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Abstrakt

Predkladana prace se zabyva studiem vyznamu prodtabolické drahy
hemu, zejména s ohledem na patogenezi, diagnostikétbu nekonjugovanych
hyperbilirubinémii  (zavazna novorozenecka Zloutenka Criglefiv-Najjaniv
syndrom). Jednim z hlavnich icibylo ozejméni biologickych @inka produkt
bilirubinu, které vznikaji f fototerapii €chto onemocEni a otestovani novych
Ié¢ebnych pistupi a to jak na arovni genové terapie, tak farmakgiera

Novorozeneckd Zloutenka je jednou z ®&gjjSich komplikaci
v neonatalnim obdobi. Zlatym standardem v jejfbdéje fototerapie modrym
swtlem, jejiz pouziti vSak ize byt doprovazeno i zavaznymi nezadoucimi efekty.
Nutno podotknout, Ze fototerapie novorozenecké tgltky je v rkterych zemich
naduzivana, a Ze pacienti s Criglerovym-Najjarovggyndromem typu | jsou
vystaveni celozivotni fototerapii (pokud nepodstioansplantaci jater).

V ramci pedkladané prace jsme na experimentalnim in vitrodeho
studovali biologické €inky fotoizomefi bilirubinu, které vznikaji v pib¢hu terapie
novorozenecké Zloutenky. Déle jsme se za pouZipemmentalnich modél
hyperbilirubinemickych potkan a mySi zabyvali moznostmi zavedeni vhodné
genoveé terapie, kterou by bylo mozné be&mpegouzit v I€b¢ Criglerova-Najjarova
syndromu a omezit nebo zcela odstranit nutnostZzoaltni fototerapie, a dalSich
terapeutickych modalit, jako jsou v¢mm@ transfluze a aplikace lidského sérového

albuminu v Iéb¢ Criglerova-Najjarova syndromu a novorozenecké téloky.

Kli¢ova slova: Metabolismus hemu, bilirubin, novorozeneckd Zlokee
Crigleniv-Najjaniv syndrom, fototerapie, fotoisomery bilirubinu, daini produkty

bilirubinu.



Abstract

Present work has been focused on the importantteeqdroducts of the heme
catabolic pathway, in particular under conditionsf ounconjugated
hyperbilirubinemias (neonatal jaundice and Cridliajjar syndrome (CNS)). The
second part of the project was focused on the ivgnent of some pharmacological
approaches used in the treatment of these dises@gll as on studies of bilirubin
products that are formed during the treatment mtgtherapy (PT).

Neonatal jaundice is one of the most common comagdinos in neonates.
Currently, there is no efficient pharmacotherapg #re treatment with blue light is
used as a gold standard for severe neonatal jartidawever, the absolute safety of
PT has still not been confirmed. In this contektisiimportant to note that some
neonatologists start the PT before serum bilirdewels reach the recommended
values and that patients with CNS type | (CNSI) fareed to be on life-long PT
(unless undergoing liver transplantation).

The focus of the present project was to study biokd effects of bilirubin
photoisomers (PI) in am vitro model of the human neuroblastoma SH-SY5Y cells
that are used for studies of the neuronal metaholis further studies performed on
animal model of hyperbilirubinemic rats and mices imvestigated a suitable gene
therapy to be used in CNSI patients with the aimetiuce or eliminate the need of
PT. Finally, we have compared the efficacy of PX¢change transfusion (ET) and
human serum albumin administration (HSA) in therdpg of CNSI and severe
neonatal jaundice with respect to determinationfreé bilirubin (Bf) levels and
bilirubin  concentrations in various brain tissue mgartments in the

hyperbilirubinemic Gunn rats.

Key words: Haem metabolism, bilirubin, neonatal jaundice, g@n-Najjar

syndrome, phototherapy, bilirubin photoisomerdgrudiin oxidation products.



Table of contents

1 LITEIALUIE FEVIEW ...ttt ceeeee ettt et e e e e e e e e e e e e e e s s s st be e e e ee e e e e e e e e e aans 4
1.1 Haem CatabOliSIM ........cooiiiiiiiiiiiiet ettt e e e e e e e e e e e e e e e eeeeeeeeenneeeeeennnnes 4
1.2 Bilirubin metaboliSmM........oo 5
1.3 Biological effects of bilirubin ............ccoeiiieiiii e, 8
1.4 Hyperbilirubinemias...........coooriiiiiieeeeee e 9
1.4.1 Pre-microsomal hyperbilirubinemias.....cccceecceeeieeiiiie s 10
1.4.1.1 Neonatal JAUNTICE...........cooiiiii oo e e e ettt e e e e e aaeeeeeaeeeeeas 11
1.4.1.2 Crigler-Najjar SYNArOmMEe ...........ouiceecamrrmiiiiaiaae e ee e e e e e eeeeeeeeeieeennennnnnaeees 13
I S €11 o 1= A3V o [ 0] o = 15
1.4.2 Post-microsomal hyperbilirubiN€MIAS ... .o evereeneniiiiiiieeeeeeeeeeeeeeeeiiniinnes 16
1.4.2.1 ROLOI SYNUIOME ....iiiiiiiiiiiee e sttt e e e e e e e e e aaeaaeeaaeaeeas 16
1.4.2.2 DUbin-Johnson SyNdrome ...........ooccceeemminiee e 17
1.5 Treatment options in unconjugated hyperbilingbnias................ccccoeeeeeeennnn, 17
IR T8 A o (0 11 1= =T o ) 18
1.5.2 EXchange tranSfuSION ..........ooooiiiiiiiiieeiiie e 20
1.5.3 Liver transplantation ..............uuuucammmm oo eeeeeeeeeeeeeiiie e 20
1.5.4 Transplantation of Other organs ..........ccccceeeeeviieeeeeeeir e 21
ST ST CT=T o T 1 1T = T ) 22
1.5.5.1 NONVIFAl VECIOIS ...cvvviiiiiiiiee ettt e e e e aeneaeaaeee e 22
1.5.5.2 VNl VECIOIS ...ttt e 23
1.5.6 Hepatocyte transplantation..............ccccceiiieeeeeieiiececeeeess e eeee e e 24
1.5.7 PharmacCOtherapy ... ...ueccoiie e ceeeeeeee et e e e e e e e aaae e e e e 24
1.5.7.1 Inhibition of haem degradation........cccccoooeeeiiiiiiiiiiiiii e, 24
1.5.7.1.1 MetallopOrpRyIiNS .. ......uuuuuei sttt e e e e e e e eeeeeeeeeeeennnneeeeee 24
1.5.7.1.2 D-PENICIHAMINE ......cciiiiieiiiiittmmmmmm e e e e e e e e et eee ettt s e e e e e e e e e aaaaeaeaaeaaees 25
1.5.7.1.3 Peptides for HMOX inhibitioN........cccoooiiiiiiiiiiiicceei e 26
1.5.7.2 Inhibition of biliverdin reductase. ..., 26
1.5.7.3 Impact on bilirubin conjugation .......cccecoov oo 27
1.5.7.3.1 Phenobarbital ................eeeet i 27
1.5.7.3.2 ClOfIDIALE ....eeviiiiiiiiiiiiii sttt e e 28
1.5.7.3.3Chinese herbs ... e 28

1.5.7.4 Compounds with ability to decrease entgratie cycling of bilirubin........ 29



1.5.7.4. 1 Oral CRAICOQA .....cu e 29

15,7 4.2 AQAT ... e ettt e e e e e e e s 30
1.5.7.4.3 Calcium phoSPRate.......uuiiieii e 30
1.5.7.4.4 ChOIEStYramiNe ..........ceuuuvunnnmmmmmmns e eseseeeeaeeeeeeeesseeeessnesnnnnn s 30
1.5.7.4.5 ZINC SAILS ... oiiiiieeeeeet et e e e e e e e e eraanee 31
1.5.7.5 Other pharmacological approaches........cccccooveeiiiiiiiiiiiiiiiiiiiie 31
1.5.7.5.1 Bilirubin OXi0ASE .....ceeeviiiiiiiieeeeeiiiieee e 31
1.5.7.5.2 AIDUMIN ..ottt srnnne e e e e 32
1.5.7.5.3 IMmuNOgIoBUIINS ......eei e 32
1.5.7.5.4 Bile SAItS ..o e 33
1.5.7.5.5 Modulation of intestinal MiCrobDIOMEe . ..ooooiviiiiii 33
1.6 Phototherapy-derived bilirubin products .....cccccccooeeeeiieeiiieiiieee 34
1.6.1 Bilirubin photOISOMEIS......coii e 34
1.6.2 Bilirubin oxXidation ProdUCES ..........iceeeeiiiiiiiiiieee e 36
2 AIMS OF The WOTK.....co e 40
S MEINOUS. ...cciiiiiiiiie e 43
3.1 Purification of DIFUDIN...........i e 43
3.2 Isolation of studied COMPOUNTS ..........commmmmriiiiiiiee s 44
3.2.1 Isolation of tissue bilirubin .........coeeeeeii e 44
3.2.2 Isolation of bilirubin photoISOMErS.....cccciiiiiiieeceee e, 44
3.2.3 Isolation of mono- and bisglucuronosyl COBI@S..............ccoovvvreeeeririrneennnnnnn 45
3.3 Analysis of studied COMPOUNTS .........cocoeiiiiieeiiiii e 45
3.3.1 High performance liquid chromatography (HPLC)............ccceeiiiiiiiiineeennn. 45
3.3.2 Thin layer chromatography .............uceemmmreeiieeeeeeeeeeeeeeeeeire e eeeeees 46
3.3.3 Spectrophotometric determination .............ccoveeeeeeeeeieieecceee e 46
3.3.4 Determination of free bilirubin (Bf).....ccccooiiiiiiiiiiiiii e 47
B4 TISSUE CUIUIE ... e 48
.41 Cell CUIUIES ...ttt ettt e e e e e e s e e nne 48
3.4.2 Cell tre@lMENT......ceeeiiiiiee e 48
3.4.3 Cell viability tESHING ......uuueiiiii i 49
4.3, 1 MTT ASSAY ..eiiiiiiiieeiieetiae et et e e e et et e e e e et etba e e e e e e eensaaaeaeeeennes 49
Bi4.3.2 XTT ASSAY ..ivuuiiiiiieeiiiteeeee st e et e et et e e et e e e et s e e eaaseeeenes e eeenas 49
3.4.3.3 CellTIter-BlU ASSAY........uuuuuuun s e eeeeeeeeeeeeeeeeeeeeessnsnnnne e e s eeeeeesseeeas 50

3.4.3.4 Cell TIter-GlO ASSAY ......ceeieieiiitimmmmmiaaae e e e e e e e e e et e ettt eeeeae e 50



3.5 Gene EXPression ANAIYSIS .......cooviiiiiiiiieeee e 51

3.5.1 RNA isolation and tranSCription ........ccceeeieeeeiiiiiiimiiiiinnee e eeeeeeeeeeeen 51
3.5.2 Real time polymerase chain reaction (RT-PCR).........cccccceeiiiiiiniieieeennnenn, 51
3.6 StatiStiCal ANAIYSES .......evvvrieii o ettt e e e e e e e e e e e e e eeeeeererenneeeearanane 51
0 o] ToF= 4[] PSP 52
I 1T o] U ] o] IR 153
B SUIMIMIAIY ...uiiiiiie ittt e e e e e e et e e e et e e e et e e e et e e eet e e e ennnaneeeesneaeees 161
T SOUNIN L. e e e 164
8 List Of abDreViatioNS. .........uuueuiii e 167

O R B I BN CES ..o e e e e ettt e e e anans 170



1 Literature review

1.1 Haem catabolism

Haem, in particular in the form of haemoproteidayp a key role in multiple
functions in the human body and is clearly esskfurdife (Nagababu and Rifkind,
2004). Haem, or iron protoporphyrin, is a cyclitapyrrole with the centrally bound
atom of iron (Vitek and Ostrow, 2009), being ubtqusly expressed in the majority
of tissues (Dutra and Bozza, 2014).

The crucial role of haemoproteins is transport a&fgen (haemoglobin,
myoglobin) (Dutra and Bozza, 2014; Nagababu andiiif 2004; Vitek and
Ostrow, 2009), transport of microsomal xenobioticgetabolism of drugs, steroid
biosynthesis \ja cytochrome P-450), mitochondrial respiratioma(cytochromes),
enzyme mediated antioxidant defencea( catalase, peroxidase), and signal
transduction processesid guanylate cyclase; CO-binding haem protein CooA —
binding of CO to its haem groups is responsibletfanscription of genes involved
in CO oxidation (Lanzilotta et al., 2000); haemtpmo FixL - oxygen sensor that is
able to control the transcription of nitrogen fixat genes (Hao et al., 2002))
(Nagababu and Rifkind, 2004). Haem also acts asajarnstorage of bioavailable
iron in humans (Korolnek and Hamza, 2014); aroubel/s % of the iron pool is
derived from haem (Schultz et al., 2010).

Once haem is released from the red blood celshibund to haemopexin or
haptoglobin and recycled (Schultz et al., 2010j)ransported to reticuloendothelial
system, where it is degraded through the haem alatgathway into linear yellow
tetrapyrrole, bilirubin, by the action of two enzgg) haem oxygenase (HMOX) and
biliverdin reductase (BLVR) (Levitt and Levitt, 201Vitek and Ostrow, 2009). This
process takes place in all tissues, predominantbpieen, and serves for elimination
of otherwise toxic free haem possessing pro-oxi@dfiects (Vitek and Schwertner,
2007). Main part of haem degradation takes placeeticuloendothelial system
of spleen, bone marrow and liver (Dolphin, 197&g¥iand Ostrow, 2009).

HMOX, in the presence of oxygen and NADPH-cytoched450 reductase,
can open the cyclic haem structure by breakingoth@ethene bridge to form bile
pigment biliverdin together with the release of ocB® molecule and E& ion.

Subsequently, biliverdin is reduced to bilirubintbg action of BLVR.



Haem degradation (Fig. 1) is the only known pathwalich is able
to generate unconjugated bilirubin (UCB) (Dolphi8/8).
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Figure 1. Haem degradation pathway.

1.2 Bilirubin metabolism

UCB is the major product of the haem catabolic wathin the intravascular
compartment and was for decades considered onlg amste, potentially toxic
product, especially for the central nervous syst@ritek, 2012). Due to its
intramolecular hydrogen bonding, UCB has low wat@ubility (Levitt and Levitt,
2014), and must be transported in the vascular dmeohd to a carrier molecule.
Major part of UCB is complexed with plasma albumansmall part may be carried
by apolipoprotein D found primarily in the high dgy lipoprotein (HDL)
(Goessling and Zucker, 2000) or bg-fetoprotein (Aoyagi et al., 1979; Berde et al.,
1979; Vitek and Ostrow, 2009).
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Figure 2. Formation of bilirubin conjugates with glucuroniacid; BMG =
monoglucuronosyl bilirubin; BDG = bisglucuronosylitubin.

For the elimination from the body, bilirubin neetis be transformed into
more water-soluble compound in the liver (Dolphl®78). Albumin-bound UCB
transported to the liver is driven to the hepateagytoplasm by passive diffusion,
although active transport is also probable. Thecexaechanism is still not well
understood, and all possible active transportargaie to be identified (Cuperus et
al., 2009b).In vitro model bilayers suggest that UCB is able to difftis@ugh
the cellular membrane spontaneously, on the othadhn vivo models on whole
organs are pointing that UCB transport is exerigt/@ly against the concentration
gradient throughout some protein-mediated transf@urtker et al., 1999). Putative
transmembrane proteins have been attributed ttathiy of organic anion transport
polypeptides (OATPSs), which are responsible foalptof a number of endogenous
compounds and clinically important drugs (Niemiadt 2003), and were indeed
shown to transport unconjugated as well as congayhtlirubin (Briz et al., 2006;
Briz et al., 2003; Cui et al., 2001).
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Figure 3. Reduction of bilirubin by intestinal microbiomegaptedaccording to
(Vitek et al., 2006).

In the liver bilirubin is bound to ligandin (glubabn-S-transferase B also
called Y protein (Erlinger et al., 2014)) or Z ot (Vitek and Ostrow, 2009), and
transported to endoplasmatic reticulum, where rgugated with glucuronic acid by
the action of enzyme bilirubin UDP-glucuronosyl nséerase 1A1 (UGT1Al)
(Schmid, 1957). Formed polar mono- and bisglucusghdilirubins (Fig. 2) are
transportedvia the canalicular ATP-dependent transporter ABCC2AdRnto bile
(Cuperus et al., 2009b) and consequently throughhile duct system into the



intestine, where these conjugates are hydrolyzezk ba UCB by intestinal or
microbial B-glucuronidase. A small proportion of bilirubin catso be conjugated
with xylose or glucose (Dolphin, 1978).

Afterwards, substantial part of UCB is transfornigdintestinal bacteria into
urobilinogens and stercobilinogens (Fig. 3) thatexcreted with the faeces, or under
specific pathologic conditions by urine. Similarlypder certain conditions UCB can
be reabsorbed from the intestine into portal cattah and return to the liver, where

it is re-conjugated, and re-secreted into the bile.

1.3 Biological effects of bilirubin

The first evidence of antioxidant activities of ikhibin was brought
by Bernardet al. in 1954 (Bernhard et al., 1954). In these studesall quantities
of bilirubin were found to prevent auto-oxidatiohvitamin A. In 1987, Stocker and
co-workers (Stocker et al., 1987) demonstratedihimtibin in vitro acts as a potent
agent protecting against oxidation of lipid memiasn

Bilirubin is one of the most powerful endogenoweefradical scavengers not
only for reactive oxygen species (ROS), but alsmtige nitrogen species (RNS) and
other NO-related reactive compounds (Barone e2@09; Mancuso et al., 2006)

Other beneficial bilirubin actions, such as antidaxt, anti-inflammatory and
cytoprotective effects, have been then confirmedumerous studies (Baranano et
al., 2002; Schwertner et al., 1994; Stocker et1&87; Wu et al., 1994). It is also
proven that mildly elevated bilirubin concentrasan the body could help to lower
the risk of cancer, cardiovascular diseases aneér otixidative stress-mediated
diseases (Wagner et al., 2015).

Less than 0.1 % of the concentration of UCB in iplass not bound to any
carrier molecule and is called free bilirubin (EfJalligaris et al., 2007). Thanks
to its lipophilic nature, this albumin-unbound fliao has a high permeability
through the lipid bilayer membranes, and thus Is &b cross the blood-brain barrier
(BBB) (Wennberg, 2000). It is believed that Bf issponsible for toxic effects
of bilirubin (Ahlfors, 2000) and is even a betteegictor for evaluation of bilirubin
neurotoxicity (Ahlfors, 2000; Ahlfors et al., 2008/ennberg, 2008).

In case of severe deficiency of UGT1A1 such asN®C or under conditions
of extensive impairment of the haem catabolic pathysuch in babies with severe
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neonatal jaundice), systemic, as well as intralzllconcentrations of Bf can

increase.

1.4 Hyperbilirubinemias

Physiological concentrations of bilirubin in plagsegum are normally
around 1Qumol-L* with reference range up to fihol-L*. Once bilirubin levels
in the circulation rise above physiological concatons, icteric discoloration
of sclera, mucosal surfaces and skin is observed.

Mildly elevated systemic bilirubin levels, such iassubjects with Gilbert
syndrome (see below), are believed to be associatgd protection from
development of various oxidative stress-mediatesgaties, such as atherosclerosis
and cancer (Vitek and Schwertner, 2007). Much ns@eere hyperbilirubinemias
(usually above 34fimol-L* in newborns, and even higher in adults) could be
accompanied with deleterious bilirubin effects, amothem kernicterus and
bilirubin-induced neurological dysfunction beingettvorst complications (Watchko
and Tiribelli, 2013).

Hyperbilirubinemias are classified according to etypf bilirubin that is
elevated into unconjugated (pre-microsomal), coajeld (post-microsomal) and
mixed hyperbilirubinemia (van Dijk et al., 2015)hdre could be a wide range
of genetic contributors that may predict the inaicke of hyperbilirubinemia (Fig. 4).



HYPERBILIRUBINEMIA ]
increased bilirubin bile duct
production \ / \ / obstruction
/ intrahepatic
pre-microsomal post-microsomal cholestasis
decreased bilirubin / hyperbilirubinemia hyperbilirubinemia
uptake \
/ defects of canalicular
mixed transporters or secretion o
reduced conjugation hyperbilirubinemias conjugated bilirubin
oy Dubin-Johnson syndrome

Rotor syndrome

genetic glucuronidation \
defects
Gilbert synd acquired acute or chronic
ilbert syndrome -~
Crigler-Najj;» syndrome neonatal jaundice hepatocellular injury

Figure 4. Classification of different types of hyperbilirm@mia by cause; adapted

according to (Strassburg, 2010).

1.4.1 Pre-microsomal hyperbilirubinemias

Pre-microsomal hyperbilirubinemias are mainly causey deficiency
of UGT1A1, which is responsible for biotransforneatiof bilirubin into its mono-
and bisglucuronosyl conjugates (van Dijk et al.,,120 Various degrees
of unconjugated hyperbilirubinemia can be seerOi8® % of neonates (Maisels and
McDonagh, 2008; Watchko and Tiribelli, 2013) (netahgaundice), and in about
5 % of adults (mostly due to Gilbert syndrome) (\éegnd Otterbein, 2012). Other
factors that could contribute to development of dripdirubinemia are haemolysis,
deficiency of glucose-6-phosphodehydrogenase orosdiye family history
(Stevenson et al., 2012).

In adults, mutation iINUGT1A1 gene or its promoter (Fig.5) may cause
mildly elevated bilirubin levels (Gilbert syndrome&izS) without any need
of treatment with the enzyme activity approximatefy\80 %, or high bilirubin levels
in a disease known as CNSI or Il (CNSII), dependingthe reduction itJGT1Al
gene activity which is less than 10 % in CNSII amdually absent in CNSI (van
Dijk et al., 2015).

UGT1AL1 also plays an important role in metabolisnother endogenous and
exogenous compounds (mainly in glucuronosylatiod datoxification). Reduced
activity of this enzyme could therefore increaserisk of drug-induced toxicity (van
Dijk et al., 2015).

-10 -
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Figure 5. Inborn deficiencies of UGT1A1 activity; adaptecaing to (Strassburg,
2010).

1.4.1.1 Neonatal jaundice

Neonatal jaundice is defined as a condition accomegawith total serum
bilirubin levels above 8&mol-L* (corresponding to 5 mg-di. (Stevenson et al.,
2012). Almost 60 % of term and 80 % of preterm newb are visibly jaundiced
in their first days of life (Olusanya et al., 201Rennie et al., 2010; Vreman et al.,
2004).

The pathogenesis of neonatal jaundice is multifaadto and is due
to imbalance between production and eliminatiorbifubin after birth (Hakan et
al., 2014). Among many others, factors such as ARG Rhesus factor blood group
incompatibility, deficiency of glucose-6-phosphatehydrogenase (G6PD), sepsis,
newborn immaturity or even breast feeding are tlhstimportant ones (Dennery et
al., 2001). Factors that could influence the setihnubin concentrations in the
neonatal period are listed in the Table 1.

Neonatal hyperbilirubinemia may lead to bilirubiccamulation in basal
ganglia and brain stem nuclei and thus lead to rebab or acute bilirubin
neurotoxicity (Watchko and Maisels, 2003). One o0 neonates may be at risk
of acute bilirubin encephalopathy because theirutiin concentrations are above
17 mg-dr* (290umol- L) (Bhutani et al., 2004). The risk of subsequemhicterus
is higher in neonates with bilirubin concentrati@move 20 mg-dt (342umol-L?)

-11 -



(Bhutani et al., 2004). Even in developed counttiee is a risk of development
of kernicterus, the incidence is predicted to &t6.2.7 per 100,000 neonates (Brito
et al., 2014). In developing countries, the numbkeeven higher (up to 100 times
(Watchko and Tiribelli, 2013)) and neonatal jauedis one of the top five causes
of neonatal death (Brito et al., 2014). Howeveg #xact epidemiological data are
not known for low-income and middle-income courgri®lusanya et al., 2014).

Many therapeutic approaches have been proposedtterdpted in the past
for the treatment of neonatal jaundice, but PTtii6 & golden standard treatment
option. Complete list of methods for the treatmehtneonatal jaundice will be
described in more detail in the chapter 1.5.

-12 -



Table 1: Risk factors that could predict the incidence edmatal jaundice.

Factors contributing to more severe neonatal jaundie

Significantly increased risk
-family history:
-older sibling treated by PT
-GS in family
-haemolytic disease in family
-East Asian ethnicity
-preterm infant
-blood group incompatibility
-extravasation of blood

-exclusive breastfeeding

Moderately increased risk

-family and/or pregnancy history:
-older jaundiced sibling without PT
-macrosomic infant of a diabetic mother
-maternal age > 25 years
-gestational age <38 weeks

-male gender

Decreased risk
-gestational age >41 weeks
-African ethnicity

-exclusive bottle feeding

adapted according to Stevensbal. (Stevenson et al., 2012)

1.4.1.2 Crigler-Najjar syndrome

Crigler-Najjar syndrome is another type of uncomajiegl hyperbilirubinemia,
which is extremely rare (Erlinger et al., 2014).dtclassified, based on bilirubin
concentrations as CNSI and CNSII (Bayram et all32&an der Veere et al., 1997).
It is an autosomal recessive disorder with sevaenjugated hyperbilirubinemia,
which was first described by Crigler and Najjarli®52 (Crigler and Najjar, 1952).
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In 1969, Arias so-classified Crigler-Najjar syndm@nmto two forms (Arias et al.,
1969).

The liver histology of patients suffering from degNajjar syndrome is
without any pathology, and the patients have norheglatic metabolic function
except for bilirubin glucuronosylation (Lysy et,a2008). Since 1991 whduGT1A
gene was described, more than 130 mutations weaaided; either in the variable
exon 1 or constitutive exons 2-5 (Fig. 6) (Canalgt2013).

-3279T/G

i

| DR4| |GRE1 |gtNR|1 |XRE| | DR3| |GRE#

UGT1A1 2 3 4
B
| PBREM | y A(TA),TAA
Promotor / Transcript
— — __ _ Normal expression
2 3 4 and function
UGT1A1*1 A(TARTAA (TA)g 1 5 (wild type)
_ — _ __ Decreased expression
and function
UGT1A1*28 A(TAYTAA (TA) 1 2 3 4 5 (common in Caucasians and
z African Americans)
1 [ 1 [ 1 [ | Decreased expression
N 1 2 3 4 5 and function
UGT1AI*37 A(TARTAA (TA) 8 (common in African Americans)
1 1 1 [ Normalexpression
1 2 3 4 5 and decreased function
UGT1A1*6 A(TASTAA (TA) 6 (common in East Asians)

Figure 6. Scheme of th&JGT1Al gene. Phenobarbital-responsive enhancer module
(PBREM) is a promoter element bfGT1A1 located ~3 kb upstream to the TATA
box and is composed of six nuclear receptor mobiR4 (death receptor), GRE1
(glucocorticoid-response element), gtNR1 (nucleaceptor), XRE (xenobiotic
response element), DR3 and GRE2. Mutations ofUd1A1 gene could occur

in the promotor sequence as well as in the codegon. Adapted according

to (Stevenson et al., 2012).

CNSIl is caused by the lack of hepatic UGT1A1l attivBecause of that, bile
contains only traces of bilirubin conjugates, serifitubin levels are higher than
340pumol-L* and patients do not respond to the treatment \pliknobarbital
(Bosma, 2003; Van der Veere et al., 1997). On therchand, patients with CNSI|I
have some residual activity of UGT1Al and bilirublavels decrease after
phenobarbital treatment (Bosma, 2003; Van der Vetral., 1997). Both types

of the disease are extremely rare; the prevalefdmih types is indicated 1 case
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on 1,000,000 of newborns (Jansen, 2009), but cdiffdr geographically. Earlier,
patients with CNSI died during the childhood beeaokdevelopment of kernicterus
(Van der Veere et al., 1997).

Introduction of PT helped to reduce the risk ofnketerus and decreased
mortality rate of these patients, although in sopatients PT can cause skin
complications (Van der Veere et al., 1997). In g8 with CNSI liver
transplantation is considered as soon as posdiitar{da and Bosma, 2009; Pett and
Mowat, 1987).

The main treatment option lies in PT which is neetteoughout the whole
life, but the only curative option for patients WICNSI is the liver transplantation
(Brunetti-Pierri et al., 2012). Due to low availkdyi of the liver grafts, as well as
invasiveness of this therapeutic approach, theresti need for searching of
alternative treatment option. These include, fatance, gene therapy (Brunetti-
Pierri et al., 2012), or approaches focused orrmumpéion of enterohepatic cycling of
bilirubin (Caglayan et al., 1993). If needed, CN§dtients could be treated with
phenobarbital inducing residual UGT1A1 activitytie liver. Big disadvantage of
this treatment is the sedative effect; some patiesamplain to lethargy and
diminished mental activity during the treatmenth@tproblem is that phenobarbital
could affect liver enzymes, such as cytochrome P48@ affect the metabolism of
various drugs and nutrients (Van der Veere efl@by).

Patients with Crigler-Najjar syndrome normally ester bilirubin and its
breakdown products into the faeces. This is possibbécause of alternative
transintestinal bilirubin transport, which comesoimplay under conditions of high
systemic bilirubin concentrations (Van der Veeralgt1997).

A natural animal model for the Crigler-Najjar syadre are the Gunn rats
identified by Gunn in 1934 (Gunn, 1938).

1.4.1.3 Gilbert syndrome

Gilbert syndrome (GS) is a common autosomal donminkereditary
condition manifesting with intermittent unconjugatieyperbilirubinemia (Fretzayas
et al., 2012). GS, first described in 1901 by Adgu&ilbert and Pierre Lereboullet
(Gilbert and Lereboullet, 1901), is characterizgdthiie homozygous polymorphism
A(TA);TAA in the promotor region of th&JGT1A1l gene (Fig. 6) (Bosma et al.,
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1995). The activity of UGT1Al is reduced to 30 % homozygous and 65 %
in heterozygous subjects as compared with heallyviduals (Fretzayas et al.,
2012; van Dijk et al., 2015). GS is a benign caoditaffecting 5-10 % of healthy
population (Bosma, 2003; Nowicki and Poley, 1998).

Subjects with GS have mild, chronic unconjugatedenlyilirubinemia
without any underlying liver disease or haemolyiimdition. Due to lower activity
of UGT1A1 these patients have lower amount of dtilin diglucuronosides in their
biles (Bosma, 2003).

Due to its benign nature, GS does not require egtrhent (Bosma, 2003).
But screening for this condition is important undgecific circumstances, mainly
because the deficient gene is responsible fordmsformation of certain clinically
important drugs. The screening could be provided bigpid and reliable real-time
poly-chain reaction (PCR) (Borlak et al., 2000) this method is not widely used
in clinical practice, although recommended by arti®s. On the other hand, GS
subjects, due to their increased serum bilirubirele are to some extent protected
against increased oxidative stress responsibledéwmelopment of atherosclerotic
diseases and certain cancers (Novotny and Vite3;20emme et al., 2001; Zucker
et al., 2004).

1.4.2 Post-microsomal hyperbilirubinemias

Increased levels of bilirubin glucuronosides in tireulation might indicate
hepatocellular dysfunction (Keppler, 2014). Biliagcretion of conjugated bilirubin
is provided by plasma membrane protein ABCC2/MRP2.

1.4.2.1 Rotor syndrome

Rotor syndrome (RS) is an autosomal recessive dBsomanifesting
predominantly with elevation of serum conjugatetirddin, in which bilirubin is
prevented from transporting through the hepatopyi@ to its excretion in the bile.
This rare syndrome is caused by the mutation wkidtks out the function of two
linked genesSLCO1B1 and S.CO1B3 that are involved in bilirubin transport (van
Dijk et al., 2015). The basis of RS was discoveyade recently on the group of
8 families with RS by Steeg and co-workers (varstieg et al., 2012).
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Another feature of RS is coproporphyrinuria (Radtp2014; van Dijk et al.,
2015), and patients with this syndrome have redliceduptake of many diagnostic
compounds, including cholescintigraphic tracersr{Hair et al., 1982).

RS starts as a mild hyperbilirubinemia shortly mafthe birth or in
a childhood. All the routine haematologic and dalibiochemistry blood tests are
normal except for the predominantly conjugated higtieubinemia (van de Steeg et
al., 2012).

1.4.2.2 Dubin-Johnson syndrome

Dubin-Johnson syndrome (DJS) is a rare, autosoew@ssively-inherited
disorder which is characterized by a predominanttpnjugated, mild
hyperbilirubinemia (Roy-Chowdhury et al., 2001) andh a defect in the ability
of hepatocytes to secrete conjugated bilirubin thi bile (Li et al., 2013). DJS is
caused by mutations in the ABCC2/MRP2 transpowich serves as a canalicular
bilirubin glucuronoside and other xenobiotic exp@amp and is transporting
conjugated bilirubin into bile (van Dijk et al., 2B). As a feedback mechanism,
bilirubin glucuronosides are transported back mystemic circulation by a process
mediated by ABCC3/MRP3 transporter, a homolog ofCAR which is present
in the sinusoidal membrane and upregulated in Rdignds (Konig et al., 1999).

DJS can appear in the neonatal period, disappes @md reappear in adults
(Okada et al., 2014). Serum bilirubin levels arénysbetween 50 and 1Qdmol-L*
and could be up to 4Qdmol-L* (Strassburg, 2010), but the activity
of aminotransferases is normal. The urinary exanetif coproporphyrin is normal,
but in comparison to healthy patients who have Bb%oproporphyrin 11, DJS have
80% of coproporphyrin | (van Dijk et al., 2015).

In DJS as well as RS, no treatment is requiredaudmex of the benign nature
of these disorders (van Dijk et al., 2015).

1.5 Treatment options in unconjugated hyperbilirubnemias

Unconjugated hyperbilirubinemia is a treatable gime@non. Current clinical
practice uses PT and in most severe cases of mégaatdice exchange transfusion
(ET) (Wong et al., 2011). In the treatment of GergNajjar syndrome, long-term PT
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(12 and more hours per day) and liver transplaotats used in clinical practice
(Brunetti-Pierri et al., 2012). Although a wide ganof other treatment options have
been proposed and tested under experimental asagvelinical conditions, none of
them is routinely used in clinical practice. Thisapter summarizes of all these

therapeutic approaches.

1.5.1 Phototherapy

In the past, PT with ultraviolet light was widelysad for the treatment
of different types of diseases (Pathak and Fitagatrl992; Totonchy and Chiu,
2014). PT with visible light (mainly around the vedength of 450 nm) is used
especially for the treatment of neonatal hypentlinemia for which the range
of wavelengths between 450 and 510 nm is the mfisttiwe. The principle
of method is based on photoconversion of bilirufoints structural isomers that are
more polar and in comparison to bilirubin easilycreted from the body (Fig. 7)
(McDonagh, 2001a).

PT as a treatment option for unconjugated hypeudbinemia was discovered
by Cremeret al. in 1958 (Cremer et al., 1958) and the studiesewaluation
of the safety and efficacy were performed a detaige by Luceyet al. (Lucey et al.,
1968).

PT causes photochemical reactions that lead to ctimnge of shape
of bilirubin (McDonagh, 2001a). Guidelines of Anean Paediatric Association
recommend to use PT if infants at age 25 to 48 shbawve bilirubin levels above
15 mg-dr* (256pumol-LY), infants at age 49 to 72 hours have levels 18&iimiY-
(308umoI-L'1) and higher, and infants older than 72 hours Hailieubin levels
above 20 mg-dLt (342umol- L") (Porter and Dennis, 2002).
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Figure 7. Formation of bilirubin PI; adapted according to Ddmagh et al.
(McDonagh et al., 2009).

PT as a treatment option for neonatal hyperbilmamia is accepted as the
'gold standard’. However, it may be accompaniedh wside effects such
as impairment of thermoregulation, mineral dysbedaXiong et al., 2011), and
direct genotoxic effects on lymphocyte DNA haveoateen reported (Tatli et al.,
2008). This could be also connected with the irewdaprevalence of allergic
conditions reported in these newborns (Beken gp@l4a). In addition, intensive PT
in very low birth-weight newborns has been assediatith increased risk of ileus
(Raghavan et al., 2005); also surprisingly by iasesl mortality, as demonstrated
in the Collaborative Phototherapy Trial, as wellths NICHD Neonatal Network
Trial (Arnold et al., 2014; Tyson et al., 2012).

Other rare condition accompanying PT is a bronzsy beyndrome which
could be developed in children with cholestasisirdurthe PT (Maisels and
McDonagh, 2008; McDonagh, 2011) and cause the eéhahgigmentation to dark.
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Bronze baby syndrome is harmless and the pigmenteireturning to normal when
the PT is disrupted (McDonagh, 2011). The probabiechanism of this
complication lies in the formation of copper-porphycomplexes (Kar et al., 2013)
but exact mechanism is still unknown (Ottinger, 201

PT is also a treatment option for patients withg@n-Najjar syndrome.
However, these patients need to be treated up @ndi2nore hours per day which
can influence their social life and its quality.eTbther problem in adult patients is
that the older they are, the less effective thattnent is, because of the reduction

of surface area to body mass (van Dijk et al., 2015

1.5.2 Exchange transfusion

The oldest method is ET (Forfar et al., 1958) ikadtill used for treatment
of severe hyperbilirubinemias. Acute bilirubin  epbelopathy, condition
accompanying severe hyperbilirubinemia which netmsbe treated by ET, is
developed in one out of 10,000 infants. In 5 % wdhstreated infants the therapy is
accompanied by complications and a mortality rdtsuch treated neonates is about
3-4 infants per 1,000 during 6 hours upon ET (Mwe$kd, 2014). The complications
are mainly cardio-respiratory and metabolic deramg@s, or complications from
central line placement (2004). This type of therggpynore common in low-income
and middle-income countries where PT is less abvfailas in the other countries.

1.5.3 Liver transplantation

Liver transplantation is the only available therapst could definitively cure
CNSI (Roy-Chowdhury et al., 2001; Tu et al., 201Ratients with Crigler-Najjar
syndrome have normal liver parenchyma with the latkJGT1ALl activity. Liver
cell transplantation is helping in reduction ofugarbilirubin levels within safe limits
and is replacing the need of PT which leads to awg@ment of patient’s life (Lysy et
al., 2008).

There are several approaches to liver transplantatorthotopic liver
transplantation (OLT), auxiliary liver transplantat (AuxLT) or liver cell therapy
(LCT) (Lysy et al., 2008).
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OLT is a curative option for this disorder. Thi©pedure is invasive and up
to 15 % of patients with OLT need re-transplantatamd may develop progressive
fibrosis (Lysy et al., 2008). Furthermore, the hyymortality rate may be up to 10 %
due to post-operative complications (van Dijk et 2015). Patients after OLT need
to be treated by intensive immunosuppressive tlyeragnother problem is
insufficient availability of liver grafts (van Dijlet al., 2015). The right time for
transplantation is in young age before kernicteroigld develop (Tu et al., 2012).
After transplantation there are about 36 % of p&sievith brain damage who showed
improvement in neurological symptoms (Schauer gtaal well as better quality of
life (Tu et al., 2012).

AuxLT is also a curative method which is reversiblg is accompanied with
pitfalls during the surgery. This type of surgesybiased on the fact that the native
liver is left in situ and a portion of a healthymw liver is transplanted (Nowicki and
Poley, 1998). It is difficult because of perilousaatomosis which can hamper the
venous in- or out-flow and thus can lead to grafoghy or vascular thrombosis.
Other complication is small-for-size liver syndrontbat could follow after
inadequate liver mass replacement (Lysy et al.8200

LCT was reported by Foet al. (Fox et al., 1998) and could be a new
alternative in the treatment of CNSI. It is an imediate between whole organ
transplantation and gene therapy (Lysy et al., 2@0@l will be described in detail
in appendix 1.5.5.

1.5.4 Transplantation of other organs

Several organs, other than liver, are known to gesdJGT1Al activity,
among them small intestine and kidneys. Experintigntd was tested whether
transplantation of small intestine or kidney iseatd correct the hyperbilirubinemia
(Kokudo et al., 1999; Medley et al., 1995).

In experiments of Medlegt al., segments of small intestine from Wistar rats
were transplanted to Gunn rats (Medley et al., 199%ey had found that
transplantation of segments of small bowel frons maith known UGT1A activity
can partially correct the hyperbilirubinemia in Gurats (Medley et al., 1995).

Kokudo et al. in their study (Kokudo et al., 1999) had performethl- and
partial-small-bowel as well as kidney transplamtati All types of provided
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transplantations were effective in correction offident metabolic abnormality
in Gunn rats for period of 4-6 months (Kokudo et #999).

Since the gut transplantation is even more prohliien@mpared to liver
transplantation, it is not very likely that it wibe used for correction of CNSI
in future (McDonnell et al., 1996).

1.5.5 Gene therapy

The architecture as well as other metabolic fumstiof the liver of patients
with CNSI is unchanged, so it is expected thatgpecific gene therapy will lead
to correct the UGT1AL1 activity and ameliorationadlf symptoms (Roy-Chowdhury
et al., 2001). The increase of UGT1Al activity t0 % should be sufficient
to prevent kernicterus (Roy-Chowdhury et al., 2001)

Experimental data from last years have demonstrdiadthe gene therapy
plays a role in the correction of unconjugated higpieubinemia in the Gunn rats
invivo and alsoex vivo (Roy-Chowdhury et al., 2001). Current methods are
vector-mediated delivery of the whole coding regionUGT1A1 (Fig. 6) driven by

viral or mammalian promoters (Roy-Chowdhury et2001).

1.5.5.1 Nonviral Vectors

Nonviral vectors for gene therapy could be dividatb two approaches:
receptor-mediated endocytosis and F virosome-nestligjene transfer (Roy-
Chowdhury et al., 2001).

Receptor-mediated gene transfer can use asialqgiytn receptor (ASGPr)
that is selectively expressed in the liver. Inwadgtof Bommineniet al. (Bommineni
et al., 1994) and Roy-Chowdheyal. (Chowdhury et al., 1993) asialoorosomucoid,
a ligand to ASGPr, was used with conjugation toylysine and electrostatically
boundUGT1A1 expressing plasmid. The plasmid DNA was selectivaken by the
liver.

The F protein of the envelope of the haemaglutigatirus of Japan, shortly
marked as “F virosome” is terminated by galactttsean bind a plasmid expressing
UGT1AL. In the study of Parashar (Parashar et al., 1989}ype of therapy reduced

serum bilirubin levels in about 40 % with detecgabilirubin conjugates in the bile.
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1.5.5.2 Viral Vectors

Viruses have advantage in their ability to enter tlucleus of the host cell,
where they are able to express genes and replithige.can be used for transgene
delivery of DNA into a viral genome (Roy-Chowdhwetal., 2001).

Viral gene therapy can be divided into usage afox@tuses, adenoviruses
and adeno-associated viruses (AAV).

Retroviruses are containing RNA genomes that cdaddtranscribe into
complementary DNA after entering into the host e@eltl thus the DNA could be
integrated into host genome (Roy-Chowdhury et24lQ1). Retroviruses were used
as gene therapy firstly in 1990s for the treatnadradenosine deaminase deficiency
(Blaese et al., 1995). They were isolated from mpfiocytes of two children.
Unfortunately, further studies had showed that tyge of therapy could cause
leukaemia by retroviral insertional mutagenesis(Rgk et al., 2015).

Further studies had developed vectors that bloekrttegration of retrovirus
in the T lymphocyte. These vectors are called V@nati vectors and it was shown that
they are able to reduce oncogene activation (Moetial., 2009). These vectors are
now using for clinical trials (van Dijk et al., 2B)L

The vector containing double-stranded DNA is now thost suitable viral
vector forin vivo gene therapy. One of the first DNA vector was haradenovirus
serotype 5 (van Dijk et al.,, 2015). After enteritiie host cell adenovirus is
transported into the nucleus and transcribed intal yrotein and replicates.
Adenoviruses have high affinity for the liver anghcprovide long-term expression.
Unfortunately, they are able to induce a strongrapid immune response that could
lead to death (van Dijk et al., 2015).

Recent studies showed that AAV could be succegsfigéd inin vivo gene
therapy. AAV is a non-enveloped, non-pathogenic vparus and needs
a co-infection with a helper virus for replicatiifioggan et al., 1966). AAV is good
candidate for liver-, muscle-, retina-, heart- adironal-directed gene therapy (van
Dijk et al., 2015). Since 2012, AAV vector serotypas used for the treatment of
familial lipoprotein lipase deficiency (Buning, Z81Gaudet et al., 2010). The most
suitable AAV serotypes for the liver are serotype8 and 9 (Gao et al., 2005). AAV
vectors also seem to be most promising in thertreat of CNSI (Seppen et al.,
2006). Till now there were tested only on Gunn (Bisanchereau et al., 1993; Tada
et al., 1998; van der Wegen et al., 2006). A disathge of this type of therapy is
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that it could lead to the immune response agai®t1A1, which needs to be treated
immunosuppressive drugs (van Dijk et al., 2015).

1.5.6 Hepatocyte transplantation

Ex vivo delivery of UGT1ALl gene into the human liver is possible upon
isolation of hepatocytes from the mutant cells he tulture. Therapeutic gene is
integrated into the donor cell genome and such gtlgpically corrected cells are
transplanted back into the donor (Roy-Chowdhuryalet 2001). This method is
called a liver cell therapy (LCT) and may serveaasalternative treatment on the
border between whole organ transplantation and dkempy. Cells are infused
in the liver and it is expected that they will lgiaufficient enzyme activity to restore
bilirubin metabolism (Lysy et al., 2008). LCT shaiveestored metabolic function
in Crigler-Najjar patients (Fox et al., 1998). Imnosuppresion is not necessary

for this type of therapy (Roy-Chowdhury et al., 2D0

1.5.7 Pharmacotherapy

As mentioned above, PT and ET may have some siget&f Therefore,
several approaches, summarized in the following clsapters, were tested

to substitute or improve neonatal jaundice treatreffitacy (Wong et al., 2011).

1.5.7.1 Inhibition of haem degradation

First target in the haem catabolic pathway is obsiip haem and its
degrading enzyme, HMOX, which can be inhibited byetatioporphyrins,
D-penicillamine and/or peptide inhibitors of HMOX.

1.5.7.1.1 Metalloporphyrins

Metalloporphyrins are structural analogues of ha@n.981, Drummond and
Kappas (Drummond and Kappas, 1981) as well as MdMaines, 1981) were first
who discovered their inhibitory effects on bilirabproduction. Metalloporphyrins
can block bilirubin production through the compeétinhibition of HMOX (Schulz
et al., 2012b). Zinc protoporphyrin and other swgtith derivatives of haem or
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metalloporphyrins were studied botim vitro and in vivo. Between studied
compounds metal-free, as well as metal-containimgn( zinc, tin, chromium)
porphyrins with ring modifications to yield deuteraneso-, proto- and bis-glycol
porphyrins were studied in detail (Vreman et 893; Wong et al., 2011).

Zinc protoporphyrin is an endogenous compound whagroduced at higher
rates in iron deficiency anaemia (Hastka et al93)9Some metalloporphyrins can
exhibit photosensitizing effects which could leaddeath in mice (Schulz et al.,
2012a; Wong et al., 2014). On the other hand, vivo administration
of metalloporphyrins can led to lower plasma bbiry total body CO excretion and
biliary haem excretion (Anderson et al., 1984; Dmoond et al., 1987; Simionatto et
al., 1985).

Some clinical trials with selected metalloporphgriwere performed in the
past. Treatment with tin-mesoporphyrin lead intaluetion of plasma bilirubin
concentrations in two CNSI patients (Galbraithletl®92). In another study by this
group (Kappas et al., 1995), neonates were injettgda single dose of Sn-
mesoporphyrin (umol-kg* of birth weight). This dosage replaced the neeBDfn
those patients. The same results were confirmedhbysame authors in another
clinical trial (Martinez et al., 1999). Despite prsing results of these clinical trials,
Sn-mesoporphyrin is still not recommended for treait of neonatal

hyperbilirubinemia.

1.5.7.1.2 D-penicilamine

D-Penicillamine (dimethylcysteine) is a heavy meta¢lating agent (Lakatos
et al., 1976a) which is used mainly for treatmeniilson’s disease (Cuperus et al.,
2009b), for the reduction of cystine excretion igsturia, in the treatment
of rheumatoid arthritis and macroglobulinaemia (@tals et al., 1974). In 1971,
Lakatoset al. came with the idea that this substance mightedeser the concentration
of bilirubin in blood, which was proven experimditaand the D-penicillamine
therapy was introduced in 1973 as a treatment woptey control of neonatal
hyperbilirubinemia in term infants (Lakatos et 4B,76a; Lakatos et al., 1974).

Principle of the treatment is in the productiortted complex D-penicillamine
with copper which is able to destroy bilirubin inet blood. This mechanism was

investigated in detaileih vitro andin vivo studies (Lakatos et al., 1976b).

-25 -



As implied from several studies, D-penicillaminesmaot able to displace
bilirubin from its albumin binding and thus did notrease Bf levels, the experiment
was providedn vitro as well agn vivo (Brodersen et al., 1980; Peter et al., 1976).
This treatment also led to reduction of the retatby of prematurity (Christensen et
al., 2006).

Side effects accompanied with D-penicillamine adstiation are vomiting,
anorexia, loose stools and frequent thrush whenirast@red orally and mild
erythema upon intravenous application. Serious sifiects caused by long-term
therapy covered copper, iron and pyridoxine deficye thrombocytopenia,
agranulocytosis, proteinuria and nephrotic syndrome

D-penicillamine as the treatment option for neohgaandice was used
in clinical trials in Europe (Koranyi et al., 197&ut is not currently used in clinical

practice.

1.5.7.1.3 Peptides for HMOX inhibition

Peptides for the inhibition of HMOX were originallyeveloped from the
immunomodulatory peptide 2702.75-84 which corresisoto amino acid residues
75to 84 of theal-helix of histocompatibility locus antigen HLA-BQZ. This
peptide inhibits HMOX activityin vitro in a dose dependent manner (lyer et al.

1998). No human studies have been performed tdarooits beneficial effect in the

treatment of neonatal jaundice.

1.5.7.2 Inhibition of biliverdin reductase

In the treatment of unconjugated hyperbilirubinemitamight be useful
to inhibit biliverdin reductase (BLVR) and thus gtthe production of bilirubin from
biliverdin which could be easily excreted from tbedy because of its water
solubility and non-toxicity (Dennery, 2002). McDagtain his paper (McDonagh,
2001b) suggested that based on reported struadfirdsEVR (Kikuchi et al., 2001;
Pereira et al., 2001) it might be able to desigrharmacologically active inhibitor
for temporarily block of BLVR.

This was investigated by Franklet al. (Franklin et al., 2009), who showed
that biliverdin ditaurate is a substrate for BLVRAnd proposed this possibly
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competing substrate for reduction of UCB levels dmgducing bilirubin ditaurate

instead.

1.5.7.3 Impact on bilirubin conjugation

Other approach to the treatment of hyperbilirubiermight be with
therapeutics that will be able to increase thevagtof bilirubin conjugation in the
liver. This could be provided mainly by using drugat have the ability to influence
UGT1A1 gene.

1.5.7.3.1 Phenobarbital

Phenobarbital is an anti-epileptic drug which isanstitutive androstane
receptor (CAR) agonist and thus can enhance theps ¢ hepatic UCB clearance —
uptake and storage in the liver, hepatic biotrams&tion and excretion of bilirubin
(Catz and Yaffe, 1968; Wagner et al., 2005; Wollatfal., 1978; Yaffe et al., 1966).
Previously, phenobarbital was administrated to paat) women to reduce the risk
of neonatal jaundice (Wilson, 1969) and may be usedhe treatment of patients
with CNSII (van Dijk et al., 2015) but the side esfts limit its use in clinical
practice.

The main effect of phenobarbital on bilirubin metldém is, however,
through its ability to directly induce the activiof UGT1A1l (Chawla and Parmar,
2010). In a meta-analysis by Chawla and Parmar y@hand Parmar, 2010),
a phenobarbital-induced significant reduction iakpserum bilirubin, duration of PT
as well as need of PT or ET was observed. On tiheroband, high doses
of the therapeutic may cause respiratory depression

The most prominent side effect of phenobarbitalrapg is its impact
on central nervous system, treated neonates wemtaeg somnolent, and there are
also studies reporting negative long-term effeatscognition after phenobarbital
treatment (Hansen, 2010). Phenobarbital may alse imapact on the metabolism
and therapeutic effectiveness of other drugs (Wild®69) due to its effect on other
liver enzymes, such as cytochromes (Van der Vedreale 1997). Finally,
as compared to PT, the effect of phenobarbitalireguonger period of time and is

not as effective (Cuperus et al., 2009b).
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Administration of phenobarbital may also serve iggidguish between CNSI
and CNSII. Patients with CNSI are responding weeklgiot at all, on the other hand
in patients with CNSII phenobarbital can reducérddiin levels by more than 30 %
(van Dijk et al., 2015).

1.5.7.3.2 Clofibrate

Clofibrate (Xiong et al., 2012) is an activator operoxisome
proliferator-activated receptor alpha (PP#BR It is used as an effective
hypolipidemic agent because it is able to decreas@m cholesterol and triglyceride
levels in adults. It can also induce the activityll'GT1A1 and thus increase the
conjugation of bilirubin in the liver (Cuperus ét, 2009b; Wang et al., 2007). It was
found that a single clofibrate dose in term neanat@n reduce indirect bilirubin
levels and also lower the need for PT (Mohammadzadal., 2005) and ET (Xiong
et al., 2012).

In some countries (Gholitabar et al., 2012), clafib was studied as
an adjunct for shortening the time of PT. Fromadhalysis of 12 studies it was found
out that administration of clofibrate could redube use of PT in both preterm and
term neonates (Gholitabar et al., 2012).

In the meta-analysis provided by Xioreg al. (Xiong et al.,, 2012) the
treatment with clofibrate was proved to reduce simorten PT. The beneficial effect
of clofibrate was detected in the group of neonatksout haemolytic disease and
in term infants. In the group of neonates with halgtic disease, no notable effect
of clofibrate was observed; it could be caused @afig because the studied group

did not include enough neonates with the haemotiiease (Xiong et al., 2012).

1.5.7.3.3 Chinese herbs

Several herbal extracts have been used for famiitaof bilirubin excretion
for centuries, such a#é\rtemisia scoparia, Scutellaria, Rheum officinale, etc.
(Dennery, 2002). Most of them have been examinethencombination with PT.
One of the most common herbal extracts is thaedalin Zhi Huang that is prepared

from 4 different plants -Artemisia capillaries, Gardenia jasminoides Ellis, Rheum
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officinal Baill and Scutellaria baicalensis Georgi (Fok, 2001). This extract was
tested alson vivo in a rat model (Yin et al., 1991).

However, some of these herbs may have an oppoldet @n systemic
bilirubin concentrations, since they contain substs displacing bilirubin from its
albumin binding (Yeung et al., 1993). In case ofPG6deficiency the use of some
herbs is accompanied by higher risk of haemolyBisally, it is complicated
to determine the level of the active compoundshim prepared solution and some
plants can be even contaminated with heavy met@har{, 1994). This type of
treatment is therefore not recommended in newbdgperus et al., 2009b;
Dennery, 2002).

1.5.7.4 Compounds with ability to decrease enteropatic cycling of bilirubin

When reaching the small intestine, conjugated uiilim starts to be
hydrolyzed byp-glucuronidases to UCB (Vitek, 2003). Neonatal stitee is sterile,
and it takes weeks to months to colonize intestloalen with bacteria capable
of reducing UCB to urobilinoids (Vitek et al., 2000’ hus, UCB can be reabsorbed
from the intestinal lumen into the portal circuteti(Kotal et al., 1996). Preventing
UCB in the intestinal lumen from its re-absorptisrhence a promising therapeutic

tool for neonatal jaundice (Cuperus et al., 2009b).

1.5.7.4.1 Oral charcoal

Activated charcoal mixed in the normal feeding falan (the dosage
of charcoal was approximately 3-4 g per kg of bedight per 24 h) was shown
to reduce the plasma bilirubin levels after 48 Boaf treatment in the jaundiced
suckling rats to 40 and 60% compared to contralepnelone or in the combination
with PT, respectively (Davis et al., 1983). It mlibved that charcoal entrap bilirubin
in the intestinal tract and thus prevent its erftepatic circulation. Combination
of charcoal and PT was also effective in lowerifigubin levels in neonates in the
study of Amitai et al. (Amitai et al., 1993). However, this treatmentswaot
translated into common clinical practice becauskd of robust data, and because
charcoal could non-specifically bind a range ofamig and inorganic compounds
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which limits its therapeutic potential for long4temapplication (Van der Veere et al.,
1997).

1.5.7.4.2 Agar

Similarly, also agar has the ability to bind substs in the gastrointestinal
tract, including bilirubin (Poland and Odell, 19711 the study by Caglayaet al.
(Caglayan et al., 1993) babies with neonatal hyerbinemia were treated with
PT, oral agar and the combination of both. The R$ more effective when neonates
were treated with agar. The administration of aghortened the time period

of treatment by PT.

1.5.7.4.3 Calcium phosphate

Van der Veeret al. had reported that amorphous calcium phosphatéican
UCB in vitro (van der Veere et al., 1995). These results wengfirazed in
a placebo-controlled, double-blind, crossover stndy/l patients with Crigler-Najjar
syndrome (Van der Veere et al., 1997). Becausbeoptesence of free phosphate in
the gut, patients should be treated by the comibmatf calcium carbonate and
phosphate to prevent UCB from binding by free phasp (van der Veere et al.,
1995). In a clinical study by Van der Veeseal. (Van der Veere et al., 1997),
calcium phosphate treatment reduced bilirubin Ewelpatients with CNSI but not
in CNSII. The difference could be due to differeottreatments (combination with
PT in CNSI, and with phenobarbital in CNSII). Ireteame study, Gunn rats were

successfully treated by calcium phosphate withdut P

1.5.7.4.4 Cholestyramine

Cholestyramine is able to bind bile salts in thelmtestine (Cuperus et al.,
2009b). The hypothesis whether cholestyramine 98 able to bind bilirubin was
tested by Lestest al. as early as 1962 (Lester et al., 1962). Aftedifeg of 4 Gunn
rats with dietary cholestyramine, UCB concentratitmcreased by 30-45 % (Lester
et al., 1962). This effect was not observed iniaial trial on jaundiced preterm

infants (Schmid et al., 1963), and the treatmerg a@ompanied with side effects
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such as hyperchloremic metabolic acidosis, constipa and diarrhoea
(Malamitsipuchner et al., 1981; Nicolopoulos et 8878; Schmid et al., 1963; Tan et
al., 1984).

1.5.7.4.5 Zinc salts

Mendéz-Sancheet al. had studied, whether zinc salts were able taaote
with UCB in the intestinal lumen (Mendez-Sanchezalet 2001). They found that
Zn salts at physiological pH are able to adsorb Uf@Bn unsaturated micellar
solution of bile saltsn vitro and that zinc sulphate is inhibited biliary seiomet
of bilirubin in hamsters (Mendez-Sanchez et al.0130 In their further study
(Mendez-Sanchez et al., 2002) they found out thaitea and chronic oral
administration of zinc salts was able to decre&sans UCB levels in individuals
with Gilbert's syndrome, presumably due to a direffect on enterohepatic
circulation of bilirubin (Mendez-Sanchez et al.02]

Vitek et al. had studied the effect of oral administration afczsulphate and
zinc methacrylate on serum bilirubin levels in Guats (Vitek et al., 2005a). Both
compounds had significantly decreased concentmtodrserum UCB (Vitek et al.,
2005a).

Zinc salts seem to be promising in the treatment uoconjugated
hyperbilirubinemias, but unfortunately there coblla risk caused by accumulation
of zinc in the body (Mendez-Sanchez et al., 20a)dy et al., 2006).

1.5.7.5 Other pharmacological approaches

1.5.7.5.1 Bilirubin oxidase

Bilirubin oxidase may serve for oxidation of biloun into water-soluble,
extractable products (Dennery, 2002). Bilirubin dage is isolated from fungi
Myrothecium verrucaria (Murao and Tanaka, 1981) (and thus can causegaller
reactions (Dennery, 2002)), or from orange peelsu (&hd Li, 1988). Upon
conjugation of bilirubin oxidase with polyethylegg/col (PEG) its antigenicity was
reduced and the plasma half-life was prolonged@@times in comparison to native
form of enzyme (Kimura et al., 1988). PEG-conjudatalirubin oxidase was

successful in reduction of UCB in jaundiced ratgr{ira et al., 1988).
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1.5.7.5.2 Albumin

As explained above, Bf is believed to be the masictbile pigment fraction
in human serum, since it is able to cross the BB@8@mage the brain (Calligaris et
al., 2007; Zucker et al., 1999). Therefore, adnat®on of albumin, the major
bilirubin binder in the circulation, seems to biogical therapeutic choice. Previous
studies have already used human serum albumineinrdatment of neonates with
severe hyperbilirubinemia. Odedt al. (Odell et al., 1962) had found that the
administration of 1 g of albumin per kg/b.wt. prigfl had increased the removal
of bilirubin by ET. Neonates who received albumiopET had removed in average
41 % of bilirubin more than neonates who were nedted with albumin. However,
Chanet al. (Chan and Schiff, 1975) were not able to reprodheeresults by Odell
et al’s study.

Detailed studies on the albumin effects on bilirubdbncentrations during and

before PT, ET or alone was also one part of PhsiBhe

1.5.7.5.3 Immunoglobulins

Intravenous immunoglobulin G was used as a tredtmeption
in immunological neonatal disorders including atiaiune and autoimmune
neonatal thrombocytopaenia (Alpay et al., 1999; dddj et al., 2003), neutropenia
and haemolytic anemia (Alpay et al., 1999), and #lso used as supportive therapy
in neonatal sepsis (Migdad et al., 2003). In addijtintravenous immunoglobulin
administration was used as a potential treatmenttii@ reduction of severe
hyperbilirubinemia due to immune haemolytic diseaaased by ABO and rhesus
incompatibility (Alpay et al., 1999; Beken et &014b; Hansen, 2010; Louis et al.,
2014; Migdad et al., 2003). The treatment has besed in both neonates and
pregnant women during the third trimester of premya It is though that
immunoglobulin may block reticuloendothelial Fc eptor and thus prevent the
neonatal red blood cells destruction (Migdad et 2003). However, the results
of such therapy are still inconsistent and theradsconsensus for the routine use

of immunoglobulin application (Beken et al., 2014b)
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1.5.7.5.4 Bile salts

Bile salts are able to stimulate biliary excretarsome organic anions (Vonk
et al., 1975), including bilirubin in rats (Cuperas al., 2009a). In the study
by Einarssoret al. (Einarsson et al., 1984), the treatment with desxycholic acid
(UDCA) in healthy lead to mild fat malabsorption.

Cuperus and others (Cuperus et al.,, 2009a) showatd administration
of UDCA in Gunn rats reduces unconjugated hypetilnemia. The effect
of UDCA was compared to that of cholic acid (CA) &ssess the specificity
of different bile salts. They found out that botiebsalts, UDCA and CA, could
significantly decrease UCB concentration in Gunns ravithin 3 days after
administration, the maximal decrease was observ#drnw2 weeks (Cuperus et al.,
2009a).

UDCA is a treatment of choice for majority of chetlgtic liver diseases, and
is also well tolerated in children (Balistreri, 199 Similarly, it was shown also
in Gunn rats that UDCA administration is withoutyaside effects (Cuperus et al.,
2009a).

In the randomized trial of Honat al. (Honar et al., 2015), UDCA treatment
reduced bilirubin levels as well as the time neeidedT and this combination was
more effective that PT alone. Moreover, the comioamaof UDCA administration
with PT decreased also the neonatal hospitalizaitios.

Bile acids thus seem to be a promising adjuvamagieutic tool for neonatal

jaundice.

1.5.7.5.5 Modulation of intestinal microbiome

It is believed that microbial catabolism of bilifabn gut lumen is contributing
to serum bilirubin homeostasis, especially durimpmatal age (Vitek et al., 2000).
The bilirubin-reducing microbiome is absent in ttevborn period and because of it,
bilirubin accumulates in the gut lumen (Vitek et, &005b). Despite the fact that in
human gut there are hundreds of microbial straih@ofe and Holdeman, 1974), only
four of them have been identified so far to conuaiirubin onto urobilinoids:
Clostridium ramosum (Gustafsson and Lanke, 196@), perfringens and C. difficile
(Vitek et al., 2000), anBacteroides fragilis (Fahmy et al., 1972).
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The importance of intestinal microbiome for redactiof bilirubin was
investigated in studies with germfree rats (Gustaisand Lanke, 1960). Vitek al.
had investigated the influence of the intestinatrofiiome on serum bilirubin
concentrations in Gunn rats (Vitek et al., 20091ey found that treatment with oral
antibiotics had increased serum and faecal biliruevels and decreased faecal
urobilinoids and that the colonization of gut withilirubin-reducing strain
of C. perfringens is able to lower bilirubin concentrations in cilation and increase

excretion of bilirubin and urobilinoids into faec@4tek et al., 2005b).

1.6 Phototherapy-derived bilirubin products

1.6.1 Bilirubin photoisomers

By the action of blue or blue-green light (withihet wavelengths range
450 - 510 nm, close to the absorption maximum dirudin) used during PT
of neonatal jaundice, bilirubin is transformed inte structural and geometrical
photoproducts which are called bilirubin PI (Fig.(Ennever et al., 1983; Mcdonagh
et al., 1982a; McDonagh et al., 2009). Configuraioisomerisation of bilirubin
leads to the formation of ZE- and EZ-bilirubin,ghghange is reversible and much
faster than the structural isomerisation that Ieadsreversible change of bilirubin
into E- and Z-lumirubin (Maisels and McDonagh, 80T hese bilirubin products
are more polar and could be easier excreted frambtdy (Ennever et al., 1985;
McDonagh et al., 1980).

The photoreactivity of bilirubin has been studigdce 1970’s, the first
review on this topic wrote Lightner in 1977 (Ligktn 1977). Further experimental
studies demonstrated that the ability of bilirutonform PI is dependent on the type
of used solvent (Sailofsky and Brown, 1987) or albuused in the photo-irradiated
solution (lwase et al., 2010) as well as on theetgh used light. Undem vivo
conditions, PT efficacy depends also on the bodgase and initial bilirubin
concentrations (Mreihil et al., 2010).

Exact structures of bilirubin Pl were establisheg klcDonagh et al.
(McDonagh et al.,, 1979; McDonagh et al., 1982a; Mic&gh et al., 1982b) and
Onishiet al. (Onishi et al., 1984). The same authors haveladed that Z-lumirubin

also called as (EZ)-cyclobilirubin or incorrectlyhgiobilirubin 11 is the most
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important bilirubin Pl (Onishi et al., 1984). Althgh it is generally believed, that
bilirubin Pl are non-toxic, the data on their pdiainbiological activity and proper
mechanism are still lacking.

Bilirubin PI could be detected by HPLC (McDonaghaét 1982b; Onishi et
al., 1980) in bile, serum and urine, but none esthmethods is being used in clinical
practice due to their imperfection.

Mreihil and McDonagh (Mreihil et al., 2010) spedeld on the toxicity
of bilirubin PI. They postulated that bilirubin Bbuld not be as toxic as bilirubin
owing to their increased polarity, preventing thé&mm crossing the BBB and
entering the brain. The higher toxicity of bilirabPI they hypothesized also as
doubtful because the PT has been used for more htakirof a century now and
no apparent data about bilirubin P1 brain toxitigwe been reported.

It is now well described that ZE-bilirubin can betectable in the blood
within 15 minutes upon the beginning of PT. Its @amiration rises up to 15% of the
total bilirubin in this early stage (Mreihil et aR010) and during the longer PT
bilirubin PI may form up to 30% of total concenioat of bile pigments that are
present in the circulation (McDonagh et al., 2009ara et al., 1997).

Potential toxicity of bilirubin Pl has been studiewly by Silberberg’'s
(Silberberg et al.,, 1970a; Silberberg et al., 1978bhd Christensen’s and Roll's
groups (Christensen and Kinn, 1993; Christenseal.et1994; Christensen et al.,
2000; Roll, 2005; Roll and Christensen, 2005; Rokl., 2005).

In their studies, Silberberg al. used bilirubin and photo-irradiated bilirubin
to study their effect on myelinating cerebellumtartgds by microscopic techniques
and they were not able to detect any toxic effextseuronal cells. Bilirubin Pl were
also studied by the second Norwegian group on lymahcells (Christensen et al.,
2000; Roll, 2005; Roll and Christensen, 2005), letytes (Roll et al.,, 2005),
glioblastoma, and epidermal cell lines (Christenaed Kinn, 1993; Christensen et
al., 1994). In the study on human glioblastoma lved, they showed that PT light
may cause DNA damage when bilirubin is absent arudease in the presence
of photo-irradiated bilirubin (Christensen et 4094; Christensen et al., 1990). Their
study (Christensen and Kinn, 1993) indicates tllatibin photoconversion does not
take place in the cells or bilirubin Pl formed ohsithe cells are not able to be
transported out of the cells. Unfortunately, metilody for bilirubin Pl

determination in cells or tissues that will provedsprove these results is lacking.
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It should be noted that none of these authors kiged bilirubin PI in pure
forms and that they worked mainly with the lighpesure of cells. So the observed

effects could be related to the direct effectsgiitlexposure as well.

1.6.2 Bilirubin oxidation products

Bilirubin may act as an antioxidant by scavengiagctive oxygen species;
in this process and during PT of neonatal jaunbiteibin oxidative metabolites are
formed (Kunikata et al., 2000). These metabolites divided into tripyrrolic,
dipyrrolic and monopyrrolic degradation products.

Tripyrrolic bilirubin residues are collectively éadl as biotripyrrins or
biopyrrins. Firstly, they were discovered in 199¢ the Yamaguchiet al. as
diazo-negative pigments (Yamaguchi et al., 1994)s keam isolated seven
metabolites from the urine of healthy persons ushreg anti-bilirubin monoclonal
antibody 24G7. By mass spectroscopy (MS) and nuoheagnetic resonance (NMR)
they identified the structure of two metabolites B44,15,17-tetrahydro-2,7,13-
trimethyl-1,14-dioxo-3vinyl-16H-tripyrrin-8,12-dippionic acid (biopyrrin a) and
1,14,15,17-tetrahydro-3,7,13-trimethyl-1,14-diox®iByl-16H-tripyrrin-8,12-

dipropionic acid (biopyrrin b) (Fig. 8a/b).
COOH HOOC
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Figure 8. Biopyrrin a (A) and biopyrrin b (B).
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Experimentally, they were confirmed as markersncfeased oxidative stress
in rats subjected to endotoxin treatment (Yamagecttal., 1997; Yamaguchi et al.,
1995) or treated by fenofibrate (Kobayashi et 2003), as well as in the hepatic
ischemia-reperfusion model in the rat (Yamaguchiakt 1996). Higher levels
of biopyrrins were also found in the urine of meogosed to social stress (Miyashita
et al., 2006).

Biopyrrins were found to be higher in urine of pats who underwent
laparotomy (Yamaguchi et al., 1994), or after acui@cardial infarction (Kunii et
al., 2009). In a study by Matsuzaki and co-work@atsuzaki et al., 2014), levels
of biopyrrins were shown to increase during pregyaand were related to smoking.
Yasukawa and others (Yasukawa et al., 2007) haatifthet biopyrrins are increased
in schizophrenia patients.

Biopyrrins were also produced after scavenging RiySilirubin, this was
observed during rat acute cardiac allograft repecf(ly amamoto et al., 2007).

In the study by Vitek and co-workers (Vitek et &007), biopyrrin levels
were studied in subjects with GS. It was demonstrahat mild hyperbilirubinemia
can protect patients from oxidative stress, andssociated with decreased urinary
biopyrrin excretion.

The second group of bilirubin oxidation productsngists of dipyrrolic
compounds called first pent-dyo-pents, and themmad to propentdyopents later
on (Fig. 9). They were first discovered as earlyl830 by Stokvis who alkalized
icteral urine and achieve its red coloration. Tlene observation was made
by Bingold in 1934. More detailed investigation waade by Fisher’'s group. They
revealed that theoretically four different propemiplents could be derived from
haemin, three from biliverdin and two from bilirab{Dolphin, 1978).

Heikel in 1957 described a chromatographic andtrelpboretic method for
characterization of propentdyopents (Heikel, 19%8ppentdyopents were isolated
from haemoglobin, haemin, bilirubin, urobilin, igte urine and normal bile. They

were divided into two spots representing both taetion with acid groups.
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Figure 9. Propentdyopents.

Lightner and Quistad had discovered propentdyodernnation in vitro
in 1972 (Lightner and Quistad, 1972). Few yeargetat.ightner and others have
shown that propentdyopents are produced in thee wfmewborns undergoing PT
(Lightner et al., 1984). The same results by Kutaikat al. had demonstrated
in neonates during PT, they also found that bilimub oxidized to propentdyopents
by O, produced by the xanthine oxidase system (Kunikataal., 2000).
Propentdyopents can be possibly determined speetrmally by Stokvis reaction
at 525 nm (Ostrow et al., 1961).

Last known group of bilirubin oxidation products@®) are monopyrrolic
compounds called BOX A and BOX B (Fig. 10). They revdirst identified
in cerebrospinal fluid of patients after subaradgtinbaemorrhage (SAH) who
developed cerebral vasospasm. BOX isolatienovo was achieved by peroxidation
of bilirubin (Kranc et al., 2000). Authors also sfexl that BOX are able to cause
vasospasmin vitro on porcine carotid arteries (Kranc et al., 2000d ahis
phenomenon was also proved by Clairkl. in experimental animal model (Clark et
al., 2002). Pyne-Geithman and others had receigbodered that BOX are present
in higher amount in cerebrospinal fluid in all gatis after SAH, but are significantly
reduced in those who did not develop vasospasmef®githman et al., 2005).
Loftspring and co-workers had found that molecutetygen is more capable
to transform bilirubin to BOX compared to ROS. Thalso hypothesized that
mitochondrial cytochrome oxidase is the major abator in bilirubin oxidation
(Loftspring et al., 2007).
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Figure 10.BOX A (A) and BOX B (B).

Recently, group of Pohnert and Westerhausen halispeh method for
de novo synthesis of BOX A and B from methyl (Z)-(4-brorBemethyl-5-oxofuran-
2(5H)-ylidene) ethanoate (Klopfleisch et al., 208&idel et al., 2014). This group
also established a method for LC/MS/MS determimatmf these compounds
in human serum (Seidel et al., 2015).

In our unpublished studies, we have demonstratatlBl®OXes are toxien
vitro only in very high, non-physiological concentratiomich is in contrast to data
published in SAH patients. Despite this observatibis obvious that more attention
should be paid to evaluate their potential effétts variety of biological conditions.
We also hypothesize that BOXes could be producad foilirubin during the PT of
neonatal jaundice but till now there is no supgdortthis statement in published
literature. Newly developed LC/MS/MS method (Seiégelal., 2015) could be a
valuable tool to solve this question.
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2 Aims of the work

First part of this work was focused on clarificatiof effects of compounds
evolved from bilirubin during PT, which are knows hilirubin PI. Bilirubin and its
Pl were studied for their potential neurotoxic effewith the respect to discovery
of more effective therapies. Together with the dgatal effects of bilirubin and its
isomers we provided an in-depth mapping of bindsitgs of bilirubin and related
compounds in the structure of albumin.

Second part of our investigations was oriented earching new therapeutic
approaches for severe unconjugated hyperbilirubigertypical for Crigler-Najjar
syndrome and neonatal jaundice. Therapeutic appesawere divided into gene
therapies and role of albumin in the treatmentexfrratal jaundice.

There is still no consensus in the question of @ktoxicity of bilirubin PI,
although PT as a gold standard treatment of nebjatadice has been used for
more than 50 years. This is mainly due to the latkcommercially available
standards of bilirubin PI, ZE-/EZ-bilirubin and linmbin. Goal of our paper entitled
“The biological effects of bilirubin photoisomer$ was to isolate bilirubin Pl
in pure forms and to test their potential biologiedfects in vitro on human
neuroblastoma cell SH-SY5Y.

In the circulation, bilirubin is bound to carrierofacules that are able
to transport it. Major part of bilirubin is bound talbumin. In previous studies
(Goncharova et al.,, 2013a, b) binding site location bilirubin in albumin was
characterized. In the paper nam&hoto-isomerization and oxidation of bilirubin
in mammals is dependent on albumin binding binding sites for bilirubin and its
derivatives in the structure of human serum albumgre studied and binding

constants of these compounds on albumin were eazul

During first week of life, neonates could be harmw®d higher bilirubin
concentrations that could lead to neonatal jaundooadition caused by UCB.
Normally, the condition could be treated by PT awmtl disappear soon after the
beginning of the treatment. In special genetic mies, unconjugated

hyperbilirubinemia could be present during whofe.liScientists are searching for
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new therapies to help these patients to improve life quality. One of such options

is the gene therapy.

Gene therapy of naked plasmid DNA by intramuscunpactions was shown
to reduce hyperbilirubinemia in Gunn rats and thagetions had expressed human
UGT1A1 under the control of cytomegalovirus promoter (Kaet al., 2004; Jia and
Danko, 2005). Serum bilirubin concentrations wenedred for 2 or 4 weeks after
gene delivery. Adeno-associated viral (AAV) vectassre previously used for gene
transfer of thdJGT1Al gene (Seppen et al., 2006). The aim of our stGdgtained
reduction of hyperbilirubinemia in Gunn rats after adeno-associated virus-
mediated gene transfer of bilirubin UDP-glucuronositransferase isozyme 1A1
to skeletal muscle”was to investigate the preclinical safety andcaffy of muscle-

directed gene transfer mediated by AAV vectorghertherapy of CNSI.

The aim of the work'Life-long correction of hyperbilirubinemia with
a neonatal liver-specific AAV-mediated gene transfein a lethal mouse model
of Crigler-Najjar syndrome” was to assess the therapeutic effect of the AAV
vector injection as well as to compare the efficatyiver versus skeletal muscle

transgene expression. For this investigatigl mutant mice were used.

Helper-dependent adenoviral (HDAd) vectors shoutdniiore suitable for
gene therapy than adenoviral vectors (BrunettirPard Ng, 2009), because there
should be deleted all viral coding sequences tloaldccause toxicity and other
potentially harmful conditions. We tested theireeté on the expression bigtlal
in our paper‘Improved efficacy and reduced toxicity by ultrasound-guided
intrahepatic injections of helper-dependent adenoval vector in Gunn rats”.
Although there is expected a transduction of aténhiliver area after injection
of HDAd into the liver parenchyma, we studied tHite@ of the vector's dosage
on the expression afgtlal and were searching for that one that was withayher

toxicity and still was able to reduce bilirubin &ds.

Other approach to treatment of unconjugated hyjerbinemia lies
in pharmacotherapy. The most logical approach mimidtration of serum albumin

to increase its pool in the circulation and thuduee Bf form which is believed
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to cause neurological damages (Calligaris et 80,72 The aim of a study entitled
“Beyond plasma bilirubin: The effects of photothergpy and albumin on brain

bilirubin levels in Gunn rats” was to evaluate the effect of albumin treatmeift, P
and combination of these two therapeutic approaahescute and chronic model

of unconjugated hyperbilirubinemia.

In the study'Albumin administration protects against bilirubin- induced
auditory brainstem dysfunction in Gunn rat pups” we focused on the potential
therapeutic role of HSA administration in rat moaél acute hyperbilirubinemia
inducted by haemolysis or bilirubin-albumin disgaent. We wanted to show
whether the HSA administration can prevent bilirubieurotoxicity by decreasing
plasma Bf and its translocation into the brainirBidin neurotoxicity was assessed

by brainstem auditory evoked potentials (BEAPS).

Besides PT, ET is the other treatment option fanagal jaundice. However,
the application of ET is very low in developed ctiigs and there is not present any
in vivo model for the comparison of ET and other therdpeajproaches. Our goal
in  “Optimizing  exchange transfusion for severe unconjgated
hyperbilirubinemia: Studies in the Gunn rats” was to optimize the conditions
of ET in Gunn rats and compare its efficacy with IPIBA administration and their

combination with ET.

Because we found out that HSA administration i d@bldecrease bilirubin
levels in circulation as well as in selected orgame performed study entitled
“Albumin administration prevents neurological damage and death in a mouse
model of severe neonatal hyperbilirubinemia”,in which we treated mutanigtl
mice with repeated HSA doses without PT. We warttedshow whether daily
administration of HSA could prevent bilirubin indaet neurotoxicity in our murine

model.
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3 Methods

Complete methods are described in detail in pubtigtapers. Here | will present the

list of methods which | personally worked with.

3.1 Purification of bilirubin

Commercially available bilirubin is isolated frono\bne bile and gallstones;
and contains not only bilirubin kX but also bilirubin Ilbe and Xllla. isomers
(McDonagh and Assisi, 1972) as well as fatty aaidd phospholipids. Because of it,
bilirubin should be purified prior the usage. In rstudies, a modified method
by McDonagh and Assisi was used (McDonagh and Ask¥§2). Purification was
performed under the dim light in the hood in glasapped by aluminium foil.

One hundred mg of bilirubin (Applichem, Germany) swalissolved
in 180 mL of chloroform in an Erlenmayer flask ahdated at the water bath
to 61 °C, after reaching the temperature the smiutwas boiled for another
5 minutes. The solution was chilled at room temjpeeaand filtrated. The filtrate
was separated into 6 glass centrifuge tubes andhedasnce by water, twice by
0.1 M NaHCQ, once by 10 % NacCl solution, and again by water)(4 he washing
was achieved by shaking the centrifuge tube apprately 50 times and the upper
water phase with precipitates was removed afteryavash step.

After proper washing the chloroform phases wereliosd, from two tubes
into a new dry tube, and the chloroform solutiorswlaied by shaking with N§Q,.
The tubes were centrifuged for 5 minutes at 1,800 and the supernatant was
filtrated through the filtrate paper into a newdsninayer flask.

The filtrate was heated again in the water bath lboited till crystalline
bilirubin started to appear in the flask. At contus shaking 16 mL of methanol was
added into chloroform solution. After the flask wasnoved from the bath, other
15 mL of methanol were added. The solution was ematiown to the room
temperature and transferred into a new dry cegifwbe. The tube was centrifuged
for 5 minutes at 1,800 rpm, the supernatant remaredl the orange pellet washed
with 15 mL of methanol and centrifuged again. Thisp was repeated until the
supernatant stayed clear. After last centrifugatopernatant was removed and
the pellet freeze-dried overnight. Purified bilimbyvas stored in the aluminium-

wrapped tube in the freezer.
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This purification process substantially decreabesamount of bilirubin Id
and Xllla in the sample, the yield of such prepared bilinubia is around 70 %.

3.2 Isolation of studied compounds

Studied compounds were isolated from tissues, &ild serum samples

as well as solutions fromm vitro studies.

3.2.1 Isolation of tissue bilirubin

Bilirubin was isolated from tissues by the methaedaading to Zelenkat al.
(Zelenka et al., 2008). The whole process was dmaer dim light. Small piece of
tissue sample (10-100 mg) was weighted into thestiglatube, mixed with
300pumol-L* of internal standard (mesobilirubin in DMSO), ®aof antioxidant
BHT (2,6-di-tert-butyl-4-methylphenol) and glass water. The mixture was
homogenized with the glass rod and p0of water was added. Bile pigments from
the sample were extracted by addition of 6 mL othaeol/chloroform/n-hexane
(40/20/4, viviv) and concentrated into small dropliecarbonate buffer (pH 10) that
was analysed by high-performance liquid chromatalgyg HPLC).

3.2.2 Isolation of bilirubin photoisomers

Bilirubin PI from serum samples were isolated byimg 20uL of serum
with 180puL of 0.1 mol-L* di-n-octylamine acetate in methanol. The solutivas
vortexed and centrifuged for 3 minutes at 3,000 X'igis solution was used for
determination of bilirubin Pl content by HPLC.

Bilirubin PI per se were isolated by modification of methods by Sablhl.
(Stoll et al., 1982; Stoll et al., 1979) and Bonrettal. (Bonnett et al., 1984). One
hundred mg of unpurified bilirubin was mixed witloQL mL of basified methanol
(1 % solution of ammonium in methanol) and let iesdlve. The solution was
spread into 10 Petri's dishes and photo-irradiafed 90 minutes by the
phototherapeutical device Lilly (TSE, Czech ReprjbliPhoto-irradiated solution
was gradually transferred into Erlenmayer flask awhporated under vacuum
at 60 °C.
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The residue was dissolved in pure methanol andntied¢drom unconverted
bilirubin by centrifugation. The supernatant wadtrdted under vacuum and
evaporated again. The residue was dissolved in pathanol and transferred into
brown vial and evaporated under the stream of géino The product was dissolved
in the solution methanol/chloroform (1:1, v/v), arskparated by thin layer
chromatography (TLC) into 8 main bands which weratrazted and
re-chromatographed at the same conditions. Eighteenpounds were prepared
by this method, among them bilirubin and biliverdiare identified. Other identified
compounds were ZE-/EZ-bilirubin and lumirubin.

3.2.3 Isolation of mono- and bisglucuronosyl conjuages

Bilirubin conjugates were isolated from bile acaongdto Spivak and Carrey
(Spivak and Carey, 1985). Bile sample was mixeth &didified methanol (1:2, v/v),
vortexed and centrifuged at 3,000 x g for 5 minudesl 20uL of such prepared
sample was analyzed using HPLC.

3.3 Analysis of studied compounds

3.3.1 High performance liquid chromatography (HPLC)

Analysis of tissue bilirubin was provided by HPLCetimod according
to Zelenkaet al. (Zelenka et al., 2008). FifthyL of the polar droplet, prepared
by the extraction described above, was injected BIRLC Agilent 1200 (CA, USA)
provided by diode-array detector and bilirubin wseparated on the analytical
column Luna C8 (4.6 mm x 150 mm, particlesu3/100 A; Phenomenex, CA,
USA). The used mobile phase was prepared from 3ffOnater, 450 g of methanol
and 7.5 mL of tetrabutylammonium hydroxide. Thegftnobile phase was adjusted
by phosphoric acid to the final value in the rabgénveen 9 and 9.3. The signal was
stored at 440 nm with 550 nm as the reference \eagéh.

Analysis of bilirubin Pl was provided by a modifiedethod according
to McDonaghet al. (McDonagh et al., 1989). TwenplL of prepared sample was
injected on the HPLC system Agilent 1200. The sapam was provided on the
column Poroshell SB-C18 (4.6 mm x 100 mm, 17 particles; Agilent, CA, USA)
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with the mobile phase composed of 0.1 mdldi-n-octylamine acetate in methanol
and water in different ratios (92:8 or 90:10, v/ife signal was stored at 453 nm.

Analysis of bilirubin Pl and conjugates was perfethby a modified method
according to Spivak and Carey (Spivak and Caregs5L9TwentyulL of prepared
sample was injected onto Purospher RP-18 colunmnix 250 mm, um patrticles;
Merck, Germany). The pigments were eluted usingaalignt of methanol (A) and
1 % ammonium acetate (pH 4.5, B). The gradient kmasr from the beginning till
20 minutes (60 % A to 100 % A), and followed byasaic elution with pure
methanol till the end of analysis (35 minutes). Bignal was stored at 450 nm. This
method is suitable for separation of bilirubin meramd diconjugates and also
for determination of bilirubin Pl in combination thiMS.

MS analyses were performed in collaboration withcufy of Natural
Sciences, Charles University in Prague (RNDr. $jicbn Escuire 3000 mass
spectrometer (Bruker Daltonics, Germany) coupleth vélectrospray ionisation.
The measurement was provided in a negative mode. fisses were scanned
in the range between 50 and 800 m/z. The capidaitywas set at -106.7 V.

3.3.2 Thin layer chromatography

Preparative TLC was used for isolation of purerbdin PI. Photo-irradiated
mixture of bilirubin was dissolved in methanol/adform (1:1, v/v) and injected
onto silicagel plate (Kieselgel 60; Merck, Germanyhe plate was developed
in a mobile phase composed of chloroform/metharaiéw (40:9:1, Vv/v/v).
The extraction of separated bands was performexd tlse mobile phase and isolated
pigments were re-chromatographed using the sanditoons.

3.3.3 Spectrophotometric determination

Absorption spectra of isolated bilirubin Pl wereaseared in methanol in the
range of wavelengths 200 and 900 nm against pur¢hamel as blank
(spectrophotometer Lambda 25, Perkin ElImer, MA, USA

- 46 -



3.3.4 Determination of free bilirubin (Bf)

Effect of bilirubin Pl on Bf levels was studied lay peroxidase method.
The standard stock solution of horseradish pereddBiRP) was made (1 mg- il
which was diluted by PBS to different concentrasioanging from 1:2 to 1:100. For
each enzyme dilution the Kp value (oxidation contst bilirubin) was determined.
For enzyme standardization (Kp constant deternunasee also below), the solution
of bilirubin in PBS without alboumin was used (hiloin concentration was between
1 and 3uM). Bilirubin absorbance was measured at 440 nnedspphotometer
Beckman Coulter DU-730, CA, USA). Afterwardsubof H,O, and 10ul of HRP
were added, the solution was slightly mixed and dleerease of absorbance at
440 nm in 60s was measured. The Kp constant wasted according to Kp

calculation formulaX).

Kp :L (1)
[Bf] (IHRP]

Kp = constant for oxidation of bilirubin, )& the initial oxidation velocity (expressed
asAAbs/min)

The measurements of Bf in PBS containing albumima complete culture
medium was performed with enzymes, whose Kp valvese similar (in our
experimental setup enzyme dilutions 1:2, 1:3 andl Were used). Firstly, the
concentration of bilirubin corresponding to 140 mrhd Bf (approximately
24 umol- L bilirubin) was measured. Then the effect of bbiruPI (5, 15 and 30 %
of bilirubin PI) on Bf levels was studied. To assele possible effect of solvent
on Bf concentration, DMSO was used in the same exnation as for dissolving
bilirubin P1.

For the determination of Bf in brains, correctidrtissue bilirubin and tissue
albumin was used. Protein from the brain was isdlaccording to Ericssoat al.
(Ericsson et al., 2007). The brain was weighted diagolved in 10 volumes of 2 %
SDS by sonication. Then, the solution was shakedOQLrpm) at 70 °C for
10 minutes. The residues were removed by centtifug#13,200 x g/5 minutes) and
the albumin content was determined by ELISA kit fat albumin (E91028Ra,
USCN, TX, USA). Samples were measured in doublgt€bISA reader Sunrise

(Tecan, Austria) at 450 nm. The Bf levels wererafseds determined from the total
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brain bilirubin and albumin with the correctionmiblishedn vivo albumin-bilirubin
constant (Ahlfors and Shapiro, 2001).

3.4 Tissue culture

3.4.1 Cell cultures

The effect of bilirubin Pl was tested on human pbélastoma cell line
SH-SY5Y (ATCC, USA), which is used as a standarddehofor studies
on metabolism of neuronal cells. Cells were culurat 37 °C in 5% C®
atmosphere. The culture medium was composed of DMBMHam’s F12 (1:1, viv;
Sigma Aldrich, Germany) supplemented by penicgliréptomycin (1 %; Biosera,
France), non-essential amino acids (1 %), L-glutaidi %; Biosera, France) and
15 % of fetal bovine serum (Biosera, France). Calise passaged twice per week
and not used after the 2(passage for experiments. Cell line was regulatyed

for the presence of Mycoplasmic infection.

3.4.2 Cell treatment

Cells were treated by bilirubin and bilirubin PI different concentrations
prior viability tests and mRNA and FACS analysis.

Bilirubin was heated to 37 °C before solving in D®ISFive hundreqig
of bilirubin was dissolved in 170L of DMSO and added into cultivation media to
its final concentration of 2gmol-L'. The concentration was measured

spectrophotometrically at 468 nm and calculatethfformula (2).
[Total bilirubin] = Abs/48,000 3

Bilirubin PI were dissolved same way as bilirubs@0pug of bilirubin Pls
were dissolved in 170L of DMSO. Bilirubin Pl were mixed together in thatio 1:1
and dissolved 10 times by PBS. From this stocktgwiuhere were added different
volumes to medium with or without bilirubin to cteaa solution with final
concentrations of bilirubin PI 5, 15 and 30 % (frotime final concentration
of bilirubin).
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Cells were treated by medium that contained bilitul§24 pmol-L™),
bilirubin and bilirubin PI (24umol- L* UCB + 5, 15 or 30 % PIs), pure bilirubin Pls
(5, 15 or 30 %) and DMSO (the same volume of DMSQ@sed for UCB solving).

3.4.3 Cell viability testing

3.4.3.1 MTT Assay

MTT is a standard method used for cell viabilityetenination. The method
is relatively sensitive and is based on the tramsétion of water soluble compound
3-(4,5-dimethylthiazol-2-yl)-2,5-difenyl tetrazotiu bromide (MTT; Sigma Aldrich,
Germany) into insoluble purple formazan. This regncis provided enzymatically
by live cells.

Cells were seeded into multi-well plate and let siet. The other day,
the culture medium was removed and replaced bywamedium which contained
studied compounds (bilirubin, bilirubin PI, combiloa of both, DMSO). After
incubation for required time period, 8Q of concentrated MTT (5 mg- ) was
added into each well. After further 1 hour incubatithe culturing medium was
removed and resulting formazan crystals were dissblin DMSO. After next
10 minutes, the signal was read using a micropkdder (Sunrise, Tecan, Austria).
The resulting absorbance at 570 nm reflected tHeviedility (Ferrari et al., 1990;
Mosmann, 1983).

3.4.3.2 XTT Assay

Another method used for cell viability determinatis XTT assay, which is
based on the same principle as MTT, however XTB-fs(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide; Signfsdrich, Germany] is able
to form formazan which is water soluble and thus dmount of experimental steps
is reduced.

Cells were seeded into a multi-well plate. Mediumthvstudied compounds
(bilirubin, bilirubin PI, combination of both, DMSQvas added into wells with cells
and also in wells without cells. This served tongfiate the action of medium itself
to reduce XTT. After appropriate time period, @0of XTT solution was added into

each well. The plate was incubated for other 2 ©iamd after this period signal
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at 450 nm was read using a microplate reader (Senmhe wavelength 630 nm was

used as reference.

3.4.3.3 CellTiter-Blue Assay

CellTiter-Blue Assay (Promega, USA) contains resazwhich is reduced
into resorufin by living cells, which could be detéened by measurement of the
fluorescence signal at 58684,

Cells were seeded into a multi-well plate suitabitg fluorescence
measurements (black plate with transparent botto@g)the other day, the cells
were treated by studied compounds (bilirubin, bidin PI, combination of both,
DMSO) and the same medium was added also into ewglty (wells without cells).
After the required incubation, 20. of CellTiter-Blue reagent was added into each
well and the plate was incubated for further 1 hotine fluorescence was read

at 560 nm Ex/590 nm Em using a microplate readenriSe) from the bottom.

3.4.3.4 Cell Titer-Glo Assay

CellTiter-Glo Assay (Promega, USA) is based on mesment of ATP
released from the live cells. Firstly, the assaytare inhibits all endogenous
enzymes that are released during the cell deatier Afat the cell lysis is initiated
and ATP released from the cells is transformingféuin (from the assay) into
oxyluciferin which luminescence is measured. Thethnod is the most sensitive out
of all used viability assays.

Cells for the experiment were prepared the same agajor the CellTiter-
Blue, only difference was the white plate insteddlack. After incubation with
studied compounds, the plate was removed fromnbebiator and let cool to room
temperature for 30 minutes. One hundpgdof CellTiter-Glo was added into each
well, the plate was shaken for 2 minutes and &ffigtr the plate stood for 10 minutes
for the signal stabilization. The luminescence weed at a multi-mode microplate
reader (Synergy 2, BioTek, USA).
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3.5 Gene Expression Analysis

3.5.1 RNA isolation and transcription

Cells were seeded onto 6-well plate in the conedéiotr of 50,000 cells per
cn’ and let to set. The other day the culturing medimas replaced by fresh one
which contained studied compounds (bilirubin, DMS@ells were incubated
for 4 and 24 hours, lysed, and mRNA was isolatedisipng PerfectPure RNA Cell
kit (5Prime, USA). mRNA was transcribed by usingghlCapacity cDNA reverse
transcription kit (Life Technologies, USA).

3.5.2 Real time polymerase chain reaction (RT-PCR)
RT-PCR was performed on ViiA 7 instrument (AppliBibsystems, USA)

in 12uL reaction volumes, containingi & of 10-fold diluted cDNA template from
a completed reverse transcription reaction, 1x SY®Ren Master Mix (Applied
Biosystems, Foster City, CA, USA), and 200-1000 oMforward and reverse
primers. Data were normalized to hypoxanthine phosposyl transferase (HPRT1)
level and expressed in percentage to control. Psimeed for RT-PCR analyses are

given Table 2.

Table 2: List of genes used for analysis of gene expression

Gene Accession Number Forward Reverse
HMOX1 NM_002133.2 atgccccaggatttgtca cccttctgaaagttcctcat
BLVRA NM_000712 cgttcctgaacctgattg aaagagcatcctccaaag
HPRT1 NM_000194 acatctggagtcctattgacatcg  ccgcccaaagg@gaagt

3.6 Statistical analyses

Data obtained from studies on biological effectbitfubin Pl were analyzed
by using GraphPad software Prism 6 (CA, USA). Tiveye expressed as the median
and 25-75% range. Differences between variablese wevaluated by the
Mann-Whitney Rank Sum test. Differences were carsd statistically significant

when p-values were less than 0.05.

-51-



4 Publications

4.1 The biological effects of bilirubin photoisomes

Jasprova J Dal Ben M, Vianello E, Goncharova |, Urbanova Wiroubalova K, Gazzin S,
Tiribelli C, Sticha M, Cerna M, Vitek L

Plos One 2016, 11(2): e0148126
IF =3.234

4.2 Photo-isomerization and oxidation of bilirubinin mammals is dependent
on albumin binding

Goncharova IJaSprova J Vitek L Urbanova M

Analytical Biochemistry 2015; 490: 34-45

IF =2.219

4.3 Sustained reduction of hyperbilirubinemia in Gun rats after
adeno-associated virus-mediated gene transfer of  lioubin

UDP-glucuronosyltransferase isozyme 1A1 to skeletatuscle

Pastore N, Nusco B/anikova J, Sepe RM, Vetrini F, McDonagh A, Auricchio A, Vitd.,
Brunetti-Pierri N.

Human Gene Therapy 2012; 23: 1082-1089
IF =4.019

4.4 Life-long correction of hyperbilirubinemia with a neonatal liver-specific
AAV-mediated gene transfer in a lethal mouse modelof Crigler-Najjar
syndrome

Bortolussi G, Zentillin L,Vanikova J, Bockor L, Bellarosa C, Mancarella A, Vianello E,
Tiribelli C, Giacca M, Vitek L, Muro AF.

Human Gene Therapy 2014; 25: 844-855
IF =3.755

4.5 Improved efficacy and reduced toxicity by ultraound-guided intrahepatic
injections of helper-dependent adenoviral vector irGunn rats

Pastore N, Nusco E, Piccolo P, Castald&/&ikova J, Vetrini F, Palmer DJ, Vitek L, Ng P,
Brunetti-Pierri N.

Human Gene Therapy Methods 2013; 24: 321-327
IF=1.641

-52 -



4.6 Beyond plasma bilirubin: The effects of phototerapy and albumin on brain
bilirubin levels in Gunn rats

Cuperus FJ, Schreuder AB, van Imhoff DE, ViteKVianikova J, Konickova R, Ahlfors CE,
Hulzebos CV, Verkade HJ.

Journal of Hepatology 2013; 58: 131-140
IF =10.401

4.7 Albumin administration protects against bilirubin-induced auditory
brainstem dysfunction in Gunn rat pups

Schreuder AB, Rice AG/anikova J, Vitek L, Shapiro SM, Verkade HJ.

Liver International 2013; 33: 1557-1565

IF = 4.447

4.8 Optimizing exchange transfusion for severe  unogugated
hyperbilirubinemia: Studies in the Gunn rat

Schreuder ABYanikova J, Vitek L, Havinga R, Ahlfors CE, Hulzebos CV, Vade HJ.

Plos One 2013; 8: e77179

IF = 3.534

4.9 Albumin administration prevents neurological danage and death in a mouse
model of severe neonatal hyperbilirubinemia

Vodret S, Bortolussi G, Schreuder AB, Jasprovaitek\., Verkade HJ, Muro AF

Scientific Reports 2015; 5: 16203

IF =5.578

-B53 -



4.1 The biological effects of bilirubin

photoisomers

Jasprova J Dal Ben M, Vianello E, Goncharova |, Urbanova M,
Vyroubalova K, Gazzin S, Tiribelli C, Sticha M, @arM, Vitek L

PL0S ONE 201611(2): €0148126
IF = 3.234

-54 -



@'PLOS ’ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Jasprova J, Dal Ben M, Vianello E,
Goncharova |, Urbanova M, Vyroubalova K, et al.
(2016) The Biological Effects of Bilirubin
Photoisomers. PLoS ONE 11(2): e0148126.
doi:10.1371/journal.pone.0148126

Editor: Reza Khodarahmi, Kermanshah University of
Medical Sciences, ISLAMIC REPUBLIC OF IRAN

Received: May 12, 2015
Accepted: January 13,2016
Published: February 1, 2016

Copyright: © 2016 Jasprova et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was funded by the Czech
Ministry of Health, grant RVO-VFN64165/2015 (http:/
www.mzcr.cz/), the Charles University in Prague,
grants SVV2665161/2015, GAUK No. 556912, and
PRVOUK-P25/LF1/2 (http://www.cuni.cz/), and the
Czech Science Foundation, grant P206/11/0836
(http:/www.gacr.cz/). This work was also supported in
part by the Czech Ministry of Education, grant
KONTAKT LH15097 (http://www.msmt.cz/). The
funders had no role in study design, data collection

RESEARCH ARTICLE

The Biological Effects of Bilirubin
Photoisomers

Jana Jasprova', Matteo Dal Ben?, Eleonora Vianello?, Iryna Goncharova®,
Marie Urbanova®, Karolina Vyroubalova', Silvia Gazzin?, Claudio Tiribelli?, Martin Sticha®,
Marcela Cerna®, Libor Vitek'®*

1 Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University
in Prague, Prague, Czech Republic, 2 Italian Liver Foundation, CSF, Trieste, Italy, 3 Institute of Chemical
Technology Prague, Prague, Czech Republic, 4 Faculty of Science, Charles University in Prague, Prague,
Czech Republic, 5 The Institute for Mother and Child, Prague, Czech Republic, 6 4th Department of Internal
Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

* vitek @cesnet.cz

Abstract

Although phototherapy was introduced as early as 1950’s, the potential biological effects of
bilirubin photoisomers (P1) generated during phototherapy remain unclear. The aim of our
study was to isolate bilirubin Pl in their pure forms and to assess their biological effects in
vitro. The three major bilirubin Pl (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by
photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromato-
graphically separated (TLC, HPLC), and their identities verified by mass spectrometry. The
role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin
was tested by several methods: peroxidase, fluorescence quenching, and circular dichro-
ism. The biological effects of major bilirubin Pl (cell viability, expression of selected genes,
cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumi-
rubin was found to have a binding site on human serum albumin, in the subdomain IB (or at
a close distance to it); and thus, different from that of bilirubin. Its binding constant to albu-
min was much lower when compared with bilirubin, and lumirubin did not affect the level of
unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any
effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabo-
lism or cell cycle progression, nor in modulation of the cell cycle phase. The principle biliru-
bin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on
human neuroblastoma cells.

Introduction

Phototherapy as a treatment option for neonatal hyperbilirubinemia was first used by Cremer
and co-workers in the 1950's [1]. This technique is based on the fact that blue-green light con-
verts bilirubin into more polar derivatives. Configurational and structural photoisomers (PI),
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ZE- and EZ-bilirubins, lumirubin (also called cyclobilirubin) (Fig 1) [2-4], as well as propent-

dyopents and other oxidation products [5,6], can be relatively easily excreted from the body.
Although phototherapy for neonatal hyperbilirubinemia is accepted as the 'gold standard' of

treatment, it may be accompanied with side effects such as impairment of thermoregulation,
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Fig 1. Bilirubin and its photoderivatives. (A) Z,Z-Bilirubin IXa. (B) Z,E-Bilirubin IXa. (C) E,Z-Bilirubin IXa.
(D) Z-Lumirubin IXa.

doi:10.1371/journal.pone.0148126.9001
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mineral dysbalance [7], and direct genotoxic effects on lymphocyte DNA [8]. This might also
be one of the reasons for the increased prevalence of allergic conditions reported in these new-
borns [9]. In addition, intensive phototherapy in very low birth-weight newborns has been
associated with increased risk of ileus [10]; also surprisingly by increased mortality, as demon-
strated in the Collaborative Phototherapy Trial, as well as the NICHD Neonatal Network Trial
[11,12].

The neurotoxicity of bilirubin is directly associated with the concentration of the fraction
unbound to albumin (or other solubilizing substances), which is called Bf (bilirubin free)
[13,14]. Bf is critically dependent on the presence of compounds that are potentially competing
with bilirubin in binding to albumin [15]. Nothing is known about whether bilirubin PI may
affect the bilirubin-albumin interaction. Previous studies on the biological effects of bilirubin
photoproducts [16-23] suffered from a major limitation (insufficient purity of the bilirubin
photoproducts), as well as inconsistent study designs. Thus, there is still uncertainty on the
potential toxicity of bilirubin breakdown products not only for the central nervous system, but
also other organs.

Therefore, the aim of the current study was to isolate and characterize pure forms of biliru-
bin PI; and then to assess their potential effects on bilirubin-albumin binding, as well as their
possible biological effects in vitro using the neuroblastoma cell line SH-SY5Y.

Materials and Methods
Chemicals

The bilirubin (AppliChem, Darmstadt, Germany) was purified before use, according to McDo-
nagh and Assissi [24]. The chloroform and di-n-octylamine were purchased from Sigma (MO,
USA). The methanol was from Merck (Darmstadt, Germany), and ammonia from Penta
(Czech Republic).

Because of light-sensitivity of bilirubin and bilirubin PI, all procedures were carried out
under dim light in aluminium wrapped flasks. Evaporation was performed under vacuum and
stream of nitrogen.

Preparation of PI

The pure bilirubin photoderivatives were prepared as previously described [25-27] with a
slight modification of the original protocol. Briefly, bilirubin (100 mg) was dissolved in slightly
basified methanol (1% NHj solution in methanol); the solution underwent 90 minutes of
photo-irradiation using a Lilly phototherapeutical device (TSE, Czech Republic), composed of
a field of LEDs emitting light (wavelength range = 430-500 nm with a broad peak between 445
and 474 nm (width at half max) with a maximal spectral irradiance of 100 WW/cm?/nm corre-
sponding to the total irradiance of 3.1 mW/cm?®. The sample was then evaporated under vac-
uum, dissolved in pure methanol, decanted from the residual bilirubin, and re-evaporated. The
residue of bilirubin PI was protected from light, and stored at -20°C until use.

Thin layer chromatography

The residue after photo-irradiation was dissolved in a small amount of methanol:chloroform
(1:1, v/v), and separated by thin layer chromatography (200 x 200 x 0.25 mm Kieselgel 60 TLC
plates [Merck, Darmstadt, Germany]; the mobile phase = chloroform:methanol:water, 40:9:1,
v/v/v). During the first chromatography, the mixture of bilirubin derivatives was separated into
8 major bands, which were extracted using the mobile phase, evaporated to dryness, and then
re-chromatographed using the same conditions. The individual separated compounds were re-
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extracted, the solvent evaporated, and the isolated compounds were stored at -20°C until used.
The isolated compounds 1 and 7, corresponding to ZE/EZ-bilirubins and lumirubin, as verified
by HPLC [28,29] (Figs 2 and 3, also see Results), in a 1:1 ratio, were used for functional and
biological studies as being representative of the principle bilirubin PL

High-performance liquid chromatography analyses

The HPLC analyses were performed using an Agilent 1200 system (CA, USA) with a diode-
array detector. The method was a modification of that by McDonagh et al. [28,29]. The mobile
phase consisted of 0.1 M di-n-octylamine acetate in methanol and water; the stationary phase
was represented by a Poroshell 120, SB-C18 column (4.6 x 100 mm, 2.7 um; Agilent, CA,
USA). Samples were prepared by mixing 20 pl of bilirubin solution with 180 pl of ice-cold 0.1
M di-n-octylamine acetate in methanol, then vortexed and centrifuged to eliminate proteins.
Twenty pl of the prepared sample was injected onto the column.

Spectrophotometry

The absorption spectra of pure bilirubin PI were measured using a Lambda 25 spectrophotom-
eter (Perkin Elmer, USA) in the spectral range from 200 to 900 nm. Samples for analyses were
diluted in pure methanol, and measured against methanol as the blank.

Mass Spectrometry

Mass spectra were measured by using an Escuire 3000 mass spectrometer (Bruker Daltonics,
Germany) coupled with electrospray ionization. All samples for MS analysis, dissolved in
methanol, were injected directly on MS and measured in a negative mode. The masses were
scanned in the range between 50 and 800 m/z. The capillary exit was set at -106.7 V.

Estimation of binding constant by fluorescence quenching

A fluorescence quenching method was used for measurement of either lumirubin-albumin or
bilirubin-albumin interactions, as well as their binding constants [30]. The determination is
based on the fact that bile pigments do not emit any fluorescence; on the other hand, human
serum albumin (HSA) contains a tryptophan residue (Trp-214) in the subdomain ITA, which is
responsible for its fluorescence. Thus, the binding constant for bilirubin and lumirubin to HSA
was determined by quenching of the intrinsic Trp fluorescence.

For the Ka determination, formula (1) was used:

F,—F

Ka =
F(CLan‘

(1)
¢,
- where F, was the fluorescence of HSA without a quencher, F the fluorescence of HSA with a
quencher, C; was the quencher concentration, and Cp was the concentration of HSA.

The effect of cooperative binding of lumirubin and bilirubin was also studied, and the
results were compared to the Ka obtained in the systems with biliverdin and gossypol, which
served as a displacing agent of bilirubin from HSA [31,32].

Characterization of the bile pigment albumin binding sites by circular
dichroism (CD) spectroscopy

Unbound pigments were dissolved in 0.1 mol/L NaOH and mixed with the HSA solution in
PBS (pH 7.4) at the molar ratio [pigment]/[HSA] = 1/1, the concentration of the pigment was
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A) B)

ucB
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Fig 2. Compounds produced by bilirubin phototherapy. (A) TLC plate after first chromatography. (B)
Most important compounds 1 and 7 were separated by re-chromatography from the 1! (upper panel), and 7"
zone (lower panel). UCB, unconjugated bilirubin.

doi:10.1371/journal.pone.0148126.9002

1.5 x 10~ mol/L. Bilirubin did not undergo aggregation, as verified by spectrophotometry [33].
CD spectra were obtained using a J-810 spectropolarimeter (Jasco, Japan) and analyzed as
described elsewhere [34]. The method is based on the fact that the unbound pigment does not
give any CD signal, and monitoring of their CD intensity provides information about their co-
binding or displacement and localization in the albumin subdomains. For determination of the
subdomain for lumirubin binding two compounds were used, hemin and bilirubin, as marker
ligands for subdomain IB and IIA, respectively [31,35].
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Fig 3. HPLC chromatograms of isolated bilirubin PI. (A) HPLC chromatogram of band 1 from TLC—

mixture of ZE/EZ-bilirubins; peak 1 = EZ-bilirubin, peak 2 ZE-bilirubin. (B) HPLC chromatogram of band 7
from TLC—Z-lumirubin.

doi:10.1371/journal.pone.0148126.9003

Determination of Bf

The effect of bilirubin PI on Bf levels was studied by a peroxidase method [36]. Briefly, the
standard stock solution of horseradish peroxidase (HRP) was made (1 mg/ml), which was
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diluted by PBS to different concentrations ranging from 1:2 to 1:100. For each enzyme dilution
the K, value (oxidation constant of bilirubin) was determined. For enzyme standardization (K,
constant determination, also see below), the solution of bilirubin in PBS without albumin was
used (bilirubin concentrations were between 1 and 3 uM). Bilirubin absorbance was measured
at 440 nm (Beckman Coulter DU-730 spectrophotometer, CA, USA). Afterwards, 5 ul of H,O,
and 10 pl of HRP were added, the solution was slightly mixed, and the decrease of absorbance
at 440 nm in 60 s was measured. The K}, constant was counted according to K}, calculation for-
mula (2):
Vo

T L] ?
- where K, = constant for oxidation of bilirubin, and V|, = the initial oxidation velocity
(expressed as AAbs/min).

The measurements of Bf in PBS-containing albumin or in complete culture medium was
performed with enzymes whose K, values were similar (in our experimental setup, enzyme
dilutions of 1:2, 1:3, and 1:4 were used). We first determined the bilirubin concentration corre-
sponding (under the conditions used) to 140 nM (approximately 24 uM bilirubin). Then, we
studied whether Bf is affected by the addition of increasing concentrations of bilirubin PI (15%
and 30% of total bilirubin concentrations, respectively, based on the fact that as much as 30%
decrease of total serum/plasma bilirubin concentrations can be achieved during phototherapy
of neonatal jaundice [37]). A mixture of ZE/EZ-bilirubins and Z-lumirubin was used for these
studies. To assess the possible effect of solvent on Bf concentration, DMSO was used in the
same concentration as for dissolving of bilirubin PI. To check the stability of bilirubin PI, con-
centrations of bilirubin IXa, and EZ/ZE-bilirubins as well as Z-lumirubin after 1 and 24 hrs in
the incubation medium were analysed by HPLC method (see above). Whereas all studied pig-
ments did not change their concentrations after 1 hr and bilirubin IXc, and EZ/ZE-bilirubins
were stable also after 24 hrs under conditions used, concentrations of Z-lumirubin decreased to
31% after 24 hrs.

Cell culture studies

The SH-SY5Y human neuroblastoma cell line was used for the in vitro studies (ATCC, Manas-
sas, VA, USA). Authentication of the cell line was confirmed by independent laboratory (Gen-
eri Biotech, Czech Republic). The cells were tested for Mycoplasma contamination using the
MycoAlert luminescence test (Lonza, Switzerland). Cells were cultured in a mixture of MEM
Eagle and Ham’s F12 media (1:1, v/v), containing 15% of fetal bovine serum, in 75 cm? culture
flasks, at 37°C, in a 5% CO, atmosphere. For functional tests, cells were seeded at a concentra-
tion of 50,000 cells per 1 cm?

Cell viability analyses

The effect of bilirubin (24 uM), pure bilirubin PI (5%, 15%, and 30% of bilirubin PI in complete
culture media), and the combination of bilirubin with bilirubin PI on cell viability was analyzed
by both MTT (Sigma, Germany) as well as by luminescent CellTiter-Glo (Promega, USA) tests,
using a Sunrise Microplate Reader (Tecan, Austria) and Synergy 2 Multi-mode Microplate
Reader (BioTek, USA), respectively.

Gene expression studies

The effect of bilirubin and bilirubin PI (24 uM bilirubin (corresponding to 140 nM Bf), 15%
bilirubin PI, and a mixture of bilirubin and 15% PI) on the expression of genes involved in
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Table 1. List of genes used for gene expression analyses.

Gene Accession Number Forward Reverse Ampl Lenght Efficiency
CFTR/MRP (ABCC1) NM_004996.3 tgatggaggctgacaagg gcggacacatggttacac 127 99.20
MDR/TAP (ABCB1) NM_000927 tgctcagacaggatgtgagttg aattacagcaagcctggaacc 122 92.90

HMOX1 NM_002133.2 atgccccaggatttgtca cccttctgaaagttcectcat 95 95.00
HMOX2 NM_001127204.1 tgagtataacatgcagatattca ccatcctccaaggtctct 75 92.40
BLVRA NM_000712 cgttcctgaacctgattg aaagagcatcctccaaag 87 96.00
CyclinD1 XM_006718653.1 acagatgtgaagttcatt tagtaggacaggaagttg 110 96.50
CyclinE1 NM_001238.2 agcccttgggacaataatg cggtcatcatcttctttg 76 94.50
GAPDH NM_002046 tcagccgcatcttettttg gcaacaatatccactttaccag 146 103.00
HPRT1 NM_000194 acatctggagtcctattgacatcg ccgcccaaagggaactgatag 193 105.00

HPRT1 and GAPDH were used as house-keeping genes.

doi:10.1371/journal.pone.0148126.t001

heme catabolism and in the regulation of the cell cycle (Table 1) was investigated in SH-SY5Y
cells exposed to pigments for 1 and 24 hrs, respectively. Briefly, total RNA was isolated in TriR-
eagent (Sigma-Aldrich, St Louis, MO, USA) according to the manufacture's protocol and
stored at -80°C until analysis. RNA quantity and purity were evaluated spectrophotometrically
at 260 nm, and RNA integrity was evaluated by agarose gel electrophoresis. Retrotranscription
of total RNA (1 pg) was performed with an iScript cDNA Synthesis Kit (Bio-Rad Laboratories,
Hercules, CA, USA) according to the manufacturer's instructions. The final cDNA was con-
served at -20°C until used. The primers for the targeted genes and the two housekeeping genes
[hypoxanthine-guanine phosphoribosyltransferase (Hprtl) and glyceraldehydes 3-phosphate
dehydrogenase (Gapdh)] were designed using Beacon Designer 2.0 software (PREMIER Bio-
soft International, Palo Alto, CA, USA). The quantitative analysis of gene expression was
performed by real-time PCR. The reaction was performed on 25 ng of cDNA, with the corre-
sponding gene-specific sense and anti-sense primers (250 nM, all genes) with iQ SYBER Green
Supermix in an I-Cycler iQ thermocycler (Bio-Rad Laboratories, Hercules, CA, USA). The
thermal cycler conditions consisted of 3 min at 95°C; plus 40 cycles each at 95°C for 20 s, 60°C
for 20 s, and 72°C for 30 s. A melting curve analysis was performed to assess product specific-
ity. The relative quantification was made using iCycler iQ software, version 3.1 (Bio-Rad Labo-
ratories, Hercules, CA, USA), by the AACt method, taking into account the efficiencies of the
individual's genes, and normalizing the results to the two housekeeping genes [38,39]. The lev-
els of mRNA were expressed relative to a reference sample. The results are expressed as the
mean + SD.

Heme oxygenase activity determination

The activity of heme oxygenase (HMOX) was measured as described previously [40]. In brief,
culture media harvested from SH-SY5Y batches were added to CO-free, septum-sealed vials.
CO released into the vial headspace was quantified using gas chromatography with a reduction
gas analyzer (Peak Laboratories, Mountain View, CA, USA).

Flow cytometry

Cells for flow cytometry analyses were treated with bilirubin (24 uM corresponding to 140 nM
Bf), bilirubin PI (15%), and a combination of bilirubin and PI for 1 and 24 hrs. At the end of
the treatment the medium was aspired, the cells were washed twice with PBS, then fixed by
adding 5 ml of cold (-20°C) 80% ethanol drop-wise under constant gentle vortexing. After
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centrifugation (310 x g; RT; 6 min), the sediments were re-suspended in 1 ml of staining solu-
tion in PBS containing 0.1% v/v Triton X-100, 20 pug/ml propidium iodide (PI), and 0.2 mg/ml
DNAse free RNaseA. Samples were incubated in the dark for 30 min at RT, and subjected to
FACS analysis (cytometer BD FACSCalibur TM; and CellQuest software, BD Biosciences, San
Jose, CA). Data were collected for 10,000 events per sample.

Statistical analyses

Data are presented as the median and 25-75% range. Differences between variables were evalu-
ated by the Mann-Whitney Rank Sum test. Differences were considered statistically significant
when p-values were less than 0.05. Statistical analyses were performed using Prism 6 software
(GraphPad, CA, USA).

Results
The isolation of bilirubin PI

Photo-exposure of unconjugated bilirubin, under the conditions defined above, lead to the gen-
eration of 18 different PI (Fig 2). These compounds were further characterized by HPLC, UV/
VIS spectrophotometry, and mass spectrometry to check for their purity and identity.

Out of these 18 individual substances, several were clearly identified (unconjugated biliru-
bin, biliverdin, ZE/EZ-bilirubin, and lumirubin); the others are likely to represent unstable,
oxidized, and as yet undefined intermediates. Pigments 1 and 7 (Fig 2), identified as ZE/EZ-bil-
irubins and lumirubin (the principal bilirubin PI), were used for further functional studies.
(Figs 2 and 3).

Effect of bilirubin PI on the bilirubin-albumin binding

To investigate whether bilirubin PI might affect Bf levels, we directly analyzed this effect by
measuring Bf using a peroxidase method. The addition of 3.6 and 7.2 uM of bilirubin PI (corre-
sponding to 15% and 30% of total bilirubin concentration, respectively) had no effect on the Bf
concentration (Fig 4).

To a solution with 140 nM Bf concentration (approximately 24 (M bilirubin), bilirubin PI
were added in increasing concentrations (15% and 30%); the resultant bar was constructed
from the difference between the decrease of absorbance after addition of bilirubin PI or DMSO
to the bilirubin solution. n = 6 for each group.

These data were further confirmed by the study of lumirubin-albumin binding (Table 2),
where a fluorescence quenching method was used for the estimation of the albumin binding
constant (Ka) for bilirubin and lumirubin. Lumirubin had a significantly lower Ka compared
to bilirubin (Table 2). Its effect was comparable with that of biliverdin, which does not affect
bilirubin binding to serum albumin because their high-affinity binding sites are located in two
different subdomains (IB for biliverdin, and IIA for bilirubin). In line with this conclusion, the
bilirubin-albumin binding constant was notably affected by gossypol, a displacer of bilirubin
from HSA [31,32]. Therefore, lumirubin only moderately affected bilirubin binding to HSA
(Table 2).

The results of the CD analyses further supported this conclusion. Bilirubin was found to be
bound to a high-affinity site inducing the CD positive couplet [460(+)/410(-) nm] that is char-
acteristic for the bound P-conformer of bilirubin (see Fig 5, left panel). In the complexes with
HSA, bilirubin shows an absorption maximum at 475 nm, which is shifted closer to the red
spectrum compared to the unbound pigment in solution (440 nm; as can be seen on Fig 5, left
panel). In contrast, CD spectrometric analysis of the lumirubin-albumin complex revealed that
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Fig 4. Effect of bilirubin Pl on Bf concentrations.

doi:10.1371/journal.pone.0148126.9004

lumirubin has one binding site on HSA with right-helical conformation (it is also a P-
conformer) of the bound pigment [weak positive couplet 445(+)/407(-) nm; Fig 5, left panel].
The obtained lumirubin-HSA complex had also a slight red-shifted absorption band with the
maximum at 445 nm, compared to unbound lumirubin that absorbed at 430 nm.

To clarify the albumin domain that binds lumirubin, three different complexes of HSA and
the marker ligand were used (Fig 5, right panel). The HSA-bilirubin system (green line, Fig 5A)
was first compared with that of HSA-lumirubin (blue line). The resulted signal (black line) of
the lumirubin-(HSA-bilirubin) complex is not the sum of lumirubin-HSA and bilirubin, and
has indicating that the bilirubin and lumirubin binding sites are not independent. Lumirubin is
bound close to the bilirubin high-affinity binding site, and it is able to affect bilirubin binding
to HSA. In the HSA-hemin system (CD spectrum in green, Fig 5B), the addition of lumirubin
did not induce the positive couplet characteristic for lumirubin bound to HSA (Fig 5B). It con-
firms that lumirubin and hemin bind to the same binding site. The binding site of lumirubin is
localized in the subdomain IB [35] (or at a close distance to it), so the hemin presented there
hindered the lumirubin binding. However, in the case where both bilirubin and hemin were
bound to HSA (green spectrum in Fig 5C), the addition of lumirubin led to a moderate
decrease of the bilirubin signal. This strongly suggests that the binding of lumirubin moder-
ately affects bilirubin binding to HSA, and that the lumirubin binding site is localized close to
the hemin and bilirubin binding sites.

Table 2. The binding constant for the ligand-HSA complexes.

bilirubin-HSA lumirubin-HSA bilirubin-(HSA-biliverdin) bilirubin-(HSA- gossypol) bilirubin-(HSA-lumirubin)
Ka[M™"] (1.8+0.3)-108 (9.3+0.8)-10° (1.1£0.4)-108 (1.4+0.2)-10° (8.7+1.3)-107

HSA, human serum albumin; Ka, the binding constant

doi:10.1371/journal.pone.0148126.t002
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Fig 5. (Left panel) CD and UV/Vis absorption spectra of unbound (broken line), lumirubin (blue),
bilirubin (red), and their complexes with HSA (full line). Pigment/HSA molar ratio = 1/1; ¢ (pigment) = 1.5
x 10~° mol/L. Bilirubin was dissolved in 0.1 mol/L NaOH and mixed with the HSA solution in PBS (pH 7.4) at
the molar ratio [pigment)/[HSA] = 1/1, the concentration of the pigment was 1.5 x 10~° mol/L. (Right panel)
Effect of lumirubin on HSA binding with different marker ligands: bilirubin (A), hemin (B), and with
both bilirubin and hemin (C). CD spectra of HSA-marker ligand are shown in green, lumirubin-HSA
complex and lumirubin bound to the complex HSA-marker ligand are shown as blue and black full lines,
respectively. Black arrows show the changes in signals after formation of lumirubin-(marker ligand-HSA)
complexes. Lumirubin/HSA/marker molar ratio = 1/1/1.

doi:10.1371/journal.pone.0148126.9005

Collectively, our data indicate that lumirubin only negligibly influences bilirubin binding to
albumin. Although lumirubin binds to albumin, its binding has a much lower affinity and
occurs at a different binding site. Nevertheless, the binding sites for bilirubin and lumirubin are
at a close distance to one another, and these binding sites are not independent.

The effect of bilirubin Pl on SH-SY5Y cell viability

The short-term exposure (60 min) of bilirubin or its PI did not have any effect on cell viability
(data not shown). However, cell viability was significantly reduced after the 24 or 48 hr cell
treatments with bilirubin, and this effect further increased after 48 hours of exposure (Fig 6A
and 6B, respectively). In contrast, bilirubin PI did not affect cell viability, even after 48 hr expo-
sure and a high concentration used (30%) (Fig 6A and 6B).
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doi:10.1371/journal.pone.0148126.9006

The effect of bilirubin and bilirubin Pl on expression of genes involved in
the heme catabolic pathway and cell cycle progression

Bilirubin is the final product of the heme catabolic pathway, and its formation is under the con-
trol of both HMOX and biliverdin reductase (BLVRA). Since these enzymes are protective
tools of the organism against increased oxidative stress [41,42] (as well as responsible for biliru-
bin production), we investigated the effects of PI on the expression of these genes.

The expressions of both HMOX1 and HMOX2 were significantly increased after 1 hr of
exposure to toxic concentrations of bilirubin, and the same trend was observed also for BLVRA
(Table 3). These changes in mRNA expressions were, however, not translated onto increase of

Table 3. The effect of bilirubin and bilirubin Pl on expression of selected genes.

Bilirubin 15% PI Bilirubin+15% Pl
HMOX1 232.2 (197-240)* 105.6 (93-109) 277.1 (175-358)*
HMOX2 130.3 (129-166)* 84.8 (74-88) 100.3 (91-151)
BLVRA 142.9 (109-179) 86.3 (53-122) 158.4 (94-180)
MRP1 76.3 (71-90) 84.9 (51-100) 76.7 (61-89)
MDR1 54.9 (35-84) 86.3 (35-113) 87.3 (33-99)
Cyclin D1 71.8 (64-157) 64.5 (52-81)* 175.3 (137-232)*
CyclinE 78.9 (50-126) 76.4 (59-84) 84.3 (77-106)

data are expressed as % of control (median and 1Q range), n = 5 for each measurement. PI, bilirubin

photoisomers
* p < 0.05 vs. control

doi:10.1371/journal.pone.0148126.t003
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HMOX activity (data not shown). Interestingly, exposure to bilirubin PI did not lead to the
changes in mRNA expression profiles seen after exposure to bilirubin.

Additionally, no difference was found in the expressions of either MRPI or MDRI1—genes
coding transporting proteins responsible for export of multiple compounds also possibly
including bilirubin [43,44]. Expressions of genes encoding cyclins D1 and E involved in regu-
lating the G, to S phase, and G; to S phase transition, respectively [45,46] tended to be down-
regulated upon exposure to bilirubin and bilirubin PI (Table 3). Nevertheless, these mRNA
expression changes were not functionally translated, as evidenced by flow cytometry analysis of
the cell cycle phase of the SH-SY5Y cells exposed to bilirubin, bilirubin PI, or their mixture.
This analysis revealed that compared to control cells, treatments with studied pigments had no
effect on the cell cycle progression after either short or long exposure (data not shown).

Discussion

Phototherapy is a non-invasive and effective treatment for neonatal hyperbilirubinemia, as
well as one which facilitates the disposal of toxic bilirubin and avoids brain injury. Since its
development in the 1950s, it has become a standard and widely available treatment for this
condition.

Phototherapy can reduce serum bilirubin by its conversion into its structural photoisomers
and photooxidation products, which are excreted from the human body without the need of
further biotransformation in the liver. It is generally believed that bilirubin photoisomers are
non-toxic; however, no clear evidence for this viewpoint exists, and insufficient data about bili-
rubin PI's biological effects have thus far been provided. [16-23]. Of note is the fact that in
none of these studies were the pure forms of the bilirubin photoderivatives used, most likely
because of their complicated isolation and handling. To the contrary, short-term as well as
long-term side effects of phototherapy have been repeatedly reported [7-12]; the mechanisms
of which are unclear and might theoretically be accounted for by the biological activities of bili-
rubin PI.

In our experiments, we were able to successfully separate 18 different bilirubin photoderiva-
tives generated during photo-irradiation of bilirubin solution. Out of these, we identified and
isolated the major bilirubin photoderivatives (ZE/EZ-bilirubin and lumirubin) in sufficient
purity and quantity for biological studies.

We were able to demonstrate that these bilirubin PI do not increase Bf levels, and thus do
not increase bilirubin toxicity per se. Lumirubin was found to have only one binding site on
HSA, and this binding site was the same as for hemin (i.e. in the subdomain IB or close to it).
Nevertheless, the bilirubin and lumirubin binding sites on albumin are not totally independent,
because the lumirubin binding site is close to the bilirubin high-affinity binding site; to a cer-
tain extent it is also able to lower bilirubin's ability to bind to HSA. However, this effect is prob-
ably not clinically relevant. In support of this data, we confirmed that lumirubin-HSA's
binding constant is much lower, compared to bilirubin. These data collectively demonstrate
that although lumirubin binds to albumin, the binding has no biological relevance in terms of
any possible influence on bilirubin-albumin binding.

The experiments, focused on the potential cytotoxicity of major bilirubin PI, revealed no
apparent effects on cell viability in our in vitro model, even after prolonged exposure. This was
in striking contrast with the known toxic effects of bilirubin. This indicates that only unconju-
gated bilirubin is toxic, and that the conformational changes induced by irradiation almost
completely abolishes the noxious effects of the pigment on the cell.

Neither bilirubin, nor bilirubin PI had any functional effect on two key enzymes (HMOX
and BLVRA) important in heme degradation and bilirubin production. The lack of any effect
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of bilirubin PI on BLVRA mRNA expression was not expected, since biliverdin to some extent
is also produced during phototherapy [6]. Similar negative results of bilirubin/bilirubin PI
exposure were also found for MRP1 and MDRI mRNA gene expression, indicating that these
transporters are not inducible, at least in our cell system, by either bilirubin or their PI.

Our study has several limitations. First, we only assessed the biological effects of three major
bilirubin PI, ZE/EZ-bilirubins and Z-lumirubin, and thus we cannot exclude that other photo-
products or bilirubin oxidation products formed during phototherapy, especially those short-
lived and not detected in our study, might be toxic. Thus, it is still needed to be carefully
assessed, whether minor oxidation products produced from bilirubin during phototherapy can
exert any biological action. In addition, our studies were only performed on one cell line, repre-
senting a neuronal in vitro model. However, other brain cells, such as astrocytes, microglia, or
even endothelial cells should also be tested; ideally in an organotypic brain slice ex vivo model
to bring conclusive evidence.

In conclusion, our data indicate that the major bilirubin PI, ZE/EZ-bilirubin and lumirubin,
seem to be biologically inert, and do not exert any negative biological effects. The side effects of
phototherapy, theoretically attributable to bilirubin PI, are most likely due to other mechanisms.
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The bilirubin (BR) photo-conversion in the human body is a protein-dependent process; an effective
photo-isomerization of the potentially neurotoxic Z,Z-BR as well as its oxidation to biliverdin in the
antioxidant redox cycle is possible only when BR is bound on serum albumin. We present a novel
analytical concept in the study of linear tetrapyrroles metabolic processes based on an in-depth mapping
of binding sites in the structure of human serum albumin (HSA). A combination of fluorescence spec-
troscopy, circular dichroism (CD) spectroscopy, and molecular modeling methods was used for recog-
nition of the binding site for BR, its derivatives (mesobilirubin and bilirubin ditaurate), and the products
of the photo-isomerization and oxidation (lumirubin, biliverdin, and xanthobilirubic acid) on HSA. The
CD spectra and fluorescent quenching of the Trp—HSA were used to calculate the binding constants. The
results of the CD displacement experiments performed with hemin were interpreted together with the
findings of molecular docking performed on the pigment—HSA complexes. We estimated that Z,Z-BR and
its metabolic products bind on two independent binding sites. Our findings support the existence of a
reversible antioxidant redox cycle for BR and explain an additional pathway of the photo-isomerization
process (increase of HSA binding capacity; the excess free [unbound] BR can be converted and also bound

to HSA).

© 2015 Elsevier Inc. All rights reserved.

In present-day biochemistry, the products of heme catabo-
lism—bile pigments—associate with the cytotoxic and protective
properties in mammals [1-5]. The cleavage of the o-methene
bridge in the heme ring leads to the formation of biliverdin (BV) [6].
BV is only an intermediate product and is reduced to bilirubin (BR)
rapidly. This process is reversible; BR, when oxidized, can be
reverted to BV once again [5—7] (Scheme 1). Such redox recycling
via BV would amplify the protective effect, with each reincarnated
molecule of BR being able to act time and time again as an anti-
oxidant [7]. The indubitable role of bile pigments as antioxidant

Abbreviations: BV, biliverdin; BR, bilirubin; H,0,, hydrogen peroxide; LR,
lumirubin; HSA, human serum albumin; MBR, mesobilirubin; BRT, bilirubin
ditaurate; XBR, xanthobilirubic acid; CD, circular dichroism; PBS, phosphate-buff-
ered saline; UV, ultraviolet; ECD, electronic CD; FeSQO4, iron sulfate; UV—vis,
UV-visible; HPLC, high-performance liquid chromatography.

* Corresponding author.
E-mail address: gonchari@vscht.cz (I. Goncharova).

http://dx.doi.org/10.1016/j.ab.2015.08.001
0003-2697/© 2015 Elsevier Inc. All rights reserved.

and anti-mutagenic agents has been shown by a number of studies
of their protection mechanism [2,4,8—11].

The basis of the redox cycle is a quantitative conversion of BR to
BV during the peroxyl radical attack of BR. However, during the
reaction of unbound BR with OH radicals, BV is produced only as a
minor product [12,13]. BV becomes a significant product only in the
oxidation process of the protein-bound BR [7,13]. This finding sheds
doubt on the proposed antioxidant cycle and mechanism whereby
free (unbound) BR protects from hydrogen peroxide (H,0>) toxicity
[13]. Free BR can simply act by blocking initiation of a radical chain
process or regenerating itself through a resonance-stabilized
radical [12,14,15]. In fact, the rate constant for the reaction of the
serum albumin-bound BR with OH radicals is 30 times higher than
the rate with unbound pigment [9]. This highlights the potential
antioxidant capacity of the bound BR.

In relation with the beneficial functions of the bile pigments, the
essence of the BR neurotoxic effect in newborns also should be
mentioned. The characteristic of linear tetrapyrroles is their non-
planarity (Scheme 1). They adopt a helical conformation that is
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Scheme 1. Heme catabolism and the structure the interconverting, intramolecularly hydrogen-bonded enantiomeric P- and M-conformers of Z,Z—bilirubin (BR) and biliverdin (BV).

fixed by intramolecular hydrogen bonds. In this conformation, the
polar groups are hidden inside the molecule and do not interact
with the environs [16]. It explains the extreme low solubility of BR
in water [17]. The extremely increased concentration of BR in
newborns (>85 uM) leads to lipophilic BR accumulation in certain
brain regions and causes encephalopathy [3,18,19].

A photo-isomerization is the most active pathway during the
treatment of neonatal hyperbilirubinemia by phototherapy (light
wavelengths in the blue—green spectrum [425—550 nm] are most
effective in reducing bilirubin levels) [20]. The outer methane
bridges in BR may be transiently converted from Z to E (Scheme 2),
allowing a 180° rotation of one or both of the outer A and D pyrrole

rings. Two main linear tetrapyrroles were identified as products of
photo-isomerization: lumirubin (LR) (also called cyclic BR) and the
ZE[EZ-isomer of BR [20—22]. The solubility of these photo-products
became higher than that of BR, but it is still very low and the
transport proteins (serum albumins and o-fetoprotein) are
important for BR and its photo-products elimination. When in a
complex with proteins, the intermolecular H-bonds partially
replace the intramolecular ones, which enables the contact of the
polar group of the pigment with water and leads to a lowering of
the lipophilicity of the pigment.

What the two mentioned processes (redox recycling and photo-
isomerization) have in common is the induced changes of BR

Photo isomerization of 4Z,15Z-Bilirubin-IXa

Z-Lumirubin
H CH,

Xanthobilirubic acid

Scheme 2. Conformational photo-isomerization of Z,Z-BR to ZE-BR and its structural photo-isomerization to Z-lumirubin.
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conformation, and both of these processes run more effectively
when the pigment is bound on the protein (serum albumin).
However, the role of the protein in the bioconversion of the bile
pigments has not been discussed yet.

Serum albumin is a main transport protein in the circulatory
system of mammals. It is a single non-glycosylated polypeptide that
has three homologous domains (I, II, and III), each of which is
composed of two subdomains (A and B) [23,24]. Albumin solubi-
lizes BR and acts as a buffer preventing the transfer of BR from the
blood to the tissues.

In our previous works, we characterized and mapped the
binding site location for BR in serum albumins from different
mammals [25,26]. The binding occurs at only a few ligand binding
sites. One primary site and two secondary sites are located in hy-
drophobic cavities in subdomains IIA, 1B, and IIIA, which exhibit
similar binding properties for aromatic and negatively charged li-
gands [23,24,27—-29]. The binding of BR to albumin is stabilized by
various noncovalent forces such as salt linkages, hydrogen bonds,
van der Waals attractions, and hydrophobic interactions. The
binding of BV and one of the possible products of the BR isomeri-
zation, Z,E-BR, was proposed in subdomain IB of human serum
albumin (HSA) [29,30].

In this study, a dynamic model of the BR photo-isomerization
and oxidation, which involves HSA as a matrix, was proposed and
tested in the model system and then also in human serum. In the
first step, the in-depth mapping of the binding sites for BR, its
derivatives (mesobilirubin [MBR] and bilirubin ditaurate [BRT]), the
product of the BR photo-isomerization (lumirubin), and the prod-
ucts of the BR oxidation (biliverdin and xanthobilirubic acid [XBR])
were made using the techniques of fluorescence and circular di-
chroism (CD) spectroscopy applied to the pigment complexes with
serum albumin. In the second step, the obtained mapping and the
model were verified by the photo-isomerization and oxidation of
BR in human serum.

The current work provides a dynamic model of the two bio-
logically important processes: a protein-dependent bilirubin
oxidation and a bile pigment isomerization in mammals. Our model
is based on the first complete characterization of the linear tetra-
pyrrole binding on serum albumin. The obtained data provide new
insight on the mechanism of action and efficiency of BR as an
antioxidant agent. Interactions with serum albumin could also be of
critical importance for understanding the toxicity of BR and its
photo-isomer as well as their distribution in the organism. The
obtained results demonstrate that serum albumin is not only a BR
transport protein but also an important matrix for BR biochemical
conversions in mammals.

Materials and methods
Preparation of samples

The human serum albumin of high purity, globulin- and fatty
acid-free Cohn fraction V (A3782) was purchased from Sigma-
—Aldrich (USA) and was used without further purification. The
stock solutions of the protein were prepared by dissolving 5 mg of
albumin in 1 ml of 0.01 mol L' phosphate-buffered saline (PBS, pH
7.41) at 23 °C. The HSA concentrations were determined spectro-
photometrically by ultraviolet (UV) spectroscopy using the molar
absorption coefficient ¢2g9 = 35,000 L mol~! cm™.

Human serum (H4522) was obtained from Sigma (USA) and
used as received. The concentration of the HSA was
4.81 x 107* mol L™,

Z,Z-bilirubin-IX alpha (635-65-4), bilirubin ditaurate disodium
salt (68683-34-1), biliverdin hydrochloride (55482-27-4),

mesobilirubin-IX alpha (16568-56-2), and xanthobilirubic acid
(15770-19-1) were obtained from Frontier Scientific.

Stock solutions [c(pigment) = 3 x 10~ mol L~!] of BR, MBR, BV,
and XBR were prepared by dissolving the weighted amount of the
pigment in 1 x 1072 mol L~' NaOH. BRT was dissolved in ddHO.
Only freshly prepared stock solutions were used for the experi-
ments. LR was prepared by hydrolysis of the lumirubin dimethyl
ester prepared by irradiation of BR dimethyl ester (Frontier Scien-
tific) as described in Ref. [31]. The molar absorption coefficients for
the pigments in PBS at pH 7.41 were ¢449 = 47,500 L mol~! cm~! for
BR, £373 = 38,400 L mol~"' cm™! for BV, e415 = 47,200 L mol ! cm™!
for MBR, 45 = 49,500 L mol™! cm™' for BRT, &30 =
30,000 L mol~! em™! for LR, and e408 = 29,500 L mol~' cm™! for
XBR.

Solutions containing pigment were manipulated in dim light
and were prepared freshly for each experiment. These solutions
were stored for a maximum of 2 h in the cold and dark under a
nitrogen atmosphere.

For the fluorescence emission measurements, the pigment
concentrations were in the range of 1.5 x 10~/—4.5 x 10" mol L.
The number of pigment binding sites in HSA and the binding
constant of the pigments were obtained by the fluorimetric titra-
tion of the HSA solution with pigment. The quenching of the in-
tensity of Trp—HSA by pigment was measured by changing the
pigment concentration while maintaining the HSA concentration
constant at 3 x 104 mol L™,

For the electronic CD (ECD) measurements, the pigment con-
centrations were in the broad range of 15 x 107°°-12 x
10~4 mol L~ The HSA concentration was 3 x 10~ mol L™, The
working solutions of the HSA—pigment complexes were prepared
from the protein stock solution and a stock solution of pigment by
dilution in PBS. This concentration range corresponds to the molar
ratio range of [pigment]/[HSA] = 0.5—4.

For the ECD ligand competition experiments, a stock solution of
hemin (16009-13-5, Frontier Scientific) was prepared at a concen-
tration of 3 x 10~4 mol L. Complexes with HSA were obtained by
the addition of the stock solutions of the studied pigment and
marker ligands (BR, BV, and hemin) to HSA solutions. HSA con-
centration was kept constant in all of the studied solutions
[c(HSA) = 3 x 107> mol L™'], and the final molar ratios [pigment]/
[HSA]/[ligand] were 1:1:1. All of the measurements were per-
formed 10 min after their preparation.

For the ECD measurements of BR conversions in the human
serum, the samples were prepared by adding the stock solution of
pigments or the same amount of PBS to native serum. The resulting
concentration of HSA in the serum was ¢ = 4.2 x 10°*mol L}, and
the concentration of the added BR was ¢ = 3 x 10~ mol L~}
(17.6 mg/dl or 300 uM, representing potentially dangerous hyper-
bilirubinemia condition) [31]. Photo-isomerization was caused by
irradiation of the samples in vitro by a blue light lamp
(A=405—420 nm) over a period of 3 h with continuous N; bubbling
as described in Ref. [31]. Oxidation of the BR in serum was induced
by the addition of a solution of 0.6 mM H,0; and 0.15 M FeSO4 to
generate a hydroxyl radical mediated injury following incubation
for 2 h at 37 °C in the dark. Hydrogen peroxide (30% H,0,) and iron
sulfate (FeSO4) were purchased from Sigma—Aldrich. All of the
reagents were of the highest grade and quality.

Fluorescence emission, electronic CD spectroscopy, and absorption
in UV—vis region

The ECD, fluorescence emission, and UV—visible (UV—vis) ab-
sorption spectra were measured on a ]-810 spectrometer equipped
with an FDCD-404 L fluorescence accessory (Jasco, Japan). The ECD
and UV—vis absorption spectra were measured in a quartz cuvette
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with an optical path length of 1 cm, 1 mm, 0.5 mm, and 0.1 mm
(Starna, USA) and the fluorescence emission spectra were
measured in a quartz cuvette with an optical path length of 1 cm
(Helma, Germany). The conditions of the measurement included a
scanning speed of 100 nm min~!, a bandwidth of 1 nm, the stan-
dard sensitivity setting, an integration time of 2 s for each spectral
point, and 3 accumulations. The spectrometer was flushed with
nitrogen, and the measured solutions in cuvettes were kept under a
nitrogen atmosphere. The spectra were corrected for a baseline by
subtracting the spectra of the corresponding buffer. The conditions
of the fluorescence emission measurements were as follows:
spectral region of 295—500 nm, excitation wavelength of 286 nm,
response time of 2 s, resolution of 1 nm, bandwidth of 4 nm, and
sensitivity of 700 V. The dependence of the Trp—HSA emission in-
tensity on the HSA concentration was linear in the range of
c(HSA) = 1.5 x 1077—4.5 x 10~ mol L™, The final spectrum was
obtained as an average of 3 accumulations. Correction of the inner
filter effects was made as described previously [32]. Appropriate
blanks corresponding to the buffer were subtracted to correct for
background fluorescence. All data were determined in triplicate for
all experimental conditions. All of the measurements were con-
ducted at room temperature (23 °C).

HPLC determination of bile pigments

High-performance liquid chromatography (HPLC) analyses were
performed using an Agilent 1200 system (Agilent Technologies,
USA) with a diode array detector. The mobile phase consisted of
0.1 M di-n-octylamine acetate in methanol and water; the sta-
tionary phase was represented by a Poroshell 120, SB-C18 column
(4.6 x 100 mm, 2.7 um; Agilent Technologies). The samples were
prepared by mixing 20 pul of pigment solution with 180 pl of ice-cold
0.1 M di-n-octylamine acetate in methanol, vortexing, and centri-
fuging to eliminate the proteins. Of the prepared sample, 20 pl was
injected onto the column. Biliverdin was detected at 380 or 665 nm,
whereas bilirubin was detected at 460 nm. The bile pigments were
quantified by their peak area comparison with standard curves
constructed from authentic standards.

Molecular docking

The molecular docking of BV and LR to HSA was performed using
the three-dimensional crystal structure of the proteins (PDB code:
1e78) obtained from the Protein Data Bank [33]. The ionizable
residues were set to their pH 7.4 protonation state; His, Arg, and Lys
were protonated, whereas Asp and Glu were deprotonated. During
the minimization, only the torsion angles in the side chains were
modified; all of the other properties, including bond lengths and
backbone atom positions, were kept fixed. The Auto Dock Vina
version 1.0.2 plug-in was used for all of the dockings in this study
[34]. The docking parameters for Auto Dock Vina were kept to their
default values. The docking results were ranked by the binding free
energy. The binding modes with the lowest binding free energy and
the most cluster members were chosen for the optimum docking.

Results and discussion

The HSA molecule is made up of three homologous domains (I,
11, and III), and principal regions of ligand binding sites are located
in hydrophobic cavities in subdomains IB, IIA, and IIIA. HSA con-
tains only one tryptophan residue (Trp214) in the subdomain IIA,
and the quenching of the intrinsic Trp fluorescence can be used to
characterize the pigment binding process. Based on these facts, the
binding constant of the studied pigments to serum albumin were
determined by the fluorescence quenching method.

Using the induced CD spectroscopy, the number of the pigment
binding sites and their binding constants were calculated and their
binding locations were estimated in displacement experiments
using marker ligands with known binding sites on HSA. Experi-
mental observations of the BR photo-isomerization and oxidation
were interpreted on the basis of molecular docking performed for
the pigment—HSA complexes to determine the topography of the
binding sites.

Characteristics of pigment binding to serum albumin by
fluorescence spectroscopy

Fluorescence quenching

The fluorescence spectra of HSA titration by the pigments are
shown in Fig. 1. For all of the studied pigments, progressive titration
of HSA by pigments caused an obvious decrease in Trp fluorescence
intensity (330—345 nm). These results suggested that an intermo-
lecular energy transfer occurred between the studied pigments and
HSA. No significant emission wavelength shift indicated that the
micro environment around Trp214 was not changed during the
interaction of BRT, BV, XBR, and LR with HSA. BR and MBR effec-
tively quenched Trp fluorescence, and a slight shift of the maxima
of HSA emission spectra was observed in the system with these
pigments.

Because the fluorescence quenching mechanism may include
dynamic and/or static quenching [32], it is important to understand
what kind of interaction takes place between the fluorophore (HSA)
and the quencher (pigment). The quenching can be described by
the Stern—Volmer equation:

P — 14 kgrol@) = 1+ K@),
where Fy and F are the fluorescence intensities in the absence and
presence of the quencher, respectively, [Q] is the concentration of
the quencher, 7¢ is the average fluorescence lifetime of a molecule
without quencher, kq is the quenching rate constant of HSA, and Ky
is the Stern—Volmer quenching constant [32].

The upward curving in the Stern—Volmer plots of the Fy/F
dependence on [Q] indicated both the static and dynamic
quenching (Fig. 2). At low molar ratios [pigment]/[HSA] (up to ~1),
the plots were linear and the calculated Stern—Volmer average
quenching constant K, was in the range of 10’—10° L mol ™ for the
studied pigments. From the fluorescence lifetime of the bio-
macromolecules, which is typically 108 s [32], the quenching rate
constant kq can be obtained. The values for the studied pigments
were 10%- to 10%-fold higher than the maximum value possible for
the diffusion-controlled limit in water (10" L mol~' s~1) [32],
which suggested binding interaction between the protein and
ligands.

Binding equilibrium estimation

For static quenching, the dependence of the fluorescence in-
tensity on quencher concentration is easily derived by consider-
ation of the association constant for complex formation. The
constant was deduced from the following formula that described
the formation of a complex:

P+ nL—PLy,

where P is protein with a fluorophore, L is a ligand (pigment
quencher), and PL;, is the nonfluorescent complex whose binding
constant is K. For the static quenching interaction, the binding
constant K and the number of sites n can be obtained from the
following equations:
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Fig.1. Fluorescence spectra of HSA (black [top] line, 3 x 10~ mol L") and with the 3 x 107 mol L~' gradual additions of studied pigments in PBS (pH 7.41) (colored lines).
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Fig.2. Stern—Volmer plots of HSA tryptophan (cp = 3 x 10~% mol L™') quenching by
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where Fy is the fluorescence of HSA without a quencher, F is the
fluorescence of HSA with a quencher, and ¢p and ¢ are total con-
centrations of protein and ligand, respectively.

In this work, we used fluorescence spectroscopy for the esti-
mation of the binding constants for the primary binding site of the
pigments (n = 1). Fig. 3 shows the dependence of (Fp — F)/F against
the total concentration of the pigment ¢ in the systems where HSA
(3 x 1075 mol L) was titrated with the pigments for [pigment]/
[HSA] between 0.05 and 1.5. The binding constants for the studied
pigments were obtained by nonlinear regression analysis and are
summarized in Table 1. The obtained results indicated that HSA
formed stable complexes with all of the studied pigments, and
there was only one high-affinity binding site in the structure of HSA
for all of the studied pigments. The values of the obtained binding
constants for BR, XBR, and BV are in a good accordance with the
data obtained by other methods [18,23,35—39]. Binding constants
for the other pigments were estimated for the first time.

Our data showed that BR and MBR had the highest binding
constant on HAS, whereas the constants for the products of its
structural isomerization or oxidation are 2—3 orders of magnitude
lower. Compared with the other studied pigments, the spatial
“ridge-tile” structure of BR is much more rigid. BRT also adopted a
helical conformation in solution; however, the decreasing number
of the intramolecular H-bonds in its structure leads to easier
structural Z,E-isomerization. This assumption is in accordance with
the similarity of the BRT and LR binding constants. BV has two
propionic groups, as does BR; however, its spatial “lock-washer”
conformation (Scheme 1) is more compact (the dihedral angle is
only ~30° compared with ~100° in BR). The changes in the structure
of these pigments led to a much lower binding constant compared
with the one for BR. At the same time, MBR, whose spatial
conformation is also fixed by 4—6 H-bonds, has a similar constant
to that of BR.

K=
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Fig.3. Plots of (F — Fo)/F against the concentration ¢; of the studied pigments. cp was 3 x 1075 mol L™". The solid line is the result of the curve-fitting procedure (a nonlinear

regression analysis with 1:1 stoichiometry).

Electronic circular dichroism study

Optical activity of pigment—HSA complexes

Fig. 4 shows the CD of the pigment—HSA complexes and the
absorption spectra of the unbound pigments and their complexes
with HSA at the molar ratio [pigment]/[HSA] = 1. Note that the
unbound pigments are not optically active because racemization
takes place easily. The results of HSA titration by pigments from the
molar ratio [pigment]/[HSA] = 0.1 until 3.5 are shown in Fig. 5 as
dependence of the intensity of CD signal on the [pigment]/[HSA]
ratio.

Biosynthetic Z,Z-BR bound to a high-affinity site shows a CD
positive couplet [460(+)/410(—) nm] that is characteristic of the
bound P-conformer of BR. In complexes with HSA, BR shows an
absorption maximum at 475 nm, which is red-shifted as compared
with the unbound pigment in solution (440 nm). As is obvious from
the CD titration, BR has three binding sites in the HSA structure that
were discussed in our previous articles [25,26].

For unbound BV, the conjugated double bonds system resulted
in two absorption bands at 370 and 675 nm. In the spectrum of the
HSA—BV complex, the absorption bands are shifted to 385 and
665 nm. As was evident from the CD titration (Fig. 5), there are at
least two binding sites for BV on HSA. The M-helical conformer was
selectively bound to the high-affinity binding site, whereas

Table 1
Binding constant K of HSA—pigment complexes obtained by fluorescent
quenching method.

Pigment K (Lmol™")

Bilirubin (BR) (12+03) x 10°
Mesobilirubin (MBR) (4.8 +0.9) x 107
Biliverdin (BV) (3.6 +0.8) x 10°
Bilirubin ditaurate (BRT) (1.0 £0.2) x 106
Lumirubin (LR) (9.1 +09) x 10°
Xanthobilirubic acid (XBR) (3.0 £ 04) x 10°

characteristic opposite signed patterns were observed at 385(+)
and 670(—) nm.

MBR has ethyl outer groups instead of the vinyls in BR. Some
authors have declared that MBR is more soluble than BR and used it
as a BR analog in the estimation of solution equilibria and pigment
binding [40]. The CD titration data for MBR are similar to those for
BR. There are at least three binding sites of the same stereo-
selectivity of MBR on HSA. In the visible region, unbound MBR has
an absorption band at 410 nm. As a result of HSA—MBR complex
formation, the band was shifted to 450 nm. As was evident from the
CD titration, all of the binding sites selectively bind the P-helical
conformer of MBR [the characteristic positive couplet 460(+)/
410(—) nm].
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Fig.4. ECD and UV—vis absorption spectra of the HSA—pigment complexes (full lines)
for molar ratio [HSA]/[pigment] = 1 (cp = ¢ = 3 x 107> mol L~') and unbound pig-
ments (broken lines, ¢ = 3 x 10> mol L™") in PBS (pH 7.41).
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Fig.5. CD titration of HSA (cp = 3 x 10~ mol L~!) with pigments in a pH 7.41 PBS. The CD intensities of BR, MBR, LR, and BRT were measured as the difference between the CD long
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also plotted (in gray marks and solid lines for the fitted curves).

XBR, a dipyrrolic yellow pigment, corresponds to one-half of
bilirubin. It was found in the products of the BR oxidation and
photo-degradation and has been widely used to model BR photo-
chemistry and metabolism. Although XBR cannot engage in intra-
molecular hydrogen bonding, it is still insoluble in water and in
circulation it is bound to transport proteins [41]. Unbound XBR has
a broad absorption band at 410 nm, and the band for its bound form
was found at 425 nm. The HSA—XBR complex showed a weak
positive induced CD pattern at 420 nm. CD progressive titration of
HSA by XBR (Fig. 5) showed that there was only one binding site for
XBR in HSA.

LR is a product of the photo-induced intramolecular cyclization
of Z,Z-BR. A spirolactone structure of LR with just one free carboxyl
group had been ruled out on the basis of nuclear magnetic reso-
nance (NMR) studies [21,22]. The dependence of the CD signal of LR
on molar concentration ratio [pigment]/[HSA] (Fig. 5) showed that
LR has only one binding site on HSA with a right-helical sensing of
the bound pigment (Fig. 4, similar to the positive couplet of BR). The
obtained LR—HSA complex has an absorption band at 445 nm, red-
shifted compared with unbound LR that absorbed at 430 nm.

BRT, also called bilirubin conjugate, is widely used for the esti-
mation of the efficiency of different photosensitizers. In BRT, the
propionic carboxyl groups were displaced by taurine. When
compared with BR, its molecule has a reduced number of intra-
molecular H-bonds and Z E-isomerization is easier to induce. The
resulting Z,E-BRT is more thermodynamically stable as compared
with Z,E-BR. BRT binding to HSA at a molar ratio of 1:1 showed a CD
positive couplet located at 480(+)/430(—) nm, which is character-
istic for the bound P-conformer of BRT. The complex of BRT with

HSA has a broad band with a maximum at 485 nm, which is red-
shifted as compared with the unbound BRT (460 nm). Both fluo-
rescence quenching and CD titration showed only one binding site
for BRT with a stereoselective sense for right-helical conformer. As
was shown previously [31], it is not possible to obtain a pure
configurationally ZE-isomer stable for the time needed for a
spectral experiment because it undergoes a fast spontaneous
reversion to Z,Z-BR in water. So, BRT was used as a model of the
photo-isomer ZE-BR for the binding equilibrium analysis. The
structural Z,E-isomer of the linear tetrapyrrole differs from the Z,Z-
isomer by its lower relative steric volume and higher flexibility. The
mentioned properties enable the ZE-isomer to bind to another
place in the HSA structure than biochemical Z,Z-BR. This specula-
tion was examined by displacement experiments and is discussed
later.

Pigment—HSA binding characteristics by CD spectroscopy

The binding constant of the pigment—HSA complexes were also
estimated by electronic CD spectroscopy. The progressive titration
of HSA by pigments induced an increase in the magnitude of the CD
signal (Fig. 5). Because only the bound pigment induced a CD signal,
which is therefore proportional to [PL,], we can use the CD intensity
for determining the concentration of the occupied sites. The in-
tensity of the CD couplet was used to calculate the association
constant of the pigments. To collect a suitable amount of data, HSA
was titrated with the pigments in the [pigment]/[HSA] range of
0.05—-3.5.

No significant intensity changes occurred after reaching the
ratio [pigment]/[HSA] = 1 for BRT, LR, and XBR. An estimation of K
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was made by the nonlinear regression analysis method using the
following equation:

CD/k
(cp — CD/k)(c, — CDJk)”

where cp is the total concentration of HSA and ¢ is the total con-
centration of pigment. We also can accept that CD = k[PL,] with
k = 3298A¢maxh, where Aemay is the maximum of the molar CD for
the pigment bound to HSA (in L mol~' cm~') and b is the optical
path length (in cm). The maximum of the molar CD for the bound
pigment was estimated as the maximum of molar CD in the titra-
tion of the HSA by the pigment (see Fig. S1 in Online supplementary
material).

The progressive titration of BV, MBR, and BR indicated that the
pigments bound to more than one class of sites and that the simple
formula for the determination of K is no longer valid. Therefore, the
binding equilibrium was analyzed in terms of the series of equi-

librium constants Kj, ..., K, where
[PL] [PLy)

Ki=——r ... Kh=———.

ORI T Py )T

When two classes of protein binding sites are assumed and the
binding events are independent, we used the following equation
[42]:

n1Kq[L]

1T+ K[

5L

T+ K[

The last equation expresses the dependence of the measured
quantity » on the concentration of unbound pigment [L]. The con-
centration of unbound pigment [L] is the difference between the
molar amounts of the added and bound ligands (i.e., pigment). The
quantity », the average number of moles of bound pigment to total
number of moles of protein, is determined as a ratio of experi-
mentally obtained CD intensity (because only bound pigments are
optically active) and the concentration of protein as

P _ CD/k

- Cp Cp

The data were analyzed by a fitting of the »/[L] values versus the
pigment concentration, which are depicted as the gray curves in
Fig. 5. The optimized values of n; and n; and equilibrium constants
K7 and K> for the studied pigments were calculated by the nonlinear
regression analysis method using Excel Solver as described in
Ref. [43]. The data obtained are summarized in Table 2.

The values of the primary binding constants for all of the studied
pigments are in good agreement with the same obtained by the
fluorescent quenching method (cf. Table 1). Our experiments
proved that, as was expected and discussed earlier, BR and its analog
MBR have three binding sites in HSA. The obtained binding constant
for BRT and LR is 60—100 times lower as compared with the BR
constant for a high-affinity binding site but is higher than the BR
constant for low-affinity sites. From the obtained data, it is evident
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Fig.6. CD spectra of BV complexes with HSA (cp = 3 x 10> mol L™") at molar ratios
HSA/BV = 1 (full black line) in the presence of BR (full orange, BV/HSA/hemin = 1:1:1),
hemin (full red, BV/HSA/BR = 1:1:1), and bilirubin with hemin (full blue, BV/HSA/
hemin/BR = 1:1:1:1). CD spectra of HSA—BR (orange), HSA—hemin (red), and HSA—
[BR + hemin] (blue) and HSA—[BR + hemin] are shown. Blue complexes at the molar
ratio SA/pigment = 1:1 are shown as broken lines; note the close coincidence between
the full and broken blue lines. For clarity, CD spectra for different marker ligands are
offset. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

that neither BV nor LR can effectively displace BR from its primary
binding site. XBR, the product of the BR degradation, has the lowest
binding constant when compared with the other studied pigments.

Displacement study: location of the binding sites

In this study, we adopted the three-site model of HSA that was
used in our recent work [25,26]. The BR high-affinity binding site is
located in the subdomain IIA, whereas the products of BR photo-
isomerization and BV were proposed to be bound in the sub-
domain IB [30]. The subdomain IIIA is a binding site with low af-
finity for all of the studied pigments and is not discussed in the
presented work.

Hemin, a porphyrin molecule with a coordinated iron atom, is a
large planar ligand that selectively binds within the subdomain IB.
Hemin has a binding constant K = 1.1 x 10® L mol~, comparable to
BR and higher than other pigments. The known crystallographic
structure of the hemin complex with HSA [30] and high binding

Table 2
Binding characteristics of HSA—pigment complexes obtained by circular dichroism spectroscopy.
Binding parameter Pigment
BR MBR BV BRT XBR LR
n 1 1 1 1 1 1
Ky (1.1 +04) x 10® (64 +1.1) x 107 (4.5 +0.7) x 10° (1.3 +0.3) x 10° (3.4 +0.6) x 10° (1.1 +£0.2) x 10°
N 2 2 1 — - -
Ky (1.2 £0.5) x 10° (1.1 £ 04) x 10° (1.1+£0.3) x 10° - - -
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constant make it an excellent specific marker for the subdomain IB
in the structure of HSA.

Unbound hemin is “silent” in CD. In complex with HSA, it
induced a CD signal; a negative CD pattern was observed at 396 nm.
In the absorption spectrum, the broad band at the Soret region
(365 nm) of unbound hemin becomes narrow and shifted to
400 nm as evidence of pigment binding to the HSA. Hemin has one
high-affinity binding site on HSA, as was evident from the CD
spectra of the hemin—HSA complex (see Fig. S2 in Supplementary
material), so the hemin bound in its high-affinity binding site is
optically active.

As the second specific marker, Z,Z-BR was used for the sub-
domain IIA. As we had estimated using fluorescence and CD spec-
troscopy techniques, its binding constant is 60—100 times higher
than the constants for the other studied pigments. In addition, the
location of BR high-affinity binding site was identified in the
neighboring subdomain IIA unambiguously.

After the addition of hemin to the BR—HSA complex (molar ratio
[BR]/[HSA]/[hemin] = 1:1:1), the resulting CD signal was assessed
as the sum of the two CD signals of bound hemin and bound BR
(Fig. S2). In this case, it was obvious that both pigments have
distinct locations of their binding sites. A similar result was
observed in the absorption spectrum, where the spectrum of
BR—HSA—hemin was the sum of the BR—HSA and hemin—HSA
absorption spectra (Fig. S2).

For BV, it has been proposed [37,44] that its high-affinity binding
site overlapped with the same of biosynthetic Z,Z-BR and these
pigments were competing for binding to HSA. The CD patterns of
bound BR and BV can be distinguished easily, especially using the
BV long-wavelength CD pattern at 675 nm. If they were able to
concur for the binding to the same site, the changes in the CD band
positions and magnitudes would be expected.

However, the simultaneous addition of BV and BR to HSA (Fig. 6)
caused the CD signal to be the sum of both CD spectra of bound BR

and bound BV. Therefore, both of these pigments bind to HSA
independently and their binding sites do not overlap.

A different situation was observed when hemin was added to
BV—HSA (Fig. 6, red full line). BV was displaced from its high-
affinity binding site by hemin and partially rebound to the low-
affinity one. The observed CD spectrum is the sum of the CD
signal of bound hemin and the much lower CD signal of BV; how-
ever, from its opposite P-conformer [patterns at 400(—) and 700(+)
nm]. It unequivocally showed that hemin and BV have the same
location of their primary binding sites and the difference in the
binding constants allowed hemin to displace BV.

The addition of the hemin to the system where both BV and BR
were bound to SA induced the disappearance of the band in the
long wavelength region and changed the CD signal to a bisignate
asymmetric couplet (Fig. 6). The resultant CD couplet was similar to
the same observed in the system where only BR and hemin were
bound on SA (blue full line, Fig. 6 and Fig. S2). In this case, BV did
not bind even at its low-affinity binding site. Any CD patterns for
bound BV (an absence of CD patterns at 380 nm and in the region
600—800 nm) were not observed in the system.

In the analysis of the observed results, we have assumed that the
BV high-affinity site lies in the subdomain IB and overlapped with
the hemin binding site. At the same time, a BV low-affinity site is
overlapped with a BR binding site in the subdomain IIA.

As was evident from the CD spectra (Fig. 7), the addition of
hemin to the MBR—HSA system did not affect its binding to HSA.
The addition of the BR led to a 2-fold higher intensity of the CD
couplet, which indicated that both BR and MBR were bound and,
based on the difference of their binding constant, BR was bound to
its primary site and MBR was bound to a secondary one. In the
system, where MBR was added to HSA with bound BR and hemin,
we observed only a partial displacement of BR and the binding of
MBR caused by the occupation of a secondary binding site by
hemin.
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In contrast to BR and MBR, the addition of hemin to the
BRT—HSA complex led to a significant decrease of the CD of bound
BRT (Fig. 7). The intensity of the pattern at 465 nm was nearly 25%
of the original CD signal of BRT—HSA; hence, the pigment was
displaced from its only binding site.

If we compare BR and BRT, the configurations at the exocyclic
double bonds of dipyrinones in BR are not changed on dissolution
in common solvents because the most thermodynamically stable
form is Z,Z-BR. The situation was changed in the case of BRT, where
the taurine group forms only two H-bonds (as compared with six
H-bonds in BR) and one or both of the outer lactam rings converted
to an E-isomer easily.

The simultaneous presence of BR and BRT led to an increase of the
intensity of the CD couplet originating from the P-helical screwing of
rubin molecules. According to our finding that BRT has only one
binding site and has a much lower binding constant when compared
with BR (see Tables 1 and 2), these observations indicated that pig-
ments did not compete for a binding site, and we draw the conclu-
sion that BR and BRT were bound in different subdomains.

Interesting results were obtained for LR, where the addition of
the hemin caused partial changes in the CD spectra of LR. However,
at the same time, in the system, where both BR and LR were added,
the signal of LR was also decreased. This finding showed that the LR
binding site is located close to the BR and hemin binding sites.

A similar situation occurred with XBR, where the addition of
both BR and hemin caused a decrease of its CD signal (see Fig. 7).

Compared with the other studied pigments, BV showed charac-
teristic absorption and CD bands in long-wavelength regions. This
attribute is an advantage when BV is used as a marker in the CD ex-
periments with other bile pigments. The results of the replacement
experiments are shown in Fig. S3 of the Supplementary material.

Dynamic model of HSA involvement in antioxidant cycle and photo-
isomerization

The presented results represent a key factor in the description of
how the antioxidant cycle and photo-isomerization processes run
in mammals. For the assessment of the competition binding, we
used the characteristic CD patterns of BV and BR.

The photo-isomerization reactions of BR in humans play an
essential role in the phototherapy of neonatal jaundice. Fig. 8 shows
the CD spectra of the BR in human serum before and after photo-
induced isomerization and oxidation. The formation of the lumi-
rubin as a product of photo-isomerization is evident by the
decrease and shift of both the ECD and absorption bands. The
addition of BV to the serum before and after irradiation showed
that in the case where LR was formed, only approximately 40% of
BV was bound compared with serum before irradiation. Our results
proved that natural Z,Z-BR and the products of its photo-isomer-
ization—LR, XBR, and Z,E-BR—have high-affinity binding sites in
the different subdomains. It means that BR is converted to the
photo-product (LR) that also bound on HSA but in other binding
sites (Fig. 9). HSA acts as a detoxification agent, rapidly reducing the
concentration of the more lipophilic and presumably most toxic
ZZ-isomer in the circulation together with the attendant risk of
entering the brain and causing encephalopathy.

The antioxidant cycle of BR can also be easily present as
oxidation of the BR bound in the subdomain IIA to BV under the
condition of the model oxidation stress, where a solution of H,O,
with FeSO4 was used to generate hydroxyl radical, and the subse-
quent relocation of BV to the neighboring subdomain IB.

Albumin-bound bilirubin was oxidized rapidly by peroxyl radi-
cals that formed in the system of Fe?*/H,0,. Under the conditions
used with peroxyl radicals, the bilirubin oxidation resulted with
maximal accumulation of biliverdin to approximately 25% of the

A

Photo-isomerization

10 1 i (HS with BR)pholD
— (HS with BRY),,,+ BV

— HS with BR
— HS with BV

CD[mdeg]

B

Oxidation

— (HS with BR),,
— (HS with BR),+ BR

300 400 500 600 700 800
Wavelength [nm]

Fig.8. CD spectra of BR in human serum (cyspx = 42 x 1074 mol L7,
cgr = 3 x 1074 mol L") before (black broken line) and after (black full line) photo-
isomerization (A) and oxidation (B). As marker ligands, BR (cgr = 3 x 1074 mol L)
and BV (cay = 3 x 10~4 mol L~ ') were used for products of the oxidation and photo-
isomerization, respectively. The resulting CD spectra after the addition of the marker
ligand are shown as full gray line.

initial bilirubin concentration after 30 min of the oxidation as it was
detected by HPLC analysis (see Fig. S4 in Supplementary material).
From the CD spectra of the serum after the photo-oxidation
(Fig. 8), it was also evident that BR converted to BV (its character-
istic signal at 650 nm was observed). The other accumulated prod-
ucts in this instance were dipyrrole compounds, smaller than BV
with their characteristic absorption at 250 nm. The further addition
of BR to this system caused the similar CD signal of the bound BRas in
the serum before oxidation, and the CD signal of the newly formed
BV was not affected by the BR binding. In mammals, the formed BV is
further effectively reduced by biliverdin reductase to BR, and the
formed BR binds again into the BR primary binding site. Conversely,
albumin-bound bilirubin acts as an antioxidant against treatment of
human plasma by peroxynitrite, but in this case the rate of oxidation
is much slower and, interestingly, BV was the major oxidation
product detected [9,12]. These findings indicate that BV may be a
significant oxidation product of protein-bound bilirubin and high-
lights bilirubin's potential capacity as an antioxidant. The schematic
representation of this dynamic model is presented in Fig. 9.

Docking energy experiments

For a detailed study of the pigments binding to HSA, the docking
experiments were made with three pigments: BV, Z,Z-BR, and LR.
The pigments were docked to the subdomains IB and IIA of HSA
(PDB code: 1e78) with respect to the result of the CD experiments.
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Redox Recycling

Biliverdin
Reductase

A \
Reactive
Oxygen
Species

Unbound BR

Photo-isomerization

Fig.9. Dynamic models of antioxidant redox BR—BV cycle and BR photo-isomerization processes in matrix of serum albumin. The ribbon model of human serum albumin (HSA; PDB
code: 1e78) is shown with the colored subdomains IB (green) and IIA (violet) with selected tryptophan residue (Trp214, balls). The figures were generated using PyMOL (http://
www.pymol.org). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The crystallographic structure of the Z,E-BR isomer in complex with
HSA was published previously [30], where the pigment was bound
in the subdomain IB. However, in the Protein Data Bank, the ligand
was identified and deposited as BV (PDB code: 2uev). The location
of the BV high-affinity binding site in the subdomain IB is in good
accord with the crystal structure of the tetrapyrroles bound to this
site (hemin and Z,E-bilirubin) [30]. In our docking experiments, it
was found that BV adopts a Z,E-conformation in its complex with
HSA. This conformation is similar to the published conformation of
the Z,E-photo-isomer of BR bound in the subdomain IB.

Our docking experiments show that LR is bound along the helix
h1—h4 and partially interfered with the binding site of Z,Z-BR. The
lowest energy was observed when the pigment was bound in the
form of the ZE-isomer as well. The structures of the bound pig-
ments in the subdomains are shown in Fig. 10.

Conclusions
In this article, a new dynamic model of the BR isomerization and

oxidation on the matrix of HSA has been proposed. The model is
based on the complete characterization of the linear

Biiverdin

tetrapyrroles—BR, BV, MBR, LR, and BRT—and XBR binding to HSA
where the binding parameters were estimated by fluorescent and
circular dichroism spectroscopy. The application of a ligand
displacement CD experiment allowed an estimation of the location
of the binding sites for the studied pigments on HSA. We proved
that BR and the products of its oxidation and isomerization have
independent and non-overlapped binding sites on HSA. The pro-
posed model was verified by the photo-induced oxidation and
isomerization of BR in human serum. The presented results showed
not only that the binding of BR and products of its bioconversion is
an important part in the pigment transportation and conjugation
system but also that the pigment—HSA complex is an essential
intermediate stage in the processes of BR photo-conversion and
oxidation. This finding supports the theory of antioxidant BR—BV
redox cycle as a basis for the bile pigments' strong antioxidant and
antimutagenic properties. The fact that Z,Z-BR binds to the sub-
domain IIA, whereas products of BR isomerization bind in the
neighboring subdomain IB, is able to explain the effect of photo-
therapy. Photo-isomerization increases the binding capacity of
HSA to bile pigments; the excess of free (unbound) BR can be
converted to LR and Z,E-BR and also bound to HSA. More detailed

Lumirubin

Fig.10. Spatial structure of biliverdin and lumirubin bound in the subdomain IB of human serum albumin (HSA; PDB code: 1e78). The broken lines and numbers show the distances

among the pigment chromophores, and tryptophan residue (Trp214).
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studies of each of these processes are needed and are currently
being conducted in our lab.
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Abstract

Crigler-Najjar syndrome is an autosomal recessive disorder with severe unconjugated hyperbilirubinemia due to
deficiency of bilirubin UDP-glucuronosyltransferase isozyme 1A1 (UGT1A1) encoded by the UGT1A1 gene.
Current therapy relies on phototherapy to prevent life-threatening elevations of serum bilirubin levels, but liver
transplantation is the only permanent treatment. Muscle-directed gene therapy has several advantages, in-
cluding easy and safe access through simple intramuscular injections, and has been investigated in human
clinical trials. In this study, we have investigated the efficacy of adeno-associated viral (AAV) vector-mediated
muscle-directed gene therapy in the preclinical animal model of Crigler-Najjar syndrome, that is the Gunn rat.
Serotype 1 AAV vector expressing rat LUGT1A1 under the control of muscle-specific creatine kinase promoter
was injected at a dose of 3x 10'* genome copies/kg into the muscles of Gunn rats and resulted in expression of
UGT1A1 protein and functionally active enzyme in injected muscles. AAV-injected Gunn rats showed an ap-
proximately 50% reduction in serum bilirubin levels as compared with saline-treated controls, and this reduction
was sustained for at least 1 year postinjection. Increased excretion of alkali-labile metabolites of bilirubin in bile
and urine was detected in AAV-injected animals. High-performance liquid chromatography analysis of bile from
AAV-injected Gunn rats showed a metabolite with retention time close to that of bilirubin diglucuronide. Taken
together, these data show that clinically relevant and sustained reduction of serum bilirubin levels can be
achieved by simple and safe intramuscular injections in Gunn rats. AAV-mediated muscle directed gene therapy
has potential for the treatment of patients with Crigler-Najjar syndrome type 1.

Introduction

ILIRUBIN IS the breakdown product of the heme moiety of

hemoglobin and other heme-using enzymes. Being a hy-
drophobic molecule, bilirubin needs to be glucuronosylated
by the hepatic bilirubin UDP-glucuronosyltransferase iso-
zyme 1A1 (UGT1A1l) before it can be excreted into bile. Pa-
tients with Crigler-Najjar syndrome type 1 (MIM 218800)
have mutations in the UGT1A1 gene resulting in enzyme
deficiency, which leads to a life-threatening increase in serum

bilirubin. Because unconjugated bilirubin is potentially neu-
rotoxic, high serum bilirubin may result in irreversible brain
damage (Strauss et al., 2006). The only option for a permanent
treatment in patients with Crigler-Najjar syndrome type 1 is
liver transplantation. However, given the mortality, morbid-
ity, and cost of transplant procedures, there is high motivation
to develop alternative approaches including gene therapy
(Miranda and Bosma, 2009). A number of preclinical gene
therapy studies in the Gunn rat, a natural mutant that has no
UGT1A1 activity, have achieved correction in vivo by hepatic
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gene transfer of the UGT1A1 gene using various vectors, such
as viral vectors based on retrovirus (Nguyen et al., 2007),
lentivirus (van der Wegen et al., 2006, Schmitt et al., 2010),
recombinant simian virus 40 (SV40) virus (Sauter et al., 2000),
adenovirus (Askari et al., 1996; Toietta et al., 2005; Dimmock
et al., 2011), adeno-associated virus (AAV) (Seppen et al.,
2006), and naked plasmid DNA (pDNA) (Danko et al., 2004;
Jia and Danko, 2005b).

Although correction of the deficient enzymatic activity in
the affected organ, that is, the liver, would be the most
straightforward, expression within an ectopic tissue, differ-
ent from the natural production site, is an attractive option
for clearance of toxic metabolites from the circulation. In-
terestingly, transplantation of small bowel and kidney,
which also express UDP-glucuronosyltransferase (UDPGT),
was effective at reducing hyperbilirubinemia in Gunn
rats, thus suggesting that expression of the enzyme in non-
hepatic sites is sufficient for metabolic correction of the
disease (Kokudo ef al., 1999).

Muscle has been the preferred target for gene transfer
because of its simple access by intramuscular injections and
safety. Previous studies have shown reduction of hyperbi-
lirubinemia in the Gunn rat by pDNA delivery into skeletal
muscle via limb perfusion (Danko et al., 2004; Jia and Danko,
2005a). In those studies injections of pDNA expressing
human UGT1A1 under the control of the cytomegalovirus
(CMYV) promoter resulted in excretion of bilirubin glucur-
onosides in bile and short-term reduction of serum bilirubin
lasting for 2 to 4 weeks. Loss of correction was associated
with a decrease in UGT1AL1 protein in muscle, while pPDNA
and transcript were detectable 4 weeks after gene delivery.
Longer correction required repeated pDNA delivery
achieved by a relatively invasive procedure and immuno-
suppression (Danko et al., 2004; Jia and Danko, 2005a).

AAV vectors are ideal candidates for muscle-directed gene
therapy and have shown encouraging preclinical results in
various disease models. In one trial, testing the safety and
efficacy of intramuscular administration of AAV2/2 in pa-
tients with severe hemophilia B, there was no evidence of
local or systemic toxicity up to 40 months after injection (Kay
et al., 2000; Manno et al., 2003). AAV vector sequences and
local factor IX (F.IX) expression was found in muscle biopsies
by PCR/Southern blot and immunohistochemical analyses,
respectively, up to 3.7 years after vector administration
(Jiang et al., 2006). However, despite evidence of gene
transfer and expression, circulating levels of F.IX were less
than 2% in all subjects and mostly less than 1%, thus lacking
clinical benefit. A clinical trial testing the safety of intra-
muscular administration of AAV2/1 vectors in patients with
oq-antitrypsin deficiency showed long-term gene expression
despite evidence of an immune response to AAV1 capsids
(Brantly et al., 2009), suggesting the presence of a cytotoxic
T lymphocyte (CTL) response to AAV capsids that does not
result in the elimination of transduced cells (Brantly et al.,
2006). T cell immune responses against the AAV1 capsid
were detected in half of the subjects with lipoprotein lipase
(LPL) deficiency receiving intramuscular administration of
AAV2/1 vector during the first months after vector admin-
istration (Mingozzi et al., 2009). This immune response was
transient and associated with an increase in the muscle en-
zyme creatinine phosphokinase (CPK) about 4 weeks after
gene transfer. The presence of AAV vector dose-dependent
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activation of capsid-specific CD4* and CD8™ T cells suggests
that CTL responses against the capsid may have damaged or
destroyed the transduced muscle fibers, similarly to the
immune-mediated destruction of hepatocytes transduced by
intravascular administration of AAV2/2 that occurred in the
hemophilia B liver clinical trial (Manno et al., 2006). There-
fore, an immunosuppresive regimen was started in LPL-
deficient patients. Nevertheless, the overall results of the trial
are encouraging and showed a reduction of circulating try-
gliceride levels and of episodes of pancreatitis (Gaudet et al.,
2010). In summary, the multiple human clinical trials using
AAV vectors by intramuscular injections have demonstrated
excellent safety data, evidence of gene transfer, and in one
case therapeutic efficacy.

In this study, we investigated the preclinical safety and
efficacy of muscle-directed gene transfer mediated by AAV
vectors for the therapy of Crigler-Najjar syndrome type 1.

Materials and Methods
Construction and production of AAV vectors

The rat UGT1A1 (rUGT1A1) coding sequence was ob-
tained from Wistar rat liver mRNA and cloned into the
PAAV-MCK-EGFP plasmid (Tessitore et al., 2008) by repla-
cing the enhanced green fluorescent protein (EGFP) se-
quence. The cloned rUGT1A1 sequence was entirely verified
by direct DNA sequencing.

The AAV vectors were produced and characterized by the
Telethon Institute of Genetics and Medicine (Naples, Italy)
AAV Vector Core. pAAV2.1-MCK-rUGT1A1 and pAAV2.1-
MCK-EGFP were triple-transfected in subconfluent 293 cells
along with pAd-Helper and pack2/1 packaging plasmids as
described previously (Xiao et al, 1999). Recombinant
AAV2.1-MCK-rUGT1Al and AAV2.1-MCK-EGFP vectors
were purified by two rounds of CsCl gradient centrifugation,
as described previously (Xiao et al., 1999). Vector titers, ex-
pressed as genome copies per milliliter (GC/ml), were as-
sessed by both PCR quantification (TagMan; PerkinElmer,
Life and Analytical Sciences, Waltham, MA) and dot-blot
analysis.

Animal experiments

Animal procedures were performed in accordance with
the regulations of the Italian Ministry of Health. Breeding
pairs of Gunn rats were obtained from the Rat Resource and
Research Center (RRRC, Columbia, MO) and a colony of
Gunn rats was established at the Institute of Genetics and
Biophysics-Telethon Institute of Genetics and Medicine
(IGB-TIGEM) animal facility (Naples, Italy). For AAV vec-
tor or saline administrations, three intramuscular injections
(three injections of 30 ul each) were performed in the gas-
trocnemius of 4- to 6-week-old male Gunn rats (75-150g),
for a total vector dose of 3x 10'* genome copies (GC)/kg of
AAV2.1-MCK-rUGT1A1 (1=9) or saline (1=5), using a 100-
ul Hamilton syringe.

After vector injections, blood samples were collected by
retro-orbital venipuncture. Bile was collected through a
26-gauge angiocatheter (Delta Med, Milan, Italy) inserted into
the bile duct over 15-min periods, protected from light, fro-
zen, and store at —80°C until analyses. Random urine spots
were collected for measurement of alkali-labile bilirubin
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concentrations. Urinary creatinine was measured by colori-
metric assay based on the Jaffe method (Clarke, 1961).
Creatine phosphokinase (CPK) was measured in serum
samples in the first week and 3, 15, 24, and 52 weeks post-
injection (Gentaur, Milan, Italy).

To determine UGT1A1 protein and activity, muscle and
liver tissues were collected 4 and 12 months postinjection.
Tissues for real-time PCR were harvested from Gunn rats
injected intramuscularly with AAV2.1-MCK-rUGT1A1 vector.

Bilirubin determinations

Blood was centrifuged at 1500xg for 20min, and the
serum was used for colorimetric measurement of total bili-
rubin by a diazo-based assay (Gentaur). The average serum
bilirubin measured in 40 wild-type Wistar rats, 3-4 weeks of
age, was 0.91£0.51 mg/dl.

Biliary, serum, and urinary unconjugated bilirubin and
alkali-labile pigment concentrations were determined by
high-performance liquid chromatography (HPLC) as previ-
ously described (Zelenka ef al., 2008). Unconjugated bilirubin
was measured before and after the addition of 1 M NaOH to
the sample for 10 min, and the concentration of alkali-labile
bilirubin pigments, expressed as bilirubin equivalents, was
calculated from the difference between the two measure-
ments. Qualitative analysis of bilirubin pigments in bile was
performed by direct HPLC of undiluted bile by the McDonagh
method (Toietta et al., 2005).

Western blot analysis, enzyme assay,
and gPCR on tissues

Muscle and liver samples harvested 4 and 12 months
postinjection were homogenized in 0.5ml of phosphate-
buffered saline (pH 7.4), using a TissueLyser homogenizer
(Qiagen, Milan, Italy). The tissue homogenate was mixed
with 4ml of microsome buffer (2.62mM KH,PO,4, 1.38 mM
K,HPO,, 2% glycerol, and 0.5mM dithiothreitol) and first
centrifuged at 12,000x g for 20 min at 4°C. The supernatant
was then recentrifuged at 105,000 x g for 60 min at 4°C. The
pellet was resuspended in microsome buffer and the protein
concentration was determined by the Bradford method.

Microsomal extracts were characterized by detection of
a calnexin band by Western blotting using anti-calnexin
antibody (Assay Designs, Ann Arbor, MI). These extracts
were used to measure UGT1A1 activity. Approximately 10—
20 ug of microsomal proteins from Wistar and Gunn rat liver
and muscle was separated by sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (SDS-PAGE) and blotted
onto PVDF membrane. Goat anti-rat UGT1Al antiserum
(diluted 1:1000; Santa Cruz Biotechnology, Santa Cruz, CA)
with rabbit anti-goat IgG (diluted 1:3000; BioVision, Moun-
tain View, CA) were used for immunodetection. Membranes
were developed with an enhanced chemiluminescence kit
(Thermo Scientific, Milan, Italy) and detected with Chemi-
Doc (Bio-Rad, Hercules, CA).

UGT1Al enzyme activity in muscle microsomes was
measured according to a previously published assay, using
bilirubin as substrate (Heirwegh et al., 1972).

Total DNA was extracted from tissue samples, using
phenol-chloroform extraction, and quantitated by absor-
bance at 260 nm. Quantitative real-time PCR was performed
with LightCycler SYBR green master mix I (Roche, In-
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dianapolis, IN) in a total volume of 20 ul with 100ng of
template DNA and a 1uM concentration each of AAV-
specific primers (5-TCTAGTTGCCAGCCATCTGTTGT-3’
and 5-TGGGAGTGGCACCTTCCA-3’). Cycling conditions
consisted of 95°C for 10 min followed by 45 cycles at 95°C for
10 sec, 60°C for 7 sec, and 72°C for 20 sec. Serial dilutions of a
plasmid bearing the PCR target sequence were used as a
control to determine the amounts of AAV and results were
analyzed with LightCycler 480 system (Roche).

GFP expression and RT-PCR after intramuscular
injection of AAV

We harvested the following tissues from injected Gunn
rats: muscles, liver, kidney, spleen, and heart. Tissues
were fixed in 4% paraformaldehyde (PFA) for 24 hr. Muscle
and liver specimens were embedded into paraffin blocks
and sectioned into 10-um serial sections, using a micro-
tome, and GFP fluorescence was visualized with a Zeiss
microscope.

Total RNA was extracted from liver, muscle, spleen, kidney,
and heart in TRIzol reagent (Invitrogen, Monza, Italy), using an
RNeasy kit (Qiagen, Italy). RNA was reverse transcribed, using
a first-strand complementary deoxyribonucleic acid kit with
random primers according to the manufacturer’s protocol
(Applied Biosystems, Monza, Italy). Primers for amplification
of a 95-bp fragment of GFP were as follows: forward, 5-ACG
ACGGCAACTACAAGACC-3; and reverse, 5-GTCCTCCTTG
AAGTCGATGC-3". Glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) was used as loading control. A 136-bp segment
of GAPDH was amplified with a forward primer (5-ATG
ACTCTACCCACGGCAAG-3') and a reverse primer (5-TAC
TCAGCACCAGCATCACC-3). Reaction conditions were as
follows: Reverse transcription (RT) products were subjected to
39 cycles of amplification with 2.5 U of Tag DNA polymerase in
50 ul. After an initial denaturing cycle at 95°C for 7 min, sub-
sequent cycles consisted of denaturation, 1min at 95°C; an-
nealing, 1 min at 60°C; and extension, 1min at 72°C.

Statistical analysis

All data are expressed as means+SD. The statistical sig-
nificance of differences between the means from two inde-
pendent samples was tested by ¢ test.

Results

Sustained reduction of hyperbilirubinemia
and excretion of conjugated bilirubin in bile
and urine from Gunn rats

Blood samples were collected 7 weeks after intramuscular
injections of AAV2.1-MCK-rUGT1A1 vector at 3x 10" GC/kg,
and monthly thereafter for measurement of total serum bili-
rubin levels. The vector dose was chosen on the basis of pre-
vious studies applying a similar dose in animal models and
humans (Manno et al., 2003; Arruda et al., 2004; Toromanoff
et al., 2008). Baseline levels of total serum bilirubin in Gunn rats
injected with AAV vector or with saline were higher (7.95+
1.8 mg/dl) than in wild-type Wistar rats (0.91+0.51 mg/dl).
We observed an average 51% reduction of serum bilirubin in
Gunn rats injected with AAV vector. This reduction was sus-
tained for at least 51 weeks (Fig. 1). Reduction in total serum
bilirubin levels was not observed in saline-injected rats (Fig. 1).
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FIG. 1. Intramuscular delivery of AAV results in sustained

reduction of hyperbilirubinemia in Gunn rats. Serum biliru-
bin levels in Gunn rats after intramuscular injection of
AAV2/1-MCK-rUGT1A1 (n=9) or saline (n=>5). The normal
range in wild-type rats (n=40) is 0.91+0.51mg/dl. After
AAV vector injection, long-term reduction of serum bilirubin
in Gunn rats, lasting for at least 51 weeks, was observed. This
reduction was on average approximately 51% of the saline-
injected control levels (p <0.05).

The difference between total serum bilirubin in the AAV-
injected group and the saline-injected group was statistically
significant (p <0.05) throughout the period of study (Fig. 1).

To monitor muscle damage after intramuscular injection of
the AAV vector, serum CPK levels were measured at various
time points (24 and 48 hr, and 1, 3, 15, 24, and 52 weeks) after
vector administration and found to be not increased as com-
pared with saline-injected animals (data not shown).

To determine whether the reduction in serum bilirubin in
vector-injected animals was due to enhanced biliary excre-
tion of bilirubin metabolites, bile was collected by cannula-
tion of the common bile duct from AAV- and saline-injected
animals 51 weeks postinjection. Analysis by the method of
Zelenka and colleagues (2008) showed an increase in alkali-
labile bilirubin pigments in the bile of AAV-injected animals
as compared with saline-treated controls (p<0.05) (Fig. 2A).
Similar analysis showed that AAV-injected animals also had
increased urinary excretion of bilirubin pigments compared
with saline-injected controls (p<0.05) (Fig. 2B) and a re-
duction in serum unconjugated bilirubin (p <0.05) (Fig. 2C).

Direct HPLC of bile samples showed only trace amounts,
if any, of bilirubin glucuronides, but it revealed the presence
of a polar metabolite peak eluting close to bilirubin
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FIG. 3. Bile HPLC: HPLC chromatograms of bile from

wild-type rats, AAV-treated Gunn rats, and saline-injected
control Gunn rats. Bile from (A) a wild-type rat shows
strong bilirubin diglucuronide (BDG) and bilirubin mono-
glucuronide (BMG) peaks along with relatively minor
amounts of other, unidentified peaks. Bile from (B) an AAV-
treated Gunn rat shows a bilirubin metabolite peak, with
only traces, if any, of bilirubin glucuronides along with
unconjugated bilirubin (UCB). The metabolite peak is also
evident in a bile HPLC chromatogram from a different
AAV-treated rat and collected 4 months postinjection (shown
in the inset). (C) Bile from a saline-injected control shows
an unconjugated bilirubin peak with only a trace of other
yellow pigments.
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FIG. 2. Bilirubin pigments in bile and urine samples. The amount of alkali-labile bilirubin pigments in the (A) bile and (B)
urine of AAV-treated Gunn rats, collected 1 year postinjection, was higher than in saline-treated controls (p<0.05). In bile,
alkali-labile bilirubin pigments are expressed as a percentage of total bilirubin. In urine the excretion of these pigments was
normalized for the creatinine concentration. (C) Unconjugated bilirubin levels in the serum were also found to be reduced
(p<0.05). CB, apparent conjugated bilirubin; UCB, unconjugated bilirubin.



1086 PASTORE ET AL.
A 3 B &
£
2 @ 4 months 12 months
5 3 $ 2 % 2 % : g o
S b = =
= 5 gl |0 werw 3 Ao
s9koa— () o o D S G o— - s B Muscle (M) B 1210t
3 ez
&8 23 10x10°
SoKDa— W (D e - gf, B Eo %
E&® c E oo’
25 10 52
Liver Muscles 52 ! 5 & 800’
P
$s | 83 soxor
BIKDa — we— iy G e e g S £ = 2.0x10"
E é :
o 0
55 KDa— - L oL M L ML M Liver Kidney Spleen Heart Muscle
12months 4 months 12 months
Liver Saline ARV ALV
wWT Gunn rats

FIG. 4. UGT1A1 expression in Gunn rat muscle. (A) Western blot analysis for rtUGT1A1 protein (55kDa) in muscle of Gunn
rats injected intramuscularly with saline or with AAV2/1-MCK-rUGT1A1l was done 4 and 12 months postinjection. As a
control, a liver sample from a wild-type rat was used. Microsomal extracts were confirmed by detection of calnexin (89-kDa
band). (B) UGT1AL activity (millimoles of bilirubin per milligram protein per 30 min) in liver microsomes from wild-type
Wistar rats (n=3) and in livers and muscles of Gunn rats injected with saline (1=3) or AAV2/1-MCK-rUGT1Al, 4 and 12
months postinjection (1=3 per group). The difference in enzyme activity between AAV-injected and saline-injected muscles
was statistically significant (p<0.05). (C) Analysis of AAV vector genome copies per nanogram of genomic DNA shows

distribution in muscles and not in other organs (n=3). L, liver;

diglucuronide (Fig. 3B). The absorbance spectrum of this
metabolite was similar to, but still different from, that of
bilirubin diglucuronide (Fig. 3A).

Expression of functionally active UGT1A1 protein
in Gunn rat muscles

A subgroup of Gunn rats injected with either saline (11=3)
or AAV (n=4) was sacrificed 4 months postinjection to har-
vest muscle microsomes for determination of enzyme activ-
ity and UGT1A1 Western blotting. As controls, microsomes
were prepared from muscle and liver of wild-type Wistar
rats. Western blot using an anti-rUGT1Al antibody showed
a band of 55kDa, corresponding to rUGT1A1 in normal rat
liver microsomes and in AAV-injected muscle microsomes
but not in muscle microsomes from saline-injected controls
(Fig. 4A). The presence of a band corresponding to calnexin
confirmed that the purified muscle fractions corresponded to
microsomes (Fig. 4A).

In the same extracts used for Western blotting, UGT1A1
activity was measured and found to be increased in AAV-
injected Gunn rat muscle microsomes relative to saline-
injected muscles (p <0.05), whereas no UGT1A1 activity was
detected in liver of the same animals (Fig. 4B). Taken to-
gether, these results indicate that AAV-transduced muscles
can express long-term functional UGT1A1 protein.

Vector biodistribution in intramuscularly injected
Gunn rats

Biodistribution of AAV2.1-MCK-rUGT1A1 vector by real-
time PCR showed detectable vector genomes only in muscle,
whereas the amounts of vector genomes detected in other
organs (liver, kidney, spleen, and heart) were below the limit
of detection (<1x10* copies of vector genome) (Fig. 4C).

To determine tissue specificity of transgene expression
after intramuscular injection and possible hepatic expression
from the MCK promoter, we injected Gunn rats (n=3) with
AAV-MCK-GFP (3x 10> GC/kg), an AAV vector expressing

M, muscle.

the reported GFP protein under the control of the MCK
promoter, and sacrificed the rats 1 month postinjection to
determine tissue GFP expression and vector genome copy
distribution. Injected muscles showed extensive GFP staining
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FIG. 5. AAV vector muscle-specific transduction. GFP-
positive cells were detected only in Gunn rat muscle (A) and
not in liver (B) after intramuscular injection of AAV2/1-
MCK-GFP at 3x10" VG/kg (n=3) (original magnification,
% 20). Nuclei were stained with DAPI. RT-PCR showed GFP
expression (95-bp fragment) in muscle and not in liver or
other organs of injected animals. (C) The 136bp corre-
sponding to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as housekeeping control. M1, gastroc-
nemius; M2, tibialis; L, liver; S, spleen; K, kidney; H, heart.
Color images available online at www.liebertpub.com/hum
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(Fig. 5A), whereas no staining was detected in liver (Fig. 5B).
Expression of the GFP transgene driven by the MCK pro-
moter was detected by RT-PCR in muscle, but not in liver or
other tissues of the injected animals (Fig. 5C). Together with
the absence of detectable hepatic UGT1A1 protein by Wes-
tern blot analysis, this finding confirms that intramuscular
injections of AAV2.1-MCK-rUGT1A1l result in muscle-
specific expression (Fig. 5A).

Discussion

Patients with Crigler-Najjar syndrome type 1 have life-
threatening elevations of serum bilirubin and are currently
managed with phototherapy throughout childhood and ad-
olescence. Although effective, phototherapy is cumbersome
and inconvenient, and its efficacy may diminish with age
because of increased skin thickness and decreased surface-
to-mass ratio (Strauss et al., 2006). Moreover, despite this
treatment, patients remain at risk of brain damage when
intercurrent infections may increase production of bilirubin
above those levels that can be controlled by phototherapy
(Strauss et al., 2006). Therefore, patients with Crigler-Najjar
type 1 are often advised to consider liver transplantation,
most frequently in the range of 18-25 years of age.

Muscle-directed gene therapy is attractive for Crigler-
Najjar syndrome type 1 because skeletal muscle is easily
and safely accessible by intramuscular injections and con-
tains both dividing and nondividing cells with long half-
lives resulting in stable episome expression (Jiang et al.,
2006; Koo et al., 2011). For this strategy to be effective in
treating hyperbilirubinemia in Crigler-Najjar syndrome, the
enzyme produced in the ectopic site must be functional and
expressed long term. In this study, we have shown that
expression of the defective enzyme in muscle (Fig. 4) results
in long-term reduction of hyperbilirubinemia (Fig. 1)
without toxicity as demonstrated by serial CPK measure-
ment (data not shown). This finding is supported by the
Western blot (Fig. 4A) and in vitro UGT1A1 enzyme assay
(Fig. 4B), showing that muscle expresses, long term, a
functionally active UGT1A1 protein. Bile and urine of AAV-
injected animals showed increased excretion of alkali-labile
bilirubin derivatives (Fig. 2), thus suggesting that bilirubin
esterified by AAV-transduced muscles is excreted in bile
and urine. However, bilirubin mono- or diglucuronides
were not detectable in bile by HPLC (Fig. 3); only an un-
identified metabolite was detected (Fig. 3B). This metab-
olite is reminiscent of the metabolite observed by Seppen
and colleagues, who showed correction of hyperbilir-
ubinemia in Gunn rats receiving transplantation of cells
that do not normally express UGT1A1 but were genetically
modified ex vivo to express UGT1A1 (Seppen et al., 1997). It
is possible that UGT1A1 expressed in muscle may result in
a protein that is not identical to the physiological liver-
expressed protein, as previously found in the case of eryth-
ropoietin expressed at ectopic sites (Lasne et al., 2004; Menzel
et al., 2009). Whether posttranslational modifications of mus-
cle-expressed UGT1Al play a role in the formation of this
unidentified metabolite is unclear at this time.

The negligible formation of bilirubin glucuronides in the
present work despite the in vitro detection of UGT1A1 ac-
tivity in muscle microsomes may reflect inadequate forma-
tion of the necessary uridine 5’-diphosphoglucuronic acid
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(UDPGA) cofactor (Wong, 1977). Coexpression of UDP-
glucose dehydrogenase (UGDH), which generates UDPGA,
may further increase the therapeutic efficacy of muscle-
directed gene therapy, as in the case of muscle-directed gene
therapy of phenylketonuria, which requires the expression of
the complete phenylalanine hydroxylase (PAH) system
(PAH and BHj-biosynthetic enzymes) to effectively clear
phenylalanine from the blood (Ding et al., 2008). Never-
theless, UGDH catalyzes the conversion of UDP-glucose to
UDP-glucuronic acid that is used for production of proteo-
glycans, which are involved in promoting normal cellular
growth and migration (Auvinen et al., 2000; Wang et al.,
2010). Therefore, overexpression of UGDH raises concern for
risks of malignant transformation, which may impede clin-
ical translation.

Consistent with our results, Bortolussi and colleagues
have shown reduction of hyperbilirubinemia due to UGT1A1
muscle expression in Ugtlal™~ mice injected systemically
with an AAV2/9 vector expressing human UGT1A1 under
the control of the ubiquitous CMV promoter (Bortolussi et al.,
2011). However, in those studies bilirubin glucuronide for-
mation was demonstrated in vitro in muscle microsomes
incubated with bilirubin and a large excess of UDPGA.

After vector intramuscular injection, AAV vector genome
was detected primarily in muscle tissues with undetectable
distribution to other tissues (Fig. 4C), consistent with the
conclusion that reduction of serum bilirubin was due to
muscle expression of functional UGT1A1.

The main goal of gene therapy for Crigler-Najjar syndrome
is prevention of brain damage due to hyperbilirubinemia;
complete normalization of serum bilirubin is not required to
achieve this goal. In the present study, intramuscular delivery
of the AAV vector did not result in complete normalization of
serum bilirubin levels. On average, a 51% reduction of bili-
rubin levels was observed as compared with saline-injected
control rats (Fig. 1). Such reduction is clinically highly relevant
because a 30-60% decrease would result in serum bilirubin
levels below 20mg/dl in most patients (Strauss et al., 2006).
Patients with Crigler-Najjar syndrome type 2, with levels be-
low this threshold, are not at risk for brain damage (Arias
et al., 1969). Therefore, such a reduction would result in im-
portant clinical benefit in patients with Crigler-Najjar syn-
drome type 1. Given the limited invasiveness of AAV-
mediated muscle-directed gene therapy, this approach may be
useful also for patients with Crigler-Najjar syndrome type 2,
thus avoiding long-term treatment with phenobarbital.

Muscle-directed gene therapy based on pDNA delivery
was previously investigated in Gunn rats (Jia and Danko,
2005a). In contrast with the pDNA study, we have demon-
strated sustained correction and persistence of transgene
expression after a single procedure of intramuscular injec-
tions. We also observed long-term correction of hyperbilir-
ubinemia, whereas the study using pDNA detected immune
elimination of transfected cells caused by the presence of
anti-hUGT1A1 antibodies and lymphocytic inflammation
(Jia and Danko, 2005a). Possible explanations for this dif-
ference include different vectors (AAV vs. pDNA), different
routes of administration (intramuscular vs. limb perfusion),
different promoters (MCK vs. CMV), different transgenes
(rUGT1A1 vs. hUGT1A1), or a combination thereof.

A limitation of muscle-directed gene therapy is the small
number of muscle fibers that are transduced after an
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intramuscular injection. However, efficient delivery methods
based on limb perfusion for AAV vector delivery have been
developed to allow distribution of the vector to a larger
muscle mass (Arruda et al., 2010; Haurigot et al., 2010). This
approach may potentially be applicable also for Crigler-
Najjar syndrome type 1 to permit improved phenotypic
correction by transduction of a larger number of muscle cells.

Peripheral vein infusion of self-complementary AAV2/8
vector encoding F.IX under the control of a liver-specific
promoter resulted in F.IX transgene expression at levels
sufficient to improve the bleeding phenotype in patients with
hemophilia B (Nathwani et al., 2011). Although immune-
mediated clearance of AAV-transduced hepatocytes remains
a concern and was eventually controlled with a short course
of glucocorticoids (Nathwani ef al., 2011), this clinical trial
may pave the way towards applications of liver-directed
gene therapy for a wide range of inborn errors of liver me-
tabolism, including Crigler-Najjar syndrome type 1. Never-
theless, AAV vectors are nonintegrating vectors and loss of
transgene expression will occur during cell division in liver
of growing patients. The onset of Crigler-Najjar syndrome
type 1 is in the neonatal period and, thus, liver-directed gene
therapy performed at that time will likely results in loss of
therapeutic effect. In contrast, as shown by both small and
large animal studies (Sabatino et al., 2007; Yue et al., 2008),
intramuscular injections of AAV vectors in newborns result
in long-term transgene expression in muscle, a tissue that can
grow by cell fusion or by increase in protein content (Otto
and Patel, 2010). Therefore, muscle remains attractive as a
target organ for gene therapy for Crigler-Najjar syndrome
type 1. Moreover, newborns may not mount a vigorous
immune response because of their immature immune system
and thus muscle-directed gene therapy in the neonatal pe-
riod may be an option for patients carrying disease muta-
tions (e.g., nonsense mutations), who are more prone to
develop anti-UGT1A1 antibodies.

In summary, intramuscular injection of AAV resulted in
reduction of serum bilirubin levels for at least 1 year. The
reduction of serum bilirubin was associated with increased
excretion of bilirubin species in bile and urine. On the basis
of the HPLC spectrum, as previously shown with ectopic
expression of UGT1A1 (Seppen et al., 1997), nonphysiological
bilirubin species were observed in Gunn rats receiving in-
tramuscular injections of AAV vector, but their identities
remain to be determined. Nevertheless, intramuscular injec-
tions of AAV proved an effective, simple, and safe gene
delivery method that maintained long-term functional
UGT1A1 in Gunn rat muscle, and resulted in clinically rel-
evant, long-term reduction of serum bilirubin levels.
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Abstract

Null mutations in the UGTIAI gene result in Crigler—Najjar syndrome type I (CNSI), characterized by severe
hyperbilirubinemia and constant risk of developing neurological damage. Phototherapy treatment lowers
plasma bilirubin levels, but its efficacy is limited and liver transplantation is required. To find alternative
therapies, we applied AAV liver-specific gene therapy to a lethal mouse model of CNSI. We demonstrated that
a single neonatal hUGTIAI gene transfer was successful and the therapeutic effect lasted up to 17 months
postinjection. The therapeutic effect was mediated by the presence of transcriptionally active double-stranded
episomes. We also compared the efficacy of two different gene therapy approaches: liver versus skeletal muscle
transgene expression. We observed that 5-8% of normal liver expression and activity levels were sufficient to
significantly reduce bilirubin levels and maintain lifelong low plasma bilirubin concentration (3.1 1.5 mg/dl).
In contrast, skeletal muscle was not able to efficiently lower bilirubin (6.4 %2.0 mg/dl), despite 20-30% of
hUgtlal expression levels, compared with normal liver. We propose that this remarkable difference in gene
therapy efficacy could be related to the absence of the Mrp2 and Mrp3 transporters of conjugated bilirubin in
muscle. Taken together, our data support the concept that liver is the best organ for efficient and long-term
CNSI gene therapy, and suggest that the use of extra-hepatic tissues should be coupled to the presence of
bilirubin transporters.

Introduction

HE CRIGLER-NAJJAR SYNDROME TYPE I (CNSI; OMIM

No. 218800) is a rare monogenic disease caused by
uridine-diphosphate (UDP)-glucuronosyltransferase (UGT)
1Al enzyme deficiency, which is responsible for bilirubin
conjugation. Patients suffer from life-threatening unconjugated
hyperbilirubinemia and are at constant risk of developing
neurological damage (kernicterus). Current clinical practice
for patients affected by CNSI consists of phototherapy (PT)
treatment for more than 10-12 hr/day. However, the response
to PT is decreased with the age because of thickening of the
skin and reduction in surface/body mass ratio (Fagiuoli er al.,
2013). Thus, orthotopic liver transplantation remains the only
permanent therapy for this disease (Fagiuoli et al., 2013).

In CNSI, enzyme replacement therapy represents a pos-
sible alternative strategy, and gene therapy offers a tool to
achieve this therapeutic possibility. Over the past 20 years, a
number of ex vivo and in vivo gene therapy protocols have
demonstrated efficacy when applied to the Gunn rat [see
(Miranda and Bosma, 2009) for a detailed review], but none
of them has yet arrived to the clinic, suggesting that a more
throughout understanding of the molecular correlates of the
CNSI pathology is needed.

Liver has unique features that render it an attractive organ
for gene therapy: (1) it is the largest organ in the body; (2) it
has a dual circulation systems and it is highly vascularized,
increasing the possibility to transduce the organ with higher
efficiency; (3) it has a dense net of ducts that could potentially
clear the production of toxic products, the bile canaliculi.
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Moreover, as the skeletal muscle, liver has a very low cell
turnover (Sell, 2003) but can regenerate following various
types of insults, and (4) above all, the liver is the main tissue
of UGT1A1 expression (Tukey and Strassburg, 2000;
Buckley and Klaassen, 2007).

Besides liver, skeletal muscle was proposed as a surrogate
organ to express the therapeutic protein both for CNSI and
other liver genetic defects such as hemophilia (Miranda
and Bosma, 2009; High, 2011; Chuah et al., 2012; Pastore
et al., 2012). Skeletal muscle is an attractive alternative
tissue because of several advantages it might offer. First, the
muscle is a very abundant tissue, accounting for approxi-
mately 40% of the total body mass. Second, it is highly
vascularized and easily accessible by intramuscular injec-
tion. Third, viral vectors are currently available that trans-
duce skeletal muscle fibers at very high efficiency. Fourth
and final, AAV-mediated gene transfer to human skeletal
muscle persists and is transcriptionally active for a period of
at least 10 years (Buchlis et al., 2012), and probably longer
periods. Because of these favorable characteristics, it is not
surprising that several of the clinical trials for liver meta-
bolic diseases performed to date have entailed intramuscular
gene delivery (Mingozzi and High, 2011). In particular,
various gene therapy approaches have been performed in the
animal models of CNSI by targeting skeletal muscle, in-
cluding injections of naked plasmid DNA and the use of
AAV vectors (Danko et al., 2004; Jia and Danko, 2005;
Bortolussi et al., 2012; Pastore et al., 2012). In the former
case, a rapid drop of the therapeutic effect was observed,
which was associated with the loss of UGT1A1 protein ex-
pression after a couple of weeks postinjection of the plasmid
DNA (Danko et al., 2004; Jia and Danko, 2005). In the latter
case, involving AAV vectors, efficacy was more evident
(approximately 50% reduction compared with untreated
controls) and long lasting (Bortolussi et al., 2012; Pastore
et al., 2012). We have recently shown that neonatal gene
transfer of AAV9-CMV-hUGTIAI to the skeletal muscle
can rescue bilirubin-induced lethality in a lethal murine
model of CNSI we developed (Bortolussi et al., 2012).

In both AAV approaches targeting skeletal muscle in rats
and mice, UGT1A1 expression levels in this tissue were
comparable to those of wild type (WT) liver (Bortolussi
et al., 2012; Pastore et al., 2012). However, they were ac-
companied by a less than ideal reduction of total bilirubin
(TB) values, suggesting that other factors are necessary to
attain therapeutic success.

Based on these considerations, in this study we tested
the therapeutic efficacy of liver-specific transduction in the
mouse model of CNSI. Delivery of the UGTIAI cDNA was
achieved with an AAV serotype 8 (AAVS8) vector in which
transgene expression was controlled by a liver-specific
promoter, carrying the enhancer element of the ApoE gene
and the minimal promoter region of «-/-antitrypsin (AAT)
(Mingozzi et al., 2003).

We demonstrate that neonatal gene transfer was suc-
cessful and the therapeutic effect lasted up to 17 months
postinjection. Moreover, we compared efficacy of this liver-
specific gene therapy with the results obtained after skeletal
muscle transduction. We showed that, despite that the trans-
duced liver expressed 26 times less hUGTIAI than the
transduced muscle, the levels of total plasma TB were sig-
nificantly lower in the former treatment. Our results revealed
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that less than 5-8% of normal UGT1A1 liver expression was
sufficient to maintain life-long low TB levels, while much
reduced efficiency was obtained with about 20-30% of
Ugtlal expression in the skeletal muscle.

This striking difference in the therapeutic effect between
liver and skeletal muscle apparently resides in the liver-
specific expression of Mrp2 and/or Mrp3 transporters (also
known as Abcc2 and Abcc3, respectively), which extrude
conjugated bilirubin from the hepatocyte to the bile and
blood, respectively (Kamisako et al., 2000). Taken together,
our data strongly support the concept that the liver is the most
suitable target organ for efficient CNSI gene therapy and
suggest that the potential use of extrahepatic tissues should be
directly related to the presence of bilirubin transporters.

Materials and Methods
Animals

Ugtl mutant mice have been described previously (Bor-
tolussi et al., 2012). WT littermates were used as a control.
Mice were housed and handled according to institutional
guidelines, and experimental procedures approved by Inter-
national Centre for Genetic Engineering and Biotechnology
(ICGEB) board. Animals used in this study were at least
99.8% C57Bl/6 genetic background, obtained after more
than 9 backcrosses with C57B1/6 mice. Mice were kept in a
temperature-controlled environment with a 12/12hr light—
dark cycle. They received a standard chow diet and water ad
libitum.

Production, purification, and characterization
of the rAAV vectors

The AAV-hUGTIAI vector used in this study is based on
AAV type 2 backbone in which the inserted human UGTIA1
cDNA is under the transcriptional control of either cytomeg-
alovirus (CMV) immediate early promoter as previously de-
scribed (Arsic et al., 2004) or the enhancer element of the ApoE
gene and the minimal promoter region of -l-antitrypsin
(AAT) as previously described (Mingozzi et al., 2003). In-
fectious vectors were prepared by the AAV Vector Unit at
ICGEB Trieste (www.icgeb.org/avu-core-facility.html). In-
fectious recombinant AAV vectors were generated in HEK293
cells by a cross-packing approach whereby the vector was
packaged into AAV capsid 8 or 9 (Nakai et al., 2005; Inagaki
et al., 2006). Viral stocks were obtained by CsCl gradient
centrifugation. Titers were determined by measuring the copy
number of viral genomes in pooled, dialyzed gradient fractions,
as previously described (Arsic et al., 2004) and were in the
range of 2x 10'? to 2 x 10" genome copies/ml.

Gene transfer procedure: PT treatment

For the AAV gene transfer procedure, pups at postnatal
day 4 (P4) were intraperitoneally injected with a single
dose of AAV8-AAT-hUGTIAI or AAV9-CMV-hUGTIAI
(3.2x 10" viral particles, 1.3x 10" vpg/g). Newborns were
exposed to blue fluorescent light (20 xW/cm?/nm; Philips
TL 20W/52 lamps; Philips) for 12 hr/day (synchronized with
the light period of the light/dark cycle) up to 10 days after
birth and then maintained under normal light conditions.
Intensity of the blue lamps was monitored monthly with an
Olympic Mark II Bili-Meter (Olympic Medical).
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Bilirubin measurements

Blood samples were collected at the indicated time points
postinjection in mutant and WT littermates by decapitation or
facial vein exsanguination or cardiac puncture. Bilirubin deter-
mination in plasma was performed as previously described
(Bortolussi et al., 2012). Gall bladder was dissected upon sac-
rifice of the mice and bile fluid was collected by centrifugation.

Concentrations of biliary UCB and bilirubin-glucuronic
acid conjugates in 2-month-old mice were determined by
HPLC as previously described by Zelenka et al. (2008) and
by Spivak and Carey (1985), respectively.

Quantitative determination of UCB in tissues of 2-month-
old mice was performed as previously described by Zelenka
et al. (2008).

Albumin determination in plasma

Albumin determination in plasma samples was performed
with the Bromocresol Green method as previously described by
Rodkey (1965), adapting the method to use minimal volumes
(2 l of plasma). In each test a standard curve was performed by
dilution of a stock solution (10 mg/ml) of mouse albumin (Sig-
ma) in water. Absorbance values at 630 nm were obtained by
using a multiplate reader (Perkin Elmer Envision Plate Reader)

Liver histology

Liver biopsies from AAV-treated animals and their WT
littermates were extracted and fixed with 4% paraformalde-
hyde in PBS overnight at 4°C. After cryoprotection in 20%
sucrose in PBS and 0.02% sodium azide, specimens were
frozen in optimal cutting temperature compound (BioOptica)
and 14 um slices were obtained in a cryostat. Masson tri-
chrome staining was performed as previously described
(Bortolussi et al., 2012).

For immunofluorescence, liver specimens (14 um) were
stained with Hoechst (10 pg/ml) and mounted with Mowiol
4-88 (Sigma). Images were acquired on a Nikon Eclipse E-
800 epi-fluorescent microscope with a charge-coupled de-
vice camera (DMX 1200F; Nikon). Digital images were
collected using ACT-1 (Nikon) software.

Rotarod analysis

The coordination and balance ability on a rotating cylinder
was assessed 1 month postinjection with an accelerating ap-
paratus as previously described (Bortolussi et al., 2012).

Viral genomes determination

Total DNA from liver and skeletal muscle was extracted
using the Wizard SV Genomic DNA Purification System
(Promega) according to manufacturer’s instructions. The
vector genome copy number was quantified by real-time PCR
using specific primers for AAT or CMV promoter. Real-time
PCR was performed using the following primers—for AAT:
pGG2-906 DIR and pGG2-1051 REV; for CMV: pZac DIR
and pZac REV (see Supplementary Table S1; Supplementary
Data are available online at www.liebertpub.com/hum).

Southern blot analysis

Low-molecular-weight Hirt DNA was extracted from liver
samples taken at different time points after AAV transduction
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as previously described (Davidoff et al., 2003), with a minor
modification of the method: samples were pulverized in liquid
nitrogen instead of using a Dounce homogenizer. Undigested
or Spel-digested Hirt DNA (15 ug) was run in a 0.7% agarose
gel, blotted onto a nylon membrane (Z-Probe GT Genomic
membrane; Bio-Rad), and hybridized with a a-P32labeled
1622 bp fragment containing the hUgtlal cDNA expression
cassette. After being washed, the membrane was exposed
using a Cyclone phosphor-screen (Packard Bioscience), and
the radioactive signal was detected using Cyclone Storage
phosphor-imager (Packard Bioscience).

High-molecular-weight DNA was extracted using the
Wizard SV Genomic DNA Purification System (Promega)
according to manufacturer’s instructions. About 5 ug of un-
digested or digested (with EcoRV or Xhol/Notl) total geno-
mic DNA was run in a 0.7% agarose gel and subjected to
Southern blot analysis as described above.

Preparation of total RNA, RT-PCR,
and real-time PCR analysis

To reduce variability that could be generated by uneven
distribution of the AAV vectors in the analyzed tissue, the
complete organ was reduced to powder with a mortar and
liquid nitrogen, and the sample was then aliquoted to analyze
proteins and mRNA expression and viral genome copies.
Total RNA from mouse liver and skeletal muscle was pre-
pared using EuroGOLD Trifast (Euroclone) according to
manufacturer’s instructions. About 1 ug of total RNA was
reverse-transcribed using M-MLV (Invitrogen) and oligodT
primer according to manufacturer’s instructions. Total cDNA
(1 pl) was used to perform either RT-PCR or qPCR using
specific primers listed in Supplementary Table S1. qPCR was
performed using iQ SYBR Green Supermix (Bio-Rad) and a
C1000 Thermal Cycler CEX96 Real-Time System (Bio-Rad).

For qRT-PCR gene expression analysis in different tissues,
the study of a reference gene with stable mRNA transcription
levels is required. To this purpose, we tested six housekeeping
genes directly comparing their Cy values between liver and
skeletal muscle: glyceraldehyde 3-phosphate dehydrogenase
(Gapdh), p-actin (f-act), TATA-box binding protein (7BP),
succinate dehydrogenase subunit A (Sdha), a-tubulin (7ub),
and hypoxanthine-guanine phosphoribosyltransferase (HPRT)
(data not shown). Among the analyzed housekeeping genes,
o-tubulin was expressed at analogous Cr values between liver
and skeletal muscle and was therefore used to compare
hUGTIAI expression between both tissues. Expression of the
gene of interest was normalized to a house-keeping gene
(Gapdh or Tub). Real-time PCR data were analyzed using the
AACt method.

Preparation of total protein extracts
and Western blot analysis

Liver and skeletal muscle tissues were homogenized in
RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% DOC, 0.1%
SDS, 50mM Tris HCI, pHS8, 2x protease inhibitors) and
analyzed by Western blot analysis as described previously
(Bortolussi et al., 2012). Primary antibodies used were as
follows: anti-human UGT1 rabbit polyclonal antibody, anti-
Mrp2 and anti-Mrp3 (Santa Cruz Biotechnology), and anti-
p-tubulin mAb E7 (Developmental Studies Hybridoma
Bank).
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UGT1a1 activity determination

Liver microsomes (6-, 11-, 18-, 30-, and 60-day-old mice)
of each genotype were prepared as described previously
(Bortolussi ef al., 2012). Protein concentration was deter-
mined by the bicinchoninic acid assay (Smith et al., 1985).

Glucuronidation assay was performed as described previ-
ously (Nguyen et al., 2008) with minor modifications. Briefly,
assays were performed after 1 hr of enzymatic reaction using
the following conditions: 10 mM MgCl, x 6H,0, 50 mM Tris-
HCI (pH 7.7 at 37°C), 10 ug/ml phosphatidycholine, 15 uM
bilirubin (bilirubin was previously dissolved in DMSO at a
concentration of 0.33 ug/ul and diluted 1:10 in DMSO), 1 mM
uridine diphosphate-glucuronic acid, and 1 pg/pl microsomal
proteins (previously incubated for 1 hr at 4°C with digitonin at
a concentration of 0.35 mg/ml of microsomes) (Gordon et al.,
1984) in a total volume of 50 ul. Reactions were stopped with
50 ul of methanol with 0.02% of butylated hydroxytoluene.
Samples were centrifuged at 10,000 g for 10 min at 4°C, and
supernatants were collected for HPLC-MS analysis (LC-MS)
as described previously (Nguyen et al., 2008) and adapted to
our instrumentation.

Supernatant was transferred into a conical vial for injec-
tion into the LC-MS system. The HPLC used was a Sur-
veyor Thermo Finnigan system with pump autosampler and
diode array detector (Thermo Finnigan). Bilirubin and its
glucurono-conjugated species were injected and separated on
a Kinetex C18 column (150x4.6 mm; 5 um particle size;
Phenomenex) with a cartdrige with the same stationary phase
(Security Guard ULTRA; Phenomenex). The mobile phase A
was | mM ammonium formate in water, and the mobile phase
B was 1 mM ammonium formate in methanol. Separation was
achieved using a linear gradient of 70% B to 95% B in
3.75min at a flow rate of 0.9 ml/min. After 0.75 min, the
column was re-equilibrated to initial conditions over 4.5 min,
stopping the runs at 15 min. The absorbance of the eluted
pigments was monitored at 455 nm with 195 nm as a reference
wavelength.

Mass spectrometry characterization and detection of bili-
rubin and the mono- bilirubin glucuronide conjugates (BMG)
formed were performed using an LCQ Deca XP Plus model
(Thermo Finnigan), utilizing a standard electrospray ioniza-
tion source operated in positive mode and with an ion trap
detector.

BMG and bilirubin peaks integration was performed with
XCalibur Thermo Finnigan software version 1.4, and the
amount of BMG produced by each reaction was calculated with
the following equation: Areagy/(Areagmg + Areapiiirubin)-

Statistics

Results are expressed as mean+SD. The Prism package
(GraphPad Software) was used to analyze the data. Values
of p<0.05 were considered statistically significant.

Results

Liver-directed UGT1A1 gene therapy efficiently
rescues neonatal lethality

We previously demonstrated that neonatal transfer of
hUGTIA1 cDNA under the control of the CMV promoter
was active in skeletal muscle but not in liver (Bortolussi
et al., 2012). Thus, to promote liver-specific expression of
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the therapeutic gene, we cloned the "UGTIAI cDNA under
the control of the enhancer element of the ApoE gene and the
minimal promoter region of the AAT gene (Mingozzi et al.,
2003). In addition, to achieve a higher efficiency in liver-
specific transduction, the viral genomes were packaged in
AAVS (Davidoff et al., 2005; Nakai et al., 2005).

Because of the early lethality of mutant mice, the gene
therapy approach was combined with PT treatment (12 hr/
day, 20 yW/cmzlnm) since birth up to P10 after birth, as al-
ready described (Bortolussi et al., 2012). Despite PT treat-
ment, mutant mice appeared visibly jaundiced compared
with WT littermates at postnatal day 4 (P4) (Fig. 1A). At that
age, mutant mice were treated with a single intraperitoneal
(IP) injection of AAV8-AAT-hUGTIAI (~3.2x10'"" vpg/
mouse). About 48 hr after vector administration (P6), they
were indistinguishable from their WT littermates, suggesting
that the viral genomes reached the liver and efficiently ex-
pressed the hUGT1A1 protein at therapeutic levels. At that
age, plasma bilirubin determination revealed that mutant
mice treated with AAT-hUGTIAI had bilirubin levels 8.5
times lower than mutant mice treated only with PT (0.5+
0.2mg/dl AAV +PT-treated vs. 4.5+ 0.2 mg/dl PT-treated at
P6, p<0.001, ANOVA test; Fig. 1B) and that those levels
were not statistically different from WT values (0.2£0.1 mg/
dl WT).

Pups were maintained under PT treatment up to postnatal
day 10 and then kept under normal light/dark conditions. All
gene therapy-treated mutant mice survived and reached
adulthood without any coordination and balance dysfunc-
tion, as assessed by the rotarod test, suggesting no obvious
neurological damage (Fig. 1C).

Because of the early lethality of the mutant mice, we
lacked the adult negative control (adult mutant mice without
AAV) necessary to estimate the real drop in bilirubin levels
consequent to the gene therapy treatment. We have previ-
ously shown that PT treatment alone extends the lifespan of
mutant mice up to day 20 after birth (Bortolussi er al.,
2012). Since the decreased efficacy of PT could be caused
by fur growth, we shaved mutant mice every third day
aiming to improve PT efficacy. Shaved mutant mice were
kept up to 20 days after birth under PT treatment and then
maintained in normal light conditions. All shaved mutant
mice survived and reached adulthood (data not shown), and
were used as uninjected controls. This result confirmed that
the most critical period is the first 20 days of life, and that
shaving of the coat allowed the blue light to reach the skin
capillaries, reducing plasma bilirubin to life-compatible
levels. Determination of plasma bilirubin levels in shaved
mutant controls was performed at P30, 10 days after dis-
continuation of PT, when TB values were considered stable
(Fig. 1B).

Plasma samples from WT, AAT-hUGTIAI-treated, and
uninjected control mutant mice were collected at different
time points (2 days, 1 and 2 weeks, and 1, 2, and 17 months
postinjection) and TB levels determined. Bilirubin levels in
AAT-hUGTIAI-treated mice were similar to those of WT
littermates during the first month after injection (Fig. 1B).
Seventeen months postinjection, AAT-hUGT1AI-treated mu-
tant mice still showed 50% less total plasma bilirubin than
uninjected control mutant mice (Fig. 1B; p<0.01). These
levels were well below the risk of neurological damage. Plasma
albumin concentration was comparable among all groups for
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FIG. 1.

Gene therapy rescues neonatal lethality of Ugtl mutant mice. (A) P4 mutant mice appeared visibly jaundiced

compared with their WT littermates. About 48 hr after a single IP injection of AAV8-AAT-hUGTIAI, mutant mice were
indistinguishable from their WT littermates. (B) Time course of total plasma bilirubin levels (mg/dl) in WT (n=06), AAT-
hUGT1Al-treated (MUT+AAT-hUGTlal, n=12), and uninjected control mutant mice (MUT CTRL, n=11). Two-way
ANOVA test: ns, p>0.05: *p<0.05, *¥p<0.01, ***p<0.001. The symbol $ indicates that mice were under PT, # indicates
that mice were removed from PT at P10 (the previous day), and @ indicates that mice were removed from PT at P15. (C)
Motor coordination performance on rotating rod of WT, AAV8-AAT-hUGTI1AI-treated, and uninjected control mutant
mice at 1 month postinjection (WT, n=9; MUT + AAT-hUgtlal, n=4; MUT +CTRL, n=13). One-way ANOVA, p<0.05
WT vs. MUT CTRL; not significant, WT vs. MUT + hUGT1al. (D) Biodistribution of AAV genomes determined by PCR of
genomic DNA prepared from liver, heart, intestine, kidney, diaphragm, and skeletal muscle (L, H, I, K, D, and SM,
respectively) of AAT-hUGTIAI-treated mutant mice, sacrificed 2 months postinjection. (E) Determination of h(UGTIAI
expression by semiquantitative RT-PCR of the tissues indicated in (D). The Gapdh housekeeping gene was used as

normalization control. IP, intraperitoneal; WT, wild type.

the time points tested (Supplementary Fig. S1A). Seventeen
months postinjection, mice were sacrificed and liver tissue
samples were subjected to histological analysis. Masson’s tri-
chromic staining of the liver sections showed normal histol-
ogy without any fibrosis-rich area in AAT-hUGTIAI-treated
mice or in uninjected control mutant mice (Supplementary
Fig. S1B).

We next determined the genome viral distribution by PCR.
Viral genome copies were detected in liver, heart, kidney, di-
aphragm, and skeletal muscle except intestine (Fig. 1D). RT-
PCR analysis of the same tissues confirmed that the expression
of the therapeutic gene was restricted to liver (Fig. 1E).

Persistence of transgene expression and hUgt1a1l
conjugation capacity following neonatal gene transfer

We next investigated the persistence of hUGTIAI
transgene after neonatal gene transfer. Livers from AAT-
hUGTI1A]I-treated mice were collected at different time points
(2 days, 1 and 2 weeks, and 1 and 2 months postinjection) and
vector copies per diploid genome were determined by real-
time PCR.

We observed that the value of vgp was very high 2 days
after viral delivery, but it rapidly declined within 1 week

(Fig. 2A; p<0.001), concomitantly with the rapid growth of
both the body and the liver (Supplementary Fig. S2). Fol-
lowing this initial decline, vgp levels remained stable over
time, up to 17 months after injection (Fig. 2A).

To better understand the mechanism responsible for the
long-term therapeutic efficacy of the gene transfer, we
purified low-molecular-weight Hirt DNA from the liver of
these mice and performed Southern blot analysis of undi-
gested and Spel-digested DNA (Fig. 2B). At early stages
(2 days postinjection), we observed a high proportion of
viral genomes in single-stranded (ss) conformation and
monomeric supercoiled circular form. To determine the
presence of transcriptionally active double-stranded (ds)
viral genomes, we digested the Hirt DNA preparation with
the Spel restriction enzyme, which cuts only once in the
vector genome and results in a single 3.3 kb band of the
monomer. By 2 weeks postinjection, the ss forms were con-
verted into ds genomes, which appeared to be also present
in concatameric conformation (Fig. 2B; HT and HMW,
respectively).

To further confirm that the long-term therapeutic effect
was mediated by episomal ds vectors, we prepared high-
molecular-weight genomic DNA from 2-month-old AAT-
hUGTI1AI-treated mutant mice and WT littermates, digested
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FIG. 2. Persistence of hUgtlal transgene expression in liver following neonatal gene transfer. (A) Time course of vector
genomes per diploid genome was determined by real-time PCR. Values represent meantSD. One-way ANOVA with
Bonferroni’s post-hoc test, p<0.0001. ***p <0.0001; ns, not significant. (B) Southern blot analysis of 15 ug of Hirt DNA
derived from liver samples at different time points after neonatal injection (2 days, 1 and 2 weeks, and 1 and 2 months
postinjection). For each time point, undigested and Spel-digested (single cutter) Hirt DNA from two different animals was
run in a 0.7% agarose gel. A standard curve with different amounts of cold probe was used. WT sample was used as
negative control. Vector genomes were detected with a 1622 bp radioactive probe for hUgtlal cDNA. dsCM, double-
stranded circular monomer; MSC, monomeric supercoiled circular intermediate; HT, head-to-tail; HMW, high-molecular-
weight concatamers; MSC, monomeric supercoiled circular intermediate; ss, single-stranded monomer. (C) Representative
Southern blot analysis of total genomic DNA extracted from 2-month-old AAV-AAT-hUgtlal-treated mutant mice (n=2)
and WT littermate (n=1). About 5 ug of undigested and digested DNA (EcoRV or Xhol+ Notl, left and right panels,
respectively) for each mouse was run in 0.7% agarose gel. A standard curve with different amounts of cold probe was used.
Vector genomes were detected with a 1622 pb radioactive probe for hUgtlal cDNA. Left panel, yellow asterisks indicate
fragments compatible with the size of HT and tail-to-tail TT concatamers. The probe recognized also a band in the negative
control (WT 2 months old) that was present in all samples and indicated by a red asterisk. Right panel: the yellow asterisk in
the uncut lane indicates a band corresponding to dsCM, while the asterisk in the XN lane indicates a band resulting from the
release of the fragment containing the expression cassette. RV, EcoRV restriction enzyme; uc, uncut; XN, Xhol-Notl
restriction enzyme. (D) Time course of hUgtlal protein expression in the liver as determined by Western blot using a
primary antibody that detects both mouse and human Ugtl. Tubulin was used as loading control. MUT UNT, mutant
untreated. (E) Time course of Ugtlal enzyme activity in AAT-hUgtlal-treated mutant mice expressed as percentage
compared with WT. Results are expressed as mean+ SD. Color images available online at www.liebertpub.com/hum

it with EcoRV (single cutter) or a combination of Xhol and
Notl to release the hUgtlal cDNA from the expression
cassette, and performed a Southern blot analysis. Similarly
to the results observed with Hirt DNA using an enzyme that
cuts only once in the viral genome, we obtained a band of
3.3 kb, corresponding to the linearized viral genome. When
the DNA was cut with enzymes that release the hUGTlal
cDNA, we observed a single band of 1.6kb (Fig. 2C). The
intensity of the 1.6 kb Xhol-Notl band was similar to that
obtained after Spel digestion, suggesting that most of the
viral genome was episomal.

To determine the changes in UGTlal expression and
enzyme activity in the early phases of rapid liver growth of
the AAV-transduced pups, we performed Western blot
analysis of liver proteins and determined Ugtlal bilirubin-
glucuronidation activity in liver microsomes. Ugtl protein
levels were very high up to P18, and suffered an important
reduction at P30 (Fig. 2D). Ugtlal bilirubin-glucuronidation
activity paralleled Western blot results. In fact, we observed
high bilirubin-glucuronidation activity during the first 2
weeks after transduction, reaching 50% of the activity of
WT littermates at 1 week posttransduction. We observed a
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reduction in enzyme activity 1 month after injection, which
remained stable at 2 months (Fig. 2E).

These results support the hypothesis that the long-term
efficiency of the gene therapy treatment was mediated by
transcriptionally active ds episomal genomes.

Liver (UGT1A1 is more efficient in lowering plasma
bilirubin than skeletal muscle hUGT1A1

hUGTIAI mRNA expression levels were determined 17
months post-AAT-hUGTIA]I injection by semi-quantitative
RT-PCR. The reaction was performed using specific primers
able to amplify the human UGTIAI mRNA but not the en-
dogenous mouse version. As expected, WT and mutant PT-
treated liver samples did not express the human UGTIAI
mRNA (Fig. 3A), while AAT-hUGT1A I-treated mutant mice
expressed detectable levels of h(UGTIAI mRNA. As a posi-
tive control, we used skeletal muscle of a 5-month-old CMV-
hUGTIAI-treated mutant mouse (Bortolussi et al., 2012).
Interestingly, skeletal muscle of the CMV-treated mutant
mice expressed much higher h(UGTIAI mRNA levels than
the liver of AAT-hUGT1AI-treated mutant mice. To obtain
more accurate data of the observed differences, hUGTIAI
expression levels of AAT-hUGTI1AI-treated liver and CMV-
hUGTIAI-treated skeletal muscle were compared by real-
time RT-PCR in a new group of mutant animals, 2 months
after AAV injection. Despite that mutant mice treated with
AAT-hUGTIAI gene therapy showed a stronger reduction in
bilirubin levels than CMV-hUGTIA I-injected mice (3.1 £2.6
vs. 6.4+2.8 mg/dl, respectively; p=0.02; Fig. 3B), the liver
from AAT-hUGTI1AI-treated mutant mice expressed 26 times
less hUGTIAI than skeletal muscle of CMV-hUGTIAI-
treated mutant mice (26 = 4.72; Fig. 3B) and contained more
viral DNA (2.3£0.9 vs. 0.8+0.6 viral genomes/diploid
genome, liver vs. skeletal muscle, respectively; p<0.01).

The expression patterns of the two promoters were con-
firmed using AAV-EGF P-reporter vectors (Fig. 3C-F). WT
mice were injected at P4 with a single dose of either AAVS-
AAT-EGFP or AAV9-CMV-EGFP and sacrificed at P13. We
observed a strong EGFP liver expression (but no expression
in skeletal muscle, as expected) using the AAT promoter
(Fig. 3C and E), while liver expression was almost unde-
tectable using the CMV promoter at both mRNA and protein
levels (Fig. 3D and E), corroborating our previous findings
that showed transcriptional silencing of the CMV promoter in
liver over time (Bortolussi et al., 2012). Moreover, we con-
firmed that in our system CMV-EGFP expression was re-
stricted to muscles such as heart, diaphragm, and skeletal
muscle (Fig. 3D and F).

In line with the qRT-PCR results, Western blot analysis
using a polyclonal antibody recognizing both mouse and
human UGT]1 proteins confirmed that the liver of the AAT-
hUGTI1AI-treated mutant mice expressed lower levels of
hUGT1A1 compared with the same amount of total protein
extract from skeletal muscle of the CMV-treated animals
(Fig. 3G).

To roughly estimate the levels of UGT1 expression, we
prepared a calibration curve of the Ugtl protein by mixing
liver protein extracts from WT and mutant mice at different
proportions (Fig. 3H). Thus, by interpolating the signal ob-
tained in the AAT-hUGT1A-treated mutant mice with that of
the calibration curve, we estimated that about 5% of the WT
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Ugtlal levels were present in the livers of AAT-hUGTIAI-
treated mutant mice and that this amount of enzyme was
sufficient to maintain bilirubin levels below the threshold of
neurotoxicity risk. On the contrary, interpolating the signal
obtained by CMV-hUGTIA]I-treated mutant mice, we esti-
mated that similar amounts of total protein extract of skeletal
muscle expressed about 20-30% of the WT Ugtlal levels.

Reduced expression of bilirubin transporters
in the skeletal muscle correlates with the moderated
efficiency of skeletal muscle-directed gene therapy

These findings prompted us to investigate more in detail
the reasons why skeletal muscle, which apparently had a
very strong hUGT1AL1 expression, was not as efficient as the
liver in lowering plasma bilirubin levels.

In WT animals, bile samples collected at 2 months post-
injection showed two prominent peaks corresponding to
isomers of bilirubin monoglucuronoside (BMG, C8, and C12
glucuronides), one peak corresponding to bilirubin diglu-
curonoside (BDG), and almost undetectable levels of UCB
(Fig. 3I). On the contrary, bile from mutant, untreated animals
(PT-Shave treated up to 20 days, analyzed 40 days after the
end of PT treatment) contained only UCB. In both AAV-
AAT-hUGTIAI- and AAV-CMV-hUGTIAI-treated mutant
animals, we observed a clear increase in conjugated bilirubin
pigments (BDG and BMG) in the bile samples compared with
untreated mutant controls (Fig. 3I).

One of the key factors in bilirubin conjugation is the avail-
ability of UDP-glucuronate. Two enzymes drive the pro-
duction of the active form of glucuronic acid: UDP-glucose
pyrophosphorylase (Ugp) and UDP-glucose dehydroge-
nase (Ugdh). We investigated, by semiquantitative RT-PCR
analysis, whether these two enzymes were differentially ex-
pressed in the liver and skeletal muscle. We observed that
both tissues expressed the two enzymes at high levels (Fig. 4).

We then evaluated bilirubin accumulation in liver and
skeletal muscle of the transduced mice by the Zelenka method
(Zelenka et al., 2008). We observed that AAT-hUGTIAI-
treated mice accumulated much less bilirubin in all tissues
analyzed (liver, skeletal muscle, cerebellum, and fore-
brain) than aged-matched untreated mutants (p<0.01,
AAT-hUGTIAI-treated mice vs. PT-treated mutant mice;
Fig. 5B-E). Surprisingly, CMV-treated mutant mice accu-
mulated the same amounts of bilirubin in tissues as age-
matched untreated mutants, indicating a constraint of skeletal
muscle-gene therapy to efficiently clear tissue bilirubin
(p<0.01, AAT-hUGTIAI-treated mice vs. CMV-hUGTI1AI-
treated mice; Fig. 5B-E). Moreover, bilirubin content in
forebrain and cerebellum revealed that liver-directed gene
therapy was much more effective than skeletal muscle-
directed gene therapy in preventing bilirubin accumulation in
the central nervous system (p=NS, AAT-hUGTIAI-treated
mice vs. WT mice; Fig. 5D and E).

We reasoned that bilirubin, once entered the muscle and
conjugated, has to reach the bloodstream to be eliminated in
bile. Normally, these steps are performed by active trans-
porters in the liver (Kamisako et al., 2000; Thomas et al.,
2008). Thus, we evaluated, by semiquantitative RT-PCR,
the expression of different transporters known to export
conjugated/unconjugated bilirubin from hepatocytes (Fig.
6A). We observed that skeletal muscle did not express mRNA
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FIG. 3. Liver and skeletal muscle h(UGT1AI expression and bilirubin pigments in bile samples. (A) RT-PCR of total liver
from WT, AAT-hUGTIAI-treated mutant mice 17 months postinjection, and skeletal muscle of CMV-hUGT1A1-treated
mutant mice (5 months old). Mouse Gapdh was used as endogenous control. Liver cDNA from an untreated mutant mouse
(MUT) was used as a negative control. M, molecular weight marker. (B) Relative htUGTIA1 expression levels by qRT-PCR
in SM of CMV-hUGTI1AI-treated and liver of AAT-hUGT1A-treated mutant mice. Liver h(UGTIA I mRNA expression was
considered as one. In red, corresponding mean of TB levels in the same mice. (C and D) Determination of AAV8-AAT-
EGFP and AAV9-CMV-EGFP expression, respectively, by semiquantitative RT-PCR of tissues from liver (L), heart (H),
intestine (I), kidney (K), diaphragm (D), and skeletal muscle (SM). The Gapdh housekeeping gene was used as normali-
zation control. (E and F) Representative pictures of livers (E) and skeletal muscle (F) from WT mice injected (at P4) with
AAV8-AAT-EGFP or AAV9-CMV-EGFP, 6 days after injection. Scale bar=100 um. (G) Western blot analysis of total
liver and skeletal muscle protein extracts (50 ug) from WT, mutant untreated (MUT), and treated with AAT-hUGTIAI
(MUT-AAT) or CMV-hUGTIAI (MUT-CMV). Anti-ff-tubulin mouse antibody was used as loading control; mutant mouse
total liver extract was used as negative control (MUT). (H) Calibration curve of the UGT1A1 protein. WT and untreated
mutant liver total protein extracts (50 ug) were mixed in the indicated percentages, run in an SDS-PAGE gel and detected
using anti-UGTIAI antibody. Anti-f-tubulin mouse antibody was used as loading control. (I) HPLC chromatograms
showing the elution profile of the bile from WT, mutant untreated (MUT UNTR), mutant treated with AAT-hUGTIAI
(MUT AAT), and CMV-hUGTIAI (MUT CMYV). Peaks corresponding to unconjugated bilirubin (UCB), bilirubin
monoglucuronoside (BMG), and bilirubin diglucuronoside (BDG) are indicated.
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of Mrp2, Mrp3, Oatp2, and OAtp1b2, but it expressed Mrp1,
Mrp4, and Mrp5 that may secrete conjugated bilirubin at
lower efficiency rates. Since Mrp2 and Mrp3 are the two most
efficient exporters of conjugated bilirubin, we determined
their protein levels by Western blot analysis. We confirmed
that Mrp2 and Mrp3 were not detectable in skeletal muscle
extracts from WT or AAV-CMV-hUGTIAI-treated mutant
animals, but were present in liver protein extracts from WT
and AAV-AAT-hUGTIAI-treated mutant mice (Fig. 6B).

Discussion

Gene therapy is a promising and attractive therapeutic
approach for metabolic diseases affecting the liver. Suc-
cessful approaches of AAV-mediated gene therapy of co-
agulation factor IX deficiency have recently been performed
in hemophilia B patients (Nathwani et al., 2011), paving the
way to the treatment of other monogenic liver diseases, such
as CNSL

In the present work, we have shown long-term correction
of a mouse model of CNSI (Bortolussi et al., 2012), by
means of a single neonatal IP injection of an AAV vector,
serotype 8, expressing hUGT1A1 in the liver. AAVS was
selected because it is the most effective one in liver trans-
duction (Nakai et al., 2005). After neonatal AAV transduc-
tion, all AAT-hUGTI1AI-treated mutant animals survived
showing an important and clinically relevant reduction in
plasma bilirubin during the first months of treatment (70-80%
reduction), which was maintained up to the end of the ex-
perimental protocol (50% reduction 17 months postinjection).
Histological and functional features of the AAV-treated mice
were normal, in contrast to what observed by Seppen et al.
(2006), who found that rat Gunn livers treated with liver-
specific AAV8-Ugtlal vectors presented large nodules re-
sembling fat deposits.

Therapeutic hUGT1al glucuronidation activity was al-
ready effective in lowering bilirubin as early as 48 hr after
viral transduction, reaching ~38% of WT levels, suggesting
a rapid conversion of the viral genome into dsDNA and the
consequent activation of transgene transcription. Rapid
conversion from ssDNA to dsDNA was also observed in liver
(Davidoff et al., 2005; Cunningham et al., 2008) and skeletal
muscle (Vincent-Lacaze et al., 1999) transduced with eGFP-,
FIX-, and EPO-expressing AAVs.
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FIG. 5. Tissue bilirubin accumulation. (A) Total plasma bil-
irubin (mg/dl) in 2-month-old WT, untreated, AAT-hUGTIA -
treated, or CMV-treated mutant mice. (B=E) Tissue bilirubin
levels (nmol/mg tissue) of WT, untreated (MUT UNTR), AAT-
hUGTIAI-treated (MUT AAT), and CMV-hUGTIAI-treated
(MUT CMV) mutant mice in liver (B); skeletal muscle (C);
forebrain (D); and cerebellum (E). Each dot represents a single
animal. p-Values between MUT UNTR and MUT AAT, and
between MUT AAT and MUT CMV are indicated. Color
images available online at www.liebertpub.com/hum
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FIG. 6. Tissue distribution of bilirubin transporters. (A)
RT-PCR of total liver from WT mice, AAT-hUGTIAI-
treated mutant mice (MUT AAT), and skeletal muscle of
CMV-hUGTIAI-treated mutant mice (MUT CMV). Mouse
Gapdh was used as endogenous control. (B) Western blot
analysis using anti-Mrp2 and anti-Mrp3 antibodies of total
liver and skeletal muscle protein extracts (50 ug) from WT,
mutant treated with AAT-hUGTIAI (liver), or CMV-
hUGTIAI (SM, skeletal muscle). f-tubulin was used as
loading control.

We observed a rapid loss of hUGTlal expression and
activity in the liver after neonatal transduction, which was
probably because of the degradation of viral genomes during
liver growth and cell division, as also reported (Wang et al.,
2005; Cunningham et al., 2008). Our data suggest that
transgene expression was mediated by transcriptionally ac-
tive ds episomal genomes, as evidenced by the presence of ds
circular DNA genomes in low-molecular-weight Hirt DNA
preparations in mutant adult mice. The residual episomal
genomes were sufficient to guarantee plasma bilirubin levels
below the threshold for the risk of developing brain damage
and kernicterus (Ostrow et al., 2004). However, the observed
increase in plasma bilirubin levels in the aged animals, as-
sociated to a reduction in the viral genome copies in hepa-
tocytes, suggests that further optimization of the therapeutic
protocol is still necessary.

Therefore, as UGT1A1 is expressed at high levels in the
liver but it is also expressed at lower levels in other organs
such as intestine and kidney (Buckley and Klaassen, 2007), we
considered the alternative possibility of expressing UGT1A1 in
a surrogate tissue such as skeletal muscle, with the aim of
improving the efficiency of the therapy.

As mentioned above, targeting the skeletal muscle for gene
therapy offers a series of advantages over a liver-directed
gene therapy approach (Mingozzi and High, 2011; Buchlis
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et al., 2012). However, when we treated in parallel mutant
mice with CMV-hUGTIAI and AAT-hUGTIAI AAV vec-
tors, plasma bilirubin levels were much higher in CMV-
hUGTIA]I-treated mice than in AAT-hUGTIAI-treated
ones, despite of the 4-6-fold higher muscle expression of
hUGT1al. This result is in line with that observed in previous
attempts to treat animal models of CNSI by skeletal muscle-
directed gene therapy, which have produced partial success,
with reduction of plasma bilirubin levels up to 50% of un-
treated controls, despite moderated to elevated levels of
UGT1AL1 expression (Danko et al., 2004; Jia and Danko,
2005; Bortolussi et al., 2012; Pastore et al., 2012).

These results suggest that one or more steps in the bilirubin-
conjugation pathway may be limiting or missing in skeletal
muscle. We detected the presence of mRNA of the two en-
zymes responsible of the generation of glucuronic acid in
skeletal muscle, Ugp and Ugdh, indicating that the missing/
limiting step may not be linked to the generation of the
UGTI1ALI substrate, as previously proposed (Pastore et al.,
2012). In line with this conclusion, we found bilirubin mono-
and di-glucuronosides in the bile of skeletal muscle-treated
mice, as previously observed in muscle of plasmid-treated
Gunn rats (Danko et al., 2004), suggesting that the glucur-
onosylation reaction was also functional in mouse skeletal
muscle.

We next focused our attention on bilirubin transporters.
We found that the main bilirubin transporters of conjugated
bilirubin Mrp2 and Mrp3 (Jedlitschky et al., 1997) were
expressed at undetectable levels in skeletal muscle, in ad-
dition to the lack of other transporters reported to have a role
in bilirubin and bile acid uptake, such as Oatp4 and Oatp1b2
(Wagner et al., 2005; Chiou et al., 2013). On the contrary,
skeletal muscle had higher levels of Mrpl, reported to
transport conjugated bilirubin out from cells, although at
lower rates than Mrp2 (Jedlitschky et al., 1997; Rigato
et al., 2004) and Mrp4, the latter also reported to have a role
in bile acid export (Rius er al., 2006). These results were
consistent with the observation that, despite the presence of
high levels of UGT1AI in skeletal muscle, we observed
accumulation of bilirubin in this tissue in the AAV-CMV-
hUGTIAI-treated animals, supporting the hypothesis that
the limiting step may be the export of conjugated bilirubin
from the skeletal muscle fiber. We also observed that tissue
bilirubin in brain, cerebellum, and liver of AAV-CMV-
hUGTIAI-treated animals reached the levels of untreated
animals, and was significantly higher than in the corre-
sponding organs of the animals transduced in the liver, re-
inforcing the conclusion that muscle-directed gene therapy
is less efficient than liver-directed gene therapy for CNSIL

An additional consideration in favor of the superior effi-
cacy of liver-directed gene therapy is that only a fraction of
UGT1AL1 activity is needed to obtain complete normalization
of the missing function, similar to what happens for other
enzymes produced by the liver [e.g., FIX (Nathwani and
Tuddenham, 1992)]. In hepatocyte-transplanted patients, it
was shown that about 5% of normal liver activity was enough
to lower plasma bilirubin to safe levels (Fox et al., 1998).
Transplantation experiments in the Gunn rat showed that
about 12% of liver mass significantly reduced serum bilirubin
to normal levels (Asonuma et al., 1992). These results are in
agreement with those obtained in our study, which showed
that approximately 5-8% of UGT1Al enzyme in the liver
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(compared with WT levels, as analyzed by WB and bilirubin-
glucuronidation activity) was sufficient to produce a signifi-
cant drop in plasma bilirubin levels, while much higher
amounts were needed after skeletal muscle transduction. The
higher efficiency of the liver in conjugating bilirubin is even
more evident if we consider that skeletal muscle is the most
abundant tissue, reaching about 35-40% of the total fat-free
body mass (Heymsfield et al., 1990), while the liver repre-
sents only 3—4% of total body weight (Mouse Phenome Da-
tabase, http://phenome.jax.org). In fact, the determinations
shown above were performed according to protein or RNA
normalizations and we have not taken into direct consider-
ation the total tissue mass, suggesting that the differences in
bilirubin-conjugation efficiency between liver and skeletal
muscle may be even higher. These results strengthen the
concept that the liver is the best candidate organ to target in
Crigler—Najjar gene therapy approaches.

To summarize, IP injection of AAV-mediated liver-specific
expression of UGT1AL1 into mutant mouse pups resulted in
life-long reduction of plasma bilirubin and protection from
bilirubin-induced brain damage.

Our results indicate that the liver has to be considered as
the main target to direct the efforts in the development of
efficient gene therapy protocols to cure CNSI.
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Abstract

Crigler—Najjar syndrome type I is caused by mutations of the uridine diphospho-glucuronosyl transferase 1A1
(UGT1A1) gene resulting in life-threatening increase of serum bilirubin. Life-long correction of hyperbili-
rubinemia was previously shown with intravenous injection of high doses of a helper-dependent adenoviral
(HDAGJ) vector expressing UGT1A1 in the Gunn rat, the animal model of Crigler-Najjar syndrome. However,
such high vector doses can activate an acute and potentially lethal inflammatory response with elevated serum
interleukin-6 (IL-6). To overcome this obstacle, we investigated safety and efficacy of direct injections of low
HDAGJ doses delivered directly into the liver parenchyma of Gunn rats. Direct hepatic injections performed by
either laparotomy or ultrasound-guided percutaneous injections were compared with the same doses given by
intravenous injections. A greater reduction of hyperbilirubinemia and increased conjugated bilirubin in bile were
achieved with 1x 10" vp/kg by direct liver injections compared with intravenous injections. In sharp contrast to
intravenous injections, direct hepatic injections neither raised serum IL-6 nor resulted in thrombocytopenia. In
conclusion, ultrasound-guided percutaneous injection of HDAd vectors into liver parenchyma resulted in im-
proved hepatocyte transduction and reduced toxicity compared with systemic injections and is clinically at-
tractive for liver-directed gene therapy of Crigler-Najjar syndrome.

Introduction transduction is only achieved with high vector doses that can
produce a potentially lethal acute reaction (Nunes et al., 1999;
Morral et al., 2002; Brunetti-Pierri et al., 2004). This toxic re-
sponse is capsid-mediated and dose-dependent, occurs

shortly after vector administration, and is characterized by

l I ELPER-DEPENDENT ADENOVIRAL (HDAdJ) vectors are at-
tractive for liver-directed gene therapy because, unlike
early generation adenoviral (Ad) vectors, they are deleted of

all viral coding sequences and thus are less immunogenic and
less toxic and can provide long-term transgene expression
(Brunetti-Pierri and Ng, 2009). Unfortunately, relatively high
vector doses are required for efficient hepatic transduction by
intravenous injection because of a nonlinear dose-response
due at least in part to vector uptake by Kupffer cells (Piccolo
et al., 2013). After intravascular injection, a substantial pro-
portion of the vector dose is captured by Kupffer cells and
only after Kupffer cells are saturated with vector, HDAd
vectors transduce hepatocytes. Furthermore, after Ad uptake,
Kupffer cells become activated and release cytokines, such as
interleukin-6 (IL-6). For these reasons, efficient hepatocyte

high levels of serum IL-6 consistent with activation of an in-
nate inflammatory immune response (Muruve ef al., 1999;
Brunetti-Pierri et al., 2004). Therefore, gene therapy strategies
using Ad vectors should make use of strategies aiming at
using lower doses to achieve clinically relevant phenotypic
improvements.

Although intravenous administration is the simplest ap-
proach to transduce the liver, this route of delivery results in
significant dissemination of vector into multiple organs, in-
cluding spleen, that likely contributes to the acute toxic re-
action. A potential strategy for overcoming the steep
threshold effect after systemic administration of HDAd is to
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inject the vector directly into the liver parenchyma. Direct
injections into liver parenchyma have been extensively
studied for treatment of liver metastasis using E1,E3-deleted
Ad vectors (Sung et al., 2001, 2002). When directly compared
with intravenous injection, intrahepatic injections of Ad in
mice resulted in a lower inflammatory response and a higher
transgene expression (Crettaz et al., 2006). This approach has
also been effectively accomplished in dogs for expression of
atrial natriuretic factor (Chetboul ef al., 1999).
Crigler-Najjar syndrome type I is an excellent target for
gene therapy because (1) it is a life-threatening disease re-
quiring cumbersome phototherapy or liver transplantation
(Strauss et al., 2006), (2) an animal model is available to in-
vestigate experimental treatments (Chowdhury et al., 1993),
(3) patients with Crigler—Najjar syndrome type II with
marked reduction but not total loss of enzyme activity show
a much milder phenotype than type I, and (4) measurements
of serum bilirubin provide a simple and accurate measure of
efficacy. Direct injections of HDAd into the liver parenchyma
are expected to transduce a limited area of the liver.
Nevertheless, this approach could still be effective for
Crigler-Najjar type I that requires a small number of cor-
rected hepatocytes to provide clinically relevant reduction of
serum bilirubin levels (Fox et al., 1998; Seppen et al., 2006).

Materials and Methods
HDAd vectors

The vector HDAd-hUGT1A1-WL constructed in the
pA21.7E4 backbone was previously described (Brunetti-
Pierri et al.,, 2006) and includes an expression cassette
composed of the following elements (from 5 to 3'): a liver-
restricted rat phosphoenolpyruvate carboxykinase (PEPCK)
promoter (Beale et al., 1992), the ApoAl intron, the human
uridine diphospho-glucuronosyl transferase 1Al (UGT1A1)
cDNA, the woodchuck hepatitis virus post-transcriptional
regulatory element, the ApoE locus control region, and the
human growth hormone polyA (Dimmock et al., 2011).
HDAdJ was produced in 116 cells (Palmer and Ng, 2005) with
the helper virus AANG163 (Palmer and Ng, 2004) as de-
scribed in detail elsewhere (Palmer and Ng, 2005; Suzuki
et al., 2010). Helper virus contamination levels were deter-
mined as described elsewhere (Palmer and Ng, 2005) and
were found to be <0.05%. DNA analyses of HDAd genomic
structure were confirmed as described elsewhere (Palmer
and Ng, 2005).

Animal studies

Procedures in rats were performed according to criteria for
humane care outlined in the Guide for the Care and Use of
Laboratory Animals (Institute of Laboratory Animal Re-
sources, Commission on Life Sciences, National Research
Council, 1996) and to regulations of the Italian Ministry of
Health. Breeding pairs of Gunn rats were obtained from the
Rat Resource & Research Center, and a colony of Gunn rats
was established at the IGB-TIGEM animal facility. Four- to
six-week-old rats were used for all experiments. HDAd was
injected directly into the liver parenchyma, which was ex-
posed through a small laparotomy or percutaneously under
ultrasonographic guidance (Vevo 2100; VisualSonics). For
each intrahepatic injection, the needle was inserted to a depth
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of approximately 0.5cm and small aliquots of vector were
injected along the path of each needle track using a 100 ul
Hamilton syringe. A volume of 50 ul was injected at each
hepatic site. Conventional intravenous injections were per-
formed injecting 0.5ml of vector diluted in normal saline into
the tail vein. All procedures were performed under general
anesthesia [Avertin (2,2,2-Tribromoethanol) ~240mg/kg].

Bilirubin determinations

Blood samples were collected by retro-orbital puncture at
baseline and at various times post-administration. Blood was
centrifuged at 1,500x g for 20min and serum was used for
colorimetric measurement of total bilirubin by a diazo-based
assay (Gentaur). Bile was collected through a 26-gauge an-
giocatheter (Delta Med) inserted into the bile duct over
15 min periods, protected from light, snap-frozen, and stored
at —80°C until analyses. Biliary bilirubin conjugates were
determined by high-performance liquid chromatography
(HPLC) as previously described (Spivak and Carey, 1985).

Determination of serum activities of alanine
aminotransferase and aspartate aminotransferase,
platelet counts, and IL-6 levels

Serum was analyzed for alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) activities according to
manufacturer’s instructions (Gentaur). Platelet counts were
determined by an automated analyzer. Serum levels of rat
IL-6 were determined by ELISA (R&D Systems), according to
manufacturer’s protocol.

Real-time polymerase chain reaction
for HDAd vector biodistribution

Total DNA was extracted from tissue samples (spleen,
kidney, heart, lung) using phenol-chloroform extraction and
quantitated by absorbance at 260 nm. Quantitative real-time
polymerase chain reaction (PCR) was performed using the
LightCycler FastStart DNA Master SYBR Green I (Roche) in a
total volume of 20 ul with 200ng of template DNA using
HDAd-specific primers (forward, 5-TCTGAATAATTTT
GTGTTACTCATAGCGCG-3’; reverse, 5-CCCATAAGCT
CCTTTTAACTTGTTAAAGTC-3'). Cycling conditions con-
sisted of 95°C for 10 min followed by 45 cycles at 95°C for
10sec, 60°C for 7sec, and 72°C for 20sec. Serial dilutions
(107-10" copies) of the plasmid pA21.7-hUGT1A1-WL, used
to generate the HDAd-hUGT1A1-WL vector, bearing the
PCR target sequence were used as a control to determine the
amounts of HDAd. Results were analyzed with LightCycler
software version 3.5 (Roche).

Statistical analyses

Data are expressed as mean values+standard deviations.
Statistical significance was computed using the Student’s
two-tailed t-test. A p<0.05 was considered statistically sig-
nificant.

Results

Efficacy of intrahepatic versus intravenous injections

To overcome the acute toxicity caused by dose-dependent
activation of innate immune response, we hypothesized that



INTRAHEPATIC INJECTIONS OF HDAD IN GUNN RATS

direct injections into liver parenchyma may result in im-
proved hepatocyte transduction and reduced toxicity. To test
this hypothesis, we compared in Gunn rats intravenous in-
jections of an HDAd encoding the UGT1A1 gene under the
control of a liver-specific expression cassette (HDAd-hUG-
T1A1-WL) to direct intrahepatic injections of the same vector
at the same doses. Direct intrahepatic injections were first
performed into three different liver sites that were directly
visualized through a small laparotomy. For each intrahepatic
injection, 50 ul of vector was injected in the liver parenchyma
along the needle track to increase the transduced area. Blood
samples were collected at baseline and various times post-
injections for measurements of total serum bilirubin levels.
Baseline total serum bilirubin in Gunn rats was 5.04+
0.5mg/dl, whereas normal rats exhibited serum bilirubin of
0.91+£0.5mg/dl. Correction of hyperbilirubinemia was de-
tected by 1 week post-injection in Gunn rats receiving either
intravenous or intrahepatic injections of both 1x10'? and
5x10" vp/kg of HDAd-hUGT1A1-WL vector (mean serum
bilirubin levels at 1 week post-injection 0.64+0.11 and
1.63+0.21 mg/dl with the doses of 1x10'* and 5x 10" vp/kg
by intrahepatic injections, respectively and 0.73+0.12 and
1.10£0.44 mg/dl with the doses of 1x10'* and 1x10" vp/kg
by intravenous injections, respectively). Correction of hyperbi-
lirubinemia corresponded to 86%+2.5% and 88%*1.7% re-
duction of baseline serum bilirubin levels in animals injected
with 1x 10" vp/kg by intravenous or intrahepatic injections,
respectively (Fig. 1a). About 80%+7.8% and 70%+3.2% re-
ductions of baseline serum bilirubin levels were detected in
rats injected with 5x10'"" vp/kg by intravenous and in-
trahepatic injections, respectively (Fig. 1a). Rats injected with
1x10" or 5x 10" vp/kg showed sustained reduction of se-
rum bilirubin for up to 12 weeks post-injection (Fig. 1a).
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These data are consistent with previous study showing that
these doses injected intravenously resulted in hepatocyte
transduction that is sufficient for long-term phenotypic cor-
rection of hyperbilirubinemia in Gunn rats (Dimmock et al.,
2011). The lower dose of 1x 10" vp/kg of the HDAd-hUG-
T1A1-WL vector administered systemically resulted in 45%
reduction of hyperbilirubinemia at 1 week post-injection,
while a greater, statistically significant (p <0.05) 65% reduc-
tion of serum bilirubin level was observed in rats receiving
the same vector, at the same dose injected by the intrahepatic
route (Fig. 1b). The greater reduction of hyperbilirubinemia
by intrahepatic injections was sustained at all time points for
up to 3 months post-injection (p <0.05). In contrast, reduction
of serum bilirubin levels was partially lost at 3 months post-
injection in rats injected intravenously with the vector (Fig.
1b). No reduction of serum bilirubin was detected with the
lower dose of 5x 10" vp/kg injected by either intravenous or
intrahepatic injections (data not shown).

Intrahepatic injections performed through laparotomy are
invasive and clinically not very attractive. Therefore, we
sought to develop a safer and clinically relevant procedure
permitting direct injections of the HDAd vector into the liver
parenchyma without the need of laparotomy. Toward this
goal, we investigated an ultrasound-guided percutaneous
intrahepatic injection method for liver-directed gene therapy
of HDAd vectors (Fig. 2). Similar to the intrahepatic surgical
method, we initially performed injections into three different
hepatic sites visualized by liver ultrasonography. By this
approach, we achieved 66% reduction of hyperbilirubinemia
that is similar to the reduction obtained with intrahepatic
injections of the same dose of 1x10" vp/kg performed
through laparotomy (Fig. 1b). The reduction in total serum
bilirubin was sustained long-term for up to 28 weeks post

various routes of administra- 80\
tion. Percentage of reduction
of baseline total serum biliru-
bin in Gunn rats injected with
saline, 1x102, or 5x10"
vp/kg (a) and with 1x10"
vp/kg (b) of HDAd-hUG-
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injection, intrahepatic injec- 0 4
tions through laparotomy
(IH, 3 injection sites), in-
trahepatic injections under
ultrasound guidance (USx3, 3
injection sites), or single in-
trahepatic injection under ul-
trasound guidance (USx1, 1
injection site) (at least n=3 per
group). The saline control
group included rats injected
with saline by intrahepatic
injections through laparot-
omy. Values in the graph are
given as means+SD (at least o4
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liver
parenchyma

FIG. 2. Ultrasound-guided injection. Image taken during
ultrasound-guided intrahepatic injection. The percutaneous
needle is indicated by the arrow.

injection in rats receiving ultrasound-guided percutaneous
intrahepatic injection of HDAd (Fig. 1b). Next, we performed
a single intrahepatic injection under ultrasound guidance and
we observed a 50% reduction of baseline serum bilirubin
levels, thus showing that also a single ultrasound-guided in-
jection of vector results in sustained phenotypic improvement
for at least 16 weeks post-vector administration (Fig. 1b).

To confirm that decrease in serum bilirubin was caused by
glucuronidation of unconjugated bilirubin and increased
biliary excretion of bilirubin monoglucuronide and diglu-
curonide, bile was collected by cannulation of bile duct for
HPLC analysis. Bilirubin was prevalently unconjugated in
saline-injected Gunn rats, whereas unconjugated bilirubin
was almost absent in wild-type control rats (Fig. 3). Con-
sistent with the reduction of serum bilirubin levels, bile
samples from Gunn rats injected with higher doses (1x 10"
and 5x 10" vp/kg) by either intravenous or intrahepatic in-
jections showed ~90% of conjugated bilirubin and a small
2%-10% of unconjugated bilirubin. At the lower vector dose
of 1x10" vp/kg, rats injected by direct hepatic injections had
81.7% (surgical procedure) or 81% (ultrasound-guided) of
conjugated bilirubin and 18.3% (surgical procedure) or 19%
(ultrasound-guided) of unconjugated bilirubin, whereas rats
injected intravenously showed 49.5% of conjugated bilirubin
and 50.5% of unconjugated bilirubin (Fig. 3). Taken together,
these results confirmed improved phenotypic correction in
Gunn rats treated with intrahepatic injections compared with
intravenous injections at the dose of 1x10" vp/kg.

Toxicity of intrahepatic versus intravenous injections

Systemic intravascular administration of Ad-based vectors
results in activation of innate inflammatory response,
marked by elevations of proinflammatory cytokines, the
magnitude of which is dose-dependent (Zhang et al., 2001;
Brunetti-Pierri et al., 2004). Serum IL-6 is a proinflammatory
cytokine that rapidly increases after systemic intravenous
injection of Ad vectors and is considered a major marker of
the acute toxic response (Brunetti-Pierri et al., 2004). There-
fore, we evaluated serum rat IL-6 at 3hr after vector ad-
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FIG. 3. Biliary bilirubin conjugates. The graph shows the
proportion of bilirubin conjugates measured by high-
performance liquid chromatography in the bile of wild type
rats and of Gunn rats injected with different vector doses by
various delivery methods. Each bar represents the relative
proportions of bile derivatives in the different treatment
groups: IV injection, intrahepatic injections through laparot-
omy (IH), or intrahepatic injections under ultrasound guid-
ance (US). Doses are expressed as vp/kg. Mean values +SD
are shown in the graphs (at least n=3 per group). *p<0.05.
BDG, bilirubin diglucuronide; BMG, bilirubin mono-
glucuronide; UCB, unconjugated bilirubin; WT, wild type.

ministration by intravenous and intrahepatic injections. No
significant differences in serum IL-6 were observed between
intravenous and intrahepatic injections at the higher doses of
1x10" vp/kg (not shown) and 5x10" vp/kg (Fig. 4a).
Serum IL-6 was undetectable in rats that received 1x10"
vp/kg of HDAd-hUGT1A1-WL by intrahepatic injections
(surgical or ultrasound-guided), whereas significant serum
IL-6 increase was observed in rats receiving the same vector
dose by intravenous injections (Fig. 4a). Systemic adminis-
tration of Ad vectors results in dose-dependent thrombo-
cytopenia in both rodents and nonhuman primates (O’Neal
et al., 1998; Mane et al., 2006). No differences in platelet
counts were observed in rats injected with 5x 10" vp/kg by
either intravenous or intrahepatic injections (Fig. 4b). How-
ever, rats injected intravenously with 1x10'? vp/kg showed
a greater reduction in platelets, whereas animals injected
with the same dose by direct intrahepatic injections did not
developed thrombocytopenia (Fig. 4b). Serum ALT and AST
activities were within the normal range and were not sta-
tistically different between the two routes of administration
at the dose of 1x10"" vp/kg (Supplementary Fig. 1; Sup-
plementary Data are available online at www.liebertonline
.com/hgtb).

Vector biodistribution in intrahepatic versus
intravenous injections

To investigate whether the improved correction by intra-
hepatic injections was associated with reduced vector uptake
in various organs, we evaluated distribution of HDAd-
PEPCK-hUGT1A1-WL in rats injected by intravenous or
ultrasound-guided intrahepatic injections at the dose of 1x 10"
vp/kg. Hence, various organs, including spleen, heart, lung,
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and kidney, were harvested at 24 hr postvector administra-
tion for real-time PCR analysis. The amounts of vector ge-
nome in spleen, heart, and lung were significantly lower in
Gunn rats injected intrahepatically compared with animals
injected intravenously with the same vector dose (p<0.05)
(Fig. 5). No significant difference was detected in HDAd
genome copy number in kidneys. These results show that
compared with intravenous injections, intrahepatic injections
of HDAd vector result in a reduction of vector uptake in or-
gans that are not targets for gene therapy such as the spleen.

Discussion

HDAGJ vectors can mediate long-term, high-level trans-
gene expression from transduced hepatocytes resulting in
sustained phenotypic correction of several inborn errors of
liver metabolism in small and large animal models with no
chronic toxicity (Brunetti-Pierri and Lee, 2005; Brunetti-Pierri
and Ng, 2011). However, systemic high-dose administration,
required for efficient hepatic transduction, results in activa-
tion of an acute inflammatory response with potentially se-
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FIG. 5. HDAJ vector biodistribution. Quantitative poly-
merase chain reaction analysis was performed at 24hr
post-injection on spleen, lung, heart, and kidney. Values are
presented as means+SD (at least n=3 per group). *p<0.05.
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vere and lethal consequences (Brunetti-Pierri et al., 2004).
This is a main limitation for clinical applications, because
administration of high doses of Ad vectors is associated with
a strong systemic inflammatory reaction with high levels of
serum IL-6 that can be very severe and even fatal (Raper
et al., 2003; Brunetti-Pierri et al., 2004). The mechanism re-
sponsible for Ad-mediated activation of acute inflammatory
response is multifactorial; however, it is clearly dose-
dependent (Nunes et al., 1999; Morral ef al., 2002; Brunetti-
Pierri et al., 2004; Brunetti-Pierri and Ng, 2008). Therefore,
strategies to achieve efficient hepatic transduction using low
vector doses have great potential for clinical applications.
The approach we investigated in this study to overcome
the dose-dependent acute toxicity of HDAd was to inject the
vector directly into the liver parenchyma. Direct intrahepatic
injections of HDAd were performed either by small lapa-
rotomy to allow direct visualization of liver parenchyma or
percutaneously under ultrasound guidance. Both approaches
resulted in similar reduction (~65%) of hyperbilirubinemia
that was sustained long-term at a low, clinically relevant
vector dose of 1x 10" vp/kg. In contrast, Gunn rats injected
with the same vector dose by intravenous route showed a
45% reduction of baseline serum bilirubin levels and a
gradual loss of correction that is likely occurring because of
the smaller percentage of transduced hepatocytes and vector
dilution due to hepatocyte division.

Consistent with a previous study (Crettaz et al., 2006), we
found that compared with the same dose of vector injected
intravenously, direct intrahepatic injections resulted in re-
duced secretion of serum IL-6 and no reduction of platelet
counts. After intravenous administration, Ad vectors dis-
seminate systemically into multiple organs, and particularly
in the spleen (Zhang et al., 2001; Brunetti-Pierri et al., 2005b).
Vector systemic dissemination contributes to activation of
the inflammatory response (Brunetti-Pierri et al., 2005b).
Consistent with improved phenotypic correction and re-
duced serum IL-6, direct hepatic injections were found to be
associated with a significant reduction in vector uptake in
spleen, heart, and lung.

Direct injection into liver parenchyma is a relatively sim-
ple and flexible technique that is well tolerated in humans
(Sung et al., 2001) and is similar to the procedure accom-
plished routinely for liver biopsies. Therefore, the approach
investigated in this study is clinically attractive. However, by
this approach, a limited number of hepatocytes are
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transduced, and thus applications in several inborn errors of
liver metabolism requiring high percentage of hepatocyte
correction are limited (Brunetti-Pierri and Lee, 2005).

Ad vectors transduce hepatocytes efficiently to drive high
levels of transgene expression and thus have the greatest
likelihood of being successful by the intrahepatic route of
delivery. Nevertheless, other vectors including AAV that
have recently been used successfully in human clinical trial
(Nathwani et al., 2011) have potential to be also effective for
delivery by this route of administration. In the case of AAV
vectors, by decreasing the effective dose needed to achieve
efficient hepatocyte transduction, this approach could over-
come the dose-dependent activation of CTL-immune
response (Nathwani et al., 2011).

From a risk/benefit assessment, Crigler-Najjar syndrome
type I is an excellent candidate disease for gene therapy.
Liver transplantation performed in this disease has sufficient
risks to make the attempt of hepatocyte gene therapy by
percutaneous ultrasound-guided direct hepatic injections
justifiable from a risk:benefit perspective. This is particu-
larly the case with HDAd vectors that result in multiyear
transgene expression after a single vector administration
(Brunetti-Pierri et al., 2005a, 2007, 2012, 2013). In summary,
this study shows that intrahepatic injections of HDAd vec-
tors reduce Ad-mediated systemic inflammatory response
and improve phenotypic correction in animal model of
Crigler-Najjar syndrome type 1.
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Background & Aims: Severe unconjugated hyperbilirubinemia,
as occurs in Crigler-Najjar disease and neonatal jaundice, carries
the risk of neurotoxicity. This neurotoxicity is related to the
increased passage of free bilirubin (UCBg..), the fraction of biliru-
bin that is not bound to plasma proteins, into the brain. We
hypothesized that albumin treatment would lower the UCBfee
fraction, and thus decrease bilirubin accumulation in the brain.
Methods: We treated chronic (e.g., as a model for Crigler-Najjar
disease) and acute hemolytic (e.g., as a model for neonatal jaun-
dice) moderate hyperbilirubinemic Gunn rats with phototherapy,
human serum albumin (HSA) or phototherapy + HSA.

Results: In the chronic model, adjunct HSA increased the efficacy
of phototherapy; it decreased plasma UCBg.. and brain bilirubin
by 88% and 67%, respectively (p <0.001). In the acute model,
adjunct HSA also increased the efficacy of phototherapy; it
decreased plasma UCBge by 76% (p <0.001) and completely pre-
vented the hemolysis-induced deposition of bilirubin in the
brain. Phototherapy alone failed to prevent the deposition of bil-
irubin in the brain during acute hemolytic jaundice.
Conclusions: We showed that adjunct HSA treatment decreases
brain bilirubin levels in phototherapy-treated Gunn rats. We
hypothesize that HSA decreases these levels by lowering UCBgce
in the plasma. Our results support the feasibility of adjunct albu-
min treatment in patients with Crigler-Najjar disease or neonatal
jaundice.

© 2012 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
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Introduction

Crigler-Najjar patients and hemolytic neonates suffer from
unconjugated hyperbilirubinemia [1]. Severe unconjugated
hyperbilirubinemia can lead to brain damage. This damage is
mediated by the ability of “free” bilirubin (UCBgee), the small
(<1%) fraction of unconjugated bilirubin (UCB) not bound to
plasma proteins, to cross the blood-brain barrier (BBB) [2-6].
Within the brain, UCB disrupts several vital cell functions and
induces apoptosis and necrosis. Bilirubin-induced neurotoxicity
may eventually lead to kernicterus and even death [3,7,8].

Severe unconjugated hyperbilirubinemia is conventionally
treated by phototherapy, which converts UCB into photoisomers
that can readily be excreted in the bile [9]. Phototherapy, how-
ever, has some disadvantages. Crigler-Najjar patients, who suffer
from a permanent unconjugated hyperbilirubinemia due to a
genetically absent (type I) or decreased (type II) capacity to con-
jugate bilirubin in the liver, may need up to 16 h of phototherapy
treatment per day. In spite of this intensive regimen, up to 25% of
these patients will eventually develop brain damage [10,11]. Pho-
totherapy is more effective during neonatal hemolytic jaundice,
but may still require additional, potentially dangerous, exchange
transfusions [12]. The efficacy of phototherapy is often estimated
by its hypobilirubinemic effect. Plasma bilirubin levels, however,
correlate poorly with the occurrence of brain damage in individ-
ual patients [6]. The reason for this poor correlation lies in the
inability of protein-bound bilirubin (>99% of total plasma biliru-
bin) to leave the circulation [2,3,5,6]. Only UCBy, is able to
translocate across the blood-brain barrier (BBB), and thus plays
a key role in the pathogenesis of bilirubin-induced brain damage.
UCBfee concentrations, however, are not routinely evaluated in
phototherapy-treated patients. The main reason for this lies in
the inaccuracy of the commercial UCBg.. test, most notably
caused by a 42-fold sample dilution that alters bilirubin-albumin
binding [13].

We reasoned that decreasing UCBg.. in the plasma could pre-
vent bilirubin deposition in the brain. Human serum albumin
(HSA) infusion could, theoretically, achieve this goal by providing
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additional binding sites for UCBge. in the plasma. Interestingly,
HSA treatment has been used in severely jaundiced neonates
[14-18]. Its efficacy, however, has been difficult to establish. This
difficulty is due to the obvious inability to measure bilirubin
brain levels in humans, but also to the aforementioned inaccu-
racy of the commercially available UCBg.. test. Recently, Zelenka
et al. developed a highly sensitive method for tissue bilirubin
determinations, while Ahlfors et al. developed an automated
UCBgee test with minimal sample dilution [13,18]. We now use
these techniques to evaluate the effect of HSA treatment on
plasma UCBg.e and brain bilirubin levels in two well-established
animal models. As a moderate chronic model, resembling
patients with Crigler-Najjar disease, we treated adult Gunn rats
with long-term phototherapy, HSA or phototherapy + HSA [19].
As an acute model, resembling severe hemolytic jaundice, we
induced hemolysis by 1-acetyl-2-phenyl-hydrazine (APHZ) in
adult Gunn rats, and then treated these animals for 48 h with
phototherapy, HSA, or phototherapy + HSA [20]. We demonstrate
that HSA treatment decreases plasma UCBge. and brain bilirubin
levels in phototherapy-treated Gunn rats, during both chronic
and acute jaundice. We speculate that HSA and phototherapy
work in tandem: HSA binds to UCBg.. within the plasma, and
phototherapy then promotes its excretion via the bile. Our results
underline the need to evaluate the use of HSA as adjunct to pho-
totherapy in randomized clinical trials.

Materials and methods
Animals

Homozygous male Gunn rats, the animal model for Crigler-Najjar disease type I
(RHA/jj; 225-340 g, aged 10-12 weeks), were obtained from our breeding colony,
kept in an environmentally controlled facility, and fed ad libitum with free access
to water. Food intake, fluid intake, and body weight were determined regularly.
The Animal Ethics Committee of the University of Groningen (Groningen, The
Netherlands) approved all experimental protocols.

Materials

Hope Farms B.V. (Woerden, The Netherlands) produced the semi-synthetic con-
trol diet (code 4063.02), containing 13 energy% fat and 5.2 wt% long-chain fatty
acids. In previous studies, we noticed that diet and diet-composition influence
plasma bilirubin levels. We used the same semi-synthetic control diet and animal
model (identical strain and breeding colony) as in previous studies to enhance
reproducibility and to allow comparison between studies (please refer to refer-
ences [21-23] for a further characterization). Gunn rats were fed this diet during
a 5-week run-in period, to ensure steady-state conditions, and during the exper-
iments. HSA (Albuman®; 200 g/L, fatty acid free) was purchased from Sanquin
(Amsterdam, The Netherlands). APHZ, horseradish peroxidase type 1, p-glucose,
glucose oxidase, hydrogen peroxide and UCB were purchased from Sigma Chem-
ical Co. (St. Louis, MO). Commercial UCB was further purified according to the
method of Ostrow et al. [24]. Phototherapy was administered continuously to
Gunn rats (shaven on flank and back) via two blue phototherapy lamps (Philips,
TL-20W/03T) suspended in a reflective canopy 20 cm above the cage. The photo-
therapy dose (17 pW/cm?/nm; 380-480 nm) was measured by an Elvos-LM-1010
Lux meter at 20-cm distance [23].

Methods

Permanent unconjugated hyperbilirubinemia

Adult Gunn rats were randomized to receive either no treatment (n = 13) or pho-
totherapy (17 uW/cm?/nm; n = 14) for 16 days. After 14 days of phototherapy
treatment, to ensure steady-state conditions [21-23], we randomized the animals
to receive either no treatment (n = 7), phototherapy (17 pW/cm?/nm) + NaCl 0.9%
(w/v; n=7),HSA (2.5 g/kg, n = 6), or phototherapy + HSA (n = 7), for another 48 h.
NaCl 0.9% (control/sham) and HSA were administered as a single i.p. injection at
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t =14 days. We determined plasma bilirubin concentrations from tail vein blood
at t=0, 14, and 16 days, and determined plasma UCBge. at t = 16 days under iso-
flurane anesthesia. After 16 days, all animals were exsanguinated via the
descending aorta and flushed via the same port with 100-150 ml NaCl 0.9% under
isoflurane anesthesia. Brain, liver, and aliquots of visceral fat were subsequently
harvested for the determination of tissue bilirubin levels. These samples were
rinsed 2 times in phosphate buffered saline, snap frozen in liquid nitrogen, and
immediately stored (wrapped in aluminum foil) at —80 °C until analysis [25].

Acute unconjt d hyperbilirub:

Adult Gunn rats received a single APHZ injection i.p. (15 mg/kg BW; t = —24 h) to
induce hemolysis. We then randomized these animals after 24 h (t=0h) to
receive either no treatment (n = 6), phototherapy + NaCl 0.9% (17 uW/cm?/nm;
n=6), HSA (2.5 g/kg; n = 6), or phototherapy + HSA (n = 6) for another 48 h. NaCl
0.9% (control/sham) and HSA were administered as a single i.p. injection at t =0 h.
We determined plasma bilirubin, UCBg.e and albumin concentrations from tail
vein blood at t=—-24, —12, 0, 12, 24, 36, and 48 h under isoflurane anesthesia.
Hemoglobin (Hb), reticulocyte count and hematocrit (Ht) were determined at
t=-24hand t =48 h. After 48 h, all animals were exsanguinated and brain, liver,
and visceral fat samples were subsequently harvested for the determination of
tissue bilirubin levels, as described above [25].

Plasma analysis

Blood samples were protected from light, stored at —20 °C under argon, directly
after collection, and processed within 2 weeks. UCB concentrations were deter-
mined by routine spectrophotometry on a P800 unit of a modular analytics serum
work area from Roche Diagnostics Ltd. (Basel, Switzerland). Hb, Ht, and reticulo-
cytes were determined on a Sysmex XE-2100 hematology analyzer (Goffin Mey-
vis, Etten-Leur, The Netherlands). We previously found in Gunn rats that the total
bilirubin concentration, measured by spectrophotometry, equaled the total UCB
concentration, measured by high-liquid performance chromatography (HPLC)
after chloroform extraction (coefficient of variation: ~5%) [21,22]. UCBgee Was
determined using a Zone Fluidics system (Global Flopro, Global Fia Inc, WA), as
previously described by Ahlfors et al. [13].

Tissue bilirubin analysis

Tissue bilirubin content was determined using HPLC with diode array detector
(Agilent, Santa Clara, CA, USA) as described earlier [25]. Briefly, 300 pmol of mes-
obilirubin in DMSO (used as an internal standard) was added and samples were
homogenized on ice. Bile pigments were then extracted into chloroform/hexane
(5:1) solution at pH 6.0, and subsequently extracted in a minimum volume of
methanol/carbonate buffer (pH 10) to remove contaminants. The resulting polar
droplet (extract) was loaded onto C-8 reverse phase column (Phenomenex, Tor-
rance, CA, USA) and separated pigments were detected at 440 nm. The concentra-
tion of bilirubin was calculated as nmol/g of wet tissue weight. All steps were
performed under dim light in aluminum-wrapped tubes. We did not specifically
measure bilirubin deposition in the brain nuclei, but relied on total tissue biliru-
bin measurements.

Statistical analysis

Normally distributed data that displayed homogeneity of variance (by calculation
of Levene’s statistic) were expressed as means + SD, and analyzed with parametric
statistical tests. Analysis of variance (ANOVA) with post hoc Tukey correction was
performed for comparisons between groups, and the Student’s-t test for compari-
son of paired data within groups. The level of significance was set at p <0.05. Anal-
yses were performed using PASW Statistics 17.0 for Mac (SPSS Inc., Chicago, IL).

Results
Chronic unconjugated hyperbilirubinemia

Adjunct HSA treatment decreases plasma UCBj.. concentrations

We first treated permanently jaundiced Gunn rats, as a model for
Crigler-Najjar disease, with routine phototherapy, HSA, or
phototherapy + HSA for 16 days. Fig. 1A shows that phototherapy
and phototherapy + HSA decreased plasma UCB concentrations to
a similar extent (46% and 54% at t=16days, respectively),
compared with untreated controls (p<0.001). HSA alone
increased plasma UCB concentrations by 65% compared with
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Fig. 1. Plasma and brain results of chronic unc d hyperbilirub

experiments. Effects of no treatment (controls), routine phototherapy (PT),
human serum albumin (HSA), or PT + HSA on (A) plasma UCB, (B) plasma UCBgee,
and (C) brain bilirubin levels in Gunn rats at t = 16 days. Adult Gunn rats were
randomized to receive either no treatment or phototherapy (17 pW/cm?/nm) for
16 days. After t =14 days, we randomized animals to receive no treatment, PT
(17 pW/cm?/nm), HSA (2.5g/kg), or PT+HSA for another 48h. *p<0.01,
**p <0.001 compared with controls. *p <0.05, $p <0.001 compared with photo-
therapy alone.

controls (p <0.001). Fig. 1B shows that phototherapy, HSA and
phototherapy + HSA decreased plasma UCBg.. concentrations by
55%, 54%, and 88%, respectively (p <0.001). HSA alone decreased
the unbound fraction of UCB from 0.08% to 0.02% (-71%;
p <0.001), compared with controls. HSA, as expected, also
decreased this fraction during phototherapy treatment. As a
result, adjunct HSA lowered plasma UCBg.. levels by 33%, com-
pared with phototherapy alone (p <0.01). Mean growth rates
did not differ significantly between experimental and control
groups during the experiment (data not shown).

Adjunct HSA treatment decreases brain bilirubin levels

Fig. 1C shows that phototherapy, HSA alone, and photother-
apy + HSA decreased brain bilirubin levels by 45%, 35%, and
67%, respectively (p <0.01), compared with untreated controls.
Adjunct HSA thus lowered brain bilirubin levels by an additional
22% (n.s.), compared with phototherapy alone. Adjunct HSA sig-
nificantly decreased hepatic bilirubin levels by an additional
33% (p <0.01), compared with phototherapy alone (Supplemen-
tary Fig. 1A), but failed to induce a significant additive decrease
in visceral fat bilirubin levels (Supplementary Fig. 1B).

The correlation between UCBj. and brain bilirubin levels

Fig. 2A illustrates the poor correlation between plasma UCB con-
centrations and brain bilirubin levels (y=0.0037x +1.52;
r?=0.17; p<0.05). The HSA group, with bilirubin levels above
300 pmol/L, seemed mainly responsible for this poor correlation.
Fig. 2B shows that plasma UCBg.. concentrations correlated well
with brain bilirubin levels (y = 0.013x + 1.00; r* = 0.74; p <0.001).

Acute unconjugated hyperbilirubinemia

APHZ induces comparable hemolysis in all treatment groups

As a model for acute unconjugated hyperbilirubinemia, we then
used APHZ to induce hemolytic jaundice in Gunn rats. APHZ
administration induced a comparable hemolysis in all groups,
as indicated by the similar changes in Hb, Ht, and reticulocyte
levels (Supplementary Fig. 2A-C). Supplementary Fig. 2D shows
that a single i.p. HSA injection increased plasma albumin within
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Fig. 2. Correlations of the chronic unc d hyperbilirut ia exper-
iments. (A) Correlation between plasma UCB and brain bilirubin levels, and (B)
between plasma UCBg.. and brain bilirubin levels in Gunn rats at t=16 days.
Adult Gunn rats were randomized to receive either no treatment or PT (17 pW/
cm?/nm) for 16 days. After t = 14 days, we randomized the animals to receive no
treatment, PT (17 uW/cm?/nm), human serum albumin (HSA: 2.5 g/kg), or
PT + HSA for another 48 h.

12 h (+34% and +40% in HSA and phototherapy + HSA-treated ani-
mals, respectively), compared with untreated controls. Mean
growth rates did not differ significantly between experimental
and control groups during the experiment (data not shown).

Adjunct HSA treatment decreases plasma UCB concentrations

We treated the hemolytic Gunn rats with routine phototherapy,
HSA, or phototherapy + HSA for 48 h. Fig. 3A shows that photo-
therapy and phototherapy + HSA both decreased the severity of
hemolytic unconjugated hyperbilirubinemia, compared with
untreated hemolytic controls. Phototherapy decreased plasma
UCB concentrations by 14% at t =36 h (p <0.01), while photother-
apy + HSA decreased these concentrations by at least 29% from
t=36h onwards (p<0.001). Adjunct HSA thereby lowered
plasma bilirubin levels by an additional 14-16%, compared with
phototherapy alone (p<0.05). HSA alone failed to decrease
plasma UCB concentrations.

Adjunct HSA treatment decreases plasma UCBj. concentrations
Fig. 3B shows that phototherapy decreased plasma UCBg.. con-
centrations by 31% at t =48 h (p <0.05), compared with controls,
while phototherapy + HSA decreased these concentrations by at
least 41% from t = 12 h onwards (p <0.001). Adjunct HSA thereby
lowered plasma UCBg.. concentrations by an additional 25-47%,
respectively, compared with phototherapy alone (p <0.05). HSA
alone failed to decrease plasma UCBgee concentrations, in spite
of a transient drop in UCBgee concentrations during the first
24 h of treatment.

Adjunct HSA treatment decreases brain bilirubin levels

Fig. 3C shows that phototherapy alone and HSA alone both failed
to decrease brain bilirubin levels. Combining phototherapy with
HSA, however, resulted in a 50%-decrease in brain bilirubin levels,
compared with untreated hemolytic controls (p <0.001). Adjunct
HSA thereby decreased brain bilirubin levels to 2.9 + 1.2 nmol/g,
which was comparable with the brain bilirubin content of
non-hemolytic control animals (3.6 0.7 nmol/g; Fig. 1C).
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Fig. 3. Plasma and brain results of acute unc ed hyperbilir
experiments. Effects of no treatment (controls), routine phototherapy (PT),
human serum albumin (HSA), or PT + HSA on (A) plasma UCB, (B) plasma UCBee,
and (C) brain bilirubin levels at t =48 h in hemolytic Gunn rats. Adult Gunn rats
received APHZ i.p. to induce hemolysis, and were randomized after 24 h to
receive no treatment, phototherapy (17 pW/cm?/nm), HSA (2.5 g/kg), or PT + HSA
for 48 h. Plasma bilirubin concentrations were similar in all groups during the 24-
h run-in period after APHZ injection. *p <0.05; **p <0.01; ***p <0.001, compared
with controls. *p <0.05; %p <0.01; 'p <0.001, compared with single PT.

Adjunct HSA thus completely prevented the deposition of biliru-
bin in the brain during hemolytic jaundice.

Adjunct HSA also decreased hepatic bilirubin levels by an
additional 36% (p <0.01), compared with routine phototherapy
(Supplementary Fig. 1C), and phototherapy + HSA was the only
treatment that decreased bilirubin levels in visceral fat, com-
pared with controls (—41%, p <0.05; Supplementary Fig. 1D).

The correlation between plasma UCB.. and brain bilirubin levels
Fig. 4A shows the correlation between plasma bilirubin and brain
bilirubin levels during acute jaundice. Fig. 4B shows that plasma
UCBgee correlates reasonably well with brain bilirubin levels in
hemolytic Gunn rats (y = 0.0078x + 2.63; 2 = 0.48; p <0.001).

Discussion

In this study, we demonstrate that HSA effectively decreases
brain bilirubin levels in phototherapy-treated Gunn rats. The
decrease was apparent during both chronic and acute hemolytic
jaundice. Our results support the feasibility of HSA treatment as

JOURNAL OF HEPATOLOGY

A O Control  © HSA B < Control © HSA
g, APT B PT + HSA g, APT B PT + HSA
5 8 ) 5 8 o
57 o 57 o ©
Es A Ee AA ACHO
£ 5 = 2 & £ Sim O°§> [e)
g 4 Ny R g 4 YN o
8, d 85 am
52 " =03 >52{a" =048
1 p <0.01 1 p <0.001
0 - - - v ) 0 : v v r .
0 100 200 300 400 500 0 100 200 300 400 500
UCB plasma (umol/L) UCB,, plasma (nmol/L)

Fig. 4. Correlations of acute unc d hyperbilirub ia experiments.
(A) Correlation between plasma UCB and brain bilirubin levels, and (B) between
plasma UCBqee and brain bilirubin levels in Gunn rats at t = 48 h. Adult Gunn rats
received APHZ i.p. to induce hemolysis, and were randomized after 24 h to
receive no treatment, PT (17 pW/cm?/nm), human serum albumin (HSA: 2.5 g/
kg), or PT + HSA for 48 h.

adjunct to phototherapy in Crigler-Najjar disease and neonatal
jaundice.

The rationale behind HSA treatment is based on the premises
that UCBgee translocates into the brain and, secondly, that i.v.
albumin prevents this translocation by binding to UCBgee within
the plasma. The role of UCBg.. translocation became apparent in
the 1950s, when sulfisoxazole-treated neonates developed ker-
nicterus in the presence of unusually low plasma bilirubin con-
centrations [26,27]. It was soon discovered that sulfisoxazole
displaced UCB from albumin, which first suggested the impor-
tance of the non-albumin bound UCB fraction [28]. Since then,
many studies have supported the critical role of UCBge in the
pathogenesis of bilirubin-induced brain damage [2,3,5,6]. These
studies also demonstrated that plasma UCBg.. levels increased
proportionally as the plasma albumin binding affinity or capacity
decreased, or during inflammation. Ahlfors et al. have recently
underlined the importance of UCBge. by showing that auditory
brainstem response screening, a quantifiable method to evaluate
bilirubin-induced neurotoxicity, correlates with UCBg. rather
than with total bilirubin concentrations [4]. The protective role
of HSA administration has also been investigated in neonates.
Its efficacy, however, has never been established in randomized
controlled trials. Two retrospective studies have shown reduced
UCBgee concentrations in jaundiced neonates after HSA adminis-
tration [16,18]. One additional small cohort study has shown
some protective effect of HSA administration on the development
of brain damage, as measured by auditory brainstem response
screening [17]. Other studies, however, failed to demonstrate
beneficial effects of HSA treatment [15]. Importantly, most
human studies did not assess plasma UCBge, or used methods
that seriously underestimate UCBge. levels due to a 42-sample
dilution [15-18,29]. The absence of reliable data on UCBg.. con-
centrations obviously impeded the interpretability of these stud-
ies. In addition, human studies are intrinsically limited by the
impossibility of measuring brain bilirubin levels. Recently, Ahlf-
ors et al. automated and improved the available UCBge. test,
while Zelenka et al. developed a sensitive method for tissue bili-
rubin determinations [13,25]. These newly developed methods
allowed us to reliably measure UCBg.. and brain bilirubin levels
in two well-established animal models [19,20].

We first investigated the efficacy of adjunct HSA treatment in
moderately chronic hyperbilirubinemic Gunn rats. Routine
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phototherapy decreased unconjugated hyperbilirubinemia in
these animals, while HSA alone increased plasma UCB levels.
Routine phototherapy and HSA alone both decreased UCBge
and brain bilirubin levels. The decrease in brain bilirubin in the
HSA-alone group was in concordance with previous animal stud-
ies by Diamond et al., who described that bilirubin '“C deposited
in the brain could in part be mobilized and returned to the circu-
lation by subsequent treatment with HSA [2]. Next, we investi-
gated adjunct HSA treatment during phototherapy in Gunn rats.
Rats treated with adjunct HSA treatment had lower UCBge and,
to a lesser extent, brain bilirubin levels, compared with photo-
therapy alone. These results, when taken together, support a
model in which only UCBg. is able to move between the vascular
and extravascular (tissue) compartment of the bilirubin pool
(Supplementary Fig. 3A). This translocation of UCBgee Occurs
across both the vascular endothelial cells and the BBB. In this
model, HSA administration could act in tandem with photother-
apy. HSA first binds covalently to plasma UCBge., which decreases
the free bilirubin concentration within the vascular compart-
ment. This decrease promotes a bilirubin shift from the
extravascular pool, as reflected by the increased plasma UCB con-
centrations during HSA-treatment. The newly recruited intravas-
cular bilirubin is then, after its exposure to photo-isomerization,
rapidly transported to the liver, and excreted via the bile (Supple-
mentary Fig. 3B) and urine [30].

Our results in acutely jaundiced Gunn rats showed that APHZ
administration induced a comparable hemolysis in all groups.
Routine phototherapy thus did not affect the severity of hemoly-
sis, or did treatment with HSA alone, as indicated by similar
decreases in Hb and Ht (Supplementary Fig. 2). APHZ increased
plasma UCB and UCBg.. concentrations by 30-60% within 2 days
after administration. Phototherapy mitigated this increase, but to
a relatively small extent. HSA alone treatment again tended to
increase, rather than decrease, plasma UCB concentrations. The
most striking finding, however, was the synergistic effect of com-
bined phototherapy and HSA treatment. Adjunct HSA not only
decreased UCBg..e concentrations in the plasma, but it also com-
pletely prevented the hemolysis-induced deposition of bilirubin
in the brain, in contrast to phototherapy and single HSA treat-
ment. The failure of single HSA treatment demonstrates the
importance of phototherapy in our model. When HSA induces a
bilirubin shift from the extravascular to the vascular compart-
ment, phototherapy is needed to convert this newly recruited
intravascular bilirubin into photoisomers that can be readily
excreted via the bile. Without phototherapy, bilirubin will move
back from blood into tissues as the plasma albumin levels return
to baseline (i.e., within 48 h; Supplementary Fig. 2D). The
observed lack of effect of single phototherapy on brain bilirubin
levels may be time-related: phototherapy decreased plasma
UCB within 36 h, but did not decrease UCBg.. levels until after
48 h of treatment. Indeed, long-term phototherapy apparently
circumvented this delayed decrease in UCBge. levels, and
decreased both UCBg.. and brain bilirubin in permanently jaun-
diced Gunn rats. We cannot exclude the possibility that non-pro-
tein bound bilirubin is less readily converted into photoisomers
than the protein-bound fraction. Taken together, our results not
only demonstrate the benefits of adjunct HSA, but also question
the efficacy of phototherapy during acute hemolytic jaundice.

The correlation between plasma and brain bilirubin levels was
virtually absent in our chronic and acute experiments. These data
are consistent with clinical evidence that shows a poor predictive

value of plasma bilirubin, especially above 300 pumol/L, for neuro-
toxicity [6]. Together, these observations illustrate that UCB is, at
best, a poor predictor for bilirubin deposition within the brain.
UCB¢ee concentrations correlated reasonably well with individual
brain bilirubin levels in our experiments. Yet, the r>-value in our
acute experiment indicated that the variation in brain bilirubin is
clearly not solely related to plasma UCBg.e concentrations. Also,
it is interesting to note that the HSA-induced decrease in brain
bilirubin concentrations is less pronounced than the HSA-
induced decrease in plasma UCBg.. concentrations. These obser-
vations confirm that, apart from UCBgee, other factors (e.g.
changes in blood pH, BBB integrity, active transport of bilirubin
across the BBB, hemolysis, inflammation) are also highly impor-
tant in the pathogenesis of bilirubin-induced neurological dam-
age [31,32]. It would be interesting to investigate these factors,
as well as the accumulation of bilirubin in specific brain regions
(since bilirubin predominantly accumulates in the deep nuclei
of the brain) during HSA treatment in future animal experiments.
Also, studies with different HSA dosages would be required to
determine dose dependency relationships between HSA and its
bilirubin effects, since it seems reasonable to assume that
another dosage of HSA would result in quantitatively different
outcomes. Taken together, these issues demonstrate the need
for a further evaluation of HSA administration in future
experiments.

It is worth noticing the differences between chronic and acute
hyperbilirubinemia models. The acute model, in contrast to the
chronic model, does not reflect a steady state condition. In the
chronic model, the UCB production rate is stable, whereas the
UCB production rate is increased in the acute model. This results
in different kinetics that might influence the (re)distribution of
bilirubin from the blood into the tissue compartment, and vice
versa. To exclude the possibility that the differences between
our models were induced by APHZ, rather than by hemolysis,
we performed additional experiments. In these experiments we
induced hyperbilirubinemia in Gunn rats via a different strategy,
namely transfusion with 1-week old donor rat erythrocytes (data
not shown). Rats were then treated with or without photother-
apy. Compared with the APHZ results, the effects on total plasma
UCB, UCBgee and brain bilirubin and their interrelationships were
similar. These results strongly indicated that the differences
between our models were induced by hemolysis, and not directly
by the APHZ compound.

For the interpretation and extrapolation of the results, we
underline that species differences in bilirubin kinetics do apply
between humans and rats, even when both are completely defi-
cient in UDPGT1A1 activity (Crigler-Najjar type I patients and
Gunn rats, respectively). For example, the hyperbilirubinemia in
Gunn rats is less severe than that in Crigler-Najjar type I patients,
and the natural course of the disease is milder. Furthermore, in
Gunn rats the accumulation of bilirubin does not usually produce
neonatal morbidity or a kernicterus pattern. Also, we studied
adult Gunn rats because it was not feasible to reliably administer
and assess the effects of phototherapy for 16 days in Gunn rat
pups. The central nervous system is less vulnerable in adult rats.
We are consequently aware that bilirubin distribution and affin-
ities could be different in the neonatal or adult central nervous
system [33-35]. Although the adult Gunn rat model has been
proven valuable in studying bilirubin (patho)physiology, these
observations justify some caution in extrapolating our results to
Gunn rat pups or hyperbilirubinemic patients.
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In our study we have used a commercially available HSA solu-
tion and found clear proof that it enhanced the therapeutic effi-
cacy of routine phototherapy. We used human serum albumin
(HSA) rather than rat serum albumin (RSA), to mimic the clinical
situation as closely as possible and to use a treatment that is
presently already available for patients. The albumin solution
used in our experiments is currently widely applied in neonates,
which greatly increases its therapeutic potential and will facili-
tate the set up of future clinical trials [15-18,29]. These trials
should ideally incorporate UCBge. measurements and auditory
brainstem response screening to monitor the efficacy of treat-
ment. UCBge. measurements should be performed according to
the recently developed method of Ahlfors et al. that enables an
automated and reliable measurement of UCBge. in a clinical set-
ting. HSA administration has previously been used in jaundiced
neonates, mainly before phototherapy became available.
Although generally safe, HSA was associated with side effects,
such as fluid overload. Theoretically, HSA administration could
also induce infections or immunological reactions. The occur-
rence of these side effects, although uncommon, should be mon-
itored in future clinical trials [18,29].

Taken together, our data show that HSA enhances the efficacy
of routine phototherapy in phototherapy-treated Gunn rats, both
during permanent and acute jaundice. Our study underlines the
need to critically evaluate the use of HSA as adjunct to photother-
apy in randomized controlled clinical trials. We expect that a
focus on tissue, rather than on plasma bilirubin concentrations,
could induce a paradigm shift that will allow the development
of increasingly efficient treatment strategies. These strategies
will, hopefully, further decrease the burden of bilirubin-induced
brain damage in the near future.
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Abstract

Background: Free bilirubin (Bf), the unbound fraction of unconjugated bili-
rubin (UCB), can induce neurotoxicity, including impairment of the audi-
tory system, which can be assessed by brainstem auditory evoked potentials
(BAEPs). We hypothesized that albumin might reduce the risk of neurotoxic-
ity by decreasing Bf and its translocation into the brain. Aim: To determine
the effects of albumin on BAEPs and brain bilirubin content in two Gunn rat
pup models of acute hyperbilirubinemia. Methods: We used Gunn rat pups,
which have a deficiency of the bilirubin-conjugating enzyme UGT1A1. We
induced haemolysis by injection of phenylhydrazine (phz) into 14-days old
pups. Subsequently, pups were treated with either i.p. human serum albumin
(HSA; 2.5 g/kg; n = 8) or saline (control, n = 8). We induced acute neuro-
toxicity by injecting 16-days old pups with sulphadimethoxine (sulpha) and
treated them with either HSA (n = 9) or saline (control, n = 10). To assess
bilirubin neurotoxicity, we used the validated BAEP method and compared
relevant parameters; i.e. peak latency values and interwave interval (IWI)
between peak I and peak II, a marker of acute neurotoxicity. Results: Phz
and sulpha significantly increased IWI I-II by 26% and 29% (P < 0.05) in
the haemolysis and the displacement model, respectively. Albumin com-
pletely prevented the increase of IWI I-II in either model. The beneficial
effect of albumin in the displacement-model by means of normal BAEPs was
in line with less bilirubin in the brain (NS). Interestingly, in the haemolysis
model the accumulation of total bilirubin in the brain was unaltered, and
BAEPs still appeared normal. This might advocate for a role of brain Bf
which was calculated and showed that albumin treatment non-significantly
reduces Bf concentrations in brain, compared with saline treatment. Conclu-
sions: Albumin treatment is neuroprotective in acute hyperbilirubinemia in
Gunn rat pups. Our present results underline the importance of functional
diagnostic test of neurotoxicity above biochemical concentrations.
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Unconjugated hyperbilirubinemia is considered a phys-
iological and transient phenomenon, which occurs in
many newborn infants. In case of severe hyperbiliru-
binemia or in vulnerable preterm infants, potentially
devastating neurological sequelae may occur as a result
of the deposition of toxic unconjugated bilirubin
(UCB) in the central nervous system (CNS) (1). This
underlines the need for additional treatment strategies
to current therapies, i.e. phototherapy and exchange
transfusion. Only free bilirubin (Bf), the fraction of
UCB not bound to plasma proteins (e.g. albumin), can
induce neurotoxicity after translocation across the
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blood-brain barrier (BBB). A few studies have been
performed on administration of albumin in animals as
well as in neonates to reduce the risk of bilirubin
neurotoxicity, but detailed mechanistic data are lacking
(2-6). We hypothesized that albumin can be neuropro-
tective by decreasing Bf, and thus preventing its trans-
location into the CNS.

Bilirubin neurotoxicity can be assessed by brain-
stem auditory evoked potentials (BAEPs), based on
the vulnerability of the auditory system to hyperbi-
lirubinemia. BAEPs (or auditory brainstem responses,
ABRs) assess mneural transmission between the
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auditory nerve and auditory brainstem structures.
Bilirubin-induced auditory dysfunction can present as
sensorineural hearing loss or auditory processing
abnormalities, i.e. auditory neuropathy spectrum dis-
orders (presumably because of the damage of brain
stem structures) (7).

We tested our hypothesis in Gunn rats, the well-
established animal model for hyperbilirubinemia.
Gunn rats spontaneously develop jaundice caused by
a mutation in uridine diphosphoglucuronosyltransfer-
ase: UGT1Al (8-10). This mutation is homologous
to human patients with Crigler Najjar type I syn-
drome and analogous to the relative deficiency of
UDP-GTI1A1 activity seen in human neonates during
the first several days of life. The histopathological
lesions in severely kernicteric Gunn rats include dam-
age to central auditory structures, especially the
cochlear nuclei and inferior colliculi, and are similar
to those found in human neonates with classic kern-
icterus (11). The j/j homozygous Gunn rat pups show
reduced post-natal cerebellar weight, and upon treat-
ment with sulphadimethoxine, acute signs of hyper-
bilirubinemic encephalopathy.

For this study, we used two Gunn rat pup models of
acute hyperbilirubinemia mimicking severe neonatal
hyperbilirubinemia: one because of haemolysis and the
other one based on drug-induced displacement of bili-
rubin from albumin. For the haemolysis model, we used
phenylhydrazine (phz) to induce haemolysis. For the
bilirubin-albumin displacement model, we used sulpha-
dimethoxine (sulpha), which is a compound that com-
petes with bilirubin for binding to serum albumin and
results in accumulation of bilirubin in lipophilic tissues,
including the brain (2, 12-14).

In this study, we evaluated the possible beneficial
effects of albumin treatment on BAEPs in a rat pup
model of acute hyperbilirubinemia caused by haem-
olysis or caused by bilirubin-albumin displacement.
We show that albumin treatment is neuroprotective
in acute hyperbilirubinemia in Gunn rat pups, irre-
spective of its nature, i.e. induction by haemolysis
or by bilirubin-albumin displacement. Present results
favour the clinical potency of albumin treatment to
prevent or mitigate neurotoxicity by acute hyperbi-
lirubinemia.

Animals, materials and methods
Animals

Homozygous Gunn rat pups (jj; 14-16 days old) from
the Virginia Commonwealth University Gunn rat breed-
ing colony were used. The Gunn rats were housed per
litter and were kept in an environmentally controlled
facility. The adult mother rats were fed chow ad libitum
and had free access to water. All procedures were
approved by the institutional animal care and use com-
mittee of Virginia Commonwealth University.
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Materials
Chemicals

Phenylhydrazine (phz), sulphadimethoxine (sulpha),
human serum albumin (HSA), horseradish peroxidase
type 1, D-glucose, glucose oxidase and hydrogen perox-
ide were purchased from Sigma Chemical Co. (St. Louis,
MO, USA).

Methods
Study design

Initially a blood sample (50-85 pl) was drawn via a
cheek puncture to assess haematocrit and total plasma
unconjugated bilirubin concentrations with a Leica Uni-
stat Bilirubinometer (Reichert, Inc., Depew, NY, USA).
Based on our previous experience, we have determined
that approximately 50% of jj rats with UCB less than
9.0 mg/dL exhibit BAEP abnormalities following sulpha
treatment, whereas 85% of jj rats with UCB levels greater
than 9.5 mg/dL exhibit BAEP abnormalities following
sulpha treatment (unpublished observations). Animals
with higher UCB concentrations (>13.5 mg/dL) tended
to have higher mortality rates in longer studies. Thus,
we refined our experiments to reduce the total number
of animals required, by only using jj rats with UCB levels
between 9.5 and 13.5 mg/dL in this study.

Haemolysis model

In this model, we induced haemolysis by injection of
phz (50 mg/kg bodyweight) into 14-days old Gunn rat
pups to mimic neonatal hyperbilirubinemia. After injec-
tion, rat pups were subsequently treated with either i.p.
HSA (2.5 g/kg, n = 8) or saline (control, n = 8) 10 min
and 24 h after phz injection. At day 16 of age, BAEP-
measurements were performed. Immediately after BAEP
measurements, all animals were exsanguinated via a
heart puncture and flushed via the same port with 50—
100 ml NaCl 0.9% under isoflurane anaesthesia. The
brain and liver were subsequently harvested for the
determination of tissue bilirubin levels. These samples
were rinsed two times in phosphate buffered saline, snap
frozen in liquid nitrogen and immediately stored
(wrapped in aluminium foil) at —80°C until analysis
(15).

Displacement model

In the bilirubin-albumin displacement model, we
induced exacerbation of hyperbilirubinemia (i.e. acute
neurotoxicity) by injecting 16-days old Gunn rat pups
with sulpha (200 mg/kg bodyweight) and treated them
with either HSA (2.5 g/kg, n = 9) or saline (control,
n =10) 10 min after sulpha injection. Three animals in
the sulpha group (1 Sulpha/Alb, 2 Sulpha/Sal) did not
survive. Four hours after sulpha injection, the BAEP
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measurements were performed. Immediately after BAEP
measurements, all animals were exsanguinated, and
brain and liver were subsequently harvested for the
determination of tissue bilirubin levels, as described
above (15).

Brainstem auditory evoked potentials (BAEP) stimulus
and recording

BAEPs (also known as auditory brainstem responses,
ABRs) are a very sensitive, non-invasive tool to evaluate
auditory nerve and brainstem function. BAEPs are in
fact surface recorded electroencephalogram (EEG)
responses recorded for the first 10 ms following an
auditory stimulus (click) and averaged following many
stimuli. As BAEPs are averaged, the stimulus evoked
responses of the ascending auditory nervous system are
resolved from the background EEG which is random
following the stimulus, and the resultant waveforms rep-
resent the responses of the auditory nerve, the cochlear
nucleus and superior olivary complex to the click.
Briefly, animals were lightly anaesthetized with ace-
promazine (4.5-6 mg/kg) and ketamine (45-60 mg/kg)
i.m. Supplemental anaesthesia, one quarter to one half
of the original dose, was administered as needed if
muscle artefact became too prominent. BAEPs were
recorded using a Nicolet Spirit 2000 Evoked Potential
System (Biosys, Inc., Rosenberg, TX, USA). The left ear
was occluded with petrolatum, to minimize stimulation
of the contralateral ear, and BAEPs were obtained to
monaural 100 ps duration rarefaction clicks delivered at
31.7/s to the right ear through a Sony Walkman 4LIS
headphone speaker (Sony Corporation, Tokio, Japan)
(1, 13, 14, 16). The sound intensity was nominally set at
70 dB, which corresponded to a level of about 62 dB
above a normal jj Gunn rat pup BAEP threshold level
(16). Surface electrical activity was recorded from
13 mm long subcutaneous platinum needle electrodes
inserted on the scalp over the vertex and behind the left
and right mastoid bullae with a ground electrode in the
flank. Rectal temperature was controlled at 37.0 + 0.1°C
using a controller and heat lamp with a red bulb. The
animal’s temperature was stabilized for a minimum of
5 min before recordings were initiated. Two channel
BAEP recordings were obtained from the contralateral
to the ipsilateral mastoid (horizontal) and the vertex to
the ipsilateral mastoid (vertical) electrode pairs and fil-
tered from 30 to 3000 Hz. Only the horizontal data are
presented; the vertical data were used to help identify
uncertain peaks. All recordings were done in a sound-
attenuated room. Each individual BAEP was the aver-
aged response to at least 2000 stimuli, and three or more
replicated responses were obtained for each animal. The
individual BAEP replications were then added, and the
peaks and following troughs were scored using a cursor.
The latency of wave I is the time from the stimulus to
the peak of wave I. Other stimulus to peak latency
values were subtracted to obtain interwave intervals
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between wave peaks to arrive at values for the I-II and
II-1IT interwave intervals. Wave IV is much more vari-
able and historically does not show consistent abnor-
malities in this model, thus the wave IV data are not
presented (7). To assess bilirubin neurotoxicity, we used
the validated BAEP method and compared relevant
parameters between albumin treated and control rat
pups (peak latency values and interwave interval (IWT)
between peak I and peak II). An increased IWI I-1I is a
reflection of acute neurotoxicity (7).

Analytical methods
Plasma UCB and Bf analysis

Blood samples were protected from light, stored at
—20°C directly after collection and processed within
4 weeks. UCB and Bf were determined using a Zone
Fluidics system (Global Flopro, Global Fia Inc, WA,
USA.) (17). As all bilirubin is unconjugated in jj Gunn
rats, Bf equals the total free bilirubin concentration in
these animals. The HRP reaction is based on the
observation that HRP catalyzes the oxidation of Bf by
peroxide but does not catalyze the oxidation of albu-
min-bound bilirubin (18). This can be described by the
following equation:

AIbUCB <& Alb + Bf + HRP £ oxidized Bf [1]

in which AIbUCB is the total amount of bilirubin that is
bound to albumin in the plasma (>99.9%), K is the
affinity constant of albumin for Bf, Kp is the rate con-
stant for the HRP-catalyzed peroxide oxidation of Bf,
and oxidized Bf is the amount of Bf that is oxidized by
HRP. The Bf can then be calculated from the change in
AIbUCB absorbance over time, as measured in a spec-
trophotometric flowcell at A460 nm. This can be
described as follows:

dAIbUCB
dt

in which only the Bf is unknown as HRP is known, Kp
can be determined, and dAIbUCB/dt is measured.
Clearly this calculation is only accurate if K >> Kp in
[1]. Unfortunately, this condition is rarely completely
met during Bf measurement in plasma. As a result, the
Bf will decrease after addition of HRP, resulting in an
underestimation of the actual Bf concentration (19).
This problem can be solved by using different HRP con-
centrations to correct for the rate limiting dissociation
of bilirubin from albumin. The correct Bf can then be
determined as the reciprocal of the y intercept of a plot
of 1/Bf vs. the corresponding HRP concentrations (17).

— Kp x HRP x Bf 2]

Tissue UCB analysis

Tissue bilirubin content was determined using HPLC
with diode array detector (Agilent, Santa Clara, CA,
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USA) as described earlier (15). Briefly, 300 pmol of
mesobilirubin in DMSO (used as an internal standard)
was added and samples were homogenized on ice. Bile
pigments were then extracted into chloroform/hexane
(5:1) solution at pH 6.0, and subsequently extracted in a
minimum volume of methanol/carbonate buffer (pH
10.0) to remove contaminants. The resulting polar
droplet (extract) was loaded onto C-8 reverse phase col-
umn (Phenomenex, Torrance, CA, USA) and separated
pigments were detected at 440 nm. The concentration
of bilirubin was calculated as nmol/g of wet tissue
weight. All steps were performed under dim light in alu-
minium-wrapped tubes. We did not specifically measure
bilirubin deposition in the brain nuclei, but relied on
total tissue bilirubin measurements.

Brain Bf analysis

Brain-free bilirubin content was determined using the
methods used by Daood et al. (20). Brain bilirubin con-
tent was determined as described above. Total brain
albumin was determined using the methods used by
Ericsson et al. (21). Briefly, 100 mg of brain tissue was
added to 2% sodium dodecyl sulphate (SDS) in PBS
buffer, and samples were disintegrated by sonication on
ice. Then, samples were incubated at 70°C and shaked
at 1400 rpm for 10 min. Samples were diluted with PBS
to a total amount of SDS 1%. Albumin was measured
by ELISA kit for rat albumin (E91028Ra, USCN, TX,
USA). All samples were measured twice by ELISA reader
Sunrise (Tecan, Austria) at 450 nm.

Total brain bilirubin and brain albumin values
together with the rat albumin-bilirubin binding con-
stant permits the calculation of CNS Bf levels. More
specifically, CNS Bf was calculated using the published
in vivo albumin-bilirubin binding k mean (9.2 L/umol)
values from Gunn rat pups (16 + 0.5 days old) (22) in
the following equation (20):

TBB—Bf  Bf xk
Alb 1+ (Bf x ki)

Bkaz
1+(Bf><k2)

in which TBB is total brain bilirubin, Bf is the CNS
unbound bilirubin fraction, Alb is albumin in brain and
k is the binding constant. This equation asumes inde-
pendent binding of UCB to two sites on albumin (23,
24): k; and k; are the binding constants for the first and
the second sites respectively with k; given by the binding
constant value defined above (22) and k, equal to k,/15
(23, 24).

Statistical analysis

Physiological data (body weight, total plasma bilirubin,
free bilirubin and haematocrit) between the five groups
(described under haemolysis model and displacement
model) were compared by separate one-way ANovas with
Tukey post-hoc analyses. The BAEP latency data were
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analyzed with the repeated measures of ANova to
determine if there was a significant main effect. For
parameters with a significant main effect, one-way
ANovAs were performed to determine group differences
between the interwave intervals followed by Tukey post-
hoc analyses. Spearman’s rank correlation coefficients
(R) were calculated. The level of significance was set at
P-value below 0.05. Analyses were performed using
PASW Statistics 18.0 for Windows (SPSS Inc., Chicago,
IL, USA).

Results
Baseline characteristics

The initial physiological parameters compared between
groups were the baseline weight, total plasma bilirubin
(UCB) and haematocrit (Hct) (Table 1). There were no
significant differences in the baseline values of these
parameters between any groups.

Plasma UCB concentrations

In Figure 1, plasma UCB concentrations are shown. In
the haemolysis model, the Phz/Sal-treated animals had
significantly higher plasma UCB concentrations com-
pared with controls (+44%, P < 0.05). Interestingly, the
Phz/Alb-treated animals had significantly higher plasma
UCB concentrations compared with Phz/Sal-treated
animals (+40%, P < 0.05). The displacement model
showed lower UCB concentrations compared with the
haemolysis-model (—77%; P < 0.05). The Sulpha/
Sal-treated animals had significantly lower plasma UCB
concentrations compared with controls (—66%;
P < 0.05). As in the haemolysis model, the Sulpha/Alb-
treated animals also showed higher plasma UCB con-
centrations compared with Sulpha/Sal-treated animals
(+40%).

Brainstem auditory evoked potentials

Representative BAEP waves of each treatment group are
depicted in Figure 2. The vertical dashed lines provide a
visual demonstration of the increased latency of waves
II and III following phz (haemolysis) or sulpha (acute
bilirubin toxicity) treatment. For statistical comparison,
the Sal/Sal-group was used as the control group to
which all other groups were compared.

Table 1. Physiological parameters at baseline

Group (n) Weight (g) UCB (mg/dl) Hct (/L)

Sal/Sal (9) 37+£5 124 +£1.0 341+19
Phz/Sal (8) 33+5 120+ 0.7 356+ 1.3
Phz/Alb (8) 36 +3 116+14 353 +24
Sulpha/Sal (10) 35+5 127 1.1 32.1+22
Sulpha/Alb (9) 35+£5 127 1.1 33.0+ 2.1

Values are mean + SD. UCB, unconjugated bilirubin; Hct, haematocrit.
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UCB in plasma
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Fig. 1. Plasma UCB concentrations. Effects of no treatment (con-
trol) or albumin (Alb) on plasma UCB concentrations in as well the
haemolysis (phz) as the displacement (sulpha) model for hyperbiliru-
binemia in 16 days-old Gunn rat pups. Pups were randomized to
receive saline (control), phenylhydrazine (phz) or sulphadimethox-
ine (sulpha), and were subsequently treated with saline or albumin
(Alb). Values are mean + SD. *P < 0.05 compared with controls.

#P < 0.05 compared with Phz/Sal.
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Fig. 2. Representative BAEP waves. Representative BAEP waves per
treatment group. Representative BAEP waves from each of the
treated Gunn rat pup groups: control (Sal/Sal), Phz/Alb, Sulpha/Alb,
Phz/Sal, Sulpha/Sal. The vertical dashed lines provide a visual dem-
onstration of the increased latency of waves Il and Il following phz
(haemolysis) or sulpha (acute bilirubin toxicity) treatment.

Phz and sulpha significantly increased the interwave
interval (IWI) I-II in both the haemolysis and the
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Fig. 3. Quantification of BAEP parameters. Quantification of BAEP
parameters per treatment group. Interwave interval between waves
[-Il'in 16 days-old Gunn rat pups. Pups were randomized to receive
saline (control), phenylhydrazine (phz) or sulphadimethoxine
(sulpha), and were subsequently treated with saline or aloumin
(Alb). Values are mean + SD. *P < 0.05 compared with controls.
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Fig. 4. Plasma Bf concentrations. Effects of no treatment (control)
or albumin (Alb) on plasma Bf concentrations in as well the haemol-
ysis (phz) as the displacement (sulpha) model for hyperbilirubinemia
in 16-days old Gunn rat pups. Pups were randomized to receive sal-
ine (control), phenylhydrazine (phz) or sulphadimethoxine (sulpha),
and were subsequently treated with saline or albumin (Alb). Values
are mean =+ SD. *P < 0.05 compared with controls.

displacement model (by +26%, and +29% respectively;
P < 0.05). Albumin completely prevented the increase
of IWI I-1II in either model of acute hyperbilirubinemia
(Fig. 3).
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Plasma Bf concentrations

In Figure 4, plasma Bf concentrations are shown. In the
haemolysis model, the Phz/Sal-treated animals had sig-
nificantly higher Bf concentrations compared with con-
trols (+27%; P < 0.05). The Phz/Alb-treated animals
had higher Bf concentration compared with Phz/Sal-
treated animals (+19%). In the displacement model, we
found the same pattern for the Bf concentrations as for
the UCB concentrations. The Sulpha/Sal-treated ani-
mals had significantly lower plasma Bf concentrations
compared with controls (—81%; P < 0.05). The Sulpha/
Alb-treated animals had higher Bf concentrations com-
pared with Sulpha/Sal-treated animals (+57%).

Tissue UCB levels

In the haemolysis model, the control group had signifi-
cantly lower UCB brain levels compared with the ani-
mals treated with Phz/Sal and Phz/Alb (P < 0.05;
Fig. 5A). In the displacement model, UCB brain levels
are significantly lower in the control group compared
with the animals treated with sulpha, irrespective of its
additional treatment with saline or albumin (P < 0.05;
Fig. 5A). In both models, albumin treatment did not
decrease UCB brain levels.

The liver UCB levels showed the same pattern as the
brain UCB levels in both experimental models (Fig. 5B).

Figure 6 shows that brain bilirubin levels correlated
with IWI I-II in Gunn rat pups (y = 14.29x —5.003;
Spearman R = 0.41; P < 0.008).

Brain Bf concentrations

Figure 7 shows that in the haemolysis model, the Phz/
Sal-treated animals had significantly higher brain Bf

concentrations compared with controls (+193%;
(A) UCB brain
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Fig. 6. The correlation between brain bilirubin levels and interwave
interval I-1l. The correlation between brain bilirubin levels and
interwave interval I-Il in 16-days old Gunn rat pups. Pups were
randomized to receive saline (control), phenylhydrazine (phz) or
sulphadimethoxine (sulpha), and were subsequently treated with
saline (control) or albumin (Alb). () Control, (=) Phz/Sal,

(a) Phz/Alb, (¥) Sulpha/Sal, () Sulpha/Alb.

P < 0.01). The Phz/Alb-treated animals had lower brain
Bf concentrations compared with Phz/Sal-treated ani-
mals (—36%, NS). In the displacement model, we found
that the Sulpha/Sal-treated animals had significantly
higher brain Bf concentrations compared with controls
(+250%; P < 0.001). The Sulpha/Alb-treated animals
had lower brain Bf concentrations compared with
Sulpha/Sal-treated animals (—20%, NS).

Discussion

In this study, we demonstrate in a functional assay that
HSA treatment exerts neuroprotective activity in two

(B) UCB liver
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Fig. 5. Tissue bilirubin levels. Panel A/B: effects of no treatment (controls), or albumin (Alb) on brain (panel A) and liver (panel B) bilirubin lev-
els in the haemolysis (phz) and displacement (sulpha) model for hyperbilirubinemia in 16-days old Gunn rat pups. For experimental setup,
kindly refer to the Methods section. Values are mean + SD. *P < 0.05 compared with treatment-groups.
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Fig. 7. Brain-free bilirubin concentrations. Effects of no treatment
(control) or albumin (Alb) on brain Bf concentrations in as well the
haemolysis (phz) as the displacement (sulpha) model for hyperbiliru-
binemia in 16 days-old Gunn rat pups. Pups were randomized to
receive saline (control), phenylhydrazine (phz) or sulphadimethox-
ine (sulpha), and were subsequently treated with saline or albumin
(Alb). Values are mean + SD. *P < 0.05 compared with controls.
#P < 0.01 compared with controls. $P < 0.001 compared with
controls.

models for unconjugated hyperbilirubinemia. The
neuroprotective effect of HSA can be discerned by pre-
venting the increase in interwave interval I-II in BAEPs.
The neuroprotective effect was apparent in both a
haemolytic and a bilirubin displacement model. Our
data underline the value of functional diagnostic testing,
because biochemical analyses (Bf and UCB concentra-
tions in plasma and brain) were not conclusive.

In plasma, most of the unconjugated bilirubin is
bound to albumin and only a small fraction (<0.1%) is
free. The rationale to use albumin as a treatment
option for hyperbilirubinemia, is based on the hypoth-
esis that iv. albumin binds UCB within the plasma,
presumably lowering Bf and preventing the transloca-
tion of bilirubin into the brain. This study provided
the ‘proof of concept’. We used an albumin dose of
2.5 g/kg body weight, which is higher than what is
infused in human neonates (i.e. 1 g/kg body weight).
One animal study is known, in which the treatment of
HSA is evaluated with BAEPs after induction of acute
neurotoxicity by sulpha in Gunn rat pups (2). In com-
parison with our study, in which we demonstrate the
prevention of neurotoxicity, Shapiro showed that ther-
apeutic intervention with HSA as late as 8 h after acute
bilirubin encephalopathy in this animal model pro-
motes the recovery of neurophysiological function as
effectively as intervention at 2 h. This indicates that a
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hypothesized ‘critical period’ for recovery of auditory
brainstem function after acute bilirubin encephalopathy
may extend beyond 8 h (2). The protective role of
HSA treatment has also been investigated in neonates.
Two retrospective studies have shown reduced Bf levels
in neonates with hyperbilirubinemia after HSA treat-
ment (3, 4). Some protective effect of HSA treatment
on the development of brain damage was suggested in
a small cohort study, as measured by auditory brain-
stem responses (5). However, other studies have failed
to show the beneficial effects of HSA treatment (6).
The efficacy of HSA treatment in acute hyperbilirubin-
emia has never been established in a randomized con-
trol trial or under rigidly controlled conditions in a
model system. Chan and Schiff speculated that in
most instances the administration of albumin does not
significantly improve the reserve albumin-binding
capacity. It would seem that the use of albumin would
only have a significant effect in those situations where
the binding capacity of the infant is already compro-
mised (6). Only recently, Ahlfors et al. showed that audi-
tory brainstem responses correlated better with Bf than
total serum bilirubin concentrations in neonates (25).

In Gunn rats, bilirubin neurotoxicity generally does
not affect wave I from the BAEP recordings. Waves II
and III become abnormal, displaying increased latency
and decreased amplitudes (12, 26). Waves II and III are
the most sensitive to bilirubin. In humans, waves I and
I are generated by the auditory nerve, whereas in rats
the auditory nerve only produces wave I (27, 28). The
following wave, III in humans and II in rats is generated
by the cochlear nucleus (27, 29). Multiple structures
contribute to the generation of wave III in rat, although
most probably it is primarily originating from contralat-
eral structures in the superior olivary complex including
the lateral leminiscus (7). In our rat model BAEP waves
I, II and III correspond to wave I-II complex, wave III
and wave IV-V complex in humans. Wave I in rats orig-
inates from the auditory nerve and wave II is from the
cochlear nucleus (7, 29). In this study, the I-II interwave
interval was increased during acute bilirubin neurotox-
icity in both the haemolysis (phz) model and the dis-
placement (sulpha) model. Based on this data, it is likely
that the cochlear nucleus is predominantly affected by
bilirubin toxicity. This interpretation is supported by
earlier data from Haustein et al., who demonstrated that
hyperbilirubinemia caused degeneration of excitatory
synaptic terminals in the auditory brainstem of
14-20 days old Gunn rat pups (30). Thereby, albumin
can prevent this functional brain damage, shown in the
absence of increased interwave interval I-II.

We first evaluated the total plasma UCB concentra-
tions in both models. In the haemolysis model, the
Phz/Sal-treated animals have significantly higher plasma
UCB concentrations compared with controls. This is
expected, as we increased the UCB-production by
inducing haemolysis. Interestingly, the Phz/Alb-treated
animals have significant higher plasma UCB
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concentrations compared with Phz/Sal-treated animals,
compatible with redistribution of UCB to the intravas-
cular space and the larger capacity of blood to bind neu-
rotoxins, including UCB, after albumin treatment. Our
data also underline that the ip. administered albumin
readily enters the bloodstream compartment and does
not remain in the intraperitoneal cavity. Unfortunately,
because of the experimental set-up in pups, we were not
able to measure plasma albumin concentrations. Albu-
min is believed to exert its beneficial effects in the blood
circulation. In a previous study in adult Gunn rats, we
showed that HSA readily enters the plasma compart-
ment after i.p. injections (31). In accordance with the
concept, the displacement-model shows lower UCB
concentrations compared with the haemolysis model.
Contrary to the increased production of UCB in the
haemolysis model, the lowering in plasma UCB concen-
trations in the displacement-model is because of a
translocation of UCB into the tissue. The Sulpha/Sal-
treated animals have significantly lower plasma UCB
concentrations compared with controls, as the rat’s own
albumin has a decreased capacity to bind bilirubin
because of the binding of sulpha. As in the haemolysis
model, the Sulpha/Alb-treated animals also show higher
plasma UCB concentrations compared with Sulpha/
Sal-treated animals. We consider it likely that the same
explanation holds as for the Phz/Alb-treated animals.
Namely, the redistribution of UCB to the intravascular
space and the larger capacity of blood to bind UCB after
albumin treatment.

We evaluated the plasma Bf concentrations in the
haemolysis as well as the displacement model. Surpris-
ingly, for Bf we saw the same pattern as for total
plasma UCB. After albumin treatment, the plasma Bf
increases in both models of acute hyperbilirubinemia.
This result is in contrast to our hypothesis that albu-
min would reduce plasma Bf, thereby preventing its
translocation into the brain. Several explanations are
possible. Firstly, the peroxidase method may not be a
reliable method to measure plasma Bf, which would
imply that our biochemical results may not be accu-
rate. An alternative method to measure Bf might be
the use of a fluorescently labelled fatty acid binding
protein mutant (Bf probe), that allows direct monitor-
ing of the equilibrium Bf concentration (32). At the
moment we conducted our study, the Bf probe was
not yet commercially available. Secondly, there may be
other mechanisms involved, which induce brain dam-
age, besides the generally accepted theory of the trans-
location of free bilirubin into the brain. Thirdly, the
high supraphysiological albumin concentration may
interfere with the plasma Bf analysis. Together, how-
ever, it does show that biochemical data on bilirubin
seem to be inferior to functional analysis of toxicity in
the (possibly) affected organ, in this case the auditory
system. This is possibly because of the inherent diffi-
culties to obtain precise measurements in specific body
compartments.
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To the best of our knowledge, this is the first study,
in which free bilirubin concentrations and brain biliru-
bin levels are evaluated and compared with a functional
test. The bilirubin-albumin displacement model is in
accordance with our hypothesis, in that the Sulpha/Alb-
treated animals have lower UCB brain levels than the
Sulpha/Sal-treated animals, although this difference is
not statistically significant. The lower UCB brain levels
in the albumin-treated animals also correlate with their
BAEPs, which are less abnormal. In the haemolysis
model, the Phz/Alb-treated animals tended to have
higher brain UCB levels compared with Phz/Sal-treated
animals, although the differences were not statistically
significant. We speculate that this may be related to the
development of the rat’s BBB. In Wistar rats, higher
levels of endogenous albumin can be found in all
regions of the developing brain of rat pups aged 2, 7, 11
and 21 days, compared with the values in adults (45
and 90 days) (33). Post-natal synthesis of albumin in
the rat brain was not identified as a possible source;
instead, increased BBB was implicated as a culprit (33).
Two other studies showed that the BBB is not imperme-
able for albumin in early (rat) life: after administration
of labelled albumin, a higher concentration of labelled
albumin is found in the immature rat brain compared
with the adult rat brain (34, 35). In accordance with the
concept, we noticed a correlation between UCB Brain
and IWT I-II. Interestingly, the figure also indicates that
part of the variation in IWI I-II does not correlate with
UCB Brain. A potential explanation for the results in
the haemolysis model can be the higher permeability of
the BBB. In our study, the Gunn rats were 16 days of
age, and several other studies showed higher brain albu-
min levels at that age (33-36).

The brain bilirubin levels in the displacement model
are in accordance with our hypothesis. We demonstrate
that when Bf plasma concentrations are lowered and
BAEP recordings are normal, the brain UCB levels are
also low (comparable with control levels). Apparently,
more bilirubin will enter the brain upon induction of
haemolysis, than by inducing displacement of bilirubin
from albumin.

Finally, we show that albumin treatment non-signifi-
cantly reduces Bf concentrations in brain, compared
with saline treatment. The observed pattern mimics the
Bf concentrations in plasma. This observation might, in
part, explain the beneficial mechanism by which albu-
min protects from bilirubin neurotoxicity.

In conclusion, albumin treatment is neuroprotective
in acute hyperbilirubinemia in Gunn rat pups, irrespec-
tive of its induction by haemolysis or by bilirubin
displacement from albumin. The discrepancy between
BAEPs (functional results) and UCB brain levels (bio-
chemical results), show the importance of functional
diagnostic tests, particularly in the field of unconjugated
(free) bilirubin. Also, we show a possibly new phenome-
non not based on bilirubin in brain or Bf, but based on
the higher permeability of the BBB in rat pups. It seems
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worthwhile to further investigate this phenomenon and
its potential influences on bilirubin-induced neurologi-
cal dysfunction in future studies. Present beneficial,
functional results favour the clinical potency of albumin
treatment to prevent or mitigate neurotoxicity because
of severe neonatal hyperbilirubinemia.
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Abstract

Background: Severe unconjugated hyperbilirubinemia carries the risk of neurotoxicity. Phototherapy (PT) and exchange
transfusion (ET) are cornerstones in the treatment of unconjugated hyperbilirubinemia. Studies to improve ET efficacy have
been hampered by the low application of ET in humans and by the lack of an in vivo model. The absence of an appropriate
animal model has also prevented to determine the efficacy of adjunct or alternative treatment options such as albumin (Alb)
administration.

Aim: To establish an in vivo model for ET and to determine the most effective treatment (combination) of ET, PT and Alb
administration.

Methods: Gunn rats received either PT, PT+Alb, ET, ET+PT, ET+PT+Alb or sham operation (each n=7). ET was performed via
the right jugular vein in ~20 min. PT (18 uW/cm?/nm) was started after ET or at T,. Albumin ip. injections (2.5 g/kg) were
given after ET or before starting PT. Plasma unconjugated bilirubin (UCB), plasma free bilirubin (Bf), and brain bilirubin
concentrations were determined.

Results: We performed ET in 21 Gunn rats with 100% survival. At T, ET was profoundly more effective in decreasing both
UCB —44%, p<<0.01) and Bf —81%, p<<0.05) than either PT or PT+Alb. After 48 h, the combination of ET+PT+Alb showed the
strongest hypobilirubinemic effect (—54% compared to ET).

Conclusions: We optimized ET for severe unconjugated hyperbilirubinemia in the Gunn rat model. Our data indicate that ET
is the most effective treatment option, in the acute as well as the follow-up situation.
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Introduction transfusions have more serious side effects and complications than
PT. The mortality rate from the procedure is approximately 0.3
2.0%. Significant morbidity is associated with 5-12% of ETs [6—
8]. Complications include cardiac arrest, thrombosis of the portal
vein, graft vs. host disease, coagulopathies, hypoglycemia,
hypocalcaemia, necrotizing enterocolitis, and transmission of
infectious diseases [6-10].

It has remained unclear whether ET could successfully be
replaced by other, more effective treatment options. For example,
albumin infusion might be a good treatment modality. Recently,
we found that adjunct human serum albumin (HSA) increased the

Neonatal jaundice carries the risk of neurotoxicity, due to the
deposition of unconjugated bilirubin (UCB) in the central nervous
system. Most of the UCB (~99%) in plasma is bound to plasma
proteins (mainly albumin). Only a small fraction (~1%) is “free”,
and only this free bilirubin (Bf) has the ability to cross the blood-
brain barrier and to induce brain damage [1-5].

Presently, the standard treatment for hyperbilirubinemia is
phototherapy. Phototherapy (PT) is generally effective, but in
some neonates the plasma bilirubin concentrations become

dangerously high or rise rapidly despite PT. In these patients PT
might fail to prevent bilirubin-induced brain damage, and for
these patients exchange transfusion (ET) is indicated. Exchange

PLOS ONE | www.plosone.org

efficacy of PT; it decreased plasma Bf concentrations and brain
bilirubin levels by ~90% and ~70%, respectively [11]. Studies to
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replace ET, to improve ET efficacy and/or to minimize its risks
have been hampered by the contemporary low application rate of
ET in humans and by the lack of an appropriate i vivo model
system. In order to better study the effects of an E'T, animal studies
would be highly desirable. An appropriate animal model should
resemble the human situation as much as possible. In case of ET
for hyperbilirubinemia, it should lower the bilirubin levels
sufficiently, quickly and safely. In this study we set out to establish
an animal model for ET, in which we would be able to evaluate
the effect of an ET on bilirubin concentrations in the acute and
long-term situation.

We used Gunn rats suffering from hyperbilirubinemia due to a
mutation in uridine diphosphoglucuronosyltransferase: UGTI1A1
[12-15]. The Gunn rat is a well-established animal model for
unconjugated hyperbilirubinemia. The histopathological lesions in
severely kernicteric Gunn rats include damage to central auditory
structures, especially the cochlear nuclei and inferior colliculi, and
are similar to those found in human neonates with classic
kernicterus [16].

In the present study, we successfully optimized and verified an
ET model in Gunn rats to compare acute treatments for severe
hyperbilirubinemia. Next, we evaluated different acute treatment
options for hyperbilirubinemia with or without the combination of
ET, and compared total serum bilirubin, free bilirubin and brain
bilirubin levels.

Animals, Materials, and Methods

Animals

Homozygous male Gunn rats (RHA/Jj; 10-12 weeks of age,
bodyweight: 254-335 g) from our breeding colony were kept in an
environmentally controlled facility, were fed ad libitum and had
free access to water. The Animal Ethics Committee of the
University of Groningen (Groningen, The Netherlands) approved
all experimental protocols.

Materials

Diet. Hope Farms B.V. (Woerden, The Netherlands) pro-
duced the semi-synthetic control diet (code 4063.02). This diet
contained 13 energy% fat and 5.2 wt% long-chain fatty acids.
Gunn rats were fed this diet during a 5-week run-in period, and
during the experimental period.

Chemicals. Horseradish peroxidase type 1, D-glucose, glu-
cose oxidase, and hydrogen peroxide were purchased from Sigma
Chemical Co. (St. Louis, MO). Human serum albumin (Albu-
man®; 200 g/L, fatty acid free) was purchased from Sanquin
(Amsterdam, The Netherlands).

Methods

Phototherapy. Two phototherapy devices were developed
according to the prototype that was designed by Ostrow et al. and
previously successfully used [11,17]. Each device consisted of two
blue phototherapy lamps (Philips, TL-20W/52) suspended in a
reflective canopy 30 cm above the bottom of the cage.
Phototherapy (18 pW/cm2/nm; 380-480 nm; measured by an
Elvos-LM-1010 Lux meter at 30 cm distance), was administered
continuously to Gunn rats, shaven on their backs and flanks.

Exchange transfusion. [Iresh whole rat Wistar donor blood
was obtained from Harlan Laboratories B.V. (Horst, The
Netherlands). Exchange transfusion was carried out under general
anesthesia with isoflurane. Body temperature was maintained at
37-38°C by a heating plate. Saturation was checked and kept
constant during the whole procedure above 95%. Different vessel
approaches, including femoral artery and vein, the carotic artery

PLOS ONE | www.plosone.org
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and jugular vein, have been tested and the following description
was used for all experiments. A small incision was made in the
right throat region and, with the aid of an operating microscope,
the right jugular vein was cannulated with heparinized silastic
tubing for the infusion of donor blood, and the extraction of the
native blood. In total 20 ml of donor blood was infused via a
heparinized lock, and 20 ml of native blood was taken out (1 ml
per cycle in 1 minute). Exchange transfusion was performed at a
rate of 1 ml/min, for 20 minutes. Blood outflow was performed by
hand using 1 ml syringes, and donor blood inflow was performed
using an infusion pump. After the exchange transfusion tubes were
ligated and left in situ, and the skin was sutured.

Sham transfusion. Sham
following the same procedure as the exchange transfusion. After
cannulation of the jugular vein, animals were kept under general
anesthesia for 20 minutes. After the sham the heparinized silastic
tubings were ligated extra corporally and the proximal part was
left in the jugular vein  situ. Finally, the skin was sutured.

transfusion was carried out

Study Design

Adult Gunn rats were randomized to receive either sham
operation without treatment (controls), phototherapy, photother-
apy+HSA, an exchange transfusion, an exchange transfusion+—
phototherapy or an exchange transfusion+HSA+phototherapy
(each of these groups n=7). The exchange transfusion (ET) group
underwent ET at a rate of 1 ml/min for 20 minutes. HSA i.p.
injection (2.5 g/kg) was given immediately after the ET or right
before PT was started. Heparinized samples of tail vein blood were
collected, under isoflurane anesthesia, at time (t)=0 (before the
ET), at t=1, t=3, t=6, and t= 24 h after the ET. After 48 h, all
animals were exsanguinated via the descending aorta and flushed
via the same port with 100-150 ml NaCl 0.9% under isoflurane
anesthesia. Brains were subsequently collected for the determina-
tion of tissue bilirubin levels. These samples were rinsed twice with
phosphate buffered saline, snap frozen in liquid nitrogen, and
immediately stored (wrapped in aluminum foil) at —80°C until
analysis.

Analytical Methods

Plasma analysis. Blood samples were protected from light,
stored at —20°C under argon directly after collection and
processed within 2 weeks. UCB and Bf were determined using a
Zone Fluidics system (Global Flopro, Global Fia Inc, WA), as
previously described by Ahlfors et al. [18].

Tissue bilirubin analysis. Tissue bilirubin content was
determined using HPLC with diode array detector (Agilent, Santa
Clara, CA) as described earlier [19]. Briefly, 300 pmol of
mesobilirubin in DMSO (used as an internal standard) was added
and samples were homogenized with glass dust using glass rod.
Bile pigments were then extracted into chloroform/methanol/
hexane (10:5:1) solution at pH 6.0, and subsequently extracted in
a minimum volume of methanol/carbonate buffer (pH 10) to
remove contaminants. The resulting polar droplet (extract) was
loaded onto C-8 reverse phase column (Phenomenex, Torrance,
CA) and separated pigments were detected at 440 nm. The
concentration of bilirubin was calculated as nmol/g of wet tissue
weight. All steps were performed under dim light in aluminum-
wrapped tubes. We did not specifically measure bilirubin
deposition in the brain nuclei, but relied on total tissue bilirubin
measurements.

Statistical analysis. Normally distributed data that dis-
played homogeneity of variance (by calculation of Levene’s
statistic) were expressed as mean * SD, and analyzed with
parametric statistical tests. Analysis of variance (ANOVA) with
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post-hoc  Tukey correction was performed for comparisons
between groups, and the Student ¢ test for comparison of paired
data within groups. The level of significance was set at p<<0.05.
Analyses were performed using SPSS Statistics 20.0 for Windows
(SPSS Inc., Chicago, IL).

Results

Development and Validation of the Model

In the human situation the common route for ET involves
catheterization of the umbilical vein, and arteriovenous or
venovenous exchange. Initially, we set out to establish arteriove-
nous exchange via the femoral artery and vein. Based on the
anatomical location, the femoral artery was not suitable for
exchange procedure. We then switched first to arteriovenous
exchange via the carotid artery and jugular vein, but this method
failed because of the high pressure in the carotid artery, which
made it impossible to keep the cannula in place for more than 5
minutes. Finally, we moved on to venovenous exchange via the
jugular vein on both sides. When we found out that we received
the same results in decrease of plasma bilirubin concentrations via
the push-and-pull-method via one jugular vein, as wvia the
continuous exchange via both jugular veins, we decided to
continue with the venovenous exchange via one jugular vein.
The rats recovered quickly with this method. Via the same jugular
vein we infused fresh Wistar donor blood (UCB <1 mg/dL), and
extracted the blood of the Gunn rat, in 20 minutes. We tested
different lengths of the procedure and observed that 20 minutes
procedure led to the same decrease of plasma UCB concentrations
as 40 and 60 minutes procedures (same volume, data not shown).

We performed an ET in 21 Gunn rats with 100% survival. The
recovery after ET was rapid, illustrated by maintenance of body
weight during the 48 h after ET (at Tyg, 100£3% compared to
Ty, NS). Figure 1A shows the course of plasma UCB concentra-
tions after ET. ET rapidly decreased plasma UCB concentrations
from 14.9 mg/dL at Ty, to 8.3 mg/dL at T (—44%, p<0.001). In
Figure 1B the course of plasma Bf concentrations after ET is
shown. ET decreased plasma Bf concentrations from 11.1 pg/dL
at Ty, to 2.1 ng/dL at T} (—81%, p<0.001). At T¢, Toy and Tyg
no significant difference exist in plasma Bf concentrations between
controls and ET.

Plasma UCB Concentrations after 1 h

We compared the acute effect of the different treatments; PT,
ET, Alb administration or a combination thereof (Figure 2A).
After 1 h, PT showed no significant differences in plasma UCB
concentrations compared to controls. PT+Alb showed a significant
increase compared to controls (p<<0.001). In contrast, E'T reduced
plasma UCB concentrations by 47% within 1 h (p<<0.001 vs
controls). The addition of either PT or the combination of PT and
Alb did not significantly augment this hypobilirubinemic effect.
Each of the combination therapies that included ET resulted in a
significantly lower plasma UCB concentration compared to the
control, PT or PT+Alb groups (each p<<0.001).

Plasma Bf Concentrations after 1 h

Figure 2B shows the effects of the different treatment
combinations on plasma Bf concentrations. After 1 h, PT and
PT+AIb reduced plasma Bf concentrations with 35% (p<<0.001 vs
controls) and 53% (p<<0.001 vs controls), respectively. For the ET-
group, ET+PT-group and ET+PT+Alb-group the decrease in
plasma Bf concentrations was even more profound (—80%, —80%
and —89% respectively; each p<0.001 vs controls, no statistically
significant difference between the three ET groups). Also, the
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Figure 1. Course of plasma UCB and Bf concentrations after
exchange transfusion. Course of plasma UCB concentrations (A) and
plasma Bf concentrations (B) after sham transfusions (control) or an
exchange transfusion (ET) in Gunn rats. Rats were randomized to
receive sham transfusions (control) or an exchange transfusion (ET).
Values are mean = SD. *p<<0.01 compared to controls. #p<0.001 ET: T,
compared to T;.

doi:10.1371/journal.pone.0077179.g001

different ET-groups each showed significantly lower plasma Bf
concentrations compared to PT+Alb (p<<0.05).

Plasma UCB Concentrations after 48 h

We also determined the long-term (48 h) hypobilirubinemic
effect of the different treatments. We compared treatment
combinations that are also used in the clinical practice: an ET
with or without the combination of PT or Alb administration.
Figure 3A shows the effects of the different treatment combina-
tions on plasma UCB concentrations after 48 h. In the ET-group
the plasma UCB concentrations returned back to physiological
Gunn rat values as described in the validation of the model.
ET+PT significantly reduced plasma UCB concentrations com-
pared to ET after 48 h (—36%; p<<0.05). Albumin further
potentiated this effect, shown in the significant decrease of
ET+PT+Alb compared to ET+PT (—28%; p<<0.05).

Plasma Bf Concentrations after 48 h

Figure 3B shows the effects of the different treatment
combinations on plasma Bf concentrations. After 48 h, the plasma
Bf concentrations of the E'T was still significantly lower compared
to controls (—48%; p<<0.05 vs controls; data not shown). ET+PT
further reduced plasma Bf concentrations with 47% (NS, vs ET).
Albumin potentiated the decrease in plasma Bf concentrations
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Figure 2. Plasma UCB and Bf concentrations after 1 h. Acute
effects of sham transfusions (control) or phototherapy (PT), albumin
(Alb), an exchange transfusion (ET), or a combination of these on
plasma UCB concentrations (A) and plasma Bf concentrations (B) in
Gunn rats. Rats were randomized to receive sham transfusions (control)
or an exchange transfusion (ET), and were subsequently treated with
phototherapy (PT), albumin (Alb) or the combination of PT+Alb. Values
are mean * SD. *p<<0.001 compared to controls. #p<0.05 compared
to PT. $p<<0.05 compared to PT+Alb.
doi:10.1371/journal.pone.0077179.9002

after 48 h, shown in a profound, significant decrease of
ET+PT+Alb compared to ET (—81%; p<<0.01).

Brain UCB Levels

Figure 4 shows that PT+Alb decreased brain bilirubin levels by
63% (p<<0.001), compared with untreated controls. Adjunct
albumin thus lowered brain bilirubin levels by an additional
33% (NS), compared with phototherapy alone. ET+PT+Alb
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Figure 3. Plasma UCB and Bf concentrations after 48 h. Long-
term effects of an exchange transfusion (ET), with or without the
combination of phototherapy (PT), or albumin (Alb), on plasma UCB
concentrations (A) and plasma Bf concentrations (B) in Gunn rats. Rats
were randomized to receive an exchange transfusion (ET), and were
subsequently treated with phototherapy (PT), albumin (Alb) or the
combination of PT+Alb. Values are mean + SD. *p<<0.01 compared to
ET. #p<0.05 compared to ET+PT.
doi:10.1371/journal.pone.0077179.g003

decreased brain bilirubin levels by 61% (p<<0.01), compared with
ET. Adjunct albumin thus lowered brain bilirubin levels by an
additional 57% (p<<0.01), compared with ET+PT.

Discussion

In this study we successfully optimized ET during unconjugated
hyperbilirubinemia in a Gunn rat model. We also bring the
evidence that this Gunn rat-E'T model might be very valuable to
evaluate the effect of modulating ET procedures and techniques,
and to compare its efficacy in combination with other treatments
to prevent brain damage during acute severe hyperbilirubinemia.
Our data indicate that ET is highly effective in decreasing UCB
and Bf within 1 h of treatment, and that combining ET with either
PT or PT+Alb does not further significantly potentiate this rapid
hypobilirubinemic effect. As follow up treatment after ET, the
combination of PT with Alb is most effective in maintaining this
hypobilirubinemic effect over 48 h.
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Figure 4. Brain bilirubin levels. Effects of sham transfusion
(controls), phototherapy (PT), albumin (Alb), an exchange transfusion
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Presently, ET is a very effective alternative treatment to PT in
severely jaundiced neonates. An ET is considered as a “rescue
treatment”, if plasma UCB levels are severely elevated or fail to
respond to PT. Exchange transfusion generally reduces plasma
UCB concentrations by 50%, although the efficacy varies with the
severity of the ongoing hemolysis and the amount of bilirubin that
re-enters the circulation from the tissues [20]. This re-entry occurs
due to the diffusion of Bf from the tissue pool into the plasma pool
and decreases the risk of bilirubin-induced neurotoxicity [20].
Eventually, all therapy should aim to prevent neurotoxicity, and
this can only be achieved by decreasing (brain) tissue rather than
plasma UCB concentrations. Nevertheless, an ET has a consid-
erable morbidity, and even mortality has been reported [6-8].
Fortunately, the need for ETs has been greatly reduced since the
introduction of PT [21,22].

Our model makes it possible to determine if we can replace ET,
improve its efficacy and/or minimize its risks. An alternative
treatment option would be the administration of human serum
albumin (HSA). HSA-infusion can be used in combination with an
exchange transfusion in severely jaundiced neonates, when donor
blood is not immediately available [23], but this approach has
been disputed [23,24]. The rationale for HSA-infusion is that the
resultant increase in albumin concentration will enhance the
bilirubin/albumin-binding capacity in the intravascular compart-
ment, thereby promoting the mobilization of bilirubin from
extravascular tissues, including the central nervous system, into the
circulation. In this way albumin is used as an adjunct treatment in
order to more efficiently remove bilirubin [23].

Our experimental design on albumin administration differs to
clinical ET practices in humans with respect to dosage, timing,
and route of administration. In the clinics, albumin may be
administered to hyperbilirubinemic neonates, but its use seems
relatively rare. If administered, it has been advised to do so prior to
ET, aimed to increasing its efficacy by mobilizing bilirubin from
tissues. In the present study, we administered albumin immediately
after E'T, aimed at preventing or mitigating a possible rebound of
Bf after ET. We administered albumin in a relatively high dosage
(2.5 g/kg, rather than ~1 g/kg in humans) via intraperitoneal
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bolus injection, in contrast to zv. infusion in humans. It should be
underlined that these methodological differences prevent direct
extrapolation of our present result towards the clinical situation.
Rather, present positive “proof of principle” results in our rat
model support the design of clinical studies in this direction.

Recently, we found that HSA enhances the efficacy of routine
PT in phototherapy-treated Gunn rats, both during permanent
and acute jaundice [11]. We speculated that HSA and PT work in
tandem: HSA binds bilirubin within the plasma, and PT then
promotes its excretion via the bile [11]. In this study we showed
that albumin administration in combination with either PT or ET
is already effective after 1 h of treatment. Furthermore, we showed
that the combination of PT+Alb is effective in decreasing plasma
UCB concentrations, plasma Bf concentrations and brain UCB
levels after 48 h. However, in this study we found that ET
decreases UCB and Bf concentrations even more than PT+Alb,
both in the acute and the chronic treatment situation. Our data
demonstrate that E'T is still the most effective treatment option in
acute severe hyperbilirubinemia. Unfortunately, we were not able
to measure plasma albumin concentrations. Albumin is believed to
exert its beneficial effects in the blood circulation. In a previous
study in adult Gunn rats, we showed that HSA readily enters the
plasma compartment after #.p. injections [11]. It is worth
mentioning that in this previous study we have applied “albumin
only” treatment, z.e. without prior ET. “Albumin only” decreases
the plasma Bf with 54% after 48 hr [11]. The present results justify
a follow-up study on an ET+Alb-group. However, in the present
study-design we focused on the comparability of our animal-
experiments with the clinical situation. Next, it is worth
mentioning that in adult rats, PT may not be as efficient as in
rat pups. Both skin thickness and body mass/surface ratio are
increased in adults, thus underestimating the potential of PT
together with ET.

In our ET-model we chose a venovenous exchange via one
jugular vein in 20 minutes. Various models for exchange of blood
are described, each for different purposes. Eguchi et al. performed
a total blood exchange in rats, and showed that total blood
exchange suppressed the early stage of liver regeneration following
partial hepatectomy [25]. These scientists performed the total
blood exchange via the right femoral vein and artery. Henry e/ al.
improved monoclonal antibody tumor/background ratios with
ETs in rats [26]. They used the right common carotid artery for
the blood exchange. Takeda et al. studied the effect of blood ET as
an initial treatment of acute hemorrhagic pancreatitis in rats [27].
Blood ET was performed via a previously indwelt tube in the
inferior vena cava. Hodges et al. studied the effect of an ET on the
efficacy of penicillin therapy of pneumococcal infection in rats
[28]. The left external jugular vein was used to perform the ET.
We based our model to a certain extent on the latter approach.
Kurantsin-Mills e al. studied flow dynamics of human sickle
erythrocytes in the mesenteric microcirculation of rats that
underwent an ET via the femoral vein [29]. The time schedule
we used for infusion and blood outflow was partly based on this
study. Since we had a different goal than the studies described
above, namely exchange of hyperbilirubinemic blood, we decided
to develop our own model.

We used fresh donor-rat blood, collected at the same day as the
ET takes place. The life span of erythrocytes is approximately 120
days in human adults, 90 days in neonates, and 50-60 days in rats
[30]. However, the storage time of red blood cells for rats is much
shorter than for human red blood cells, maximum 7 days
compared to maximum 30 days respectively [31]. Hemolysis of
rat red blood cells happens quickly, and after 7 days all the red
blood cells are lysed [31].
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In conlusion, we successfully optimized and verified an animal
model for ET for treatment of severe unconjugated hyperbiliru-
binemia. Our data indicate that ET is a more effective treatment
option for acute hyperbilirubinemia, than either PT or the
combination of PT and Alb. The combination of PT and Alb was
the most effective follow up treatment after ET for long term
(48 h) hypobilirubinemic effect. The availability of this optimized
model could be very helpful to further optimize the treatment for
acute, potentially neutotoxic hyperbilirubinemia.
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. Therapies to prevent severe neonatal unconjugated hyperbilirubinemia and kernicterus are
phototherapy and, in unresponsive cases, exchange transfusion, which has significant morbidity
and mortality risks. Neurotoxicity is caused by the fraction of unconjugated bilirubin not bound to
albumin (free bilirubin, Bf). Human serum albumin (HSA) administration was suggested to increase
plasma bilirubin-binding capacity. However, its clinical use is infrequent due to difficulties to address
its potential preventive and curative benefits, and to the absence of reliable markers to monitor
bilirubin neurotoxicity risk. We used a genetic mouse model of unconjugated hyperbilirubinemia
showing severe neurological impairment and neonatal lethality. We treated mutant pups with
repeated HSA administration since birth, without phototherapy application. Daily intraperitoneal
HSA administration completely rescued neurological damage and lethality, depending on dosage
and administration frequency. Albumin infusion increased plasma bilirubin-binding capacity,
mobilizing bilirubin from tissues to plasma. This resulted in reduced plasma Bf, forebrain and
cerebellum bilirubin levels. We showed that, in our experimental model, Bf is the best marker to
determine the risk of developing neurological damage. These results support the potential use of
albumin administration in severe acute hyperbilirubinemia conditions to prevent or treat bilirubin
neurotoxicity in situations in which exchange transfusion may be required.

. About 60% of healthy, term neonates, and almost all pre-term babies, will develop physiological neonatal
. jaundice [elevated unconjugated bilirubin (UCB) plasma levels] in the first week of life'?, caused in most
. cases by a temporary delay in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene acti-
© vation. This condition is usually considered benign®. However, in some babies uncontrolled unconjugated
. hyperbilirubinemia may develop due to other concurrent causes, such as pre-term birth, mutations in
. the UGTIAI gene (Crigler-Najjar syndrome), hemolytic conditions (such as glucose-6-phoshate dehy-
¢ drogenase deficiency, other genetic disorders affecting hemoglobin or the erythrocyte membrane, or

immune mediated hemolysis), sepsis, or other unknown stressors, resulting in acute bilirubin enceph-

alopathy (kernicterus) and, eventually, death’™*. The incidence of kernicterus is about 0.4 to 2.7 per
: 100,000 live births*®, raising to about 1.8 per 1000 live births considering preterm infants born with less
: than 30 weeks of gestational age®. Yet, it is significantly more frequent in underdeveloped and developing
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countries®” 1%, being a “silent” cause of significant neonatal morbidity and mortality. In fact, it is ranked
as one of the three top causes of death among African newborns®!!-!%.

Jaundice is normally treated with phototherapy (PT), which for most patients has sufficient efficacy
and convenience, with high safety and low costs. However, jaundiced infants who fail to respond to
PT, or are severely hyperbilirubinemic upon first presentation, are treated with a more invasive and
inherently more dangerous alternative, such as exchange transfusion (ET). ET is implemented only in
specialized centers and carries a significant risk of morbidity and mortality from vascular accidents,
cardiac complications, biochemical and haematological disturbances>'. The overall mortality rate from
the procedure, having high variability among the different centers, is normally quoted as being 0.3-0.7%,
although it may reach up to 17% in developing countries'®. Adverse events may amount up to 36%,
including catheter-related complications, sepsis, thrombocytopenia, and hypocalcemia®!®-%. Therefore,
the development of alternative strategies to reduce the risk of bilirubin encephalopathy in a rapid and
efficacious manner is a clinical need.

At a physiological pH bilirubin is poorly water-soluble and therefore needs to be metabolized in
the liver to allow its disposal. Due to the high affinity of albumin for unconjugated bilirubin?!, UCB is
transported via the circulation to the liver bound to albumin®’. Neurological damage is produced by the
small fraction of UCB not bound to albumin (free bilirubin, Bf). Bf, normally present at levels lower
than 0.1% of total bilirubin in plasma®, is capable of crossing the blood-brain-barrier and disrupting
several essential cellular functions, resulting in neuronal cell death?**. Therefore, a possible strategy to
avoid bilirubin accumulation in the brain could be to increase the bilirubin-binding capacity within the
intravascular compartment by albumin supplementation. Administration of albumin, prior to ET, has
been performed in the pediatric clinic to increase the efficacy of this procedure?*-2. Nonetheless, the
therapeutic use of albumin is not routinely used to treat severe neonatal jaundice due to the absence of
strong experimental support'?.

Pre-clinical studies performed by our group in the Gunn rat model of hyperbilirubinemia demon-
strated the short term efficacy of a single albumin infusion in lowering plasma Bf, brain bilirubin levels
and preventing brainstem evoked potential alterations®***. However, the mild phenotype of the Gunn
rats did not allow the study of the long-term effect or the therapeutic efficacy of the treatment to save
lives was determined. Hyperbilirubinemia in Gunn rats is normally not associated with kernicterus, and
they develop acute central nervous system dysfunction, and eventually irreversible brain damage, only
when further challenged by administration of bilirubin-albumin displacers (e.g. sulphonamides) or of
erythrocyte-lysing agents such as phenylhydrazine®.

In the present work, we performed one crucial step forward: we tested the long-term benefits of
albumin administration in a more severe and clinically relevant lethal mouse model of neonatal hyper-
bilirubinemia®**, without the application of the standard phototherapy treatment. These mice lack
bilirubin-conjugation activity and develop severe hyperbilirubinemia soon after birth***’, closely mim-
icking the human pathology. Mutant mice show important cerebellar defects, neuronal cell death and die
shortly after birth due to bilirubin neurotoxicity™.

‘We show here that repeated albumin administration, without PT application, prevents bilirubin-induced
neurological damage and lethality. We demonstrate that the albumin dosage and administration fre-
quency are determinants for preventing bilirubin neurotoxicity. The present work also provides evidence
that in our experimental model Bf is the best predictor of neurological damage induced by bilirubin,
among the most commonly used clinical markers.

Results

Daily human serum albumin (HSA) administration increases survival of the mutant mice.
Figure 1 shows the effects of intraperitoneal (i.p.) administration of human serum albumin (HSA) on
the survival of mice, at different time intervals and dosages. Administration of either 2.5g/kg or 5.0g/
kg HSA doses every 48h (HSA 2.5g/kg/48h and HSA 5.0g/kg/48h, respectively) effectively delayed
mortality of mutant mice (50% survival at post-natal day 17 and 18, P17 and P18, respectively, Fig. 1),
but all mutant mice died before day 27 after birth. HSA administration of 2.5g/kg every 24h (HSA
2.5g/kg/24h) resulted in higher survival of mice (50% mortality at P22), with one out of 11 treated
mice surviving beyond 30 days. Finally, daily treatment with HSA 5.0 g/kg (HSA 5.0g/kg/24h) or 7.5g/
kg (HSA 7.5g/kg/24h) resulted in about 95% survival of mice beyond 30 days (Fig. 1). These results
strongly underscored that HSA administration reduces mortality in this mouse model in a dose and
time-dependent manner.

To determine potential side effects of albumin treatment, we analyzed several parameters. We moni-
tored HSA-treated animals by weighing them daily since birth, and we did not observe any evident alter-
ation in their weight curve, routine behavior and general aspect, indicating that mice tolerated well the
treatment, even at the highest dosages (Supplementary Fig. 1A). Moreover, we determined ALT and AST
at P15 in animals receiving daily HSA administration to evaluate possible liver damage (Supplementary
Fig. 1B-C). We observed that plasma alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) activities were not significantly different from wild type (WT) and mutant (MUT) uninjected
controls, indicating the absence of liver damage by HSA daily treatment.

Then, we determined plasma albumin and total bilirubin concentration in treated mice at P15, 24h
after the P14 HSA injection in all treated groups (Fig. 2). Since untreated mutant mice did not survive
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Figure 1. Administration of HSA increase survival of mutant mice. Kaplan-Meier survival curve of
FVB/NJ Ugtl mutant mice. Mutant mice were treated with IP injections of albumin (2.5, 5.0 and 7.5 g/kg)
from P2 to P20 every 24h or 48h, as indicated. The line color/type indicates the different treatments (red
line, untreated mutant mice; orange line, mutant mice treated with phototherapy from PO to P10; other
lines, HSA treatments). p < 0.0001, Log-rank (Mantel-Cox) test. The number of animals per treatment is as
follows: UNTR (n=21), P0-P10 PT (n=24), HSA 2.5g/kg/48h (n=15), HSA 2.5g/kg/24h (n=11), HSA
5.0g/kg/48h (n=15), HSA 5.0g/kg/24h (n=15), HSA 7.5g/kg/24h (n=12) UNTR, untreated mice; HSA,
human serum albumin; PT, phototherapy; P, post-natal day.

longer than P15 [*® and Fig. 1, red line], we therefore selected as control group an experimental condition
that allows the animals to survive longer, by temporarily treating them with PT [12h/day since birth up
to P10 (P0-P10 PT), and then transferring the mice to normal light conditions). Bilirubin rapidly raises
after discontinuation of the PT treatment, being at P15 not any longer affected by the PT treatment™.
Under these experimental conditions, only about ~5% of P0-P10 PT - treated mutant mice survived after
P30 (Fig. 1, orange line). Albumin treatment, as expected, increased plasma albumin concentrations in a
dose-dependent manner, up to a maximum increase of about two-fold (Fig. 2A). No differences in basal
albumin concentration between PO-P10 PT mutant and WT mice were observed, or between WT- and
HSA-treated mutant mice, within each treatment (Fig. 2A and Table 1).

Albumin treatment increased plasma bilirubin concentration in HSA-treated mutant mice, up
to two-fold higher than in controls (HSA 7.5g/kg/24h vs. PO-P10 PT; 29.4mg/dL and 14.95mg/dL,
respectively, t-test, p < 0.001, Fig. 2B). Plasma bilirubin levels of HSA-treated WT mice were similar to
untreated WT mice, in the range of 0.5mg/dL (Table 1).

Daily administration of 5.0 g/kg albumin was the minimal dosage resulting in virtually complete sur-
vival of mutant mice, while the 5.0 g/kg dose administered every 48h resulted in death of all animals.
This apparent critical dosage scheme led us to compare the relevant parameters at P15.

Figure 2C shows the strong correlation between plasma albumin and plasma total bilirubin (TB) con-
centration values in the HSA 5.0 g/kg/24h, HSA 5.0 g/kg/48h and P0-P10 PT groups (Fig. 2C; r?=0.84,
p < 0.0001, Correlation test, Pearson coeflicient). Since the cause of neurotoxicity is the bilirubin accu-
mulated in the tissue, we then determined the levels of tissue bilirubin in forebrain and cerebellum,
which were 30-40% lower in both HSA 5.0g/kg/24h and HSA 5.0g/kg/48h groups, compared with
control mutant mice (P0-P10 PT group) (Fig. 3A). Interestingly, there was no difference between the 24h
and the 48 h-treated groups. Indeed, determination of plasma Bf at P15 showed that albumin supplemen-
tation significantly reduced the free fraction of bilirubin capable of causing damage (Fig. 3B, p < 0.001,
ANOVA). In fact, Bf in HSA-treated animals was about 33% of the PO-P10 PT control group, but there
was no difference between the two HSA-treated groups, which received different frequencies of injection.

Next, we performed histological analysis of the cerebellum, the most affected brain region®*¥, at P15.
Mutant mice treated with HSA 5.0 g/kg/24 h showed cerebellar layers similar to WT, while we observed
an important reduction of the layers’ depth in the HSA 5.0 g/kg/48h group (50% reduction in the inter-
nal granular layer and molecular layer, Fig. 4A). As previously observed, the PO-P10 PT treatment was
sufficient to prevent major abnormalities in cerebellar development (Fig. 4A,B)*. Calbindin-specific
staining of Purkinje cells (PCs) showed normal PCs density and dendritic arborization in both P0-P10
PT and HSA 5.0g/kg/24h animals, but a 40-50% reduction in the number of PC and their dendritic
arborization in the HSA 5.0 g/kg/48h group (Fig. 4B). Importantly, HSA-rescued animals did not show
any obvious motor-coordination impairment compared to WT littermates, as assessed by the accelerating
rotarod test at 1 month of age (Fig. 4C). These results were in line with the histological analysis, confirm-
ing that repeated HSA administration prevents bilirubin-induced neurological damage.
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Figure 2. Dose-dependent effect of albumin administration on plasma values. (A) Plasma albumin levels
in untreated and HSA injected mutant and WT mice at P15. Values represent mean=+ SD (g/L). t-test, not
significant. PO-P10 PT (WT =20, MUT = 20), HSA 2.5g/kg/24h (WT =5, MUT = 7), HSA 5.0g/kg/48h
(WT =4, MUT = 15), HSA 5.0g/kg/24h (WT =5, MUT = 15), HSA 7.5g/kg/24h (WT = 1, MUT = 3); (B)
Total plasma bilirubin levels in mutant mice at P15. Values represent mean= SD (mg/dL). One-way ANOVA
test, ***p < 0.001. PO-P10 PT (n=20), HSA 2.5g/kg/24h (n=7), HSA 5.0g/kg/48h (n=15), HSA 5.0g/
kg/24h (n=15), HSA 7.5g/kg/24h (n=3); (C) Correlation test between plasma albumin and total bilirubin
(TB) in P0-P10 PT, HSA 5.0 g/kg/48h and HSA 5.0 g/kg/24h-treated mutant mice. Each dot corresponds

to a single animal. Correlation test, Pearson coefficient WT, wild-type; MUT, mutant; HSA, human serum
albumin; PT, phototherapy; P, post-natal day; TB, total bilirubin; ns, not significative.

Frequency of HSA administration is crucial to prevent bilirubin accumulation in brain and
bilirubin-induced neurological damage. Since the differences in histology and survival between
the 5.0g/kg/24h and 5.0 g/kg/48h-treated mutant mice were not supported by any difference in the
parameters determined at P15 (TB, Bf and tissue bilirubin), we reasoned that this could be related to
the timing of albumin administration (both groups had received the last HSA dose 24 h before, at P14).

Therefore, we investigated the second 24h of the HSA administration in the 5.0g/kg/48h group. At
this time point (P16), the HSA 5.0 g/kg/48h group received the last HSA injection 48 h before the anal-
ysis (at P14). Conversely, only 24h passed for the HSA 5.0 g/kg/24h-treated animals that received the
last injection at P15 (Fig. 5).
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PO-P10 PT P15 | 0.240.1 (20) | 1494 1.6 (21)** 16.24 1.8 (20) 157421 (21) ns
HSA 2.5g/kg/24h P15 | 0.6+0.1(5) | 288426 (7)"* 229405 (5) 241+ 1.4 (7) ns
HSA 5.0g/kg/48h PI5 | 0.540.1(4) | 243426 (15 261+ 1.4 (4) 26.4+2.6 (15) ns
HSA 5.0g/kg/24h PI5 | 0.740.1(5) | 25.1+28 (15 274429 (5) 28.9+2.2 (15) ns
HSA 7.5g/kg/24h P15 1.7 (1) 294+ 1.6 (3) 35940 (1) 353+ 1.1 (3)
PO-P10 PT P16 | 0240.1(7) | 193435 (6)** 162+ 1.1 (7) 158428 (6) ns
HSA 5.0 g/kg/48h P16 | 03402 (7) | 27.742.8 (14)** 242+42(7) 21.7+4.1 (14) ns
HSA 5.0g/kg/24h P16 | 0.8402(6) | 312442 (7)) 29.1+ 4.4 (6) 29.5+4.6 (7) ns
Untreated P30 | 0.140.1 (4) ND 183+ 1.8 (4) ND

HSA 5.0g/kg/24h P30 | 0.140.1(5) 82+ 1.2 (7)%* 192415 (7) 16.7+2.0 (7) ns
HSA 7.5g/kg/24h P30 | 0.1£0.1(5) | 7.441.05(6)** 18.742.3 (6) 17.941.7 (6) ns

Table 1. Plasma total bilirubin and albumin levels. ND, not determined as untreated mutant mice do
not survive up to P30. The number of animals is indicated between parenthesis. *** indicates a p < 0.001
(t-test between WT and treated mutant mice, within each treatment).
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Figure 3. Effect of albumin supplementation on tissue bilirubin-binding and Bf. (A) Brain UCB

levels (forebrain and cerebellum) in PO-P10 PT (n=8), HSA 5.0g/kg/48h (n=6) and HSA 5.0g/kg/24h
(n=7)-treated mutant mice at P15. Values represent mean + SD (nmol/mg). One-way ANOVA test,

**p < 0.01, **p < 0.001. (B) Free bilirubin (Bf) analysis in plasma in PO-P10 PT (n=19), HSA 5.0g/
kg/48h (n=9) and HSA 5.0g/kg/24h (n=8) mutant mice at P15. Values represent mean =+ SD (jg/dL).
One-way ANOVA test, ***p < 0.001 HSA, human serum albumin; PT, phototherapy; P, post-natal day; UCB,
unconjugated bilirubin; ns, not significative.

Plasma albumin determination showed a significant reduction of about 25% between P15 and P16 in
the HSA 5.0g/kg/48h group (Fig. 5A, p < 0.001, t-test). On the contrary, no differences were observed
for the 5.0 g/kg/24h and P0O-P10 PT groups at those time points.

Plasma Bf values 48h after the last injection triplicated (from P15 to P16) in the HSA 5.0g/kg/48h
group (Fig. 5B), reaching values of the untreated control group. In contrast, Bf levels remained steady
and low in the HSA 5.0g/kg/24h group.

Determination of tissue bilirubin showed a significant increase in the P0-P10 PT control group, both
in the forebrain and in cerebellum, associated with the physiological raise in TB plasma levels between
P15 and P16 (Supplementary Fig. 2; Fig. 5C). In addition, in the 5.0 g/kg/48 h-treated group tissue bil-
irubin rose significantly as a consequence of the concomitant increase of Bf in plasma (Fig. 5B). In
contrast, there was no variation in tissue UCB in the HSA 5.0g/kg/24h group, strongly indicating that
daily HSA infusions can keep under safe therapeutic levels tissue UCB, avoiding bilirubin toxicity and
neurological damage.

Predictive markers of bilirubin-induced neurological damage. Since cerebellum is the most
affected brain region, we selected cerebellar bilirubin content as an estimator of neurological damage.
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Figure 4. Neurological assessment of albumin treatment. WT, P0-P10 PT, HSA 5.0/48h and HSA
5.0/24h-treated mutant mice cerebellar analysis at P15. (A) Left panel, Nissl staining of cerebellar internal
granular layer and molecular layer. Right panel, layer depth quantification. Scale bar 100 pm. Values
represent mean =+ SD (pm). One-way ANOVA test, *p < 0.05, **p < 0.01, **p < 0.001. WT(n=7), P0-P10
PT (n=4), HSA 5.0g/kg/48h (n=3), HSA 5.0g/kg/24h (n=3); (B) Left panel, representative fluorescent
immunohistochemistry. PCs were stained with anti-calbindinl antibody (green) and nuclei with Hoecsht
stain (blue). Right panel, quantification of PCs is represented in the bar. Scale bar 50 pm. Values represent
mean £ SD (cell/mm). One-way ANOVA test, ***P < 0.001. WT (n=09), P0-P10 PT (n=4), HSA 5.0g/
kg/48h (n=5), HSA 5.0g/kg/24h (n=5); (C) Motor coordination of WT (n=24) and rescued treated
mutant mice (20) on rotarod at 1 month of age. Values represent mean 4 SD (s). t-test, not significant. ML,
molecular layer, IGL, internal granular layer, PC, Purkinje cell HSA, human serum albumin; WT, wild-type;
MUT, mutant; PT, phototherapy; P, post-natal day; UCB, unconjugated bilirubin; ns, not significative.

We evaluated which parameter better predicted neurological damage and survival by plotting individual
data of plasma TB concentration, B/A ratio and Bf as a function of tissue bilirubin levels at P16 (Fig. 6).

We observed that neither plasma TB nor bilirubin/albumin B/A ratio correlated with cerebellar
bilirubin content, being the distribution of both populations overlapping with that of the HSA 5.0g/
kg/24h group (Fig. 6A, B; r*=0.08 and 0.35, respectively; p=0.2, p < 0.01, respectively, Correlation
test, Pearson coefficient). In contrast, plasma Bf values showed a more clear separation between both
treatments. The Bf of all HSA 5.0g/kg/24h animals were clearly distinct from the Bf values of the
two other groups (HSA 5.0g/kg/48h and P0-P10 PT) (Fig. 6C, r*=0.62, p < 0.0001, Correlation test,
Pearson coefficient), indicating that Bf better predicts bilirubin neurotoxicity in our experimental
model, as determined at P16.
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Figure 5. Plasma albumin, Bf and brain UCB at P16. Increment of Bf and tissue UCB in the HSA 5.0/48h
group 48h after the last albumin administration. Comparison between P15 and P16 in PO-P10 PT, HSA
5.0g/kg/48h and HSA 5.0 g/kg/24 h-treated mutant mice. (A) Plasma albumin levels decrease in HSA 5.0g/
kg/48h treated mutant mice. Values represent mean =+ SD (g/L). t-test, *p < 0.05. P0-P10 PT (n=6), HSA
5.0g/kg/48h (n=14), HSA 5.0g/kg/24h (n=7); (B) Bf plasma levels at P15 and P16. Values represent
mean + SD (jug/dL). One-way ANOVA test, *p < 0.05, **p < 0.001. PO-P10 PT (n=6), HSA 5.0g/kg/48h
(n=7), HSA 5.0g/kg/24h (n=7); (C) Brain UCB content. The stripped bars represent the amount of UCB
at P15, while the full colored bars represent the increment of UCB levels from P15 to P16 (the whole bars,
stripped plus full colored, represent UCB levels at P16). t-test, *p < 0.05, ***p < 0.001. P0-P10 PT (n=6),
HSA 5.0g/kg/48h (n=38), HSA 5.0g/kg/24h (n=6). The number of animals analyzed at P15 is indicated
in the legend to Figs 2 and 3 HSA, human serum albumin; PT, phototherapy; P, post-natal day; Bf, free
bilirubin; ns, not significative.

Discussion

Aiming to decrease bilirubin toxicity in the brain, our group recently demonstrated that the combination
of a single HSA infusion with PT was very effective in lowering plasma free unconjugated bilirubin,
brain bilirubin levels and preventing brainstem evoked potential alterations, using the Gunn rat*>*,
a non-lethal model of hyperbilirubinemia. In the present work, we made one crucial step forward by
using a mouse model for hyperbilirubinemia showing early neonatal lethality’®¥ and treating mutant
pups with repeated HSA infusions since birth, without the application of PT. In this way, we evaluated
the effectiveness of the long-term sustained increase in bilirubin-binding capacity in plasma to prevent
neonatal neurological damage and death.

We demonstrated that daily HSA administration during postnatal development was necessary and
sufficient to rescue neurological damage and lethality. Rescued mutant mice showed normal motor coor-
dination abilities, no histological abnormalities in the cerebellum and normal albumin levels at follow
up (at postnatal day 30).

Moreover, HSA administration clearly increased bilirubin-binding capacity in plasma, evident by the
drop in Bf levels and by the impressive increase in plasma TB in treated animals, indicating that that
the therapeutic efficacy of albumin was thus not mediated by a total bilirubin lowering effect, but by the
reduction of Bf concentration.

Our data strengthen the concept that TB increase in plasma results from the mobilization of bilirubin
from tissues. Most importantly, despite the extreme hyperbilirubinemia in the plasma compartment,
HSA-treated animals survived without any adverse effect, as a consequence of having much lower tissue
UCB levels.

Importantly, frequency of administration was critical to determine survival or death of mutant mice.
In fact, daily administration maintained therapeutic albumin levels in plasma, and guaranteed normal
brain development and survival. In contrast, HSA administration every 48 h resulted in a critical increase
in tissue UCB leading to important abnormalities in cerebellar development, and death. This increase
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Figure 6. Plasma markers of bilirubin neurotoxicity. The different parameters routinely used in the clinics
to monitor hypebilirubinemia were analyzed at P16 as a function of tissue bilirubin in the cerebellum
(nmol/g), to determine the best indicator of cerebellar bilirubin neurotoxicity. (A) Total bilirubin, TB (mg/
dL); (B) Bilirubin/albumin (B/A) ratio (pmol/g); and (C) Unconjugated free (unbound) bilirubin, Bf (pg/
dL). Each dot represents a single animal. P0-P10 PT (n=6), HSA 5.0g/kg/48h (n=28), and HSA 5.0g/
kg/24h (n=6) HSA, human serum albumin; PT, phototherapy; P, post-natal day; UCB, unconjugated
bilirubin; Bf, free bilirubin; ns, not significative.

in plasma and tissue UCB levels was associated with an important decrease in plasma albumin lev-
els 48h after the last administration (HSA 5.0g/kg/48h at P16). It remains unclear the reasons of the
rapid decrease in plasma albumin concentration 48h after administration since the reported life-time
of monomeric albumin in humans is in the range of 28-36 days®®. However, our finding is in line with
that observed in analbuminemic patients and adult Gunn rats infused with HSA¥3*%, where plasma
albumin levels increased immediately after infusion, but substantially decreased 24h post-treatment.
Moreover, it was shown that albumin half-life in mice infused with mouse albumin was 35h*' while
that of mice infused with HSA was 21 h*%. We speculate that it could be related to its distribution in the
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Figure 7. Model of bilirubin mobilization by HSA administration. In normal conditions, the bilirubin-
binding capacity provided by albumin exceeds the amount of UCB (left). In severe hyperbilirubinemic
conditions, UCB outnumbers the albumin-binding capacity, and the excess of UCB (free bilirubin)
solubilizes in lipid-rich tissues, such as the brain and cerebellum (center), resulting in neurological
damage. When plasma bilirubin-binding capacity is artificially increased by HSA administration, bilirubin
is mobilized from tissues to the plasma compartment, resulting in safe levels of tissue UCB (right) and
increased plasma UCB levels. Thus, bilirubin mobilization prevents neurological damage and rescues
lethality in HSA-treated mutant mice UCB, unconjugated bilirubin; HSA, human serum albumin.

extravascular space of other body compartments, resulting in a reduction in the plasma levels, and/or to
species-specific differences leading to faster albumin degradation*>*.

In line with our observations are Hosono et al.?® data, showing promising results in infants treated
with a single infusion of albumin at the beginning of the PT treatment, resulting in a decrease of auditory
brainstem response abnormalities. We cannot exclude that lower doses of albumin could have a similar
or higher therapeutic effect if administered even more frequently (i.e., twice a day).

In the present work, the dosage scheme of 5.0g/kg daily was the minimal one able to rescue mor-
tality. The usual dose administered in neonates is lower than the one used in this study (about 1.0g/kg,
administered i.v.)**%, even though in some specific cases doses up to 4.5 g/kg were used without evident
adverse effects®*244. Here, we did not observe any obvious secondary effects, even when animals were
treated with the highest dose (7.5g/kg every 24h). Although effective, dose comparison between mice
and neonates is not trivial, especially when different administrations routes are applied. In fact, due to
the small size of the mouse neonates (about 2g at P2), we adopted intraperitoneal injection, a procedure
that results in a slower availability of administered HSA in the intravascular compartment, compared to
intravenous administration, being routinely used in newborns. Therefore, we can speculate that the more
frequent HSA administration and the use of the i.v. route in neonates may require the administration
of lower doses than the ones used here. Thus, these procedures, in combination with the application of
intensive phototherapy, may limit the concerns raised by the high HSA doses administered to the present
model. However, the potential benefits of HSA application have to be more deeply investigated in human
jaundiced babies, especially in preterm infants with very low weight at birth, being the most susceptible
to bilirubin neurotoxicity.

Due to the elicited increase in plasma bilirubin, albumin administration to reduce bilirubin-induced
neurological damage invalidates the use of plasma TB as an indicator of the overall risk of bilirubin
neurotoxicity. Clinical indications in patients suggest that TB levels over a threshold value of ~20mg/
dL, are poor discriminators of the individual risk of developing brain damage*>*’. Hence, other more
specific indicators are a clinical need.
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It has been proposed that the ratio of bilirubin to albumin or B/A* could be a valid parameter to
approximate the risk of bilirubin neurotoxicity in neonates. B/A was endorsed by the American Academy
of Pediatrics? and routinely used to determine the threshold for ET'**’. Our data indicate that B/A
ratio is a poor indicator of neurological damage and death in our mouse model. In fact, the B/A ratio,
similarly to the TB values, was not able to accurately predict the outcome of the different groups of
mice used here. However, this study differs markedly from the application of the B/A ratio to predict
neurotoxicity risk in human neonates, in which bilirubin levels are elevated in the context of significant
hypoalbuminemia. In fact, we artificially increased the plasma albumin concentration in the pups by
repeated albumin administration. In recent results obtained in the BARTrial, the B/A ratio was found
to be similarly effective as TSB in the management of hyperbilirubinemia in preterm infants to prevent
neurodevelopmental damage*®.

The concentrations in plasma of unbound unconjugated bilirubin, Bf, correlated strongly with the
beneficial treatment effects. Accordingly, we provided here compelling supportive evidence that the accu-
rate determination of the free pool of bilirubin (Bf) concentration in plasma could act as an indicator of
the risk of neurological damage.

The potential use of Bf in human patients, as a precise parameter to predict bilirubin-induced neu-
rological damage and kernicterus is supported by various studies®***->!. These authors showed that
defects in auditory brainstem response in a newborn population, caused by bilirubin-induced neurotox-
icity, correlates with Bf rather than total plasma bilirubin. In another study performed in extremely low
birth weight infants, Bf was associated with death or adverse neurodevelopmental outcomes and was a
better predictor than TB, since its correlation was independent of clinical status®’. Consistently, a recent
study shows that high Bf predicts kernicterus in extremely low birth weight Japanese infants’'.

Based on our data in mice, albumin administration can clearly confer protection to bilirubin neuro-
toxicity and save lives. HSA beneficial effects were even obtained with the exclusive use of albumin, i.e as
mono-therapy. It is reasonable to assume that similar added value is possible upon co-treatment with PT.
Thus, this procedure could be used in therapy resistant hyperbilirubinemia or (imminent) kernicterus. It
may also be helpful to acute patients when the concomitant implementation of ET is not easily or rapidly
possible, either by patient related factors or infrastructure. We have previously shown in a preclinical rat
model that PT treatment enhances the effect of albumin administration®>**. Indeed, we propose that the
therapeutic synergy of intensive PT and frequent albumin administration, in combination with the con-
stant monitoring of free unbound bilirubin (Bf), may result in the most effective and feasible procedure
to be applied to such jaundiced neonates.

ET is normally applied in the context of the clinical scenarios of infants presenting with hazardous
hyperbilirubinemia or who fail to respond to PT>!, with high risk of mortality and adverse events'’~%°.
It is important to highlight that the procedure described here, which could be an efficient adjuvant treat-
ment to intensive phototherapy, is at the reach of most neonatal care units in a quick and secure manner,
and should present almost no concerns regarding its safety profile.

In conclusion, the results presented here supports the potential use of albumin infusions in severe
acute neonatal hyperbilirubinemia and in Crigler-Najjar patients, to limit/avoid bilirubin neurotoxicity
in situations in which ET may be required. We also demonstrated that the dosage and administration
frequency are critical parameters for its efficacy. Finally, our data provide evidence that in this lethal
mouse model, plasma Bf concentration is the best marker to predict the risk of bilirubin-induced brain
damage. Randomized clinical trials comparing the efficacy of albumin therapy versus other modalities
are warranted to confirm our experimental data.

Methods

Animals. Mice were housed and handled according to institutional guidelines, and experimental pro-
cedures approved by the ICGEB board, with full respect to the EU Directive 2010/63/EU for animal
experimentation. Ugfl mutant mice in the FVB/NJ background have been generated previously’®.
Homozygous mutant animals were obtained from heterozygous matings. WT littermates were used as
control. Average litters were of 9-10 pups. No loss of pups was observed. Animals used in this study
were at least 99.8% FVB/N]J genetic background, obtained after more than ten backcrosses with wild type
FVB/NJ mice. Mice were kept in a temperature-controlled environment with 12/12h light/dark cycle.
They received a standard chow diet and water ad libitum.

Phototherapy treatment. Phototherapy treatment was performed as previously described®.
Animals of the PO-P10PT control group were exposed to blue fluorescent light (20 W/cm?/nm, Philips
TL 20W/52 lamps; Philips, Amsterdam, The Netherlands) for 12 hours/day since birth up to postnatal
day 10, and then maintained under normal light conditions.

Albumin treatment. Newborn mice were intraperitoneally (i.p.) injected with HSA (Albuman®;
solution for infusion, 200g/L, fatty acid free) purchased from Sanquin (Amsterdam, The Netherlands).
WT (injected control group) and mutant mice were injected from postnatal day 2 (P2) up to postna-
tal day 20 (P20), with 2.5g/kg/48h (n=15), 5.0g/kg/48h (n=15), 2.5g/kg/24h (n=11), 5g/kg/24h
(n=15) and 7.5g/kg/24h (n=12) and survival was monitored. Animals treated every 48h received HSA

SCIENTIFIC REPORTS | 5:16203 | DOI: 10.1038/srep16203 10



www.nature.com/scientificreports/

administration at P2, P4, P6, P8, P10, P12, P14, P16, P18 and P20, while the 24h group every 24h,
starting at P2 till P20.

Biochemical analyses of plasma samples. Blood samples were collected at different time points
in mutant and WT littermates by cardiac puncture in EDTA-collecting tubes, at the moment of sacri-
ficing the animals, as previously described®. Total bilirubin (TB), Bf, and albumin were determined as
described>*>>4,

Tissue bilirubin analysis. Tissues for bilirubin content determination were collected and analyzed
as previously described®>.

Rotarod analysis. At 1 month of age, the coordination and balance ability of mutant and WT mice
were tested on a rotating cylinder with an accelerating apparatus, as previously described?.

Brain histology. Histological and immunofluorescence analysis of forebrain and cerebellum samples
was performed as previously described®®. The study was performed in a double-blind fashion: the
genotype of the animals and the treatment were unknown to the surgeon, while a different investigator
analyzed the data. Measurements were averaged for each animal.

Statistics. The Prism package (GraphPad Software, La Jolla, CA) was used to analyze the data. Results
are expressed as mean =+ s.d. Values of p < 0.05 were considered statistically significant. Depending on the
experimental design, Student’s t-test or one-way ANOVA, with Bonferroni’s post-hoc comparison tests
were used, as indicated in the legends to the figures and text. Correlation analyses were done using the
Pearson coeflicient to assess the linearity between two variables and calculate two-tailed p value (95%
of confidence interval).
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5 Discusion

This Thesis was focused on the evaluation of tifects of bilirubin and its
isomers that are produced during PT of neonatald@e as well as on different
therapies for the treatment of unconjugated hyfiaxbinemias.
The results could be divided into three main parts:

A/ Effects of bilirubin and its isomers/derivatives

B/ Gene therapy as a treatment option for Criglajjad syndrome

C/ Role of albumin in the treatment of neonatahiae

Although, PT as a treatment of neonatal jaundiceldeen widely used since
its discovery in 1950’s (Cremer et al., 1958) amodpction of bilirubin Pin vivo as
a consequence of PT is known for a few decadesnglaet al., 1981), there is still
lack of data about their biological roles. Thignainly because of difficulties during
the preparation of bilirubin P1in their pure forms

In our paper‘The biological effects of bilirubin photoisomers” we were
able to successfully isolate ZE-/EZ-bilirubin andnirubin, and test the effect of
their mixture on the concentration of Bf. We disemd that mixture of Pl did not
influence concentrations of Bf, which is in the egmnent with Itotet al. (Itoh et al.,
1999) and is answering on the question of manyarekers whether or not bilirubin
PI can influence bilirubin free levels (McDonaghakt 2009).

Because of this result, we were searching for lubir binding site in the
albumin molecule and determined its binding cortstBy using CD spectroscopy
we found out that lumirubin has different bindingesn the structure of albumin
than bilirubin and its binding constant is lowengmared to that of bilirubin.

Bilirubin Pl did not influence the viability or delcycle of human
neuroblastoma cell line SH-SY5Y and they did ndtuence any of the studied
genes (foHMOX 1/2, BLVRA, cyclin E andD1 and transportef¥IRP andMDR).

A few papers from past years (Christensen et 8041 Christensen et al.,
1990; Christensen et al., 2000; Roll, 2005; Roll &hristensen, 2005) had tried to
evaluate effects of bilirubin PI, but none of thems working with pure forms of
these derivatives. In this context, results of mgearch are unique in the field of

bilirubin photobiology.
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Other research from our group entitfé&hoto-isomerization and oxidation
of bilirubin in mammals is dependent on albumin birding” has represented a
novel analytical concept in the study of linearapyrroles based on an in-depth
mapping of binding sites in the structure of hurearum albumin (HSA).

We tried to find HSA binding sites for bilirubin, esobilirubin, bilirubin
ditaurate, lumirubin, biliverdin and xanthobilirebacid. For this investigation we
used method of circular dichroism, fluorescencecspscopy and molecular
modelling.

HSA has three homologous domains (I, 1l and lliattlare divided into
subdomain A and B from which only subdomain IB, iAd IIIA are able to bind
ligands (Goncharova et al., 2013b). Characterinatiopigment’s binding is possible
due to one tryptophan residue (Trp-214) in the euimn IIA of the albumin
molecule. The binding constants were determineddnyg a fluorescence quenching
method, by which we calculated with fluorescencéd8fA of known concentration
and fluorescence of a complex HSA plus pigment righer) of known
concentration.

Our model represents first complete characterinaticthe linear tetrapyrrole
binding on HSA and is supporting the existence oéwersible antioxidant redox
UCB cycle that is still discussed between scientifflaghzal et al., 2009;
McDonagh, 2010). It can also explain the protectwechanism of PT, because
bilirubin bound to HSA is after photo-conversion vad to another subdomain in
HSA molecule and thus HSA binding capacity forrbibin is increased.

The preclinical safety and efficacy of muscle-diegcgene transfer mediated
by AAV vectors was investigated in our papéBustained reduction of
hyperbilirubinemia in Gunn rats after adeno-associdéed virus-mediated gene
transfer of bilirubin UDP-glucuronosyltransferase isozyme 1Al to skeletal
muscle”.

Therapy for Crigler-Najjar syndrome lies today niaion PT and the only
curative treatment is liver transplantation (Roye@khury et al., 2001). There is big
pressure in development of alternative, safer agmires, gene therapy included
(Miranda and Bosma, 2009). In previous precliniaad clinical trails, muscle-
directed gene therapy seemed to be very effectideveas preferred because of its

simple access (Jiang et al., 2006; Koo et al., 2011
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In our study, serotype 1 AAV vector (pAAV2.1-MCK-@&I'1A1; at a dose
of 3 x 10 genome copies/kg) expressing thgtlal was injected directly into the
muscles of Gunn rats (in 3 doses, 30 pL each). mads resulted in expression of
UGT1AL protein and functionally active enzyme in injectadscles. In comparison
to saline-treated controls, AAV-injected Gunn ratsowed approximately 50%
reduction in serum bilirubin levels and this redmctwas sustained for at least 1 year
post-injection. By the HPLC analysis of bile andnar we discovered increased
excretion of alkali-labile metabolites of bilirubiand in bile from AAV-injected
Gunn rats we found a metabolite with retention tiolese to that of bilirubin
diglucuronide. This metabolite could be similarthmse observed by Seppeinal.
(Seppen et al., 1997) and is showing on the pdsgilthat Ugtlal expressed in
muscle may result in a protein that is not idemticathat expressed in the liver
(Lasne et al., 2004; Menzel et al., 2009).

Gene therapy approaches in the treatment of CN&lldhserve mainly as
prevention of brain damages and not in normalipatb bilirubin to physiological
levels. Based on our data we can say that by AAdiated muscle directed gene
therapy there can be achieved clinically relevart sustained reduction of serum
bilirubin levels (51% reduction in our experimentabdel). This type of therapy has

a potential for the treatment of patients with CNSI

In the study “Life-long correction of hyperbilirubinemmia with
a neonatal liver-specific AAV-mediated gene transfen a lethal mouse model of
Crigler-Najjar syndrome” mice with null mutations in thegtlal gene were used.
These mice were prepared according to previousighda paper (Bortolussi et al.,
2012). At postnatal day 4 they we intraperitoneafigcted with a single dose of
AAVS8-AAT- hUGT1A1 or AAV9-CMV-hUGT1A1 and they underwent PT since the
postnatal day 10.

We showed that a single intraperitoneal injectibAV vector, serotype 8,
is able to provide a long-term correction of a neousodel of CNSI by expressing
hUGT1AL1 in the liver. Mutant animals treated witAf-hUGT1A1 vector showed a
clinically relevant reduction in plasma bilirubieviels (70-80% in the first month,
50% reduction 17 months post-injection).

Because UGT1A1l is expressed also in other orgamepéxfrom liver

(Buckley and Klaassen, 2007), we decided to prorttmteeffect of the conjugation
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and improve the efficacy of therapy by targeting skeletal muscles with gene
therapy. Unfortunately, plasma bilirubin levels time group treated with CMV-
hUGT1A1 vector (targeting the skeletal muscles) were mhig/her compared to
group where liver were targeted; although the UGTX¥Xpression in the skeletal
muscles was 4-6 times higher. This result is inthgathat some steps in the
bilirubin conjugation pathway are missing or dinsimed in skeletal muscles. These
results are different from our previous study (BrttinPierri et al., 2012) and can be
caused by the differences in vector applicatiotrgperitoneal vs. intramuscular), the
dose applied (single vs. triple), and also the yjp@nimals (mutant mice vs. rats).
From the results obtained in this study we can lemigcthat the main target

in the gene therapy for CNSI patients is the liver.

Application of high doses of adenoviral (Ad) vestonay be associated with
a strong systemic inflammatory reaction (Brunet&rf? et al., 2004; Raper et al.,
2003). In our following study‘Improved efficacy and reduced toxicity by
ultrasound-guided intrahepatic injections of helperdependent adenoviral
vector in Gunn rats” we decided to investigate the role of helper-depand
adenoviral vectors that have, in contrast to AA®leted viral coding sequence.

HDAd-hUGT1A1-WL vector was constructed as previously described
(Brunetti-Pierri et al., 2006) and different contrations of this vector were injected
into the liver parenchymavia a small laparotomy or percutaneously under
ultrasonographic guidance. Both approaches resuttedbout 65% reduction of
hyperbilirubinemia with the vector's dosage™i0p/kg. In Gunn rats injected with
the same HDAd dose intravenously showed only 458aaton of serum bilirubin
levels.

Because Ad-based vectors could cause activationflammation (Brunetti-
Pierri et al., 2004) we focused on serum interleui (IL-6) determination. We
observed high levels of IL-6 after application a@fctors at doses ¥0and 5x1&"
vp/kg both intravenous and intrahepatic, but tiveeee no differences between these
two groups. When using the dosagé'p/kg we did not detect IL-6 in the group
with the intrahepatic application of vector butrsfggant increase was observed in
the intravenous group.

Because direct injection into the liver parenchymaimilar to the procedure

for acquisition of liver biopsies and is relativedymple and flexible (Sung et al.,
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2001), this approach is clinically highly attraetivLiver transplantation can be
accompanied with severe morbidity and mortalitgréiore CNSI patients are ideal
candidates for gene therapy. This study is showhag intrahepatic HDAd injection
can reduce inflammation and improve phenotypic emifon in Gunn rats in

comparison to previously used Ad vectors.

The last part of our studies was based on using kHSte treatment of
unconjugated hyperbilirubinemias. In the papBeyond plasma bilirubin: The
effects of phototherapy and albumin on brain bilirubin levels in Gunn rats”
animal models of acute and chronic hyperbilirubirenwere used. Acute
hyperbilirubinemia (haemolysis) was induced by Enjection of l-acetyl-2-
phenyl-hydrazine in adult rats (Rice and Shapif@&).

Animals were treated by single injection of HSA, ®&f PT or combination
of both approaches. We studied therapeutic effedfo plasma and tissue bilirubin
levels. We observed that HSA administration effesdyi decreased brain bilirubin
levels in the group of rats treated with PT. Thelsgnges were observed in both used
models for chronic and acute hyperbilirubinemia.

Our results are in line with two retrospective sgdthat have shown that
HSA administration in neonates reduced Bf concéipotra in jaundiced neonates
(Caldera et al., 1993; Hosono et al., 2001).

Our results support a theory that only Bf is ablenbve between the vascular
and extravascular compartment. If PT is combinetth WiSA, Bf is bound to HSA
and could undergo PT as well as can be transportedhe liver. Our investigations
underline the need of performing the randomizeddruciinical trials combining the
PT with HSA administration in patients with Crigldgjjar syndrome as well as

neonatal jaundice.

In another paper focused on the similar problemitledt “Albumin
administration protects against bilirubin-induced auditory brainstem
dysfunction in Gunn rat pups”, we assessed the effect of HSA administratiomtn r
models for neonatal hyperbilirubinemia. Haemolysigs induced by injection of
phenylhydrazin and acute neurotoxicity was perfaméy injection of
sulphasimethoxine, a bilirubin-aloumin displacinggeat. Both groups were

subsequently treated with a single dose of HSAating and bilirubin neuotoxicity
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was assessed by using validated brainstem auditaied potentials (BAEPS). The
sound intensity was set and the surface electiacdivity was recorded from
subcutaneous platinum needle electrodes.

To assess bilirubin neurotoxicity, BAEP parameteese compared between
HSA treated groups and control rats. We focusechimain an interwave interval
between peak | and I, because an increase inittesval is marker of acute
neurotoxicity (Rice et al., 2011). This interval sMacreased in both used models of
hyperbilirubinemia and HSA administration was atdeprevent an increase in the
interwave interval I-II.

In a model of haemolysis, total serum bilirubinvasll as Bf levels were
higher, whereas in the displacement model, serdimullin and Bf was lower in
comparison to controls. Surprisingly in both modéhe group treated by HSA had
higher total serum bilirubin and Bf concentraticiign the saline-treated group.
Because we expected lower Bf in HSA treated grauisspossible that the opposite
result might be due to inaccuracy of the peroxidassthod or by the other
mechanisms that could be involved in the processah damage.

We also determined brain UCB levels which were aigh both groups of
both models of hyperbilirubinemia in comparison dantrols, but there were no
significant differences between the saline- or allnitreated group. We also showed
that albumin treatment non-significantly reducedcBfhcentrations in brain.

We showed that HSA treatment can prevent biliruearotoxicity in acute
hyperbilirubinemia in Gunn rat pups although thetaltobilirubin and Bf
concentrations in plasma were higher in the tregtedps in comparison to controls.
Because of the discrepancy between BEAPs and UGB lavels, we showed that it
is really important to perform functional diagnastiests to avoid severe

consequences of unconjugated hyperbilirubinemia.

Main goal of our papefOptimizing exchange transfusion for severe
unconjugated hyperbilirubinemia: Studies in the Gum rats” was to establish an
in vivo model for ET and afterwards we were able to comphe efficacy of PT,
HSA administration and ET or their combinationgGann rats.

The standard treatment in hyperbilirubinemic pdsers PT, which is
effective but might fail in neonates with extreméigh bilirubin concentrations. ET

could be a method of choice of such patients, mfbrtunately, it might be

- 158 -



accompanied with serious side effects and comphieat(Jackson, 1997; Patra et al.,
2004). Because of it, it is still demanded to repl&ET with another effective
treatment option. This could be investigated byoiddtiction of propern vivo model
for ET.

In our study, Gunn rats suffering from hyperbilimgmia were used
(Johnson et al., 1959) and ET through differensgkapproaches was performed at a
rate 1 ml/min of fresh whole Wistar rat blood fo® #in. The successful veno-
venous exchange was achiewea the jugular vein on both sides. This method was
performed in total 21 Gunn rats with 100% survival.

This procedure was effective in lowering UCB andvidthin 1 hour after
treatment and in combination with HSA and PT itldobe used as an effective
treatment to prevent brain damage in patients wsvere unconjugated

hyperbilirubinemia.

Based on the results of above presented studiedy &ntitled“Albumin
administration prevents neurological damage and dd¢h in a mouse model of
severe neonatal hyperbilirubinemia” was performed. Compared to previous
published results, where single albumin infusiors wased (Cuperus et al., 2013;
Schreuder et al., 2013), in the presented studyntb&nt mice pups were treated
with repeated HSA administration since birth, widh®T treatment.

Mice that lack bilirubin-conjugation activity and ewvklop severe
hyperbilirubinemia soon after birth were treate@rgv24 or 48 hours with different
doses of HSA. The effect of HSA administration amvs/al of mice was studied.
The potential harmful effect of HSA was excludedsdzh on the observation of
weight of treated animals and determination of tiekers of liver damage (ALT,
AST).

Bilirubin-binding capacity in plasma was increasatlbe to HSA
administration. In treated groups, Bf was signffitta decreased and surprisingly,
total serum bilirubin was increased. This was ergld by the measurement of tissue
bilirubin that was lower in treated animals, paugtito the ability of HSA to bind not
only circulating bilirubin but also to mobilize Bfom tissues.

From our results, it is evident, that frequencyadfinistration is critical to
keep animals alive and to guarantee normal, hedithin development. We also

confirm, that the accurate determination of Bf maay as a valid indicator of the risk
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of neurological damage development, which is inlthe with previously published
studies (Ahlfors et al., 2009; Calligaris et aD0Z).
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6 Summary

1. In our research entitleéhe biological effects of bilirubin photoisomers” we
were able to successfully isolate bilirubin PI —BEZ-bilirubin and lumirubin — in
their pure forms, and tested their biological efen vitro on human neuroblastoma
cell line SH-SY5Y. We found out that albumin habiading site for lumirubin that
is different from that for bilirubin and it is lotead in the subdomain IB. Lumirubin
has much lower binding constant than bilirubin &bbumin and it is not affected
concentration of Bf. In comparison to bilirubin likibin Pl do not influence the
viability of studied cell line and they are not eblo change its cell cycle or

expression of genes involved in the bilirubin metabpathway.

2. In the study‘Photo-isomerization and oxidation of bilirubin in mammals is
dependent on albumin binding” the binding sites for bilirubin, its derivatives
(mesobilirubin, bilirubin ditaurate), Pl and oxigat products (lumirubin, biliverdin
and xanthobilirubic acid) were characterized on Hfg a combination of circular
dichroism, fluorescence spectroscopy and molecuterdelling methods. We

discovered that bilirubin and its products boundao independent binding sites.

3. Goal of our study entitletbustained reduction of hyperbilirubinemia in Gunn

rats after adeno-associated virus-mediated gene tnafer of bilirubin UDP-

glucuronosyltransferase isozyme 1A1 to skeletal mole” was to evaluate the role
of gene therapy as a potential treatment optiontogler-Najjar syndrome. Rat
Ugtlal expressing AAV vector was injected directly intasoles of Gunn rats. By
this method we lowered the concentration of serulirubin for at least one year
period. We also analyzed urine and bile and we dotlrere higher elimination of

products similar to bilirubin glucuronides.

4. In the papetLife-long correction of hyperbilirubinemia with a neonatal liver-
specific AAV-mediated gene transfer in a lethal mose model of Crigler-Najjar
syndrome” we studied the effect of gene transfer of therlisqgecific AAV vector
encoding for thehUGT1A1 gene in the lethal mouse model for Crigler-Najjar
syndrome. Upon the successful application we wble @ see the therapeutic effect
for the period of 17 months. We also compared tfiecagy of the vector's
application into liver versus into skeletal muscle case of liver-targeted

application, expression dfgtlal increased for 5-8% of the expression of normal
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healthy liver and we observed significant decreafskilirubin. On the other hand,
application of the vector that should target thelstal muscle was not able to
decrease bilirubin levels even though thgtlal expression rose to 20-30% of
normal liver expression. The reason of the obsediffidrence from the previous
study could lie in the application approach (ineaeus injection of muscle-specific

vector vs. direct intramuscular application).

5. Different type of gene therapy was used in oarkwentitled“Improved efficacy
and reduced toxicity by ultrasound-guided intrahepaic injections of helper-
dependent adenoviral vector in Gunn rats” We used helper-dependent adenoviral
(HDAd) vector that did not contain viral coding segces in comparison to above
used adenoviruses, and thus could provide staldelarg-term expression of the
UGT1A1 gene. We compared the efficacy of different aggpicsn modalities on the
reduction of hyperbilirubinemia, which was the reghwhen using the ultrasound-
guided intrahepatic application of HDAd vector fire ttoncentration $Hvp/kg.

6. In our paper entitletBeyond plasma bilirubin: The effects of photothergpy
and albumin on brain bilirubin levels in Gunn rats” we tried to clarify whether
HSA application may improve in the treatment of maal jaundice or CNS. We
compared the effect of a single HSA applicatiortt@serum bilirubin, Bf and tissue
bilirubin concentrations with the usage of PT awndhbination of both approaches.
We observed that single HSA application is ablsigmificantly increase the efficacy
of PT.

7. In the follow-up study entitledAlbumin administration protects against

bilirubin-induced auditory brainstem dysfunction in Gunn rat pups” we

assessed the effect of HSA application on the petens of the auditory system
being impaired in severe neonatal jaundice. We wsedtroencephalography to
detect brainstem auditory evoked potentials (BAER®INg an animal model of
unconjugated hyperbilirubinemia, we demonstratedt tthe HSA treatment is
neuroprotective and protects against bilirubin-metl BAEPS. This treatment also

tended to reduce Bf in brain.

8. In our study entitled“Optimizing exchange transfusion for severe
unconjugated hyperbilirubinemia: Studies in the Gum rats” we focused on the

evaluation of different modalities for treatment ridonatal jaundice, such as PT,
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HSA and their combinations. After successful esshbhent of the ET model in
Gunn rats, we found out that this method is higifgctive in decreasing bilirubin as
well as Bf concentrations. Both PT and HSA treattmevere found to potentiate the
effect of ET. Our optimized in vivo animal model 16T should be helpful in further

studies investigating treatments of acute hypedinemias.

9. In our paper entitletAlbumin administration prevents neurological damage
and death in a mouse model of severe neonatal hypdirubinemia” genetically
modified mice lacking théJgtl gene were used to assess therapeutic potential of
HSA. Mice were treated with intraperitoneal appima of HSA of different doses
every 24 or 48 hours immediately after birth. Lovedr levels in comparison to
controls were detected in the circulation of mieated by HSA. The treated group
had higher total serum bilirubin, but on the othand, significantly lower tissue
bilirubin concentrations were found in comparisorcontrols. Our data indicate that
the effect of HSA treatment is highly dependenitsrdosage and frequency. Hence,
this type of treatment seems to be useful in ptiaith extreme neonatal jaundice
or CNS.
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7 Souhrn

1. V nasi studii nazvan& he biological effects of bilirubin photoisomers” jsme
us@sne izolovali cisté formy fotoizomer bilirubinu — ZE-/EZ-bilirubinu a
lumirubinu — a jako &bec prvni jsme otestovali jejich biologickéiriky in vitro na
bungéné linii lidského neuroblastomu SH-SY5Y. Zjistiime, Ze lumirubin se vaze
na albumin, ovSem v jiném mdésnheZ bilirubin a to konkréthv podjednotce IB,
zarovéh ma mnohem nizSi vazebnou konstantu v porovnailirgdinem a nema
vliv na koncentraci volného bilirubinu (Bf). Ve smmani s bilirubinem, nemaji jeho
fotoizomery Zzadny efekt na viabilitu uvedené &né linie a ani nijak neovliwji

jeji burgény cyklus nebo expresi gérzahrnutych v draze metabolismu bilirubinu.

2. Ve studii “Photo-isomerization and oxidation of bilirubin in mammals is
dependent on albumin binding” jsme detaild charakterizovali vazby linearnich
tetrapyroti v molekule lidského sérového albuminu za poudtiyich analytickych
piistupi zahrnujicich kombinaci metod cirkularniho dichnois fluoresceeni
spektroskopie a molekularniho modelovani. V molekdSA jsme popsali vazebna
mista pro bilirubin, jeho derivaty (mesobilirubirgilirubin ditaurat) a jeho
fotoizomery a oxidéni produkty (lumirubin, biliverdin a xantobilirubdiva kyselina)
v molekule HSA. Zjistili jsme, Ze bilirubin a jelrodukty se vazi do dvou na sob
nezavislych vazebnych mist v molekule HSA.

3. NaSe studie nazvaf@ustained reduction of hyperbilirubinemia in Gunn rats
after adeno-associated virus-mediated gene transferof bilirubin UDP-
glucuronosyltransferase isozyme 1Al to skeletal mae” méla za cil okejmit
vyuZziti genové terapie pro potencionalni vyuzifi fgcb¢ Criglerova-Najjarova
syndromu. Adeno-asociovany virovy (AAV) vektor expujici potkaniUgtlal byl
aplikovan gimo do svalu Gunnovych potkanTimto zgisobem jsme byli schopni
snizit koncentrace sérového bilirubinu po dobu mé#iné jednoho roku a zaroviese
nam pod#lo zanalyzovat vmé a Zlwi zvySeny odpad produkt podobnych
konjugatim bilirubinu s kyselinou glukuronovou.

4. V publikaci nazvané€'Life-long correction of hyperbilirubinemia with a
neonatal liver-specific AAV-mediated gene transfein a lethal mouse model of

Crigler-Najjar syndrome” jsme sledovali efekt jediného genového transfaterie

specifického AAV vektoru prdiUGT1A1 u mysSiho modelu letalniho Criglerova-
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Najjarova syndromu. Terapeuticky efekt byl po &sp@ aplikaci sledovan po dobu
17 mesiai. Dale jsme porovnavali¢innost aplikace vektoru do jater a kosterniho
svalstva. B aplikaci vektoru specifického pro jatra doSlo &mgSeni exprese
UGT1Al1 na 5-8% exprese zdravych jater a doSlo k sigmtfikimu poklesu
koncentrace bilirubinu. Oproti tomu aplikace vektospecifického pro kosterni
svalstvo koncentrace bilirubinu nesniZila a tadegpzvySeni expreddgtlal na 20-
30% vzhledem k normalnim, zdravym fatr. Divodem tohoto rozdilu odipdchozi
studie niize byt pra¢ rozdilny typ aplikace (intraperitonealni aplikasealow

specifického vektoru vsina intramuskularni aplikace).

5. Jiny typ genové terapie, a to helper-dependesdenovirovy vektor (HDAd),
jsme vyuzili v praci“Improved efficacy and reduced toxicity by ultrasound-
guided intrahepatic injections of helper-dependentadenoviral vector in Gunn
rats”. HDAd oproti vySe pouzitym adenouin neobsahuji virové kodujici sekvence,
a proto by mohly poskytnout stabilni a dlouhotreiagixpresi poZzadovaného genu pro
UGT1ALl. Porovnali jsme dinnost pouzité davky a postupu aplikace vektoru na
redukci  hyperbilirubinémie  u  Gunnovych potkan NejvysSi  redukce
hyperbilirubinémie a navySeni konjugabilirubinu ve Zl&i bylo dosaZeno ip
pouziti HDAd vektoru o koncentraci 10vp/kg aplikovaného prosdnictvim

ultrazvukem vedené perkutanni injekce do jaterpgr@nchymu.

6. V praci“Beyond plasma bilirubin: The effects of photothergy and albumin
on brain bilirubin levels in Gunn rats” jsme zji¥ovali, zda by mohla aplikace
HSA pomoci fii lé¢bé novorozenecké Zloutenky Criglerova-Najjarova syndromu.
Ucinek jedné aplikace HSA na koncentraci sérovéhdarubinu, Bf a tké&ovy
bilirubin byl porovnavan sdinkem fototerapie a kombinace obotistupi. Ze
ziskanych dat jsme zjistili, Ze aplikace HSA pom&ignifikantré zvysit (Einnost

fototerapie.

7. Na pedchozi studii jsme navéazali prathlbumin administration protects
against bilirubin-induced auditory brainstem dysfunction in Gunn rat pups”, ve
které jsme stanovovali efekt HSA u modelu akutnpdmpilirubinémie na sluchovy
systém. Ktomuto jsme vyuzili stanoveni sluchovyphbtencidh evokovanych
mozkovym kmenem (BAEP), které se zaznamenavaji tigdrsctvim

elektroencefalografie. V nasi studii jsme byli sghioukazat, Ze tba pomoci HSA
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funguje v modelu nekonjugované hyperbilirubinémeunoprotektived a to tak, ze
snizuje bilirubinem indukované BAEP.

8. ProtozZe v dostupné literéguzcela chybin vivo model pro vyminnou transfuzi,
ktera je roviZz pouzivana ifp extrémni novorozenecké Zloutence, zabyvali jsee s
v praci “Optimizing exchange transfusion for severe unconjgated
hyperbilirubinemia: Studies in the Gunn rats” zavedenim tohoto modelu a
porovnanim ginnosti vynenné transfuze s vySe uvedenymidBnymi istupy. Po
uspsSném zavedeni modelu vgmmé transfuze u Gunnovych potkampsme zjistili,
Ze tato léebna metoda je vysoceinna pro snizeni koncentrace jak bilirubinu, tak
Bf. K potencovani [&bného tinku Ize nasled& po vymeénné transfuzi pouzit jest
aplikaci albuminu v kombinaci s fototerapii. Temotimalizovanyin vivo model by

mohl byt napomocnyipdalsim studiu I&y akutni hyperbilirubinémie.

9. V préaci“Albumin administration prevents neurological damage and death in

a mouse model of severe neonatal hyperbilirubinemiajsme pouzili geneticky
modifikované mysi s chyjicim genem Ugtl, které byly ihned po narozeni
Ié¢eny intraperitonedalni aplikaci HSA diznych davkach. Zjistili jsme, Ze mysi
[é¢ené pomoci HSA #ly v cirkulaci nizSi koncentrace Bf neZz skupina toini,
rovréz jsme zaznamenali zvySeni celkového sérovéhaibitiu, avSak koncentrace
tkadnového bilirubinu byly signifikant& nizSi nez u kontrol. NaSe data poukazuji na
to, Ze pouziti HSA je zavislé na davce a frekveaplikace a mohlo by byt
potencionald pouzito v I€b¢ pacientt s €Zkou novorozeneckou Zloutenkou nebo
Criglerovym-Najjarovym syndromem k zmémi ¢i vyhnuti se neurotoxickému

ucinku bilirubinu.
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8 List of abbreviations

AAV ... adeno-associated viral vector

ABC ... ATP-binding cassette transporter

Abs ... absorbance

Ad ... adenoviral

ALT ... alanin aminotransferase

AuxLT ... auxiliary liver transplantation

ANG Il ... angiotensin I

ASGPr ... asialoglycoprotein receptor

AST ... aspartate aminotransferase

ATP ... adenosine triphosphate

BAEP ... brainstem auditory evoked potential
BBB ... blood brain barrier

Bf ... free bilirubin

BHT ... 2,6-di-tert-butyl-4-methylphenol
BLVRA ... biliverdin reductase

BOX ... bilirubin oxidation product

CA ... cholic acid

CAR ... constitutive androstane receptor
cDNA ... complementary deoxyribonucleic acid
CHD ... coronary heart disease

CNSI ... Crigler-Najjar syndome type |

CNSII ... Crigler-Najjar syndome type Il

Co0A ... CO-sensing protein

DJS ... Dubin-Johnson syndrome

DMEM ... Dulbecco’s Modified Eagle’s Medium
DMSO ... dimethyl sulfoxide

DNA ... deoxyribonucleic acid

DR3, DR4 ... death receptor

ELISA ... enzyme-linked immunosorbent assay
Em ... emission

ET ... exchange transfusion
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Ex ... excitation

FixL ... oxygen sensor protein

G6PD ... glucose-6-phosphate dehydrogenase

GIT ... gastrointestinal tract

GREL1, GREZ2 ... glucocorticoid-response element

GS ... Gilbert syndrome

gtNR1 ... nuclear receptor

HDAd ... helper-dependent adenoviral vector

HDL ... high density lipoprotein

HLA ... human leukocyte antigen

HMOX ... haem oxygenase

HPLC ... high-performance liquid chromatography
HPRT ... hypoxanthine phosphoribosyl transferase
HRP ... horseradish peroxidase

HSA ... human serum albumin

IL-6 ... interleukin 6

Kp ... constant for oxidation of bilirubin

LC/MS/MS ... liquid chromatography with tandem mapsgctroscopy
LCT ... liver cell therapy

MRNA ... messenger ribonucleic acid

MRP ... multidrug resistance-related polypeptide

MS ... mass spectroscopy

MTT ... 3-(4,5-dimethylthiazol-2-yl)-2,5-diphendttazolium bromide
NAD ... nicotinamide adenine dinucleotide

NADP ... nicotinamide adenine dinucleotide phosphat
NMR ... nuclear magnetic resonance

OATP ... organic anion transport protein/polypeptid
OLT ... orthotopic liver transplantation

PBS ... phosphate saline buffer

PBREM ... phenobarbital-responsive enhancer module
PCR ... polymerase chain reaction

PEG ... polyethylene glycol

P1 ... bilirubin photoisomer

PPAR ... peroxisome proliferator-activated receptor
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PT ... phototherapy

RNA ... ribonucleic acid

RNS ... reactive nitrogen species

ROS ... reactive oxygen species

RP ... reverse phase

RS ... Rotor syndrome

RT-PCR ... real time polymerase chain reaction

SAH ... subarachnoid haemorrhage

SDS ... sodium dodecylsulfate

SLC ... solute carrier transporter

UCB ... unconjugated bilirubin

UDCA ... ursodeoxycholic acid

UDP ... uridindiphosphate

UGT1ALl ... UDP-glucuronosyl transferase, subfarhidyi
TLC ... thin layer chromatography

Vo ... initial oxidation velocity

XRE ... xenobiotic response element

XTT ... 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2dtrazolium-5-carboxanilide
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