained from the Morris water task. 

We have confirmed severe impairments in cognitive and behavioral tests in 

both Lurcher and pcd mutant mice (Article 2: Tuma et al., 2015). Contrary to 

previous studies (Goodlett et al., 1992; Lalonde and Thifault, 1994), we have shown 

that overall performance in the Morris water maze test was better in Lurcher than in 

pcd mutants (Article 2: Tuma et al., 2015). We have found that navigation to the 

visible platform is only partially disabled in Lurcher mutants, but pcd mice failed in 
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both visual and hidden goal tests (Article 2: Tuma et al., 2015). On the basis of these 

behavioral findings and the extent of cerebellar and non-cerebellar affections, we 

proposed that the poor performance of cerebellar mutants in the water maze task 

could be caused by at least four types of factors, alone or in combination: 1) cognitive 

disturbances, 2) sensory disorders, 3) motor deficits, and 4) motivation and 

behavioral abnormalities (Article 2: Tuma et al., 2015). The intensity of employment 

of these basic mechanisms in the individual mouse is determined by various factors, 

such as mutations, genetic background (strain), and sex (Article 2: Tuma et al., 2015; 

Article 4: Cendelin et al., 2014). 

4.1.1 Role of cognition 

Spatial behavior requires two types of navigation: egocentric navigation (where 

the mouse determines the spatial relationships of features in the environment with 

respect to its own body) and allocentric navigation (where the mouse stores and uses 

information about the relationship of these features to each other) (for detail see 

Jeffery, 2003). For more sophisticated navigation and planning of the journey to find 

the optimal route, and also for recalibration of accumulated error resulting from 

egocentric navigation, the building of an internal representation of the environment, 

termed “cognitive map” is crucial (Tolman, 1948; O’Keefe and Nadel, 1978; for 

details see Jeffery, 2003). 

The neural substrate of the cognitive map is in the hippocampus (O'Keefe and 

Dostrovsky, 1971; O’Keefe and Nadel, 1978), namely hippocampal place cells 

(O'Keefe and Dostrovsky, 1971). Nevertheless, later studies revealed that the 

cerebellum also plays a key role in the formation of a hippocampal spatial 

representation map (Burguiere et al., 2005; Rochefort et al., 2011; Passot et al., 2012; 

for review see Rochefort et al., 2013). Rochefort et al. (2011) demonstrated that mice 

that lack cerebellar protein kinase C (PKC)-dependent PF-PC LTD (L7-PKCI mice) 

showed exclusively impaired place cell properties when they had to rely on 

self-motion cues only. However, L7-PKCI mice were able to navigate using 

allocentric navigation (Rochefort et al., 2011). These findings suggested that 

cerebellar PF-PC LTD is not necessary for successful navigation in the Morris water 

maze when both allocentric and egocentric navigation are used. Nevertheless, the 
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dissociation of these types of navigation in PF-PC LTD deficient mice, such as L7-

PKCI, as well as Lurcher and pcd could lead to effects on path integration and 

impaired place cell properties (Burguiere et al., 2005; Rochefort et al., 2011; 

Rochefort et al., 2013). 

With regard to these findings, Rondi-Reig et al. (2014) suggested that the 

cerebellar cortex serves as an adaptive filter which transforms self-motion sensory 

signals, motor efference copy, and the previous sensory state into a prediction of the 

sensory signal expected from voluntary movements. Comparing the prediction with 

actual sensory signals, the cerebellum helps to detect novelty in the environment 

(Rondi-Reig et al., 2014). This computation could verify the expected sensory state 

during voluntary navigation or inform about the necessity to update the position in 

the environment (Rondi-Reig et al., 2014). 

Since Lurcher and pcd mice have lost synapses on which the PF-PC LTD 

arises, a deficit in path integration could be expected (see above). Furthermore, both 

mutants failed in the Morris water maze enabling allocentric navigation (Article 2: 

Tuma et al., 2015; Article 4: Cendelin et al., 2014) impairment of this type of 

navigation could also be present. Contrary to L7-PKCI mice, Lurcher as well as pcd 

mice suffer not from selective lack of PF-PC LTD but from complete functional 

decortication of the cerebellum. Thus much wider functional impact is expectable. 

Allocentric navigation using the internal representation of spatial context is 

complex process involving many neural structures, including the cerebellum (for 

details see Petrosini et al., 1998). The spatial context is a neural construct that enables 

to hippocampal place cells to respond not only to spatial aspects of an environment, 

but also to non-spatial “contextual” aspects, such as color or shape (Anderson et al., 

2003). This construct enables the animal to navigate from one place to another using 

a non-spatial scheme and to plan a path to another place with the relation to 

landmarks array (Jeffery, 2003). To build a cognitive map, the processes for 

transforming egocentric sensory inputs into an allocentric form are required (Hartley 

et al., 2003). The collection of personally experienced events including contextual 

information, such as spatial layout and visual details concerning the location in which 

it occurred, indicate a possible link between spatial and episodic function (Hartley et 

al., 2003). Therefore, hippocampal spatial memory is also dependent on episodic 
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memory formed primarily in medial temporal cortex (O’Keefe and Nadel, 1978; 

Abrahams et al., 1997; Aggleton and Brown, 1999). The content of episodic memory 

can be defined as perceived information or feeling about an event that the subject is 

consciously aware of at the time (Moscovitch, 1995; Nadel and Moscovitch, 1997; 

Fujii et al., 2002a; Fujii et al., 2004). From this point of view, the content of the 

episodic memory is not the same as the event itself, but rather can be determined as 

the interaction between the subject and the event (Fujii et al., 2002b). 

Activation of the cerebellar-hippocampal network during spatial context 

retrieval (Fujii et al., 2004; Paleja et al., 2014; Sami et al., 2014), and participation of 

the cerebellum in episodic memory (Andreasen et al., 1999; Fliessbach et al., 2007; 

Habas et al., 2009) were found. Thus, the alteration of these two memory functions 

could contribute to the deficit in allocentric navigation in both Lurcher and pcd mice. 

A functional link between the cerebellum and hippocampus has been also 

demonstrated during eyeblink conditioning (Hoffmann and Berry, 2009; Wikgren et 

al., 2010). Eyeblink (or eyelid) conditioning is one of the most extensively studied 

forms of associative motor learning (Gruart et al., 1997; Medina et al., 2000; 

Kishimoto et al., 2001; Jimenez-Diaz et al., 2004; Heiney et al., 2014). It is supposed 

that simple associative learning is also related to animals’ abilities to use internal 

representation of an absent object to guide adaptive behavior and acquire new 

information, and to represent multiple spatial, temporal, and object properties of 

complex events and event sequences (for review see Pickens and Holland, 2004). 

Both Lurcher and pcd mice show abnormalities in associative eyeblink conditioning 

(Chen et al., 1996; Porras-Garcia et al., 2005; Brown et al., 2010; Porras-Garcia et al., 

2010; for review see Porras-Garcia et al., 2013). 

Moreover, task solving in the Morris water maze requires not only declarative 

spatial memory, which involves the collection and recall of exact relations of 

environmental cues, but also procedural learning (Schenk and Morris, 1985; Petrosini 

et al., 1998; Leggio et al., 1999). Procedural aspects linked to how a spatial task is 

solved embrace different components (Whishaw, 1985; Whishaw and Gorny, 1991; 

Leggio et al., 1999). Consecutive improvement in the Morris water task can reflect 

improvement in the motor component of the task, which is a priori limited by ataxia 

in cerebellar mutants. Nevertheless, we have shown that Lurcher mice are able to 
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improve their motor skills (Article 4: Cendelin et al., 2014). With regard to the 

absence of PF-PC LTD (for details see chapter 1.4.1 Motor control and learning) in 

Lurcher mice, we have to take into account a different cellular (van Alphen and De 

Zeeuw, 2002; Schonewille et al., 2011) and/or non-cellular mechanism involved in 

the improvement of motor skills in these mutants. 

4.1.2 Role of sensory deficits 

Sensory inputs are essential for spatial navigation and orientation. The 

computational process during path integration depends on the integration of internal 

signals generated by vestibular cues, proprioception, and optic flow (Yoder et al., 

2015). It has been reported that the cerebellum plays a key role in this integrative 

process (see chapter 1.3.2 Cognitive and affective functions; Angelaki and Hess, 

2005; Yakusheva et al., 2007; Brooks and Cullen, 2009; Yakusheva et al., 2013). To 

avoid progressively degraded estimation of the current position given by the 

accumulation of errors during path integration, the navigator needs to recalibrate its 

position using an external reference frame, e.g. visual, olfactory, acoustic, and 

magnetic landmark cues (Etienne and Jeffery, 2004). In the Morris water task with 

visible external cues, the recalibration process places emphasis on continuous 

sighting fixation and on the visual following of an object by a moving individual. In 

Lurcher mice, abnormalities of the OKR and VOR were reported by van Alphen et al. 

(2002). Since the Purkinje cells control oculomotor coordination, including OKR and 

VOR (for reviews see Angelaki and Hess, 2005; Yakusheva et al., 2007), oculomotor 

problems could also be expected in pcd mice in which the VOR has, however, been 

found to be almost normal (Killian and Baker, 2002). Aside from its role in 

oculomotor control, the cerebellum is involved in perceptual processes at a higher 

level of sensory signal processing (for details see Baumann et al., 2015).  

Moreover, pcd mice suffer from slow, progressive retinal degeneration (Blanks 

et al., 1982a; LaVail et al., 1982). Although we found only an insignificant reduction 

in photoreceptor density in the retinas of pcd mice at the age at which they were 

tested in the Morris water maze (Article 2: Tuma et al., 2015), the impact of vision 

problems on spatial behavior could not be excluded due to possible functional 
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imperfection of degenerating retina even before the reduction of photoreceptor 

number becomes evident (Marchena et al., 2011). 

Taken together, the effects of oculomotor deficit, sensory integration, and 

possible poor vision (pcd, Lurcher C3H/Pde6brd/+) can play a significant role in 

navigation difficulties in these mice (Article 2: Tuma et al., 2015; Article 4: 

Cendelin et al., 2014). In the visible goal task, these problems may be less important 

than in the hidden goal task, since the goal represents a single and marked intramaze 

object of interest instead of the multiple extramaze landmarks necessary for hidden 

goal location. 

4.1.3 Role of motor impairments 

Motor deficit is the main distinct impairment in cerebellar mutants (for details 

see reviews Lalonde and Strazielle, 2007; Porras-Garcia et al., 2013; Cendelin, 2014). 

Despite the motor disorders in Lurcher (Article 4: Cendelin et al., 2014; Article 5: 

Babuska et al., 2015) and pcd mice (Mullen et al., 1976; Goodlett et al., 1992), some 

authors have reported that swimming capability in these mutants is competent and 

less affected by ataxia than their gait (Fortier et al., 1987; Goodlett et al., 1992; 

Martin et al., 2003). Fortier et al. (1987) showed that whereas on land Lurchers 

stumbled after only a few step cycles, in water they were capable of producing an 

extended series of consecutive swim cycles with a normal EMG pattern. Goodlett et 

al. (1992) demonstrated that, although terrestrial movement is also strongly affected 

in pcd mice, they could at times adopt a normal swimming posture comparable to that 

of littermate controls, with their head above the water, forepaws inhibited, propelling 

with alternating hind limb kicks, and using the tail in the water. However, they did 

not maintain this swimming pattern over long distances, and frequently broke into a 

“dog-paddle”, in which they used both forelimbs and hind limbs for swimming 

(Goodlett et al., 1992). 

We have shown that Lurcher mice achieved the same swimming speed as their 

healthy littermate controls (Article 2: Tuma et al., 2015; Article 4: Cendelin et al., 

2014) but, despite the findings of Fortier et al. (1987), the mutants sometimes 

demonstrated an abnormal swimming posture (see Figure 2). Contrary to Lurcher 

mice, pcd mutants were not able to achieve the same swimming speed as their 
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controls (Article 2: Tuma et al., 2015). Low swimming speed in pcd mice could 

account for their low capability to maintain a normal swimming pattern over a long 

distance (Goodlett et al., 1992), but also for lower activity (see below) and/or worse 

fitness (Article 2: Tuma et al., 2015). Nevertheless, in both Lurcher and pcd mutants, 

we have observed a high incidence of rotating and almost no direct swim to the 

escape platform (Article 2: Tuma et al., 2015; Article 4: Cendelin et al., 2014). A 

low frequency of direct swim as well as an inability to reduce overall heading 

deviation from direct swim, even at the end of the visible platform task suggests that 

motor deficiency in cerebellar mutants could markedly influence trajectory shape and 

disable the maintenance of a straight course toward the goal (Article 2: Tuma et al., 

2015). 

With regard to these findings, it can be speculated that the disruption of 

trajectory shape and inability to maintain a swimming course primarily affects path 

integration in cerebellar mutants. Although path integration is a highly adaptive form 

of spatial navigation that enables rapid orientation in an unknown environment, 

continuously ongoing calculation of actual position is highly susceptible to rapid 

accumulation of errors (Etienne et al., 1988; Benhamou et al., 1990). The new 

position is always calculated from previous values and therefore, each small error is 

reflected in the next computation step (Kimchi et al., 2004; Tommasi et al., 2012). 

Frequent uncontrolled displacements from the intentional swimming path due to 

motor deficits accelerate error accumulation and thus decrease the precision and 

accuracy of this type of navigation in Lurcher and pcd mice. 

 

 
Figure 2: Examples of abnormal swimming posture in Lurcher mutant mice.  
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4.1.4 Role of motivation and behavioral abnormalities 

Although both Lurcher and pcd mutants failed in the Morris water task, 

behavioral manifestation in the maze was different (Article 2: Tuma et al., 2015; 

Article 4: Cendelin et al., 2014). While Lurcher mice spent the whole time in the 

water maze swimming intensively, pcd mutants showed low swimming activity and 

long periods of floating (Article 2: Tuma et al., 2015). A higher tendency toward 

inactivity in pcd mice and increased swimming activity in Lurcher mice were also 

seen in the forced swimming test (Article 2: Tuma et al., 2015). Floating is a 

behavioral phenomenon that may substantially influence the results of the water maze 

task (Llano Lopez et al., 2010) or may be a response to a difficult task as a 

manifestation of depressive-like behavior and learned helplessness (Porsolt et al., 

1979). In pcd mice, a potential sight-related impairment due to retinal degeneration 

(see above) and poor fitness related to low body weight may make the spatial task too 

difficult and might induce learned helplessness (Article 2: Tuma et al., 2015). 

Although Lurcher mice showed significantly lower body weight than their healthy 

littermates, they did not demonstrate poor fitness as was seen in pcd mice (Article 2: 

Tuma et al., 2015). In contrast to pcd mice, Lurcher mutants showed inability to 

inhibit their swimming activity in the forced swimming test compared with healthy 

controls (Article 2: Tuma et al., 2015). This abnormal behavior could account for 

their behavioral disinhibition when they are exposed to anxiogenic situations 

(Frederic et al., 1997; Hilber et al., 2004). 

Impaired capability to solve the Morris water task in both Lurcher and pcd mice 

could also result in decreased motivation to explore and/or effectively find the escape 

route from the maze. Although the mutants did not show distinct changes in 

exploratory behavior in the open field test compared with control groups (Article 2: 

Tuma et al., 2015), we can assume that behavior would differ in a more aversive 

environment, such as the water maze. Higher stress reactivity in Lurcher mice or 

depressive-like behavior in pcd mice could result in their inability to inhibit 

nonadaptive behavior (circling in the pool periphery, scrabbling at pool walls, 

inhibiting of exploratory behavior) and thus decrease their probability of solving the 

task. 
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4.1.5 Role of the mutation, strain background and sex 

Grid2Lc and Agtpbp1pcd mutations not only differ in their mechanisms of cell 

death activation, but also in biochemical characteristics, which can modify behavior. 

Quantitative peptidomics of pcd mouse brains showed significantly altered levels of 

some peptide hormones and prohormones, e.g. melanin-concentrating hormone 

(MCH), proopiomelanocortin, and proenkephalin, (Berezniuk et al., 2013). MCH 

neuropeptide displays anxiolytic, antidepressant and/or anorectic properties (Hervieu, 

2003). Nevertheless, in our experiment, pcd mice showed more depressive-like 

behavior (Article 2: Tuma et al., 2015). 

Moreover, the spectrum of extracerebellar brain damage and the effect on other 

tissues is wider with the Agtpbp1pcd mutation (see above). Particularly, retinal 

degeneration (Mullen et al., 1976; Blanks et al., 1982a), deficiency of CCP1 protein 

in skeletal muscles (Harris et al., 2000), and olfactory mitral cell degeneration (Diaz 

et al., 2012) are important factors that can influence mouse behavior. Thus it could be 

speculated that the overall worse performance of pcd mice in the Morris water maze 

compared with Lurcher mutants could be related to the broader spectrum of 

degenerative processes (Article 2: Tuma et al., 2015). 

Since genetic background (strain) differences between B6CBA and B6.BR wild 

type mice were also found, it is difficult to unambiguously distinguish the specific 

mutation effect from the effect of strain-specific phenotypic traits, the importance of 

which was particularly shown for depressive-like behavior (Article 2: Tuma et al., 

2015) or visual ability (Brown and Wong, 2007). Nevertheless, we have shown that 

genetic background can modify manifestations of the Grid2Lc mutation in Lurcher 

mice (Article 4: Cendelin et al., 2014). However, the final phenotype seems to be a 

product of the superposition of the strain and Grid2Lc mutation effect (Article 4: 

Cendelin et al., 2014). 

Poor spatial performance is a strong phenotypic manifestation of particular 

mutations in Lurcher and pcd mice. Nevertheless, not only genetic background but 

also sex differences seem to slightly modulate the behavioral performance of these 

mice (Article 2: Tuma et al., 2015). Sex dimorphism as a function of brain structures 

related to both behavioral processes and motor control has been described (Arvidsson 

et al., 2014), and significant sex differences have even been reported in neurological 
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manifestations of mutations in mice (Walton et al., 2012; Truong et al., 2013). We 

have found that pcd females show a distinct behavioral response to stress in the 

forced swimming test compared with pcd males (Article 2: Tuma et al., 2015). 

Therefore, the sex factor should also be taken into account in the analysis of spatial 

behavior of cerebellar mutants. 

4.2 Other behavioral abnormalities 

Cerebellar mutant mice are known to have a wide spectrum of behavioral 

abnormalities (for reviews see: Lalonde and Strazielle, 2007; Porras-Garcia et al., 

2013; Cendelin, 2014). We have shown that abnormal emotional processing and/or 

motor deficit could also lead to a higher incidence of maternal infanticide in Lurcher 

dams (Article 1: Tuma et al., 2013). Although some cerebellar mutants display poor 

maternal behavior or a complete inability to rear offspring, e.g. pcd (Mullen et al., 

1976), staggerer (Guastavino, 1984), reeler (Guastavino et al., 1993), and nervous 

mice (Sidman and Green, 1970), maternal aggression towards own offspring in Mus 

musculus has been described as rare (McCarthy and vom Saal, 1985; for review see 

Weber and Olsson, 2008). Nevertheless, it has been reported that maternal 

cannibalism in mouse dams is related to emotionality and higher susceptibility to 

stress (Poley, 1974; Reeb-Whitaker et al., 2001). Therefore, we have suggested that in 

Lurcher females, maternal infanticide could be potentiated by the inability to inhibit 

impulsive actions (Article 1: Tuma et al., 2013) due to their behavioral disinhibition 

(Hilber et al., 2004). These findings are also supported by our results from open field 

and forced swimming tests (Article 2: Tuma et al., 2015). Moreover, regarding 

similar studies in other cerebellar mutants, we have confirmed that cerebellar 

degeneration could affect a distinct type of behavior, such as maternal behavior. 

Although previously published studies using other cerebellar mutants did not 

assume a role of motor impairments in their low breeding capability (Bulloch et al., 

1982; Boufares et al., 1993), low maternal ability and pup survival rate in Lurcher 

mice could be also related to motor deficit. Strazielle and Lalonde (1998) found that 

Lurcher mice showed a decreased number and duration of several grooming 

components, however, serial organization of grooming did not lack its cephalocaudal 

sequence. It is not clear whether or not reduced grooming in Lurcher mice is due to 
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motor impairments, but it was found that electrical stimulation of the midline 

cerebellum initiated grooming (Berntson et al., 1973; Berntson and Paulucci, 1979; 

Berntson et al., 1988). On the other hand, cerebellar affection in weaver mutants did 

not lead to a reduction in their grooming behavior (Coscia and Fentress, 1993). 

Nevertheless, it could be speculated that reduced grooming behavior and/or lower 

body weight in Lurcher dams could lead to poor maternal behavior and consequently, 

a low pup survival rate. 

We can also hypothesize that Lurcher mice show impaired social 

communication. It was found that Purkinje cell loss in Lurcher mice modulates 

dopamine release in the prefrontal cortex and affects higher level cognitive processes, 

which are commonly deficient in autism spectrum disorders (Dickson et al., 2010; 

Rogers et al., 2013). Therefore, it could be speculated that impaired social cognition 

and communication could induce inappropriate maternal behavior in Lurcher females 

and in this way, reduce their breeding capability. Moreover, the cerebellum is related 

to speech motor planning, production as well as language perception (see above; for 

review see Marien et al., 2014). Abnormal vocalization has been found in staggerer 

(Heuze et al., 1997) and reeler (Romano et al., 2013) cerebellar mutant mice and thus 

we can assume that vocalization and its perception could be also disrupted in Lurcher 

mice. 

4.3 Applicability for experimental therapy 

Cerebellar mouse mutants constitute a wide spectrum of experimental models 

for understanding not only pathogenesis and its behavioral consequences but also 

functional recovery. One of the suggested hopeful therapies is neurotransplantation. 

However, it is currently still in the mostly experimental phase (Cendelin, 2015). It 

was found that embryonic cerebellar cells have the potential to survive (Article 3: 

Purkartova et al., 2014; Article 5: Babuska et al., 2015) and develop complex 

anatomical patterns (Sotelo and Alvarado-Mallart, 1987b; Triarhou, 1996) when 

grafted into the non-neurogenic cerebellum. They are even innervated by host axons 

in a target-specific manner (Strata and Rossi, 1998; Rossi et al., 2002), but there is no 

clear evidence that such transplants can establish appropriate efferent connections 

with distant host targets (Rossi and Cattaneo, 2002). The main problem in 
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reconstituting afferent projections of corticonuclear Purkinje cells seems to be 

attributed to the “physicochemical barrier” of a granular cell layer that prevents 

axonal sprouting of Purkinje cells (Sotelo et al., 1992; Triarhou, 1996). 

We have found that transplantation of embryonic cell suspension into the 

Lurcher’s cerebellum led to mild improvement in ataxic gait (Article 5: Babuska et 

al., 2015). However, the behavioral benefit that is observed in treated animals could 

be attributed to the trophic effect of grafted immature tissue, rather than rewiring of 

disrupted circuits (Mattsson et al., 1997; Rossi and Cattaneo, 2002). These findings 

support the opinion of Rossi and Cattaneo (Rossi and Cattaneo, 2002), that 

neurotransplantation therapy could have some importance, but is probably not 

sufficient on its own, in the treatment of neurodegenerative diseases, particularly for 

cerebellar degeneration. The possible positive effect of cerebellar 

neurotransplantation depends on many factors, e.g. pathogenesis of disease, progress 

and extent of neurodegeneration, biochemical composition of affected tissue or graft 

origin. In hereditary ataxias with slow progression, such as SCA2, pharmacological 

therapy seems to be more efficient and gentle (Scoles et al., 2012) than the 

intracerebellar intervention and ethically disputed transplantation of embryonic cells. 

In spite of the fact that partial functional motor recovery brought about by 

cerebellar transplants has been reported in pcd (Triarhou et al., 1995; for review see 

Triarhou, 1996, 1996; Zhang et al., 1996) and Lurcher mice (Article 5: Babuska et 

al., 2015), the effect of intracerebellar transplantation on complex behavioral 

functions (e.g. cognitive and emotional processing) has not yet been studied. From 

this point of view, neurotransplantation holds no promise to become a sufficient and 

primary therapy for cerebellar neurodegenerative diseases, but only an alternative or 

complementary strategy, which might include neuroprotective therapy, neurosurgical 

approaches, and physical rehabilitation (Rossi and Cattaneo, 2002). 
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5 CONCLUSION 

We have confirmed several behavioral impairments in both Lurcher and pcd 

mutant mice. Nevertheless, contrary to previous studies (Goodlett et al., 1992; 

Lalonde and Thifault, 1994), we have found that the manifestation of spatial behavior 

deficit is distinct in these two cerebellar mutants. The spatial task in the Morris water 

maze is solved by different behavioral components (Whishaw, 1985; Whishaw and 

Mittleman, 1986; Whishaw, 1991), including general procedures, such as inhibiting 

nonadaptive behavior, procedural learning, processing of self-movement idiothetic 

cues, and spatial procedures based on allothetic cues (Whishaw et al., 1997; for 

review see Leggio et al., 1999). With regard to the role of the cerebellum in each of 

these processes (see above), we have shown that the distinct pathogenesis of 

cerebellar degeneration in Lurcher and pcd mice could lead to differential solving of 

spatial tasks. Based on our findings, we proposed that the deficit of spatial 

performance in cerebellar mutants may potentially arise from a combination of 1) 

cognitive disturbances, 2) sensory deficits, 3) motor impairments, and finally, 4) 

affective disorder (Article 2: Tuma et al., 2015). Moreover, the resulting spatial 

behavior could be also modified by the specific effect of mutation, genetic 

background, and sex (Article 2: Tuma et al., 2015; Article 4: Cendelin et al., 2014). 

All of these four partial processes are integrated in the cerebellum and therefore, it is 

very hard to distinguish between them in the all-embracing Morris water maze task 

during the analysis of spatial behavior in cerebellar mutants. 

Nevertheless, based on our findings, we suggest that an inability to solve the 

Morris water task arises in both Lurcher as well as pcd mice from a disturbed and 

aimless behavior, though different in nature (Article 2: Tuma et al., 2015). We have 

shown that Lurcher mutants are able to reach the visible platform and remember its 

position for several days (Article 2: Tuma et al., 2015). Therefore, we suppose that 

motor disability and cognitive deficit play only partial roles in spatial disturbance in 

these animals. On the other hand, pcd mice suffer from wide spectrum of 

extracerebellar brain damage (see above) and therefore, their spatial behavior could 

reflect more functional disturbances. 
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We have also shown that cerebellar degeneration in Lurcher mice could affect 

other distinct behavioral attributes, such as maternal behavior, and could lead to 

decreased breeding capability in Lurcher females. We have hypothesized that 

increased maternal infanticide and a low pup survival rate in Lurcher mice could arise 

not only from their motor disabilities or lower body weight of dams but also from 

their affective disturbances (Article 1: Tuma et al., 2013). 

Although we have shown that an embryonic cerebellar graft survives well in 

both Lurcher (Article 5: Babuska et al., 2015) and SCA2 mice (Article 3: Purkartova 

et al., 2014), the morphology of the graft did not promise any strong specific 

behavioral effects. Furthermore, intracerebellar transplantation had only mild positive 

effects on gait parameters in Lurcher mice (Article 5: Babuska et al., 2015). From 

this point of view, intracerebellar transplantation does not seem to be a very effective 

therapy for degenerative diseases, but may serve only as an alternative or 

complementary strategy. 
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6 ANNEXES 

List of articles not included in the thesis: 

 
1. Glutamate receptor block in Lurcher mutant mice during ontogeny and its 

effect on hippocampal long-term potentiation 

Jan Barcal, Jan Cendelin, Ivana Korelusova, Jan Tuma and Frantisek Vozeh 

Prague Medical Report 2010; 111(2): 127-134 

 

2. Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative 

damage of the brain 

Jana Patkova, Max Vojtisek, Jan Tuma, Frantisek Vozeh, Jana Knotkova, Pavlina 

Santorova and Jiri Wilhelm 

Experimental and Toxicologic Pathology 2012; 64(1-2): 51-56 

 

3. Near-complete adaptation of the PRiMA knockout to the lack of central 

acetylcholinesterase 

Vladimir Farar, Franziska Mohr, Marie Legrand, Boris Lamotte d’Incamps, Jan 

Cendelin, Jacqueline Leroy, Marc Abitbol, Veronique Bernard, Frederic Baud, 

Vincent Fournet, Pascal Houze, Jochen Klein, Benoit Plaud, Jan Tuma, Martina 

Zimmermann, Philippe Ascher, Anna Hrabovska, Jaromir Myslivecek and Eric Krejci 

Journal of Neurochemistry 2012; 122: 1065-1080 

 

4. Intra-observer error of mouse long bone cross section digitalization 

Alena Jindrova, Jan Tuma and Vladimir Sladek 

Folia Zoologica 2012; 61(3-4): 340-349 
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