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Abstract

We deal with sequences of observations that are naturally ordered in time and assume various
underlying stochastic models. These models are parametric and some of the parameters are
possibly subject to change at some unknown time point. The main goal of this thesis is to
test whether such an unknown change has occurred or not. The core of the change point
methods presented here is in ratio type statistics based on maxima of cumulative sums.

Firstly, an overview of thesis’ starting points is given. Then we focus on methods for
detecting a gradual change in mean. Consequently, procedures for detection of an abrupt
change in mean are generalized by considering a score function. We explore the possibility
of applying the bootstrap methods for obtaining critical values, while disturbances of the
change point model are considered as weakly dependent.

Procedures for detection of changes in parameters of linear regression models are shown
as well and a permutation version of the test is derived. Then, a related problem of testing
a change in autoregression parameter is studied. Finally, our interest lies in panel data of
a moderate or relatively large number of panels, while the panels contain a small number
of observations. Asymptotic and bootstrap testing procedures to detect a possible common
change in means of the panels are established.

All the theoretical results are illustrated through simulations. Several practical applica-

tions of the developed procedures are presented on real data as well.

Keywords:
change point, maximum type statistics, ratio type statistics, hypothesis testing, change in
mean, abrupt change, gradual change, change in regression, change in autoregression, panel

data, asymptotic distribution, robustness, bootstrap, weak dependence, block bootstrap
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Abstrakt

Budeme se zabyvat posloupnostmi pozorovani, ktera jsou pfirozené usporadana v Case
a soucasné pro né uvazujeme ruzné stochastické modely. Tyto modely jsou parametrické
a nékteré z parametri mohou podléhat zméné v pfedem neznamém case. Hlavni cil této di-
sertace spoCiva v testovani, zda takova zména nastala nebo ne. Jadrem zde prezentovanych
metod detekce okamziku zmény jsou statistiky podilového typu zalozené na maximech ku-
mulativnich soucti.

Nejdiiv jsou prezentovana vychodiska diserta¢ni prace. Pak se zaméfime na metody
detekce postupné zmény ve stfedni hodnoté. Nasledné zobecnime procedury pro detekci
nahlé zmény ve stfedni hodnoté pomoci skérové funkce. Budeme studovat moznosti pouziti
metody bootstrap pro ziskani kritickych hodnot v ptipadé, Ze ndhodné chyby modelu mohou
byt slabé zavislé.

Predstavime také procedury pro detekci zmény v parametrech linearniho regresnitho mo-
delu a odvodime permutaéni verzi testu. Déle budeme studovat pribuzny problém testovani
zmény v parametru autoregrese. Na zavér se zamérime na panelova data se stfedné velkym az
velkym poctem paneld, kde panely obsahuji maly pocet pozorovani. Odvodime asymptotické
a bootstrapové procedury pro detekci mozné spoleéné zmény v panelech.

Vsechny teoretické vysledky jsou ilustrovany pomoci simulaci. Navrzené metody jsou

taktéz aplikovany na realnych datech.

Klicova slova:

okamzik zmény, statistika maximéalniho typu, statistika podilového typu, testovani hypotéz,
zména ve stfedni hodnoté, ndhla zména, postupnéd zména, zména v regresi, zména v autore-
gresi, panelové data, asymptotické rozdéleni, robustnost, bootstrap, slaba zavislost, blokovy

bootstrap

xiii



Xiv




Preface

To know whether a change has happened is a task that is not only interesting, but also de-
sirable for many scientific fields, e.g., in econometrics, biology, or climatology. Our approach
to detect the unknown change lies in usage of ratio type test statistics. When computing ad-
equately constructed test statistics, it is not necessary to estimate variance of the underlying
stochastic model. This may be considered as the most remarkable advantage of ratio type
test statistics. Such property makes them a reasonable alternative to classical (non-ratio)
statistics—most of all in situations, when it is difficult to find a suitable variance estimate.

Our main interest—ratio type test statistics for detecting the unknown change—is intro-
duced in the first chapter of the thesis. A summary of previous results on model of abrupt
change in mean is given. An overview of the recent results concerning the change point
problem is provided.

One can think of a change in mean in the way that the change from a constant mean is
not rapid but rather continuous. Therefore, a gradual change in mean is investigated in the
second chapter and testing procedures based on the ratio type test statistics are derived.

In the third chapter, the simplest change point model is considered—an abrupt change
in mean, where at most one change in mean of the observed sequence could happen. Our
contribution to this setup lies in considering a-mixing model errors in combination with
robust ratio type test statistics. Besides that, a block bootstrap resampling testing procedure
is implemented for the abrupt change in mean model.

The fourth chapter deals with detection of a change in regression parameters in a trending
regression model with independent random errors. Again, a resampling testing procedure is
derived and its properties are studied in simulations.

Moreover, tests for a change in autoregression based on the ratio type statistics are
developed in the fifth chapter as a special case of the regression change point detection
procedures.

On the top of that, the sixth chapter concentrates on the change point problem for panel
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data. In the considered scenario, it is assumed that there can be at most one common change
point for all the panels that have fixed length. The number of panels is sufficiently large and
this fact is used to obtain asymptotic results. A bootstrap testing technique in this setup is
proposed and its validity proved.

Finally, several simulation studies and real data examples through the whole thesis il-
lustrate the theoretical results presented here. Some of the well-known and frequently used

definitions and theorems are recapitulated in the appendix at the end.



Notation

2[a,b]
—

0,0

iid

No

sgn

D|a,b]

almost surely

Brownian bridge

convergence almost surely

convergence in distribution

convergence in probability P

convergence in the Skorokhod topology on [a, b]
deterministic Landau symbols, confer Appendix
expectation

independent and identically distributed
indicator function

integers, i.e., {...,—2—1,0,1,2,...}

natural numbers, i.e., {1,2,...}

natural numbers with zero, i.e., {0,1,2,...}
probability

real numbers

signum function

Skorokhod space on interval [a, b]
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Op ,0p

Var

standard Wiener process

stochastic Landau symbols, confer Appendix

truncated number to zero decimal digits (rounding down the absolute
value of the number while maintaining the sign)

variance
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Chapter

Infroduction to Ratio Type Tests
In Change Point Analysis

Ratio type statistics studied in this thesis are derived from non-ratio type statistics based
on partial sums of residuals. They do not need to be standardized by any variance estimate,
which makes them a suitable alternative for non-ratio type statistics, most of all in situations,
when it is difficult to find a variance estimate with satisfactory properties. Such difficulty
can occur in situations with dependent random errors. Although, variance estimators often

do not perform well even in the iid case, especially under alternative.

1.1 Main goals

We aim to utilize the idea of ratio type statistic for testing structural changes in different
setups, which include gradual change, abrupt change, robust procedures suitable for heavy-
tailed distributions, change in regression parameters, change in autoregression of first order,
and change in mean for panel data with fixed panel size. An important part of this task is
to derive asymptotic properties under null hypothesis as well as under alternative. Limiting
distributions can be theoretically derived, but the corresponding critical values are typically
not available in an explicit form. Therefore, it is advantageous to use resampling methods
in order to determine the rejection region. Such methods also need to be justified theoret-
ically by proving asymptotic equivalency of both the original and the resampling statistic.
Computer simulations using R software and real data applications give us the idea about
performance of the proposed tests.

Our main concern are changes in the mean values of stochastic processes, while the
particular stochastic process can have a very general error structure. The only chapter,

where the change in mean is not of the main interest, concerns the change of autoregression



2 1.2 GENERAL LOCATION MODEL

parameter. In all of the studied models, the random deviations from the mean structure are
assumed to possess common unknown variance. Hence, the change in the variance structure
is not in the center of our interest. Although similarly constructed ratio type statistics were
used to test for a change in variance in |Zhao et all (2010). Zhao et al! (2011) and Chen and
Tian (2014).

1.2 General location model

Let us begin with the simplest model of a single change in location parameter. For a fixed
n € N, we consider a set of observations Y7 ,,,...,Y, , obtained at time ordered points. We
are interested in testing the null hypothesis of all observations being random variables with
distributions having equal mean values. Our goal is to test against the alternative of the
first 7,, observations having distributions with mean value u, and the remaining n — 7,
observations coming from distributions with mean values p,, + 6., §, # 0. We suppose that
Tn, Un and &, are unknown parameters. We can describe the situation as a special case of

the general location model

Yk,n = Uk,n T €k, k=1,...,n, (11)
where fi1 p,..., ttn,n are unknown mean values of the original observations Y7 ,,...,Y,
and €1,...,&, are random error terms. The forthcoming results for the performing statis-

tical tests will be of asymptotic character. It means that we consider that the number of

observations n is increasing over all limits.

1.3 At most one change in mean

When considering a model with at most one change in constant mean, we can further specify

the above described model ([II)) as
Yin = pp+ 06, Z{k > 7} +ex, k=1,....n, (1.2)

where u, §,, and 7, are unknown parameters.
Despite the fact, that the observed data {Ykn}zzoi n—1 form a stochastic triangular array,
the random disturbances {e,}>_; are just a single sequence of random variables. So, the

errors remain the same for each row of the triangular array of the observed variables.

Remark 1.1 (A-scheme). For the sake of convenience, we suppress the index n in the ob-
servations Yy, as well as in the parameters d,, and 7,, (and in variables depending on the
latter) whenever possible. However, we have to keep in mind that in the asymptotic results

below, as n — o0, both 4,, and 7,, may be changing when n is increasing.
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With respect to previous Remark [Tl about the triangular scheme, model ([I2]) can be

rewritten as
Yi=p+0Z{k>71t+er, k=1,...,n.

Assumption T1. Random errors are assumed to have zero mean and satisfy the functional

central limit theorem (CLT), i.e., they satisfy

1 2[0,1]
Jo > 0 such that — g; —— oW(t),
\/ﬁ 1<iz<znt n—®e

where {W(t),t € [0, 1]} denotes a standard Wiener process and the symbol 200, tands

n—0o0

for weak convergence in space 2[0,1].

Remark 1.2. We are using simplified notation for the weak convergence of sequences of

stochastic processes every time when it is clear from the context. That is, let us consider

0

a sequence of stochastic processes {Uy,(t),t € [a,b]}r_,. We write

P[a,b]
1 (t) 2 1)
instead of
Un(t),t e [a, 00} 222 (), t € [a, ]},
which means that the sequence of stochastic processes {Uy (t),t € [a,b]}*_; converges in the

Skorokhod topology (Billingsley, [196&) to a stochastic process {U(¢),t € [a,b]}. We also say,

that the sequence of processes weakly converges to the process.

Assumption [Tl is satisfied, e.g., for iid errors having finite (2 + A)-th moment for some
A > 0. In case of a-mixing random errors, the functional CLT holds, when the assumptions
of Theorem 1 by [Doukhan (1994, Section 1.5.1) hold. The functional central limit theo-
rem can also be applied to martingale differences, when the assumptions of Theorem 27.14
by IDavidson (1994) are satisfied.

Using the above introduced notation, the null and the alternative hypothesis can be

expressed as

Hy:7=n (1.3)
and

Hy:7<mn, § #0. (1.4)

A graphical illustration of the change point model (2] in mean under the alternative, can



4 1.4 VARIANCE ESTIMATION

be seen in Figure [[LT1

Figure 1.1: Tllustration of the change point in location problem — abrupt change in mean.

For this situation, a broad range of test statistics has been developed. Many of them are
functionals of the cumulative sums (CUSUM) statistic

where Y,, = 1/n Z?=1 Y; is the sample mean. This is due to the fact that such test statistics
naturally arise as a result of the likelihood approach (Csorgd and Horvathl, (1997, Chapter 1).

For example the test statistic

T, = max

02 1<k<n-—1

(1.5)

with a suitable variance estimator 52 may be used. The null hypothesis is rejected for large

values of T;,.

1.4 Variance estimation

In order to ensure that a test statistic is asymptotically distribution-free under the null
hypothesis, it is necessary to use a suitable estimator of variance for the random error

2

- . ~ . . A9 P
terms. The minimal requirement for 52 would be consistency (i.e., 62 — 02) under Hy and

boundedness (in probability) under Hj.

Often, the Bartlett estimator is used to estimate the variance

GR(L) = RO)+2 )] (1_%)}?@), L <n,

1<k<L
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where

1 _ _
R(k) = ” 2 Y, = Y)Yz — Yn), 0<k<n.
<n—

1< k

However, it does not always provide satisfactory results and finding a proper estimate may
be troublesome. The rate of convergence is small even under the null hypothesis and 62 (L)
might go to infinity under the alternative (Horvath et all, [2008).

The consistency properties of the above described Bartlett estimator and of its modifi-
cation are studied in|Antoch et all (1997). The authors also describe difficulties of long run
variance estimation when detecting a change in the mean of a linear process in more detail.
A simulation study shows that it is not easy to find a variance estimate that would work
well both under null hypothesis and under alternative. Furthermore, such estimators are

often very sensitive to the choice of the window length L.

1.5 Ratio type test statistic based on CUSUM statistic

In [Horvath et all (2008) the authors introduced and studied several ratio CUSUM-type test
statistics. When using these statistic, estimating variance is not necessary. We take a closer

look on one of the proposed ratio type statistics

Y, - Y,
Jnax 15@( 7= Yi)
T, =  max , (1.6)
ny<ks<n—ny ~
max Y, Y,
k<isn—1 i+1§<n( ! )
where 0 < v < 1/2 is a given constant and
B 1 k - 1 n
Yk=EZYi and Yk:nfk,z Y;. (1.7)
i=1 i=k+1

The asymptotic properties under the null hypothesis and under the alternative are de-

scribed in following two theorems.

Theorem 1.1. Suppose that Y1,...,Y, follow model (L2) and that the null hypothesis [L3)
is true. Then, if Assumption [T holds

T, —— sup SUPg<y <t [W(u) — u/tW(H)]

oyt <=y supcy o V() — (1—u)/(1— )W(H)]

(1.8)

where {(W(x),0 < x < 1} is a standard Wiener process and W(z) =W(1) — W(x).
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Theorem 1.2. Suppose that Y1, ...,Y,, follow model (L2)) and that the alternative hypoth-
esis (L4 is true. Further suppose that T = [nt] with some 0 <t <1 and

n?16,| —— oo.
n—o0

Then, for v <t <1— holds

P
_——
n—0o0

Proof. The proofs of both theorems may be found in [Horvath et al! (2008). O

Let us consider the asymptotic distribution from (L&). A Brownian bridge {B(t), ¢ €
[0,1]} is defined as

B(t) =W(t) —tW(1), tel0,1].
Then, the change of variable and the scale transformation of W give that

sup [W(u) — u/tW(t)| = sup [Wi(st) — sW(t)| Z vt sup |B(s)|, Vte (0,1).

o<su<t 0<s<l1 0<s<1

Similarly,

~

sup PAV(u) — (1 —w)/(1 — V()| 2 VI =1 sup \E(s)

t<u<l 0<s<l1

. Vte(0,1),

where {B(s), s € [0,1]} is also a Brownian bridge. The Wiener process W has independent
increments and, therefore, for any 0 < ¢ < 1 we have that {W(u) — u/tW(t),0 < u < t}
and {W(u) — (1 —u)/(1 — t)W(t),t < u < 1} are independent. Hence, {B(s), s € [0,1]} and
{B(s), s € [0,1]} are two independent Brownian bridges.

It follows that the ratio from the limit distribution (L8] can be equivalently expressed

as a functional of Brownian bridges

SUPp<uct W (1) — u/tW(0)|
b <1 [W(w) = (1= w)/(1 = )W)

kS

t 1/2 SuPOgsgl |B(S)| (1 9)
1—t '

SUPp<s<1 ‘g(s)

for any t € (0,1).

The lower bound for & in (L6) may be relaxed to 1 (or 2, since the ratio is equal to 0
for k = 1) and, correspondingly, sup,<;<;_. in the limit distribution may be replaced
with supy_;<;_,. However, as noted in |Huskovd (2007), this does not remain true for the

supremum of the upper bound, i.e., sup.,<;<;_, cannot be replaced by sup;.;; nor can it



CHAPTER 1. INTRODUCTION TO RATIO TYPE TESTS IN CHANGE POINT ANALYSIS 7

be replaced by sup, <., since

lim sup W(s)—?W(t) =0, a.s.

t—1— t<s<l

In the original article, we can also find modifications of V,, and other ratio type statis-
tics for different kinds of alternatives, particularly for detecting changes from asymptotic

stationary sequence into an asymptotic difference stationary sequence.

1.6 General form of the ratio type test statistic

A general form of a test statistic studied in this thesis is

max Vjp
1<j<k 7’
max «———, (1.10)
ny<k<n—my  max V]k
k<j<n—1 *’
where V;; for j = 1,...,k denotes a statistic based on observations Yi,...,Y; and Vj
for j = K+ 1,...,n is a similar statistic based on observations Yii1,...,Y,. Constant

0 < < 1/2is a known (predetermined) parameter. A reversed ratio, i.e., numerator based
on the last n — k observation and denominator based on the first k observations can be
also considered. Using a reversed ratio type statistic is possible and all the properties and
asymptotic results for the test statistic remain the same, when the same model structure
before and after the change is considered under alternative and when the random errors are
iid (under certain conditions, they can even be weakly dependent). A situation, where both
statistics cannot be symmetrically interchanged is studied in Chapter

The basic motivation for studying such ratio type test statistics lies in the fact that when
computing such test statistic, it is not necessary to estimate variance of the underlying model.
This property makes the ratio type statistics a suitable alternative of classical (non-ratio
type) statistic—most of all in situations, when variance estimation is not a straightforward
task.

1.7 Change point estimation

Until now, we mainly dealt with task of hypotheses testing. Particularly, we tried to answer
the question whether a change in mean of a time series occurred or not. However, hypothesis
testing in change point analysis goes hand in hand with change point estimation and after
a change is detected, it is a very important task to determine the exact time point, when
the change occurred. The ratio type test statistics are typically not suitable to do this, since
the ratio values in (ILI0) usually achieve their maximum towards one of the end points of

the observed interval (i.e., for k close to ny or n(1 — ~)).
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To estimate the actual change point, several methods may be used. In the situation of
stable variance, common change point estimators generally do not require variance estima-
tion. Therefore, the ratio type statistic may be used in combination with such methods. For
example, a natural choice in the previously discussed case would be to employ the related

non-ratio type statistic, which corresponds to the numerator of the ratio type statistic for

k =nin (LH), i.e.,

T, = arg max
" gléién 1

1.8 State of art and preliminary work on the ratio type
test statistics

Kim (2000) and, consequently, [Kim and Amador (2002) studied how to detect a struc-
tural change characterized by a shift in persistence of linear time series using a similarly
constructed ratio type statistic. This work is further continued by the simulation study
of [Leybourne and Taylor (2006), where both asymptotic and finite sample properties of the
proposed test are studied.

In [Huskova (2007) two ratio type statistics based on cumulative sums of residuals are
briefly introduced. These are intended to be used when testing whether the mean has
changed at an unknown time and also when testing for change from asymptotic stationary
sequence into asymptotic difference stationary sequence. In [Horvath et all (2008), more
details on the topic are given and other ratio type test statistics are introduced. The
applicability of the method is demonstrated through a simulation study.

Zhao et al. (2010) and |Zhao et al) (2011) propose ratio type tests to detect change in the
variance of linear processes. Furthermore, a new change point estimation method based on
the ratio type statistics is introduced by [Zhao et all (2011)).

Chen and Tian (2014) studied a ratio type test to detect the variance change in the
nonparametric regression models under both fixed and random design cases.

The same ratio type statistic as introduced in this chapter is studied to analyse change
in mean for heavy tailed distributions in the work of [Wang et all (2014). This leads to
a more general asymptotic distribution under the null hypothesis, which is a functional of
stable Levy processes. A bootstrap approximation method to determine the critical values
and change point estimation using the ratio method are also discussed.

Bazarova et al. (2014) develop a ratio type test to detect changes in the location pa-
rameters of dependent observations with infinite variances. The ratio type statistic based
on the cumulative sums’ process is adjusted by trimming off a set of observations that are
the largest in magnitude. Moreover, the ratio and non-ratio type statistics are compared by

simulations.
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1.9 Groundwork for the thesis

This thesis focuses on the ratio type statistics based on cumulative sums that where derived
from maximum type test statistics for detection of changes. Part of the work has already
been published.

In Madurkayova (2007) a ratio type statistic for testing the gradual change in mean is
derived. The random errors are considered to be iid with finite variance. Ratio type statistics
for a trending regression model with iid random errors are investigated in IMadurkayova
(2009a). IMadurkayova (2009b) and IMadurkayovd (2011) deal with a robust version of the
ratio type statistic for the abrupt change in location parameter, while a-mixing random
errors are assumed. Furthermore, a block bootstrap method for obtaining critical values of
the test statistic is studied. [Pestova and Pestal (2015) focus on panel data that consist of
a moderate or relatively large number of panels, while the panels contain a small number
of observations. Testing procedures based on the ratio type statistics to detect a possible
common change in means of the panels are established. A bootstrap testing technique in

this setup is proposed and its validity proved.
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Chapter

Least Squares Procedures For
Gradual Change In Mean

In this chapter, we deal with statistical methods for detection of a gradual change in mean
after an unknown time point, where the change is no more rapid but rather continuous. We
report on some recent results related to the topic and, consequently, we try to extend the
ideas by incorporating the ratio type test statistics for the detection of a gradual change.

We outline the possibility of extending the idea of the ratio CUSUM type statistic in-
troduced in the previous chapter for testing simple shift in mean to the case of testing for
the gradual change. A demonstration of the proposed method on simulated data is also
included. The text is based on the paper by Madurkayova (2007).

2.1 Introduction

In the previous chapter, a ratio type test statistic for detecting a single change in the mean
was described. Now, we handle the problem of testing for the gradual change. We describe
a non-ratio type test statistic based on partial sums of weighted residuals, which can be
considered as an analogue of the CUSUM statistic. Then, we take it as a basis for the ratio
type test statistic, similar to the one for testing against one abrupt change in the mean.
Moreover, we study asymptotic properties of the proposed test statistic.

The problem of testing the null hypothesis of no change against the alternative of the
gradual change after some unknown time point 7 is related to the case of testing a change in
regression parameters. Several methods for handling such types of alternatives are generally
discussed for example in |Csoérgé and Horvath (1997) or [Huskova and Steinebach (2000).
Particularly, |Jaruskova (1998) and [Albin and Jaruskové (2003) studied and proposed testing

appearance of a linear trend. Additionally to that, lJaruskovd (1999) dealt with appearance

11



12 2.2 BASIC ASSUMPTIONS AND NOTATION

of a polynomial trend.

2.2 Basic assumptions and notation

First of all, let us introduce the notation. Similarly as in the previous chapter, we suppose
to have a set of observations Y7,...,Y, obtained at time ordered points, which follow the
general location model (L) taking into account Remark [[T] The model with the gradual

change after an unknown time point T can be further specified as
E—7m\"
Yk=u+6(—) +er, k=1,...,n, (2.1)
n
+
where u, § = 0, and 7 = 7, are unknown parameters. The symbol a, denotes the positive

part of a real number a, i.e.,

a if a =0,

0 ifa<DO.

a4 =

The parameter o > 0 is supposed to be known. We assume the following model assumption.

2

Assumption G1. Errors €1,...,e, are iid such that Ee, = 0, Vargp, = ¢° > 0, and

Eler|>T® < oo, for k= 1,...,n and some A > 0.

Note that Assumption is postulated in the way that the functional central limit
theorem holds for the errors of model ([Z1I).

We are again interested in testing the null hypothesis of no change in mean

against the alternative of the gradual change in mean
Hy:7<n, §#0. (2.3)

A graphical illustration of the change point model (2 for the gradual change in mean

under the alternative can be seen in Figure 2]

2.3 Non-ratio type test staftistic

The above described model is considered in [Huskova and Steinebachl (2000). The authors

studied the properties of a class of test procedures based on partial sums of weighted residuals

n

Sin = Y. (@ —Tpn) Y, k=1,....n,

i=1
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e 4----- el 1----- e 1----- t----- |
k=1 k=T k=mn
Figure 2.1: Illustration of the gradual change point problem.
where
i—k\"
.’I]ik=.’17ik(n,06)= ( ) ) Zak=1a , 1
n
+
1 n
fk7n=fk1n(a)= EZZ‘M, k=1,...,n.
1=1
The (non-ratio type) test statistic has the form
1 _
Gn === max |Sknl,
OnA/MN 1<k<n—1
where 7, is some general consistent estimator of o, i.e., it satisfies the condition
On—0c=op(l), n—oow (2.4)

Under the assumptions for the model of the gradual change, asymptotic behavior of G,
under the null hypothesis is given by the following theorem.

Theorem 2.1. Suppose that Y1,...,Y, follow model 1)), Assumption[Gdl is satisfied, and



14 2.4 RATIO TYPE TEST STATISTIC FOR GRADUAL CHANGE

condition (24 holds. Then, under null hypothesis (2.2))

1 a+1
2 a—1 (1 - t)
G —2— — 1) W1 — z)dr — ~———W(1)|,
Wm(gglﬁa@ ) (1 - a)de — ——=—W(1)

where {W(t),0 <t < 1} is a standard Wiener process.

Proof. Theorem 2.2 by [Hugkova and Steinebach (2000) for g(t) = t¢, ¢t € R is applied
together with the Slutsky’s theorem and consistency assumption ([24). O

The next theorem describes the limit behavior of the non-ratio type test statistic under

the alternative.

Theorem 2.2. Suppose that Y1, ..., Y, follow model 21)) and Assumption[G1l is satisfied.
Assume that +/n|d,| — o as n — o and T = [nt] for some t € (0,1). Then, under
alternative (23]

P
Gp —— .
n—0o0

Proof. Without loss of generality suppose u = 0. Let us take k = 7. Then for the mean

value of n=1/2|S, ,,|, we have that

where the right side is equal to

N 2 2 i—m\"1 & 8n (m—1\"

j=7+1 j=7+1 m=T1+1

:nwmﬂ[m“ﬂyﬁl( o - +0OO]

n2atl Ca+1)(a+1)2  nla+1)2

as n — o0. The expression in square brackets tends to a positive non-zero limit. Hence by
assumption /n|d,| — o as n — oo, we have E [n"'/2S, | — o0 as n — 0. Subsequently,

125 (P
max) <k<n_1 |0 2Sk | — 00 as n — o0, 0

Remark 2.1. The case of @ = 1 was discussed and limiting extreme value distributions of
Gumbel type were derived for the test statistic in |Jaruskovéd (1998). These results were

extended to the polynomial trend alternative in [Jaruskova (1999).

2.4 Ratio type test statistic for gradual change

Now, a natural question arises, whether it is possible to generalize the concept of ratio type

statistics and obtain a test for the gradual change alternative using a ratio type test statistic
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that does not depend on the choice of estimate of 0. Being particular, it is demanded to
avoid variance estimation and, hence, omit assumption ([24). Following the analogy to the

ratio type statistic (L6]), we arrive at the idea to study the statistic of the following form

max |S; x|
k<i<n—1
G, = max _—
ny<ks<n—ny maXlSi,kl
1<i<k

where 0 < v < 1/2 is a given constant and
B k
Sik =D (@i — Tig) Yy, ik=1,....n,

=1
n

Sik = Z (xji —Zip)Y;, i=1,...,nk=1,...,n—1,
i—kt1

k
1 .
ji7k_Ezzji, ’L,k=1,...,n,
j=1
1 n
i'i’k:nfk Z Lji, i=1,...,n;k=1,...,n—1.

j=k+1

Similarly as in the case of statistics described in Chapter [I, the numerator and the
denominator in the ratio are based on different subsets of subsequent observations. However,
the subsets are not the same. For a fixed k& the numerator in G,, is based on observations
Yi+1,.-., Yy, while in 7, from (L8], it is the denominator that is based on Yii1,...,Ys.
The reason for the subsets being different is that otherwise the statistic G,, would not have
desirable asymptotic properties under alternative ([2.3]).

Let us discuss the asymptotic properties of the ratio type test statistic G,, under the null

hypothesis.

Theorem 2.3 (Under null). Suppose that Y1, ...,Y, follow model 1)) and Assumption[G1
is satisfied. Then, under null hypothesis ([2.2])

sup ‘S; alz — s)o‘flVr\\j(z)d:c — ﬁ%ﬁ(ﬂ‘
t<s<1

, (2.5)

gn - sup " (t—s)atl
no% y<i<l-y gup ‘Ss alx — )" IW(t — z)dr — lé71/\/@)’

t 1
0<s<t ot

where {W(u),0 < u < 1} is a standard Wiener process and W(u) = W(1) = W(u).

Proof. The theorem can be proved by the same means as the asymptotic results for T,.
We give the proof along the lines of the proof of Theorem 2.1 by [Huskova and Steinebach
(2000, p. 61-63). First, we note that by the Komlés-Major-Tusnady strong approximations
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(Csorgs and Révész, 11981), there exists a Wiener process {W(y) : 0 < y < o0} such that

max
1<i<k

i)G_M—MW4=OP@ﬁA) k — oo (2.6)

g

Moreover, Theorem 1.2.1 by [Csérgs and Révész (1981) provides that for any Wiener process
W(y): 0 <y < ook

sup sup [W(t+y) — W(t)| = 0 ((1og T)1/2) , T — . (2.7)
0<t<T O<y<l
Let us denote i/ = k —i+ 1 and Y] = Y11, j = 1,..., k. Then, after some calculations,
by (28) we get

=1 ) ] =1 m=1 =1 .
_ ilz_:l (@)a_ m—1 Wil — )_1 Zk: m—i aW(k)
-7 n n T L n
m=1 m=i+1
—i\° G k—i
+0p<(k ’) <@¢V¢ + klkuA>> k— o0, (2.8)
n
uniformly in ¢ = 1,...,k — 1. Now, let us take k = [nt] and i = [ns] for some 0 < s < ¢ < 1.

Similarly as in [Hugkovéa and Steinebachl (2000), by (Z7) and considering properties of the

Wiener process, it can be shown that as n — oo

S s\ ] - 13
2]+1 [(T) - (%) ] W([nt] —m +1)

m=[ns
_ [[]] o (y - ”T]) Win(t - y))dy

+0r (=LY tog = s
_ %%ww) £ Op ((Ln["s])a Tog([nf] — [ns])) (2.9)
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and
1 [ns]\
p 2 (M5 e
1 m—fns]\® ([nt] = [ns])" " /log([nf])
| mZ::l ( - )+ W(nt) + Op ( nine )
_ 1=t ([nt] = [ns])* " \/log([nt])
= ;WW(nt) + OP ( [nt]no‘ > (210)
uniformly in s,t € [0,1], s <t — % Furthermore,
[nd] a—1
n ns|
e (v 5) | wine -y
= f ay—s)S " Wn(t —y))dy + Op ((Lﬂ[ns]) ) (2.11)
and
;L“”Cn[mgawmo
[nt] = n N

uniformly in s,t € [0,1], s <t — % It follows that

o[ (-

Then combining ([Z8)—(214) for a given k = [nt] and integrating by parts, we get

1

Jt(y - s)idy) dW(z) + Op (nﬂA*é) (2.13)

0
(t _ S)OHrl

a+1

1
t
1 11

5 )dW(z)JrOp <n2+A ) n—o.  (2.14)

sup
0<s<t

n"V28, i — o fta(x—s)o‘_ll/\/(t—x)dx—lwl/\/(t)
blnt] s t a+1l

1 1

— Op (nmﬁ), n— . (2.15)
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An analogous statement for maxy<i<n |5 k|

sup
t<s<1

n71/2§_ o J-l Oé(.’L' _ s)”‘*W(x)dx _ LMW@)
blni] \ 1—t a+1

= Op (nzﬁ—%) . n—> o (216)

can be proved by the same arguments and by realizing the property of independent incre-

ments of the Wiener process.

Assumption [G1] yields that

<L 3 Yizp 1 Yi_”) 270, (W(t),W(t)). (2.17)

n " ag n - o n—oo
Vn 1<i<nt Vn nt<i<n

Relations ([ZI5)-(ZI7) under hypothesis Hy give

1 5 1 N
(g Sl o o )

2°[7,1-7] Jt a1 1(t—s)ott
-7 - W(t — z)dx — —————W(t)|,
g (p R AT B

f a(z — ) W(z)d — LMW(U‘ )

sup
t<s<1

1—-t a+1

for all 0 < v < 1/2. The assertion of the theorem is a direct consequence of the previous

statement and the continuous mapping theorem. O

A consistent test is a test, which power for a fixed untrue null hypothesis increases to one
as the number of observations increases. Therefore, we need to show how the test statistic

behaves under the alternative.

Theorem 2.4 (Under alternative). Suppose that Y1,...,Y, follow model (Z1) and Assump-
tion [l is satisfied. Assume that

n'/2(6,] > 0, n— o© (2.18)
and T = [nt] for some v <t <1 —+. Then under alternative (2Z3)

Gn —— 0.

Proof. Without loss of generality suppose @ = 0. Let us take £k = 7 and ¢ = 7. Then for the
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mean value of n~ 2|3, .| we have by the Jensen’s inequality

where the right side is equal to

2 6, (-7 2o n j—7m\% 1 o 8n (m—1\°
Y on(5T) - X (7)) iy ()

j=7+1 j=7+1 m=T1+1

— 0125, [(”_ fd (( o, I E —l—o(l))],

n2atl 2+ 1)(a+1)2  nla+1

as n — . The expression in square brackets tends to a positive non-zero limit. Hence
by ([2.18]), we have that E |n_1/2§717| — 00 as n — 0. Subsequently,

12y P
max |n~Y2S; ;| —— 0.
r<i<n—1 ’ n—o0

Since we have taken 7 = k, then n~—1/2

maxj <<k |Si k| has the same distribution as it has
under hypothesis Hy (see the proof of Theorem [2.3)). Therefore, it is bounded in probability,

which implies that G, LN o as . — 0. O

Theorem [2.4] says that in presence of the gradual change in mean, the test statistic
explodes above all bounds. Hence, the testing procedure is consistent and the asymptotic
distribution from Theorem 2.3] can be used to construct the test.

The null hypothesis is rejected for large values of G,,. IL.e., we reject Hy at significance
level « if and only if G, > g1—a,y, Where gi_q 4 is the (1 — a)-quantile of the asymptotic
distribution (23], However, an explicit form of the limit distribution (ZX) under the null
hypothesis is not known. Therefore, in order to obtain critical values, we have to use, for

example, simulations from the limit distribution.

2.5 Application on simulated data

We present some applications of the proposed ratio type test statistic to simulated data from
normal and Laplace distributions. When simulating the gradual change, we took a = 1, i.e,
a constant mean changes into a linear one. The difference between the behavior under the
null hypothesis and under the alternative becomes apparent approximately for § = 3. In
Figures and 23] we can see the values of ratio

max | S; |
O = k<i<n—1

max |S; x|
1<i<k
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computed for k : ny < k <n—ny with v = 0.1. Simulated 95% critical values for each of

the two distributions are depicted by a horizontal line.

N N
- -
o _| o _|
- —
o — oo —
o o
I I
= © - = ©o -
< < -
N — N —
o o -
I I I I I I I I
20 40 60 80 20 40 60 80
k k

Figure 2.2: The values of QQ; from G, for simulated normal distribution samples with pa-
rameters 4 = 0, 0 = 1, n = 100, and v = 0.1. The figure on the left side refers to the null
hypothesis. Figure on the right refers to the alternative with 7 = n/2 = 50, @ = 1, and
0 =4.

On one hand, one can observe that in both Figures and 2.3 the curves from left
subfigures—corresponding to the ratios under the null—hardly come closer to the straight
horizontal line (critical value). This means that the value of ratio type test statistic G, is
not sufficiently large to reject hypothesis Hy.

On the other hand, the curves from the right subfigures—corresponding to the ratios
under the alternative—clearly cross to the critical value depicted by the straight horizon-
tal line. Therefore, the value of ratio type test statistic G,, is sufficiently large to reject
hypothesis Hy against alternative H;.

A deeper simulation study concerning also a sensitivity analysis, but for a different test
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Figure 2.3: The values of @y from G, for simulated Laplace distribution samples with
parameters ;4 = 0, b =1, n = 100, § = 0, and v = 0.1. The figure on the left side refers to
the null hypothesis. Figure on the right refers to the alternative with 7 = n/2 =50, a = 1,
and ¢ = 4.

statistic, will be performed in the next Chapter Bl The reason for not showing a similar
simulation experiment here is that the model and setup in Chapter [l allow more complex

design of the simulations, which is more interesting.

2.6 Summary

The detection of the gradual change in mean with at most one change at some unknown
time point is studied. When a suitable variance estimate is not available or problematic, the
ratio type test statistics provide an advantageous alternative to the non-ratio type statistics.
Therefore, we extend the usage of non-ratio type test statistics for the ratio type ones in

the model of gradual change in mean. Asymptotic behavior of the ratio type test statistic is
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elaborated under the null hypothesis of no change and under the alternative of one gradual

change as well.



Chapter

Robust Procedures For Abrupt
Change In Mean

This chapter presents procedures for detection of a change in mean of the observed time
ordered sequence. The considered underlying stochastic model allows at most one change.
Moreover, the character of the change is that it is a rapid—also called abrupt—change,
which happens suddenly at some unknown time point. Main focus is given to the test
procedures based on ratio type test statistics that are functionals of the partial sums of M-
type residuals. We explore the possibility of applying the bootstrap method for obtaining
critical values of the proposed test statistics and derive the limit behavior of the circular
block bootstrap test statistic. The core of this chapter comes from [Madurkayova (2009b)
and Madurkayova (2011)).

3.1 Introduction

We describe basic properties of statistics for detection of a change in the location model with
at most one abrupt change in mean. Asymptotic behavior of the ratio type test statistics is
studied under the null hypothesis of no change as well as under the alternative of a change
occurring at some unknown time point. We extend the ideas presented by [Huskova (2007)
and Horvath et all (2008) in the way that weakly dependent errors of the model are supposed
together with incorporating general score function in the test statistics.

In order to obtain critical values for the studied test statistics not only from their asymp-
totic distributions, we focus on the circular moving block bootstrap method (Politis and Ro-
mano, 1992) in case of Ly score function. This type of resampling method was applied in
a similar situation by [Kirch (2006).

23
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3.2 Abrupt change point model

Let us consider observations Yi,...,Y, that were obtained at n time ordered points. We

study the location model with at most one abrupt change in mean
Yi=p+0Z{k>7}+ep, k=1,...,n, (3.1)

where u, 0 = 6,, and 7 = 7, are unknown parameters. Time point 7 is called the change
point. By €1,...,€,, we denote the random error terms.

We are going to test the null hypothesis that no change occurred
Hy:7=n (3.2)
against the alternative that change occurred at some unknown time point 7

Hy:7<mn, § #0. (3.3)

3.3 M-estimates of a location parameter

To estimate a location parameter of the distribution, the maximum likelihood approach is
traditionally used. [Huber et all (1964) proposed a generalization of this method.

An M-estimate of location parameter 6 € R is defined as

3

b= argmin 3" p(X; —
argrgéggi 1,0( )

where X1, ..., X,, is the random sample, 6 is an unknown parameter of interest, p is a loss
function and @ is the so-called M-estimate. If function p(x —t) is differentiable with respect

to t, the M-estimate is a solution of equation

1

1=1

where ¢(u) = %p(u) denotes a score function. More on M -estimates can be found in Ju-
reckova et al. (2012, Chapters 3 and 5) or Serfling (1980, p. 243).

Alternatively, the M-estimate may be viewed as generalization of the least squares es-
timate. Considering loss function p(x —t) = (x — t)?/2 results in the sample mean as the
least squares (and also empirical) estimate of the mean value (theoretical mean). The cor-
responding score function is ¥ (x — t) = x —t. Therefore, M-estimates may be viewed as
generalized estimates of the location parameter. The main advantage of using M-estimates
is that they are more robust with respect to outliers and to heavy tailed distributions when

comparing to the least squares estimate.
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3.4 Ratio type statistic based on M-residuals

Let us move to the ratio type test statistic. We robustify the original ratio type test statis-
tic (L) from Chapter 1 Following the ideas described in [Huskova (2007), [Horvéath et al.
(2008), and Hugkova and Marugiakoval (2012), a test statistic based on M-residuals is con-

sidered

max | 3 6(¥; — (@) |

Isisk GG
P T<i _ , (3.4)
ek | % 00— ()|
k<isn—1l;11<i<n

where 0 < v < 1/2is a given constant, [11x (1) is an M-estimate of parameter p based on ob-
servations Y7, ..., Yy, and [iar () is an M-estimate of p based on observations Yi41, ..., Y,.

That means, fi1x (1) is a solution of estimating equation

k
Zw(ifﬁu)=0

and, similarly, fi2; (1) is a solution of estimating equation

n

(Y —p) =0.
i=k+1
For the choice of 1, (z) = x, we get one of the statistics studied in [Horvath et all (2008). By
considering different score functions, we may construct similar statistics, but more robust

against outliers and more suitable for heavy tailed distributions.

3.5 Strong mixing dependence

Prior to deriving asymptotic properties of the test statistic, we need to formulate assump-
tions for the score function ¢ and the distribution of random errors €1, ... ,&,. Before that,

we explain the notion of strong mixing (e-mixing) dependence in more detail.

Suppose that {e,}>_; is a sequence of random elements on a probability space (2, F,P).
For sub-o-fields A, B < F, we define

a(A,B):= sup |P(AnB)-P(AP(B).
AeA,BeB
Intuitively, «(-,-) measures the dependence of the events in B on those in A. There are
many ways how to describe weak dependence or, in other words, asymptotic independence

of random variables (Bradley, 2005). Considering a filtration F}}, := o{e; € F,m < i < n},



26 3.6 LIMIT DISTRIBUTION UNDER NULL HYPOTHESIS

sequence {e,}*_; of random variables is said to be strong mizing (a-mixing) if

a(n) :=sup a(Fy, FiL,) =0, n— . (3.5)
keN
This notion was introduced by [Ibragimov (1959). Coefficients of dependence a(n) measure
how much dependence exists between events separated by at least n observations or time
periods. Note that in case of a strictly stationary sequence, the sup,cy in the definition
becomes redundant.

Finite order processes, which do not satisfy Doeblin’s condition, can be shown to be
a-mixing (Ibragimov and Linnik, 1971, pp. 312-313). [Rosenblatt (1971) provides general
conditions under which stationary Markov processes are a-mixing. Since functions of mixing
processes are themselves mixing (Bradley, [2005), time-varying functions of any of the above

mentioned processes just mentioned are mixing as well.

3.6 Limit distribution under null hypothesis

Now we proceed to the assumptions that are needed for deriving asymptotic properties of

the proposed test statistic.

Assumption Al. The random error terms {e;,7 € N} form a strictly stationary c-mixing
sequence with marginal distribution function F', that is symmetric around zero, and for

some x > 0, x' > 0 there exists a constant C;(x, x’) > 0 such that

0
(b + 1)) 2a(h)X D) < €y (y, X)), (3.6)
h=0

where a(k), k = 0,1,... are the a-mixing coefficients.

Assumption A2. The score function 1 is a non-decreasing and antisymmetric function.

Assumption A3.

[ w@rear@) <o
and
JW(:C + ) = ¥(x + )| PPN AR (2) < Ca(x, X))t — 11",
|tj| < C3(X5X/)7 .] = 172

for some constants 1 < n <2+ x+x/, x >0, X’ > 0 as in (B:6]) and constants Cs(x, x') > 0,
C3(x, x') > 0 both depending only on y and .
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Assumption A4. Let us denote A(t) = — (¢ (e—t)dF (e), for t € R. We assume that A(0) = 0
and that there exists a first derivative X'(-) that is Lipschitz in the neighborhood of 0 and
satisfies A’(0) > 0.

Assumption A5. Let

e0]
0<o?(¥) = E¢?(e1) +2 ) Ev(e)d(Eir) < 0,
i=1

Assumption [A]] is satisfied for example for ARMA processes with continuously dis-
tributed stationary innovations and bounded variance (Doukhan, [1994, Section 2.4).

The conditions regarding ¢ reduce to moment restrictions for ¢, (z) = x (L2 method)
taking n = 2 + x + x’. For ¥, (z) = sgn(x) (L1 method), the conditions reduce to F being
a symmetric distribution, having continuous density f in a neighborhood of 0 with f(0) > 0,
and 7 = 1 for any x > 0 and x’ > 0. Similarly, we may consider the derivative of the Huber

loss function, i.e.,
Yy (r) =z IZ{|z| < C} + Csgn(z) Z{|z| > C} (3.7)

for some C > 0. In that case to satisfy Assumptions [A2HA4] we need to assume F being
a symmetric distribution function with continuous density f in a neighborhood of C' and
—C satistying f(C) > 0 and f(—C) >0 with n =2+ x + X'

The following theorem states the asymptotic behavior of the studied ratio type test
statistic under the null hypothesis.

Theorem 3.1 (Under null). Suppose that Yi,...,Y, follow model BI)) and assume that
Assumptions [ATHAA hold. Then, under null hypothesis ([3.2)

sup [W(u) — u/tW(t)]

o<su<t

An (1)) =2 sup — —
O yst<l=y sup (W(u) — (1 —u)/(1—t)W(t)

t<u<l

where {W(u),0 < u < 1} is a standard Wiener process and W(u) = W(1) = W(u).

Proof. The proof is inspired by several steps from the proof of Theorem 1.1 in|Horvéth et al.

(2008). Without loss on generality, we assume that p = 0. Let

Zn<t>=% S () and Zn(t>=% S h(ey):

1<j<nt

Then, by applying Theorem 1 from [Doukhan (1994, Section 1.5.1) with the consequent

remark, we get

22[0,1]
_

n—0o0

(2. Z0) o) (W), W(). (3.9)
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where W(t) = W(1) — W(t). Lemma 4.3 and Lemma 4.4 by Hugkové and Marugiakova
(2012) and Assumptions [ATHABl lead to

sup { n”
1<i<nt

Z 7/) Hl [nt] (7/1))

1<]<’L

(Z Y(ej) — ] Z 7/’(%))‘ ni—oo’oa

1<j<te

1
— sup

VN 1<ignt

Z, (i> - [nit]zn(t)‘ fop(1), n— .

n

( (Yg - ﬁ1,[nt] (w))’ = sup

1<5<i 1<isnt

Similarly, we get

1
—— sup

\/ﬁ nt<i<n

(0 (Y; - ﬁz,[nt] (7/’))‘

1<yj<n

= sup

nt<i<n n

7 (_) _ um\ fop(1), n— .

With respect to (3], we get for all 0 < v < 1/2

1
— su Y; — 1 fn ,——  su Y; — [ian
<\/ﬁ 1<Z<pnt 1§<i¢ ( ’ i (1/)) ’ \/ﬁ nt71<i2n*1 i+1§<n¢ ( ’ et (1/))) D
2 o —~ 11—y~
2, o) | sup W(u)— EVV(t) , sup W(u) — uW(t) )
n—0m0n 0<u<t t t<u<1 1-—1¢
Finally, the continuous mapping theorem completes the proof. O

The null hypothesis is rejected for large values of A,,(¢). Hence, we reject Hy at sig-
nificance level o if Ay, (v)) > a1—q,, Where ai_q  is the (1 — a)-quantile of the asymptotic
distribution (3.8). Explicit form of the limit distribution (B8] under the null hypothesis is
not known. Therefore, in order to obtain critical values, we have to use either simulation
from the limit distribution or resampling methods.

For 1, : ¥r,(z) = x, z € R, the above stated Assumptions [A2] and [A4] are satisfied.
We can also drop the requirement of symmetry of F' in Assumption [A1l and replace it by
Ee; = 0. Assumptions [A3] and [AH reduce to the following two assumptions.
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Assumption D1.
Ele1**? < 0.

for some constant 5 > 0.
Assumption D2.
o0
0<0’(r,) =Eef +2) Eergiy < 0.
i=1
Next, we show how the test statistic behaves under the alternative.

Theorem 3.2 (Under alternative). Suppose that Y1,...,Y, follow model B1), assume that

V/n|6n| = 00 asn — o0, and T = [¢n] for somey < { < 1—~. Then, under Assumptions[Al-
and alternative (3.3)

Ay () —— 0.

n—0o0

Proof. Let k> 741 and k = [¢{n] for some ¢ < £ < 1—+. Note that 7 = O(n) and k = O(n)
as n — o0. Lemma 4.3 and Lemma 4.4 by [Huskova and Marusiakova (2012) provide

k
VE k() — p) = ﬁ(o) > b(e) +VRB (1= Q) +0p (1), 1 cn.

Consequently, applying Lemma 4.3 by [Huskova and Marugiakova (2012) again, we obtain

T+1

k
2 ¥ (Y = fnk(¥) - (Z 9les) = 8 ) (en) + X (O)nge(r + 1>/k>)>|

=1

0 (Y = fnelw)) - (2 W) — 1 3 (e + A’(O)angcu/k)))’

=1

where g¢(2) = min(¢, z)[1 — max(¢, z)] for = € (0,1). Since v/n|d,| — o0 as n — oo and

T+1

1 T+l g
— Y(ej) — P(e

=Op(1), n — oo

according to the proof of Theorem B.I] we get

1 : R 1 T+1 ~ o
oA NG j;ﬂ’ (Y — ()| = 7 ;1/;(}/] — ik (®))| —— .
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Note that there is no change in the means of Y%, ..., Y,,. Again from the proof of Theorem 3.1}

we have
max | SN (% — )| 22 o) sup [Ww) - 22,
[En]éiénfl \/ﬁ j=i+1 n—m E<uxl 1- €
which completes the proof. O

Theorem B2 says that in presence of the structural change in mean, the test statistic ex-
plodes above all bounds. Hence, the procedure is consistent and the asymptotic distribution
from Theorem BTl can be used to construct the test.

The limit results for A, (¢r,) were derived in [Hugkova (2007) and [Horvath et all (2008)
under less restrictive assumptions regarding the random errors (cf. Chapter [[l). For other
score functions 1, results regarding limit behavior under fixed as well as under local alter-
natives for the related non-ratio type statistic are presented in [Huskova and Marusiakova
(2012). The result for the ratio type statistic under fixed alternative may be derived by

a modification of the proof therein.

3.7 Block bootstrap with replacement

In the following section, we are going to study only the case of ¢y, (z) = z. Extension to
the case of general score function v from the previous sections is straightforward, but the
proofs are much more complex.

There are several different approaches that may be used when resampling dependent
observations. Classical resampling methods are not suitable, since they do not take into
account the underlying dependency structure. Here, we focus our attention to a so-called
circular moving block bootstrap method, which was introduced by [Politis and Romand (1992).
Overlapping blocks of consequent observations are formed from the original observations.
The first few consequent observations from the original sequence are appended after the
last observation, so that for a sequence of length n, we always have n possible blocks of

subsequent observations to choose from
{Yjt1,...,Y54K),j=0,...,n—1}; whereY; =Y,_,, i >n.

With this method, there is equal probability for each observation to be included in the
bootstrap sample. For more details on the method, we also refer to [Kirch (2006).

Let L denote the number of blocks and let K be the block length. In order to keep
the notation as simple as possible, we restrict ourselves to situation, where n = KL, i.e., if
the set of n observations can be divided in exactly L blocks of length K. It can be proved
(Kirch, [2006) that the limit results remain the same after omitting the last K observations,
ifn=KL+ K;,1<K; <K-—1. We will assume that K and n are both functions of L
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such that n = K L. Moreover, we will suppose that

L—-ow and K —>o as n— .

It is also possible to use the non-circular moving block bootstrap, where one does not
append the first few consequent observations from the original sequence after the last ob-
servation. This bootstrap version effectively gives n — K blocks to choose from (instead of

n blocks), but we will not concentrate on this approach here.

First, let us define the following subsets of N x NN for integer numbers [, k, L, K and real
number 0 < v < 1/2

Wgrx ={(p.q): p,geN,
1<p<l,1<q<K, (p—-1)K+qg<(—-1)K +k},

ﬁl,k,L,K ={(p,a): p,geN,
I<Sp<L, 1<q<K, (p—-1)K+q=>(1-1)K +k+1},

Qrx() ={(L,k): LkeN,

1<I<L 1<k<K, KILy<(I—-1)K +k<KL(1—~)}.

)

For a set of iid random variables U = (Uy,...,Ur), uniformly distributed on the set

{0,...,n — 1}, we define the following block bootstrap statistic

p—1 K q
SL Kx(p,q,1 2 2 (Yu,45 — mL k(1K) + Z Yu,+5 — mg,K(lak)) ;
i=1j=1 j=1
where
-1 K k
(l k) (l*l K+k <= g Ur+s+SZ:1YUL+s>

forp,l=1,...,L,q,k=1,...,K,p<Il,(p—1)K + ¢ < (I — 1)K + k. Similarly, we define

K
SgK(panak) Z (YUH-j - mg,K(lak )I{p [+ 1}
j=k+1
p—1 K q

+ 30 3 (Vo =Y e (LR) T = 1+ 20+ ) (Yo, 15 — MY k(1K)

i=l+1j=1 j=1
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where Z{A} denotes the indicator of set A and

1
) - e (2 e 3 B

s=k+1 s=l+1r=1
forp,l=1,...,L,q,k=1,...,Ksuchthatp>1, (p—1)K+q¢=(—-1)K+k+1.

Now, define the block bootstrap version of A,,(¢r,) from B4 by

MaXx(p,q)elly k1, x ’SLU,K(pv q, la k)‘

ma.
(lvk)EQL,K () max

A}FA,K(’I/)LQ) = -
(p,9)elly k., x ’SL,K(pv q,1, k)‘

Statistic A7 x(¥r,) is constructed in a similar fashion as the original ratio type test
statistic A, (¢1,,). The idea behind the bootstrap test statistic lies in indexing the randomly
chosen (possibly overlapping) bootstrap blocks by I = 1,..., L. The first [ blocks are used
in the nominator of the bootstrap statistic. The [th block is employed in the nominator as
well as in the denominator. The last L — [ + 1 blocks are used in the denominator of the
statistic A7 x(¢1,). Regarding the Ith block appearing in the nominator and denominator,
this particular block is split into two continuous disjunctive parts: the first one contains the
first element from the Ith block, has up to k elements, and is used for the nominator; the
second part contains the last elements from the Ith block, has up to K — k elements, and is
used for the denominator. So, there does not exist an observation appearing simultaneously

in the nominator and denominator.

An algorithm for the circular block bootstrap is illustratively shown in Procedure B.1]
and its validity will be proved in Theorem 33 We are going to show that the bootstrapped
ratio type test statistic, conditioned on the original observations, has exactly the same
limit behavior as the original test statistic under the null. It does not matter whether our
observations come form the null hypothesis or the alternative. In other words, we are going
to prove that A7 (¥r,) provides asymptotically correct critical values for the test based

on A, (¢r,), when observations follow either the null hypothesis or the alternative.

Theorem 3.3 (Bootstrap consistency). Suppose that Y1,...,Y, follow model BI). Let
Ele1]V < o for some v > 4. Let Assumption [Ad] be satisfied for x1,x’y > 0 and for
X2, X' > 0 such that 242k < x1 <v—2, X1 =v—2—x1 and 0 < x2 < (x1—2—-2k)/(2+k),
X2 =(x1—2-2K)/(2+ k) — x2 for some 0 < k < (v —4)/2. Moreover, let Assumption[DZ
be satisfied, K = O(L) as L — o0, and let

K < LX2/?7¢ (3.10)

for some 0 < € < X2. Under alternative, let T = [n(] for some ¢: v < (¢ <1—+. Then we
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Procedure 3.1 Bootstrapping test statistic A, (¢r,).

Input: Sequence of observations Y7, ...,Y,, block length K and 0 <~y < 1/2.
Output: Bootstrap distribution of A, (¢1,), i.e., the empirical distribution where proba-
bility mass 1/B concentrates at each of (1) A7 (V1) ..., (B)AL (VL,).
1: determine number of blocks L = [n/K]
2: define set Qr, x ()
3: for b =1 to B do // repeat in order to obtain the empirical distribution

4:  generate random sample U = (Uy,...,Ur) from discrete uniform distribution on
{0,...,n—1}

5: for (l, k) € QL,K('Y) do

6: define sets II; 1 1,k and ﬁl,k,L,K

7: calculate (b)mgK(l, k) and (b)ﬁng(l, k)

8: for (p, q) (S Hl,k,L,K do

9: calculate (b)SgK(p, q,l, k)

10: end for

11: compute Max(p g)el, ., x |(b)SgK(p, q,1, k)|

12: for (p, q) € ﬁl,k,L,K do

13: calculate (b)ggK(p, q,l, k)

14: end for N

15: compute max, iy, ‘(b) SgK(p, q,1, k:)‘

16:  end for
17:  compute bootstrap test statistics () A} x(¢r,)
18: end for

have for all ye R, as L — o0,

P (Aﬂi,K(l/fm) < y|Y15 v ;Yn)
sup [W(u) — u/tW(t)]

a.s. o<u<t
— P sup —

SIS1=7 sup |W(u) — (1= u)/(1 = )W(1)

t<u<l

<Y

where {(W(u),0 < u < 1} is a standard Wiener process and W(u) =W(1) = W(u).

Proof. The proof goes along the lines of proof of Theorem 3.6.2 in [Kirch (2006) for the case
of q(t) =1, t € (0,1) and uses several results derived there. In contrast to [Kirch (2006), we
drop the assumption of random errors being a linear process, because this is only assumed in
order to show that the original (not bootstrapped) statistic weakly converges under the null
hypothesis. Assumptions of Theorem B3land null hypothesis (3.2 provide us the asymptotic
distribution of A,,(¢r,) from Theorem B.11

Note that we have (possibly) overlapping blocks. If {¢;,7 € N} is an a-mixing sequence,
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then
K—(n—r)
2 Ertyj + Z i |, ne N
is also a-mixing forall K > 2andr =n— K +1,...,n—1, but with smaller or equal mixing

coefficients than {e;,7 € N} (Bradley, 12005, Theorem 5.2). Hence, assumption ([B.6)) is
uniformly fulfilled in K and r. Moreover, the above considered sequence remains stationary
for stationary {e;,i € N}.

Theorem 1 by [Yokoyama (1980) says that there exists a constant D = D(a, x, X', C1) > 0
depending only on the constants x, X', sequence of c-mixing coefficients o = {a(k)}ren, and
C1(x, xX'), such that

2+x1
(n—r)

Zsrﬂ—i— Z £ <D, a.s.,

uniformly in K" and r. Then according to the de la Vallée-Poussin theorem (Meyer, 1966,
p. 19, Theorem T22),

1 n—1 2+K
- 2 L Jnax Z Ertj < poyr +0(1) < Do, a.s.,
r=0" " _] E+1

for some constant Do > 0, where here ¢; = €;_,, for j > n and

24K

L e

] k+1

= E
M2+ K K 1

uniformly in K and r.

The Markov inequality and [Yokoyama (1980, Theorem 1) give for any w > 0

[t e[ o

J
K L—-1
l’“ IIllaXKL 2 | Zk14k| = 1 P [ 2 | Zk1 vl >w] (3.11)

""" k=1

<w2+><2 L1+X2/2> L — o,

where

24K

Z Es—1+j

] k+1

— M2+4k-
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By condition [3I0), we have

0

LZ L1+X2/2 Z L1+€

This yields that ([BI1]) converges sufficiently fast to zero, which implies convergence almost

surely. Consequently,

24k

— 24k |+ o4k < D2, as.

R Y

j k+1

15

This is going to be used for verifying the assumptions of Theorem 3.6.1 in [Kirch (2006), i.e.,

.

1=0

Z (an(i+j) — an)

] k+1

p
) < D1, a.s., (3.12)

for some 2 < p < 4 with appropriately chosen scores

a, = (an(l)a cee aan(n))a

such that @, = = 3" | an(i).
Let us consider three different situations and for each of them we choose the appropriate

scores ap:

(i) K62 = O(1). This case also includes the null hypothesis (with &, = 0). We choose
an (i) =Y;.

(ii) 1/(K62) = O(1). In this case, we let a,(i) = Yi/(VK6,).

(iii) Both K62 < 1 and K42 > 1 is true for infinitely many n € N. Note that K = K,,. In
this case, we use a combination of both score choices, i.e.,

Yi, K& <1;

n

\/%'6”, K2 >1.

an (i) =

The proof of Theorem 3.6.2 and Theorem 3.5.1 by [Kirchl (2006) provide the verification
of BI12).
Using the above chosen scores a,,, the proof of Theorem 3.6.1 (¢) (or Theorem 3.4.1 (c))

for the nominator of the considered statistic gives that conditionally on the observations
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Yi,...,Y,
max ‘SEK(paqvlvk)’
(Pl k., o(Yp, ) VLK

Z
= max
(p,@)elli k.1, K

W(%)—?W(%N+ﬂﬂ”,vp»w.(&m)

Here, we understand that V;, = op (1) as n — o0, conditionally on the Y7,...,Y,, if

Vo>0:P (Vo] = g|Ya,....Y,) =2 0.

n—0o0

Sometimes one writes V,, = op«(1) as n — o0, where P*(-) = P (:|Y1,...,Y,), but this is
not necessary here in this proof, since the meaning is clear from the context. Moreover, the

same proof gives (conditionally on Y7,...,Y},)

v(3)-3(3)

(P—1K +g¢
()
(p—1DK +q (-1)K+k
U—UK+kW< KL

max
(p,9)elly k.1 K

= max
(P,@)elli k.1, K

N+wm,nam.@m

Since I = [Lt] for some t € [0, 1], equations (B.I3]) and (BI4) imply that it suffices to consider

the asymptotic behavior of

1

max ——
1<i<nt \/n

> (X5 = Xug)

1<j<i

where {X}, j € N} are iid standard normal variables and X; = + 3, _;; X;. Le., condition-

ally on Yi,...,Y,,

‘SgK(paqvlvk)’ 9 1
max _ =
(P k., 0(Yp,) VLK 1<i<nt /N

for all t € [y,1 —~].
Similarly, conditionally on Y7, ...,Y,, it holds that

ggK(pa q, la k)’
max — Y
(p7‘Z)Eﬁl,k,L,K U(wla) VLK

D
= II’lva,X
(p,9)elly k.1 K

L
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and

max
(p,@)€ll1 1,1, K

~ /P L—p~/[1
W(5) - = (1))

w (o)

L-((p—DK+q) ~((I-1DK+k+]1
L—((I-1K+k+1) ( KL >‘+0p(1), n — o.

= max
(P:@)elli k.1, K

Thus, conditionally on Y7,...,Y,,

g[[{,K(pv%la k) 9
max

1
(p,9)elly k., K 0'(7/)L2) VLK ni<isn \/ﬁ

+op(l), n—oow

> (Xj - X[nt])

1<yj<n

for all t € [y,1— ], where X; =
Now, the assumptions of Theorem BTl are satisfied for {X;, j € N} under the null hypoth-

n—i Zi<j§n Xj'

esis as well as under the alternative. Hence, we get that along almost all samples Y7,...,Y,,
it holds that

’S[[/J,K(pv%lak)‘ ’SKK(p7Qal;k)‘
max

—_— max —_—
(el k. oY, VLK  (poely v 0(Wr,) VLK

L2 (s () WO s W) - (1= /(- 030 )
n—0 O<u<t t<u<l
conditionally on Y7,...,Y,.
Finally, the assertion of Theorem [B.3] is straightforward, since the considered bootstrap

statistic is a continuous function of the above vector of statistics. O

Remark 3.1. Condition (BI0) can be omitted, but the almost sure convergence in the as-
sertion of Theorem [3.3] needs to be changed into convergence in probability (Kirch, 2006,
Theorem 3.6.2). After that, the condition v > 4 can be relaxed to v > 2 (Kirch, 2006,
Remark 3.5.4), although the remaining assumptions concerning v have to be changed ac-

cordingly.

A choice of the block length L in the circular moving block bootstrap is an important
decision. It will affect the bootstrapped version of the test statistic. Therefore, the block
length can be viewed as a tuning parameter in the circular moving block bootstrap procedure.
One possibility, how to make such optimal choice, is to minimize the asymptotic mean square
error (MSE) of the circular moving block bootstrap variance estimate. [Fitzenbergen (1997)
proved that this approach yields K = O(nl/ 3) as n — o0 in case of a-mixing random errors.
In contrast to this asymptotic result, the practical choice of the block length usually needs

to be made based on one finite sample consisting of n observations. Several finite sample
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approaches for choosing the block length K were proposed by [Hall et al! (1995), Politis and
White (2004), and [Lahiri et all (2007).

3.8 Modification of the test statistic

As it will be further seen in simulations in Subsection B9 a-errors (i.e., probabilities of
the first type error) are sometimes not sufficiently close to the theoretical a-errors for test
procedures based on the ratio type test statistic A, (¢)). Therefore, based on the numerical

results, we suggest a modification of the original statistic A, (¢) in the following form

max | 3 (¥ — (@) |

Pt —k  Isiskhgig
Au(w) = max r - 1=I= : (3.15)
nysksn—n ~
! ! Jmax | 3 (Y — fi2k(4)

i+1<j<n

where 0 < v < 1/2 is a given constant. The way, how the original test statistics is modified,
is that the ratio in the original test statistic is standardized by /(n — k)/k. This makes the
ratio more constant (flatter) with respect to k and, hence, the test based on the modified
test statistic keeps the theoretical a-level better (more firmly).

Similarly as in Theorem 3] one can derive the asymptotic behavior of the modified test

statistics under the null hypothesis.

Theorem 3.4. Suppose that Y1,...,Y, follow model BI) and assume that Assumptions
[ATHAS hold. Then, under null hypothesis ([3.2)

sup [W(u) —u/tW(t)|

3 ) 2 - 1—t\"? O<ust (3.16)
(e S Wu) — (1 —u)/(1— )W) .
sup (u) — ( u)/( IW(t)

t<u<l

where {W(u),0 < u < 1} is a standard Wiener process and W(u) =W(Q1) - W(u).
Proof. See proof of Theorem B.11 O
A theoretical argument for the modification suggested above comes from distributional

relation (I.9) and asymptotic distribution (I6]). The asymptotic distribution of the original
test statistic A, (1)) from (B.8) can be consequently rewritten as

sup [W(u) —u/tW(t
0<u2t| (W) = w/IV (D) 2 ( 3 )1/2 SUPp<s<1 B(3)]
1-—1¢

sup —
SUPp<s<1 ‘B(S)

)

sup —
‘ y<t<l—vy

Yst<1l=7 gsup ‘W(u) — (1 =uw)/(L=t)W(t)

t<u<l

where {B(s), s € [0,1]} and {B(s), s € [0,1]} are two independent Brownian bridges. Func-
tion 4/t/(1 — t) is strictly increasing, which offers the idea of multiplying asymptotic distri-
bution of the original test statistic A, (1) by the reciprocal function, i.e., /(1 — ¢)/¢. Thus,
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the asymptotic distribution of the original test statistic A, () from (BI6) can simply be
rewritten as
SUPp<s<1 |B(s)]

SUPg<s<i ‘g(s)’

This leads to our modification of the original test statistic, where the ratio of maxima in
An () is multiplied by 4 /12" = /(n = k)/k.

The asymptotic behavior of the modified test statistic under the alternative can be

derived as well.

Theorem 3.5. Suppose that Y1,...,Y, follow model BI), assume that 1/n|d| — o as
n — o, and 7 = [(n] for some v < ( < 1 —~. Then, under Assumptions [AIHAZ and
alternative ([3.3))

An()) —— 0
Proof. See proof of Theorem O

The block bootstrap version of the modified ratio type test statistic J‘Tn(sz) can be
defined as

X KL—((-1)K +k) maX(?lJ)eszLK’SLUK(pvq,l,k)‘
* _ ) kL, B
ALk (Wr,) = <z,k>?slff§<<7)\/ (- DK+ %

U .
maX(?a‘])eﬁl,k,L,K ’SL,K(pv q,l, k)‘

The block bootstrap version of the modified statistic .:lz (Y1) also provides asymptotically
correct critical values for the test based on A, (¥L,), when observations follow either the

null hypothesis or the alternative as it is formally stated in the following theorem.

Theorem 3.6. Suppose that Y1,...,Y, follow model BI)). Let E|e1|” < oo for some v > 4.
Let Assumption[Ad] be satisfied for x1,x'; > 0 and for x2,x'y > 0 such that 2 + 2k < x1 <
v=2,x1=v—-2—x1and0 < x2 < (x1—2—2kK)/(2+K), X' = (X1 —2—2K) /(24 K) — X2 for
some 0 < k < (v —4)/2. Moreover, let Assumption[D3 be satisfied, K = O(L) as L — o0,
and let

K < [/ (3.17)

for some 0 < e < X2. Under alternative, let T = [n(] for some ¢: v < (¢ <1—r. Then we
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have for all y e R, as L — o0,

P (A5 x(¥r.) <ylVi,. Yo

N——

sup [W(u) — u/tW(t)]

225 P | sup <1 n t>1/2 T Sy
< sup [W(w) = (1= w)/(1 - () ’

t<u<l

where {W(u),0 < u < 1} is a standard Wiener process and W(u) = W(1) = W(u).

Proof. See the proof of Theorem 3.3l O

3.9 Simulations

We were interested in the performance of the tests based on the ratio type test statistics
An(¥p) and A, (1) with ¢1,(z) = z and ¢, (z) = sgn(z). We focused on comparison of
the accuracy of critical values obtained by circular moving block bootstrap method with
the accuracy of critical values obtained by simulation from the limit distribution. Some
simulation results concerning the test based on asymptotic critical values for the studied type
of test statistic can be also found in [Horvath et al! (2008) (the Lo method and asymptotic
critical values) and Madurkayova (2009D).

In Figures BIH3.8], one may see size-power plots or size-power curves (SPC) for choices
of n = 100 or 200, v = 0.1 or 0.2, 7 = 0.5, and § = 1 considering test statistics A, (1)) and
.Zn (¢) in case of Ly and L score function both under the null hypothesis and under the
alternative. The size-power plots illustrate the power of a test. The empirical distribution
function of the p-values of the test statistic for the null hypothesis or a given alternative
is plotted with respect to the distribution used to determine the critical values of the test.
What we get is a plot that shows the actual a-errors resp. 1—(S-errors) on the y-axis
for the chosen quantiles on the x-axis. The ideal situation under the null hypothesis is
depicted by the straight diagonal dotted line. Under the alternative, the desired situation
would be a steep function with values close to 1. For more details on size-power plots we
may refer, e.g., to [Kirchl (2006). The random errors were simulated as an AR(1) process
with autoregression coefficients 0.3 (orange) and 0.5 (green), and as a set of iid random
errors (blue). Rejection rates based on simulated asymptotic critical values are depicted by
a dashed line, rejection rates based on block bootstrap with block length K = 5 are depicted
by a solid line. Standard normal distribution and Student ¢-distribution with 5 degrees of
freedom are used for generating the innovations of models’ errors.

We generated 10000 independent samples in order to compute the asymptotic critical
values. When bootstrapping, for each sample we used 1000 bootstrap samples to compute

the bootstrap critical values. In simulations of rejection rates, we used 1000 repetitions.



CHAPTER 3. ROBUST PROCEDURES FOR ABRUPT CHANGE IN MEAN 41

00 04 08

00 04 08

00 04 08

0.0 04 08

000 005 010 015 0.20

(a) N(0,1), n = 100, and v = 0.1

0.00 0.05 0.10 0.15 0.20

(c¢) N(0,1), n =100, and v = 0.2

0.00 0.05 0.10 0.15 0.20

(e) ts, n = 100, and v = 0.1

000 005 010 015 0.20

(g) t5, n = 100, and v = 0.2

0.0 04 038 0.0 04 038 0.0 04 038

0.0 04 038

0.00 0.05 0.10 0.15 0.20

(b) N(0,1), n =200, and v = 0.1

I I I I I
0.00 0.05 0.10 0.15 0.20

(d) N(0,1), n =200, and v = 0.2

0.00 0.05 0.10 0.15 0.20

(f) ¢5, n = 200, and v = 0.1

0.00 0.05 0.10 0.15 0.20

(h) t5, n =200, and v = 0.2

Figure 3.1: Size-power plots for A, (1r,) under null hypothesis Hy. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block
bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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Figure 3.2: Size-power plots for A, (¢1,) under alternative H;. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.
Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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Figure 3.3: Size-power plots for A, (1r,) under null hypothesis Hy. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block
bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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Figure 3.4: Size-power plots for A, (¢r,) under alternative H;. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.
Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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Figure 3.5: Size-power plots for J‘Tn(sz) under null hypothesis Hy. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block
bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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Figure 3.6: Size-power plots for -’Z(n('(/JLz) under alternative H;. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.
Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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Figure 3.7: Size-power plots for jn(le) under null hypothesis Hy. Dashed lines are re-

jection rates based on the asymptotic critical values, solid ones correspond to the block
bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with

coefficient 0.5, and blue ones for iid.
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Figure 3.8: Size-power plots for .Zn(dJLl) under alternative H;. Dashed lines are rejection

rates based on the asymptotic critical values, solid ones correspond to the block bootstrap.
Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5,

and blue ones for iid.
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In all of 64 figures depicting a situation under the null hypothesis, we may see that com-
paring to the critical values obtained by simulations from the asymptotic distribution, the
critical values obtained by bootstrapping are more accurate, especially for AR(1) sequences.
When comparing the accuracy of a-errors for different choices of score function v, the L,
method seems to perform better than the L, method. However, when using the L; method,
power of the test slightly decreases, as we may also see in Table Bl Similarly, the choice of
v = 0.2 seems to provide more accurate critical values than the choice of v = 0.1, but the

test power is larger in the latter case.

Asymptotics Bootstrap
Lo statistic L, statistic Lo statistic L statistic
N(O,1) t5  N@©0.1) t5 |N@©O.1) t5  NO,1)
=0 0.924 0.906 0.769 0.866 | 0.922 0.925 0.801  0.906

=03 0726 0.729 0.577 0.682 | 0.718 0.733 0.585  0.696
=05 0531 0.523 0.365 0448 | 0.500 0.508 0.404 0.485

Table 3.1: Simulated rejection rates for the abrupt change in mean based on the asymptotic
and bootstrap version of A,,(¢) for the Ly and Lo method with n = 200, v = 0.2 under
alternative H; with § = 1 and 7 = n/2, considering significance level « = 0.05. Random
errors were simulated either as N(0,1) or as t5 distributed AR(1) sequences with several

values of autoregression coefficient ¢.

Furthermore, with the choice of 11, the simulated rejection rates under Hy are higher
than the corresponding theoretical a-levels for larger values of the autoregression coefficient,
while for the L; method they remain much more stable. Comparing the case of N(0,1)
innovations with the case of t5 innovations, rejection rates for the L; version of the test
statistic tend to be slightly higher for ¢5 distribution, while they remain more or less the
same for the Ly version. As expected, the accuracy of the critical values tends to be better
for larger n.

On one hand, simulations showed that the actual a-errors are closer to the theoretical
a-errors (significance levels) for the test procedures based on A,. On the other hand, the
test procedures based on A,, provide slightly higher power than the procedures based on the
modified test statistic.

Additionally, one can use a size-power plot with adjusted (empirical) a-errors to compare
the performance of A, against A,. The empirical size-power plots in Figure B.9] display
empirical size of the test (i.e., 1—sensitivity) on the z-axis versus empirical power of the test
(i.e., specificity) on the y-axis. The ideal shape of the curve is as steep as possible. The
empirical size-power plots demonstrate that the modified ratio type test statistic .Zn (or its

bootstrap counterpart) gives approximately same (only slightly smaller) empirical powers
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for adjusted empirical sizes comparing to the original test statistic A,. This is due to two
opposing facts: an keeps the significance level of the test better, but A,, gives higher power
of the test.

0 | © |
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Figure 3.9: Empirical size-power plots for A, (¢r,) and A, (1r,) with § = 1. Dashed lines
come from the asymptotic distributions, solid correspond to the block bootstrap. Orange
lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with coefficient 0.5, and blue

ones for iid. Innovations are N(0,1) distributed and v = 0.1.

Finally, we may conclude that with larger abrupt change, the power of the test increases.
Plots in Figure B.I0 show the powers of the test for alternatives with 6 = 0.1 and § = 0.2.
Besides that, one can again see the previously mentioned fact that the tests based on the

modified test statistic lack power compared to the tests based on the original test statistic.

3.10 Summary

Ratio type statistics provide an alternative to non-ratio type statistics in situations, in which

variance estimation is problematic. The change point detection in the location model with
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Figure 3.10: Size-power plots for A, (¢,) and A, (¢1,) under various alternatives. Dashed
lines are rejection rates based on the asymptotic critical values, solid ones correspond to the
block bootstrap. Orange lines stand for AR(1) with coefficient 0.3, green lines for AR(1) with
coefficient 0.5, and blue ones for iid. Innovations possess Student t5 distribution, n = 100,
and v = 0.2.

at most one abrupt change in mean is discussed. Asymptotic behavior of the ratio type
test statistics is studied under the null hypothesis of no change and under the alternative
of a change occurring at some unknown time point. We generalize testing procedures by
assuming weakly dependent errors of the model together with incorporating general score
function in the test statistics. The circular block bootstrap method is investigated. We
prove that the block bootstrap method provides asymptotically correct critical values for the
studied ratio type statistics in the location model with a-mixing random errors. Simulations
show that critical values obtained by block bootstrapping seem to be more accurate than
critical values obtained by simulation from the limiting distribution, especially for AR(1)

sequences.
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Chapter

Change In Regression
Parameters

Linear regression models are relatively frequently used models in statistical analysis, with
many possible applications. Difficulties with variance estimation in such models lead to
the idea of avoiding the necessity of standardizing the test statistic by a variance estimate.
Therefore, it seems reasonable to use ratio type test statistics.

In this chapter, we focus on the asymptotic properties of the robust ratio type test statis-
tics for detection of changes in linear regression models, particularly the trending regression
models, and demonstrate these properties both on simulated and real data. Moreover, a per-
mutation bootstrap is proposed to overcome computational issues for obtaining the critical

values for the test. The chapter is partially based on work by Madurkayova (2009a).

4.1 Infroduction and regression model description

We assume to have a set of observations Y7,...,Y,, obtained at time ordered points and
that these data follow a linear regression model. Particularly, we are interested in studying
a situation, where a change in regression parameters may occur at some unknown time

point 7. We may formally describe such situation as
Yy =h'(k/n)B+h"(k/n)0T{k > 7} +er, k=1,...,n, (4.1)

where B = (B1,...,8p)", § = 8, = (61,...,0,)7, and 7 = 7, are unknown parameters.
Functions h(t) = (h1(t),...,h,(t))T are such that hi(t) = 1 for t € [0,1] and h;(t), j =
2,...,p are continuously differentiable functions on [0,1]. We are going to assume that the

error terms £1,...,&, are independent and identically distributed (iid) random variables,

93
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satisfying Ecy = 0 and Varey =02 >0for k=1,...,n.

Model ([@J]) corresponds to the situation where the first 7 observations follow the linear
model with the regression parameter 3 and the remaining n — 7 observations follow the
linear regression model with the changed regression parameter 3 + §. The parameter 7 is
again called the change point.

The basic question, we are trying to answer, is whether a change in regression parameters
occurred at some unknown time point 7 or not. Using the above introduced notation, the

null hypothesis of no change can be expressed as
Hy: 7=n. (4.2)

We are going to test this null hypothesis against the alternative hypothesis that the change

occurred at some time point 7 prior to the latest observed time n, i.e.,
Hy:717<n, d #0. (4.3)

A graphical illustration of the change point model ([@I]) for regression parameters under

the alternative can be seen in Figure [4.11

B+

Figure 4.1: Illustration of the change point problem in regression.

A procedure for testing the change in linear regression with equidistant design was con-
sidered by WJaruskova (2003). Limit distribution for over-all maximum type test statistics
under assumption of no change was given. |Antoch and Hugkova (2003) described detection
of structural changes in a general regression setup. Nonlinear polynomial regression model

from the change point perspective was studied by |Aue et all (2008). M-tests for detection of
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changes in the linear models are presented by [Huskova and Picek (2002). The paper focuses
on the application of modified permutational arguments in order to obtain approximations
for critical values. Furthermore, [Hugkova and Picek (2004) performed permutation type
tests in the linear models. Bootstrap with and without replacement in change point analysis
in the linear regression models is discussed in [Huskova and Picek (2005). [Bai and Perron
(1998) give an extension into multiple structural changes, occurring at unknown time points,
in the linear regression model estimated by least squares. Lately, [Praskova and Chochola
(2014) considered procedures for detecting a change of regression parameters in the linear
model when both the regressors and the errors are weakly dependent in the sense of L,-m
approximability. M -estimators and weighted M -residuals are used to construct the test

statistics.

4.2 Test statistic for detection of a change in regression
parameters

For the situation described above, test statistics based on the weighted partial sums of
residuals are often used, i.e., statistics of the form
J

i=1
which can be rewritten also elementwise (for the ith element of Sy)

J
SO @) = Y hali/n)e (Vi — BT (i/m)br(v)), 1=1,....p;jk=p+1,....n, j <k

i=1

Here, 1 is a score function and by (1) is an M-estimate of the regression parameter 3 based
on observations Y7, . .., Yy from model (@I]) with 7 = n (under the null), i.e., it is the solution
of the equation

k

D h(i/n)y (Y — k' (i/n)b) = 0

i=1

with respect to b. Let us similarly denote
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where 5k(1/1) is an M-estimate of the parameter 3 based on observations Y1,...,Y,. That

means, it is a solution of the equation

n

>} h(i/n)y (Yi — AT (i/n)b) = 0

i=k+1
with respect to b. Further, we denote
k
Cjr = Y, h(i/)h"(i/n), jk=1,....n,j<k (4.6)

=]
Using this notation, we may now define the ratio type test statistic

max S%(?/J)Cf,;isj,k(w)

1<j<k Js

Rn(¥) = max

_ QT -1 g
ny<k<n—ny kgI}lgr)zilSj’k(w) k+17n5j,k(1/))

, (4.7

where 0 < v < 1/2 is a given constant.

Remark 4.1. Let us note that the matrices Cy  and Cjy1,, become regular after adding
Assumption [M2] (see below) and considering k and n — k sufficiently large. Being particular,
k—1 and n — k — 1 have to be at least as large as p, i.e., the dimension of h(-). Inverses of
these matrices in (7)) exist, because « is a fixed constant known in advance and the test
statistic R, (1) is mainly studied from the asymptotic point of view. This ensures that the

number of summands in (&0 is larger than fixed p.

The idea behind the construction of the test statistic R, (¢) in 7)) lies in comparing
two total distances of weighted residuals from their center of gravity (by evaluating the
ratio of the nominator and the denominator). This view comes from the fact that S; (1)
from (@4 is a sum of weighted residuals and C ;, from (4.0]) acts as a distance measure in

the Mahalanobis sense. Similarly for the denominator of (£.7]).

4.3 Asymptotic properties of the robust test statistic

We proceed with deriving asymptotic properties of the robust ratio type test statistic R, (1),
under the null hypothesis as well as under the alternative. Before stating the main asymp-
totic results, we introduce several model assumptions. The following four assumptions apply

to the model’s errors €1, .. .,¢, and the score function .

Assumption R1. The random error terms {e;,i € N} are iid random variables with a distri-

bution function F', that is symmetric around zero.

Assumption R2. The score function ¢ is a non-decreasing and antisymmetric function.
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Assumption R3.
0<f¢%@amw<m
and
Jh/)(z +ta) —Y(z +t)|?dF (z) < Crlta —ta|",  |tj| < Ca, j=1,2

for some constants 7 > 0 and C7,Cs > 0.

Assumption R4. Let us denote \(t) = — (¢ (e—t)dF (e), for t € R. We assume that A(0) = 0
and that there exists a first derivative \'(+) that is Lipschitz in the neighborhood of 0 and
satisfies A'(0) > 0.

The choice of the score function v has already been discussed in previous Chapter Bl To
recapitulate, the commonly used score functions are the Ly score function ¢, (z) = z, the
L, score function ¢y, () = sgn(x), and the Huber score function ([B.7)). Besides that, the

use of score function

Yp(x) = —Z{x <0}, zeR,Be(0,1)

results in test procedures related to the S-regression quantiles.
The next pair of assumptions refer to the system of covariate functions b = (hy,...,h,) 7,

which represent the model design.
Assumption M1. hqi(t) =1, ¢t € [0,1].

Assumption M2. ha(-), ..., hy(-) are continuously differentiable functions on [0, 1] such that

1
Jhﬂ&ﬁz& i=2,...,p
0

The p x p matrix functions

f hy(2)hy (x)d:c) . tel0,1]

0 Jil=1,....p

C(t) = <

and C(t) = C(1) — C(t) are regular for cach t € (0,1] and t € [0, 1), respectively.

Concerning the design points h(i/n), i = 1,...,n, quite often one assumes that, as
s — 0, (Ck+s — Ck)/s is close to a regular matrix C uniformly in & which is not gen-
erally satisfied under Assumption (Huskova and Picek, 2005). Assumption [M2] covers
important situations like polynomial and harmonic polynomial regression.

Now, we may characterize the limit behavior of the test statistic under the null hypoth-

esis.
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Theorem 4.1 (Under null). Suppose that Y1,...,Y, follow model [@I) and assume that
Assumptions [RIHR] and [MIHM2 hold. Then, under null hypothesis (E2)

ST(s,t)C71(t
R (w) 2 sup Sup0<s<t (Sv ) ( )

i 2 : (4.8)
e A A ’Ysupt<5<ls ( S, )C_l(t)

such that

S(s,t) = fh(x)dwu) _ C(s)c—l(t)f h(z)dW(z), 0<s<t<l, t+0

S
and

1

S(s,t) = L h(z)dN(z) — CN"(S)CN‘*l(t)J h(z)dV(z), 0<t<s<l1, t#1,

t

where {W(z),0 < < 1} is a standard Wiener process and W(z) = W(1) — W(x).

Proof. The proof goes along the lines of proof of Theorem 2.1 in [Hugkova and Picek (2005).
Asymptotic representation for the M-estimate of regression parameter 8 can be obtained
by Jureckové et all (2012, Section 5.5)

k

bk(’l/)) - 1 k )\/ 2 ’L/TL 51 + Op ( ) (49)

i=1

as k — o0 and ny < k < n(l — ). Moreover, by the Hajek-Rényi-Chow inequality (Chow
and Teicher, 2003) for each A > 0, ¢ € (0,1/2], and t € RP

l

> hi(i/m) (vlei = BT (i/n)tk™"2) — v(e:)

=1

A(hT(i/n)tkl/Q))’ > A]

P| max k~V/2ere
1<I<k/2

[k/2] )
< DAY 1*2%0[ (1/1(5— R (i/n)tk—Y/?) —w(g)) dF(e)

=1

< DA (K2H)", j =1, (4.10)
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with some constants D1, Do > 0, where 7 is the constant from Assumption [R3l Similarly,

k
" [/“”‘ kY2 (k- 1) 2 hy(ifm) (e = BT Gi/m)th™2) = e:)

A(hT(@MUtk_lp))‘><A1
n
<DaA2 (K2E)"L =1, (4.11)

with some constant D3 > 0. Combining (@311, we get

L (=N
1<j<k—1 1k k2
k

(th/n -C.;C 2 (i/n)y sz>’_0p(1) (4.12)

D h(i/n)y (Yi — T (i/n)bi(v))

=1

as k — oo. Using again the same arguments, we also have as (n — k) — o

n

o (! (n”(jg); ’“)) ’ X i (=)

<Z h(i/n)yY(e;) — Cjt1.,C an Z h(i/n)y )’z op(1). (4.13)

i=j5+1 i=k+1

Hence with respect to [II2) and [@I3)), the limit distribution of

(maxs (TS, (), max ST, W)CL 5, kw))

1<j<k ik ’ k<j<n-—1

is the same as that of

(1 { (th/n oy 1k;hz/n (e )T(%cl,k)_l

k

% (Z h(i/n)y(g;) — C1,;C Z (i/n)y ) },

=1 =1

" T
maxl{ Z h(’t/n ( ]+1n k+1n Z hl/n ) Ck:ln

i=j+1 i=k+1

<Z h(i/n)y(ei) — Cjt1,,C an Z h(i/n)y >}>,

i=j+1 i=k+1
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which by denoting k = [nt] for ¢ € (0,1) weakly converges in 22,1 —~] to

¢ T

(02%{ (f:h(:c)dW(x) _cs)c) L h(x)dW(x)) c(1)

t

( L " h(@)dW() — C(s)C1 (1) f

0

(o)) ) }

sup {( f 1h(z)d)//\\7(x)fC~'(s)C~'_1(t) f h(z)dW(z)> C(t)

t<s<l1

as n — o0. The weak distributional convergence holds due to|Jandhyala and MacNeill (1997,
Theorem 1), Assumption [M2] the fact that

T

sup { (JﬂS h(x)dW(x) — Js [h(m) J.t hT(x)C_l(t)h(y)dW(y)] dx) C(1)

0<s<t 0 0 0

(J.s h(z)dW(z) — JS [h(x) J.t hT(x)C_l(t)h(y)dW(y)] dx) }

0 0 0
t T

= sup {(J h(x)dW(x)fC(s)C’l(t)J h(z)dW(x)) Cc1(t)

0<s<t 0 0

t

( L " h(@)dW() - C(s)CL (1) f

0

() (s) ) }

h@)dW@)) C'(t)

1

(f h(z)dW(z) — C*(s)c”**l(t)f

t

h@)dW@)) }

Then, the assertion of the theorem directly follows by the continuous mapping theorem. [

Remark 4.2. Realizing the property of a standard Wiener process, the definition of a Brow-
nian bridge B(x) = W(x) — 2W(1), x € [0, 1], and using stochastic calculus together with
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Assumption [M2] we end up with

t

f:h(x)dwu) —C(s)CL(1) L h(z)dW(z)

= JS h(z)dB(z) — C(S)C'fl(t)f h(x)dB(zx).

0 0

Therefore, one can still have the same limit distribution when dW(z) is replaced by dB(z)
and dW(z) is replaced by dB(z), where {B(z),0 < z < 1} and {B(z),0 < z < 1} are

independent Brownian bridges.

The next theorem describes situation under some local alternatives.

Theorem 4.2 (Under local alternatives). Suppose that Y1,...,Y,, follow model [&I), as-

sume that
[0n]l >0 and /n[d,| — 0, as n— oo, (4.14)

and T = [{n] for somey < { < 1— (alternative [@3) holds). Then, under Assumptions[Bil-
and [MIHM2

Proof. Let us choose k > 7+ 1 and k = [€n] for some ¢ < £ < 1 — . Moreover, let us take
into account assumption (AI4)). Using the same arguments as in (£I2) and due to the fact

that the local alternatives hold, we have as n — o,

max S, (V)C S k() = ST ,(¥)Cr . Sr k()

1<j<k

T T T
= (Z h(i/n)y (Yi — b7 (i/n)by,(v) ) (Z (i/n)e hT<i/n)bk<¢))>

= A1 + 242 + Ags +op (1),

where

T
Akl = (Z (z/n) ( CIT Lizh(l/n)w(51)> Ci’i
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Apo = (Z h(i/n)y(ei) — C1-Cry, Z h(z‘/n)zﬂ(sﬁ) Cyy

i=1 i=1

(Z h(i/n)hT (i/n) — Cl,TCL,iCHLk) J,
i=1

Apz =67 <Z h(i/n)hT (i/n) — CTH,,CCL;CLT) Ci

i=1

(Z h(i/n)h" (i/n) — Cl,TCL,iCHLk) J.

i=1
Then from the proof of Theorem 1] we get, as n — o0,
A1 = Op (1).
Furthermore, with respect to assumption (.I4),

Az =87 (C1r = Cri1kCriCLy ) Crk (Crr = C1pCTiCria k) 6

—-6'Cy.ClC.CCy,CTIC 6 —— 0.
’ ’ ’ n— 00
Finally,

|Aga| < A/ Ag1Agks.

Therefore, under the considered assumptions, the term Ags is asymptotically dominant over
the remaining terms. It follows that
T -1 P
12?5 Sj,k(w)CLij,k(?ﬂ) P 0.
For 7+ 1 < k = [¢n], the denominator in (£7) has the same distribution as under the null
hypothesis and it is, therefore, bounded in probability. It follows that the maximum of the

ratio has to tend to infinity as well, as n — 0. O

The previous theorem provides asymptotic consistency of the studied test statistic under
the given assumptions. By Theorem 2] the statistic R, (1)) converges in probability to
infinity, the null hypothesis is rejected for large values of the ratio type test statistic. Being
more formal, we reject Hy at significance level o if R, (¢) > ri_qa,y, where 11_q, is the
(1 — a)-quantile of the asymptotic distribution (Z£J]).
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4.4  Asymptotic critical values for the change
iNn regression

The explicit form of the limit distribution (£8) is not known. The critical values may be
determined by simulation of the limit distribution from Theorem LIl Theorem ensures
that we reject the null hypothesis for large values of the test statistic. We tried to simulate
the asymptotic distribution (£8)) by discretizing the stochastic integrals present in S(s, t) and
S (s,t) and using the relationship of a random walk to a Wiener process. We considered 1000
as the number of discretization points within [0, 1] interval and the number of simulations
equal to 1000. We also tried to use higher numbers of discretization points, but only small
differences in the critical values were acquired. In Table[L.I] we present several critical values

for covariate functions h(t) = 1 and ho(t) =t — 1/2.

90% 95% 97.5% 99% 99.5%

v=0.1 17629223 9.923813 13.114384 17.339711 20.891231
v=0.2 4351720 5.9810256  7.583841 11.048126 14.371703

Table 4.1: Simulated critical values corresponding to the asymptotic distribution of the
test statistic R, (1) under the null hypothesis and to the covariate functions hq(t) = 1 and
ha(t) =t —1/2.

Moreover, Table[2lshows critical values for covariate functions hq(t) = 1, ha(t) = t—1/2,
and hs(t) = 4t> — 4t + 2/3 with v = 0.1. The system of covariate functions was chosen in

the way that those functions are orthogonal in the L2 ([0, 1]) sense.

90% 95% 97.5% 99% 99.5%
v=0.1 5.638486 7.062320 8.633249 12.225500 13.631059

Table 4.2: Simulated critical values corresponding to the asymptotic distribution of the
test statistic R, (1)) under the null hypothesis and to the covariate functions hy(t) = 1,
ho(t) =t — 1/2, and ha(t) = 4t% — 4t + 2/3.

To illustrate the applicability of the asymptotic critical values, a random sample (n =
100) from the regression change point model model (1)) with the quadratic covariate system
hi(t) =1, hao(t) =t — 1/2, and h3(t) = 4t — 4t + 2/3 is simulated for particular choices of

the errors’ distribution (standard normal or Student ¢5), 7, and §. Considering v = 0.1, we
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plot ratio

lgjagksjf (V)C 1Sk (¥)

Qr = = —— , ny<ks<sn-—ny (4.15)
max S] (Q/J)Ckh,nsj,k(w)

k<jen—1 Ik

from the ratio type test statistic R, (¢) for ¢(z) = = in Figure @2 and for ¢ (z) = sgn(z) in
Figure 3l The null hypothesis is rejected when the curve corresponding to @ goes above
the colored horizontal line depicting the critical value. One may also notice, that under the
alternative, the values of Qi tend to increase with k£ in most cases and the maximum value
is obtained for k close to n.

As it will be noticed further in the simulation study (cf. Section A7), the simulated
critical values from the asymptotic distribution seem to be too liberal, meaning that the
simulated versions of the critical values are smaller than they should be. In other words,

the tests based on simulated asymptotic critical values reject more often than they should.

4.5 Permutation booftstrap

In the previous section, we dealt with simulation from the limit distribution as a way for
approximation of the critical values of the proposed test statistic. Similarly as in Chapter [3]
an alternative way to construct the test is to use resampling methods. These may even
provide computationally better results when comparing to simulations of the asymptotic
distribution.

Here, we propose resampling procedure without replacement. By permutation principle,
we would like to resample the iid random errors €1,...,&,. Then, the permutation version
of our test statistics can be obtained by replacing original errors €1,...,€, by €ry,...,€R,,,
where Ry, ..., R, is a random permutation of 1, ..., n, which is independent of observations
Y1,...,Y,. However, the random errors €1,...,&, are not observed and, hence, unknown.
Therefore, we permute predicted errors—the M-residuals. We apply the permutation prin-
ciple on the nominator and on the denominator of the ratio type test statistic separately.

For more detailed explanation of the permutation principles in the change point analysis,
we refer to |Antoch and Huskovd (2001), [Huskova and Picek (2002), [Antoch and Hugkova
(2003), [Huskoval (2004), [Huskova and Picek (2004), or [Hugkovéa and Picek (2005).

First of all, we define residuals for the first k observations

&) =1 (Yi—hT(i/n)br(v)), i=1,....k

and, similarly, residuals for the last n — k observations

&) =0 (Y~ BT (/mbe@)), i=k+1,. 0.
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Figure 4.2: The values of Qy, from the R, (¢r,) test statistic with v = 0.1 for the simulated

normal distribution samples with parameters p = 0 and o = 1 (left hand side) and for the

simulated Student ¢5 distribution samples (right hand side), where n = 100 in both cases.

The upper figures refer to the null hypothesis. The other figures refer to the alternatives
with 7 =n/2 = 50 and & = (0,0,/27)7, § = (+/27,0,0)T, § = (3,3,3)T.



66

4.5 PERMUTATION BOOTSTRAP

1
75 100

0 25 5‘0
k
(a) Ho, N(0, 1)
1
o
G
]
07 I I I I I
0 25 50 75 100
k

(c) Hy, & = (0,0,4/27)T, N(0,1)

Oj M\ .
S LV

1 1 1 1
0 25 50 100

k

(e) H1, 8 = (+/27,0,0)T, N(0, 1)

1
..
S
).
o
| ‘
0 25

(g) H1, 8 = (3,3,3)T, N(0,1)

i i i
0 75 100
k

a

x 4=
o
o-
0- I I I I I
0 25 50 75 100
k
(b) Ho, ts
7.5~ I
x50~
o
25-
0.0~ I I I I I
0 25 50 75 100
k

(d) H1, 6 = (0,0,v27)7, t5

AI\. L,
AW

1
100

&

(f) Hy, 6= (\/ﬁyoyo)—ry ts

1
0 25 50 75 100

(h) H17 6= (37373)T7 ts

Figure 4.3: The values of Qy, from the R,,(¢,) test statistic with v = 0.1 for the simulated

normal distribution samples with parameters p = 0 and o = 1 (left hand side) and for the

simulated Student ¢5 distribution samples (right hand side), where n = 100 in both cases.

The upper figures refer to the null hypothesis. The other figures refer to the alternatives
with 7 =n/2 =50 and & = (0,0,+/27)7, § = (v/27,0,0)7, 6 = (3,3,3)T.
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Consequently, for each ny < k < n(l — 7), we generate permutations Ry = (R1,..., Rg)
of sequence (1,...,k) and R, ) = (ﬁékJrl, e, En) of (k+1,...,n). Now, the residuals are

bootstrapped without replacement, which leads to two sets of permuted residuals

(gRl (w)a '7§Rk (1/])) and (gﬁk+l(w)a .. agf{n(w))
The bootstrapped version of S; ;(v) is centered by a weighted average of the residuals.

J

k
S;x(v; Ry) = Z (i/n)ér, — Cy ;C; Z (I/n)ér,, Gik=1,...,n,j<k

and, analogously, for .§j7k(w)

n

§J7k(w;ﬁn*k): Z (7’/7’1’)g - ]+1n k+1n Z hl/ngla ],kzl,,n,k<j

i=j+1 l=k+1

Finally, the bootstrapped version of the original ratio type test statistic R,,(¢) is obtained
by replacing the original statistics by their permuted counterparts, i.e.,
maxi i<k S;k(w; Rk)C;}iSj k(d’y Rk)

RE() = max L (4.16)
ny<ks<n—ny man<J<n 1S]k(’l/), n— k)Ck_,_LnSj,k(?/);Rnfk)

where 0 < v < 1/2 is the same given constant from the definition of the original test statistic
R ().

An algorithm for the permutation bootstrap is illustratively shown in Procedure d1] and
its validity is proved in Theorem [£3] It is necessary to show that the proposed permutation
test statistic is at least asymptotically correct when data follow either the null hypothesis
or some alternative. Toward this, it suffices to show that given the observed data, the
asymptotic conditional distribution of the original ratio type test statistic asymptotically

coincides with the unconditional limit distribution of R,,(¢) under the null hypothesis.

Theorem 4.3 (Permutation bootstrap validity). Suppose that Y1,...,Y, follow model (@I
with ||8,] — 0 as n — . Suppose that Assumptions [RIHR]] and [MIHM2 hold. Under
alternative, let 7 = [nC] for some (: v < <1—+~. Then, for ally e R,

ST(s,t)C7L(t)S(s,t
P(RAM) < ylYe,...¥y) b ( sy Momse T NCOSD
n—wn y<t<1—v SUP; <1 ST (5,1)C71(t)S(s,1)

such that

S(s,t) = Jt h(x)dW(z) — C(s)C_l(t)J h(z)dNV(z), 0<s<t<1, t#0,

S
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Procedure 4.1 Bootstrapping test statistic R,,(¢) without replacement.

Input: Sequence of observations Y;, ..., Y,, score function ¢ and 0 < v < 1/2.
Output: Bootstrap distribution of R,,(¢), i.e., the empirical distribution where probability
mass 1/B concentrates at each of (1)R};(¢), ..., 3R (%)
1: for ny < k <n(l —+) do // permute separately in nominator and denominator

2:  calculate bk(z/)) and gk(i/})

3 compute C; . and Ck+1 n

4:  calculate residuals ( 1(¥), ... ,?k(z/J)) and (§k+1(1/1), ... ,gn(z/z))

5.  for b=1to B do // repeat in order to obtain the empirical distribution
6: generate (5 R1,..., ) Rx) as a random permutation of (1,..., k)

7 generate ((b)ék+1, o (b)én) as a random permutation of (k+1,...,n)
8 for 1 < j <k do // evaluate for the nominator

9: construct permuted residuals ((b)§R1 (W), ..., wEr, (1/1))

10: calculate (b) Sjﬁk(i/); Rk)

11: end for

12: calculate max1<J<k (b)SJ w (s Ry)CT k(b)S k(Y Ry)

13: for k <j <n—1do // evaluate for the denominator

14: construct permuted residuals <(b)€Rk+1 (W),..., (b)ERn (1/)))

15: calculate (b) Sjﬁk(i/), nfk)

16: end for N N N N

17: calculate maxy<j<n—1 (b) Sj—l,—k (’L/J, Rn—k) kj:l.,n(b) Sj,k(l/J; R, 1)

18: evaluate

maxi<j<k 1) S, (¥ Bi)Cr () Sy k(¥ Ri)
maxp<j<n—1 (59 1 (¥ Ru-r)Crity (0 Sk (15 Rnk)

(b)Qén) () :=

19: end for

20: end for

21: for b =1 to B do // pick the highest bootstrapped ratio

22:  compute bootstrap test statistics )R} (1)) = max,y<p<n(1-v) (b)Qgcn) (¥)
23: end for

1

:L h(z —C(s )é‘l(t)f h(z)dV(z), 0<t<s<l1, t#1,

t

where {W(z),0 < < 1} is a standard Wiener process and W(z) = W(1) — W(x).

Proof. According to [Hugkova and Picek (2005, Theorem 2.3) for all (y, z)" € R2,

1<j<nt

P ( max S 7,[nt] (¢a R[nt] )Cl_,[lnt] Sj,[nt] (¢a R[nt]) <Y

max §_;|,—[nt] (1/}’ ‘én*[nt])c[nt]-i—l n*23,[nt] (’l/)’ n— ) Sz

nt<j<n—1

2 ,p ( sup S (s,t)C~H(t)S(s,t) <y, sup S (s,6)C 1 (t)S(s,t) < z) , (4.17)

n—00 0<s<t t<s<l1
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for each t € (0,1). Since (£IT) holds also for all ¢ € [y,1 — ~], the assertion of the theorem
directly follows. O

We have already shown that the resampled ratio type test statistic R¥ (1), conditioned on
the original observations Y7, ..., Y}, has exactly the same limit behavior as the original test
statistic R, (¢) under the null hypothesis. This remains true both under the null hypothesis
and the local alternatives. Hence, the bootstrap distribution of R, (1) gives critical values
as empirical quantiles. This means that we have proved that R*(¢) provides asymptotically
correct critical values for the test based on R, (1), when observations follow either the null
hypothesis or the alternative. We reject the null hypothesis for large values of the test
statistic R, (1)) due to Theorem E.21

4.6 Extension for weakly dependent random errors

In the previous sections, properties of the ratio type statistics for detection of changes in the
linear regression models were only described for the case of independent random errors. We
would also like to study the possibility of extending these methods for the case of dependent
random errors, including ARMA processes.

In case of independent random errors, the variance of the studied model is usually es-
timated by sums of squared residuals. In case, when the random errors form, e.g, a linear
process, it is more appropriate to use an estimate that respects the underlying dependency
structure. Therefore, the Bartlett estimator or one of its modifications is often used to es-
timate the long run variance. Especially for the case of dependent random errors, it may
be difficult to find variance estimates that have satisfactory behavior both under null hy-
pothesis and under alternative. Hence, the ratio type test statistics can become even more
applicable when model’s errors are no more independent.

One can indeed extend the results from this chapter concerning the change in regression
parameters into the setup, where the weakly dependent errors are assumed. Hence the
independence assumption for model’s errors can be dropped out. This extension could
follow the same steps as the proof of Theorem M1l and use similar arguments to justify
the results. However, other assumptions on the weak dependency structure of the errors
€1,...,En would need to be added. These additional assumptions have to assure that one
can apply the Bahadur-Kiefer asymptotic representation (9] of the regression M-estimates,
the Hajek-Rényi type inequality (£10), and two-dimensional functional central limit theorem
on (n=YV23 i n™ V2>, .o, &) for dependent errors. Then the asymptotic results
would remain the same for the independent and for the weakly dependent errors. The
only difference would be more restrictive assumptions on the errors’ structure in the case
of weakly dependent errors. An alternative way of extending the presented results from

this chapter for weakly dependent errors is to use the Abel type of summability proposed



70 4.7 SIMULATION STUDY

by [Hugkova and Steinebach (2000, p. 61-62) and combine it with the results derived in
previous Chapter [3

4.7 Simulation study

A simulation experiment was conducted to study the finite sample properties of the asymp-
totic and permutation bootstrap test for an unknown change in the regression parameters.
Performance of the tests based on ratio type test statistic R, (¢) with ¢p,(z) = = and
¥, (x) = sgn(x) is studied from a numerical point of view. In particular, the interest lies in
the empirical size of the proposed tests under the null hypothesis and in the empirical rejec-
tion rate (power) under the alternative. Random samples of data (1000 repetitions) are gen-
erated from the linear regression change point model (1)) with h1(¢t) = 1 and he(t) = t—1/2.
The number of observations considered is mainly n = 100. Higher sample sizes were also
tried and the effect of number of observations will be discussed at the end of this section.
Parameter ~ is set to 0.1.

The innovations are obtained as iid random variables from a standard normal N(0,1)
or Student t5 distribution. The regression parameters 3 is chosen as (2,3)". Simulation
scenarios are produced by varying all possible combinations of these settings. The number
of bootstrap replications used is 1000. Table [4.3] provides the empirical size of the tests for
both the asymptotic and bootstrap version of the regression change point test, where the

theoretical significance level is a.

score innovations a=0.01 a = 0.05 a=0.10
Lo N(0,1) 0.023 0.005 0.111 0.023 0.214 0.042
ts 0.050 0.008 0.191 0.028 0.294 0.052
L4 N(0,1) 0.003 0.000 0.045 0.012 0.136 0.024
ts 0.003 0.002 0.039 0.010 0.112 0.026

Table 4.3: Empirical size of the test for the change in regression under Hy using the asymp-
totic critical values and the permutation bootstrap from R, (¢), considering various sig-

nificance levels o« and n = 100.

Additionally, a graphical illustration of the performance of the test under the null hy-
pothesis for significance level varying from 0.01 to 0.20 is provided by the size-power plots
(for a more detailed description see Section [3.9) in Figure[£.4l The theoretical rejection rate
(i.e., the significance level) under the null hypothesis is depicted by a straight dotted line.

Generally, the empirical sizes in case of asymptotic test are higher than they should
be. That means the test rejects the null hypothesis more often than it should. Possible

explanation of this difficulty can be that the test statistics converge only very slowly to
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Figure 4.4: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on R, (1) under null hypothesis Hy.

the theoretical asymptotic distribution under the null hypothesis. On the other hand, the
permutation bootstrap keeps the theoretical significance level. Nevertheless, the bootstrap
method for testing change in regression is too conservative meaning that it rejects the null

hypothesis more often than it should.

Better performance of the asymptotic test under the null hypothesis is achieved, when the
L4 score function is chosen for R,,(¢)) compared to the Ly method. The empirical significance
levels are approximately the same as the theoretical significance levels, especially for values
of a less or equal to 0.1. The Ly method seems to be too liberal in rejecting the null
hypothesis. However, the Ly method works better in case of bootstrapping. There is no
significant effect of the errors’ distribution on the empirical rejection rates based on this

simulation study.

The performance of the testing procedure under H; in terms of the empirical rejection
rates is shown in Table 4], where the change point is set to 7 = n/2 or 7 = n/4. The values
of & are chosen as § = (1,1)" and 6 = (2,3)T. The performance of the tests under the
alternatives for significance level varying from 0.01 to 0.20 is visualized by the size-power
plots in Figures

The size power plots under the alternatives show that the power is generally higher in
case of the asymptotic test compared to the bootstrap one. However, we should keep in mind
that the test based on asymptotic critical values does not keep the theoretical significance

level under the null hypothesis.

The test power drops when switching from a change point located in the middle of the
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score innovations 1) T a=0.01 a = 0.05 a=0.10

Lo NO,1)  (1,1)T n/2 0110 0.036 0.332 0.114 0476 0.176
n/4 0065 0.011 0.197 0.042 0.330 0.069

(2,3)T n/2 0.600 0.299 0.855 0.546 0.922 0.674

n/4  0.096 0.023 0.296 0.084 0.465 0.137

ts (1,1)T n/2 0108 0.016 0.319 0.060 0.469 0.099
n/4  0.087 0.007 0.247 0.037 0.348 0.065

(2,3)T n/2 0429 0.162 0.690 0.346 0.801 0.452

n/4 0106 0.013 0.281 0.044 0426 0.077

Ly N©O,1)  (1,1)T n/2 0017 0008 0.145 0.042 0291 0.077
n/4  0.002 0.001 0.086 0017 0211 0.047

(2,3)T n/2 0105 0.076 0.508 0279 0.715 0.386

n/4  0.005 0.005 0.115 0.035 0.241 0.065

ts (1,1)T n/2 0.009 0.006 0.112 0.050 0.237 0.082
n/4 0.005 0.000 0.072 0.008 0.190 0.031

(2,3)7 n/2 0.091 0.060 0.436 0.220 0.651 0.342

n/4 0.003 0.002 0.102 0.022 0.233 0.051

Table 4.4: Empirical power of the test for the change in regression under H; using the
asymptotic critical values and the permutation bootstrap from R, (), considering various

significance levels « and n = 100.

time series to a change point closer to the beginning or the end of the time series. The
errors with heavier tails (i.e., t5) yield slightly smaller power than the errors with lighter
tails. When using the L; method, power of the test decreases compared to the Lo method.
Although, it keeps the theoretical significance level under the null hypothesis better in case
of the asymptotic test.

We have shown power plots only for one choice of 3, however, several other values were
tried in simulations. There was no visible effect of the value of regression parameter on the
power of the tests. Naturally, the higher the value of change in the regression parameter is,

the higher the power is achieved.

For several simulation scenarios, the proposed methods do not seem very satisfactory.
Better results may be obtained by considering larger sample size (cf. Figure EI0]) or an al-
ternative more far away from the null hypothesis. The results for the choice of § = (5,5)7
are shown in Figure 9l It may be concluded that in case of relatively large change in the

regression parameter, the power of the tests (both asymptotic and bootstrap) increases.

Note that the length of each time series considered until this point in the simulation
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Figure 4.5: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on R, (1)) under alternative H; with 7 = n/2 and § = (1,1)7.
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Figure 4.6: Rejection rates for the asymptotic and permutation bootstrap tests for change
in regression based on R, (1)) under alternative H; with 7 =n/4 and § = (1,1)7.

study was only 100. Let us now consider 250 observations and investigate the performance

of the tests under the null hypothesis and under the alternative, see Figure .10

One can conclude that the power of the tests (both asymptotic and bootstrap) increases

as the number of observations increases, which is expected. For the bootstrap test, even the
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Figure 4.7: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on R, () under alternative H; with 7 = n/2 and § = (2,3)7.
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Figure 4.8: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on R, (1) under alternative H; with 7 = n/4 and § = (2,3) .

size of the test increases and comes closer to the theoretical significance level. It seems that
bootstrapping starts to work satisfactory for 250 observations and more. On the other hand,
bootstrapping longer time series becomes computationally very intensive even when using

parallel cluster computing. When comparing the detection procedures of abrupt change
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Figure 4.9: Rejection rates for the asymptotic and permutation bootstrap tests for change
in regression based on R, (%) under alternative H; with 7 = n/2 and § = (5,5)7.

Ho and Hy, B=(2,3)"
¥=0.1, Ly, ts, 5=(1,2)T7, 1=n/2

Asymptotics Bootstrap

0.6 -
Sample
=7 — n=100

- — n=250

[=}
IS
1

- Under

Rejection rate

P — - Alternative

0.2- =1 — Hypothesis

| | | i i i i i i i
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Significance level o

Figure 4.10: Rejection rates for the asymptotic and permutation bootstrap tests for change

in regression based on R, (1) under Hy and under H; for different sample sizes.

in mean from Chapter [§] and the detection procedures of change in regression parameters
presented in this chapter, the tests for the simpler model of abrupt change perform generally
better.

Further, we compare the results to an alternative algorithm to the permutation bootstrap
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(without replacement). The residuals are now going to be resampled with replacement and,
moreover, the resampling of residuals is done from the whole vector of residuals. Hence, the
residuals from the nominator and the denominator of the test statistic are mixed (interlaced)
after resampling. This is different from the previously described permutation bootstrap,
where the resampled residuals remain separated—those from the nominator are used for the
nominator of the bootstrap version of the test statistics and similarly for those from the

denominator. The whole regression bootstrap algorithm can be formalized in Procedure

Procedure 4.2 Bootstrapping test statistic R,,(¢) with replacement.

Input: Sequence of observations Y, ..., Y, score function ¢ and 0 < vy < 1/2.
Output: Bootstrap distribution of R, (¢)), i.e., the empirical distribution where probability
mass 1/B concentrates at each of (1)R}(¢),..., 5)Ri(¥).
: for ny <k <n(l —+) do // permute separately in nominator and denominator
calculate bk(z/J) and Ek(z/J)

compute ka and ijrl n

calculate residuals ( e1(v), ... ,gk(z/))) and (§k+1(1/)), e ,gn(z/)))

1

2

3

4

5:  merge residuals together (51(1/1), . ,én(z/z)) = (5?1 (W), ..., Ex(®), Eks1 (), ... ,En(w))
6: for b=1to B do // repeat in order to obtain the empirical distribution

7

8

9

generate (5 R1,..., ) R,) randomly from (1,...,n) with replacement
for 1 < j <k do // evaluate for the nominator
: construct permuted residuals ((b)5R1 (), s )R, (7,/1))
10: replace (b)é\Ri (1/)) by (b)éRi (’l/)) and calculate (b) Sjyk(i/); Rk)
11: end for
12: calculate maX1<J<k ®)S k(w,Rk)Cf; ) S5,k (V; R)
13: fork<j<n-1do // ‘evaluate for the denominator
14: construct permuted residuals (&g, ., (¥), - (b)sR (1/)))
15: replace (b)‘?ﬁ’,i (V) by (5)€R, (¥) and calculate )8} r(v; Ry—)
16: end for
17: calculate maxy<j<n—1 (S k(z/;, _x)C k+1 () S] k(i/), —k)
18: evaluate
QP () = max1<jsk (b Tk(w; Ry)C 4 5) Sk (¥ Rk)

maxg<j<n—1 (bS] (Vs Rn—) k+1n(b)5gk(1/), —k)

19: end for

20: end for

21: for b =1 to B do // pick the highest bootstrapped ratio

22:  compute bootstrap test statistics )R} (1)) = max,,y<p<n(1-v) (b)QEC") (¥)
23: end for

Despite the original expectations when proposing the alternative version of the permu-
tation bootstrap without replacement, the regression bootstrap with replacement does not
gain significantly higher power compared to the permutation bootstrap without replacement.
To demonstrate this numerically using size-power plots, the rejection rates of the separated

permutation bootstrap and the interlaced regression bootstrap under the null hypothesis are
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shown in Figure LIl Moreover, the comparison of rejection rates of the bootstrap with-

out replacement (Procedure 1)) and bootstrap with replacement (Procedure 2]) under the
alternative is displayed in Figure [4.12]
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Figure 4.11: Rejection rates for the permutation bootstrap test without replacement and

the regression bootstrap test with replacement based on R, (1) under null hypothesis Hy.
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Figure 4.12: Rejection rates for the permutation bootstrap test without replacement and

the regression bootstrap test with replacement based on R, (¢)) under alternative H.
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4.8 Application to surface temperature data

The analysed data come from a large data set based on long term surface temperature
measurements at several meteorological stations around the world (for more details see Met
Office Hadley Centre (2008), data set HadCRUT3). In Figure 15 we may see the data
together with already estimated regression curves. The data represent temperature anoma-
lies, i.e., differences from what is expected to be measured in some particular area at some
particular time of the year. Each observation corresponds to monthly measurements at the
chosen area located in the South Pacific Ocean, close to New Zealand (the center of the 5 x 5
degree area is located at 177.5W and 32.5S). The data covers the period of years 1947-1987
including 485 months.

We took L score function with p = 3, hy(z) = 1, ha(x) = 2—1/2, h3(z) = 42 —4x+2/3,
and v = 0.1. We apply the methods described above. The values of the ratio @ defined
by ([@I3) are shown in Figure [LI3] for the Lo method. We also show the ratio @y for the
L1 method in Figure [£.141

Ratio from the L, test statistic

20-

A

Qk

Figure 4.13: The values of Q from the Lo test statistic for the surface temperature data.

The simulated 95% critical value is depicted by the colored horizontal line.

We reject the null hypothesis of no change in the parameters of the quadratic regression
model based on the asymptotic test (95% critical value equals 7.06232) both for the Lo
method and the L; method, since Russ(¥r,) = 30.59436 and Russ(¢r,) = 8.477089. We
also reject the null hypothesis of no change according to the permutation bootstrap, because
the bootstrap critical values are even smaller than the asymptotic ones.

We estimate the time of change 7 by maximizing the nominator in (@7]) when using all
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Figure 4.14: The values of Qi from the L; test statistic for the surface temperature data.

The simulated 95% critical value is depicted by the colored horizontal line.

the time series’ observations for the statistic in the nominator, i.e.,
7 = argmax S n(V)CL Sk (). (4.18)

For the Ls score function, we get 7 = 171. Using L approach, we obtain 7 = 212.

The estimates of the regression parameters can be then obtained as

b» =C 2 ) h(i/n)Y; and b; =Cz! > h(i/n)Yi (4.19)
1=1

T+1,n
i=T+1

The fitted quadratic curves for the surface temperature data before and after the esti-
mated change point are shown in Figure [4.15] for the Ly method and in Figure [£.16] for the
L1 method.

Note that the estimated change points using the Ly and L; method are not very close to
each other. As a consequence, the estimated quadratic regression parameter corresponding
to the fitted curve before the estimated change point using the Lo method possesses the
opposite sign compared to the estimated quadratic regression parameter corresponding to
the fitted curve before the estimated change point using the L; method. Similarly for
the estimated quadratic regression parameter corresponding to the fitted curve after the
estimated change point. One of the possible reasons is that there exist more change points

in such a long observation history.
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HadCRUT3 with L, method
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Figure 4.15: The surface temperature data analysed by the L, method. Estimated change
point is depicted by the orange vertical line and estimated regression curves are drawn by

the blue and green lines.
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Figure 4.16: The surface temperature data analysed by the L; method. Estimated change
point is depicted by the orange vertical line and estimated regression curves are drawn by

the blue and green lines.
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4.9 Application to ratings of clients data

We consider two time series obtained from a Czech loan providing company. Note that the
demonstrated approaches shown below should not be considered as a complete data analysis,
but only to show practical application of the derived methods and results.

Each time series contains daily averages of ratings of clients applying for a specific loan
product. The first time series includes ratings of existing clients, the second one covers
new clients. By ratings we mean assessments of clients’ creditworthiness, based on credit
scoring. Assessments are typically made shortly after filling an application (on the same
day), using both data provided by the client and data that are already at the company’s
disposal. There are 377 business days available for both time series. Our question is whether
the population of clients applying for this product changed in the last 18 months. We use
only the Lo approach for the detection of change in regression, since the L; method performs
very similarly.

A linear regression model is assumed for the newcomers. The values of the ratio Qy
defined by (IH) are plotted in Figure [LI7 The value of the ratio type test statistic for

Ratio from the L, test statistic
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Figure 4.17: The values of @y from the Lo test statistic for the rating of new clients data.

The simulated 95% critical value is depicted by the colored horizontal line.

the change in regression is 57.12984, which is larger than the simulated 95% critical value of
9.923813. Therefore, we reject the null hypothesis of no change in the regression parameters.
Moreover, we estimate the time of change 7 as in (£I8]), which yields 7 = 234. The estimates
of the regression parameters can be then obtained from (I9). The fitted linear lines for
the rating of new clients data before and after the estimated change point are shown in

Figure 418l
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Rating of new clients using L, method
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Figure 4.18: The rating of new clients data analysed by the Lo method. Estimated change
point is depicted by the orange vertical line and estimated regression lines are drawn by the

blue and yellow lines.

A quadratic regression model is considered for data about the existing clients. The values

of the ratio Q) are visualized in Figure .19
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Figure 4.19: The values of Qi from the Lo test statistic for the rating of existing clients

data. The simulated 95% critical value is depicted by the colored horizontal line.
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The test statistic for the change in regression is Rs77(¢r,) = 32.71579, which is larger
than the simulated 95% critical value of 7.062320. Hence, we reject the null hypothesis of
no change in the regression parameters. Besides that, we estimate the time of change 7 as
7 = 288. The fitted quadratic curves for the rating of existing clients data before and after
the estimated change point are shown in Figure Permutation bootstrap extensions of

the asymptotic techniques presented on these time series give the same conclusions.

Rating of existing clients using L, method
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Figure 4.20: The rating of existing clients data analysed by the Lo method. Estimated
change point is depicted by the orange vertical line and estimated regression lines are drawn

by the blue and yellow lines.

The detected change point in the existing clients’ average ratings corresponds to a change
in the company’s business strategy. However, the detected change point for newcomers does
not have any straightforward explanation. Maybe considering multiple changes would bring

some deeper insight.

4.10 Future research

As it has already been pointed out, one of the possible extensions of the presented results
is to derive testing procedures based on the asymptotics as well as on the bootstrapping
for a change in the regression parameters in case of weakly dependent errors with a general
score function.

Besides that, it would be preferable to increase the power of the bootstrap tests (with or
without replacement) in case of moderate sample size (in this case, e.g., n = 100). A possible

solution to this issue of low power can be a two-step testing procedure for detecting the
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change in regression: The first step would be a consistent estimation of the possible change
point, i.e., to obtain 7,, such that 7,, — 7,, = op (1) as n — 0. The second step would consist

of bootstrapping residuals

¢ (Yi = hT(i/n)bs, (¥)), <7y,
" (Y — hT(i/n)bs, (w)) PN

This approach will be implemented in forthcoming Section (cf. Procedure [6.1) when
testing a common change in panel means. The one-step bootstrap procedure derived in the
similar manner as in this chapter, but used for the panel data problem introduced later on,

gave very low power.

4.11 Summary

Procedures for detection of at most one change in the regression parameters of the regres-
sion model are considered. In particular, the test procedures based on the ratio type test
statistics—that are functionals of partial sums of the residuals—are studied. Ratio type
statistics are interesting for the fact, that in order to compute such statistics, there in no
requirement to estimate the variance of the underlying model.

The presented methods generalize the traditional Ly approach in constructions of the test
statistics for the change detection by incorporating a general score function. To approximate
the critical values for testing procedures, either approximations of the limit distribution or
resampling methods are used. We concentrate on the permutation bootstrap. The asymp-
totic behavior of the proposed ratio type test statistics is studied under the null hypothesis as
well as under local alternatives. Additionally, the justification for the permutation bootstrap

method is given.



Chapter

Change in Autoregression
Parameter

In the present chapter, we focus on autoregressive time series of order one, i.e., AR(1) series.
We try to detect a possible change of the scalar parameter from a stationary autoregressive
model using ratio type test statistics, which allows us to avoid estimating the unknown
nuisance dispersion parameter of the time series.

The results are inspired by a paper by [Huskova et all (2007), where an autoregressive
time series model of order p is taken into account and the whole vector of autoregression
parameters is subject to change. The authors proposed to detect such change by computing
partial sums of weighted residuals based on maximum type CUSUM test statistics. The

results were consequently extended by the bootstrap approach in [Huskova et all (2008).

5.1 Autoregressive model with possibly changed
parameter

We consider the time series model with a possible change in parameter after an unknown

time point 7
Y: =6Y;5_1+6Y;g_1z{ﬁ>7'}+€t, t=2,...n, (51)

where 8 and 6 # 0 are fixed (not depending on n) unknown parameters, 1 < 7 =17, < n is
the unknown change point, and €1, ..., €, are iid random errors satisfying further conditions
specified below.

We are going to test the null hypothesis that the autoregression parameter remained

85
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constant for the whole observation period
Hy:17=n (5.2)

against the alternative that a change of the autoregression parameter occurred at some

unknown time point 7

Hy:7<n, §#0. (5.3)

5.2 Test statistic for change in autoregression

We propose the following ratio type test statistic to detect the change in autoregression of

order one
&%!Za (051 = Bus)
Vp = max = (5.4)
nySkSn=ny - max ‘ Y
poax 2 Yi(Yien — BorYy)|

where 0 < v < 1/2 is a given constant, Blk is an ordinary least squares estimate of
parameter S based on observations Yi,...,Y; and ng is an ordinary least squares esti-
mate of § based on observations Yjiy1,...,Y,. Being more formal, estimate Blk is ob-
tained when regressing vector of responses yi j := (Ya,..., Yk)—r on the vector of covariates
x1k = (Y1,...,Ys—1)". Analogously, estimate ng is obtained when regressing vector of
responses y+1.n = (Yita,...,Ys) ! onthe vector of regressors Xg41.n 1= (Yig1, .-, Yn_1)".

The motivation for constructing the ratio type test statistic V,, comes from the linear

regression setup (so-called normal equations). Estimate Blk is a solution of
ka (y1,0 —x16b) =0
with respect to b € R and estimate ng is a solution of
T p—
X 10 (Ye+1,0 — Xk41,0n0) =0
with respect to b € R. Therefore, we may define partial sums of weighted residuals as
T - .
X1, (}’u - X1,z'51k) ., i=2,....k
and
T 5 .
Xin (ym*Xi,nﬂzk), i=k+1,...,n

Consequently, these partial sums can be used as basis for the maxima of partial sums in the
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nominator and the denominator of V,,.

Note that this approach—usage of the ratio type test statistics—can be generalized for
the change of a vector autoregression parameter of the stationary autoregressive AR(p)
process, when p > 2, using the notation from [Huskovéa et all (2007).

Before deriving asymptotic properties of the ratio type test statistic, we formulate several

stochastic assumptions on time series model (G.I]):
Assumption F1. e (—1,1)\{0}.
Assumption F2. 4+ 0 € (—1,1)\{0}.

Assumption 11. {g;, i = 0, +1,...} are iid random variables having E¢; = 0, Vare; = 02 > 0,

and Ee} < oo for all i. Observation Y; is independent of {es,¢3,...}.

Assumptions [F1] [E2] and [l ensure that the time series is a stationary autoregressive
sequence of order one (and not an iid sequence) before and even after the possible change
point.

The limit behavior of the test statistic under the null hypothesis is characterized by the

following theorem.

Theorem 5.1 (Under null). Suppose that Yi,...,Y, follow model (&), assume that As-
sumptions [E1 and [[1] hold. Then, under null hypothesis (5.2))

v, 2 sup SUPoiqut W (u) — u/tV(1)| S (5.5)
"SIy supy gy (1) — (1= u)/ (1= H)W(E)
where {W(x),0 < x < 1} is a standard Wiener process and W(z) =W(1) — W(z).
Proof. Let us consider an array
1- 52
Upi=Y""Py o i=2,...,
T 1 ! "

and a filtration F,, ; = o{e;, j <i},7i=2,...,nand n € N. Then, {U, ;, F,;} is a martingale

difference array such that

EU?. = i
n,i o

Moreover,

n n 1 _62 n

2 2 2 2 2 2
Z Uni — Z EU: = oin—1) Z(Yviflgi —EYZ€)).
i=2 i=2 j
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Furthermore,
1 e 2 2 2 I e 2 2 1 e 2 3 2
Z(Yviflgi —EY &) = Z[Y;A(Ei —o7)]+ Z(Y;A —EYZ,)o"
n-15 n—15 n—154

Since {Y2,(e7 — 0?)} is a martingale difference array again with respect to F, ;, we have

under Assumption [[I] from the Chebyshev’s inequality that

1

n—1

P
[Yi2i(ef — o) ——0.

n—o0

-

1=2

Similarly, as a consequence of Lemma 4.2 by [Huskova et all (2007),

1 S 2 2 P
P DI  mdt
Thus,
ZéUm- —— 1. (5.6)

Next, for any € > 0,

n 1 _62
2 2 2
P (mXU > ) <2.P (my > )

e2o8(n—1)? = ©
Additionally,
[nt]
t]—1
Jim, 207 = i T = ©9
i=2

for all ¢ € [0,1].

According to Theorem 27.14 by [Davidson (1994) for the martingale difference array
{Un.i, Fn,i}, where the assumptions of this theorem are satisfied due to (5.6), (6.7)), and (5.9),

we get

e 20,1]
Z Un,i — W(t)
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Therefore,

[nt]

701 _ o ™
Z}/z 14, ;JFQE 1€ njool m (W(t),W(t)), (59)

where W(t) = W(1) — W(t).

Let us define Yj; = (Y;,...,Y;))T and €;; = (gj,...,&)". Hence, for the expression from

the nominator of V,, holds

i—1

Z Y; (Y41 — ﬁlky) Yl,Ti_1 (1/21 - Y1,i-131k)
=1
-1
= }/—1-,'—1'71 (Yu—lﬁ +e2;— Y118 —Y1,i1 (YlTk,lYi,kq) YlTk,1€2,k)
—1
=Y, e — Y Y (Ve Y1) Yihjeon (5.10)

Similarly for the expression from the denominator of V,,

n—1
Z Y; (Vi1 — BarY;)
j=i
—1
=Y, iginin Y, 1 Yo (Y 1 Yerino1) Y1, i€ksom- (5.11)

Lemma 4.2 by [Huskové et all (2007) gives

1 [nt]

sup — Y2 —EY?)| =o0p(1 5.12
and
1 n—1
sup Z (Y2 -EY2?)| =op(1). (5.13)

0<t<l—v m s=[nt]+1

Finally, (59) together with (&10), (&11), (512), and (BI3) implies

1 sup Z[nu ( Jj+1 = ﬂl nt] )’
O<u<t
=1\ sup (300 Y (Y - BotnnY5)
t<u<l
S, o WP <1 W () = OV )

V=B supcue W) - (1 - w)/(1 - ()

Then, the assertion of the theorem directly follows. [l
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The next theorem describes the test statistic’s behavior under a fixed alternative.

Theorem 5.2 (Under alternative). Suppose that Y1,...,Y, follow model (B1), assume that
alternative [B.3)) holds for some fized § # 0, and T = [Cn] for some v < ( <1 —~. Then,
under Assumptions [, [, and [

V, —— .
n—00

Proof. Let us take k =7 + 2, k = [¢n] for some ( <{ <1—~vand i =7+ 1. Then,

DY (Vigr = Birsn)Y))

=1
T T T 1y 7 T
= },1,7'5277'+1 - },1,7'},177' (}/'1,7'+1}/.11‘F+1) }/1,7'+1€21T+2 - }/1,7'}/1-,75'
According to the proof of Theorem B.1] as n — oo,

1
vn—1

Lemma 4.2 by [Hugkov4 et all (2007) gives

T T T “1yT
(5/'1,7—52,'r+1 - }/177'}/117- (}/.1,7'+1}/'117'+1) },1,7'4—16277'4'2) =0Op (1)

T P
Y6 —— .

1
\/m ’}fl’ n—0o0

Now,

1 i—1 R P
— max | 3 V;(Viu1 — BuYj)| ——— 0.

n — 12<i<k Jo} n— o0
For 7 < k = [¢n], the denominator in (54]) divided by 4/n — 1 has the same distribution as
under the null hypothesis and it is, therefore, bounded in probability. It follows that the

maximum of the ratio has to tend in probability to infinity as well, while n — 0. O

The previous theorem provides consistency of the studied test statistic under the given
assumptions. The null hypothesis is rejected for large values of the ratio type test statistic.
Being more formal, we reject Hy at significance level « if V,, > v1_q 4, Where vi_q , is the
(1 — a)-quantile of the asymptotic distribution (&.3)).

5.3 Asymptotic critical values for the change
in AR parameter

The explicit form of the limit distribution (&3] is not known. However, the asymptotic

distribution of V), is the same as the asymptotic distribution from (B.8]) for the test statistic
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A, (), because the order of the considered autoregression time series model under the null
hypothesis is just one. The critical values may be determined by simulation from the limit
distribution from Theorem 5.1l Theorem ensures that we reject the null hypothesis for
large values of the test statistic. We tried to simulate the asymptotic distribution (&3] by
discretizing the Wiener process and using the relationship of a random walk to the Wiener
process. We considered 1000 as the number of discretization points within [0, 1] interval and
the number of simulation runs equals to 100000. Higher numbers of discretization points
and simulations were tried as well, but only negligible differences in the critical values were

acquired. In Table 5.l we present several critical values for v = 0.1 and v = 0.2.

90% 95% 97.5% 99%

v=0.1 6.298815 7.293031 8.283429 9.589896
v=0.2 4117010 4.745884 5.368286 6.159252

Table 5.1: Simulated critical values corresponding to the asymptotic distribution of the test

statistic V,, under the null hypothesis.

5.4 Connection between test statistics for the change
in regression and in autoregression

As it was already mentioned above when constructing the test statistic (54)) for the change
in autoregression, one can see V,, as an analogy to the ratio type test statistic (A7) for the
change in regression with the Lo score function. To point out this informal similarity, let us
imagine that the regression parameter from Chapter [ is only one-dimensional correspond-
ing to a linear trend without intercept. The vectors of weighted partial sums of residuals
S; k(1) and §j,k(1/1) are just scalars and, furthermore, matrix C; ; becomes a scalar as well.
Now, let us replace the covariate functions h(i/n), i = 1,...k—1 with the lagged time series
observations x; ;. The regression setup with a system of covariate functions h on a com-
pact interval is usually called trending regression, whereas we proceed to the non-trending
regression setup satisfying that XI wX1,k/k converges to a positive constant as k — c0.
After that, Sj_1(¢'L,) can be seen as x| <y17j - X1,j31k) and C ;1 becomes x| , X1 .
Similarly for the terms from the denominator of R,,(¢1,,). Being informal, R,,(¢1,,) becomes

equivalent to

o Nq2 1
max [XL <Y1,i - X1,iﬂ1k)] (XIkXLk)

2<i<k

YV = max

ny<k<n—ny [ T ( ~ )]
max X/ i n — XinBok
kil<icn_1 in Yin z,nﬂ

2 T -1
XkJrl,nkaan)
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Being again informal, x|, x1 . = 7154:11 Y2 ~ (k—1)E Y2 under Hy. Hence, instead of \/ Vy,

one may use

- .
max ’XM <Y1,i - Xl,iﬂlk)‘

v n—k—1 o<i<k
- =
Xin ()%‘,n - Xi,nﬂ2k)‘

VYV = max

ny<ks<n—ny k—1 ’

max
k+1<i<n—1

which is just a modification of the original test statistics V,, for the change in autoregression.
The modification is in the same manner as in (GI5]).

Note that the nominator and denominator both in the original test statistic V,, and in
the modified one V,, can be interchanged and can still be used for detection of the change

in autoregression (but using different critical values).

5.5 Brief simulation study

A simulation experiment was performed to study the finite sample properties of the asymp-
totic test for the change in the AR(1) parameter. In particular, the interest lies in the
empirical size of the proposed test under the null hypothesis and in the empirical rejection
rate (power) under the alternative. Random samples (1000 each time) are generated from
the time series change point model (5.I). The number of observations is set to n = 150
and n = 300 in order to demonstrate the performance of the testing approaches in case of
different sample sizes. Two values of the autoregression parameter are taken into consider-
ation, i.e., 8 = 0.2 and 8 = 0.5. The innovations are obtained as iid random variables from
a standard normal N(0, 1) or Student ¢5 distribution. Simulation scenarios are produced as
all possible combinations of the above mentioned settings.

To assess the theoretical results under Hy numerically, Table provides the empirical
sizes (empirical probabilities of the type I error) of the test for change in the autoregression

parameter, where the significance level is @ = 0.05. The proportion of rejecting the null

o 0.01 0.05 0.10
innovations  N(0,1) ts N(0,1) ts N(0,1) ts

B8 =02 n = 150 0.113 0.220 0.212 0.341 0.292 0.413
n = 300 0.062 0.097 0.155 0.221 0.235 0.294
8=0.5 n = 150 0.119 0.173 0.231 0.296 0.302 0.385
n = 300 0.067 0.121 0.160 0.231 0.231  0.300

Table 5.2: Empirical size of the test for the change in autoregression under Hy using the
asymptotic critical values of V,, with v = 0.1, considering a significance level «. Innovations

are iid having N(0,1) or ¢5 distribution.
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hypothesis is getting closer to the theoretical significance level as the number of time series’
observations increases. Better performance of the test under the null hypothesis is observed,
when the innovations have lighter tails. Note that the test statistic V), is based on the
Lo regression approach. There is no visible direct effect of the value of the autoregression
parameter (considering N(0, 1) distributed innovations) on the empirical rejection rates based
on this particular simulation study. Generally, the empirical sizes are higher than they should
be. The same effect—the test rejects the null hypothesis more often than it should—can be
seen in the detection of change in regression. Possible explanation of this difficulty can be
slow convergence of the test statistics under the null hypothesis (see Section ET]).

The performance of the testing procedure under H; in terms of the empirical rejection
rates is shown in Table B3] where the change point is set to 7 = n/2 or 7 = n/3. The

parameter § is chosen as 6 = 0.4. We may conclude that the power of the test increases

«a 0.01 0.05 0.10
innovations N(0,1) ts N(0,1) ts N(0,1) ts

B8=02 n=150 T=n/2 0.427v 0372 0589 0.535 0.676 0.610
T=n/3 0.409 0325 0.571 0.485 0.662 0.564

n = 300 T=mn/2 0.515 0456 0.691 0.655 0.773 0.729

T=n/3 0.470 0411 0.630 0.620 0.725 0.727

B8=05 n=150 T=n/2 0.392 0347 0531 0.491 0.585 0.582
T=n/3 0.311  0.257 0.453 0.392 0.536  0.485

n = 300 T=mn/2 0.477 0433 0.632 0.623 0.734 0.717

T=n/3 0.377 0336 0.540 0.516 0.637 0.607

Table 5.3: Empirical power of the test for the change in autoregression under H; using the
asymptotic critical values of V,, with v = 0.1, considering a significance level o and 6 = 0.4.

Innovations are iid having N(0,1) or ¢5 distribution.

as the number of observations increases, which was expected. The test power drops when
switching from a change point located in the middle of the time series to a change point
closer to the beginning or the end of the time series. Innovations with heavier tails (i.e.,
t5) yield slightly smaller power than innovations with lighter tails. There is again no visible
effect of the value of autoregression parameter 8 on the power of the test.

In contrast to the slightly lower power in case of relatively small sample size and moderate
change in the autoregression parameter, one may try to consider larger change in § from
—0.8 to 0.8 in case of n = 150. Here, the simulated power reaches 0.994 (for oo = 0.05).
Hence, in case of a large change in autoregression, the test achieves high power.

To improve the computational performance of the test for detecting the change in au-

toregression, longer time series of observations are a general solution. Moreover, a suitable
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bootstrap extension of the developed procedures could be helpful from a numerical and

computational point of view.

5.6 Application to stock exchange index

As an illustrative example of the proposed technique for detecting of the change in autore-
gression, we concentrate on the Prague Stock Exchange index called PX Index (formerly
PX50). 1t is a capitalization-weighted index of major stocks that trade on the Prague Stock
Exchange.

The starting exchange day for the Index PX50 was April 5, 1994. We consider a time
series consisting of daily PX50 values starting from November 16, 1994 up to September 27,
2001. Only business days were taken into account, providing 1850 observations. The starting
date of the observation period was chosen later than the starting day of the exchange, since
only weekly (not daily) values of PX50 records were available at the beginning. Moreover, the
market after opening the exchange was not as stable as later on. The last observation date
was chosen in order to avoid effects of the attacks on September 11, 2001. The considered

time series can be seen in Figure 511

PX50
700 -

600 -

Index value
@
o
o

400 -

300 - | |
0 500 1000 1500
Days
Figure 5.1: Daily Prague Stock Exchange index (PX50) values from November 16, 1994 to

September 27, 2001.

I would like to thank doc. RNDr. Zuzana Praskova, CSc. from Charles University in
Prague for pointing out the interesting nature of this data set and providing the data. The
PX50 data can also be downloaded from the [Prague Stock Exchangd (2015) webpage.

We denote the original data of the PX50 index as {X;};. Firstly, we transform the
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PX50 index by taking into account the differences of logarithms, i.e, ¥; = log(X:/X;—1).
This transformation can be interpreted as considering logarithms of daily returns of the
PX50 index. Besides that, using this approach stationary time series before and even after
a possible change point are obtained. The transformed index values are shown in Figure (.31

Let us assume that Y7,...,Y,, follow autoregressive change point model (B.I). We are
going to decide whether the change in the AR(1) parameter occurred or not based on the
proposed asymptotic test. The value of the test statistic V,, for v = 0.1 is 7.321143, which is
larger than the 95%-critical value 7.293031 simulated from the limit distribution under the
null hypothesis. Therefore, we reject the null hypothesis of no change in the autoregressive

parameter. The progress of the ratio of the test statistic

1

max ’Zl Yi(Yit1 — ﬂlky)’
2<i<k

Qr = ny<k<n-—ny

max ‘Z Yi1 — ﬂzkY )‘

k+1<i<n-—1

is depicted in Figure

Ratio from the test statistic

1
0 500 1000 1500

Figure 5.2: The values of @y for the PX50 index data with v = 0.1. The colored horizontal

line represents the 95%-critical value.

We may also estimate the unknown change point 7 in a similar fashion as described in
Chapter [ by

k—1
T = arg max ZY(J“ ﬂln |-

2<k<n | 4

This leads to 7 = 949, which corresponds to October 7, 1998. The log returns of PX50
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together with the depicted change point for the change in autoregression are displayed in
Figure 5.3l

PX50

0.04 -

=}

o

s}
1

-0.04-

Difference of logs of index value

-0.08-

i
0 500 1000 1500
Days

Figure 5.3: Logs of ratios of index PX50 values.

The explanation of the detected change in autoregression is possibly connected to the
Russian financial crisis (also called Ruble crisis) that hit Russia on August 17, 1998. It
resulted in the Russian government and the Russian Central Bank devaluing the ruble and
defaulting on its debt. In 1998 influenced by Russian financial crisis, the index reached its
historical bottom on October 8 with 316 points, which is the first day after the detected
change in autoregression of the PX50 log returns.

Finally, we investigated the ACF (autocorrelation function) and PACF (partial auto-
correlation function) plots of the time series before and after the estimated change point.
Both ACF plots go to zero at an exponential rate, while both PACF plots become zero
immediately after the first lag. We applied the Ljung-Box test on the residuals of the fitted
AR(1) models (before and after the change). The hypothesis that the residuals in each
AR(1) model have no autocorrelation is rejected in both cases, which suggests that the two

series are stationary.

5.7 Summary

We investigate a possible change in the time series model, where the situation of no change
corresponds to the fact that the considered sequence is a stationary AR(1) process. The
alternative situation of the change present means that the time series is an AR(1) process

up to some unknown time point and it is again an AR(1) process after that unknown time
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point, but the autoregression parameter is different.

The testing procedure for the change in autoregression can be viewed as an analogy to
the testing procedure for the change in regression. The asymptotic behavior of the ratio type
test statistic for the change in autoregression is investigated under the null hypothesis as
well as under the alternative. The theoretical limiting distribution under the null hypothesis
provides critical values for the test, which are obtained by simulations. A brief simulation
study is conducted to perform the numerical performance of the proposed testing approach.
Finally, an application of the developed procedure on the stock exchange index data is

performed.
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Chapter

Common Change in Panel Data

Until this moment, we have considered a change point in a sequence of observations, where
only one stochastic copy of the sequence is available. We focus now on a change point
problem, where several sequences are subject to change simultaneously.

Our interest lies in panel data that consist of a moderate or relatively large number of
panels, while each of the panels contain a small number of observations. In this chapter, we
establish testing procedures to detect a possible common change in means of the panels. We
again consider a ratio type test statistic and derive its asymptotic distribution under the no
change null hypothesis for the panel change point model. Moreover, we prove the consistency
of the test under the alternative. A bootstrap technique is proposed as an add-on to the
testing procedure based on asymptotics in order to make our approach completely data
driven without any tuning parameters. The validity of the bootstrap algorithm is shown.
As a by-product of the developed tests, we introduce a common break point estimate and

prove its consistency. This chapter is based on paper [Pestova and Pesta (2015).

6.1 Intfroduction

The problem of an unknown common change in means of the panels is studied here, where
the panel data consist of N panels and each panel contains T" observations over time. Various
values of the change are possible for each panel at some unknown common time 7 = 1,..., N.
The panels are considered to be independent, but this restriction can be weakened. In spite
of that, observations within the panel are usually not independent. It is supposed that
a common unknown dependence structure is present over the panels.

Tests for change point detection in the panel data have been proposed only in case when
the panel size T is sufficiently large, i.e., T" increases over all limits from an asymptotic point
of view, cf. |Chan et all (2013) or [Horvath and Hugkova (2012). However, the change point

estimation has already been studied for finite 7" not depending on the number of panels

99
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N, see Bai (2010). The remaining task is to develop testing procedures to decide whether
a common change point is present or not in the panels, while taking into account that the

length T of each observation regime is fixed and can be relatively small.

6.2 Motivation

Structural changes in panel data—especially common breaks in means—are wide spread
phenomena. Our primary motivation comes from non-life insurance business, where asso-
ciations in many countries uniting several insurance companies collect claim amounts paid
by every insurance company each year. Such a database of cumulative claim payments can
be viewed as panel data, where insurance company ¢ = 1,..., N provides the total claim
amount Y;,; paid in year t = 1,...,7T into the common database. The members of the
association can consequently profit from the joint database.

For the whole association it is important to know, whether a possible change in the
claim amounts occurred during the observed time horizon. Usually, the time period is
relatively short, e.g., 10-15 years. To be more specific, a widely used and very standard
actuarial method for predicting future claim amounts—called chain ladder—assumes a kind
of stability of the historical claim amounts. The formal necessary and sufficient condition is
derived in [Pesta and Hudecova (2012). This chapter shows a way how to test for a possible

historical instability.

6.3 Panel change point model

Let us consider the panel change point model
Yie=pi +0,Z{t > 7} +0e;p, 1<i<N,1<t<T; (6.1)

where ¢ > 0 is an unknown variance-scaling parameter and 7T is fixed, not depending on
N. The possible common change point time is denoted by 7 € {1,...,T}. A situation
where 7 = T corresponds to no change in means of the panels. The means u; are panel-
individual. The amount of the break in mean, which can also differ for every panel, is
denoted by ¢;. Furthermore, it is assumed that the sequences of panel disturbances {e; ;}:
are independent and within each panel the errors form a weakly stationary sequence with

a common correlation structure. This can be formalized in the following assumption.

T

Assumption P1. The vectors [g;1,...,&, 7]  existing on a probability space (2, F,P) are

iid for ¢ = 1,..., N with E¢; ; = 0 and Vareg;; = 1, having the autocorrelation function

pr = Corr (€;5,€i,5+t) = Cov (€55,€i54t), Vse{l,...,T —t},



CHAPTER 6. COMMON CHANGE IN PANEL DATA 101

which is independent of the lag s, the cumulative autocorrelation function

r(t) =Var Y o= > (t—|s])ps,

|s|<t

and the shifted cumulative correlation function

v

+ t
R(t,v) - Cov (Z > ) -2
s=1 s=1

u=t+1

v

Pu—s, t<v
u=t+1

foralli=1,..., Nand t,v=1,...,T.

The sequence {¢;;}._; can be viewed as a part of a weakly stationary process. Note
that the dependent errors within each panel do not necessarily need to be linear processes.
For example, GARCH processes as error sequences are allowed as well. The assumption of
independent panels can indeed be relaxed, but it would make the setup much more complex.
Consequently, probabilistic tools for dependent data need to be used (e.g., suitable versions
of the central limit theorem). Nevertheless, assuming, that the claim amounts for different
insurance companies are independent, is reasonable. Moreover, the assumption of a common
homoscedastic variance parameter o can be generalized by introducing weights w; ¢, which
are supposed to be known. Being particular in actuarial practice, it would mean to normalize
the total claim amount by the premium received, since bigger insurance companies are
expected to have higher variability in total claim amounts paid.

It is required to test the null hypothesis of no change in the means
Hy:7=T (6.2)
against the alternative that at least one panel has a change in mean
Hy: 7<T and Fie{l,...,N}: 4§ #0. (6.3)

A graphical illustration of the change point model (6.1]) in panel data under the alternative,

where the means change, can be seen in Figure [6.11

6.4 Test statistic and asymptotic results

We propose a ratio type statistic to test Hy against Hy, because this type of statistic does not
require estimation of the nuisance parameter for the variance. Generally, this is due to the
fact that the variance parameter simply cancels out from the nominator and denominator
of the statistic. In spite of that, the common variance could be estimated from all the
panels, of which we possess a sufficient number. Nevertheless, we aim to construct a valid

and completely data driven testing procedure without interfering estimation and plug-in
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Figure 6.1: Illustration of the common change point problem in panel data.

estimates instead of nuisance parameters. A bootstrap add-on is going to serve this purpose

as it is seen later on.

For surveys on ratio type test statistics, we refer to |Qh§nj1 d_T_laﬂ ), Csorgd and

Horvath (@), (@), M (@), and Madurkayova (M) Our

particular panel change point test statistic is

maXs—1q,...,t

?

N s <
S (X (e~ %)
Pn(T) = max < = —
=272 max ey 71 ’Zi:1 [ZT:sH <Yi,r - Yz‘,t)]

where Yi,t is the average of the first ¢ observations in panel ¢ and }Z,t is the average of the

last T — t observations in panel i, i.e.,

B 1< N 1 T
Yz‘,t = ; zllyi,s and Yi,t = T——t 2 1Yi,s-
5= s=t+

An alternative way for testing the change in panel means could be a usage of CUSUM
type statistics. For example, a maximum or minimum of a sum (not a ratio) of properly

standardized or modified sums from our test statistic Px (7). The theory, which follows,
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can be appropriately rewritten for such cases.

Firstly, we derive the behavior of the test statistics under the null hypothesis.

Theorem 6.1 (Under null). Suppose that panel data {Y; t}z ;_1 follow model (61). Under
null hypothesis [6.2) and Assumption [Pl

S
2 max,_1,..( | X, — 2X,
Pn(T) —— max | X ) (6.4)
N—oo =2, T2 oy b T ‘Z gj Zt’
where Zy := X1 — Xt and [Xq, ... ,XT]—r is a multivariate normal random wvector with zero

. . T,T
mean and covariance matriv A = { ¢ v}y o_q Such that

At =71(t) and Ao =r(t)+ R(t,v), t <w.

Proof. Let us define

1 N t
= Y;s
PP

Using the multivariate Lindeberg-Lévy CLT for a sequence of T-dimensional iid random

Un(t)

vectors {[ZS 1Eiysy e ,ZST=1 €is] " }ien, we have under Hy
7
[Un(1),...,Un(T)]" == [X41,..., X7]T,
N—
since Var [Zi=1 Elsy---) ZST=1 e15]" = A. Indeed, the t-th diagonal element of the covari-

ance matrix A is

¢
Var 2 e15 =r(t)
s=1

and the upper off-diagonal element on position (¢, v) is

t v t t v
v Z 1,8 Z €1,u | = Var Z e1,s + Cov Z €1,s Z €1
s=1 s=1 s=1

u=1 u=t+1

=7r(t) + R(t,v), t<w.

Moreover, let us define the reverse analogue to Uy (t), i.e.,

N T
Vi ( ; ; = Un(T) - Un(t).
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Using the continuous mapping theorem, we end up with

maxs—1,.. ¢ |UN(5) — %UN(t)|
max

=2T 2 maxey 11 ‘VN(S) - gisVN(t)‘

e max

Nooo 6202 paye ‘(XT X)) = I=S(Xp - X)

T—t

The limiting distribution does not depend on the variance nuisance parameter o, but it
depends on the unknown correlation structure of the panel change point model, which has
to be estimated for testing purposes. The way of its estimation is shown in Section
Furthermore, Theorem [6.1] is just a theoretical mid-step for the bootstrap test, where the
correlation structure need not to be known. That is why the presence of unknown quantities

in the asymptotic distribution is not troublesome.

Note that in case of independent observations within the panel, the correlation structure

and, hence, the covariance matrix A is simplified such that r(t) = ¢ and R(¢,v) = 0.

Next, we show how the test statistic behaves under the alternative.

Assumption P2. limy_ o \/_1ﬁ ’Zf;l 8;| = oo.

Theorem 6.2 (Under alternative). Suppose that panel data {m}ﬁfl follow model (6.1]).
If T < T — 3, then under Assumptions[P1l, [P and alternative (6.3)

Pn(T) —F— 0. (6.5)
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Proof. Let t = 7 4+ 1. Then, under alternative H;

1 No&E _
g ; ;1 (Y — Yz’,'r+1)]’
1 N 1 B
= (}/i,r 7}/1',7"‘1’1)
ovVN ;1;1
1 N T+1 1
aEd 3P (“l’ Hogir = g 2+ osie) ?5> ’
1 N 7 r N
= — i — Eir - 0
\/Nl;;(s Sir+1) (7(7'—|—1)Z,:Z]1
N
T P
=0p(l)+ ————— 51‘ — 00, N — )y
P ( o(t+ 1)\/N Z; * *
where &; 41 = 1 ZZT Eiv-

Since there is no change after 7 + 1 and 7 < T — 3, then by Theorem [G.1] we have

N T

1
max Z ( — 1)
o /—s T 1 | 7,7 z‘r+

i=1r=s5+1

T—s
max Ly — ——ZLry1]|-
N—ow s=7+1,...T—1 T—

O

Assumption [P2]is satisfied, for instance, if 0 < § < §;, Vi (a common lower change point
threshold) and 5v/N — o, N — . Another suitable example of §;s for the condition
in Assumption [P2, can be 0 < §; = KN~Y2%7 Vi for some K > 0 and n > 0. Or
§; = Ci®14/N, Vi may be used as well, where a > 0 and C' > 0. The assumption 7 < T — 3
means that there are at least three observations in the panel after the change point. It is also
possible to redefine the test statistic by interchanging the nominator and the denominator
of Pn(T). Afterwards, Theorem for the modified test statistic would require three
observations before the change point, i.e., 7 > 3.

Theorem says that in presence of a structural change in the panel means, the test
statistic explodes above all bounds. Hence, the procedure is consistent and the asymptotic
distribution from Theorem [6.1] can be used to construct the test. The null hypothesis is
rejected for large values of Py (T). Hence, we reject Hy at significance level « if and only if

Pn(T) > p1—a, where p;_, is the (1 — a)-quantile of the asymptotic distribution (G.4I).

6.5 Change point estimation

Despite the fact that the aim of the chapter is to establish testing procedures for detection of
a panel mean change, it is necessary to construct a consistent estimate for a possible change

point. There are two reasons for that: Firstly, the estimation of the covariance matrix
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A from Theorem [6.] requires panels as vectors with elements having common mean (i.e.,
without a jump). Secondly, the bootstrap procedure, introduced later on, requires centered

residuals to be resampled.

A consistent estimate of the change point in the panel data is proposed in Bai (2010),
but under circumstances that the change occurred for sure. In our situation, we do not know
whether a change occurs or not. Therefore, we modify the estimate proposed by Bai (2010)
in the following way. If the panel means change somewhere inside {2,...,7 — 1}, let the
estimate consistently select this change. If there is no change in panel means, the estimate
points out the very last time point 1" with probability going to one. In other words, the
value of the change point estimate can be T meaning no change. This is in contrast with [Bai
(2010), where T is not reachable.

Let us define the estimate of 7:
1
o .l V. ,)2
Ty = arg max ; E E (Yis —Yis)". (6.6)

Now, we show the desired property of consistency for the proposed change point estimate
under the following assumptions.
N <2
i=10;

2,2
t r(r r(t .
MaXt—7r41,....T 7 (=7 <—£2) — —t2)) otherwise.

Assumption Cl. L < 1imN_,OO%Z < o, where L = —o0 if 7 = T and L =

Assumption C2. Ee}, <o, te{l,...,T}.

. . . N, T
Theorem 6.3 (Change point estimate consistency). Suppose that panel data {Yi:};;Z,
follow model (61)). Assume that T # 1 and the sequence {r(t)/t*}I_, is decreasing. Then
under Assumptions[P1, [C7, and [CF

lim P[7y =7] = 1.
N—w

Proof. Let us define
. 13 _
SP ) = 2 D (Yis = Yir)®

and, consequently, Sy (t) 1= + vazl SJ(\? (t). Then,

2
T Zi=1(5i75 —Eit)?, t< T,

(&) 4y _
o (1) = LIS (0gis — 0Fis — £526;)% + 3 (0eis — 084 + 28;)%|, t>;
T s=1 7,8 2,t t 7 s=7+1 1,8 1,t t Vi ) 75

where & ; = %22:1 €i,s. By the definition of the cumulative autocorrelation function, we
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havefor 2 <t <7

In the other case when t > 7, one can calculate

es{0 -0 (1-70) + T (“77)25% LT (1Y
=02< @>+M52_

Realize that S%) (t)—E S%)(t) are independent with zero mean for fixed ¢t and ¢ = 1,.

Due to Assumption [C2] for 2 < ¢ < 7 it holds

1 Yot

t
o 1
VarSN(t) = m t—QVar [Z(Ei’s — Ei,t)2] = Ncl(t,O'),
i=1 s=1

where C1(t,0) > 0 is some constant not depending on N. If ¢ > 7, then

N T T
1 1 t—
Var SN(t) = 5 Z t—QVar [0’2 Z (Ei,s — {;:iﬂg)Q -2 TO’(Si Z (Ei,s — {::iﬂg)
1=1 s=1

N? . ~ L

t—T 2 L
+ ( 7 ) 512 +0’2 Z (Ei,s —&Ti,t)Q

s=1+1

T ¢ T
+2—00; (Eis —Eit) + (—) 6121

t ’ ’ t

s=T17+1
1 1 N 1 N
2
< NCQ(t,T, o)+ ng(t,T, a)i;éi + WCZL(t,T, o) ;51' ,

where C;(t,7,0) > 0 does not depend on N for j = 2,3, 4.

..,N.

The Chebyshev inequality provides Sy (t) — ESy(t) = Op ( Var SN(t)) as N — oo.

According to Assumption [CT] and the Cauchy-Schwarz inequality, we have
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Since the index set {1,...,T} is finite and 7 is finite as well, then
1 a o 1
1Iéltz;xTVarSN(t) < NK 1(o) + Ks(o ; + K3(o ; NK4 o),

where K (o) > 0 are constants not depending on N for j = 1,2,3,4. Thus, we also have

uniform stochastic boundedness, i.e.,

max |SN( ) ESN(t)| = Op < N — o0.

1<t<T

1
)
Adding and subtracting, one has

Sn(T) — Sn(t) = Sn(T) —ESNn(7) — [Sn(t) —ESNn(t)] + ESn(7) — ESn(t)

-2 maXT|SN(T) —ESn(r)|+ ESn(T) —ESN(1)

1<r<
r(t)

= —2 max |Sn(r) —ESn(r)| + o® (—— T57)> +I{t>7'} Z 5.

1<r<T t2

The above inequality holds for each t € {2,...,T} and, particularly, it holds for 7n. Note
that 7n = argmax; Sy (t). Hence, Sy (7) — Sn(Tn) < 0. Therefore,

2v/N max |Sn(r) — ESy(r)|

1<r<T

N

> VN [02 (r(;N) = Tp) F Ty > T =) 2521 (6.7)

If v > 7, then the left hand side of (6.7)) is Op (1) as N — o, but the right hand side is

unbounded because of Assumption [CIl So, if Tx < 7, then

0" 92 max |Sn(r) — ESn(r)| = o2 < (ZN) - T(T)> ,

N—> 1<r<T TN T
which yields due to the monotonicity of r(t)/t? that P [Ty = 7] — 1 as N — oo. O

Assumption assures that the values of changes have to be large enough compared
to the variability of the random noise in the panels and to the strength of dependencies
within the panels as well. On one hand, Assumption implies the usual assumption
limpy_ o0 \/_1ﬁ sz\il 82 = o0 in change point analysis, cf. Bai (2010) or [Horvath and Hugkova
(2012). On the other hand, Assumption assures that limy o = Zz 102 = 0, which is
not present when the panel size T is considered as unbounded, i.e., T' — oo0. Here, this second
part is needed to control the asymptotic boundedness of the variability of % vazl 22:1 (Yis
171'7,5)2, because a finite T' cannot do that.

Similarly as in the previous section, Assumption [C1] is satisfied for 0 < § < 6; < A, Vi
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(a common lower and upper bound for the change amount) and suitable o and r(t). As-
sumptions[P2]and [CTl are generally incomparable. The monotonicity assumption from Theo-
rem [6.3]in not very restrictive at all. For example in case of independent observations within
the panel, this assumption is automatically fulfilled, since {1/¢}7_, is decreasing. Moreover,

the weaker the dependency within the panel, the faster the decrease of 7(t)/t2.

One can check the proof of Theorem and see that Assumption can be replaced
by more restrictive assumptions limy o + Zfil 62 = oo and limy o0 5= sz\il 62 = 0. This

first assumption might be considered as too strong, because a common value of § = d; for
all ¢ does not fulfill it.

Various competing consistent estimates of a possible change point can be suggested, e.g.,
_ 2
the maximizer of Zfil [ZZ:l (Yis — }QT)] . To show the consistency, one needs to postulate

different assumptions on the cumulative autocorrelation function and shifted cumulative

correlation function compared to Theorem [6.3] and this may be rather complex.

6.6 Estimation of the correlation structure

Since the panels are considered to be independent and the number of panels may be suffi-

ciently large, one can estimate the correlation structure of the errors [e1 1,...,e17]" empir-
ically. We base the errors’ estimates on residuals
~ }Qigfinga t < TN,
€it ‘= ~ . (6'8)
Yie —Yizy, t>7nN.

Then, the empirical version of the autocorrelation function is

~

pt =

H
1=
o)

52NT i,5€i,5+t-
1=1s=1

Consequently, the kernel estimation of the cumulative autocorrelation function and shifted

cumulative correlation function is adopted in lines with |Andrews (1991):

A = Y (= lsD (3 ) B

|s|<t

t v
ﬁ(t,v)zz Z n(uhs>ﬁus, t <

s=1u=t+1
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where h > 0 stands for the window size and x belongs to a class of kernels given by

+o0
{H() : R — [-1,1]|s(0) = 1, s(z) = K(—z), Vz, f w%(z)dx < oo,

—00

k(-) is continuos at 0 and at all but a finite number of other points}.

Since the variance parameter o is not present in the limiting distribution of Theorem [G.1]

. . . ~2._ _1 N T 52
it neither has to be estimated nor known. Nevertheless, one canuse 0% := x5 2,21 2.1 € -

6./ Bootstrap and hypothesis testing

A wide range of literature has been published on bootstrapping in the change point problem,
e.g., Huskova and Kirch (2012) or [Hugkova et all (2008). We build up the bootstrap test
on the resampling with replacement of row vectors {[€;1,...,€;1]}i=1,.. n corresponding
to the panels. This provides bootstrapped row vectors {[€],..., é;‘jT]}izl,___7N. Then, the

bootstrapped residuals €}, are centered by their conditional expectation % vazl €;,¢ yielding

N
Pr_or _ L \0
it = €t N Cit-
i=1

The bootstrap test statistic is just a modification of the original statistic Py (T"), where the

original observations Y; ; are replaced by their bootstrap counterparts SA/;*t

N s Vo O
% maXs—1,....,t ‘Zi:l [ZT=1 (Yvi,r - sz,t)”
Pi(T)= max -~
t=2,...,T—-2 N T % Sx
MaXs—t,..,T—1 |2y [er+1 (Ym Y5

)

such that
_ 1 o T
Y = n MY and V= T >V
s=1 s=t+1

An algorithm for the bootstrap is illustratively shown in Procedure [6.1] and its validity
will be proved in Theorem

6.8 Validity of the resampling procedure

The idea behind bootstrapping is to mimic the original distribution of the test statistic in
some sense with the distribution of the bootstrap test statistic, conditionally on the original
data denoted by Y = {th}fvtzl

First of all, two simple and just technical assumptions are needed.
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Procedure 6.1 Bootstrapping test statistic Py (7).

Input: Panel data consisting of N panels with length 7', i.e., N row vectors of observations
[Yia,....Yir]
Output: Bootstrap distribution of Py (T), i.e., the empirical distribution where probability
mass 1/B concentrates at each of 1\Px(T),..., )P (T).
estimate the change point by calculating Ty
compute residuals €; ;
for b =1 to B do // repeat in order to obtain the empirical distribution
{[efy,-- .,é;’jT]}i]\i ; resampled with replacement from the original rows of residuals
{[ei.- . &ir]HL, R
calculate bootstrap panel data Yz*t
6:  compute bootstrap test statistics ;)P (1)
7. end for

o

Assumption Bl. {e;+}; possesses the lagged cumulative correlation function

v

t t
S(t,v,d) = Cov (Z €i,s9 Z Ei,u) = Z
s=1 s=1

u=t+d

v
Pu—s, VieN.
+d

u=t

Assumption B2. limy_,, P [Ty = 7] = 1.

Assumption [BIl is not really an assumption, actually it is only a notation. Notice that
S(t,v,1) = R(t,v). Assumption is satisfied for our estimate proposed in (6.8, if the
assumptions of Theorem hold. Assumption is postulated in a rather broader sense,
because we want to allow any other consistent estimate of 7 to be used instead.

Let us now introduce two supporting theorems, in order to be able to justify the bootstrap
method in our setup.

Suppose that {£,}%_; is a sequence of random variables/vectors existing on a probabil-
ity space (Q,F,P). A bootstrap version of € = [£1,...,£,]" is its (randomly) resampled
sequence with replacement—denoted by &€* = [£F,...,&¥]T—with the same length, where
for each i € {1,...,n} it holds that PZ‘[&;“ =¢&]l=Pl¢f =€l =1/n,j=1,...,n. In
the sequel, Pz‘ denotes the conditional probability given £. So, & has a discrete uniform
distribution on {&1,...,&,} for every i = 1,...,n. The conditional expectation and variance
given & are denoted by E p¥ and Var P

If a statistic has an approximate normal distribution, one may be interested in the asymp-
totic comparison of the bootstrap distribution with the original one. A tool for assessing

such an approximate closeness can be a bootstrap central limit theorem for triangular arrays.

Theorem 6.4 (Bootstrap CLT for triangular arrays). Let {&, 5, }5_; be a triangular array
of zero mean random variables on the same probability space such that the elements of the

vector [En1,-- €k, || are iid for every n € N satisfying

supEp&p, < o0 (6.9)
neN
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*
n,17 "

and k, — o as n — 0. Suppose that £€* = |
£=[n1, - 6nn,]" and denote

.,57”;,%]—r is the bootstrapped version of

kn kn
Gni=hy ' Dibnay &=kt Y 6k, and ) i=Varp, .
i=1 i=1

If
e (6.10)
then

Proof. The Lyapunov condition (Billingsley, 11986, p. 371) for a triangular array of random
variables {&, ., }o°_; is satisfied due to (69) and ([GI0), i.e., for w = 2:

1 kn kfw/2
5 ) Bl < S swpE 6T - 0, n— o0,
Sn LeN

24w
\V kn(% i=1

Therefore, the CLT for {&, k, }5°_; holds and

VEn - S| ¢

Now, to prove the theorem, it suffices to show the following three statements:

sup
zeR

(i)

Vkn - - S| 2
sup [P ¥ 7(,’:—EP?$)<$ —J- exp{——}dtL»O;

£ %k n—o0
zeR /Varngfm1

Proving (4i) is trivial, because Epgf_f{ = EpgfﬁJ =k,! Zfll &n,i = &ny [Pl-aus.

Let us calculate the conditional variance of the bootstrapped variable £ ;: Varp 2«{,’:’1 =

2
Epg«E;"i - (EP§§;11)2 =kt & - (k;l Sk §n,i) , [P]-a.s. The weak law of large
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numbers together with (69) provides

kn,
En *nilepgn,i :gn #0

=1

and

n

o n n 2
—1 2 —1 2 % 2
0 S kn 2 gn,i - kn Z §n7i —E Pgn,l = Vaer‘gn,l — Sp-
im1 i=1

The last result of the WLLN is true, because (6.9]) implies

kn kn
k2 Y Vare&l, < k> Y Epén, <k, 'supEp¢l —0.
1=1

i=1 eN ©
Thus (7) is proved.
The Berry-Esseen-Katz theorem (see Katz (1963)) with g(x) = |z|°, € > 0 for the boot-

strapped sequence of iid (with respect to P *) random variables {52,1'}221 results in

_ _ L 12
: 7( *,’f)éx —J- —exp{——}dt
x€R /Vaer‘gz,l € —0 27T 2
2
5:;,1 - Epg“fz,l e

Pl-a.s., (6.11
Ve, [Plas., (6.11)

< Ck;ﬁ/QEpgk

for all n € N where C' > 0 is an absolute constant.
The Jensen inequality and Minkowski inequality provide an upper bound for the nomi-
nator from the right-hand side of (E11)):

k 2+e€
n

* £ 24 -1
EPE"|§n,1 - Epz‘én,ﬂ ‘= kn Z
i=1

kn
-1
&n,i - kn Z gn,j
j=1

ko 1/(2+¢€) . 2+e
< k;l (2 |§n,i|2+€> n k;(1+5)/(2+5) 2 gn,j‘
i=1 Jj=1
ko kon 2+e€
<2k Y P+ 2 kD [P]-a.s.
i=1 i=1

The right-hand side of the previously derived upper bound is uniformly bounded in proba-
bility P, because of Markov’s inequality and ([6.9). Indeed, for fixed n > 0

kn kn
P lk;l D lenil*te = n] < Ut Y Ep et <t sup Ep €177 <0, VneN
i=1 i=1 LE
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and
k;n kn
P [ k' Y | = n} <0 'k 'Ep | &ni| < tsupEpléa] <o, VneN.
i=1 i=1 eN

Since E p¥ &% —Epx&k |77 is bounded in probability P uniformly over n and the denom-
inator of the right-hand side of (G.II) is uniformly bounded away from zero due to (610,
then the left-hand side of (6.1 converges in probability P to zero as n tends to infinity.
So, (i) is proved as well. O

Theorem 6.5 (Bootstrap multivariate CLT for triangular arrays). Let {&, k, }:*_, be a tri-
angular array of zero mean q-dimensional random vectors on the same probability space such

that the elements of the vector sequence {€n1,...,&nk,} are iid for every n € N satisfying

suﬂ;\)IEp|§7(f;)1|4 <o, jefl,....q} (6.12)
ne

where &,1 = [E,(ﬁ,...,«f,(g)l]—r e R, neNand k, — o as n — . Assume that E* =
(&, ,ﬁzﬁkn]T is the bootstrapped version of 2 = [€n1,...,&nk, ] . Denote

kn kn
€, =k ! Z €ni, EF:=k! Z &y, and Tp:=Varp&, .
i=1 i=1

If

liminfT', =T > 0, (6.13)

n—0o0

then
PE VR 2 (6 — &) < x|~ P [ VD26 < x| P 0, vxeRe

Proof. According to the Cramér-Wold theorem, it is sufficient to ensure that all assump-
tions of one-dimensional bootstrap CLT for triangular arrays are valid for any linear

combination of the elements of the random vector &, 1, n € .
For arbitrary fixed t € R? using the Jensen inequality, we get

)|4

q
sup Ep[tT€,1[* < ¢®sup Y H1Ep €] < ¢ max tisupEplel)|* < oo,
neN nele_l Jj=1,....q nelN

Hence, assumption (f.12) implies assumption (63) for the random variables {t "€, &, }nen-

Similarly, assumption ([6I3) implies assumption (GI0) for such an arbitrary linear com-
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bination, i.e., positive definiteness of the matrix I" yields

liminfVarpt &, 1 = liminftT (Varp&, 1)t >t7 (hminf rn) t =t Tt > 0.
n—00 n—0o0 n—0o0

Now we may proceed to the bootstrap justification theorem. Realize that it is not known,
whether the common panel means’ change occurred or not. In other words, one does not
know whether the data come from the null or the alternative hypothesis. Therefore, the

following theorem holds under H as well as H;.

Theorem 6.6 (Bootstrap justification). Suppose that panel data Y = {th}fvtzl follow
model (61). Under Assumptions[P1, [B1l, [B2, and[C2

9 maXg—1 s
s=1,..., . .-
Py(T)]Y ——  max L in probability P,
Noow t=2,..,T—2 T—
- maXgs—g¢,..., T-1 ‘ZS - T—: Zt‘
where Zy := Xp — Xy and [X1,. .., ?C'T]—r is a multivariate normal random vector with zero

. . 7,7
mean and covariance matriz T' = {v; (1)}, _; such that

r(t) + Lr(r) — 2[r(t) + R(t,7)], t<T;

(t—7)>2 2(t—7) .
T(t77)+mT(T*T)*ﬁ[T(t*T)+R(t*7’,T7T)], t>T;

and
( 0, t=7orv=r,
r(t) + R(t,v) + Br(r) — L[r(t) + R(t,7)] — £[r(v) + R(v,7)], t<v<T;
S(t,v,T+1—-1)+ jEUT TT))R(T T)
Yeo(T) = 1 —;::S(t,T,T—i-l—t)—%R(T,v), t<T<w
T(th)+R(t*7’,’077’)+7()&?;)_(:)72T)T(T7T)
—g=[r(t—7)+ R(t —7,T — 7)]
—+—Zr(v—7)+Rv—7,T—7)], T<t<w.

~ _ t ~
Proof. Let us define €, := 071 Y. €.,

~ . —1 N\t o
Gi,t =0 Zs:l ei,s’

E)
(‘:‘:
i Mz

ﬂ\
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and
. 1 G RSRN L
* _ * = e — — e,
UN(t)_O'\/N;; zs_JWiZ;;l(ezs N; ZS)
1 N t 1 X
:UWZZ@ Cis) = o= 2 (@ = @)
i=1s=1 i=1

Realize that €; ; depends on Ty and, hence, it depends on N. Thus, €+ =€ +(N). Since
Assumption holds, then according to the bootstrap multivariate CLT for triangular
arrays (Theorem [6.5) of T-dimensional vectors &€y ; = [€;1(N), ..., & r(N)]T with ky = N,

we have

~

p [r;f/?[ﬁm), LU < x|\y] —p [r;f/?[ﬁNa), L ON(D]T < x]

— 0, vxeR7,
N—0
where I'y = Var ¢ 1, . .. ,€i7T]T
Now, it is sufficient to realize that [Ux(1), ..., Ux(T)]T has an approximate multivariate

normal distribution with zero mean and covariance matrix I' = limy_, I'y. Using the law

of total variance,
Var€;, = E[Var{€ +|Tn}] + Var [E{€; |7 }]

T T
= Y P[Ry = 7lVar[&i47y = 7] + Y P[Fy = 7l{E[€4]7n = 7]}

=1 =1

—{Z P[?N=7T]E[/€\i7t|?]v =7T]

=1

3

Since imy_,n P [Ty = 7] =1 and E[é;4|Tn = 7] = 0, then

lim Var€;; = lim Var[é ¢|Tn = 7].
N—-> ’ N—-> ’

Similarly with the covariance, i.e., after applying the law of total covariance, we have

lim Cov (€4,€») = lim Cov (€ 4,6 0|Tn = 7).
N-—>0 N—w
Note that

N
N

~ A o(eip — &), t
(€inlTn =7) = R
o(eit — i), t>T;
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where
t T
_ 1 N 1
it = ? Z €i,s and Eit = T——t Z Ei,s-
s=1 s=t+1

Taking into account the definitions of r(¢), R(¢,v), and S(¢, v, d) together with some simple
algebra, we obtain that Var[€; s|Tn = 7| = v+(7) and Cov (€4, € »|Tn = T) = Y1,»(7) for
t < v, where the elements v, ¢(7) and v;,(7) are as in the statement of Theorem [6.6

Then the sum in the nominator of P (T") can be alternatively rewritten as

N s s

1 v > 1 < v S U 77 S
oy, DI (Vi —¥) = WZHZ Y} - tZY} = Uk (s) = 70%(0).

i=1r=1

Concerning the denominator of P (T), one needs to perform a similar calculation as
in the proof of Theorem with Vi (t), ie., to define Vy(t) and \A/]\”;(t) analogously to
Un(t) and l}]’f,(t) as Vi (t) is to Un(t). Applying the Cramér-Wold theorem completes the
proof. [l

The validity of the bootstrap test is assured by Theorem Indeed, the conditional
asymptotic distribution of the bootstrap test statistic is a functional of a multivariate normal
distribution under the null as well as under the alternative. It does not converge to infinity
(in probability) under the alternative. That is why it can be used for correctly rejecting the
null in favor of the alternative, having sufficiently large N. Moreover, the following theorem
states that the conditional distribution of the bootstrap test statistic and the unconditional
distribution of the original test statistic coincide. And that is the reason why the bootstrap
test should approximately keep the same level as the original test based on the asymptotics
from Theorem [G.11

Theorem 6.7 (Bootstrap test consistency). Suppose that panel data Y = {Ym}thL follow
model [G1). Under Assumptions [P1, [B2, [C2 and null hypothesis ([6.2)), the asymptotic
distribution of Pn(T') from Theorem [61] and the asymptotic distribution of Py (T)|Y from
Theorem [6.8 coincide.

Proof. Recall the notation from the proof of Theorem Under Hy, B2, and [C2]it holds

lim P[fy =T] = 1.

N—

Then in view of (G.8]),

lim P [UN(S) - ;ﬁN(t) — Un(s) — §UN(t)] 1, 1<s<t<T.

N—0
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Now, the simulated (empirical) distribution of the bootstrap test statistic can be used
to calculate the bootstrap critical value, which will be compared to the value of the original
test statistic in order to reject the null or not.

Assuming common variance parameter o for each panel in panel model (6.1]) might seem
restrictive for some practical applications. To generalize the panel model, it is possible to
consider a panel specific unknown variance parameters o; such that there exist a lower and
an upper bound for all the g;’s, i.e., 0 < Opin < 05 < Opar < 00 foralli=1,..., N. For
this model’s generalization, one may also show the bootstrap validity similar to Theorem [6.6]
but the corresponding proof becomes more technical.

Finally, note that one cannot think about any local alternative in this setup, because 7

has a discrete and finite support.

6.9 Simulations

A simulation experiment was performed to study the finite sample properties of the asymp-
totic and bootstrap test for a common change in panel means. In particular, the interest
lies in the empirical sizes of the proposed tests under the null hypothesis and in the em-
pirical rejection rate (power) under the alternative. Random samples of panel data (5000
each time) are generated from the panel change point model (GII). The panel size is set to
T = 10 and T = 25 in order to demonstrate the performance of the testing approaches in
case of small and intermediate panel length. The number of panels considered is N = 50
and N = 200.

The correlation structure within each panel is modeled via random vectors generated
from iid, AR(1), and GARCH(1,1) sequences. To recall the notation for the Generalized
Autoregressive Conditional Heteroskedasticity processes (Bollersley, 1986), a GARCH(1,1)

process {et}tez with volatility process {o;}:ez is a solution to the equations

Et = Ot€g, tEZ;

2
Oy

2 2 .
oo +oner_g + Bioi_y, te;

where the process {0+ }+ez is non-negative and the driving noise sequence {e; }+c7 is a sequence
of iid random variables.

The considered AR(1) process has coefficient ¢ = 0.3. In case of GARCH(1,1) process,
we use coeflicients ap = 1, oy = 0.1, and p; = 0.2, which according to |[Lindner (2009,
Example 1) gives a strictly stationary process. In all three sequences, the innovations are
obtained as iid random variables from a standard normal N(0,1) or Student t5 distribu-
tion. Simulation scenarios are produced as all possible combinations of the above mentioned
settings.

When using the asymptotic distribution from Theorem [B.1] the covariance matrix is
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estimated as proposed in Section using the Parzen kernel

1—62%+6lz®, 0<|z|<1/2;
kp(z) =< 2(1—|z])3, 1/2 < |z| < 1;

0, otherwise.

Several values of the smoothing window width h are tried from the interval [2,5] and all
of them work fine providing comparable results. To simulate the asymptotic distribution of
the test statistics, 2000 multivariate random vectors are generated using the pre-estimated
covariance matrix.

The bootstrap approach does not need to estimate the covariance structure. The number
of bootstrap replications used is 2000. To access the theoretical results under Hy numeri-
cally, Table [6.T] provides the empirical specificity (one minus size) of the tests for both the
asymptotic and bootstrap version of the panel change point test, where the significance level
is o = 5%.

T N innovations 11D AR(1) GARCH(1,1)
10 50 N(0,1) 0.948 0.949 0943 0.955 0.949 0.955
ts5 0949 0.954 0.941 0.956 0.946 0.953
200 N(0,1) 0.952 0.951 0.937  0.954 0.942 0.952
ts 0.948 0.953 0.935 0.960 0.944 0.953
25 50 N(0,1) 0.948 0.951 0.929 0.952 0.954 0.959
ts5 0.946 0.951 0.932 0.954 0.944 0.958
200 N(0,1) 0.950 0.950 0.927  0.951 0.947  0.949
ts 0.948 0.953 0.931 0.952 0.952 0.952

Table 6.1: Empirical specificity (1—size) of the test for the common change in panel means
based on Py (T') under Hy using the asymptotic and the bootstrap critical values, consid-

ering a significance level of 0.05.

It may be seen that both approaches (using asymptotic and bootstrap distribution) are
close to the theoretical value of specificity 0.95. As expected, the best results are achieved in
case of independence within the panel, because there is no information overlap between two
consecutive observations. The precision of not rejecting the null is increasing as the number
of panels is getting higher and the panel is getting longer as well.

The performance of both testing procedures under H; in terms of the empirical rejection
rates is shown in Table[6.2] where the change point is set to 7 = [1'/2] and the change sizes
d; are independently uniform on [1, 3] in 33%, 66% or in all panels.

One can conclude that the power of both tests increases as the panel size and the number
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H, T N  innovations 11D AR(1) GARCH(1,1)

33% 10 50 N(0,1) 025 0.29 026 028 021 0.22
ts 0.18 0.18 0.19 0.21 0.20 0.24

200 N(0,1) 0.46 0.50 0.48 0.51 040 045

ts 037 038 039 041 040 047

25 50 N(0,1) 038 043 031 037 030 0.36

ts 0.34 0.32 0.27 030 032 0.37

200 N(0,1) 0.72 0.79 0.69 0.66 0.60 0.67

ts 053 054 051 052 0.58 0.59

66% 10 50 N(0,1) 0.45 0.52 047 050 039 041
ts 0.36 0.35 0.38 039 039 042

200 N(0,1) 0.76 0.84 0.81 0.81 0.70 0.77

ts 0.65 0.66 068 064 0.69 0.76

25 50 N(0,1) 0.71 0.79 0.63 0.66 0.60 0.70

ts 0.60 0.63 0.44 045 0.60 0.72

200 N(0,1) 096 098 095 095 090 0.94

ts 084 082 086 0.85 090 0.92

100% 10 50 N(0,1) 0.64 0.69 0.67 0.71 0.56 0.64
ts 0.52 0.48 0.49 0.51 055 0.62

200 N(0,1) 093 096 094 095 086 0.92

ts 084 0.83 086 0.83 087 0.92

25 50 N(0,1) 0.86 091 083 086 080 0.85

ts 0.76 0.79 0.66 0.67 0.79 0.85

200 N(0,1) 1.00 1.00 0.99 099 098 0097

ts 098 097 098 097 099 0.99

Table 6.2: Empirical sensitivity (power) of the test for the common change in panel means
based on Py (T) under H; using the asymptotic and the bootstrap critical values, consid-

ering a significance level of 0.05.

of panels increase, which is straightforward and expected. It should be noticed that numer-
ical instability issues may appear for larger T, when generating from a T-variate normal
distribution. Moreover, higher power is obtained when a larger portion of panels is subject
to have a change in mean. The test power drops when switching from independent obser-
vations within the panel to dependent ones. Innovations with heavier tails (i.e., t5) yield
smaller power than innovations with lighter tails. Generally, the bootstrap outperforms the

classical asymptotics in all scenarios.
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Let us mention that for finite sections of processes with a stronger dependence structure
than taken into account in the simulation scenarios, Assumption [CI] does not have to be
fulfilled. For example, Assumption [CT]is violated for AR(1) with coefficient ¢ = 0.9, §; = 2,
o = 1, standard normal or Student ¢5 innovations, and 7 = 5 for 7' = 10 or 7 = 12 for
T = 25. Here, the dependency under the considered variability is too strong compared to
the change size. It is rather difficult to detect possible changes in such a setup.

Finally, an early change point is discussed very briefly. We stay with standard normal
innovations, iid observations within the panel, the size of changes §; being independently
uniform on [1, 3] in all panels, and the change point is 7 = 3 in case of T = 10 and 7 = 5 for

T = 25. The empirical sensitivities of both tests for small values of 7 are shown in Table

T N 7 Hy,iid, N(0,1)

10 50 3 059 0.63
200 3 089 091
25 50 5 0.66 0.68
200 5 094 0.96

Table 6.3: Empirical sensitivity of the test for the common change in panel means based
on Py(T) for small values of 7 under H; using the asymptotic and the bootstrap critical

values, considering a significance level of 0.05.

When the change point is not in the middle of the panel, the power of the test generally
falls down. The source of such decrease is that the left or right part of the panel possesses less
observations with constant mean, which leads to a decrease of precision in the correlation
estimation in case of the asymptotic test and in the change point estimation in case of the
bootstrap test. Nevertheless, the bootstrap test again outperforms the asymptotic version
and, moreover, provides solid results even for early or late change points (the late change

points are not numerically demonstrated here).

6.10 Real data analysis

As mentioned in the introduction, our primary motivation for testing the panel mean change
comes from the insurance business. The data set is provided by the National Association
of Insurance Commissioners (NAIC) database, see Meyers and Shi (2011). We concentrate
on the ‘Private passenger auto liability /medical’ insurance line of business. The data col-
lect records from N = 136 insurance companies (having positive earned premium every

year). Each insurance company provides T' = 10 yearly total claim amounts—denoted by
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Private passenger auto liability/medical

0.4-

Loss paid/earned premium

0.2-

i i i i i i i i i i
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Accident year

Figure 6.2: Developments of the yearly total claim amounts standardized by the earned

premium for 20 selected insurance companies.

X +—and earned premiums p; ; starting from year 1988 up to year 1997. One can consider
standardizing (normalizing) the claim amounts by the premium received by company i in
year t. That is thinking of panel data Y;; = X, ;/p;+ as loss ratios. Such a standardization
is reasonable, because it puts the claim amounts of different insurance companies in different
years on the ‘same level’ (same magnitude). Besides that, this may also yield a stabilization
of series’ variability, which corresponds to the assumption of a common variance.

Figure graphically shows series of standardized claim amounts (loss ratios) for 20 se-
lected insurance companies (a plot with all 136 panels would be cluttered).

The data are considered as panel data in the way that each insurance company cor-
responds to one panel, which is formed by the company’s yearly total standardized claim
amounts. The length of the panel is quite short. This is very typical in insurance busi-
ness, because considering longer panels may invoke incomparability between the early claim
amounts and the late ones due to changing market or policies’ conditions over time.

We want to test whether or not a change in the standardized claim amounts occurred in
a common year, assuming that the standardized claim amounts are approximately constant
in the years before and after the possible change for every insurance company. Our ratio
type test statistic gives Pi36(10) = 15.6. The asymptotic critical value is 57.3 and the
bootstrap critical value equals 56.8. These values mean that we do not reject the hypothesis

of no change in panel means in both cases. If a striking difference occurred between the two
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critical values (asymptotic and bootstrap), it would mean inefficient correlation structure

estimation or violation of the model assumptions (e.g., not common volatility of the panels).

We also try to take the logarithms of loss ratios and to consider log standardized amounts
as the panel data observations. Nevertheless, we do not reject the hypothesis of no change
in the panel means (i.e., means of log standardized amounts) again. For the sake of com-
pleteness, we may reveal that our estimate of the panel change point provides value 7y = 10

meaning no change in panels.

6.11  Summary

In this chapter, we consider the change point problem in panel data with fixed panel size.
Occurrence of common breaks in panel means is tested. We introduce a ratio type test
statistic and derive its asymptotic properties. Under the null hypothesis of no change, the
test statistic weakly converges to a functional of the multivariate normal random vector with
zero mean and covariance structure depending on the intra-panel covariances. As shown in
this chapter, these covariances can be estimated and, consequently, used for testing whether
a change in means occurred or not. This is indeed feasible, because the test statistic under

the alternative converges to infinity in probability.

The secondary aim of the chapter lies in proposing a consistent change point estimate,
which is straightforwardly used for bootstrapping the test statistic. We establish the asymp-
totic behavior of the bootstrap version of the test statistic, regardless of the fact whether the
data come from the null or the alternative hypothesis. Moreover, the asymptotic distribution
of the bootstrap test statistic coincides with the original test statistic’s limiting distribution.
This provides justification for the bootstrap method. One of the main goals is to obtain
a completely data driven testing approach whether the means remain the same during the
observation period or not. The ratio type test statistic allows us to omit a variance estima-
tion and the bootstrap technique overcomes estimation of the correlation structure. Hence,
neither nuisance nor smoothing parameters are present in the whole testing process, which
makes it very simple for practical use. Furthermore, the whole stochastic theory behind

requires relatively simple assumptions, which are not too restrictive.

A simulation study illustrates that even for small panel size, both presented approaches—
based on traditional asymptotics and on bootstrapping—work fine. One may judge that both
methods keep the significance level under the null, while various simulation scenarios are
considered. Besides that, the power of the test is slightly higher in case of the bootstrap.
Finally, the proposed methods are applied to insurance data, for which the change point

analysis in panel data provides an appealing approach.
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6.12 Discussion

First of all, it has to be noted that the non-ratio CUSUM type test statistic can be used
instead of the ratio type, but this requires to estimate the variance of the observations.
The statements of theorems and proofs would become even less complicated. Omitting
the usage of the bootstrap test statistic can especially be unreliable in short panels from
a computational point of view. This is due to the fact that the bootstrap overcomes the
issue of estimating the correlation structure.

Furthermore, our setup can be modified by considering large panel size, i.e., T — 0.
Consequently, the whole theory leads to convergences to functionals of Gaussian processes
with a covariance structure derived in a very similar fashion as for fixed T. However, our
motivation is to develop techniques for fixed and relatively small panel size.

Dependent panels may be taken into account and the presented work might be gener-
alized for some kind of asymptotic independence over the panels or prescribed dependence
among the panels. Nevertheless, our incentive is determined by a problem from non-life
insurance, where the association of insurance companies consists of a relatively high number
of insurance companies. Thus, the portfolio of yearly claims is so diversified, that the panels
corresponding to insurance companies’ yearly claims may be viewed as independent and

neither natural ordering nor clustering has to be assumed.
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Conclusions

Various parametric models for sequences of ordered observations, where some parameters
can change at unknown time point, are considered in this thesis. The aim is to develop
stochastic approaches for testing whether a change occurred at some unknown time or not.
These testing procedures rely on maximum ratio type statistics based on cumulative sums.
Generally, the main advantage of the ratio type statistics in hypotheses testing is that they
provide an alternative to non-ratio type statistics mainly in situations, in which variance
estimation is problematic or cumbersome.

Asymptotic distributional behavior of the test statistics is derived under the null hypoth-
esis for each change point model. Consequently, large sample properties of the test statistics
are studied under alternatives. In many cases, it is not possible to calculate critical values
for the test directly from the derived asymptotic distribution. However, to overcome this
issue, one can use simulations and resampling methods. Validity of such approaches is shown
and their appropriateness is justified. Moreover, simulation studies showed that the criti-
cal values obtained by resampling methods seem to be more accurate than critical values
obtained by simulations from the limiting distributions.

One of the simplest model for a structural change is the model with a possible single
abrupt change in mean. The idea of ratio type statistics was firstly described for this setup
in existing literature. We study the possibility of extending this idea to the situation of
testing the no-change hypothesis against the alternative of a gradual change in mean. Being
specific, the means of the observations are constant for a while and, after reaching some
time point, the means slowly start to change. It means that the changes occur gradually
rather than abruptly, which can be considered as a smooth change point.

Then we focus our attention back on the testing null hypothesis of no change in mean
against the alternative of one abrupt shift in mean. A testing procedure based on ratio type
statistic for detection of this type of change is generalized for a-mizing model disturbances

with heavy tails. Hence, the traditional ratio type statistic is robustified by considering
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general loss function instead of the traditional quadratic one. A block bootstrap method
is also proposed for the testing purposes to handle observations that are not necessarily
independent. We prove that the block bootstrap method provides asymptotically correct
critical values for the studied ratio type statistic in the location model with a-mixing random
errors.

Subsequently, ratio type statistics with a general score function for detection of changes
i linear regression models are investigated. Their asymptotic behavior under the null hy-
pothesis and under local alternatives is proved. Application of the permutation bootstrap
technique is elaborated and its justification is given. As an analogy of the change point prob-
lem in regression, a testing procedure for a possible change in the autoregression parameter
is demonstrated. It detects whether the observed sequence is an AR(1) process, or the time
series is an AR(1) process up to some unknown time point and it is again an AR(1) process
after this unknown time point with a different autoregression parameter.

Finally, we deal with the change point problem in panel data with fixed panel size, where
occurrence of common breaks in panel means is tested. Besides that, a consistent change
point estimate is proposed. A bootstrap version of the ratio type test statistic is defined in
order to obtain a completely data driven approach to test whether the means remain the

same during the observation period or not.
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Useful Definitions and Theorems

Definition A.1 (Deterministic Landau symbols). Let {a,}_; and {b,}>_; be two se-

quences of real numbers. One writes
an, = 0(by), n — w;

if and only if there exists a positive real number M > 0 and an integer ny € N such that
lan| < M1b,|, Vn =no.

One writes

if and only if, for every positive real number 7 > 0, there exists an integer ng € IN such that

lan| < 7|bn|,  Vn = no.

Definition A.2 (Stochastic Landau symbols). Let {X,,}*_; be a sequence of random vari-

ables and {a,}>_; be a sequence of constants. One writes
Xn = OP (an)7 n — 0]

if and only if, for every positive real number € > 0, there exists a positive real number M > 0

and an integer ng € N such that

n

p[X

an

>M]<e7 Vn = ng.
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One writes
X, =op (an)v n — 00;

if and only if, for all positive real numbers € > 0 and 7 > 0, there exists an integer ng € N
such that

n

X

425

>T]<6, Yn = ng.

Theorem A.1 (Slutsky’s). Let {X,}>_; and {Y,}>_; be sequences of scalar or vector or
matriz random elements. If

and

n—0o0
where ¢ is a constant element, then (for suitable dimensions)

(i) Xo + Y, —2— X +¢;
n—o0
(i) Y X, —Z cX;
n—o0

(iii) Y, 1X,, —Z, c !X, provided that Y,, and c are invertible.
n—o0
Proof. See lvan der Vaart (1998, Lemma 2.8). O

Theorem A.2 (Continuous mapping). Let {X,}>_; be a sequence of random vectors in
R¥, X be a random vector in R¥, and g : RF — R™ be continuous at every point of a set C

such that P[X e C] = 1.

(i) If Xp =2 X, then 9(Xn) —— g(X).

n—0o0

(ii) 1f X —— X, then g(X,) —-— g(X).

n—o0

(iii) If Xy —>> X, then g(Xn) = g(X).

n—o0

Proof. See lvan der Vaart (1998, Theorem 2.3). O

Theorem A.3 (Cramér-Wold). Let {X,,}%_; be a sequence of random vectors in RF and

X be a random vector in R*. Then,
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if and only if

tTX, —Z . tTX

n—o0
for all t € RF.
Proof. A consequence of Lévy’s continuity theorem (van der Vaart, 1998, Theorem 2.13). O

Theorem A.4 (Hajek-Rényi-Chow inequality). If {Y, = X7 , Xj, Fn,n = 1} is an Lo
martingale and {b,, n = 1} is a positive, non-decreasing real sequence, then for any A > 0
1 & EXS

2 2

A ; b3

P [max

1<j<n

Al <
R

Proof. See |Chow and Teicher (2003, Theorem 8(iii)). O
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