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1.   List of abbreviations 
 
δ-ALA              Delta aminolevulinic acid  

AIP        Acute intermittent porphyria  

ALAD    Aminolevulinic acid dehydratase  

ALAS      Delta amino levulenic acid synthase  

BbvI     Bacillus brevis 

Bp  Base pair 

BVR     Biliverdin reductase  

c.    coding 

CEP     Congenital erythropoietic porphyria  

CNV    Copy number variation 

CPOX     Coproporphyrinogen oxidase  

CT    Computed tomography 

CYPs    Cytochrome P450 

del    deletion 

DMSO    Dimethyl sulfoxide 

DTT     Dithiothreitol  

EPP     Erythropoietic protoporphyria  

ER    Endoplasmic reticulum 

FECH    Ferrochelatase  

gDNA     Genomic deoxyribo nucleic Acid 

Hb    Hemoglobin 

HCP      Hereditary coproporphyria 

HEP     Hepatoerythropoietic porphyria  

HIV     Human immuno deficiency virus  

HMB     Hydroxymethyl bilane  

HMBS    Hydroxymethyl bilane synthase  

HOXG    Heme oxygenase  

IPTG     Isopropyl 1-thio-β-D-galactopyranoside  

IRP    Iron regulatory proteins 

IVS    Intervening sequence 

Kb    Kilobit 

kDa    Kilodalton 
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MLPA    Multiplex ligation-dependent probe amplification  

MRI     Magnetic resonance imaging 

mRNA   messenger ribonucleic acids 

NADPH     Nicotinamide adenine dinucleotide phosphate hydrogen 

OCPs    Oral contraceptive pills 

PAGE  Polyacrylamide gel electrophoresis 

PBG     Porphobilinogen  

PCT     Porphyria cutanea tarda  

PGC-1α   Peroxisome proliferator-activated gamma co-activator 1 α  

PP    Protoporphyrin 

PPOX    Protoporphyrinogen oxidase  

Primer F   Forward primer (Sense) 

Primer R   Reverse primer (Anti-sense) 

RBCs    Red blood corpuscles 

RES    Reticulo-endothelial system 

RFLP     Restriction fragment length polymorphism  

SDS  sodium dodecyl sulphate 

SNP     Single Nucleotide Polymorphism 

Taq    Thermus aquaticus 

TB   Terrific broth 

UCB  Unconjugated bilirubin 

UGT1A1  Uridine diphosphate glycosyltransferase 

UROD    Uroporphyrinogen decarboxylase  

UROS    Uroporphyrinogen III synthase  

VP      Variegate porphyria 
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2. SUMMARY 
 

Porphyria is a group of inherited metabolic disorders due to enzymatic defect of the heme 

biosynthesis resulting in the overproduction of the heme precursors' porphyrins in different 

body organs. The enzymes of the heme biosynthesis are encoded by corresponding genes in 

which any defect in any of these genes lead to a specific type of porphyria. Numerous 

mutations were detected in these genes leading to impairment in the enzyme function and 

therefore developing of the clinical manifestations of porphyria. The aim of the present work, 

was to investigate the UROD gene in patients with porphyria cutanea tarda (PCT) and 

hepatoerythropoietic protoporphyria (HEP) as well as the FECH gene in patients with 

erythropoietic protoporphyria (EPP) on a molecular level. We identified numerous mutations 

in the FECH and the UROD genes in different patients of Czech, Slovak a Egyptian origin. 

We described novel mutations in the UROD gene in HEP patients from Egypt as well as in the 

FECH gene in patients with EPP from Czech and Slovak origins. We studied the enzyme 

activity of the mutated UROD protein in comparison with the wild type protein. Moreover, 

the current study presents for the first time the frequency of the low expression allele IVS3-

48c in the FECH gene in healthy controls from the Czech population. We analyzed 624 

alleles in unrelated individuals from the general Czech population and it was found out to be 

5,5 % among the Czech population. We performed the molecular analysis of the UROD and 

FECH genes in patients with PCT, HEP and EPP. In addition, we defined for the first time the 

frequency of the low expression allele IVS3-48c in the Czech control population. 

 

Keywords: Porphyria cutanea tarda, Hepatoerythropoietic porphyria, Eryhtropoietic 

protoporphyria, Uroporphyrinogen decarboxylase, Ferrochelatase. 
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3. Souhrn 

Porfyrie jsou skupinou heterogenních dědičných metabolických poruch způsobených defekty 

enzymů biosyntézy hemu, které vedou k nadprodukci prekurzorů porfyrinů hemu v různých 

tělesných orgánech. Tyto enzymy jsou kódovány specifickými geny a patogenní změny 

v jejich sekvenci podmiňují typ porfyrie. V těchto genech byly zjištěny četné mutace, které 

vedou k poškozením funkce enzymu, a tím k rozvoji klinických projevů porfyrie. Cílem této 

práce bylo zkoumat na molekulární úrovni gen UROD u pacientů s pozdní kožní porfyrií 

(PCT) a hepatoerytropoetickou protoporfyrií (HEP) a dále gen FECH u nemocných s 

erytropoetickou protoporfyrií (EPP). Identifikovali jsme řadu mutací v genech UROD 

a FECH v různých populacích - české, slovenské a egyptské. Popsali jsme nové mutace v 

genu UROD u pacientů egyptského původu s onemocněním HEP a mutace v genu FECH u 

nemocných českého a slovenského původu s onemocněním EPP. Studovali jsme mutovaný 

enzym UROD na úrovni proteinu a jeho enzymovou aktivitu ve srovnání se zdravou 

kontrolou. Stávající studie předkládá poprvé frekvenci sestřihové varianty IVS3-48c genu 

FECH u zdravých kontrol z české populace. Analyzovali jsme 624 alel u nepříbuzných 

jedinců z běžné české populace a bylo zjištěno, že v této populaci byla frekvence alel 5,5 %.  

Provedli jsme molekulární analýzu genů UROD a FECH u nemocných s onemocněním PCT, 

HEP a EPP. Poprvé byla definována frekvence sestřihové varianty IVS3-48c v české 

kontrolní populaci. 

 

Klíčová slova: pozdní kožní porfyrie, Hepatoerythropoietic porfyrie, Erytropoietic 

protoporfyrie, Uroporfyrinogen dekarboxylázy, ferrochelatázy. 
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4.1.   Heme and Hemeproteins 

Heme, a tetrapyrrole molecule formed of four pyrrole rings linked together by methine 

bridges with an iron ion in the center of the heterocyclic ring. The prosthetic ion serves many 

functions by binding to proteins whether covalently or non-covalently, plays a role in the 

electron transfer chain and delivering divalent oxygen to the cells (Leeper, 1989). 

The organic molecule is mostly found in three different forms Heme a, b, and c. Heme a and c 

are commonly known to be in the structure of the mitochondrial cytochrome c oxidase 

(Tsukihara, et al., 1995) and cytochrome c reductase or co-enzyme Q of the mitochondrial 

respiratory chain (Xia, et al., 1997) respectively. Heme b is the predominant sub-type in 

human which form the diatomic gas carriers hemoglobin (Hb) (Park, 2006) and myoglobin 

(Evans and Brayer, 1988). 

Hemeproteins have a wide range of significant functions inside the human body. They 

transport divalent gases like oxygen, carbon dioxide and nitric oxide. They carry out the 

transfere of the electron ion via cytochromes in the mitochondrial respiratory chain. They 

have an important function in the drug metabolism and the detoxification through the 

enormous system of Cytochrome P450 (CYPs) (White and Marletta, 1992). They play a role 

in the synthesis of the intracellular second messengers like nitric oxide synthase (White and 

Marletta, 1992) and guanylate cyclase (Stone and Marletta, 1996). They also have an anti-

oxidant effect protecting the cells from the oxidative damage by the superoxides as Catalase 

and peroxidase (Munro, et al., 2009). All these varieties of proteins contain heme as their 

prosthetic group.  
 

4.2.   Heme biosynthesis 

Heme is synthesized in all biologically active living cells as it is a necessary pathway for life 

but mainly it takes place in the erythropoietic organs such as the bone marrow developing 

erthroid cells and the hepatocytes. 85 % of the heme produced in the bone marrow is utilized 

in the synthesis of hemoglobin (Kauppinen, 2005) while 80 % of the heme produced by the 

liver is used mainly in the synthesis of the microsomal CYPs and cytochromes of the electron 

transport chain.  

Eight enzymes are involved in the heme biosynthetic cascade. The pathway takes place in the 

mitochondria and in the cytosol. The first enzyme is a mitochondrial enzyme and is 

considered to be the rate limiting in the heme biosynthetic pathway. The next enzymes are 
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cytosolic while the last three enzymes operate in the inter-membranous space and the inner 

membrane of the mitochondria (Anderson, et al., 2001). 

The heme biosynthetic cascade starts in the mitochondrial matrix by the condensation and 

decarboxylation reactions of the amino acid glycine and the citric acid cycle metabolite 

succinyl CoA forming the D aminolevulinic acid (δ-ALA) .This reaction is catalyzed by the 

mitochondrial enzyme delta amino levulenic acid synthase (ALAS) with the pyridoxal 

phosphate as a co-enzyme. D Amino levulenic acid synthase is considered to be the rate 

limiting enzyme in the heme biosynthetic pathway because of its high sensitivity to the 

intracellular concentration levels of iron and heme. Two molecules of (δ-ALA) are 

transported to the cytoplasm through still unidentified channels to be condensed by the 

catalytic activity of the cytosolic enzyme ALA dehydratase (ALAD) which requires zinc 

cations to form the first intermediate with a pyrrole ring; porphobilinogen (PBG). Four 

molecules of PBG are polymerized successively by the elimination of the amino group to 

form the first tetrapyrrole intermediate Hydroxymethyl bilane (HMB). This deamination 

reaction is catalyzed by the cytosolic enzyme Hydroxymethyl bilane synthase (HMBS). The 

uroporphyrinogen III synthase (UROS), a cytosolic enzyme convert the linear tetrapyrrole 

Hydroxymethyl bilane into the cyclic tetrapyrrole uroporphyrinogen III by a hydrolysis 

reaction. Uroporphyrinogen decarboxylase (UROD) another cytoslic enzyme catalyzes the 

decarboxylation of the four acetate side chains to methyl groups producing 

coproporphyrinogen III. Two of the four propionyl radicals of the coproporphyrinogen III 

carry out oxidative decarboxylation in the cytosol by the coproporphyrinogen oxidase 

(CPOX) converting them to vinyl radicals yielding protoporphyrinogen IX. Then the 

oxidation of protoporphyrinogen III takes place in the mitochondrial matrix by the enzyme 

protoporphyrinogen oxidase (PPOX) producing protoporphyrin IX. Finally, the mitochondrial 

enzyme ferrochelatase (FECH) incorporates ferrous ion into protoporphyrin IX to produce 

heme (Kappas, et al., 1990). The steps of the heme biosynthetic pathway are simplified in 

Figure 1. 
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Glycine + Succinyl CoA                                             Mitochondrion 

             ↓ ALA synthase 

Delta aminolevulonic acid (ALA)……………………………………………………………… 

             ↓ ALA dehydratase 

Porphobilinogen (PBG) 

             ↓ PBG deaminase 

Hydroxymethylbilane                                                           Cytosol 

            ↓ Uroporphyrinogen III co-synthase 

Uroporphyrinogen III    

          ↓ Uroporphyrinogen decarboxylase 

Coproporphyrinogen III………………………………………………………….…………….. 

          ↓ Coporpophyrnogen oxidase 

Protoporphyrinogen IX 

         ↓ Protopoprhyrinogen oxidase                             Mitochondrion 

Protoporphyrin IX 

          ↓ Ferrochelatase 

         Heme 

 

 

Figure 1.  Heme biosynthetic cascade in Homo sapiens. 
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4.3.   Regulation of heme biosynthesis 

The intra-cellular levels of heme are finely regulated to keep a balance between the heme 

production, cellular needs and its breakdown. As mentioned before, the key regulatory 

enzyme in the heme biosynthetic cascade is the intra-mitochondrial enzyme ALAS which 

exists in two isoforms (ALAS1) and (ALAS2). ALAS1 is the ubiquitous isoform which is 

available in all cells and particularly in the liver. ALAS2 is predominantly present in the 

developing bone marrow erythroids. The heme biosynthesis is controlled in the liver and in 

the bone marrow in two different fashions. This is because of the variation in regulation 

between the two isoforms (May, et al., 1995).  

In non-erythrocytes, particularly in hepatocytes, the catalytic activity of ALAS1 is controlled 

by the regulatory DNA-binding nuclear proteins which affects the transcription of ALAS1 

gene (Thunell, 2006). Heme, as an end product of the biosynthetic cascade, causes negative 

feedback inhibition to ALAS1 enzyme and down regulates the transcription of the ALAS1 

gene. On the other aspect, decrease of the intra-cellular levels of heme whether because of 

increase utilization or increased catabolism results in the expression of ALAS1 gene (Thunell, 

2006). The heme molecule in human post-transcriptionally regulates the stability of the major 

form of the ALAS1 mRNA (missing exon 1B) by stimulating its breakdown while the minor 

form (retain exon 1B) oppose the heme mediated breakdown (Roberts, et al., 2001) (Roberts, 

et al., 2005). On the post translational level, heme attach to a putative heme binding site at the 

N-terminal mitochondrial targeting sequence of the pre ALAS1 preventing its transport to 

mitochondria where the premature protein is cleaved to the mature form (Munakata, et al., 

2004) (Dailey, et al.,2005). 

Based on the previous information comes the importance of the therapeutic administration of 

heme analogues to decrease the severity of the acute attacks in patients with porphyria. Heme 

analogues like heme arginate or hematin are given intra-venous during the acute attack to 

abort it. Nevertheless, Drugs that induce Cytochromes P450 should be contraindicated in 

patients with porphyria because they will increase the rate of heme biosynthesis to supply 

heme for the hemeproteins cytochrome P450 (Podvinec, et al., 2004). 

Hexoses such as glucose decrease the expression at the transcriptional level of the ALAS1 

gene operating via the peroxisome proliferator-activated co-activator 1 α (PGC-1α), a co-

activator of nuclear receptors and transcription factors (Doss, et al., 1981) (Handschin, et al., 

2005). Hypoglycemia during fasting up-regulates the expression form PGC-1α and therefore 

increases the expression of ALAS1 gene leading to induction of heme production (Scassa, et 
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al., 2001). This interpretes why fasting predisposes to acute attacks in patients with porphyria. 

Moreover it explains the importance of the intra-venous glucose infusion to reduce the 

severity of the acute attacks in these patients (Anderson, et al., 2005; Phillips, et al., 2005). 

In the erythroid bone marrow developing cells, ALAS2 in contrast to ALAS1 enzyme is 

induced by heme and only during erythroid differentiation. (May, et al., 1995). In developing 

erythroid cells, heme binds with globin to produce hemoglobin under the influence of the 

erythropoietin hormone (Spivak, 1986). Binding of the erythropoietin hormone to its specific 

surface receptors in the erythroid cells stimulates the transcriptional factor GATA-binding 

factor 1 which induces the transcription of the ALAS2 gene (Orkin, 1992). 

Morever, the availability of the intra-cellular iron transferrin complexes regulates the ALAS2 

gene translation (Hemmaplardh and Morgan, 1974). The iron ions in the erythroids cells 

attach to the iron regulatory proteins (IRP) when their intra-cellular level increases and 

therefore the IRP detach from the iron responsive element in the 5’prime untranslated region 

of the mRNA of ALAS2 fascilitating its translation (Ponka, 1997). 

 

4.4.   Heme degradation 

Heme degradation takes place in the reticulo-endothelial system (RES); the liver and the 

spleen to keep the intracellular homeostasis of heme. The first step in heme catabolism is 

catalyzed by the endoplasmic enzyme heme oxygenase (HOXG) that converts heme to 

biliverdin using nicotine amide adenine dinucleotide phosphate hydrogen (NADPH) as a 

reducing agent. Ferric iron is released to enter the iron pool for reuse and carbon monoxide, a 

potent vasodilator, is generated.The previous reaction is the rate limiting step in heme 

degradation. Biliverdin is then reduced by the Biliverdin reductase (BVR), using NADPH as a 

reducing agent, to a less toxic molecule in human called bilirubin. The unconjugated bilirubin 

(UCB), a hydrophobic molecule is then bound to the albumin to be transported in the plasma 

to the liver. By an unknown mechanism, the liver uptakes the UCB and bounds it to ligandin 

in the hepatocyte cytoplasm. UCB is transported to the endoplasmic reticulum (ER) where 

conjugation with diglucuronides occur by the enzyme uridine diphosphate glycosyltransferase 

1A1 (UGT1A1; EC2.4.1.17) to become hydrophilic and easily excreted in the aqueous bile 

(Shibahara, et al., 2002). 
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4.5.  Porphyrines and porphyrinogens 

These are heterocyclic organic macromolecules formed of four pyrrole rings (A, B, C, D/I-IV) 

linked together through methine bridges (=CH−) at their alpha carbon atoms in a highly 

conjugated system as shown in figure 2.The eight side hydrogen atoms are replaced by special 

side radicals that determine their physio-chemical properties. 

 

 

Figure 2. The chemical structure of porphyrines (adapted from Flachsova E, Thesis, 2007). 

 

Porphyrinogens are biological intermediates and functional precursors for the heme 

biosynthesis with hydrogenated the four methine bridge carbon and the two pyrrolenine 

nitrogen atoms. These macro-molecules are unstable that quickly carry out oxidation to their 

corresponding porphyrin when exposed to air. Porphyrinogens are charachterized by being 

colourless and with no fluorescence emission while porphyrines are coloured compounds with 

characteristic photochemical properties. The chemical structure of the side chain in the 

different porphyrinogens designates both the physical and the chemical features of the 

subsequently oxidized porphyrins.   During the heme biosynthetic pathway, there is a process 

of stepwise decarboxylation of the side radicals from eight to two. Therefore, porphyrines 

with more carboxylic moieties are highly solouble in water and thus easily excreated in the 

urine through the renal tubules, on the contrary porphyrines with less number of carboxylic 

groups are less hydrophilic and therefore they are excreated in the bile through the bilary 

tract. 

Nevertheless, porphyrines are characterized by their capability to bind ion metals that play an 

important role in their function. The commonly bound metals to porphyrines are magnesium 

and iron. The chlorophyll is the porphyrin that contains magnesium which is necessary for its 

biological function to utilize the sun light energy. Hemoglobines and myoglobines, the heme 
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containing proteins, use the iron to perform their biological function. Hemoglobin uses iron 

for gas transport in the blood and myoglobin uses the iron atom for oxygen storage in the 

muscle. 

The presence of the double bonds in the highly conjugated porphyrins is responsible for their 

charactarestic dark reddish colour as well as the typical absorption bands in the ultraviolet 

light (Zaider, E at al., 1998). Porphyrines are characterized by absorption spectra of a major 

band around 400 nm (the soret band) and numerous smaller bands (according to the type of 

solvent) between 500 and 630 nm. Porphyrin absorption spectra vary from two peaks of 

absorbance when dissolved in an acid to four peaks when dissolved in chloroform. 

 

4.6.   Porphyria 

The term porphyria is an ancient Greek name “πορφυροσ” purphuros (purple) which 

describes the charactarestic reddish-purple colour of the tetrameric porphyrins. Porphyrias are 

a group of inherited metabolic disorders due to enzymatic defect of the heme biosynthesis 

resulting in the overproduction of the heme precursor’s porphyrins in different body organs. 

This leads to both the deposition of the porphyrin precursors in different organs and their 

excretion in the urine and in the stool. Being rare diseases, they are quite often mis-diagnosed 

or wrongly diagnosed by the health care professionals. Seven sub-types of human porphyria 

are identified according to the enzyme defect in the heme biosynthesis cascade. Each subtype 

is characterized by the specific decrease in the activity of one of these enzymes in the heme 

anabolic pathway as well as by typical spectra of the accumulation and excretion of porphyrin 

precursor as shown in Table 1 (Anderson, et al., 2001).  

Biochemical detection of the spectrophotometric and the fluorometric properties of the 

different prophyrines in the different body fluids as in plasma, urine and in the stools help in 

the biochemical diagnosis of porphyria. Moreover, the molecular analysis of the eight coding 

genes of the eight enzymes in the heme biosynthesis pathway confirm the diagnosis of 

porphyria and identify which subtype of porphyria it is. 

 

4.7.   Classification of porphyrias 

Porphyrias are broadly classified whether according to the main site of the heme precursor’s 

overproduction into hepatic and erythropoietic or classified clinically into neuro-visceral, 

cutaneous and mixed.  
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Congenital Erythropoietic porphyria (CEP) and erythropoietic protoporphyria (EPP) are 

examples of the erythropoietic type of Porphyria where the porphyrin precursors accumulate 

mainly in the bone marrow. The remaining sub-types of porphyria are considered as examples 

of hepatic porphyria as the most clinically affected organ is the liver due to the accumulation 

of the porphyrin precursors in the hepatocytes. Moreover, the hepatic porphyrias are further 

classified to acute and chronic according to the severity of the clinical picture. Acute 

intermittent porphyria (AIP), hereditary coproporphyria (HCP), variegate porphyria (VP) and 

Plumboporphyria are ussually presented as acute hepatic porphyria. Porphyria cutanea tarda 

(PCT) and hepatoerythropoietic porphyria (HEP) are presented as chronic hepatic porphyria. 

(Schmid, et al., 1954). 

Plumboporphyria and AIP manifest mainly with  neuropsychiatric symptoms. CEP, fPCT and 

HEP manifest mainly by dermatological symptoms. HCP and VP manifest by both 

neuropsychiatric and dermatological signs. (Elder, et al., 1990). 

The enzymes of the heme biosynthetic pathway are encoded by specific corresponding genes 

as shown in table 1 (Anderson, et al., 2001). Numerous mutations were detected in these 

genes that can lead to the impairment of the protein function resulting in the above mentioned 

clinical subtypes of porphyria. All subtypes of porphyria are inherited as an autosomal 

dominant except the plumboporphyria, CEP and HEP which are inherited as an autosomal 

recessive. Porphyrias with autosomal dominant inheritance receive one copy of the diseased 

allele from one parent that can lead to diminishing of the enzyme activity while the normal 

allele is just adequate to maintain the vital cell metabolism (Gouya et al., 2004). The genes 

coding for the enzymes in the biosynthetic pathway are listed in table 2 with their 

chromosomal location, gene size and the number of the coding exons for each gene. 
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4.8.  Enzymatic defects in different types of porphyria 

 

Table 1. The different types of porphyria, the defective enzyme, the gene responsible for the 

disease, the mode of inheritance of each type and the OMIM reference number. 

 

porphyria sub-type Enzyme defect Gene name  
and location Mode of Inheritence OMIM  

ALAD deficiency 

porphyria 

(Plumbopophyria) 

δ-aminolevulinate 

dehydratase 

(ALAD) 

ALA dehydratase, 

9q34 Autosomal recessive #125270  

Acute intermittent 

porphyria 

Porphobilinogen 

deaminase 

Porphobilinogen 

deaminase,  

11q24.1-q24.2 Autosomal dominant #176000  

Congenital 

erythropoietic 

porphyria 

Uroporphyrinogen 

III synthase (UROS) 

Uroporphyrinogen 

III synthase,  

10q25.3-q26.3 Autosomal recessive #263700  

Hepatoerythropoietic 

porphyria 

Uroporphyrinogen 

decarboxylase 

(UROD) 

Uroporphyrinogen 

decarboxylase, 1p34 Autosomal recessive #176100  

Porphyria cutanea 

tarda 

Uroporphyrinogen 

decarboxylase 

(UROD) 

Uroporphyrinogen 

decarboxylase, 1p34 Autosomal dominant #176100  

Hereditary 

coproporphyria 

Coproporphyrinogen 

oxidase 

Coproporphyrinogen 

oxidase,3q12 Autosomal dominant #121300  

Variegate porphyria 

Protoporphyrinogen 

oxidase 

Protoporphyrinogen 

oxidase, 1q22-23 Autosomal dominant 

#176200  

 

Erythropoietic 

protoporphyria Ferrochelatase 

Ferrochelatase, 

18q21.3 Autosomal dominant #177000  
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Table 2. The genes coding for the enzymes in the heme biosynthetic pathway, chromosomal 

location, gene size and the number of the coding exons. 

 

Gene name Chromosomal 

location 

Gene size 

(kb) 

Number of 

coding exons 

ALAD 9q34 13 13 

PBGD 11q24.1-2 10 15 

UROS 10q25.2-26.3 34 10 

UROD 1p34 3 10 

CPO 3q12 14 7 

PPOX 1q21-23 5 13 

FECH 18q21.3 45 11 

 

 

 

4.9.   Identifying susceptible subjects 

The biochemical investigations that are done in laboratories for porphyric cases are a bit 

complicated because plenty of them show mild or sometimes no biochemical abnormalities 

during the asymptomatic stages. The laboratory biochemical investigations that detect 

porphyrin levels in plasma, erythrocytes, urine and stool differ in their potency to identify the 

porphyric patients depending on the clinical status of these patients and whether they are in 

remission or suffering an acute attack. Therefore, here comes the significant importance of the 

molecular analysis of the DNA in the potentially porphyric patients. An accurate diagnosis 

can be done in patients with clinical manifestations and positive family history even if they 

showed normal biochemical investigations (James and Hift, 2000). It has been stated that 

prepubertal children with abnormalities in any of the genes coding for heme biosynthesis 

could appear asymptomatic but still vulnerable to develop an acute attack or symptoms of 

porphyria at any time if not properly managed or exposed to a predisposing factor (Paslin, 

1992). 
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4.10.   Uroporphyrinogen decarboxylase (UROD) disorders 

Uroporphyrinogen decarboxylase (UROD) (UROD; E.C.4.1.1.37) is a cytosolic enzyme that 

catalyzes the decarboxylation of the acetate radicals of the uroporphyrinogen III to produce 

coproporphyrinogen III (Elder, 1998). The decrease of the UROD enzyme activity results in 

three metabolic disorders: sporadic porphyria cutanea tarda (s-PCT), familial porphyria 

cutanea tarda (f-PCT), and hepatoerythropoietic porphyria (HEP) (De verneuil, et al., 1984; 

Kappas, et al., 1995). Sporadic porphyria cutanea tarda (s-PCT) is the most clinically existing 

form worldwide. It results from the slight decrease in the UROD activity and it is only limited 

to the hepatic UROD. In s-PCT, there are no mutations associated in the UROD gene while 

there are predisposing factors that lead to the symptoms to develop. These predisposing 

factors could be smoking, alcohol intake, drugs like oral contraceptive pills and viral 

infections like hepatitis B or C and human immuno deficiency virus (HIV) (Rocchi, et. al., 

1986; Fargion, et al., 2003). Recently, it was reported that Tamoxifen; an estrogen receptor 

antagonist in the breast parenchyma (Cruz, et al., 2010) and olmesartan; Angiotenisn II 

receptor antagonist trigger manifestations of PCT (Mas-Vidal, et al., 2010). In familial 

porphyria cutanea tarda (f-PCT), an autosomal dominant trait (Kushner, et al., 1976),  The 

UROD enzyme activity almost decreases to half of that of normal in all tissues. The decrease 

in the enzyme activity is due to heterozygous mutation in the UROD gene (De Verneuil, et al., 

1978; Elder, et al., 1980; Munoz-Santos, et al., 2010). However, not all family members that 

inherit the UROD heterozygous mutation express the manifestations of the disease, so other 

predisposing factors like alcohol intake and drugs could play a role in the decrease activity of 

the enzyme (Hindmarch, 1986). In hepatoerythropoietic protoporphyria (HEP), an autosomal 

recessive trait, the UROD enzyme activity decrease between 5 % to 30 % of that of normal in 

all tissues. The decrease in the catalytic activity is due to homozygous mutation or compound 

heterozygous mutation in the UROD gene. It is a rare form of porphyria that usually appears 

from early childhood (De verneuil, et al., 1984; Smith, 1986, Sassa, 2000).  Nevertheless, 

parents of HEP patients have their enzyme activity usually around 50 % (Koszo, et al., 1990). 

 

4.10.1.   Genetics 

The human UROD gene is assigned to the short arm p34 on chromosome 1 spans over 3kb 

(Dubart, et al., 1986). The gene is formed of a single promoter, 10 exons, and a 

polyadenylation signal with a canonical AATAAA element (Romana, et al., 1987; Morán-

Jiménez, et al., 1996). The UROD gene codes for a primary polypeptide precursor formed of 
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367 amino acyl residues. The human UROD enzyme is a homodimer with a molecular weight 

of around 40.8 kDa (Phillips, et al., 1997). 

 

4.10.2.   Protein 

The human UROD enzyme is a homodimer with a molecular weight of around 40.8 kDa 

(Phillips, et al., 1997). The two subunits are arranged head to head with their active sites 

situated in the interface between the two dimers resembling one large active site surrounded 

by the polypeptide chains of the enzyme protecting it from the solvent as shown in figure 3. 

 

 

Figure 3. The structure of the UROD enzyme (Layer, et al., 2010). 

 

UROD catalyzes the fifth decaroxylation reaction in the heme biosynthetic cascade. The first 

report describing the decarboxylation of uroporphyrinogen to coproporphyrinogen by the 

UROD enzyme was by Mauzerall and Granick in 1958. In 1976, it was suggested that the 

carboxyl groups are removed from the acetate radicals in a clockwise manner starting from 

23 
 



the pyrrole ring D then sequentially from the rings A, B and C (Jackson, et al., 1976). The 

UROD has high efficiency in the substrate decarboxylation without neither a co-factor nor a 

prosthetic group, that's why it was described as a ‘‘benchmark for the catalytic proficiency of 

enzymes’’ (Lewis, et al., 2008). In 2001, it was proposed according to the crystal structure of 

the UROD, that the decarboxylation reaction of the acetate radical in the pyrrole ring D takes 

place in the active site of one monomer then the produced intermediate moves to the active 

site of the second subunit where the rest of the acetate radicals in the pyrrole rings A, B and C 

are sequentially decarboxylated (Martins, et al., 2001). Recently, it was shown that this 

movement of the substrate between the active sites of the two subunits is not necessary 

(Philips, et al., 2009). 

 

 

4.10.3.   Pathophysiology 

The defect in the UROD catalytic activity results in the accumulation of the porphyrins 

especially the uroporphyrins in different soft tissues. The excess uroporphyrins will be 

excreated in urine (a biochemical diagnostic tool in the disease) and will be deposited 

subcutaneous in these patients with f-PCT and HEP as well as in the hepatic parenchyma in 

late stages. Deposition of the photogenic uroporphyrins under the skin activates the mast cells 

that will secrete their proteases resulting in the separation between the two layers of the skin 

(the dermis and the epidermis). This is observed clinically as skin fragility and vesicular 

formation. Moreover, unkown interaction between the activated mast cells and the fibroblasts 

leads to cutaneous fibrosis. Also uroporphyrins activate the synthesis of the collagen by the 

fibroblasts leading to sclerodermoid changes (Lim, 1989). 
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Figure 4. Deposits of uroporphyrin in liver of a rat treated with hexachlorobenzene, 
mimicking human disese PCT (red fluorescence under UV light) (Schmid, 1960). 

 

 

4.10.4.   Epidemiology 

In general, both males and females are equally vulnerable to PCT (Aarsand, et al., 2009) 

although some studies assume that the disease in the aquired form is predominat in males 

(Bulat, et al., 2007). PCT is the most common subtype of porphyria with prevalence: 1:25,000 

in USA, 1:20,000 in Caucasians, 1:5,000 in the Czech and Slovak populations (Lambrecht, et 

al., 2007), 1:10,000 in Sweden (Rossmann-Ringdahl, 2005), 1:100,000 in Norway (Aarsand, 

et al., 2009), 2-5:1000,000 in the United Kingdom (Bleasel, et al., 2000). On the contrary, 

HEP is a very rare sub-type. fPCT and HEP are presented at any age, most propably with an 

early onset while sPCT is commonly presented around fourties. The frequency of mutations in 

21 independent HEP families are listed in table 3. 
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Table 3: Frequency of Mutations in 21 Independent HEP Families. 

 
 
Mutation Ancestry       n     Allelic         Allele  References 
                                                                     status               frequency  
 

-M1V  Hungrian        1     Hetero          1/42 Remenyik et al 2008 

-F46L  Spanish                     2        Homo          4/42  Ged et al 2002 

  British       Armstrong et al 2004 

-P62L*  Portuguese        1     Homo          2/42 Moran-Jimenez et al 1996  

-Q71X              Northern European  1     Hetero          1/42 Phillips et al 2007 

-V134Q British/German        1     Hetero          1/42 Meguro et al 1994 

-V166A Puerto Rican/        1     Hetero          1/42 Cantatore-Francis et al 2010 

Dominican 

-E167Q * Italian         1     Homo          2/42 Romana et al 1991 

-G168R Northern European  1        Hetero          1/42 Phillips et al 2007 

-G170D African         1     Homo          2/42 To-Figueras et al 2011 

-H220P* British/German        1     Hetero          1/42 Meguro et al 1994 

-G281E * Spanish/Tunisian     9     Homo/Hetero**    17/42 Roberts et al 1995 

-R292G* Dutch         1     Hetero          1/42 de Verneuil et al 1992 

-P235S* Argentina        2     Hetero          2/42 Granata et al 2009 

  Hungaria                Remenyik et al 2008       

-Y311C* Italian         1     Homo           2/42 Moran-Jimenez et al 1996  

-IVS9-1(G>C) *   Argentina        1     Hetero           1/42 Granata et al 2009 

-Del           Dutch         1     Hetero           1/42 de Verneuil et al 1992 

-645del1053*   Puerto Rican/        1     Hetero           1/42 Cantatore-Francis et al 2010  

  ins10            Dominican 

 

*  Mutations were identified in both HEP and f-PCT 

** 8 patients (7 Spanish and 1 Tunisian) were homoallelic and one Spanish heteroallelic 
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4.10.5.   Clinical picture 

PCT is the most common subtype of porphyria worldwide with onset in the middle age while 

HEP is the rarest form of porphyria and with early onset during childhood. HEP has more 

severe symptoms and signs than that of PCT as well as bad prognosis. Moreover, HEP does 

not require a trigger factor to manifest (Camagna, et al., 1998). Patients with f-PCT and HEP 

suffer mainly from skin photosensitivity on exposure to the sun light. The photosensitive 

reactions appear as redness, erosions that are susceptible to infections, crustings, milia, 

swellings and blisters with clear fluid and inflammation that usually heal slowly by scarring. 

These manifestations are often observed on the face, back of the hands, forearms and on the 

lower limbs. Hyperpigmentation and hypertrichosis on the cheeks are also sometimes visible 

especially in women. Rarely, few patients complain that their hair colour is getting dark and 

of scarring alopecia (Brazzelli, et al., 1999; Shaffrali, et al., 2002). In 18 % of the PCT 

patients, facial sclerodermoid changes develop due to the chronic irritation of the skin of the 

face by the sun exposure producing a clinically mask-face appearance (Fritsch, et al., 1998, 

Giunta, et al., 2009). Some patients were reported with ocular manifestations because of the 

porphyrins deposition on the eye lids and the lacrimal glands. These manifestations could be 

seen as periorbital dermatitis, scarring of the eye lid and/or the lacrimal gland (Zaborowski, et 

al., 2004).  Ophthalmic complications as scleral necrosis were also described but rarely 

reported (Altiparmak, et al., 2008). Patients with fPCT and HEP are sometimes presented by 

reddish discolouration of the urine (Horner, et al., 2013). In late cases especially in patients 

with HEP, liver manifestations occur due to accumulation of toxic porphyrin metabolites in 

the hepatocytes. This leads to liver cell inflammation and liver cirrhosis (Smith, 1986). It was 

found out that 30 % to 40 % of the patients with PCT suffer from hepatic cirrhosis 

(Lambrecht, et al., 2007). Neurological manifestations are usually not present in these 

patients. 
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Figure 5. Skin defects in patient with PCT 

 

 

4.10.6.  Diagnosis 

The biochemical identification of the different porphyrin precursors is nowadays 

recommended as the first procedure to diagnose which subtype of porphyria and to analyse 

the severity of the disease (Sassa, 2006). Uropoprhyrines and hepatocarboxylate porphyrins 

are markedly elevated in the urine samples of the patients with fPCT during acute attacks and 

in patients with HEP while PBG remain usually within the normal level (De Matteis, 1998).  

Plasma porphyrines and isocoproporphyrines in feaces could also be elevated (Anderson, et 

al., 2001). The fluorometric scanning upon excitation at 405 nm of clear non-hemolytic 

plasma is a useful laboratory technique to diagnose the different subtypes of porphyria. The 

plasma samples of the patients with PCT show a characteristic fluorometry emission between 

618-622 nm (ussually 619 nm) which is highly suggestive of the disease (Enriquez De 

salamanca, et al., 1993). 
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Figure 6. Plasma fluorometry, patient with PCT 

 

4.10.7.  Treatment 

Predisposing factors such as alcohol intake or drugs like Oral contraceptive pills (OCPs) with 

high estrogen content should be discontinued as well as avoiding exposure to direct sun light. 

Drugs that induce porphyria should be contra-indicated in these patients. The database for the 

porphyrinogenic drugs are listed on the following web page (http://www.drugs-

porphyria.org/) (Thunell, et al., 2007).  PCT varies from any other forms of porphyria in that 

it could be easily controlled whether through depletion of iron stores by phlebotomy or using 

low dose chloroquine that form complexes with uroporphyrinogen and facilitates its realease 

from the liver (Nordmann, et al., 2002).  Repeated phlebotomy (withdrawal of 400 – 500 ml 

of whole blood every 2 weeks for 3 or 4 months) is highly recommended to decrease the 

serum iron levels to the lower limit of the norm (< 25 ng/mL) which could be achieved after 5 

to 6 times. Hemoglobin levels should be always monitored to avoid incidence of anemia in 

these patients (Thunell, et al., 2000). Chloroquine, the drug of choice in treatment of malaria 

could be used as well in low doses to avoid hepato-toxicity in treatment of PCT. Twice a 

week dose of chloroquine could be administrated between the attacks to facilitate porphyrins 

excretion (Balwani, et al., 2012).  
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4.11.   Ferrochelatase (FECH) defect 

Erythropoietic protoporphyria (EPP; OMIM 177000) is an inherited metabolic disorder 

caused by the deficient activity of the final enzyme of the heme biosynthesis ferrochelatase 

(FECH; EC4.99.1.1) (Bloomer, 1982). The mitochondrial enzyme catalyzes the addition of 

the divalent iron to the protoporphyrin IX to produce heme. Lack of the FECH catalytic 

activity leads to accumulation of protoporphyrins in tissue leading to EPP (Magnus, et al., 

1961). 

 

4.11.1.   Genetics 

The FECH gene was primarily sequenced in 1990 (Nakahashi, et al., 1990) and a year later 

was mapped to the chromosome number 18 (18q22.31) (Whitecombe, et al., 1991).  It 

comprises 11 exons, spans over 45kb of genomic DNA and has an open reading frame of 

1269 bp. The gene encodes a primary polypeptide precursor of 423 amino acyl residues 

(GenBank D00726) which later undergoes proteolysis to the mature protein that consists of 

369 amino acids (Nakahashi, et al., 1990; Taketani, et.al., 1992; Brenner, et.al. 1992). The 

amino acyl residues 1–62 in each subunit constitutes the mitochondrial targeting sequence 

that is proteolyticaly cleaved during the protein processing.  

It was described that EPP has an autosomal recessive mode of inheritance (Balwani, et al., 

2012) and recently, it was found out in many patients that it has an autosomal dominant 

inheritance with incomplete penetrance conjoint with a wild type low expression allele 

(Anstey and Hift, 2007).  It has been firstly reported in France that the EPP clinical expression 

requires two molecular defects; mutation in the FECH gene with the coinheritance trans to a 

hypomorphic FECH*IVS3-48c allele that affects a splice site (Gouya, et al., 1999). 

Subsequently, this phenomenon of EPP inheritance was separately confirmed by many studies 

worldwide like in Japan (Nakano, et al., 2006), North America (Risheg, et al., 2003), Sweden 

(Wiman, et al., 2003), Israel (Schneider-Yin, et al., 2008), South Africa (Parker, et al., 2008) 

and in the United Kingdom (Whatley, et al., 2004). The inheritance of the intronic low 

expression allele leads to an invisible acceptor splice site (63 bases upstream of the usual 

splicing site) transcripting abberantly spliced mRNA that carries out rapid and easy 

degradation resulting in the decrease of the enzyme activity and EPP expression (Gouya, et 

al., 2002). In 2007, another compound hetero-zygosity for mutations in the promoter (-251G) 

and in intron 1 (IVS1-23T) of the FECH gene were suggested to decrease the allele 

expression (Di Pierro, et al., 2007). 
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The FECH gene mutations found in EPP patients could be classified broadly into three main 

groups; single nucleotide substitutions: including both the missense and the non-sense 

mutations, splice site mutations resulting in abnormal mRNA producing shortening of the 

protein and finally the frameshift mutations creating premature stop codon and rapid 

degradation of the RNA (Anstey and Hift 2007). 

Few number of EPP patients were reported by aquired somatic FECH mutations. These 

patients usually start to manifest for the first time after the age of 40. In these cases, EPP is 

usually accompanied by the hematological disease myelodysplastic syndrome (Sarkany, et al., 

2006) or with myeloproliferative diseases (Goodwin, et al., 2006). 

The available knowledge is still not enough to correlate the genotype with the phenotype to 

the extent that sometimes there is a clear difference in the presentation of EPP even among 

siblings (Sellers, et al., 1998). An example of the genotype-phenotype correlation, the 

seasonal palmer keratoderma has been only described in EPP patients that inherits compound 

heterozygotes or homozygotes FECH gene abnormalities (Mendez, et al., 2009). To date EPP 

as a result of FECH deficiency, has not been reported in the black south African race (Parker, 

et al., 2008).  

 

4.11.2.   Genetic counselling 

As previously mentioned, the classical EPP inheritance requires a FECH mutation on one 

allele and a hypomorphic trans allele IVS3-48C. Therefore, the probability in these patients to 

inherit the disease to their children is less than 2.5 % (Gouya, et al., 2006). Of course, 

screening of the patient’s partner for the low expression allele povides more accurate 

estimation of this probability. 

 

4.11.3.   Epidemiology 

EPP is considered the most common sub-type of porphyria in children and has been described 

in plenty of patients in different populations all over the world. EPP prevalence ranges 

between: 1:75,000 in Holland (Went, et al., 1984), 1:79,000 in Northern Ireland (Todd, 1994), 

1.75:100,000 in Slovenia (Marko, et al., 2007), 1:180,000 in Sweden (Wahlin, et al., 2011) 

and 1:200,000 in Wales in the UK (Elder, et al., 1990). To date, no prevalence studies in the 

Czech population have been done. It was assumed by (Holme, et al., 2006) that both males 

and females are equally vulnerable to the disease while other studies suggest that the disease 

is slightly predominant in males (Chantorn, et al., 2012; Lecha, 2003). 
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4.11.4.   Protein 

FECH (protoheme ferro-lyase, E.C. 4.99.1.1) is a homodimeric enzyme (86 kDa); consits of 

two identical subunits, each subunit contains a four-stranded parallel β -sheets surrounded by 

α –helices. The mature enzyme contains an iron sulphar [2Fe-2S] cluster per subunit (Chia-

Kuei, et al., 2001).  

During catalysis, the FECH enzyme disrupts the planar structure of the substrate 

protoporphyrin into a saddle conformation to allow the ferrous iron insertion (Medlock, et al., 

2007; Karlberg, et al., 2008; Wang, et al., 2009). The enzyme desolves the divalent metal 

during the chemical reaction and creates a bond between the ferrous iron and the two nitrogen 

atoms of the pyrrole rings producing ‘‘sitting-atop’’ complex. The remaining  two amino 

groups of the other pyrrole rings are depronated leading to a metalo-porphyrin (Al-Karadaghi, 

et al., 2006). The subunits of the human FECH enzyme have two identical active site pockets 

situated on the same surface within the internal mitochondrial membrane. The bottom of the 

active site pocket contains polar hydrophylic  amino acyl residues while the margins of the 

pocket are lined by hydrophobic residues. The crystal structure of the human enzyme 

substrate complex showed that the enzyme engulfs the subtrate, so that it is totally surrounded 

by the active site pocket (Sigfridsson, et al., 2003). Figure 7 shows the crystal structure of the 

FECH enzyme. 
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Figure 7. The structure of the FECH enzyme (Layer, et al., 2010). 

 

 

4.11.5.   Pathophysiology: 

For the EPP to manifest, the FECH activity should decrease to 10 % - 35 % of the normal 

level (Kong, et al., 2008). The deficiency in the enzyme activity leads to protoporphyrin 

accumulation in tissues especially in the bone marrow reticulocytes, erythrocytes and in the 

liver parenchyma. The protoporphyrin absorbs light and transfers the excess energy to oxygen 

producing photodynamic reactions that lead to lipid, protein and DNA damage of the cells 

(Lim, 1989). The protoporphyrin content in the erythrocytes are more than 90 % free and not 

conjugated with zinc. The ultraviolet light leads to the release of the free protoporphyrin from 

the erythrocytes without even rapture of the cell membrane. The diffused free protoporphyrins 

bound to the albumin in the plasma. Subsequently, the bound protoporhyrins are uptaken by 

the endothelial cells of the blood vessels. The exposure to the ultra-violet light leads to the 

excitation of these porphyrins which cause endothelial and tissue damage (Schneider-Yin, et 

al., 2000). The subcutaneous deposition of the protoporphyrins and the irradiation activate the 
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mast cell to mediate an inflammatory reaction which is reflected clinically as erythema, 

oedema and urticuria (Lim, 1989). The excessive production and the progressive 

accumulation of the protoporphyrins are deposited also in the hepatic parenchyma and 

canaliculi. The insoluble protoporphyrins tend to form crystalline pigments in the hepatocytes 

causing mitochondrial damage as well as in the bile ducts forming gall stones (Bloomer, 

1988). The deposited protoporphyrins in the hepatocytes are observed as birefringent crystals 

with Maltese cross shape under polarised light while they appear as amorphous deposits in the 

biliary canaliculi (Thunell, et al., 2000). 

 

4.11.6.   Clinical picture 

The photosensitivity to sun light usually starts to appear in infancy and in the early childhood 

between 2 and 5 years (Gross, et al., 2000; Murphy, 1999; Cox, et al., 1998). The acute 

attacks are characterized by burning, itching, redness and skin inflammation especially on the 

sun exposed areas that last for six days after sun exposure. Subsequently after sun exposure, 

patients complain of tingling, prickling and burning sensations. The severity of the symptoms 

depends on the intensity and the exposure duration to sunlight (Holme, et al., 2006). Nail 

lesions like photoonycholysis and transversal leuconycholysis were noted in some patients 

with EPP. Permanent hyperkeratosis and scarring may develop after recurrent episodes on 

exposure to sun light. Some EPP patients manifest characteristic linear furrows around the 

lips. Nevertheless, the seasonal keratoderma that is observed on the palms has been reported 

in some EPP patients which may denote that the type of EPP inheritance is autosomal 

recessive (Holme, et al., 2009). Moreover, about 30 to 50 % of EPP patients suffer from 

microcytic hypochromic anemia due to the decrease synthesis of the hemoglobins 

(Rademakers, et al., 1993; Holme, et al., 2007). In late stages, the progressive accumulation of 

the protoporphyrins in the hepatocytes leads to hepatitis, chronic liver cirrhosis and finally 

liver failure. The insoluble protoporpyrines precipates in the biliary tract resulting in gall 

stones and cholestasis (Went, et al., 1984). Complications of chronic liver failure like portal 

hypertension, oesophageal varices, splenomegaly and ascites may develop in end stages. 

Progressive polyneuropathy has been reported especially among EPP patients with liver 

complications due to protoporphyrin accumulation in the nerve cells (Muley, et al., 1998). 

Ophthalmic manifestation as optic nerve atrophy due to vascular occlusion in the fundus was 

reported in a male japanese patient (Tsuboi, et al., 2007).  
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4.11.7.   Diagnosis 

The protoporphyrins in the red blood corpuscles are shown to be highly elevated by the high-

performance liquid chromatography and mostly in the free form (not conjugated with Zinc) 

(Patel, et al., 2000). The detection of the fluorescent red blood corpuscles (RBCs) in an 

unstained blood smear by the fluorescence microscopy is diagnostic in the EPP patients. 

Subsequently, the red plasma fluorescence emission is performed and shows a peak at 634 nm 

with excitation at 405 nm (Whatley, et al., 2008). Protoporphyrin levels are usually found 

elevated in the stools of the patients while mostly being within the normal levels in the urine. 

Morever, the enzyme activity is possible to be measured through its zinc chelation properties 

but it is not commonly performed because of the difficulties in the technical procedures of the 

test (Cox, 1997). Most EPP patients develop a heptic liver failure as a complication from 

progressive deposition of porphyrin precursors in the hepatocytes. That’s why frequent liver 

function tests, haemochromatosis tests, ultrasonography, computed tomography scans (CT) 

and magnetic resonance imaging (MRI) of the liver, gall bladder and the biliary tract should 

be considered on regular bases. Routine liver biopsy every 5 years is also recommended in 

EPP patients with a family or past history of liver disease and/or with abnormal liver function 

tests (Anstey and Hift, 2007). 

 

4.11.8.   Treatment 

Predisposing factors and direct exposure to sun light should be avoided. Wearing proper 

clothes covering the body exposed areas to sunlight together with an adequate sunglasses and 

a hat are practical ways to avoid manifestations resulting from the sun light exposure. Even 

the application of yellow filters blocking the radiation under 460 nm is necessary during 

surgeries and in dental caring clinics to avoid the photosensitive reactions induced by the 

theatre light in these patients (Meerman, et al., 1994; Wahlin, et al., 2007). Topical anti-

inflammatory drugs could be used to relieve the sunlight induced dermatitis. Oral 

administration of β-carotene (90-120 mg/day in children and 180-300 mg/day in adults) 

enhance somehow tolerance to sun light in these patients. α-melanocyte-stimulating hormone 

analog is recently recommended to decrease the photosensitivity reactions that results from 

the sun exposure (Harms, et al., 2009). The previously mentioned medications are generally 

used for symptomatic treatment but there are two ways to decrease the elevated levels of 

protoporphyrins. The first approach is the administration of 4-16 g of Cholestyramine on daily 

basis. The bile sequestrating agent prevent the re-absorption of the porphyrins from the 
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entero-hepatic circulation by binding to them and facilitating the faecal excretion resulting in 

some clinical progress (Frank, et al., 1995; Wells, et al., 1980). Although Cholestyramine has 

been used for a long time and is still used in the disease management but recently in the 

United Kingdom it has been reported that it is not an effective therapeutic drug in cases of 

uncomplicated EPP (Tewari, et al., 2012). The second approach is the exchange transfusion or 

hypertransfusion but it is not suitable for long term management (Dobozy, et al., 1983; 

Wahlin, et al., 2007). EPP patients develop mild microcytic anemia which should be 

considered during management. Oral iron was shown to be ineffective, therefore it should be 

administrated intra-venous. In some cases, the whole blood transfusion is necessary if anemia 

is severe and accompanied by thrombocytopenia (Thunell, et al., 2000). The major 

complication of EPP is the progressive hepatic failure, therefore liver transplantation is now 

indicated. In 1980, the first EPP patient with an end stage hepatic disease was operated for 

liver transplantation and showed marked improvement (Wells, et al., 1980). Definitely, EPP 

patients with liver transplant still show high levels of protoporphyrin levels in blood as the 

transplantation will neither change the FECH gene abnormality nor the consequences of the 

FECH deficiency. The clinical picture improves after the transplantation but still the 

symptoms exist. Therefore, bone marrow transplantation should be considered as well in these 

patients. For that reason, recent studies recommend sequential liver and bone marrow 

transplantation (Metselaar, 2007; Rand et al., 2006). 
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4.12.   Molecular diagnosis of porphyria 

Physicians could sometimes misdiagnose porphyria because of being a rare disease and 

because of the common manifestations that come underneath a wide spectrum for the 

differential diagnosis of the disease. Moreover, the biochemical investigations are sometimes 

inaccurate and vague especially if the patients are not in the acute phase. Therefore, in the last 

two decades the molecular screening techniques based on the DNA analysis have shown 

 a great significance to confirm the clinical and the biochemical diagnosis of porphyria and  

to discover the asymptomatic carriers. It gives a detailed vision about the current pathology 

 in the patients as well as it helps to identify other family members who could be diseased or 

carriers. Nowadays, it is highly recommended as the last diagnostic procedure to confirm the 

gene carrier status (Frank and Christiano, 1998; Sassa, 2006). To date, hundreds of different 

mutations have been identified in the UROD and in the FECH genes 

http://www.hgmd.cf.ac.uk/ac/index.php. The molecular analysis helps in discovering the 

underlying genetic cause in every individual patient, appropriate drug prescription, proper 

management and prevention of the acute attacks. The clinical and the biochemical diagnoses 

of PCT, HEP and EPP are best confirmed by the mutation analyses of the UROD and the 

FECH genes respectively. 
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AIMS  OF  THE  STUDY 
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Specific aims of the study were as follows: 

 

 

 

5.1 To optimize appropriate analytical methods for detection of the DNA 

variations in the FECH and in the UROD genes.  

 

5.2 To conduct genetic diagnosis for patients with f-PCT, HEP and EPP from 

Slavic and Arabic and origin.  

 

5.3 To perform the expression, the purification and the activity measurement of the 

human mutant UROD enzyme with introduced pathological mutation of interest in the E.coli.  

 

5.4 In the case a molecular defect will be found in HEP, to construct graphical 

representation of UROD structure and prepare  

 

5.5 An alignment of a segment surrounding the mutated defect in human UROD 

gene with corresponding orthlogous sequences identified in selected metazoa, plants, fungi, 

bacteria and archea species. 

 

 5.6 To study extended Czech family with EPP 

 

5.7 To study the frequency of the low expression allele IVS-48c in the FECH gene 

in the healthy controls from the Czech population.  

 

 

 

 
 

 

 

39 
 



 

 

 

 

 

 

 

 

 

 

      6. 
 

HYPOTHESES 
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6.1 To test the hypothesis that in biallelic defects UROD need to keep residual 

activity to sustain acceptable clinical status.  

 

6.2 To test the hypothesis that the severity of metabolic phonotype depends on 

catalytic activity of UROD.  

 

6.3 To test the hypothesis on extended family that clinical manifestation of EPP is 

always connected with the appearance of the low expression allele and the mutation within 

FECH gene.  

 

6.4 To test the hypothesis that low incidence of EPP in Czech Republic is caused 

by low frequency of low expression allele IVS3-48C in the Czech population.  
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      7. 
 

MATERIALS  AND 
METHODS 
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7.1.   Ethics 

The current research was carried out in accordance with the Declaration of Helsinki of 

the World Medical Association, and was approved by the Committee of Medical Ethics at the 

First Faculty of Medicine, Charles University in Prague.  

Informed consent whether from the participated adults or from the sponsored parents 

of the underaged participants was obtained.  

 

7.2.1.  Patients and healthy controls examined 

More than 50 cases from different populations were examined for the UROD and the FECH 

gene disorders on the molecular level in our laboratory during this work. Fourteen patients (7 

males and 7 females) with porphyria were investigated for the mutations in the UROD and 

 the FECH genes. Relatives of the proband were also genetically examined. 

7.2.2.  Healthy controls 

The study enrolled a total of 312 healthy controls from the Czech population. 149 were males 

and 163 were females. All the samples in the study group were unrelated adults and were 

obtained through out the longitudinal collection of the control samples of healthy individuals 

from West Slavic origin in our laboratory. 

 

7.3.   Genomic DNA isolation 

The genomic DNA was extracted from the peripheral white blood cells by the common 

salting out procedure. Genomic DNA was isolated from the low volume blood samples using 

the QIAamp DNA Blood Minikit (QIAGEN, Hilden, Germany) according to manufacturer´s 

protocol.  

 
7.4.   Polymerase Chain reaction 
7.4.1.  UROD gene 

Matching  pairs of primers were designed using the GeneBank reference sequence in the 

intronic area encircling the desired exons to avoid missing of the splicing site mutations.  

The sequence of the 8 set pair of the used primers and the the PCR product size are listed in 

table 4. The reaction was prepared using a commercially available kit PPP master mix (2x 

concentrated PPP Master Mix contains 150 mMTris-HCl, pH 8.8 (25oC), 40 mM (NH4)2SO4, 

0.02% Tween 20, 5 mM MgCl2, 400 µM dATP, 400 µM dCTP, 400 µM dGTP, 400 µM 

dTTP, 100 U/ml Taq DNA polymerase, dye, stabilizers and additive). Top-Bio s.r.o.; Product 

No.: P134. 
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Table 4. List of the primers and the corresponding length of the PCR products of the UROD 

gene. 

Fragment Primer F (5'→3') Primer R (5'→3') Length of the PCR product 

1 gacgctcttggttccctaca attaaggccctgggatgaac 360 

2 ctgaatcggccttatgaacc ttgctaggtggcagactgaa 720 

3 and 4 ggtaagagtcagggtctggaaa ccaggaggaaggaaaaggag 600 

5 ttctccttttccttcctcct gagccaccaccctcaacc 540 

6 actctggaaggtctggggtag gtgtcaggatgggcttgg 540 

7 agtgctgggatctgaggaaa ggccttgctacaaccactaatc 540 

8 and 9 actggagggcagcagaag cacaaatgaacaacagcaacaa 780 

10 cttcatgcctgggtccata gtcctggaaacgatcaatca 419 
    

 

 

The amplified PCR products were optimized and carried out in a total volume of 25 µl 

according to the protocols shown in tables 5 and 6. 

 

 

 

Table 5.  PCR reaction blend (all fragments) 

 

Chemicals Stock concentration Final concentration in 1 reaction 

 PP mix 2x 1x 
* DMSO 100% ⃰ 4% or 8% 

Forward primer 3.2 pmol/μl 0.4 mM 

Reverse primer 3.2 pmol/μl 0.4 mM 

gDNA 50-100 ng/μl 50-100 ng 
 

* Sigma-Aldrich, St. Louis, MO, USA, ⃰ 4% used only for the PCR of fragment number 5. 
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Table 6.  PCR conditions 

 

 Step Temperature Time 

1. initial denaturation 95°C 2´30´´ 

2. denaturation 94°C 30´´ 

3. annealing ⃰ 40´´ 

4. extension 72°C 50´´ 

5. 30 times repeation cycle 2 to 4 

6. final extension 72°C 10´ 

 
 ⃰ 65°C for all the fragments except for the fragment number 5, the annealing temperature was 
62°C. The PCR products were amplified using DNA Engine Dyad Peltier Thermal Cycler 
(Bio-Rad Laboratories, Waltham, MA, USA). 
 

 

7.4.2.  FECH gene 

The promoter and the 11 coding exons of the FECH gene with their flanking intronic regions 

were amplified using the matching primers as shown in table 7.  

 

Table 7. List of the primers and the corresponding length of the PCR products of the FECH 

gene. 
Fragmen

t Primer F (5'→3') Primer R (5'→3') Length of the PCR product 

1 TAGGAGTCCAGCAGGTTTTG  GTGACAATAACCAAGGCTCT 669 bp 

2 GTCAGGAATTATGCTCTGAGG  AGCTATTGAAAGGAAGCCAAG 348 bp 

3 AGATTAGAGTTTGCTGGCTG  ACCATTACCAGATACGCATT 320 bp 

4 TCTCTGCATGGGTGTTGTGT 
 

AAGGCTAAAGGTCAAGGGATAA 
605 bp 

5 GTCAGTGCCATAGGAAATTACA  GACTGACCTGAACTCTCGTGT 406 bp 

6 CACTAGAACTGACATCAATAATC  AGTAAGGCTCAGAAGGACA 444 bp 

7 CAATGCTGAGAGGCTGGACTGT CTTGCACTGGGCTTAGGACATA 374 bp 

8 + 9 TCATCATTGGTGCAGGAGAC TGAGGACACCGTACATGCAA 947 bp 

10 GCGAACAGTTGAAGTCAGAC CAGACATAGTTATAGGTGGGT 402 bp 

11 CCAAGCCAGAGCGCTGACCT CTCTCCGTACCCTTTCGGGAGG 586 bp 
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The PCR amplification cycles were done on DNA Engine Dyad Peltier Thermal Cycler (Bio-

Rad Laboratories) in a total volume of 25 µl for the fragments number 3, 5, 6, 7 and 10 while 

the rest of the fragments was prepared in a total volume of 40 µl according to the protocols 

shown in tables 8 and 9. 

 

 

 
Table 8. PCR reaction blend (all fragments) 

 

Chemicals Stock concentration Final concentration in 1 reaction 
a PP mix 2x 1x 
b DMSO 100%  4% 

Forward primer 3.2 pmol/μl 0.4 mM 

Reverse primer 3.2 pmol/μl 0.4 mM 

gDNA 50-100 ng/μl 50-100 ng 
 

aTop Bio; b Sigma-Aldrich 

 

DMSO is used only in the reactions for the fragments number 1, 7 and 11.
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Table 9. PCR conditions of the different fragments. 
 

9.A. PCR conditions for fragments 1, 8+9 and 11. 
 

 Step Temperature Time 
1. initial denaturation 94°C 2´30´´ 
2. denaturation 94°C 30´´ 
3. annealing 58°C 30´´ 
4. extension 72°C 50´´ 
5. 32  repetition cycle 2 to 4 
6. final extension 72°C 10´ 

 
 
 
 

9.B. PCR conditions for fragment 2. 
 

 Step Temperature Time 
1. initial denaturation 95°C 2´30´´ 
2. denaturation 94°C 30´´ 
3. annealing 60°C 40´´ 
4. extension 72°C 40´´ 
5. 35  repetition cycle 2 to 4 
6. final extension 72°C 10´ 

 
 
 
 
 

9.C. PCR conditions for fragment 3. 
 

 Step Temperature Time 
1. initial denaturation 94°C 2´ 
2. denaturation 94°C 30´´ 
3. annealing 60°C 30´´ 
4. extension 72°C 40´´ 
5. 32  repetition cycle 2 to 4 
6. final extension 72°C 10´ 
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9.D. PCR conditions for fragment 4. 
 

 Step Temperature Time 
1. initial denaturation 95°C 2´30´´ 
2. denaturation 94°C 30´´ 
3. annealing 60°C 40´´ 
4. extension 72°C 50´´ 
5. 32  repetition cycle 2 to 4 
6. final extension 72°C 10´ 

 
 
 
 
 

9.E. PCR conditions for fragments 5, 6 and10. 
 

 Step Temperature Time 
1. initial denaturation 95°C 2´30´´ 
2. denaturation 94°C 30´´ 
3. annealing 60°C 40´´ 
4. extension 72°C 40´´ 
5. 32  repetition cycle 2 to 4 
6. final extension 72°C 10´ 

 
 
 
 
 

9.F. PCR conditions for fragment 7. 
 

 Step Temperature Time 
1. initial denaturation 94°C 2´ 
2. denaturation 94°C 30´´ 
3. annealing 62°C 30´´ 
4. extension 72°C 40´´ 
5. 32  repetition cycle 2 to 4 
6. final extension 72°C 10´ 
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7.5.   Purification of the PCR products 

Some PCR products were directly purified after the amplification reactions while other PCR 

products were extracted using electrophoresis from the agarose gel (sigma). The purification 

of the PCR products is done whether using QIAquick gel extraction kit (QIAGEN) or Wizard 

SV gel and PCR clean-up system (Promega). The purification procedures were done 

according to the manufacturer’s protocol. 

 
7.6.   DNA sequencing 

The sequence of the purified samples was processed on the automatic sequencer ABI PRISM 

3100-Avant genetic analyzer (Applied Biosystems, Foster city, CA, USA). 

The chromatographic results were analyzed by the SeqScape Software v2.5 (Applied 

Biosystems) or Chromas Pro v1.5 (Technelysium, Tewantin, Australia). 

 
7.7.   Site-directed mutagenesis 

The cDNA sequence of some patients with UROD disorders showed mutations which have 

been previously reported on the following web page http://www.hgmd.cf.ac.uk/ while other 

patients revealed a novel mutation. For the newly found mutation, we had to confirm that it is 

responsible for the development of the disease. This was performed by the site directed 

mutagenesis technique and the enzyme assay. 

The plasmid Vector for the mutagenesis and the further expression of the wild type of the 

human UROD was kindly constructed and supplied by prof. de Verneuil Hubert from 

Biotherapies des Maladies Genetiques et Cancers at the University of Bordeaux (France). 

Vector pGEX-2T (Amersham Biosciences, Orsay, France) was used to construct the vector 

pGEX-UD for the expression of the human enzyme UROD. Site-directed mutagenesis was 

created to produce the required mutation using Quik Change Site-directed Mutagenesis Kit 

(Stratagene, La Jolla, CA, USA) according to the manufacturer’s protocol with the mutagenic 

primers listed in table 10. Complementary mutagenic primers were prepared in compliance 

with the web-based Primer Generator (http://www.stratagene.com/qcprimerdesign). 

The integrity of the mutated inserts was therefore checked by sequencing to confirm  

the success of the process of the mutagenesis. 

Table 10. The primers used for site directed mutagenesis 

SNP (p.) Primer F (5'→3') Primer R (5'→3') 

Phe55Ile gggctgcccaggacattttcagcacgtgt acacgtgctgaaaatgtcctgggcagccc 
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7.8.                Protein expression and purification 

7.8.1.             Protein expression 

The human UROD proteins were expressed in the E. coli strain codon plus BL21 

(Stratagene) and cultured in Terrific Broth medium (TB) containing 100 µM riboflavin and 

125 µM ampicillin (Sigma-Aldrich). The dividing cells with the wild type and the mutated 

constructs were incubated overnight at 37°C in (TB) medium containing 100 µM 

riboflavin and 10 µg/ml of kanamycin (Sigma-Aldrich). The cells were induced to produce 

the desired proteins by adding 2 mM isopropyl 1-thio-β-D-galactopyranoside (IPTG) 

(Fisher HC, Houston, TX, USA). The bacterial pellets were grown under aerobic 

conditions for 24 hours at 18°C and subsequently were harvested by centrifugation at 4°C 

for 10 minutes at 7000 g.  

 
7.8.2.             Protein purification  

The procedures for the protein purification were always done at temperature 4°C. The cell 

pellet was resuspended in buffer [300mM NaCl, 50mM (NaH2PO4)2H2O, 10% glycerol 

and 5 mM DTT; pH 6.8] that contains the protease inhibitors [100 mM 

phenylmethysulfonil fluoride; 0.1 mM aprotinin; 1 mM pepstatin and 1 mM leupeptin (all 

by Sigma-Aldrich)]. The bacterial cell pellet was proteolyzed using lysozyme (Sigma-

Aldrich) with final concentration 20 µg/ml, incubating on ice for 20 minutes and then 

sonicated three times for five minutes at amplitude 70 % with a five minutes rest between 

each sonication cycle. Ultra-centrifugation is then done at 4°C to obtain the desired soluble 

protein in the supernatant (Beckman J25, Brea, CA, USA) for one hour at 100 000 x g. 

Equilibrated Glutathione Sepharose 4B (GE Healthcare) is applied to the supernatant 

soluble protein after being purified from the cell debris for 1 hour at 4°C. Later 

centrifugation is done to precipitate the desired soluble protein which is bound to the 

sepharose marker for 5 minutes at 4°C at 500 x g. The precipitated protein is subsequently 

washed 10 times with the same buffer used for homogenization. Elution of the desired 

protein with the same buffer containing in addition Glutathione is done up to 5 times to 

obtain a highly purified fraction of the desired protein. The purity of the generated protein 

was determined by SDS-polyacrylamide gel electrophoresis (PAGE) and the fractions 

showing a single band on the gel were extracted and concentrated (Centriprep YM-30, 

Millipore Corporation, Billerica, MA, USA). The activity measurements of UROD 

proteins were performed in collaboration with laboratory of Prof. Hubert de Verneuil in 

Bordeaux, France. 
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7.9.                Multiplex Ligation-dependent Probe Amplification (MLPA) 

DNA sequencing is not suitable to detect the big deletions, duplications and copy number 

variations (CNV) in the genes. Here comes the importance of MLPA assay in the molecular 

diagnosis of the genetic diseases because of these DNA abnormalities (Rusu, et al., 2007; 

Stupia, et al., 2012). 

MLPA is a modern, relatively cheap, rapid and reliable assay that we recently introduced in 

our laboratory to detect the big deletions or duplications in the FECH gene that cannot be 

identified by the usual PCR. This method helped us to amplify many targets by a one set 

pair of primers. We used the SALSA MLPA kit P412 verion A1 (MRC-HOLLAND, 

Amesterdam, Holland) in which the probes are designed for the hybridization of specific 

target sequence in the FECH gene as well as several other gene sequences. In this method, 

the gDNA is denaturated in TE buffer at 98°C for 5 minutes. Hybridization is carried out 

using 1.5 μl of MLPA buffer and 1.5 μl the SALSA probe-mix for each reaction. 

Hybridization is done at 95°C for 1 minute followed by incubation at 60°C for 1 hour. 

Subsequently, ligation with the probes is carried out by adding 3 μl ligase-65 buffer A, 3 μl 

ligase-65 buffer B, 1 μl Ligase-65 to 25 μl distilled water. The ligation is done at 54°C for 

15 minutes followed by incubation at 98°C for 5 minutes. Finally, a PCR is prepared by 

adding 2 μl of the SALSA PCR primers to 0.5 μl of polymerase in 7.5 μl distilled water. 

All the previous steps were carried out in the genetic analyzer (Applied Biosystems3500xL, 

USA). The analysis of the fragments was carried out by the ABI PRISM 3100/3100-Avan 

Genetic analyze (Applied Biosystems3500xL, Foster city, CA, USA). The obtained data 

were checked by the softwares Peak Scanner v1.0 and Gene Mapper v4.0 (both Applied 

Biosystems, Foster city, CA, USA). 

 

7.10.                 Real-time PCR copy-number variation assay 

This technique was used to double check the molecular results of the FECH gene that was 

obtained by MLPA. Therefore, it helped us to verify the obtained data by MLPA. 

The presence of one copy of the FECH gene was confirmed by a real-time PCR copy-

number variation assay (Hs00926149_cn; Applied biosystems) according to the 

manufacturer’s instructions. The reference gene used was RNASE P (Device StepOnePlus). 
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7.11.                 Restriction Fragment length Polymorphism (RFLP) 

RFLP was used in this study as a quick and reliable method to detect the sequence variants 

between the different healthy controls in a population. We used it to identify the frequency 

of the three different variants of the low expression allele IVS-48 T/C, IVS-48 T/T and IVS-

48 C/C in the third intron of the FECH gene. The study was carried out on a set of 312 

healthy control samples (149 males and 163 females) from the Czech population. The gDNA 

samples are broken down into fragments by the restriction enzymes that are separated by the 

gel electrophoresis according to their length. The RFLP reaction was carried out at 37°C for 

5 to 10 minutes using the enzyme Bacillus brevis (BbvI) (Fermentas Biotech, Czech 

republic). The restriction primers used in this study are listed in table 11. 
 

Table 11. RFLP primers 

SNP (p.) Primer F (5'→3') Primer R (5'→3') 

IVS3-48c GTGGAGCACAGCTGGGTATT      ATCCTGCGGTACTGCTCTTG 
   

 

 

The amplified PCR products were prepared in a total volume of 12 µl according to the 

protocol shown in tables 12 and 13. 

 
Table 12.  PCR reaction blend (all fragments) 

Chemicals Stock concentration Final concentration in 1 reaction 

 PP master mix 2x 1x 

Forward primer 3.2 pmol/μl 0.4 mM 

Reverse primer 3.2 pmol/μl 0.4 mM 

gDNA 50-100 ng/μl 50-100 ng 
 

 

Table 13.  PCR conditions for the RFLP. 

 Step Temperature Time 

1. initial denaturation 95°C 2´ 

2. denaturation 95°C 30´´ 

3. annealing 56°C 30´´ 

4. extension 72°C 30´´ 

5. 30 times repetition cycle 2 to 4 

6. final extension 72°C 10´ 
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8.1.   Molecular analysis of the UROD gene in patients with f-PCT and HEP 

We analyzed the promoter and the 10 protein-coding exons with their flanking intron regions 

of the UROD gene in many cases in different populations suspected of whether f-PCT or 

HEP. 

 

8.1.1.    Slavic Czech population 
8.1.1.1.  Patients fPCT1 and fPCT2 
 

To date, more than 60 mis/nonsense mutations have been identified in the UROD gene. 

(Human Gene Mutation Database, accessed in February 2015, http://www.hgmd.org/) 

We found a previously reported non-sense mutation in the UROD gene in two unrelated 

Czech patients with f-PCT. The heterozygous mutation was found to be exactly the same 

in both cases: in  (c.616)  in exon 6 of the UROD gene. The UROD sequence of these patients 

showed C→A transition at position 206 in exon 6 leading to TAA instead of CAA ( UAA is 

a stop codon) as shown in figure 8. The point mutation leads from Glutamine to a stop codon 

substitution p.[Gln206*];[=]. Accession number on Biobase HM971362.  
 

 

 

Figure 8. The sequence of the heterozygous mutation [Gln206*];[=] in in the UROD gene in 

the patients with fPCT. 
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8.1.1.2.  Patient fPCT3 

The patient started to suffer from dark urine about 5 years ago. Then later on (about 3 years 

ago) the patient started to complain of a skin inflammation and erosions on the dorsum of the 

hand. Hyperpigments were also noticed on the hands. Urinary uroporphyrinogen was found 

to be elevated. The patient was diagnosed based on clinical and biochemical findings as f-

PCT and a request for UROD gene analysis was sent to our laboratory. The UROD molecular 

analysis showed heterozygous point mutations found in c. 399, c.400, c.401in Exon 5 of the 

UROD gene as shown in figure 9. The heterozygous T to C transition at c.399 doesn’t lead to 

any change in the amino acid sequence while the missense mutations G to C transition at 

c.400 and the T to A transition at the c.401 leads to the substitution from valine to a glutamine 

(polar amino acid). (c.399-401 delins CCA) (V134Q). The substitution from a non-polar 

amino acid (Valine) to the polar amino acid (Glutamine) leads to change in the helical 

structure of the protein. (134 position lies in a helix). This suggests the reason of the decrease 

in the UROD enzyme activity. The inserted deletion was reported before associated with 

another point mutation by (Meguro, et al., 1994). So based on the previous report, we assume 

that the found mutation leads to decrease in the UROD catalytic activity resulting in the 

occurance of the disease in the female patient. Later, the DNA sample of the sister’s patient 

was sent to our laboratory and the same mutation was found in the UROD gene. 

 

 

 

 

Figure 9. The sequence of the heterozygous point mutations found in one of the female sisters 

with f-PCT. 
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8.1.1.3.  Patients fPCT4 and fPCT5 (Mother and son) 

The mother was suffering from morning red urine and recurrent skin inflammations. The 

urinary uroporphyrin was investigated and found to be slightly high. Her son was not 

complaining yet from any health problems. The UROD molecular analysis in both the mother 

and her son showed a splice site mutation in intron 9 heterozygous c. 942+1 G>A as shown 

in figure 10. We assume that the found mutation in the intron 9 will lead to unproper splicing 

of the mRNA resulting in an abnormal protein with diminished catalytic activity. The 

mutation was reported before by (Savino, et al., 2010). 

 

 

 

 

Figure 10. The sequence of the heterozygous c. 942+1 G>A  point mutations found in intron 

9 in the female patient with f-PCT. 
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8.1.2.  Arabic patients 
 

In this study, the UROD gene was analyzed on the molecular level in three cases from the 

Egyptian population (brother, sister and their mother). The two siblings were diagnosed 

clinically as having cutaneous porphyria at the Department of dermatology at Cairo university 

hospital. They were presented by red urine after birth. Figure 11 shows hypertrichosis on the 

cheecks of the young boy and figure 12 shows hypertrichosis as well in the cheeks and 

increase hair growth on the dorsum of the forearms in the girl. Biochemical investigations 

were carried out for the siblings and showed increased levels of polycarboxylated porphyrin 

in the urine. Biochemical findings were not available for us. The mother neither suffered from 

any symptoms nor showed any signs of porphyria. The molecular sequence of the 10 exons 

of the UROD gene was done in our laboratory for all the cases. Unfortunately, the father was 

not available for DNA analysis. The results revealed a novel missense homozygous mutation 

in the siblings and thus were diagnosed as HEP. Their mother had shown to be a healthy 

heterozygous carrier of the mutation as shown in figure 13. The UROD gene sequence in the 

Egyptian family showed T→A transition at position 163 in exon 3 (c.163T>A), that leads to 

the substitution of phenylalanine to isoleucine at the codon 55 (F55I). According to the crystal 

structure of the UROD protein, position 55 in the amino acid chain is demonstrated in the 

substrate binding site (Whitby, et al., 1998). A cartoon representation of UROD structure 

(PDB 1r3y, only one monomeric unit is displayed) with coproporphyrinogen product in 

space-filling rendering with the sidechains participating in the direct binding of the product 

are displayed in ball and stick. Phe 55 (mutated in the probands to Ile) is highlighted in bold 

and yellow as shown in figure 14. Alignment of a segment surrounding F55 (arrow) in human 

UROD with corresponding orthlobous sequences identified in selected metazoa, plants, fungi, 

bacteria and archea is presented in figure 15. 
 

To prove the above results, we were in need to determine the activity of the UROD enzyme in 

the probands. The identified homozygous missense mutation in the siblings was created into 

the pGEX-UD vector by site directed mutagenesis. Both the recombinant mutant UROD 

protein and the recombinant wild-type UROD were purified in our laboratory and sent to 

Prof. H. De Verneuil at the University of Bordeaux, France for measurement of the enzyme 

activity. Figure 16 shows both the purified UROD wild type protein and the mutated UROD 

protein on an SDS-PAGE.  The specific activity of the mutated UROD protein towards  

pentacarboxyl porphyrin I as a substrate was determined and compared with the recombinant 
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wild-type UROD. The activity measurement of the F55I mutant UROD was found to be 19 % 

of the wild-type towards pentaporphyrinogen I as shown in table 14. The marked decrease in 

the enzymatic activity of the mutated UROD confirms the hypothesis that the newly found 

mutation in the probands is responsible for the disease. 

 

 

 
 

Figure 11. Hypertrichosis on the face. 

 

 

 

 
 

 

Figure 12. Hypertrichosis on the cheeks & increase hair growth over the dorsal aspects of the 

forearms. 
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Control 

 

Son 

 

Daughter 

 

Mother 

Figure 13. Sequencing profiles for the mutation of the UROD gene in the different family 

members. TTT indicates the normal allele (phenylalanine) present in the control sample. 

ATT, the mutant allele (Isoleucine) is present at the homozygous state in the probands and 

heterozygous state (WTT) in the mother; W means A and T when both ATT and TTT alleles 

are present. 
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Figure 14. Graphical representation of UROD structure (PDB 1r3y, only one monomeric unit 

is displayed) with coproporphyrinogen product in space-filling rendering. Sidechains 

participating in the direct binding of the product are displayed in ball and stick. 

Phe 55 (mutated in the probands to Ile) is highlighted in bold and yellow. 
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Figure 15. Alignment of a segment surrounding F55 (arrow) in human UROD with 

corresponding orthlobous sequences identified in selected metazoa, plants, fungi, bacteria and 

archea. Species and UniProt sequence identifiers from top to bottom: Homo sapiens, P06132; 

Drosophila melanogaster, Q9V595; Trichoplax adhaerens, B3S2H7: Arabidopsis 

thaliana Q93ZB6; Saccharomyces cerevisiae, P32347; Escherichia coli, P29680; 

Halopiger xanaduensis, F8DD35. Only conserved amino acids are shown and their 

functionality is colored according to ClustalW scheme (www.jalview.com). F55 has been 

found conserved in all sequences inspected (over 1100).  
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Figure 16. The purified wild-type UROD protein on the right hand side and the purified 

mutated UROD F55I on the left hand side on SDS-PAGE. 

 

 

 

Table 14. Expression of the normal and mutated GST-UROD fusion proteins 

 

 

 

 

Data are given as picomoles of coproporphyrinogen I formed per hour and per milligram 

of protein. 

 

 

 

 

Plasmid Mean (SD) Range No of assays Residual activity  
(% vs WT) 

pGEX-UROD 3,1  ±  0,9 2,6 - 3,2 3 100 

pGEX-UROD-F55I 0,6  ±  0,1 0,5 - 0,7 3 19 
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8.2.   Molecular analysis of the FECH gene in the patients of Czech, Slovak 

Slavic origin and normal Czech control 

 

8.2.1.  Screening the frequency of the low expression allele IVS3-48C in the 

FECH gene in the Czech control cohort 

 

EPP is a rare autosomal dominat disorder that requires the coinheritance of a FECH gene 

abnormality together with a wild-type low expression allele IVS3-48c to  produce the marked 

decrease in the FECH catalytic activity and to develop the clinical manifestations of the 

disease (Gouya, et al., 1999). 

The frequency of the low expression allele was determined in many populations world-wide. 

The frequency of the IVS3-48c allele in the Japanese population was found to be 45 % 

(Nakano, 2006),in the Chinese population (Han) 41 % while being 31 % in the southeast 

Asians (Kong, et al., 2008)  

The frequency in the white French was estimated around 5,5 % (Gouya, et al., 2006) and in 

the British population was 13 % (Berroeta, et al., 2007). 

Morever the frequency in the Ashkenazi Jews is 8 % (Schneider-Yin, 2008), in the Swiss 

population 7 % (Schneider-Yin, et al.,  2009) , in the Spanish population 5.2 % (Herrero, et 

al.,   2007), in the north African population 2.7 %, in the black west African populations is 

less than 1 % (Gouya, et al., 2006) and in the Italians is 1 % (Aurizi, et al., 2007). 

Till the time being we have no figure about the frequency of the low expression allele in the 

Czech population. The study was carried out in compliance with the principles of Helsinki 

declaration on normal candidates from Czech west Slavic origin of random ages.  

We screened the frequency of the splice site modulator in 624 alleles in 312 controls,149 

controls were males and 163 controls were females. The Czech healthy control identified 277 

homozygotes IVS3-48t/t and 35 heterozygotes IVS3-48c/t. Therefore, the frequency was 

estimated as 5.5 % in the Czech population, 5 % among males and 6 % among females as 

shown in table 15.  
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Table 15. showing the Incidence of distinct genotypes of the FECH IVS3-48T/C 

polymorphisms in males, females and total Czech controls. 

 

 
Total male control 
screened (n=149) 

Total female control 
screened (n=163) 

Total Czech control 
screened (n=312)  

Genotype        

IVS-48T/C 

15 subjects (5 % 
individuals have 

 C allele) 

20 subjects (6 %  
of screened individuals have 

C allele) 

35  subjects (5,5 % of all 
screened subjects have C 

allele)  

IVS-48T/T 134 subjescts  143 subjects  277 subjects   

IVS-48C/C 0 0 0  
     
     
 
 
 
8.2.2.  Molecular analysis of FECH gene in patients with EPP 

 

We have analyzed the 11 protein-coding exons of the FECH gene together with their flanking 

intron regions in patients with EPP of Czech and Slovak origin. The promoter and the low 

expression allele of the FECH gene were also analyzed in all these patients. In this study, we 

identified mutations in the FECH gene in three individual Czech patients and one Slovak 

patient. 

 

8.2.2.1.  An analysis of extended Czech family with EPP 

A Czech family of eight members in four generations was studied as illustrated in the 

pedigree shown in figure17. The probands 40 years old male and his mother 67 years old, 

have suffered from dermatological problems on exposure to sun light since early childhood. 

They were diagnosed as EPP based on clinical findings and biochemical investigations; 

 a distinct peak in the plasma emission scan at 634 nm and high erythrocyte protoporphyrin 

content. 
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Figure 17. Genealogical tree of the EPP family with p.W28* mutation.  A pedigree of the 

proband´s family.   - female,  - male, full filled - clinically manifest porphyria, half-filled 

- clinically silent. 

Polymorphisms are shown as haplotypes (left and right columns) with the mutant alleles in 

red, from top to bottom: IVS1-23C/T, mutation within FECH exon 2 G84A m; and the low 

expression allele polymorphism IVS3-48C/T. 
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8.2.2.1.1.   Biochemical results 

We measured the free protoporphyrin content in both probands with EPP (individuals II/2 and 

III/1 in figure 17) as well as in the clinically normal grandson (individual IV/1 in figure 17), 

finding it high in the probands (common in patients with EPP) while normal protoporphyrin 

concentrations were found in the grandson shown in table 16. 

 

 

Table 16. Showing Protoporphyrin (PP) content in erythrocytes, PP - protoporphyrin 

(Normal values: Total PP ≤2.00 µmol/µl) 

 

Subject Total PP (umol/) Zinc  PP %   Free PP %  

Proband I (son) 24.5 11 89  

Proband II (mother) 23,64 7 93  

Grandson (IV/1) 1,16 - -  

 

 

 

 

8.2.2.1.2.   Molecular results 

Molecular genetic analyses of the ferrochelatase gene revealed a novel heterozygous G84A 

transition in exon 2 as shown in figure 18. The point mutation leads from a tryptophan to a 

stop codon substitution (p.W28*). The amino acid tryptophan at position 28 is located in area 

of mitochondrial targeting sequence spanning amino acid residues 1-62 that is removed 

during proteolytic processing. Mutation analyses were carried out on eight members of 

proband´s family. We found the same mutation in both probands (the mother & the son). Two 

other family members also showed the G84A mutation but are meanwhile clinically silent as 

shown in the pedigree in figure 17. The mother and the son with EPP are both heterozygous 

for intronic single nucleotide polymorphisms (SNP) IVS3-48C/T which is required for the 

expression of the EPP and IVS1-23 T/C with a presumed role in EPP pathogenesis (Gouya et 

al,1999). Given the available data, it seems that the CAT haplotype (IVS1-23 T/C; G84A; 

66 
 



IVS3-48C/T) combined with TGC haplotype precipitated in EPP manifestation in the two 

probands, whereas the combination of TGC or CAT with the wild-type CGT did not lead to 

any clinical consequences. 

 

 

 

 

 

 

Figure 18. G84A mutation in exon 2 in the FECH gene with comparison to a control 

sequence below. 
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8.2.2.2.   Results of EPP5 patient   

A female Slovak patient (EPP5) was clinically diagnosed as porphyria and the blood sample 

was sent to our laboratory for molecular analysis. Analysis of the whole FECH gene was 

performed and revealed a novel heterozygous nonsense mutation C→A transition at position 

264 in exon 7 of the FECH gene leading to TAA instead of TCA ( UAA is a stop codon). The 

point mutation leads from Serine to a stop codon substitution (S264X) that results in 

a truncated protein as shown in figure 19. Unfortunately, no relatives of the proband were 

available for the molecular study of the FECH gene.The low expression allele IVS3-48 T>C 

was found to be heterozygous. SNPs that were found on analysis of the FECH gene are listed 

in table 17. A missense mutation S264L, affecting the same codon has been previously 

reported, in an Italian patient (Aurizi, et al., 2007). 
 

Control 

 
 

Mutation: 

 

 

Figure 19. The S264X mutation in exon 7 of the FECH gene with comparison to a control 

sequence above. 

68 
 



 

 

Table 17.  SNPs found in the FECH gene in the EPP5 patient. 

 

 

Position Polymorphism Polymorphism 

Intron 3 

 

IVS3-48 T>C T/C 

Exon 9 Homozygous 
polymorphism in 

bp 32957 

 

G/G 

Exon 11 homozygous 
polymorphism in 

bp 36778 

 

C/C 
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8.2.2.3.   Findings in patient EPP6 

 

A middle age male of Czech origin was diagnosed both clinically and biochemically as EPP. 

In this patient, the molecular analysis of the FECH gene was performed. PCR of all the exons 

with the flanking introns together with the promotor was done. The sequence of the gDNA 

didn’t show any mutation. The low expression allele IVS3-48C was found to be heterozygous. 

Therefore, a MLPA was performed and we were able to identify a big heterozygous deletion 

in the promoter and exon 1 of the FECH gene. To double check the obtained data, a real time 

PCR copy number assay was performed for the FECH gene and confirmed the obtained 

results. The MLPA results that were found in the patient EPP6 are shown in figure 20. The 

SNPs that were identified are listed in table 18. Few SNPs that were identified were 

synonymous variants while other SNPs were of genetic importance.  

 

 

 

Figure 20. The deletion in exon 1 of the FECH gene in the young Czech patient with EPP. 
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Table 18. The SNPs found in the FECH gene of patient EPP6. 

 

Position Polymorphism Inheritance 

promotor 

 

c. 252 A>G 

c. 67+76 C>T 

Homozygous 

Homozygous 

Intron 1 c.68-23 C>T Heterozygous 

Intron 2 c. 314 +23 A> G Homozygous 

Intron 3 c. 315- 48 T>C Heterozygous 

Exon 7 c. 798 C>G Homozygous 

Intron 9 

Exon 9 

c.913-62_913-61 del AG 

c.921 A> G 

Heterozygous 

Homozygous 

Exon 11 c.*248c> T Heterozygous 

 

 

We assume that the deletion in exon 1 of the FECH gene affects the translation initiation 

codons. Therefore, the mutation together with the low expression allele IVS3-48C lead to 

a non-functioning protein. Moreover, few of the SNPs found in patient were synonymous 

variants while others were more important. For instance, the SNP variant c.252 A>G in the 

promoter reduces the gene transcription (Di Pierro, et al., 2005) and the SNP c.68-23 C>T 

in intron 1 most propably change splicing (Nakahashi, et al., 1992). Research is still going on 

in our laboratory to identify the exact part of the FECH gene which is deleted in patient EPP6. 
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9. 

DISCUSSION 
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9.1.  General part of discussion 

Enzymes involved in the biosynthesis of heme and heme metabolism are critical for living 

organisms. Their conservation across biological taxa offers a wealth of data sheding light at 

basic mechanisms supporting life functions. Studies of mutations leading to phenotypic 

manifestation such as a disease, are directly leading to discoveries of functionally important 

primary structures of enzymes. Disease is in this respect a consequence of a direct disturbance 

of protein function and biological medicine is becoming an important contributor to general 

biology, in this case, biology of heme and its availability.  

Nowadays, the molecular analysis of the DNA of the porphyric patients showed a significant 

importance in their diagnosis. Being an accurate technique, it provides us to confirm the 

clinical and the biochemical diagnosis and moreover to identify other family members of the 

patient’s family that were not diagnosed before. Early identification of other family memebers 

with the disease by the genomic analysis enables them to recieve an early proper management 

even before the development of the disesase and to be less susceptible for acute attacks. 

 

9.2.  Study of the Czech cohort of patients with fPCT 

In the present study, patients with f-PCT with mutations in the UROD gene were 

characterized at the molecular level. Following mutations were found, all of them were 

previously published: 

fPCT1 and fPCT2 (non-related patients) = p.[Gln206*];[=]. 

fPCT3 = pV134Q 

fPCT4 and fPCT5 (mother and son) = Heterozygous c. 942+1 G>A  

Two unrelated patients with f-PCT of Czech origin (fPCT1 and fPCT2) showed exactly the 

same mutation which was previously reported in the literature for Italian patient (accession 

number on Biobase HM971362). We assume that the identified mutation could be a frequent 

mutation in the UROD gene in the Slavic population. In the near future, we plan to perform 

the molecular analysis of the UROD gene in more Czech patients to widen our knowledge 

about existing mutations. 
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9.3.  Study of molecular pathology of new case of rare HEP in Arabic family 

from Egypt (See 11.1.2) 

Enzymes involved in the biosynthesis of heme and heme metabolism are critical for living 

organisms. Their conservation across biological taxa offer a wealth of data sheding light at 

basic mechanisms supporting life functions. UROD is the fifth enzyme of the heme 

biosynthetic pathway (figure 1) which catalyzes the removal of four carboxymethyls from 

uroporphyrionogen reversing it to coproporhyrinogen thus affecting the sterical proportions of 

the substrate and tranforming it into further enzymatically manageable new substrate (Elder et 

al., 1978; Silva et al., 2005). Interestingly, this enzyme homodimerizes with a low monomer-

dimer dissociation constant of 0.1 μmol/l (in case of human UROD) (Philips et al. 2007). 

The dimerization is also found in the case of bacterial UROD, nevertheless it is not clear if the 

dimerization is necessary for UROD enzymatic function. Porphyring ring biosynthesis shares 

a common pathway for animals and plants including UROD enzyme (Heinemann et al., 2008)  

HEP is a rare disease: fewer than 100 cases of HEP have been described in the literature  

(Liu et al, 2013). Table 3 depicts the frequency of the mutations of 21 unrelated families 

reported in the literature. A genetic homogeneity has been observed in Spain with the 

predominance of the G281E mutation. By contrast, a great heterogeneity of mutations has 

been found for other countries in Europe, Africa or America. Because of the heterogeneity of 

the mutations, the clinical outcome is very variable, with mild or moderate phenotypes 

difficult to distinguish with a familial PCT or a more severe phenotype similar to CEP or 

homozygous VP. For example, the genotype F46L found in two different families (Ged et al 

2002, Armstrong et al 2004) is associated with a mild phenotype. By contrast, the genotype 

G281E is associated with a severe phenotype resembling CEP. 

This report describes a new missense mutation of the UROD gene at the homoallelic state in 

young patients in an Egyptian family, characteristic of the HEP. The observed mutation in the 

probands was present at the homozygous state and their mother showed to be a heterozygous 

carrier. There was no possibility to obtain the blood from the father, but he should be bearing 

the same mutation as the mother did. This is more evident because father and mother of the 

affected siblings were cousins. 

The mutation in the probands leads to the substitution of phenylalanine to isoleucine at 

position 55 of UROD. According to the crystal structure (Phillips et al., 2003), this residue 

participates in the loop between Helix 2 and 3 and interacts tightly with the substrate in the 

active site (Figure 14). Moreover, F55 is conserved in both eukaryota and prokaryota 
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(Figure15). This offers a possibility to study this new mutation in UROD active site with a 

specific human phenotype and enzyme activity using a prokaryotic expression system.  The 

F55I mutant protein expressed in bacteria exhibits 19 % of the wild-type protein activity 

(Table 14). We do not have possibility to investigate biological samples of affected 

individuals to measure directly UROD enzyme activity.  However, the relatively moderate 

skin problems of the children correlate well with the high residual activity of the UROD 

(figure 11, 12; table 14). 

The mutation identification helps us to better understand the disease and helps in counselling 

to affected families. We report the first cases of HEP in the Egyptian population based on 

molecular diagnosis of the UROD gene. Because of very low number of the HEP patients 

worldwide, the identification of a novel UROD mutation and its characterization broaden our 

current knowledge on the molecular heterogeneity of the HEP worldwide. 

In the mutation described in this paper, an aromatic residue is replaced by a bulky aliphatic 

one. The stacking interaction of three aromatic residues (figure14) forming the bottom of the 

substrate-binding site is thus disrupted and the substrate binding becomes probably much 

looser. The absolute conservation (figure 15) of the mutated residue indicates that the optimal 

arrangement in the vicinity of the substrate has been reached early in the evolution and no 

further diversion in this region was possible.  

To date, there are 109 known mutations in the UROD gene in humans. Their detailed 

molecular analysis is likely to contribute to discoveries of new biological roles and functions 

of this evolutionarily conserved enzyme. 

9.4.  Study in FECH gene 

On the other aspect of our study, we performed molecular analysis of the FECH gene for 

many patients with EPP in our laboratory. The EPP patients from the Slavic origin that were 

analyzed for the FECH gene always inherited the heterozygous form of the low expression 

allele IVS3-48C. Therefore, we hereby confirm the importance of the co-inheritance of the 

low expression allele to produce the marked decrease in the FECH activity and to develop the 

obvious clinical manifestations as reported before by (Gouya, et al., 1999). Moroever, we 

identified two novel mutations in patients with EPP which broadens the molecular 

heterogeneity of the FECH gene.  
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9.4.1.  Analysis of molecular pathology of EPP5 and EPP6 patients 

We identified a novel mutation in EPP5 patient that broadens our knowekedge about the 

heterogeneity of the disease. Moreover, in EPP6 patient, we assume that the deletion in exon 

1 of the FECH gene affects the translation initiation codons. Therefore, the mutation together 

with the low expression allele IVS3-48C lead to a non-functioning protein. Moreover, some 

of the SNPs found in patient were synonymous variants while others might be more 

important; the SNP variant c.252 A>G in the promotor reduces the gene transcription (Di 

Pierro, et al., 2005) and the SNP c.68-23 C>T in intron 1 propably change splicing 

(Nakahashi, et al., 1992). Research is still going on in our laboratory to identify the exact part 

of the FECH gene which is deleted in these patients. 

 

9.4.2.  EPP in extended Czech family (See 11.1.1) 

To date, more than 130 mutations in FECH gene have been reported worldwide. We 

identified a novel missense mutation in the FECH gene in four members in a Czech family, a 

transition of G84A in exon 2 leading from a tryptophan to a stop codon substitution causing 

premature ending of translation. For clinical manifestation of EPP, a synergy of a private 

mutation within FECH gene and the presence of low expression IVS3-48C allele in trans is 

needed in majority of cases (Meerman, 2000; Gouya et al.,1999; Richard et al., 2008, Tahara 

et al., 2010) Indeed, the two patients with manifest EPP inherited, apart from the G84A 

variant, also the hypomorphic allele IVS-48C (and the IVS1-23T intronic variant) which is 

necessary for the EPP phenotype (Tahara et al., 2010). As both intronic variants are 

apparently inherited in a single haplotype block (Figure17), it is impossible to assess the 

distinct impact of IVS1-23T in combination with G84A mutation.   

9.4.3.  Screening the frequency of the low expression allele IVS-48C in the FECH 

gene in the Czech control cohort 

So far, just few patients with EPP were diagnosed in the Czech Republic despite a good 

availability of a laboratory diagnosis of this disorder. According to our knowledge, there were 

only 5 families in the last three decades, in three patients molecular defect was shown 

(including one described in this thesis, Martasek P., personal observation). 

We, therefore, performed a screening for the frequency of low expression allele in control 

Czech (west Slavic) Caucasian population. Such study was not performed in any Slavic 
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population yet. Previously, it has been reported that the frequency of the IVS3-48C allele in 

the Japanese population was 45 % (Nakano et al., 2006), in Chinese (Han) 41 % (Kong et al., 

2008), in southeast Asian 31 %, in white French  6.4 % (Gouya et al., 2006), in British 13 % 

(Berroeta et al., 2007), in Ashkenazi Jews 8 % (Schneider-Yin et al., 2008), in Swiss 

population 7 % (Schneider-Yin et al., 2009), in Spanish 5 % (Herrero et al., 2007), in north 

African 2.7 %, in black west African populations <1 % (Gouya et al., 2006) and in Italians 

1% (Aurizi et al., 2007).  

We screened the frequency of the IVS-48C allele in 624 alleles in 312 Czech control 

individuals, 149 subjects were males and 163 subjects were females. The Czech control 

subjects identified 277 homozygotes IVS3-48T/T and 35 heterozygotes IVS3-48C/T. 

Therefore, the frequency of IVS-48C allele was estimated as 5.5 % in the Czech population, 

5% among males and 6 % among females as shown in table 15. 

These results invoke the attention of the health care professionals in the Czech Republic with 

the diagnosis of EPP and to be aware to investigate patients with intolerance to sun-exposure 

to the diagnosis of the disease. Nevertheless, we highlight the importance of the molecular 

analysis in the diagnosis of EPP as it gives a full picture about the pathology for better 

understanding of the disease and help physicians to identify asymptomatic carriers and 

therefore avoid further propagation of the disease. 

Our results from the first Slavic Caucasian screening of 624 alleles in Czech population thus 

indicate the overall IVS3-48C allele frequency of 5.5 %, comparable to the above mentioned 

reports from other West Caucasian populations. While the frequency of IVS3-48C allele is 

most likely not the reason for the low incidence of EPP in Czech Republic, it remains to be 

determined whether distinct protective variant or complex rearrangements of FECH or other 

genes involved in EPP pathogenesis underlie this phenomenon.  
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10. 
 

CONCLUSION 
 

 

 

 

 

 

 

 

 

 

78 
 



 

 

 

 

10.1  Genotyping both FECH and UROD genes which are responsible for EPP, fPCT 

and HEP, respectively, the heterogeneity of the FECH and UROD genes were shown in 

patient of Slavic and Arabic origin. 

 

10.2  We described two novel mutations in the FECH gene and one novel mutation 

in the UROD gene. 

 

10.3  We report the first cases of HEP in the Egyptian population based on molecular 

diagnosis of the UROD gene. Because of very low number of the HEP patients worldwide, the 

identification of a novel UROD mutation and its characterization broaden our current 

knowledge on the molecular heterogeneity of the HEP worldwide 

 

10.4  We confirmed the importance of the inheritance of the low expression allele 

IVS3-48C for the EPP manifestation in the Czech population. The importance of the low 

expression allele IVS3-48C for the clinical manifestations was confirmed by analysis of 

extended Czech EPP family as well as in one single case. 

 

10.5  Our results from the first Slavic Caucasian screening of 624 alleles in Czech 

control population thus indicate the overall IVS3-48C allele frequency of 5.5 %, comparable 

to the reports from other West Caucasian populations. 

 

10.6  In clinical genetics settings, the mutation identification helps us to better 

understand the disease and helps in treating and counselling the affected families. 
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