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Abstract: Operads are objects that model operations with several inputs and
one output. We define such structures in the context of graphs, namely oriented
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Introduction

Operads are objects that model operations with several inputs and one output.
The operad captures the composition of operations and the permutation of vari-
ables. Such a structure can be considered in the context of graphs. The compo-
sition of m-ary operation and n-ary operation gives us (m+n−1)-ary operation.
In the graph context it is the joining of two directed trees, which produces a new
directed tree.

Classical algebras, e.g., associative algebras and commutative algebras are
algebras over operads. Such algebras are coded by operads Ass and Com.

If we take instead of directed trees undirected trees, we get the notion of a
cyclic operad. The distinction between inputs and the output disappears. And by
replacing trees by even more general undirected graphs we get modular operads.

An essential example of modular operads are homeomorphy classes of two di-
mensional compact orientable surfaces with labeled boundary components – for
short Riemann surfaces with punctures (holes). Two Riemann surfaces S1 with
n1 holes and genus g1 and S2 with n2 holes and genus g2 can be ‘glued’ together
by identifying a puncture from S1 with a puncture from S2. This gives us a new
Riemann surface with n1 + n2 − 1 holes and genus g1 + g2. If we identify two
punctures on one Riemann surface with n holes and genus g we get a surface with
holes n− 2 holes and genus g + 1.

There is another way of generalizing this. If we take instead of directed
trees directed graphs we get the notion of PROPs. PROPs admit operations
with several inputs and several outputs. Well known examples of algebras over
PROPs are bialgebras.

In contrast to operads, even a couple of generators with several identities can
lead to free PROPs with infinite dimensional components. To handle this combi-
natorial explosion we introduce properads. A properad is the connected part of
PROP. Connected graphs then allow us to split infinite dimensional components
of properad into the union of infinitely many finite dimensional components. Our
main example of a properad is the Frobenius properad, motivated by the Frobe-
nius bialgebra.

It is obvious that the example of Riemann surfaces with holes can be adapted
as an example of properad structure. If we specify which holes serve as inputs
and which as outputs, we get the structure of a properad.

The construction of cobar complex is a useful general construction. For some
operads, namely for Koszul operads, the cobar complex can be used to construct
a minimal model of this operad. We will not use this aspect. Instead of this we
will show that the cobar complex of a general operad P with trivial components
P (0) and P (1) forms a new differential graded operad, C(P ). If we consider
an algebra over this new differential graded operad we get a homotopy algebra,
where the required identities from operad hold up to homotopy. For example,
the cobar complex of the operad Ass gives us an A∞ operad - strong homotopy
associative algebra, where the associativity holds up to homotopy.

Homomorphisms of differential graded operads that respect the differentials
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satisfy certain condition. The condition can be interpreted as certain Maurer-
Cartan equation. Hence algebras over the cobar complex of an operad P are
in bijection with solutions of certain classical master equation within some (in
general) non-commutative symplectic geometry. The homotopy algebra can be
therefore eqivalently expressed as square zero coderivation on appropriate vector
space.

For example, A∞-algebra on a graded vector space V is equivalently expressed
as coderivation C on the tensor coalgebra T cV such that C2 = 0.

The idea can be generalized to properads as well.

The thesis is organized as follows. In the first chapter we review definitions
of operads, cyclic operads, modular operads and differential graded operads. We
recall the notions of graphs, oriented graphs and trees. We describe free operads
as algebras over some monad and show some basic examples as quotients of free
operad.

In the second chapter we outline the idea of the construction of the cobar
complex and show an example of such a construction for the operad Ass. In the
following we explicitly show that an algebra over cobar construction of operad
Ass corresponds to some Maurer-Cartan equation.

The third chapter is devoted to the study of the duality of algebras and
coalgebras. We prove that by the dualization of any coalgebra V with coproduct
∆ and coderivation C we obtain algebra structure on the dual space V # with
product µ and derivation D. We show that the Maurer-Cartan equation for
A∞-algebra is equivalent to a coderivation identity on tensor coalgebra.

Then we translate Maurer-Cartan equation for finite dimensional space to a
derivation identity through the use of previous results of this chapter.

In the last chapter, we introduce the notions of PROPs and properads. First
as an enriched category and then as decorated oriented graphs. We present
an example of the Frobenius properad and show that we need to introduce the
‘grading’ by the genus of the graph.

We generalize the construction of cobar complex for properads and show it
explicitly on the example of Frobenius properad. Then we describe the algebra
over this cobar complex and show that it also corresponds to some Maurer-Cartan
equation.
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Conventions and notation

• K is a field of characteristic 0. Multiplication in K is denoted by the symbol
· or omitted.

K will be fixed throughout the thesis, and so we sometimes just say vector
space instead of a K-vector space, etc.

• For a K-vector space V , V # denotes its linear dual.

• [n] is the set {1, 2, . . . n}.

• Σn is the symmetric group of permutations of the set [n].

For a right Σn-module P , f ∈ P , σ ∈ Σn, we denote the right action of σ
on the element f as fσ.

• δji is a Kronecker delta. Function is equal to 1 if the variables (indices) are
the same, and 0 otherwise.

• ⊗ is the tensor product.

• � is the unordered tensor product (defined in 1.2.10).

• ∧ is the exterior product defined for an n-tuple x1, x2, ..xn as

xσ(1) ∧ wσ(2) ∧ . . . ∧ xσ(n) = sgn(σ)x1 ∧ x2 ∧ . . . ∧ xn

where sgn(σ) is the signature of the permutation σ ∈ Σn.

• ◦ is the composition of two maps.

If the pairing of outputs and inputs is not unambiguous, we use the symbol

i1,...in
◦j1,...jn . In that case we pair the input labeled by index ik with the

output labeled by index jk.
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1. Operads

1.1 Axioms of operad structure

There are two different ways of approaching operads. They can be defined as
collections of objects with morphisms satisfying axioms of associativity, equivari-
ance and eventually existence of unit. This description is useful for computations
but it is hard to generalize. For this reason it is convenient to think also about
more abstract description.

Since every operad can be considered as the quotient of a free operad, we
introduce the notion of free operad whose construction can be viewed as taking
certain coproduct over the set of trees to form a semigroup structure. Then by
replacing trees by another types of graph we can easily get more general concepts
as cyclic operads, modular operads and properads.

For our next purposes is necessary to translate the definitions of operads and
properads into language of differential graded vector spaces, which is the subject
of the last chapter.

Let us first review some basic definitions and examples. The notions and
definition are mainly taken from [Mar06], [MSS02] and [LV12]. For more abstract
approach is recommended [Get09]. Some details can be also found in [YJ15] and
[Val14].

Definition 1.1.1. A non-unital operad in category of K-modules is a collection
P = {P (n)}n≥0 of right K [Σn]-modules where Σn is symmetric group together
with K-linear maps called composition maps

(1.1) ◦i : P (m)⊗ P (n)→ P (m+ n− 1)

(where 1 ≤ i ≤ m and 0 ≤ n) such that the following two axioms are satisfied:

• Associativity: For each 1 ≤ j ≤ m, 0 ≤ n, 0 ≤ k and f ∈ P (m), g ∈ P (n),
h ∈ P (k)

(1.2) (f ◦i g) ◦j h =


(f ◦j h) ◦i+k−1 g if 1 ≤ j < i

f ◦i (g ◦j−i+1 h) if i ≤ j < n+ i

(f ◦j−n+1 h) ◦i g if i+ n ≤ j ≤ m+ n− 1

• Equivariance: For each 1 ≤ i ≤ m, 0 ≤ n, τ ∈ Σm and σ ∈ Σn let τ ◦i σ
be the permutation where pairs

(i, τ ◦i σ(i)) , (i+ 1, τ ◦i σ(i+ 1)) , . . . (i+ n, τ ◦i σ(i+ n))

corresponds to σ inserted on i-th place of τ 1. Then for f ∈ P (m), g ∈ P (n)
we require

(1.3) (fτ) ◦i (gσ) =
(
f ◦τ(i) g

)
(τ ◦i σ)

where the action of τ ∈ Σm on an element f ∈ P (m) is denoted as fτ .

1For example if we take permutation τ = (4, 1, 3, 2) ∈ Σ4 and σ = (2, 1, 3) ∈ Σ3 and insert
σ as second argument of τ we get τ ◦2 σ = (2, 5, 4, 6, 3, 1) ∈ Σ6.
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For unital operads there is one more axiom

• Unitality: There exists e ∈ P (1) such that

(1.4) f ◦i e = f

for f ∈ P (m) and 1 ≤ i ≤ m

(1.5) e ◦1 g = g

for g ∈ P (n).

Remark 1.1.2. The constructions and definitions from this section can be in
most cases done for a general commutative ring k. We suggestively denote this
ring in the same way as it is usual for characteristic zero field K. This is because
in the following sections we will work with special K-modules, vector spaces.

In the following we will be talking mainly about unital operads. The non-
unital version can be easily thought of by omitting requirements involving unit.

Similarly one can define non-Σ operads. In this case the axiom of equivariance
is omitted and each component is just a K-module.

Definition 1.1.3. Let P = {P (n)}n≥0 and Q = {Q(n)}n≥0 be two operads.
Then a homomorphism of operads h : P → Q is a collection of maps
hn : P (n)→ Q(n) such that these maps are equivariant, commute (or intertwine)
with operadic composition and preserve the unit.

In other words, if f ∈ P (n), g ∈ P (m), σ ∈ Σn then

hn (fσ) = hn (f)σ

hn (f ◦i g) = hn (f) ◦i hn (g)

h1 (eP ) = eQ

where eP ∈ P (1), eQ ∈ Q(1) are the units of P and Q, respectively.

Definition 1.1.4. An ideal I in an operad P is a collection

I = {I(n)|I(n) ⊂ P (n)}n≥0

of Σn-invariant subspaces such that for all f, g ∈ P f ◦i g is in I if f ∈ I or g ∈ I.

There are some basic examples we will use in the following.

Example 1.1.5. A commutative operad is a collection Com = {Com(n)}n≥1

such that Com(n) = K with trivial Σn-action for every n.

Example 1.1.6. An associative operad is Ass = {Ass(n)}n≥1 = {K [Σn]}n≥1.
Notice that any element f ∈ Ass(n) such that f ∈ Σn can be expressed as

f = enσ where en denotes the identity permutation in Σn as element of operad
and σ ∈ Σn denotes the right Σn-action. Since the axiom of equivariance requires

(emτ ◦i enσ) =
(
em ◦τ(i) en

)
(τ ◦i σ)

and this is for identity permutations τ ∈ Σm, σ ∈ Σn defined as

en ◦i em = em+n−1

the operadic compositions ◦i are uniquely determined.
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Example 1.1.7. An endomorphism operad is a collection EndV = {EndV (n)}n≥0

for a K-module V (vector space) such that EndV (n) = HomK (V ⊗n, V ). For
elements f ∈ EndV (m) and g ∈ EndV (n) is the composition defined as

f ◦i g = f

1V ⊗ . . .⊗ 1V︸ ︷︷ ︸
i−1 times

⊗g ⊗ 1V ⊗ . . .⊗ 1V


where 1V denotes identity morphism on V . The symmetric group action is defined
as

(fσ) (v1, v2, . . . vm) = f
(
vσ−1(1), vσ−1(2), . . . vσ−1(m)

)
where v1, v2, . . . vm ∈ V and σ ∈ Σm.

Definition 1.1.8. An algebra A over operad P (or P -algebra) is a homomor-
phism of operads h : P → EndV for some K-module V

Remark 1.1.9. From adjunction of functors Hom and ⊗ we can equivalently
describe a P -algebra structure as

HomK
(
P,HomK

(
V ⊗n, V

)) ∼= HomK
(
P ⊗K V

⊗n, V
)

Remark 1.1.10. The concept of endomorphism operad can be defined even more
generally for a symmetric2 monoidal category with internal hom functor

[·, ·] : Cop × C → C

For example one can take the category Set with cartesian product ’×’ as the
monoidal symmetric bifunctor. But for our purposes it mostly suffices to consider
the case of vector spaces (or later of differential graded vector spaces).

1.2 Construction of operads via graphs

Let us now show the other other definition.

Definition 1.2.1. A graph G is a set of vertices V ert(G) together with a set
of edges Edge(G) which are two-elements subsets of V ert(G).

Let us denote the set of all edges adjacent to (containing) v ∈ V ert(G) as
Edge(v). Furthermore, we define external vertices to be vertices with only one
adjacent edge. The other vertices are called internal and their set is denoted as
IntV ert(G). The edges containing some external vertex are called legs.

Definition 1.2.2. A graph G is connected when there exists for every two
vertices u, v ∈ V ert(G) a sequence of edges {u,w1}, {w1, w2}, {w2, w3}, . . . {wn, v}
such that every two consecutive edges have one vertex in common and the vertices
u, v are elements of some edges in this sequence.

If there exist for some vertices u, v ∈ V ert(G) two such sequences of edges
that every vertex contained in some edge of sequence is contained in exactly two
edges of this sequence, we call these sequences together as a cycle. An acyclic
graph is a graph with no cycles.

2For non-Σ operads the category does not have to be symmetric.
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Remark 1.2.3. It is possible to define so-called multiple edges if we take
Edge(G) as a multiset (set with repetition). Two multiple edges are adjacent to
the same two vertices and are also considered as cycle.

Definition 1.2.4. One can assign to edge formed by vertices u, v an orientation
(u, v). The oriented edge (u, v) is incoming to vertex v and outgoing from
vertex u. We denote the set of edges incoming to vertex v as In(v). If all edges
in graph G have assigned orientation, the graph is called directed (or oriented).

A directed cycle in directed graph is a sequence of consecutive edges

(u1, u2), (u2, u3), . . . (un−1, un), (un, u1)

(every two consecutive edges have in common vertex ui and only one of these
edges is incoming into this vertex).

Graphs without specified orientation are called undirected.

Definition 1.2.5. Let T be a finite non-empty connected acyclic graph. Then T
is a tree. Trees where all internal vertices have exactly three adjacent edges are
called binary trees.

Rooted tree is a directed tree where each vertex has exactly one outgoing
edge and each inner vertex has at least one incoming edge. The whole tree has
therefore exactly one outgoing leg, called the root. The incoming legs are called
leaves.

Non-planar rooted tree means that an embedding of the tree into the plane
is not given, and therefore we have not chosen certain ordering of incoming edges
for each vertex3. Hence there is no ordering of leaves.

Remark 1.2.6. We will work both with directed and undirected graphs, and so
we will always be careful to specify what kind of graph we are working with. For
operads in this section it will be directed trees, for cyclic operads in Section 1.3
it will be undirected trees, for modular operads in Section 1.4 undirected graphs
and for properads in Section 4.1 directed graphs.

Definition 1.2.7. Let Treen be the category of pairs (T, l) where T is a rooted
(directed) non-planar tree and l is a bijection

l : {leaves of T} → [n]

Morphisms in this category are graph isomorphisms preserving orientation of
edges.

Remark 1.2.8. Notice that we can take the union of categories of trees

Tree =
⋃
n≥1

Treen

with operation between trees T1, T2 ∈ Tree defined by identifying the root of T1

with one of the leafs of T2, which gives us again a non-planar rooted directed tree.
The operation is obviously associative (hence we get a structure of a semigroup).

3For example there exist two different planar binary trees with three legs but only one
non-planar.
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Our next goal is to define an action of Σn on Treen. We will make this
by extending Σn-module structure to a functor from the category Treen to the
category of K-modules ModK.

Definition 1.2.9. Let E = {E (n)}n≥0 be a collection of right K [Σn]-modules.
Then E is a Σ-module.

From now on E will always denote some Σ-module.
Let us denote the set of bijections from finite set X to set Y as Bij (Y,X).

Then for finite set S such that |S| = n define

(1.6) E(S) = E(n)⊗Σn Bij ([n] , S)

where [n] = {1, 2, . . . n}. We can easily see that Bij ([n] , S) is a left Bij ([n] , [n])-
module and Bij ([n] , [n]) is just Σn.

If we want to use the finite set X as an index set we have to choose an special
ordering of X. To avoid this choice let us introduce the following notion.

Definition 1.2.10. Let X be a finite set such that |X| = k and let us denote
by Ord(X) the set of all orderings of this set, i.e., Ord(X) = Bij([k] , X). For
every x ∈ X let Vx be a vector space. The unordered tensor product of vector
spaces Vx is

⊙
x∈X

Vx := colim
τ ∈ Σk

 ⊕
σ∈Ord(X)

Vσ−1(1) ⊗ . . .⊗ Vσ−1(k) →
⊕

σ∈Ord(X)

V(τσ)−1(1) ⊗ . . .⊗ V(τσ)−1(k)

=

=

 ⊕
σ∈Ord(X)

Vσ−1(1) ⊗ . . .⊗ Vσ−1(k)


Σk

where the right subscript Σn denotes a Σn-coinvariants4 For short let us write

V1 � . . .� Vn :=
n⊙
i=1

Vi

For T ∈ Treen, E defined in 1.2.9 and (1.6) let us define the unordered tensor
product over internal vertices of T as

(1.7) Ẽ(T ) =
⊙

v∈IntV ert(T )

E (In (v))

It is easily seen that Ẽ : Treen → ModK is a functor and that two isomorphic
trees have isomorphic K-modules.

Finally, we can define for n ≥ 0

(1.8) Ψ(E)(n) = colim
T ∈ Treen

Ẽ(T )

(1.9) Ψ(E) = {Ψ(E)(n)}n≥0

11
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u

v

w

x y z

T

∈ Ẽ(T )

α

β γ

Figure 1.1: Element α� β � γ ∈ Ẽ(T ) = E(3)� E(2)� E(1)

i ◦i =

Figure 1.2: Composition ◦i

Such a structure corresponds to the free non-unital operad. The composition ◦i is
represented by joining two trees, as it is indicated on figure 1.2, using semigroup
structure of Tree and action of symmetric group as relabeling of leaves. The
associativity axiom, for example, can be visualized as two-step attaching of two
trees independently on order of these steps.

Remark 1.2.11. If we enlarge category Treen by one special degenerate tree
with no internal vertices, only one edge, and denote this category as UTreen,
then

Γ(E)(n) = colim
T ∈ UTreen

E(T ), Γ(E) = {Γ(E)(n)}n≥0(1.10)

represents unital free operad.

We have described the operad structure (composition ◦i and Σ-actions) ex-
plicitly for directed rooted trees. This could be taken as a definition of operad
but then we would have to repeat this also for cyclic operads over general trees
and modular operads over general graphs. To make the definition more compact
but still mathematically precise let us describe it more categorically.

Definition 1.2.12. A monad T over a category C is an endofunctor T : C → C
with two natural transformations called multiplication µ : T ◦ T → T and unit
morphism η : 1C → T (where 1C represents identity functor) such that the
following axioms are satisfied:

1. µ ◦ Tµ = µ ◦ µT as natural transformations T ◦ T ◦ T → T

2. µ ◦ Tη = µ ◦ ηT = 1T as natural transformations T → T , where 1T denotes
the identity transformation T → T

Remark 1.2.13. The composition of two adjoint functors, for example, the com-
position of

Ψ : Σ-ModC → {Non-unital operads in C} =: {n.-u.op. in C}
4The element v is identified with element vσ for σ ∈ Σn).
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with the forgetful functor UΨ : {n.-u.op. in C} → Σ-ModC gives us a monad.
The endofunctor T is just UΨ ◦Ψ, the unit morphism η is a unit (a natural trans-
formation given from adjunction) u : 1Σ-ModC → UΨ ◦ Ψ and the multiplication
µ is a counit c : Ψ ◦ UΨ → 1n.-u.op..

The same can be done for Γ : Σ-ModC → {Operads in C} with forgetful
functor UΓ : {Operads in C} → Σ-ModC .

Definition 1.2.14. An algebra over monad T is an object A ∈ C with struc-
ture morphism α : T (A)→ A satisfying

α ◦ T (α) = α ◦ µA

α ◦ ηA = 1A

Then a Theorem 40 from [Mar06] shows

Theorem 1.2.15. A Σ-module P is a non-unital operad if and only if it is an
algebra over the monad UΨ ◦Ψ, and it is an operad if and only if it is an algebra
over the monad UΓ ◦ Γ.

Remark 1.2.16. We defined the free operad over the category of trees specified
in Definition 1.2.5. But sometimes it is more convenient to change the properties
of these graphs a little bit.

Since we are not using the external vertices at all we can omit them. Hence
instead of edges with external vertices we can think about graphs with half-edges.
The joining of two trees is then just putting together two half-edges into one edge
as indicated on Figure 1.3.

i

◦i =

i

◦i =

Figure 1.3: Formal omitting of external vertices

Example 1.2.17. The operad Com from Example 1.1.5 is in this language the
free operad generated by a Σ-module ECom factored by an ideal RCom.

ECom =

{
K · µ if n = 2

0 if n 6= 2

where µ is a trivial representation of Σ2, i.e., for any τ ∈ Σ2 we have µ ◦ τ = µ.
Elements from Γ(ECom)(3) then must satisfy the relations displayed on Figure
1.4.

The component Γ(ECom)(3) is therefore given by three elements as indicated
on Figure 1.5 which can be shortly written as

Γ(ECom)(3) = Span{(µ ◦1 µ)(1, 2, 3), (µ ◦1 µ)(1, 3, 2), (µ ◦1 µ)(2, 3, 1)}

The ideal RCom ⊂ Γ(ECom)(3) is generated by the relation

(µ ◦1 µ)(i, j, k) = (µ ◦2 µ)(i, j, k)

13
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µ
µ

i j

k
=

ij
k

µ
µ and

i j
k

µ
µ =

Figure 1.4: Relations betweeen elements of Γ(ECom)(3)

µ
µ

1 2
3

Γ(ECom)(3) = Span{ ,
µ

µ

1
2

3

µ
µ

1
2 3

, }

Figure 1.5: Component Γ(ECom)(3)

displayed on figure ?? But this relation identifies all three generators of Γ(ECom)(3)
into one element.

Similarly we get dim((Γ(ECom)/RCom)(n) = 1. Hence we can think about
elements of operad Com as planar trees with only one internal vertex decorated
by an element from Γ(ECom)(n) with n legs, where the labeling of them play no
role.

Example 1.2.18. In the same way, the operad Ass from Example 1.1.6 is a free
operad generated by a Σ-module

EAss =

{
K [Σ2] if n = 2

0 if n 6= 2

where α is the generator of the regular representation of K [Σ2], factored by an
ideal RAss ⊂ Γ(EAss)(3).

Elements from Γ(EAss)(3) must satisfy relations displayed on Figure 1.7,
where e = α2 ∈ Σ2 denotes the identity permutation.

Hence Γ(EAss)(3) = Span{(α ◦1 α)(i, j, k), (α ◦2 α)(i, j, k)|i, j, k ∈ [3]} has
dimension 12. The ideal RAss is generated by the relation

(α ◦1 α)(i, j, k) = (α ◦2 α)(i, j, k)

Hence dim((Γ(EAss)/RAss)(n) = n!. Thus we can consider elements of operad
Ass = Γ(EAss)/RAss as planar trees with only one internal vertex decorated by
an element from Γ(EAss)(n) with n legs labeled by set [n].

Remark 1.2.19. Unfortunately it is very hard to describe the operad EndV in
this language for a general vector space V . For example, if one considers two
vector spaces V = Span{v},W = Span{v1, v2} then Γ(EEndV )/REndV (n) is one-
dimensional and Γ(EEndW )/REndW (n) is (2 · 2n)-dimensional for every n ∈ N.

µ
µ

i
j ki j

k

µ
µ =

Figure 1.6: Ideal RCom
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α
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k

e
e

=

ij
k

e

= e
α

ij

k
= α

Figure 1.7: Relations between elements of Γ(EAss)(3)

Despite these problems with specifying Σ-module for endomorphism operad
EndV , if E(0) = E(1) = 0 and E(n) is finite dimensional for every n ≥ 2, then
the components of free operads Ψ(E)(n) and Γ(E)(n) are finite dimensional.

Now we can use the second definition to easily introduce a generalization of
operad.

1.3 Cyclic operads

Whereas for operads there is a distinction between ‘input’ leafs and ‘output’ root,
for cyclic ones there is not such distinction. Hence for cyclic operads and modular
operads the action of permutation group affects also the output leg.

Definition 1.3.1. Let us denote the set {0, 1, . . . n} as [n]+. Then Tree+
n is the

category of trees (without orientation) with legs labeled by the set [n]+. Such
trees are sometimes called cyclic.

Let Σ+
n be the permutation group of the set [n]+ and let cyclic Σ-module

(shortly written as Σ+-module) be a collection W = {W (n)}n≥0 of right K [Σ+
n ]-

modules.

The functor from Tree+
n to ModK is defined analogously as for Treen. Let

W ∈ Σ+-mod and S+ be a set such that |S+| = n+ 1, then

W ((S+)) = W (n)⊗Σ+
n
Bij

(
[n]+ , S+

)
where double parentheses remind us that K [Σ+

n ]-module W (n) is associated with
a set with n+ 1 elements. Then

W ((T )) =
⊗

v∈IntV ert(T )

W ((Edge(v)))

for a cyclic tree T . Then for n ≥ 0 let

Ψc : Σ+-ModK → {non-unital cyclic operads}

be a functor such that

Ψc(W )(n) = colim
T ∈ Tree+n

W ((T ))

Similarly by enlarging the category Tree+
n by the trees with only one edge and no

internal vertices we get the category UTree+
n for which we can define a functor

Γc : Σ+-ModK → {unital cyclic operads}

as
Γc(W )(n) = colim

T ∈ UTree+n

W ((T ))

15



Definition 1.3.2. A non-unital cyclic operad (cyclic operad respectively)
is an algebra over the monad UΨc ◦Ψc (over monad UΓc ◦Γc, respectively), where
UΨc (UΓc) is the appropriate forgetful functor.

1.4 Modular operads

We will use undirected finite connected graphs. We omit external vertices (as was
already mentioned in 1.2.16) and consider edges adjacent to external vertices as
only half-edges. Unlike for cyclic operads, cycles and multiple edges are allowed5.
Hence there can be ‘holes’ in the graphs. Moreover the vertices of the graphs
have assigned a non-negative integer, called genus of the vertex.

But not all such graphs are suitable for defining modular operads. To exclude
the unsuitable ones we use the stability condition.

The notion is taken from [Mar06]. But the aspects of graphs are adapted for
[DJM13] (and [GK98]).

Definition 1.4.1. The genus of a graph G is defined as

(1.11) g(G) = b1(G) +
∑

v∈V ert(G)

g(v)

where b1(G) is a first Betti number and g(v) is the genus of the vertex (a non-
negative number assigned to every vertex).

Remark 1.4.2. The Betti number b1(G) is defined as the rank of the first ho-
mology H1(G) of the graph. But for graphs it can be equivalently defined as

(1.12) b1(G) = |Edge(G)| − |V ert(G)|+ k

where k is the number of components of the graph G (hence for connected graphs
k = 1) and the half-edges are not counted in the edges Edge(G).

Definition 1.4.3. The graph is stable if it is a finite connected graph such that
for all vertices v ∈ V ert(G)

(1.13) 0 < 2(g(v)− 1) + |HEdge(v)|

where HEdge(v) is the set of edges and half-edges connected to a vertex v.
Let MGr(n, g) be the category of pairs (G, l) where G is a stable graph of

genus g and l is a bijection

l : {half-edges of G} → [n]

Morphisms of MGr(n, g) are isomorphisms of stable graph preserving labeling of
half-edges.

Remark 1.4.4. As shown in [GK98] there are only finitely many isomorphism
classes of stable graphs in MGr(n, g).

5See Definition 1.2.2 and Remark 1.2.3.
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Let us consider a stable graph G(X, g) ∈ MGr(n, g), |X| = n. We have the
inequality

0 <
∑

v∈V ert(G)

(2(g(v)− 1) + |HEdge(v)|) =

=

 ∑
v∈V ert(G)

2g(v)

− 2|V ert(G)|+ 2|Edge(G)|+ n

We use here the fact that every edge is adjacent to two different vertices or twice
to one vertex. Using (1.12) and then (1.11) we get

0 <

 ∑
v∈V ert(G)

2g(v)

+ 2b1(G)− 2 + n

(1.14) 0 < 2g − 2 + n

The inequality (1.14) will be called the stability condition.

Definition 1.4.5. A modular Σ-module (shortly written as MΣ-ModK) is
a collection P = {P (n, g)}n,g≥0 of right K [Σm]-modules satisfying the stability
condition

0 < 2g − 2 + n

Hence, for example, we exclude the cases (n, g) ∈ {(0, 0), (0, 1), (1, 0), (2, 0)}.

If P is a modular Σ-module and X a set with n elements, define

P (X, g) = P (n, g)⊗Σn Bij([n], X)

for g ≥ 0. Then similarly as in (1.7) we can define unordered tensor product over
the vertices of G as

P̃ (G) =
⊙

v∈V ert(G)

P (HEdge(v), g)

where P̃ : Gr(X, g)→ModK is a functor. Finally we get functor

Γm : MΣ-ModK → {modular operads}

Γm(P )(n, g) = colim
G ∈ Gr(n, g)

P̃ (G)

and

Γm(P ) = {Γm(P )(n, g)}n,q≥0,s.c.

where s.c. means that n, g satisfy stability condition.

Definition 1.4.6. A modular operad is an algebra over the monad UΓm ◦ Γm,
where UΓm is appropriate forgetful functor.
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Remark 1.4.7. Note that modular operads do not have unit, because such unit
ought to be an element from (2,0), but this space is excluded by stability condi-
tion.

Remark 1.4.8. Axiomatic definition of modular operads(for example in [MSS02])
similar to 1.1.1 introduces two composition. The first one is similar to the one
from definition 1.1.1

(1.15) i�j : P (n1, g1)⊗ P (n2, g2)→ P (n1 + n2, g1 + g2)

corresponding to joining two half-edges adjacent to two distinct vertices decorated
by modular Σ-module P . The second one

(1.16) ξi,j : P (n, g)→ P (n− 2, g + 1)

corresponds to joining two half-edges adjacent to one vertex decorated by P .
These compositions must satisfy axioms listed in Definition 2 in [DJM13].

1.5 Differential graded operads

Let us first recall the basic notions of a differential graded vector space and
operad.

Definition 1.5.1. Differential graded vector space (a dg vector space for
short) V = (V, d) is a collection of vector spaces {V n} such that V =

⊕
n∈Z V

n

together with collection of homomorphisms dn : V n → V n+1 called differential d,
such that dn+1◦dn = 0, shortly written as d2 = 0 (such structure is called cochain
complex).

A morphism f of degree r between two differential graded vector spaces
f : (V, dV )→ (W,dW ) is a collection of maps fn : V n → W n+r such that

dW ◦ f = (−1)r f ◦ dV

These cochain complexes of vector spaces together with morphisms of degree 0
form a category denoted as dgV ec.

Remark 1.5.2. The tensor product of two dg vector spaces V,W is a new dg
vector space

(V ⊗W )n =
⊕
i+j=n

V i ⊗W j

with differential
d = dV ⊗ 1W + 1V ⊗ dW

Note that the evaluation of the mapping (1V ⊗ dW ) on elements from V ⊗W
is nontrivial because of the grading of the vector spaces V,W . The sign is defined
by the Koszul convention

(1.17) (1V ⊗ dW ) (v ⊗ w) = (−1)|v|·|dW | v ⊗ dW (w)

where v ∈ V,w ∈ W and the vertical bars | · | denote the degree of elements
(operation, respectively), in the case of differential defined as |dW | = 1.
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Remark 1.5.3. The symmetric structure is defined via the switching map

τ : V ⊗W → W ⊗ V

for some elements v ∈ V i, w ∈ W j as

τ (v ⊗ w) = (−1)|v|·|w|w ⊗ v

The map is then linearly extended to other elements of V ⊗W . Using this map
we can also define the sign of an arbitrary permutation of elements of V ⊗n as

σ (v1 ⊗ v2 ⊗ . . .⊗ vn) = (−1)I
(
vσ−1(1) ⊗ vσ−1(2) ⊗ . . . vσ−1(n)

)
where I =

∑
i<j

σ(i)>σ(j)
|vi| · |vj| and σ ∈ Σn.

Definition 1.5.4. A differential graded Σ-module (a dg Σ-module for short)
is a collection A = {A(n)}n≥1 of right K [Σn]-modules such that A(n) ∈ dgV ec
and differentials d(n)i : A(n)i → A(n)i+1 which are Σn-equivariant, in other words

d(n)i (vσ) =
(
d(n)i (v)

)
σ

where v ∈ A(n), σ ∈ Σn. These Σ-modules with appropriate equivariant maps
form a category denoted as dg-Σ-Mod.

Now we can adapt Definition 1.1.1 from Section 1.1.

Definition 1.5.5. A differential graded operad (a dg operad for short), is a
differential graded Σ-module A = {A(n)}n≥1 with composition maps

◦i : A(m)k ⊗ A(n)l → A(m+ n)k+l

satisfying the axioms of associativity, equivariance and optionally unitality.
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2. The cobar complex of operads

2.1 General construction

The cobar complex is the result of the action of a functor C : (P, dP )→ (C(P ), δ)
from an operad with differential dP to an operad C(P ) with differential δ.

In a nutshell, the whole construction comes from dualization. More precisely,
the new differential comes from the dualization of composition maps ◦i of the
operad P and the new composition maps are defined by connection of two tree
graphs. But to make this construction match to our present notion of differential
it is necessary to introduce the suspension term.

Usually (as for example in [LV12] or [Mil11]), the cobar complex is defined as a
functor Ω from the category of coaugmented differential graded cooperads to the
category of augmented differential graded operads. To avoid the new definitions
of cooperads, cocomposition maps, cooperad morphism etc., we use the approach
from [MSS02] or [GK94].

The dualization of operad actually gives us a cooperads with cocomposition
maps ◦#. But in contrast with the second approach we are working with operads
such that their components P (n) are only finite dimensional.

Remark 2.1.1. As already mentioned in Remark 1.2.16, we will consider edges
adjacent to external vertices as half-edges and we omit the external vertices.
Hence the set V ert(G) of vertices of the graph G contains only ‘internal’ vertices.
Similarly the set Edge(G) contains only inner edges (not half-edges).

Remark 2.1.2. Although we showed in 1.2.11 how to define the free unital
operad, in the following we will consider only non-unital1 operads withP (0) =
P (1) = 0. Then P#(0) = P#(1) = 0.

The problem with unital operads arises from the need to identify decorated
trees. The trees by themselves are not isomorphic in UTreen, but we want to
identify their decorations in the operad.

By this restriction we also omit trees containing a vertex with only one incom-
ing edge and one outgoing edge. Trees without such vertices are called reduced
trees and their category is denoted as RTreen.

We also require P (n) to be a finite dimensional dg vector space for all n. Then
the spaces (P (n))# are also finite dimensional and more importantly, there is an
isomorphism of vector spaces

(P (n)⊗ P (m))# ∼= (P (n))# ⊗ (P (m))#

We abreviate the notation for the dual of operad P = {P (n)} as P# = {(P (n))#}.

Remark 2.1.3. Since the spaces P (n) and (P (n))# are non-canonically isomor-
phic, the spaces (P (n))# are also Σn-modules. Moreover the action on (P (n))#

corresponds canonically to action on P (n) in the sense of the following observa-
tion.

1More precisely, it is enough to work with an operad in which P (1) is a direct sum P̃ (1)
⊕

K
such that the part K can be omitted. This sort of operad is called augmented.
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Let {ei}i∈I be a basis of P (n) and {ei}i∈I a dual basis of (P (n))# (where I is
a finite index set). Then f ∈ P (n) can be expressed as

f =
∑
i∈I

f i · ei = f i · ei

where f i are coefficients and we use the Einstein summation convention (when
there is twice the same index variable in one term, we sum over this index over
all possible variables). The same holds for λ ∈ P#(n) with coefficients λi

λ =
∑
i∈I

λi · ei = λi · ei

Then for σ ∈ Σn we have

λ(fσ) = λj · ej(f i · eiσ) = λj · f i · ej(eiσ)

Note that eiσ = eσ−1(i), since we ahve ei(στ) = (eiσ)τ . Hence

λj · f i · ej(eiσ) = λj · f i · δjσ−1(i)

where δjσ−1(i) stands for Kronecker delta. If j = σ−1(i), then σ(j) = i, and
therefore

λj · f i · δjσ−1(i) = λj · f i · eσ(j)(ei) = λj · (ejσ−1)(f i · ei) = (λσ−1)(f)

For example, if the action of Σn is trivial on P (n), it must be trivial also on
P#(n).

Definition 2.1.4. The dual complex V # =
(
V #, d#

)
of complex V = (V, d) is

defined as (
V #
)n

= Hom
(
V −n,K

)
d# (α) = (−1)|α| α ◦ d

where α ∈ V #.

Remark 2.1.5. Notice that d# raises the degree of elements of V # by 1, since
for α ∈ (V #)n, the evaluation of d# (α) is given as d# (α) (v) = (−1)|α| (α ◦ d) (v),

where d (v) must be in V −n. Hence v ∈ V −n−1, d# (α) ∈
(
V #
)n+1

and
(
V #, d#

)
is a cochain complex.

Remark 2.1.6. To get an idea what dualization is in our case, let us for a
moment denote the symbol for the map P (m) ⊗ P (n) → P (m + n − 1) as ◦m,ni

to distinguish it from the map P (k)⊗P (l)→ P (k+ l− 1) = P (m+n− 1) when
k + l = m+ n. If we add this into the notation, then the dual map is denoted as

(◦m,ni )# : (P (m+ n− 1))# → (P (m)⊗ P (n))#

which for λ ∈ P#(m+ n− 1) and α ∈ P (m), β ∈ P (n) gives

(◦m,ni )# (λ) (α⊗ β) = λ (α ◦i β)
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Under the identification (P (m)⊗ P (n))# ∼= (P (m))# ⊗ (P (n))# we can write

(◦m,ni )# (λ) =
∑
j

λ1,j ⊗ λ2,j

where λ1,j ∈ (P (m)#), λ2,j ∈ (P (n))#, and then

(◦m,ni )# (λ) (α ◦i β) =
∑
j

(−1)|α|·|λ2,j | λ1,j(α)λ2,j(β)

But in our definition of ◦i in 1.1.1 we did not specifym and n. Hence if we want
in general define (◦i)# acting on the space P (N) for N ≥ 2, we should sum over
all possible splittings of the number N into pairs (m,n) such that m+n = N + 1
and m,n ≥ 2. Our next goal is to extend these ‘splittings’ by a graded Leibniz
rule to an arbitrary element of the operad Ψ(P#).

Let us denote an arbitrary element of the free operad Ψ(P#) as P#(T ) for
T ∈ RTreen as in (1.7). Let T, T ′ ∈ RTreen be trees such that T is equivalent
to T ′ after the contraction of an edge e. Then the map

∆T,T ′

e : P#(T )→ P#(T ′)

acts by raising the number of inner edges by one, as it adds one new edge e into
tree T as shown in Figure 2.1.

α ∈ Ψ(P#)

S

∆T,T ′
e

S1

S2

e

α1,i ∈ Ψ(P#)

α2,i ∈ Ψ(P#)

T ′T

i
S1tS2=St{e}

e∈S1
|S1|,|S2|≥2

∑

Figure 2.1: Action of ∆T,T ′
e

Since we want to define ∆T,T ′
e satisfying graded Leibniz rule, we need to specify

the signs generated by this map on all possible elements of Ψ(P#), as indicated
in Figure 2.2.

S1

S2

e
α

i
S1,1tS1,2=S1

∑
S1,1

S1,2

S2

±
i

S2,1tS2,2=S2

∑
e

S2,1

S2,2

S1
β

α2,i

β

α1,i α

β1,i

β2,i

Figure 2.2: Action of ∆ on arbitrary element of Ψ(P#)

Definition 2.1.7. For V ∈ dgV ec, the suspension ↑ is defined as (↑ V )i = V i−1.
Similarly the desuspension is defined as (↓ V )i = V i+1.
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Definition 2.1.8. Let S be a finite set, then KS can be considered as a dg vector
space in degree 0 and ↑ KS as a dg vector space in degree 1. The determinant
of the set S is the one dimensional dg vector space in degree |S|

det(S) =

|S|∧(
↑ KS

)
where ∧ stands for the exterior product.

For any tree T , let us denote the cardinality of the set of inner edges Edge(T )
as |T |. The determinant of the tree is

det(T ) =↑ det (Edge(T ))

Remark 2.1.9. Notice that det(·) assigns to a tree T a one dimensional vector
space of degree |T |+ 1. The ‘+1’ corresponds to the root edge.

Definition 2.1.10. The cobar bicomplex of an operad (P, dP ) in arity n is a
Σn-module bigraded complex

C(P )(n)∗,∗ =
⊕

i≥1,j∈Z

C(P )(n)i,j

such that C(P )(1) = 0 and for n ≥ 2

C(P )(n)i,j = colim
T∈RTreen
|T |+1=i

P#(T )j ⊗ det(T )

The grading denoted by i represents the number of edges such that the dif-
ferential δ : C(P )(n)i,∗ → C(P )(n)i+1,∗ act as

(2.1) δ : colim
|T |+ 1 = i

P#(T )⊗ det(T )→ colim
|T ′|+ 1 = i+ 1

P#(T ′)⊗ det(T ′)

which is the unique extension of the map2 ∆T,T ′
e (·) ⊗ (e ∧ ·), where for short we

denote ↑ Ke ∧ det(T ) as e ∧ det(T ). The map ∆T,T ′
e is compatible with colimits

in the category of reduced trees.
The grading denoted by j comes from the dualization of P with grading such

that
δP = (dP )# ⊗ 1 : P#(T )j ⊗ det(T )→ P#(T )j+1 ⊗ det(T )

where (dP )# is the extension of d#
P : P# → P# to d#

P : P# [T ] → P# [T ]. The
total differential is then given as

d = δ + (−1)|T | δP

Remark 2.1.11. Since in the following we will consider only cobar bicomplex of
an operad with the trivial differential dP = 0, we define the cobar complex (a
dg Σ-module) C(P ) = {C(P )(n)}n≥1 as

C(P )(n)∗ =
⊕
i≥1

C(P )(n)i

such that C(P )(1) = 0 with differential d = δ : C(P )(n)i → C(P )(n)i+1 defined in
(2.1).

2Introduced in 2.1.6 and 2.1.8.
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Lemma 2.1.12. The cobar complex C(P ) is a cochain complex.

Proof. The condition d2 = 0 follows from the dualization of coassociativity and
the change of grading by determinant.

We will show the idea of the proof of d2(P#(T ) ⊗ det(T )) = 0 only for T ∈
RTree4, |T | = 0 with half-edges labeled by i, j, k, l. For arbitrary tree T ∈
RTreen, |T | ≥ 0, the idea is the same, we only have to work with more indices
and more sums in the expansions.

d(T ) gives us four different sums3 of decorated trees of type T1 and six sums
of decorated trees of type T2 as indicated in Figure 2.3. The tree of type T1

with specified labeling of half-edges and decoration of vertices will be denoted as
T1,α, similarly the tree of type T2 with specified labeling and decorations will be
denoted as T2,α.

All elements of d
(
P#(T )⊗ det(T )

)
have determinant det(T1) = det(T2) = e,

where e denotes the new edge. Shortly we can write this relation as

(2.2) d(P#(T )) = P#(T1)⊗ e+ P#(T2)⊗ e

t

∑
e

i j k l

α

T

+
α1,t

α2,ti

j k l

t

∑
e

γ1,t

γ2,ti j

k l

T1 T2

t

∑
e

+ . . .+
β1,t

β2,t

i

j

k l

T1

+
t

∑
e

δ1,t

δ2,ti

j

k

l

T2

+ . . .

T1,α(t) T1,β(t) T2,γ(t) T2,δ(t)

Figure 2.3: d(T )

Four sums of decorated trees of type T1 will give us after the action of second
d twelve sums of decorated trees of type T3. Six sums of decorated trees of type
T2 will give us twelve sums of decorated trees of type T3 and moreover six sums
of decorated trees of type T4 as indicated in Figures 2.4 and 2.5. All elements of
these sums have determinant f ∧ e.

e

α1,t

i

j k l

T1

α2,t
r

∑
e

+
α̃1,t

α̃2,t,1,ri

j

k l

T3

α̃2,t,2,rf
r

∑
e

+ . . .
α1,t

α2,t,1,ri

j

k

l

T3

α2,t,2,rf

T1,α(t)

T3,α̃(t,r) T3,α(t,r)

Figure 2.4: Action of d on decorated tree T1

Decorated trees T3 given by the action of d on trees T1 are isomorphic with
trees T3 given by the action of d on trees T2 but with swapped roles of edges e

3There are four different sums since there are four different labelings of half-edges of tree
T1.
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e

γ1,t

γ2,ti j

k l

T2

r

∑
e

+ . . .+
γ1,t,1,r

γ1,t,2,ri

j

k l

T3

γ2,t

f
ẽ

γ1,t,1,r

γ̃2,t

i j k l

T4

fγ̃1,t,2,r

T2,γ(t)
T3,γ(t,r) T4,γ̃(t,r)

r

∑

Figure 2.5: Action of d on decorated tree T2

and f . For example,

d

(∑
t

T2,γ(t)

)
=
∑
t,r

T3,γ(t,r) ⊗ (f ∧ e) +
∑
t,r

T4,γ̃(t,r) ⊗ (f ∧ e) =

= −
∑
t,r

T3,α̃(t,r) ⊗ (e ∧ f) +
∑
t,r

T4,γ̃(t,r) ⊗ (f ∧ e)

Hence d2(T ) will contain no decorated trees of type T3.
The six sums of decorated trees T4 given by the action d on T2 contain pairs

of trees with same labels of half-edges but swapped roles of edges e and f . Hence
these sums together are also zero and therefore

d2(P#(T )) = 0

The Theorem 3.11 from [MSS02] shows that we can define the structure of an
operad on C(P ).

Theorem 2.1.13. There is an isomorphism of vector spaces between C(P )(n)
and the free non-unital operad Ψ

(
↑ P#

)
(n) for n ≥ 2.

Remark 2.1.14. The composition maps ◦i in the free operad ψ
(
↑ P#

)
can be

therefore defined also on C(P )(n). The differential d is then the derivation with
respect to compositions ◦i (represented by joining two trees decorated by elements
of P#).

Furthermore, the degree of determinant over edges of tree T with vertices
decorated by elements of P# can be equivalently introduced as the sum of degrees
over tree vertices decorated by elements of ↑ P#.

Remark 2.1.15. Cobar complex is sometimes, defined with operadic suspension
s (each component of arity n is suspended (n− 1)-times and tensored by signum
representation of Σn), which requires to define determinant as one dimensional
space of degree |T | + 2 − n for T ∈ RTreen. The cobar complex has therefore
non-positive gradation.

The homology groups H∗(Ψ(s ↑ P#)) for Koszul operad P are then exactly
the Koszul dual of the operad P , i.e., the Koszul resolution of the Koszul operad
P is the cobar complex over the Koszul dual of P . This fact is used in for example
[DL14] and [DCV13].

Since we do not use this property in this text we will always work with the
positively graded complex defined in 2.1.11.
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2.2 Cobar complex of operad Ass

The dimension of the component Ass(n) of arity n of the operad Ass, introduced
in 1.1.6, is n! and Σn acts transitively on Ass(n). Hence we can consider Ass#(n)
as planar tree with only one vertex decorated by the dual of the identity permu-
tation en ∈ Σn, αn, and with n half-edges labeled by the set [n] from left to right.
The rest of elements of Ass#(n) are generated by the action of the group Σn. As
in the previous section we omit the component Ass(1) and set it equal to 0.

Definition 2.2.1. The cobar complex over the operad Ass is called A∞-operad

A∞ = C(Ass)

Remark 2.2.2. Let us consider the operad EndW over a dg vector space (W,dW ).
The degree of a map f ∈ EndW (n), i.e., f : W⊗n → W , acting as

f (v1 ⊗ v2 ⊗ . . .⊗ vn) = v

is defined as |f | = |v| −
∑n

i=1 |vi|. Then we can define the differential dEnd of the
operad EndW as

(2.3) dEnv(f) = dW ◦1 f − (−1)|f |
n∑
i=1

f ◦i dW

(the sign in front of the sum is determined by the requirement that dEnd(f) = 0
for a chain map f).

It is easy to check that d2
End = 0 (since d2

W = 0). Hence EndW over a dg
vector space W is a dg operad.

Definition 2.2.3. The degree 0 homomorphism h : A∞ → EndW of dg operads
(A∞, dA∞) and (EndW , dEnd), i.e.,

(2.4) h ◦ dA∞ = dEnd ◦ h

is called A∞-algebra.

Theorem 2.2.4. The A∞-algebra corresponds to Maurer-Cartan equation

n∑
j=1

n−j+1∑
i=1

mn−j+1 ◦i mj = 0

where mn : V ⊗n → V is a map of degree 1.

Proof. From Theorem 2.1.13 we know that A∞ can be viewed as the free operad
over the Σ-module ↑ Ass#, and therefore we can define the homomorphism just
on elements of this Σ-module. Moreover, since h is Σn-equivariant on every n-ary
component, it is enough to define the homomorphism on ↑ αn for n ≥ 2. Let us
denote it as h(↑ αn) = mn. Then (2.5) give us
(2.5)

h ◦ dA∞(↑ αn) = dEnd ◦ h(↑ αn) = dEnd(mn) = dW ◦1 mn − (−1)|mn|
n∑
i=1

mn ◦i dW
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The differential dA∞ was originally defined in (2.1) for the cobar complex C(A).
For elements from ↑ Ass# we can adapt it as the composition (↑ ⊗ ↑) ◦ dA∞◦ ↓
without taking the determinant into account. Since all elements of Ass# have
degree zero, we have

(↑ ⊗ ↑) (α1 ⊗ α2) = (−1)|↑|·|α1| (↑ α1⊗ ↑ α2) = (↑ α1⊗ ↑ α2)

Hence

(2.6) dA∞(↑ αn) =
n−1∑
j=2

n−j+1∑
i=1

↑ α̃n−j+1� ↑ α̃j

where α̃n−j+1 denotes the tree with one vertex decorated by element αn−j+1 and
with half-edges labeled by the set S1 = {1, 2, . . . i, i+j, . . . n}, which is isomorphic
with the set [n− j + 1] via the bijection b1 : S1 → [n]

b1(k) =

{
k if k ≤ i

k − j + 1 if k > i

and α̃j denotes the tree with one vertex decorated by element αj and with half-
edges labeled by the set S2 = {i, i+ 1, . . . i+ j− 1}, which is isomorphic with the
set [j] via the bijection b2 : S2 → [j]

b2(k) = k − i+ 1

Hence the right hand side of (2.6) corresponds to all possible joinings of two planar
trees, both with half-edges labeled from left to right, such that the whole com-
position is the planar tree with half-edges labeled from left to right as indicated
on Figure 2.6.

1 i− 12

i i+ 1 i+ j − 1

i
n. . .

. . .

. . .
↑ αj

↑ αn−j+1

Figure 2.6: Composition of trees decorated by ↑ α̃n−j+1� ↑ α̃j

The left hand side of (2.5) is then

h ◦ dA∞(αn) =
n−1∑
j=2

n−j+1∑
i=1

mn−j+1 ◦i mj

Since the elements ↑ αn have degree 1 and h is of degree 0, each mn has also
degree 1. If we denote dW = −m1, then (2.5) can be shortly written as

(2.7) m1◦1mn+
n∑
i=1

mn◦im1+
n−1∑
j=2

n−j∑
i=1

mn−j+1◦imj =
n∑
j=1

n−j+1∑
i=1

mn−j+1◦imj = 0
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Remark 2.2.5. The result of ‘cobar functor’ C on dg operads is again an or-
dinary dg operad. But for modular operads is necessary to introduce analogous
functor F , called Feynman transform. The result of Feynman transform is not
the modular operad, but a certain type of twisted modular operad.

The conceptual difference comes from the dualization of composition ξi,j de-
fined in 1.16. In operads, roughly speaking, is the change of degree encoded in
the increase of the number of vertices of the graph. But the cocomposition ξ#

i,j

does not allow such practice. The details of construction and its consequences
are more explained in [GK98] and [MSS02]. We will just reproduce the results
from Theorem 16 in [DJM13] in convention introduced in section 1.4.

The algebra over Feynman transform F (P ) of a modular operad P on a dg
vector space V is equivalently determined by a collection

{α(X, g) : (P (X, g))# → EndV (X, g)|0 < 2g − 2 + |X|}

of degree 0 linear maps (since we define the morphism α : F (P ) → EndV only
on generators of this free operad F (P ), the α(X, g) do not have to be compatible
with differential on (P (G))#), where EndV (X, g) = HomK (

⊙
X V,K), such that

(2.8) EndV (ρ) ◦ α(X, g) = α(X ′, g) ◦ (P (ρ−1))#

for ρ ∈ Bij(X ′, X), and

dEndV ◦ α(X, g) = α(X, g) ◦ (dP )# + (ξi,j)End ◦ α (X t {i, j}, g − 1) ◦ (ξi,j)
#
P+

(2.9)

+
1

2

∑
X1tX2=X
g1+g2=g

(i�j)End ◦ (α(X1 t {i}, g1)⊗ α(X2 t {j}, g2)) ◦ (
X1t{i},g1

i�
X2t{i},g2
j )#

P

where the map

(
X1t{i},g1

i�
X2t{i},g2
j )#

P : (P (X, g))# → (P (X1 t {i}, g1))# ⊗ (P (X2 t {j}, g2))#

is analogical to the map ∆T,T ′
e from the beginning of this section. Note that (2.8)

corresponds to our observation in Remark 2.1.3.
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3. The duality of derivations and
coderivations

3.1 Algebras and coalgebras

In this section we introduce the basic notions of coalgebras and algebras. The
motivation and notion is mostly taken from articles of Kajiura [Kaj02], [Kaj07]
and Kajiura with Stasheff [KS06b], [KS06a].

Definition 3.1.1. Let V be a graded vector space with a mapping ∆ : V → V ⊗V
of degree 0 which is coassociative, i.e.,

(3.1) (∆⊗ 1) ◦∆ = (1⊗∆) ◦∆,

where 1 denotes the identity mapping and ◦ denotes the composition of mappings.
Then V is coalgebra with coproduct ∆.

Definition 3.1.2. Let V be a coalgebra with coproduct ∆. A linear operator
C : V → V of degree 1 is called coderivation if

(3.2) ∆ ◦ C = (C ⊗ 1) ◦∆ + (1⊗ C) ◦∆

Definition 3.1.3. Let V , W be two coalgebras. We call F : V → W a coho-
momorphism if

(3.3) ∆ ◦ F = (F ⊗ F ) ◦∆

Remark 3.1.4. An important point to note here is the equivalence of Definitions
3.1.1, 3.1.2 and 3.1.3 to the condition that following diagrams commute.

V V ⊗ V

V ⊗ V V ⊗ V ⊗ V

∆

∆

∆⊗1

1⊗∆

,

V V

V ⊗ V V ⊗ V

∆

C

∆

1⊗C+C⊗1

,

V W

V ⊗ V W ⊗W

∆

F

∆

F⊗F

The advantage of using commutative diagrams is that it is easier understand
the notions of algebra, derivation and homomorphism as objects and morphisms
in the opposite category.

In this way we can define algebra V with product µ as a graded vector space
V with mapping µ : V ⊗ V → V which is associative, i.e.,

µ ◦ (µ⊗ 1) = µ ◦ (1⊗ µ)

or equivalently requiring that the following diagram commutes

V V ⊗ V

V ⊗ V V ⊗ V ⊗ V

µ

µ

1⊗µ

µ⊗1

The definition of derivation D : V → V and homomorphism G : V → W
are introduced similarly. In terms of commutative diagrams they mean
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V V

V ⊗ V V ⊗ V

D

µ

1⊗D+D⊗1

µ ,

V W

V ⊗ V W ⊗W

G

µ µ

G⊗G

For now we can define the degree of derivation as |D| = 1. In the next section
we will see the connection between the degree of derivation and coderivation.

3.2 Description of algebras as dual of coalgebras

This section is devoted to the study of duals of vector spaces in order to introduce
the notion of an algebra from the notion of a coalgebra.

Remark 3.2.1. Note that the other direction (from algebras to coalgebras) is
for infinitely dimensional vector spaces much more complicated. The problems
arise from the following observation.

Let us define mapping µ : V ⊗ V → V and denote by V # = Hom (V,K) the
dual space. Then the dual mapping acts as µ# : V # → (V ⊗ V )#

There is also an injective mapping i : V # ⊗ V # → (V ⊗ V )# such that

i (α⊗ β) (v ⊗ w) = (α, β) (v ⊗ w) = (−1)|β|·|v|α (v) · β (w)

for α, β ∈ V #, v, w ∈ V , where α (v), or equivalently 〈α|v〉, is the evaluation of
the form on the vector, i.e., the duality between V and V #. If we pick another
two elements δ, γ ∈ V # such that

(α, β) (v ⊗ w) = (δ, γ) (v ⊗ w) ,

then we can choose w such that β (w) 6= 0 and γ (w) 6= 0. From this we get

α (v) = c · δ (v) ,

where c ∈ K is some non-zero constant. Now we can conversely choose v such
that α (v) 6= 0 and δ (v) 6= 0 but we already know that α (v) = c · δ (v) hence

c · δ (v) β (w) = δ (v) γ (w)

and therefore β (w) = c−1 · γ (w).
This means that (α⊗ β) = (δ ⊗ γ) since there exists constant c such that

α = c · δ and β = c−1 · γ, so the mapping i is injective.
Hence if we want to define some mapping1 φ : V # → V #⊗V # we cannot just

restrict the mapping µ# to some subspace.

(V ⊗ V )# V #

V # ⊗ V #

µ#

φ
i

1We want to define coalgebra structure from algebra structure.
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This can be done only in the finitely-dimensional cases where the dual of a vector
space is isomorphic to the space itself.2 And thus an injective mapping between
two finite dimensional spaces of the same dimension is an isomorphism. In the

infinite dimensional case the vector space
(
V #
)#

is never isomorphic to the space
V , and thus the construction can be done only in one direction.

Remark 3.2.2. Let us make one more observation. For α ∈ V #, φ# : V # → V #

(φ#(α))(v) = (−1)|α|·|φ|α(φ(v))

given by Koszul convention. Degrees of elements (or more accurately functions
acting on them) on both sides must be the same and therefore

(3.4) |φ# (α) | = |α ◦ π|

We can consider the left hand side of (3.4) as φ# acting on element α ∈ V #, and
hence

|φ# (α) | = |φ#|+ |α|

and the right hand side as the composition of two functions acting on V , thus

|α ◦ φ| = |α|+ |φ|

Together we get |φ#|+ |α| = |φ|+ |α|. Hence |φ#| = |φ|.

Lemma 3.2.3. Let V be a coalgebra with a coproduct ∆. Then we can construct
an algebra V # with product µ such that

(3.5) 〈µ (α⊗ β) |v〉 = 〈i (α⊗ β) |∆ (v)〉,

where i is an injective mapping i : V #⊗V # ↪→ (V ⊗ V )# and v ∈ V , α, β ∈ V #.

Proof. By the definition of a coalgebra with coassociative coproduct we know
that the diagram

V V ⊗ V

V ⊗ V V ⊗ V ⊗ V

∆

∆

∆⊗1

1⊗∆

commutes and by dualization we get the commutative diagram

V # (V ⊗ V )#

(V ⊗ V )# (V ⊗ V ⊗ V )#

∆#

∆#

(1⊗∆)#

(∆⊗1)#

Here for f : V → W , the dual map f# : W# → V #

2In this case V ' V # and hence (V ⊗ V )
# ' V ⊗ V ' V # ⊗ V #.
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V W

K

f

α β

is given by f# (β) = β ◦ f = α
Now by the injectivity of the map i : V # ⊗ V # ↪→ (V ⊗ V )# or by the

injectivity of a similar map i : V # ⊗ V # ⊗ V # ↪→ (V ⊗ V ⊗ V )# (for short also
denoted as i) we see

(3.6) ∆# ◦ (1⊗∆)# ◦ i = ∆# ◦ (∆⊗ 1)# ◦ i.

Let us now compute the image of map (1⊗∆)#◦i. Since for any α, β, γ ∈ V #

we have
i (α⊗ β ⊗ γ) = (α, β, γ)

so that

(α, β, γ) (v ⊗ w ⊗ u) = (−1)|β|·|v|(−1)|γ|·(|v|+|w|)α (v) · β (w) · γ (u)

and for any v, w, u ∈ V , the mapping (1⊗∆)# (α, β, γ) acts as

(
(1⊗∆)# (α, β, γ)

)
(v ⊗ w) = (−1)(|α|+|β|+|γ|)·|∆| (α, β, γ) ((1⊗∆) (v ⊗ w)) =

(3.7)

= (−1)(|β|+|γ|)·|v|α (v) · (β, γ) (∆w)

where from the definition of ∆ and ∆# we have

(β, γ) (∆w) = (−1)(|β|+|γ|)·|∆|∆# (β, γ) (w) = ∆# (β, γ) (w)

and ∆# (β, γ) ∈ V #. Thus the image of (1⊗∆)#◦i : V #⊗V #⊗V # → (V ⊗ V )#

is in the image of i : V # ⊗ V # → (V ⊗ V )#.
Therefore we can consider a map a : V # ⊗ V # ⊗ V # → V # ⊗ V # such that

(3.8) (1⊗∆)# ◦ i = i ◦ a,

and similarly for the map (∆⊗ 1)# let us consider the map

b : V # ⊗ V # ⊗ V # → V # ⊗ V #

such that

(3.9) (∆⊗ 1)# ◦ i = i ◦ b

Together the equations (3.6), (3.8) and (3.9) give us

(3.10) ∆# ◦ i ◦ a = ∆# ◦ i ◦ b

If we denote the mapping ∆#◦i : V #⊗V # → V # as µ, we get a new commutative
diagram
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V # V # ⊗ V #

V # ⊗ V # V # ⊗ V # ⊗ V #

µ

µ

b

a

Our next goal is to find out the properties of mappings a, b in relation to µ.
Now let us show that a = 1⊗ µ, or equivalently show that

(3.11) (1⊗∆)# ◦ i = i ◦
(
1⊗∆# ◦ i

)
We already showed in (3.7) the left hand side applied on an element

α⊗ β ⊗ γ ∈ V # ⊗ V # ⊗ V #

If we similarly apply the right hand side of (3.11) to the same element, we first
get (1⊗ i) (α, β, γ) = α⊗ (β, γ), so that

(α⊗ (β, γ)) (v ⊗ w ⊗ u) = α (v)⊗ (β, γ) (w ⊗ u) = α (v)⊗ (β (w) · γ (u))

and then we get
(
1⊗∆#

)
(α⊗ (β, γ)) = α ⊗∆# (β, γ). By the action of map i

we finally get
(
α,∆# (β, γ)

)
, so that(

α,∆# (β, γ)
)

(v ⊗ w) = (−1)|∆
#(β,γ)|·|v|α (v) ·∆# (β, γ) (w) =

= (−1)(|∆|+|β|+|γ|)·|v|α (v) ·∆# (β, γ) (w) = (−1)(|β|+|γ|)·|v|α (v) · (β, γ) (∆w)

where we use observation from Remark 3.2.2. Therefore the equality in (3.11)
holds.

Analogously we get the relation b = µ⊗ 1 and therefore we obtain four map-
pings such that the following diagram commutes.

V # V # ⊗ V #

V # ⊗ V # V # ⊗ V # ⊗ V #

µ

µ

1⊗µ

µ⊗1

We can easily see, that the commutative diagram corresponds to the associativity
of the map µ, and therefore µ is a product. From definition of µ we finally get

〈µ (α⊗ β) |v〉 = 〈∆# ◦ i (α⊗ β) |v〉 = 〈i (α⊗ β) |∆v〉

and therefore the equation (3.5) holds.

Example 3.2.4. Let us explain the relation between the coproduct ∆ and the
product µ, and how to get an expression for µ from an expression for ∆ in one
important example.

Let V be a graded vector space and T cV =
⊕

n≥1 V
⊗n its tensor coalgebra

with coproduct defined as

(3.12) ∆ (c1 ⊗ . . .⊗ cn) =
n−1∑
k=1

(c1 ⊗ . . .⊗ ck)⊗ (ck+1 ⊗ . . .⊗ cn)
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Let us choose f ∈ (T cV )# , g ∈ (T cV ⊗ T cV )# such that g ◦ ∆ = f , or
equivalently from Koszul convention (and |∆| = 0)

∆# (g) = (−1)|∆|·|g|f = f

T cV T cV ⊗ T cV

K

∆

f g

Let us consider the restriction of ∆# on the space (T cV )#⊗ (T cV )#, i.e., the
product µ := ∆# ◦ i, and denote elements from corresponding space with a tilde,
i.e. for g̃ ∈ (T cV )# ⊗ (T cV )# we have g̃ ◦∆ = f̃ , or equivalently µ (g) = f . Our
task is now to define µ corresponding to ∆ from (3.12).

Since g̃ ∈ (T cV )#⊗ (T cV )#, we can think about it as an element g̃ = g1⊗ g2.
Notice that a general element h ∈ (T cV )# can be expressed as

h =
(
hj1...jme

j1 ⊗ . . .⊗ ejm
)
m,j1,...jm

∈
∏
m

(
V #
)⊗m

,

and that a general element of T cV is a finite sum of elements ai1⊗ . . .⊗ain ∈ V ⊗n
such that

a1⊗. . .⊗an =
∑
i1

a1,i1ei1⊗
∑
i2

a2,i2ei2⊗· · ·
∑
in

an,inein =
∑

i1,i2...in

ai1...inei1⊗. . .⊗ein ,

where a1,i1 , . . . an,in , ai1...in ∈ K, ei1 , . . . ein are base elements of V , ej1 , . . . ejm base
elements of V # such that ej (ei) = δji , where δ stands for the Kronecker delta.
Since ej (ei) has to be of degree 0, |ej| = −|ei|. Hence we can compute just the
evaluation of generators g1 = ej1 ⊗ . . .⊗ ejm , g2 = ejm+1 ⊗ . . .⊗ ejl of (T cV )# on
the coproduct ∆ (ei1 ⊗ . . . ein) of generators of (T cV ) as defined in (3.12).

Then we get

〈
(
ej1 ⊗ . . .⊗ ejm

)
⊗
(
ejm+1 ⊗ . . .⊗ ejl

)
|∆ (ei1 ⊗ . . .⊗ ein)〉 =(3.13)

=
n−1∑
k=1

(−1)(|ei1|+...|eik|)(|e
jm+1|+...|ejl|)〈ej1⊗. . .ejm|ei1⊗. . .eik〉〈ejm+1⊗. . .ejl |eik+1

⊗. . .ein〉

For better readability let us introduce the following notation for basis elements
with indices increasing by one

(3.14) (−1)(|ei1 |+...+|eik |)·(|e
jm+1 |+...+|ejl |) = (−1)[i1...ik|jm+1...jl]

Now from the evaluation of 〈ej1 ⊗ . . .⊗ ejm |ei1 ⊗ . . .⊗ eik〉 we get m = k and

〈ej1 ⊗ . . .⊗ ejm |ei1 ⊗ . . .⊗ eik〉 = (−1)[i1|j2...jm] · δj1i1 . . . (−1)[ik−1|jm] · δjk−1

ik−1
· δjkik

(3.15)

and similarly the evaluation of

〈ej1 ⊗ . . .⊗ ejm|ei1 ⊗ . . .⊗ eik〉〈ejm+1 ⊗ . . .⊗ ejl |eik+1
⊗ . . .⊗ ein〉
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will give us l = n and

〈ej1 ⊗ . . .⊗ ejm|ei1 ⊗ . . .⊗ eik〉〈ejm+1 ⊗ . . .⊗ ejl |eik+1
⊗ . . .⊗ ein〉 =(3.16)

= (−1)[ik+1|jm+2...jl] · δjk+1

ik+1
. . . (−1)[in−1|jn] · δjn−1

in−1
· δjnin

Hence there is only one non-zero element of the sum on the right hand side of
(3.13) corresponding to conditions m = k and l = n such that i1 = j1, . . . in = jn.
If we apply the results from (3.15) and (3.16) we get the following

〈
(
ei1 ⊗ . . .⊗ eim

)
⊗
(
eim+1 ⊗ . . .⊗ ein

)
|∆ (ei1 ⊗ . . .⊗ ein)〉 =(3.17)

=(−1)[i1...im|im+1...in](−1)[i1|i2...im]. . . (−1)[im−1|im](−1)[im+1|im+2...in] . . . (−1)[in−1|in] =

=(−1)[i1|i2...in]. . . (−1)[im−1|im...in](−1)[im|im+1...in](−1)[im+1|im+2...in]. . . (−1)[in−1|in] =

= (−1)[i1|i2...in] . . . (−1)[in−1|in]

We can easily see that this is the same as evaluating f = ei1 ⊗ . . . ⊗ ein on
ei1 ⊗ . . .⊗ ein

〈ei1 ⊗ . . .⊗ ein|ei1 ⊗ . . .⊗ ein〉 = (−1)[i1|i2...in] . . . (−1)[in−1|in]

Hence finally

(3.18) µ
((
ei1 ⊗ . . .⊗ eim

)
⊗
(
eim+1 ⊗ . . .⊗ ein

))
= ei1 ⊗ . . .⊗ ein

For coproduct ∆ defined in (3.12) on tensor coalgebra we computed the corre-
sponding product µ on (T cV )# defined in (3.18).

In very a similar fashion as in Lemma 3.2.3 we can construct a derivation from
a coderivation.

Lemma 3.2.5. Let V be a coalgebra with coproduct ∆ and coderivation C.
Then we can construct an algebra V # with product µ and derivation D such that

(3.19) 〈D (α) |v〉 = (−1)|α|·|C| 〈α| C (v)〉

for v ∈ V and α ∈ V #.

Proof. By the definition of coalgebra with coderivation we have the commutative
diagram

V V

V ⊗ V V ⊗ V

∆

C

∆

1⊗C+C⊗1

and by dualization we get the commutative diagram

V # V #

(V ⊗ V )# (V ⊗ V )#

C#

∆#

(1⊗C+C⊗1)#

∆#
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As i : V # ⊗ V # → (V ⊗ V )# is injective composition with i will not violate the
identity, hence

(3.20) ∆# ◦ (C ⊗ 1 + 1⊗ C)# ◦ i = C# ◦∆# ◦ i

As in lemma 3.2.3 let us compute the image of map (C ⊗ 1 + 1⊗ C)# ◦ i.
Since for any α, β ∈ V # and v, w ∈ V we have

(i (α⊗ β)) (v ⊗ w) = (α, β) (v ⊗ w) = (−1)|β|·|v|α (v) · β (w)

the mapping (C ⊗ 1 + 1⊗ C)# (α, β) acts as(
(C ⊗ 1 + 1⊗ C)# (α, β)

)
(v ⊗ w) =(3.21)

= (−1)|C|·(|α|+|β|) (α, β)
(
C (v)⊗ w + (−1)|v|·|C| v ⊗ C (w)

)
=

= (−1)|α|+|β|
(

(−1)|β|·(|C|+|v|)α (C (v))·β (w) + (−1)|v|·|C|(−1)|β|·|v|α (v)·β (C (w))
)

Thus the image of (C ⊗ 1 + 1⊗ C)# ◦ i : V # ⊗ V # → (V ⊗ V )# is in the image
of i : V # ⊗ V # → (V ⊗ V )#. Therefore we can consider a map

e : V # ⊗ V # → V # ⊗ V #

such that

(3.22) (C ⊗ 1 + 1⊗ C)# ◦ i = i ◦ e

If we plug in (3.22) into (3.20) we get

∆# ◦ i ◦ e = C# ◦ µ

which is the same as

µ ◦ e = C# ◦ µ

Let us denote the mapping C# as D. Together we have commutative diagram

V # V #

V # ⊗ V # V # ⊗ V #

D

µ

e

µ

Now let us show that e = D ⊗ 1 + 1⊗D, or equivalently,

(3.23) (C ⊗ 1 + 1⊗ C)# ◦ i = i ◦
(
C# ⊗ 1 + 1⊗ C#

)
In (3.21) we computed the left hand side applied to an element α⊗β ∈ V #⊗V #,
acting on elements v, w ∈ V . If we apply the right hand side of (3.23) on the
same element we at first get(

C# ⊗ 1 + 1⊗ C#
)

(α⊗ β) = C# (α)⊗ β + (−1)|α|·|C
#| α⊗ C# (β)
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and after acting with i we get a mapping whose evaluation is((
C# (α) , β

)
+ (−1)|α|·|C

#| (α,C# (β)
))

(v ⊗ w) =(3.24)

= (−1)|β|·|v|C#(α) (v) · β (w) + (−1)|α|·|C
#| (−1)(|C#|+|β|)·|v|α (v) · C#(β) (w)

= (−1)|β|·|v|(−1)|α|·|C|α (C (v)) · β (w) + (−1)|α|(−1)|β|·|v|(−1)|β|·|C|α (v)·β (C (w))

From definition of coderivation |C| = 1 and observation in Remark 3.2.2 we get
|C#| = 1, and hence the terms in (3.21) and (3.24) are the same, which shows
the equality of terms in (3.23).

The diagram showing this property

V # V #

(V ⊗ V )# (V ⊗ V )#

D

µ

(1⊗D+D⊗1)

µ

also corresponds to the condition3 that D is derivation.
Finally we also see that

〈D (α) |v〉 = 〈C# (α) |v〉 = (−1)|α|·|C|〈α|C (v)〉

3.3 A∞-algebra

Definition 3.3.1. Let V be a (generally infinite dimensional) graded vector space
and T cV =

⊕∞
n=1 V

⊗n its tensor coalgebra with coderivation C of degree 1. T cV
is an A∞-algebra if

(3.25) C2 = 0

Remark 3.3.2. We already defined A∞ in Definition 2.2.3 and showed its equiv-
alent expression via maps mn : V ⊗n → V of degree 1 in (3.26). Let us now show
that this defines the same structure as 3.3.1.

Let us denote the projection projn : T cV → V ⊗n and cn = C ◦ projn. It is
obvious that

C =
∞∑
i=1

ci

Note that although is the map defined as infinite sum of non-trivial maps, when
we enumerate it on element v ∈

⊕m
i=1 V

⊗i ⊂ T cV , only finite many members of
the sum will be used.

Proposition 1.2.9 from [LV12] says that coderivation C is completely deter-
mined by

proj1 ◦ C =
∞∑
i=1

proj1 ◦ ci

3This property is usually called the Leibniz rule.
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Definition 3.3.1 is therefore equivalently defined as a sequence of linear maps
{proj1 ◦ cn : V ⊗n → V }i≥1. Let us denote these maps as mn = proj1 ◦C ◦ projn.
Lemma 9.2.2 ibid shows that this is equivalent4 to

(3.26)
∑
k,l

k+l=n+1

k∑
i=1

mk ◦i ml = 0

where mi ◦mj =
∑i

k=1 mi ◦ (1⊗(k−1) ⊗mj ⊗ 1⊗(i−k)).

Hence the definitions are equivalent. This can be compared with Section 2.1
in [KS06b].

Remark 3.3.3. If we split the sequence of maps {mn}n∈N into a differential map
m = m1 : V → V and the rest denoted as θ = {mn : V ⊗n → V }n≥2 then equation
(3.26) can be expressed as

(3.27) m2 +m ◦ θ + θ ◦m+ θ2 = 0

The term m ◦ θ + θ ◦ m can be understood similarly as in (2.3) as the natural
differential d on Hom(T cV, V ), i.e.,

d(θ) = m ◦ θ + (−1)|m|·|θ|θ ◦m = [m, θ]

where [·, ·] denotes the Lie bracket on the vector space Hom(T cV, V ). Then, since
m2 = 0, we have equivalently

(3.28) d(θ) +
1

2
[θ, θ] = 0

such equation corresponds to the Maurer-Cartan equation5 in dg Lie algebra

(Hom(T cV, V ), d, [·, ·])

Remark 3.3.4. The confusing designation ‘algebra’ for tensor coalgebra T cV
comes from their original motivation as generalization of dg algebra with differ-
ential m1, with m2 an associative multiplication up to homotopy given by the
ternary operation m3. But the composition of these two maps leads to introduc-
ing another operation m4 and in general n-ary operations mn.

It is usual to define the multiplication map m2 as degree 0 operation. In
our case it is of degree 1. To adapt our maps to usual setting it is necessary to
introduce operad suspension, already mentioned in 2.1.15. Since we do not need
the map m2 to have degree 0, we skip this process and just work with maps of
degree 1.

4The equivalence is actually proved up to sign. But this sign is given by different degree of
mn in the proof. In our case is the map proj1 of degree 0 and the coderivation C is of degree
1, hence the map proj1 ◦ C is of degree 1. The maps mn : V ⊗n → V used in Lemma 9.2.2 are
of degree n− 2.

5The solutions of (3.28) can be therefore seen as deformations of V .
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3.4 Maurer-Cartan equation in derivations

We have seen in remark 3.3.2 that the coderivation C on A∞-algebra can be
equivalently expressed as a collection of degree one maps {mn : V ⊗n → V }n∈N
such that

(3.29)
∑
r,s

r+s=n+1

r∑
t=1

mr ◦t ms = 0

And we proved in the Lemmas 3.2.3 and 3.2.5 that we can construct from coal-
gebra (V,∆, C) an algebra (V #, µ,D). Let us now show that equation similar to
(3.29) holds also for algebra.

Theorem 3.4.1. Let V be a finite dimensional vector space. Then equation
(3.29) equivalent to C2 = 0 for coderivation C on T cV can be translated to
equation

0 =
∑
r,s

r+s=n+1

r∑
t=1

m̃(s) 1◦tm̃(r)

equivalent to D2 = 0, where m̃(n) : V # → (V #)⊗n and the symbol 1◦t denotes
the pairing of t-th output of m̃(r) with 1-st input of m̃(s).

Proof. Since V is finite dimensional, we have (V ⊗n)
# ∼=

(
V #
)⊗n

and

(T cV )# =

(⊕
n∈N

V ⊗n

)#

∼=
∏
n

(
V #
)⊗n

Also we can think of maps mn : V ⊗n → V as 1-contravariant and of n-covariant
tensor m(n) ∈ V ⊗ V # ⊗ . . .⊗ V #︸ ︷︷ ︸

n

given in coordinates as

m(n)(ek1 ⊗ . . .⊗ ekn) = [m(n)(ht]ij1,j2...jnei ⊗ e
j1 ⊗ . . .⊗ ejn(ek1 ⊗ . . .⊗ ekn) =

= [m(n)]ij1,j2...jn ei · e
j1(ek1) · (−1)[k1|j2,...jn] · ej2(ek2) · (−1)[k2|j3,...jn] . . .(3.30)

. . . ejn−1(ekn−1) · (−1)[kn−1|jn] · ejn(ekn)

where we use Einstein summation convention and the notation introduced in
(3.14), ei, e

j denote the base vectors of V (V #, respectively) and we use the
observations from Example 3.2.4. Therefore

m(n)(ek1⊗. . .⊗ekn) = [m(n)]ik1,k2...kn ei(−1)[k1|k2...kn] ·(−1)[k2|k3...kn] . . . (−1)[kn−1|kn]

Note that the evaluation of φ ∈ W# on f(v) such that f : V → W (and
f# : W# → V #), v ∈ V is given by

(3.31) 〈φ|f(v)〉 = φ(f(v)) = φ ◦ f(v) = 〈φ ◦ f |v〉 = (−1)|f |·|φ|〈f#(φ)|v〉

Therefore the evaluation of er on an element from (3.30) is

〈er|m(n)(ek1 ⊗ . . .⊗ ekn)〉 = (−1)|m(n)|·|er|〈m#(n)(er)|ek1 ⊗ . . .⊗ ekn〉
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and since for all n the degree is |m(n)| = 1, we can omit it in the exponent.
Therefore the map m#(n) : V # → (V #)⊗n is given in coordinates as
(3.32)
m#(n)(er) = [m(n)]ij1,j2...jn ei ⊗ e

j1 ⊗ . . .⊗ ejn(er) = [m(n)]rj1,j2...jn e
j1 ⊗ . . .⊗ ejn

From (2.7) we get the left hand side of the next equation for arbitrary el ∈ V #

and ek1 , . . . ekn ∈ V

0 = 〈el|
∑
r,s

r+s=n+1

r∑
t=1

m(r)
(
1⊗t−1 ⊗m(s)⊗ 1n−s−t+1

)
(ek1 ⊗ ek2 ⊗ . . .⊗ ekn)〉 =

(3.33)

=
∑
r,s

r+s=n+1

r∑
i=1

(−1)|e
m|〈m#(r)(em)|

(
1⊗t−1⊗m(s)⊗ 1n−s−t+1

)
(ek1 ⊗ ek2 ⊗ . . .⊗ ekn)〉

We can use (3.32) but we have to determine what exactly is(
1⊗t−1 ⊗m(s)⊗ 1n−s−t+1

)#

Obviously this map is of degree |m(s)| = 1 and we know that

〈ej1 ⊗ . . . ejr |ek1 ⊗ . . . ekt−1 ⊗m(s)
(
ekt ⊗ . . .⊗ ekt+s−1

)
⊗ ekt+s ⊗ . . . ekn〉 =

(3.34)

= (−1)a(t)〈ej1 ⊗ . . .⊗ ejr |
(
1⊗t−1 ⊗m(s)⊗ 1n−s−t+1

)
(ek1 ⊗ . . .⊗ ekn)〉 =

= (−1)a(t)(−1)|e
j1 |+...|ejr |〈

(
1⊗t−1⊗m(s)⊗1n−s−t+1

)#(
ej1⊗. . .⊗ejr

)
|ek1⊗. . .⊗ ekn〉

where (−1)a(t) = (−1)|ek1 |+...+|ekt−1
| is given by the Koszul convention. Now we

step by step evaluate the left hand side of (3.34) (multiplied by (−1)a(t))

〈ej1 ⊗ . . . ejr |ek1 ⊗ . . . ekt−1 ⊗m(s)
(
ekt ⊗ . . .⊗ ekt+s−1

)
⊗ ekt+s ⊗ . . . ekn〉 =

= (−1)[k1|j2,...jr]〈ej1|ek1〉. . .(−1)[kt−1|jt,...jr]〈ejt−1 |ekt−1〉(−1)|m(s)|+[kt,...kt+s−1|jt+1,...jr]

·〈ejt |m(s)
(
ekt ⊗ . . . ekt+s−1

)
〉 · (−1)[kt+1|jt+2,...jr]〈ejt+1|ekt+s〉 · . . . · 〈ejr |ekn〉

From the observation in (3.31) we see that

〈ejt |m(s)
(
ekt ⊗ . . . ekt+s−1

)
〉 = (−1)|e

jt |〈m#(s)ejt |ekt ⊗ . . . ekt+s−1〉

and if we now rewrite the evaluations back, we get

〈ej1 ⊗ . . . ejr |ek1 ⊗ . . . ekt−1 ⊗m(s)
(
ekt ⊗ . . .⊗ ekt+s−1

)
⊗ ekt+s ⊗ . . . ekn〉 =

= (−1)a(t)(−1)|e
jt |+...+|ejr |〈ej1⊗. . .⊗m#(s)

(
ejt
)
⊗ ejt+1 ⊗. . .⊗ ejr |ek1 ⊗ . . .⊗ ekn〉

Hence the right hand side of (3.34) is given as

(−1)a(t)(−1)|e
j1 |+...|ejr |〈

(
1⊗t−1⊗m(s)⊗1n−s−t+1

)#(
ej1⊗. . .⊗ ejr

)
|ek1⊗. . .⊗ ekn〉=

= (−1)a(t)(−1)|e
jt |+...+|ejr |〈ej1⊗. . .⊗m#(s)

(
ejt
)
⊗ ejt+1 ⊗. . .⊗ ejr |ek1 ⊗. . .⊗ ekn〉
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Finally we get

〈ej1 ⊗ . . .⊗ ejr |
(
1⊗t−1 ⊗m(s)⊗ 1n−s−t+1

)
(ek1 ⊗ . . .⊗ ekn)〉 =(3.35)

= (−1)|e
jt |+...+|ejr | · 〈ej1 ⊗ . . .⊗m#(s)

(
ejt
)
⊗ ejt+1 ⊗ . . .⊗ ejr |ek1 ⊗ . . .⊗ ekn〉

Now we can use the results from (3.35) and the coordinate expression ofm#(r)(em)
and rewrite Equation (3.33) as

∑
r,s

r+s=n+1

r∑
t=1

(−1)|e
m|〈m#(r)(em)|

(
1⊗t−1⊗m(s)⊗ 1n−s−t+1

)
(ek1⊗ ek2 ⊗. . .⊗ ekn)〉=

=
∑
r,s

r+s=n+1

r∑
t=1

(−1)|e
m|(−1)|e

j1 |+...+|ejr | [m(r)]mj1,...jr

·〈
(
1⊗t−1 ⊗m(s)⊗ 1n−s−t+1

)#
(ej1 ⊗ . . .⊗ ejr)|ek1 ⊗ ek2 ⊗ . . .⊗ ekn〉 =

=
∑
r,s

r+s=n+1

r∑
t=1

(−1)|e
m|(−1)|e

j1 |+...+|ejr |(−1)|ejt |+...+|ejr | [m(r)]mj1,...jr(3.36)

·〈ej1 ⊗ . . .⊗ ejt−1 ⊗m#(s)(ejt)⊗ ejt+1 ⊗ . . .⊗ ejr |ek1 ⊗ ek2 ⊗ . . .⊗ ekn〉 =

=
∑
r,s

r+s=n+1

r∑
t=1

(−1)|e
m|(−1)|e

j1 |+...+|ejt−1 | [m(r)]mj1,...jr [m(s)]pq1,...qs

·〈ej1⊗. . .⊗ ejt−1⊗ (ep ⊗ eq1⊗. . .eqs) (ejt)⊗ ejt+1 ⊗. . .⊗ ejr |ek1 ⊗ ek2 ⊗. . .⊗ ekn〉 =

=
∑
r,s

r+s=n+1

r∑
t=1

(−1)|e
m|(−1)|e

k1 |+...+|ekt−1 | [m(r)]mk1,...kt−1,jt,kt+s,...kr
[m(s)]jtkt,...kt+s−1

·(−1)[k1|k2...kn] . . . (−1)[kn−1|kn]

The equation (3.36) holds for arbitrary em ∈ V #, ek1 , . . . ekn ∈ V hence

(3.37) 0 =
∑
r,s

r+s=n+1

r∑
t=1

(−1)|e
k1 |+...+|ekt−1 | [m(r)]mk1,...kt−1,jt,kt+s,...kr

[m(s)]jtkt,...kt+s−1

Equation (3.37) clearly corresponds to the composition of maps

m̃(n) : V # → (V #)⊗n

satisfying a relation similar to (2.7)

0 =
∑
r,s

r+s=n+1

r∑
t=1

m̃(s) 1◦tm̃(r)

where the symbol 1◦t denotes pairing of t-th output of m̃(r) with 1-st input of
m̃(s).
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4. Properads

4.1 PROPs and properads

In this section we want to generalize the concept of operads. The structure of
operads was motivated by functions with n inputs and 1 output. The idea of the
generalization is to take ‘functions’ with n inputs and m outputs.

We can again define composition maps1 connecting outputs of one element
to inputs of another one. But this time it is possible to define new composition
maps, called horizontal, taking inputs of two different elements as the input of
one new element and their outputs as the outputs of the new one. Similarly as
operads this structure can be visualized. The elements correspond to decorated
directed non-planar (not necessarily connected) graphs with actions of symmetric
groups on inputs and outputs. Such structure is usually called PROPs.

We do not need such a general structure – for us is enough to use only con-
nected parts without horizontal compositions as was introduced in [Val07]. Nev-
ertheless, it turns out that it is easier to define PROPs and then just to restrict
the definition to define properads as in [Mar06].

The definitions related to categories are mainly taken from nLab websites
[Sch16b], [Sch16a] and [Dun15].

Remark 4.1.1. Similarly as in 1.1.1 we can define PROP in category ModK as a
collection P = {P (m,n)}m,n≥0 of (Σm,Σn)-bimodules such that the left action of
Σm commutes with the right action of Σn together with two types of composition
maps called vertical

◦ : P (m,n)⊗ P (n, k)→ P (m, k)

and horizontal

� : P (m1, n1)⊗ . . .⊗ P (ms, ns)→ P (m1 + . . .+ms, n1 + . . .+ ns)

and a unital element e ∈ P (1, 1). This all together is required to satisfy axioms
similar to the axioms from the definition of operad. It is easy to see what should
be the meaning of these axioms. But to write them down requires work with
many indices which makes them hard to read. Hence let us show them in a more
compact form. As first let us recall some notions from category theory.

Remark 4.1.2. Let us denote objects of a category C as Ob(C) and its mor-
phisms as C(·, ·).

A category C is a monoidal category if it is equipped with a bifunctor
⊗ : C × C → C called tensor product, special object called the identity
object I ∈ C and three natural isomorphisms

αa,b,c : (a⊗ b)⊗ c ∼= a⊗ (b⊗ c)

λa : I ⊗ a ∼= a

ρa : a⊗ I ∼= a

1Let us call them a moment as vertical.
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for any a, b, c ∈ Ob(C) such that some additional identities2 hold. For more see
[Sch16b].

In a strict monoidal category, the natural isomorphisms α, λ, ρ are identites.
A symmetric monoidal category has moreover one natural isomorphism

Sa,b : a⊗ b→ b⊗ a

again satisfying some additional identites.

Definition 4.1.3. A category P is enriched in a monoidal category C if
for all pairs of objects (p, q) ∈ Ob(P ) × Ob(P ) the hom-set P (p, q) is an object
of category C, P (p, q) ∈ Ob(C), called hom-object such that for all triples
(p, q, r) ∈ Ob(P )×Ob(P )×Ob(P ) there exists a morphism

◦p,q,r : P (q, r)⊗ P (p, q)→ P (p, r)

called the composition morphism, and the following diagram expressing asso-
ciativity of this composition commutes

(P (r, s)⊗ P (q, r))⊗ P (p, q) P (r, s)⊗ (P (q, r)⊗P (p, q))

P (q, s)⊗ P (p, q) P (r, s)⊗ P (p, r)

P (p, s)

◦q,r,s⊗1P (p,q)

αP (r,s),P (q,r),P (p,q)

1P (r,s)⊗◦p,q,r

◦p,q,s ◦p,r,s

and further for any object p ∈ Ob(P ) there exists a morphism jp : IC → P (p, p)
called the identity morphism such that the following diagram expressing prop-
erties of the unit also commutes

P (q, q)⊗ P (p, q) P (p, q) P (p, q)⊗ P (p, p)

IC ⊗ P (p, q) P (p, q)⊗ IC

◦p,q,q ◦p,p,q

λP (p,q)

jq⊗1P (p,q) ρP (p,q)
1P (p,q)⊗jp

Definition 4.1.4. A PROP is a symmetric monoidal category P = (P,�, SP , IP )
(with tensor product denoted as �) enriched over symmetric strict monoidal cat-
egory ModK = (ModK,⊗K, SMod,K) such that the objects of P can be identified
with the set N0 and the tensor product of P satisfies

m� n = m+ n

Let us now make an observation that this definition already contains every-
thing we need.

2These identities can be expressed via commutative diagrams sometimes called pentagonal
and triangular.
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Remark 4.1.5. First notice that in the identification we have IP = 0 and since
any object of P can be identified as m = 1�m, we have a structure of (Σm,Σn)-
bimodule on any hom-object P (m,n) induced by natural isomorphism SP .

Vertical compositions of hom-objects are given from the definition of enrich-
ment over category ModK and the horizontal composition is given by the bifunc-
tor �. Associativity of both of them is obvious.

The unit elements P (n, n) for vertical composition are defined as horizontal
composition of identity morphism e ∈ P (1, 1).

Definition 4.1.6. Let P = {P (m,n)}m,n≥0, Q = {Q(m,n)}m,n≥0 be two PROPs.
A homomorphism of PROPs h : P → Q is a collection of bi-equivariant3 maps
h = {hm,n : P (m,n) → Q(m,n)}m,n≥0 commuting with vertical and horizontal
compositions.

Definition 4.1.7. An ideal in PROP is a collection I = {I(m,n)}m,n≥0 of Σm-
left invariant and Σn-right invariant subspaces closed under vertical and horizon-
tal compositions with, i.e., for f ∈ P (m,n), g ∈ P (n, k) is f ◦ g ∈ I(m, k) if
f ∈ I(m,n) or g ∈ I(n, k).

Example 4.1.8. An endomorphism PROP over a K-module V is a collection
EndV = {EndV (m,n)}m,n≥0 of multilinear maps V ⊗n → V ⊗m. Vertical composi-
tion corresponds to composition of linear maps and horizontal composition to ten-
sor product of linear maps. The unit element is the identity map 1V ∈ EndV (1, 1).

Definition 4.1.9. An algebra over PROP P (also denoted as a P -algebra) is
a homomorphism of PROPs h : P → EndV for some K-module V .

Similarly as we already discussed in the beginning of section 1.1, PROPs
can be defined in two ways. We showed above the definition using categorical
approach to an axiomatic definition. Let us now outline the second one using
oriented graphs.

Definition 4.1.10. Let E = {E(m,n)}m,n≥0 be a system of (Σm,Σn)-bimodules.
Then E is a Σ-bimodule.

For finite sets X, Y such that |Y | = m, |X| = n define

E(Y,X) = Bij(Y, [m])⊗Σm E(m,n)⊗Σn Bij([n], X)

Definition 4.1.11. A directed (m,n)-graph, m,n ≥ 1, is a directed graph
where can be multiple edges but no directed cycles. Obviously the legs (half-
edges) can be divided into two disjoint sets – the incoming legs, called inputs,
and the outgoing legs, called outputs. An example of such (m,n)-graph is given
on figure 4.14.

Let Gr(m,n) be the category of triplets (G, l1, l2) where G is an (m,n)-graph,
l1 is a bijection

{incoming half-edges of G} → [n]

3h(m,n) is ‘left’ equivariant for left action of Σm and ‘right’ equivariant for right action of
Σn, hence for p ∈ P (m,n), σ ∈ Σm, τ ∈ Σn we have h(m,n)(σpτ) = σh(m,n)(p)τ .

4As was already observed in remark 1.2.16 and indicated in Figure 1.3 we can omit the
external vertices. And again, we depict the direction of each edge as bottom-up orientation of
its graphical representation.
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and l2 is a bijection

{outgoing half-edges of G} → [m]

Morphisms of Gr(m,n) are isomorphism of graphs preserving labeling of half-
edges.

m

n

Figure 4.1: Example of (m,n)-graph

Let us consider an extension of the category Gr(m,m) by a special graph
em with m-components having no internal vertices, visualized in Figure 4.2. The
categories enlarged by such graphs are denoted as UGr(m,n) (when m 6= n, then
UGr(m,n) = Gr(m,n)).

m

. . .

Figure 4.2: Graph em ∈ UGr(m,m)

For every vertex v we have a disjoint decomposition of adjacent edges into
incoming edges In(v) and outgoing edges Out(v). Let us define for a graph
G ∈ UGr(m,n) and a Σ-bimodule E

(4.1) E(G) =
⊙

v∈vert(G)

E(Out(v), In(v))

Γp(E)(m,n) = colim
G ∈ UGr(m,n)

E(G)

and functor Γp : Σ-BiModK → {PROPs}

(4.2) Γp(E) = {Γp(E)(m,n)}m,n≥0

Then Γp(E) gives us a structure of PROP. Horizontal composition corresponds to
disjoint union of graphs and vertical composition to joining graphs by identifying
some incoming leaves with some outgoing leaves of two different graphs.

Remark 4.1.12. Note that graphs G1 ∈ UGr(m,n1), G2 ∈ UGr(n2, k) can be
composed, since we can first use the ‘horizontal composition’ with graphs ep, eq (of
appropriate numbers of components p, q ≥ 0) and then horizontal composition.

Definition 4.1.13. PROPs are algebras over the monad UΓp ◦ Γp, where UΓp

denotes the appropriate forgetful functor.
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Now let us consider only connected graphs in UGr(m,n) such that every
vertex has at least one incoming edge and at least one outgoing edge. Let us
denote the category of such graphs as UGrC(m,n). Then

ΓCp (E)(m,n) = colim
G ∈ UGrC(m,n)

E(G)

(4.3) ΓCp (E) = {ΓCp (E)(m,n)}m,n≥0

and we finally get

Definition 4.1.14. Properads are algebras over the monad UΓCp
◦ ΓCp , where

UΓCp
denotes the forgetful functor.

Similarly as in operads we can define a non-unital properad. Let us consider
connected graphs in Gr(m,n) (such that every vertex has at least one incominng
edge and at least one outgoing edge) denoted as GrC(m,n). Then

ΨC
p (E)(m,n) = colim

G ∈ GrC(m,n)

E(G)

and functor ΓCp : Σ-BiModK → {properads}

(4.4) ΨC
p (E) = {ΨC

p (E)(m,n)}m,n≥0

Definition 4.1.15. Non-unital properads are algebras over the monad
UΨCp
◦ΨC

p , where UΨCp
denotes the appropriate forgetful functor.

Remark 4.1.16. Since properads are over connected graphs, horizonal compo-
sition makes no sense for them. Vertical composition will be denoted as usualy
by the symbol ‘◦’ and

◦ : P (m1, n1)⊗ P (m2, n2)→ P (k, l)

where m1 ≤ k ≤ m1 +m2 − 1, n2 ≤ l ≤ n1 + n2 − 1.
Similarly as for PROP, we can define the homorphism of properads, ideal of

properad, endomorphism properad.

Remark 4.1.17. It is obvious that operads are just special cases of properads
for m = 1.

Example 4.1.18. A Frobenius bialgebra can be defined (as in [Dun15]) as a vector
space V with associative product α̃ : V ⊗ V → V and coassociative coproduct
β̃ : V → V ⊗ V satisfying Frobenius law

(1A ⊗ α̃) ◦ (β̃ ⊗ 1A) = β̃ ◦ α̃ = (α̃⊗ 1A) ◦ (1A ⊗ β̃)

If we have moreover mapping S : V ⊗V → V ⊗V such that S(x⊗ y) = y⊗ x
for every x, y ∈ V and α̃ ◦ S = α̃, S ◦ β̃ = β̃, then we have symmetric Frobenius
bialgebra.
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Symmetric Frobenius algebra can be considered as an algebra over Frobenius
properad (defined in [CMW14]). Let us denote this properad as Frob. Then
Frob = ΓCp (EFrob)/RFrob where EFrob is a (Σm,Σn)-bimodule

EFrob(m,n) =


K · α if m = 1, n = 2

K · β if m = 2, n = 1

0 otherwise

where α, β are trivial representations of Σ2 and the ideal RFrob is displayed on
Figure 4.3. The ideal RFrob is shortly written as

α
αRFrob = Span{

i
j k

α

i j

k
− ,

α

β
β

i j
k
−

β
β

i
j k

,

| i, j, k ∈ [3] , p, q ∈ [2] , r, s ∈ [2]}−

r s

p q

α
β

r s

p q

α

β
, −

r s

p q

α
β

r s

p q

α

β

Figure 4.3: Ideal RFrob

RFrob=Span{(α 1◦α)−(α 2◦α),(β◦1β)−(β◦2β),(β◦α)−(α 1◦2β),(β◦α)−(α 2◦1β)}

where we use indices if we need to distinguish into which input we paste the result
from the previous operation or which output of the previous operation is used.

Remark 4.1.19. Note that Frob(m,n) is infinite dimensional for every m,n ≥ 1.
For example for m = 1 = n we can construct elements as composition

(α 1◦α 1◦ . . . 1◦α) 1,2...n◦1,2,...(β ◦1 β ◦1 . . . ◦1 β)

α
α

α
α
α

1,2...n◦1,2,...n

β
β
β

β
β

n− 1
=

n− 1

Figure 4.4: Element of Frob(1, 1)

The replacement, for example, α 1◦α by element α 2◦α is only ‘deformation’
of the graph and it will not change the genus. Then by composition with an
appropriate number of graphs decorated by K·α and K·β we can get an element of
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arbitrary component Frob(m,n). Hence every component Frob(m,n) is infinite
dimensional.

But we can define the genus of these graphs in the same way as for modular
operads in 1.11. Then every component Frob(m,n) can be considered as the
disjoint union of components Frob(m,n, g), where g denotes the genus of the
underlying graph. As was mentioned in [AMT14] every component Frob(m,n, g)
is one dimensional for every m,n ≥ 1, g ≥ 0. The idea of identification of such
elements from the same component Frob(m,n, g) for different graphs is shown in
Figure 4.5.

= = = = = = = = = = =

Figure 4.5: Equivalence of some elements of Frob(2, 3, 3)

Therefore we take as an definition of Frobenius properad the following theo-
rem.

Theorem 4.1.20. Frobenius properad is a bimodule

Frob = {Frob(m,n, g)}m,n≥1,g≥0

such that dim(Frob(m,n, g)) = 1 such that every component Frob(m,n, g) has
trivial left action of Σm and trivial right action of Σn

4.2 Cobar complex of properads

The idea of cobar complex construction is the same as for operads in section 2.1.
The construction comes from dualization and we want to omit the properad unit
in the construction. However to make clear how the construction works, we show
it explicitly on Frobenius properad.

We will again use the definition of cobar complex as a result of the functor C.
We are following mainly [DCTT10] and [Val07]. Some details can be found also
in [MV09].

Remark 4.2.1. In the construction of the operad cobar complex we required
components P (n) to be finite dimensional and we omitted the components P (0)
and P (1). Then we dualized the rest of components separately and the ‘dual’
was defined as P# = {(P (n))#} for n ≥ 2.

We showed in 4.1.19 that every component Frob(m,n) is infinite dimensional
but we can split it into one-dimensional components Frob(m,n, g).

We define the dual of properad Frob as

Frob# =

{
Frob(m,n, g)# if (m,n, g) 6= (1, 1, 0)

0 if (m,n, g) = (1, 1, 0)
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In the next we will use only GrC(m,n), which is the category of connected di-
rected graphs without directed cycles such that every vertex has at least one
incoming edge and at least one outgoing edge (without the special graphs em).

Remark 4.2.2. Left Σm and right Σn actions on the bimodule Frob(m,n, g)
correspond to left Σm and right Σn actions on Frob#(m,n, g) in the same way as
we have shown in 2.1.3. Since the actions are trivial on Frob(m,n, g), they are
trivial also on (Frob(m,n, g))#.

Similarly as for operads we want to transform the map ◦ from the properad
Frob into a differential of degree one on the cobar complex C(Frob) of the prop-
erad Frob. Hence we want to implement grading on elements Frob#(G) (defined
for Σ-bimodule Frob# as in (4.1)).

For operads the grading was introduced via the set of internal edges. For
operads, the map ◦# gave us always only one new edge. Therefore the raising of
degree was in correspondence with raising of number of edges.

In properads, the map ◦ can join two vertices by more than one edge simul-
taneously, and therefore the map ◦# can split one vertex into two new vertices
connected with more than one edge as indicated in Figure 4.65. But there are
some restrictive conditions which the map ◦# must satisfy.

◦# α1

β1

α2

β2

α4

β4
+ . . .+ +

α3

β3
+

S1

S2
S2

S1 S1 S1

S2 S2 S2

e

S1 \ {e}

Figure 4.6: Map ◦#

Similarly as in Section 2.1, let us denote by the symbol ◦#
G,G′ a map given by

the composition of the map ◦# acting on Frob#(G) with projection projG′ to one
component Frob#(G′) of ◦#(Frob#(G)).

Remark 4.2.3. First, after the action of the map ◦#
G,G′ ‘on vertex’ decorated by

an element from Frob#(m,n, g) we will get graph G′ with two new vertices instead
of the old one, as indicated in Figure 4.7. These vertices will be connected by k
edges and decorated by elements from Frob#(m1, n1, g1) and Frob#(m2, n2, g2).

Obviously m1 + m2 = m + k and n1 + n2 = n + k. But it is not generally
true that g1 + g2 = g. If k > 1, then the new k edges create k − 1 holes in the
graph. But we want the genus of the graph G′ to be the same as genus of the
graph G. Hence we should have g1 + g2 + k− 1 = g. For this reason we introduce
the following definition.

Definition 4.2.4. The character χ(v) of vertex v is defined as

χ(v) = 2g(v) +m+ n− 2

where g(v) is the genus of the vertex v.

5Note that since Frob#(m,n, g) are one dimensional with trivial (Σm,Σn) actions, we can
omit sums over the basis. In the general case we have to consider sums over combinations of
basis elements as in the Figure 2.1.
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k
◦#

m2

m1

n2

n1

m

n

g1

g2

g

G G′

Figure 4.7: New vertices decorated by elements from Frob#(m1, n1, g1),
Frob#(m2, n2, g2) created by the map ◦#

G,G′ from the vertex decorated by an

element from Frob#(m,n, g)

If we add characters of vertices, we get

χ1 + χ2 = 2g(v1) +m1 + n1 − 2 + 2g(v2) +m2 + n2 − 2 =

= 2(g(v1) + g(v2) + k − 1) +m+ n− 2 = 2g(v) +m+ n− 2 = χ

From this reason we will work in the following with characters (instead of
genus). Obviously we can change the notation from Frob#(m,n, g) to

Frob#(m,n, χ) = Frob#(m,n, 2g +m+ n− 2)

such that χ ≥ m+ n− 2 and χ is of the same parity as m+ n. The components
Frob#(m,n, χ) are then defined unambiguously and without loss of uniqueness.

Remark 4.2.5. Note that we have already worked with this property of charac-
ters in Section 1.4. The characterization of stable graph in (1.13) is equivalent to
the condition 0 < χ(v) for all vertices v.

Remark 4.2.6. Secondly, the two new vertices v1, v2 must be connected by at
least one edge. Hence we cannot get the situation from Figure 4.9.

Since the two new vertices are connected with at least one directed edge and
the directed cycles are not allowed, we can determine one of these two new vertices
as the ‘incoming’ one (in our figures it will be the lower one). We denote it as vi.
The ‘outgoing’ vertex is denoted as vo.

◦#

v1 v2
v

Figure 4.8: Impossible situation

Remark 4.2.7. The addition of k edges causes that we cannot use the determi-
nant of graph in the same way as it was defined for trees in the case of operads

det(T ) =↑ det(edge(T )) =

|Se|∧
(↑ KSe)

where Se denotes a set of inner edges of tree T . But we can define the determinant
of a graph G ∈ GrC(m,n, g) as

d̃et(G) = det(V ert(G)) =↑
|V ert(G)|∧

(↑ KV ert(G))
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Notice that a graph with only one vertex has degree 1. If we take operads as
a special case of properads, then a tree with p internal edges (and therefore p+ 1
vertices) has degree p+ 1 defined via determinant det (the additional 1 is for the

root edge, which is not counted as internal edge) and p+ 1 via determinant d̃et.

Remark 4.2.8. The final observation is about the partition of half-edges and
edges adjacent to a vertex v among vertices v1, v2.

(Σm,Σn) actions are trivial on Frob#(m,n). Therefore if we have a graph
with only one vertex, we can take it as planar graph where the labeling of half-
edges plays no role. Hence we can take n incoming half-edges as labeled by the
set [n] from left to right. And similarly for outgoing half-edges.

The map ◦#
G,G′ divides the set S1 of incoming half-edges and the set S2 of

outgoing half-edges between the vertices v1, v2. But these vertices are again
decorated by elements of Frob#. Hence the labeling should not play role. Hence
the set of incoming half-edges {ei1 , ei2 , . . . eil} adjacent to v2 can be arbitrarily
permuted and we can take it as ordered from left to right. And the same holds
for the set {el+1, . . . ek} of incoming half-edges adjacent to v1. Such an idea is
recorded in concept of unshuffles.

Definition 4.2.9. An unshuffle τ of type (k, l) for l ≤ k, denoted as τ ∈
UnSh(k, l), is an element of Σk such that for i1 < i2 < . . . < il, il+1 < . . . < ik
we have τ(ij) = j.

The same idea should hold also for outgoing half-edges but we need an inverse
process of labeling, hence we use shuffles.

Definition 4.2.10. A shuffle σ of type (k, l) for l ≤ k, denoted as σ ∈ Sh(k, l),
is an element of Σk such that σ(1) < σ(2) < . . . < σ(l) and σ(l + 1) < . . . σ(k).

◦#

il+1 i2

1 2 . . . l

i1 il+2

l+1 l+2 . . . k

ilik. . .

1 2 . . .n n+1 . . . m

j1jn+1 j2 jnjm. . .

∈ UnSh(k, l)

∈ Sh(m,n)

v2

v1

Figure 4.9: Partitions of half-edges

Definition 4.2.11. The cobar complex of the properad Frob is for a triple
(m,n, χ) defined as a graded (Σm,Σn)-bimodule

C(Frob)(m,n, χ) =
∞⊕
i=1

C(Frob)(m,n, χ)i
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such that C(Frob)(1, 1, 0) = 0 and for the rest of combinations of m,n ≥ 1, χ ≥ 0

C(Frob)(m,n, χ) = colim
G∈GrC(m,n)
V ert(G)=i

Frob#(G)⊗ d̃et(G)

otherwise6 C(Frob)(m,n, χ) = 0, such that the differential

d : colim
G∈GrC(m,n)
V ert(G)=i

Frob#(G)⊗ d̃et(G)→ colim
G′∈GrC(m,n)

V ert(G′)=i+1

Frob#(G′)⊗ d̃et(G′)

is the unique extension of ◦#(·)⊗ (vi ∧ ·) compatible with colimits over category
GrC(m,n) where vi is the ‘incoming’ vertex from the pair of new vertices and the
‘outgoing’ vertex vo is used instead of the original vertex v in the set V ert(G) in

d̃et(G).

Let us show the idea, what is d2 on G ∈ GrC(1, 2) with only one vertex
decorated by the element Frob#(1, 2, 3) and incoming half-edges labeled by e1, e2

(there is only one outgoing half-edge, hence we do not need a labeling for it).

d

+

e1 e2

(1, 2, 3)

v1

v2 (1, 1, 2)

(1, 2, 1)

e1 e2

v1

v2 (1, 2, 1)

(1, 1, 2)
e1

e2

+v1

v2 (1, 2, 1)

(2, 2, 1)

e1 e2

+
v1

v2 (1, 2, 1)

(1, 1, 2)

e1

e2

+
v1

v2 (1, 3, 2)

(2, 1, 1)
e1

e2

+
v1

v2 (1, 3, 2)

(2, 1, 1)

e1

e2

G

G1 G2 G3

G6G5G4

Figure 4.10: Action of d on decorated graph G

Acting by d gives us six different graphs as indicated on Figure 4.107. All
these graphs have determinant d̃et(Gi) = v1 ∧ v2.

Acting by d on these graphs gives us three different graphs shown on Figure
4.11. The graph G1 gives us decorated graph H1 with determinant v3∧v1∧v2 and
the same graph G4 with determinant v1 ∧ v2 ∧ v3. Hence they are together zero.
Similarly G2 and G5 give us H2 first with determinant v1 ∧ v2 ∧ v3 and secondly
with determinant v2 ∧ v1 ∧ v3. Together zero. And finally G3 and G6 give us H3,
first with determinant v1∧v2∧v3 and the second one with determinant v2∧v1∧v3.
Also together zero.

Lemma 4.2.12. The cobar complex C(Frob) is a cochain complex.

Proof. The condition d2 = 0 comes again from coassociativity of the map ◦# on
Frob# and from the grading given by suspension.

[DCTT10] shows that a similar theorem as 2.1.13 holds.

6For cases when m < 1, n < 1, χ < 0, χ < m+n− 2 or χ is not of the same parity as m+n.
7For short we write only (m,n, χ) instead of Frob#(m,n, χ).
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,v1

v2

(1, 2, 1)

(1, 2, 1)

e1 e2

v1

v2
(1, 2, 1)

e1

e2

H1 H2 H3

,

v3

(2, 1, 1)

v3 (1, 2, 1)

(2, 1, 1) v1

v2
(1, 2, 1)

e1

e2

v3 (1, 2, 1)

(2, 1, 1)

Figure 4.11: Action of d on decorated graphs G1, G2, . . . G6

Theorem 4.2.13. There is an isomorphism of vector spaces between the free
non-unital properad ΨC

p (↑ Frob#)(m,n, χ) and C(Frob)(m,n, χ) for m,n ≥ 1,
χ ≥ m+ n− 2, χ of the same parity as m+ n.

4.3 Algebras over C(Frob)

Similarly as in section 1.5 we can define differential graded properads.

Definition 4.3.1. A differential graded Σ-bimodule is a collection

A = {A(m,n)}m,n≥0

of (K [Σm] ,K [Σn])-bimodules such that A(m,n) ∈ dgV ec and differentials

d(n)i : A(m,n)i → A(m,n)i+1

are (Σm,Σn)-biequivariant, i.e.

d(n)i (αvβ) = α
(
d(n)i(v)

)
β

for v ∈ A(m,n), α ∈ Σm, β ∈ Σn.

Definition 4.3.2. A differential graded properad8 is a differential graded
Σ-bimodule A = {A(m,n)}m,n≥0 with composition maps defined in Section 4.1

◦ : A(m,n)k ⊗ A(n, p)l → A(m, p)k+l

Remark 4.3.3. Similarly as in Remark 2.2.2 let us consider the about endomor-
phism properad End p

W = {End p
W (m,n)}m,n≥1 over a dg vector space (W,dW ).

The degree of a map f ∈ End p
W (m,n), i.e. f : W⊗n → W⊗m, is defined as

f : (W⊗n)k → (W⊗m)k+deg(f).
Now we can define the differential dEndp of the properad End p

W as

(4.5) dEndp(f) =
m∑
j=1

dW 1◦jf − (−1)|f |·|dW |
n∑
i=1

f i◦1dW

where
dW 1◦jf =

(
1⊗j−1 ⊗ dW ⊗ 1⊗m−j

)
◦ f

f i◦1 dW = f ◦
(
1⊗i−1 ⊗ dW ⊗ 1⊗n−i

)
It is easy to check that d2

Endp = 0. Hence End p
W is a dg properad.

8Shortly dg properad
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Definition 4.3.4. The degree 0 homomorphism h : C(Frob) → End p
W of dg

properads (C(Frob), d) and (End p
W , dEndp), i.e.,

(4.6) h ◦ d = dEndp ◦ h

is called C(Frob)-algebra.

Remark 4.3.5. It is maybe not easy to see how many different graphs we can
actually get by acting by d.

From Theorem 4.2.13 we know that C(Frob) can be seen as the free properad
over the Σ-bimodule ↑ Frob#. The differential can be again considered as the
composition of maps (↑ ⊗ ↑) ◦ d◦ ↓ without taking determinant into account. By
similar argument as in Theorem 3.26, since all elements of Frob# have degree
zero, we have

(↑ ⊗ ↑) (α1 ⊗ α2) = (−1)|↑|·|α1| (↑ α1⊗ ↑ α2) = (↑ α1⊗ ↑ α2)

for α1, α2 ∈ Frob#.
Since components of Frob# are one dimensional, we can take (Frob(r, t, χ))#

as a graph with only one vertex with incoming half-edges labeled by the set [r]
from left to right, outgoing half-edges labeled by the set [t] from left to right and
of characteristic χ. Such element will be denoted as 1r,t,χ.

Our next goal is to determine the d(↑ 1r,t,χ). Acting by d on this element we
get graphs with two vertices connected by k edges with corresponding decorations
and labeling. Let us denote this for a moment as the unordered tensor product
of two elements ↑ 1̃i,j,χ2� ↑ 1̃m,n,χ1 such that 1̃i,j,χ2 is the decoration of outgoing

vertex and 1̃m,n,χ1 that of incoming vertex, but the order of labelings of half-
edges is not specified. Let us determine now the restrictions on the numbers of
half-edges and possible characteristics.

d
χ2

χ1r

t

χ

i

j

m

n
k

↑ 1r,t,χ
∑
↑ 1̃i,j,χ2� ↑ 1̃m,n,χ1

i,k,j,χ1

Figure 4.12: Conditions on decorations of d(1r,t,χ)

Obviously i+m−k = r, j+n−k = t, χ1 +χ2 = χ. The number i of outgoing
half-edges from an outgoing vertex must be greater than 1 but smaller than the
number r of all outgoing half-edges. Hence the number of outgoing half-edges
from outgoing vertex must be

1 ≤ i ≤ r

The new vertices must be connected, hence k ≥ 1. k is maximal when the
characteristics χ1, χ2 are minimal, this occurs when χ1 = i+j−2, χ2 = m+n−2.
But we know χ = χ1 + χ2 = r + t + 2k − 4. Hence the number k of connecting
edges must satisfy

1 ≤ k ≤ 1

2
(χ− r − t) + 2
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Since the number of edges connecting the vertices is included in the number j of
all incoming half-edges into an outgoing vertex, we get k ≤ j. But there must be
at least one incoming half-edge into an incoming vertex. Together this gives us
the condition on j

k ≤ j ≤ t+ k − 1

The characteristic χ1 must be at least i+ j − 2 by definition. In a graph with k
connecting edges is χ1 maximal for χ2 minimal, i.e. for χ2 = m + n − 2. Hence
the maximal χ1 is given as χ1 = χ − χ2 ≤ χ − m − n + 2. Similarly as in the
previous we know that m ≥ k and n ≥ 1. Therefore

i+ j − 2 ≤ χ1 ≤ χ− k + 1

for k > 1. If k = 1 then the incoming vertex would have decoration from
Frob#(1, 1, 0), which is not allowed. Hence we have the condition

i+ j − 2 ≤ χ1 ≤ min{χ− 1, χ− k + 1}

These all conditions together with the observation in 4.2.8 give us

d(↑ 1r,t,χ) =(4.7)

=
r∑
i=1

( 1
2

(χ−r−t)+2)∑
k=1

(t+k−1)∑
j=k

min{χ−1,χ−k+1}∑
χ1=i+j−2

∑
τ∈Sh(r,r−i)

σ∈UnSh(t,t−j)

τ
(
↑ 1̃i,j,χ1� ↑ 1̃r+k−i,t+k−j,χ−χ1

)
σ

The element ↑ 1̃i,j,χ1 corresponds to a vertex decorated by the element ↑ 1i,j,χ1

with outgoing half-edges labeled by the set [i] from left to right and incoming
half-edges labeled from left to right by the set

S1 = {1, 2, . . . j − k, a1, a2 . . . ak}

which is isomorphic to the set [j] via bijection β1 : S1 → [j]

β1(p) =

{
p if p ∈ {1, 2, . . . j − k}
j − k + w if p = aw

The element ↑ 1̃r+k−i,t+k−j,χ−χ1 corresponds to a vertex decorated by the el-
ement ↑ 1r+k−i,t+k−j,χ−χ1 with outgoing half-edges labeled from left to right by
set

S2 = {b1, b2, . . . bk, i+ 1, i+ 2, . . . r}
which is isomorphic to the set [r + k − i] via bijection β2 : S2 → [r + k − i]

β2(p) =

{
w if p = bw

p− i+ k if p ∈ {i+ 1, i+ 2, . . . r}

and incoming edges labeled from left to right by the set S3 = {j − k + 1, j −
k + 2, . . . t} which is isomorphic to the set [t+ k − j] via bijection β3 : S3 →
[t+ k − j]

β3(p) = p+ k − j
We need not consider all possible connections of half-edges labeled by a1, . . . ak

and b1, . . . bk.
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Theorem 4.3.6. The structure of C(Frob)-algebra corresponds to the Maurer-
Cartan equation of form

0 =
∑
i,k,j

χ−k+1∑
χ1=i+j−2

∑
τ∈Sh(r,r−i)

σ∈UnSh(t,t−j)

τ
(
(mi,j,χ1) j−k+1,...j�1,...k (mr+k−i,t+k−j,χ−χ1)

)
σ

for 1 ≤ i ≤ r, 1 ≤ k ≤
(

1
2

(χ− r − t) + 2
)
, k ≤ j ≤ (t+ k − 1) where the symbol

i1,...in
◦j1,...jn denotes the pairing of output jα of mr+k−i,t+k−j,χ−χ1 with input iα of

mi,j,χ1 .

Proof. Since C(Frob) can be considered as the free properad over the Σ-bimodule
↑ Frob# (see Theorem 4.2.13), it is enough to define the homomorphism only on
generators of the free properad. Hence let us define

h(1r,t,χ) = mr,t,χ : W⊗t → W⊗r

The right hand side of (4.6) is

dEndp ◦ h (↑ 1r,t,χ) = dEndp (mr,t,χ) =(4.8)

=
r∑
j=1

dW 1◦jmr,t,χ − (−1)|mr,t,χ|·|dW |
t∑
i=1

mr,t,χ i◦1dW

Since | ↑ 1r,t,χ| = 1 and |h| = 0, we get |mr,t,χ| = 1.
In Remark 4.3.5 we showed what are the elements d(↑ 1r,t,χ). The action of

the homomorphism h gives us the left hand side

h ◦ d (1r,t,χ) = h

∑
i,k,j,χ

∑
τ∈Sh(r,r−i)

σ∈UnSh(t,t−j)

τ
(
↑ 1̃i,j,χ1� ↑ 1̃r+k−i,t+k−j,χ−χ1

)
σ

 =(4.9)

=
∑
i,k,j,χ

∑
τ∈Sh(r,r−i)

σ∈UnSh(t,t−j)

τ
(
(mi,j,χ1) j−k+1,...j−1,j�1,2,...k (mr+k−i,t+k−j,χ−χ1)

)
σ

If we denote dW = −m1,1,0, then (4.8) and (4.9) give us

0 =
r∑
j=1

m1,1,0 1◦jmr,t,χ +
t∑
i=1

mr,t,χ i◦1m1,1,0+(4.10)

+
∑
i,k,j,χ

∑
τ∈Sh(r,r−i)

σ∈UnSh(t,t−j)

τ
(
(mi,j,χ1) j−k+1,...j−1,j�1,2,...k (mr+k−i,t+k−j,χ−χ1)

)
σ =

=
∑
i,k,j

χ−k+1∑
χ1=i+j−2

∑
τ∈Sh(r,r−i)

σ∈UnSh(t,t−j)

τ
(
(mi,j,χ1) j−k+1,...j�1,...k (mr+k−i,t+k−j,χ−χ1)

)
σ

for 1 ≤ i ≤ r, 1 ≤ k ≤
(

1
2

(χ− r − t) + 2
)
, k ≤ j ≤ (t+ k − 1).
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Remark 4.3.7. The modular operad QC (quantum closed operad) defined in
[DJM13] consists of homeomorphic classes of connected two dimensional com-
pact orientable surfaces with labeled boundary components (for short Riemann
surfaces).

The Riemann surface with the set X of the boundary components is de-
termined by the genus of the surface, similarly as components Frob(m,n, g) of
Frobenius properad. The components of QC(X, g) are one-dimensional spaces
generated by Xg and the graph decorated by QC, QC(X, g), corresponds to graph
decorated by Frob(m,n, g) (without component Frob(1, 1, 0)) for |X| = m + n
without taking an orientation into account. Hence we can compare the algebra
over F (QC) with algebra over C(Frob).

60



Bibliography

[AMT14] H. Abbaspour, M. Marcolli, and T. Tradler. Deformation Spaces:
Perspectives on algebro-geometric moduli. Aspects of Mathematics.
Vieweg+Teubner Verlag, 2014.

[CMW14] R. Campos, S. Merkulov, and T. Willwacher. The frobenius properad
is koszul. http://arxiv.org/abs/1402.4048, 2014.

[DCTT10] Gabriel C. Drummond-Cole, John Terilla, and Thomas Tradler. Al-
gebras over Ω(coFrob). J. Homotopy Relat. Struct., 5(1):15–36, 2010.

[DCV13] Gabriel C. Drummond-Cole and Bruno Vallette. The minimal model
for the Batalin-Vilkovisky operad. Selecta Math. (N.S.), 19(1):1–47,
2013.

[DJM13] M. Doubek, B. Jurco, and K. Muenster. Modular operads and the
quantum open-closed homotopy algebra. http://arxiv.org/abs/

1308.3223, 2013.

[DL14] M. Doubek and T. Lada. Homotopy derivations. http://arxiv.org/
abs/1409.1691, 2014.

[Dun15] Ross Duncan. Frobenius algebra. https://ncatlab.org/nlab/show/
Frobenius+algebra, 2015. [Online; accessed 12-May-2016].

[Get09] Ezra Getzler. Operads revisited. In Algebra, arithmetic, and geometry:
in honor of Yu. I. Manin. Vol. I, volume 269 of Progr. Math., pages
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