
MASTER THESIS

Jakub Hrnč́ı̌r

Projection method applied to modelling

blood flow in cerebral aneurysm

Mathematical Institute of Charles University

Supervisor of the master thesis: RNDr. Jaroslav Hron, Ph.D.

Study programme: Mathematics

Study branch: Mathematical Modelling
in Physics and Technology

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Projection method applied to modelling blood flow in cerebral aneurysm

Author: Jakub Hrnč́ı̌r

Institute: Mathematical Institute of Charles University

Supervisor: RNDr. Jaroslav Hron, Ph.D., Mathematical Institute of Charles
University

Abstract: This thesis is motivated by a problem of cerebral aneurysms, which
are abnormal bulges on the arteries which supply blood for our brain. These
aneurysms can rupture and cause death or permanent neurological deficits. To
study the evolution of aneurysms and assess the risk of rupture, mathematical
modelling might be used to compute otherwise unobtainable information about
blood flow inside the aneurysm. For this reason it is essential to be able to model
blood flow in sufficiently high resolution. A goal of this thesis was to implement
standard projection method for the solution of unsteady incompressible Navier-
Stokes equations using the free finite element software FEniCS to create a working
code adjusted to the need of this particular application. The incremental pressure
correction scheme was chosen. Various shortcomings of this method are described
and a proper choice of boundary conditions and other implementation issues are
discussed. A comparison of computed important hemodynamic indicator wall
shear stress using new and previously used solution approach are compared. A
test of the new code for parallel efficiency and performance on finer meshes for a
real medical case was conducted.

Keywords: projection method, incompressible Navier Stokes, pulsatile flow, cereb-
ral aneurysm

ii

First of all, I would like to thank my supervisor Jaroslav Hron for good guidance,
numerous consultations and lots of time spent in my support. I would like to
thank my colleague Helena Švihlová for providing me with real aneurysm meshes
and introducing me to various topics concerning the medical application and some
related technical issues. My thanks goes also to other colleagues and teacher for
advice given, namely to Jan Blechta, who provided me useful advice about the
FEniCS software and helped me to deal with several issues. And I also thank my
parents for the support during the years of my studies.

iii

Contents

List of abbreviations and used mathematical notation 3

Introduction 4

1 Modelling blood flow 5
1.1 Chosen mathematical model . 5
1.2 Hemodynamic indicators . 6
1.3 Former approach in our group . 6
1.4 Considered alternatives . 7
1.5 Goals of thesis . 7

2 Projection methods 8
2.1 Overview . 8

2.1.1 Pressure and velocity correction methods 8
2.1.2 Idea of projection . 8

2.2 Basic schemes . 9
2.2.1 Chorin’s scheme . 9
2.2.2 Incremental pressure correction scheme (IPCS) 10
2.2.3 Rotational scheme . 11
2.2.4 Summary . 11

2.3 Available theoretical results . 12

3 Implementation 13
3.1 Problems . 13
3.2 Implementation in FEniCS . 13
3.3 Time discretization . 14
3.4 Weak formulation . 15

3.4.1 Weak formulation of tentative velocity step (S1) 15
3.4.2 Pressure boundary conditions for (S2) 17
3.4.3 Weak formulation of the Poisson problem (S2) 19
3.4.4 Weak formulation of third and fourth step 19

3.5 Space discretization by FEM . 19
3.6 Notes on boundary conditions . 20

3.6.1 Splitting error and Dirichlet BC for (S3) 20
3.6.2 Inflow velocity profile for real problem 20
3.6.3 Dirichlet boundary condition and initial condition compat-

ibility . 21
3.7 Stabilization . 22
3.8 Notes on the implementation . 22

3.8.1 Partial assembly of matrices 22
3.8.2 Choice of solvers and preconditioners 23
3.8.3 Computation of WSS . 23

1

4 Summary of results 24
4.1 Reliability of computed WSS . 24
4.2 Scalability . 25
4.3 Comparison of the computational cost 25

Conclusion 32

Bibliography 33

List of Figures 35

List of Tables 36

Appendix - the code 37

2

List of abbreviations and used
mathematical notation

(S1)-(S4) four steps of projection method; defined in section2.2.4
IPCS incremental pressure correction scheme
SUPG streamline-upwind Petrov-Galerkin
BC boundary conditions
WSS wall shear stress
u velocity field
u∗ tentative velocity
uext extrapolated velocity
uD prescribed boundary velocity (where Dirichlet BC apply)
ρ density
p pressure field (possibly divided by ρ)
µ molecular viscosity
ν kinematic viscosity
T Cauchy stress tensor
δt used time step
hK local mesh size
Ω computational domain
n unit outer normal to the boundary of Ω
Γin inflow part of the boundary of Ω
Γwall vessel wall part of the boundary of Ω
Γout outflow part of the boundary of Ω
ΓD part of the boundary of Ω with Dirichlet BC
V′, Q infinite dimensional function spaces
Vh, Qh finite dimensional function spaces
v, q test functions
an bilinear form in weak formulation for projection step (Sn)
bn linear form in weak formulation for projection step (Sn)
D(u) symmetric part of gradient of u
ϕ, ψ finite element basis functions
uh, ph finite element velocity and pressure approximations
x,y vectors
An matrix for projection step (Sn)
(·, ·) inner product
τ stabilization parameter

3

Introduction

A aneurysm is blood-filled bulge in wall of a blood vessel. An aneurysm can be
formed on any vessel and location of the body, but usually they are formed
on arteries at specific locations. This thesis is inspired by our cooperation
with Neurosurgery clinic of Masaryk’s Hospital in Úst́ı nad Labem, where brain
aneurysms are studied.

About 2 percent of the general population has or will develop a cerebral an-
eurysm. These aneurysms may rupture, the incidence of rupture is approximately
1 in 10 000 people per year. Ruptured brain aneurysms are fatal in about 40 %
of cases. Of those who survive, about 66 % suffer some permanent neurological
deficit (NINDS; BAF).

Aneurysms can be detected using computational tomography (CT) or mag-
netic resonance imaging technologies. Detected aneurysms can be treated to
prevent possible rupture, but treatment itself is not without risks. Therefore
doctors need to evaluate the probability of rupture, so only aneurysms with
serious risk of rupture are treated.

Every aneurysm is different, and the risk of rupture may depend on many
factors. As current measurement methods and physical experiments are very
limited and do not provide enough information to assess the risk, mathematical
modelling can be used to provide more information about the blood flow. Typ-
ically, all we have is the geometry of veins and aneurysm provided by medical
imaging technology.

Solving a pulsative blood flow in complex geometry is not an easy task. To
improve the computational efficiency of our current Navier-Stokes solver based
on direct fully coupled method, we try to find and implement a more efficient
numerical strategy in order to be able to get reasonably accurate results for
higher quality meshes in practical computational time.

We have chosen to use a projection method. We implement it using the
FEniCS software. Projection methods can provide efficiency at the cost of cre-
ating additional “splitting errors”. Despite the long usage of the projection
methods, many issues concerning the nature of the splitting errors and use of
different boundary conditions are still unclear or undecided. We tried to describe
those errors and to explain some issues related to the boundary conditions and
other implementation problems.

This thesis has a following structure: In the first chapter, we describe the
mathematical model used and the context of our work. In the second chapter
we review relevant projection methods, schemes and some theoretical results. In
the third, main chapter, we describe the implementation of our chosen method
and discuss the different options and various implementation issues. In the last
chapter we provide results obtained from testing of the created code. We tested
its performance on finer meshes and its parallel efficiency. We compared the new
code with a previous approach.

4

1. Modelling blood flow

1.1 Chosen mathematical model

We want to model a blood flow in real geometry of an aneurysm and the adjacent
vessels. The size of the geometry is usually around 2 or 3 cm. Because aneurysms
are often formed near or directly on places of branching of vessels, the geometry
can have one or more inflows as well as outflows.

The walls of human arteries and surrounding mass are viscoelastic and interact
with the blood flow. This interaction can be quite strong, as is for example in the
case of aorta, which expands and shrinks considerably during the blood flow cycle.
But in the case of cerebral arteries, we assume that the movement of vessel wall
is negligible so we will compute in fixed geometry. This is a simplification, but
computing with viscoelastic vessel walls is much more difficult problem and also
we lack information about material properties of mass around aneurysm. We will
denote our computational domain Ω. Our Ω is bounded, Lipschitz, and obviously
not convex. We will mark different parts of its boundary ∂Ω in following way:
Γwall, Γin, Γout for vessel walls, all inflows and all outflows respectively.

To obtain mesh suitable for computation from usually inaccurate and coarse
data from medical scanners is a problem for itself. In this work, we used meshes
provided by my colleague Švihlová (2013, master thesis).

We will model blood flow as a time dependent pulsatile flow using Navier-
Stokes equations:

ρut + ρ [∇u]u = div (T) (1.1a)

divu = 0 (1.1b)

These equations model a flow of incompressible fluid with velocity vector u,
time derivative ut and density ρ. The T stands for stress tensor, which is given
by constitutive relation

T = −pI + µ
(
∇u +∇u>

)
, (1.2)

where p stands for pressure. In this work, we will use Newtonian fluid, that
means molecular viscosity µ will be constant. Because blood is not a Newtonian
fluid, we will want to leave open possibility for possible future modification of the
model to non-constant viscosity.

We will compute with no external forces, as effect of gravity is negligible in
comparison with inertial forces. Also, in the context of incompressible model
and forcing inflow velocity profile, the effect of external force is often mainly a
modification of pressure.

By substituting the constitutive relation (1.2) into the momentum equation
(1.1a), dividing by the constant density ρ and rearranging the terms we get a
form

ut + [∇u]u +∇p− div
(
ν
(
∇u +∇u>

))
= 0 (1.3a)

divu = 0, (1.3b)

5

where ν = µ/ρ is kinematic viscosity. We also used simplification p
def
= p/ρ.

There are more possibilities for improving the model, such as using viscoelastic
model or considering blood as a mixture of different components. But our concern
in this work will be to apply more efficient and scalable numerical method.

Equations must be completed by adding suitable boundary and initial condi-
tions. Pulsation of the flow is achieved by prescribing time-dependent oscillating
velocity profiles on the inflows Γin simulating possible real inflow. For simplicity
we assume that flow has a period 1 second (using average heartbeat 60 beats
per minute). On walls we prescribe zero velocity (no-slip) condition. We will
use notation ΓD = Γin ∪ Γwall for part of the boundary with Dirichlet boundary
conditions, and uD will be our prescribed velocity on ΓD.

On outflows we will use some sort of neutral condition. Discussion of its
choice will be given in section 3.4.1. We will use zero initial condition. We will
get pulsatile solution by computing over one or more blood flow cycles and than
using data from the next cycle, so the effect of initial condition wears off.

1.2 Hemodynamic indicators

Velocity and pressure obtained from model can be used to compute various
hemodynamic indicators. Many of different indicators are derived from spatial
and temporal distribution of wall shear stress (WSS)

τwall = (I − n⊗ n)Tn,

defined as a tangential part of stress at vessel walls with outer unit normal n.
Another option is computing energy loss associated with an aneurysm (Qian
et al., 2011). What are the right indicators and values for assessing probability
of growth and rupture of different types of aneurysm is still subject of research
(Can and Du, 2016).

1.3 Former approach in our group

One possible approach already implemented and used in our group is based on
computing problem discretized by finite element method and solving coupled
nonlinear Navier-Stokes equations using generalized Newton method. This leads
to solving several linear systems in each time step. These linear system are solved
by direct solvers (using MUMPS library).

Because of high changes of flow velocity during cycle, we have to use relatively
small time step (0.01 s). We need to compute several cycles to make sure initial
condition have negligible effect on solution. We also want to model flow using
quite a fine mesh, so number of degrees of freedom is high (several million).

Although this approach gives quite reliable results when applicable, it has
substantial drawbacks. If we want to compute on finer meshes, dimension of our
problem becomes too high to use a direct method (due to amount of time and
memory needed). Also efficiency of parallel computation is quite limited.

In this thesis, we will refer to this approach as to “the direct method”.

6

1.4 Considered alternatives

For such a large system it would be better if we could find a way to use iterative
rather then direct methods. Iterative methods need less memory. Iterative
methods can also lead to sufficiently accurate solution in lesser amounts of time,
and are more effective when run in parallel.

We can consider using Krylov iterative methods (such as CG, GMRES) on the
coupled Navier Stokes system, but their direct use is impractical without good
preconditioning, which is not easily obtained for coupled Navier-Stokes equations.
Another option is to decouple these equations and use some operator splitting
technique such as projection method. This approach is easier to grasp and easier
to implement. Therefore, we chose the latter for practical reasons.

1.5 Goals of thesis

In this work we tried to find and implement better computational strategy, that
would allow us to compute our problem on finer meshes to get reasonably accurate
solution in same or less time. We wanted to solve all technical problems associated
with application of new numerical approach to complex geometries obtained from
real medical data. We wanted to assess its inaccuracy, especially with respect to
computation of wall shear stress.

7

2. Projection methods

In this chapter, we give a short review of basic idea and schemes of projection
methods needed for understanding main part of the work. Projection methods
are used from 1960s, so there are many works about them. Our main source was
an overview by Guermond and Shen (2006).

2.1 Overview

2.1.1 Pressure and velocity correction methods

When solving incompressible Navier-Stokes equations, we want to find velocity
field that satisfies momentum equation (1.3a) under a constraint of zero diver-
gence (1.3b). The pressure in this context is not a thermodynamic variable. It
is an implicit variable that adjust itself just so the zero divergence constraint is
satisfied.

The incompressible Navier-Stokes equations are a saddle point problem, its
corresponding matrix (arising from FEM discretization) is indefinite. Such prob-
lems are difficult to solve. Projection methods evade solving saddle point problem
by splitting equations and computing in each time step more simpler problems,
typically a convection-diffusion equation for velocity and a Poisson problem for
pressure. We first compute a tentative solution of one equation, and then we com-
pute a correction using a second equation. The choice which equation is “first”
separates two types of projection methods. One type is “pressure correction
method”, in which we compute a tentative compressible velocity field satisfying
the momentum equation, and in the second step we compute “pressure” as a cor-
rection to an incompressible velocity field. A second type is “velocity correction
method”, when we start by computing pressure and associated incompressible
velocity field and then we correct it to satisfy the momentum equation.

We will use only pressure correction methods, so we restrict our review only
to this type.

2.1.2 Idea of projection

The core idea of projection method rests on the Helmholtz decomposition.
Let us first state some function spaces. Let L2(Ω)3 denote a space of Lebesgue

square integrable vector functions,

H0(div,Ω) =
{
v ∈ L2(Ω)3,v admits weak divergence, v · n|Γ = 0

}
H = {v ∈H0(div,Ω), div v = 0}

The theorems 2.6 and 2.7 in Girault and Raviart (1986) combined gives the
orthogonal decomposition of L2(Ω)3:

Theorem 1 (The Helmholtz decomposition). Let Ω is connected. Then L2(Ω)3 =
H ⊕H⊥, where H⊥ = {∇q, q ∈ H1(Ω)}.

8

This means that any vector field we can get (e. g. a weak solution from
Finite element method) can be decomposed orthogonally into a field with zero
divergence and a second field, which has a potential. The correction of the
tentative to incompressible velocity is an orthogonal projection, hence the name of
the operator splitting approach. Computed “pressure” is a potential of correction
vector field.

The catch here is that our solution cannot satisfy condition v · n|Γ = 0 on
the outflow boundary1. This is probably one of the reasons for complications
concerning outflow boundary conditions that we will see later.

2.2 Basic schemes

Now we will demonstrate basic projection scheme as proposed by Chorin (1967)
and Témam (1969). We will look how error introduced by splitting of equation is
manifested. Then we will show two modifications used to reduce splitting error.

As the convective and diffusion terms does not change we will use following
notation:

L (u) = div
(
ν
(
∇u + (∇u)>

))
N (u) = [∇u]u

We will write all schemes in this section using backward Euler time discret-
ization for simplicity, but other discretizations (such as Crank-Nicholson, which
we will use later) are also possible. We will assume δt is chosen constant size of
time step.

2.2.1 Chorin’s scheme

To get the first step of Chorin’s pressure correction scheme, we simply drop the
pressure term in the momentum equation (1.3a) and do not consider the zero
divergence condition. We want to compute a tentative velocity uk+1

∗ satisfying

uk+1
∗ − uk

δt
+N

(
uk+1
∗
)
− L

(
uk+1
∗
)

= 0 in Ω, uk+1
∗ = uD on ΓD. (2.1)

In the second step we want to find
(
uk+1, pk+1

)
such that ∇pk+1 is correction

of uk+1
∗ to incompressible velocity field uk+1. We get decomposition

uk+1
∗ = uk+1 + δt∇pk+1, (2.2)

divuk+1 = 0. (2.3)

This is a saddle point problem, but much easier than (1.3). In this case we
can separate the variables. We apply div to (2.2), thus eliminating uk+1 from the
equation and getting Poisson problem for pk+1

∆pk+1 =
1

δt
divuk+1

∗ . (2.4)

1It is not a problem for the Dirichlet part of the boundary, as we will seek our weak solution
function in space satisfying the homogeneous Dirichlet boundary conditions. For explanation
see section 3.4.1

9

After we compute pk+1, we can get a corrected velocity by simple update:

uk+1 = uk+1
∗ − δt∇pk+1. (2.5)

Note that when we want to compute a weak solution p of (2.4), we have to
use an implicit boundary condition ∂p

∂n
=?. As we do not know proper values for

the pressure gradient, we should use

∂p

∂n
= 0. (2.6)

This boundary condition is satisfied only weakly by numerical solution of
(2.4). Note also that tangent derivatives of p are generally non-zero.

As we correct our tentative velocity u∗ by ∇p satisfying (2.6), it means that
the correction does not change normal velocity on the inflow and the outflow.
But u∗ is correct only on the inflow. The correction does change the tangential
component of the velocity on the vessel walls (in general).

The splitting error manifests itself in two main ways. The first way is that
uk+1 does not satisfy no-slip condition in tangential direction to the boundary.
More problematic is the second error, a non-physical pressure gradient ∂p

∂n
= 0

on outflow: it creates a boundary layer and in our setting it can lead to global
error. Consider these circumstances: We use zero initial condition, so in the first
time step, the tentative velocity on the outflow will be almost zero independently
of the inflow velocity condition. Because there is almost no correction on the
outflow, this error can propagate many time steps. While we might think that
the corrected velocity should be close to incompressible, we see almost no outflow
independently of the rate of inflow. That contradicts incompressibility. We
will discuss more choices of boundary conditions and possible ways to solve this
problem later (see section 3.4.2).

2.2.2 Incremental pressure correction scheme (IPCS)

To improve Chorin’s scheme, we can use some extrapolation of previously com-
puted pressure in the first step. The simplest option is to use just pk. We can get
better tentative velocity and lesser splitting error by modifying equation (2.1) to

uk+1
∗ − uk

δt
+N

(
uk+1
∗
)

+∇pk − L
(
uk+1
∗
)

= 0 in Ω, uk+1
∗ = uD on ΓD. (2.7)

The remaining steps must be modified accordingly. From the perspective of
the projection method, we compute a partially projected tentative velocity in the
first step, so in the second step we compute only a correction of that projection.
After similar manipulation as in Chorin’s scheme, we get

∆
(
pk+1 − pk

)
=

1

δt
divuk+1

∗ (2.8)

uk+1 = uk+1
∗ − δt

(
∇pk+1 −∇pk

)
. (2.9)

Now the implicit boundary condition for pressure is ∂pk+1

∂n
= ∂pk

∂n
. The splitting

error is therefore proportional only to the difference ∂pk+1

∂n
− ∂pk

∂n
, instead of being

scaled by ∂pk+1

∂n
. To illustrate this effect, it means that improved formulation has

10

zero splitting error for constant velocity flow. Also, using lower time step now
significantly reduce splitting error.

This modification brings up following question: pk was computed as a poten-
tial of correction of tentative velocity. Is it also the right “pressure” enforcing
incompressibility of corrected velocity?

∂pk+1

∂n
= ∂pk

∂n
= 0 on the inflow is right in the sense that the normal inflow ve-

locity does not need correction (it is forced by the Dirichlet boundary condition).
But it is inconsistent with the velocity field uk+1 in the momentum equation,
as inflow velocity should be accompanied by non-zero normal pressure gradient.
That might cause problems in next tentative velocity computation and cause
some oscillations near the inflow boundary. This inconsistency can be removed
by following modification.

2.2.3 Rotational scheme

In this modification proposed by Timmermans et al. (1996), we compute the
potential of a correction, now denoted φk+1, in the same way as in previous
scheme. But another correction of φk+1 to pk+1 is added.

∆
(
φk+1 − pk

)
=

1

δt
divuk+1

∗ (2.10)

uk+1 = uk+1
∗ − δt

(
∇φk+1 −∇pk

)
(2.11)

pk+1 = φk+1 − ν divuk+1
∗ (2.12)

Explanation of the scheme is given in Guermond and Shen (2006) or Timmermans
et al. (1996). It is important to note that this correction does not mend the
problem of loss of incompressibility due to unphysical pressure gradient on outflow
boundary.

2.2.4 Summary

In our work, we will use incremental pressure projection scheme (IPCS) (2.7),
(2.8), (2.9) and its rotational modification (2.7), (2.10), (2.11), (2.12).

The projection methods split each time step to three or four subproblems:

(S1) Compute a tentative velocity from modified momentum equation.

(S2) Compute the Poisson problem to get a correction potential (and pressure
in case of IPCS).

(S3) Compute a corrected velocity.

(S4) Compute a pressure from the correction potential (only in the rotational
scheme).

We will use the (S#) designation when we will need to refer to the projection
method steps throughout the thesis.

In this section, we have shown three types of errors created by using projection
scheme:

11

1. The corrected velocity does not satisfy tangential boundary conditions on
the vessel walls. This error is scaled with the size of the time step for
incremental scheme. Further discussion of its effect on wall shear stress
(WSS) computation will be given in section 3.6.1.

2. The unphysical condition ∂pk+1

∂n
= 0 on the outflow is problem for all given

schemes and it will be resolved in section 3.4.2.

3. Inconsistency of the correction potential and the pressure on the inflow due

to ∂pk+1

∂n
= 0 condition is treated by an additional correction step in the

rotational scheme.

2.3 Available theoretical results

Here we give some theorems concerning convergence of projection schemes. As-
sumptions common for all theorems are: Ω is Lipschitz, only homogeneous Di-
richlet boundary conditions on velocity u|∂Ω = 0 are applied, solution (u, p) of
the original problem (1.3) is sufficiently smooth in time and space, solutions are
acquired using exact arithmetic, multi-step schemes are properly initialized.

We will use uδt∗ , uδt and pδt to denote the sequences of solutions of tentative
velocity, corrected velocity and pressure in discrete time steps using some constant
time step δt.

Theorem 2. (Shen, 1996) Under the assumptions above, a solution of incre-
mental pressure scheme formulation (2.7), (2.8), (2.9) satisfies estimate:
||u− uδt∗ ||`∞(H1(Ω)3) + ||p− pδt||`∞(L2(Ω)) < Cδt.

Theorem 3. (Guermond and Shen, 2004) Under assumptions above, a solution
of rotational modification of incremental pressure scheme (2.7), (2.10), (2.11),
(2.12) satisfies estimate:
||u− uδt||`2(H1(Ω)3) + ||u− uδt∗ ||`2(H1(Ω)3) + ||p− pδt||`2(L2(Ω)) < Cδt3/2.

From these theorems we can only deduce that corrected velocity, tentative
velocity and pressure should all converge to the solution of original problem
for δt → 0. Limitations of significance of these results in our case are strong
assumptions, some of which (especially the choice of boundary conditions and the
exact computation of solutions) are unmet in our problem. Also the theorems
only state asymptotic behaviour of the schemes, which might not be visible for
our choice of meshes and time steps. And finally, we will use some stabilization
techniques to solve our problem and that change of scheme is not accounted for
in cited analysis.

12

3. Implementation

3.1 Problems

We used two main problems to test our implementation and different aspects and
difficulties associated with the projection methods.

As a “test problem”, we have chosen Womersley flow in a cylindrical pipe.
Womersley flow is analytic solution for laminar pulsatile flow of incompressible
Newtonian liquid. It is the most difficult problem similar to our application that
has an analytical solution, which allows us to monitor spatial distribution of the
error. In analogy with setting of our main problem, we will enforce the flow by
prescribing analytic velocity profile on inflow.

As a second, “real problem”, we take flow in geometry obtained from real
medical data (see figure 3.1).

3.2 Implementation in FEniCS

To get an approximate solution to our chosen PDEs, we want to use Finite element
method (FEM). To get actually numerically computable problem, we will follow
these steps:

1. Choose time discretization of our schemes.

2. Derive weak formulation of semi-discrete scheme.

3. Choose finite-dimensional function spaces using FEM to discretize in space.

To implement the code for projection method, we use the (FEniCS, release
1.7.0), a collection of free software with an extensive list of features for automated,
efficient solution of differential equations.

We chose FEniCS for a number of reasons. It is a tool which we can use to
solve our problems numerically without having to implement every detail of FEM
for our particular application from scratch. It is also suitable to build modular
code: we can use the same code for solving both our test problem and our real
problem, or we can return back to direct solver strategy by replacing only our
specification of solvers. The problem itself is entered using symbolic notation of
our weak formulation, and pre-programmed tricks and efficient coding techniques
are generated by FEniCS automatically. More specifically, FEniCS allow us to
use automated domain decomposition technique to solve our problem on parallel
architectures with only minor changes in our code. FEniCS achieves this by using
PETSc linear algebra backend. Unlike with commercial software, we still have
quite high degree of control above what is going on in the computations.

For information about the access to the created code and example of basic
usage see Appendix - the code.

13

Figure 3.1: Real mesh. The two inflow vessels are on the left, the two outflow
vessels are on the right.

3.3 Time discretization

Let δt be our chosen constant time step. We will show time discretization for
incremental pressure correction scheme. In the first step of projection method,
we will use Crank-Nicholson scheme.

As we are using projection method and we will need to compute with small
time steps, we do not want to compute nonlinear problem. We have to choose
some form of linearization of the convective term. The easiest way for solver
would be to treat this term explicitly

([
∇uk

]
uk
)

but this approach require too
small time step to be stable.

Therefore we will use following semi-explicit scheme

[∇u]u ≈
[
∇uk+ 1

2

]
uext,

where uext is velocity extrapolated from previous time step. We will use two step
Adams-Bashfort scheme for the extrapolation

uext =
3uk − uk−1

2
. (3.1)

Using notation

u
k+ 1

2
∗ =

uk+1
∗ + uk

2
for Crank-Nicholson scheme and

D (u) =
1

2

(
∇u + (∇u)>

)
for the symmetric part of gradient, complete time-discretized scheme for the first
step (S1) is

uk+1
∗ − uk

δt
+
[
∇uk+ 1

2
∗

]
uext +∇pk − div

(
2νD

(
u
k+ 1

2
∗

))
= 0. (3.2)

14

Note that this is essentially a vector variant of convection-diffusion problem.
In the steps (S2), (S3), (S4) of projection method there is no time discretiza-

tion. We will use schemes as they are stated in the previous chapter.

3.4 Weak formulation

In this section, we want to derive weak formulations of our problems. That
means we want to find some Hilbert function spaces V and V ′ for solutions and
test functions, and derive for each equation a bilinear form a : V × V ′ → R and
linear form b : V ′ → R in such a way that we can always find a weak solution as
unique function u ∈ V such that a(u, v) = b(v) ∀v ∈ V ′.

3.4.1 Weak formulation of tentative velocity step (S1)

The Dirichlet boundary conditions are “essential”. That means they are satisfied
exactly via choice of a solution space. However, space of functions that satisfy
non-homogeneous Dirichlet boundary conditions is not linear (it does not contain
zero function). Therefore we will seek a solution in form uk+1

∗ = uV ′ +vD, where
uV ′ lies in the test function space V ′, which is a linear space of functions with
zero on part of boundary with Dirichlet boundary condition, and vD ∈ V is some
function satisfying our Dirichlet boundary conditions. For simplicity, we can from
now on seek only uV ′ denoted again by uk+1

∗ and take V = V ′.
We multiply the scheme (3.2) by a vector test function v. We will denote

(A, B) =

∫
Ω

A : Bdx, (u, v) =

∫
Ω

u · vdx, (p, q) =

∫
Ω

pqdx

the inner products of tensor, vector and scalar functions. Then(
uk+1
∗ − uk

δt
+
[
∇uk+ 1

2
∗

]
uext, v

)
+
(
∇pk, v

)
−
(

div 2νD
(
u
k+ 1

2
∗

)
, v
)

= 0.

(3.3)
We need to redistribute function derivations evenly between solution and test
functions. We formally use integration by parts on diffusion and pressure terms.
We get(

uk+1
∗ − uk

δt
+
[
∇uk+ 1

2
∗

]
uext, v

)
−
(
pk, div v

)
+
(
pkn, v

)
∂Ω

+

+
(

2νD
(
u
k+ 1

2
∗

)
, ∇v

)
−
(

2νD
(
u
k+ 1

2
∗

)
n, v

)
∂Ω

= 0,

(3.4)

where (·, ·)Γ denotes integral over boundary Γ. As v is zero on Γin and Γwall,
boundary integrals vanish outside of outflow boundary Γout.

Outflow boundary condition for velocity

To deal with the outflow boundary integrals, we have to specify some boundary
conditions on the outflow. We cannot use Dirichlet conditions on outflow as
the outflow velocity profile should be determined by the solution inside our
computational domain. Therefore we want to prescribe some sort of “neutral”

15

condition in the sense that it will minimally interfere or collide with the flow inside
domain. To develop such a condition for the projection method, we started with
a typical neutral conditions for the coupled equations.

The most simple neutral condition is the no-stress condition Tn = 0. If we
recall the formula for stress (1.2),

Tn = −pn + 2µD (u)n (3.5)

we see this condition couples pressure and velocity together. As pressure is not
an unknown in first step of projection method, we need to find a correct analogy
for the projection scheme. A naive option would be

2νD
(
u
k+ 1

2
∗

)
n = pkn, (3.6)

but this means that the value of the computed pressure on the boundary de-
termines the gradient of velocity on the outflow. As pressure is determined up
to an arbitrary additive constant (see section 3.4.2), using this form of boundary
condition leads to major oscillations. The correct outflow boundary condition is

2νD
(
u
k+ 1

2
∗

)
n = 0. (3.7)

Using this condition, only the boundary integral with pressure remains in the
equation (3.4).

Now we move all terms without the unknown uk+1
∗ to the right hand side.

The remaining left hand side becomes our bilinear form

a1(uk+1
∗ , v) =

(
uk+1
∗
δt

+
1

2

[
∇uk+1

∗
]
uext, v

)
+
(
νD
(
uk+1
∗
)
, ∇v

)
(3.8)

and the right hand side defines our linear form:

b1(v) =

(
uk

δt
− 1

2

[
∇uk

]
uext, v

)
−
(
νD
(
uk
)
, ∇v

)
+

+
(
pk, div v

)
−
(
pkn, v

)
Γout

.

(3.9)

To finish our weak formulation, we now choose the proper function spaces.
Let

H1(Ω) =
{
v ∈ L2(Ω), v admits weak gradient from L2(Ω)

}
, (3.10)

V′ = H1
0 (Ω) =

{
v ∈

[
H1(Ω)

]3
,v|ΓD

= 0
}
. (3.11)

V = H1
D(Ω) =

{
v ∈

[
H1(Ω)

]3
,v|ΓD

= uD

}
. (3.12)

Here V′ denotes Sobolev space of vector functions satisfying homogeneous Dirich-
let boundary conditions. Now Lax-Milgram lemma gives existence and uniqueness
of solution to our weak formulation:

Definition 1 (Weak formulation of the first step (S1) of the incremental pressure
projection method.). Let uk, uext ∈ V, pk ∈ H1(Ω). Find uk+1

∗ ∈ V′ such that

a1(uk+1
∗ , v) = b1(v) ∀v ∈ V′. (3.13)

16

3.4.2 Pressure boundary conditions for (S2)

Multiplying (2.8) by a test function q and using integration by parts, we get

−
(
∇
(
pk+1 − pk

)
, ∇q

)
+
(
∇
(
pk+1 − pk

)
· n, q

)
∂Ω

=
1

δt

(
divuk+1

∗ , q
)
. (3.14)

As we mentioned earlier, weak formulation of the Poisson problem for the
pressure requires implicit use of a boundary condition1. Apart from loss of incom-
pressibility, there is one more difficulty connected to the choice of homogeneous
Neumann condition ∂p

∂n
= 0. Solution of this problem is unique up to an additive

constant, so in the case of our FEM discretization, resulting problem matrix A2

is singular (notation A2 is used to be consistent with the rest of the thesis).
There are different possible approaches to treat this difficulty. We will now

comment three of them in relation to the unphysical boundary condition.

Approach 1: Additional Dirichlet boundary condition on pressure

Theoretically, to remove ambiguity in the solution it would suffice to set pressure
at some arbitrary point. But solving of such problem is not numerically stable,
as the approximate solution tends to oscillate near the chosen point.

In the case of our test problem in cylindrical geometry, we can use the
symmetry of the solution. As analytic pressure is a function of longitudinal
coordinate (and time), it is always constant on any cross-section. Therefore we
can chose to set p = 0 on Γout. This approach is more stable and accurate for
the test problem, because by using this condition we enforce the right symmetry
on the solution. Replacement of Neumann boundary condition by Dirichlet type
also releases any direct constraint on normal pressure gradient on this part of
boundary. This approach effectively removes problem of unphysical boundary
condition on outflow.

The question is, whether it is possible to use same approach in the case of real
aneurysm geometry. An analogy of cylindrical cross-section for a real geometry is
a section normal to an outflow centerline. By prescribing p = 0 on the outflow, we
enforce symmetry that need not to be present in the solution. But it seems that
the difference is small, because use of this approach leads to a stable solution.
And if the outflow vessel is sufficiently long, error near the boundary will not
interfere with the solution inside the aneurysm.

A second problem appears if our geometry has multiple outflows. What
constants should we prescribe on the outflows? A relative difference between
these constants determines how much blood flows through each of outflow vessels.
This may affect overall flow pattern in the aneurysm itself. Unfortunately, we
have no reliable data available to answer this question. We also cannot compute
it without modelling the flow in much larger part of vascular system. We have
to use some heuristic here. We can choose both constants the same or we can
compute them to maintain the flow rate appropriate to the sizes of the outflow
vessels. As long as this problem is open, we always have to asses the actual effect
of different choices on particular problem.

1Otherwise the boundary term would remain undefined for pressure functions from space
H1(Ω).

17

It is important to note that the uncertainty in choice of proper outflow
boundary conditions is property of our problem setting, not a problem of the
projection method itself. If we compute coupled Navier Stokes equations with no-
stress (Tn = 0) condition on outflow, then our velocity-pressure pair is uniquely
determined, but we still do not know if the outflow rates of computed flow match
reality or not2.

Approach 2: Use known null space in PETSc

Another approach to solve singular Neumann problem is to use the PETSc Krylov
solver ability to compute minimal norm solution to singular problems (PETSc).

To do this, we need to be able to express algebraic vector generating the null
space of A2. For this approach to work, we also need to orthogonalize the right
hand side to the null space to ensure that it lies in range of A2.

Problem with this approach is that it does not help with the unphysical
boundary condition. If we could enforce the right outflow by prescribing pressure
gradient correctly, than we could use it. In test problem with cylinder, we know
that normal pressure gradient is constant on each cross-section. In each time
step, we can compute right outflow pressure gradient to ensure that inflow and
outflow rates for corrected velocity are equal. This approach gives good results
on our test problem.

This approach is not practical for the real problem. As the enforced gradient
determines quite directly the resulting corrected velocity profile on the outflow,
we would either need to know the resulting shape of the outflow profile in advance
to set the gradient consistent with the rest of the velocity field, or we would need
to devise some more sophisticated pressure boundary condition. Even then we
could have more problems with solvability of our Neumann problem3. Using
constant gradient on whole cross section leads to numerical problems because
of inconsistency between enforced constant velocity profile, no-slip boundary
conditions on walls and velocity profile in outflow vessel.

Approach 3: Lagrange multipliers

Third possibility is to add condition on average pressure
∫

Ω
p dx = 0 using Lag-

range multipliers. This again does not help solving the problem with unphysical
boundary condition. Using constraint also makes solving the algebraic problem
significantly harder, as resulting matrix is indefinite (saddle point) and is no
longer diagonally dominant (see matrix properties at the end of section 3.5).

Chosen approach

We tested all three approaches, but only the first two are implemented in the
final version of code. We use the first approach, as it is the only approach that
provides us with a good solution for the real problem. We have chosen both
Dirichlet conditions to be zero for our tests on real mesh.

2How to prescribe pressure difference on the outflows for the coupled Navier-Stokes equations
is described in the work of Heywood et al. (1996)

3In the work of Gresho and Sani (1987) there seem to be a defence of use of such a complex
pressure boundary condition, but we do not see it could be somehow applicable to our projection
scheme

18

3.4.3 Weak formulation of the Poisson problem (S2)

Returning to equation (3.14), the boundary terms vanish for all considered cases:
either ∂p

∂n
or q is zero on each part of boundary. We can now define bilinear and

linear forms

a2(pk+1, q) =
(
∇pk+1, ∇q

)
(3.15a)

b2(q) =
(
∇pk, ∇q

)
− 1

δt

(
divuk+1

∗ , q
)
. (3.15b)

and choose the space

Q =

{
{q ∈ H1(Ω), q|Γout = 0} for the first approach,{
q ∈ H1(Ω),

∫
Ω
qdx = 0

}
for the second approach.

(3.16)

for the solution and test functions of the Poisson problem to get our weak
formulation:

Definition 2 (Weak formulation of the second step (S2) of the incremental
pressure projection method.). Let uk+1

∗ ∈ V, pk ∈ Q. Find pk+1 ∈ Q such
that

a2(pk+1, q) = b2(q) ∀q ∈ Q. (3.17)

3.4.4 Weak formulation of third and fourth step

Weak formulations of the remaining steps are straightforward, as no integration
by parts and no discussion of boundary conditions are needed. Resulting bilinear
forms are:

a3(uk+1, v) =
(
uk+1, v

)
(3.18a)

a4(pk+1, q) =
(
pk+1, q

)
. (3.18b)

Both steps can be interpreted as an L2-orthogonal projections of corresponding
right hand side to the velocity space [H1(Ω)]

3
or the pressure space H1(Ω).

3.5 Space discretization by FEM

The weak formulation is defined with infinite-dimensional function spaces. To
get a practically computable problem, we must perform a space discretization by
choosing finite-dimensional subspaces Vh ⊂ V′ and Qh ⊂ Q.

We are using Finite element method (FEM) as a way of choosing these
subspaces. Our computational domain Ω is partitioned by tetrahedral mesh.
Widely used choice for this type of problem are Taylor-Hood elements, which
satisfy the inf-sup stability condition4. Velocity space Vh are continuous vector
functions that are polynomials of degree two on each tetrahedron. Pressure space

4Analysis and numerical tests of different projection methods in relation to need of the
choice of inf-sup condition stable elements can be found in the work of Liu et al. (2010). Our
projection scheme falls into the category of “pressure update (PU)” methods in the article and
was found unstable when using linear polynomial finite element spaces for velocity.

19

Qh are continuous scalar functions that are polynomials of degree one on each
tetrahedron.

Using typical nodal bases {ϕ1, . . . , ϕN} of Vh and {ψ1, . . . , ψM} of Qh in
our bilinear forms, we get algebraic problems

Asx = bs, (As)ij = as(ϕi, ϕj), (bs)j = bs(ϕj), for s = 1 and 3 (3.19)

Asy = bs, (As)ij = as(ψi, ψj), (bs)j = bs(ψj), for s = 2 and 4 (3.20)

where vectors x and y determines our finite element velocity and pressure ap-
proximations uh and ph by relations

uh =
N∑
i=1

xiϕi, ph =
M∑
i=1

yiψi. (3.21)

From the shape of the bilinear forms and the choice of finite element spaces
we can see some properties of matrices As.

The matrices A3 and A4 are Gram matrices of corresponding finite element
basis, usually called “mass matrices” in the context of FEM. Both are diagonally
dominant. The matrix A4 has non-negative entries due to use of finite elements of
first polynomial degree. Matrix A2 is symmetric positive definite and diagonally
dominant.

The matrix A1 has a structure A1 = A3 + δt (Aconvection + Adiffusion) (up to the
Dirichlet boundary conditions). The non-symmetry of matrix Aconvection imply
non-symmetry of A1.

3.6 Notes on boundary conditions

Now we return to other implementation issues concerning boundary condition
that were not resolved in previous sections.

3.6.1 Splitting error and Dirichlet BC for (S3)

As we described in section 2.2, one effect of the splitting error of projection
method is that corrected velocity does not satisfy no-slip condition on walls in
tangential direction. What happens, if we enforce our Dirichlet boundary con-
ditions on the corrected velocity? Boundary conditions will be satisfied exactly,
but because they are inconsistent with the correction, the effect will probably be
just a shift of error distribution, not necessarily a reduction of the error. But in
practice this splitting error is negligible in comparison to error in the inside of the
domain, and the same goes for the effect of this splitting error on the computed
wall shear stress.

3.6.2 Inflow velocity profile for real problem

If we want to reproduce accurately true blood flow patterns in our simulation, we
should choose inflow boundary conditions that are also patient specific. However,
current techniques of non-invasive measuring of blood flow are not advanced

20

enough to provide enough information to determine patient’s inflow velocity field.
We must make assumptions about the flow, which creates additional error in the
computed flow. Quoting from the conclusion of Venugopal et al. (2007):

“Our study indicates that measurement of a patient’s blood flow rate as well as
the distribution of flow rates in the feeding arteries may be needed for numerical
simulations to accurately reproduce the intraaneurysmal hemodynamic factors in
a patient-specific aneurysm.”

Our main goal in this work is to implement new numerical method, so we
chose a hand picked polynomial approximation of possible flow rate distribution
during the blood flow cycle (see figure 3.2), and we use parabolic velocity profiles
on circles inscribed to the inflow cross-sections, with zero flow outside the circle.

3.6.3 Dirichlet boundary condition and initial condition
compatibility

We start our computation from zero velocity and pressure initial conditions, but
our inflow velocity profile is always non-zero. This incompatibility can cause
serious problems during computation of first cycle, typically serious oscillations
or divergence of iterative solver. Therefore we need to avoid this incompatibility.
This can be easily done by multiplying our inflow velocity by suitable smoothing
function. We used:

uD(smoothed) = uD
1− cos(2πt)

2
for t ∈ [0, 0.5] (3.22)

0.0 0.5 1.0 1.5 2.0
0

500

1000

1500

time (s)

m
a
x
im

u
m

in
fl
o
w

v
e
lo
c
it
y
(m

m
/s
)

Figure 3.2: Shows chosen course of maximal inflow velocity with (solid line) and
without (dashed line) used smoothing.

21

3.7 Stabilization

Stability of computation of tentative velocity is very sensitive to the magnitude
of the velocity and chosen time step. To get results on tested real meshes without
any oscillations, a 0.0001 s time step is needed. This is very demanding on
computational resources, even with a projection method. Additional stabilization
is required to use the projection method with larger time steps.

As the equations for tentative velocity are essentially a vector variant of
convection-diffusion problem and the instability is caused by dominating con-
vection term, we chose standard streamline-upwind Petrov-Galerkin (SUPG)
technique, described for example in John and Schmeyer (2008). There are two
main ways to implement this technique.

First one is “consistent” in the sense that a solution of the original weak
formulation is a solution of the stabilized one. This technique modifies the test
functions in following way:

v → v + τ [∇v]uext (3.23)

where τ is chosen stabilization parameter. But our equations stabilized in this
way are much more difficult to solve. We resorted to the second type: We only
modify the test function in the convection term of our bilinear form. That means
adding term

τ

2

([
∇uk+1

∗
]
uext, [∇v]uext

)
(3.24)

to our bilinear form. This leads to stabilization of the problem at the cost of
changing the equations and thus introducing a new error.

To use SUPG successfully, the choice of parameter δ is crucial. According to
proposal from Codina (2000) we used

τ = τM
h2
Kδt

2νδt+ hKδt||uext||K + h2
K

, (3.25)

where hK is mesh cell size, || · ||K local L2 norm.
Multiplicative parameter τM must be adjusted empirically for our problem.

In our case, τM ∈ [1, 2] is the best choice for time step 1 ms for the real problem.
For time steps 5 ms and above, the oscillations cannot be removed by this kind
of stabilization.

3.8 Notes on the implementation

In this section we comment on some practical issues concerning implementation
of projection methods.

3.8.1 Partial assembly of matrices

When we are using iterative solvers and small time steps, the efficiency of as-
sembling problem matrices can have strong impact on use of the computational
resources. As bilinear forms for steps (S2), (S3) and (S4) are independent of
current time step, we can assemble the associated matrices only once.

22

If we recall the bilinear form for the first step (3.8) including stabilization
term (3.24)

a1(u, v) =
1

δt

(
uk+1
∗ , v

)
+

1

2

([
∇uk+1

∗
]
uext, v

)
+

1

2

(
2νD

(
uk+1
∗
)
, ∇v

)
+

+
τ

2

([
∇uk+1

∗
]
uext, [∇v]uext

)
,

(3.26)

we see that only convective and stabilization terms with extrapolated velocity uext

change with time (note that δt is constant). We can save resources by assembling
all other terms into matrix Aconst only once and in each time steps assemble the
changing terms and add the resulting matrix to Aconst.

The FEniCS also provides us with additional optimization techniques for
assembly code generation. This techniques simplify symbolic expression and reuse
repeatedly used quantities to reduce number of redundantly repeated computa-
tions during matrix assembly. Technical details of these techniques are described
in (Logg et al., 2012, Chapter 7).

3.8.2 Choice of solvers and preconditioners

We also need to choose solvers and preconditioners for each of the four projection
method problems. We selected from options provided by library PETSc. We tried
to choose solvers and preconditioners that scale well when running in parallel.

For the tentative velocity step (S1), which has nonsymmetric matrix, we used
GMRES method. Algebraic multigrid preconditioner from the LNLL package
hypre and the “SOR” preconditioners worked well for our problem. The PETSc
“SOR” preconditioner with default settings is Jacobi block preconditioner with
Gauss-Seidel on each block. We chose to use the “SOR” because it scales much
better for higher numbers of processors.

For step (S2), (S3), (S4) with symmetric matrices we chose CG with “SOR”
preconditioner again because of scaling.

To reduce use of computational resources we use last corrected velocity as the
starting vector for both corrected (S3) and tentative (S1) velocity steps.

3.8.3 Computation of WSS

We found two solutions of the technical problem of extracting WSS from com-
puted velocity (pressure is not needed, as it contributes only to the normal
component of the stress). One uses FEniCS class BoundaryMesh to extract
surface mesh, where the computation of WSS makes sense. We can get WSS as
a vector field or its norm this way. Problem with this approach that extraction
of BoundaryMesh does not work when higher numbers of processors are used
in the computation (exact number depends on mesh). This problem can be
circumvented by saving stress tensor for the whole domain and post-processing
it later with lower number of processors. Other option is to compute WSS using
an integral over all mesh facets. This works for any number of processors, but we
are only able to get the norm of WSS using this technique.

23

4. Summary of results

With the implemented IPCS code, we are able to solve our problem on finer
meshes than before. To test it, we computed our three meshes of the same
geometry and different quality. Parameters of meshes are given in Table 4.1. The
coarsest mesh is small enough to be computed with direct solver approach for
comparison (the memory requirement for direct solver is about 40 GB RAM).

Mesh cells vertices average edge length DOF for velocity

1 1.95 · 105 34,791 0.32 8.18 · 105

2 5.83 · 105 1.05 · 105 0.23 2.46 · 106

3 2.15 · 106 3.56 · 105 0.15 8.71 · 106

Table 4.1: Properties of real meshes used in our tests. DOF stands for degrees of
freedom.

Using the rotation scheme with stabilisation has negligible effect on the result-
ing solution in comparison with stabilized IPCS scheme. Without stabilisation,
rotation scheme was less stable than IPCS scheme. In our setting, rotational
modification does not bring any new quality and so there is no reason to use it.
Therefore all result for the projection methods shown in this thesis are for the
IPCS scheme.

4.1 Reliability of computed WSS

To assess an impact of stabilized and non-stabilized pressure correction method
on computed solution we have run them using the coarsest grid, so we could
compare the results with the direct approach. Because there were only negligible
differences between results in the second blood flow cycle and any of computed
following cycles, we used values of WSS and velocity from the time of peak
inflow in the second cycle (t = 11/6 s). Computed WSS norm averaged over cell
facets is shown in Figure 4.1. Computed peak velocities are shown in Figure
4.2. The velocity fields for direct method and non-stabilized IPCS are almost
the same, but the stabilised flow is different. The distribution and size o WSS
differs for the three computational approaches. Assuming that the results from
the direct approach are the most reliable, we can say that using non-stabilized
IPCS method provides better solution. However, differences between stabilized
IPCS and direct approach may be considered small enough for practical purposes.
The decision what method to use depends on available resources and proper
assessing of significance of the other error sources present in modelling, such is
the inaccuracy of obtained geometry or used boundary conditions.

To assess an impact of using meshes of different quality, we have run stabilized
IPCS method for all three meshes. All meshes are acquired from the same
geometry, but using different sampling (meshes are not constructed by refining).
Computed peak WSS norms are shown in Figure 4.3. Apart from the better
resolution of computed quantities, small qualitative differences are visible between
different meshes.

24

4.2 Scalability

To test performance of the code when running in parallel, simple scaling tests were
conducted in the national supercomputing center IT4I in Ostrava (www.it4i.cz).

Two types of parallel scalability are usually distinguished. Strong scaling
measures efficiency of code when increasing the number of computational units
while computing a single problem. The ideal performance would be that for n-
times more computational units the computation time is reduced n-times. Weak
scalability tests the performance of the code when we increase problem size and
computational resources accordingly. Here the ideal performance would be that
the computational time remains constant for any size of problem. We cannot
expect such behaviour in our setting because the more computation units we use
the more time is spent on communication between the processes.

We have ran two seconds with 1 ms time step for all three meshes on different
numbers of processors (used cluster provides us with 24 core nodes). We measured
time spent on each of the individual solver steps and on the assembly of the non-
constant part of the matrix A1.

In all the test problems following stopping criteria were used for precondi-
tioned residuum:

Step Absolute tolerance Relative tolerance
(S1) 10−4 10−12

(S2) 10−6 10−10

(S3) 10−4 10−12

Table 4.2: Tolerances used in stopping criteria for IPCS solvers

Stopping criterion is activated if at least one tolerance is satisfied.
Results for strong scalability for each of the meshes can be found in Figures

4.4, 4.5 and 4.6. Results for weak scalability (for more or less constant DOF per
processor ratio) can be found in Figure 4.7.

From the results we see that the IPCS method scales well with the exception
of Poisson problem solver on step (S2). This problem is smaller if we use finer
meshes, but until better solver and preconditioner setup is implemented, this
poses a limit for further scalability.

4.3 Comparison of the computational cost

To illustrate the difference in efficiency of direct and projection methods, we
have computed the flow to the first 1.3 s of flow on the coarsest grid. We used
eight processors, because the direct method does not scale for more than eight
processors. Comparison with the stabilized IPCS scheme is in table 4.3. Even
without using the advantage of scalability, the IPCS method is about 12 times
faster.

25

http://www.it4i.cz/?lang=en

Approach Direct solver IPCS with SUPG

Total time (h) 65.94 5.34
Avg. time/step (min) 30.43 0.25

Table 4.3: Comparison of computational cost

To compare the computational costs of the IPCS with and without the stabil-
isation, we have run two cycles (seconds) on 96 processors. The results are shown
in table 4.4.

Approach IPCS with SUPG IPCS no SUPG

Total time (min) 36.09 248.28
Running solvers (min) 18.44 154.2
A1 assembly (min) 10.57 45
A1 assembly/step (s) 0.32 0.14
Avg time/step (s) 1.08 0.74

Table 4.4: Comparison of computational cost

Without the stabilisation, we have to compute ten times more steps, but the
computation takes only about seven times more time. This has two reasons:
without stabilization, we save on the time needed to assemble the stabilization
matrix. Also, smaller time steps means our initial guess for velocity solvers is
closer to the solution, resulting in faster convergence.

26

Figure 4.1: WSS comparison for the coarsest mesh.

27

Figure 4.2: velocity comparison for the coarsest mesh.

28

Figure 4.3: WSS comparison for the three different meshes computed by
stabilized IPCS.

29

24 48 96 192
1

2

4

8

16

32

64

110

number of processors

ti
m

e
in

m
in

u
te

s
Strong scalability on the coarsest tested real mesh 1

Total time
1st step solver
2nd step solver
3rd step solver

Matrix assembly

Figure 4.4: Strong scaling

24 48 96 192 384
3

6

12

30

60

120

180

360

number of processors

ti
m

e
in

m
in

u
te

s

Strong scalability on middle-quality real mesh 2

Total time
1st step solver
2nd step solver
3rd step solver

Matrix assembly

Figure 4.5: Strong scaling

30

72 120 240 480 960

0.2

0.5

1

2

5

10

number of processors

ti
m

e
in

h
ou

rs
Strong scalability on finest tested real mesh 3

Total time
1st step solver
2nd step solver
3rd step solver

Matrix assembly

Figure 4.6: Strong scaling

48 144 480
1

2

4

8

15

30

60

120

number of processors

ti
m

e
in

m
in

u
te

s

Weak scalability

Total time
1st step solver
2nd step solver
3rd step solver

Matrix assembly

Figure 4.7: Weak scaling

31

Conclusion

During the work on this thesis, we successfully developed a working implement-
ation of IPCS for the needs of our application. The code can now be used for
generating blood flow and relevant hemodynamic indicators and can serve as a
tool for further research.

For direct practical purposes, the results can be used as a clue for the expert
neurosurgeon’s guess at the risk factors of particular aneurysm. This is mainly
because the question how to assess the risk of a rupture is still an open question
and no definite working procedure is known. For this purpose, several technical
issues are worth refining. The most important is implementing a better way to
prescribe suitable inflow boundary conditions. The next would be implementing a
possibility to compute with various rates of flow on individual inflows and outflows
to assess the sensitivity of the results to such changes in boundary conditions.

As for further research, possible next steps for improving the physical model
would be adapting the code for use of a non-Newtonian model of blood.

Ability of the code to scale in parallel computing is important because it allows
us solving bigger problems when needed. Given enough computational resources,
code can be used for conducting various sensitivity studies with bigger confidence
in results due to higher achieved resolution of computation.

To further improve the efficiency of the code, possible improvements could be
achieved by better and more involved adjustment of used solvers and precondi-
tioners, especially the solver for the Poisson problem, which now does not scale
well. This could be remedied by proper tuning of a multilevel type preconditioner.
Another option would be implementing of an adaptive time stepping, as the
extremely short time step is needed only in a part of the blood flow cycle.

32

Bibliography

BAF. Brain Aneurysm Foundation: Brain Aneurysm Statistics and
Facts. [online]. URL http://www.bafound.org/about-brain-aneurysms/

brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/.

Anil Can and Rose Du. Association of Hemodynamic Factors With Intracranial
Aneurysm Formation and Rupture: Systematic Review and Meta-analysis.
Neurosurgery, 2016.

Alexandre Joel Chorin. The numerical solution of the Navier-Stokes equations
for an incompressible fluid. Bull. Amer. Math. Soc., 73(6):928–931, 11 1967.
URL http://projecteuclid.org/euclid.bams/1183529112.

R. Codina. On stabilized finite element methods for linear systems of convection-
diffusion-reaction equations. Computer Methods in Applied Mechanics and
Engineering, 188:61–82, July 2000. doi: 10.1016/S0045-7825(00)00177-8.

FEniCS. [online]. URL https://fenicsproject.org/.

Vivette Girault and Pierre-Arnaud Raviart. Finite element methods for Navier-
Stokes equations : theory and algorithms. Springer series in computational
mathematics. Springer-Verlag, Berlin, New York, 1986. ISBN 0-387-15796-
4. Extended version of : Finite element approximation of the Navier-Stokes
equations.

Philip M. Gresho and Robert L. Sani. On pressure boundary conditions for the
incompressible Navier-Stokes equations. International Journal for Numerical
Methods in Fluids, 7(10):1111–1145, 1987. ISSN 1097-0363. doi: 10.1002/fld.
1650071008. URL http://dx.doi.org/10.1002/fld.1650071008.

J. L. Guermond and Jie Shen. On the Error Estimates for the Rotational Pressure-
Correction Projection Methods. Mathematics of Computation, 73(248):1719–
1737, 2004. ISSN 00255718, 10886842.

J. L. Guermond and Jie Shen. An overview of projection methods for
incompressible flows. Comput. Methods Appl. Mech. Engrg, 41:112–134, 2006.

J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries
and flux and pressure conditions for the incompressible Navier-Stokse
equations. International Journal for Numerical Methods in Fluids, 22(5):
325–352, 1996. ISSN 1097-0363. doi: 10.1002/(SICI)1097-0363(19960315)22:
5〈325::AID-FLD307〉3.0.CO;2-Y. URL http://dx.doi.org/10.1002/(SICI)

1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.

Volker John and Ellen Schmeyer. Finite element methods for time-dependent
convection–diffusion–reaction equations with small diffusion. Computer
Methods in Applied Mechanics and Engineering, 198(3–4):475 – 494, 2008. ISSN
0045-7825. doi: http://dx.doi.org/10.1016/j.cma.2008.08.016. URL http:

//www.sciencedirect.com/science/article/pii/S0045782508003150.

33

http://www.bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/
http://www.bafound.org/about-brain-aneurysms/brain-aneurysm-basics/brain-aneurysm-statistics-and-facts/
http://projecteuclid.org/euclid.bams/1183529112
https://fenicsproject.org/
http://dx.doi.org/10.1002/fld.1650071008
http://dx.doi.org/10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
http://www.sciencedirect.com/science/article/pii/S0045782508003150
http://www.sciencedirect.com/science/article/pii/S0045782508003150

Jian-Guo Liu, Jie Liu, and Robert L. Pego. Stable and Accurate Pressure
Approximation for Unsteady Incompressible Viscous Flow. J. Comput. Phys.,
229(9):3428–3453, May 2010. ISSN 0021-9991. doi: 10.1016/j.jcp.2010.01.010.
URL http://dx.doi.org/10.1016/j.jcp.2010.01.010.

Anders Logg, Kent-Andre Mardal, Garth N. Wells, et al. Automated Solution of
Differential Equations by the Finite Element Method. Springer, 2012. ISBN
978-3-642-23098-1. doi: 10.1007/978-3-642-23099-8.

NINDS. National Institute of Neurological Disorders and Stroke: Cerebral
Aneurysms Fact Sheet. [online], 2013. URL http://www.ninds.nih.gov/

disorders/cerebral_aneurysm/detail_cerebral_aneurysms.htm.

PETSc. PETSc Documentation. [online], 2016. URL http://www.mcs.anl.gov/

petsc/petsc-current/docs/manualpages/Mat/MatSetNullSpace.html.

Y. Qian, H. Takao, M. Umezu, and Y. Murayama. Risk Analysis of Unruptured
Aneurysms Using Computational Fluid Dynamics Technology: Preliminary
Results. American Journal of Neuroradiology, 32(10):1948–1955, 2011.
doi: 10.3174/ajnr.A2655. URL http://www.ajnr.org/content/32/10/1948.

abstract.

Jie Shen. On Error Estimates of the Projection Methods for the Navier-Stokes
Equations: Second-Order Schemes. Mathematics of Computation, 65(215):
1039–1065, 1996. ISSN 00255718, 10886842. URL http://www.jstor.org/

stable/2153791.

Helena Švihlová. Aplikace metody konecnych prvku na realne problemy v
hemodynamice. Master’s thesis, Mathematical Institute of Charles University,
2013. URL https://is.cuni.cz/webapps/zzp/detail/114225/.

R. Témam. Sur l’approximation de la solution des équations de Navier-Stokes
par la méthode des pas fractionnaires (I). Archive for Rational Mechanics and
Analysis, 32(2):135–153, 1969. ISSN 1432-0673. doi: 10.1007/BF00247678.
URL http://dx.doi.org/10.1007/BF00247678.

L. J. P. Timmermans, P. D. Minev, and F. N. Van De Vosse. An
Approximate Projection Scheme For Incompressible Flow Using Spectral
Elements. International Journal for Numerical Methods in Fluids, 22(7):
673–688, 1996. ISSN 1097-0363. doi: 10.1002/(SICI)1097-0363(19960415)22:
7〈673::AID-FLD373〉3.0.CO;2-O. URL http://dx.doi.org/10.1002/(SICI)

1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O.

Prem Venugopal, Daniel Valentino, Holger Schmitt, J. Pablo Villablanca,
Fernando Viñuela, and Gary Duckwiler. Sensitivity of patient-specific
numerical simulation of cerebal aneurysm hemodynamics to inflow boundary
conditions. Journal of Neurosurgery, 106(6):1051–1060, 2007. doi: 10.3171/jns.
2007.106.6.1051. URL http://dx.doi.org/10.3171/jns.2007.106.6.1051.
PMID: 17564178.

34

http://dx.doi.org/10.1016/j.jcp.2010.01.010
http://www.ninds.nih.gov/disorders/cerebral_aneurysm/detail_cerebral_aneurysms.htm
http://www.ninds.nih.gov/disorders/cerebral_aneurysm/detail_cerebral_aneurysms.htm
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNullSpace.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNullSpace.html
http://www.ajnr.org/content/32/10/1948.abstract
http://www.ajnr.org/content/32/10/1948.abstract
http://www.jstor.org/stable/2153791
http://www.jstor.org/stable/2153791
https://is.cuni.cz/webapps/zzp/detail/114225/
http://dx.doi.org/10.1007/BF00247678
http://dx.doi.org/10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
http://dx.doi.org/10.3171/jns.2007.106.6.1051

List of Figures

3.1 Real mesh . 14
3.2 Inflow velocity magnitude . 21

4.1 WSS results for different computational approaches (comparison
for the coarsest mesh) . 27

4.2 velocity results for different computational approaches (compar-
ison for the coarsest mesh) . 28

4.3 WSS results for different meshes 29
4.4 Strong scaling for mesh 1 . 30
4.5 Strong scaling for mesh 2 . 30
4.6 Strong scaling for mesh 3 . 31
4.7 Weak scaling . 31

35

List of Tables

4.1 Real mesh properties . 24
4.2 Tolerances used in stopping criteria for IPCS solvers 25
4.3 Computational cost comparison: Direct method and stabilized IPCS 26
4.4 Computational cost comparison: non-stabilized and stabilized IPCS 26

36

Appendix - the code

The code is accessible through GitHub (https://github.com/j-hr/projection).
You can download it there or clone it using the git - free version control

software (recommended).
The code is operated using command line parameters. Basic structure is:

python main.py problem_name solver_name mesh total_time time_step

problem name “womersley cylinder” for test problem or
“real” for real aneurysm problem

solver name “ipcs1” for IPCS scheme or its modifications or
“direct” for previous solving strategy

mesh “cyl c1”, “cyl c2” or “cyl c3” for test problem meshes
(gradually increasing quality)
or “HYK” for real mesh (coarsest)

total time computation will run from 0 to this time
(e. g. “1”, or “0.25”)

time step e. g. “0.1”

All parameters are used without quotes. Many optional parameters can be
appended.

To visualise the results you will need software compatible with XDMF stand-
ard, such as the Paraview software (the code generates scripts for more convenient
visualisation using the Python interface of Paraview 4.4).

For up-to-date information about the code, its usage, software prerequisites
etc. see the README file on GitHub.

37

https://github.com/j-hr/projection

	List of abbreviations and used mathematical notation
	Introduction
	Modelling blood flow
	Chosen mathematical model
	Hemodynamic indicators
	Former approach in our group
	Considered alternatives
	Goals of thesis

	Projection methods
	Overview
	Pressure and velocity correction methods
	Idea of projection

	Basic schemes
	Chorin's scheme
	Incremental pressure correction scheme (IPCS)
	Rotational scheme
	Summary

	Available theoretical results

	Implementation
	Problems
	Implementation in FEniCS
	Time discretization
	Weak formulation
	Weak formulation of tentative velocity step (S1)
	Pressure boundary conditions for (S2)
	Weak formulation of the Poisson problem (S2)
	Weak formulation of third and fourth step

	Space discretization by FEM
	Notes on boundary conditions
	Splitting error and Dirichlet BC for (S3)
	Inflow velocity profile for real problem
	Dirichlet boundary condition and initial condition compatibility

	Stabilization
	Notes on the implementation
	Partial assembly of matrices
	Choice of solvers and preconditioners
	Computation of WSS

	Summary of results
	Reliability of computed WSS
	Scalability
	Comparison of the computational cost

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendix - the code

