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2 Comments and errata

Reply to Prof. RNDr. Daniela Jarušková, CSc.

Question from Chapter 6

I agree with the remark that the form of the change point estimate presented in Chapter 6 is not suitable.
The assertion of Theorem 6.3 is not correct, because the corresponding proof contains a mistake—there
should be an opposite sign (minus instead of plus) on 1089 before indicator I. Therefore, I provide here
the corrected version of the whole Section 6.5.

6.5 Change point estimation

Despite the fact that the aim of the chapter is to establish testing procedures for detection of a panel
mean change, it is necessary to construct a consistent estimate for a possible change point. There are two
reasons for that: Firstly, the estimation of the covariance matrix Λ from Theorem 6.1 requires panels as
vectors with elements having common mean (i.e., without a jump). Secondly, the bootstrap procedure,
introduced later on, requires centered residuals to be resampled.

A consistent estimate of the change point in the panel data is proposed in Bai (2010), but under
circumstances that the change occurred for sure. In our situation, we do not know whether a change
occurs or not. Therefore, we modify the estimate proposed by Bai (2010) in the following way. If the panel
means change somewhere inside t2, . . . , T ´ 1u, let the estimate consistently select this change. If there
is no change in panel means, the estimate points out the very last time point T with probability going
to one. In other words, the value of the change point estimate can be T meaning no change. This is in
contrast with Bai (2010), where T is not reachable.

Let us define the estimate of τ as

pτN :“ arg min
t“2,...,T

1

wptq

N
ÿ

i“1

t
ÿ

s“1

pYi,s ´ sYi,tq
2, (6.6)

where twptquTt“2 is a sequence of weights specified later on.
Now, we show the desired property of consistency for the proposed change point estimate under the

following assumptions.

Assumption E1. The sequence

"

t

wptq

ˆ

1´
rptq

t2

˙*T

t“2

is decreasing.

Assumption E2. There exist constants L ą 0 and N0 P N such that

L ă σ2

„

t

wptq

ˆ

1´
rptq

t2

˙

´
τ

wpτq

ˆ

1´
rpτq

τ2

˙

`
τpt´ τq

twptq

1

N

N
ÿ

i“1

δ2i ,

for each t “ τ ` 1, . . . , T and N ě N0.

Assumption E3. limNÑ8
1
N2

řN
i“1 δ

2
i “ 0.

Assumption E4. E ε41,t ă 8, t P t1, . . . , T u.

Theorem 6.3 (Change point estimate consistency). Suppose that panel data tYi,tu
N,T
i,t“1 follow model (6.1).

Assume that τ ‰ 1. Then under Assumptions P1, E1, E2, E3, and E4

lim
NÑ8

P rpτN “ τ s “ 1.

Proof. Let us define

S
piq
N ptq :“

1

wptq

t
ÿ

s“1

pYi,s ´ sYi,tq
2
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and, consequently, SN ptq :“ 1
N

řN
i“1 S

piq
N ptq. Then,

S
piq
N ptq “

$

&

%

σ2

wptq

řt
s“1pεi,s ´ sεi,tq

2, t ď τ,

1
wptq

”

řτ
s“1pσεi,s ´ σsεi,t ´

t´τ
t δiq

2 `
řt
s“τ`1pσεi,s ´ σsεi,t `

τ
t δiq

2
ı

, t ą τ ;

where sεi,t “
1
t

řt
s“1 εi,s. By the definition of the cumulative autocorrelation function, we have for 2 ď t ď τ

ES
piq
N ptq “

σ2

wptq

t
ÿ

s“1

E pεi,s ´ sεi,tq
2 “

σ2

wptq

t
ÿ

s“1

«

1´
2

t

t
ÿ

r“1

E εi,sεi,r `
1

t2
rptq

ff

“
σ2

wptq

ˆ

t´
rptq

t

˙

.

In the other case when t ą τ , one can calculate

ES
piq
N ptq “

σ2

wptq

ˆ

t´
rptq

t

˙

`
τ

wptq

ˆ

t´ τ

t

˙2

δ2i `
t´ τ

wptq

´τ

t

¯2

δ2i

“
σ2t

wptq

ˆ

1´
rptq

t2

˙

`
τpt´ τq

twptq
δ2i .

Realize that S
piq
N ptq ´ ES

piq
N ptq are independent with zero mean for fixed t and i “ 1, . . . , N . Due to

Assumption E4, for 2 ď t ď τ it holds

VarSN ptq “
1

N2

N
ÿ

i“1

σ4

w2ptq
Var

«

t
ÿ

s“1

pεi,s ´ sεi,tq
2

ff

“
1

N
C1pt, σq,

where C1pt, σq ą 0 is some constant not depending on N . If t ą τ , then

VarSN ptq “
1

N2

N
ÿ

i“1

1

w2ptq
Var

«

σ2
τ
ÿ

s“1

pεi,s ´ sεi,tq
2 ´ 2

t´ τ

t
σδi

τ
ÿ

s“1

pεi,s ´ sεi,tq

`

ˆ

t´ τ

t

˙2

δ2i ` σ
2

t
ÿ

s“τ`1

pεi,s ´ sεi,tq
2 ` 2

τ

t
σδi

t
ÿ

s“τ`1

pεi,s ´ sεi,tq `
´τ

t

¯2

δ2i

ff

ď
1

N
C2pt, τ, σq `

1

N2
C3pt, τ, σq

N
ÿ

i“1

δ2i `
1

N2
C4pt, τ, σq

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

δi

ˇ

ˇ

ˇ

ˇ

ˇ

,

where Cjpt, τ, σq ą 0 does not depend on N for j “ 2, 3, 4.

The Chebyshev inequality provides SN ptq ´ ESN ptq “ OP

´

a

VarSN ptq
¯

as N Ñ 8. According to

Assumption E3 and the Cauchy-Schwarz inequality, we have

1

N2

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

δi

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

N

g

f

f

e

1

N

N
ÿ

i“1

δ2i Ñ 0, N Ñ8.

Since the index set t2, . . . , T u is finite and τ is finite as well, then

max
2ďtďT

VarSN ptq ď
1

N
K1pσq `K2pσq

1

N2

N
ÿ

i“1

δ2i `K3pσq
1

N2

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

δi

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

N
K4pσq,

where Kjpσq ą 0 are constants not depending on N for j “ 1, 2, 3, 4. Thus, we also have uniform stochastic
boundedness, i.e.,

max
2ďtďT

|SN ptq ´ ESN ptq| “ OP

ˆ

1
?
N

˙

, N Ñ8.
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Adding and subtracting, one has

SN ptq ´ SN pτq “ SN ptq ´ ESN ptq ´ rSN pτq ´ ESN pτqs ` ESN ptq ´ ESN pτq

ě ´2 max
2ďrďT

|SN prq ´ ESN prq| ` ESN ptq ´ ESN pτq

“ ´2 max
2ďrďT

|SN prq ´ ESN prq| ` σ
2

„

t

wptq

ˆ

1´
rptq

t2

˙

´
τ

wpτq

ˆ

1´
rpτq

τ2

˙

` Itt ą τu
τpt´ τq

twptq

1

N

N
ÿ

i“1

δ2i .

The above inequality holds for each t P t2, . . . , T u and, particularly, it holds for pτN . Note that pτN “

arg mint SN ptq. Hence, SN ppτN q ´ SN pτq ď 0. Therefore,

2
?
N max

2ďrďT
|SN prq ´ ESN prq|

ě
?
N

#

σ2

„

pτN
wppτN q

ˆ

1´
rppτN q

pτ2N

˙

´
τ

wpτq

ˆ

1´
rpτq

τ2

˙

` ItpτN ą τu
τppτN ´ τq

pτNwppτN q

1

N

N
ÿ

i“1

δ2i

+

. (6.7)

If pτN ą τ almost surely for infinitely many N , then the left hand side of (6.7) is OP p1q as N Ñ 8, but
the right hand side is unbounded because of Assumption E2. If pτN ă τ almost surely for infinitely many
N , then due to the monotonicity Assumption E1

0
P

ÐÝÝÝÝ
NÑ8

2 max
2ďrďT

|SN prq ´ ESN prq| ě σ2

„

pτN
wppτN q

ˆ

1´
rppτN q

pτ2N

˙

´
τ

wpτq

ˆ

1´
rpτq

τ2

˙

ą 0,

which is a contradicting conclusion. Hence, P rpτN “ τ s Ñ 1 as N Ñ8.

Assumption E2 assures that the values of changes have to be large enough compared to the variability
of the random noise in the panels and to the strength of dependencies within the panels as well. Assump-
tion E3 is needed to control the asymptotic boundedness of the variability of 1

wptq

řN
i“1

řt
s“1pYi,s ´

sYi,tq
2,

because a finite T cannot do that.
Assumptions E2 and E3 are satisfied for 0 ă δ ď δi ă ∆,@i (a common lower and upper bound for the

change amount) and suitable σ, rptq, and wptq. The monotonicity Assumption E1 in not very restrictive at
all. For example in case of independent observations within the panel (i.e., rptq “ t) and weight function
wptq “ tq, q ě 2, this assumption is automatically fulfilled, since sequence tt1´q ´ t´quTt“2 is decreasing.
This also gives us an idea how to choose weights wptq.

If one is interested in sensitivity of the change point estimate (i.e., what is the size of the change that
can be estimated), let us consider the following model scenario: T “ 10, τ “ 5, σ “ 0.1, independent

observations within the panel, and wptq “ t2. Then, Assumption E2 is satisfied if 1
N

řN
i“1 δ

2
i ą 0.029 for

all N ě N0. In case of a common value of δ “ δi for all i, we need δ ą
?

0.029 « 0.170.
Assumption E2 can be considered as too complicated. Therefore, one can replace it by the following

simpler, but more restrictive assumption.

Assumption E5.

lim
NÑ8

1

N

N
ÿ

i“1

δ2i “ 8.

On one hand, this assumption might be considered as too strong, because a common fixed (not depending
on N) value of δ “ δi for all i does not fulfill Assumption E5. On the other hand, Assumption E5 is
satisfied when δ2j {N Ñ 8 as N Ñ 8 for some j P N and δi “ 0 for all i ‰ j. This stands for a situation
when all the panels do not change in mean except one panel having a sufficiently large change in mean
with respect to the number of panels.

Various competing consistent estimates of a possible change point can be suggested, e.g., the maximizer

of
řN
i“1

”

řt
s“1pYi,s ´

sYi,T q
ı2

. To show the consistency, one needs to postulate different assumptions on the

cumulative autocorrelation function and shifted cumulative correlation function compared to Theorem 6.3
and this may be rather complex.
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Reply to Doc. RNDr. Zuzana Prášková, CSc.

Question from Chapter 6

I agree with the first two remarks. The above stated correction clarifies the issues.
Regarding the third remark, the coincidence of the asymptotic distributions from Theorem 6.1 and

Theorem 6.6 is clear due to the last line of the proof of Theorem 6.7 and the proof of Theorems 6.1
(definitions of UN ptq and VN ptq) and Theorem 6.6 (definitions of pUN ptq and pVN ptq). Alternatively, one may
derive the law of Xs ´

s
tXt from Theorem 6.1 and the law of Xs ´ s

tXt from Theorem 6.6 in case T “ τ
(i.e., under H0). After some calculation, one concludes that these two distributions are the same.

R software was used for all computations, simulations, and data analyses. The source code is not
directly provided, however algorithms are included for all resampling methods used in the thesis. These
algorithms are independent on programming language. For other computations, simple and standard
methods are used (e.g, when computing rejection rates) and the test statistics are evaluated directly as
prescribed by mathematical formulas.

I agree that there are some typos:

� 506: It should be δ “ 1 and δ “ 2 instead of δ “ 0.1 and δ “ 0.2.

� There is doubled bibliography entry “Hušková et al (2008)”.
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