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Abstract  

Mesenchymal stem cells (MSCs) possess multidirectional regenerative ability, which, 

together with their immunomodulatory potential, makes them promising cell type for therapy of 

wide variety of diseases. Despite ongoing research, which proved MSCs application to be safe, 

reported effect of MSCs administration on patients is not convincingly beneficial yet.  

In our work we focused on elucidation of MSCs role in regeneration of vital organs, heart 

and liver, where a large damage is life threatening for patients and any improvement in therapy 

would save many lives. Similar situation is in Graft versus host disease (GVHD), where MSCs 

immunomodulatory properties could be beneficial. 

Role of MSCs in heart regeneration was examined in vitro. Primary adult swine 

cardiomyocytes (CMCs) were co-cultured with or without swine MSCs for 3 days and 

morphological and functional parameters (contractions, current, respiration) of CMCs were 

measured. MSCs showed supportive effect on CMCs survival, especially at day 3 of the 

experiment, where in co-culture was significantly higher number of viable CMCs with 

physiological morphology and maintained function.  

Effect of MSCs on liver regeneration was observed in swine model of chronic liver 

disease. Piglets underwent liver lobe resection followed by MSCs administration (1 x 106 cells 

/kg) into portal vein. Cytokines and growth factors quantification was performed in selected time 

points. The morphometry of regenerated liver tissue was analyzed by quantative histology. 

Results showed the insignificantly increased connective tissue volume in liver parenchyma after 

MSCs administration and other measured parametres were not significantly influenced by MSCs.  

Immunomodulatory effect of MSCs on GVHD was evaluated first in vitro, on mixed 

lymphocyte culture, where, according to metabolic activity measurement test, MSCs suppressed 

lymphocyte activity. Second, MSCs were administered in one dose to patients with severe GVHD 

and for three months levels of regulatory T – lymphocytes together with helper T-lymphocytes 

were measured as an evidence of MSCs immunomodulation. Statistics of obtained data showed no 

significance, but clinical condition of patients significantly improved. 

Our work showed that MSCs have supportive and immunomodulatory effect on cells in in 

vitro culture, where conditions can be controlled easily. After MSCs administration into living 

organism many more variables influence results of the research, and the outcomes are usually 

promising, but not convincing. More experiments on large groups of participants need to be done 

to transfer MSCs transplantation from the research field into clinical practice.  
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Abstrakt  

 Mesenchymální kmenové buňky (MSCs) dokáží mnoha způsoby podpořit 

regeneraci tkání, což je, spolu s jejich imunomodulačním potenciálem, dělá slibným buněčným 

typem pro léčbu širokého spektra onemocnění. Probíhající výzkum prokázal, že aplikace MSCs 

do organismu je bezpečná, ale popisovaný efekt na pacienty není příliš přesvědčivý. 

V této práci jsme se soustředili na objasnění role MSCs v regeneraci životně důležitých 

orgánů, srdce a jater, jejichž rozsáhlé poškození je život ohrožující pro pacienty a jakékoli 

zlepšení současných terapeutických možností by mohlo zachránit mnoho životů. Podobná situace 

je u pacientů s nemocí typu reakce štěpu proti hostiteli (GVHD), kde by se mohly prospěšně 

uplatnit imunomodulační vlastnosti MSCs. 

 Role MSCs v regeneraci srdce byla zkoumána v in vitro experimentech. Primární 

kardiomyocyty (CMCs) izolované z dospělého prasete byly ko-kultivovány s prasečími MSCs a 

po 3 dny, byly sledovány a měřeny jejich morfologické a funkční vlastnosti (kontrakce, vápníkové 

proudy, respirace). MSCs prokázaly podpůrný efekt na přežívání CMCs, což bylo obzvláště 

významné ve 3. dni experimentu, kdy se v ko-kultuře vyskytovalo významně více živých CMCs 

se zachovanými morfologickými i funkčními vlastnostmi. 

 Vliv MSCs na regeneraci jater byl sledován na prasečím modelu chronické jaterní nemoci. 

Po resekci jaterního laloku byly MSCs (1 x 106 bb /kg) aplikovány do portální žíly prasete. Ve 

vybraných časových intervalech pak byla prováděna kvantifikace hladiny cytokinů a růstových 

faktorů v periferní krvi zvířat. S využitím kvantitativní histologie pak byla provedena 

morfometrická analýza regenerované jaterní tkáně. Z výsledků vyplývá, že aplikace MSCs nemá 

významný efekt na sledované parametry, snad s vyjímkou pozorovaného nevýznamného zvýšení 

podílu pojivové tkáně v jaterním parenchymu. 

Imunomodulační efekt MSCs na GVHD byl nejdříve zkoumán in vitro, kde ve smíšené 

lymfocytární kultuře po přidání MSCs, ukázal test metabolické aktivity, že MSCs potlačují 

aktivitu lymfocytů. Dále byly MSCs v jedné dávce aplikovány pacientům s těžkou GVHD. V 

následujících třech měsících byly měřeny hladiny regulačních T-lymfocytů a pomocných T-

lymfocytů pro průkaz imunomodulačního efektu MSCs. Statistické vyhodnocení získaných dat 

neprokázalo významný rozdíl, ale klinický stav pacientů se výrazně zlepšil. 

 Naše práce ukázala, že MSCs mají podpůrný a imunomodulační efekt na buňky v in vitro 

kultuře, kde je snadné zajistit ideální experimentální podmínky. Po aplikaci MSCs do živého 

organismu ovlivňuje výsledný efekt mnoho proměnných, proto jsou často výsledky sice slibné, ale 

nepřesvědčivé. Je nutno provést další experimenty na velkých skupinách účastníků, než bude 

možné přenést aplikaci MSCs z laboratoří do běžné klinické praxe.  
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1 Introduction 

Mesenchymal stem cells (MSCs) are multipotent cells possessing multidirectional 

regenerative ability. Nowadays MSCs are in a focus of scientists and clinicians as a 

therapeutic option of the future for wide variety of diseases. 

MSCs reported ability to differentiate into adipocytes, chondrocytes and osteocytes 

together with other observed differentiation abilities made them promising cell type for tissue 

regeneration at first. Further research of these cells showed that MSCs improve regeneration 

of variety tissues not only by differentiation, but, in much bigger percentage, by release of 

cytokines, chemokines and immunosuppressive molecules, which modulate inflammation and 

support cell survival together with connective tissue formation, resulting in complex tissue 

regeneration. In more than 40 years of MSCs research there were not reported any tumor 

formations or any other serious adverse effect after MSCs application in vivo. 

MSCs are naturally present in developing and also developed adult organism. They 

can be isolated from many tissues and cultivated for further in vitro or in vivo research. From 

culture they can be easily harvested and administered into living organism, where they do not 

trigger immune response. Therefore MSCs are ideal cell type for not only autologous 

transplantations, but also allogeneic, or, as reported, xenogeneic.  

Recently, all these findings lead researchers and clinicians to start more than 500 

clinical trials, where MSCs are transplanted to patients as a treatment or co-treatment for 

variety of diseases.  

So far, results of clinical trials are not as positive and promising as it was expected. 

MSCs are not reported to be harmful, but sometimes it seems that their application is not 

having any effect. Many reasons for this observation can be found, but only more detailed 

research in this field can provide sufficient answers and solutions. 

Therefore we performed series of experiments in vitro and also in vivo, in order to 

explain in detail MSCs role in heart and liver regeneration together with their 

immunomodulation abilities and their effect in Graft versus Host disease. 
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2 Mesenchymal Stem Cells 

2.1 Discovery and definition 

Mesenchymal stem cells (MSCs) were identified in 1960s by Friedenstein and his 

colleagues who discovered a rare subpopulation of bone marrow cells that had stem cell 

potential, adhered to plastic, formed colonies in vitro and had fibroblast-like appearance. 

MSCs since then have been found in several different tissue types where proper niche is 

present [da Silva Meirelles et al., 2006].  

Different origins and its possible effect on MSC behavior together with heterogeneity 

of MSCs cell population resulted in decades lasting inconsistence in nomenclature. 

Designation of these cells with non hematopoietic multipotency include „bone marrow 

(stromal) cells“, „bone marrow stem cells“, „stromal (stem) cells“, „colony-forming-unit-

fibroblasts“, „mesenchymal progenitor cells“, „skeletal stem cells“, „mesodermal progenitor 

cells“, „non-hematopoietic stem cells“ and others [Young and Black, 2004].  

Despite inconsistencies in nomenclature and definition, MSCs have been reported to 

support regeneration of the tissue by differentiation into target tissue cells, by paracrine 

signaling, which promotes growth and proliferation of neighboring cells and also with 

immunomodulatory effect. All together, MSCs abilities made them promising cell type for the 

regenerative medicine of the future. 

  

2.2 MSCs characteristics 

MSCs are very heterogeneous cell population, considering their morphology, 

physiology and cell markers expression. 

2.2.1 MSCs morphology 

First studies performed with MSCs showed phenotypically uniform population of 

fibroblast-like cells. Studied MSCs had symmetric spindle shape with a small cell body and 

few long cell processes. Observed homology was higher than 98% [Pittenger et al., 1999].  

Microscopy of MSCs revealed cell body containing large, round nucleus with a prominent 

nucleolus surrounded by finely dispersed chromatin particles giving the nucleus a clear 

appearance. Transmission electron microscopy of MSCs revealed dilatated cisternae of rough 

endoplasmatic reticulum, lipid droplets, well developed contractile filaments with dense 

bodies and complex foldings of the plasma membrane [Pasquinelli et al., 2007].  
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Following studies discovered, that MSCs consist of minimally two phenotypically 

different subpopulations, smaller spindle shape cells and larger cuboideal cells. Considering 

their proliferation abilities, these two subpopulations were named small quickly dividing cells 

and large slowly dividing cells [Reyes et al., 2001].  

Later on, third, very small, around 7μm in diameter, subpopulation of quickly dividing 

cells was observed. These cells show high nucleus to plasma ratio together with expression of 

specific proteins containing vascular endotelial growth factor (VEGF) receptor-2, 

tyrozinkinase receptor, transferrin receptor and annexin II [Colter et al., 2001]. Since then 

MSCs are considered to be heterogeneous cell population. 

 

2.2.2 MSCs surface markers 

Since the time of MSCs discovery, their characterisation was complicated. MSCs 

express variety of antigenes typical for other cell types, till now there is not known any 

marker specific only for MSCs.  

MSCs isolated from bone marrow express following surface markers: CD29, CD44, 

CD73, CD105 (SH2; endoglin), CD106 (vascular cell adhesion molecule; VCAM-1), CD117, 

CD166, (SH3 a SH4), CD90 (Thy-1), STRO-1 and Sca-1 and completely lack the markers 

typical for hematopoietic and endothelial cell lines, including CD11b, CD14, CD31, CD33, 

CD34, CD133 and CD45. MSCs can be also characterized by presence of STRO-1, Thy-1, 

CD10, CD49a, Muc18/CD146 together with presence of platelet derived growth factor 

receptor (PDGFR) and epithelial growth factor receptor (EGFR) [Gronthos, 2003].  

MSCs also express receptors associated with adhesive interactions with matrix and 

other cells such as integrins αVβ 3 and αVβ 5, intercellular adhesion molecule – 1 (ICAM-1), 

ICAM-2, lymphocyte function-associated antigene-3 (LFA-3) and L-selectin [Pittenger et al., 

1999]. 

Interestingly, expression of MSCs markers slightly vary between freshly isolated 

MSCs, MSCs in low passages and MSCs in higher passages.  

Research on adipose tissue derived MSCs showed very similar antigene profile with 

bone marrow derived MSCs, with small differences, for example expression of CD62e and 

CD31 is present only on MSCs derived from adipose tissue [Gronthos, 2003]. 

All these findings lead in 2006 the Mesenchymal and Tissue Stem Cell Committee of 

the International Society for Cellular Therapy to publish Minimal Criteria every cell has to 

meet to be classified as Mesenchymal Stem Cell [Dominici et al., 2006]. According to that, 
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MSCs are defined as adherent fibroblast-like cells expressing CD73, CD90 and CD105, not 

expressing CD34, CD45, CD14 or CD11b, CD79a or CD19, and HLA-DR with the ability to 

differentiate into adipocytes, osteoblast and chondrocytes [Kim et al., 2014]. 

2.3 MSCs in physiological conditions 

MSCs, as described, are heterogeneous population of cells meeting Minimal criteria 

[Dominici et al., 2006] able to adhere to cultivation plastic, proliferate and form colonies in 

vitro.  

In healthy organism MSCs rest in niche and help maintain many features of healthy 

organism. 

2.3.1 MSCs localization 

At first, MSCs were found in bone marrow, where they form small portion of cell 

population, approximately 0,01 – 0,001% of mononuclear cells [Pittenger et al., 1999]. 

Number of MSCs in bone marrow is age-depended, the highest presence of MSCs is in 

newborns and in the age of 80 it is possible to detect only a half of number present in 

individual in the time of birth [Inoue et al., 1997].  

Since then, MSCs have been found in different tissues including placenta, umbilical 

cord, fat, muscle, tendon, ligament, skin  [Murray et al., 2014], synovial fluid [Jones et al., 

2004] or teeth [Nakashima and de Crombrugghe, 2003] or, as many evidence shows, in all 

over the body [Crisan et al., 2008], [da Silva Meirelles et al., 2006]. Despite these findings 

MSCs are rarely detected in peripheral blood.  

Some researchers explain MSCs presence in all body tissues by claiming, that 

pericytes, cells resting on the abluminal surface of endothelium in the microvascular part of 

connective tissue, are, in fact, MSCs. Several studies reported that MSCs co-express many 

markers similarly to pericytes [Sarukhan et al., 2015] and isolated pericytes in culture showed 

similar abilities as MSCs, including ability to differentiate into osteocytes, chondrocytes and 

adipocytes [Crisan et al., 2012]. These works, supported by findings that, besides bone 

marrow, MSCs are usually found resting in perivascular niche, led researchers to thoughts that 

MSCs and pericytes are the same cell type. Evidence showing other, non perivascular related 

cells, having similar MSCs characteristics [Kaukua et al., 2014] led to conclusion that 

pericytes are important and widely represented, but only a subpopulation of MSCs. It has 

been suggested that when pericytes sense damage, they become a MSCs to provide 

environment for local tissue regeneration by secretion of various trophic, angiogeneic and 
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immunogenic factors. When the repair is done, they can convert back to pericyte stage 

[Caplan and Hariri, 2015]. 

2.3.2 MSCs niche 

MSCs niche is an environment consisted of cells and cell produced molecules which 

regulate stem cell function together with stem cell autonomous mechanisms. It was observed 

that death MSCs are easily replaced when there is functional niche. In the case of niche 

destroyal there will be no more MSCs in surrounding area. 

Niche controls balance between aging, self-renewal and differentiation of MSCs as 

well as engagement of specific programs in response to stress and injuries [Ehninger and 

Trumpp, 2011]. It has been suggested that regulation of MSCs differentiation is done by Wnt 

family members, who support not differentiated state of MSCs, and their inhibitors, including 

Dickkopf-1 (Dkk1), Frizzled b-1 (Frzb-1) or sFRP1. Wnt signalization inhibits differentiation 

process by increased level of oct-3/4, rex-1 and transcriptional factor Nanog [Sato et al., 

2004]. Besides Wnt and Dkkl mediated signalization, differentiation process of MSCs is also 

controlled by Notch, Hedgehog and bone morphogenetic protein (BMP) pathways. 

In bone marrow, according to STRO-1 positive cell population research, niches can be 

found very close to the endosteum [Gronthos, 2003]. In other tissues, MSCs are usually 

resting in perivascular niche, which determines the characteristics of the cells. Existence of 

perivascular niches may be the reason why MSCs can be found all over the body [Bouacida et 

al., 2012]. 

2.3.3 MSCs function in healthy organism 

In healthy organism MSCs have many functions, but the most important described one 

is their involvement in hematopoiesis. Bone marrow MSCs are very closely connected to 

hematopoiesis from the early development of the individual, even in fetus MSCs can be found 

in liver and bone marrow, supporting hematopoiesis [Campagnoli et al., 2001].  

In postnatal organism MSCs play very important role in creation and maintenance of 

microenvironment of bone marrow. MSCs create and mechanically support tissue framework 

and release important proteins, including fibronectin, laminin, collagen and proteoglycans 

[Pontikoglou et al., 2011][Nakamura et al., 2010].  

MSCs in resting state or after stimulation secrete variety of growth factors, cytokines 

and chemokines, including IL-1a, IL-1b, IL-6, IL- 7, IL-8, IL-11, IL-14, IL-15, macrophage 

colony-stimuling factor (M-CSF), granulocyte-macrophage colony stimulating factor (GM-
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CSF), leukemia inhibitory factor (LIF), stem cell factor (SCF), fetal liver tyrosine kinase-3 

(FLTrk-3), trombopoetin and hepatocyte growth factor (HGF) [Gronthos, 2003; Uccelli et al., 

2008a; Pontikoglou et al., 2011]. Some of these cytokines, especially GM-CSF, SCD and IL-

6, support proliferation and differentiation of hematopoietic cells [Dormady et al., 2001]. It 

has been proven on animal models that transplantated MSCs stained with GFP were able to 

integrate themselves as a functional part of hematopoiesis environment. These MSCs actively 

helped in development of hematopoietic cells by physical interactions and secretion of 

specific factors [Muguruma et al., 2006].  

Besides their involvement in hematopoiesis MSCs helps in renewal of wide variety of 

cell types and help to maintain connective tissue all over the body. 

Usually, all these functions are done and substances are released by MSCs resting in 

niche. Evidence suggests that MSCs leave niche only after receival of some stimuli, following 

problems in body [Watt and Hogan, 2000].  

Migration of MSCs from niche to site of needed reparation is initiated by reception of 

signal from existing disharmony. MSCs express not only receptors for growth factors and 

other chemoatractans, but also toll-like receptors (TLR) sensitive to substances released from 

damaged cells and tissues, including heat shock proteins (HSP), and to molecules originating 

in pathogene organisms [Pevsner-Fischer et al., 2007][Raicevic et al., 2010]. Therefore 

migratory stimuli can be released by all mechanical injury, inflammation, infection and/or 

beginning of cancer transformation [Watt and Hogan, 2000].  

After reception of certain stimuli, MSCs are able to leave their niche and transfer to 

circulatory system.  

Stromal cell-derived factor (SDF)-1 and its receptor CXC chemokine receptor-4 

(CXCR4) are important mediators of MSCs recruitment for variety of tissue damages. Also 

CCR1, overexpressed in MSCs increase migration into damaged site [Hodgkinson et al., 

2010]. 

In murine MSCs expression of nine corresponding receptors was found including 

CCR2, CXCR4, IL-6-RA, E-selectin ligand, CD29, CD49d, CD49f, integrin α8, and integrin 

α9 [Ip et al., 2007]. Recently, several additional ligand/receptor pairs have been suggested to 

be important in the homing of MSCs to ischemic tissues, including hyaluronic acid/CD44, N-

formyl peptide receptor (FPR) and the formyl peptide receptor-like-1 (FPRL1), platelet-

derived growth factor-AB (PDGF-AB)/PDGF receptor alpha and beta, and insulin-like growth 

factor 1 (IGF-1)/IGF receptor [Wu and Zhao, 2012]. 
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Movement of MSCs according to gradient of soluble molecules is similar to migration 

of immune cells to center of inflammation [Ponte et al., 2007].  

 

2.4 Mechanism of MSCs therapeutical function 

After reception of specific stimuli, MSCs are able to home into site of injury and affect 

surrounding cells with cell-to-cell contact or by release of variety of factors.  

Many are known, but, so far, there is not enough of evidence about MSCs behavior in 

patients. Majority of the studies from which the informations are derived was done in vitro, 

the rest was majorly performed on preclinical level, including tests with small laboratory 

animals. Real patient data are lacking, but starting to appear.  

2.4.1 Differentiation ability  

One of the MSCs major characteristics is their ability to differentiate into cells of 

mesodermal origin, such as osteoblasts, chondroblasts, adipocytes, stromal cells and other 

connective tissue cell types, including tubular cells in kidney [Liu et al., 2015]. Recently, it 

was reported, that MSCs can differentiate into cells coming from all three germinal layers 

(Figure 1), which could be explained by their developmental origin in mesenchymal tissue, 

including mesoderm and also neural crest [Uccelli et al., 2008a]. In search for MSCs true 

origin it was found that MSCs are not a homogenous population. Analyses of their complex 

transcriptome showed, that a wide range of proteins is encoded, which suggest different 

developmental pathways and involvement in large number of diverse biological processes 

[Phinney et al., 2006].  

It was found that MSCs can differentiate into myocytes, including cardiomyocytes 

[Toma et al., 2002], striated muscle cells [Schulze et al., 2005] and smooth muscle cells [Brun 

et al., 2015], but also to pneumocytes [Li, 2015] and epithelial cells of digestive tractus, 

including hepatocytes [Katagiri et al., 2015], all examples of entodermal origin cells. 

However, MSCs are able to differentiate also into neuroglial cells [Donega et al., 2014] and 

epithelial cells of ectodermal origin. 

 

2.4.2 MSCs paracrine effect 

MSCs are able to release variety of growth factors, anti-apoptotic, anti-inflammatory 

and trophic molecules, including FGF, HGF, IGF-1, VEGF, stromal cell-delivery factor 

(SDF), transforming growth factor beta (TGF-β), platelet derived growth factor (PDGF) and 
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matrix metalloproteinases (MMP). All these molecules benefits for example to damaged 

myocardium with reduction of pathological fibrosis, by attenuating cardiomyocyte apoptosis 

and hypertrophy and also by increasing of neovascular formation and stimulation of 

endogenous stem/progenitor cells for myocardial infarction [Xiang et al., 2009].  

In general MSCs paracrine effect influences many cell types including main tissue 

cells, such as hepatocytes, cardiomyocytes or neuroglial cells together with surrounding 

fibroblasts, endothelial cells, accumulated inflammatory cells, endogenous stem cells and 

progenitor cells [Kinnaird et al., 2004]. MSCs can also recruit local progenitors and 

subsequently induce the differentiation into target tissue cells, including neural cells [Munoz 

et al., 2005].  

 

 

Figure 1 - Scheme of MSCs differentiation ability into different cell types together with their 

division according to germinal origin. 

2.4.3 MSCs and immunity 

MSCs are considered to be reliable and powerful immune suppressors. They influence 

many immune cells with paracrine production (Figure 2). It has been reported that MSCs are 

effective and non harmful as an autologous, allogeneic and also xenogeneic transplantation. 



20 

 

All these findings support evidence, that MSCs are also immunopriviledged cells, in the other 

case, successful allotransplantation would be complicated and xenotransplantation would not 

be possible at all.  

2.4.3.1 MSC immunopriviledge 

MSCs isolated from adults express medium levels of major histocompatibility 

complex class I (MHC-I) molecules, important for cell recognition, fetal MSCs express even 

lower levels of MHC-I [Le Blanc and Ringdén, 2005]. Both adult and also fetal MSCs do not 

express MHC-II, most important molecule for histocompatibility determination, on their 

surface. In lysate from MSCs the MHC-II molecules were detected by simple Western Blott 

which suggests presence of human leukocyte antigen class II (HLA-II) in intracellular 

deposits. When MSCs differentiate into osteocytes, adipocytes or chondrocytes all these cells 

express MHC-I, but not MHC-II. It shows that MSCs are non-immunogenic before and also 

after differentiation in vitro [Le Blanc et al., 2003].  

After MSCs administration T-lymphocytes are not triggered by MSCs presence, 

because MSCs do not express MHC-II or costimulatory molecules, including CD40, CD80 or 

CD86. In experiments, MSCs stimulated by IFN γ upregulated MHC-II, but the activation of 

T-lymphocytes was not reported [Chinnadurai et al., 2014]. Possible explanation is that, under 

inflammatory conditions, where IFN γ is present, MSCs do not express costimulatory 

molecules, which helps them to do not trigger T-lymphocytes [Sivanathan et al., 2014]. Many 

studies reported that MSCs can be applicated safely as allogeneic transplant without the risk 

of rejection [Aggarwal and Pittenger, 2005; Chinnadurai et al., 2014; Sivanathan et al., 2014]. 

MSCs can be transplanted across the species, but in this case limits were reported. In one 

study after application of human MSCs into organism of immunocompetent mice the late 

hypersensitivity leading to rejection of transplant occurred [Grinnemo et al., 2004].   

But, as stated, all these findings make MSCs ideal cell type for autologous and also 

allogeneic transplantations.  

2.4.3.2 MSCs and immunomodulatory effect 

In 2002 studies describing immunomodulatory effect of MSCs have been published 

[Bartholomew et al., 2002; Di Nicola et al., 2002]. This redirected scientific attention from 

MSCs differentiation towards their possible regulatory effect on immune cells. Since then it 

has been reported that MSCs can influence immune system by cell-to-cell contact with 

immune cells, mediated by adhesion molecules, and/or by release of several soluble 
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immunosuppressive factors. MSCs cross-talk with target cells can also increase their 

production of soluble factors. [Augello et al., 2005].  

It has been shown that MSCs are involved in modulation of both innate and also 

adaptive immunity.  

2.4.3.2.1 Innate immunity 

As a part of innate immunity, dendritic cells (DCs) play a crucial role in processing 

antigen material to naive T-lymphocytes. Innate DCs encountered with pathological stimuli 

express costimulation molecules, including CD40, CD80, CD86, produce interleukin-12 (IL-

12) and increase expression of MHC II molecules together with CCR7 chemokine receptor, 

which helps to transfer from periphery to lymphatic nodules, where DCs present molecules to 

T-lymphocytes. MSCs has been reported to inhibit reversibly the maturation of monocytes 

and CD34+ progenitor cells into DCs in vitro [Nauta et al., 2006], together with inhibition of 

all three key elements of DCs maturation.  MSCs decrease expression of costimulation 

molecules, decrease MHC II expression and prevent homing of DCs by decrease in 

expression of CCR7 and decrease in production of E-cadherin, which sustain innate DCs in 

periphery. Cocultivation of MSCs with mature DCs resulted in decreased interleukin-12 (IL-

12) production in DCs together with decreased expression of MHC class II molecules, 

CD11c, CD83 and costimulatory molecules, the combination, which impaired the antigen-

presenting function of DCs [Aggarwal and Pittenger, 2005; Ramasamy et al., 2007]. It was 

also reported that MSCs can inhibit the production of tumor-necrosis factor (TNF) and 

decrease the pro-inflammatory potential of DCs [Aggarwal and Pittenger, 2005]. 

Subpopulation of DCs in plasma, responding to microbial stimuli by production of high levels 

of interferon – I (IFN-I), upregulated production of the anti-inflammatory cytokine IL-10 after 

incubation with MSCs [Aggarwal and Pittenger, 2005].  

Natural killer cells (NK) are very important part of innate immunity, playing a key role 

in anti-viral and anti-tumor immune responses. NK cell function is regulated by surface 

receptors of targeted cell, which can inhibit or activate NK-cell-mediated lysis. Low or absent 

expression of MHC class I molecule together with recognition of targeted cell receptors by 

NK cells is necessary for lysis [Moretta et al., 2001]. In resting NK cells MSCs down regulate 

expression of NKp30 and natural-killer group 2, member D (NKG2D), which are activating 

receptors involved in NK-cell activation and in killing of target cells [Spaggiari et al., 2006].  

Freshly isolated, resting NK cells after culture with IL-2 or IL-15 proliferate and show 

strong cytotoxic activity, but when the resting NK cells are cultivated in the same culture 
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together with MSCs, NK cell proliferation and interferon - γ (IFN γ) production are nearly not 

present. Pre-activated NK cells in culture with MSCs also showed decreased proliferation, 

IFN γ production and cytotoxicity. However, in comparison, pre-activated NK cells were 

reported to be more resistant to MSCs induced decrease in NK cell activity [Spaggiari et al., 

2006]. On the other hand, MSCs were reported to be killed by pre-activated NK cells in vitro 

[Sotiropoulou et al., 2006; Spaggiari et al., 2006]. MSCs are suscepted to NK-cell-mediated 

cytotoxicity according to level of their surface expression of MHC class I molecules together 

with expression of various ligands NK cells recognize. Incubation of MSCs with IFN-γ 

partially protected them against NK cells [Spaggiari et al., 2006]. These findings suggest that 

MSCs can inhibit NK cell activity, but NK cell ability of killing MSCs is not compromised 

[Uccelli et al., 2008a]. IFN-γ protects MSCs from NK-cell-mediated lysis which may be the 

answer, why some MSCs therapeutic applications are successfully immunomodulative and 

some show no difference with placebo. IFN-γ presence favoring MSCs induced NK cell 

inhibition instead of MSCs being killed by NK cells in absence of IFN-γ may be the reason. 

MSCs were also reported to be able to inhibit neutrophil apoptosis and process so 

called respiratory burst, which starts when neutrophil binds to bacteria in order to destroy it. 

MSCs-mediated preservation of neutrophils and their increased life span may be important 

especially in anatomical locations where large number of neutrophils is stored [Raffaghello et 

al., 2008].  

2.4.3.2.2 Adaptive immunity 

MSCs inhibit T-lymphocyte proliferation and cytotoxicity [Aggarwal and Pittenger, 

2005; Zappia et al., 2005] by arresting T-lymphocytes in the G0/G1 phase of the cell cycle 

[Benvenuto et al., 2007]. MSCs support survival of T-lymphocytes subjected to 

overstimulation, which are committed to undergo ligand-dependent activation of induced cell 

death [Benvenuto et al., 2007]. MSCs induced inhibition of T-lymphocyte proliferation has 

been reported to lead to decreased  IFN-γ production both in vitro [Aggarwal and Pittenger, 

2005] and also in vivo [Zappia et al., 2005] and to increased IL-4 production by T helper 2 

(TH2) cells. It has been shown that MSCs can trigger maturation of regulatory T-lymphocytes 

(Tregs), specialized T-lymphocyte subpopulation, which is able to suppress activation of 

immune system [Maccario et al., 2005; Aggarwal and Pittenger, 2005].  

All these findings indicate that MSCs can modulate the intensity of an immune 

response by inhibition of antigen specific T-lymphocyte proliferation and cytotoxicity 

together with promotion of maturation of regulatory T-lymphocytes.  
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This may mean, that MSCs transplantation could make the host vulnerable to 

infectious agents. Fortunately evidence about fail-safe mechanism exists. MSCs express 

functional Toll-like receptors (TLRs) which after interaction with pathogen ligands induces 

proliferation, differentiation and migration of MSCs together with their secretion of 

chemokines and cytokines. It has been shown that MSCs Notch signaling after triggering of 

TIR3 and TI4 is impaired and MSCs lose the ability to inhibit T-lymphocyte proliferation 

[Uccelli et al., 2008b]. Therefore in case of pathogen infiltration immune system should work 

properly. 

MSCs has been reported to inhibit B-lymphocyte activity and proliferation in vitro 

together with differentiation and constitutive expression of chemokine receptors [Corcione et 

al., 2006].  Other in vitro studies showed that MSCs support survival, proliferation and 

differentiation of antibody-secreting cells [Traggiai et al., 2008]. The controversial in vitro 

results are not significant considering the fact that B-lymphocytes responses are mainly T-

lymphocyte dependent. Which means that final outcome of MSCs influence on B-lymphocyte 

will be influenced by MSCs inhibition of T-lymphocytes function.  

Despite MSCs immunosuppressive activities, in specific conditions, when IFN-γ 

concentration is low, MSCs upregulate the expression of MHC II molecules, so they can 

function as antigen presenting cell (APC).  In the case of IFN-γ increase, MSCs loose APC 

abilities [Stagg et al., 2006]. 

Contribution of different factors mediated by MSCs to immunosuppressive reactivity 

varies between different studies. Therefore, MSCs mediated immunoregulation can be 

considered as complex system, where none of the produced molecules plays exclusive role 

[Uccelli et al., 2008b]. 
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Figure 2 -  MSCs influence on immune cells. 

Abbreviations: CCL2 – chemokine (C-C) ligand 2, HGF – hepatocyte growth factor, IDO – 

Indolamine-2,3-deoxygenase, IL-5 – interleukin 5, IL-6 – interleukin 6, IL-10 – interleukin 

10, LIF – leukemia inhibitory factor, PGE2 – prostaglandin E2, TGF-β – tumor growth factor. 

 

2.5 MSC in in vitro conditions 

In vitro studies of MSCs are still the most used way for understanding of their 

behavior on all the possible levels. MSCs can be cultured alone in specific growth media or in 

media supplemented with variety of substances or co-cultured with other cell types. 

2.5.1 Isolation 

MSCs can be obtained easily by separation of white blood cell fraction from bone 

marrow sample or from peripheral blood sample following stem cell release after stimulation. 

Contrary to majority of other bone marrow cells, MSCs adhere to plastic, which is used for 

culture purification. Non adherent cells are washed away, while adherent cells, mostly MSCs, 

remain in culture. Procedure for isolation of MSCs used in our studies can be found in 

Materials and methods section.  
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After isolation, confirmation of MSCs characteristics follows. As MSCs, only cells 

having MSCs markers (CD34
-
, CD45

-
, CD73

+
, CD90

+
, CD105

+
) and ability to differentiate 

into adipocytes, osteocytes and chondrocytes are taken. 

2.5.2 MSCs cultivation 

MSCs are the cells able to attach to cultivation plastic without special surface coating. 

In culture MSCs form colonies in 5-7 days after isolation [Song et al., 2014]. These colony 

forming units-fibroblasts (CFU-F) show big proliferation potential in vitro, but real numbers 

varies between individuals from which MSCs has been isolated and also with cultivation 

conditions. Human MSCs proliferate the best when seeded in low densities (1x10
5
 cells/cm

2
). 

Originating seeding density influences behavior and morphology of MSCs in culture. MSCs 

in low density are more spindle shaped, but when the culture is confluent and MSCs are 

growing in layers, their morphology is flat with fuzzy edges [Tropel et al., 2004]. 

Interestingly, human MSCs can be cultivated without feeder cells, but cultivation of 

rodent MSCs requires feeder cells for achievement of maximal proliferation [Prockop et al., 

2003]. 

Cell cycle analysis of MSCs in culture showed that 10% of the cells are in S, G2 and 

M phases, majority of the cells stays in G0/G1 phases.  

In the scale of whole cell population, MSCs in vitro growth is characterized by three 

phases. First, lag phases, takes 3-4 days, following log phases lasts until confluence, when 

cells reach stationary phases. It has been described, that MSCs are driven by expression of 

Dickkopf-1 (Dkk- 1) a Wnt5a genes, which have antagonistic effect. The highest expression 

of Dkk-1 is in the beginning of log phases and shortens the previous lag phases by inhibition 

of expression of Wnt5 protein. On the other hand, production of Wnt5 is maximal during the 

stational phases [Gregory et al., 2003].  

In optimal cultivation conditions can MSCs 20-30 times double its population and still 

be able to differentiate [Prockop et al., 2003].  

In the moment the cells achieve 80% confluence, passage should follow in order to 

preserve MSCs characteristics as long as it is possible, it was mentioned than confluent cells 

lose their phenotype and characteristics. MSCs are not immortal cells, but their life span in 

culture is stable till passage 12, when MSCs posses majority of main characteristics. Later, 

MSCs senescence and higher percentage of apoptosis occurs.  
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Crucial for maintaining of good cultivation conditions is use of proper growth media. 

On market there is variety of prepared complete growth medias especially for MSCs, but 

sufficient is use of standard α-MEM or DMEM supplemented with 5-20% FBS.  

 

2.5.3 MSCs differentiation in vitro 

In order to confirm that isolated cells are MSCs, differentiation into adipocytes, 

osteoblasts and chondrocytes needs to be performed and documented. This differentiation in 

vitro requires special maturation cocktails, but the role of basic nutrients, cell density, 

mechanic influences, growth factors and cytokines is also important.  

Interestingly, use of the same substance is having different effect in MSCs from 

various species. Dexamethason as a basic substance necessary for differentiation of human 

MSCs into osteoblasts, can be used in mice MSCs for differentiation into adipocytes [Dennis 

et al., 2002].  Low doses of recombinant human bone morphogenetic protein-2 (rhBMP-2) 

start differentiation of mice MSCs to osteoblasts, but in human MSCs it is necessary to use 

significantly higher doses to achieve similar effect [Claros et al., 2014]. 

Another important factor is cell density. If MSCs are seeded in low density, they 

proliferate and release high levels of Dkk-1, which supports non differentiated phenotype. 

Contrary to that, fully confluent MSCs express Wnt-2 which suppress Dkk-1 and its effect 

[Gregory et al., 2003]. 

All these factors need to be considered before differentiation test is performed. 

2.5.3.1 Differentiation into osteoblasts 

For differentiation of MSCs into osteoblasts it is necessary to cultivate them in media 

enriched with β-glycerolphosphate, ascorbic acid and dexamethason for 2-3 weeks. In 

formation of bone tissue the bone morphogenetic proteins (BMP), TGF-β, insulin-like growth 

factor (IGF), brain-derived growth factor (BDGF), FGF-2, leptins and peptides binding 

parathyroid hormones are involved [Shima et al., 2015]. Other transcription factors 

participating on osteogenesis are Cbfa1/Runx2, Osterix, FosB, Fra-1, Aj18, Osf1, Msx2, Dlx5 

and TWIST [Lin and Hankenson, 2011]. Transcription factor Cbfa1/Runx2 is important for 

forming of osteoblasts, but only Dlx5 helps to differentiate to mineralized osteoblasts. 

Process of osteogenesis can be measured by quantification of alcalic phosphatases or 

by visualization of accumulation of calcium inside the cells [Pittenger et al., 1999]. 
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2.5.3.2 Differentiation into adipocytes 

In vitro adipogenesis can be induced by addition of dexamethason, 

isobutylethylxanthine and indomethacine into media. Differentiation process usually takes 7-

14 days. 

Successful differentiation can be visualized by Oil Red O Staining or by validation of 

expression of specific proteins, including peroxisome proliferation-activated receptor γ-2 

(PPARγ2), lipoprotein lipase (LPL) and acid binding protein (aP2) [Xu et al., 2015]. 

2.5.3.3 Differentiation into chondrocytes 

Chondrogenesis can be initiated by addition of TGF-β into culture media for 2-3 

weeks. Among TGF-β family the most important for chondrogenesis is BMP and cartilage 

derived morphogenetic proteins (CDMPs) [Dennis et al., 2002]. 

Chondrocyte differentiation can be verified by detection of proteoglycans in 

extracellular matrix or by detection of collagen type II by alcian blue [Pittenger et al., 1999]. 

2.5.4 MSCs visualization 

MSCs like other cells are naturally colorless. In order to observe MSCs behavior in 

vitro proper staining is necessary.  

2.5.4.1 Cytochemistry of MSCs 

For basic visualization of MSCs in tissue culture the hematoxylin-eosin staining is 

widely used. Hematoxylin is a basic compound, originally extracted from logwood tree, 

which binds with acidic or basophilic structures such is nucleic acid and stains them dark blue 

or violet. Eosin is acidic compound which binds to basic proteins, including proteins in 

cytoplasm of the cells, and stains them dark red or pink [Vacek, 1995]. Cells stained with 

hematoxylin-eosin have blue nucleus and red cytoplasm. Hematoxylin-eosin stain is not 

selective, therefore, for specific visualization of MSCs only, consideration of other types of 

staining is necessary. These specific stainings are very often combined with addition of 

hematoxylin stain for visualization of nucleus. 

2.5.4.2 Fluorescent visualization of MSCs 

MSCs positivity for CD73, CD90 and CD105 together with negativity for CD34 and 

CD45 is used for visualization of MSCs only. Antibodies against these receptors conjugated 

with specific fluorophores can be used, flow cytometry or fluorescent microscopy follows to 

verify the cells. Commercionally available are also antibodies for other markers, the only limit 
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is species specifity. Usually all these antibody staining are fatal for the cell, often cell 

permeabilisation is needed.  

For long term observation of cell behavior, its survival is necessary. Fortunately, 

commertionally available are also kits for Live cell imaging, where the staining particles are 

harmless for cells and cell releases them after some time period. 

 

2.5.5 Comparison of MSCs isolated from different tissues 

As it was mentioned, MSCs have different germinal origins, but resulting abilities of 

all MSCs in heterogeneous population in adults are very similar. In this chapter we offer 

comparison of characteristics of three MSCs types mostly used in current research, providing 

the explanation why we focused in our experiments only on MSCs isolated from bone 

marrow.   

2.5.5.1 Bone marrow derived MSCs 

Bone marrow is a rich source of cells, majority of them are hematopoietic stem cells, 

blood cell progenitors and blood cells necessary to satisfy the average human need of 

approximately one hundred billion new blood and hematopoietic cells each day [Malgieri et 

al., 2010]. In bone marrow MSCs represent a very small fraction, 0.001–0.01% of the total 

population of nucleated cells [Pittenger et al., 1999], but, considering the total number of 

nucleated cells in bone marrow, the density of MSCs is here one of the highest from all the 

body. 

Bone marrow aspiration is a painful process, but the success rate of isolation of MSCs 

is nearly 100% [Kern et al., 2006]. These MSCs are capable of proliferation in vivo and also 

in vitro, where their growth is reported to be arrested around 11-12 passage. According to 

colony forming unit-fibroblast assay (CFU-Fa), average colony forming ability of bone 

marrow isolated MSCs is (16.5 ± 4.4) [Jin et al., 2013].  

It was found that bone marrow MSCs express a large spectrum of cell adhesion 

molecules and exhibit high expression of integrins that also play role in homing to site of 

injury and in binding to specific matrix molecules [Malgieri et al., 2010]. 

As they were discovered first [Friedenstein et al., 1966], majority of global MSCs 

characteristics were found while experimenting with this type of MSCs.  Those characteristics 

represent standards for comparison up to date. 

 



29 

 

2.5.5.2 Adipose tissue derived MSCs 

Adipose tissue consists of adipocytes and other connective tissue cells. It contains 500 

times more stem cells in 1g of fat than in 1g of bone marrow. Among these cells are present 

also MSCs, meeting all Minimum criteria markers and characteristics, considered to be the 

most similar to bone marrow MSCs than all MSCs from other sources.   

Considering the fact that routine liposuction performed by beauty clinics, which many 

people voluntarily undergo willing to even pay for, is good and reliable source of MSCs, it is 

easier to obtain this type of MSCs than bone marrow derived MSCs. This simple fact favors 

use of adipose tissue derived MSCs for scientific purposes. 

On the other hand it has been found that proliferation potential of adipose tissue 

derived MSCs are lower as same as growth rate and culture time. Performed cell growth 

experiments were arrested around passage 11, also colony forming ability of  these MSCs was 

only 6.4 ± 1.6  [Jin et al., 2013]. Other disadvantage is that even adipose derived MSCs from 

different tissue locations posses different abilities. Comparison of MSCs from abdominal fat, 

mesodermal origin, and eyelid adipose tissue, ectodermal origin, showed different phenotype 

of the cells together with variety in CD90 expression suggesting higher abdominal fat MSCs 

response to angiogeneic factors [Kim et al., 2013]. But not only adipose derived MSCs from 

different germinal origin vary. Comparison of cardiac adipose tissue MSCs and abdominal fat 

MSCs, both mesodermal origins, showed that cells are phenotypically identical, but their 

characteristics and abilities are different. Cardiac tissue MSCs constituted intrinsic properties 

toward myogenesis and vasculogenesis in significantly higher percentage and therefore had 

much better regenerative potential, especially for cardiac therapy [Wang et al., 2014]. 

All these findings suggest that adipose tissue MSCs can be promising cell type for 

regenerative medicine, but their use should be tissue specific, which makes them 

inappropriate for scientific experiments in general.  

 

2.5.5.3 Umbilical Cord Blood derived MSCs 

Umbilical cord blood is a rich source of variety blood precursors and stem cells. MSCs 

are present here in bigger percentage compared with other tissues they can be obtained from. 

Umbilical cord blood is very easy to obtain, the procedure is painless and non invasive unlike 

other MSCs types acquirement, placenta and umbilical cord are considered to be medical 

waste. 
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MSCs from umbilical cord also posses all Minimal criteria markers and 

characteristics, but in comparison to other sources of MSCs their isolation and cultivation is 

much more complicated, success rate of isolation is 63% [Kern et al., 2006]. If successful, 

their culture lasts for long periods, their proliferation is arrested at passage 14-16 and their 

clonogenic ability is enormous 23.7 ± 5.8 compared to others [Jin et al., 2013], but in culture 

they usually have very low proliferation activity [Musina et al., 2007].  

On the other hand, it was shown that umbilical cord MSCs together with amniotic 

membrane origin MSCs posses higher immunomodulatory capacity than  bone marrow MSCs 

based on gene expression profiling [Wegmeyer et al., 2013], which could be useful in therapy 

of many diseases. 

 

All MSCs from all three sources mostly used in research possess promising abilities 

for regenerative medicine, but as it was mentioned they all have limits. Low-yielding isolation 

and complicated cultivation of umbilical cord MSCs made them, for us, source not reliable 

enough to be used in our experiments. Tissue specific variety in characteristics and behavior 

of adipose tissue derived MSCs made them, for us, not suitable for wide range of experiment 

we performed.  

We chose bone marrow MSCs as experimental subpopulation, because their isolation 

is well described with high-yield and their characteristics are stable and suitable for variety of 

comparisons. Therefore, in further text, we will refer about bone marrow derived MSCs only. 

 

2.5.6 MSCs aging 

It is known, that MSCs are aging, but this factor is often neglected in MSCs research. 

MSCs can age in vivo together with individual and also in vitro in long term culture. 

2.5.6.1 In vitro aging 

MSCs are a heterogeneous population of cells, which is reported to mature in 

cultivation conditions.  Expression of surface markers change, longer cultivation time MSCs 

undergo, more their characteristics and abilities differ [Dazzi et al., 2006].  

It was found that MSCs in culture, shortly after isolation (1-3days), showed 100% 

positivity for CD73 and CD49a, but only 45,4%, respectively 49%, of cultivated MSCs 

showed positivity for CD105 and CD90 respectively [Boiret et al., 2005]. Marker CD44 is 
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present on freshly isolated and low passaged MSC, but slowly disappears in long term MSCs 

culture [Fibbe and Noort, 2003]. 

Similar results can be seen on example of expression of chemokine receptors. MSCs in 

second passage produced CCR1, CCR7, CCR9, CXCR4, CXCR5 and CXCR6, but from 

twelve passage up there was no expression of these molecules found and MSCs were also 

unable to react on chemokine attractants. Loss of these receptors was accompanied with 

decreased production of adhesive molecules ICAM-1, ICAM-2, VCAM-1 and CD157 

[Honczarenko et al., 2006].  Also multiple apoptotic pathway inductions were observed [Liu 

et al., 2015]. 

2.5.6.2 In vivo ageing 

It is well known that older organism is not capable of renewal as young one.  

Diversity of MSCs population varies with age. In MSCs from older donor the number 

of MSCs from neuroepithelial and non-mesodermal origin decreases, while the MSCs from 

mesodermal origin are the most present subpopulation. That may be the reason, why MSCs 

from older individual do not differentiate into other than connective tissue cells often 

[Takashima et al., 2007]. 

Isolated from elder people, in culture aged MSCs are bigger, broad, flatten and show 

no spindle-formed morphology contrary to younger spindle shaped MSCs [Stenderup et al., 

2003]. Aged MSCs contain more stress actin fibres and form small colonies [Liu et al., 2004]. 

More importantly, young MSCs are 30-40 times capable of maximal population doubling, 

aged MSC have significant decline in replicative lifespan[Baxter et al., 2004]. 

Aged MSCs also express different levels of various regulatory substances. For 

example in human the MSCs emission of IL-6, interleukin capable of regulating proliferation, 

differentiation and activity of various cell types, is increased with age [Cheleuitte et al., 1998] 

contrary to that, production of IL-11, cytokine with protective properties and anti-

inflammatory function, is decreasing in human aged MSCs [Kuliwaba et al., 2000]. 

 

All these findings about MSCs aging should be considered while using long term 

cultivated MSCs for scientific experiments as well as in use of MSCs for therapy. In clinical 

practice it may semm to be better to use patients own cells for therapy, but when patients is 

old, young donor MSCs should be considered as a better therapeutic option.  
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2.6 MSCs in tissue regeneration 

More than 50 years of research showed that MSCs transplantation and application is 

safe, there is no evidence of MSCs supporting tumor formation. The only reported exception 

was tumor formation in mice, for which the possible explanation can be chromosomal 

instability in this species [Miura et al., 2006], which is not related to MSCs application itself.  

MSCs are considered to be promising cell type for cellular therapy of the future for 

variety of diseases and tissue damages. MSCs were reported to differentiate into variety of 

cell lines, to have ability to immunomodulate inflammatory response and to release variety of 

cytokines and chemokines.   

 

2.6.1 MSCs application and migration into site of injury 

The use of MSCs as a treatment for different tissue damages requires ability to travel 

across the body and find site of injury, where help is needed. So far, outcomes from different 

experiments are contradictory. While it was reported that systematically administered MSCs, 

into non-human primate, preferentially homed to the site of injury and supported there 

functional recovery [Devine et al., 2003],  it was also reported, that systematical application 

of MSCs into rat with ischemic heart disease showed very poor homing ratio. Up to 70% 

applicated cells were trapped in lungs, the rest was spread in variety of tissues and to the 

heart, finally, homed only 4,6 – 6,3% [Assis et al., 2010]. Nevertheless, beneficial effect of 

MSCs application is reported in majority of performed studies regardless the ratio of MSCs 

homed into site of damage. 

The detailed study of MSCs homing mechanism showed that MSCs coordinately roll 

and adhere to endothelial cells with a p-selectin and vascular cell adhesion molecule 1 

(vCAM1) dependent manner [Rüster et al., 2006]. As a result of the expression of adhesion 

molecules on MSCs surface, they can extravasate from the blood vessels. MSCs migrate in 

response to several chemokines that bind to receptors expressed on their cell surface [Sordi et 

al., 2005] which leads to activation of matrix metalloproteinases that degrade the basal 

membrane and allow subsequent extravasation [Son et al., 2006]. 

It has been suggested that many receptors and variety of chemical substances are 

involved in homing process. In heart infarction, or ischemia in general, stromal cell-derived 

factor (SDF)-1 and its receptor CXC chemokine receptor-4 (CXCR4) are important mediators 

of stem cell recruitment. Also CCR1, overexpressed in MSCs increase migration into 

damaged site [Hodgkinson et al., 2010]. Genes that are significantly up-regulated following 
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infarction of myocardium include CC ligands 2, 6, 7 and 9, CXC ligands 1, 2, and 12, 

cytokines including IL-1 and IL−6, transforming growth factor β1 (TGF - β1), TGF - β2, 

tumor necrosis factor receptor II (TNFRII), and cell adhesion molecules including 

fibronectin-1, laminin-1, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion 

molecule (VCAM)-1, E-selectin, thrombospondin 1, and tenascin C [Wu and Zhao, 2012]. In 

murine MSCs, in addition, expression of following was found; E-selectin ligand, CD29, 

CD49d, CD49f, integrin α8, and integrin α9 [Ip et al., 2007].  

 

2.6.2 MSCs influence on target tissue 

In vitro and also in vivo differentiation of MSCs into wide variety of cells from 

different embryonic origin was reported, but the real contribution of MSCs differentiation into 

target tissue cells in regeneration process remains unclear [Uccelli et al., 2008a].  

On example of the myocardial infarction it is clearly visible that application of MSCs 

can contribute to heart regeneration, but differentiation of MSCs into cardiomyocytes is 

minimal or not functionally contributing at all. Many studies showed that MSCs injected into 

mice with myocardial infarction are able to differentiate into cardiomyocytes, are positive for 

myocardial markers and also loses MSCs markers [Garikipati et al., 2014; Yannarelli et al., 

2014], but other studies reported that MSCs injected into mouse peripheral blood, migrated 

into heart infarct area, differentiated into cardiomyocytes, but after 14 days there was no 

evidence of functional cardiomyogenic differentiation [Siegel et al., 2012].  

Based on this evidence it is not surprising, that, although it was proposed that wide 

differentiation ability of MSCs can be used for regeneration of almost any tissue, MSCs 

differentiation is, so far, proved to have very important role only in treatment of bone defects 

[Uccelli et al., 2008a].  

In regeneration of target tissue paracrine and immunomodulatory effect of MSCs are 

reported to be main reason of improved regeneration. MSCs can influence damaged cells by 

cell to cell contact and also by secretion of various cytokines and chemokines. MSCs do not 

help only to affected cells, but also create supporting environment, where it is easier for 

damaged cells to survive and repair. 
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2.6.3 MSCs clinical application 

In order to use MSCs as a treatment option for variety of diseases, application mean 

and route need to be optimized. Despite all the ongoing research, there was not enough of 

attention focused on this aspect.  

2.6.3.1 MSCs application considerations 

For application into patient, MSCs need to be isolated precisely, identified reliably and 

cultivated under special conditions. In some trials, isolation of the cells is followed by 

transplantation, so no cultivation is needed. 

Nevertheless, it has been shown that MSCs therapy is the most effective, when 1 or 2 

millions of MSCs per kilogram of the host are applicated. Such number is possible to achieve 

only with cultivated MSCs. Laboratories for these purposes need to have special permission 

and setup of the cultivation room itself preventing contamination of the environment and cell 

culture. In order to prevent adversive events, MSCs are cultivated in specified Cultivation 

media without any unnecessary supplements, such as antibiotics, widely used in preclinical 

research. Purity of the cell culture needs to be regularly tested in order to do not contaminate 

organism of the host by bacterias or other pathogens. Right before the application itself MSCs 

need to be gently harvested, regular Trypsin-EDTA use is questioned, it was shown that it can 

destroy the surface proteins used by MSCs for attachment in vivo. MSCs also need to be 

purified from the culture media and transferred into physiological or other solution suitable 

for patients. Sometimes MSCs tend to form clusters hard to dispense, in which case, 

microembolism of the patient microvessels can be expected as reported [Janowski et al., 

2013]. 

In the moment of application, in situ or peripheral, sterile application conditions need 

to be secured. In case of application into blood stream, MSCs should be applicated very 

slowly. In rat it has been shown that speed 0,2ml/min and lower are the only suitable for good 

result achieval[Janowski et al., 2013].  

 

2.6.3.2 MSCs route of application 

MSCs application route is very important factor for MSCs facilitated regeneration, 

nevertheless it was not clarified which of them is the best.    

Application route of first choice is usually injection of MSCs directly into site of 

injury/damage, in situ. This way is preferred when there are concerns about MSCs being 
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trapped in other organs, usually in the lungs, and/or when the larger number of MSCs at once 

is necessary for having beneficial effect. With this application route there is a maximal chance 

that the cells will stay and attach in the site of injury. This application cannot be used in cases 

when anatomical location of damages tissue is difficult to access, such as in central nervous 

system, or when the nature of illness is systemic, such as in autoimmune diseases [Uccelli et 

al., 2008a].  

Other application route is administration of MSCs into peripheral blood stream. This 

way is preferred in cases where minimal invasivity is the key aspect. Also the price of this 

application is very low, no special equipment, skills or environment is needed, which favors 

this application route for use in routine medical practice. Unfortunately, it was reported that 

with this way of application only very low percentage of the MSCs migrate into site of injury, 

majority of the cells is trapped in lungs [Barbash et al., 2003]. Despite this evidence the 

beneficial effect of MSCs application is reported also with this application route, which 

suggests that systemic influence of MSCs can be more important than it was thought. 

For many conditions, the ideal treatment should be use of both application routes, 

bolus of MSCs into site of damage and one more applications of MSCs into peripheral blood 

stream. 

2.6.4 MSCs in clinical trials 

Encouraging results from preclinical research provided the basics for the first clinical 

trials. Currently there are more than 70 clinical sites all over the world, where efficiency and 

safety of MSCs therapy for wide variety of illnesses is tested. On the largest clinical trial 

platform called Clinical Trials (http://clinicaltrials.gov/) there are registered more than 500 

different clinical trials where MSCs are transplanted to patients as main therapy or as a co-

treatment following regular therapy. 

Several of these trials undergone early termination or have failed to meet primary end-

points, but many more trials continue and the list of evidence of MSCs facilitated repair in 

patients enlarges [Malgieri et al., 2010]. 

Here we offer some MSCs application examples, which are currently in focus of 

scientists. Applications we focused on in our research are described in separate chapters. 
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2.6.4.1 Orthopedic application 

One of the essential MSCs abilities is differentiation into osteoblasts and 

chondroblasts, which put MSCs into focus of researchers in bone and cartilage field. 

Besides proved MSCs ability to improve bone healing [Huang et al., 2015], it was 

shown that MSCs administered to children with osteogenesis imperfecta, genetic disorder, 

where osteoblasts synthesize defective collagen type I, give rise to healthy osteoblasts 

producing non defective collagen, resulting in increase of bone mineral content and reduction 

of bone fracture frequency [Horwitz et al., 2002]. As visible on website for Clinical trials 

(ClinicalTrials.gov), encouraging results gave rise to many clilnical trials, but long time 

follow-up of patients showed that application of MSCs may not be curative as it was hoped . 

Another application of MSCs in orthopedic field is treatment of cartilage lesions. 

Many studies showed positive results for MSCs in cartilage regeneration [Bornes et al., 2015; 

Fujie et al., 2015]. So far more than 30 clinical trials was announced, but none of them was 

convincing enough to use MSCs application as a treatment option. Issues about correct 

application way, including site of administration, way of administration and/or use of 

scaffold, together with number of applied cells need to be solved first. 

2.6.4.2 Skin defects 

MSCs posses many abilities, which could be used in repair of skin defects. In variety 

of animal models it was shown, that MSCs improve healing of skin defects [Basiouny et al., 

2013; Chen et al., 2008]. Some studies also show possible future use of MSCs conditioned 

media in pharmacology/cosmetics industry [Kwon et al., 2015] . 

The proper delivery way of MSCs to wounded patients is not fully assessed yet, 

considering the route of application and/or scaffold use [Steffens et al., 2015]. Therefore more 

research in this topic is needed for establishment of MSCs application as a new therapeutic 

option. 

2.6.4.3 Neuronal diseases 

MSCs are not proven to be able to pass liquor barrier, but when applied into site of 

lesion or into intraventricular space, they are able to differentiate into neuroglial cells and 

release the trophic factors in rat model and benefit in variety of neuronal diseases, including 

Parkinson's disease, Huntington's disease, hypoxic-ischemic neural damage and retinal injury 

[Bouchez et al., 2008; Muñoz-Elías et al., 2003; Rossignol et al., 2011].  

Nowadays 5 clinical trials are announced on ClinicalTrials.gov where MSCs were/are 

applicated into different parts of brain of patients with Parkinson's disease. One example for 
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all, MSCs were successfully transplanted by stereotactic surgery into the sublateral ventricular 

zone of seven patients with advanced Parkinson's disease. Application was proved to be safe 

and long term observation (3 years after application) did not shown any adverse effect 

[Venkataramana et al., 2010]. Although the results were promising, the improvement of 

patient functions was not significant as expected. More research in this field need to be done, 

before the MSCs application will became routine treatment option.  

2.6.4.4 Kidney disorders 

In several preclinical studies, including acute renal ischemia, experimental 

glomerulonephritis and acute tubular epithelial injury, it was demonstrated that MSCs 

application can ameliorate renal injury and accelerate repair [Liu et al., 2015; Qian et al., 

2008]. 

According to ClinicalTrials.gov there are more than 20 clinical trials where autologous 

or allogeneic MSCs are administered to patients with wide variety of kidney problems. 

Current focus is on lowering the number of organ rejection and further transplantation 

complications in patients with kidney transplantate. Majority of clinical studies is in process, 

so it is soon to make conclusions, but promising fact is, that non of the mentioned trials was 

canceled for severe patients complications or due to loss of interest of the clinicians, which 

suggests that results may be positive. 

2.6.4.5 Systemic disorders 

Systemic application of MSCs can benefit to whole organism, which is tested in 

clinical trials focused on treatment of systemic diseases. In patients with cancer, who 

underwent high-dose chemotherapy, systemic allogeneic application of MSCs showed 

acceleration in bone marrow recovery [Koç et al., 2000].  

The immunomodulatory potential of MSCs is currently tested also on variety of 

autoimmune diseases, including Crohn’s disease, where MSCs modulate immune response 

and also contribute to regeneration of gastrointestinal epithelial cells [Okamoto et al., 2002]. 

 

2.7 MSCs and cardiac regeneration 

The role of MSCs in treatment of variety of cardiac diseases is investigated. Many 

work has been done in vitro and on animal models, recently also clinical trials in this field has 

been designed and started [Hare et al., 2012; Chullikana et al., 2014]. 
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2.7.1 Cardiac diseases 

Cardiac diseases are a major cause of worldwide morbidity and mortality, in America 

every 34 second somebody suffers a coronary event [Go et al., 2013]. Cardiac function of  

patients is increasingly compromised with the progression of adverse ventricular remodeling, 

many eventually develop fatal end-stage heart failure [Sutton and Sharpe, 2000]. 

Cardiac insufficiencies are caused by long term overload of cardiac muscle by large 

volumes and pressures or by acute oxygen and nutrient deficiency. In both cases 

cardiomyocyte function is compromised by lack of nutritions and oxygen not sufficient to 

cover cell needs. Some cells die directly, other enter apoptotic cycle. 

Progress in cardiovascular pharmacotherapy, cardiosurgery and interventional 

cardiology decreased mortality of cardiac diseases, but patients still remain at increased risk 

of development of adverse cardiac remodeling, mostly in cases when damaged territory is 

large and reperfusion therapy is suboptimal [Psaltis et al., 2014].  

2.7.2  MSCs in cardiac regeneration 

Myocardial tissue was, at first, considered to be incapable of regeneration. But in 2001 

it has been shown that injection of MSCs into heart of mice with infarction resulted in 

improvement of cardiac functions [Orlic et al., 2001]. Since then many more experiments was 

performed with more and less positive results, where MSCs proved to have beneficial effect 

on whole heart [Liu et al., 2015; Lee et al., 2014; Guo et al., 2007].  

It has been shown that MSCs, in very small percentage differentiate into 

cardiomyocytes, but in much larger percentage the immunomodulation effect is present. 

Largest influence of MSCs on cardiomyocytes (CMC) is done by expression of variety of 

cytokines and chemokines which support survival of CMC itself, but also supports 

vasculogenesis and neoangiogenesis in myocardial muscle, which further improves survival 

and regeneration of heart tissue (Figure 3). 

Encouraged by positive results, in last two years more than 5 clinical trials 

administering MSCs into patients with variety of heart diseases has been open. 

Despite the described beneficial effect of MSCs on cardiac tissue, detailed metastudy 

of clinical research showed that more positive results are, more errors in research design can 

be found. Methodically correct studies showed non or very mild effect of MSCs on patient 

hearts [Nowbar et al., 2014].  
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One of the reasons maybe that majority of the studies was performed on small animal 

models. More similar subject to human, such is pig, need to be used in order to obtain results 

valid also for human application. Therefore in our studies we focused on work with pigs. 

 

 

Figure 3 -  MSCs influence on cardiac repair. Picture shows three main mechanisms of MSCs 

effect on damaged heart. All of them influence not only CMCs, but also connective tissue and 

vessels. MSCs supported vasculogenesis and cardiac tissue regeneration improves chance of 

successful cardiac repair. 

Abbreviations: Ang-2 – Angiopoietin 2, CMC – cardiomyocytes, CSC – cardiac stem cells, 

FGF-2 – fibroblast growth factor 2, HGF – hepatocyte growth factor, IGF – insulin-like 

growth factor, IL-6 – interleukin 6, IL-10 – interleukin 10,  MSCs – mesenchymal stem cells, 

PDGF – platelet-derived growth factor, SDF -  stromal cell-derived factor, TGF-β – 

transforming growth factor beta, VEGF – vascular endothelial growth factor.  

 

 

2.8 MSC and liver regeneration 

It has been shown that MSCs transplantation helps to partially restore liver function 

and decrease symptoms of the disease. All together MSCs has been reported to increase 

survival rate of patients with variety of liver diseases [Lin et al., 2011]. 
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2.8.1 Liver diseases 

Liver play an important role in metabolism of lipids and carbohydrates together with 

synthesis of proteins, detoxification and storage of various substances, including vitamins. 

This all makes liver the vital organ of the human body. Main liver cells, hepatocytes, are 

organized around blood vessels in order to access all mentioned substances. Any pathology of 

hepatocytes, or of the vascular or connective tissue, leads to liver damage and compromises 

its function.  

2.8.1.1 Chronic liver disease 

Chronic liver disease is a long term condition consisting of progressive destruction and 

regeneration of liver parenchyma by alcohol abuse, high fatty diet, tumors or viral infections 

and many more [Perz et al., 2006]. When hepatocytes and surrounding parenchyma are 

destroyed, connective tissue compensates the loss and liver fibrosis starts. If not treated, 

progression in hepatocyte depletion and connective tissue enlargement can lead to next stage 

of disease, liver cirrhosis, where morphological defect are more prominent and liver functions 

may be critically compromised. 

2.8.1.2 Liver cirrhosis 

Cirrhotic liver are bigger with irregular surface. Percentage of connective tissue is 

higher in cirrhotic liver, often, fibrosis preventing proper liver function, can be found between 

nodules and in perivascular space. Hepatocyte nodules can be enlarged also. This kind of liver 

damage is nearly impossible to repair, healthy life style and drugs can stop the progression, 

but only currative option is liver transplant [Povýšil et al., 2007]. 

 

2.8.2 MSCs in liver regeneration 

It has been reported that MSCs can support liver regeneration in many ways (Figure 

4). 

At first, MSCs are capable of differentiation into hepatocyte-like cells in vivo and also 

in vitro after stimulation with combination of HGF, FGF, EGF and other cytokines [Lin et al., 

2011; Manzini et al., 2015]. But it has been found that contribution of MSCs differentiation 

into hepatocytes to overall regeneration process is low [Zhou et al., 2009].   

Secondly, MSCs were observed to have direct antiapoptotic effect on hepatocytes. 

Transplantation of MSCs or MSCs conditioned media significantly, in correlation with 
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decrease in number of apoptotic hepatocytes, reduced mortality of rats with acute liver injury 

[van Poll et al., 2008].  

 

Figure 4 - MSCs influence on liver repair. Picture shows three main mechanisms of MSCs 

effect on damaged liver. All of them influence not only hepatocytes, but also connective 

tissue and vessels. MSCs supported vasculogenesis and hepatocyte proliferation together with 

suppression of inflammation and hepatocyte apoptosis improves chance of successful liver 

repair. 

Abbreviations: EGF – epidermal growth factor, FGF – fibroblast growth factor, HGF – 

hepatocyte growth factor, HSC – hepatocytes stem cells, IGF – insulin-like growth factor, IL-

3 – interleukin 3, IL-6 – interleukin 6, IL-10 – interleukin 10, MMP-9 – matrix 

metallopeptidase 9, MSCs – mesenchymal stem cells, SDF -  stromal cell-derived factor, 

TNF-α – tumor necrosis factor alfa, VEGF – vascular endothelial growth factor. 

 

Third, MSCs secrete several substances, including HGF, EGF, IL-6 and TNF-α, 

stimulating hepatocyte proliferation and improving hepatocyte function [Wang et al., 2015; 

Lin et al., 2011]. 

Last, but not least, liver injury is always accompanied with lymphocyte infiltration. 

MSCs immunomodulatory abilities influence lymhocytes together with NK-cells by inhibition 

of their cytotoxic activity, which has positive effect on liver tissue regeneration in general 

[Lin et al., 2011]. 
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In our work, new model of chronic liver disease in pig was introduced. MSCs were 

administered to pigs with developed liver disease after liver lobe resection. Morphometry 

parameters of the liver of animals with MSCs administration and controll group were 

measured, together with levels of cytokines in swine blood.   

 

2.9  MSCs and GVHD 

MSCs are tested as a possible treatment or co-treatment of Graft-versus-host disease 

(GVHD), but evidence show, that MSCs can be used also as a prevention of GVHD relapse.  

2.9.1  Graft versus host disease 

Graft-versus-host disease (GVHD) is serious adverse effect following allogeneic bone 

marrow transplantation, when transplanted immune cells do not recognize hosts cells and 

attack them as a pathological threat. Small reaction of donor cells against remaining host 

immune cells is necessary to prevent relapse of the leukemia. But if the GVHD is serious and 

untreated, it results in the dead of the individual by multiple fatal organ failure.  

When host APCs activate donor T-lymphocytes by discrepancies in MHC-I and MHC-

II antigens, acute GVHD develops. T-lymphocytes play important role in chronic GVHD also, 

but recent findings suggest that B-lymphocytes are involved and contribute to tissue 

destruction too [Sarantopoulos and Ritz, 2015].  

GVHD can be treated with high doses of corticoids, which themselves have a lot of 

side effects. Despite improvements in treatment and supportive care, overall 

posttransplatation survival and the incidence of relapses did not changed for last decades 

[Vasu et al., 2015]. 

 

2.9.2  MSCs in treatment of GVHD 

Commonly used and also only effective therapy for GVHD is long term administration 

of high doses of corticoids. If the GVHD is resistant for this drug, it is difficult to manage the 

disease. It has been reported that application of MSCs for these patients can reduce symptoms 

of the GVHD and lower amount of relapses, if administered regularly in infusions 

(1x10
6
cells/kg) [Kebriaei and Robinson, 2011].   

Application of MSCs to GVHD patients helps to inhibit donor T-lymphocyte 

reactivity to histocompatibility antigens of normal host tissue, together with suppression of 
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DCs maturation and suppression of NK cytotoxicity. All these findings have been observed in 

many studies [Muguruma et al., 2006; Le Blanc and Ringdén, 2005, 2006]. 

One or another, unfortunatelly, immunosuppressive effect of MSCs is not selective, 

therefore MSCs lower also antibacterial, antiviral and antifungal immunity. It was reported 

that application of MSCs into patient with GVHD affecting mainly gastrointestinal tractus 

lead to improvement in gastrointestinal symptoms, but, on the other hand, cytomegaloviral 

gastritis appeared in patient [Le Blanc et al., 2004].  

It is also very important question, whether immunosuppressive effects of MSCs, 

inhibiting GVHD, do not rise the risk of relapse of original disease [Le Blanc and Ringdén, 

2005].  

In our work we focused on elucidation of overall effect of MSCs on lymphocytes. In 

vitro we investigated lymphocyte activity and survival after co-cultivation with MSCs. In vivo 

our work was focused on blood samples of patients with MSCs administered for severe 

GVHD. Levels of regulatory T-lymphocytes were determined together with levels of helper 

T-lymphocytes, all as a sign of immunomodulatory effect of MSCs. 

 

2.9.3  MSCs application as a prevention of GVHD 

Role of MSCs as a preventive therapy for GVHD is being investigated.  

It has been shown that after bone marrow transplantation, infusion of MSCs can help 

donor cells to inhabit the bone marrow tissue of a host by restoration of its environment 

damaged by radiotherapy. Faster restoration of proper bone marrow function follows 

[Muguruma et al., 2006; Le Blanc and Ringdén, 2006]. The improvement was observed in 

faster restoration of all cell lines, including myeloid, lymphoid and also megakaryocytic cell 

line [Le Blanc and Ringdén, 2006, 2005].  

In clinical study performed by Le Blanc et al.  it was shown that infusion of MSCs 

after bone marrow transplantation can significantly improve engraftment, lower the risk of 

GVHD and improve survival of patients [Le Blanc and Ringdén, 2005].  

Despite the amount of published data, more clinical studies on larger patient 

population and observation of long term effect of this cellular therapy, which would document 

successful use of MSCs, are needed.  
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3 Aims 

1. Optimize swine and human MSCs isolation and cultivation 

2. Standardize and optimize MSCs verification protocols 

3. Describe the role of MSCs in cardiomyocyte function repair  

4. Describe the role of MSCs in liver regeneration 

5. Describe the role of MSCs in GVHD 
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4 Materials and methods 

All animal experiments were performed following the guidelines of European 

parlament and European Council 2010/63/EU about protection of animals used in scientific 

experiments. All experiments were approved by Expert comittee for work with laboratory 

animals of Medical faculty in Pilsen, Charles University in Prague. 

4.1 MSCs isolation 

In this study we used bone marrow MSCs isolated from adult organisms, pig MSCs 

for majority of experiments, human MSCs for immunity related experiments.  

4.1.1 Swine MSCs isolation 

Swine MSCs were obtained from bone marrow of adult pigs (Sus Scrofa) in general 

anaesthesia.  

Swine bone marrow from tuberositas tibiae was obtained by aspiration to syringe with 

mixture of 1 ml Heparin (GE Healthcare, United Kingdom) and 1ml Phosphate Buffered 

Saline (PBS; Sigma-Aldrich, USA). Resulting bone marrow solution was placed into sterile 

tube and mixed. Further processing continued in tissue cultivation lab in laminar flow hood, 

where 1:1 PBS (Sigma-Aldrich, USA) was added. Final mixture was layered on Ficoll-

PaqueTM Plus (GE Healthcare, United Kingdom), 4ml of Ficoll Paque per 6ml of diluted 

bone marrow was used. Centrifugation (435xg, 30min, break 6, RT) followed. Opalescent 

layer of mononuclear cells was removed, placed into new tube and resuspended in PBS, 

centrifugation (1000xg, 8min, RT) followed. Supernatant was discarded and pellet was 

resuspended in 1ml of prewarmed Complete  Cultivation media consisting of α-modified 

Eagle’s medium (αMEM; Hyclone, GE Healthcare, United Kingdom) supplemented with 

10% Foetal Bovine Serum (FBS; Biosera, France) and 100 IU/ml penicillin and 100 mg/ml 

streptomycin (Biosera, France). Cells were placed on 175 cm
2
 flasks (TPP, Switzerland) and 

cultivated in humidified incubator (37 °C and 5% CO2). After 48h non-adherent cells were 

discarded together with old media and fresh media was added, change of media every 2-3 

days followed until the cells reached 80- 90% confluence. Cells were harvested with Trypsin-

EDTA (Biochrom, UK), counted, and subcultured at 1:3 dilutions in culture flasks or mixed 

with DMSO (Sigma-Aldrich, USA) and freezed in liquid nitrogene. For all experiments 

MSCs from 2nd to 8th passage were used.   
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4.1.2 Human MSCs isolation 

Human MSCs were obtained from iliac crest bone marrow aspirate from healthy 

donors under general anaesthesia. All donors provided written informed consent for MSCs 

donation.  

Bone marrow aspirate was diluted 1:1 with HBSS (PAA, Austria) and layered 1:1 over 

LSM 1077 solution (PAA, Austria), centrifugation (1000xg, 15min, break 6, RT) followed. 

The opalescent layer of mononuclear cells was collected into new tube and resuspended in 20 

ml of PBS (PAA, Austria), centrifugation (1000xg, 10min, RT) followed. Supernatant was 

discarded and pellet was resuspended in 1 ml PBS. All cells were placed into 175 cm
2
 flask 

(Corning, USA) containing 30 ml of Complete Culture Medium (α-MEM; PAA, Austria; 10% 

pooled human platelet lysate, local source) and placed into humidified incubator (37 °C and 

5% CO2). After 48h of cultivation non-adherent cells were removed and fresh media was 

placed. Cultivation followed, with media exchange every 2-3 days, until the cells reached 

80% confluence. The cells were then detached with TrypLE Select solution (Invitrogen, USA) 

and seeded in a concentration 1x10
6
 per 175 cm

2
 flask or mixed with DMSO (Sigma-Aldrich, 

USA) and deep-frozen in liquid nitrogene. For all experiments MSCs from 2nd to 4th passage 

were used.   

 

4.2 MSCs phenotype 

Light microscopy, multidirectional differentiation and flow cytometrical analysis were 

used to verify that isolated cells were MSCs. 

4.2.1 Light microscopy of MSCs 

Isolated cells plated on cultivation flasks and dishes were, before any manipulation, 

checked under light microscopy (Nicon Eclipse Ti, Japan). Adherent fibroblast-like shaped 

cells were seeked. 

For detailed morphology observation, hematoxylin-eosin (HE) staining was 

performed. Cells were washed with PBS (Sigma-Aldrich, USA) and fixed with 4% 

paraformaldehyde (Diapath, Italy) for 15min, wash with PBS followed. Gill Hematoxylin 

(Kulich Pharma, Czech republic) was added for 5 min, cells were 2 x washed with PBS and 

staining with eosin (Merck Millipore, USA) for 1 min followed. After 3 x wash with PBS 

pictures under light microscope were taken.  
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4.2.2 Differentiation into three lines 

One of the basic characteristics of MSCs, which is used for their verification, is their 

ability to differentiate into adipocytes, osteocytes and chondrocytes.  

Harvested MSCs (as described previously) were seeded on 12-well cultivation dishes 

(TPP, Switzerland) with seeding density 3,8 x 10
4
 cells/well for adipogeneic and 

chondrogeneic differentiation and 1,9 x 10
4
 cells/well for osteogeneic differentiation 

respectively. After 24 hour attachment period cultivation media was discarded and replaced 

with 3 ml of specific differentiation media.  

4.2.2.1 Adipogeneic differentiation 

For adipogeneic differentiation StemPro® Adipogenesis Differentiation Kit (Life 

technologies, USA) was used. Mixture of 2,7 ml StemPro® Adipogenesis Differentiation 

Media and 0,3 ml StemPro® Adipogenesis Differentiation Supplement was added to each 

well and changed every 3 days. Cells were cultivated in humidified incubator (37 °C and 5% 

CO2) for 14 days, followed by Oil Red O staining (Sigma-Aldrich, USA). In brief, cells were 

washed with PBS (Sigma-Aldrich, USA) and fixed with 4% paraformaldehyde for 30min. 

Rinse with distilled water and addition of 60% isopropanol for 5 min followed. Finally Oil 

Red O solution was added for 3 minutes and then three times washed.  

Presence of lipid droplets inside of the cells, in red color, indicating adipocyte 

transformation, was verified under light microscope. Pictures were taken. 

4.2.2.2 Chondrogeneic differentiation 

For chondrogeneic differentiation StemPro® Chondrogenesis Differentiation Kit (Life 

technologies, USA) was used. Mixture of 2,7 ml StemPro® Chondrogenesis/Osteogenesis 

Differentiation Media and 0,3 ml StemPro® Chondrogenesis Differentiation Supplement was 

added to each well and changed every 3 days. Cells were cultivated in humidified incubator 

(37 °C, 5% CO2) for 18 days, followed by Alcian Blue (Sigma-Aldrich, USA) staining. In 

brief, cells were washed with PBS and fixed with 4% paraformaldehyde for 30 min. Rinse 

with distilled water followed. Alcian Blue (1% solution in 0,1nHCL) was added for 30 min, 

rinse with 0,1nHCl and PBS followed.  

Presence of glycoproteins, in blue colour, indicating chondrocyte transformation was 

verified under light microscope. Pictures were taken. 
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4.2.2.3 Osteogeneic differentiation 

For osteogeneic differentiation StemPro® Osteogenesis Differentiation Kit (Life 

technologies, USA) was used. Mixture of 2,7 ml StemPro® Chondrogenesis/Osteogenesis 

Differentiation Media and 0,3 ml StemPro® Osteogenesis Differentiation Supplement was 

added to each well and changed every 3 days. Cells were cultivated in humidified incubator 

(37 °C and 5% CO2) for 21 days, followed by Alizarin Red S (Sigma-Aldrich, USA) staining. 

In brief, cells were washed with PBS (Sigma-Aldrich, USA) and fixed with 4% 

paraformaldehyde for 30 min. Rinse with distilled water followed. Finally Alizarin Red S 

solution (4% solution in water) was added for 3 minutes and then three times washed.  

Presence of calcium formations, in red color, indicating osteocyte transformation was 

verified under light microscope. Pictures were taken. 

 

4.2.3 Flow cytometry phenotype confirmation 

Fraction of MSCs, about 100 000 cells trypsinised with use of TrypLE
TM

 Select 

(Gibco, Life Technologies, Denmark) was used for flow cytometer verification of proper 

immunetype possesion. 

4.2.3.1 Swine MSCs 

Cells were washed with PBS (Sigma-Aldrich, USA), resuspended in 100 μl PBS and 

mixed with 3 μl of antibodies; anti-CD44 – DAPI (Biolegend, USA), anti-CD45 – FITC (Bio-

Rad, USA), anti-CD73 – PE-A (RnD Systems, Canada) and anti-CD90 – APC (Biolegend, 

USA) incubation followed (15 min, dark, room temperature; RT). Cell suspension was 

washed with PBS and resuspended in 300 μl of PBS. Cytometry analysis was performed using 

BD FACS Aria Fusion and BD FACS Diva 8.0.1 software (both Becton Dickinson, USA). As 

MSCs, all cells showing CD45
-
, CD44

+
, CD73

+  
and CD90

+
 were taken.  

4.2.3.2 Human MSCs 

Cell suspension was washed twice with PBS (Sigma-Aldrich, USA) and centrifuged 

(200xg, 10min, RT). After supernatant disposal, pellet was resuspended in 100 μl of PBS. 

Mix of antibodies; anti-CD3 – PerCP (Exbio, Czech republic), anti-CD13 – APC 

(Immunotech, USA), anti-CD14 – APC-Cy7 (BD Bioscience, USA), anti-CD19 – PC7 

(Immunotech, USA), anti-CD34 – PE (Immunotech, USA), anti-CD45 – Krome Orange 

(Beckman Coulter, USA), anti-CD34 – PECy7 (Immunotech, USA), anti-CD73 – PE, anti-

CD90 – APC and anti-CD105 – FITC (all Biolegend, USA), HLA-DR – Pacific Blue 
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(Immunotech, USA) was added, incuvation followed (20 min, dark, RT). Cells were washed 

with PBS (Sigma-Aldrich, USA) and resuspended in 500 μl volume. The flow cytometry 

acquisition and data analysis were performed by using BD FACS Canto II (BD Biosciences, 

USA) flow cytometer. An analysis was performed in FlowJo software (TreeStar, USA). As 

MSCs, all cells showing CD13, CD73, CD90 and CD105 positivity, together with CD3, 

CD14, CD19, CD34 and CD45 negativity were taken. 

 

4.3 MSCs and cardiomyocytes 

4.3.1 Cardiomyocyte isolation 

Cardiomyocytes (CMCs) were isolated from left ventricles of young adult pigs (Sus 

Scrofa, n = 5) in anesthesia. 

In brief, after animal sacrifice the heart was removed and placed into bowl with ice 

cold Ca
2+

 free Tyrode solution (composition of solution in mmol/l: NaCl 137; KCl 4,5; MgCl2 

1; CaCl2 2; glucose 10; HEPES 5; with use of NaOH pH was adjusted to 7,4; all Sigma-

Aldrich, USA). After cannulation of the anterior descending branch of the left coronary 

artery, the heart was mounted to constant pressure Langerdorff’s aparathus and perfussed with 

warm (37°C) oxygenated solutions; 1, Tyrode solution without Ca
2+

 (5 min), 2, Tyrode 

solution with Ca
2+

 (0,5 μM), collagenase (1 mg/ml; Roche Diagnostics, Germany) and bovine 

serum albumin (BSA, 0,5 mg/ml, Sigma-Aldrich, USA) (30 min), 3, Tyrode solution without 

Ca
2+

 (5 min). Midmyocardial cells, cardiomyocytes (CMCs), were harvested from the wall of 

left ventricle after endocardial tissue removal and placed into Tyrod solution without Ca
2+

 

(37°C). Filtration through gauze followed. Calcium concentration was gradually increased in 

several steps (1; 5; 10; 100; 200 μmol/l) each 10 min after another to the resulting 0,2 mM 

Ca
2+

 concentration. 

 

4.3.2 Cardiomyocyte culture optimisation 

Isolated CMCs were let to sediment, supernatant was removed and CMCs were 

resuspended in Complete CMC Cultivation media consisting of Dulbecco's Modified Eagle 

Medium (DMEM; Thermo Fisher Scientific, USA) supplemented with 10% Foetal Bovine 

Serum (FBS; Biosera, France), Glucose (4 500mg/l, Sigma-Aldrich, USA), L-Glutamine 

(4mmol/l, Biosera, France), and 100 IU/ml penicillin and 100 μg/ml streptomycin (Biosera, 

France). Resulting cell suspension was used for following experiments.  
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4.3.2.1 Evaluation of purity 

Following each isolation, evaluation of percentage of living CMCs among all other 

cells in suspension using light microscopy (Nicon Eclipse Ti, Japan) was performed by 

experienced observer. All long striated cells with rough edges were counted as living CMCs, 

the rest was considered to be dead or dying cells. 

4.3.2.2 Cardiomyocyte culture  

In order to optimize culture conditions of CMCs and also to find the best way how to 

increase CMCs culture purity, four different culture surfaces for CMCs attachment were used; 

1, CMCs were seeded on normal cultivation plastic without any further treatment (TPP, 

Switzerland), 2, CMCs were seeded on normal cultivation plastic  (TPP, Switzerland) coated 

with laminin (mouse, Sigma-Aldrich, USA) in concentration 1,5 mg/ml, 3, CMCs were 

seeded on normal cultivation plastic  (TPP, Switzerland) coated with 0,5 % gelatine (Sigma-

Aldrich, USA), 4, CMCs were seeded on cultivation plastic specially treated for better cell 

attachment (Corning, Sigma-Aldrich, USA).  

Cell suspension was resuspended in complete CMC cultivation media, divided into 

groups and seeded on mentioned cultivation plastic, cultivation in humidified incubator under 

standart cultivation conditions followed (37°C, 5% CO2). 

4.3.2.3 Cell adhesivity evaluation 

Evaluation of cell adhesivity on all four used cultivation surfaces was perfomed for 10 

samples in light microscopy (Nicon Eclipse Ti, Japan). One asigned person, experienced 

observer, shaked with cultivation plastic and rated cell adhesivity in each sample by number 1 

– 5, where number 1 ment majority of the cells (> 90 %) was flowing in media not attached to 

surface and number 5 ment majority of the cells was attached to cultivation surface. For all 

four cultivation surfaces the results were statistically processed and evaluated, regular 

cultivation plastic without any treatment was used as standart for comparisons. 

4.3.2.4 Magnetic separation  

In order to increase cell culture purity, to have bigger percentage of living CMCs in 

culture, magnetic separation of live cells using manual magnetic cell separator MACS
TM

 

(Miltenyi Biotec, Germany) and Dead Cell Removal Kit (Miltenyi Biotec, Germany) was 

performed. Kit contained magnetic microbeads capable to bind with dead and dying cells. 

Cell suspension was centrifuged (300 x g, 10 min), supernatant discarded and pelet 

was resuspended in 200 μl of buffer with magnetic microbeads. After 15 min of cultivation 
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cell suspension was transfered into columns of separator, where the strong magnetic field was 

generated. When the cell suspension went through the column, all cells with binded magnetic 

particles, dead or dying cells, were trapped inside of the column and only non binded, living, 

cells were allowed to leave column into new clean tube. 

Before and also after magnetic separation experienced observer  under ligh microscope 

(Nikon Eclipse Ti, Japan) evaluated percentage of live CMCs in cell suspension, results were 

compared. 

4.3.3 Co-cultivation experiments 

MSCs in Complete MSC media were seeded to 6-well plate (TPP, Switzerland) in 

concentration 54 000cells/well each and let to attach overnight in humidified incubator (37°C, 

5% CO2) (Figure 5).  

 

Figure 5 - CMCs co-cultivation with MSCs experiment scheme. 

 

After MSCs media removal, transwells, cupcakes with 3 microns membrane pores, 

Transwell® (Corning, Sigma-Aldrich, USA),  were placed into 3 wells with MSCs and CMCs 



52 

 

in Complete CMC media were added to all 6 wells of 6-well plate, as a control CMCs without 

presence of MSCs were used. 

4.3.3.1 Cell morphology observation 

CMCs cultivated in all three cultivation conditions (without MSCs, with direct contact 

with MSCs and with MSCs without direct contact) were observed under light microscopy 

(Nicon Eclipse Ti, Japan) every day of experiment untill 10
th

, last day. Their shape was 

documented. 

4.3.3.2 Cell survival evaluation 

In the first and the third day of cultivation, simple observation under light microscope 

was quantified by experienced observer for five animals. On cultivation plastic (n=20 per 

animal), were counted all living CMCs, long striated cells with rough edges, in field of vision 

(magnification 10x), and counting of all other cellsin field of vision followed. 

Resulting percentages of living CMCs in suspensions in all three types of CMCs 

cultivation conditions were statistically evaluated. 

4.3.3.3 Cardiomyocyte mitochondria staining 

For visualisation of mitochondrial network as a sign of living cell, mitochondrial dye 

MitoTracker® (579/599) (Molecular probes, Life Technologies, USA) was used. After adition 

of the dye into media and 30 min incubation, dye was temporarily attached to the functional 

mitochondria, showing red signal. Nuclei was stained by NucBlue® (360/460) (Molecular 

probes, Life Technologies, USA). This staining was performed in all CMCs cultivation 

conditions in day 1 and day 3 of the cultivation. 

4.3.3.4 CMCs mitochondrial function measurement 

For assesment of CMCs mitchondrial functions, high-resolution respirometry was 

used. Mitochondrial oxygen consumption in isolated CMCs in day 1 and 3 of cocultivation 

was measured by oxygraph Oroboros (Oroboros, Insbruck, Austria) in 37C in chambers with 

2 ml volume. Cultivation media was placed into oxygraph chambers and let to equilibrate for 

40 min. In the end of equilibration period, concentration of oxygen in chamber coresponded 

to actual concentration of oxygen in atmospheric air and its solubility in the medium (0,89). 

Chambers were closed and CMCs were injected in. Respiration activity of intact 

nonpermeabilised cardiomyocyteswas measured. 
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In titration protocol, where different substrates and disruptors of oxidation chain were 

added, following respiration statuses, routinelly present in intact cells, were measured; 

ROUTINE (R – basic oxygen consumption necessary for physiologic control of substrate 

transport of intermedial metabolism and energetic switch), LEAK (L – status after inhibition 

of ATP synthasis by oligomycin, when phosphorylation is stopped and oxygen consumption 

corresponds only to electron transport, which is necessary for compensation of proton leak 

across the inner mitochondrial membrane), ETS (E – electrontransport capacity of respiration 

system, which corresponds to maximal oxygen consumption when oxydation and 

phosphoration are disrupted) and ROX (R – residual oxygen consumption after rotenon, 

inhibitor of Complex I., addition). 

After state R measurement, 2,5 µmol/l  of oligomycin (Sigma-Aldrich, USA) was 

added to chambers and measurement of state L followed after oxygen consumption 

stabilisation. By titration of protonofor carbonylcyanid-p-trifluoromethoxyphenylhydrason 

(FCCP; 0,05 – 0,40 µmol/l) (Sigma-Aldrich, USA) the ETS state was induced. Finally 

addition of 0,5 µmol/l of rotenon (Sigma-Aldrich, USA), inhibitor of Complex I., the ROX 

state was induced, measurement followed. 

CMCs oxygen consumtion was analysed by on-line software DatLab (Oroboros 

Instruments, Innsbruck, Austria) as negative time derivation of decrease in oxygen 

concentration in chamber, expressed in pmol O2/(s*10
6
) cells and corrected to ROX.  

4.3.3.5 Cardiomyocyte electrophysiology 

In order to evaluate change of CMCs electrophysiology properties in time, together 

with differences between CMCs cultivated alone or with MSCs, contractility and transient 

calcium currents were measured  in day 1 and 3 of the experiment.  

CMCs were stored in low calcium Tyrode solution (composition of solution in mmol/l: 

NaCl 137; KCl 4,5; MgCl2 1; CaCl2 0,2; glucose 10; HEPES 5; with use of NaOH pH was 

adjusted to 7,4; all Sigma-Aldrich, USA) and for experiment transferred to normal Tyrode 

solution (composition as stated above, only difference was CaCl2 2 mmol/l) . 

CMCs electrophysiology parameters were measured by Ionoptix HyperSwitch 

Myocyte Calcium and Contractility System (IonOptix LLC, Westwood, USA), where Sarclen 

sarcomere length acquisition module was used to measure cell contractions. Cells were loaded 

with Fura-2 (Molecular probes, Invitrogen, USA), stock solution Fura-2-am powder was 

dissolved in DMSO (Sigma-Aldrich, USA) to reach final concentration of 1 mmol/l. Cells 

were incubated for 20 minutes in low calcium Tyrode solution with 2 μM Fura-2-am and then 



54 

 

repeatedly washed with low calcium Tyrode solution. After 20 min of incubation, 

measurements followed.  

For analysis of obtained data IonWizard 6.5 software (IonOptix LLC, Westwood, 

USA) was used. Baseline, peak, amplitude (peak - baseline), time to peak, times to 10 % and 

50 % of peak, times to 10 % and 50 % of recovery, max velocities (the maximum of first 

derivative of transient during the deflection and recovery phases of the transient), rate 

constants (the exponential rate constants associated with recovery phase of the transients: sin 

exp amp and sin exp off), time constants (the exponential time constants associated with 

recovery phase of the transients: sin exp tau) and integral (the area under the transient relative 

to baseline) were analysed together with Fura-2 ratio and sarcomere length. 

4.3.4 Statistics 

For statistics analysis software STATISTICA Cz (Statsoft CR, Czech republic) was 

used. Parametric data were analysed with Student t-test, non parametric statistics was 

performed with use of Wilcoxon test and for complex data, analysis of variance with multiple 

factors (ANOVA) was used. Results are presented as averages ± standart error of the mean 

(SEM), where probability level <0,05 was considered to be significant. 

 

4.4 MSCs in liver regeneration 

4.4.1 Liver cirhosis model in swine 

For this study, new, not previously described, model of chronic liver disease in pig 

(Sus Scrofa) was estabilished. All experimental animals were 2 month old females with 

approximate weight 20 kilograms, with no significant differences between individuals.  Pigs 

in general anesthesia underwent biliary obstruction surgery, were observed for 9 weeks and 

resection of left liver lobe as a simulation of surgery on diseased liver in human, followed. 

In brief, after general anesthesia induction, bone marrow collection from tuberositas 

tibiae was performed, middle laparotomy followed. Via retrograde cholecystectomy Hepatic 

Artery and Ductus Choledochus were disrupted and Fogarthy’s catheter was inserted. End of 

cathether was lead to subcutaneous area on the right side of the pig, baloon of the cathether 

was adjusted to obliterate the bile duct properly. Pigs with stitches were moved to heated 

hutches with free access to water and food, everyday USG monitoration of Fogarthy’s 

catheter position and volume followed for 9 weeks. 
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4.4.2 MSCs cultivation and preparation for application 

MSCs were isolated from swine bone marrow according to protocol in chapter 5.1.1 

and cultivated in order to have MSCs culture with high purity. When the cells reached 80% 

confluency in 2
nd

 passage, trypsinisation with Trypsin-EDTA (Biochrom, UK) followed, cells 

were mixed with DMSO and freezed in liquid nitrogene. Two weeks before MSCs 

application, cells were thawed and recultured. In the day of application were MSCs 

trypsinised, counted and resuspended in physiological solution. Individual number of cells 

was used for each pig according to its weight (average weight of pigs was 25 kg), number of 

MSCs in application dose was 1 x 10
6
 cells / kg.   

4.4.3 Liver resection and MSCs application 

After nine weeks with biliary obstruction, pigs underwent second surgery in general 

anesthesia. Fogarthy’s catheter was removed, bile ducts were reconstructed and left liver lobe 

was resected. In the same time blood samples and liver biopsy were collected. At the end of 

the surgery randomly chosen group of pigs received MSCs suspension (10
6
cells/kg) to vena 

portae, control group (NO MSCs) was injected with saline in the same volume. The 

laparotomy was closed and pigs were moved back to warmed hutches with free access to food 

and water. In the day 14 animals were sacrificed and liver parenchyma samples were taken for 

histological analyses.  

4.4.4 Plasma analysis 

Peripheral blood was collected in 7 time points; 0 h, 2 h, 24 h, 3 days, 7 days, 10 days 

and 14 days, after resection into tubes with EDTA and placed into centrifuge (1000 x g, 10 

min, RT). Plasma was collected and deeply freezed for further Luminex assay of IL-6, IL-8, 

TNF-α and TGF- β concentrations. In the day of Luminex
®
 200

TM 
(Luminex Corporation, 

USA) analysis, plasma samples were thawed and concentrations of IL-6, IL-8 and TNF-α 

were measured with use of MILLIPLEX MAP Porcine Cytokine/Chemokine Magnetic Bead 

Panel (Merck Millipore, USA), concentration of TGF-β was measured with use of 

MILLIPLEX  MAP TGFβ1 Single Plex Magnetic Bead Kit (Merck Millipore, USA).  

Samples were processed using manufacturer protocols. In brief, 25μl of plasma was 

added to wells of 96 – well plate in triplets and mixed with 25 μl of kit Buffer. Addition of 25 

μl of Luminex microbeads followed. Plates with samples were sealed and gently shaked 

overnight at 4 °C. After incubation wells were 3 x washed with Wash Buffer, 50 μl of 

Anibody Detection solution was added and incubation followed (2 hrs, RT). After incubation 
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50 μl of Streptavidin-Phycoerythrin was added to each well and let to incubate (30 min, RT).  

Finally, wells were 3 x washed with Wash Buffer, 100 μl of Sheat fluid was added to each 

well and Luminex analysis of processed samples was performed. Data were collected and 

statistics was performed.  

4.4.5 Liver processing 

Liver samples (n=10 for MSCs, n=11 for NO MSCs) from two timepoints; the day of 

resection (day 0) and the final day (day 14), were processed with experienced histologists.  

In total 42 tissue blocks were fixed in 10% paraformaldehyde (Diapath, Italy). 

Histological cutting plane of each sample was randomized using the orientator [Mattfeldt et 

al., 1990; Gundersen et al., 1988]. Samples dehydratation, embedding to paraffin blocks and 

cut to 5 µm-thick histological sections followed. Hematoxylin (Kulich Pharma, Czech 

republic) - eosin (Merck Millipore, USA) staining was used for overall morphology 

assessment and Anilin Blue (Diapath, Italy) together with Nuclear Fast Red (Merck Millipore, 

USA) staining were used for connective tissue contrasting. The outlines of individual 

hepatocytes were stained by combination of Alcian Blue (Sigma-Aldrich, USA) with Periodic 

Acid Schiff (PAS; Merck Millipore, USA) reaction. 

In total, 398 sections were used for quantitative analysis. In order to quantify the 

volume fractions of connective tissue and area of lobules, one field of view with a random 

position was recorded using the PlanC N 4x/0.1 microscope objective (Nicon, Japan) from 

each section stained with Alcian Blue. In sections stained with PAS, systematic random unit 

sampling [Marcos et al., 2012] of each 15th  field of view was done using PlanC N 40x/0.65 

lens. This sampling resulted in 2113 micrographs for morphometry analyses, done by our 

histology specialists. 

 

4.4.6 Quantitative morphometric analysis of liver  

For quantitative analysis, histological parameters in Table 1 were used. 

The A(lobule), V(MH)and V(PH) were estimated using the stereological probe on the 

two-dimensional images [Gundersen and Jensen, 1985]. Briefly, this method approximates the 

area or volume of spatial structures with geometrical circles and spheres, therefore estimates 

their cross-sectional areas by multiple measures of their radiuses. The measurement was done 

within the central regions of cells with clearly visible nuclei and nucleoli. Only cells selected 
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by the unbiased counting frames were measured. From these measurements of cross-sectional 

areas, the volume of hepatocytes was estimated. 

 

Table 1 - Quantitative parameters used in liver morphometry, their stereological 

principles, histological staining and sampling of photographs. The lowest possible 

magnification was used to maximize reference space for each parameter. 

Abbreviation 
Parameter 

(unit) 
Stereological principle used for quantification 

Section 

staining and 

objective 

magnification 

A(lobule) 

 

Mean cross-

sectional area 

of classical 

morphological 

lobules (mm
2
) 

Step 1. Systematic uniform random sampling of 

one lobule per tissue section for quantification. 

Step 2. Nucleator probe in isotropic uniform 

random (IUR) sections. 

Anilin blue and 

nuclear red 

objective 2x 

VV(connective, 

liver) 

Volume 

fraction of 

connective 

tissue in the 

liver (%) 

Step 1. Systematic uniform random sampling of 

microscopic image fields selected for 

quantification from multiple physical sections. 

Step 2. Point grid and Cavalieri of Delesse 

principle. 

Anilin blue and 

nuclear red 

objective 2x 

VV(hepatocytes, 

liver) 

Volume 

fraction of 

hepatocytes in 

the liver (%) 

Step 1. Systematic uniform random sampling of 

microscopic image fields selected for 

quantification from multiple physical sections. 

Step 2. Point grid and Cavalieri of Delesse 

principle. 

PAS 

objective 40x 

VV(MH,liver) 

Volume 

fraction of 

mononuclear 

hepatocytes in 

the liver (%) 

Step 1. Systematic uniform random sampling of 

microscopic image fields selected for 

quantification from multiple physical sections. 

Step 2. Point grid and Cavalieri of Delesse 

principle. 

PAS 

objective 40x 

VV(PH,liver) 

Volume 

fraction of 

polynuclear 

hepatocytes in 

the liver (%) 

Step 1. Systematic uniform random sampling of 

microscopic image fields selected for 

quantification from multiple physical sections. 

Step 2. Point grid and Cavalieri of Delesse 

principle. 

PAS 

objective 40x 

VV(BB,liver) 

Volume 

fraction of 

blood and 

biliary vessels 

(%) 

The parameter was calculated by subtracting the 

total liver volume the fractions of connective 

tissue and hepatocytes from 1. 

- 

V(MH) 

Mean volume 

of mononuclear 

hepatocytes 

(µm
3
) 

Step 1. Systematic uniform random sampling of 

the lobules (at least 30 per tissue section) 

selected for quantification. 

Step 2. Nucleator probe in isotropic uniform 

random (IUR) sections. 

PAS 

objective 40x 

V(PH) 

Mean volume 

of polynuclear 

hepatocytes 

(µm
3
) 

Step 1. Systematic uniform random sampling of 

the lobules (at least 30 per tissue section) 

selected for quantification. 

Step 2. Nucleator probe in isotropic uniform 

random (IUR) sections. 

PAS 

objective 40x 
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The volume fractions VV(connective_tissue,liver), Vv(hepatocytes,liver), VV(MH,liver) 

and VV(PH,liver) were estimated using the point grid method [Howard et al., 1985]. All 

quantitative techniques were done using stereological software Ellipse (ViDiTo, Košice, 

Slovakia). 

4.4.7 Statistics 

All gained data were analysed in software STATISTICA CZ (Statsoft, Czech 

republic). For data with normal distribution Students t-test was used, for non parametric 

statistics Wilcoxon test or Mann-Whitney U test was used. As signficant p < 0,05 was taken. 

 

4.5 MSCs and GVHD 

For evaluation of influence of MSCs on GVHD and further implementation of these 

findings into regular medical practice, human cells were used. This study was approved by 

Ethical committe of Teaching hospital in Pilsen. All donors provided written cosent to the 

studies.  

4.5.1 In vitro GVHD model 

For initial experiments, in vitro culture was chosen. As a GVDH model, mixed 

lymphocyte culture was used.  

4.5.1.1 Lymphocyte culture 

Lymphocytes were isolated by gradient centrifugation, Histopaque – 1077 (Sigma-

Aldrich, USA), washed and diluted in cultivation media RPMI 1640 (Lonza, Belgium) to final 

concentration 1 milion cells/ml. Half of the prepared lymphocytes were inactivated by 

cultivation in 1% solution of paraformaldehyde in PBS for 5 min. The mixture of 100 μl of 

living and 100 μl of inactivated lymphocytes from different HLA incompatible donors as a 

simulation of GVHD disease was prepared. For more comparisons, stimulation with 

nonspecific mitogenes and chemotaxis activators Phytohemaglutinnin (PHA) and N-formyl-

Met-Leu-Phe (fMLP, both Sigma-Aldrich, USA), as a simulation of medicaly induced state, 

followed.  

4.5.1.2 Mesenchymal stem cells 

To the 200 μl lymphocyte mixture 50 μl MSCs in different concentrations: 4 x 10
5
 

cells/ml (MSCs/lymphocyte ratio 1:5), 4 x 10
4
 cells/ml (1:50) and 4 x 10

3
 cells/ml (1:500) 
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were added. Cultivation for 6 hours in 96-well plates according to standart cultivation 

conditions in humidified incubator (37  °C , 5%  CO2) followed. 

4.5.1.3 MTT test 

MTT test results correspond to mitochondrial activity and cell viability. Test is based 

on the reduction of soluble 3-[4,5-dimethylthiazol-2-yl]-2,5-difenyl tetrazolium bromide 

(MTT, Sigma-Aldrich, USA) to insoluble formazan on the mitochondrial membrane of living 

cells. After addition of solvent, DMSO (Sigma-Aldrich, USA) and detergent, SDS (Sigma-

Aldrich, USA) formazan dissolves and the arising color is detected by spectrophotometry with 

a wavelenght 540 nm, MRXII (Dynex, Czech republic). Level of absorbance indicates the 

number of living, metabolic active, cells.  

The MTT solution was added to cells and incubated for 2 h. The spectrophotometric 

analysis was performed after this time by Synergy HT (Biotek, Germany).  

4.5.1.4 Statistics 

Results from 32 tests of the cells from 15 healthy donors were statistically analysed by 

STATISTICA CZ (Statsoft, Czech republic) with use of the Wilcoxon paired test. As 

significant, p < 0,05 were taken.  

4.5.2 MSCs and GVHD patients 

4.5.2.1 Patients 

For the study only patients with severe GVHD, both accute (n = 8) and chronic (n = 

10), were enrolled. For classification of GVHD as severe, following criteria were used; 1, 

disease did not responded to corticosteroids (minimal dose 1 mg/kg) administered at least 2 

weeks or 2, GVHD progressed despite the mentioned treatment or 3, disease was 

corticosteroid-dependend (GVHD responded to corticosteroids, but the drugs needed to be 

administered permanently in minimal dose 0,1 mg/kg/day).  

4.5.2.2 Human MSCs preparation for human application 

Human MSCs, from healthy donors, were prepared according to protocol, approved by 

State Institute for Drug Control, for ongoing clinical study (EudraCT 2013-003626-88) on 

Hematology-oncology department. The details of the protocols are nonpublic essential part of 

the study, therefore I cannot describe them here. 
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4.5.2.3 MSCs application and sample collecting 

Every patient enrolled in study received one dose of MSCs (1 – 5 x 10
6
/kg). Blood 

samples were taken in times; 0 (before the MSCs were injected), 14 days, 1 month, 2 months 

and 3 months after MSCs application. The count of white blood cells (WBC), lymphocytes 

and subpopulations of regulatory T-lymphocytes (Tregs) and helper T-lymphocytes were 

measured with flow cytometry as markers of immunomodulation.   

4.5.2.4 Detection of regulatory T- lymphocytes 

The peripheral blood (100μl) was mixed with primary antibodies anti-CD45 – Krome 

Orange (Beckman Coulter, USA), anti-CD4 – Pacific Blue (Exbio, Czech Republic), anti-

CD127 – APC (BD Bioscience, USA), anti-CD25 – FITC (Beckman Coulter, USA) and 

incubated (15 min, dark, RT). Then, the incubation with 3 ml of Lysing solution (eBioscience, 

USA; 12 min, dark, RT) followed. Unbound antibodies and lysed erythrocytes were washed 

away by centrifugation (350 x g, 5 min). The supernatant was discarded and cell pellet was 

washed with Flow Cytometry Staining Buffer (SB; 350 x g, 5 min). After centrifugation, 

pellet was resuspended in 1 ml of 1X Fixation/Permeabilization solution (eBioscience, USA) 

and cells were permeabilized for 1 hour at 4°C. Then, cells were washed by centrifugation 

(450 x g, 5 min) with SB two times. The cell pellet was resuspended in 100 μl SB and 5 μl of 

Anti-Human Foxp3 – PE (clone PCH101, eBioscience, USA) was added. After 30 min 

incubation (4°C), unbound antibody was washed away with SB (350 x g, 5 min), cell pellet 

was resuspended in 300 μl of SB and immediately measured on BD FACSCanto II (BD 

Biosciences, USA) flow cytometer. An analysis was performed in FlowJo software (TreeStar, 

USA). Tregs were evaluated by two antibody sets, firts set confirmed Tresgs as cells CD4
+
, 

CD25
bright+

, CD127
-
 and second set confirmed Tregs as cells CD4

+
, CD25

bright+
, FoxP3

+
. Both 

detection methods are mentioned in literature as efficient. Comparison of both antibody sets 

results for Tregs detection optimisation was performed. 

4.5.2.5 Detection of helper T - lymphocytes 

The peripheral blood was collected into tubes with Heparine (GE Healthcare, United 

Kingdom), shaked and layered on Histopaque 1063 (Sigma-Aldrich, USA) solution for 

gradient separation by centrigugation (500 x g, 20 min, RT). The opalescent layer of 

mononuclear cells was collected into new tube and washed with RPMI, dilution on final 

concentration 1 x 10
6
 cells / ml followed. Resulting suspension was mixed with 4 μl of 

GolgiStop with momensin (BD Bioscience, USA), inhibitor of Golgi complex, and incubated 

(24 h, 37 °C, 5 % CO2). Fixation Solution BD Cytofix (BD Bioscience, USA) was added 
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according to manufacturer instructions and permeabilisation with BD Perm/Wash solution 

(BD Bioscience, USA) followed. Finally, cell suspension was mixed with 5 μl of antibodies; 

anti-IFN – γ – FITC, anti-IL17A – PeCy7, anti-IL4 – PE (all Biolegend, USA), anti-CD45 – 

ECD and anti-CD4 – PeCy5 (both Immunotech, Beckman Coulter, USA) and incubated for 

20 min. Cell suspension was washed and sample analysis on flow cytometer FC500 

(Beckman Coulter, USA) was performed. Helper T-lymphocytes were evaluated as CD45
+ 

and CD4
+
. Helper T-lymphocytes positive for IL-4 were considered to be Th1 cells, cells 

positive for IFN – γ were considered to be Th2 cells and cells positive for IL-17 were 

considered as Th17 lymphocytes.  

4.5.2.6 Statistics 

Results from five different timepoints from 10 patients with chronic GVHD and 8 

patients with acute GVHD were statistically analysed by STATISTICA CZ (Statsoft, Czech 

republic) with use of the Wilcoxon paired test. As a base for analysis, time 0 was transformed 

to 100%, the rest of values in different times were compared and transformed to percentage. 

Statistics was performed on these values, as significant, p < 0,05 were taken.  
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5 Results 

5.1 MSCs isolation and culture 

MSCs, both swine and human, can be isolated with described procedure. Different 

numbers of cells were gained in each isolation, depending on quality of bone marrow 

collection. After non adherent cell wash, percentage of MSCs in culture was higher than 98 

%.  

 

5.2 MSCs phenotype 

Isolated cells showed to have properties of MSCs, verification under light microscopy 

for MSCs phenotype, differentiation into three lines (adipo-, osteo-, chondro-) and flow 

cytometry antigene determination was performed. 

5.2.1 Morphology of MSCs 

Light microscopy of MSCs showed their adhesivity to cultivation plastic, spindle 

shape with several spurs and large nucleus (Figure 6). After seeding on cultivation plastic, 

MSCs started to form colonies and filled up the cultivation surface, when the surface was full 

(100 % confluency), cells started to form 3D structured and lost their MSCs phenotype. 

5.2.2 Differentiation into three lines 

Cultivation of MSCs with differentiation media confirmed ability of cells to 

differentiate into three basic lines. Cells differentiated into adipocyte line produced fat 

particles, which were showied red color after Oil Red O addition. Cells in 

chondrodifferentiation media produced mucopolysacharides, which were stained blue by 

Alcian Blue. Cells cultivated in osteodifferentiation media produced calcein molecules, which 

were stained red by Alizarin Red S (Figure 7).  
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Figure 6 - MSCs morphology in light microscopy. Adhesive behaviour, spindle shape and 

large nucleus. A – MSCs forming colonies, B – MSCs in 100 % confluency, C – MSCs in 

phase contrast, D – MSCs stained with Hematoxylin-eosin. 

 

 
Figure 7 - Differentiation of MSCs into three lines; A – MSCs differentiated into adipocyte 

line – fat vacuolas stained with Oil Red O; B – MSCs differentiated into osteocyte line – 

calcein structures stained with Alizarin Red S; C – MSCs differentiated into chondrocyte line 

– blue color of mucopolysacharides stained with Alcian Blue. 
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5.2.3 Flow cytometry phenotype confirmation 

Flow cytometry showed that processed cells are MSCs. In samples of human MSCs, 

more than 98 % of the cells showed negativity for blood lineage markers (CD3, CD14, CD19, 

CD34, CD45 and HLA-DR) together with positivity for MSCs markers (CD13, CD73, CD90 

and CD105) (Figure 8). For swine MSCs, more than 98 % cells in culture was positive for 

MSCs typical markers (CD44, CD73 and CD90) together with negativity for markers of blood 

lineage (CD45) (Figure 9).  

 

Figure 8 - Flow cytometry of human MSCs. Example of markers typical for cells; HLA-DR
-

(95,17 %), CD34
-
 (99,61 %), CD13

+
 (100 %), CD73

+
 (99,9 %), CD90

+
 (99,6 %) and CD105

+
 

(99,7 %). 

 

5.3 MSCs and cardiomyocytes 

5.3.1 Cardiomyocyte isolation  

Porcine primary adult CMCs can be isolated by standart procedure. Isolated CMCs 

possessed characteristic phenotype, long, trabecular shape with rough edges on both sides and 

visible stripes. However, the percentage of live CMCs among other cells; e.g. dead, dying, 

stromal and debris, was low 20 % (± 10 %).  
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Figure 9 - Flow cytometry of swine MSCs. Cells showed to be positive for CD44 (99,6 %), 

CD73 (97,8 %), CD90 (99,8 %) and negative for CD45 (99,8 %). 

 

 

5.3.2 Cardiomyocyte culture optimisation 

CMCs can be cultivated on all four used cultivation surfaces, with no observed 

negative effect on CMCs morphology or survival. 

5.3.2.1 Cardiomyocyte adhesivity 

CMCs cultivated on standart cultivation plastic covered by gelatine or laminin showed 

statistically significant higher percentage of adhesivity (p = 0,00068 for gelatine, p = 0,00011 

for lamini) in comparison with CMCs cultivated on standart cultivation plastic without cover 

or on special cultivation plastic for higher cell adhesivity (Table 2). Together with increased 

adhesivity of CMCs, other cells in suspension, dead and dying cells, showed increased 

adhesivity too. Simple cultivation on different types of plastic did not helped to increase 

culture purity, to increase the ratio of living CMCs cells in culture. 
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Table 2 - Comparison of cell adhesivity on different cultivation surfaces with different cover. 

SURFACE 

TYPE 
COVER 

ADHESIVITY OF CMC 

(MEAN ± SD) 

ADHESIVITY OF OTHER 

CELLS 

(MEAN ± SD) 

Standart 

cultivation 

plastic 

- 1,8 ± 0,63 1,8 ± 0,63 

Standart 

cultivation 

plastic 

gelatin 3,5 ± 1,08 * 3,5 ± 1,08 * 

Standart 

cultivation 

plastic 

laminin 3,8 ± 1,03 * 3,8 ± 1,03 * 

Superadhesive 

cultivation 

plastic 

- 2,2 ± 0,92 2,2 ± 0,92 

Evaluated under light microscope by experienced observer by 1 – 5 scale, where 1 stands for 

majority (> 90 %) of the flowing cells and 5 for majority adhered 

* Statistically significant results (t–test p < 0,001) in comparison with regular cultivation 

plastic without cover. 

 

5.3.2.2 Magnetic separation of dead cells 

Magnetic separation of CMCs from cell suspension was time consuming and 

expensive, but enabled to increase ration of living CMCs in culture from initial 20 % (± 10 %) 

to resulting 75 % (± 15 %), with small loss of living CMCs (15 % ± 5 %). 

 

5.3.3 Co-cultivation experiments 

CMCs and MSCs cocultivation experiments showed, that CMCs in direct contact with 

MSCs tend to adhere to MSCs and form 3D culture phenomenon. This impeded division of 

CMCs from MSCs and further manipulation with cells without cell damage. According to 

observation it is possible to say, that this way of cultivation is beneficial for the CMCs the 

most, because the morphology of living CMCs was observed here for the longest time, but the 

observation was not possible to quantify and analyse. Therefore we did not used CMCs 

cocultivated with MSCs directly for further experiments. CMCs cultivated alone, without 

MSCs presence and CMCs co-cultivated with MSCs across the transwells were used for 

further comparisons. 
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5.3.3.1 Cardiomyocyte morphology 

Freshly isolated cardiomyocytes had long, trabecular, shape with sharp edges on both 

ends and their stripes as a sign of striated muscle were nicely visible (Figure 10A). In longer 

term culture the sharp edges of the cells started to round and stripes slowly dissapeared. After 

three days of the culture CMCs started to develop morphological pathologies (Figure 10 B – 

E), but many cells in the culture remained phenotypically CMCs. After 9 days, CMC 

phenotype in culture was observed very rarely on all cell cultivation surfaces. 

Fluorescent microscopy confirmed observation under light microscope. In day 1, 

staining with MitoTracker, which stains with red colour healthy mitochondria having 

sufficient membrane potential for effective oxidation functions, was nicely visible in both  

compared groups, in CMCs cultivated alone and in CMCs co-cultured with MSCs (Figure 

11). In day 3 of observation the signal was also visible (Figure 12), but cells already showed 

first signs of deterioration, after this day rapid decrease in observed signal was found. 

 

 

 

Figure 10 - Morphology of CMCs in time; A – freshly isolated CMC with long trabecular 

shape, rough edges and stripes, B – D – morphology pathologies of CMCs in long term 

culture (3 – 10 days), CMCs loose stripes, edges starts to round and cell crooks, E – dying 

cell, F – dead cells and cellular debris. 
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Figure 11 - Fluorescent microscopy of mitochondria in CMCs in day 1 of cultivation (red color – 

functional mitochondria, blue color – nuclei). Upper row CMCs cultivated alone, bottom row 

CMCs co-cultured with MSCs; A, E – Fluorescent microscopy of cell culture, B,F – Same frame 

of cell culture but taken in bright field, C,G – detail of single cardiomyocyte in fluorescence, D – 

detail of single cardiomyocyte in brightfield, CMC exhibits rough edges and nice stripes, H – 

detail of single cardiomyocyte in brightfield, CMC exhibit stripes, but edges already start to 

round. 

 

Figure 12 - Fluorescent microscopy of mitochondria in CMCs in day 3 of cultivation (red color – 

functional mitochondria, blue color – nuclei). Upper row CMCs cultivated alone, bottom row 

CMCs co-cultured with MSCs; A, E – Fluorescent microscopy of aging cell culture, B,F – Same 

frame of cell culture but taken in bright field, more cell pathologies and less stripes is visible in 

comparison with day 1, C,G – detail of single cardiomyocyte in fluorescence, D – detail of single 

cardiomyocyte in brightfield, edges are round and stripes are hardly visible, H - detail of single 

cardiomyocyte in brightfield, edges are round, stripes hardly visible and inside the cell apoptotic 

vacuole formation is visible. 
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5.3.3.2 Cardiomyocyte survival evaluation 

CMCs cultivated with MSCs in the transwells, without cell-to-cell contact, preserved 

CMCs morphology for aproximatelly one day longer than CMCs cultivated without MSCs. 

Quantification of results by experienced observer showed uneven distribution of data, so non 

parametric statistics, Wilcoxon test, was used. CMCs cultivated without MSCs showed 

statistically significant (p = 0,0196) decrease in ratio of living cells between day 1 and day 3 

of assessment. Comparison of ratio of living CMCs in culture with and without MSCs in day 

1 showed diffrence, but not significant.  In day 3 the difference between both CMCs groups 

was statistically significant (p = 0,0152). MSCs positively influenced CMCs in culture 

(Figure 13). 

 

 

 

Figure 13 - Comparison of percentage of living CMCs in culture with/without MSCs, Count 

of living CMCs in both culteres decrease in time. 

* Decrease in number of living CMCs cultivated without MSCs, while comparing 1st and 3rd 

day of cultivation, according to Wilcoxon test, was statistically significant (p = 0,0196). 

** Survival of CMCs was significantly higher in CMCs cultivated with MSCs in day 3, 

according to Wilcoxon test p = 0,0152. 
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5.3.4 Cardiomyocyte mitochondrial functions 

Oxygen consumption (Figure 14) of intact CMCs had tendency to decrease with 

cultivation time, but the decrease was not significant in both CMCs groups, cultivated with 

and without MSCs. Basic respiration (ROUTINE state) fluctuated from 249 ± 62 pmol/(s*10
6
 

cells) in CMCs cultivated for 1 day without MSCs and 126 ± 42 pmol/(s*10
6
 cells) in CMCs 

cultivated for 3 days with MSCs (Figure 15A). 

Similar characteristics showed also state LEAK (Figure 15B). Maximal respiration 

induced by FCCP was nearly identical for both CMCs groups and had small trend to decrease 

in time (Figure 15C). 

 

 

 

 

 

Figure 14 - Typicall curve of oxygen consumption by cultivated CMCs (in 3rd day of culture 

without MSCs). Red line shows oxygen consumption, blue line shows oxygen concentration 

in chamber. Oxygen consumption in chamber in pmol/(s*ml) is immediatelly transferred to 

pmol/(s*10
6
 cell). Vertical lines mark application of variety of chemicals: Omy = oligomycin; 

FCCP = karbonylkyanid-p-trifluoromethoxyfenylhydrazon; Rot = rotenon. 
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Figure 15 - Oxygen consumption in states: ROUTINE (A), LEAK (B) and ETS (C) in intact 

CMCs measured in day 1 and day 3 of cultivation with (YES) or without MSCs (NO). 

Oxygen consumption is corrigated for residual oxygen consumtion and showed in pmol per 

second per milion cells. 

 

5.3.5 Cardiomyocyte electrophysiology 

Cell culture had detrimental effect on calcium transient and contraction of CMCs 

(Table 3). CMCs cultured for 3 days compared to CMCs culture for 1 day showed significant 

decrease in the baseline values of transient and contraction amplitude and decrease in 

transient and contraction velocities.  

Cultivation of CMCs with MSCs did not prevented the changes. Moreover calcium 

transients of cells cultivated with MSCs after 1 day of cultivation showed significantly slower 

departure and return velocity, longer time to 50 % of peak, shorter time to 10 % of peak and 

lower peak (amplitude of the peak is also higher, but not significantly) compared to cells 

cultivated for 1 day without MSCs. Contraction of these cells was not significantly different. 

In cells cultivated for 3 days were differences in calcium transients mostly inverse (CMCs 

cultivated with MSCs showed better calcium transients), but significant only for sin exp amp, 
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sin exp tau and peak. Contraction of cells cultivated for 3 days was significantly different only 

in the integral (CMCs cultivated without MSCs had higher integral), but contraction of the 

CMCs cultivated with MSCs was worse. 

 

Table 3 - Data for calcium transients and contraction in CMCS cultivated with or without 

MSCs for 1 day and 3 days. 

Paramete

r 

Transient D1 Transient D3 Contractions D1 Contractions D3 

no 

MSCs 

with 

MSCs 
no MSCs 

with 

MSCs 

no 

MSCs 

with 

MSCs 
no MSCs 

with 

MSCs 

baseline (bl) 0,49 ± 0,05 0,52 ± 0,11 0,44 ± 0,05 
0,46 ± 0,06 

# 
1,82 ± 0,08 1,8 ± 0,09 1,74 ± 0,14 # 1,69 ± 0,27 # 

dep v 
20,23 ± 

9,01 

13,63 ± 7,13 

* 

4,84 ± 2,97 

# 

5,24 ± 2,48 

# 
-0,75 ± 0,5 -0,56 ± 0,48 -0,24 ± 0,17 -0,19 ± 0,14 # 

ret v 
-1,44 ± 

0,55 

-0,97 ± 0,46 

* 

-0,34 ± 0,19 

# 

-0,4 ± 0,19 

# 
0,69 ± 0,5 0,4 ± 0,27 0,11 ± 0,08 # 0,09 ± 0,05 # 

peak 0,85 ± 0,1 
0,79 ± 0,13 

* 

0,54 ± 0,08 

# 

0,59 ± 0,07 

*# 
1,73 ± 0,09 1,74 ± 0,11 1,71 ± 0,14 1,66 ± 0,27 

peak h 0,36 ± 0,09 0,27 ± 0,09 0,1 ± 0,04 # 
0,12 ± 0,05 

# 

0,094 ± 

0,043 

0,064 ± 

0,039 

0,029 ± 

0,017 # 

0,023 ± 0,012 

# 

peak t 
0,079 ± 

0,047 

0,066 ± 

0,031 

0,164 ± 0,15 

# 

0,154 ± 

0,14 # 

0,331 ± 

0,111 

0,336 ± 

0,151 

0,376 ± 

0,141 
0,345 ± 0,154 

t to peak 

10,0% 

0,008 ± 

0,021 

0,005 ± 

0,002 * 

0,005 ± 

0,006 

0,006 ± 

0,009 

0,051 ± 

0,075 

0,037 ± 

0,018 

0,033 ± 

0,011 # 
0,075 ± 0,1 

t to peak 

50,0% 

0,013 ± 

0,007 

0,014 ± 

0,004 * 

0,014 ± 

0,003 

0,016 ± 

0,004 

0,108 ± 

0,037 

0,107 ± 

0,045 

0,101 ± 

0,041 # 
0,113 ± 0,064 

t to bl 10,0% 0,14 ± 0,06 0,16 ± 0,08 
0,27 ± 0,17 

# 

0,24 ± 0,18 

# 
0,42 ± 0,15 0,43 ± 0,19 0,48 ± 0,16 0,44 ± 0,17 

t to bl 50,0% 0,35 ± 0,08 0,37 ± 0,11 
0,51 ± 0,18 

# 

0,51 ± 0,13 

# 
0,51 ± 0,18 0,54 ± 0,24 0,65 ± 0,14 0,62 ± 0,19 # 

sin exp amp 0,31 ± 0,15 0,3 ± 0,14 
0,08 ± 0,05 

# 

0,14 ± 0,07 

*# 

-0,054 ± 

0,031 

-0,03 ± 

0,023 

-0,021 ± 

0,013 # 

-0,016 ± 

0,011 # 

sin exp tau 0,28 ± 0,21 0,51 ± 0,33 0,37 ± 0,31 
0,61 ± 0,42 

* 
0,11 ± 0,08 0,11 ± 0,1 0,26 ± 0,24 0,25 ± 0,24 # 

sin exp off 0,44 ± 0,08 0,43 ± 0,13 0,42 ± 0,05 0,43 ± 0,07 1,82 ± 0,08 1,81 ± 0,09 1,75 ± 0,51 1,69 ± 0,27 # 

integral 0,12 ± 0,03 
0,096 ± 
0,046 

0,047 ± 
0,016 # 

0,058 ± 
0,02 # 

0,036 ± 
0,022 

0,028 ± 
0,021 

0,016 ± 0,01 
# 

0,012 ± 0,006 
*# 

* Statistically significant results to time matched cells cultivated without MSCs;  

# statistically significant to cells cultivated for 2 days (cultivation matched). 

 

 

5.4 MSCs and liver regeneration 

5.4.1 Concentration of IL-6, IL-8, TNF-α, TGF-β 

Plasma samples from 7 timepoints of chronic liver disease experiment were analysed 

with Luminex for concentrations of IL - 6, IL - 8, TNF – α and TNF – β (Figure 16). Statistics 

of the results showed no significant differences (Mann Whitney U test, p < 0,05). 

Yet, concentration of IL – 6 showed increasing trend since the first evaluated 

timepoint (0 h) in both groups, from the third timepoint (1 day) concentration of IL – 6 

continued to rise in group treated with MSCs, meanwhile NO MSCs group showed decrease 

in IL – 6 concentration. Trend was visible, however, there was not statisticall significance in 

measured concentrations.  
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Concentration of IL – 8, of pro-inflammatory interleukin, together with concentration 

of TNF – α, cytokine of acute phase of inflammation, showed no specific trend in all 

measured times in both groups. Concentration of TNF – β had increasing trend, but similar in 

both measured groups. 

 

 

 

Figure 16 - Quantification of pro-inflammatory cytokines and TGF-β in plasma of pigs. 

Values are expressed as % of marker level in time point T = 0 h and standard error means are 

shown. 
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5.4.2 Liver morphology and morphometry analysis 

Quantitative histology analysis of liver morphology (Figure 17) showed no significant 

differences between both, MSCs and NO MSCs, groups and also comparison of samples 

before and after regeneration period (14 days) did not show any significant (Figure 18). 

Regenerated samples after application of MSCs had a smaller VV(hepatocytes, liver) 

(59.5±10.1%, mean ±SD) than the samples of the same individuals before regeneration 

(70.2±5.5%) (Wilcoxon matched pairs test p = 0.013), retaining their percentage division to 

individual groups in the same animals before and after applying MSCs.  

After MSCs application, the volume fraction of connective tissue within the 

regenerated liver was negatively correlated with the mean volume of hepatocytes (Spearman 

R=-0.78 in mononuclear hepatocytes and -0.70 in polynuclear hepatocytes), so the regions 

with more connective tissue contained smaller hepatocytes (Table 4). This correlation was 

absent in animals in NO MSCs group. After MSCs application, the volume fraction of both 

mononuclear and polynuclear hepatocytes within the regenerated liver was strongly correlated 

with the volume fraction of hepatocytes (R=0.69), so the regions containing more regenerated 

hepatocytes were populated by mainly mononuclear hepatocytes. This correlation was much 

weaker (R=0.23) in animals in NO MSCs group.  

 



75 

 

 

Figure 17 - Quantitative histological analysis and examples of liver morphology in the 

selected experimental groups. A – The volume fraction of connective tissue within the liver 

was estimated using a point grid (yellow). Cross-sectional area of hepatic lobules was 

estimated using a two-dimensional nucleator probe (red). B – In hepatocytes selected with the 

counting frames, the volume fraction of hepatocytes within the liver was quantified using the 

point grid (red marks). The mean volume of individual hepatocytes was estimated using the 

nucleator probe (red lines with intercepts on the edges of the hepatocytes). The areas with 

portal triads in animals with MSCs transplantation at resected (C) and regenerated (D) groups 

are showed. Overall morphological pictures of liver structure are shown in animals without 

MSCs transplantation at day 0 (E) and day 14 (F) groups without apparent differences in 

compared areas. Isolated areas of bile obstruction (arrows) are shown on E and F. Alcian blue 

and nuclear red stain (A,C,F), PAS stain (B,D,E). Scale bars 500 μm (A), 50 μm (B), 100 μm 

(C,D), 200 μm (E,F). 
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Figure 18 - Results of the histological morphometry comparing day 0 (RESECTED) and day 

14 (REGENERATED) for two groups; with MSCs administration and without MSCs. No 

significant differences were found when comparing the volume fractions of mononuclear 

VV(MH,liver) and polynuclear hepatocytes VV(PH,liver), connective tissue 

VV(connective,liver), and blood and billiary vessels VV(connective,liver). 

 

 

Table 4 - Correlations between histological morphometric parameters specified in the first 

and second columns in separate experimental groups. Spearman coefficients in significant 

correlations (p <0.05) are presented. 

Parameter 1 Parameter 2 
WITH MSCs WITHOUT MSCs 

day 0 day 14 day 0 day 14 

VV 

(hepatocytes, 

liver) 

VV (BB,liver) -0.76 -0.71 -0.82 -0.93 

VV 

(MH,liver) 
- 0.69 0.66 0.23 

VV (PH,liver) - -0.69 -0.66 -0.23 

V (MH) V (PH) 0.65 0.72 0.78 0.61 

VV (MH,liver) VV (PH,liver) -0.96 - - - 

VV 

(connective, 

liver) 

V (MH) - -0.78 - - 

V (PH) - -0. 70 - - 
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5.5 MSCs and GVHD 

5.5.1 In vitro GVHD model 

Stimulation of lymphocytes with alloantigens or PHA and fMLP enabled to create in 

vitro GVHD model sufficient to analyse immunosuppresive effect of MSCs co-cultured with 

these lymphocytes. In total 32 experiments were peformed. The results were obtained by 

MTT test, where absorbance level represents the metabolic and proliferative activity of 

cocultured lymphocytes. 

Positive control, lymphocytes stimulated with HLA incompatible inactivated 

lymphocytes, showed increase in metabolic activity with an increment of absorbance by 0,24 

(p < 0,001) compared to negative control, unstimulated lymphocytes. In contrast to this 

observation, in co-cultivation experiments, where MSCs were present, the decline of 

absorbance was observed. The average decline of absorbance for MSCs/lymphocyte ratio 1:5 

was by 0,23 (p < 0,01), in 10 x diluted MSCs (1:50) the decline was 0,10 (p < 0,01) and in 

100 x diluted MSCs (1:500) the average decline by 0,02 (p=0,043) was measured. 

The presence of MSCs led to an absorbance decline in all tests in comparison with 

positive control. The effect of MSCs was dose dependent, the higher amounts of MSCs added 

into lymphocytes, the better immunosuppresive response was measured; in co-culture with 

MSCs/lymphocyte ratio 1:5 the absorbance level decrease by 62%, in ration 1:50 the decrease 

was by 26% and in ratio 1:500 the decrease was 6% only (Figure 19). 

Also comparison of groups of lymphocytes stimulated with PHA or fMLP showed 

significant differences in absorbance. Both groups were co-cultured without and with MSCs 

(1:5 ratio). The presence of MSCs decreased lymphocyte activity. The absorbance was 

reduced by 0,17 (p < 0,01) in samples stimulated with fMLP and by 0,31 (p < 0,001) in 

samples treated with PHA, which corresponded to decline by 42% and 67% (Figure 20). 
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Figure 19 - Reduction of stimulated lymphocytes metabolic activity after MSCs addition 

(stimulation with alloantigenes). The co-cultivation with MSCs reduces the metabolic activity 

of stimulated lymhocytes in comparison with positive control. The higher dilution of MSCs i 

suspension, less effective the suupression is, the effect is highly dose dependent. 

MTT absorbance values showed, Wilcoxon pair test (median; box: 25%, 75% quantiles; non-

outlier min, non-outlier max). 

 

Figure 20 - Reduction of metabolic activity of stimulated lymphocytes after MSCs addition 

(nonspecific stimulation). Cocultivation with MSCs reduces significantly the metabolic 

activity of lymphocytes (p < 0,001) both stimulated with fMLP (A) and PHA (B). 

Abbreviations: fMLP – N-formyl-Met-Leu-Phe, PHA – phytohemagglutinin. 

MTT absorbance values showed, Wilcoxon pair test (median; box: 25%, 75% quantiles; non-

outlier min, non-outlier max) 
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5.5.2 MSCs and GVHD patients 

MSCs were administered to 8 patients with acute GVHD and to 10 patients with 

chronic GVHD. Blood samples from 5 timepoints (0 h, 14 days, 1 month, 2 months, 3 

months) were processed and Tregs presence together with helper T-lymphocytes were seeked 

and evaluated.  

For Tregs detection two approaches were compared (Figure 21). It was shown, that 

there is no significant difference in number of Tregs as CD4
+
, CD25

bright+
, CD127

-
 and Tregs 

with markers CD4
+
, CD25

bright+
, FoxP3

+
. Any of these antibody sets showed to be alone 

sufficient enough to show Tregs population.  

MSCs administered to patients with chronic GVHD showed to have supportive effect 

on number of Tregs (CD4
+
/FoxP3

+
 population), the trend was visible in each blood draw, 

with the biggest influence in 3 months after application of MSCs into patients. As visible in 

Figure 22, other measured parameters varied, for example production of IL – 17 was 

decreased after MSCs application, but in the 3 months check (T= 100) it was nearly in the 

same level as before MSCs application.  

MSCs administered to patients with acute GVHD showed to have no influence on 

number of Tregs, whose number decreased in time, as visible in Figure 23. The levels of IL – 

4 and IL – 17 in blood of patients increased with time. IFN – γ levels in patients blood was 

decreased after MSCs administration and remained low in all experimental time points 

suggesting long term effect of MSCs application on Tregs. However non of the showed result 

was statistically significant. 

If the extreme values would be removed, for acute and also chronic GVHD data, 

differences would be more prominent, but still not significant, more patient need to be 

enrolled in study to obtain statistically significant results. 

Despite the insignificant changes in measured parameters, clinical improvement of 

GVHD in patients was satisfactory. In 90 % of patients enrolled in study dose of 

corticosteroids was decreased. In three patients with acute GVHD total remision occured, in 

other three partial remission was observed. Chronic GVHD is harder to manage, but two 

patients reached partial remission of disease. However, clinical observation and data were not 

part of this work. 
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Figure 21 - Example of Tregs gating strategy in flow cytometry. Comparison of two different 

antibody sets (B,C) A – subpopulation of lymphocytes positive for CD4 (43,5 %). B – Tregs 

positive for CD25 and also CD127 (15,1 %). C – Tregs positive for CD4 and FOXP3 (15,6 

%). 
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Figure 22 - Chronic GVHD after MSCs administration, changes of numbers of Tregs and helper 

T-lymphocytes in timepoints (14 days, 30 days, 60 days, 100 days). No significant differences 

were found. A – count of white blood cells (WBC), B – count of all lymphocytes, C – Tregs 

(CD25+,CD127-) count development in time, D - Tregs (CD4+,FOXP3+) count development in 

time, E – levels of IL-4 in time, F – levels of IFN-γ in time, E – levels of IL-17 in time. 
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Figure 23 - Acute GVHD after MSCs administration, changes of numbers of Tregs and 

helper T-lymphocytes in timepoints (14 days, 30 days, 60 days, 100 days). No significant 

differences were found. A – count of white blood cells (WBC), B – count of all lymphocytes, 

C – Tregs (CD25
+
,CD127

-
) count development in time, D – Tregs (CD4

+
,FOXP3

+
) count 

development in time, E – levels of IL-4 in time, F – levels of IFN-γ in time, G – levels of IL-

17 in time. 
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6 Disscussion 

Mesenchymal stem cells are promissing cell type for cellular therapy for wide variety 

of diseases of the future [Bouchez et al., 2008; Qian et al., 2008; Basiouny et al., 2013]. Since 

their discovery, their isolation and cultivation was well described [Reyes et al., 2001], 

together with exact criteria for their verification [Dominici et al., 2006]. In our work we 

isolated swine and also human MSCs from bone marrow. Standart procedure was sufficient to 

gain more than 98 % purity of MSCs culture. 

Morphology observation showed that cell possesed spindle shape with several spurs 

and large nucleus. With commercialy accesible media we confirmed that our cells were able 

to differentiate into adipocytes, osteocytes and chondrocytes, flow cytometry confirmed 

MSCs antigenes on the surface of these cells.  

Series of experiments with swine MSCs was performed to elucidade their role in 

cardiac and liver regeneration. Human MSCs were used for determination of role of MSCs in 

immunomodulation, specifically in GVHD. 

6.1 MSCs and cardiomyocytes 

Influence of MSCs on CMCs has been studied in many works [Silva et al., 2014; 

Psaltis et al., 2014; Narita and Suzuki, 2015], but application of these findings into clinical 

practice is not satisfactory yet [Nowbar et al., 2014]. Majority of the studies has been 

performed on small animal models, but large animals, such is pig, are more similar to human 

[Reardon, 2015] and transfer of obtained data into clinical practice should be easier.  

For our experiments, isolated primary adult swine CMCs were chosen, because of 

their similarity to CMCs in functional heart [Graham et al., 2013]. Primary CMCs, as fully 

differentiated cells, are unable to proliferate and their life span is short, so experiments need 

to be performed within few days [Xu and Colecraft, 2009]. 

Isolation of primary adult swine CMCs showed to be very difficult, process needed a 

lot of optimisation experiments and yet the results were not satisfactory. Isolated CMCs were 

easily distinguishable from surrounding cells according to the long shape with rough edges 

and stripes on the cell body. In our experiments, we gained low yield of living CMCs in cell 

suspension from each isolation, contrary to isolation results published in smaller animals 

[Ellingsen et al., 1993]. 

In the literature can be found that CMCs are able to adhere to cultivatuíon surface, 

which helps with culture purification, because other cells can be washed away [Mitcheson et 
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al., 1998; Louch et al., 2011]. We tryied 4 different cultivation surfaces, where we found that 

CMCs adhered only to coated (laminin or gelatine) cultivation surface but nearly not to 

normal non treated cultivation plastic. Contrary to literature [Louch et al., 2011], in our 

experiments also other cells, dying and dead, adhered to cultivation surface proportionally to 

CMCs. Cultivation itself did not helped to increase percentage of living CMCs in culture. 

Magnetic separation of living CMCs from other cells was more efficient, but expensive and 

time consuming. 

Adult CMCs live in culture for approximatelly 3 days, later dedifferentiation and 

progressive cell death follows [Banyasz et al., 2008; Mitcheson et al., 1998]. Our experiments 

are in agreement with these findings. Co-cultivation with MSCs improves CMCs survival, 

especially when cell-to-cell cross-talk is enabled [Plotnikov et al., 2008]. In our experiments 

CMCs cultured directly with MSCs maintained their morphological integrity for the longest 

time, but also adhered to each other and precluded further manipulation without cellular 

damage.  

CMCs cultivated across the transwells with MSCs showed statistically longer survival 

in culture then CMCs cultivated alone. While CMCs without MSCs showed significant 

decrease in percentage of living CMCs in culture between day 1 and day 3, difference 

between day 1 and day 3 for CMCs cultivated with MSCs were not significant. In day 3 

comparison of CMCs cultivated with and without MSCs resulted in statistically significant 

bigger percentage of living CMCs in co-culture. 

High-resolution oxygraphy of cell suspension showed decrease in mitochondrial 

respiration of CMCs during the cultivation time in both groups. Co-cultivation of CMCs with 

MSCs was not significantly harmful or beneficial. 

Electrophysiological values of calcium currents and CMCs contractility on single cell 

level showed deterioration in functions of CMCs in time. Cultivation of CMCs lead to 

decrease in the resting values of intracellular calcium, deceleration of calcium release from 

the sarcoplasmic reticulum, decrease in calcium transient amplitude and deceleration of 

calcium decrease during relaxation. These changes were accompanied with deceleration of 

contraction and relaxation speed and decrease in contraction amplitude. Co-cultivation of 

CMCs with MSCs did not prevent these undesirable changes. After 1 day of cultivation 

CMCs co-cultivated with MSCs showed significantly worse results than cells cultivated 

without the MSCs. After 3 days of cultivation the calcium transients were less impaired in 

cells co-cultivated with MSCs, but not significantly. Moreover, contraction parameters 

remained worse in MSC co-cultivated cells. Therefore co-cultivation of the cardiomyocytes 
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with MSCs was not significantly beneficial for calcium handling and contraction of the 

isolated CMCs. 

Our results showed statistically significant improvement of percentage of living CMCs 

in 3rd day of culture in CMCs co-cultured with MSCs. Contrary to that, mitochondrial 

functions and electrophysiology parameters of CMCs seemed not to be influenced by MSCs 

co-culture. Possible explanation could be that MSCs have trully beneficial effect on CMCs, so 

the cells lived longer in better condition. High-resolution oxygraph results of mitochondrial 

respiration were related to number of cells in chamber. Therefore the higher number of living 

CMCs in sample of co-cultured CMCs showing similar results as the strongest survivor cells 

in CMCs culture only shows beneficial effect of MSCs, which in results related to cell count, 

was hidden. Similarly to that, electrophysiological parameters were measured on single cells, 

so not significant differences between both groups may mean that MSCs helps CMCs to 

maintain not only morphological parameters, but also functional parameters for longer time.   

6.2 MSCs and liver regeneration 

Influence of MSCs on liver tissue has been studied intensively [van Poll et al., 2008]. 

Many of the studies are performed on small animal models, but it is known, that large 

animals, such is pig, are closer to people in many ways [Reardon, 2015]. 

Our surgeon team introduced new, clinicaly relevant, model of chronic liver disease in 

swine due to biliary obstruction. After nine weeks of biliary obstruction effect, resection of 

left lobe was performed. This model mimics similar situation in human patients, who suffer 

from biliary obstruction due to malignancies or other leasions  [Barbier et al., 2014], whose 

liver is damaged and who need resection of affected liver tissue  [Govil and Ramaswamy, 

2012]. These patients are in high risk of severe life threatening complications. Improved 

regeneration by MSCs could be very beneficial to them.  

MSCs have documented ability to support liver regeneration via production of 

different cytokines and chemokines [Lin et al., 2011]. In our work MSCs suspension was 

administered to 10 pigs after liver lobe resection, 11 pigs received saline solution only. 

Production of cytokines was evaluated in plasma of pigs for 14 days, but no significant 

differences between MSCs and NO MSCs group were found. Group which received MSCs 

showed higher concentrations of IL – 6, which is pro inflammatory cytokine, but it has been 

reported to have important role in stimulation of hepatocyte proliferation [Wang et al., 2015; 

Lin et al., 2011], however, the difference was not statistically significant. All other measured 
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parameters IL – 8, TNF – α and TNF – β showed inconsistend results with no visible trends 

and no statistically significant results.  

Analysis of histological morphometry parameters showed difference between liver 

samples from animals with MSCs administration and from animals from NO MSCs group. 

Different correlation patterns were found in day 14 between group MSCs and NO 

MSCs in relation between VV (hepatocytes, liver) and the fractions of mononuclear and 

polynuclear hepatocytes. Although the mononuclear and the polynuclear hepatocytes are 

frequently mentioned and separately classified in many studies about liver regeneration 

[Nakatani et al., 1997; Gorla et al., 2001], the interpretation of importance of nuclei count is 

still insufficient. Binucleated hepatocytes are reported to be common in healthy liver, in 

human it is approximately 20 – 30 % of hepatocytes [Nadal and Zajdela, 1967], on the other 

hand, increase of binucleation in hepatocytes can be linked to hepatic recovery process 

following injury as a late result of oxidative stress [Nakatani et al., 1997]. Therefore, our work 

results may indicate an inclination towards a better microenvironment for hepatocyte 

regeneration with increased fraction of mononuclear hepatocytes in regions of hepatocytes 

regeneration in animals with MSCs transplantation. However, more experiments need to be 

performed to elucidate the biological role of mononuclear and polynuclear hepatocytes during 

liver regeneration.  

Another difference between MSCs and NO MSCs group was in reduced volume 

fraction of hepatocytes in the liver tissue of a group with MSCs on day 14, which was 

accompanied with insignificant increase of volume of connective tissue and blood and biliary 

vessels. The possible explanation of this finding might be that MSCs transplantation can 

stimulate proliferation of connective tissue [Forbes et al., 2004], which reduces the space for 

parenchymal hepatocytes. 

We showed that MSCs transplantation do not have significant beneficial effect on liver 

regeneration in animals with liver damage caused by biliary obstruction after liver resection, 

which is contrary to literature [Adas et al., 2016]. Cytokine analysis showed no significant 

difference between groups and morphometry analysis results are not convincing either. The 

importance of different ratio between mononuclear and polynuclear hepatocytes in day 14 

between both groups needs to be verified by further studies, while increased connective tissue 

volume at the expense of proper hepatic tissue is not beneficial for sure.  

One of the reasons of not convincingly beneficial results may be that evaluation time 

period was too short. Longer time observation could show more promissing results, especially 

in the animal of pig size. Other reason could be that dose of MSCs was too small, either our 
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pigs needed more than 1 x 10
6 

cells / kg or MSCs after application were trapped somewhere 

else than in liver. In general condition as chronic liver disease is, many organs may express 

stress signals causing MSCs homing elsewhere than to liver.  

6.3 MSCs and GVHD 

GVHD is a serious condition generalized to whole body. Many cells have a role in 

development of GVHD, but lymphocytes are the most important. MSCs are able to affect immune 

reaction by inhibition of inflamatory cytokine production and by increase of expression of 

suppressive cytokines. 

Many studies showed that MSCs suppress T – lymphocyte proliferation in culture 

[Maccario et al., 2005; Di Nicola et al., 2002] and our results are consistent with these findings. In 

our study MSCs showed the capacity to significantly affect nonspecific activation of lymphocytes. 

MTT test showed significant decrease (60 %) in absorbance, corresponding to reduction in 

metabolic and proliferation activity, of lymphocytes co-cultured with MSCs in comparison with 

the positive control. The immunosuppresive effect was present in lymphocytes stimulated with all 

used methods, alloantigene stimulation, PHA and fMLP stimulation. Therefore our analysis 

confirmed that MSCs can regulate lymphocytes stimulated with HLA incompatible lymphocytes, 

which is the situation corresponding to severe forms of chronic GVHD after allogeneic 

hematopoietic stem cell transplantation. The immunomodulatory effect of MSCs is dose-

dependent. As it was described previously [Ramasamy et al., 2008], optimal dose is ranging from 

1:1 to 1:10 MSCs / lymphocyte ratio.  In our study the higher ratio of MSCs, bigger 

immunosuppressive effect was observed.  As ideal, ratio 1:5 shown, however, the exact dose and 

frequency needs to be optimised in larger study. 

As mentioned in this work, administration of MSCs into patients with severe GVHD 

started in Hematology-oncology department. MSCs isolated from healthy donors, cultivated, 

freezed and recultivated again were used, despite the findings that freezing of the cells may 

innactivate some of their immunomodulatory properties due to heat-shock response [François et 

al., 2012]. In another work our team confirmed that recultivation of MSCs after thawing helps to 

restore original MSCs properties [Holubova et al., 2014]. 

In the time of MSCs application, first blood draw for determination of Tregs and helper T-

lymphocyte population was taken from patients. In day 14, day 30, 1 month and 3 months more 

samples were collected.  

Optimisation of Tregs detection in flow cytometry was performed. Two sets of antibodies 

were tested as the options for regulatory Tregs detection. Population of cells CD4+, CD25bright+ 

and FoxP3+ is considered to be true Tregs [Valencia and Lipsky, 2007], but staining with FoxP3 
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requires cell permeabilisation and another washing steps, which can cause unfortunate cell loss. 

According to some authors, determination of Tregs according to CD4+, CD25bright+, CD127- is 

sufficient [Yu et al., 2012], cell processing is shorter and chance to wash cells away is smaller. In 

our work we compared results and counts of cells determined with both antibody sets. We found 

that both antibody sets are equal, counts of Tregs identified with both antibody sets were similar. 

Therefore, for further experiments, detection of Tregs with anti-CD4, anti-CD25 and anti-CD127 

can be used only. 

Application of MSCs into patients with chronic and also acute GVHD is considered to be 

possible treatment option of the future, which is tested in clinical trials [Rizk et al., 2016; 

Miyamura, 2016]. According to preliminary study results, MSCs administration is more beneficial 

for patients with acute GVHD, in chronic GVHD fibrotic changes are already present, damage is 

large and irreversible [Herrmann and Sturm, 2014].  

In our work MSCs transplantation did not showed statistically significant effect on 

patients, both with acute and chronic GVHD. However in chronic GVHD disease, results of 

MSCs transplantation were more prominent.  

Inconclusive results in both patient groups could be caused by small size of study group 

and by heterogenity of patients, depending on disease behaviour. In the moment of enrollment 

into study, patients had different immunosuppression levels, severity of disease itself varied and 

appropriate timepoint of MSCs administration was seeked. Neverthless, obtained data suggest that 

repetitive administration of MSCs could fortify MSCs immunomodulatoy effect. This information 

is taken to consideration now and new study design is prepared. 

Despite the laboratory results, majority of patients experienced significant clinical 

improvement of their condition. In 3 month check more than 90 % of patients received lower 

corticosteroid doses, in average 59 % of initial dose (21 – 100 %). In acute GVHD patient group 

even 3 patients reached complete remission, in 3 patients partial remission occured. In chronic 

GVHD patient group clinical improvement was not so obvious, but also here 2 patients reached 

partial remission. 

Although this study was focused on laboratory results, which were not satisfactory, 

clinical improvement of patient condition was clear and encouraging, showing MSCs 

administration into patients is meaningful and beneficial. More patients will be enrolled in this 

study to gain sufficient set of data for valid statistics analysis, to confirm clinical observation also 

on laboratory data. 
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7 Conclusion 

This work was focused on the elucidation of role of MSCs in regeneration of vital 

organs, heart and liver, and on MSCs immunomodulatory properties in GVHD.  

MSCs showed the significant regenerative and immunomodulatory properties, when 

they supported cardiomyocytes survival and supressed lymphocyte activity in in vitro 

experiments.   

However, in preclinical and clinical settings of liver steatosis followed with liver lobe 

resection and GVHD, respectively, the MSCs administration into organism neither repair 

regenerated liver function nor improve GVHD progress significantly. Particulary, MSCs 

exhibited tendency to support connective tissue formation in liver, which may not be always 

beneficial for regenerating of the organ. MSCs immunomodulatory properties were visible in 

patients conditions improvement, but measured immune parameters were not significant.The 

discrepancies between in vitro and preclinical and clinical studies show the issue of proper 

validation criteria of MSCs influence. Requirement of large number of individuals enrolled in 

studies remains the biggest challenge. 

Our work indicated new perspectives, which need to be considered in future research.  

Obtained results from large data sets will provide significant and meaningful information 

necessary for transfer of MSCs administration into clinical practice.  
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1 Úvod 

Kardiální insuficience široké etiologie je jednou z vedoucích příčin úmrtnosti v lidské 

populaci (1). Po prodělání koronární příhody se často stav pacientů ještě dále zhoršuje, mnoho 

z nich nakonec dospěje k fatálnímu srdečnímu selhání (2). Díky vývoji v odvětví 

farmakoterapie, kardiochirurgie a intervenční kardiologie jsou možnosti léčby koronární 

insuficience široké, přesto se stále objevují nové případy, kdy je postižení srdeční tkáně příliš 

rozsáhlé a terapie tudíž nedostatečná (3). 

Bylo prokázáno, že mesenchymální kmenové buňky (MSC) mají příznivý efekt na 

hojení srdeční svaloviny (1,3,4). Tento efekt může být dvojího charakteru, MSC mohou 

diferencovat do buněk srdeční svaloviny, kardiomyocytů (CMC), a/nebo podporovat funkci 

CMC produkcí bohaté směsi regulačních a podpůrných molekul (např. interleukin 10 (IL-10), 

vaskulární endoteliální růstový faktor (VEGF), fibroblastový růstový faktor (FGF) a další), a 

podpořit tak regeneraci srdce jako celku (5–8). I přes značné množství in vitro (9–11) a in 

vivo (6,12,13) experimentů ukazujících pozitivní vliv MSC na regeneraci srdeční tkáně, jsou 

výsledky klinických studií, kdy jsou MSC aplikovány pacientům se širokým spektrem 

kardiálních poškození, stále nejednoznačné (3,14,15). Pro úspěšnou transformaci aplikace 

MSC do běžné klinické praxe je tedy nutné detailněji pochopit působení MSC na CMC a 

přesněji definovat podmínky případného pozitivního působení MSC. 

Cílem této práce bylo připravit in vitro kulturu dospělých prasečích CMC a 

charakterizovat vliv prasečích MSC na přežívání CMC v in vitro kultuře. Pro tuto studii byly 

vybrány prasečí buňky, protože jejich charakteristiky jsou velmi blízké lidským (16). V rámci 
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studie byla provedena série in vitro experimentů od izolace a kultivace CMC až po jejich 

morfologické pozorování a kokultivační studie s MSC.  

 

2 Materiál a metody 

Veškeré zacházení s experimentálními zvířaty probíhalo v souladu se směrnicí 

Evropského parlamentu a Rady 2010/63/EU o ochraně zvířat používaných pro vědecké účely. 

Všechny experimenty byly schváleny Odbornou komisí pro práci s laboratorními zvířaty 

Lékařské fakulty v Plzni. 

 

2.1 Izolace a kultivace mesenchymálních kmenových buněk 

Pro experimenty byly využity mesenchymální kmenové buňky (MSC) izolované z 

kostní dřeně dospělých prasat (Sus Scrofa, n=5).  

Kostní dřeň byla získána aspirací z tuberositas tibiae prasat v celkové anestezii. 

Aspirát byl zředěn přidáním fosfátového pufru (PBS) v poměru 1:1 a opatrně navrstven na 

Ficoll-Paque
TM

 Plus (GE Healthcare, Velká Británie) v poměru 6:4. Po centrifugaci (435x g, 

30 min) následoval odběr opalescentní vrstvy mononukleárních buněk do čisté 15 ml 

zkumavky (Techno Plastic Products, TPP, Švýcarsko). Buňky byly promyty PBS a 

centrifugovány (1000x g, 8 min). Po odstranění supernatantu byla peleta resuspendována v 

kompletním MSC médiu, jež se skládalo z α-modified Eagle’s media (GE Healthcare, Velká 

Británie) obohaceného o 10% fetální bovinní sérum (FBS) (Biosera, Francie), penicilin (100 

IU/ml) a streptomycin (100 μg/ml) (Biosera, Francie). Buněčná suspenze byla nasazena na 

kultivační plast (TPP, Švýcarsko) a kultivována v inkubátoru za standardních podmínek (37 

°C, 5% CO2). Po 48 hod byly odmyty volně plovoucí buňky a přisedlé MSC zůstaly v kultuře. 

Výměna média probíhala každé 2-3 dny. 

 

2.2 Analýza fenotypu mesenchymálních kmenových buněk 

Pro ověření, zda se jedná o MSC, byla hodnocena morfologie buněk pod světelným 

mikroskopem, byl proveden test diferenciace, kde bylo sledováno, zda se buňky dokážou 

diferencovat do tří základních linií (adipocytární, chondrocytární a osteocytární) a 

průtokovým cytometrem byla ověřena exprese znaků typických pro MSC (CD44
pos

, CD73
pos

, 

CD90
pos

, CD45
neg

).
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2.2 1 Světelná mikroskopie 

Pomocí světelného mikroskopu (Nikon Eclipse Ti, Japonsko) byly identifikovány 

MSC jako přisedlé buňky s protaženým tělem, obsahujícím velké kulaté jádro, a s několika 

výběžky. 

 

2.2.2 Test diferenciace MSC 

Po oplachu neadherentních buněk (48h po izolaci) byla část MSC pasážována užitím 

trypsinu, TrypLE
TM

 Select (Gibco, Life Technologies, Dánsko) a nasazena na 3 jamky 

6jamkové destičky (TPP, Švýcarsko), kdy do každé jamky bylo přidáno jiné diferenciační 

médium. Pro diferenciaci do osteocytární linie bylo k MSC přidáno komerčně dostupné 

médium StemPro® Osteogenesis Differentiation Kit (Life Technologies, USA), pro 

diferenciaci do chondrocytární linie médium StemPro® Chondrogenesis Differentiation Kit 

(Life Technologies, USA) a pro diferenciaci do adipocytární linie médium StemPro® 

Adipogenesis Differentiation Kit (Life Technologies, USA). Výměna médií probíhala každé 3 

dny. Po 14 dnech kultivace v adipo- a chondro- diferenciačním médiu, respektive 21 dnech 

v osteo- diferenciačním médiu byly buňky opláchnuty PBS a obarveny. Adipocytární 

diferenciace byla potvrzena barvením Oil Red O (Sigma-Aldrich, USA), které červeně barví 

tukové částice uvnitř buněk. Chondrocytární diferenciace byla potvrzena barvením 

Alciánovou modří (Sigma-Aldrich, USA), která barví modře mukopolysacharidy přítomné 

v chrupavkách. A konečně, osteocytární diferenciace byla potvrzena barvením Alizarin Red S 

(Sigma-Aldrich, USA), které červeně barví kalceinové molekuly produkované 

diferencovanými buňkami. 

 

2.2.3 Ověření markerů MSC průtokovu cytometrií 

Část MSC (100 000 buněk) sklizená s využitím TrypLE
TM

 Select (Gibco, Life 

Technologies, Dánsko) byla použita k fenotypické charakterizaci MSC v průtokovém 

cytometru. Buňky byly promyty PBS, resuspendovány ve 100 μl PBS a smíchány se 3 

μl protilátek; anti-CD44 DAPI (Biolegend, USA), anti-CD45 FITC (Bio-Rad, USA), anti-

CD73 PE-A (RnD Systems, Kanada) a anti-CD90 APC (Biolegend, USA) a inkubovány 15 

min ve tmě při pokojové teplotě. Následně byla suspenze promyta PBS a buňky byly 

resuspendovány v 300 μl PBS. Cytometrická analýza byla provedena přístrojem BD FACS 

Aria Fusion (Becton Dickinson, USA) a výsledky vyhodnoceny BD FACS Diva 8.0.1 

softwarem. Jako MSC byly hodnoceny všechny buňky pozitivní na markery CD44, CD73 a 

CD90, které byly zároveň negativní pro CD45. 
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2. 3 Izolace a kultivace kardiomyocytů 

Kardiomyocyty (CMC) byly izolovány z levých komor mladých dospělých prasat (Sus 

Scrofa). Ze zvířete (n=5) v celkové anestezii bylo vyňato srdce, které bylo ihned ponořeno do 

ledově chladného Tyrodova roztoku bez přídavku vápníkových iontů (složení v mmol/l: NaCl 

137; KCl 4,5; MgCl2 1; CaCl2 2; glukóza 10; HEPES 5; pH bylo pomocí NaOH upraveno na 

hodnotu 7,4; vše Sigma Aldrich, USA). Po kanylaci přední sestupné větve levé věnčité tepny 

bylo srdce zavěšeno na Langerdorffův aparát a promýváno teplými (37°C) okysličenými 

roztoky. Nejdříve Tyrodovým roztokem bez vápníku (5 min), poté Tyrodovým roztokem s 

vápníkem (0,5 μM), kolagenázou (1 mg/ml; Roche Diagnostics, Německo) a hovězím 

sérovým albuminem (BSA, 0,5 mg/ml, Sigma-Aldrich, USA) po dalších 30 min. Na závěr 

bylo srdce promyto Tyrodovým roztokem bez vápníku (5 min). Po odstranění endokardu byly 

CMC získány z rozvolněné stěny levé komory, umístěny do Tyrodova roztoku (37°C) bez 

vápníku a opatrně přefiltrovány přes gázu. Koncentrace vápníku byla postupně navyšována 

v několika krocích (1; 5; 10; 100; 200 μmol/l) vždy po 10 minutách až na výsledných 0,2 mM 

Ca
2+

.  

Po izolaci byly CMC resuspendovány v kompletním CMC médiu Dulbecco's Modified 

Eagle Medium (DMEM) (Thermo Fisher Scientific, USA) obohaceném o 10% FBS (Biosera, 

Francie), 4 500 mg/l glukózy (Sigma-Aldrich, USA), 4 mmol/l L-glutaminu (Biosera, 

Francie) a 100 IU/ml penicilinu a 100 μg/ml streptomycinu (Biosera, Francie). Vzniklá 

suspenze buněk pak byla použita pro následující experimenty. 

 

2. 4 Zhodnocení výnosu izolace 

Po každé izolaci byl zkušeným pozorovatelem, s využitím světelné mikroskopie, 

zhodnocen procentuální poměr živých CMC ku mrtvým buňkám v buněčné suspenzi. Za živé 

CMC byly považovány všechny buňky s protáhlým tvarem, ostře ohraničenými konci a 

příčným pruhováním.  

 

2.5 Zvýšení podílu živých kardiomyocytů v kultuře 

2.5.1 Kultivační plast 

Pro efektivní oddělení živých CMC od dalších buněk suspenze a optimalizaci 

kultivačních podmínek byly testovány čtyři rozdílné kultivační povrchy; 1. běžný kultivační 

plast bez speciální povrchové úpravy (TPP, Švýcarsko), 2. běžný kultivační plast (TPP, 

Švýcarsko) potažený myším lamininem o koncentraci 1,5mg/ml (Sigma-Aldrich, USA), 3. 
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běžný kultivační plast (TPP, Švýcarsko) potažený 0,5% želatinou (Sigma-Aldrich, ČR), 4. 

kultivační plast speciálně vytvořený pro zvýšení přilnavosti buněk (Corning, Sigma-Aldrich, 

USA). 

Suspenze buněk byla resuspendována v kompletním CMC médiu, rozdělena do 4 

skupin, nasazena na výše zmíněný kultivační plast, a kultivována v inkubátoru za 

standardních podmínek (37°C, 5% CO2).  

Hodnocení přilnavosti buněk ve zmíněných kultivačních podmínkách proběhlo na 

celkem deseti vzorcích z každé skupiny, 2 opakování pro každé zvíře. Hodnocení prováděl 

zkušený pozorovatel s využitím světelného mikroskopu. Hodnotou z číselné škály 1 – 5, kdy 

jednička značila, že většina (> 90 %) buněk plavala v médiu bez přichycení k povrchu a pětka 

značila situaci, kdy většina buněk přisedala k povrchu, byla označena každá jamka ve druhém 

dni kultivace.  

Pro všechny čtyři sledované kultivační povrchy byly výsledky statisticky zpracovány a 

vyhodnoceny, běžný kultivační plast bez potahu sloužil jako referenční hodnota. 

 

2.5.2 Magnetická separace 

Pro získání většího podílu živých CMC v buněčné suspenzi byla testována metoda 

magnetické separace pomocí manuálního magnetického buněčného separátoru MACS
TM

 

(Miltenyi Biotec, Německo) s využitím Dead Cell Removal Kitu (Miltenyi Biotec, Německo), 

který obsahoval magnetické mikrokuličky schopné se navázat na mrtvé a umírající buňky a 

pufr usnadňující tento proces. Suspenze buněk byla centrifugována (300x g, 10 min), 

supernatant odstraněn a buněčná peleta resuspendována v pufru s magnetickými 

mikrokuličkami z kitu. Po 15 min inkubace byla celá suspenze přenesena do kolonek 

separátoru. Při průtoku suspenze kolonkou došlo k zachycení mrtvých buněk s navázanými 

magnetickými mikrokuličkami a do zkumavky pod kolonkou byly sbírány pouze buňky bez 

navázaných kuliček, tedy živé CMC.  

Před magnetickou separací i po ní bylo zkušeným pozorovatelem s využitím 

světelného mikroskopu zhodnoceno procentuální zastoupení živých CMC v buněčné 

suspenzi. Výsledky byly srovnány. 

 

2.6 Fluorescenční barvení 

Pro znázornění mitochondriální sítě byla použita látka MitoTracker® (579/599) 

(Molecular probes, Life Technologies, USA), která se po přidání do buněčné kultury a 30 min 
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inkubaci dočasně navázala na živé mitochondrie buněk. Jádra byla nabarvena látkou 

NucBlue® (360/460) (Molecular probes, Life Technologies, USA).  

 

2.7 Kokultivační experimenty 

MSC byly nasazeny na 6jamkovou destičku (TPP, Švýcarsko) v nasazovací hustotě 

54 000 buněk/jamka v kompletním MSC médiu a  kultivovány do druhého dne. Po odsátí 

média byl do poloviny jamek vložen transwell, košíček s membránou s 3 μm póry, 

Transwell® (Corning, Sigma-Aldrich, USA) a do všech jamek bylo dáno kompletní 

kultivační CMC médium se suspenzí CMC. Jako kontrola byly použity CMC kultivované bez 

MSC (Obr. 1). 

 

Obr. 1: Postup kokultivačního experimentu. V prvním dnu byly na kultivační plast nasazeny MSC. Další den 

byly do poloviny jamek vloženy transwelly. Čerstvé CMC pak byly rozděleny do tří skupin, část byla nasazena 

přímo k MSC, část k MSC přes transwelly a část byla nasazena na kultivační misky, pro kultivaci bez působení 

MSC. 

 

2.8 Hodnocení přežívání buněk 

Každý den až do 10. dne po izolaci byly CMC bez ovlivnění MSC, CMC v přímém 

kontaktu s MSC a CMC kokultivované s MSC přes transwelly sledovány pod světelným 

mikroskopem (Nikon Eclipse Ti, Japonsko).  

V prvním a třetím dnu bylo prosté pozorování kvantifikováno. Na kultivačním plastu 

(n=20 pro každé zvíře) byly v zorném poli světelného mikroskopu, při zvětšení 10x spočítány 



132 

 

živé CMC (protáhlé buňky s příčným pruhováním a lomenými konci) a ostatní buňky. 

Výsledné procentuální zastoupení živých CMC v suspenzi ve všech opakováních u všech 

použitých způsobů kokultivace CMC s/bez MSC bylo statisticky vyhodnoceno. 

 

3 Výsledky 

3.1 Izolace, kultivace a fenotyp mesenchymálních kmenových buněk 

Prasečí MSC lze izolovat dle uvedeného protokolu. Získané MSC vykazovaly 

charakteristický podlouhlý tvar s několika výběžky a přisedaly ke kultivačnímu platu.  

Kultivace MSC s diferenciačními médii potvrdila schopnost buněk diferencovat do tří 

základních linií. Buňky diferencované do adipocytární linie obarvené Oil Red O vykazovaly 

červené zbarvení tukových vakuol. Buňky diferencované do chondrocytární linie produkovaly 

mukopolysacharidy, které se obarvením Alciánovou modří zabarvily modře. Buňky 

diferencované do osteocytární linie produkovaly kalceinové molekuly, které se po obarvení 

Alizarin Red S zbarvily do červena (Obr. 2). 

Ověření povrchových markerů buněk průtokovým cytometrem prokázalo, že 

v průměru více jak 98 % buněk v kultuře bylo pozitivní pro markery typické pro MSC (CD44, 

CD73 a CD90) a zároveň negativní pro marker krevní řady (CD45) (Obr. 3).  

 

3.2 Izolace a kultura kardiomyocytů  

Primární prasečí CMC lze izolovat dle uvedeného protokolu. Získané buňky 

vykazovaly charakteristický fenotyp - protáhlý tvar, ostře lomené konce a příčné pruhování. 

Problémem byl vysoký podíl okolních mrtvých buněk a buněčné drti, výnos živých CMC byl 

pouze 20 % (± 10 %). 

 

3.3 Zvýšení podílu živých kardiomyocytů v kultuře 

CMC pěstované na běžném kultivačním plastu potaženém želatinou a také lamininem 

prokázaly statisticky významně (p = 0,00068 pro želatinu, p = 0,00011 pro laminin) vyšší 

přilnavost ve srovnání s CMC pěstovanými na běžném kultivačním plastu bez potahu či na 

výrobcem speciálně upraveném plastu pro zvýšenou přilnavost buněk (viz tabulka 1). 

Společně se zvýšenou přilnavostí CMC bylo pozorováno také zvýšené přisedání dalších 

buněk suspenze, prostá kultivace na různě upraveném kultivačním plastu tedy nepomohla ke 

zvýšení podílu živých CMC v kultuře. 
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TYP POVRCHU POTAH 
PŘILNAVOST CMC 

(průměr ± SD) 
PŘILNAVOST OKOLÍ 

 (průměr ± SD) 

Běžný kultivační plast -  1,8 ± 0,63 1,8 ± 0,63 

Běžný kultivační plast želatina 3,5 ± 1,08 * 3,5 ± 1,08 *  

Běžný kultivační plast laminin 3,8 ± 1,03 * 3,8 ± 1,03 * 

Speciálně upravený 

povrch výrobcem 
- 2,2 ± 0,92 2,2 ± 0,92 

Tabulka 1: Srovnání přilnavosti buněk na jednotlivých typech užitého kultivačního plastu 

s různou povrchovou úpravou. Hodnoceno číselnou škálou zkušeným pozorovatelem, škála 1 

– 5, kdy 1 značí většinu plovoucích buněk (> 90 %) a 5 většinu přisedlých.  

* Statisticky významný rozdíl (t–test p < 0,001) v porovnání s běžným kultivačním plastem 

bez potahu.  

 

Užití magnetické separace CMC z buněčné suspenze pomocí Dead Cell Removal Kitu 

bylo časově i finančně náročné, avšak umožnilo zvýšit podíl živých CMC v kultuře z 

iniciálních 20 % (± 10 %) na výsledných 75 % (± 15 %), s malou ztrátou CMC (15 % ± 5 %).  

 

 3.4 Morfologické změny kardiomyocytů v čase 

Čerstvě izolované CMC mají dlouhý trabekulární tvar s jasně ohraničenými lomenými 

konci, jejich příčné pruhování je jasně viditelné (Obr. 4a). V průběhu kultivace se lomené 

konce pomalu zakulacují a příčné pruhování mizí (Obr. 4b). Po 3 dnech kultivace se u CMC 

začínají projevovat patologie ve fenotypu (Obr. 5), ale mnoho buněk si CMC fenotyp stále 

zachovává. Po 9. dni kultivace již byly morfologicky normální CMC pozorovány jen zřídka. 

Užití MitoTrackeru pro fluorescenční mikroskopii ukázalo, že CMC obsahují 

mitochondrie s dostatečným mitochondriálním membránovým potenciálem pro efektivní 

oxidaci až do 3. dne po izolaci (Obr. 6), v dalších dnech pak byl pozorován prudký propad ve 

sledovaném fluorescenčním signálu. 

 

3.5 Kokultivace kardiomyocytů s mesenchymálními kmenovými buňkami 

CMC kultivované v přímém kontaktu s MSC ve zvýšené míře přisedaly ke 

kultivačnímu plastu a také k MSC, kdy společně vytvářely mnohovrstevnou kulturu. Tento 

způsob kultivace znemožnil hodnocení či použití buněk pro další experimenty, protože nebylo 

možné buňky od sebe vzájemně oddělit bez jejich poškození. Nicméně, dle pozorování lze 

říci, že při tomto způsobu kultivace buňky nejdéle přežívají a uchovávají si svůj tvar, pro 

ztíženou kvantifikaci bylo však toto pozorování nevyhodnotitelné.  

CMC kultivované s MSC s využitím transwellů, bez možnosti přímého buněčného 

kontaktu, si uchovávaly své morfologické vlastnosti přibližně o den déle než CMC 
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kultivované samostatně. Kvantifikace s využitím zkušeného pozorovatele a světelné 

mikroskopie ukázala nerovnoměrné rozložení dat, proto byla použita neparametrická 

statistika, Wilcoxonův test. U CMC kultivovaných bez působení MSC byl přítomen 

významný rozdíl v počtu živých CMC mezi 1. a 3. dnem hodnocení (p = 0,0196). MSC 

kladně ovlivňovaly počet živých CMC ve vzorku, ve srovnání s CMC kultivovanými 

samostatně, ale v 1. dni nebyl rozdíl statisticky významný. Ve třetím dni kultivace již MSC 

statisticky významně (p = 0,0152) přispívaly k delšímu přežívání CMC, ve srovnání s CMC 

kultivovanými bez MSC (Graf 1.).  

 

Graf 1. Srovnání procentuálního zastoupení živých CMC v kultuře s/bez MSC. Počet živých 

CMC v obou kulturách s časem klesá.  

* Úbytek živých CMC kultivovaných bez působení MSC při srovnání 1. a 3. dne kultivace 

byl, dle Wilcoxonova testu, statisticky významný (p = 0,0196). 

** Při srovnání počtu živých CMC v kultuře s/bez MSC byl ve třetím dni, dle Wilcoxonova 

testu, statisticky významný (p = 0,0152).   

 

4 Diskuze a závěr 

Vztahu a vzájemnému působení MSC na CMC se věnuje mnoho autorů (1-10). 

Většina prací je však provedena na malých zvířecích modelech a při přenosu získaných 

poznatků na člověka pak dochází k častým diskrepancím (14). Z důvodu co největší 

podobnosti s člověkem bylo pro naše experimenty zvoleno prase domácí, jehož kardiální 

charakteristiky jsou lidským velice blízké (16).  

Izolace primárních prasečích CMC se ukázala být velmi obtížnou, proces vyžadoval 

mnoho optimalizačních pokusů, a přesto výsledek nebyl plně uspokojivý. Zaznamenali jsme 

pouze nízké procento živých CMC v suspenzi buněk ve srovnání s výsledky izolace CMC 

publikovaných u menších zvířat (17).  
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Z literatury vyplývá, že MSC jsou schopné přisedat ke kultivačnímu povrchu, čímž po 

výměně média dojde k vyčištění kultury a zvýšení procentuálního zastoupení CMC v kultuře 

(18,19). Vyzkoušeli jsme 4 různé kultivační povrchy, kdy CMC kultivované na běžném 

kultivačním plastu přisedaly jen minimálně, za to CMC kultivované na upraveném povrchu 

(laminin, želatina) přisedaly statisticky významně více. Oproti literatuře však v našich 

experimentech přisedaly také ostatní buňky suspenze (19) a to přímo úměrně CMC, tedy, čím 

více CMC přilnulo k povrchu, tím více buněk dalších buněk přilnulo také. Tímto způsobem 

tedy nebylo možné buněčnou kulturu CMC vyčistit.  

Metoda magnetické separace zvýšila podíl živých CMC v suspenzi výrazně 

efektivněji, její širší použití bylo však pro časovou i finanční náročnost opuštěno. 

Adultní CMC v kultuře běžně žijí 2-3 dny a poté dochází k dediferenciaci a 

postupnému zániku buněk (18,20). Naše experimenty tato zjištění potvrzují, kokultivace 

s MSC kardiomyocytům svědčí. Kultivace CMC společně s MSC, s umožněním buněčného 

kontaktu, se zdála být nejvíce efektivní pro přežívání CMC, avšak s buňkami již nebylo 

možné dále pracovat, protože došlo ke spojení s MSC, a nebylo možné je dále oddělit bez 

jejich poškození. Přijatelným kompromisem v podpoře přežívání CMC se ukázala kokultivace 

CMC s MSC prostřednictvím transwellů. Přímý buněčný kontakt byl sice znemožněn, avšak 

dá se předpokládat parakrinní působení MSC na CMC. Zatímco CMC kultivované bez MSC 

měly mezi 1. a 3. dnem po izolaci statisticky významný úbytek živých CMC, u CMC 

kultivovaných s MSC významný rozdíl pozorován nebyl. CMC kokultivované s MSC 

vykazovaly lepší přežívání než CMC kultivované bez jejich ovlivnění, ve třetím dni byl pak 

rozdíl statisticky významný. 

Závěrem lze říci, že izolace prasečích CMC je komplikovaná avšak reálná. Buněčná 

suspenze obsahuje mnoho elementů mimo živé CMC, které nelze příliš efektivně odstranit 

prostou kultivací, lze však využít i jiné metody, jako například magnetickou separaci buněk. 

Po celou dobu byl u CMC kultivovaných s MSC patrný podpůrný trend MSC, ve srovnání 

s CMC kultivovanými samostatně, ve třetím dni pak již byl rozdíl statisticky významný. 

Z našich výsledků vyplývá, že MSC podporují přežívání CMC.  
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Obrazová příloha: 

 

Obr. 2. Kontrola diferenciačního potenciálu MSC. 2a - MSC diferencované do 

adipocytární linie – oranžově zbarvené tukové vakuoly barvené Oil Red O. 2b – MSC 

diferencované do osteocytární linie – červeně zbarvené kalceinové struktury barvené Alizarin 

Red S. 2c – MSC diferencované do chondrocytární linie – modře zbarvené 

mukopolysacharidy barvené Alcian blue. 

 

 

Obr. 3: Stanovení MSC markerů průtokovou cytometrií. Sledovaná suspenze buněk 

obsahovala průměrně 98 % MSC, tedy buněk pozitivních na CD44, CD73, CD90 a 

negativních na CD45.  



137 

 

 

 

Obr. 4: Morfologie normálních kardiomyocytů. 4a – čerstvě izolovaný kardiomyocyt 

s podélným tvarem, ostrými okraji a jasným příčným pruhováním. 4b –kardiomyocyt po 3 

dnech v kultuře, kdy mají buňky stále ještě protáhlý tvar, ale již došlo k zaoblení konců a 

pomalu se vytrácí příčné pruhování. Zvětšení 40x. 

 

 

 

 

Obr. 5. Morfologické deformace CMC. Obrázky ukazují morfologickou deformaci CMC, 

která začíná po třetím dni kultivace (3 – 10 den). a – d, deformující se CMC, e – umírající 

CMC, f – mrtvý CMC. Zvětšení 40x. 
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Obr. 6. Fluorescenční barvení mitochondrií CMC ve 3. dni kultivace. Červeně - funkční 

mitochondrie, modře - jádra buněk. Šipka označuje živé CMC. Zvětšení 40x. 
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Abstract  

Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the 

development in pharmacotherapy, cardiosurgery and interventional cardiology, many patients remain 

at increased risk of developing adverse cardiac remodeling. An alternative treatment approach is the 

application of stem cells. Mesenchymal stem cells are among the most promising cell types usable for 

cardiac regeneration. Their homing to the damaged area, differentiation into cardiomyocytes, paracrine 

and/or immunomodulatory effect on cardiac tissue was investigated extensively. Despite promising 

preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials 

open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac 

treatment may be not as helpful as expected. 

This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac 

tissue repair and discusses the problems and perspectives of this experimental therapeutical approach. 

 

Keywords:  
mesenchymal stem cells, cardiomyocytes, cardiology, cardiac regeneration 

 

1 Introduction 

Cardiac diseases remain a major cause of worldwide morbidity and mortality [1]. In the United 

States of America every 34 seconds somebody suffers a coronary event [2]. Cardiac function of these 

patients is increasingly compromised with the progression of adverse cardiac remodeling and many 

patients eventually develop a fatal end-stage cardiac failure [3]. 

Progress in cardiovascular pharmacotherapy, cardiosurgery and interventional cardiology 

decreased mortality rate in cardiac diseases, but patients still remain at high risk of cardiac failure, 

especially when the damaged cardiac mass is large and the extensive cardiac cell loss is not 

compensated properly [4]. Only known effective treatment of cardiac diseases is heart transplantation, 

where donor shortage is a great problem [5]. New alternative approaches of endogenous repair have 

been investigated in adult mammalian hearts [6], consisting of mechanisms that involve mobilization 

of bone marrow and blood-derived progenitor cells [7], in situ turnover of regular cardiomyocytes [8], 

and the presence of resident cardiac stem cells having the ability to differentiate into vascular and 

mature cardiac cells [6]. However, all these mechanisms are not sufficient to prevent deleterious re-

modeling of cardiac tissue.  

Stem cells based therapies are now in worldwide interest as a promising treatment of various 

diseases [9], including cardiovascular diseases, where intensive research is performed [10]. Initially, 

the goal of stem cell based therapies was to provide a source of proliferating and functional 

cardiomyocytes, which will substitute cardiac cell loss and minimize damaged area. This aim has not 

been achieved to date. For clinical application various stem cell types are relevant, but their capability 

of creating mature cardiomyocytes in vivo is limited [11]. Therefore, stem cell based therapy aims 

have been expanded to more areas, including prevention of myocardial inflammatory and stress 

responses, improvement of myocardial perfusion via neovascularization, prevention of myocardial 

apoptosis and correction of metabolic and electromechanical disturbances [4]. 

Many cell types were investigated for cardiovascular repair properties and the most of attention 

was payed on stem cells exhibiting self-renewal, high replicative potential [12-18] (Table 1). 

Promising results were obtained in animal models by application of human embryonic stem cells [19] 

or cardiomyocytes derived from induced pluripotent stem cells [20]. However, it was not possible to 

verify these results in patients, because of ethical concerns and high oncogenic risks [21]. More easily 

available stem cell types for effective clinical application include hematopoietic stem cells, adipose 
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tissue derived cells or mesenchymal stem cells (MSCs), which undergone both preclinical and clinical 

testing successfully [22, 23]. Therefore, this review focuses on current knowledge, achievements and 

failures of MSCs application in cardiac tissue repair. 

 

2 MSCs characteristics and sources 

According to the minimal criteria of Mesenchymal and Tissue Stem Cell Committee of the 

International Society for Cellular Therapy, MSCs are defined as adherent fibroblast-like cells 

expressing CD105, CD73 and CD90, not expressing CD34, CD45, CD14 or CD11b, CD79a or CD19, 

and HLA-DR and with the ability to differentiate into adipocyte, osteoblast and chondrocyte cell types 

[24]. They can be found in different tissues including bone marrow [25], cord blood [26], placenta 

[27], fat [23], skin [28], muscle [29], tendon [30], synovium fluid [31] or teeth [32]. In opposite, 

MSCs are rarely detected in peripheral blood [33]. Further more, some studies indicate that the whole 

body MSC distribution can originate in a perivascular origin of MSCs. Perivascular CD146
pos

 cells 

isolated from many tissues (muscles, pancreas, fat, etc.) express MSC surface markers (CD73, CD90, 

CD105) and differentiate into osteo-, chondro- and adipolineage [34]. These findings suggest that 

distribution of MSCs in adult organism is related to their existence in the perivascular niche [33]. 

 

2.1 MSCs source variability 
Although MSCs from different sources express the same set of surface markers and differentiate 

into three mesodermal lineages, various abilities are reported.  

Bone marrow is a rich source of cells and the success rate of MSC isolation from it is nearly 

100%. Bone marrow derived MSCs are able to proliferate in vivo and also in vitro, where their growth 

is reported to be arrested around 11-12 passage. According to colony forming unit-fibroblast assay 

(CFU-Fa), these MSCs form 16.5 ± 4.4 colonies in third passage [35]. In heart regeneration research, 

bone marrow MSCs improve heart regeneration after myocardial infarction in many species, reduction 

in scar size together with improved heart function was reported [14, 18, 20]. As they were discovered 

first [36], majority of MSCs characteristics was found through experiments with bone marrow derived 

MSCs.  Those characteristics represent standards for comparison up to date.  

Adipose tissue contains 500 times more stem cells in 1g of fat than in 1g of bone marrow. Many 

people undergo liposuction voluntarily, so it is easy to obtain material for adipose tissue MSCs 

isolation. Adipose tissue derived MSCs showed similar cardio protective potential as bone marrow 

MSCs when applied to doxorubicin treated diabetic rat model [37]. On the other hand it has been 

found that proliferation potential, growth rate and culture time of adipose tissue derived MSCs is 

lower. CFU-Fa showed only 6.4 ± 1.6 formed colonies in third passage, cell growth was arrested 

around passage 11 [35]. Evenmore, it has been shown that adipose derived MSCs possess different 

abilities according to the tissue of origin [38],[39]. Comparison of MSCs from abdominal fat, 

mesodermal origin, eyelid adipose tissue MSCs, and ectodermal origin, showed different phenotypes 

of cells together with variety in CD90 expression, suggesting higher abdominal fat MSCs response to 

angiogeneic factors [38]. Comparison of cardiac adipose tissue derived MSCs  and abdominal fat 

MSCs, both of mesodermal origin, showed that cells were phenotypically identical, but cardiac MSCs 

constituted intristic properties toward myogenesis and vasculogenesis in significantly higher 

percentage and therefore have much better regenerative potential, especially for cardiac therapy [39].  

Umbilical cord blood is a rich source of cells, whith MSCs also being present. MSCs isolation 

and cultivation from this source is complicated and the success rate of isolation is 63% [35]. If 

successfull, their culture lasts for long time periods, their proliferation is arrested at passage 14-16. 

CFU-Fa showed highest ability to form colonies (23.7 ± 5.8) [35] compared to others, but there are 

also evidence that in culture these MSCs display very low proliferation ability [39]. It was shown that 

MSCs from umbilical cord together with MSCs from amniotic membrane posses higher 

immunomodulatory capacity, based on gene expression profiling [40] than bone marrow MSCs. 

MSCs from all three sources mostly used in research possess promising abilities for 

regenerative medicine, but, as it was mentioned before, they all have limits. Low-yielding isolation 

and complicated cultivation of umbilical cord MSCs makes them a not reliable source of cells. Easy 

isolation and cultivation of adipose tissue derived MSCs is very promissing, but tissue specific effect 
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of MSCs from different adipose tissue sites makes them too variable. Human cardiac fat MSCs, 

showing the best qualities for cardiac regeneration, are hard to obtain and not convenient for detailed 

research. Therefore bone marrow-derived MSCs, a well documented type of MSCs, are in center of 

interest in cardiac regeneration research and are further discussed in more details. 

 

2.2 Aging of MSCs 
Important issue about therapeutical MSCs application is their aging. In vitro cultured MSCs 

obtained from older individuals, are larger, broader, flatten and show no spindle-formed morphology 

contrary to younger spindle shaped MSCs [41]. Aged MSCs contain more stress actin fibres, form 

small colonies and show telomerase deficiency [42]. Young MSCs are capable to reach 30-40 times 

maximal population doubling, aged MSCs have significant decline in replicative lifespan [43]. Aged 

MSCs also express different levels of various regulatory molecules. MSCs emission of pro-

inflammatory interleukin 6 (IL6) increases with age [44], whereas production of anti-inflammatory 

and cell protective interleukin 11 (IL11) decreases with age [45]. Finally, aged MSCs have lower 

differentiation ability and proliferation potential [46, 47] and the age related loss of regenerative 

potential of MSCs is even dependent on the source of MSCs [47]. 

 

3 In vitro studies 

Based on both in vitro and in vivo studies, three main mechanisms of action of MSCs 

implementation in cardiac tissue reparation process are suggested – differentiation into functional 

cardiomyocytes (CMCs), paracrine and immunomodulatory effect (Fig. 1). 

 

3.1 Differentiation of MSCs to CMCs 
MSCs show ability to differentiate into CMCs in vitro [48]. This differentiation can be induced 

by addition of 5-azacytidine, retinoic acid and dimethyl sulfoxide (DMSO) into cultivation media [49, 

50]. When MSCs are treated by 5-azacytidine they start to be positive for desmin and α-sarcomeric 

actin. Later, they show presence of sarcoplasmic reticulum, T-tubules and intercalated disc-like 

structures [51]. When MSCs are stimulated to CMC diffrentiation the expression of nesprin-1 protein 

is higher, which suggests it plays an important role in mediating MSCs differentiation [50]. MSCs can 

differentiate into CMCs also without 5-azacytidine, but the presence of insulin-like growth factor 1 

(IGF-1), fibroblast growth factor 4 (FGF-4), hepatocyte growth factor (HGF), transforming growth 

factor β (TGF-β1) and bone morphogenic protein 2 (BMP-2) is required [52].  Even only cell-to-cell 

contacts of MSCs and isolated CMCs are able to support MSC differentiation into new CMCs [53]. It 

is further documented that N-cadherin (CD325) negative fraction of MSCs has lower CMCs 

differentiation potential than N-cadherin positive fraction of MSCs, which expresses significantly 

elevated mRNA levels of cardiomyogenic progenitor-specific transcription factors, including Nkx2.5, 

Hand1, and GATA4 [54].  

 

3.2 Paracrine and immunomodulatory effect of MSCs on CMCs 
Bioactive molecules released by MSCs can positively modulate the functions of CMCs by 

paracrine and trophic mode. Cytokines from interleukin 6 (IL6) family secreted by MSCs bind to 

receptor glycoprotein 130 (gp130) and activate the JAK-STAT3 signaling pathway which results in 

increased expression of STAT3 targets hepatocyte growth factor (HGF) and vascular endothelial 

growth factor (VEGF) [55]. Conditioned media from MSCs can also protect CMCs from apoptosis 

when it inhibits caspase-3 activation and the release of cytochrome C from the mitochondria. These 

findings suggest that MSCs paracrine signalling helps to protect CMCs by interfering with 

mitochondria-mediated apoptotic pathway [56]. Factors released by MSCs can also protect CMCs 

from ischemia, when MSCs conditioned media decreases the numbers of apoptotic cells, the numbers 

of dead cells and improves CMCs metabolic activity. These improvements are regulated via Akt, 

ERK1/2 and STAT3 signaling pathways [57].  
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4 Animal studies 

The large number of studies investigating MSCs influence on variety of heart diseases on 

animal models has been done. Small animal models as rat, mouse and rabbit were used mostly and 

approximately 56% of studies were performed on rat heart disease models. Large animal models as 

swine or sheep were used in 29% of all preclinical studies [5]. 

Majority of studies investigate the effect of MSCs on heart function or explore the role of MSCs 

in the repair of acute as well as chronic heart failure such as myocardial infarction [58], dilatation 

cardiomyopathy [59] or Chagas disease [1].  
 

4.1 Differentiation of MSCs to CMCs 
As both cell types, MSCs and CMCs are of mesenchymal origin, it can be easily expected that 

MSCs retain the ability of differentiation into CMCs. This is evidenced in many studies with various 

experimental designs. In the rat model of myocardial infarction (MI) MSCs are infected via tail vein 

and at four days MSCs engraft MI injured area. Engrafted MSCs expresses cardiac troponin T, 

endothelial CD31 and smooth muscle major histocompatibility complex (sm-MHC) suggesting MSCs 

differentiation into all major cells of cardiovascular lineage. Moreover, hearts treated by MSCs show 

improved cardiac features such as left ventricular ejection, end diastolic and end systolic volume or 

left ventricular myo-mass [60]. Another study, where green fluorescent protein (GFP) labeled MSCs 

(GFP-MSCs) are injected into mouse model of MI shows that over 60% of GFP-MSCs co-expressed 

collagen type IV and troponin T or myosin heavy chain, characteristic for MSCs and cardiomyocytes, 

respectively, and were CD45
neg

. This study further demonstrates that MSCs can differentiate into 

CMCs in various extent when nearly 25% of GFP-MSCs express one of two cardiomyocyte markers 

in the absence of MSCs characteristics. Despite the lower differentiation properties of GFP-MSCs, 

myocardium treated by these cells shows improved left-ventricular and end-diastolic pressure [61]. In 

the study employing porcine model of MI, MSCs overexpressing integrin-linked kinase (ILK-MSCs) 

improve ventricular remodelling and cardiac function by increased CMCs proliferation, cardiac 

angiogenesis and reduced apoptosis [10].  

In contrary, some studies indicate that the differentiation of MSCs into functional CMCs hardly 

or even not at all occurs. MSCs overexpressing Akt (Akt-MSCs) injected into mouse model of 

infarcted myocardium engraft the infarcted area at higher extent than MSCs, but only rare 

differentiation of both types of MSCs into functional CMCs is observed. Despite this, Akt-MSCs 

restore early cardiac function and decrease infarct size indicating another mechanism of MSCs 

facilitated tissue repair [62]. In another study is demonstrated that MSCs injected into mouse infarcted 

myocardium migrate into site of injury and survive there for 14 days, but no significant differentiation 

into functional CMCs or improvement of cardiac function is detected. Evenmore, same MSCs treated 

by pro-cardiomyogenic agents or by co-culture with beating CMCs do not differentiate into new 

CMCs [63].  
 

4.2 Paracrine and immunomodulatory effect of MSCs on cardiac tissue 
Despite the inconsistent results in the ability of MSCs to differentiate into CMCs, some studies 

show that MSC transplantation improves cardiac functions. In these cases, the paracrine and 

immunomodulatory effect of MSCs on cardiac repair is more likely.  

In many animal experiments, the application of MSCs after MI had a possitive effect on cardiac 

functions in comparison with controls. Improvement in left ventricular ejection fraction, reduction in 

infarct scar size and inhibition of left ventricle remodeling was observed together with decrease in 

end-systolic and end-diastolic volumes [64-66]. Anyway, the particular cellular mechanisms and 

regulating molecules or signalig pathways responsible for the cardiac function improvement remain 

undetailed. The decrease in CMCs apoptosis rate, decrease in inflammation and scar formation and 

increase in CMCs proliferation and cardiac tissue neovascularization are described as the most 

probable cellular mechanisms [67]. Particulary, diabetic rats treated by anti-cancer drug doxorubicin 

(DOX) possesing cardiotoxicity were co-treated by MSCs. MSCs prevented DOX-induced myocardial 

damage and significantly induced angiogenesis and reduced immune cell infiltration and collagen 

deposition [37]. In MI rat model, injected MSCs increased levels of angiogenic factors FGF-2, VEGF 
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and stem cell homing factor (SDF-1α) in infarcted hearts. This was followed by declined CMCs 

apoptosis, increased capillary density and improved left ventricular contractility [68]. In another study, 

mice suffered from insuline resistence and MI and treated by MSCs showed improved cardiac function 

connected with enhanced glucose uptake by peripheral tissues and mitochondrial oxidative 

phosphorylation efficiency. Moreover, MSCs improved insulin signaling via Akt phosphorylation and 

maintaining of glucose transporter type 4 [69]. Some investigators stimulated paracrine function of 

therapeutically applied MSCs by over-expression of VEGF [70] or by over-expression of miRNA-126 

[71], which led to improved cardiac function after MI. The Akt molecule was identified responsible 

for the protective role of MSCs in cardiar repair function [71],[72].  
 

4.3 Homing of MSC into damaged cardiac tissue 
The ability of MSCs to home into damaged cardiac tissue is documented in some studies [60, 

61], but it is still a very limited factor of MSCs cardiac therapy. Recent study demonstrated that up to 

70% of MSCs applicated into rat peripheral blood stream was trapped in lungs and some cells were 

detected in heart, kidney, spleen and bladder. The fraction of MSCs homed to the ischemic heart was 

only around 6 % [73]. Even the ability of MSCs to circulate in blood stream is limited [74]. Therefore, 

the extensive investigation is performed to describe MSCs homing mechanisms and to improve this 

process.  

As in the homing of other cell types, the homing of MSCs is based on the process of 

chemotaxis. Ischemic myocardium is rich in many chemokines and adhesion molecules including 

chemokine (CC motif) ligands (CCL) 2, 6, 7, 9, chemokine (CXC motif) ligands (CXCL) 1, 2, SDF-1, 

IL-6, TGF-β, VEGF, intercellular adhesion molecule (ICAM), vascular adhesion molecule (VCAM) 

or fibronectin [75], thus the expression of particular receptors on MSCs’ surface should govern the 

process of homing.  

Frequently investigated ligand/receptor pair is SDF-1/CXC chemokine receptor 4 (CXCR4). 

The level of surface CXCR4 in MSCs is low and unstable [76] and their expression needs to be 

stimulated to facilitate cardiac function repair [77, 78]. Also over-expression of CC chemokine 

receptor 1 (CCR1) promoted migration of MSCs and their homing to injured heart [79]. Another 

studies detected integrin β1 [80], hyaluronic acid/CD44 [76], N-formyl peptide receptor (FPR) and the 

formyl peptide receptor-like-1 (FPRL1) [76] or platelet-derived growth factor-AB (PDGF-AB)/PDGF 

receptor alpha and beta and insulin-like growth factor 1 (IGF-1)/IGF receptor [76] as crucial ligands 

and receptors for MSCs homing into injured cardiac tissue. 
 

4.4 The importance of cell delivery routes 
Current routes for MSCs delivery in heart treatment include intravenous injection (IV), where 

the MSCs are applied into the peripheral blood stream, intramyocardial injection (IM), where the 

MSCs are applicated by surgeons directly to heart and intracoronary injection (IC), where 

percutaneous cathether delivers MSCs into coronary artheries.  

Systemic IV injection is used because of low invasiveness, low cost and reported MSCs homing 

ability [81]. In the case of heart damage, local and systemic chemo-attractants are upregulated, 

including various interleukines, stromal cell-delivery factors and adhesion molecules [4]. However, 

this homing signal seems to be not sufficient. It has been demonstrated that after IV injection of 

MSCs, only few of them were accumulated in infarcted myocardium of mice, majority of the cells was 

found in lungs [82]. 

Purpose of IM injection is to deliver MSCs directly to the damaged heart area via epicardial, 

endocardial or transvascular application. Advantages of this method are that it is similar to routine 

cardiac surgery, for surgeons it is easy to perform, and there is no risk of coronary embolism like in 

other application forms [5]. Also there is no need to rely on up-regulation of homing signal particles, 

because of MSCs delivery directly to the site of damage [4]. However, there is also a disadvantage, 

MSCs have tendency to form islet-like clusters consisting of donor cells and host inflammatory cells 

generating electrical and biological heterogenity in the host myocardium, which potentially results in 

arrhythmia occurrence [83].  

IC injection method achieves higher first-pass delivery of MSCs into the heart and more 

homogenous cell distribution in target area with less inflammatory response [4]. Unfortunately donor 
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MSCs engraftment is similarly poor as after IM injection. It has been demonstrated that initial 

retention of applicated cells is 15%, but after one hour only 5% of donor MSCs have been detected in 

damaged heart area [84]. Also it has been reported that IC applicated MSCs are relatively large which 

may result in microvascular obstruction and ischemia [85].  Elevation of cardiac infarct markers and 

changes on electrocardiogram after IC injection of MSCs has been reported [86].  

Despite extensive research, MSCs engraftment in damaged cardiac tissue is still poor and 

several explanations have been suggested. First, the injection of MSCs by thin needle can cause 

damage to MSCs, which could lead to their apoptosis or death [87]. Second, MSCs harvested for 

application by trypsin can lose their surface proteins and reduce cell-cell affinity, which can cause 

quick flush out of MSCs [88]. Third, MSCs in late passages can lose their surface expressions of 

chemokine receptors, which can disrupt their chemotactic ability [76]. Despite low MSCs retention in 

the damaged heart site, the majority of experiments show improvement in cardiac function and 

damaged area size after MSCs treatment. 
 

5 Clinical studies 

Till today, 13 clinical trials are registered at clinicaltrials.gov when searching for the keywords 

“mesenchymal stem cells” AND heart, which have been completed. From those, results were 

published from 8 trials and are summarized in Table 2 and the following text.  

Patients with left ventricule disfunction, ischemic cardiomyopathy, acute or chronic myocardial 

infarction, idiopathic dilated cardiomyopathy or ischemic heart failure were included into clinical 

trials. At 5 trials out of 8, autologous MSCs isolated from bone marrow were applied by 

intramyocardially, intracoronary or transendocardially. The general effect of MSCs application was 

the improvement of left ventricule ejection fraction (LVEF) and reduction of infarcted tissue area 

(Table 2).  

Hare et al. [89] performed a series of clinical trials focused on evaluation of safety and efficacy 

of MSCs application into patients with ischemic cardiomyopathy. POSEIDON, one of the first clinical 

trials in this field, compared the effect of autologous and allogeneic MSCs applicated 

transendocardially into 30 patients with ischemic cardiomyopathy. After 1year follow-up it was shown 

that this application is safe and beneficial for patients. Application of both auto- and allo- MSCs had 

low rate of serious adverse events (SAE), reduction in infarcted size area was observed, but no 

improvement in LVEF was shown. Only autologous MSCs application led to significant improvement 

in a 6 minutes walking test. However, lack of placebo control prevented additional comparisons [89]. 

In the following TAC-HFT clinical trial, autologous bone marrow MSCs application was compared 

with bone marrow mononuclear cells application and placebo group, also focused on safety and 

efficacy of cell application. In this trial, 65 patients with ischemic cardiomyopathy were enrolled. 

Transendocardial injection in 10 left ventricle sites showed that application is safe, with no SAE, but 

only MSCs improved myocardial functions, including contractility. No change in LVEF was observed 

[90]. 

In PROMETHEUS, the clinical trial where autologous bone marrow MSCs were injected into 

infarcted site of myocardium of 6 patients not eligible for bypass surgery, it was shown that MSCs 

reduce scar mass size for 48% compared to baseline. Also improvement in contractility and perfusion 

in these patients was shown together with improved LVEF [91]. 

Effect of clinical application of MSCs was also tested on accute myocardial infarction (AMI) 

patients a few days and up to a month after AMI. Lee et al. [92] applied bone marrow MSCs into 

infarcted site of myocardium of 80 patients and followed them for 6 months. 58  patients completed 

the trial and it was shown that application of MSCs is safe and even effective when performed month 

after AMI. LVEF, measured by SPECT, was improved for 6% in the 6th month of follow-up, in 

comparison to control group, receiving regular treatment only [92]. As a possible treatment for accute 

myocardial infarction also Wharton jelly MSCs (WJ-MSCs) application was tested. Intracoronary 

application of WJ-MSCs into 116 patients in 5-7 days after reperfusion treatment showed increased 

myocardial viability, measured by PET, and improved heart perfusion in 4 months. In the end of study, 

after 18 months of follow-up, LVEF was significantly improved (7%) in comparison to controls [93].  

Autologous bone marrow MSCs were shown to be beneficial also for patients with ischemic 

heart failure where no more therapeutic options are available. 40 patients, out of 60 involved in study 
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called MSC-HF, received intramyocardial injection of MSCs, follow-up for 6 months was performed. 

In the end of the clinical trial, LVEF of patients who received MSCs was improved for 6% and their 

left ventricle end-systolic volume was reduced for 7%, in comparison to placebo control, suggesting 

improved myocardial function [94]. 

Contrary, in order to make MSCs application as less invasive for patients as it is possible, 

intravenous application was tested. In clinical trial STEMPEUCEL bone marrow derived MSCs were 

injected into antecubital vein of 10 patients with AMI two days after coronary intervention. After a 2 

year follow-up and in comparison with placebo control it was shown that this application does not 

cause SAE and is safe for patients, but no beneficial effect was observed and no significant differences 

between MSCs and placebo group has been found in any tested parameter [95].   

Metaanalyses of performed clinical studies showed confusing correlation between discrepancies 

and positive results. More methodical discrepancies have been found in research, where better results 

were reported. According to metaanalyses, studies with no discrepancies showed negative results [96], 

which is disturbing. 
 

6 Problems and perspectives 

MSCs and their influence on heart have been studied intensively. It has been reported that 

MSCs possess ability to home into site of cardiac damage and support damaged myocardium by 

differentiation into CMC, by paracrine signaling and immunomodulation properties. MSCs 

differentiation into CMC was shown to be not significant in vivo, but all other properties were 

confirmed in vitro and also in vivo. 

In preclinical studies MSCs showed to be a safe and promising treatment for variety of cardiac 

tissue damages. Some clinical trials performed on patients also showed positive effect of MSCs 

application, but no all of them. All performed clinical studies agreed that the application of MSCs is 

safe for patients. However, new evidence is questioning the effect of MSCs in patients with cardiac 

diseases and therefore implementation of MSCs treatment as a regular therapy in the clinic might be 

further away than expected/hoped for. It has been also shown that application of MSCs may not be 

beneficial enough to use it as a standart treatment. This could depend on several factors including age 

and source of MSCs, their manipulation after isolation and the route of application. 

As discussed earlier, age of MSCs is a very important factor. Usually, patients are older and 

therefore autologous transplantation of MSCs might not be efficient enough. In respect to therapy 

efficiency, use of MSCs from young and healthy donors, more active and capable of regenerative 

potential, should be considered. Especially after repeated prove, that allogeneic and autologous 

transplantation are both safe and have a similar effect. 

Another consideration should be the source of MSCs. Bone marrow MSCs are the best 

investigated ones known  to improve heart functions, but also cardiac adipose tissue derived MSCs, 

which are rarer and harder to harvest, show promissing and even better cardio specific abilities. 

Any MSCs chosen for application need to be cultured in order to achieve satisfactory numbers 

for application. Cultivation conditions as well as cell harvesting are well described, but there is room 

for improvement. MSCs have documented homing ability into site of injury, but a large number of 

researchers reported minimal homing to the cardiac damaged sites in human. The final harvesting 

procedure before application may destroy surface receptors of the MSCs, so they are unable to find the 

cardiac site of damage, instead they are trapped elsewhere. 

In consideration of previous discussed challenges, the chosen form of application is crucial. 

Peripheral application is the cheapest and the most comfortable for patients and medical personal, but 

the risk that MSCs will be trapped outside of the heart is big. Intracoronary or transmyocardial 

application is more reliable, but possesses risk of microembolism. All these facts need to be taken into 

consideration together with application speed, application number and number of application doses. 

The most important question for the future of MSCs therapeutical application is what should be 

considered as a positive result of application. Should it be any positive effect which is statistically 

significant or is it better to agree on a general evaluation protocol?  

Many facts are well known, but many more questions need to be answered, before the MSCs 

application will become a real treatment option for cardiac patients. 
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