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1 Introduction 

The development of tissue engineering as a new promising discipline for the 

repair of various defects and injuries is primarily connected with the production of new 

tissues or whole organs in vitro. In the preparation of new tissue prosthetics it is crucial 

to use an appropriate scaffold as a carrier of different kinds of new cells. Highly-porous 

scaffolds with interconnected pores are favoured in tissue-engineering applications 

(Sato T. et al., 2004). Biodegradable nanofibers produced by electrospinning are 

receiving much attention nowadays. These scaffolds contain fibers in the diameter of 

the extracellular matrix (ECM; Khil M.S., et al., 2005), which plays a pivotal role in cell 

adhesion, proliferation, migration and differentiation (Khil M.S. et al., 2011). The 

optimal scaffold in tissue engineering should mimic the natural ECM and thus provide 

an appropriate microenvironment for the cells of new formed tissues. The big 

advantages in using nanofibers as a scaffold for tissue regeneration are found in their 

topographical features, which can be easily adjusted to fit specific applications (Lukas 

D. et al., 2009; Bhardwaj N. and Kundu S.C., 2010; Grafahrend D. et al., 2011).  

More than a hundred surgical meshes have been designed for use in abdominal 

wall hernia repair procedures (Shankaran V. et al., 2011). However, no single mesh 

has yet demonstrated the ability to simultaneously promote host tissue remodelling 

and the high-strength repair of abdominal wall defects (Ebersole G.C et al., 2012). The 

ideal mesh does not yet exist, and still needs to be developed. One of the possibilities 

on how to effectively improve the properties of the surgical meshes for incisional hernia 

repair that has been used till now is to combine them with other promising tissue 

engineered scaffolds, or to completely replace the meshes through them.  
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1.1 Hernia in general 

An abdominal hernia is an abnormal protrusion of the intra-abdominal contents 

through a defect in the abdominal wall. This defect may occur either as an indirect 

hernia that is congenital or a direct hernia that is acquired. Abdominal wall hernias are 

very common. Approximately 50,000 hernioplasties are performed each year in 

Germany alone (Bittner R. et al., 2014) and 100,000-200,000 incisional hernia repairs 

are performed annually in the United States (Flum D.R. et al., 2003). Operations for 

abdominal wall hernia are important from the medical and socio-economical 

perspective because of their high frequency, especially in the elderly, and the potential 

to cause more serious complications. 

 

 

 

 

 

Figure 1. Abdominal wall hernia. The circumference of the bowel and progressive situation. (A) 

partial involvement of the bowel circumference without obstruction. (B) Subacute obstruction. (C) 

Complete obstruction and strangulation. 

Notes: Adapted from Bay-Nielsen M., 2013. 

Complications of abdominal wall hernias can lead to incarceration with a 

subsequent acute obstruction and strangulation, which even could cause a life 

threatening situation (Figure 1). Incarceration is the state when an external hernia 

cannot be reduced into the abdomen. Incarceration is caused by (a) a tight hernia sac 

neck; (b) adhesion between the hernia contents and the sac lining, with the possible 
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development of previous ischemia and inflammation; (c) development of pathology in 

the incarcerated viscus, e.g. a carcinoma or diverticulitis in the incarcerated colon; (d) 

the impaction of faeces in an incarcerated colon (Bay-Nielsen M., 2013). 

1.1.1 Types of hernias 

Abdominal wall hernias are classified as external either when the hernia sac is 

clinically palpable or occult external due to the presence of ansa within the abdominal 

wall, which do not emerge on the surface (Fisch A.E. and Brodey P.A., 1981). It could 

be congenital or acquired through trauma or after surgery. Abdominal wall hernias are 

considered the most frequent external hernias (Lee G.H. and Cohen A.J., 1993; Miller 

P.A. et al., 1995). 

Inguinal hernia could be classified as an oblique external (indirect) hernia or a 

direct hernia. Both of them occur due to the acquired weakness and dilatation of the 

internal inguinal ring. Inguinal hernias are more prevalent in males. An indirect hernia 

is localized laterally to the inferior epigastric vessels whereas a direct hernia is 

localized medially (Ekberg O. and Kesek P., 1987). 

Femoral hernias are rare in comparison with inguinal hernias. They are more 

common in women between 30 and 60 years of age who have been pregnant or are 

obese, but they can also arise in men. They usually occur on the right side (Ianora 

A.A., 2000).  

Ventral hernias, also called primary abdominal wall hernias, include all hernias 

localized in the anterior abdominal wall except for inguinal hernias (Harrison L.A. et al., 

1995). 

Umbilical hernia is a very common type of ventral hernia. This hernia represents 

a protrusion through the linea alba in the region of the umbilicus. Umbilical hernias are 



17 
 

most common in females (Lee G.H. and Cohen A.J., 1993). Frequent risk factors are 

obesity, multiple pregnancies and ascites (Miller P.A. et al., 1995).  

Epigastric hernias are less common and can develop in both women and men. 

It occurs along the xipho-umbilical line through the stretching of the linea alba and 

usually develops in people born with a weak spot in the abdominal muscle (Miller P.A. 

et al., 1995).  

Spigelian hernias are truly rare and occur in less than 2% of patients with any 

anterior abdominal wall hernias (Hiller N. et al., 1994). They are generally acquired 

lateral to the rectus muscle and below the umbilicus.  

Parastromal hernias are caused by the protrusion of a bowel ansa near an 

ileostomy or a colostomy (Etherington R.J. et al., 1990; Lee G.H. and Cohen A.J., 

1993). Most of these hernias occur as a consequence of technical errors during 

surgery. Other risk factors are obesity, chronic coughing and a distended abdomen 

(Lee G.H. and Cohen A.J., 1993).  These types of hernias are excluded from the group 

of incisional abdominal wall hernias although they are by definition incisional hernias. 

Parastromal hernias are included in a different group requiring specific properties and 

treatments (Muysoms F.E. et al., 2009).  

The last main type of hernia is an incisional hernia. 

1.2 Incisional hernia 

For an incisional hernia there was the decision to use the definition proposed by 

Korenkov et al. An incisional hernia is: “Any abdominal wall gap with or without a bulge 

in the area of a postoperative scar perceptible or palpable by clinical examination or 

imaging” (Korenkov M. et al., 2001). 
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1.2.1 Classification of incisional abdominal wall hernia 

A general classification of incisional abdominal wall hernias is important for an 

objective comparison of publishing results and future hernia studies. It is necessary to 

know whether various medical cases described in different studies are comparable. 

Until 2009 there were suggested several classifications in the literature primarily for 

incisional hernias but the authors were uncertain for a long time. For example the 

classification proposed by Chervrel and Rath in 2000 was simple and the required data 

to match the classification were easily obtained (Chevrel J.P. and Rath A.M., 2000). 

Unfortunately, this classification has not been commonly used in the literature. Thus 

several members of the European Hernia Society suggested the current classification 

for incisional abdominal wall hernias (Figure 2; Muysoms F.E. et al., 2009).  

 

 

 

 

 

 

Figure 2. Classification of an incisional abdominal wall hernia according to localisation. (A) Five 

midline subgroups. (B) Four lateral subgroups.   

Notes: Adapted from Muysoms F.E. et al., 2009. 

 Muysoms et al. divide an incisional hernia according to main localisation into a 

midline and lateral group. The midline group is subsequently divided into 5 subgroups 

named M1- M5, moving from the xiphoid to the pubic bone (Figure 2A). The lateral 
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group is divided into 4 other groups named L1-L4, and is presented in Figure 2B 

(Muysoms F.E. et al., 2009).   

Complementary classification includes information about the size of a hernia 

when the weight and height is measured or it was accepted to use a semi-quantitative 

division, taking only the width as a measurement. The size of the hernia is then divided 

into 3 groups (W1  4 cm; W2 ≥ 4-10 cm; W3 ≥ 10 cm). The last parameter included 

the information if an incisional hernia is a recurrence and how many time after previous 

repair (Muysoms F.E. et al., 2009). 

1.2.2 Incidence of incisional hernia and the need for using prosthetic 

repair 

An incisional hernia is the most common postoperative complication, affecting up 

to 20% of patients after a midline incision and is associated with high morbidity and 

significant socio-economic costs (Sugerman H.J. et al., 1996; Hoer J. et al. 2002).  The 

treatment of incisional hernias using primary wound closure (simple suture) and fascia 

doubling in Mayo’s technique had a recurrence rate of more than 40% (Mayo W.J., 

1899; Paul A. et al., 1998). Progress in the knowledge of reinforcements of the 

abdominal wall using prosthetic meshes has reputedly reduced the rate up to 10% in 

relation to the type of hernia and the technique used (Conze J. et al., 2005). In contrast 

to this data there is the often cited randomised controlled trial study from Holland 

revealing the 10-year cumulative rate of recurrence after incisional hernia repair even 

at an unacceptable level of 63% for suture repair and 32% for prosthetic repair (Burger 

J.W. et al, 2004). In 2008 Cochrane’s review of 3 trial studies comparing open primary 

suture repair of incisional hernia and open prosthetic repair showed recurrence rates 

of 54% and 16%, respectively (den Hartog D. et al., 2008). The cumulative incidence 
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of re-operation after incisional hernia repair, with or without a surgical mesh, has 

exhibited a linear rise over the years. An implantation of a mesh did not reduce the risk 

of recurrence – it only delayed the onset of hernia recurrence by 2-3 years (Flum D.R. 

et al., 2003). 

Synthetic meshes have become a standard aspect of care in ventral and 

incisional hernia repair, even though the recurrence rates are still very high (Usher F.C. 

et al.,1958). Incorporating polymeric meshes during hernia repair has demonstrated 

the reduction of recurrence rates, minimizing of pain, improving patient outcomes 

postoperatively in general, and is not associated with the increased incidence of 

complication (Luijendijk R.W. et al., 2000; Burger J.W. et al, 2004).  

1.2.3 The basic operation technique in prosthetic incisional hernia 

repair 

Worldwide, there is insufficient coherence on the terminology for a prosthetic 

mesh position either during a laparoscopic or open approach to incisional hernia repair. 

Thus the European Hernia Society has attempted to unite the existing terminology and 

proposethe definition of positions listed in Table 1 and the illustration represented by 

Figure 3 (Muysoms F. et al., 2012).  

Another discussed topic related to ventral and incisional hernia repair techniques 

is the use of the laparoscopic approach. The laparoscopic repair of hernias was 

introduce in the 1990s with potential advantages such as the need for smaller incisions, 

a decrease in wound infection, less consumption of narcotics after surgeries and a 

shorter hospital stay (Park A. et al., 1998; Ramshaw B.J. et al., 1999). The 5-year 

recurrence rates of laparoscopic repair and open mesh repair are nearly the same, 

29% and 28%, respectively (Ballem N. et al., 2008). However, Ballem et al. also 
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revealed that patients who required conversion from laparoscopic to open repair had 

a higher rate of immunosuppression, ascites and a larger size defect. All these 

complications contributed to the 5year rate of recurrence at a level of up to 60% 

(Ballem N. et al., 2008). 

Table 1. Definitions of the mesh position in ventral and incisional hernia repair 

Notes: Adapted from Muysoms F. et al., 2012 

 

 

 

 

 

 

 

Figure 3. Terminology of mesh position in ventral and incisional hernia repair. 

Notes: Adapted from Muysoms F. et al., 2012 

Position Definition 

Onlay 
The mesh is positioned above the abdominal wall muscles and fascia, behind 
the subcutaneous fat 

Inlay 
The mesh is positioned in the hernia defect, without overlap, and fixed to the 
margins of the defect 

Retromuscular 

Medial 

The mesh is positioned behind the rectus abdominis muscle and in front of the 
posterior rectus fascia or in front of the peritoneum 

Retromuscular 

Lateral 
The mesh is placed in the plane between the lateral abdominal wall muscles 

Preperitoneal 
The mesh is placed in the plane behind all the abdominal wall muscles in front 
of the peritoneum 

Intraperitoneal 
The mesh is placed behind all layers of the abdominal wall, including the 
parietal peritoneum 
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1.2.4 The main risks of an incisional hernia developing after 

prosthetic repair 

Repairs to a large incisional defect often requires the use of a prosthetic implant, 

which can cause various long-term complications, e.g. adhesion formation, graft 

infection/rejection, erosions, migration, loss of bio-compliance, fistula formation and 

hernia recurrence (Vrijland W.W. et al., 2000; Jacob B.P. et al., 2007; Losanoff J.E. et 

al., 2002; Jezupovs A. and Mihelsons M., 2006; Jacob B.P. and Ramshaw B., 2013). 

Other studies have also revealed different complications such as the shrinkage, 

contraction and distortion of the surgical meshes, which could lead to chronic pain and 

recurrence (Klinge U. et al., 1998a; Cozad M. et al., 2010). The optimal mesh should 

minimize the complications connected with the wound healing process. This process 

consists of five overlapping stages: haemostasis, inflammation, proliferation, 

contraction, and remodelling (Figure 4; Franz M.G., 2006; Binnebosel M. et al., 2011). 

Implanting a material into a living body can be considered an injury, and likewise 

evokes a cascade of host reactions, including blood-material interactions with the 

formation of a fibrin matrix, inflammation, cellular infiltration, new tissue formation and 

remodelling. After the initial inflammatory response, blood vessels and mesenchymal 

cells will start to approach and eventually invade the implant. The kind of tissue that is 

finally formed depends on the microenvironment to which the migrated cells will be 

exposed (Cobb W.S. et al., 2009; Voskerician G. et al., 2010). 

Important risk factors, besides choosing the proper type of prosthetics and 

operation technique in the abdominal wall hernia development, is the lifestyle patients 

have. The most detrimental negative influence is smoking tobacco. Smokers have a 

four-time higher recurrence rate of ventral hernias in comparison with non-smokers. 

Knuutinen et al. showed that a synthesis of collagen type I and type III are negatively 
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affected by smoking (Knuutinen A. et al, 2002). That can result in a reduction of the 

collagen I/III ration, which causes a decrease of abdominal wall tissue stability (Birk 

D.E. and Mayne R., 1997). The negative ratio of those collagens was also described 

by Klosterhalfen and Klinge, who revealed that tissues surrounding the explanted 

surgical meshes because of hernia recurrence showed a lowered collagens ratio of 

70% (Klosterhalfen B. and Klinge U., 2013). In addition, smokers have matrix 

metalloproteinase enzymes, which degrade the collagens expressed in higher levels, 

possibly causing a decrease in the final tensile strength of the new healed wound tissue 

(Knuutinen A. et al, 2002).  

 

 

 

 

 

 

 

 

 

 

Figure 4. Phases of wound repair. 

Notes: Adapted from Ather S. and Harding K.G., 2009. 

Other risk factors concerning either the genetic constitution of the collagen 

synthesis and remodelling or other inherited disorders of the connective tissue playing 
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a significant role in hernia development are the Marfan and Ehlers-Danlos syndromes, 

homocystinuria, elastosis and others (Antoniou G. A. et al., 2011). The classic risk 

factors causing impaired wound healing are malnutrition, obesity, diabetes mellitus and 

the use of corticosteroids and immunosuppression (Heniford B.T. et al., 2003; Brem H. 

and Tomic-Canic M., 2007).  

1.3 Basic prosthetics used for incisional hernia repair 

An ideal mesh for use in ventral hernia regeneration should meet a number of 

criteria. The mesh has to be chemically inert, biocompatible, non-carcinogenic, 

capable of being sterilized, should not cause inflammation or an allergic response and 

be unlikely to produce a significant host immune response (Read R.C., 2004; 

Shankaran V. et al., 2011). From the biomechanical point of view the mesh should 

withstand at least tensile strength equivalent to that of the abdominal wall, which is 16 

Ncm-1 (Klinge U. et al., 1996). In addition, the mesh should be largely producible in an 

affordable manner (Shankaran V. et al., 2011).  

1.3.1 History of prosthetics in abdominal wall hernia repair 

The very first surgical mesh for hernia repair was developed in 1900 in Germany 

by Witzel and Goepel. They made the mesh as a silver filigree by hand (Figure 5; 

Witzel O., 1900; Goepel R., 1900). Silver was assumed to be bactericidal, but the mesh 

was rigid, corrodible when in contact with tissue fluids, and with a higher risk of fistula 

forming, caused problems. Another mesh was made from the inert metal tantalum in 

the 1940s (Jefferson N.C. and Dailey U.G., 1948; Koontz A.R., 1948). Unfortunately, 

tantalum caused small bowel fistula, ulceration and the metal fragments eroded 
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through the peritoneum and skin after the repeated flexion of the tissues 

(Thorbjarnarson B. and Goulian D., 1967; Bothra R., 1973).  

 

 

 

 

 

 

 

 

 

 

Figure 5. Different previous prosthetics made from either silver filigree or tantalum. (A, B, C) Silver 

filigree meshes. (D) Tantalum gauze. 

Notes: Adapted from Mayer W.,1902; McGavin L., 1907; Burke G.L., 1940. 

At the same time, Nylon, the first plastic prosthesis, became widely available. The 

first reported use of Nylon as a suture in herniology was reported by Melick (Melick 

D.W., 1942). A monofilamtous nylon suture successfully used by Moloney et al. 

(Moloney G.E. et al., 1948) replaced silk, which was associated with a foreign body 

reaction and sepsis (Handley W.S., 1918). Aquaviva and Bounet began using it in 

France in the form of a mesh during World War II (Aquaviva D. and Bounet P., 1944). 

Nylon was later replaced by other plastics because it lost 80% of the tensile strength 

during its hydrolysis and denaturation in time and had to be removed in the presence 
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of infection (Koontz A.R. and Kimberly R.C, 1959; Adler R.H. and Firme C.N., 1957). 

The use of another synthetic polymer in the form of a knitted mesh for incisional hernia 

repair was described in animal studies by Usher et al. in 1958 (Usher F.C. et al., 1958). 

This surgical mesh made from polypropylene with the present commercial names 

Marlex® or Prolene® are the most widely-used prosthetic material for repairing ventral 

hernias to date (Amid P.K. et al., 1995, Cobb W.S. et al., 2009).  

A second synthetic polymeric material with the commercial name Dacron® or 

Mersilene® commonly used to date is based on polyesters (Wolstenholme J.T., 1956; 

Shankaran V. et al., 2011). Rives and Stoppa successfully used polyesters for “pre-

peritoneal” placement in hernia repairs (Rives J., 1967; Stoppa R.E., 1989). A third 

very often used prosthetic material was developed from polytetrafluoroethylene (PTFE) 

to its expanded porous form in the 1970s (Gore R.W. et al., 1976). The last main group 

of surgical meshes includes biologic meshes and different composites that have 

become increasingly popular in recent years. 

1.3.2 The most widely used prosthetics nowadays 

In general, non-resorbable synthetic meshes could be divided into 4 main groups. 

Polypropylenes (Prolene®, Marlex®, Vypro®, ProLite™, etc.), polyesters (Dacron®, 

Mersilene®, etc.), expanded polytetrafluoroethylenes (ePTFE, Goretex®, etc.) and 

composites (Sepramesh™, Proceed®, Parietex™, etc.) The group of absorbable 

synthetics includes glycolic acid (Vicryl®), polyglycolic acid (Dexon™), and 

carboxycellulose (Seprafilm®). It is very difficult to choose a proper one from the large 

number of classifications of surgical meshes. Many different ways of classifying have 

been presented (Klinge U. and Klosterhalfen B., 2012; Coda A. et al., 2012). 
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In addition to synthetic meshes, there are a few commercially-available biological 

meshes with appropriate biocompatible features, e.g. derived bovine pericardium 

(Tutomesh®), acellular porcine dermis (Permacol™) and an acellular analogue of the 

human dermis (AlloDerm®). However, the use of xenografts is nowadays on the 

decline, and the production of this type of mesh is limited by the extremely high cost.  

1.3.2.1 Polypropylenes 

Polypropylene-based meshes are the most widely-used prosthetics for hernia 

repair, with more than 1 million implantations each year in the United States (Cobb 

W.S., et al., 2005, Cobb W.S., et al., 2009). Polypropylene is a hydrophobic polymer 

extremely resistant to biological degradation by tissue enzymes (Read R.C., 2004) and 

in general represent non-degradable polymers. However, its degradation occurs 

through free radicals and the oxygen attack of the methyl groups that produce small 

chain fractures and chemical by-products such as aldehydes and carboxylic (Costello 

C.R. et al., 2010; Cozad M.J. et al., 2010). Polypropylene is most often used in the 

form of a knitted mesh because it allows the increase of porosity and flexibility, as well 

as having identical mechanical properties in all directions (Cobb W.S., et al., 2009). 

Although the most commonly used polypropylene prosthetics are monofilament 

heavyweight meshes Marlex® and Prolene® (Amid P.K. et al., 1995, Cobb W.S. et al., 

2009), the lightweight polypropylene meshes e.g. Vypro® or ProLite™ appear to have 

some significant advantages such as large pore size, a reduced amount of alloplastic 

material and lower foreign body reaction, with the preservation of appropriate tensile 

strength (Klosterhalfen B. et al., 2005). In addition, Klinge et al. compared the elasticity 

of the human abdominal wall obtained from cadavers with both types of polypropylene 

meshes and discovered that a lightweight mesh imitates human tissue more closely 

(Klinge U. et al., 1998b). Moreover, patients who underwent hernia repair using the 
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Vypro® mesh complained of chronic pain and a stiff abdomen less often than patients 

with heavyweight hernia repair (Schmidbauer S. et al., 2005). This results are in 

concordance with the study of Klosterhalfen and Klinge, who showed that large pore 

polypropylene meshes (Vypro®, Ultrapro®) in comparison with small pore 

polypropylene meshes (Marlex®,  Prolene®, Atrium®) caused relatively less 

inflammation, less infection and chronic pain (Klosterhalfen B. and Klinge U., 2013). 

 

 

 

 

 

 

 

 

 

 

Figure 6. Different kinds of currently used surgical meshes. (A) Prolene® polypropylene mesh. (B) 

Marlex® polypropylene mesh. (C) Mersilene® polyester mesh. (D) Proceed® composite mesh. (E) 

Parietex™ composite mesh. (F) Knited Vicryl® absorbable mesh. (G) ePTFE polypropylene 

composite mesh. (H) AlloDerm® polypropylene composite biologic mesh. (I) Permacol™ biologic 

mesh. 

Notes: Adapted from LeBlanc K.A., 2013; Klosterhalfen B. et al., 2005; Klinge U., 2008; Deeken 

C.R., 2011; Abaza R., 2005; Butler C.E. and Prieto V.G, 2004. 
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1.3.2.2 Polyesters 

Polyethylene terephthalate (PET) is a multifilament, non-resorable, hydrophilic 

polymer produced by polymerisation from ethylene glycol and terephthalic acid. 

Dacron® was the first commercial polyester for inguinal and abdominal hernia repairs 

used by Wolstenholme (Wolstenholme J.T., 1956). Its newer elastic macroporous form 

was called Mersilene® (Knott J.I., 1961). Current study results regarding the 

effectiveness and safety of using polyesters for hernia repairs are very confusing. On 

the one hand Wantz successfully used Mersilene® and showed its ability to adapt to 

abdominal wall curves and guarantee encapsulation due to a fibroblastic response 

(Wantz G.E., 1991). In addition, short-term swine studies demonstrated significantly 

less contraction, higher incorporation and lower visceral adhesion rates with a 

polyester mesh in comparison with a polypropylene mesh (Gonzalez R. et al., 2005; 

Burger J.W. et al., 2006). On the other hand, in the study of Leber et al., Mersilene® 

hernia repairs revealed higher infection, recurrent rates and levels of fistula formation 

in comparison with the polypropylene mesh (Leber G.E. et al., 1998).   

1.3.2.3 ePTFEs 

PTFEs provides chemical inertness due to their covalent bond between carbons 

and fluorides in a long carbon chain backbone. The expanded form was fabricated 

through a combination of the PTFE nodes interconnected by the PTFE fibrils (Gore 

R.W. et al., 1976). Klinge et al. described a few advantages of using ePTFE in ventral 

hernia repair. ePTFE in that study demonstrated both a lesser adhesion formation and 

low inflammatory reaction of the human body in comparison with heavyweight 

polypropylene (Klinge U. et al., 1999). Unfortunately ePTFE also has a higher 

recurrence level and undergoes shrinkage at a range from 0 to 24% (Klinge U. et al., 
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1999, Schoenmaeckers E.J. et al. 2009).  Another comparison of the same kind of 

meshes in a rabbit animal study showed that polypropylene had superior tissue 

integration but it also incited a more intense inflammatory foreign body reaction (Bellon 

J.M. et al. 1996). In conclusion ePTFE is not entirely appropriate for preperitoneal 

placement due to its lower tensile strength and small pore size, which does not allow 

the ingrowth of the tissue. The intraperitoneal implantation of ePTFE seem to be more 

suitable because that allows exposing it to the viscera (Bellon J.M. et al. 1996, 

Shankaran V. et al., 2011). 

1.3.2.4 Composite meshes 

There are several composite meshes on the market based on e.g. polypropylenes 

and polyesters. These composites combine the tensile strength of the surgical mesh 

base with absorbable or permanent coatings. The coatings are tasked with reducing 

adhesion, inflammatory response, decreasing fibrosis and the contraction of the mesh 

(Scheidback H. et al., 2004).  Several studies proved some of these effects by using 

some of the coated meshes. 

Table 2. Different types of composite meshes and the description of their compound. 

Notes: Adapted from Shankaran V. et al., 2011; Jacob B.P. and Ramshaw B., 2013. 

Name/Brand Description 

C-QUR™ Lightweight polypropylene coated with Omega-3 fatty acid 

Parietex™ PET coated with collagen-polyethylene-glycerol 

Proceed® 
Lightweight polypropylene/polydioxanon coated with oxide 
regenerated cellulose 

PolyPro Hydrocoat™ Polypropylene coated with polyether urethane urea 

Sepramesh™ Polypropylene coated with carboxy-methylcellulose 

Ti-Mesh Lightweight polypropylene covalently covered with titanium 

Ultrapro® Lightweight polypropylene coated with polyglecapron 
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In the short-term outcomes, most of the composite meshes successfully reduced 

adhesions and decreased the inflammatory response (Jacob B.P. et al., 2007; Judge 

T.W. et al., 2007), however the coatings were unstable over time and disintegrated 

(Sehreinemacher M.H. et al., 2009). The different types and the description of coatings 

of the composite meshes are summarised in Table 2.  

1.3.2.5 Absorbable meshes 

Absorbable prosthetics are generally applied for temporary abdominal closure, or 

are used in conjunction with permanent synthetics (Shankaran V. et al., 2011). These 

meshes demonstrated some advantages in the long-term outcomes. They reduce the 

risk of adhesion formation and foreign body reaction (Jacob B.P. and Ramshaw B., 

2013). Absorbable meshes are mostly composed of polylactic acid and polyglycolic 

acid in the form of their copolymers (Dexon™, TIGR®) in potential combination with 

e.g. polyglycin or trimethylene carbonate (Vicril®, GORE® Bio-A®), or carboxycellulose 

(Seprafilm®) and polyglycolic acid (Safil®) alone. The important feature of the 

absorbable meshes is also the different degradation rate. When the mesh degrades 

too fast it could lose the tensile strength and thus cause a recurrence. On the other 

hand when the mesh degrades too slowly it may induce a long-term foreign body 

reaction (Jacob B.P. and Ramshaw B., 2013; Bendavid R. et al., 2001). 

1.3.2.6 Biologic meshes 

Bioprosthetics belong among the newest materials used for wall hernia repair. 

These meshes are derived from the collagen-rich tissues of a human, porcine or bovine 

donor from different sites such as the dermis (AlloDerm®, Permacol™, Strattice™), 

small intestine submucosa (Surgisis®) and the pericardium (Tutomesh®, Peri-Guard®). 

The tissues are decellularized with different methods e.g. with sodium deoxycholate or 
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sodium hydroxide. With this treatment we obtain a collagen, elastin and laminin 

scaffold that can be repopulated and neo-vascularized. Precisely, the neo-

vascularisation and incorporation into host tissue may allow a biological scaffold to use 

it in contaminated or infected surgical wounds (Milburn M.L. et al., 2008; Hiles M. et 

al., 2009). The biologic scaffolds may also be cross-linked to increase their 

cohesiveness and preserve the structure for a longer period (Gaertner W.B. et al., 

2007). However, several studies demonstrated that the biologic matrix modified with 

specific manufacturing and/or crosslinking may lead to a negative response of the host 

to such material (Jarman-Smith M.L. et al., 2004; Sandor M. et al., 2008). A negative 

limitation of this type of meshes is their potential disease transmission (Peppas G. et 

al., 2010). There were reported cases in the literature about prion-related disease 

transmission from allografts or the risks of the host immune response development 

due to residues of deoxyribonucleic acid (DNA) fragments in the xenografts, despite 

the sterilisation and the decelularisation process (Peppas G. et al., 2010; Gilbert T.W. 

et al., 2009).  

Despite the inalienable advantages of biologic scaffolds, most of them are 

xenografts subject to the strict control and approval of the Food and Drug 

Administration (FDA) and European Medicines Agency (EMA). Moreover, these grafts 

generally cost ten times more than the synthetic meshes. Heterografts cost 

approximately 20% less than allografts (Peppas G. et al., 2010; Rosen M.J., 2010). 

More specifically some sources compared the prices of a e.g. human acellular dermal 

matrix ($26.00/cm2) and bovine or porcine-based scaffolds ($8.60 - $22.00/cm2) with 

polypropylene mesh ($1.00/cm2) or absorbable Vicryl® mesh ($0.20/cm2; Bachman S. 

and Ramshaw B., 2008; Blatnik J. et al., 2008; Peppas G. et al., 2010). 
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1.4 Nanofibers in tissue engineering 

As previously mentioned, the optimal prosthetic for abdominal wall repair should 

meet a number of criteria. The mesh has to be chemically inert, biocompatible with 

sufficient biomechanical properties, and should not cause inflammation or an allergic 

response (Read R.C., 2004; Shankaran V. et al., 2011). One way to improve the 

properties of the meshes used until now is to combine them with other tissue-

engineered materials, or to replace the meshes completely through these materials.  

Highly-porous scaffolds with interconnected pores are favoured in tissue 

engineering applications (Sato T. et al., 2004). Much attention has been paid to the 

application of biodegradable microfibers and nanofibers. Nanofiber scaffolds produced 

e.g. by electrospinning contain a large number of interconnected pores and fibers in 

the diameter of the ECM (Khil M.S. et al., 2005). In living systems, the ECM plays a 

pivotal role in controlling cell behaviour, such as adhesion, proliferation, migration, and 

differentiation (Kim S.H. et al., 2011). An optimal scaffold, particularly a surgical mesh 

designed in tissue engineering, should mimic natural ECM. Such a mesh would create 

the finest microenvironment for cell adhesion and proliferation. Clearly, nanofibrous 

scaffolds meet these requirements not only due to their topography, but also due to 

their high surface-to-volume ratio and the possibility of modifying their surface and also 

interior to improve biocompatibility (Ma Z. et al., 2005a; Agarwal S. et al., 2008). In 

recent years, for example, the electrospinning method has been applied for this 

purpose, as it is a simple and cost-effective way to fabricate fibers both from synthetic 

polymers and other substances (Lukas D. et al., 2009). The topographical features of 

the fibers can easily be adjusted to fit specific applications by controlling various 
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parameters (Lukas D. et al., 2009; Bhardwaj N. and Kundu S.C., 2010; Grafahrend D. 

et al., 2011). 

1.4.1 Fabrication of nanofibers through the electrospinning method 

Nanofibers for tissue engineering fabricated e.g. by electrospinning, are 

produced from materials that are biocompatible and mostly biodegradable or non-

biodegradable. Nowadays, electrospinning has gained attention as one of the most 

efficient submicrometer fiber-forming fabrication processes (Cipitria A et al., 2011). To 

date more than 200 different polymeric materials have been successfully electrospun 

(Bhardwaj N. and Kundu S.C., 2010). These polymers may have a synthetic origin 

such as poly--caprolactone (PCL; Kim T.G. and Park T.G., 2006), polyvinyl alcohol 

(PVA; Chuangchote S. and Supaphol P., 2006), polylactic acid (PLA; Yang F. et al., 

2005), poly(lactic-co-glycolic) acid (PLGA; Kim T.G. and Park T.G., 2006), 

polyurethanes (PU; Khil M.S. et al., 2003) or natural origin such as collagen (Matthews 

J.A. et al., 2002), fibrin (Carlisle C.R. et al., 2009), silk (Ohgo K. et al. 2003)  chitosan 

(Jayakumar R. et al., 2010), cellulose (Ma Z.W. et al., 2005b) and hyaluronic acid (Um 

I.C. et al., 2004).  

1.4.1.1 Principles of electrospinning 

The principle of the electrospinning method is based on the influence of a high 

voltage electric field to polymer solutions. The electrostatic forces are induced due to 

attractive forces between the charged electrode with the polymer and the conversely 

charged collecting electrode. A role is also played by the repulsion among identically 

charged molecules inside the polymer solution. Above a certain critical value of the 

applied electric field strength the surface of the polymeric liquid starts to form an 

instability. This instability results in the development of “Taylor cones” due to the 
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balance formed between electrostatic forces arising from a high voltage electric field 

and the surface tension of liquid. The electrospinning jets are formed on the wave 

crests of these “Taylor cones”. As the jets move towards the collecting electrode the 

solvent evaporates and the ultrafine fibers are produced (Lukas D. et al., 2008; Lukas 

D. et al., 2009). 

The basic electrospinning device set-up requires a high-voltage source, a 

capillary tube or a syringe, a mattering pump for the continuous supply of the polymer 

solution, some polymer and a collecting electrode (Figure 7).   

 

 

 

 

 

 

 

 

 

Figure 7. Schematic diagram of an electrospinning device set-up. 

Notes: Adapted from Lukas D. et al., 2008. 

1.4.1.2 Basic electrospinning methods 

In general, electrospinning can be basically classified into either needle or 

needleless electrospinning according to the spinneret and spinning method. The group 

of needle electrospinning includes basic capillary electrospinning and sophisticated 
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core-shell electrospinning, which is divided into emulsion and coaxial electrospinning. 

Needleless electrospinning is using the self-organization of fiber jets on a free polymer 

liquid surface. 

Capillary electrospinning using a needle-like spinneret is based on spinning from 

a droplet. Polymer solutions are supplied on the tip of a thin capillary where a droplet 

forms. The capillary is connected to a high voltage supply and thus the electrospinning 

process may occur between the droplet on the tip and a collecting electrode (Figure 

7). The advantages of this system is its simplicity and the potential to electrospin many 

different polymers. On the other hand this system has low productivity and the 

maintenance of the apparatus is difficult (Teo W. and Ramakrishna S.A., 2006). 

Productivity can be increased with the parallel arrangement of the capillaries. However, 

the usage of more capillaries leads to the deformation of the electric field and the 

arising of adverse effects in the electrospinning process (Teo W. and Ramakrishna 

S.A., 2006). 

Another basic type of electrospinning is based on the self-organization of fiber 

jets on a free liquid surface without using a capillary electrode (Lukas D. et al., 2008b). 

The simplest set-up consists of a bulky metallic rod with a diameter of approximately 1 

cm serving as an electrode. On the top of the electrode there is deposited a very 

viscous hemispherical polymer droplet. The high voltage electric field results in the 

forming of many “Taylor cones “ and intensive nanofiber production (Figure 8; Lukas 

D. et al., 2009). 

A less frequently used system consists of a container with a polymer solution and 

paramagnetic microparticles. The tips of the paramagnetic microparticles are raised 

from the solution in the electric field and allows the formation of polymer fiber jets (Yarin 

A.L. and Zussman E., 2004). Another interesting system is based on a perforated 
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cylinder as an electrode. The polymer solution flows through the holes to the surface 

of the cylinder. Within the electric field many fiber jets are formed and nanofibers are 

collected onto a cylindrical collector (Dosunmu O.O. et al., 2006). 

 

 

 

 

 

 

 

Figure 8. The self-organisation of fiber jets on a free liquid surface. At zero field strength, the 

viscous droplet has a hemispherical shape (left-hand side of the figure). In the critical value of the 

electric field intensity, the liquid polymer jets are self-organised (right-hand side of the figure).  

Notes: Adapted from Lukas D. et al., 2009. 

The most important system from needleless electrospinning is the Nanospider™ 

(Jirsak O. et al., 2006). This system is based on a rotating cylinder electrode rinsed 

directly in a polymer solution. Due to the rotation the polymer creates a thin layer on 

the electrode surface, resulting in the formation of many “Taylor cones” and the 

production of a big amount of nanofiber material (Figure 9). Therefore the 

Nanospider™ system is often used for high production and the industrial usage of the 

nanofibers. The competitive device is based on electrospinning from a rotating disk 

electrode (Figure 9, Niu H. et al., 2009). In these systems the extent of the nanofiber 

formation depends on the polymer concentration, the intensity of the electric field and 

the rotation speed. 
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Figure 9. Schematic illustration of needleless electrospinning with a high productivity of nanofibers 

and photos of the electrospinning processes. (A) System based on the electrospinning from a rotating 

disk electrode. (B) The Nanospider™ system based on electrospinning from a rotating cylinder 

electrode.  

Notes: Adapted from Niu H. et al., 2009. 

One of the younger electrospinning methods that have gained attention among 

others due to the high potential of being used as drug delivery systems is core-shell 

electrospinning. Core-shell electrospinning could be basically divided into emulsion 

electrospinning from a blend and coaxial electrospinning. Emulsion electrospinning is 

based on nanofiber production depending on the immiscibility of the two polymer 

solutions, called a blend (Figure 10). One of the polymers is present in a continuous 

phase and another as droplets covering this continuous phase (Agarwal S. and Greiner 

A., 2011). Emulsion electrospinning can use needle or needleless electrospinning 

technique. The crucial point of emulsion electrospinning is the emulsification process 

of the core materials, including different soluble drugs in the fiber forming shell 
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materials and core-shell nanofibers from this emulsion in the electrospinning process 

(Figure 10; Qi H.X. et al., 2006; Agarwal S. and Greiner A., 2011).  

 

 

 

 

 

 

 

Figure 10. Schematic illustration of emulsion core-shell electrospinning. Important emulsification of 

a core material with a soluble drug in a fiber forming shell material allows the formation of core-shell 

nanofibers.  

Notes: Adapted from Agarwal S. and Greiner A., 2011. 

The coaxial electrospinning first introduced by Sun et al. is an especial type of 

capillary electrospining (Figure 11; Sun Z.C. et al., 2003). The spinning electrode 

consists of two capillaries that are placed together coaxially. This technique allows the 

production of nanofibers from polymers that either could not be electropun together 

(Teo W.E. and Ramakrishna S.A., 2006) or one of the polymers used as a core material 

being along non-spinnable (Lukas D. et al., 2009). Using a water soluble polymer as 

the core material during coaxial electrospinning allows the obtainment of hollow 

nanofibers after subsequent washing in a water solution (Sun Z.C. et al., 2003). Coaxial 

electrospinning finds a wide application in the field of drug delivery systems (Sun Z.C. 

et al., 2003; Zhang Y.Z. et al., 2004). It enables the incorporation of various bioactive 

substances such as antibiotics, drugs, DNA, proteins and even living cells and affords 
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protection from the environment by the shell material (Reznik S. et al., 2006; 

Townsend-Nicholson A. and Jayasinghe S.N., 2006; Yarin A.L. 2011). 

 

 

 

 

 

 

 

 

Figure 11. Coaxial electrospinning of nanofibers. Two immiscible polymer solutions (red and blue) 

are supplied through two concentric needles connected with a high voltage power supply. A 

compound “Taylor cone” is formed from which a coaxial fiber jet is emitted. On the lower right-hand 

side of the figure is a view of the sample after cutting  

Notes: Adapted from Loscertales I.G. et al., 2004.  

1.4.1.3 Collecting electrodes (collectors) 

Grounded or charged collecting electrodes play important role in the productivity 

of nanofibers and can result in the final mesh properties. Using the simple non-

structured collectors results in the formation of randomly oriented nanofiber meshes. 

As a collector most often a metal plate made from aluminium or copper is used (Lukas 

D et al., 2009; Teo W.E. and Ramakrishna S.A., 2006). Modified collectors enable the 

fabrication of a structured nanofibers layer. The depositing of the nanofibers onto the 

collector is affected by its shape and the arrangement of the conductive and non-

conductive parts (Lukas D. et al., 2009; Teo W.E. and Ramakrishna S.A., 2006). One 

of those kinds of collectors has projections that affect the depositing of the nanofibers. 
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The nanofibers are deposited onto the collector not only as a planar mesh but form a 

specific 3D structure (Lukas D. et al., 2009). Another kind of collector is represented 

by a rotating cylinder or disk. With an appropriate speed setting the electrospun 

polymer forms an oriented layer of nanofibers (Matthews J.A. et al., 2002). The 

depositing of the oriented nanofiber is also the result of static collectors composed from 

parallel conductive wires, circles or slices (Teo W.E. and Ramakrishna S.A., 2006).  

1.4.1.4 Basic controlling factors and parameters for the modification of 

nanofiber features  

Electrospinning is affected by a large amount of parameters that can modify the 

features of a nanofiber scaffold.  

The basic parameter is a voltage value applied for the electrospinning process. 

The increase in applied voltage results in the different structural morphology of 

nanofibers. Deitzel et al. observed that higher voltages cause the formation of bead 

fibers with a thick diameter (Deitzel J.M. et al., 2001). 

The distance of the electrode from the collector affects the intensity of the electric 

field and thereby the morphology of the nanofibers. With increasing distance the 

intensity per square unit is decreasing, resulting in the weakening of the electrostatic 

forces and forming a thinner fiber. When the distance reaches a critical value the 

“electrospraying” phenomenon occurs and the polymer droplets instead of fibers are 

formed (Doshji J. and Reneker D.H., 1995).  

The speed of the polymer solution supply affects the width and morphology of 

nanofibers. When using a high speed of supply the solvent is not completely 

evaporated, resulting in an accumulation of either the non-fiber layers or the fibers with 



42 
 

a changed morphology. The usage of the lower speed supply forms nanofiber with a 

smaller diameter (Yuan X.Y. et al., 2004) 

The molecular weight and concentration of the polymer affects the rheological 

and electrical features of the polymer solution. Both the higher molecular weight and 

the higher concentration of polymer increases the thickness of the nanofibers (Haghi 

A.K. and Akbari M., 2007; Cui W.G. et al., 2010). 

The volatility of the solvent is a very important factor that could change the 

nanofibers structure. In the case of insufficient solvent volatility the liquid polymer 

solution is deposited onto the collector and forms non-spun layers (Bhardwaj N. and 

Kundu S.C., 2010). When the volatility is too high the solvent quickly evaporates and 

the deposited nanofibers have a porous surface (Sill T.J. and von Recum H.A., 2008). 

Electrospinning is also affected by environmental factors such as the temperature 

of polymer solution, ambient temperature, and humidity (Lukas D. et al., 2009) 

1.4.2 PCL nanofibers in tissue engineering 

In general, nanofibers prepared by electrospinning is one of the most promising 

scaffolds used in tissue engineering. Tissue engineering is focused on the reparation 

of damaged tissues and organs. The main field of PCL nanofibers scaffold use is the 

regeneration of cartilages, tendons, bones, nerves and skin. As mentioned before PCL 

nanofibers create the finest microenvironment for cell adhesion, proliferation and 

differentiation by mimicking natural ECM (Khil M.S. et al., 2005). 

PCL is a semi-crystalline, aliphatic polyester that is non-toxic, biodegradable, 

biocompatible and is used in pharmaceutical products and wound dressings (Ng K.W. 

et al., 2001). In addition this polymer is relatively inexpensive, chemically stable, rather 

hydrophobic and highly elastic with good mechanical properties and a slow 
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degradation rate. It degrades within 6-24 months as a result of the hydrolysis of its 

ester linkages. The degradation process is non-enzymatic hydrolytic cleavage followed 

by intracellular degradation in the phagosomes of the macrophages and giant cells 

(Woodward SC et al., 1985). Moreover, PCL has frequently been chosen for scaffold 

fabrication in tissue engineering, because it is an FDA-approved material and has been 

shown to support the attachment and growth of chondrocytes (Jakubova R. et al., 

2011), osteoblasts (Hutmacher D.W. et al., 2001; Kweon H. et al., 2002), smooth 

muscle cells (Thapa A. et al., 2003), fibroblasts (Hutmacher D.W. et al., 2001; Chen 

M. et al., 2007), myoblasts (Williamson M.R. and Adams E.F., 2006), and 

mesenchymal stem cells (MSC; Rampichova M. et al., 2013).  

Tissue engineering focusing on cartilage regeneration is a promising tool for 

arthroses and mechanical cartilage impairs healing. The three-dimensional PCL 

nanofiber scaffold seeded with foetal bovine chondrocytes was prepared and tested 

by Li et al. Chondrocytes cultivated on this scaffold kept their phenotype and 

expression of chondrogene markers such as collagen type II and glycosaminoglycans 

(Li W.J., et al. 2003). A later work of this group demonstrated the differentiation of 

human MSCs cultivated on that scaffold from chondrocytes by using the addition of 

beta 1 transforming growth factor (TGF-β1; Li W.J. et al., 2005). 

In bone tissue engineering the nanofiber scaffolds should meet the criteria for 

mechanical stability, morphology, porosity and prolonged biodegradability (Vasita R. 

and Katti D.S., 2006). Promising nanofiber scaffolds are fabricated by the 

electrospinning of a PCL solution, including hydroxyapatite particles 

(Wutticharoenmongkol P. et al., 2006). 

Ligaments and tendons are created with dense ECM and tenocytes. The 

damages of tendons leads to the altered function of joints, which could cause 
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irreversible changes in the musculoskeletal system. The usage of a tissue engineered 

scaffolds enables the improvement of present surgical methods of damaged ligaments 

and tendon repair. For these purpose it seems most appropriate to use the nanofiber 

scaffolds formed with�oriented PCL fibers (Kim G.H, 2008).  

The regenerative potential of the nervous system is limited and its damage is 

difficult to treat. Oriented PCL nanofiber layers enable the growth of axonal dendrites 

and the migration of glial and Schwan cells (Schnell E. et al., 2007). Panseri et al. even 

proved that an electrospun micro-nanotube scaffold made from PCL and PLGA lead 

to the regeneration of a 10 mm long gap in rat ischiadic nerves (Panseri S. et al. 2008). 

PCL appears to be a suitable material for scaffold preparation for reparative 

surgery. It has been used in several preclinical trials for wound healing (Venugopal 

J.R. et al., 2006; Ng K.W. et al., 2007; Liu X. et al., 2010; Kobsa S. et al., 2013), and 

could be used in combination with a surgical mesh in ventral hernia regeneration.  

1.5 Drug delivery systems based on PCL nanofibers 

Nanofibers in combination with drug delivery systems positively affect the 

physiological state of various cells and enable the creation of an appropriate 

microenvironment proximate to the tissue defect (Agarwal S. et al., 2008).  

1.5.1 Adhesion of bioactive substances onto PCL nanofibers 

Nanofibers in general have an interconnected porous structure and a high 

surface-area-to-volume ratio, permitting the adsorption and high immobilization of 

drugs (Canbolat M.F. et al., 2004), antibiotics (Dave R. et al., 2009) and growth factors 

(Matlock-Colangelo L. et al., 2014) as well as blood derivatives such as platelet-rich 

plasma (PRP; Hromadka M.C. et al., 2008). An interesting example of a scaffold with 
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adhered bioactive substances are nanofibers coaxially electrospun from a PCL core 

and a cationized gelatine shell (Lu Y et al., 2009). Onto the shell it is possible to adhere 

a negatively charged ligand such as heparin, hyaluronic acid, bovine serum albumin 

(BSA) or other proteins and nucleic acid. The adhesion of heparin and BSA enables 

the subsequent specific interaction with a vascular endothelial growth factor (VEGF) 

and basic fibroblast growth factor (bFGF; Lu Y et al., 2009). Another simple drug 

delivery system based on the adhesion of bioactive substances onto PCL nanofibers 

was developed in our group. Human platelets were adhered onto PCL nanofibers and 

scaffolds were tested in vitro by porcine chondrocyte cultivation (Figure 12; Jakubova 

R. et al., 2011). Growth factors were released from the platelet adhered to the 

nanofibers over a period of 1-14 days (Buzgo M. et al., 2013). 

 

 

 

 

 

 

 

 

 

Figure 12. Cryo-Scanning electron microscopy (CryoSEM) visualization of a platelet adhered to PCL 

nanofibers. 

Notes: Adapted from Jakubova et al., 2011. 
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1.5.2 Core-shell PCL nanofibers as a drug delivery system 

Another option for fabricating a drug delivery system based on nanofibers is to 

use either electrospinning from a mixture of bioactive substance and electrospun 

polymer (composite blend) or coaxial electrospinning. Electrospinning from the blend 

is a simple one-step method enabling the incorporation of many bioactive substances 

(16). The limiting factor is the compatibility of a transferred bioactive substance with a 

polymer solvent. The most appropriate polymer for this type of drug delivery system 

fabrication is PVA and polyethylene glycol (PEG). These polymers can mimic the 

biomolecules and enable the development of secondary binding to the transferred 

substances and thus stabilise them (Wang Z.G. et al, 2009). The blend electrospinning 

technique was used for the incorporation of different antibiotics (Bolgen N. et al., 2007), 

drugs (Xie J. and Wang C.H. et al., 2006), proteins (Zeng J. et al., 2005) and DNA 

(Liang D. et al., 2005). The ability to preserve the bioactivity of proteins in the 

nanofibers were proven by the incorporation of e.g. alkaline phosphatase, β-

galactosidase (Dror Y. et al., 2008) and horseradish peroxidase (HRP; Patel A.C. et 

al., 2006). 

Coaxial electrospinning is a promising strategy for the delivery of required 

bioactive substances. One big advantage of this technique for producing core-shell 

nanofibers consist in the preservation of biomolecules during the electrospinning 

process. A second important advantage enables the combination of water non-soluble 

polymers with bioactive molecules not compatible with a non-polar solvent. The 

hydrophilic core polymers such as PVA, PEG or polyethylene oxide (PEO) enable the 

loading of biomolecules, whereas the hydrophobic shell e.g. PCL assigns fiber 

formation (Saraf A. et al., 2009). The rate of bioactive molecules released from the 
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nanofibers depends exactly on the content of the degradable core components (Jiang 

H.L. et al., 2006).  

 

 

 

 

 

 

 

 

 

Figure 13. Coaxially electrospun PVA-core/PCL-shell nanofibers with encapsulated liposomes. (A, 

B) Field emission scanning electron microscopy (FESEM) of embedded liposomes within PVA/PCL 

nanofibers. (B) Detail of an incorporated intact liposome. (Insert) Pure PVA/PCL nanofibers without 

liposomes as a control. (C, D) Confocal microscopy of PVA/PCL nanofibers either (C) with 

encapsulated liposomes containing fluorescein or (D) without liposomes but with the addition of 

fluorescein in the core showing distribution throughout all nanofibers.  

Notes: (A, B) scale bars 300 nm, (C) scale bar 20 µm, (D) scale bar 50 µm,  (Insert) 2 µm. Adapted 

from Mickova A. et al. 2012.  

Coaxial nanofibers have been used for the incorporation of various bioactive 

substances such as antibiotics, drugs, DNA, and proteins (Sill T.J. and von Recum 

H.A., 2008; Ji W. et al., 2010). In addition, Sahoo et al. prepared core-shell nanofibers 
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through a blend and coaxial electrospinning for the delivery of bFGF. The presence of 

the growth factor in coaxial nanofibers led to increasing MSC proliferation (Sahoo S. 

et. al., 2010). In another work bFGF encapsulation with BSA for fibroblast proliferation 

stimulation of PCL/PEO coaxial nanofibers were used (Rubert M. et al., 2014). 

Moreover, coaxial nanofibers based on a PCL shell and PVA core with encapsulated 

liposomes as a promising controlled drug delivery system was developed and analysed 

in our group (Figure 13; Mickova A. et al., 2012) 

1.5.3 Other examples of drug delivery system based on nanofibers 

The last main group of a drug delivery system using nanofibers is based on the 

covalent immobilisation of bioactive substances onto the scaffold surface. These types 

of systems are more difficult for preparation and their application is more specific. 

Monteiro et al. prepared a chitosan nanofiber mesh with gentamicin-loaded liposomes 

immobilised on their surface. The nanofiber surface was modified with thiol groups that 

enabled the covalent binding of the liposomes. This functionalised nanofiber could be 

used as a promoter of antibacterial activity in human wound dressing (Monteiro N et 

al., 2015). Another system based on nanofibers with covalent immobilised bioactive 

substances was prepared by Manahkov et al. and Oktay et al. (Manahkov A. et al., 

2015; Oktay B. et al., 2015). 

1.6 Platelets as a part of tissue engineering 

Nowadays one of the very important widely used components of tissue 

engineered scaffolds are stimulating factors enabling the inducement, acceleration and 

enhancement of tissue regeneration. Synthetic growth factors (GF), platelet derivatives 

as a natural source of GF and other stimulating substances can be applied directly 
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during in vitro cultivation or through incorporation into the drug delivery systems, such 

as nanofiber scaffolds or liposomes.  

Platelets play a primary role in the hemostasis and initiation of the wound healing 

process (White J.G., 1987). On the one hand, platelets are a natural source of various 

growth factors that stimulate healing (Vavken P. et al., 2011). On the other hand, they 

form a clot as a temporary matrix that fills the injury site and provides support for cell 

migration, tissue regeneration and remodelling (Vavken P. et al, 2011). That function 

of platelets could be enhanced or substituted by nanofiber scaffolds.  

1.6.1 Composition of platelets 

Platelets are formed by the fragmentation of big polyploid bone marrow cells 

with a large lobulated nucleus called a megacaryocyte (White J.G., 1987). Platelets 

fulfil their biologic activity mainly by releasing secretory granules. The bioactive 

substances are entrapped within 3 types of granules (a) alpha granules; (b) delta 

granules (dense granules); (c) lambda granules (lysosomes). Among these types the 

alpha granules are the most abundant, containing most of the platelet bioactive 

substances and essential for normal platelet activity (Blair P and Falumenhaft R., 

2009).  

Alpha granules are released from the platelets after activation. Physiologically the 

activation occurs after the adhesion of platelets at the injury site and is mediated 

through the existing collagen layer (Roberts D.E. et al., 2004). Biochemical changes in 

the platelets lead to the release of secretory granules and to changes in platelet 

morphology (Figure 14; Flaumenhaft R. et al., 2003). The release of the content of 

alpha and lambda granules has a positive feedback effect on other platelet activation 

and aggregation at the injury site. The activation of other platelets runs through 
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different mechanisms such as a thrombin haemostatic cascade, autocrine 

thromboxane pathway or through serotonin (Di Cera E., 2008, Nakahata N., 2008). 

 

 

 

 

 

 

 

Figure 14. Transmission electron microscopy (TEM) of activated platelets. (A) Platelets from a foetus 

with a mutation in the VPS33B gene producing a membrane-associated protein involved in the 

activation pathway. (B) Platelet with alpha granules indicated with white arrows are presented only 

in an unaffected foetus.  

Notes: Scale bars 500 nm. Adapted from Lo B. et al., 2005. 

1.6.1.1 Alpha granules 

Alpha granules contain various bioactive molecules such as growth factors, 

coagulation proteins, adhesive molecules, cytokines, integrins, angiogenic factors and 

other substances (Blair P and Falumenhaft R., 2009). 

Alpha granules are an important source of protein from the TGF-β family, 

consisting of three isoforms (Lawrence D.A., 1996). TGF-β plays an important role in 

the initiation of proliferation and differentiation of the cells of mesenchymal origin. 

Conversely, these growth factors have an inhibitive effect on the proliferation of 

epithelial, endothelial and hematopoietic cells as well as B and T lymphocytes 

(Lawrence D.A., 1996). TGF-β family members enhance the proliferation of 

chondrocytes, stimulate the production of ECM and play regulatory roles in modulating 
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wound healing responses and scarring (Tuli R. et al., 2003). The bone morphogenic 

protein 2 (BMP-2) is also a member of the TGF-β family and plays a crucial role in 

bone epidermis repair (Blokhuis T.J., 2009). 

The epidermal growth factor (EGF) and TGF-α belongs to the same family. The 

biological effect is to increase the glycolysis and synthesis of proteins. It acts as a 

potent mitogen for keratinocytes, other mesenchymal and epithelial cells and 

enhances the migration of cells to the acute wounds (Barientos S. et al., 2008). 

bFGF, also known as  FGF-2, induces proliferation in most of the mesenchymal 

cells, including progenitor mesenchymal stem cells, which helps to keep them in a non-

differentiated state. FGFs also play a role in the re-epithelization, angiogenesis, 

granulation and remodelling of the new tissue (Friesel R.E. and Maciag T., 1995). 

Insulin growth factor 1 (IGF-1) plays a role as a mitogen in the organism. It 

induces cell proliferation and the differentiation of mesenchymal, nervous and epithelial 

cell types. IGF-1 is involved in re-epithelization, the development of the granulation 

tissue and Hers at al. proved that it is essential for vascular wound healing (Madry H. 

et al., 2001; Hers I., 2007) 

The major mitogen of osteoprogenitor cells, osteoblasts, fibroblasts, smooth 

muscle cells and glial cells is the platelet-derived growth factor (PDGF). PDGF plays 

an important role in wound healing, the stimulation of ECM synthesis and chemotactic 

induced MSC migration into the injury site (Heldin C.H. and Westermark B., 1990).  

Some other proteins such as VEGF or thrombospondin-1 presented in the 

platelets are involved in angiogenesis regulation (Italiano J.E. et al., 2008). Platelets 

also contain the Stromal cell-derived factor 1 (SDF-1) involved in MSC and epithelial 

cell migration (Stellos K et al., 2008).  The inflammation reaction is mediated by 
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chemokines such as Interleukin-8 (IL-8), CLXL-4, RANTES and CLXL-7 (Gleissner 

C.A. et al., 2008). Adhesion is induced by the Von Willebrand factor (vWF), fibrinogen 

and fibronectin (Italiano J.E., et al., 2008). 

1.6.1.2 Delta and Lambda granules 

The second type of secretory granules are delta or dense granules. As mentioned 

before they play an important role in the activation of other platelets at the injury site 

either through the non-metabolic fraction of ADP and ATP and purinergic receptors or 

through serotonin action (King S.M. and Reed G.L., 2002). 

The last type of secretory granules are lambda granules. These granules play the 

role of lysozymes in the platelets and include acidic hydrolases, katepsin D, katepsin 

E and other proteins (King S.M. and Reed G.L., 2002). 

1.6.2 Platelet rich plasma and thrombocyte-rich solutions 

Growth factors abundantly present in platelet preparation such as PRP have been 

shown to be effective in promoting wound healing and regeneration in tissue 

engineering (Nauta A. et al., 2011). Preparations derived from platelets were originally 

designed for increasing their numbers in the transfusion therapy of coagulation 

disorders. PRP is defined as a relatively small volume of the plasma fraction with a 

platelet concentration above a certain value. PRP classically contains more than 0.5 × 

1011 platelets per unit (Ehrenfest D.M et al., 2009).  

At present, PRP is usually prepared through the centrifugation of the collected 

blood. During this procedure the blood is divided into four fractions with an 

anticoagulant, red blood cells found at the bottom, acellular plasma also known as 

platelet-poor plasma (PPP), in the supernatant and the “buffy coat”, including 
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leucocytes, appears in between. The “buffy coat” fraction may be either directly applied 

to the surgical site using thrombin for platelet activation and fibrin polymerisation, or 

may be resuspended in the small amount of plasma and used for in vitro application 

(Ehrenfest D.M et al., 2009). Another processing of the “buffy coat” uses the gradual 

depletion of the leucocytes through multistep centrifugation (Anitua E., 1999) with 

subsequent resuspending in a supplement buffer solution (Baenziger N.L. et al., 1971; 

Jakubova R et al., 2011). In the first case we can obtain the previously mentioned PRP 

products and in the second product, called a thrombocyte-rich solution (TRS). The big 

advantage of a TRS preparation not containing leucocytes is the minimizing of the 

immune response when applied. On the other hand the disadvantages is the low yield 

and reproducibility. Some studies also demonstrated the effectivity of using PPP in 

tissue engineering. PPP can improve wound healing when compared with untreated 

controls, but not as effectively as PRP (Pietrzak W.S. et al., 2007; Creeper F. et al., 

2012).  

The in vitro studies demonstrated the ability of different platelet preparation to 

stimulate the proliferation of osteoblasts (Clausen C. et al., 2006), fibroblasts, 

tenocytes (Anitua E. et al., 2005), chondrocytes and MSC (Drengk A. et al., 2009). The 

proliferative effect of the TRS on chondrocytes and on MSCs has been also confirmed 

in our laboratory (Jakubova R., et al., 2011; Buzgo M. et al., 2013). 

The main problem with using different platelet preparations is the immediate 

release of GFs at the injury site, which could lead to some risk connected with high 

doses of GF application. The results from in vitro and in vivo studies indicated that the 

pro-inflammatory effect of platelet preparation could also have a negative effect and its 

dosage should be determined deliberately (Goutallier D. et al., 2003). Particularly, 

Graziani et al. showed that the best effect of the platelet on osteoblast and fibroblast 
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proliferation in vitro was achieved using a concentration 2.5 times higher than the 

physiological concentration of the platelet in human blood. The 2.5-time higher 

concentration caused reduction in the proliferation of those cells (Gaziany F. et al., 

2006). In contrast Yamaguchi et al. had to use a much higher platelet concentration to 

promote anastomotic wound healing in a rat specimen. The effect of PRP was 

observed in the preparation with a concentration of 2×106 platelets/µl (approx. 8 times 

the physiological concentration). The inhibition of healing was observed in the 

preparation with a concentration of 5×106 platelets/µl (Yamaguchi R. et al., 2012). 

Another problem using different platelet preparations is the short-lived therapeutic 

effect of GFs in case they are washed out from the injury site. The solution for both 

complications is to use a platelet preparation in combination with other biomaterials, 

enabling their elimination. We have already mentioned the potential usage of a 

nanofiber scaffold for drug delivery systems. Other described scaffolds using platelet 

preparations are decellularizated bone matrix (Rodriguez A. et al., 2003), fibrin gels 

(Anitua E. et al., 2007) and hydrogel based on alginate and cationized gelatine 

(Hokugo A. et al., 2005).  
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2 Aims of the study 

The study was focused on development and functionalization of scaffolds for 

incisional hernia repair.  

The study includes the following stages: 

1. Preparation and testing of a novel composite scaffold based on a 

polypropylene surgical mesh functionalized with the PCL nanofibers and adhered 

human platelets in vitro. 

2. Testing the composite scaffold based on a polypropylene surgical mesh 

functionalized with the PCL nanofibers and adhered synthetic growth factors in vivo on 

rabbits as a small animal model. 

3. Testing a scaffold based on the PCL nanofibers functionalized with adhered 

human platelets in vivo on minipigs as a large animal model.  

4. Testing the scaffold base on cryogrinded PCL nanofibers with potential use as 

a drug delivery system for tissue engineering in vitro.  
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3 Material and methods 

3.1 In vitro testing of the composite scaffold based on a 

polypropylene surgical mesh functionalized with PCL 

nanofibers and adhered human platelets 

3.1.1 Scaffold preparation 

PCL nanofibers were prepared by an electrospinning method from PCL with 

molecular weight MW 45 000 (Sigma-Aldrich, St. Louis, MO, USA; Lukas D. et al., 

2009). Electrospinning was performed from a 14% solution of PCL dissolved in 

chloroform:ethanol with a ratio of 8:2. A high-voltage source generated voltages of up 

to 50 kV, and the polymer solution was connected to a high-voltage source. 

Electrospun nanofibers were deposited on the grounded collecting electrode. A 

polypropylene surgical mesh (PP; Prolene™, Ethicon Inc., Somerville, NJ, USA) was 

coated with PCL nanofibers. Prolene™ was attached to the grounded collector, and 

PCL nanofibers were deposited on the mesh from each side (Figure 15).     

3.1.2 Thrombocyte-rich solution preparation 

Human platelets in plasma was obtained from the Haematology Service of the 

General Teaching Hospital, Prague, Czech Republic. Platelets (volume 200 mL, 

thrombocyte concentration 106 × 107 platelets/mL) was centrifuged (2250 g, 15 min), 

the supernatant was discarded and the resulting platelets were washed in a washing 

buffer (113 mM NaCl, 4.3 mM K2HPO4, 4.3 mM Na2HPO4, 24.4 mM NaH2PO4 and 5.5 

mM glucose, pH 6.5) as described by Baenziger et al (Baenziger N.L. et al., 1971). 

Contaminating leukocytes and erythrocytes were removed by further centrifugation 

(120 g, 7 min). The platelets were washed until the leukocytes and erythrocytes 
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contained in them were removed. The platelets were pelleted by centrifugation (2000 

g, 15 min), and were then washed once and finally resuspended in 10 mL of a pH 7.5 

resuspendation buffer (109 mM NaCl, 4.3 mM K2HPO4, 16 mM Na2HPO4, 8.3 mM 

NaH2PO4 and 5.5 mM glucose). TRS was stored and shaken in centrifuge tubes at 22 

°C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Methodology of the scaffold fabrication. PCL nanofibers were prepared by an 

electrospinning method. Electrospun nanofibers were deposited on a PP surgical mesh which was 

attached to the grounded collecting electrode from each side. PP covered with PCL nanofibers was 

cut into round patches of 6 mm in diameter, sterilized and immersed in TRS for 2 hours. The non-

adhered platelets were removed by rinsing twice in phosphate buffered saline (PBS; pH 7.4). The 

composite scaffolds were placed in a new well, seeded with 3T3 fibroblasts and tested in vitro. 

Notes: (1) syringe and metering pump, (2) needle serving as the electrode, (3) stable part of the jet, 

(4) whipping/coiling zone, (5) collector covered with PP, (6) ground and (7) high voltage supply. 

Abbreviations: PP, Prolene™; PCL, poly--caprolactone; TRS, thrombocytes-rich solution; PBS, 

phosphate buffered saline.  
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3.1.3 Composite scaffold preparation 

Before cell seeding, PCL nanofibers and Prolene™ coated with PCL nanofibers 

were cut into round patches 6 mm in diameter and sterilized using ethylene oxide at 

37°C. The scaffolds were used one week after sterilisation, in order to air out possible 

remnants of ethylene oxide. The scaffolds were immersed in TRS (106 × 106 

platelets/mL) for 2 hours to enable adhesion of platelets (Figure 13; Jakubova R. et al., 

2011). After the incubation time, non-adhered platelets were removed by rinsing twice 

in PBS (pH 7.4). Scaffolds without adhered platelets were incubated in PBS (pH 7.4) 

for 2 h. Then the composite scaffold was placed in a new well and was seeded with 

3T3 fibroblasts. Growth factors were released from the platelets adhered to the 

nanofibers over a period of 1 - 14 days (Buzgo M. et al., 2013). 

3.1.4 Scanning electron microscopy and stereological analysis of the 

scaffolds 

Nanofibers were sputter-coated with a layer of gold approximately 60 nm in 

thickness using a Polaron Sputter-coater (SC510, Polaron, Quorum Technologies Ltd, 

East Gristead, UK). The samples were examined in an Aquasem scanning electron 

microscope (Tescan, Brno, Czech Republic) in secondary electron mode at 15 kV.  

The electrospun scaffolds were characterized in terms of fiber diameter and pore 

size using mathematical stereological methods, as described in detail previously 

(Mickova A. et al., 2012). Briefly, the stereological parameters were measured from 

arbitrarily selected sections of the SEM images, using Ellipse software (Version 2001; 

ViDiTo, Kosice, Slovak Republic). The distribution of the fiber diameters and pore sizes 

were determined quantitatively from 200 measurements. 
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3.1.5 Cell cultivation and seeding 

The mouse 3T3 fibroblast cells (line 3T3-Swiss albino CCL-92™, ATCC, 

Manassas, VA, USA) were routinely maintained in a humidified incubator (Shellab SS-

2306; Sheldon Manufacturing, Inc., Cornelius, OR, USA) with an atmosphere of 5% 

CO2 in air at 37°C with fresh medium added every 2 days. Cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM; PAN-Biotech GmbH, Aidenbach, 

Germany) supplemented with 10% fetal bovine serum (FBS; PAA Laboratories GmbH, 

Pasching, Austria) and penicillin/streptomycin (100 IU/ml and 100 μg/mL, respectively, 

Sigma-Aldrich, St. Louis, MO, USA). When the cells reached 80-90% confluence they 

were suspended using Trypsin–Ethylenediaminetetraacetic acid (EDTA; PAA 

Laboratories GmbH, Pasching, Austria). The number of cells was determined using 

light microscopy. To detect the metabolic activity, proliferation and viability, fibroblasts 

were seeded on the scaffolds at a density of 3×103 cells/cm2, and to determine cell 

adhesion at a density of 3×104 cells/cm2, respectively. To eliminate any contribution 

from non-adherent cells, each scaffold was transferred to a new well on the plate 

before any in vitro tests. From each well, which contained 300 µL of medium, a volume 

of 150 µL of the medium was exchanged every second day. 

3.1.6 Cell adhesion by DiOC6 staining 

Staining with a 3,3’-Dihexyloxacarbocyanine iodide (DiOC6; Invitrogen, Carlsbad, 

CA, USA) fluorescent probe was used to detect adhesion of cells on the scaffolds. 

Samples were fixed with frozen methyl alcohol (–20˚C) for 10 min, and were rinsed 

with PBS followed by DiOC6 (0.1-1 μg/mL in PBS, pH 7.4). After 45-min incubation at 

RT, the samples were rinsed with PBS (pH 7.4), and propidium iodide (5 μg/mL in PBS, 

pH 7.4) was added for 10 min, rinsed with PBS (pH 7.4) again and visualized using a 
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Zeiss LSM 5 DUO confocal microscope (Zeiss, Oberkochen, Germany; λexc = 484 nm 

and λem = 482–497 nm). The areas of adhered cells were counted with Ellipse software 

(Version 2001; ViDiTo, Kosice, Slovak Republic). For each scaffold, an area of 100 

cells was measured and averaged.  

3.1.7 Cell metabolic activity analysis by the MTT test 

Cell metabolic activity was measured using the 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) test. MTT (50 μL, 1 mg/mL; Sigma-Aldrich, St. 

Louis, MO, USA) in PBS (pH 7.4) was added to 150 μL of the sample medium and was 

incubated for 4 hours at 37°C. Using mitochondrial dehydrogenase of normally 

metabolizing cells, the MTT was reduced to purple formazan. The formazan crystals 

were solubilized with 100 μL of 50% N,N-dimethylformamide in 20% sodium dodecyl 

sulphate (SDS) at pH 4.7. The results were examined by spectrophotometry in an 

absorbance microplate reader (ELx800; BioTek, Winooski VT, USA) at 570 nm 

(reference wavelength 690 nm). The metabolic activity of 3T3 fibroblasts on a scaffold 

was tested on days 1, 3, 7, 10 and 14. 

3.1.8 Cell proliferation analysis by PicoGreen® assay 

The second proliferation analysis was carried out using the Invitrogen 

PicoGreen® assay kit (Quant-iT™ PicoGreen® dsDNA Reagent kit, Invitrogen, 

Carlsbad, CA, USA). The proliferation of 3T3 fibroblasts on the scaffolds was tested 

on days 1, 3, 7, 10 and 14. To process the material for an analysis of the DNA content, 

each scaffold was replaced in a vial with 500 μl of cell lysis solution (0.2% v/v Triton X-

100, 10 mM Tris (pH 7.0), 1 mM EDTA). To prepare the cell lysate, the samples were 

processed through a total of three freeze/thaw cycles; the scaffold sample was first 

frozen at -70 °C and thawed at RT. Between each freeze/thaw cycle, the scaffolds 



61 
 

were roughly vortexed. The prepared samples were stored at -70 °C until analysis. To 

quantify the cell number on the scaffolds, a cell based standard curve was prepared 

using samples with a known number of cells (range 100 – 5×105 cells). The DNA 

content was determined by mixing 100 μL PicoGreen reagent and 100 μL of the DNA 

sample. The samples were loaded in triplicate and the florescence intensity was 

measured on a multi-mode microplate reader (Synergy HT; BioTek, Winooski VT, 

USA; λex = 480–500 nm, λem = 520 – 540 nm).  

3.1.9 Viability of cells seeded on scaffolds by live/dead staining 

To detect cell viability, live/dead cell staining was performed. The cell viability of 

3T3 fibroblasts on the scaffold was tested on days 1, 3, 7, 10, 14. The cells were 

stained with 2´,7’-Bis[2carboxyethyl]-5[6]-carboxyfluorescein acetoxymethyl ester 

[(BCECF-AM), storage solution 1 mg/mL in dimethyl sulfoxide (DMSO)], and were 

finally diluted 1:100 in a serum-free medium; (Sigma-Aldrich, St. Louis, MO, USA) and 

propidium iodide (5 μg/mL in PBS, pH 7.4; Sigma-Aldrich, St. Louis, MO, USA). 

BCECF-AM was added to the scaffolds and incubated for 45 min at 37°C and 5% CO2 

and subsequently rinsed in PBS (pH 7.4). After rinsing with PBS (pH 7.4), propidium 

iodide was added for 10 min, then the scaffolds were rinsed again with PBS (pH 7.4) 

and visualized using a Zeiss LSM 5 DUO confocal microscope (BCECF - AM λex = 488 

nm and λem = 505–535 nm, propidium iodide λex = 543 nm and λem = 630–700 nm). 

BCECF-AM is an intracellular fluorescent pH indicator, which is hydrolysed to BCECF 

by cytosolic esterases. Thus, only live cells contribute to the staining results (green 

colour). Propidium iodide binds to double stranded DNA, but it can only cross the 

plasma membranes of non-viable cells (red colour). For each scaffold, the number of 

live/dead cells was counted with Ellipse software (Version 2001; ViDiTo, Kosice, 
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Slovak Republic) and was averaged. Viability was calculated as the percentage of live 

cells from the total cell count per unit area.  

3.1.10 Cell proliferation analysis by colorimetric immunoassay 

The proliferation activity of 3T3 fibroblasts seeded on the scaffolds was 

determined using a colorimetric immunoassay based on measurements of 5-bromo-

2’-deoxyuridine (BrdU), which is incorporated during DNA synthesis (Cell proliferation 

ELISA, BrdU, colorimetric; Roche Applied Science, Penzberg, Germany). The assay 

was performed according to the manufacturer’s instructions. Briefly, on days 1, 3, 7, 

10 and 14, each scaffold 100 µL BrdU-labeling solution was added to each well 

containing a scaffold and was allowed to incorporate into the cells in a CO2-incubator 

at 37°C for 2 h. Subsequently, the supernatant in each well was removed, and the 

scaffolds were incubated with FixDenat solution to fix the cells and denature the DNA 

at room temperature (RT) for 30 min. The supernatant was removed and, 

subsequently, 100 µL anti-BrdUperoxidase (dilution ratio = 1:100) was added and kept 

at RT for 60 min. After removing the unbound antibody conjugate, 100 µL of substrate 

solution was added, allowed to stand for 4 min, and the reaction was completed by 

adding 25 µL of H2SO4 solution (1M). Then, 100 µL of the solution was transferred to 

a 96-well plate and measured within 5 min at 450 nm with a reference wavelength of 

690 nm, using an absorbance microplate reader (ELx800; BioTek, Winooski VT, USA). 

The blank corresponded to a scaffold without cells, with or without BrdU. 

3.1.11 Statistical analysis of in vitro tests 

Quantitative data are presented as mean ± standard deviation (SD). For the in 

vitro tests, average values were determined from four independently prepared 

samples. The results were evaluated statistically, using One Way Analysis of Variance 
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(ANOVA) and the Student-Newman-Keuls Method. The level of significance was set 

at 0.001 and 0.05. 

3.2 In vivo testing of the composite scaffold based on a 

polypropylene surgical mesh functionalized with PCL 

nanofibers and adhered synthetic growth factors on a 

rabbit model 

3.2.1 Preparation of the functionalized scaffolds and composite 

meshes 

Preparation of the scaffold based on the polypropylene surgical mesh 

functionalized with PCL nanofibers is described in chapter 3.1.1. 

For in vivo tests on a rabbit model PCL nanofibers, Prolene™ (PP) and P coated 

with PCL nanofibers were cut into rectangular shape with 4 cm and 8 cm sides. The 

scaffolds were sterilized using ethylene oxide at 37°C. The synthetic GF were bound 

to the scaffold by 12h incubation in a PBS (pH 7.4) solution, which contained 200 

ng/mL IGF-I [human recombinant (hr), Sigma-Aldrich, St. Louis, MO, USA], 40 ng/mL 

bFGF (hr, Roche Applied Science, Penzberg, Germany), and 4 ng/mL TGF-2 (from 

porcine platelets, Sigma-Aldrich, St. Louis, MO, USA). After incubation GFs were 

adhered on the surface of nanofibers. The release of synthetic growth factors from 

nanofibers were in the order of 1 to 3 weeks (Filova E. et al. 2013). Implanted scaffolds 

without the GF were incubated in PBS (pH 7.4) for 12h.  

3.2.2 Rabbit animal model, study groups and animal care 

A total of 27 rabbits were randomly divided into six groups. In Group I (the control 

group), the tissue defect in the fascia was primarily closed using a 4/0 PP suture. In 
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Groups II, III and V, the defect in the fascia was closed with a 4/0 PP suture, a 4×8 cm 

mesh was placed over the fascia in an onlay position, overlapping the incision by 2 cm 

circumferentially. Group II was treated with a PP mesh only (the second control group), 

while Group III was treated with a PP mesh functionalized with PCL nanofibers 

enriched with GF, and Group V was treated with a PP mesh functionalized with PCL 

nanofibers without GF. The mesh was then fixed with a continuous suture technique, 

using a 4/0 PP suture. The last continuous stitch was used to suture the mesh to the 

incision line. Groups IV and VI were treated with PCL nanofibers only, with adhered 

GF (Group IV) or without GF (Group VI). For better understanding, the groups are 

summarized in Table 3.  

Table 3. Groups and meshes used 

 

 

 

 

 

 

 

 

 

 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone. 

Twenty seven Chinchilla rabbits (3.2±0.3 kg), 4 months old, were obtained from 

a conventional breed (CB Bio, Prague, Czech Republic) and bred in standard cages 

without bedding. The rabbits were fed ad libitum using the standard granular diet for 

rabbits (TM–MaK 1, Bergman, Karlovy Vary, Czech Republic). The Ethical Principles 

and Guidelines for Scientific Experiments on Animals were respected throughout this 

study. The maintenance and handling of the experimental animals followed EU Council 

Group Description 

I Suture only 

II PP 

III PP + PCL nanofibers + Growth Factors 

IV PCL nanofibers + Growth Factors 

V PP + PCL nanofibers 

VI PCL nanofibers 
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Directive (86/609 EEC), and the animals were treated in accordance with the principles 

of Care and Use of Animals.  

3.2.3 Surgical procedure, euthanasia and sample collection 

The animals were pre-medicated with intramuscular 15 mg Diazepamum pro toto 

(posteriorthigh – semitendinous and semimembranous muscles). The surgical 

procedure was conducted under general anesthesia using Ketamine (35 mg/kg) and 

Xylazine (3 mg/kg) and subsequently inhalation of O2 + 1.5-2.0% Halothane during 

surgery. Following completion of all the preoperative preparations, a skin incision of 

about 6 cm was cut through the midline of the abdomen, starting 3 cm below the 

xyphoid. Another 5 cm long midline incision was made in the fascia as an abdominal 

closure model. Antibiotics (20 mg/kg/day s.c. of Cefalexinum monohydricum, Cefalexin 

ad us. vet.) and analgesics (0.1mg/kg/day s.c. of Butorphanol tartrate) were 

administered during the first 3 days. The rabbits were not limited in their movement 

after surgery. The animals were euthanized using T61 (Schering-Plough Corporation, 

Kenilworth, NJ, USA) 6 weeks later.  

Samples for histological and immunohistochemical analysis were fixed in 10% 

phosphate-buffered formalin for 48 h. Two samples of 1×6 cm of full layer abdominal 

wall with mesh were removed for biomechanical testing (Figure 16), two samples from 

the suture line and two from the edge of the mesh were harvested for histological 

testing. All suturing material was explanted prior to all tests.  
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Figure 16. Full layer regenerated abdominal wall for biomechanical and histological analyses. (A) 

Incision of abdominal wall closed with PP mesh, (B) incision of abdominal wall closed with simple 

suture.  

Abbreviations: PP, polypropylene. 

3.2.4 Video-recorded biomechanical assay (tensile strength) 

The hysteresis curve and the maximum tensile strength were determined on a 

Micro tester digital tension meter (the device was developed in Department of Anatomy 

and Biomechanics, Faculty of Physical Education and Sport, Charles University in 

Prague, Utility model with document/registration number 25008, Industrial Property 

Office, Czech Republic). The structure of each sample was scanned throughout the 

experiment by an Olympus SZX-12 microscope (Olympus Corporation, Tokyo, Japan) 

equipped with an ultrasensitive SensiCam video camera (PCO, Kelheim, Germany). 

The force response of each sample was detected at the branches of the tension meters 

during the whole cycle. Both static and dynamic properties of each of the samples were 

analysed. The following quantities were measured: elasticity in traction E [N/mm2], 

maximum strength force σmax. per square unit [N/mm2] and the corresponding 

proportional elongation value εmax.. The localization and the character of the tear line 

were also analysed. The tissue samples (1×6 cm strips of regenerated abdominal wall) 

were individually attached to the branches of the tension meter in longitudinal manner, 
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not including the place covered with scaffolds of a particular type (Figure 17). The 

samples were stretched by 5 mm at a speed of 10 mm/s ten times and were then pulled 

at a speed of 0.5 mm/s until the sample broke (Figure 27).  

 

 

 

 

 

 

 

 

Figure 17. Tensiometer branches with anchored samples during biomechanical analyses. 

3.2.5 Histological evaluation 

The tissue samples were fixed with buffered formalin, dehydrated and embedded 

in paraffin blocks. Six serial histological sections 5 µm in thickness were processed 

from each paraffin-embedded tissue block. α-Smooth muscle actin was used as a 

marker of the contractile SMC phenotype and myofibroblasts, and CD31 was used as 

an endothelial marker (Table 4). Endogenous peroxidase activity was blocked with 3% 

H2O2 in PBS. Non-specific binding activity was blocked with normal goat or horse 

serum (Table 4) in a phosphate-buffered salt solution at room temperature. The 

sections were incubated overnight with primary antibodies (Table 4) at 4°C. 

Immunoreaction products were detected using the immunoperoxidase technique 

(Table 4), and the reactions were visualized with diaminobenzidine (Sigma-Aldrich, St. 
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Louis, MO, USA). All sections were counterstained with Gill’s hematoxylin (Dr. Kulich 

Pharma, Otrokovice, Czech Republic). Quantification of area fractions of tissue 

constituents and quantification of microvessel density were done using stereological 

point counting method (Mouton P.R., 2002) and the unbiased counting frame provided 

by Ellipse software (ViDiTo, Kosice, Slovak Republic). 

Table 4. Primary antibodies used for immunohistochemistry 

Antibody Blocking serum Pre-treatment Detection 

Monoclonal Mouse Anti-

Human Smooth Muscle 

Actin, Clone 1A4, 

(DakoCytomation, 

Glostrup, Denmark) 

 

Normal goat serum 

(DakoCytomation) in 

PBS at room 

temperature 

None N-Histofine kit (Nichirei 

Biosciences, Tokyo, 

Japan) 

Monoclonal Mouse Anti-

Human and Anti-Rabbit 

CD31, Clone JC/70A 

(Vector Laboratories Ltd., 

Peterborough, UK) Dilution 

1:25 

(endothelial marker)  

Normal horse serum 

for 20 min at room 

temperature 

Enzyme-induced 

epitope retrieval 

with Proteinase K 

(DakoCytomation) 

for 6 min 

ImmPress reagent kit 

with Anti-mouse Ig 

peroxidase MP-7402 

(Vector Laboratories, 

Ltd.) 

3.2.6 Histological scoring system 

In the literature, there are no references to a method for comparing histological 

evaluations related to incisional hernia examinations. We suggest a novel scoring 

system, which is described in detail below.  

Two tissue blocks were examined in each animal, one representing the medial 

region of the abdominal wall with the healing incision, and the other approx. 20 mm 

laterally to the median incision. Six serial histological sections 5 µm in thickness were 

processed. Two sections were stained with hematoxylin-eosin (Merck KGaA, 
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Darmstadt, Germany), two sections were stained with Verhoeff’s hematoxylin (Merck 

KGaA, Darmstadt, Germany) and green trichrome (DiaPath, Martinengo, Italy) to 

visualize the connective tissue (Kocova J., 1970), and two sections were processed 

immunohistochemically in order to reveal the presence of micro vessels, smooth 

(SMC) and myofibroblasts. We used α-smooth muscle actin as a marker of the 

contractile SMC phenotype and myofibroblasts, and CD31 as an endothelial marker. 

All sections were counterstained with Gill’s hematoxylin. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Histological quantification. (A) In sections stained with Verhoeff’s hematoxylin (Merck 

KGaA, Darmstadt, Germany) and green trichrome (DiaPath, Martinengo, Italy), the area fraction of 

collagen (stained green), adipose tissue, and granulomatous infiltrates (red arrow) was quantified. 

The area occupied by dissolved tissue scaffolds (asterisk) or by artificial microcracks (black arrow) 

was excluded from the reference area. (B) For all area quantifications, stereological point grids were 

superimposed on histological micrographs, points striking the structures of interest within the total 

area were counted, and the sum of these points was multiplied by the area corresponding to each 

point (marked “a” within the square). This is illustrated in an immunohistochemical section showing 
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α-smooth muscle actin-positive vascular smooth muscle cells (yellow arrow) and myofibroblasts 

(green arrow). (C) Counting CD31-positive microvessel profiles per section area using projection of 

an unbiased counting frame consisting of two admittance borders (green) and two forbidden borders 

(red). (B,C) Counterstaining Gill’s hematoxylin (Dr. Kulich Pharma, Otrokovice, Czech Republic).  

Notes: (A) magnification × 100, scale bar 200 µm. (B,C) magnification × 200, scale bar 100 µm. 

We used five continuous variables describing the tissue reaction of the 

connective tissue below the dermis and superficial to the abdominal muscle. The 

presence of collagen, adipose tissue and granulomatous infiltrates was assessed in 

the sections stained with Verhoeff’s hematoxylin and green trichrome (Figure 18A). 

The presence of α-smooth muscle actin and the presence of CD31-positive micro 

vessel profiles were assessed in immunohistochemical sections (Figure 18B and C). 

Two micrographs for each staining and tissue block were taken in a systematic random 

manner, using a 20× objective (quantification of CD31-positive microvessels) or a 10 

× objective (other parameters). Next, a randomly positioned uniform grid of equidistant 

points was placed on the micrographs in an overlay, so that the number of points 

striking the collagen, adipose tissue, granulomatous infiltrates and α-smooth muscle 

actin-positive cells was proportional to their area. We counted the number of points 

striking these structures within the area of the abdominal scar. The area of each major 

tissue component A was calculated by multiplying the number of counted points by the 

area corresponding to each point (Gundersen H.J., 1978). The presence of each tissue 

component in the study was then expressed as their area fraction (AA) within the 

connective tissue of the scar and abdominal wall. The area not occupied by connective 

tissue (tissue micro cracks, dissolved mesh and surgical stitches, borders of the 

section) was excluded from the reference area. The sum of the area fraction of 

collagen, adipose tissue, granulomatous infiltrates and α-smooth muscle actin 

represents the main tissue constituents. The remaining fraction of the tissue was 
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occupied mostly by fibroblasts and scattered connective tissue cells, individual skeletal 

muscle fibers, ground substance of the extracellular matrix, immature collagen, and 

lumina of blood and lymphatic vessels. In sections stained for the α-smooth muscle 

actin and CD31, we assessed the quantity of micro vessels as the number of micro 

vessel profiles per section area QA, using an unbiased counting frame (Gundersen 

H.J., 1978). Although the α-smooth muscle actin did not label the capillaries which are 

lacking smooth muscle cells, we found a strong positive correlation (Spearman 

R=0.91) between the micro vessels labelled with α-smooth muscle actin and CD31-

positive micro vessels in a pilot study based on 12 tissue samples. Due to a stronger 

immunohistochemical reaction, we decided to consider the number of α-smooth 

muscle actin-positive micro vessels as an acceptable estimate for the presence of 

micro vessels. In total, the quantification was based on 220 micrographs. An estimate 

was made of the density of the micro vessel profiles, and 117 micro vessel profiles per 

sample were counted on an average. 

3.2.7 Statistical analysis for in vivo tests 

The quantitative histological data were processed using Statistics Base 9 

(StatSoft Inc., Tulsa, OK, USA). The Spearman rank order correlations were used as 

a measure of the statistical relations between the variables, and Kruskal-Wallis 

ANOVA was used for testing the equality of the population medians between the 

groups under study. We used the Wilcoxon matched pairs test for paired samples of 

the medial and lateral abdominal wall of the same animals. Values were considered 

statistically significant for p < 0.05. Only significant findings and findings close to 

significant values are reported.  
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3.3 In vivo testing of the scaffold based on PCL nanofibers 

functionalized with adhered human platelets on a 

minipig model.  

3.3.1 Preparation of the functionalised scaffolds 

Preparation of the PCL nanofibrous scaffolds is described in the chapter 3.1.1. 

For in vivo tests on a minipig model PCL nanofibers, PCL nanofibers with adhered 

human platelets or suture alone were used. Nanofibrous scaffolds were cut into a 

rectangular shape with sides of 4 cm and 9 cm. The scaffolds were sterilized using 

ethylene oxide at 37°C. TRS was prepared from human platelets in plasma (volume 

283 mL, platelets concentration 100x107 platelets/mL) as described in the chapter 

3.1.2. Final washed platelets pellet was resuspended in 50 mL of resuspendation 

buffer. The final concentration of platelets in TRS was 1x109. PCL scaffolds designated 

for functionalization were immersed in TRS for 2 hours to enable adhesion of platelets 

(Figure 12; Jakubova R. et al., 2011). After the incubation time, non-adhered platelets 

were removed by rinsing twice in PBS (pH 7.4). Scaffolds without adhered platelets 

were incubated in PBS (pH 7.4) for 2 h. Growth factors were released from the platelets 

adhered to the nanofibers over a period of 1 - 14 days (Buzgo M. et al., 2013). 

3.3.2 Minipig animal model, study groups and animal care 

The total of 10 male minipigs was randomly divided into two groups. For the 

implantation, the PCL nanofibers, PCL nanofibers with adhered human platelets (PCL 

nanofibers + TRS) or suture alone were used. Scaffold was placed over the fascia in 

an onlay position, overlapping the incision by 2 cm circumferentially. The scaffold was 

fixed with a continuous suture technique, using a 4/0 PP suture. The last continuous 

stitch was used to suture the mesh to the incision line. 
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10 male minipigs (19-31 kg), 6-8 months old, were obtained from a conventional 

breed (CB Bio, Prague, Czech Republic) and bred in standard individual boxes. The 

minipigs were fed with 1 kg of the standard complete feed mixture (A1, Cerea a.s., 

Pardubice, Czech republic). Quality controlled water was supplied ad libitum during the 

acclimatisation time and during the entire study period. The Ethical Principles and 

Guidelines for Scientific Experiments on Animals were respected throughout this study. 

The maintenance and handling of the experimental animals followed EU Council 

Directive (86/609 EEC), and the animals were treated in accordance with the principles 

of Care and Use of Animals.  

3.3.3 Surgical procedure, euthanasia and sample collection 

The animals were premedicated with Atropin (0.05 mg/kg, i.m.), Azaperon (2 

mg/kg, i.m.) and Ketamin (15 mg/kg, i.m.). After sedation, the animal was intubated. 

During the surgery, the anaesthesia was keeping by O2 + 1.5-2.0% Halothane 

inhalation. After ensuring a venous access entry with a catheter into the marginal ear 

vein, a 0.9% saline solution was supplied.  

After entering to anaesthesia, the animal was placed to the dorsal location. Its 

skin was shaved. The surgery site was disinfected with povidone-iodine (Braunol, 

B.Braun, Melsungen, Germany). Following completion of all the preoperative 

preparations, a four skin incision of about 8 cm was cut laterally from the nipples in 

particular quadrant of the abdominal wall (Figure 19). Consequently the incision into 

the frontal fascia of rectus abdominis muscle with the fain immobilisation into the 

muscle was made (Figure 20). The incision was in the length of 5 cm. The scaffold was 

placed over the fascia in an onlay position according to the scheme. The numbering of 

the particular incision is presented in Figure 19. Experimental and control defects were 
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rotated in the position to avoid affection of the healing process due to the particular 

position in the abdominal wall. The scaffold was fixed with a continuous suture 

technique, using a 4/0 Vicryl suture. The last continuous stitch was used to suture the 

mesh to the incision line. The incisionin the group treated without any scaffold (the 

control group), the fascia tissue defect was primarily closed using a continuous suture 

technique using a 3/0 PP suture. 

 

 

 

 

 

 

Figure 19. Numbering scheme of particular incision in abdominal wall. Experimental and control 

defects were rotated in the position to avoid affection of the healing process due to the particular 

position in the abdominal wall. 

Antibiotics (20 mg/kg/day s.c. of Cefalexinum monohydricum, Cefalexin ad us. 

vet.) and analgesics (0.1mg/kg/day s.c. of Butorphanol tartrate ad us.vet.) were 

administered during the first 3 days. The minipigs were not limited in their movement 

after surgery.  

The animals in one experimental group were euthanized 6 weeks and in second 

group 12 weeks after surgery.   Euthanasia was realised using premedication of 

Azaperon (2 mg/kg, i.m.) + Ketamin (15 mg/kg, i.m.) and administration of T61 (10 ml 

i.v. pro toto). 
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Figure 20. Surgery of the minipigs abdominal wall. (A) Incision in the fascia of rectus abdominis muscle. 

(B) Fixation of the implanted PCL nanofiber mesh. 

Samples of 2×6 cm of full layer abdominal wall with scaffold for histological and 

immunohistochemical analysis were removed and fixed in 10% phosphate-buffered 

formalin for 48 h. All suturing material was explanted prior to all tests. 

3.3.4 Histological evaluation 

The tissue samples were fixed in 10% phosphate-buffered formalin, dehydrated 

and embedded in paraffin blocks. The samples were prepared to represent the places 

of incision, as well as the abdominal wall approx. 20 mm apart from the incision. Eight 

serial histological sections 5 µm in thickness were processed from each paraffin-

embedded tissue block. Two sections were stained with haematoxylin-eosin, two 

sections were stained with Verhoeff’s haematoxylin and green trichrome (Kocova J., 

1970) to visualize the connective tissue, two sections were stained with picrosirius red 

(Direct Red 80, Sigma Aldrich, Munich, Germany) diluted in saturated picric acid 

solution for one hour to  visualize the type I collagen. The other two sections were 

processed immunohistochemically in order to reveal the presence of microvessels, 

SMC and myofibroblasts. We used α-smooth muscle actin as a marker of the 

contractile SMC phenotype and myofibroblasts. Endogenous peroxidase activity was 
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blocked with 3% H2O2 in PBS. Any unspecific binding activity was blocked with normal 

goat or horse serum in phosphate-buffered salt solution at room temperature. The 

sections were incubated overnight with monoclonal mouse anti-human smooth muscle 

actin primary antibody (dilution 1:1000, clone 1A4, DakoCytomation, Glostrup, 

Denmark) at 4°C. The products of the immunoreaction were detected using the 

immunoperoxidase technique (N-Histofine kit, Nichirei Biosciences, Tokyo, Japan) and 

the reactions were visualized with diaminobenzidine (Fluka, Buchs, Germany). All the 

sections were counterstained with Gill’s haematoxylin. 

All quantitative estimates were done using well established stereological methods 

(Mouton P.R., 2002) and the Ellipse software (ViDiTo, Košice, Slovakia). The new 

scoring system used in both in vivo studies is described in chapter 3.2.6 in more detail. 

We used six continuous variables describing the tissue reaction of the connective 

tissue below the dermis and superficial to the abdominal muscle fascia. The presence 

of type I collagen was assessed in sections stained with picrosirius red using the 

circularly polarized light. The advantages of this method were described by Rich and 

Whittaker (Rich L. and Whittaker P., 2005). The picrosirius red enhances the 

birefringence of co-aligned type I collagen fibrils and fibres. This phenomenon can be 

used for reproducible morphological quantification of the type I collagen content with 

high specificity and sensitivity (Junqueira L.C. et al., 1979). According to the thickness, 

type I collagen fibres appear in yellow (thinner fibres), orange, and red colour (thick 

bundles of fibres). The presence of α-smooth muscle actin-positive cells was quantified 

in immunohistochemical sections.  
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3.3.5 Statistical analysis for in vivo tests 

The data were processed with the Statistica Base 9 (StatSoft, Inc., Tulsa, OK, 

USA). As a measure of the statistical relations between the variables, the Spearman 

rank order correlations were used. Kruskal-Wallis ANOVA and the Mann Whitney U 

test were used for testing the equality of population medians between the groups under 

study. For paired samples with and without incision in the same animals, we used the 

Wilcoxon matched pairs test. Values were considered statistically significant for p < 

0.05. Only significant findings and finding close to significant values are reported. 

3.4 In vitro testing of the scaffold base on cryogrinded PCL 

nanofibers with potential use as a drug delivery system 

for tissue engineering  

3.4.1 Preparation of the microspheres by cryogrinding of PCL 

nanofibers 

The complete preparation process of a potential drug delivery system based on 

microspeheres derived from the PCL nanofibers by the cryogrinding technique was 

comprehensively described in our group by Knotek et al. (Knotek P. et al., 2012). 

Briefly, the PCL nanofibers prepared by a needleless electerospinning method were 

pulverizing from deep frozen state in cryogenic impact grinder. The cryogrinding 

process was carried out in different supporting grinding media and, such as mannitol, 

Pluronic and 2-octanol. The particle size distribution and the morphology were 

analysed using Mastersizer 2000 MU (Malvern Ins., Malvern, United Kingdom) and 

SEM Jeol JSM 5500 LV (JEOL Ltd, Tokyo, Japan) respectively.  
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3.4.2 Cell cultivation and seeding 

For in vitro testing of cryogrinded microsphere, mouse 3T3 fibroblast were used. 

Exact procedure of cell cultivation is described in chapter 3.1.5. There were several 

modifications of the previously described method. Fibroblasts were seeded on the 

microsphere scaffolds at a density of 6×103 cells/cm2. Prior to seeding cells, the 

microsphere scaffolds (30 mg) were sterilized in 70% ethanol (v/v) for 30 min and put 

into each well of 96-well plate. In order to prevent cell from adhering to the well surface, 

wells were modified with 1% Pluronic-127. A 50 µl aliquot of the cell suspension was 

added into each well and incubated for 2 h. Then 150 μl of cell culture medium was 

added to the samples and cells were cultured at 37 °C in a humidified atmosphere with 

5% CO2. 

3.4.3 Cell adhesion on the microspheres by DiOC6 staining 

The complete procedure of cell adhesion evaluation by using the confocal 

microscopy and DiOC6 staining is described in the chapter 3.1.6. Cell adhesion was 

evaluated on microspheres cryogrinded in all three different supporting grinding media.  

3.4.4 Cell proliferation analysis by PicoGreen® assay 

The complete cell proliferative PicoGreen® assay is described in chapter 3.1.8. 

The proliferation of 3T3 fibroblasts on either PCL microspheres cryogrinded in mannitol 

supporting media or PCL nanofibers was evaluated on days 1, 7, 14 and 21.  

3.4.5 Cell metabolic activity analysis by the MTS test 

Cell metabolic activity was measured using the 3-[4,5-dimethylthiazol-2-yl]-(3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium bromid (MTS) test. Samples of either PCL microspheres cryogrinded in 
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mannitol supporting media or nanofibers on days 1, 7, 14 and 21 were transferred to a 

new 96-well plate containing 100 μl of fresh full medium per well and 20 μl of CellTiter 

96® Aqueous One Solution Reagent was added (CellTiter 96® Aqueous One Solution 

Cell Proliferation Assay, Promega, Fitchburg, WI, USA). The formazan absorbance in 

100 μl of the solution was measured (λsample = 490 nm, λreference = 690 nm) after 2-h 

incubation at 37 °C and 5% CO2 using a microplate reader ELx800. The absorbance 

of the samples without cells was deducted from the cell-seeded samples. Values 

represent mean ± SD of four independent measurements. 
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4 Results 

4.1 In vitro testing of the composite scaffold based on a 

polypropylene surgical mesh functionalized with PCL 

nanofibers and adhered human platelets 

4.1.1 SEM and stereological analysis of the scaffolds 

The functionalized mesh was prepared by attaching the PP mesh on to the 

collector before the electrospinning process. PCL nanofibers were deposited on the 

surface of the PP mesh. The PP mesh with nanofibers was exposed in an aqueous 

environment for 2 weeks without any visual effect on the functionalized mesh. Three 

types of functionalised scaffolds were examined using scanning electron microscopy 

in secondary electron mode. Samples of the PP mesh (Figure 21B) were functionalized 

with PCL nanofibers (Figure 21A) to create a composite scaffold (Figure 21C).  

 

 

 

 

 

 

Figure 21. SEM of the scaffolds. (A) PCL nanofibers, (B) PP mesh, (C) PP mesh functionalized with 

PCL nanofibers.     

Notes: (A) magnification × 230, scale bar 50 µm, (B,C) magnification × 18, scale bar 500 µm. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone. 

Scanning electron microscopy revealed a randomly-oriented nanofibers and their 

deposition onto the PP mesh. Stereological analyses divided the nanofibers into two 
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fractions of PCL fibers. The first fraction contained fibers with an average diameter of 

1.29 × 103±0.33 × 103 nm, while in the second fraction the average diameter was 

466±170 nm. The average diameter of the PP mesh fibers was about 150 × 103±5.4 × 

103 nm. This kind of system was therefore considered suitable for further cell studies. 

4.1.2 PCL nanofibers significantly improved cell adhesion and 

metabolic activity 

Functionalization of the PP mesh significantly improved the adhesion and the 

metabolic activity of the 3T3 fibroblasts.  

First, cell adhesion was evaluated 24 hours after seeding. 3T3 fibroblasts were 

stained using DiOC6 and propidium iodide, were visualised using confocal microscopy, 

and areas of the spread cell surface were measured. A significantly larger surface area 

of the cells was observed on the PP mesh functionalized with PCL nanofibers than on 

the PP mesh alone (Figure 22). In addition, the largest spreading area was for the cells 

cultivated on the PP mesh functionalized with PCL nanofibers and TRS. 

Simultaneously, enrichment of the PP mesh with TRS improved cell adhesion, and the 

cell spreading area of PP + TRS was significantly larger than for PP (p < 0.001). 

Clearly, PP meshes functionalized with PCL nanofibers alone, and also PP meshes 

treated with TRS, significantly improved 3T3 adhesion. These two effects seem to be 

independent, and can therefore result in an additive effect. 
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Figure 22. Cell adhesion evaluated on the first day after seeding. Average surface area of spread 

3T3 fibroblasts cultivated on the surface of a PP mesh (1), a PP mesh  treated with TRS (2), a PP 

mesh functionalized with PCL nanofibers (3), a PP mesh functionalized with PCL nanofibers treated 

with TRS (4). A cell adhesion assay revealed a significantly larger surface area of spread 3T3 

fibroblasts on scaffolds functionalized with PCL nanofibers (PP + PCL and PP + PCL + TRS) than 

on scaffolds without functionalization (PP and PP + TRS). Moreover, the average surface area of 

3T3 fibroblasts was significantly higher (level of significance at a value of p < 0.001) on the PP mesh 

functionalized with PCL nanofibers treated with TRS than on all other scaffolds.  

Notes: The level of statistical significance for the assays is designated above the mean values (p < 

0.05 indicated by number, p < 0.001 indicated by number and *). Day 1: 2 ˃ 1*; 3 ˃ 1*, 2; 4 ˃ 1*, 2*, 

3*. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; TRS, thrombocyte-rich solution; µm2, 

square micrometre.  

3T3 fibroblast metabolic activity was determined by the MTT assay. The MTT 

assay revealed significantly higher metabolic activity of the cells after the 10th day of 

cultivation on any composite scaffolds than on the PP mesh alone (Figure 23). 

Moreover, significantly higher (p < 0.001) metabolic activity of the cells was observed 

on any functionalized composite scaffolds on day 14. Significantly higher metabolic 

activity was also observed on either a PP mesh functionalized with PCL nanofibers or 

a PP mesh functionalized with PCL nanofibers treated with TRS after the 7th day of 
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cultivation. Additionally, a combination of two improvements, namely functionalization 

of the PP mesh with PCL naofibers and treatment with TRS, led to significantly higher 

(p < 0.001) metabolic activity of the cells on day 14 than on all other scaffolds that were 

used. 

 

 

 

 

 

 

 

Figure 23. Metabolic activity of 3T3 fibroblasts cultivated on the surface of a PP mesh (1), PP mesh 

enriched with adhered thrombocytes (2), PP mesh functionalized with PCL nanofibers (3), PP mesh 

functionalized with PCL nanofibers enriched with adhered thrombocytes (4). The MTT assay 

revealed significantly higher metabolic activity of 3T3 fibroblasts on scaffolds functionalized with PCL 

nanofibers (PP + PCL and PP + PCL + TRS) on day 14 than on scaffolds without functionalization 

(PP). Moreover, the metabolic activity of 3T3 fibroblasts on days 7, 10 and 14 was significantly higher 

on the PP mesh functionalized with PCL nanofibers treated with TRS than on all other scaffolds.  

Notes: The level of statistical significance for the assays is designated above the mean values (p < 

0.05 indicated by a number, p < 0.001 indicated by a number and *). Day 1: without significance. Day 

3: 3 > 1, 2; 4 ˃ 1*, 2*. Day 7: 3 ˃ 1; 4 ˃ 1*, 2*, 3. Day 10: 2 ˃ 1; 3 ˃ 1*; 4 ˃ 1*, 2, 3. Day 14: 2 ˃ 1*; 3 

˃ 1*, 2*; 4 ˃ 1*, 2*, 3. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; TRS, thrombocyte-rich solution; MTT, 

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; AU, absorbance units. 
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4.1.3 Increased metabolic activity is accompanied by a larger 

number of cells 

The increase in the number of cells, which is the result of good proliferation, was 

estimated from the DNA values measured using a PicoGreen assay (Figure 24). The 

results of the Picogreen assay on days 1, 3, 7, 10, and 14 clearly indicated substantial 

cell proliferation on the functionalized scaffolds. A significantly higher number of cells 

were observed on days 10 and 14 on any composite scaffold than on the PP mesh 

alone. Additionally, the PicoGreen assay confirmed a significantly larger number of 

cells (p < 0.001) on the scaffold with the most advanced improvement, ie the PP mesh 

functionalized with PCL nanofibers treated with TRS on days 10 and 14 than on all 

other scaffolds that were investigated. These results are consistent with the results for 

metabolic activity evaluated by the MTT assay.  

 

 

 

 

 

 

Figure 24. Proliferative activity of 3T3 fibroblasts cultivated on the surface of a PP mesh (1), PP 

mesh enriched with adhered thrombocytes (2), PP mesh functionalized with PCL nanofibers (3), PP 

mesh functionalized with PCL nanofibers treated with TRS (4). The PicoGreen assay revealed 

significantly higher proliferation of 3T3 fibroblasts on scaffolds functionalized with PCL nanofibers 

(PP + PCL and PP + PCL + TRS) on days 7, 10 and 14 than on scaffolds without functionalization 

(PP and PP + TRS). In addition, the proliferation of 3T3 fibroblasts on days 7, 10 and 14 was 
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significantly higher (level of significance at value of p < 0.001) on the PP mesh functionalized with 

PCL nanofibers enriched with adhered thrombocytes than on all other scaffolds.  

Notes: The level of statistical significance for the assays is designated above the mean values (p < 

0.05 indicated by a number, p < 0.001 indicated by a number and *). Day 1: 4 > 1, 2, 3. Day 3: 3 > 

1, 2; 4 > 1, 2. Day 7: 3 > 1, 2; 4 > 1*, 2*, 3*. Day 10: 2 > 1*; 3 > 1*, 2*; 4 > 1*, 2*, 3*. Day 14: 2 > 1; 

3 > 1*, 2; 4 > 1*, 2*, 3*. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; TRS, thrombocyte-rich solution. 

However the concentration of cells does not reflect the ratio of live and dead cells, 

so a live/dead cell staining assay was performed. The viability of the 3T3 fibroblasts 

was evaluated on days 1, 3, 7, 10, 14 after seeding. For the simplification only data 

obtained on day 14 are presented (Figure 25). Live cells were stained by BCECF-AM 

(green colour) and by propidium iodide (red). Viability was calculated as the 

percentage of live cells from the total cell count per unit area.  

 

 

 

 

 

 

 

 

 

Figure 25. Viability of 3T3 fibroblasts cultivated on the surface of a PP mesh (A), a PP mesh treated 

with TRS (B), a PP mesh functionalized with PCL nanofibers (C), a PP mesh functionalized with PCL 

nanofibers treated with TRS (D), PCL nanofibers (E), PCL nanofibers treated with TRS (F) on day 
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14 after seeding. Live/dead cell staining revealed a higher percentage of viable cells on all scaffolds 

functionalized either with PCL nanofibers or with TRS than on the scaffold without any 

functionalization or treatment (PP). The percentage of viable cells cultivated on the surface of 

scaffold A was: 59,5%, B: 85,4%, C: 88,3%, D: 90,1%, E: 90,3%, F: 94,7%. 

Notes: The viability of 3T3 fibroblasts was evaluated on days 1, 3, 7, 10, 14 after seeding. For the 

simplification only data obtained on day 14 are presented. Viability was calculated as the percentage 

of live cells from the total cell count per unit area. Live cells are stained green. Dead cells are stained 

red. Scale bar 200 µm. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone. 

Live/dead cell staining revealed a higher percentage of viable cells in all scaffolds 

either functionalized with PCL nanofibers or treated with TRS than on a PP mesh 

alone. In particular, the percentage of viable cells on the PP mesh treated only with 

TRS was 85.4%, on the PP mesh functionalized with PCL nanofibers the value was 

88.3%, and the PP mesh functionalized with PCL nanofibers treated with TRS showed 

90.1% of viable cells. In the two control groups, the percentage of viable cells was 

90.3% for the cells seeded on PCL nanofibers alone, and 94.7% for the cells seeded 

on PCL nanofibers treated with TRS. Previous results confirmed the conclusion that a 

PP mesh enriched with either PCL nanofiber functionalization or with TRS treatment 

improved 3T3 fibroblast viability. 

4.1.4 Functionalization of the PP mesh also improved cell 

proliferation significantly. 

Cell metabolic activity can result not only in a larger number of cells, as was 

confirmed by our study of DNA content, but also in cell proliferation. Cell proliferation 

was therefore evaluated using a BrdU colorimetric immunoassay. This assay is based 

on incorporating bromodeoxyuridine only in the active process of DNA synthesis in 

healthy cells. A BrdU colorimetric immunoassay was performed on days 1, 3, 7, 10 and 
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14 (Figure 26). The BrdU assay revealed significantly higher proliferation of 3T3 

fibroblasts on scaffolds functionalized either with PCL nanofibers or with PCL 

nanofibers treated with TRS on all evaluation days than on scaffolds without 

functionalization, namely the PP mesh alone and the PP mesh treated with TRS. 

Moreover, the proliferation of 3T3 fibroblasts on day 14 was significantly higher (p  

0.001) on the PP mesh functionalized with PCL nanofibers treated with TRS than on 

all other scaffolds. Polypropylene mesh functionalization also significantly improves 

3T3 fibroblast proliferation. 

 

 

 

 

 

 

 

 

Figure 26. Proliferation of 3T3 fibroblasts cultivated on the surface of a PP mesh (1), PP mesh 

treated with TRS (2), PP mesh functionalized with PCL nanofibers (3), PP mesh functionalized with 

PCL nanofibers treated with TRS (4). A BrdU colorimetric immunoassay revealed significantly greater 

proliferation of 3T3 fibroblasts on scaffolds functionalized with PCL nanofibers (PP + PCL and PP + 

PCL + TRS) on all days of evaluation than on scaffolds without functionalization (PP and PP + TRS). 

In addition, the proliferation of 3T3 fibroblasts on day 14 was significantly higher (p < 0.001) on the 

PP mesh functionalized with PCL nanofibers treated with TRS than on all other scaffolds.  

Notes: The level of statistical significance for the assays is designated above the mean values (p < 

0.05 indicated by a number, p < 0.001 indicated by a number and *). Day 1: 3 ˃ 1*, 2*; 4 ˃ 1*, 2*. 

Day 3: 3 ˃ 1*, 2; 4 ˃ 1*, 2*. Day 7: 3 ˃ 1*, 2*; 4 ˃ 1*, 2. Day 10: 3 ˃ 1*, 2*; 4 ˃ 1*, 2*, 3. Day 14: 2 ˃ 

1*; 3 ˃ 1*, 2; 4 ˃ 1*, 2*, 3*. 
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Abbreviations: PP, polypropylene; PCL, poly--caprolactone; TRS, thrombocyte-rich solution; 

BrdU, 5-bromo-2’-deoxyuridine; AU, absorbance units. 

4.2 In vivo testing of the composite scaffold based on a 

polypropylene surgical mesh functionalized with the 

PCL nanofibers and adhered synthetic growth factors on 

rabbits as a small animal model. 

4.2.1 Clinical postoperative course 

The animals were euthanized after 6 weeks. We did not observe any evident 

changes of condition or weight loss of any animal. A macroscopic evaluation of 

samples from all groups was made after explanation of abdominal wall (Figure 16). 

The surface of the regenerated tissue showed no signs of inflammation or infection in 

any groups. The incidence of hernia was not observed in any samples. 

4.2.2 Video-recorded biomechanical assay (tensile strength) 

The animals were sacrificed six weeks after surgery and samples of their 

abdominal wall, including the scar, mesh and healthy tissue were harvested. 1×6 cm 

strips of regenerated abdominal wall of each animal (Figure 16), as was described in 

Methods, were tested for hysteresis and maximum tensile strength, using a Micro 

tester digital tension meter (Figure 17). The tissue samples were individually attached 

to the branches of the tension meter in longitudinal manner, not including the place 

covered with scaffolds of a particular type. The samples were stretched by 5 mm at a 

speed of 10 mm/s ten times and were then pulled at a speed of 0.5 mm/s until the 

sample broke (Figure 27). The force response of each sample was detected, and both 

the static and the dynamic properties of each of the samples were analysed. Average 
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values of all measured data are summarized in Table 5.  

Figure 27. Video-recorded 

biomechanical assay (tensile 

strength). (A) Simple suture 

tears in the line. (B) Healthy 

muscle broke at the edge and 

the PP mesh slid on the top of 

the muscle. (C) Tissue treated 

by a PP mesh functionalized 

with PCL nanofibers enriched 

with adhered GF tore at the 

edge of the mesh and healthy 

muscle, and the slide was 

localized between muscle 

fibers. (D) In some PCL 

nanofiber samples with adhered 

GF, the suture line tore first, but 

in others a tear occurred 

between muscle fibers or at the 

edge of the muscle and the 

mesh. (E) Healthy muscle tore 

at the edge and a PP mesh 

functionalized with PCL 

nanofibers slid on top of the 

muscle, or the tear was 

localized not between the mesh 

and the muscle layer but in 

between muscle fibers. (F) In some PCL nanofiber samples, the suture line tore first, but in others a 

tear occurred between muscle fibers or at the edge of the muscle and the mesh. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; GF, growth factors. 
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Values of the variables differed minimally among the groups, because the breach 

of the tear was almost unconditionally localized at the level of a muscle. The locations 

of the tear, however, varied significantly among the groups. The suture line broke first 

if it was not supported by any mesh. Thus, we have confirmed that the suture line is 

the weakest point of the abdominal wall 6 weeks post-surgery (Figure 27A). In all 

samples with the PP mesh, the tissue broke first at the edge of the mesh and healthy 

muscle followed by a slide of the PP mesh on top of a muscle (Figure 27B, C, E). The 

boundary of the mesh and the muscle created a stress concentration leading to the 

slip. 

Table 5. Average values of the biomechanical quantities 

  

 

 

 

 

 

 

 

Notes: Six experimental groups are presented in Methods and in Table1. 

Abbreviations: E, elasticity in traction or Young modulus in N/mm2 (MPa) ; σmax, average values of 

maximal strength force per square unit in N/mm2 (MPa); εmax, maximal proportional elongation value. 

In the group with PP functionalized with PCL nanofibers (Figure 27E), two types 

of tear mechanism were recorded. This was the same as in the PP mesh group, but in 

some samples the slide was localized not between the mesh and the muscle layer but 

in between the muscle fibers. In the group of PP mesh functionalized with PCL 

nanofibers enriched with adhered GF (Figure 27C), the tissue also tore at the edge of 

the mesh and the healthy muscle, and the slide was localized between muscle fibers, 

Group E [N/mm2] σmax [N/mm2] εmax [-] 

I 3.73 ± 1.21 0.50 ± 0.14 0.30 ± 0.04 

II 2.55 ± 0.75 0.46 ± 0.07 0.71 ± 0.16 

III 2.73 ± 0.20 0.61 ± 0.08 0.61 ± 0.06 

IV 2.60 ± 1.23 0.64 ± 0.10 0.61 ± 0.15 

V 2.78 ± 1.09 0.63 ± 0.04 0.65 ± 0.10 

VI 3.11 ± 1.43 0.68 ± 0.08 0.49 ± 0.08 
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with the exception of one sample, where the recorded mechanism was exactly the 

same as in the PP mesh group. The PCL nanofibers connected better to the abdominal 

wall than the PP mesh alone. 

In case of pure PCL nanofibers (Figure 27D and F), various types of tear were 

observed. In some samples the suture line tore first. In other samples a tear occurred 

between muscle fibers or at the edge of the muscle and the mesh.  

Static and dynamic parts of the experiment are documented in Table 5. We 

compared the average maximal strength force values. All samples functionalized with 

PCL nanofibers (Groups III – VI), with or without adhered GF, showed a significantly 

increased average maximal strength force (σmax.) compared to a simple PP mesh or 

suture (Groups I and II). Clearly, preserving the elasticity in traction and simultaneously 

increasing the maximum strength force value indicated a positive effect of nanofibers 

on fascia healing. Interestingly, PCL nanofibers alone (Group VI) showed the highest 

average maximal strength force value among all samples. Significant differences of 

average maximal strength force (σmax.) among the experimental groups are presented 

in Figure 28. 

Our results also indicated somewhat more elastic samples in the presence of the 

PP mesh (Groups II-V) compared to samples without the mesh (Groups I and VI), as 

indicated by their slightly lower Young's modulus. A significantly lower elasticity in 

traction (E) and higher elongation in Group IV (PCL nanofibers with growth factors) 

than in Group VI (PCL nanofibers without growth factors) indicated accelerated fascia 

regeneration, which can undoubtedly be attributed to the presence of growth factors.   
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Figure 28. Average values of maximal strength force per square unit in N/mm2 (MPa) after 6 weeks. 

Notes: The level of statistical significance for the measurement is indicated above the mean values:  

p < 0.05 indicated by *. 

Abbreviations: σmax, average values of maximal strength force per square unit; N, Newton; mm2, 

square millimetre; MPa, megapascal; PP, polypropylene; PCL, poly--caprolactone; GF, growth 

factors. 

4.2.3 Histological evaluation 

The implants were prepared and implanted as described in Methods, and were 

tested in vivo on a small animal model (a rabbit). The animals were sacrificed after 6 

weeks. In all groups of scaffolds there were some differences among the groups in the 

area fraction occupied by granulomatous infiltrate in medial samples taken from the 

healing incision, but the difference did not reach statistical significance (Figure 29A). 

Medial samples with the incision had a higher α-smooth muscle actin fraction 

(p=0.003), a lower collagen fraction (p=0.035) and a higher density of microvessels 

(p<0.001) in comparison with samples of the lateral abdominal wall without incision.  
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Figure 29. Quantitative histological results. (A) Inflammatory infiltrate in the medial healing incision 

in group I (suture only), II (PP mesh), III (PP mesh functionalized with PCL nanofibers enriched with 

adhered GF), IV (PCL nanofibers enriched with adhered GF), V (PP mesh functionalized with PCL 

nanofibers) and VI (PCL nanofibers alone). (B) Fraction of α-smooth muscle actin positive vascular 

smooth muscle cells and myofibroblasts in the medial healing incision in groups I-VI (C) Density of 

microvessel profiles in medial healing incisions in groups I-VI. (D) Density of microvessel profiles in 

the abdominal wall 20 mm lateral from the incision in groups I-VI.  

Notes: The data are presented as medians with boxes spanning the upper limits of the first and third 

quartiles and with whiskers spanning the minimum and maximum values for each group. P-values of 

the Kruskal Wallis ANOVA show the differences among the groups under study. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; GF, growth factors; Aa, area fraction; 

Qa, section area. 

 A considerable difference was observed in the area occupied by α-smooth 

muscle actin-positive cells in medial samples of the healing incision (Figure 29B). 
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There were more α-smooth muscle actin-positive cells in all samples containing PCL 

nanofibers than in the controls (simple suture and PP mesh) (Figure 30). There was 

no significant difference between the groups containing PCL nanofibers, with the 

exception of the samples from the lateral portion of the healing incision in PCL-only 

treated specimens.  

Significant differences in the density of the microvessel profiles were observed 

between the groups in both the medial and the lateral parts of the healing fascia (Figure 

29C and D). Samples containing PCL nanofibers had a greater density of microvessel 

profiles than the control groups (simple suture and PP mesh). The density was clearly 

highest in the lateral portion of samples with a PP mesh functionalized with PCL 

nanofibers enriched with adhered GF. 

PCL nanofiber scaffolds showed beneficial properties in fascia healing, and 

should be further tested in hernia repair application. From the histological point of view, 

the highest fraction of collagen was observed in samples with PCL nanofibers enriched 

with adhered GF, followed by samples with no mesh (incision) and by samples 

functionalized with PCL nanofibers (Figure 31). Samples functionalized with PCL 

nanofibers and enriched with adhered GF also contained low fractions of adipose 

tissue (Figure 31). The presence of PCL nanofibers and GF seemed to increase the 

granulomatous infiltration and vascularization of the healing tissue, because the 

remnants of nanofibers were surrounded by granulomatous leukocyte-rich connective 

tissue at the end of the sixth week after implantation. Tissue samples with heavier 

granulomatous infiltration also contained more blood vessels and a higher fraction of 

vascular smooth muscle and myofibroblasts. 
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Figure 30. α-smooth muscle positivity in the scaffolds under study. The density of the microvessels 

(some of them pointed with black arrows) and the area fraction of actin-positive cells (vascular 

smooth muscle and myofibroblasts, some of the accumulated myofibroblasts highlighted with blue 

arrows) were highest in the PP mesh samples functionalized with PCL nanofibers enriched with 

adhered GF (C), followed by the PP mesh functionalized with PCL nanofibers (E), PCL nanofibers 

(F) and PCL nanofibers enriched with adhered GF (D), while the lowest values were found in samples 

of pure PP meshes (B) and sham-operated animals with no mesh (A).  
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Notes: Immunohistochemistry for α-smooth muscle actin, counterstaining Gill’s hematoxylin. 

Magnification × 100, scale bar 200 µm. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; GF, growth factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Collagen, adipose tissue, and granulomatous infiltration in the scaffolds under study. In 

samples without any mesh (A), the incision was healing with a mixture of collagen (red arrow), 

adipose connective tissue (black arrow) and inflammatory infiltrate (yellow arrow). Samples with PP 

mesh (B) had a high fraction of adipose tissue, but the spaces showing the dissolved mesh (black 
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arrows) were surrounded by only a few inflammatory cells. Remnants of the nanofibers (C,D,E,F) 

were surrounded by granulomatous leukocyte-rich connective tissue (yellow arrows in C,D,E,F). The 

highest fraction of collagen (red arrow) was in samples of PCL nanofibers with adhered GF (D), 

followed by samples with no mesh (A) and by samples of PCL nanofibers (F). Low fractions of 

adipose tissue were found in samples of PCL nanofibers with adhered GF (D), samples with no mesh 

(A) and in samples of PCL nanofibers (F).  

Notes: Verhoeff’s hematoxylin and green trichrome staining. Magnification × 100, scale bar 200 µm. 

Abbreviations: PP, polypropylene; PCL, poly--caprolactone; GF, growth factors. 

The non-parametric Spearman rank order correlations between the quantitative 

histological parameters are listed in Table 6 (for this purpose, the data were pooled 

across all groups in the study). Tissue samples with heavier granulomatous infiltration 

contained more blood vessels and a higher fraction of vascular smooth muscle and 

myofibroblasts at the site of the healing incision. 

Table 6. The non-parametric Spearman rank order correlations between the quantitative parameters at 

the healing incision (medial side)/without incision (lateral side) 

 Aa (adipose) Aa (infiltrate) Aa (actin) Qa (microvessel)(mm-2) 

Aa (collagen) -0.59/-0.42 -0.46/-0.50 n.s./n.s. n.s./n.s. 

Aa (adipose) - n.s./n.s. n.s./n.s. n.s./n.s. 

Aa (infiltrate) - - 0.57/0.47 0.50/n.s. 

Aa (actin) - - - 0.53/0.69 

Notes: Marked correlations are significant at p < 0.05, other correlations did not reach statistical 

significance (n.s.). Autocorrelations and repeating values are replaced by a – sign. 

Abbreviations: Aa, area fraction; Qa, section area; n.s., no significance.  
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4.3 In vivo testing of a scaffold based on the PCL nanofibers 

functionalized with adhered human platelets on minipigs 

as a large animal model. 

4.3.1 Clinical postoperative course 

The animals were euthanized either after 6 or 12 weeks. We did not observe any 

evident changes of condition or weight loss of any animal during the entire study 

period. One animal underwent on day 14 a dehiscence of the surgical wound with an 

empyematic discharge. The edges of the wound were treated by curettage and 

carefully disinfected with povidone-iodine (Braunol). The wounds were stitched with 

absorbable surgical suture with a temporary drain. The animal was administred 

Amoxicillin-Clavulanate antibiotics (2.5 mL i.m., pro toto; Synulox® RTU, Pfizer Limited, 

Tadworth, UK). In other animals the post-operative condition was good. Wound healing 

went with no secondary complication or effect to the animal’s day activity, such as 

movement, liquid and food intake or excretion.   

4.3.2 Histological evaluation 

The samples contained several layers of subcutaneous fat, abdominal muscles 

and their fasciae, extraperitoneal fat, and the parietal peritoneum. The deep truncal 

fascia often contained remnants of elastic fibres. The total thickness of the abdominal 

wall varied considerably. Although some parts of the abdominal fasciae appeared to 

be merged, the layers of abdominal skeletal muscles usually kept their organization 

and only small and sporadic skeletal muscle bundles were found displaced at the 

healing incision. 
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4.3.2.1 Differences between experimental groups 

Typical histological findings representing the groups under study are summarized 

in Figures 32, 33 and 34.  

Figure 32 shows the presence of collagenous connective tissue and adipose 

tissue. Nanofiber scaffolds were well integrated to the connective tissue. Their 

remnants were surrounded with granulomatous leukocyte-rich connective tissue mixed 

with dense collagenous connective tissue.  

In Figure 33 we can observe the lower fraction of α-smooth muscle-positive cells 

(vascular smooth muscle and myofibroblasts) in the samples with no scaffolds 

compared to the samples treated with either PCL nanofibers or PCL nanofibers with 

adhered platelets.  

Figure 34 shows the greater fraction of the type I collagen at the site without 

incision compared to the healing incision. 
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Figure 32. Between-groups comparison and differences between the incision (left) and adjacent region 

20 mm apart from the healing incision (right), overall trichrome stain. In samples without any scaffold 

(A), the stitches were surrounded by collagenous connective tissue (red arrow) and adipose tissue 

(black arrow). The remnants of nanofibres (B,C) were well integrated to the connective tissue and 

surrounded with granulomatous leukocyte-rich connective tissue (yellow arrow) mixed with dense 

collagenous connective tissue (red arrow). In all groups, the abdominal wall without incision consisted 

mostly of truncal fascia and adipose tissue overlying the abdominal muscles.  

Notes: Verhoeff’s haematoxylin and green trichrome stain. Magnification × 100, scale bar 200 µm. 
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Abbreviations: PCl, poly--caprolactone; TRS, thrombocyte-rich solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Between-groups comparison and differences between the incision (left) and adjacent region 

20 mm apart from the healing incision (right), α-smooth muscle actin immunohistochemistry. In samples 

without any scaffold (A), the fraction of α-smooth muscle-positive cells (vascular smooth muscle and 

myofibroblasts, some of the fraction pointed with blue arrows) was smaller than in samples with PCL 

nanofibres (B) and PCL nanofibres with TRS (C).  

Notes: Immunohistochemistry for α-smooth muscle actin showing positive myofibroblasts and vascular 

smooth muscle cells, counterstaining Gill’s haematoxylin. Magnification × 100, scale bar 200 µm. 
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Abbreviations: PCl, poly--caprolactone; TRS, thrombocyte-rich solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Between-groups comparison and differences between the incision (left) and adjacent region 

20 mm apart from the healing incision (right), picrosirius red observed in circular polarization. In all 

groups under study (A-C), the fraction of type I collagen (red and yellow fibres) was greater at the site 

without incision (right) than within the healing incision (left). 

Notes: Picrosirius red, polarized light. Magnification × 100, scale bar 200 µm. 

Abbreviations: PCL, poly--caprolactone; TRS, thrombocyte-rich solution. 
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From histological point of view, both types of scaffolds (PCL and PCL+TRS) were 

well and uniformly integrated within the collagenous connective tissue of the healing 

incision. The most convincing finding was that the presence of both PCL nanofiber and 

PCL nanofiber + TRS scaffolds led to increased amount of contractile myofibroblasts 

within the healing incision, but the amount of microvessels in samples with scaffolds 

was comparable with samples without scaffolds. In PCL scaffold, the microvessel 

density was positively correlated with the fraction of type I collagen.  

We found no differences when comparing the PCL vs. PCL+TRS scaffolds. No 

differences were found in any of the parameters when comparing samples after 6 

weeks of healing vs. 12 weeks of healing.  

Tissue samples without any scaffold had more type I collagen after 12 weeks 

than samples with PCL+TRS. However, the mechanical properties of the abdominal 

wall and the differences caused by the amount of type I collagen and contractile 

myofibroblasts should be tested using biomechanics. The total thickness of the 

abdominal wall varied considerably and it exceeded the size of histological tissue 

samples in some cases.   

4.3.2.2 Quantitative histological results - grouping according to the scaffold 

type  

The quantitative histological results grouped according to the type of the scaffold 

are presented in Figure 35. Results in Figure 35A evaluated by ANOVA showed 

considerable differences among the groups in the area fraction occupied by α-smooth 

muscle actin-positive cells at the site of incision. The area fraction occupied by α-

smooth muscle actin-positive cells was greater in samples with PCL nanofibers and 

PCL nanofibers + TRS compared to samples treated with suture alone. Statistical 
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analysis of the result using the Mann Whitney U test showed a greater fraction 

occupied by α-smooth muscle actin-positive cells at the site of incision in samples with 

PCL nanofibres when compared with samples with no scaffold at 6 weeks (Figure 35B). 

The same statistical method showed also a greater fraction occupied by α-smooth 

muscle actin-positive cells at the site of incision in samples with PCL nanofibres + TRS 

when compared with samples with no scaffold when the samples from the 6 and 12 

weeks healing were pooled (Figure 35C).  

 

 

 

 

 

 

 

 

 

 

 

Figure 35. The quantitative histological results grouped according to the type of the scaffold. (A) 

Considerable differences among the groups in the area fraction occupied by α-smooth muscle actin-

positive cells at the site of incision. (B) Greater fraction occupied by α-smooth muscle actin-positive 

cells at the site of incision in samples with PCL nanofibres when compared with samples with no 

scaffold at 6 weeks.  (C) Greater fraction occupied by α-smooth muscle actin-positive cells at the site 
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of incision in samples with PCL nanofibres + TRS when compared with samples with no scaffold (the 

samples 6+12 weeks pooled) 

Notes: (B) p=0.035. (C) p=0.015. 

Abbreviations: PCL, poly--caprolactone; TRS, thrombocyte-rich solution; Aa, area fraction. 

4.3.2.3 Quantitative histological results - grouping according to the healing time 

No differences were found in any of the parameters when comparing samples 

after 6 weeks of healing vs. 12 weeks of healing. For the statistical evaluation the Mann 

Whitney U test was used.  

4.4 In vitro testing of the scaffold base on cryogrinded PCL 

nanofibers with potential use as a drug delivery system 

for tissue engineering 

4.4.1 Cell adhesion on the microsphere system 

To evaluate the potential of prepared new drug delivery systems for tissue 

engineering, mouse 3T3 fibroblasts were seeded on microparticles and cell adhesion 

was analyzed after one day by confocal microscopy. Cell membranes were stained by 

DiOC6 and propidium iodide was used as a counterstain for cell nuclei. Results of 

confocal microscopy showed adhesion of cells to all three samples. Particles grinded 

in mannitol (Figure 36A) and 2-octanol (Figure 36B) showed good cell adhesion. 

Biocompatibility of particles ground in 2-octanol is quite surprising and could be 

explained by 2-octanol washing out during the sterilization of particles in ethanol. 

Interestingly, the sample grounded in Pluronic F-68 (Figure 36C) exhibited the lowest 

cell adhesion. 
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Figure 36. Adhesion of 3T3 fibroblasts on microparicles. (A) Microparticles cryogrinded in 10% 

mannitol. (B) Microparticles cryogrinded in 2-octanol. (C) Microparticles cryogrinded in 10% Pluronic 

F-68.  

Notes: Cell membranes are stained green with DiOC6 and nucleus red with propidium iodide. 

Morphology of microparticles is visualized with passing through light. Scale bar 100 µm. 

4.4.2 Proliferation and metabolic activity of the cells cultivated on the 

microsphere system 

In order to examine the cell proliferation and metabolic activity of 3T3 fibroblasts 

on PCL microparticles, 21‐day cultivation testing was performed. Cells were directly 

seeded on PCL microspheres cryogrinded in mannitol and ungrinded PCL mesh was 

used as a control. Quantification of DNA concentration in samples was measured on 

days 1, 7,14 and 21 by PicoGreen® assay (Figure 37). Results showed similar cell 

adhesion on day 1 on microspheres and nanofibers. Interestingly cell proliferation on 

days 7 and 14 was higher on microspheres. This result could be caused by higher free 

surface of microparticles. On day 21 the number of cells on microspheres decreased 

due to metabolic deprivation. On other hand, the number of cells on nanofibers 

increased even on day 21.  
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Figure 37. Proliferation of 3T3 fibroblast cultivated on either PCL nanofibers or PCL microspheres. 

Microspheres were cryogrinded in 10% mannitol. 

Abbreviations: PCL, poly--caprolactone; ng, nanograms. 

Metabolic activity of cells was measured by MTS assay (Figure 38). Cells on 

microspheres showed higher activity on day 7 which is in agreement with results of 

PicoGreen® assay. Interestingly, metabolic activity on microspheres was lower 

compared to nanofibers on days 14 and 21. This result could be explained by higher 

shear stress on microspheres and depletion of nutrients. 

 

 

 

 

 

 

Figure 38. Metabolic activity of 3T3 fibroblast cultivated on either PCL nanofibers or PCL 

microspheres. Microspheres were cryogrinded in 10% mannitol. 

Abbreviations: PCL, poly--caprolactone; AU, absorbance units. 
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In general, porous microspheres produced by cryogenic grinding are suitable for 

the cultivation of cells. They could serve as a scaffolding system and even adherent 

cells could be cultured in suspensions. Proliferation rate and metabolic activity was 

higher on the first 7 cultivation days and peaked on day 14. This result could be 

explained by the higher shear stress on microspheres and depletion of nutrients. 

Interestingly, standard deviation of microsphere samples was higher due to the size 

diversity of the system. Thus microsphere–cell interaction should be further examined 

in future experiments after size separation. 
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5 Discussion 

Incisional hernia is the most common postoperative complication following 

abdominal surgery, affecting up to 20% of patients after midline incision (Sugerman 

H.J. et al., 1996; Hoer J. et al., 2002). Insertion of a synthetic material has become the 

standard for care in abdominal wall hernia repair. More than a hundred surgical 

meshes have been developed by now, still there is no ideal mesh among those yet 

(Shankaran V. et al., 2011). The aim of the present study was to develop a composite 

functionalized nanofiber scaffold for preventing or repairing incisional hernias and in 

vitro testing of the new microsphere system with potential use as a drug delivery 

system in tissue engineering.  

Polypropylene is the most widely-used prosthetic material for repairing abdominal 

wall hernia (Cobb W.S. et al., 2009). A combination of PCL nanofibers with a 

polypropylene surgical mesh (Prolene™) was chosen as a suitable material for our 

studies. Nowadays, PCL seems to be used more often as a biocompatible soft and 

hard tissue material, and it also includes a resorbable suture, a drug delivery system 

and bone graft substitutes, but only few studies have investigated PCL for abdominal 

wall hernia repairs (Kweon H. et al., 2003; Williams J.M. et al., 2005). Guillaume et al. 

used PCL as a coating agent and a drug reservoir for anti-infective drugs by heating 

deposition onto polypropylene prostheses (Guillaume O. et al., 2011). Another study 

using PCL in the form of nanofibers as a carrier for antibiotics was evaluated by Bolgen 

et al. (Bolgen N. et al., 2007). The antibiotic embedded PCL membranes eliminated 

post-surgery adhesions and improved healing in rats. In the most recent study, Zhao 

et al used an electrospun PCL/collagen hybrid scaffold for congenital diaphragmatic 

hernia reconstruction in rats. The aligned scaffolds allowed muscle cell migration and 

tissue formation (Zhao W. et al., 2013). 
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In general, nanofibers have recently been used in various tissue engineering 

applications (Ma Z. et al., 2005a). An advantage of using nanofibers for hernia 

regeneration lies in the simplicity of the process for preparing submicron-scale fibers, 

and their low cost. In addition, manufactured nanofibers can easily be modified and 

functionalized to refine their biological and biomechanical properties. Various studies 

have proved that nanofibers, namely PCL nanofibers, support the adhesion, growth 

and proliferation of fibroblasts, chondrocytes and MSCs (Jakubova R. et al., 2011; 

Chen M. et al., 2007; Rampichova M. et al., 2013).  

In the first part of the present study, we have tested a new composite scaffold 

based on a PP surgical mesh, PCL nanofibers and adhered platelets. We have 

evaluated the effect of released natural GFs from platelets and the effect of PCL 

nanofiber functionalization on 3T3 fibroblast proliferation in vitro. In extensive tests, we 

have proved that PCL nanofibers have excellent biocompatible properties. We have 

confirmed that PCL nanofibers deposited on a PP mesh promote better adhesion, 

growth, metabolic activity, proliferation and viability of 3T3 fibroblasts in all tests than 

a PP mesh alone.  

The second part of the study has proven the suitability of a composite scaffold 

based on PCL nanofibers deposited on a PP mesh for hernia regeneration in a rabbit 

model. A histological and biomechanical evaluation revealed better healing capacity of 

PCL nanofibers than of a conventional PP mesh for preventing hernia formation. PCL 

nanofibers as novel absorbable scaffolds for hernia repair application were 

biomechanically tested by Ebersole et al. (Ebersole G.C. et al., 2012). The authors 

have shown that electrospun PCL scaffolds retain suture material and possess tensile 

strength appropriate for hernia repair, and therefore have the potential to be a novel 

class of hernia repair materials. Our scaffold combined good biocompatible properties, 
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environment-promoting cell growth, adherence due to the PCL nanofibers, and tensile 

strength due to the PP mesh. This part of the study has confirmed that adhesion of 

various synthetic growth factors on the surface of our nanofibers increased their 

regenerative potential. GF such as bFGF, IGF-I and TGF-2 may stimulate 

angiogenesis, fibroblast proliferation and collagen synthesis, thus enhancing tissue 

stability (Hant T.K. et al., 1984; Mustoe T.A. et al., 1987; Yaeger P.C. et al., 1997). 

Their concentration ratio and their positive effect on cultivated cells were evaluated in 

our group by Filova et al. (Filova E. et al., 2008).  

The groups of Ebersole et al. and Deeken et al. measured the tensile strength 

and other biomechanical parameters of the prosthetic material used in ventral 

(incisional) hernia repair without implantation into animal models or human patients 

(Ebersole G.C. et al., 2012; Deeken C.R. et al., 2011). These studies showed that the 

tensile strength of PCL nanofibers was appropriate for most hernia repairs. 

Electrospun scaffolds possessing mechanical properties within the predefined range 

may be suitable for further evaluation in preclinical trials (Deeken C.R. et al., 2011). In 

another study, Melman et al biomechanically tested samples implanted into a porcine 

model (Melman N. et al., 2011). Samples were attached into the tension meter 

branches over the entire thickness of the abdominal wall including the prosthetic 

material.  We suggest a new biomechanical testing method, where the results reflect 

the real state the repaired abdominal wall. In our design the attachment points were 

adjacent to the implanted mesh, so we tested not only the strength of the implant but 

also the properties of mesh-fascia interface and its resistance to distracting forces. We 

did not test the tensile strength of our samples alone, because the biomechanical 

parameters of PP meshes are well known (Melman N. et al., 2011). We modified this 
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prosthetic PP material with PCL nanofibers, thus it was not necessary to evaluate the 

biomechanical parameters before implantation.  

Biomechanical testing 6 weeks post implantation in the rabbit model showed that 

the PCL nanofibers improved the biomechanical properties of the healed tissue, as 

evidenced by a higher average maximal strength force. This applies not only to the 

nanofibers in combination with a PP mesh, but also to the suture alone. The group 

treated with suture and PCL nanofibers with or without adhered synthetic GFs showed 

a modulus of elasticity comparable with that of the PP mesh, but higher average 

maximal strength force. This could reflect lower fibroblast proliferation around the PP 

mesh, which might be caused by a reduction in the mechanical signals that arise as 

the structural soft tissue fails (Franz M.G., 2006). In addition to these results, video 

analysis of the biomechanical testing of the samples from in vivo study on rabbits 

revealed in most cases that if the tissue tore first between the edge of the mesh and 

healthy tissue, the PP mesh slid off the surface of the muscle. In samples 

functionalized with PCL nanofibers, we observed two types of tear mechanism. Some 

were like in the PP mesh group, but in other samples the slide was localized between 

muscle fibers. When the PCL nanofibers were used, different types of tear were 

observed. In some samples, the suture line tore first, whereas in others a tear occurred 

between muscle fibers or at the edge of the muscle and the PCL nanofibers. This 

indicates that PCL nanofibers provide support for fusion of fascia without causing a 

significant increase in local stiffness, or the formation of a major tension concentrator, 

as in the case of a PP mesh. Finally, as we had expected, the suture line broke first if 

it was not supported by any mesh. 

The third part of the present study proved the suitability of a nanofiber scaffold 

based on PCL nanofibers and PCL nanofibers with adhered platelets for hernia 
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regeneration in a minipig model. Both scaffold types were well and uniformly integrated 

within the collagenous connective tissue of the healing incision. In adition, the 

presence of both PCL nanofiber and PCL nanofiber + TRS scaffolds led to increased 

amount of contractile myofibroblasts within the healing incision. In PCL nanofiber 

scaffold, the microvessel density was positively correlated with the fraction of type I 

collagen. On the other hand, unfortunately, we did not observe any differences in any 

assessed parameters in the samples after 6 weeks of healing compared to samples 

after 12 weeks of healing. We also did not observe increase of any parameters with 

using PCL nanofibers functionalised with adhered platelets. Probably the concentration 

of the platelets in the TRS at the level of five times physiological concentration was not 

sufficient to cause any changes.  

The quality of the ECM deposition is dependent among others on the content of 

collagen, which influenced the mechanical properties of the tissue and is notably 

influenced by the kind of mesh material (Junge K. et al., 2002). In the all examined 

samples either in rabbit study or in minipig study, there were no significant differences 

among the groups in the area fraction of total collagen.  However, the analysis of the 

main tissue constituents, i.e., the collagen fraction, the adipose tissue fraction, and 

leukocyte infiltration suggested that the presence of either a simple suture or a PP 

mesh resulted in the formation of a scar with a greater adipose tissue fraction (Figure 

31 and 32). Tissue samples with heavier granulomatous infiltration also contained 

more blood vessels and a higher fraction of vascular smooth muscle and 

myofibroblasts. This finding supports the hypothesis mentioned above that there is 

lower fibroblast proliferation (Franz M.G., 2006). Simple sutures contained a large 

amount of collagen. This supports the hypothesis of tissue flexibility, but these samples 

also contained a decreased amount of -smooth muscle actin positive cells. There 
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were more actin positive cells in both the medial and the lateral parts of samples 

containing PCL nanofibers than in the other groups. In in vivo tests on rabbit model, 

the samples with a PP mesh functionalized with PCL nanofibers with adhered GFs 

included also more -smooth muscle actin positive cells in a part distant from the 

incision. This could be explained by chemotaxis in this area. In both in vivo studies we 

have proven that nanofibers are a good substrate for cell attachment, and thus they 

promote cell proliferation and ECM synthesis.  

Advanced improvement of our composite scaffolds seems to be promising for 

regenerating ventral or incisional hernias. We used a simple drug delivery system 

developed in our group, based on either platelets or synthetic GFs adhered onto PCL 

nanofibers (Jakubova R. et al., 2011). The approaches that have been used so far, in 

which simple GFs or platelets are administered, may tend to diffuse active substances 

away from the site of the injury (Tabata I.I., 2000). The problem of refusing of active 

substances can be solved by using suitable biocompatible scaffolds, to which the 

desired drugs could be attached. One of the first attempts to set up a dual drug delivery 

system based on polymeric scaffolds was reported by Richardson et al (Richardson 

T.P. et al., 2001). Better control of either drug or GF pharmacokinetics could be 

achieved by using a combination of active substances with natural or synthetic 

biomaterials, such as collagen or PCL composite scaffolds (Rai B. et al., 2005). 

Previous studies have mentioned various drug delivery systems based on a PCL 

composite scaffold successfully used for hernia regeneration (Guillaume O. et al., 

2011; Bolgen N. et al., 2007).  

In the last part of our study we demonstrated that the PCL microspheres prepared 

by cryogrinding is a promising system potentially exploitable as a drug delivery system 

in tissue engineering. In general, porous PCL microspheres produced by cryogenic 
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grinding are suitable for cell cultivation. We have proved it by using metabolic activity, 

adhesion and proliferation assay. 

PCL nanofibers were used in all parts of our study as a carrier or a potential 

carrier of GFs gradually released either from platelets adhered on the nanofiber 

surface or directly from nanofibers, with the aim of using the material in hernia 

regeneration. The use of this system enabled us to avoid the complications caused by 

a burst release of high doses of GFs. In addition, the GFs are prevented from 

proteolysis and loss in bioactivity both by the scaffold and by the platelets themselves 

(Babensee J.E. et al., 2000). This enables a prolonged therapeutic effect of GFs. GFs 

naturally occurring in platelets have been shown to be effective in promoting wound 

healing and regeneration (Nauta A. et al., 2011). Platelets in the form of TRS or PRP 

have been playing a rapidly growing role in tissue engineering (Tonti G.A. et al, 2008.). 

The positive effect of PRP on fibroblast proliferation has already been described by 

Anitua et al, Creeper et al and Passaretti et al. (Anitua E. et al., 2009; Creeper F. and 

Ivanovski S., 2012; Passaretti F. et al., 2014). Unfortunately these teams did not use 

a polymeric scaffold, so it was not possible to observe the benefits from the 

multiplication of the positive effect on the fibroblasts from both the polymer scaffold 

and the PRP. Platelets were shown to release numerous growth factors with mitogenic 

and anabolic function (e.g. PDGF, EGF, TGF-β; Plachokova A.S. et al., 2008; 

Nikolidakis D. and Jansen J.A. 2012). Our observation of increased proliferation, 

metabolic activity and DNA synthesis of the 3T3 fibroblasts in TRS containing samples 

groups in the present study is explained by stimulatory effect of such active molecules. 

In addition platelets upon activation form protein layer consist of fibrinogen, von 

Willebrand factor (VWF) and other proteins (Blair P. and Flaumenhaft R., 2009), which 

together with the PCL nanofibers mimicking ECM has a possible stimulatory effect on 
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cell adhesion. Moreover, we used in our study TRS which does not include leukocytes 

and erythrocytes in comparison to PRP obtained from whole blood. Prosecka et al 

showed that even human TRS promote tissue regeneration in rabbit model with a 

minimal immunological negative response (Prosecka E. et al., 2014). That kind of 

results favour TRS for further preclinical and clinical studies. 
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6 Conclusion 

In the present study, we have confirmed the biocompatibility of PCL nanofibers 

with adhered platelets in the form of TRS deposited on a PP mesh. This composite 

scaffold provided better adhesion, growth, metabolic activity, proliferation and viability 

of 3T3 fibroblasts in all tests than on a PP mesh alone, and even better than on a PP 

mesh functionalised by PCL nanofibers. The gradual release of growth factors from 

biocompatible scaffolds is a promising approach in tissue engineering and 

regenerative medicine.  

Our experiments have also proved that the composite scaffolds based on 

polypropylene surgical mesh functionalized with PCL nanofibers and adhered synthetic 

growth factors positively affected the fascia healing in a rabbit model. Thanks to their 

nanofiber structure, PCL nanofibers provide a better environment for cell growth and 

proliferation, either in combination with a PP mesh or alone, and are therefore are a 

suitable alternative to a standard hernia mesh. Surprisingly, scaffolds with no PP mesh 

showed even better fascia healing and higher elasticity than a widely-used surgical 

mesh. PCL nanofiber scaffolds are promising materials for use in hernia repair. By 

adhering GF into their structure we can further improve several parameters, especially 

in the quantity of collagen that is produced compared to the adipose tissue content.  

In vivo tests on minipig model have proved, that the composite scaffolds based 

on either PCL nanofibers or PCL nanofibers functionalised with adhered human 

platelets obtained from TRS improved tissue healing. Scaffolds well integrated into the 

collagenous connective tissue of the healing incision and using of them led to 

increased amount of contractile myofibroblast at the site of incision. 
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The last system tested in the present study has proven its potential use as a drug 

delivery system in tissue engineering. The microsphere system based on cryogrinded 

PCL nanofibers has supported cell adhesion and proliferation. In the future a big 

potential of this system lies in the possibility of replacement of simple PCL nanofibers 

with either coaxial nanofibers with PCL as a shell part or with PCL nanofibers prepared 

by emulsion electrospinning with using active substances incorporation. Cryogrinded 

microspheres are a suitable and promising scaffolding system for use in tissue 

engineering and regenerative medicine. 
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7 Summary 

Incisional hernia is the most common postoperative complication which affects 

up to 20% of patients after abdominal surgery. Insertion of a synthetic surgical mesh 

has become the standard for care in abdominal wall hernia repair. However, 

implementation of a mesh does not reduce the risk of recurrence and the onset of 

hernia recurrence is only delayed by 2-3 years. Nowadays, more than one hundred 

surgical meshes are available on the market from which the polypropylene is most 

widely used for abdominal wall hernia repair. Nonetheless, the ideal mesh does not 

exist yet - it still needs to be developed. The aim of the present study was to develop 

a functionalized scaffold for abdominal wall hernia regeneration and in vitro testing of 

the new microsphere system with potential use as a drug delivery system in tissue 

engineering. We prepared novel composite scaffolds based on a polypropylene 

surgical mesh functionalized with polycaprolactone nanofibers and adhered either 

platelet as a natural source of growth factors or a synthetic growth factor. In extensive 

in vitro tests, we have proven the biocompatibility of polycaprolactone nanofibers with 

adhered platelets on a polypropylene mesh. A histological and biomechanical 

evaluation from in vivo tests revealed better healing capacity of our composite 

functionalized scaffolds in comparison with either a conventional polypropylene 

surgical mesh or a simple suture for preventing hernia formation. The microsphere 

system based on cryogrinded PCL nanofibers has proven its potential to be used as a 

drug delivery system in biomedical application. The gradual release of growth factors 

from biocompatible nanofiber-modified scaffolds seems to be a promising approach in 

tissue engineering and regenerative medicine. 
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8 Abstrakt 

Incizionální kýla postihuje víc než 20% pacientů, kteří podstoupili operaci břicha. 

Implantace syntetických materiálů se stala standardem v reparaci kýl břišní stěny. 

Nicméně implantace kýlních sítěk nezaručuje trvalé zhojení, jen oddaluje riziko recidivy 

vzniku kýly o 2-3 roky.  V současnosti je na trhu dostupná víc jak stovka chirurgických 

sítěk. Nejčastěji používané síťky pro reparaci ventrální kýly jsou vyrobené z 

polypropylénu. Ideální síťka dodnes neexistuje a je tudíž zapotřebí ji vyvinout. Cílem 

této studie bylo vyvinout funkcionalizovaný nosič pro reparaci kýl břišní stěny. Připravili 

jsme nový kompozitní nosič na bázi polypropylénové chirurgické síťky 

funkcionalizovaný pomocí poly--kaprolaktonových nanovláken připravených 

elektrostatickým zvlákňováním. Na nanovlákna byly adherovány buď trombocyty, jako 

přirozený zdroj růstových faktorů, nebo syntetické růstové faktory. V rozsáhlých in vitro 

testech jsme jednoznačně prokázali biokompatibilitu tohoto nového systému. 

Histologické a biomechanické hodnocení v in vivo testech na modelu králíka a 

miniprasete odhalilo lepší regenerační schopnost našeho kompozitního 

funkcionalizovaného nosiče ve srovnání s konvenčně používanou polypropylénovou 

chirurgickou síti a samotnou suturou. Dále byl testován systém mikročástic vyrobený 

pomocí kryomletí poly--kaprolaktonových nanovláken sloužící jako systém dodávání 

léčiv v biomedicínských aplikacích. Postupné uvolňování růstových faktorů 

z biokompatibilních nanovlákenných nosičů, se jeví jako slibný přistup v tkáňovém 

inženýrství a regenerativní medicíně.  
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