

MASTER THESIS

Bc. Jan Škvařil

Web System for Crowdfunding Based on Selling Items with

Custom Imprint

Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Pavel Parízek, Ph.D.

Study programme: Computer Science

Study branch: Software Systems

Prague 2016

I am much obliged to my thesis supervisor, Dr. Pavel Parízek, for his advices and

hints that helped me to successfully implement and write this diploma thesis.

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague date Signature

Název práce: Webový systém na prodej předmětů s potiskem pomocí

crowdfundingových kampaní

Autor: Bc. Jan Škvařil

Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí diplomové práce: RNDr. Pavel Parízek, Ph.D.

Abstrakt: Cílem této práce bylo navrhnout a implementovat webový systém na

prodej předmětů s potiskem, který zároveň umožní sbírat peníze pomocí kampaní

fungujících na bázi crowdfundingu. Výsledná aplikace automatizuje a usnadňuje celý

proces od návrhu potisku v integrovaném editoru přes vyhodnocení kampaně až po

odeslání hotových výrobků zákazníkům. Během celého procesu tedy existuje

minimum bodů, kdy je nutný administrátorský zásah zvenčí. Částí implementace

bylo také napojení aplikace na externí služby, jako jsou on-line platby kartou,

tiskárna či sociální sítě.

Klíčová slova: crowdfunding, webový systém, potisk

Title: Web System for Crowdfunding Based on Selling Items with Custom Imprint

Author: Bc. Jan Škvařil

Department / Institute: Department of Distributed and Dependable Systems

Supervisor of the master thesis: RNDr. Pavel Parízek, Ph.D.

Abstract: The aim of this thesis was to design and implement a web system for

organization of crowdfunding campaigns that are based on the sale of items with

custom imprint. The implemented system automates and facilitates the whole

campaign lifecycle from the design of the imprint in an integrated editor through

campaign evaluation up to the distribution of final products to customers. Therefore,

there is a minimum number of points where the administrator's action is required.

Part of the implementation was also seamless integration with external services like

on-line payments, printing house, and social networks.

Keywords: crowdfunding, imprint, web system

Contents

1 Introduction .. 1
 Motivation ... 2 1.1

 Goals .. 3 1.2

 Basic Terminology .. 4 1.3

 Thesis Structure ... 5 1.4

2 Analysis .. 6

 User Roles ... 6 2.1

 System Requirements .. 7 2.2

2.2.1 Editor .. 7

2.2.2 Registration and Login ... 8
2.2.3 Campaign Detail and List .. 9
2.2.4 Order .. 9
2.2.5 User Profile .. 10

2.2.6 Administration ... 10
 Existing Solutions .. 10 2.3

2.3.1 KickStarter ... 10
2.3.2 T-shock ... 11
2.3.3 TeeSpring ... 12

2.3.4 Comparison .. 13

 Communication with External Services .. 14 2.4

2.4.1 Printing House .. 14
2.4.2 Delivery Service ... 16

2.4.3 Payment Services ... 16
2.4.4 Social Networks ... 20

 Manual Actions ... 22 2.5

 Used Technologies .. 22 2.6

2.6.1 Server Side ... 22

2.6.2 Client Side .. 23
2.6.3 Image Generation ... 23

3 Design .. 25

 System Processes ... 25 3.1

3.1.1 Campaign ... 25
3.1.2 Launch .. 26
3.1.3 Payment .. 27

3.1.4 Order .. 29
3.1.5 Pay-out ... 30
 Database Structure ... 30 3.2

3.2.1 Motivation .. 31
3.2.2 Campaign ... 31

3.2.3 Sale Variant .. 33
3.2.4 Order .. 35

3.2.5 User .. 36
3.2.6 Discussion .. 37
 System Architecture .. 37 3.3

3.3.1 Overall View .. 38

 2

3.3.2 Presenters ... 39
3.3.3 Models .. 44
3.3.4 Components ... 46
3.3.5 Services .. 46

3.3.6 Editor .. 46
3.3.7 Quality Attributes ... 47

4 Implementation .. 48
 Application Structure .. 48 4.1

 Cron Tasks ... 50 4.2

 Caching .. 52 4.3

 Minification ... 53 4.4

 Image Generation .. 54 4.5

 Language Support .. 55 4.6

 Communication with Payment Services .. 56 4.7

 Model Layer .. 59 4.8

 Editor ... 60 4.9

 Colour Counting .. 62 4.10

5 Testing .. 64
 Unit Tests .. 64 5.1

 System Tests .. 67 5.2

 Performance Tests ... 71 5.3

6 Conclusion ... 75

 Open Problems and Future Work .. 76 6.1

Bibliography ... 77

Appendix A – Contents of the Enclosed CD ... 80

 1

1 Introduction

These days, e-commerce has become a common way for selling goods and services.

Great examples of this expansion are websites like E-bay or Amazon which has

managed to get a significant market share. They both use a standard model of selling

items – when a customer buys an item, it is delivered; there are just two main

participants involved in the shopping process. But many other ways to sell and

distribute goods exist and one of them is called crowdfunding.

Crowdfunding is a practice of funding a project or a venture by raising monetary

contributions from a large number of people, typically via the Internet [1]. This

model of funding custom projects has experienced a great expansion in the past few

years around the world. One of the reasons for that is that there is no financial risk

for all the participants involved in the model.

The most well-known model of crowdfunding is what KickStarter.com [2] or

GoFundMe.com use. A project initiator creates a new campaign, sets its properties

and defines rewards for people who wish to financially support his project. Those

rewards are typically graded according to the amount of donation. Then the

campaign is launched and shared with potential supporters. When the campaign ends,

the crowdfunding platform sends the money to the project initiator and his

responsibility is to deal with all the rewards for his supporters.

Figure 1.1: Interaction of project initiator, customer and platform in the ideal case.

Our goal is to create a new crowdfunding platform with a less common business

model which is suitable for groups of people who wish to sell items with a custom

imprint, e.g. T-shirts, or fund their project by selling those items. A simplified

 2

interaction of involved participants in this model is illustrated in Figure 1.1. As we

can see, there are three major participants involved: the platform, the project initiator

and the customer.

The first step is similar to the standard crowdfunding model – a project initiator

launches a new campaign and shares it among its potential supporters. But as a part

of the campaign he has to define the design of the imprint. In contrast with the

previous model there are no rewards for the project supporters, i.e. customers, but

technically speaking we could consider the delivered items as rewards.

When the campaign ends successfully, the platform's responsibility is to create the

ordered items, distribute them to the customers and transfer the profit to the project

originator. This step is also different from the standard crowdfunding model where it

is the project initiator‘s responsibility to reward his customers. This way we avoid

one disadvantage of the standard model which is related to the trustworthiness of the

platform. It happens from time to time that the project initiator just collects the

money and does not reward his customers at all.

 Motivation 1.1

Our original motivation is to create a successful crowdfunding platform which is able

to succeed in the real world. Our vision is to end up with a practically useful system

tested on real users, with real campaigns, cooperating with real external services and

handling with real money, not just something what ends up in a drawer. A great

inspiration for our platform is TeeSpring [3] which we discovered after the idea of

implementing the crowdfunding system and which we would like to accommodate

for our local conditions.

Selling T-shirts is often a way to collect money for some community or public

project; project supporters buy the T-shirts and some percentage of that money is

used to fund the project. There are also many groups of people such as bands, sport

teams, classmates or even firemen that would like to create their own community T-

shirts but they typically have to solve several problems related with that idea. First of

all, they have to create a T-shirt design in a format suitable for a printing house and

sign a contract with that printing house.

 3

The problem is that they usually have no idea how many T-shirts they should create

and in which colours and sizes. When they estimate such properties, they risk

creating too many or too little T-shirts of each kind. Then they have to collect money

from people in their community, send an order to the printing house, pick-up the T-

shirts from the printing house and deliver them to those people.

This is a quite complicated process that could be simplified from the point of view of

the project initiator. For those people it would be a great simplification to have a

platform where they could create a custom design of their community T-shirt, share

it across the community via social media and then just wait until their T-shirts are

printed, delivered and then simply obtain their profit. This is our motivation for

creating such a platform which shields the end users from the technical details of

the T-shirt creation, the money collection and the delivery of final products.

 Goals 1.2

The main goal is to design and implement a web crowdfunding system that allows

the project initiator to design an imprint, set the campaign properties like its deadline

and goal and launch the campaign. After the launching, the system should generate a

special page for the campaign which can be easily shared via social media. On this

page the supporters should be able to buy the item with a designed imprint in a

selected size and colour. In general, we do not want to limit the system only for a

sale of T-shirts. It should be possible to configure it also for a sale of other types of

items that can have a custom imprint. But we use T-shirts as a demonstration of the

system functionality.

When the campaign ends and it is successful, an order to the printing house should

be generated in a suitable format. When the ordered items are created, they have to

be manually packed and issued to the delivery service which delivers them to the

customers. When the campaign ends unsuccessfully, then we should ensure that no

money move at all; therefore, no fees need to be paid; how to solve this problem is

described in Section 2.4.3.

One of the important properties of the system is the great level of automation of the

system processes. The system should automate processes not only from the point of

view of the campaign initiator and the customers but also from the point of view of

 4

system administrators. This automation has of course some natural limitations which

we will discover and describe in the following chapters. In some cases, we also

outline a possible theoretical solution.

Creating a complex web application is a difficult process which involves many

technologies, procedures and design patterns. Because of that, first we have to

analyse the requirements for such a system and design a suitable solution.

Afterwards, we will also focus on an effective testing of the final product from the

point of view of functional and also non-functional tests and we discuss the

limitations of those approaches, especially when testing the integration with third

party services.

 Basic Terminology 1.3

In this section we explicitly define important terminology and concepts used

throughout the rest of this thesis.

Project: In this thesis we understand a project as “something that is able to be

supported”, e.g. an activity, an invention, a community, a single person with some

idea etc.

Campaign: An entity in the system which represents the real project. Basic

properties of the campaign are its name, deadline, goal, designed imprint and URL.

Customer: The campaign supporter – pays the money for some item, e.g. a T-shirt.

Campaign goal: A minimum number of T-shirts that have to be sold to customers in

order to send the T-shirt design to the printing house to produce the real T-shirts. If

the goal is not reached, no T-shirts are produced and no money is charged from the

customers.

Campaign progress: A fulfilment of the goal of the campaign – a number of ordered

T-shirts given the campaign goal; this value is specified in percent.

Running campaign: A campaign which ends in the future.

Successful campaign: A campaign with enough sold T-shirts, i.e. more or equal than

the campaign goal.

 5

Unsuccessful campaign: A campaign that is not successful; no T-shirts are printed

when the campaign ends as unsuccessful.

Printable area: A rectangle on the T-shirt where the printing house can print to.

 Thesis Structure 1.4

As a result of this thesis, we successfully implemented and deployed a web-based

system which we call DesignTeeLine.

In the next chapter we present existing solutions and analyse requirements on the

final system. We also find out the limitations of the system‘s full automation. In

Chapter 3 we design a solution based on the analysis. This also includes designing

software architecture and a database structure which fulfils all the requirements.

Chapter 4 describes the final implementation with necessary technical details and

then in Chapter 5 we talk about the testing of the DesignTeeLine system.

The last chapter then summarises the whole thesis, evaluates it and presents a list of

possible improvements. A user manual, which also includes a description of system

installation, can be found as an attachment of this thesis.

 6

2 Analysis

In this chapter we analyse the requirements on the final system, we discuss problems

that we discover and design a theoretical solution to those problems. We also search

for the most suitable technologies and we point out their advantages and limitations.

After reading this chapter, it should be clear what kind of system we want to

implement and how to deal with the key challenges.

 User Roles 2.1

Here we describe different user roles in the whole campaign lifecycle, their actions,

and what they should be capable of in the system. This analysis is based in Figure

1.1, shown in the previous chapter.

 Unregistered user: Those users can browse launched campaigns and they

can buy a T-shirt by clicking on a buy button in the campaign detail which

redirects them to an ordering form which must be filled. Then a payment has

to be done in order to consider the T-shirt as bought.

After buying the T-shirt, those users just wait for the result of the campaign

about which they get informed via e-mail. When the campaign is successful,

they wait for the T-shirt they bought to be delivered.

 Registered user: Those users can do the same actions as the unregistered

users, but in addition they can login to their profile and manage it. They also

have an ability to launch a new campaign and thus become a campaign

initiator, return to some drafts of their campaigns or see the history of their

orders.

 Campaign initiator: Every registered user can become a campaign initiator

when he launches a new campaign. When the campaign ends, he gets notified

about its result via e-mail. If the campaign ends successfully, he can request a

pay-out in his profile and afterwards the money is transferred to his bank

account.

 System administrator: A system administrator is responsible for managing

all the launched campaigns. When the campaign is successful, he has to send

 7

all its orders to the printing house and then pass the created T-shirts to the

delivery service. When the project initiator applies for the pay-out, he

transfers money to his bank account.

 System Requirements 2.2

In this section we define the system requirements based on the informal description

of the campaign lifecycle described in Chapter 1 and the different user roles that

must be supported. The main parts of the system are an editor, a registration and a

login, a campaign detail, an order, a user profile and administration. We discuss the

requirements on each of these parts in the following subsections.

2.2.1 Editor

The first step in simplification of a T-shirt creation is the possibility to design a

custom imprint for the T-shirt. After analysing existing solutions, we found out that

most of them solve this problem with an integrated editor. In our case, this editor

should also guide the user through the whole process of launching a new campaign.

The required features of the editor include:

 The editor must be able to work with graphics in bitmap and vector formats.

We would like to support JPG and PNG from the bitmap formats and SVG

and EPS from the vector formats.

 There should be an option for uploading a custom image or to use some

artwork from an integrated gallery. Artworks must be easily manageable by

the system administrator. They might be in the bitmap or vector format.

 The editor offers an option for writing a custom text on the T-shirt. The user

can pick up a font from an integrated font database which is managed by the

system administrator.

 The editor supports basic operations with graphical or textural elements such

as move, scale, rotate, duplicate, delete and mirror.

 There is a possibility to preview the campaign or share it with other designers

via e-mail.

 8

We would also like to support more bases than just T-shirts, for example bags or

sweatshirts. Therefore, when creating a new campaign, the user should select a

default base and colours in which he wants to sell the item. Adding a new base is not

a common operation in the system but it should not be difficult for the administrator

to do so. And least but not last, the editor should provide an interface to gather all the

parameters of the campaign such as its name, description, deadline, goal, author

margin, URL etc.

Now, we need to pick up a suitable format for manipulation with the data in the

editor. It should be definitely some vector-based format because we need to preserve

the best possible quality of the editor output. After a brief research, we decided to use

the SVG format due to its good integration with HTML and JavaScript and its wide

support in all modern web browsers. Moreover, libraries for XML manipulation can

be exploited for a colour counting on the server side and libraries for manipulation

with SVG exist on both, client and server side. Also as we mention in Section 2.6, it

can be easily converted to bitmap and a conversion from EPS to SVG can be also

performed.

2.2.2 Registration and Login

Registration and login are standard parts of most of modern websites but

implementing it right is not as trivial as it might seem. We would like to support

three ways of registration and login: via e-mail, via Facebook account and via

Google account. The last two of them, which are described in Section 2.4.4, are very

convenient for users because this way they can register at one click. Moreover, there

is also an advantage for the website because this simplicity encourages more users to

register.

Hand in hand with the registration goes a need to implement verification of e-mail

addresses, a possibility to reset a password when the user loses it and providing a

high level of security.

To fulfil that security requirement we will use standard techniques like storing the

user‘s password, encrypted in the database, for the case it is corrupted or limiting the

maximum number of login attempts per a given period of time.

 9

2.2.3 Campaign Detail and List

Every campaign should have its detail on the URL specified in the editor. This is also

the URL that should be shared via social media by the campaign initiator. The main

part of this page should contain a generated image of the T-shirt design. On the

second part of the page there should be a form where the customer can select a type

of textile, its colour and size and click on the buy button which redirects him to the

order.

When the campaign is ended, it should still be possible to view its detail, but it

should not be possible to buy it anymore. The maximum length of each campaign

must be limited because the items are created in one batch after the campaign ends

and we do not want to let the customers wait for their T-shirts indefinitely. We limit

the maximum length of the campaign to 21 days; another reason for that number is

described in Section 2.4.3.

It should be also easy to find some campaign when we know its name or author;

therefore, we need to support searching in running campaigns and then clearly list

the search results.

2.2.4 Order

On the page with the order should be a standard ordering form with a selection of

shipping and payment methods. We want to support three payment methods: credit

card payments via GP webpay, PayPal payments and direct money transfers.

When one of the first two is selected, the customer is redirected to an appropriate

payment gate, fills in all the necessary data and then the payment gateway redirects

him back to the pre-specified URL where the result of the payment is visualised. In

the third case, we just show a generated variable symbol and instructions how to pay.

When the payment is confirmed from the payment service, we must not forget to

actualise the progress of the campaign.

When creating a new campaign, the campaign initiator can decide that he wants to

allow his customers to pick up their orders at his place. When a customer wishes to

pick up his order there, the shipping is for free.

 10

2.2.5 User Profile

In the user profile there should be a list of launched campaigns, a list of drafts

created in the editor, a list of orders that the user has made, a possibility to change his

address and profile and a section where a withdrawal of collected money is possible.

In order to withdraw money the campaign initiator has to make a request and then it

is a responsibility of the system administrator to transfer the money to his bank

account.

We would like to support simple user actions like re-launching ended campaigns,

ending launched campaigns and sending an e-mail message to all the campaign

customers.

2.2.6 Administration

We decided to have administration as a part of the system. The system administrator

will have all the necessary views at one place and can make a quick conclusion about

what is happening in the system at the moment. Another advantage of having the

administration is that we can put there functionality for data exports we need as we

discuss in Section 2.4.1.

This decision also implies that we need to implement different user roles – at least

the unlogged user, the normal user and the system administrator which we have

already described in Section 2.1.

 Existing Solutions 2.3

In this section we describe similar systems that already exist and their similarities

and differences to our system. A table which compares all the similar systems with

the DesignTeeLine system can be found in the end of this section.

2.3.1 KickStarter

KickStarter [2] is an American crowdfunding system based on the crowdfunding

model described in Chapter 1. Campaigns are time limited and the campaign initiator

must define rewards for his supporters when launching a new campaign. The main

difference between KickStarter and our system is that in the case of KickStarter there

is no need for an editor.

 11

The reason for that is simple: at KickStarter the campaign initiator does not sell any

custom goods but just collects money from his supporters. In return, he rewards them

with rewards he defines when launching the campaign. The reward might be for

example sending a post card, telling a story, dedicating a book etc. It is his

responsibility to keep his word and reward all his supporters as he promised. If the

reward includes production of some goods, he is responsible for producing them.

In contrast with KickStarter, campaigns in our system are based on selling of items

with custom imprint which is designed online in the editor. A campaign initiator does

not define rewards as a part of each campaign, but he offers items with designed

imprint as a reward, i.e. by buying an item in the campaign, a customer supports this

campaign with pre-defined amount of money.

This is also one of the differences between those two systems – in our case a

campaign initiator receives constant amount of money from each sold item. In case

of KickStarter a customer can choose how much money he is going to give to the

campaign. Rewards in case of KickStarter are more of the symbolic nature and these

rewards have nothing to do with the platform itself, i.e. KickStarter has no

responsibility in delivering rewards to the customers of campaigns. If a campaign

initiator does not deliver rewards, it impacts mainly his reputation.

In case of our system, the reason to support a campaign is more pragmatic – a

customer wants to buy a nice T-shirt, sweatshirt or other item with an imprint.

Supporting a campaign initiator might be perceived as a side effect which might not

be noted by the customer at all if he does not learn how the system works. This is

because the amount of money which goes to the campaign initiator is already

included in the final price of each sold item. Anyway, both of the systems,

KickStarter and DesignTeeLine, are crowdfunding platforms; there are just some

differences in the philosophy of collecting money which result in different systems

with different business processes.

2.3.2 T-shock

T-shock [4] is Czech website where a user can design own T-shirt and then buy it.

The main purpose of this site is to provide a platform where the user can create an

original T-shirt just for himself. For designing of T-shirts they use an integrated

editor. Unfortunately, this editor does not support vector images in SVG or EPS.

 12

In addition to that basic functionality, it is also possible to sell the T-shirts to other

users, but first a contract between the campaign initiator and the website needs to be

signed, which we find as a quite complicated process. Campaigns are not time

limited and when some customer buys a T-shirt, they create it immediately. This is

an advantage for the customer, but on the other hand it raises the final price of the

T-shirt. The campaign initiator also cannot set own price margin; it is fixed to 10 %

of the final price.

It is not a crowdfunding platform in its original sense. It is meant as a platform where

authors of nice T-shirt designs, who want to earn some money, can sell these designs

and make some profit. Because of the absence of time limited campaigns that have

some goal, T-shock is pushed to create each ordered item individually and they

cannot benefit from discounts for creation of more items of the same kind in one

batch. Thus the base price of each T-shirt created on this site is bigger than for

T-shirts created with DesignTeeLine.

We found out that from this platform we could take the possibility to pay with direct

bank transfers which we discuss in Section 2.4.3. This feature is suitable for our

system, because in the Czech environment, customers still appreciate this option.

2.3.3 TeeSpring

TeeSpring [3] is an American crowdfunding website where a user can design his

campaign in the editor which is created in the very user-friendly way. This platform

allows the campaign initiator to launch own campaign in a similar way as in our

system. We discovered TeeSpring after our original idea for the crowdfunding

system based on the selling of items with a custom design. Anyway, when

discovered, it became a great inspiration for us, especially in the area of frontend

layout, supported features and the campaign lifecycle.

Nevertheless, we need to design all the processes from the administrator’s point of

view in our own way, create the administration and implement everything from

scratch. We do not know how this platform works inside, what technologies are used

to run it, how they managed to integrate their system with external services like

payment gateways and what level of automatization they achieved. These are

challenges we have to solve on our own.

 13

One of our goals is to adjust TeeSpring’s solution, which is in many aspects very

mature, to the Czech environment, i.e. use regional payment and delivery services

and support features like direct bank transfers which are appreciated by local

customers. We did not want to implement all the features offered by TeeSpring or be

a competition for this platform which has a really big budget for development.

In time we started to implement the DesignTeeLine system, TeeSpring did not

support multiple languages and currencies. Unfortunately they implemented this

feature while we were working on our system, thus we lost the advantage of having

this feature while they do not support it.

We were also thinking about supporting possibility to design an original T-shirt

which is then bought just by its author in the similar way as T-shock or TeeSpring

do. Unfortunately, after a discussion about pros and cons, we had to reject this

feature, because T-shirts made this way would be too expensive and it is much more

work for the system administrator to deal with each order individually then to

process all the orders of some campaign at once.

The second feature we were discussing is the list of all the running campaigns. We

have implemented this feature and it could be turned on with a little modification of

the source code. We do not have it in default, because when there are not many

running campaigns in the system, it does not look trustworthy, so it is better to

separate campaigns from each other in the beginning.

2.3.4 Comparison

In Table 2.1 we show the comparison of systems discussed in previous three

sections. This table summarizes the text above and shows differences and similarities

between those systems on the set of selected features.

K
ic

k
S

ta
rt

er

T
-s

h
o
ck

T
ee

S
p
ri

n
g

D
es

ig
n
T

ee
L

in
e

Crowdfunding platform

Editor for custom items

Design of items just for author

 14

Multiple languages

Multiple currencies

Rewards for supporters

List of all running campaigns

Payment with bank transfer

Table 2.1: Comparison of properties of similar systems.

 Communication with External Services 2.4

Because the DesignTeeLine system is bound to several external services such as

printing house, delivery service, payment services and social networks, we have to

analyse the interface between those services and our system. The right integration

must also respect certain rules and limitations. This analysis will result in more

technical and detailed requirements on the DesignTeeLine system.

2.4.1 Printing House

When the campaign ends successfully, we need to pass all its relevant data to the

printing house in order to continue in the campaign lifecycle process (the lifecycle is

described in detail in Section 3.1.2). After consulting with a real printing house [5]

we found out that they require those data sets:

 A PDF file with a table with all the orders – they should easily recognise

from this table which T-shirt of which colour and size they should print on.

 Pure graphics of the imprint in the vector format (SVG or EPS); this file

should contain only the printable area of the T-shirt. We decided to export

the T-shirt imprints in the SVG format because we work with this format in

the editor; therefore, there will be no need for the data conversion.

Theoretically, we could fully automate those exports. For example, we could

automatically send a generated e-mail with the exported data to the printing house.

But we need to have a control over this process because the quality of exported

graphics must be manually checked. This brings us to the idea of manual exports, but

there is still a question where those exports should be realized.

 15

For example, we could export data automatically, save them in some pre-defined

directory and notify the system administrator about a new export via e-mail. Then the

contents of the export should be manually validated and sent to the printing house.

As we have said, we cannot fully avoid this manual intervention by the system

administrator, but we chose a different approach – we decided to have the

administration as a part of our system. The advantage of this approach is its

generality – in the administration we can have all the necessary exports and views we

need at one place.

There is also another important requirement on our system related to the printing

house: a base price of the T-shirt. After the analysis of the price table and

consultation with the technical support, we found out that the base price of the final

T-shirt depends on a number of used colours from the front and from the back and

total quantity of created products. There is also a little surcharge when both sides of

the T-shirt have some graphics.

Therefore, we will need those input data in order to count the base price of the T-

shirt:

 the number of used colours at the front of the T-shirt,

 the number of used colours at its back and

 the goal of the campaign.

The printing house also provides two types of printing methods: a screen printing and

a digital printing. We found out that when too many colours are used or when the

campaign goal is too little, we should use the digital printing which is in general

more expensive, but in those particular cases it is cheaper. Moreover, for too

complex T-shirt imprints it is not technically possible to use the screen printing. The

price of the digital printing is constant, i.e. it does not depend on the input

parameters.

Creating T-shirts in greater batches is much cheaper than creating just one because a

special form for the imprint must be made. This is also the main reason why we need

to have the goal at each campaign – too small batches sent to the printing house are

just too expensive.

 16

2.4.2 Delivery Service

The last step in processing a successfully ended campaign is sending the final

products to the customers. We decided to exploit the Czech Post as a delivery service

because it fulfils our needs in the cheapest way. We achieved a low final price per

T-shirt delivered because T-shirts can be packed into envelopes which are much

cheaper than packages.

The Czech post has its own application [6] for printing postal labels for the

envelopes. We would like to connect to that application, but unfortunately, it has no

useful API and the only thing we can do is to take advantage of their imports in the

CSV format. Implementing the export feature in the system administration will be

pretty straight forward task, but first, according to the user manual, we have to

configure a structure of imported CSV documents. It is not difficult, but little bit

confusing; we need to set the numbers of columns in the CSV which correspond to

the respecting features as shown in Figure 2.1.

Figure 2.1: Settings of the CSV format in the Czech post application.

In our administration we will also need to generate PDF files with invoices which

will be attached to the envelopes passed to the post. Those invoices will be also

useful for checking whether the right T-shirt goes to the right address.

It is possible to extend our system for another delivery service but because the Czech

post is very specific in the export format, it is very likely that communication with

that delivery service would have to be implemented from scratch.

2.4.3 Payment Services

The greatest challenge associated with payment services is to invent a workflow that

would satisfy all those requirements:

 17

 Full amount of money must be refunded to a customer when a campaign ends

unsuccessfully.

 When a campaign ends successfully, money for all the associated orders must

be transferred to the platform’s account.

 Avoids fees when transferring money back to the customer’s account.

GP webpay

According to the manual of GP webpay [7] (page 10, Introduction to the system) we

can see that each order to the GP webpay has a parameter called DEPOSITFLAG.

When this flag is set to “1”, it means that money from customer’s credit card should

be transferred immediately. When set to “0”, money should be just blocked for some

time and it can be transferred later by calling the “deposit” method of their Web

Services.

There is also another interesting method in the GP webpay Web Services called

“credit”. By calling this method we can refund the transferred money back to the

customer.

As we can see, we have two possible scenarios of interaction with the GP webpay to

fulfil the requirements listed above:

1. Create orders with DEPOSITFLAG=0 and when the campaign becomes

successful, we can call the “deposit” method for all the associated orders and

therefore, transfer money to the platform’s account.

The advantage of this approach is that we do not have to do anything when

the campaign ends unsuccessfully because in this case no “deposit” is called

and the money stays at customer’s account. This also means that no fees are

charged because there are no real money transfers; it is like nothing happened

at all.

But there is a little catch in that – we do not know in advance for how long

the money stays blocked in the customer’s account, so when we call

“deposit” after a long time interval it might happen that it fails and no money

transfers at all. The failure can happen for example due to a lack of financial

 18

resources on a credit card in the moment of the deposit call – the bank

guarantees to block the money only for a certain period of time.

2. Create orders with DEPOSITFLAG=1, money transfers immediately and we

avoid problem described in the previous scenario. But when a campaign ends

unsuccessfully, we would have to call the “credit” method for all the

associated orders and refund all the payments.

In this case money really moves between accounts, so we would not avoid the

fees.

As we can see, none of the approaches fulfils all the requirements but we have to

pick up one of them. There is a constant fee 2 CZK per transaction at the GP webpay.

It is not much, but considering the worst case when campaign has a goal n and n-1

T-shirts are ordered, we find out that the total amount of fees for greater n (e.g. 200)

is economically unacceptable.

Regarding the problem mentioned in the first approach, we have been informed

directly from the bank that they can guarantee to block the amount on the customer’s

account for seven days, but technically it is not a problem to deposit money even

after three weeks. This is another reason for limiting the maximal length of the

campaign to 21 days. We also immediately tested to deposit the money after 21 days

and it worked with no problem; therefore, we chose the first approach.

Nevertheless, some risk of failure when depositing money remains, but it holds that

sooner the deposition is made, the lower the probability of failure is. Thus we can

optimize the first approach by depositing the money right after the campaign

becomes successful, not at its end. Moreover, we can create orders at the GP webpay

with DEPOSITFLAG=1 when a customer orders a T-shirt of already successful

campaign.

Communication with the service is maintained via URLs, i.e. all the exchanged data

are passed at the URL. For security reasons the data have to be signed with the self-

signed certificate [8] that we obtained from the GP webpay. When our system gets a

response from the service, it has to validate its authenticity via the certificate in order

to avoid spurious data.

 19

PayPal

According to the technical documentation [9] it is possible to create orders at PayPal

with two intents: “sale” and “authorize”. Those work in the same way as

DEPOSITFLAG at the GP webpay, thus we can implement for PayPal a similar

workflow to the one used for the GP webpay.

For communication with PayPal we will use their REST API for PHP library [10]

which encapsulates a lot of functionality and eases the communication with the

payment gateway. The most important methods from that library for us will be those:

 PayPal\Api\Payment::create – Creates a new payment at PayPal, it can be

created with a “sale” or “authorize” intent.

 PayPal\Api\Payment::execute – This method has to be called after a customer

fills in all the credentials at PayPal. It returns an authorisation token which

we have to store in the database in order to be able to deposit the money

when the campaign becomes successful.

 PayPal\Api\Authorization::capture – Captures the money from the customer’s

PayPal account to the DesignTeeLine’s PayPal account. This method requires

an authorisation token obtained from the PayPal\Api\Payment::execute

method.

The same problem as we have discussed in the case of the GP webpay might appear,

i.e. transferring money after a long time could fail. But we have not found any time

limitation for calling the “capture” method at PayPal documentation and we also

tested to deposit the money from several PayPal accounts after 21 days and it worked

with no problem.

Bank Transfers

Last of the supported payment methods are direct bank transfers which come with

further technical difficulties. First of all, it is not possible to ensure that no fees are

paid in case of unsuccessful campaigns. Because this payment method is based on

transferring money between accounts, we have to live with that fact.

When a customer decides to pay by a direct transfer, we need to generate a variable

symbol for the payment. Later we use that symbol to pair the transaction with the

 20

payment in our database. There is a little difference to the previous payment

methods: we cannot include the customer’s order into the campaign progress until we

are sure that the payment has been successfully transferred.

Unlike the other payment methods, the bank transfers take a significant amount of

time to complete. Therefore, there is a question what to do with delayed payments,

i.e. those that arrive after the campaign end. At least, we should notify the system

administrator about that fact, for example by e-mail.

We also need to upgrade our workflow when a campaign ends successfully – when

there are some unpaid orders, we need to wait for some time whether they get paid or

not. We decided to set this deadline to two days after the campaign ends. After that

deadline the system administrator can send the orders to the printing house. Orders

assigned to payments arriving after that deadline should be cancelled and those

payments should be refunded back to the customers.

When a campaign ends unsuccessfully, we need to manually refund all the payments

paid by the direct transfer to the relevant customers. Because the bank house we

cooperate with has no API for automated communication, this is another point where

the intervention of the system administrator is required. Therefore, we need some

view in the system administration where it is possible to list all those payments and

then mark them as refunded.

When a new payment is accepted at a bank, we would like to be notified, so we could

try to pair that transfer with some order in our system based on the total amount and

variable symbol. But missing API complicates that otherwise simple process.

Luckily, it is possible to configure an e-mail address where a notification e-mail is

sent every time a new payment is received at the bank.

We decided to solve this problem by creating a special mailbox for those e-mails,

periodically check its contents for new messages, parse all the necessary information

like the amount and the variable symbol from the e-mail body and then try to pair

those messages with the payments in our database.

2.4.4 Social Networks

From social plugins we need “Facebook like box”, “Facebook comments” and

“Facebook like button” which we will use in the campaign detail. We also plan to

 21

show a Twitter box in the footer of each page. Implementing those social networks

plugins is a trivial action in those days; it is just copying of pre-generated HTML

snippets that can be obtained from the Facebook developer’s page [11] and from the

Twitter account.

We would also like to implement login with Facebook and Google account. After the

analysis of both APIs we found out that communication protocols with those services

are very similar and they conform to the protocol illustrated in Figure 2.2.

Figure 2.2: Communication with social networks when user logs in.

1. Obtain an URL for login from the social network API and pass it URL where

DesignTeeLine handles the results of the login process.

2. Redirect user to the URL obtained from API.

3. User logs into social network and eventually approves our Facebook or

Google application.

4. Social network redirects him back to the URL we passed it in the first step.

5. DesignTeeLine uses social network API to get an e-mail of logged user at

social network; we have to handle possible errors in this step.

6. When we do not find the e-mail in our database, we automatically register the

user.

 22

7. Login the user with given e-mail and redirect to the original URL.

For communication with Facebook, we can use their PHP SDK and for

communication with Google we can communicate by curl extension of PHP.

 Manual Actions 2.5

In this section we present a summary list of points in the processes where the action

of the system administrator is required. As we have seen, those actions cannot be

fully automated for various reasons:

 Exporting and sending data to the printing house.

 Exporting orders for the Czech post.

 Refunding of directly transferred payments of unsuccessfully ended

campaigns.

 Refunding directly transferred payments delayed for more than two days after

the campaign end.

 Sending the profit to the campaign initiator when the campaign is

successfully ended and the campaign initiator requested for pay-out.

 Used Technologies 2.6

This section is dedicated to the technologies we decided to use and we also reason

why we made such decisions. We discuss technologies on both server and client side

and we also point out some libraries used for image generation.

2.6.1 Server Side

On the server side we use PHP, but this language has many weaknesses; therefore,

we would like to pick up some framework that would shield us from them. Another

good reason for the framework is that it eases the programmer’s life and it

implements many features suitable for almost every application like the security

against attacks or debugging tools.

There are many PHP frameworks, but only few of them have earned an excellent

reputation over the time. From those we can name Zend framework, Symphony or

 23

Nette framework [12]. All of those frameworks are highly reliable, well-documented,

well coded and they all lead the programmer to well-designed applications.

The main reasons why we picked-up the Nette framework are that it is still quite

light-weight, it is really easy to learn to work with it and it has a great performance.

The last reason is not as important as the first two of them because performance of

web applications depends also on other aspects such as how many resources are

loaded, the size of the required resources, the usage of cache on the client side etc.

But still it is nice to have a framework that does not consume too many resources on

the server.

2.6.2 Client Side

On the client side we will have only a few simple scripts – those which make the UI

more user-friendly. Therefore, we need some light-weight framework which would

shield us from the differences in JavaScript interpretation between different web

browsers and which would provide us a suitable API for common tasks like

manipulation with a DOM tree.

We decided to use jQuery [13] as the JavaScript framework because it is perfectly

suitable for our needs, it is well-documented, reliable and these days it has become

almost the standard. We can also exploit jQuery functionality to help us with the

implementation of features in the client part of the editor which is the only more

complex script at the client side.

Because we need to work with the SVG format at the client part of the editor, we

also need to pick up a library for this task. We were choosing between Raphaël [14]

and svgjs [15] libraries. They both seemed like mature solutions, but Raphaël had a

little bit better documentation; therefore, we finally picked up this library. Today we

would probably choose Snap.svg [16] which is a new generation of Raphaël library

but this library did not exist at the time of this decision.

2.6.3 Image Generation

When a new campaign is launched, all of the images that preview the sold items with

the designed imprint have to be generated. This includes all the images in predefined

resolutions in all the colours selected in the editor. We need those images for the

http://raphaeljs.com/
http://raphaeljs.com/
http://raphaeljs.com/

 24

campaign lists and for the campaign detail where we want to provide a preview of

the item when a customer selects its colour.

To make the image generation work we have to find useful technologies for

conversion of the imprint design in SVG format to the PNG image of the item with

the imprint.

Figure 2.3: Layers of the generated image.

When generating an image in the specified colour, first we have to be able to create a

temporal SVG image with three layers which are illustrated in Figure 2.3.

 In the bottom layer is a rectangle with the item colour.

 The middle layer contains the design of the imprint created in the editor. In

Figure 2.3 it is the layer with the fly and text “Just fly”.

 The top layer covers everything up; it is a special PNG image of the item

where the shape of the item is transparent in order to make the design in the

middle layer visible. There are also shades on the image which make the

impression of a plastic look of the final image with the layers merged. The

surroundings of the item are made in grey to match the design of the web.

First we tested the SVGlib [17] for PHP but it did not suit our needs because we were

not able to make it work with custom fonts which we want to use in the editor. The

second library we tried was the Imagick [18] extension for PHP with support for the

SVG format. But to make the Imagick work with the custom fonts, they have to be

installed in the operating system. See the installation instructions in the user guide

attached to this thesis.

For conversion of EPS images to SVG format we picked up the ps2pdf [19] program

in combination with Inkscape [20]. Those can be easily launched from PHP script.

 25

3 Design

In this chapter we explicitly define the processes which we need to implement. Then

we create the database structure of our system which results from the previous

analysis and from those processes. And as an important part of this chapter we

describe the design of the system architecture.

 System Processes 3.1

In this section we use UML activity diagrams to present processes that we later

implement. Those diagrams are based on the previous analysis of the system; they

summarize all the processes and make them easier to understand. Together with each

diagram we provide a detailed textural specification of each process. Definition of

those processes is very important because later we need to implement them. They are

crucial for the intuitive administration of the system and for all the system users to

track their campaigns, orders, payments and pay-outs.

3.1.1 Campaign

As we can see in Figure 3.1, every campaign starts as a draft and it might stay in this

state forever. When the campaign is successfully launched by its initiator, it switches

to the “launched” state. The campaign remains in this state until it reaches its end

date, then it switches to the “inactive” state. This transition can be also taken when

the user manually ends the campaign before its end date as specified in Section 2.2.5.

Figure 3.1: Lifecycle of a campaign.

The campaign can be re-launched and then it passes back to the “launched” state.

This loop can be taken as many times as the user considers appropriate.

 26

The user that owns the campaign should be allowed to delete it only when it is in the

“draft” state, otherwise it might get messy for example when the campaign has some

orders associated. On the other hand, the system administrator can delete the

campaign at any state because he is aware of all the consequences. Campaigns

should not be physically deleted from the database, but just marked as deleted, thus

they could be restored in case of false deletion. It is also clear that no campaign in

the “deleted” state should appear in the administration or on the frontend.

3.1.2 Launch

Because every campaign can be re-launched several times, we need to analyse the

lifecycle of campaign launch separately. A new launch is created every time when

we enter the “launched” state in the diagram in Figure 3.1. As shown in Figure 3.2,

each launch is created in the “running” state. When the launch becomes successful, it

is switched to the “successful” state and all customers that made their orders are

informed by an e-mail message.

Figure 3.2: The lifecycle of a campaign launch.

Afterwards when it ends, it takes the transition to the “successfully ended” state.

When the goal of the campaign is not reached till the launch end, the transition to the

“unsuccessful” state is taken. The campaign initiator and all the customers are

informed about those two transitions by e-mail.

When the transition to the “unsuccessful” state is taken and there are some orders

successfully paid by direct transfers, the system administrator is informed by e-mail

about that situation. In the “unsuccessful” state the system administrator is

 27

responsible for a manual refund of all the direct transfer payments. Then the launch

can be switched to the “refunded” state.

In the “successfully ended” state the system administrator has to wait for two days

for delayed bank transfers, then the launch is switched to the “ready to print” state

and it can be exported and sent to the printing house. In our diagram the “printing”

state represents this part of the scenario.

When the items are received from the printing house, the administrator can export

information about the orders for the Czech post. Then all the T-shirts are packed and

passed to the Czech post, the launch is now in the “sent” state. When earned money

is transferred to the campaign initiator, the launch lifecycle terminates in the “paid”

state.

3.1.3 Payment

When a customer fills in the ordering form, a new order and an associated payment

are created. We will split the design of payment lifecycle to two parts: payments paid

by the GP webpay or PayPal and payments paid by direct bank transfers.

The diagram in Figure 3.3 presents the lifecycle of payments paid by the GP webpay

or PayPal. In that case, each payment is created in the “unauthorized” state. If there

is no response from the payment gateway, for example when the customer closes the

web browser, it can last in that state forever.

Figure 3.3: The lifecycle of payment paid by GP webpay or by PayPal.

When our system receives a response from the payment gateway, it checks whether

the payment was successfully authorised. Payments for orders of already successful

 28

launches are immediately switched to the “received” state; payments for orders of

launches still in the “running” state are switched to the “authorized” state.

The transition between “authorized” and “received” states is taken when the launch

associated with the payment becomes successful. When it ends unsuccessfully, we

switch the payment to the “refunded” state, but we do not have to take any action as

we analysed in Section 2.4.3.

Also we have to count with a possibility of a payment failure. In our process, this can

happen at two places:

 When the payment is authorised after its creation.

 When the payment is automatically captured after the campaign goal is

reached.

The first type of error can happen due to a lack of financial resources on a credit

card, an invalid credit card, timeout at the payment gateway and many other reasons.

When the error occurs, our system is informed in the response from the payment

gateway about its nature. The system should log the error and switch the payment to

the “error” state, then the process terminates. We should also inform the customer by

showing an appropriate message.

The second type of error is much more serious because we have already included the

order to the launch progress and suddenly we did not receive the money. The system

administrator has to be immediately informed about that situation by e-mail and he

has to handle it. But based on the analysis, we assume that this type of error should

happen really rarely.

Figure 3.4: The lifecycle of payment paid by direct transfer.

 29

The figure 3.4 shows the lifecycle of payments realised by direct bank transfers. In

this case each payment starts its lifecycle immediately in the “authorized” state.

There it waits to be received, i.e. it waits until we are able to automatically pair the

payment with some e-mail message in the dedicated mail box as mentioned in

Section 2.4.3. It can also happen that the customer decides not to pay, and then the

payment stays in the “authorized” state forever.

If the launch ends unsuccessfully and the payment has already been received, it is

switched to the “to refund” state. If the payment is delayed more than two days from

the launch end, it is switched to the “to refund” state immediately. The system

administrator is responsible for refunding the payment and switching it to the

“refunded” state manually.

The customer should receive an e-mail message when his payment is successfully

paired with some message in the dedicated mailbox. In this e-mail he should be

informed about the current state of his order and payment, i.e. whether the payment

was received on time and what is the current state of the associated launch. The

customer should be also informed via e-mail when his payment is manually

refunded.

3.1.4 Order

We already have most of the information about each order in the state of associated

payment and launch. We can obtain the lifecycle of an order as a combination of the

lifecycle for a launch and the lifecycle for a payment. But not every combination of

states is meaningful, e.g. sent order which has payment in the error state. In the

implementation we have to guarantee that only meaningful combinations of states

can be reached.

We decided to implement only three explicit states for orders and the rest of them we

infer from the state of associated launch and payment. Each customer is informed

precisely about the state of his order in the order detail view in his profile. A

diagram of order states is shown in Figure 3.5.

Each order is created in the “reserved” state where it remains until it is marked as

unsuccessful which can happen from many different reasons – the payment failed,

the launch is unsuccessful, the payment is too late etc. When the launch is marked as

 30

passed to the delivery service, all paid orders are transferred to the “sent” state.

Theoretically, we could also infer this state from the state of associated launch, but

we wanted to be able to mark each order individually as sent in the administration.

Figure 3.5: Lifecycle of an order.

We can also easily extend the diagram with states that could not be inferred from the

associated launch or payment. For example, if we decide to add a new “delivered”

state after the “sent” state, it will be easy to extend this diagram.

3.1.5 Pay-out

The lifecycle of pay-out demonstrated in Figure 3.6 is very simple. Each pay-out is

created when the transition from the “successfully ended” state to the “ready to print”

state is taken in Figure 3.2. Then the pay-out waits until the campaign initiator

requests the money. The system administrator can see all the pay-outs in the

“requested” state in the administration and it is up to him to transfer the money to the

campaign initiator’s bank account. Afterwards, he has to manually switch the pay-out

to the terminal “paid” state.

Figure 3.6: Lifecycle of a pay-out.

 Database Structure 3.2

Now we design a structure of a database suitable for our system. First of all, we need

to identify the entities present in the system, their relationships and properties. This

 31

will result in a structure of the database tables – for each entity we create a separate

table. The resulting database structure is based on our previous analysis of the system

requirements and the processes described in the previous section.

3.2.1 Motivation

When designing a database structure, there are two opposing trends between which

we need to find a balance. On one hand, we would like to have a database with

minimal redundancy of information so we could pick up some of the normal forms

[21] and split our tables to correspond with that form. But that approach also

increases the total number of tables, and therefore it increases the overall number of

joins needed in the queries and decreases performance of those queries. On the other

hand, there is the requirement for high performance and we need to find equilibrium

between those two.

One of the ways to provide a database schema with low redundancy preserving also a

low number of joins is usage of views. We tried to create views that would save us

the necessity of using joins, but when we tested those views with a few thousands of

entities in the campaign and launch tables, the performance of the queries was behind

a tolerable level – some simple selects took almost a second.

The performance of the final application is essential for us; therefore, we decided not

to strive for some normal form and accept the database with a higher level of

redundancy. The consistency of the database is provided on the application level as

discussed in Section 3.2.6.

3.2.2 Campaign

The central entity in our system is the campaign. As we have analysed in Section

3.1.2, each campaign can have zero or more launches; therefore, another entity that

should be reflected in the database structure is a campaign launch.

The most important properties of each campaign identified during the system

analysis are:

 Campaign name and description.

 Campaign alias which has to be unique upon all the campaigns because the

URL of page with campaign detail is based on that alias.

 32

 Campaign goal and its length in days.

 Data for the imprint design.

 Number of colours in the imprint design from front and from its back.

We could easily infer the knowledge about the current state of each campaign

illustrated in Figure 3.1 from the related campaign launches – when the campaign

has no launches, it is a draft, when its newest launch ends is in the future, the

campaign is launched and when its newest launch ends is in the past, it is inactive.

For the deleted state we could have a column with a flag indicating that state.

We identified those properties that characterize each launch: a launch start date,

launch end data and its state. Similarly, the current state of each launch can be easily

inferred from its other properties. E.g. a launch is successful when it is not ended and

more items were sold than the goal of the associated campaign. Only the states

“printing” and “sent” would have to be stored explicitly.

In the first version of our implementation we inferred the state from other properties

where it was possible because this approach decreases the redundancy of the

information in the database, thus it also decreases the possibility of its inconsistence.

But we still had to store some information about the state explicitly and as a result it

was an inconsistent mixture between the explicit and implicit state storage which was

hard to maintain. With this approach, it is also much more complicated to extend the

system processes when necessary and the code of the application is more error prone

because we cannot work with the state directly.

Therefore, we decided to redesign the database structure and rewrite the code of the

application to support the states of individual entities explicitly. We use the same set

of states and transitions as described in Section 3.1.

We can see the entities related to the campaign in Figure 3.7. The pay-outs table

serves to both campaign initiators and system administrators and its purpose is the

same for both of them – to provide a brief history of money paid and received. The

category table stores the information about the supported categories which can have

a hierarchical tree structure. Each campaign has to be placed in some category.

 33

Figure 3.7: Database schema of campaign-related entities.

Because in the editor the campaign initiator can check that he wants to allow his

customers to pick up their orders at his place, we need to store the address of the

place somewhere. This is a reason for the relation to the “address” table. Tables for

variants and users are discussed in the following subsections.

3.2.3 Sale Variant

As we have already said, we store designs of imprints in the table for campaigns. But

the campaign initiator can decide that he wants to sell the item in more than one

colour; therefore, we need to store that information somewhere too. We could create

a special table for colours in which the design is sold and it would solve our problem.

But we decided to solve this task in a more general way.

In the analysis we have decided that we want to have our system extensible in a way

that we could easily add new items for sale, i.e. new bases. With that in mind, we

decided to create a table for sale variants of designs which are available to the

customers. Every variant is a concrete item in a concrete colour, e.g. a red T-shirt or

a green sweatshirt.

One great advantage of this separate table for campaign variants is its flexibility. In

the future, we can easily add new items – those will be just new rows at that table.

We can also explicitly set which variants we want to offer to the customers – from a

 34

minimum where we offer just one variant to a maximum where we offer all the

possible variants (but this would require too much space for each campaign, in fact

all the combinations of possible items and their colours) and anything in between.

We decided for a compromise: the campaign initiator can pick up a default base (a

default item which is offered to his customers in the campaign detail) in the editor

and up to four colours in which the campaign will be available. After the launch the

customers can buy any of the supported items with the designed imprint in the

colours that were selected in the editor. E.g. when the system supports selling of T-

shirts, bags and sweatshirts and the campaign initiator wants to have as default base a

T-shirt and he wants to sell the items in red and in yellow, then those variants are

stored in the variants table: a red T-shirt, a yellow T-shirt, a red bag, a yellow bag, a

red sweatshirt and a yellow sweatshirt.

This design of the table with sold variants also improves the modifiability of the

system. For example, it is possible to refactor the mechanism for generating the

variants in the way that the campaign initiator selects exactly which variants he

wants to sell. This change would impact only on the code of the editor frontend and

backend but it would not affect the database schema.

Now we can summarize all the columns that we need in our “variant” table for sale

variants:

 Variant colour and used base.

 The column indicating whether it is a default variant used in the campaign

detail.

 Base price which represents the costs to create an item.

 Author’s margin on the item which represents the amount of money he earns

when the item is sold.

 System margin which represents the profit of the platform when the item is

sold.

The final sale price of each variant is a sum of the base price, the author’s margin

and the web margin.

 35

3.2.4 Order

Another important entity in the database is an order. Each order is always related to

some campaign launch. The customer can order more items at once, which leads us

to the table with the ordered variants. As we can see in Figure 3.8, this table is

related to both, the table with the orders and the table with the campaign variants,

thus providing information which variants of which launch the customer ordered.

With each order there has to be an associated payment where we need to explicitly

store its state in order to successfully implement the process described in Section

3.1.3. Because there is a 1-1 relation between orders and payments, it might make

sense to merge those two tables into one and save some necessary joins. We decided

to prefer a distinction between the payments and the orders because this way the

database structure is more extensible. For example, if we decide to store also

payments that are not related to any order, for example, payments with a wrongly set

variable symbol, we could easily do so.

Figure 3.8: Database schema of order-related entities.

In the sake of simplicity, each order is also related to exactly one user. But on the

other hand, we need to support orders of non-registered users too. We solved that

issue by introducing a row with unregistered user in the table with users and all the

orders of non-registered are related to that user. We should also mention that we

recycle the “address” table to store the address where the order should be delivered.

 36

3.2.5 User

We have already mentioned the table with users. This table also plays a central role

in the system and its purpose is obvious – to store information about registered users.

We need to distinguish different user roles as a consequence of having the system

administration. There is a natural many-to-many relationship between those roles and

users although we do not get a benefit out of that fact at the moment. Therefore, we

have two additional tables in the database structure – first of them for the user roles

which we call the user groups, and second of them for the relations between those

groups and users. All of the mentioned tables and their relations are shown in Figure

3.9.

Figure 3.9: Database schema of users and their relation to the groups.

We decided to support the possibility of multiple addresses associated with one user

and we recycle the table with addresses for that purpose. In the implementation we

support only one address per user, but the database structure is ready for multiple

addresses and in the future the application may be simply extended in that way. We

just shortly recapitulate the types of addresses stored in the “address” table:

 Addresses of users where they wish to deliver their orders.

 Address of each order where it should be delivered.

 Address related to a campaign. When the campaign initiator decides to allow

his customers to pick up their orders at his place, he needs to fill in this

address.

 37

3.2.6 Discussion

There are more tables used in the database structure, but we do not analyse them

because they are less important for the overall application functionality. As an

example of such a table, we can mention a table for queue of e-mail messages that

should be sent or a table for tokens that are used during the registration or when a

user forgets a password.

Later on during the performance optimizations we wanted to reduce a total number

of queries to the database, especially at the campaign detail and at the homepage. For

example, we wanted to write a progress of the campaign at its detail. In order to get

that information we need to count the orders associated with the current launch of the

campaign, i.e. it is necessary to perform a special query for that.

We managed to get rid of that query by altering the schema of the launch table where

we added a new column for caching a total number of orders associated with the

launch. This increases the redundancy of information in the database, but it is not

difficult to manage a database consistency of the database when we have a single

point in the application where update that column, i.e. we have one place where we

add a new order and update the cache column. We call that place a repository and it

is described in Section 3.3.3.

There are more cache columns in the database structure that reduces the overall

number of database queries or their complexity. For example, we can mention a

column “preferedColor” in the “campaign” table which stores a value of the default

colour from the associated table with campaign variants (i.e. a colour from the table

“variants” where “isDefault” is set to 1 and it is a variant associated with the given

campaign).

The consistency of the database is provided on the application level, i.e. in the

repositories. We also wrote a few test queries that check whether the database is

consistent or not. Not consistent database would mean an error in the application

implementation.

 System Architecture 3.3

When designing system architecture, first we need to define the functional

requirements. We have already defined most of them in Sections 2.2, 2.4 and 3.1.

 38

The next step is to decompose the system to smaller units of decomposition in order

to fulfil those requirements and in the end of this section we shortly focus on the

quality attributes of the DesignTeeLine system.

3.3.1 Overall View

We are going to implement a web system with a typical overall structure. The client

is a user with a web browser who performs HTTP requests to the server. The

responsibility of the server is to handle those requests, prepare a response and send it

back to the client over HTTP.

There are two separated parts of the system:

 Client side which consists of scripts executed in the client web browser.

 Server side which consists of the database and scripts executed on the server.

We will focus on the server side because it is much more interesting from the point

of view of the system architecture. The overall structure of the system is shown in

Figure 3.10 and as we can see, there is a database layer which stores the persistent

data. The Nette framework handles all direct communication with the database layer

and provides a great abstraction of communication for the rest of the system. We will

iterate over all the parts of the system illustrated in Figure 3.10 in the following

subsections.

Figure 3.10: Basic decomposition of the system.

 39

Our architecture is highly influenced by the usage of the Nette framework. One of

the core functionalities of the framework is the support of a three layer design pattern

called Model-View-Presenter. We briefly describe what each of those layers do:

“Model is data and especially functional base of whole application. It

contains application logic. Model is managing its internal state and provides

solid interface outside. By calling methods of this interface, we can read or

update its state. Model does not know anything about view or controller.

View is an application layer that is taking care of displaying result of

request. For that purpose it uses the Latte templating engine.

Presenter handles requests from the user, calls relevant application logic

from the model and then asks view to display data.” [22]

3.3.2 Presenters

Each presenter is a PHP class which extends the base class

Nette\Application\UI\Presenter. The action of a presenter is a piece of code that is

called when a certain user request appears. Each presenter defines a set of those

actions thus providing a code to handle related user requests. The Nette framework

also abstracts from the mapping of HTTP requests to the actions of presenters. It is

enough to provide a list of routes that describe this mapping between URLs and

relevant presenter actions.

Actions of the presenters are always represented by a pair of methods called

action<ActionName> and render<ActionName> where <ActionName> represents

the name of the action. In the implementation, one of those methods might be

omitted. We will describe the presenters and their actions that we need to implement

later in this section.

The usual workflow, when a new HTTP request arrives to the server, is as follows.

Firstly Nette asks the router to find the appropriate presenter and action to handle the

request and then the action is called. The action asks the model layer for the relevant

data, passes those data to the view, renders the view and returns a response to the

original request.

We start with decomposing the system into the presenters and their actions which we

need to handle. We divide those presenters into two modules: a module for frontend

 40

users and module for the administration, but here we describe only a decomposition

of the frontend module and the most important presenters and their actions.

Figure 3.11: Hierarchy tree of presenters.

We should also mention that all the presenters in both modules extend the class

called BasePresenter where the functionality common to all the presenters is located.

A hierarchy tree of the most important presenters is illustrated in Figure 3.11.

The communication between separate presenters is never done directly, i.e. by

calling the methods of one presenter by another presenter in the code. Presenters

communicate with each other on the level of HTTP requests via links, via forms and

via sharing a state. This state is always captured on the level of the model layer.

Some of the communication workflows are described further in the text together with

the presenter actions.

Homepage Presenter

Homepage presenter serves as a presenter for the application homepage. It has only

one default action which asks the appropriate view to render the homepage content.

Campaign Presenter

The responsibility of this presenter is to handle all the actions related to the listing of

the campaigns. We need to implement those actions:

 41

 Campaigns: An action for listing the campaigns as a result of the search.

When the user writes a string into the search form, the search component

redirects him into this action.

 Detail: An action for handling the request for showing a particular detail of

the campaign. The campaign is identified by its alias which is defined when

the campaign is launched. This alias is passed as a parameter in the URL.

This action has to handle the situation when no such campaign exists.

 Author: An action for listing all active campaigns from a particular author.

Each author can set his own nickname in his profile. When this nickname is

set, then it can be passed as a parameter to that action and the campaigns

created by that author are listed. This action has to handle the situation when

no such author exists.

 Image: An action for generation of an image of a particular campaign. Which

image (i.e. its resolution, colour of the item, which item etc.) should be

generated is defined in the parameters of this action.

Order Presenter

The responsibility of that presenter is to show the order form, redirect the user to the

payment service, accept the response of the payment service and show the result of

the communication with payment gateway to the customer. We need to implement

those actions in order to fulfil all payment scenarios described in Section 2.4.3:

 Default: An action which renders the ordering form.

 Remove: An action for removing an item from the shopping cart, this action

should redirect the customer back to the default action.

 Checkout: An action where the user is redirected after a successful creation

of the order and the payment, i.e. when the ordering form is successfully sent.

It redirects the customer to the payment gateway or if he selected to pay by

bank transfer, it just redirects him to the action called “completed”.

 Completed: An action which receives a response from the payment service,

validates it and shows the result of the payment to the customer. If everything

is ok, it also asks the model to update the state of the payment.

 42

Sign Presenter

Sign presenter serves for implementation of the processes related to the registration

and login of the users. But most of the application logic is located in the handling of

the forms, not in the actions. There are also two additional presenters that handle the

login via Facebook and Google; those are called FacebookPresenter and

GooglePresenter.

 Up: Shows the registration form.

 Confirm: When a user performs a registration, an activation e-mail message

is sent to his e-mail address. The link in that message points to this “confirm”

action. An activation token is passed in the URL as a parameter to that action.

We have to check the validity of the token (whether it is not expired, it exists

in the model, etc.) and activate the user associated with the token or inform

the user about an error.

 In: Shows the login form.

 Out: Performs the logout of currently logged in user and redirects him back

to the previous action.

 Forgot: Shows the form for handling the situation when a user loses his

password.

 Renew: A link in the e-mail sent by forgot password form points to that

action. A confirmation token is passed in the URL as a parameter to that

action. We have to check the validity of the token and if it is not valid, we

redirect to the “forgot” action. If the token is valid, we show the form for

setting a new password.

User Presenter

The aim of the user presenter is to handle all actions in the user private section where

the user is allowed only when logged in. The actions of this presenter are:

 Default: Lists all the launched and inactive campaigns that the user has

created.

 43

 End Campaign: Ends the campaign that is currently in the launched state

and belongs to the logged in user. A campaign id is passed as a parameter to

that action.

 Edit Campaign: Shows the form which allows the logged in user to change

the properties of the campaign (i.e. its name, description etc.). The campaign

id is passed as a parameter to that action.

 Contact Buyers: Shows the form which allows a campaign initiator to

contact all the buyers of his campaign. The campaign initiator can fill in the

subject of an e-mail and its text and the system plans to send all the e-mail

messages to the relevant customers.

 Re-launch: Re-launches the campaign which is currently in the inactive state

and belongs to the logged in user. The campaign id is passed as a parameter

to that action.

 Drafts: Lists all the campaigns that are in the “draft” state. User can go back

to the editor and continue in creation of the campaign.

 Delete Draft: Deletes the draft of a campaign which belongs to the logged in

user. The draft id is passed as a parameter to that action.

 Orders: Lists all the orders that the user has created. The user can see there

the state of each order and the associated payment.

 Order Detail: Shows a detail of a particular order that belongs to the logged

in user. User can check which products he has ordered and how much did it

cost.

 Profile Info: Allows the user to change his profile, like the nick.

 Address: Shows the form for changing the address for delivering orders.

 Change Password: Allows the user to change his password.

 Get Paid: Shows a summary of all user pay-outs. It also shows the form that

allows the user to request the money he has earned.

 44

3.3.3 Models

We build a model layer above the database layer in order to abstract from the fact

that our application is using a database. For each table in the database we will create

a class called repository which will encapsulate all the queries to the table. Data

returned from the repository are instances of model classes – each row in the

database is returned as an instance of the particular model class.

From the logical point of view, repositories are used to perform tasks which change

the state of the model layer or to retrieve the relevant model entries and pass them to

the caller. Repositories are also used as single accesses point to the model entries.

This uniformity of access eases the localization of bugs because we can easily

localize the place where the bug might be.

But some data entries are not located in the database at all, they are just located in the

memory because they are static data (i.e. their state does not change over the time)

and there are not a lot of them. By defining those entries directly, we save some

database queries and in some cases we do not have to connect to the database at all.

We have two different types of repositories: repositories with model entries that are

reflected in the database and repositories with models that are not reflected in the

database. In the case of non-database repositories, the model entries are stored

directly in the repositories and in the case of database repositories, the repository

creates an illusion of that. Therefore, repositories abstract from the fact that some

models are located in the database and some are not and they provide a uniform

access to both of them.

In Figure 3.12 we illustrate the hierarchy of the repositories and entries with the most

important methods. There are also three generalizations that are not visible in the

figure: all the classes in the namespace Application\Model\Entry extend the Entry

class, all the classes in the orange part of the Application\Model\Repository extend

the Repository class and all the classes in the blue part of the

Application\Model\Repository extend the DatabaseRepository class. We did not

include those generalizations into the figure in order to preserve its clarity.

Some of the entries in the repositories located in the orange part of the namespace

Application\Model\Repository are so simple that they do not need to be represented

 45

by a separate class; it is enough to represent them as a Nette\ArrayHash instance. The

artworks used in the editor are an example of that approach.

Figure 3.12: Part of the class hierarchy of the repositories.

Some entries are even simpler, for example colours. A colour is just a pair which has

a name and an RGB code; therefore, we can represent them in the repository as an

array where the key is a colour name and the value is its RGB code. But some entries

are more complex and we need to represent them with a separate class even though

they are not database entries. We need a separate class when we need to call some

methods on the entries, for example methods for currency formatting.

We can represent simpler entities reflected in the database as instances of the class

Nette\Database\Table\ActiveRow, for example tokens can be represented that way.

But when we need to call some special methods on the entities, we need to represent

them as a separate class. Those model classes which extend the class Entry behave

 46

like proxies – they wrap an original instance of ActiveRow and delegate the requests

for unknown properties to the original object, but they also add a new functionality.

The most complex repositories are the CampaignRepository and OrderRepository

which work with more than one database table. For example, the

CampaignRepository works with the table for campaigns, their launches and sale

variants.

3.3.4 Components

Another important concept of the Nette framework that we get benefit of are the

components. Components in the context of Nette framework are PHP classes which

represent renderable objects. Those might be forms, menus, inputs and so on. We do

use some components as separate classes because we need make them reusable. For

example, the sign in form and the sign up form, menus etc.

Components are always created by factory methods in the presenter whose name

confirms to a pattern createComponent<ComponentName> where

<ComponentName> is the name of the created component. Other components are

created on a fly – we do not need to create a separate class for them. For example,

when we need to create some form in the presenter we can use the class

Nette\Application\UI\Form and then design the form on the fly.

3.3.5 Services

Services are PHP classes whose purpose is to provide functionality that is not

directly related to none of the layers from the MVC design pattern. An example of

this functionality might be a service for caching, a service for minification of

JavaScripts or a service for communication with the payment gateway. Those classes

are located in the Application\Services namespace and they usually extend the

Nette\Object class.

3.3.6 Editor

Editor has a bit special role in the system architecture because it is the only part of

the system which consists from two inseparable units: its frontend and its backend.

The frontend of the editor is written in JavaScript and its backend is written in PHP.

 47

Even though those two parts do not make sense without each other, we wanted to

provide a loosely coupled interface between them. The communication between

editor frontend and its backend is realised with AJAX [23] queries which transfer

data in the JSON [24] format.

In the backend there is EditorPresenter with actionAjax which handles all the AJAX

queries. This presenter has also an action for showing the preview of the campaign

and an action for launching the campaign.

3.3.7 Quality Attributes

One of the quality attributes we would like to focus on is the system performance.

We considered design choices for improving performance such as caching of

generated HTML (see Section 4.3), minification and merging of JavaScript and CSS

(see 4.4), reducing the overall number of database queries (see 3.3.3) and support for

the CDN services such as CloudFlare [25].

 48

4 Implementation

In this section we describe the implementation details of the DesignTeeLine system.

Because of the scope of the implemented application, we are not going to present all

the classes and their relationships; we do not want to provide an exhaustive and

complex description. Rather, we describe the technically interesting or challenging

parts of the application and the description of the rest can be found in the developer

documentation generated from the source codes.

We also present some detailed technical aspects which we would like to point out as

a demonstration of the application complexity. Those aspects are for example:

support for multiple language mutations, multiple currencies or resource minification

which increases the application performance.

 Application Structure 4.1

First, we will describe the overall structure of the implemented application to

introduce the reader where to find certain functionality. Only the most important

parts of the application are described here.

 app/AdminModule/ is a directory which contains all the presenters and

templates used in the application administration.

 app/components/ contains implementation of all the components used

throughout the application. What is considered as a component is described in

Section 3.3.4.

 app/config/ contains configuration files for the application.

 app/FrontModule/ is a directory containing all the presenters and templates

used on the application frontend.

 app/model/ contains implementation of all the repositories and model entries,

see Sections 3.2 and 3.3.3.

 app/presenters/ contains only the implementation of the BasePresenter class

from which all the presenters used in the application inherit.

 49

 app/services/ contains all the services. What is a service is described in

Section 3.3.5. Some of the services are described in the more detail further in

this chapter.

 app/tasks/ contains the implementation of cron tasks, see Section 4.2.

 app/templates/ contains general purpose templates which are not related to

the concrete action of some presenter. Those are for example templates of

e-mail messages or templates of components.

 files/js/ contains all the JavaScripts used in the application.

 files/js-editor/ contains the implementation of the front-end part of the editor.

 files/style/ contains CSS a LESS visual styles of the application.

 install/ is an installation directory with a script used to install a new instance

of the application.

 libs/ contains all the external libraries and the implementation of the Editor

class which is used for generation of the images and handling the file upload

from the editor.

 tests/ contains selenium and unit tests for the application.

 www/ is the directory that should be reachable from the outside world. The

root of the website should point to that directory and no other directory of the

application should be reachable from the web browser.

 www/images/campaign/ contains all the generated images for all the

campaigns. The images in this directory are divided to the subdirectories

where each of them can contain images for 2 000 campaigns at maximum.

This feature is implemented to speed up the search for the image in the file

system on the server.

 www/static/ contains static files which can be directly loaded from the

browser. All those static resources are located in the separate directory

because then they can be viewed together at some subdomain and some CDN

such as CloudFlare can be used to cache the static content and save the server

resources.

 50

 www/static/css/ contains compiled version of CSS files located in the

files/style/ directory. The CssService class is used for that compilation and

the whole process is described in Section 4.4.

 www/static/js/ contains the compiled version of JavaScript files.

 Cron Tasks 4.2

In order to automate the system processes described in Section 3.1 as much as

possible, we implemented a set of cron tasks that are automatically executed by the

cron running on the server. Executing of all cron tasks on a server is easy; it is

enough to periodically call the script cron/cron.php every five minutes.

The class responsible for storing cron tasks, their scheduling and launching is called

CronService. Firstly, we implemented cron tasks as instances of the Task which

accepted a method that should be performed as an argument in its constructor.

Second important parameter of each task is the periodicity of its execution. The last

execution time of each cron task is stored in the cache, thus the tasks can be

scheduled according to their periods.

Figure 4.1: Class hierarchy of cron tasks.

But there was no clear logical place where to implement the methods that really

represented the cron tasks. They were usually implemented at some repository or

service but that was not logically correct. For example, some cron tasks send e-mail

messages and it should not be a responsibility of any repository to send an e-mail

message.

 51

Therefore, we decided to re-implement the cron tasks in a way that each task is a

separate class which inherits from the base Task class. Each such a class has to

implement abstract method run which is called when the task is performed. The

hierarchy of cron tasks is shown in Figure 4.1.

The instances of cron tasks are defined in the BasePresenter::registerCronTasks

method. After analysing the processes that needed to be implemented in the

application, we implemented those cron tasks:

 ProcessQueue – A task responsible for sending batch of e-mail messages

stored in a message queue which is implemented as a database table called

“message”. There are more reasons why to send messages in batches and not

all at once. First of them is that sending an e-mail consumes server resources,

e.g. in a hypothetical situation when 10 000 customers support certain

campaign, sending 10 000 e-mail messages at once is not a good idea.

Another reason is that by sending too many messages at once the probability

of marking those messages as spam at the receiver site increases.

 ProcessSuccessfulLaunches – When enough items of a campaign launch are

ordered, the launch becomes successful. The purpose of this task is to

automatically identify such launches, switch them to the “successful” state

and inform all the customers about that situation.

 ProcessEndedLaunches – This task takes all ended campaign launches that

were not processed yet and switches them to the “successfully ended” or

“unsuccessful” state according to the Figure 3.2. Then an e-mail message is

sent to the campaign initiator and e-mail messages for all the campaign

buyers are added to the message queue. A message text is generated

depending on the campaign launch successfulness. When the campaign

launch is unsuccessful, all the related direct transfer payments that were

captured are switched to the “to be refunded” state.

 ProcessReadyToPrintLaunches – When the campaign launch is ended for

two working days, all the direct transfer payments should be captured. This

task switches it to the “ready to print” state where it is up to the system

administrator to send the order to the printing house. This task also creates

 52

pay-outs for all the authors of successfully ended launches that do not have

pay-out yet.

 ProcessRefundedLaunches – When the campaign launch is in the

“unsuccessful” state and all its direct transfer payments are in the “refunded”

state, this task switches the launch to the “redunded” state.

 ProcessPaidLaunches – Switches all the sent launches whose author has

already been given the pay-out to the “paid” state.

 ProcessPayments – When the campaign launch becomes successful all the

payments made by credit card or by PayPal are processed, i.e. the money

from all relevant customers are captured via the payment authorisation tokens

which were received when the customers made their payments. For each

payment method a special service is responsible for communication with the

payment gateway – the GpWebPayService for communication with GP

webpay and the PayPalService for communication with PayPal. Occasional

errors are logged for further analysis.

 PairPayments – This task is related to the direct transfer payments. It

connects to a mailbox specified in the application configuration file,

downloads the notification e-mails informing about incoming money and tries

to pair those transactions with payments in the application database. The

pairing is based on their amount and variable symbol. This task is an

implementation of the process described in Section 3.1.3.

 Caching 4.3

Caching is a good way to reduce the overall resources that application demands and

increase its performance, i.e. speed the application up. We implemented two levels of

caching mechanisms – caching on the level of templates and caching of generated

HTML.

The first level of caching is provided by the Nette framework and we took advantage

of it in the presenter actions that are supposed to be most visited. All that has to be

done, in order to enable caching, is to wrap a block of code in the template with

{cache}…{/cache} macro. With this mechanism, we managed to reduce the total

 53

number of SQL queries performed at the homepage and campaign detail actions to

zero when the content is loaded from the cache. This is because SQL queries are

performed inside of those cached blocks.

We also implemented the class called HtmlCacheService which serves as the second

level of cache. The generated HTML is saved to the cache when the Nette event

“onShutdown” is executed.

Loading of the content from the cache is performed just after the Nette framework is

initialised in the bootstrap.php file. Therefore, when the content is loaded from the

HTML cache, it is served in no time because no connection to the database is needed,

no routing needs to happen and no presenter action is performed.

But because the whole generated HTML is stored in the cache, it needs to be used

very carefully. For example, when some user is logged in, we cannot load the content

from the cache because in the top right corner of each page the username of logged

in user has to be shown.

 Minification 4.4

Each request on the server from the web browser consumes server resources and it

also takes extra time to connect to the server and download the resource. Therefore,

it is a good practice to decrease an overall number of external resources needed for

each page.

When generating a page, i.e. performing an action of a presenter, we define all the

JavaScript and CSS files that the page requires in order to be fully functional. The

JsService class is responsible for handling the references to the JavaScript files and

the CssService class responsible for handling the references to the CSS files. Both of

those services inherit from the base AttachmentService class which implements the

common mechanism for storing the compiled files in the output directory.

All the resources passed to those services are first minified then merged into one file

and finally saved to the www/static directory. This directory is directly accessible

from the web browser; therefore, the resource can be later loaded as it is – no PHP

scripts are involved.

 54

As a result of that, only one request for JavaScript or CSS file is needed per page.

Moreover a minimum amount of data is transferred via the internet because all the

resources were first minified. The LessPHP [26] compiler is responsible for the

minification of CSS/LESS files. Google Closure Compiler [27] was chosen for the

minification of JavaScript files.

 Image Generation 4.5

Generation of authentic campaign images is an important part of the application

because a potential customer needs to see what he is going to buy. The

ImageRepository class is responsible for locating the campaign images. When the

image is not generated yet, an URL of the CampaignPresenter::actionImage action

is returned as its URL.

This action is responsible for collecting the parameters for the image generation,

delegating the generation to the Editor class and redirecting to the image real URL.

The Editor::generateCampaignImages method is capable of image generation in

different resolutions and formats. It merges all the image layers described in Section

2.6.3 into one SVG image and then it uses the Imagick extension of PHP to convert

the image to the final PNG format. When the images for the printing house are

generated, they are saved directly in the SVG format.

We generate those images:

 Image of the campaign for homepage on the default base and in the default

colour from the front.

 Image of the campaign pure design for the homepage in the default colour.

 Mini image of the campaign used in the summaries in the user profile.

 Image of the campaign used in the search results on the default base and in

the default colour from the front.

 Image of the campaign pure design used in the search results in the default

colour.

 Image of the campaign design used for sharing of the campaign on Facebook.

 55

 Images for the campaign detail in all the available colours and on all the

available bases (i.e. types of sold items) from front and from the back.

 Images for the campaign pure design used in the campaign detail from the

front and from back in all the available colours.

As we can see, it is quite a lot of images that need to be generated and this number

grows with the number of supported bases and number of colour in which the

campaign design is available. Therefore, quite a lot of server disk space is required

for each campaign.

It is clear that majority of the disk space is occupied by the images generated for the

campaign detail. Therefore, reducing the number of those images dramatically

reduces the disk space requirements of each campaign. We solved that issue by

taking advantage of the three layer nature of generated images.

For the campaign detail we generate only the image of the campaign design from the

front and from the back, we use the same procedure for image generation, but the

image is generated with a transparent background and with no base image. The final

assembling of the images, which creates the effect of the T-shirt with its design, is

finally solved in the campaign detail where the layers are rendered one over each

other.

 Language Support 4.6

Our system supports translation to multiple languages. At default only a Czech and

an English version of the website are available but it is easy to translate the website

to any other language. All that needs to be done is to introduce a new language in the

LanguageService class and then make all the translations.

For translating the application we use the GetTextTranslator [26] extension of Nette

which has also an easy to use frontend to make the translations. But it is also possible

to use some other tool for editing .po and .mo files with translations.

Every language has a currency attached which is an instance of the Currency model

class. This class is responsible for recounting prices from one currency to another

based on the pre-defined conversion rates which are defined relative to the base EUR

 56

currency. All the currencies are defined in the CurrencyRepository class where it is

easily possible to change their conversion rates.

It might be also possible to extend the application and implement a service which

downloads the conversion rates every day from the official database of Czech

National Bank and stores them in the cache. The CurrencyRepository class would

then read the conversion rates from this cache.

 Communication with Payment Services 4.7

From the analysis in Section 2.4.3 we can see that we can implement the same

workflow at the GP webpay and at PayPal; therefore, we can abstract from technical

details and introduce an interface as an abstraction of the common workflow for

communication with external payment gateways. Communication with payment

services is implemented as application services called GpWebPayService,

PayPalService and BankTransferService; those classes implement the

IPaymentService interface which is the mentioned abstraction.

Figure 4.2: Communication with GP webpay gateway when creating a new payment.

The part of the common workflow for communication with payment gateways is

illustrated in Figure 4.2. We picked up the GP webpay payments to have the

 57

illustration more concrete, but a similar figure applies also for a model of the PayPal

payments. The entire workflow is as follows:

1. Create a payment – when the order form is successfully processed, the

OrderPresenter is responsible for calling the appropriate payment service and

calling its createPayment method as shown in Figure 4.2. The payment

service initializes a new payment on the side of the payment gateway. Then

the created payment is associated with the payment created in the database.

2. Redirect to the actionCheckout action of the OrderPresenter from where it is

redirected to the payment gateway where the customer fills in the credentials

to authorise the payment.

We might redirect to the payment gateway in the previous action but we use

this intermediate actionCheckout because we support the case when the

payment gateway might be embedded directly to the web page, i.e. no

redirect is needed. Then the embedded payment form would be shown at this

action instead of redirection.

In the case of GP webpay, payments are created implicitly by redirecting the

customer to the URL where all the necessary information like amount and

currency is passed as parameters. When communicating with PayPal API we

have to explicitly create the payment by calling the “create” method of the

class PayPal\Api\Payment.

3. When the authorisation is completed, the payment gateway redirects the

customer back to the application to the actionCompleted of the

OrderPresenter.

4. This action calls the processPayment method of the appropriate payment

service implementation. This method is responsible for analysing of the

response from the payment gateway and potentially it processes further

communication with the payment gateway.

For example, in the case of the GP webpay, it is recommended to verify

whether the payment is really in the correct state on the side of the gateway as

shown in Figure 4.2. Because the response is all passed in the URL

parameters, it is necessary to verify its validity with passed signatures and

secret certificates.

 58

In the case of the GP webpay, an authorisation token is the id of an order at

the GP webpay. We need to store the last id of the order in the database to

maintain synchronization with the id counter at the GP webpay. The

DialRepository class is responsible for that.

In the case of PayPal, it is necessary to call the execute method on the

instance of the class PayPal\Api\Payment and obtain an authorisation token.

5. When a campaign becomes successful, deposit the payment. For the

deposition, we use the authorisation token obtained when the payment was

created. Cron task “ProcessPayments” is responsible for calling authorize,

refund and processBatch methods of the appropriate payment services. In the

implementation of the GpWebPayService and PayPalService the

processBatch method captures all the payments that were previously

authorised.

6. When a campaign ends unsuccessfully, do nothing. In our implementation,

we ignore all the payments that should be refunded because it is enough just

not to capture them. In that case, no money is transferred and no fees need to

be paid. But the workflow is ready for the case when some action might be

needed in the case of unsuccessfully ended campaigns and the refund method

of the appropriate payment services is called.

In the case of direct transfer payments, we used the same interface but we had to do a

few exceptions from the common workflow. In the step two we use an URL of

actionCompleted as an URL of the payment gateway; hence the customer is

immediately redirected to that action when he is informed about payment details. The

payment in the database remains in the “authorized” state in this case.

In the BankTransferService class the methods processPayment and processBatch do

nothing; they are just implemented in a way to fit the common workflow. The final

pairing of the payments in the database with the real payments in the bank is

accomplished by the cron task “PairPaymentsByVariableSymbol”. This way we

managed to fit direct bank transfers to the common workflow.

As we have said in Section 2.4.3, we have also tested to deposit the money after 21

days from the payment approval which is theoretically the longest possible time

because 21 days is the maximal duration of any campaign. The deposit of the real

 59

money after that long time worked with no problem at both of the services, the GP

webpay and PayPal.

 Model Layer 4.8

When retrieving data from the database in some repository, we can rely on the

Nette\Database\Table\ActiveRow class to provide us all the relevant data from the

database. But for some database entries we need more than just read the values of the

entry properties. We would also like to read some properties inherited from the data

in the database, e.g. how many days are left till the launch end or the percentage of

launch successfulness.

Figure 4.3: Relation of the EntryCollection class to the rest of the model layer.

It is against the encapsulation principle to put methods for computation of those

values to some helper classes, more logical is to implement those in the model

classes and this is exactly what we have done. Model classes are implemented as

wrappers around the database or other entities and they enrich their behaviour.

One of the advantages of the Nette framework model layer is the on demand

execution of database queries. Usually the query is just built in the repository and it

is returned to the presenter as an instance of the Nette\Database\Table\Selection

class. The query is executed afterwards when we start to read the result in the

template. When this principle is combined with a caching mechanism in the

 60

template, we get an elegant way to save a query when the template content is

retrieved from the cache because in that case the query is not executed at all.

But unfortunately in that moment we lost that advantage because when we return

data from the repository, we need to convert all the model entries, i.e. instances of

the Nette\Database\Table\ActiveRow class to the concrete model. Therefore, the

query is immediately executed and it cannot be cached. We could solve that problem

by moving the retrieval of the data to the template but it would not be a clean

solution.

We solved that problem in a more elegant way. Probably the best solution we found

was to implement a class that wrapped every instance of the

Nette\Database\Table\Selection class created in the repository as shown in Figure

4.3. In the diagram we call that class EntryCollection. This class implements the

ArrayAccess interface in order to enable looping over its instances in the templates.

When retrieving an entry from the database, it gets wrapped with the concrete

instance of the model.

In Figure 4.3 we can see a logical containment of instances of the

Nette\Database\Table\ActiveRow class in the Application\Model\Entry class. The

EntryCollection class logically contains some model entries – a name of a concrete

model class could be passed as a parameter in the constructor. The EntryCollection

class wraps the Nette\Database\Table\Selection class and instances of this class are

returned from all the repositories that store their state in the database. In order to

preserve the clarity, not all model entries and repositories are presented in the figure.

Another solution to this problem might be usage of some ORM framework [27], but

we like the simplicity of the database layer in Nette and ORM framework seems as

an unnecessary complication.

 Editor 4.9

One of the key features of our application is the editor where a design of the imprint

can be created. We tried to implement the editor as a separate entity that is more or

less independent on the rest of the application. We achieved that by defining a

communication interface between JavaScript part of the editor and its backend. This

communication is based on the AJAX queries which exchange data in the JSON

 61

format. As a result of that, the JavaScript part of the editor is fully independent on

the rest of the application and it might be re-used somewhere else without further

complications.

On the server side the image generation and handling of the files uploaded from the

editor is encapsulated in the Editor class. This class is also nearly independent on the

rest of the application.

The core of the editor on the server side is the EditorPresenter class. This presenter

is responsible for handling all the AJAX requests from the editor frontend and

provision of reasonable responses in the pre-defined JSON format. The list of all

AJAX requests that need to be handled can be found in the

EditorPresenter::actionAjax method.

When a new campaign is launched in the editor, the draft is not switched to the

“launched” state as shown in Figure 3.1, but a new campaign is created as a copy of

the draft. This campaign is already created in the “launched” state. This is because

we want to preserve the old draft for the user.

The editor is also easily extensible for new artworks, fonts and bases:

 When adding a new artwork, it is enough to copy it to the subdirectory in the

www/static/artworks directory. The ArtworkRepository class is responsible

for the artwork localization.

 When adding a new font, it should have its own subdirectory in the directory

www/static/fonts. All the necessary files as in the case of other fonts should

be present there. The FontRepository class is responsible for the font

localization. In order to make the fonts work on the server side when the

campaign images are generated by Imagick, the font has to be installed as a

system font in the operating system.

 When adding a new base, its images should be copied to the

www/static/images/editor/base-dark and www/static/images/editor/base-light

directories. Also the base has to be registered in the BaseRepository class and

its available colours have to be defined in the ColorRepository class.

 62

 Colour Counting 4.10

The editor automatically counts a base price of each variant of designed item based

on the goal of the campaign, item type, item colour and total number of used colours

at the item front and at its back. Therefore, it is crucial for the price estimation to

count the number of used colours correctly.

The most difficult part of the colour counting is the estimation of colours used in the

uploaded images. Counting the number of colours used in the rest of the design such

as number of colours used in the texts or artworks is straight forward.

When a user uploads an image in the editor, it is saved on the server side and

depending on the image mime-type, the colour counting algorithm is picked up.

 When a SVG image is uploaded, the algorithm first determines whether it

contains embedded bitmap or not. When not, the algorithm for counting the

colours in vector images is used. This algorithm is implemented in the

Editor::_countVectorColors method. Otherwise the image is converted to the

PNG format and algorithm implemented in the method

Editor::_countBitmapColors is used.

 When an EPS image is uploaded, it is first converted to the SVG image and

then the same procedure as described above is exploited.

 Bitmap images are first converted to PNG and then the algorithm from

method Editor::_countBitmapColors is used.

Counting the colours in the vector SVG image is absolutely precise and quick but

unfortunately it cannot be used at all occasions. Therefore, an algorithm for counting

the number of colours in the bitmap images had to be developed. Because of the

performance reasons the algorithm does not check every pixel in the uploaded image

but it is designed to check at maximum 10 000 pixels.

We can look at each colour represented in the RGB as at the point in the three

dimensional space with 256 points in each dimension, and therefore we can count an

Euclidean distance between every two points. Our algorithm for colour counting is

based on that idea – it divides the colours into clusters based on their similarity. The

advantage of this approach is that it eliminates a great explosion of the colours when

 63

the image is not in 100% quality. We consider a distance between black and white

colours as a maximal possible distance. Algorithm works as follows:

1. Get the relevant pixel from the image.

2. If the colour of the pixel is less than 5% different from some colour of the

cluster, put the pixel into the same cluster.

3. Otherwise create a new cluster with the colour of that pixel as its

representative.

4. If more colours remain to process, go to the first step.

5. Number of clusters is the final number of the colours returned to the caller.

 64

5 Testing

In this chapter we discuss the functional and non-functional tests that we

implemented above our application. First two sections are dedicated to the functional

tests – first we talk about unit tests and in the second section we describe how we

coped with system tests. In the third section we focus on the non-functional tests,

namely on the performance tests. Throughout the chapter we also discuss the

limitations of the web applications testing, especially in the area of communication

with external services.

 Unit Tests 5.1

Unit tests test the application from the developer’s point of view. The goal of unit

testing is to isolate each part of the program and show that the individual parts are

correct [28]. This isolation is quite hard to preserve in context of web application

because of the presence of database layer and communication with external services.

We should provide such tests that do not interact with the real environment, but still

test whether the tested methods behave in a specified way.

Most of the methods in our application communicate directly or indirectly with the

database layer. There are two main approaches how to solve the isolation problem

connected with the unit tests. The first of them is a semi-solution where we use a

database designed especially just for the testing. Each test is then wrapped in a

database transaction which is roll-backed in the end of the test. Thus the state of the

database is not changed during the testing and the tests can run separately of each

other thanks to the use of transactions.

The second approach is to mock the database layer and just check whether the tested

methods call this layer in the expected way. We picked up this approach because it is

much cleaner than the previous one. For mocking of the behaviour we chose the

Mockery [29] framework. We chose the Tester [30] framework for writing the unit

tests because it is easy to set up, it has simple, but powerful API and it supports

parallelization when running the tests.

 65

Our aim was not to have great code coverage with unit tests, but to show how to

write unit tests in the context of real web application and how to test specific parts of

the application written above the Nette framework. Writing tests to achieve a certain

level of code coverage is time consuming and not very inventive work; therefore, we

wrote only few tests to demonstrate the principles.

We wrote unit tests focused on testing of components, simple utility classes, tasks

and services. All the tests are located in the tests/unit directory. There are a few

services that are special and hard to test. Those are the services that facilitate

communication with the GP webpay and PayPal.

Tests for utility classes are standard simple unit tests for classes without external

dependencies. We also wrote tests for three services as a demonstration of principle

how to test them. Each test extends the base class Application\Test\TestCase which

implements methods for mocking various data types used throughout the application

code. For example in tests for Application\Services\CartService class we had to

mock a campaign variants added to the shopping cart, because there is a hidden

communication with the database layer. Moreover when we construct a new variant

instance it accepts an instance of the Nette\Database\Table\ActiveRow class in its

constructor.

We had to solve the problem with injecting a model data to instances of model

classes without breaking the encapsulation principle. For this purpose we added a

new protected method Application\Model\Entry::setEntry. Thanks to its protected

visibility level we did not break the encapsulation of model classes, but we have to

call this method via reflection from unit tests.

Testing of components arises the question what to test in the relation with them. We

picked up some simpler components and we decided to test whether they produce the

right output or not. Because of the design of the Nette framework where each

component has to be attached to some presenter when used, we had to implement the

method Application\Test\TestCase::attachComponentToPresenter which mocks an

application presenter and attaches the component to that presenter.

We have also decided to test one of the payment services – class GpWebPayService.

Tests for this service are based on mocking up the external dependency on the GP

webpay and mocking up the SOAP communication with the GP webpay. This

 66

approach works well for isolation of tests from the external environment, but it also

comes with one disadvantage: when the API of the GP webpay or PayPal

unexpectedly changes, the tests cannot detect that change because of the usage of

mocks. This is one reason why we also wrote functional tests that are focused on the

payment from the user’s point of view.

In order to be able to mock dependencies of the tested class, we had to add new

interfaces whose instances are accepted in the constructor of the tested class. These

interfaces are called ISignatureFactory and ISoapFactory. For example the following

code from the test for processBatch method shows how to mock the service which

secures the communication with the GP webpay service.

$signatureFactoryMock = $this->mockInterface('ISignatureFactory')

 ->shouldReceive('create')

 ->andReturnUsing(function () {

 $signatureMock = $this->mockInterface('CSignature');

 $signatureMock->shouldReceive('sign')

 ->andReturn('valid');

 $signatureMock->shouldReceive('verify')

 ->andReturnUsing(function ($text, $signature) {

 unset($text);

 return $signature == 'valid';

 });

 return $signatureMock;

 })->getMock();

We can see that when we use the signature service in this test, we do not care

whether the service encrypts data in the right way or not. This is the reason why we

mock it – we just need to know that when it returns true for the call of verify method,

the payment is processed in the right way. When it returns false, payment is not

processed, because it might be a fake request.

One of the biggest challenges is how to test the processes described in Section 3.1.

We decided to write unit tests for some of the cron tasks involved in the processes

because it is interesting to invent tests for this part of the application. The assumption

is when all the transitions illustrated in the process diagrams in Section 3.1 are taken

at right circumstances, then the processes as a whole can be considered as it passed

the test. Unfortunately, there are actions that require a manual intervention from the

system administrator that make the process untestable as a whole.

Tests of cron tasks are interesting, because they do not execute any assertions. The

only thing they test is whether tasks call the underlying services and repositories in

 67

the right way. This is done by configuring Mockery expectations – when these

expectations are not met, i.e. when the task is broken, an exception is thrown by the

Mockery framework in the tearDown method of the Application\Test\TestCase class

and the test fails. The following code sample shows expected interaction with the

PaymentServiceContainer service in the test of ProcessPaymentsTask class. We can

see that method getPaymentService is expected to be called three times and method

getAllPaymentServices is expected to be called exactly once with no arguments.

$paymentContaier = $this->mockService('PaymentServiceContainer');

$paymentContaier->shouldReceive('getPaymentService')

 ->times(3)

 ->with($paymentMethod)

 ->andReturn($paymentServiceMock);

$paymentContaier->shouldReceive('getAllPaymentServices')

 ->once()

 ->withNoArgs()

 ->andReturn([$paymentServiceMock]);

Tests we have implemented are meant as examples of testing of various types of

classes used in our application. These tests demonstrate the principles that could be

used for testing of the rest of services, components and tasks. We did not implement

any tests of the model layer, but these tests could be implemented in the similar way

as tests we have already created by exploiting the mocking framework. We also

suggest using Testbench [31] library for testing of presenters and their forms.

 System Tests 5.2

System tests are important because they test the application from a different

perspective than the unit tests – from the user’s point of view. In the test, we provide

the inputs for the application that the user could provide and we test whether its

response is correct due to our expectation. We could also say that those tests ensure

that the system is functioning as users are expecting it to.

We decided to exploit the Selenium [32] tool for system testing because it is the most

widely used tool for this purpose in the domain of web applications. It has gone

through many years of development, has solid and wide base of users, it is stable,

tested and well-documented.

Selenium is a tool which automates web browsers. Provided Selenium IDE is capable

of recording the activity in the Mozilla Firefox web browser, defining asserts that

should hold and saving such a scenario as a test case. Test cases can be grouped to

 68

tests suites and replayed later. When some assertion in some test case does not hold,

it is considered as a violation of application functionality and Selenium provides us a

report about all such cases.

We have created over 100 Selenium tests which are all located in the tests/selenium

directory of the DesignTeeLine application. Those tests are focused on the main

functionality of the application frontend. Each test covers a slice of the system

functionality which can be simple, but it can be also implemented as a complex

interaction of objects and their methods. The big advantage of Selenium is that it can

also easily test functionality based on JavaScript and pages that use AJAX. Thus it

was also possible to cover the functionality of the editor with test cases.

All the tests are grouped to the test suite located in test/selenium/TestSuite.html file.

Before launching the test suite from Selenium IDE, one should edit the first test case

called Configure and set there correct values for connecting to the database. Make

sure that the used database user has a permission to create and drop a database. We

also recommend setting the default timeout option in the Selenium IDE to 120

seconds. This is because of the installation test which might take more time to

successfully finish.

Because selenium tests naturally change the state of application in the database layer,

we designed our test suite in such a way that the second test case called Initialize

installs a new instance of our application via its installation script. It also creates a

backup of the original configuration file in app/config. Then all the actual tests for

our application follow. The last test case called Terminate drops the test database and

restores the original configuration file. Therefore, next time the application connects

to the original database.

The test cases we implemented are dependent on each other which means that

launching some of the test cases independently on the others or launching the test

cases in the wrong order might result in a failure of some assertion. The right order

of tests is in the TestSuite.html file, tests should be run in this order. Moreover, a

failure of one test case might also result in a failure of several other test cases which

are dependent on it. For example, many test cases assume that the administrator user

is logged in. Thus when a test case for login fails, all those test cases fail as well.

 69

We wrote a few tests that are focused on the right interaction with payment

gateways. Namely, those are tests called Order/BuyCard and Order/BuyPayPal.

Each newly installed instance of the DesignTeeLine application is configured in a

way that it connects to the test endpoints of the payment gateways. Hence those tests

do not cope with the real money, but they still test the correctness of the interaction

because test endpoints guarantee the same behaviour as the real environment. But

those tests are prone to fail because within those tests we also test UI of payment

gateways. When this external UI is changed, the test might fail.

We managed to cover most of the functionality of the application frontend with tests.

Still some functionality is hard or nearly impossible to test. For example when a new

user registers to the system, he receives a confirmation e-mail where he has to click

on the confirmation link. Then his account becomes active. Testing such

functionality is very difficult because it involves clicking on the confirmation link in

the e-mail.

If we would like to strictly follow the procedure, we would have to login to the tested

mail box, wait for a confirmation e-mail, open it, find there a confirmation link and

click on it. Testing this procedure in Selenium IDE is nearly impossible because we

would have to locate the right e-mail in the mailbox. It would be possible to write

such a test for Selenium WebDriver where we would connect to the mail box via

IMAP, find the right e-mail, parse the link from the e-mail text and then navigate to

the right URL.

But we decided not to employ Selenium WebDriver just because of a few test cases

and we invented a different approach. We implemented a simple script located at

tests/selenium/support which provides generated hashes for confirmation links. After

a successful submit of the registration form, the test just asks this script for the

confirmation hash of the user which has been registered. Then it navigates to the

confirmation URL with this hash and the effect of this mechanism is the same as

clicking on the confirmation link in the sent e-mail.

Unfortunately, we did not find a similar way to test the integration with Facebook

and Google for the user registration and login. We found out that those processes

would require having fake Facebook and Google accounts just because of those tests

which is forbidden by terms and conditions of those services.

 70

In the end of this section we are going to describe one of the test cases for the editor.

We selected the test case called Editor/ArtProperties on which we can demonstrate

some principles used during the testing. As shown in Figure 5.1 we start the test at

the homepage and follow the link to the editor. Then we use “waitForConfition”

command to wait until the editor is fully loaded and ready.

Figure 5.1: First part of the selenium test case.

The fifth command opens the gallery with artworks and we use the “waitForVisible”

command to wait until the gallery is loaded via AJAX. In the eighth command we

select an art from the gallery we want to use in our design. Then we wait until the art

appears in the printable area of the T-shirt. The “editor.initData.printableElements”

variable contains a number of graphical elements used in the T-shirt design. The

selector used in the tenth command is a bit complicated because we select the

element inside edited SVG canvas. The “path:nth-of-type(3)” selects the third path

on the canvas which represents the art we have just added.

The test case continues with the commands in Figure 5.2. First, we select a colour of

the art and with the second command “assertAttribute” we check whether the “fill”

attribute of our path was really set right. Then in the similar way we select an outline

for the art and its colour. We also check whether the select box for outline colour

becomes visible when we select some outline for the art. This way we verified

whether it is possible to add a new art to the T-shirt design and change its properties.

 71

Figure 5.2: Second part of the selenium test case.

 Performance Tests 5.3

From the user’s point of view performance is one of the most important extra-

functional properties of the website. When a website is not loaded in a functional

state after a few seconds from the user’s request for load, the user loses attention and

leaves the website or starts to feel frustrated. Moreover, website performance is

easily measurable property and several tools for its measurement have been

developed.

Those are the reasons why we focused on performance tests and optimizing the

application in this dimension. However, it is interesting to see how much time it

takes to load a page in the browser in order to determine the parts that should be

optimized. We considered as more interesting to artificially simulate simultaneous

users who use the application. This kind of testing is called load testing and its

purpose is to see how the application performs under certain loads and thus find its

limitations.

Those tests are of course hardware dependent. We launched the tests when

application was running on the server with 8 GB RAM and Xeon E5504 2.0 GHz

CPU. We picked up two online tools which are able to perform load tests.

First of them is LoadImpact [33] which provides a simple user interface to record an

activity in the Chrome web browser. It records all the actions taken and then

generates a load script which can be manually modified afterwards. As the last step

we choose the duration of the test, the number of simulated simultaneous users which

 72

all perform the behaviour defined by generated script and then we can launch the

test.

We wanted to take an advantage of the free version of the tool; therefore, we set up

the values to the maximum, i.e. 250 simulated virtual users which are active during

five minutes. All the simulated users first load the homepage of the application and

then the detail of one campaign and they repeat those two actions in an infinite loop.

We chose those two actions of presenters because we expect them as the most visited

ones.

Figure 5.3: Results of the load test on LoadImpact with caching mechanism off.

As we can see, the results are not very impressive. At some points in time the

average load time is above 30 seconds, which is way behind reasonable time. But we

should also mention that 2,47 GB of data was transferred over the network during the

test and there were 43 732 requests on the server.

We also wanted to check the impact of usage of the caching mechanism described in

Section 4.3. Firstly, we performed a test without the caching mechanism; the results

are shown in Figure 5.3. The green line shows a number of virtual users active in a

certain point in time and the blue line shows an average load time of pages loaded by

all the active virtual user in that time.

In Figure 5.4 we can see the results with the caching mechanism on and from the

graph we can clearly see the impact of the caching mechanism on the application

performance. Moreover, when the server is not blocked with many waiting

connections, it is able to serve more data and handle more requests in the same time.

In this case we were able to transfer 6,76 GB of data and handle 118 512 requests.

 73

Figure 5.4: Results of the load test on LoadImpact with caching mechanism on.

The second tool we used for testing of the application load limitations is called

loader.io [34]. This tool works in a different way than the previous one; therefore, it

was interesting to test the application also in another way. In contrast with

LoadImpact this tool does not record any script for virtual users who then load the

page in the same way as normal users do in the web browser.

Figure 5.5: Results of the load test on loader.io with caching mechanism off.

Loader.io loads just the HTML content of the page but does not follow the links for

attached files. This makes it a tool that tests how many requests can the server’s PHP

scripts handle but it also makes this scenario less realistic. One advantage is that it

can employ up to 10 000 workers per minute which connect to the server. We tested

our application with 2 500 workers.

In Figure 5.5 we can see the results without the caching mechanism. There is a

clearly visible congestion of the server when still 750 clients are active in the end of

 74

the test. In Figure 5.6 the results with the caching mechanism on are presented where

we can again see a great impact of caching on the application performance. We also

found a threshold where the response times of the server are too big even with the

caching mechanism on. In our case this threshold is around 7 500 clients per minute.

Figure 5.6: Results of the load test on loader.io with caching mechanism on.

 75

6 Conclusion

In this thesis we describe the design and implementation of a web crowdfunding

system based on the sale of items with a custom imprint. We demonstrate the system

functionality on the sale of T-shirts, sweatshirts and bags. The whole process starts

when a campaign initiator designs a T-shirt imprint in the editor that we

implemented. From the architecture point of view this editor is highly independent

on the rest of the system and could be reused somewhere else without further

complications.

We managed to design processes for automating the campaign lifecycle as much as

possible and we also discovered limitations of this automation. Part of the work was

also seamless integration with external services like on-line payments, a printing

house and social networks. In Chapter 5 we described how and why we test our

application and we discussed the limitations of those approaches, especially when

testing the integration with third party services.

All goals set in chapters 1 and 2 have been achieved. We were also able to cope with

all the problems we discovered during all of the development phases. The thesis

fulfilled its declared purpose.

A fully functional application was publicly accessible at the URL

http://www.designteeline.com/ for a certain amount of time. We have registered few

successful campaigns; therefore, we had an opportunity to test the whole system on

real users with real data and everything worked as expected.

The high quality of the application, its source code, design principles and

documentation are also demonstrated by a contract we managed to make with a real

world company called RealGeek ltd. They successfully run our application at

http://www.merchmaster.cz/. For this company we were obliged to implement a new

credit card payment service called ThePay [35]. They also demanded a new method

for pairing payments made with direct bank transfers, because they have a bank

which has an easy-to-use API for that task. Thanks to our extendable design, it was

not a difficult task to implement and integrate new classes for these payment

methods.

http://www.designteeline.com/
http://www.merchmaster.cz/

 76

 Open Problems and Future Work 6.1

The development of the application is not terminated and we are ready to extend it in

the future. Firstly, a big task to be done is to cover the application code with the unit

tests. Regarding the size of the code this is going to be a really big task.

Second thing on our wish list is to rewrite the system administration, especially its

frontend into a single page application, maybe with the use of AngularJS [36]

framework. We have created a simple dashboard for the system administrator, so he

does not have to think about all the actions that should be taken in the moment and

search for the relevant entries in the system, i.e. he does not have to search for

successfully ended campaigns that should be sent to the printing house, for orders

that should be refunded etc.

Our aim is to create a cleaner dashboard where all the actions that should be taken by

the administrator in the moment would be listed and arranged in independent

widgets. This dashboard should be fully based on AJAX technology.

Third extension is related to the editor. We would like to implement new features for

manipulation with elements on the canvas such as cut, copy, paste, undo and redo.

These features should make the editor even more usable for campaign initiators.

 77

Bibliography

[1] Crowdfunding. [online]. [cit. 2016-06-01]. URL:

http://en.wikipedia.org/wiki/Crowdfunding

[2] KickStarter. [online]. [cit. 2016-06-01]. URL: http://www.kickstarter.com/

[3] TeeSpring. [online]. [cit. 2016-06-01]. URL: http://www.teespring.com/

[4] T-Shock. [online]. [cit. 2016-06-01]. URL: https://www.t-shock.eu/

[5] Danielson Printing House. [online]. [cit. 2016-06-01]. URL:

http://www.danielson.cz/

[6] Czech Post On-line Application. [online]. [cit. 2016-06-01]. URL:

https://klientskazona.cpost.cz/

[7] Manuals for GP webpay on-line payments. [online]. [cit. 2016-06-01]. URL:

http://gpwebpay.cz/Download

[8] Self-signed Certificates. [online]. [cit. 2016-06-01]. URL:

http://en.wikipedia.org/wiki/Self-signed_certificate

[9] PayPal API On-line Documentation. [online]. [cit. 2016-06-01]. URL:

https://developer.paypal.com/docs/api/

[10] PayPal PHP SDK. [online]. [cit. 2016-06-01]. URL:

https://github.com/paypal/PayPal-PHP-SDK/

[11] Facebook Social Plugins. [online]. [cit. 2016-06-01]. URL:

https://developers.facebook.com/docs/plugins/

[12] Nette Framework. [online]. [cit. 2016-06-01]. URL: http://nette.org/

[13] JQuery. [online]. [cit. 2016-06-01]. URL: https://jquery.com/

[14] Raphaël. [online]. [cit. 2016-06-01]. URL: http://raphaeljs.com/

[15] SVG.js. [online]. [cit. 2016-06-01]. URL: http://svgjs.com/

[16] Snap.svg. [online]. [cit. 2016-06-01]. URL: http://snapsvg.io/

[17] PHP SVG. [online]. [cit. 2016-06-01]. URL:

https://code.google.com/p/phpsvg/

http://en.wikipedia.org/wiki/Crowdfunding
http://www.kickstarter.com/
http://www.teespring.com/
https://www.t-shock.eu/
http://www.danielson.cz/
https://klientskazona.cpost.cz/
http://gpwebpay.cz/Download
http://en.wikipedia.org/wiki/Self-signed_certificate
https://developer.paypal.com/docs/api/
https://github.com/paypal/PayPal-PHP-SDK/
https://developers.facebook.com/docs/plugins/
http://nette.org/
https://jquery.com/
http://raphaeljs.com/
http://svgjs.com/
http://snapsvg.io/
https://code.google.com/p/phpsvg/

 78

[18] ImageMagick On-line Manual. [online]. [cit. 2016-06-01]. URL:

http://php.net/manual/en/book.imagick.php

[19] PS to PDF Converter. [online]. [cit. 2016-06-01]. URL:

http://www.ps2pdf.com/

[20] Inkscape. [online]. [cit. 2016-06-01]. URL: https://inkscape.org/

[21] Database Normalization. [online]. [cit. 2016-06-01]. URL:

http://en.wikipedia.org/wiki/Database_normalization

[22] MVC Applications & Presenters in Nette. [online]. [cit. 2016-06-01]. URL:

http://doc.nette.org/en/2.3/presenters/

[23] AJAX. [online]. [cit. 2016-06-01]. URL:

http://en.wikipedia.org/wiki/Ajax_(programming)

[24] JSON. [online]. [cit. 2016-06-01]. URL: http://en.wikipedia.org/wiki/JSON

[23] CloudFlare - The web performance and security company. [online].

[cit. 2016-06-01]. URL: http://www.cloudflare.com/

[24] LESS Compiler in PHP. [online]. [cit. 2016-06-01]. URL:

http://leafo.net/lessphp/

[25] Google Closure Compiler. [online]. [cit. 2016-06-01]. URL:

https://developers.google.com/closure/compiler/

[26] Gettext Latte Add-on to Nette. [online]. [cit. 2016-06-01]. URL:

http://addons.nette.org/h4kuna/gettext-latte/

[27] Doctrine – PHP ORM Framework. [online]. [cit. 2016-06-01]. URL:

http://www.doctrine-project.org/

[28] Unit Testing. [online]. [cit. 2016-06-01]. URL:

http://cs.wikipedia.org/wiki/Unit_testing

[29] Mockery – Simple PHP Mock Framework. [online]. [cit. 2016-06-01]. URL:

https://github.com/padraic/mockery

[30] Nette Tester. [online]. [cit. 2016-06-01]. URL: http://tester.nette.org/

[31] Testbench for Nette framework. [online]. [cit. 2016-06-01]. URL:

https://github.com/mrtnzlml/testbench

http://php.net/manual/en/book.imagick.php
http://www.ps2pdf.com/
http://en.wikipedia.org/wiki/Database_normalization
http://doc.nette.org/en/2.3/presenters/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.cloudflare.com/
http://leafo.net/lessphp/
https://developers.google.com/closure/compiler/
http://addons.nette.org/h4kuna/gettext-latte/
http://www.doctrine-project.org/
http://cs.wikipedia.org/wiki/Unit_testing
https://github.com/padraic/mockery
http://tester.nette.org/
https://github.com/mrtnzlml/testbench

 79

[32] Selenium Web Browser Automation. [online]. [cit. 2016-06-01]. URL:

http://www.seleniumhq.org/

[33] LoadImpact. [online]. [cit. 2016-06-01]. URL: https://loadimpact.com/

[34] Loader.io. [online]. [cit. 2016-06-01]. URL: http://loader.io/

[35] ThePay [online] [cit. 2016-06-01]. URL: https://www.thepay.cz/

[36] AngularJS [online] [cit. 2016-06-01]. URL: https://angularjs.org/

http://www.seleniumhq.org/
https://loadimpact.com/
http://loader.io/
https://www.thepay.cz/
https://angularjs.org/

 80

Appendix A – Contents of the Enclosed CD

The enclosed CD contains the electronic version of this master thesis, scripts for

generation of programmer documentation and the source code of the application

including the test scenarios, external libraries, installation script and other tools.

The directory structure of enclosed CD follows:

/doc/

Scripts for generation of programmer’s documentation of the application.

/src/

Source code of the application.

/readme.txt

Description of CD contents.

/thesis.pdf

Electronic version of this master thesis.

/user-manual.pdf

User manual for the system.

