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1. Introduction

For a given rearrangement-invariant (r.i.) Banach function space Y (2), we ask
whether there exists an optimal (i.e. largest) Orlicz space L*(f2) satisfying the
embedding

WmLAQ) — Y(Q),

where (2 stands for a bounded Lipschitz domain in R” and W™L4(€2) is an Orlicz-
Sobolev space. By optimality we mean that the space LA(Q) cannot be replaced
by a strictly bigger Orlicz space, i.e., every embedding of an Orlicz-Sobolev space
to Y () factorizes through the space W™L4(Q).

R.Kerman and L. Pick [6] solved this problem in the general setting of r.i.
spaces. They developed a tool to reduce the Sobolev embedding to the bound-
edness of a certain weighted Hardy operator and they used it to characterize the
optimal source and target spaces in the class of r.i. spaces.

If we restrict ourselves only to Orlicz spaces, the situation becomes more
complicated. Consider the well known classical Sobolev embedding W*LP(£2) <
LP (), where 1 < p < n and p* = np/(n — p). The optimal r.i. range space is
the Lorentz space LP (), and in the embedding

WHLP(Q) — LP*P(Q)

the domain L”(2) is the optimal r.i. space and also the optimal Orlicz space.

On the other hand, if we start with the space L>°(£2), then, as A. Cianchi and
L. Pick showed in [4], an optimal Orlicz space does not exist at all. They presented
a method that for a given Young function A such that the corresponding space
LA(Q) satisfies the embedding W!LA(Q) < L>(£) constructs a Young function
B which grows essentially more slowly than A and the embedding W!LZ(Q) —
L*>(€) still holds.

In this work we present a generalization of this method to the class of Mar-
cinkiewicz endpoint spaces. The main result (Theorem 5.1) gives a complete
characterization when the optimal Orlicz domain exists and how to construct it.
To put it simply, to a given Marcinkiewicz endpoint space M we construct an
“optimal Orlicz candidate” L”(Q) in terms of the fundamental function. If the
embedding W™LZ(Q) — M(Q) holds, then L?(Q) is the optimal Orlicz domain,
otherwise the optimal Orlicz domain does not exist at all.

Our approach is carried out in two steps. In chapter 3 we reduce the embed-
ding

WmLAQ) — M(Q) (1.1)
to the one-dimensional condition

t o~
/A(s)sr&-ldsgt&B(Ct), te (2, 00), (12)
1
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where C' is a constant and B is the Young function depending only on the di-
mension, the order of the derivative and the fundamental function of the space
M. Here A and B denote the complementary Young functions to A and B,
respectively.

In chapter 4 we characterize those Young functions B for which there exists
another Young function ﬁl that grows essentially faster than A and still satisfies
(1.2), with possibly different constants. It turns out that these functions are
exactly those that satisfy the condition

. 1
lim sup

t
mSUD /1 Gis) ds =00 forevery N >1, (1.3)
where G(t) = t7-= B(t). The condition (1.3) exactly says that W™ L?(Q) does
not embed into the space M (). If the condition (1.3) is not satisfied, then L? ()
is the optimal Orlicz domain.

Next we investigate when the Young function B satisfies the A, condition
and in such cases we prove the equivalence between the condition (1.3) and the
condition

ting GOV
B G

=1 forevery N > 1. (1.4)

This requirement is similar to a characterization of slowly varying functions, but
still quite weaker.

We also compute several important examples for various target spaces (Ex-
amples 3.8 and 5.2). For instance, if we start with L"(2) in the place of a domain
in (1.1) then, as J. A. Hempel, G. R. Morris and N. S. Trudinger in [5] (see also a
more general result by A. Cianchi in [3]) showed, the optimal Orlicz range space
is exp L™ (), where n’ = n/(n — 1). For this target, the right hand side of (1.2)
is equivalent to log(¢) which clearly satisfies conditions A, and (1.4). Therefore,
in this case the optimal Orlicz domain does not exist.

At the end, we describe a simple generalization of the sufficiency for the
existence of the optimal Orlicz domain for any target r.i. space. It can be stated
as follows: for any r.i. space Y () compute optimal r.i. domain Xy (£2) and set
LA(Q) in a way that its fundamental function coincides with that of Xy (). If
LA(Q) C Xy (Q) then LA(Q) is optimal.

The question if the converse is true in general still remains unanswered.



2. Preliminaries

Let us now recall and fix the notation which will be used in this work.

By A < Band A 2 B we mean that A < C' B and A > C B, respectively,
where (' is a positive constant independent of the appropriate quantities involved
in A and B. We shall write A ~ B when both of the estimates A < B and A 2 B
are satisfied. We shall use the convention 0 - oo = 0, % =0and & =0.

When X and Y are Banach spaces, we say that X is embedded into Y,
and write X — Y if X C Y and there exists a positive constant C, such that
Iflly < Cllfllx for every f € X.

We say that a function G: [0, 00) — (0, c0) satisfies the A, condition at infinity
if there exists K > 0 and 7" > 0 such that G(2t) < K G(t) for every t > T. We
will use only A, condition at infinity, hence we shall shortly say A, condition and
write G € A,.

For a nonnegative function f we shall write [, f < co when there exists some
¢ > 0 such that the integral foc f converges. By integral we always mean the
Lebesgue integral.

2.1 Rearrangement-invariant spaces

In this section we recall definitions and some basic facts concerning the rearrange-
ment-invariant spaces, which we will need in the following text. We shall not prove
well-known results; all of these can be found in the monograph by C. Bennett and
R. Sharpley [1].

Suppose {2 is a domain in R™. Let M(£2) be a class of real-valued measurable
functions on 2 and M*(Q) the class of nonnegative functions in M(£2). Given
| € M we define its nonincreasing rearrangement on (0, |2]) as

fr@) :==inf{x >0, uy(N) <t}, 0<t<|Q
where 11/ is the distribution function of f, i.e.,
prA) =z e Q, [f(2)] > A}

where the |- | stands for the Lebesgue measure. The Hardy average f** is defined
on (0,]9]) as

., A>0,

f**(t):llf/of*(s)ds, 0<t<q

Let f, g € M*(Q). Then we have the Hardy-Littlewood inequality

1€

/Qf(fc) g(z)dz < FH(t) g*(t) dt.

0
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When F C () is measurable, we denote by g the characteristic function of

E defined by
1 z€ekFE,

XE(:E):{O reN\E.

A simple function is a finite sum Zj AjXE;, where \; # 0 is a real number and
E; C ) has finite measure for every index j.

Denote by I the interval (0,1). A mapping 0: MT(I) — [0,00] is called a
rearrangement-invariant (r.i.) Banach function norm on M*(I), if for all f, g,
fn (n € N) in M*(I), for all constants a > 0 and for every measurable subset F
of I, the following properties hold:

(P1)  o(f) =0 « f=0ae; o(af) =ao(f); o(f +9) < o(f)+ o(9);
(P2)  0< f<ga.e. implies o(f) < o(9);

(P3)  0< f, 1 fae implies o( f,) T o(f);

(P4)  o(xr) < oo

(P5) [y f(x)dz S olf);

(P6)  o(f) = o(f")

The associate norm of an r.i. norm p is another such norm ¢’ defined as
1
d9)i= sw [ g0 L€ )
o(f)<1Jo

It obeys the Principle of Duality; that is,

Furthermore, the Holder inequality

lAfMAQMSMﬂd@

holds for every f,g € M*(I).
The corresponding rearrangement-invariant Banach function space or, for
short, r.7. space is the collection

Ly(I) := {f € M(I), o(lf]) < o0}

endowed with r.i. norm

[fllzocry == o(lf]), f € Lo(I).

Next, given a bounded domain €2 in R", we define the r.i. space

L,(9) = {f € M(Q), o(f* () < oo}

with
1Nz, = o(f*(tIQD), f € Ly().
If 0, and g, are two r.i. norms, then L, (Q) C L,,(2) implies L,, () <= L,, ().

4



Let ¢ be a nonnegative function defined on the interval [0, 00). If
(i) p(t) =0iff t =0,
(i) ¢(¢) is nondecreasing on (0, c0),
(iii) ¢(t)/t is nonincreasing on (0, 00),
then ¢ is said to be quasiconcave. We also say that a function ¢ defined on
bounded interval [0, R], for R € (0,00), is quasiconcave if the continuation by

constant value ¢(R) is quasiconcave on [0, 00).
The fundamental function of an r.i. norm ¢ on M* (1) is defined by

©o(t) = 0(x0p), t€I, ©,(0)=0.

The fundamental function is quasiconcave on [0, 1), continuous except perhaps at
the origin and satisfies

ot oyt =1, tel
Quasiconcave functions need not be concave, however, every r.i. space can be
equivalently renormed so that its fundamental function is concave.

Let ¢ be a concave function. We define the Lorentz endpoint space A,(§2) by
the function norm

:/0 Frydat), feM(I),

where dy stands for the Lebesgue-Stieltjes measure associated with . We define
the Marcinkiewicz endpoint space M,(§) by the function norm

ou, (f) = Sup fr()elt), feM(I).

The endpoint spaces A,(£2) and M, () are r.i. spaces with the fundamental
function ¢. If X(€2) is an r.i. space with the fundamental function ¢, then

A () = X — M, ().

In other words, A,(£2) and M, (Q2) are respectively the smallest and the largest
r.i. spaces having the fundamental function equivalent to .

The associate space of a Lorentz endpoint space A, is the Marcinkiewicz
endpoint space M,, where both ¢ and ¢ are concave and ¢(t) 1 (t) =t on I.

If [Q] < oo, then for every r.i. space X (1)

L™(Q) = X(0) — LY(Q).

Assume either 1 < p,g <ocoorp=¢qg=1or p=q=oo. The Lorentz space
LP4() is defined by the functional

0nalF) = 0, (75 (), feM(D),

(/ f(t th) , 1<g<oo,

esssup f(t), g = o0
0<t<1

where



stands for the Banach function norm of the Lebesgue space L(Q2). The functional
0Op.q i1s a Banach function norm if and only if 1 < ¢ < p. However, for 1 < p < o0,
0p,q can be equivalently replaced by Banach function norm

Q(p,q)(f) = 0Oq (t%_%f**(t» .

The fundamental function of the norm g, 4 satisfies

1
Pop () =17, L €]0,1).

The spaces LP'(Q) and LP*°(Q) are equal to the Lorentz and Marcinkiewicz
endpoint spaces A, () and M,(Q), respectively, with () = ¢'/P. If the first
parameter is fixed then the Lorentz spaces are nested, i.e., we have LP?(Q) —
LP"(Q) whenever 1 <p<ooand 1 <¢qg<r < 0.

2.2 Orlicz Spaces

We also need to know definitions and all the basic facts about Young functions
and Orlicz Spaces. All of these can be found for instance in the book by L. Pick,
A.Kufner, O. John and S. Fucik [7].

We shall say that A is a Young function if there exists a function a: [0, 00) —
[0, 00) such that

A(t) :/0 a(s)ds, te[0,00),

and a has the following properties:

(i) a(s) >0 for s > 0, a(0) = 0;
(ii) @ is right-continuous;
(iii) a is nondecreasing;
(iv) lim,_, a(s) = oo.

Every Young function is continuous, nonnegative, strictly increasing, convex on

[0,00) and satisfies

LA .t
Jim == = Jim oy =0

Furthermore, one has
Alat) < A(t), «a€l0,1], t>0,

and

A(Bt) = BA(t), Be(l00), t=0.
Moreover A(t)/t is increasing on (0,00) and we have the estimates
At) <a(t)t < A(2t), te(0,00).

A Young function satisfies the A, condition at infinity if and only if

i ta(t)
1m
oo A1)

6
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For a Young function A and a domain 2 C R", the Orlicz space L4 = L*(Q)
is the collection of all functions f € M(S2) for which there exists a A > 0 such

that
/QA (V(;)') dz < oo.

The Orlicz Space L*(Q) is endowed with the Luzemburg norm

[fllza == inf{A>0, AA(W) dxgl}.

The complementary function Aofa Young function A is given by

A(t) = Sslilg(st — A(s)), te0,00).

The complementary function Aisa Young function as well and the complemen-
tary function of A is once more A. For any Young function A and its comple-
mentary function A there is the relation

t<ATYR)ATH#) <2, te|0,00).

With the help of the complementary function, we can define an alternative
Orlicz norm on an Orlicz space by

il = sup { 1@ 900 dx},

where the supremum is taken over all functions g € M(2) such that

/S2E(|g(x)|) dzr < oo.

The Luxemburg and Orlicz norms are equivalent, namely,

I fllea < | fllpay < 21| flza-

When LA(Q) is an Orlicz space endowed with the Luxemburg norm then the

associate space is L*(Q) with the Orlicz norm. In particular, the sharp Holder
inequality for Orlicz spaces has the form

/Q‘f(a:)g(x)\ de < [|flla £ 5,

The Orlicz space L*(€) is an r.i. space and

1
Ixellea = —775, EES%
A ()
thus, for a bounded domain §2, the fundamental function for the Luxemburg norm
is .
pra(t) = ———=, tel, ¢pa(0)=0.
A~ (ey)

An Orlicz space L*(I) with fundamental function ¢ coincides with the Mar-
cinkiewicz endpoint space M, (I) if there exists 6 € (0,1) such that

/IA((sA—l(;))dt < oo.



For || < oo, the inclusion relation between Orlicz spaces is governed by
inequalities involving the corresponding Young functions. If A and B are Young
functions then LA(Q) «— LZ(9) if and only if there exist ¢ > 0 and 7' > 0 such
that

B(t) < A(et), t>T,
which we denote by B < Aor A= B. If both A < B and A = B hold, we say
that A and B are equivalent and write A ~ B. When |Q}| < oo, the inclusion
LA(Q) € LP(Q) is proper if and only if

LB
PRSP

for every A > 0. We write B << Aor A=~ B.
If A< Bor A=< Bthen A > B or A >~ B respectively.

=0

2.3 Sobolev Spaces

Let Q be a bounded open subset in R", n > 2 and 1 < m < n — 1. Let
N = N(n,m) be the number of multiindices o = (v, g, . . ., ay,) satisfying 0 <
ol =a1+ag+ -+ ap <m.

Given a locally integrable function f on 2 having weak derivatives of all
orders |a| for all 0 < |a| < m, denote the N-vector of all such derivatives by

o“f
9% J o< jaj<m

and by |D™ f| the Euclidean length of this vector.
Let ¢ be an r.i. norm on M* (7). The Sobolev space W™L, = W™L,(Q) is
the set

{f:Q = R; D[ is defined and o(|D™ f|*(t|2])) < oo}
endowed with the norm
1 llwnz, = o(|D™ I (t|2])).

Let us recall the reduction theorem, the result of the work of R. Kerman and
L. Pick [6].

Theorem 2.1.  Let op and pg be r.i. norms on M*(I). Let n, m be positive
integers, n > 2 and 1 < m < n — 1. Then to each bounded domain ) C R" with
the Lipschitz boundary corresponds a constant C' > 0, depending only on (),
m and n, such that

lull,, < Cllullwm,,, weW™L,, (), (2.1)
if and only if

on (| 1f<s>s’ff—1ds) <oolf). feM(). (22)

In the sequel the domain ) will always stand for a Lipschitz domain such
that |Q2] = 1. This constitutes no loss of generality because if one deals with
having finite measure, one can simply write ¢ |(2| instead of ¢ in the definition of
an r.i. norm.



3. Reduction

The aim of this chapter is to prove the reduction of Sobolev embedding (1.1) to
the one-dimensional condition (1.2). This will be done in several steps. Most of
them are quite technical computations with Orlicz norms and Young functions
and are stated as separated lemmas; the final step is reached in Theorem 3.5.

Lemma 3.1. Let A be a Young function and « be nonzero real number.
Assuming
/A(s) salds < oo, (3.1)
0
we define

t
Ea(t)_|a|1té/ A(s) 5V ds, € (0,00).
0

Such E, is an increasing mapping of (0,00) onto itself. Moreover, if R € (0, 0]
then the following relations hold.

a
HtaX(O,a)(t)HLA(O,R) = ET(l)v a € (07 R)7 a > 07 (32)
« aa
||t X(a,oo)(t)HLA(O,oo) = ‘E—1717 € (0700)7 a < 0. (33)
a (3)
In addition, if ¢ € (0, R) and if o < 0 then
1t (a,r) ()| L4 (0,8) = 1t X (as00) () lLA0,00)s @ € (0, R —€). (3.4)

PROOF. Assume (3.1). By change of variables s — ts we have

1
E,(t) = |0z|_1/ A(ts) salds, te (0, 00),
0

hence FE|, is increasing.
By definition of the Luxemburg norm, we have

. a ta
1£*X 0,0y (Dl a0, m) = mf{)\ >0, /O A <A> dt < 1}-

Next, by change of variables we get for a > 0

. Ab [ i
“taX(07a)<t>”LA(O’R) = mf{)\ > 0, / A(s) s Hds < 1}
—inf{A >0, a B, (%) <1}
(l

Bt (

ISH L

)
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This proves the part (3.2). The proof of the relation (3.3) can be done in an
analogous way and we omit it.
In order to prove the relation (3.4), we have to show two inequalities. Clearly
12 X (a,00) | 24(0,00) = 18X (@) (D] 24(0,00) = £ X0y (D) || L2 (0,2)
by the monotonicity of the norm. On the other hand, we have by the triangle
inequality
1% X (a,00) (D] 24 (0,00) < 18" X(aury (D] L4 (0,R) T "X (R100) (D) || 240,00
Using (3.3), the term [[£%X(r,00) (£)|| 4 (0,00) €quals R%/E,* (%) since a < 0. Thanks
to the assumptions, this quantity is finite, say K. The term ||t*X(q,r)(t)|lz4(0,r)
is a decreasing function of the variable a, positive on (0, R) and vanishing at R.
Hence for every € € (0, R) there exists a constant C' such that
K < C ||taX(a,R)(t)||LA(O,R)7 ac (07 R— 6)‘

For those a we conclude that

X (a,00) (D) 24(0,00) < (C + 1) [[t“X (0, 8) (D) || L4 (0, ) -
]

Lemma 3.2. Let ¢ be a quasiconcave function on (0,00) and a € (0,1). We
define

P(t) =t* sup p(s)s*, te(0,00), »(0)=0.

SE(t,00)

Then p(t) and B(t)t'~ are quasiconcave.

PROOF. Since ¢ is nondecreasing, we have for every t € (0, c0)

P(t) =t* sup s~ * sup @(r)

s€(t,00) re(0,s)

=t" sup ¢(r) sup s
re(0,00) s€(max{r,t},00)

=1t* sup ¢(r) min {t7%,r7*}
re(0,00)

= sup (r) min{1,(L)"},

r€(0,00)

hence P is nondecreasing. Next, by definition we have
o)

=t sup p(s)s, te(0,00),
t s€(t,00)
which is decreasing as a product of a decreasing function and a nonincreasing
function. Surely ©(0) = 0 and $(t) > 0 for positive t, therefore P is quasiconcave.
The function p(t)t'~* is quasiconcave because it is increasing as a product
of a increasing function and nondecreasing function and because

7t tl—a
PO wp ols) s te (0,00)
13 sE(t,00)
is nonincreasing. The rest is trivial. Il
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Lemma 3.3. Let a € (0,1) and ¢ be a quasiconcave function on (0,00) such
that
sup p(t)t™* = oc.
te(0,00)
Let us define
F(t) = @(%) t*, te (0700)7

where
p(t) =1t" sup p(s)s™*, te(0,00), P(0)=0.

SE(t,00)

Then there exists a Young function B such that the fundamental function of the
Orlicz space LP(I) is equivalent to B(t)t~* on [0,1) and moreover

B7Yt)~ F(t), te(0,00),

where B is the complementary function to B.

PrOOF. Define
u(t) =g(t) ', te0,00).

Thanks to Lemma 3.2, u is quasiconcave and strictly increasing. Furthermore,

define
1

sut (1)

b(s) = S € (0,00),

and set b(0) = 0. Then define

B(t) = /Ot b(s)ds, € [0,00).

We claim that B is a Young function. The properties (i) and (ii) from the
definition of Young function are clear. Let us prove that b is nondecreasing.
The function u(t)/t is nonincreasing and wu itself is increasing, hence s/u~'(s) is
nonincreasing and therefore b(s) = ﬁ(l/s) is nondecreasing. It remains to show
that lim,_,. b(s) = oo. Indeed, suppose that there is K > 0 such that b(s) < K

for every nonnegative s. Then

1
<K

m_ ,  s€(0,00).

Since u maps (0, 00) onto the whole (0, 00), we can follow by
u(t) < Kt, 1€ (0,00)

hence
p(t) < Kt*

for all t € (0,00). We can rewrite this as

sup p(t)t™* < K
te(0,00)

11



and by definition of ©

sup sup ¢(s)s * < K,
te(0,00) s€(t,00)

that is,

wp ()5 < K
s€(0,00)

which contradicts the assumption.
Now, since B is a Young function, we have that

B(t) < b(t)t < B(2t), te]0,00).

It follows by definition of b that

1

PO

< B(2t), te (0,00).

Applying the increasing function B~1, we get

Finally, since u is increasing on (0, 00) and u(0, 00) = (0, 00), this implies

u(y) 1
2

B_l( ) Su(y), ye (0700)-

1
Y

Hence by the definition of the fundamental function for the Luxemburg norm we
conclude that

ere(t) ~u(t), te(0,1).

Finally define B as the associate function to B. Then

~tu(t)=p(}) " = F(1), te(0.).

i

The following theorem enables us to reduce an embedding to a Lorentz end-
point spaces only to testing on characteristic functions. The idea of the proof
is based on [2, Theorem 8], where the Lorentz space L'({) occurs as a target
space.
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Theorem 3.4.  Let Y(I) be a Banach function space and A(I) be a Lorentz
endpoint space over I. Suppose that T is a sublinear operator mapping A(I) to
Y (I) and satisfying

ITxelly < lIxela (3.5)

for every measurable set E C I. Then

ITflly S 11Nl

for every f € A(I).

PROOF. Let f be a simple nonnegative function on /. Thus f can be written as
a finite sum f = > i AjXE,, where all lambdas are positive real numbers and the
sets F; are measurable subsets of I satisfying F; C Fy C ---. Then, as readily
seen, we have f* =3, A\jxp,. Let ¢ be a fundamental function of A(I). By the
definition of the Lorentz norm we have

1 1 1
I£h = [ £de= [ S de =30 [ xide= 3 Al
0 0y j 0 j

On account of the sublinearity of T" we have [T'f| < >, Aj|T'xg,[, and conse-
quently by (3.5) and by axioms (P1) and (P2) we obtain

ITflly < Z/\jHTXEjHY S Z/\jHXEjHA = || flla-
j j

Now if f is simple but no longer nonnegative, we use the same for the positive
part of f and for the negative part of f.

Suppose that f is an arbitrary function in A(/) and let f,, be a sequence of
simple integrable functions converging to f in A(). Then

IT(fn) = T()lly < NT(fo = F)lly S {1fn = Finllas

and 7T'f,, is Cauchy, hence convergent in Y (). Since limits are unique in Y (7), it
follows that limT'f,, = T f and

1T flly = Hm [T flly < T [ falla = [1f]la

as we wished to show. O

Theorem 3.5. Let Q be a Lipschitz domain in R", n > 2, and || = 1.
Let m be an integer such that 1 < m < n — 1. Let L*(Q) be an Orlicz space
with a Young function A and M(Q2) be a Marcinkiewicz endpoint space with a
fundamental function ¢ satisfying

sup @(t)tn = 0. (3.6)
te(0,1)

13



Then the embedding
WmLAQ) — M(Q) (3.7)

holds if and only if there exists C' > 0 such that

t ~
/ A(s)smntds <tmn B(Ct), te (2,00), (3.8)
1

where B is a Young function such that o5 (t) ~ @(t)t» and

Remark 3.6.  Before proving this theorem, we show that the condition (3.6)
does not cause any loss of generality. Indeed, suppose that (3.6) is not satisfied.
Thus p(t) < t7%, t € (0,1), and there is an inclusion between corresponding
endpoint spaces

Li=m>(Q) < M,().

Now recall the Sobolev embedding under the same assumptions on 2. Consider
the endpoint optimal r.i. embeddings

WmLN Q) < L=t (Q)
and

W™ L (Q) — L®().
Therefore we can conclude that

n

WMLNQ) s Limn ! (Q) < L= ®(Q) < M, (Q)

hence W™™L(2) < M,(Q) and since L'(12) is the largest r.i. space, every Orlicz
space L*4(Q) satisfies W™LA(Q) — M,(£2). Moreover, since L'(f) is not an
Orlicz space by definition, there is no optimal one.

PROOF OF THEOREM 3.5.  Using Theorem 2.1, the embedding (3.7) is equiv-
alent to the inequality

1
‘ / g(s)s»1ds
t

By the L! duality, this is the same as

tn! /Otf(s) ds

S lgllea, g€ LA,
M

~§ HfHM’? fEM/([)7

LA

where A is the complementary function to A. This is equivalent to

\ﬁ—l / P ds]| <l fe M),

LA
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Indeed, one implication is just passing to only nonincreasing functions with the
fact that || f||ar = || f*||a, and the other is thanks to Hardy-Littlewood inequality
applied to functions f and x( ).

Using the fact that M’ is a Lorentz endpoint space and passing to the char-
acteristic functions while keeping Theorem 3.4 in mind, this is equivalent to

Let us compute the left hand side. Clearly

We suppose that a € (0,1/2), since we are interested only in values of a near
zero. We show that the second summand dominates the first one. Indeed,

S QOM/(G>, a < (O, 1) (39)

LA

t
t?_l / X(O,CL)(S) dS
0

T 1" X0 (®) - £+t Xy (1) - all 2

< 1t xow®lla +allt X Ol 5

t
ot / X(0,0)(5) ds
0

allt™ Xyl px = allt™ " Xaza ()5 = a(2a)™ X 20 E)] 2
= ¥ X0 Olls = % X0 Olls 2 17 X0 @) 1.

Therefore we can state that

t
e [t
0

At this moment, it is the time for using Lemma 3.1. We need the part (3.4)
with (3.3) for « = m/n—1<0, R=1 and ¢ = 1/2. The assumption (3.1) can
be rendered as satisfied without any loss of generality since the domain ) is of
finite measure, hence the appropriate Young function can be redefined on (0, 1)
without any effect to the corresponding Orlicz space. Note also that we are using
the associate function A instead of A. Hence we conclude that (3.9) is equivalent
to

_=a ||t#_1X(a,1)(t)||L§'
LA

m

an

— <

= S ew(a), a€(0,1/2).
Eal (3

Now we substitute ¢ = 1/a and use the fact that ¢y (a) = a/p(a). We get
P () S B0, te (2.00) (3.10)

Let us define
F(t> = @(l) tl_%’ le (0’ OO)?

t

where the function () is taken from Lemma 3.2 for & = 1 —m/n. Technically, ¢
is defined on [0, 1) but we work with ¢ as with quasiconcave function on [0, c0),
obtained as its continuation by the value (1) on [1,00).

We claim that F(t) is the least nondecreasing majorant of p(1/t)t==. In-
deed,

P(t)=t"" sup @(s)sn *, te(0,00),

s€(t,00)
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hence
P = sup p(3)s', e (0,00),
s€(0,t)
and the claim follows.

Since the function E%z_l is strictly increasing as well as its inverse, we can
enlarge the left hand side of the inequality (3.10) by F'(¢). Hence we can equiva-
lently continue by

F(t) S E.' (1), te(2,00). (3.11)

Now Lemma 3.3 applied to ¢ and a = 1—m/n comes to play. We obtain that
there exists a Young function B such that B~'(¢) ~ F(t). Using this and passing
to inverse functions, (3.11) is equivalent to the existence of some constant C' > 0
such that

Ea 1(t) < B(CY), € (e, ),
where ¢ = E;l_l(Q) > 0. This is however equivalent to
Eu 1(t) S B(CY), te(2,00)

which is nothing but
t o~
/ A(s)smatds < tmw B(Ct), t e (2,00).
0

Finally observe that the quantities fg le( sm »!ds and fl sm »ds
are comparable since ¢ € (2,00). One can now immediately observe that the
resulting inequality does not depend on the behavior of the Young function A on
the interval (0, 1). O

Remark 3.7. Note that Theorem 3.5 can be stated in a much simpler way in
the case when the function

Ft)=¢ ()t te(l,00),

is strictly increasing. In such case, we do not have to define the envelope @,
and not even the Young function B. Instead of that we just pass to the inverse
functions straightaway and get thereby that (3.7) is equivalent to the inequality

t -~ n n
/ A(s) s tds < tm-n FHCE), t€(2,00).
1

We will see that this simplification is useful for computing the left hand side of
the resulting inequality in many natural examples.

16



Examples 3.8. Let n, m be integers such that n > 2 and 1 <m <n — 1.

(i)

(iii)

Let ®(t) = exp(tmm) — 1, t € [0,00). Then ® is a Young function such
that the space L®(Q), denoted by exp Lwm (), coincides with the Mar-
cinkiewicz endpoint space M, (1), where

p(t) =log='(2), te(0,1).
Then by Remark 3.7 we have F(t) = t'~% log» "1(2t), t € (1,00), and
F7(t) ~ tw=m log(t), t € (2,00), thus the embedding

W™LAQ) < exp Lo (Q)

is equivalent to

/ltﬁ(s)smn ds <log(t), te (2,00).

Let ®(t) = exp(ti—m-1) — 1, t € [0,00), ¢ < n —m. Then ® is a Young
function such that the space L®(f2), denoted by exp L7=m=(£2), coincides
with the Marcinkiewicz endpoint space M, (1), where

90() log™ ~'(3), te(0,1).

Then F(t) = t' % log™n ~1(2t), t € (1,00), F7Y(t) = twm log" " wm (1),
t € (2,00), and the embedding

W™ LA(Q) < exp L=m=1 (1)

is equivalent to
t
/ A(s) s tds <logl™mm (1), t e (2,00).
1

Let ®(t) = expexp(tmm) —e, t € [0,00). Then ® is a Young function
such that the space L*(Q), denoted by expexp Lﬁ(Q), coincides with
the Marcinkiewicz endpoint space M, (€2), where

o(t) = log%_1 log(%), te(0,1).

Then F(t) = '~ % log» ‘log(2t), t € (1,00), F~Y(t) ~ twm loglog(t),
t € (2,00), and the embedding

W™LAQ) < expexp L (Q)
is equivalent to

t o~
/ A(s) smntds <loglog(t), te (2,00).
1

If M(Q) = L>=(Q), then ¢(t) = x(o1(t). Hence F(t) =t'"n, t € (1,00),
and the embedding
WmLAQ) = L™(Q)

is equivalent to

t~
/A(s)smn ds S1, te(2,00).
1
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4. Construction

In this section we study the reduced one-dimensional inequality (3.8). Note that
all results in this section are independent of the Sobolev embeddings.

In Theorem 4.1 we find the sufficient condition (1.3) for G(t) = == B(t) so
that A can be replaced by another essentially more slowly growing Young function
still satisfying (3.8). The proof is partially constructive and is based on the idea
of [4, Theorem 6.4], where G(t) = 1, which corresponds with L> as the target
space in (3.7).

We show in Theorem 4.2 that this condition is also necessary; we prove that if
(1.3) is not satisfied, then there exists up to equivalence the =~-maximal Young
function satisfying (3.8).

Finally we establish the equivalence between (1.3) and the simpler condition
(1.4) and we compute several examples for right hand sides obtained in Exam-
ples 3.8.

Theorem 4.1. Let Young functions A and B satisfy for integers m, n, 2 < n,
1 <m <n-—1 and some C' > 0 the inequality

t ~ n n o~
/ As) sV ds < t757 B(CH), ¢ € (2,00). (4.1)
1
Denote G(t) =t B(Ct). If
lim sup G(t) = oo (4.2)
t—00
and . L ls)
: s
h?iigp G(Mt)/l . ds = o0 (4.3)

for every M > 1, then there exists Young function A, satisfying A; << A and
also

t
/Al(s)sm"nldsgtrn”a B(Cyt), te (2 00).
1

PrOOF. Let A and G be the functions from the assumptions. First, we can
assume that (G is nondecreasing, since otherwise we can pass to the greatest
nondecreasing minorant which still majorizes the increasing left hand side of (4.1).
Next we establish an upper bound for A. Namely, for t € (1, 00)
2t 2

G(2t) 2, A(s) smntds > A(s) sm=tds

1 t

_ 2t n . "
> A(t)/ sm-n tds ~ A(t)tmn. (4.4)
t
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Using this, we obtain the existence of 8 > 0 such that
BG2t) > At tmw, te(1,00). (4.5)
Now we fix this 5 and for every ¢ € (1,00), we define the set
Gy ={s€(1,00); 22 > g G(21) ).

Since A(s)/s is a nondecreasing mapping from (0, 00) onto itself, the sets G, are
upper segments. In particular, G, is nonempty for every ¢ € (1,00). Let us define
7 =7, = inf G;. Observe that for ¢ € (1,00) and s € (1,1)

. B(20s)

Bsmm L G(2s) = f2mm s BRCY)

< 2n—m
<8 t

= Btwm 1t G(2t)

and together with the estimate (4.5), we conclude that
A(s)

< BsmmtG(2s) < ftm T G(2)

for s € (1,t). Hence 7, > t for every t. Moreover, since Z(t) /t is continuous, we
have the equality _
A(7)

= Btem L G(2t), te (1,00). (4.6)
Let M be a real number such that M > 1. Then
A t
lim sup (7) (4.7)

= =0
t—o00 T A(2Mt)

Indeed, suppose that there exists M > 1 and some K > 0 such that there is for
all t € (1,00) the estimate

Alr) ¢
T A(2Mt)
or equivalently B B
A(2Mt A
@MD) | g AT (4.8)
t T
Now for ¢ > 2 the following holds:
Mt . Mt .
G(Mt) Z A(s) sm-ntds > / A(s) sm-n"tds

1 M
t/2 .

~ / A(2Ms) s ds (by change of variables)
1/2
t/2 Av n

> / () g5 ds (by (4.8))
172 Ts
t/2 G(2

~ / (29) 44 (by (4.6))
1/2 s
t

G

:/ (5) ds.

.S
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This contradicts (4.3) for this M.
From estimate (4.7), we can take an increasing sequence ¢; € (2,00), j > 2,
such that N
A(ry)  t;
lim M% = 00, (4.9)
e T A(jty)
where we define 7; = 7;,. We claim that without loss of generality we can as-
sume that 2¢; < 7; for every index j > 2. Indeed, suppose that there exists a

subsequence j; in N such that 7;, <2t; . Then Z(Tjk) < ;1(2%) and

A(Tjk) _ tjk < A(2tjk) _ tjk < = k) 4 _ E v0ask — 0o
Tik A(jkt]k) R A(%“Qtjk) - A(thk)]k Jk

which is impossible due to (4.9). _
At this moment, we can define a function A; by the formula

A [ A FEEE ), te ) N
(1) =
A(t), otherwise.

Obviously, El > A and El is a Young function. Moreover, for j € N; j > 2,
-~ e AVTJ' —Av j
Ary) Al + 2B
A(jt;) A(jt;)
S Alm) —Al) ¢
- AGt) T
Al — A(TZ) ¢
> M—] (since 2t; < ;)
AQjty) T

U LAt - _
25 qay A < Am))

and the latter tends to infinity as j — oo by (4.9). Therefore

I IZI(t)
im sup = = 00

t—o0 A()\t)

for every A > 2, which is precisely Al ﬁ, hence A; << A.
It remains to show that A; satisfies the condition (4.1) with A replaced by
A;. Let t € (2,00) be fixed. We find j € N such shat ¢ € [t;,t;,1). Then we have

L A(s) tA(s)
/1 e ds S/1 R ds
Alm) — Alty) n_ g
-+ Z/ ( W (S — tk) S dS
t N J N ) Tk n .
<2 s—t;)sm—n ~ds.
N /1 Z T — tk / ( )
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We can follow with estimates of the latter integral. Since < —1, we have for

k € N such that 1 < k <7,

Tk n Tk n oe n n_ 41
/(s—tk)smnldsg/ smndsg/ smnds >t " .

ty 123 ty

m—n

This together with the fact that 2¢;, < 7, gives

()57 ‘A L An)
/ Al(s)sm—lds < 2/ "(811 ds—i—QZ (7%) tgl,nﬂ.
1 1 3

§n—m 1 T
Since (4.6) implies

Aj n
() 754 _ 5 apan),

Tk

we have

t . J
/ Ay(s)smatds SG() + Y G(2ty).
1

k=1

Because the sequence ¢; could be taken arbitrarily fast growing, we can assume
without loss of generality that G(2t;) > S_:_" G(2t),) thanks to fact that G is
increasing and unbounded by (4.2). Adding all the estimates together, we finally
obtain that

n

t o~
/ Aj(s)sm—tds S G(t) + G(2t;) S G(2t), te(2,00),
1
which proves the theorem. U

Theorem 4.2.  Let m, n be integers such that 2 <n, 1 <m <n-—1. Let B be

n

a Young function such that G(t) = tm= B(t) satisfies

. 1 [1G(s)
hrtri}sollp G(Mt)/l . ds < o0 (4.10)

for some M > 1. Then B is up to equivalence the ---maximal element in the
class of Young functions A satisfying

t o~
/ A(s) smntlds < tm-n B(Ct), te (2,00) (4.11)
1

for some constant C > 0.
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PROOF. Let us first show that the condition (4.11) is true for A = B. By (4.10),
there is some M > 1 such that

/t Gis) ds < G(ML), te(1,00). (4.12)

Let us fix this M. By the definition of G, we have

Integrating over the interval (1,¢) and thanks to (4.12), we get

t t

~ n G n -~

/ B(s)sm-n tds = / is) ds S G(Mt) ~ tw—m B(Mt), te(1,00),
1 1

which implies the condition (4.11) holds with A = B.
Now suppose that (4.11) holds with A = B; for some Young function B;.
Then by the same calculation as in (4.4) we obtain that

Bi(t) S G(2Mt)twm ~ B(2Mt), te (1,00).

This implies the relation El < B therefore, it cannot be true that El > E, and
therefore B is »=--maximal. Il

The rest of this section is devoted to the condition (4.3). We show that
under the assumption G € A,, the integral criterion (4.3) is equivalent to a much
simpler condition. Clearly G € A, is satisfied if and only if Be A, and since B
is Young function, we have some criterion to characterize it in the words of its
fundamental function.

Let us start with an auxiliary lemma which will be needed in Theorem 4.4.
The idea is based on the L’Hopital rule.

Lemma 4.3. Let c € (0,00). Suppose that f and g are real functions having
finite derivatives on (c,00). If g(x) — oo as x — oo, then

timint 2 < limine 78

PRrROOF. Suppose that the left hand side of the inequality is finite and choose
some constants L and r such that —co < L < r < liminf f'(z)/¢'(z). We will
show that L < liminf f(z)/g(x).

First, choose ¢; > ¢ such that f'(x)/g'(x) > r for every x > ¢;. For arbitrary
¢ <y <z <oo there is € € (y, x) satisfying




Now let y be fixed. Since g(x) — oo, there is ¢y > ¢; such that g(x) > 0 and
g(x) > g(y) for all x > ¢y. For those x multiplying by g(z) — g(y) and dividing
by g(x) we have the inequality

fl@) = fly) _ 9(x) = 9(y)

a@ 7 gl

which can be rewritten as

f@) f(y)gzxgg(y).

g(x)
Finally, we can find ¢z > ¢, such that g(z) > (rg(y) — f(y))/(r — L) for = > c;.

Then we obtain that
f(z)

m>r—(r—L):L

for x > ¢3 hence liminf f(x)/g(z) > L. O

Theorem 4.4. Let G: (0,00) — (0,00) be a continuous nondecreasing function
satisfying A, condition. Then the following are equivalent.

(i)

1 e
liItILigp GO /1 is) ds =00 for every M > 1,

(i)

lim sup L /t G(s) ds = oc;
t—o0 G(t> 1 S 7
(iii)

lim inf G(M1)

=1 forevery M > 1.

PROOF. The equivalence (ii)<>(i) is trivial, since the quantities G(t) and G(Mt)
are comparable for every fixed M > 1 thanks to the fact that G € A,.
Let us focus on the implication (iii)—(ii). Let M > 1 be fixed and suppose
t > 1. Then
Mt d Mt d Mt d
DR R ETB el / % _ Gt log M.
t

1 S t s
Dividing both sides by G(Mt) we obtain

G(t) 1 MG
GOV = GO /1 S

log M ds.

Taking the limes superior as t — 0o on both sides of the inequality, we get
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where L is independent of M. Since log M < L for arbitrary M, L has no other
option but to equal infinity.

To prove (11) (iii), let M > 1 be fixed and let us define f(t) fl (Ms)ds
and g(t f1 G}j. Then both f and g are continuous and have derlvatlves,
namely f (t) = (Mt)/t, g'(t) = G(t)/t. Since (ii) holds, it has to be g(t) — oo
as t — 0o. Using Lemma 4.3, we get

.. G(Mt)
0< h%l_lﬂl)glf 0
t
G(Ms)4s
< lim inf w -1

-1

fl s

< lim inf t
Git)  [MG(s)d
< liminf — ®) “/; () 5
o [[G9)E G(t)

Since liminf; G(t)/fltG(s)% = 0, it suffices to show that % ftMtG( ) is

bounded. To end this we use the fact that GG is nondecreasing and, due to G € A,,
there is some ¢ > 0 such that G(Mt) < ¢G(t) for big t. For such a ¢ we have

1 Mt ds  G(Mt) [Mids
[ — < — < .
an ). ‘Y% = / 5 <clogM

g

Remark 4.5. Let us mention that the situation when the Young function B and
hence G satisfy the A, is quite common. Recall that a Young function A satisfies
the A, condition if and only if

I t A'(t) _
imsu 00
el A(L)
We can simply reformulate this condition in terms of its fundamental function ¢
as
t
lim sup @E ) < 00. (4.13)
1ot L@ (t)

Now let ¢ be a quasiconcave function on (0, 00) such that

sup () tn = o0
te(0,00)

and let B be the Young function from Lemma 3.3 corresponding to o« = 1 —m/n.
We have that ¢ 5(t) ~ B(t)t» . Suppose for a time being that

m

prs(t) =o(t) .
24



Then the fundamental function corresponding to the associate space LB is

-

()

~

PrB (t) =

<

Since B is a Young function, B has a first order derivative everywhere in (0, 00)
except perhaps at countably many points. Since B(s) =1/ go;}?(l /s), the same is

true for go;é and also @.

Next, the derivative is

Galt) = —— (L= 2) 17 500 — 1 F 5 (0).

(@(1))

Then using the criterion (4.13), we get that B € A, is equivalent to

limsup ——*
t—07+ l (plLé (t)

that is, to

< 0.

1
lim sup —
ot (1= ) =

Therefore the expression t @' (t)/p(t) always takes values in the interval [0,1 —
m/n) and the fraction above can blow up only when

. te'(t) m
lim sup — =1-—.
t—0+ cp(t) n
Therefore, Be A, if and only if
to(t
lim sup 10( ) <1—T.
t—0t (p(t) n

This computation shows that the Marcinkiewicz endpoint spaces, which are

far from the fundamental line " in the sense described above, ensure the A,

condition for B. This shows that the characterization in Theorem 4.4 is useful
for the target spaces near L*(12).
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5. Optimality

Let us return to the embedding W' X (Q) — L>®(£). We already know that the
optimal Orlicz domain in this embedding does not exist, but we can compute the
optimal r.i. domain. It is the Lorentz space L™*(Q), that is, the optimal Sobolev
embedding reads as

WLH(Q) — L®(Q).

The fundamental function of the space L™ (Q) is ppni(t) = tw, and, via the
unique correspondence of the Young and fundamental functions in the class of
Orlicz spaces, there is exactly one Orlicz space having this fundamental function:
L™(Q). This is the only natural candidate for the optimal Orlicz domain but, as
it is well known, it does not render the corresponding Sobolev embedding true.

Let us put this fact into the context of Theorem 3.5. If M () = L>(2) then
the corresponding Young function B satisfies B(t) =", t € (0, 00).

The following theorem connects Theorems 3.5, 4.1 and 4.2.

Theorem 5.1.  Let Q2 be a Lipschitz domain in R", n € N, n > 2, and |Q| = 1.
Let m be an integer such that 1 < m < n — 1. Let M(2) be a Marcinkiewicz
endpoint space with a fundamental function ¢ satisfying

m_q

sup @(t)t» " = oc.
te(0,1)

Let B be a Young function such that

pra(t) =t (), te0,1),
where
P(t)=t""" sup p(s)s" "
SE(t,00)

Define G(t) = t== B(t), t € (0,00). Then the following are equivalent.

(i) There exists an optimal Orlicz space L*(f2) satisfying the embedding
WmLA(Q) — M(Q);

(i)
W™LE(Q) — M(Q);

(iii) LP(Q2) € X(Q), where X () is the optimal r.i. domain in the embedding
WX (Q) = M();
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(iv) there exists some C' > 1 such that

. 1 [1G(s)
hrtriiljp G(C’t)/l . ds < oo.

Moreover, if G satisfies the A, condition, then each of the conditions (i)—(iv) is
equivalent to following statement:
(v) there exists some C' > 1 such that

—eie))
e G

> 1.

PROOF. Let us show (ii)«»(iv). Let B be the Young function from the as-

sumptions of the theorem. Observe that, thanks to Theorem 3.5, the embedding
W™LB(Q) < M () holds if and only if

t
/B(s)sﬁ—ldsgtm’% B(CH), te (2 0),
1

for some C' > 1. Rewriting this, we obtain

. 1 ["G(s)
hltging(Ct)/l . ds < o0

for G(t) = tm= B(t).
In order to show (ii)—(i) we just use Theorem 4.2 which tells us that B is
the =>-maximal Young function in class of all Young functions A satisfying

t o~
/ A(s)smntds <tmen B(Ct), te (2,00),
1

for some C' > 1. This means that the space L”({2) is the largest Orlicz space
satisfying W™LP(Q) — M ().

To prove (i)—(ii), we show that if (ii) is not satisfied then (i) is not either.
Hence if W™ LP(Q) < M(Q) does not hold then

i 1 /t G(s)d _
et f, s T

for every N > 1. If, in addition, limsup,_,., G(t) = oo, then by Theorem 4.1 to
a given Young function A satisfying

t
/ As) sV ds < G(CH), ¢ € (2,0),
1
for some C' > 1, there is another Young function A; satisfying A; << A and also
t ~ n
/ A, (s)s7ds S G(Ch1), £ € (2,00),
1
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for some C; > 1. This, thanks to Theorem 3.5, says that to a given Orlicz space
LA(Q) satisfying the Sobolev embedding W™LA(Q) < M (), there is another,
strictly larger Orlicz space L41(Q) also satisfying W™ LA (Q) < M ().

If G is bounded, then it is equivalent to a constant function on (1, c0), which
means that M () = L>=(Q2). (cf. Example 3.8, (iv)). This situation has already
been described in [4, Theorem 6.4] and no optimal Orlicz domain exists. This is
in accord with the fact that the expression

, 1 /t G(s) 4
PGy ), s ¢

is infinite for a constant function G and every C' > 1.

The equivalence of (ii) and (iii) follows directly from the definition of the
optimal r.i. space, and the equivalence of (iv) and (v) has been already stated in
Theorem 4.4. Il

We recall that the growth assumption for the fundamental function ¢ has
already been discussed in Remark 3.6. We have seen that we exclude only those
spaces M for which the embedding W™L'(Q2) — M () is satisfied. It follows
that Theorem 5.1 covers all reasonable situations.

Examples 5.2. Let n and m be integers such that n > 2 and 1 <m <n — 1.

To a given Marcinkiewicz endpoint space M (2), let G(t) be as in Theorem 5.1.

(i) If M(Q) = exp L= (), then by Example 3.8 (i), G(t) = log(t), t €
(1,00). Since

=1 forevery C'>1,

and since G satisfies the A, condition, then, by Theorem 5.1, there is no
largest Orlicz space L4(Q) in the embedding W™LA(Q) < exp Lo (Q).

(ii) If M(Q) = exp Li===4(Q), ¢ < n — 1, then by Example 3.8 (i), G(t) =
log' ™77 (t), t € (1,00). Since

log ™71 (C't
lim inf og—()

=1 forevery C' > 1,
to0 JoglTati(¢) y

and since G satisfies the A, condition, then, by Theorem 5.1, there is no
largest Orlicz space L*(€2) in the embedding W™ LA(Q) — exp Li=m=1 (£2).

(iii) If M(Q) = expexp L= (Q), then by Example 3.8 (iii), G(t) = loglog(t),
t € (1,00). Since

.. loglog(Ct)
liminf ———F—~

=1 fi >1
t—oo  loglog(t) or every €' 2 1,

and since G satisfies the A, condition, then, by Theorem 5.1, there is no
largest Orlicz space LA(Q) satisfying W™ LA () < exp exp L= (Q).

At the end, we state a result which is in some sense a generalization of the
implication (iii)—(i) in Theorem 5.1, no matter what the target space is like. In
particular, it is not restricted to Marcinkiewicz endpoint spaces.
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Theorem 5.3.  Let ) be a bounded domain in R", n > 2, and |Q| = 1. Let gr
be an r.i. norm on M (I) and gp be the optimal r.i. domain norm in the Sobolev
embedding W™L,,(2) — L,.(2). Denote p the fundamental function of the
space L,,(Q) and L*(Q) the Orlicz space such that ¢pa(t) ~ ¢p(t), t € [0,1).
Suppose that
LAQ) € Ly, ().

Then W™LA(Q) — L,,(Q) and L*(Q) is the optimal Orlicz domain in this
embedding.

PROOF. Suppose that W™L?(Q) — L,.(Q) where L?(Q) is an Orlicz space.
Since L,,, () is the optimal domain, we have that L?(Q) C L, () thus L7 (Q) —
L,,(€). This means that op(f) < c||f||s for every f € L?(Q) and some c
independent of f. Then

op(t) = op(X0n) < clixonllee = cors(t)
for all t € I. By the definition of L#() we have that ;4 ~ ¢, therefore
pra(t) < cops(t), te(0,1),
for some constant ¢ > 0. Passing to inverse functions, we get that
pr(s) < @ral@s), s € (0,p0(1)),
that is, taking reciprocal values and s — 1/(¢t)

1 1
opa($) ~

o (%)

for every t € (T,00) where T is some positive constant. By the definition of
fundamental function for Luxemburg norm we have

A(t) < B(&),

for every t € (T,00), thus A < B. This implies that L”(Q) < L“(Q) hence
LA(Q) is optimal. O
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