
Charles University in Prague 

Faculty of Science 

 

Ph.D. study program: Biochemistry 

 

 

 

Mgr. Anna Kádková 

 

Functional and structural study of thermally activated TRP ion channels: 

The role of evolutionarily conserved motifs in the TRPA1 modulation 

 

 Studium funkce a struktury teplotně aktivovaných TRP iontových 

kanálů: Role evolučně konzervovaných motivů v modulaci TRPA1 

 

Doctoral Thesis 

 

Supervisor: RNDr. Viktorie Vlachová, DrSc. 

 

Prague 2016 

  



2 
  

 

 

 

 

 

 

 

 

 

 

 

Declaration 

I declare that I have worked on this thesis under the guidance of my 

supervisor and that all sources of the previous knowledge are properly cited. 

No part of this work was used and will not be used for obtaining any other 

academic degree than Ph.D. from Charles University in Prague. 

 

In Prague, 26th July 2016 

 

 

Mgr. Anna Kádková 

 

 

 



3 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration of authorship 
 
I declare that Anna Kádková contributed significantly to the experiments and 

to all 4 scientific publications contained in this doctoral thesis. She performed 

most of the experiments, substantially contributed to their planning, and took 

a significant part in the primary data interpretation and their preparation for 

the publication. 

 

In Prague, 26th July 2016 

 

 

RNDr. Viktorie Vlachová, DrSc. 

 

 

 



4 
  

Acknowledgements 

 
First, I would like to express my gratitude to my supervisor Viktorie 

Vlachová for her patience, support, advice and encouragement. Thanks to her 

I could work independently, attend international scientific meetings and gain 

professional experience in our partner laboratory in the UK. Joining her group 

was one of the best decisions I have ever made. 

I also thank my colleagues Lucie Zímová, who taught me the patch clamp 

technique and helped me much when I started in the lab, and Lenka Vyklická, 

who was always ready to give me advice on anything I needed. I really 

appreciate all members of the Department of Cellular Neurophysiology, 

namely Ivan Dittert and Jan Krůšek for their willingness to solve technical 

problems with me and our excellent lab technician Magdaléna Kuntošová for 

her constant support. 

I am really grateful for the opportunity to work with our undergraduate 

students Jana Vašková and Viktor Synytsya. I would like to emphasize our 

inspiring discussions and pleasant collaboration.  

Last but not least I would like to thank my parents for their patience and 

support during my university studies and my beloved husband, with whom 

I can share my enthusiasm for science.  

 

 

 

 

 

 

 

 

 



5 
  

ABSTRAKT 

Ankyrinový receptor TRPA1 je iontový kanál exprimovaný převážně na primárních 

aferentních senzorických neuronech, kde působí jako polymodální senzor pro bolestivé 

a dráždivé podněty. Kromě chemických látek (např. isothiokyanáty, skořicový aldehyd 

a jeho deriváty, akrolein, menthol) může být aktivován chladem, depolarizací 

membránového potenciálu nebo vápenatými ionty z intracelulární strany. 

Iontový kanál TRPA1 je homotetramerem podjednotek, jež jsou topologicky 

uspořádány do transmembránové oblasti a cytoplazmaticky orientovaných N- a C-konců. 

Transmembránová oblast je tvořena šesti alfa-helixy propojenými intra- a extracelulárními 

kličkami. N-konec receptoru se vyznačuje přítomností 16 až 17 ankyrinových repetic 

(AR), zatímco C-konec je výrazně kratší a má převážně helikální strukturu. Přesná 

struktura TRPA1 byla částečně rozřešena roku 2015 pomocí kryo-elektronové 

mikroskopie, avšak funkční úloha jednotlivých oblastí v polymodální aktivaci receptoru 

není prozatím plně objasněna. 

Předkládaná disertační práce se zabývá úlohou mezidruhově konzervovaných 

strukturních a sekvenčních motivů v cytoplazmatických koncích a v S4-S5 oblasti TRPA1 

v napěťové a chemické citlivosti receptoru. Pomocí homologního modelování, 

molekulárně-dynamických simulací, bodové mutageneze a elektrofyziologických technik 

bylo popsáno možné vazebné místo pro vápenaté ionty, jež jsou nejdůležitějšími 

fyziologickými modulátory TRPA1. Dále byla navržena hypotéza, pomocí níž byla 

vysvětlena molekulární podstata dědičného onemocnění “familiálního epizodického 

bolestivého syndromu”, které je způsobeno bodovou mutací N855S v S4-S5 oblasti 

receptoru. Nejnovější studie, jež je součástí této práce, byla zaměřena na objasnění funkční 

úlohy T/SPLH motivů v ankyrinových repeticích AR2, AR6, AR11-13 na aminovém konci 

v modulaci TRPA1 receptoru. 

 

Klíčová slova: Ankyrinový receptor (TRPA), C-konec, N-konec, S4-S5 oblast, strukturně-

funkční vztah, vápenaté ionty, napěťově závislé vrátkování, bodová mutace. 
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ABSTRACT 

Ankyrin receptor TRPA1 is an ion channel widely expressed on primary afferent 

sensory neurons, where it acts as a polymodal sensor of nociceptive stimuli. Apart from 

pungent chemicals (e. g. isothiocyanates, cinnamaldehyde and its derivatives, acrolein, 

menthol), it could be activated by cold temperatures, depolarizing voltages or intracellular 

calcium ions.  

TRPA1 channel is a homotetramer in which each subunit consists of cytoplasmic 

N and C termini and a transmembrane region. The transmembrane part is organized into 

six alpha-helices connected by intra- and extracellular loops. The N terminus comprises 

a tandem set of 16 to 17 ankyrin repeats (AR), while the C terminus has a substantially 

shorter, dominantly helical structure.  In 2015, a partial cryo-EM structure of TRPA1 was 

resolved; however, the functional roles of the individual regions of the receptor have not 

yet been fully understood. 

This doctoral thesis is concerned to elucidate the role of highly conserved sequence and 

structural motifs within the cytoplasmic termini and the S4-S5 region of TRPA1 in 

voltage- and chemical sensitivity of the receptor. The probable binding site for calcium 

ions that are the most important physiological modulators of TRPA1 was described by 

using homology modeling, molecular-dynamics simulations, site-directed mutagenesis and 

electrophysiological techniques. Next, the molecular mechanism of a heritable disorder 

called “familial episodic pain syndrome”, which is caused by a point mutation within the 

S4-S5 region, has been proposed. The latest study was focused on the functional role of 

T/SPLH motifs within the N-terminal ankyrin repeats AR2, AR6 and AR11-13 in the 

TRPA1 modulation. 

 

Key words: Ankyrin receptor (TRPA), C terminus, N terminus, S4-S5 region, structure-

function relationship, calcium ions, voltage-dependent gating, point mutation. 
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1. Introduction 

Transient Receptor Potential (TRP) channels represent a relatively ancient family of 

cation channels that have been found in many eukaryotic organisms except for plants1. 

They are expressed in both excitable and non-excitable tissues where they play key roles in 

sensory signal transduction (such as nociception, chemical and temperature sensation or 

taste transduction) and homeostatic functions (e. g. Ca2+ and Mg2+ reabsorption or 

osmoregulation). In particular, the thermosensitive TRP channels have been intensively 

studied for their polymodal activation in nociceptive pathways since 1997, when the first 

member, the vanilloid receptor TRPV1, was identified2. 

Mammalian TRPs are encoded by 28 genes and classified into six subfamilies 

according to their sequence homology: canonical (TRPC), vanilloid (TRPV), polycystin 

(TRPP), melastatin (TRPM), ankyrin (TRPA) and mucolipin (TRPML)3,4. In spite of little 

sequence homology among subfamilies, TRP channels exhibit a similar membrane 

topology, which is characterized by tetrameric organization of receptor subunits. Each 

subunit contains six transmembrane helices (S1 - S6) with a pore-forming loop between S5 

and S6 and cytoplasmically located N and C termini5.  

The TRPA1 receptor is the only member of mammalian ankyrin subfamily. This non-

selective cation channel was first cloned from human fibroblasts in 19996, however, its role 

in nociception was first described in 20037. Since then, a large amount of chemical 

activators and inhibitors of TRPA1 have been identified and synthetized for its potential 

role in inflammatory and neuropathic pain. In addition, mutations within the Trpa1 gene 

cause heritable pain disorders such as familial episodic pain syndrome8 and paradoxical 

heat sensation in neuropathic patients9. Despite more than a decade of intensive research 

on TRPA1, the molecular mechanisms of channel gating remain largely unknown. This 

thesis focuses on the functional and structural role of the TRPA1 cytoplasmic termini and 

the S4-S5 linker in agonist- and voltage-induced gating, and calcium-dependent 

modulation. 
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2. Literature review 

 

2.1. Physiological role of temperature-sensitive TRP 

channels 

The ability to detect harmful and irritating stimuli is essential for the survival of all 

living organisms. Therefore, various mechanisms for recognizing harmless stimuli from 

the life threatening have evolved. The processes of transduction and transmission of 

painful signals are called nociception. In animals, the nociceptors in primary afferent 

sensory neurons specifically respond to noxious stimuli by converting them to electrical 

signals, which are transferred to the central nervous system to produce pain. Myelinated 

Aδ-fibers and unmyelinated C-fibers are the two main nociceptors, which have cell bodies 

in the trigeminal, dorsal root and nodose ganglia and terminate as free nerve endings in 

peripheral tissues such as skin10. Apart from the detection of painful stimuli, these fibers 

are involved in mechanical and thermal detection. The chemical, thermal or mechanical 

signals are transduced into action potentials by specialized receptors that are expressed in 

the free nerve endings. Transient Receptor Potential (TRP) channels have been identified 

as one of the groups of key molecular transducers of thermal and painful stimuli. 

In humans, twenty seven TRP channels are expressed in diverse types of cells and 

tissues. Among them, eleven were described as temperature-sensitive: vanilloid receptors 

TRPV1 – TRPV4, melastatin receptors TRPM2, TRPM3, TRPM4, TRPM5 and TRPM8, 

TRPA1 and TRPC511–13. These so called “thermoTRPs” display distinct thermal 

thresholds. TRPV3 and TRPV4 are sensitive to moderate temperatures (25 – 35 °C)14–16 

while the capsaicin receptor TRPV1 to noxious hot temperatures above 43 °C2,17. The 

thermal threshold for the activation of the TRPV2 channel, which is structurally similar to 

TRPV1, is even above 52 °C18. Melastatin receptors TRPM2 – TRPM5 were described as 

heat sensors12,19,20 whereas TRPM8 and TRPC5 are known to be activated by cold. The 

temperature threshold for TRPC5 activation is between 37 and 25 °C21 while TRPM8 

receptor is activated by cooling agents such as menthol and icilin and noxious cold 

temperatures below 25 °C22–24 (Fig. 1, p. 12). 

The TRPA1 protein was cloned as one of the last members of the TRP channel family 

in 20037, which implies that the ankyrin family is still not as properly described as the 

other TRP families. As yet, it cannot be unambiguously decided if TRPA1 is a cold or a 
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isoforms of TRPA1 can also be activated by heat. Drosophila melanogaster orthologue 

(dTRPA1) functions as a thermotaxis and temperature preference control in both larvae42 

and adult flies43. Mosquitos TRPA1 receptors were evolved to sense warm-blooded 

animals44. Surprisingly, both isoforms of zebrafish TRPA1 do not exhibit temperature 

activation at all45. In spite of the fact that different TRPA1 orthologues do not exhibit the 

same temperature sensitivity, all of them can be activated by pungent chemical 

compounds. This probably means that the primary evolutionary role of TRPA1 was the 

detection of harmful substances and its sensitivity to temperature stimuli evolved later as 

a consequence of selective pressure (Fig. 2, p. 13). 

 

2.3. Inflammatory pain and sensitization of TRPA1 by 

signaling pathways 

As has been mentioned before, nociceptive pain is primarily a physiological protective 

mechanism. After a tissue damage caused by an injury, a burn, an infection, or a tumor, 

peripheral sensory system is stimulated. As a secondary effect, an inflammatory reaction 

follows to protect the organisms against further damage. Inflammatory mediators such as 

bradykinin, prostaglandins or glutamate are depleted to activate neuronal and non-neuronal 

cells on site of damage. Several components of this inflammatory soup activate a subset of 

primary afferent sensory neurons expressing ion channels including TRPA1, which release 

pro-inflammatory neuropeptides, calcitonin gene-related peptide (CGRP) or substance P. 

These neuropeptides enhance the immune cell activation and recruitment, and promote 

a hypersensitivity to thermal, chemical and mechanical stimuli46,47.  

The TRPA1 channel is regarded as a key regulator of neuropeptide release and 

neurogenic inflammation. Despite a direct activation of TRPA1 by some endogenous 

inflammatory neuropeptides (such as cyclopentenone prostaglandins), the receptor can also 

be activated indirectly by an increased concentration of intracellular Ca2+ provoked by the 

interaction of inflammatory mediator bradykinin with one of the G protein-coupled 

receptors (GPCR) called B2 receptor. Stimulation of B2 receptor initiates the phospholipase 

C (PLC) pathway: PLC breaks down phosphatidylinositol bisphosphate (PIP2) into 

diacylglycerol (DAG) and inositol triphosphate (IP3). Diacylglycerol either activates 

protein kinase C (PKC) or it can be converted into polyunsaturated fatty acids, such as 

arachidonic acid, by DAG lipase. Inositol triphosphate, in turn, induces depletion of 

calcium ions from the intracellular stores in endoplasmic reticulum (ER)29,48,49. Calcium 
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PAR2 by proteases within its extracellular N terminus, the receptor stimulates its Gαq 

subunit, which activates PLC pathway52 (Fig. 3, p. 15).  

 

2.4. Heritable disorders of pain sensation: The role of 

TRPA1  

Generally, TRP channels are associated with physiological and pathophysiological 

pain. However, the molecular mechanisms of cold or heat hyperalgesia, allodynia or 

paradoxical temperature sensation have not yet been fully understood.  

Inherited neurological disorders caused by mutations in various ion channels are 

associated with diverse pathological pain states. In case of TRPA1, two heritable pain 

disorders (also called channelopathies) caused by point mutations in the Trpa1 gene have 

been described.  

The first pain-associated channelopathy  that was identified in one Colombian family 

(South America) by Kremeyer et al. in 2010 is called familial episodic pain syndrome8. 

This rare autosomal-dominant syndrome is characterized by episodes of intense upper 

body pain usually triggered by fasting, fatigue or cold temperatures. Outside the episodes, 

no altered pain sensitivity was reported. After a genome-wide linkage scan, the mutation of 

asparagine 855 to serine (N855S) located in the linker between the fourth and fifth 

transmembrane helices (S4-S5 linker) of TRPA1 was identified.  

Heterologously expressed N855S mutant was characterized by using whole-cell 

electrophysiology. The mutant exhibited 4-fold increase in inward current than wild-type 

channel (WT) while the outward currents remained unchanged. This result is consistent 

with the observed pain syndrome. 

Another variant of TRPA1 channel E179K is associated with paradoxical perception of 

cold stimuli in neuropathic pain patients9. Functional in vitro analysis confirmed that 

E179K mutant is not activated by cold although it is widely expressed in both cold- or 

heat-treated cells. The loss of cold sensitivity of TRPA1 with a lysine at position 179 was 

explained as a disturbance in ability to form oligomers. 
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2.5. Structure of the TRPA1 channel 

The TRPA1 channel, similarly as the other TRP channels, shares a resembling 

membrane topology as the voltage-gated potassium (Kv) channels. Molecular structure of 

a subunit of the human TRPA1 receptor is formed by 1,119 amino acid (AA) residues, and 

consists of the cytoplasmically oriented amino- and carboxy-termini and six 

transmembrane helices. The TRPA1 ion channel is usually formed by a symmetric 

homotetrameric organization of these subunits in plasma membrane. However, 

heterotetrameric forms of TRPA1 with TRPV1 channels have also been described in vitro 

and in vivo53,54.  

The three-dimensional structure of any of the TRP channels has not been resolved for a 

long time because the crystallization of the transmembrane parts of membrane proteins still 

remains a rather difficult task. In 2011, the first structural information about the mouse 

TRPA1 was obtained by single-particle electron microscopy (EM)55. The resolution was 

not very high, only about 16 Å. However, the proportions of the individual parts of the 

channel protein have been predicted by using primary sequence analysis. According to 

these results, TRPA1 is a homotetrameric structure. The 3D density map revealed 

a transmembrane and a cytoplasmic region, which is organized in a compact structure 

reminding “a hanging basket” and, unlike the other TRP proteins, forms a central cavity. 

The transmembrane part is formed by 22% of amino acids, the N terminus by 64% and the 

C terminus by 14% of amino acids. The resolution, however, was not sufficient for 

determining the molecular interactions between the individual residues (Fig. 4A, p. 18).  

Most recently, a structure of the human TRPA1 at a 4.2 Å resolution has been 

published56. The authors used an originally developed method of reconstruction of single-

particle electron cryo-microscopy (cryo-EM) data similarly as two years earlier when they 

resolved a near-atomic structure of the related protein TRPV157,58. Unlike the TRPV1 

structure, the structure of TRPA1 was obtained only for a closed state of the channel. Due 

to the presence of highly flexible regions, the high-resolution structure of the TRPA1 

includes the region from Lys446 to Thr1078, which represents about 50% of the protein 

(Fig. 4B, 4C and 4D, p. 18). However, thanks to the new structure, many previous 

observations on TRPA1 can be explained in a structural context and may contribute to 

understanding of molecular activation mechanisms of TRPA1.   
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2.5.1. Transmembrane region of TRPA1 

The transmembrane domain is the most conserved region among TRP channel proteins. 

Each subunit of TRPA1 consists of six transmembrane helices (S1-S6) that are connected 

with extra- and intracellular loops while the helices S5 and S6 together with the S5-S6 loop 

comprise the central pore of the ion channel. The detailed structure of the linkers between 

S1-S2, S2-S3 and S3-S4 has not yet been resolved but the S4-S5 linker is formed by 

a single α-helix. The tetrameric architecture of the TRPA1 transmembrane domain is 

similar to TRPV1 and, in general, voltage-gated channels: transmembrane helices S1-S4 

form a “bundle” and this so-called sensor domain is in contact with S5 and S6 helices of 

the neighboring subunit, which forms a domain-swapping structure57,59–61 (Fig. 5A, p. 20).  

The outer pore domain of TRPA1 contains two pore helices unlike the TRPV1 channel 

with a single pore helix56,57. The selectivity of TRPA1 for mono- and divalent cations is 

determined by a selectivity filter (AA sequence 914GDI916), which is located between the 

two pore helices62. According to the new structural model, the aspartate D915 forms the 

upper gate of TRPA1. The restriction point between two diagonally opposed D915 

residues is 7 Å wide, which indicates that the upper gate is wide enough to accommodate 

partially dehydrated calcium ions63. The lower gate of TRPA1 is formed by two 

hydrophobic residues isoleucine I957 and valine V961 that are located at the lower part of 

the S6 helix (Fig. 5B, p. 20). The constriction between them (6 Å) is sufficient to block 

conduction of rehydrated cations56.  

The gating mechanisms of TRPA1 have been intensively studied, however, they have 

not yet been fully understood. Several mutagenesis studies have been performed to identify 

residues within the pore region, which could be involved in the channel gating. A non-

polar residue leucine L906 within the first pore helix of mouse TRPA1 plays an important 

role in the voltage-dependent activation and inactivation64. Residues G958 and G962 

located within the S6 helix in the vicinity of the lower gate of TRPA1 correspond to a bi-

glycine motif G(X)3G in voltage-gated calcium channels Cav1.2 and Cav2.365. Mutations of 

these two glycines may narrow the pore size and affect the ion permeation properties of 

TRPA1. Also, proline P949 is structurally required for opening and closing of the 

channel66.  

Various studies based on homology modeling and molecular dynamics (MD) 

simulations have been performed to find out the gating mechanisms of TRP channels by 

comparison with Kv channels. The authors of the most recent one compared the 
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solvation of the sensor. The lower vestibule of TRPV1 is splayed open and occupied by the 

polar face of the C-terminal TRP helix. The upper part of the vestibule, on the contrary, is 

densely packed with the aromatic and hydrophobic residues and rather unsolvated. The 

authors mean that the asymmetric solvation of the sensor domain is likely to be 

a conserved feature of TRP channels (Fig. 5C, p. 20). In addition, the S4 helix of TRPV1 

contains only one positively charged residue corresponding with a weak voltage-sensitivity 

of TRPs. 

On the other hand, the structural models suggest that the TRP pore helix is a highly 

dynamic structure, which could act as a fundamental gating feature of most TRPs. This 

idea is supported by the three structures of TRPV1 in different conformations where the 

pore helix shows a different location in each conformation. Another important gating 

element is the transmembrane helix S6, which seems to be flexible due to its distortion 

around a tyrosine residue in the middle of the helix. The distorted conformation of S6 is 

probably stabilized by an interaction with the bottom part of S5. During the channel 

opening, the aforementioned motion of the pore helix is probably translated into pore 

gating by enhancing the relative stability of S6 backbone hydrogen bond networks58,61.  

Importantly, the new structure of TRPA1 revealed an analogous distortion of its S6 

indicating a similar gating mechanisms of both channels. In TRPA1, the antagonist binding 

site is located within the S5 helix in the vicinity of a helical distortion of S6, suggesting 

that the subtle conformational changes around the helical defect could promote 

a displacement of some of the pore-lining residues56,61. However, some differences 

between TRPV1 and TRPA1 channel gating could be expected because of the presence of 

two pore helices in the TRPA1 structure. Furthermore, the structure of TRPA1 in an open 

state with a bound agonist still has to be elucidated. 

 

2.5.2. Amino terminus of TRPA1 

The N-terminal part of TRPA1 constitutes more than a half of the protein size (720 of 

1119 amino acids in a human orthologue). It is characterized by a prominent ankyrin repeat 

domain (ARD; residues 1-649) consisting of a tandem array of 16 or 17 ankyrin repeats 

(ARs) and a linker region connecting the ARD with the fist transmembrane segment55,56,67. 

The ankyrin repeat is a common structural motif, typically of 33 amino acid residues, 

which forms an anti-parallel helix-turn-helix structure followed by a β-hairpin loop. Five 

of seventeen ARs of human TRPA1 contain a tetrapeptide motif T/SPLH, which is highly 
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Ankyrin repeat-containing proteins can be divided into two categories. The first one is 

characterized by a small set of four to seven ARs forming a structural domain. Among the 

TRP proteins, vanilloid receptors with five or six and canonical TRPs with four or five 

amino terminal ankyrin repeats fit into this group. Ankyrin and no mechanoreceptor 

potential C (TRPN) TRP channels, on the contrary, contain a high number of ARs (16 – 

29). The TRPN channels are expressed in non-mammalian organisms and they are 

implicated in mechanosensation73. The ankyrin domain of TRPN channels consists of 29 

ARs and it is predicted to have an elongated coil shape, which probably acts as a spring 

that directly senses mechanical stimuli74. Similarly, the TRPA1 protein in mammals is 

widely expressed in the hair cells of the inner ear, which makes it a candidate for the 

mechanosensitive channel responsible for transduction of acoustic stimuli into electrical 

signal75. However, this hypothesis was disproved by two independent studies where was 

shown that TRPA1 knock-out mice were not hearing-impaired26,27. Although TRPA1 does 

not act as a mechanotransducer in hearing, its role in mechanosensation was confirmed in 

mouse nerve-skin preparations26. 

The recent structural analysis of the human TRPA1 brought a new insight into the N-

terminal ARD organization. The distal N terminus (AR1-AR11) has not been precisely 

resolved in the structure suggesting its flexibility, which could be mediated by AR10. The 

sequence of AR10 deviates from the consensus: two prolines probably disrupt the second 

helix and form a kink. On the contrary, the proximal N terminus (AR12-AR17 and the 

linker-region) has been described as a well-resolved convex “stem”. Secondary structure of 

the linker region consists of two helix-turn-helix motifs connected to each other by 

a putative β-strand and the second helix-turn-helix is connected to the pre-S1 helix. The 

structural model also indicates the side chain interactions of AR12 with the C-terminal 

coiled-coil domain as well as interaction of AR16 with the first helix-turn-helix56 (see Fig. 

7A and 7B, p. 26).  

The N terminus has long been known to be an immediate detector and integrator of the 

TRPA1 activation stimuli. Initial mutagenesis studies proposed that membrane-permeable 

electrophilic molecules react with free sulfhydryl groups on specific cysteines and the 

primary amine of lysines (C621, C641, C665, K710 in human and C415, C422 and C622 

in mouse), inducing conformational changes leading to channel opening76,77 (Fig. 6B, 

p. 22). According to the structure of hTRPA1, the cysteines essential for binding 

electrophiles are solvent-accessible. However, even if the samples used for the structure 
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were exposed to allyl isothiocyanate, neither expected cysteine adducts, nor the channel 

opening were observed56,67.  

Alternatively, the cysteine residues can be involved in forming disulphide bonds. Four 

combinations of disulphide bonds in mouse TRPA1 have been identified by mass 

spectrometry: cysteine C666 with C622, C463 and C193, respectively, and C622 with 

C609. The authors hypothesized that the disulphide bonds may play a protective or 

regulatory role in the activation or desensitization mechanism of TRPA178 (Fig. 6B, p. 22).  

The AR12 contains a sequence EF-hand-like motif (AA 468 – 480) which has been 

thought to regulate TRPA1 activity through binding the intracellular Ca2+ ions31,50. 

However, this hypothesis has been disputed because the Ca2+-dependent activation 

mechanism is not much influenced by the mutations within the EF-hand-like motif while 

the deletion of this motif  disturbs trafficking of TRPA1 to the plasma membrane62,79.   

A systematic study based on a series of chimeras between rattlesnake and human 

TRPA1 revealed that an AR cluster centred around AR11 acts as an important determinant 

of Ca2+-dependent desensitization37. This work has also proposed two spatially distinct, 

independent and transferable N-terminal AR modules: the primary module (AR10-AR15) 

and the enhancer module (AR3-AR8). Each module is capable of conferring thermal or 

electrophilic sensitivity to the respective, otherwise insensitive orthologue (Fig. 6B, p. 22). 

In addition, AR6 is uniquely sensitive to changes in the coupling of temperature stimuli to 

the channel gate, and a single-point mutation S250N in AR6 induced heat- instead of cold-

activation without changing the sensitivity to chemical agonists in mouse TRPA180. 

Most recently, the N terminus of TRPA1 has been shown to be surprisingly dispensable 

for a functional channel34. After a deletion of the ARD (Δ1-688) of human TRPA1 and its 

reconstitution into a planar lipid bilayer, the channels remained functional and sensitive to 

electrophilic and non-electrophilic agonists and cold temperatures. Moreover, any 

accessory proteins or calcium ions do not seem to be required for the ARD-deleted channel 

activation. Thus, the functional role of the N terminus now appears to be less clear than 

previously assumed and may consist of forming multi-ligand binding sites, interacting with 

other proteins, including self-association with other non-contiguous structures of the 

TRPA1 channel homotetramer71, the proper targeting of the protein into the plasma 

membrane34,79, and, importantly, in the direct regulation of the channel’s gating34. 
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2.5.3.  Carboxy terminus of TRPA1 

The C terminus is the smallest part of TRPA1. Initially, six α-helical segments within 

the C terminus were predicted from primary sequence: two longer helices H1 (I964 – 

K989) and H4 (L1040 – K1071) and four shorter helices H2 (W993 – V998), H3 (L1016 – 

F1022), H5 (D1089 – Q1095) and H6 (W1103 – K1111)81. According to the new structural 

model, the proximal C terminus is divided into a TRP-like domain, a putative β-sheet and 

a long coiled-coil. The structure of the distal C terminus has not been resolved yet56.  

The TRP-like domain shows a structural similarity with an α-helical TRP domain 

containing a TRP box, which is a characteristic consensus sequence motif (EWKFAR) of 

many TRPs from vanilloid, canonical and melastatin families82. Similarly as a vanilloid 

TRP domain, the TRP-like domain of TRPA1 is running from S6 helix beneath the S4-S5 

linker and interacting with the pre-S1 helix and the second helix-turn-helix (Fig. 7C, p. 26). 

Although the TRP box has never been predicted in ankyrin family71, the helical TRP-like 

domain could play an important role in channel gating similarly as in TRPV1. This idea 

can be supported by a previous study, where the mutations of positively charged residues 

in the vicinity or within the TRP-like domain (namely R975, K988 and K989) affected 

voltage-dependent gating of TRPA181. 

A newly discovered tetrameric coiled-coil domain is located below the central pore. 

Four α-helices (residues E1043 – Q1070) from each subunit of the TRPA1 tetramer 

interact together through the isoleucine and glutamine residues, which could have either 

a destabilizing (interaction of residues I1044 and Q1047) or a stabilizing effect (I1065 and 

Q1061) on the structure through intra-planar hydrogen bonds56,83. Unlike most coiled-coils, 

the residues on the exterior surface of TRPA1 coiled-coils are often hydrophobic or 

aromatic, which allows the interaction of the C-terminal coiled-coil with the 

aforementioned ankyrin repeats.  

Some physiological studies have previously described the effects of inorganic 

polyphosphate on TRPA1 currents in excised membrane patches62,84. During the 

purification process, inositol hexakisphosphate (IP6) has been used to stabilize the TRPA1 

structure. The negatively charged IP6 interacts with positively charged residues K1046 and 

K1050 from one coil and K1048 and K1052 from an adjacent coil. Furthermore, inositol 

hexakisphosphate helps to prevent the destabilizing effect of glutamine Q1047 through its 

coordination with neighboring K1046 and K104856. As previously shown, mutations of the 
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2.6. Modulation of TRPA1 by post-translational 

modifications 

TRPA1 is likely to be modulated by phosphorylation. As has been mentioned above, 

the function of the receptor can be modulated by polyphosphates and signaling cascades, 

whose components are protein kinases PKC and PKA49. Although the post-translational 

modifications of the TRPA1 protein have not been reported yet, the regulation of a channel 

expression and function can be expected because of a cross talk between TRPA1 and 

TRPV1 receptors85.  

In addition to phosphorylation by kinases PKC and PKA, the TRPV1 receptor has been 

reported to be phosphorylated by the cyclin-dependent kinase 5 (Cdk5). Cdk5 is 

predominantly expressed in neuronal tissues where it is involved in several cellular 

processes such as regulation of cytoarchitecture in the central nervous system, regulation 

of neuronal migration, axon guidance, synaptic structure and plasticity or membrane 

transport86.  

Cdk5 belongs to the large group of cyclin-dependent kinases, however, it is neither 

activated by cyclins, nor does it participate in the cell cycle progression. Instead, 

association of Cdk5 with p35 (or its splice variant p25) and/or p39 proteins is required for 

activation of the kinase87–89. As the p35 is a membrane-bound protein, physiological 

substrates of Cdk5 are likely to be transmembrane or membrane-associated proteins. The 

mice with deleted gene for Cdk5 and p35/p39 double knock-out mice have been shown to 

be embryonically lethal with neuronal migration defects, indicating that the kinase and its 

adaptor proteins are required for normal development90–92. 

Cdk5 is a protein-directed kinase that phosphorylates serine or threonine residues 

located immediately next to a proline residue. Its consensus motif is (S/T)PX(K/H/R), 

where X is any amino acid93. In TRPV1, two threonine and one serine residues correspond 

to this consensus where only threonine T407 is a target residue for Cdk594,95.  

In TRPA1, serine 448 was predicted as a candidate residue for phosphorylation. 

A peptide containing S448 was shown to be phosphorylated by Cdk5 in vitro. However, 

fluorescence experiments in the living cells brought inconsistent results96. 
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2.8. Modulation of TRPA1 by divalent cations 

TRPA1 is a non-selective ion channel permeable for both mono- and divalent inorganic 

and small organic cations. The relative permeability of the human TRPA1 channel pore has 

been determined by using single channel recordings in the presence of an agonist AITC: 

 

Ca2+ (5.1) > Ba2+ (3.5) > Mg2+ (2.8) > NH4
+ (1.5) > Na+ (1.0) ≥ K+ (0.98) > Cs+ (0.95) 109 

 

As shown above, the hTRPA1 channel is highly permeable to calcium ions. In addition, the 

Ca2+-selectivity is controlled by a conserved aspartate residue (D915) within the selectivity 

filter of TRPA162. Calcium ions are important physiological modulators of TRPA1; 

therefore the effects of Ca2+ have been intensively studied (for further information see 

section 2.8.1.).  

On the contrary, the effects of other mono- and divalent ions on TRPA1 have been 

studied much less. Barium ions have been thought to play a similar role in the TRPA1 

modulation as calcium ions because both elements belong to the second group in the 

periodic table. The authors of the study 62 showed that barium ions induced a robust 

potentiation followed by an inactivation of TRPA1 channels after a pre-application of 

cinnamaldehyde (CA). However, our results indicate that barium ions initially block 

TRPA1 and the blockage is followed by a potentiation and inactivation phases110. 

Magnesium ions, on the other hand, do not potentiate the TRPA1 responses induced by 

CA. Instead, the immediate desensitization has been observed after an application of 

extracellular Mg2+ 62. 

Interestingly, the TRPA1 channel is modulated by zinc cations. Zinc is an essential 

heavy metal required for structure and function of over 300 proteins and its deficiency can 

lead to a variety of clinical manifestations. On the other hand, the overexposure to Zn2+ can 

lead to pain and inflammation. A thorough mutagenesis study identified N-terminal 

cysteine C614 and C-terminal cysteine C1021 and histidine H983 residues in mouse 

TRPA1 to be involved in Zn2+ binding. The TRPA1 sensitivity to zinc ions is high, as low 

nanomolar concentrations activate the channels and modulate their sensitivity111. In 

addition, even very low concentrations of Zn2+ augment TRPA1 responses induced by 

calcium ions about 3-fold than Ca2+ themselves110. The exact mechanism of this effect, 

however, remains unknown. 
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2.8.1. Activation and inactivation (desensitization) of TRPA1 by 

calcium ions  

The importance of Ca2+ ions for the TRPA1 channel functioning was recognized 

together with the channel identification7. The intracellular Ca2+ from the endoplasmic 

reticulum or calcium ions passing through the channel pore from the extracellular space 

can influence the most important properties of the channel: conductance, ion selectivity 

and opening probability79,103,112. Moreover, the increase of the TRPA1 surface expression 

level, which can be induced by an agonist exposure, is not observed in Ca2+-free solution 

suggesting the role of calcium ions in TRPA1 membrane trafficking113.  

TRPA1 is activated by intracellular Ca2+ ions in micromolar concentrations (EC50 = 

905 ± 249 nM) and the activation mechanism does not depend on calmodulin or other 

Ca2+-binding proteins31,50. The agonist- and voltage-induced TRPA1 currents are strongly 

amplified by the intracellular Ca2+. The potentiation of TRPA1 currents is followed by an 

inactivation, which is almost complete and irreversible and both these processes can be 

accelerated by a higher concentration of Ca2+. The potentiation and the inactivation 

(desensitization) are independent processes. The elevation of intracellular Ca2+ causes the 

TRPA1 potentiation whereas the extracellular Ca2+ are required for the inactivation62. 

However, the exact molecular mechanisms of these processes have not yet been fully 

understood.  

The negatively charged residues within a loop between the N-terminal AR12 and AR13 

have been thought to be a Ca2+-binding site in TRPA1. However, the role of this so-called 

EF-hand in both Ca2+-dependent potentiation and inactivation has been disputed by several 

studies as mentioned in section 2.5.262,79. Thus, further studies are needed to find other 

calcium-binding sites within the TRPA1 protein. 

 

2.9. Electrophysiological technique patch clamp as a tool 

for studying TRPA1 ion channels 

The main functional assay used in this thesis was the patch clamp technique. Patch 

clamp is an electrophysiological technique, which allows the recording of electrical signals 

from living cells. Membrane currents are recorded while the membrane potential is kept 

constant (or it can be changed continually or in steps). Alternatively, the cell can be 

current-clamped while observing changes in membrane voltage. This technique was 
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developed by Erwin Neher and Bert Sakmann in late 1970s and early 1980s, who received 

the Nobel Prize in Physiology or Medicine in 1991 for this discovery.  

A typical patch clamp setup consists of an inverted microscope with a fluorescence 

lamp, a micromanipulator, an antivibration table, a differential amplifier, an analog-to-

digital converter and a computer (Fig. 11A, p. 34). The setup is usually placed in a Faraday 

cage to avoid the electrical noise. 

Patch clamp recording uses two electrodes: a reference electrode placed in a bath 

solution around the cell and a recording electrode consisting of a silver electrode coated by 

a silver chloride layer placed in a glass micropipette filled with a conductive solution (Fig. 

11B, p. 34). The diameter of the micropipette tip may vary though it is usually in 

a micrometer range. More often, the resistance of the micropipette tip is measured because 

it reflects the diameter of the tip. The tip of a micropipette can be heat polished to produce 

a smooth surface that assists in forming a high resistance seal with the cell membrane. To 

obtain this high resistance seal (also called “gigaseal”), the electrode is pressed against the 

cell membrane and suction is applied. The high resistance of the seal isolates electronically 

the currents measured across the membrane patch with little competing noise. According to 

the type of experiment, the micropipette can be filled with a solution matching the ionic 

composition of the bath solution or matching the cytoplasm (for whole-cell recording). 

There are several variations of the patch clamp technique depending on the 

experimental task. The first one is called cell-attached: the tip of a micropipette is sealed 

onto a membrane to obtain a gigaseal. In this type of measurement, information about the 

current characteristics of one or several ion channels can be obtained. Next two variations 

are called “excised patch” techniques because a piece of membrane is excised (removed) 

from the cell. In the inside-out technique, the cytosolic surface of the membrane is exposed 

to the external media. The external surface of the plasma membrane is exposed to the bath 

solution in the outside-out variation. In the whole cell technique, more suction is applied to 

rupture the membrane patch, thus providing access from the interior of the pipette to the 

intracellular space of the cell. The whole cell configuration allows recording the currents 

from all ion channels of the entire cell (Fig. 11B, p. 34).  
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3. Aims of the Thesis 

 

 To elucidate the involvement of strictly conserved S/TPLH motifs within the 

N terminus of TRPA1 in voltage-, Ca2+- and chemically-induced gating. 

 

 To map the putative phosphorylation sites for cyclin-dependent kinase 5 (Cdk5) 

within the TRPA1 channel. 

 

 To clarify the structural basis of the TRPA1 related channelopathy caused by 

a gain-of-function mutation N855S within the S4-S5 linker. 

 

 To investigate the contribution of the acidic cluster in the distal C terminus of 

TRPA1 in Ca2+ - and voltage-dependent potentiation and/or inactivation of agonist-

induced responses. 

 

 To elucidate the function of the distal C terminus using truncated TRPA1 mutants. 
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4. Materials and methods 

 

4.1. Chemicals and solutions 

All of the chemicals were purchased from Sigma-Aldrich if not stated otherwise. All 

solutions were prepared using deionized water and sterilized. 

 

The extracellular bath solutions contained: 150 mM NaCl and 10 mM HEPES, with an 

added 2 mM HEDTA for the Ca2+-free solution, and 2 mM or 10 mM CaCl2 for the Ca2+-

containing solution, adjusted to pH 7.3 with NaOH, 300 mOsm.  
 

The I-V relationships were measured in the control bath solution containing 160 mM 

NaCl, 2.5 mM KCl, 1 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 10 mM glucose, adjusted 

to pH 7.3 and 320 mOsm.  

 

The whole-cell pipette solution contained the high buffer internal solution: 145 mM 

CsCl, 5 mM EGTA, 3 mM CaCl2, 10 mM HEPES, 2 mM MgATP, pH 7.3, adjusted with 

CsOH, 290 mOsm.  

 

The pipette solution containing 100 μM free Ca2+ was obtained by adding 10.24 mM Ca2+ 

and 10 mM EGTA to the internal solution. 

 

Cinnamaldehyde and allyl isothiocyanate solution was prepared prior to use from 

a 0.1 M stock solution in dimethyl sulfoxide.  

 

4.2. Cell cultures and transfection 

Human embryonic kidney 293T (HEK293T) cells were cultured in Opti-MEM I media 

(Invitrogen) supplemented with 5% fetal bovine serum as described in114.  

Cells were transiently co-transfected with 400 ng of cDNA plasmid encoding wild-type 

(WT) or mutant human TRPA1 (wild type in the pCMV6-XL4 vector, OriGene) and with 

200 ng of GFP plasmid (TaKaRa) per 1.6 mm dish using the magnet-assisted transfection 

(IBA GmbH.) technique.  
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In the experiments with Cdk5, the WT was co-expressed with Cdk5 and p25 (p35) in 

the cDNA ratio 250:250:125 (400:250:150). A 1:1 cDNA ratio was used for the co-

expression of the WT with Cdk5, p25 or p35. The plasmids pcDNA3-Cdk5-GFP, 

pcDNA3.1-P25C-GFP and pCMV-P35 were obtained from the plasmid repository 

Addgene. 

The cells were used 24–48 h after transfection. At least three independent transfections 

were used for each experimental group.  The wild-type channel was regularly tested in the 

same batch as the mutants.  

The mutants were generated by PCR using a QuikChange Site-Directed Mutagenesis 

Kit (Stratagene) and confirmed by DNA sequencing (GATC Biotech). 

 

4.3. Electrophysiology 

Whole-cell membrane currents were recorded by employing an Axopatch 200B 

amplifier and pCLAMP 10 software (Molecular Devices). Patch electrodes were pulled 

from a glass tube with a 1.65-mm outer diameter. The tip of the pipette was heat-polished, 

and its resistance was 3–5 MΩ. Series resistance was compensated by at least 70% in all 

recordings. 
The experiments were performed at room temperature (23–25 °C). Only one recording 

was performed on any one coverslip of cells to ensure that recordings were made from 

cells not previously exposed to chemical stimuli. A system for rapid superfusion and 

heating of the cultured cells was used for drug application115. Capillary of the application 

system was placed at a distance of less than 100 μm from the surface of the examined cell. 

 

4.4. Analysis of electrophysiological data 

All of the electrophysiological data were analyzed using pCLAMP 10 (Molecular 

Devices), and curve fitting and statistical analyses were done in SigmaPlot 10 (Systat 

Software Inc.). Statistical significance was determined by Student’s t-test or the analysis of 

variance, as appropriate. Differences were considered significant at P < 0.05 where not 

stated otherwise. 
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Allyl isothiocyanate as a full agonist evoked a dramatic potentiation of the TRPA1 

currents, which reached the saturation within the given 40 s (Fig. 13C, p. 39). The AITC 

induced activation was described by the mean time constant τon. The subsequent addition 

of Ca2+ to the bath solution induced only inactivation, characterized by percentage decline 

of the current at 160 s. 

Changes in rectification ratio were plotted as a function of time, calculated as absolute 

value of current at +80 mV divided by current at -80 mV for each ramp from current-

voltage relationships. 

 

4.5. Biotinylation of cell surface proteins 

The HEK293T cells were transfected with 1.5 μg of cDNA plasmid encoding wild-type 

or mutant C-terminally GFP-tagged human TRPA1 (in the pCMV6-AC-GFP vector; 

OriGene) with Lipofectamine 2000 and cultured in a 6-well plate.  

At 48 h post-transfection, cells were washed with ice-cold phosphate buffered saline 

(PBS) buffer three times and incubated with 0.5 mg/ml EZ-link Sulfo-NHS-LC-biotin 

(Thermo Scientific) in PBS for 30 min at 4 °C.  After quenching the reaction (50 mM 

glycine in PBS), the cells were homogenized and crude plasma membrane fraction was 

prepared as previously described116.  

The membrane fraction was incubated with streptavidin-agarose beads (Thermo 

Scientific) at room temperature with constant rotation for 2 hours, followed by four 

washes. The biotinylated protein fractions and the cell lysate fractions (1.5%) were 

separated using SDS/PAGE (7% SDS-polyacrylamide), followed by electroblotting onto 

PVDF membranes (polyvinylidene difluoride, Amersham, Germany).   

Immunoblots were probed with a mouse anti-GFP (1:2000; OriGene) or a mouse anti-

tubulin as a cytoplasmic marker (1:1500, Exbio) primary antibodies in TBS/Tween for 1 h 

at room temperature, and subsequently treated (1 h, room temperature) with horseradish 

peroxidase-conjugated goat anti-mouse IgG secondary antibody (1:20000, Thermo 

Scientific). Detection was done with a SuperSignal West Femto Maximum Sensitivity 

chemiluminiscent substrate (Thermo Scientific). Immunoblots were digitized and 

quantified with ImageJ 1.41v software (National Institutes of Health). 
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4.6. Homology modeling and molecular dynamics 

simulations 

Structural hypotheses in Publication 1 were tested by mapping the residues onto the 

homology models of the N-terminal ankyrin repeat domain region made using the software 

Yasara (version 15.9.6)117 in conjunction with the Swiss-Model and I-Tasser protein 

modeling servers118–124. 

Homology models and molecular dynamics simulations were performed by our 

collaborators Vlastimil Zíma and Ivan Barvík from the Faculty of Mathematics and 

Physics, Charles University in Prague. A precise description of the used methods is 

reported in Publications 2 and 3. 
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5. Results and Discussion 

 

5.1. Effects of mutations within strictly conserved 

T/SPLH motifs on the TRPA1 stability 

TRPA1 is unique among mammalian TRP channels in bearing an extensive 

cytoplasmic amino terminus (720 of 1119 amino acids) consisting of a tandem array of 17 

ankyrin repeats (AR1-AR17), and a linker that connects ARD with the first transmembrane 

segment. The recently resolved high-resolution three-dimensional structure of the TRPA1 

channel shows that AR12-AR16 is structurally integrated with the C-terminal tetrameric 

parallel coiled-coil, whereas the extended ankyrin repeats AR1-AR11 are suspended below 

the membrane and form a crescent-shaped structure.  

The molecular architecture of an ankyrin repeat consists of about 33 amino acids, 

adopting a helix-turn-helix-extended loop secondary structure topology. Five of the ARs 

contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of the consensus 

ankyrin repeat sequence contributing substantially to local conformational stability. We 

hypothesized that the strict conservation within the evolutionary conserved T/SPLH motifs 

in AR2, AR6, AR11-AR13 across different species suggests that an especially precisely 

tuned stability of these N-terminal modules is essential for the proper functioning of the 

TRPA1 channel. Thus, we constructed mutants either within the T/SPLH motif or in the 

neighboring ankyrin repeat to either stabilize (by inserting the consensus motif GxTPLH  

into the neighboring AR) or destabilize (by mutation of threonine or serine to alanine or 

aspartate) the conformation of each of the T/SPLH-containing AR.  

To characterize phenotypes of the individual mutants, we used whole-cell patch clamp 

recordings from transiently transfected HEK 293T cells and assessed their voltage-

dependent activation properties using a voltage step protocol from -80 mV to +200 mV, in 

20 mV increments. To test the chemical sensitivity of the mutants, we employed a protocol 

in which the membrane potential was ramped up each second from -80 mV to +80 mV 

(1 V/s) and 100 μM cinnamaldehyde (CA) or 100 μM allyl isothiocyanate (AITC) and 

2 mM Ca2+ solution were applied. 

Surprisingly, stabilization or destabilization of the T/SPLH consensus motifs resulted 

in very different phenotypes depending on location of the ankyrin repeat containing the 

motif within the N terminus. In addition, mutations within the T/SPLH motifs affect 
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The effect of the insertion of GxTPLH motifs into the neighboring ankyrin repeat was 

either stabilizing or destabilizing depending on the location within the N terminus as well 

as the mutations within T/SPLH motifs. Double mutation M131G/A133T in AR3 resulted 

in a gain of function phenotype, where the channel displayed significant voltage-

independent gating at negative membrane potentials (Gmin of 14 ± 1% of Gmax; n = 7), 

suggesting that the energy required to activate the pore opening is reduced. In addition, the 

double mutant M131G/A133T channels displayed much larger responses to 

cinnamaldehyde at both negative and positive holding potentials, suggesting the previously 

proposed role of the cytoplasmic N-terminal ankyrin repeat-rich region in the regulation of 

TRPA1 and identify AR2 to be a domain contributing to voltage-dependent gating (Fig. 

14B, p. 43). On the other hand, we did not observe any measurable currents through the 

N377T/F378P channels in response to either of the stimuli when we aimed to conform to 

the consensus signature by mutating a highly conserved 377NFLH motif in AR10, which 

substantially deviates from the ankyrin repeat consensus and contributes to forming a sharp 

and flexible kink before repeat 12.         

To further investigate the role of TPLH in AR6, in which both aspartate and alanine 

mutations of threonine 241 remained functional, we next constructed two additional 

mutants. The first, K239G, was anticipated to improve the ankyrin fold and allow for 

a more compact L shape of the repeat AR6. The second mutant, H244R, was designed to 

perturb AR6 by decreasing its mechanical stability125. Both the mutants yielded smaller 

currents in response to depolarizing voltages and also smaller maximal responses to 

chemical activators. This serious mutagenic impact was quite surprising in case of K239G 

mutation, which conforms to the consensus glycine two residues prior to the TPLH motif, 

most likely due to eliminating important interactions in the loop preceding AR6. 

Recently, the study of 34 implicated the N-terminal ARD region as an important gating 

modifier that may regulate the channel’s behavior in a voltage-dependent manner. Our 

results suggest that the ankyrin repeats AR2 and AR6, although sequentially distant from 

the transmembrane region, contribute to voltage-dependent gating. The recently resolved 

structure of TRPA1 provides a mechanistic explanation of how the proximal part of ARD 

can communicate with the channel gate: the information from the ARD can be transduced 

through the overlying helix-turn-helix motif of the linker region that forms a network of 

packed interactions with the TRP-like domain.  

We used a similar approach to investigate why both aspartate and alanine mutations of 

serine 448 failed to induce any currents in response to depolarizing voltages as well as to 
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While serine is statistically three times less favored than threonine in T/SPLH 

tetrapeptides68, the role of S448 in TRPA1 is likely to be specific and may be 

evolutionarily fine-tuned. As the expression level of the S448T mutant did not significantly 

differ from wild-type, we believe that the S448T mutation results in a gain-of-function by 

mainly impacting the transition between the closed and open state of the channel in a way 

that is independent of the putative voltage sensor. 

Taken together, our data support the previous suggestion that calcium-dependent 

desensitization of AITC-induced responses is specified by an AR cluster centered around 

AR1137. Moreover, we show that subtle changes in AR12 stability affect the Ca2+-

dependent desensitization to varying degrees according to the mode of chemical activation, 

and increase the voltage-independent component of TRPA1 channel gating. 

 

5.2. Conserved T/SPLH motifs as putative 

phosphorylation sites 

Except for the role in the ankyrin repeat conformational stability, the T/SPLH motifs 

may represent potential phosphorylation sites, particularly for proline-directed Ser/Thr 

kinases. Among these, cyclin-dependent kinase 5 (Cdk5) is a neuron-specific kinase of 

great functional relevance, known to regulate nociceptive signaling via the N terminus of 

the related vanilloid receptor TRPV1.  

Bioinformatics analysis of the primary sequence of human TRPA1, obtained by several 

prediction servers, predicted threonines T100, T241, T415, T484 and serine S448 to be 

consensus phosphorylation sites for Cdk5 at a high stringency level. However, our data 

suggest that the examined serine and threonine residues constituting the conserved T/SPLH 

motifs are not likely to be involved in the phosphorylation of TRPA1 because the 

phosphonull alanine mutations and phosphorylation mimicking aspartate mutations did not 

lead to opposite changes in the channel functioning. On the other hand, structural changes 

around these residues, such as the M131G/A133T double mutation, may affect 

phosphorylation at the contiguous sites. Therefore, we tested whether the co-expression of 

TRPA1 with Cdk5 and p35 protein, a Cdk5-specific activator, may modulate voltage-

dependent channel activation.  

The co-expression of p35 alone or with Cdk5 in HEK 293T cells significantly 

increased the cinnamaldehyde-evoked responses of hTRPA1 (Fig. 16A, p. 47). Thus, we 
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5.3. Structural basis of the heritable episodic pain 

syndrome 

Our second study was motivated by the previous finding of a gain-of-function mutation 

N855S within the S4-S5 linker of hTRPA1, which underlies familial episodic pain 

syndrome. From electrophysiological point of view, the N855S mutation shifts activation 

toward more negative voltages and changes the channel´s gating through a Ca2+-dependent 

mechanism, resulting in an increase in inward currents through the activated channels at 

normal resting membrane potentials. In our work, we applied homology modeling, 

molecular dynamics simulations and whole-cell electrophysiology to explore the structural 

basis of this channelopathy.  

The initial homology model of the transmembrane part of hTRPA1 was based on the 

Kv1.2/2.1 crystal structure (pdb code 2R9R), further refinement of the model was based on 

the cryo-EM structure of TRPV1 (pdb code 3J5P), as the structure of TRPA1 had not yet 

been resolved in time our experiments had been performed.  

The first model based on the Kv1.2/2.1 structure revealed an inter-subunit interaction 

between the polar glutamate residue E854 located in the S4-S5 linker in the immediate 

vicinity of N855, and lysine K868 in S5 transmembrane helix of an adjacent subunit of 

TRPA1 (Fig. 17A, p. 49). According to this finding, we hypothesized that the functional 

changes in the N855S mutant may originate, at least in part, from changes in inter-subunit 

interactions. 

TRPA1 and Kv1.2/2.1 share very low sequence similarity (about 10%), therefore, the 

TRPV1 template structure was used to confirm the proximity of the residues E854 and 

K868. The primary sequences of the transmembrane parts of both TRP channels are, again, 

not very high (about 20%) but the sequence similarity of S4-S5 linkers reaches almost 

50%. In TRPV1, R579 directly from S5 interacts directly with Q561 from the S4-S5 linker 

of the adjacent subunit. These residues are cognate to the R872 and N855 in TRPA1, 

which promotes a hypothesis that their interaction may underlie the gain-of-function 

effects observed in the N855S mutation. Therefore, another homology model was built, 

where only the S4-S5 linker of TRPV1 (Q560-R575) was replaced by the analogous 

sequence from TRPA1 (E854-K868). Inter-subunit salt bridges E854-K868 were not 

formed spontaneously during molecular dynamics (MD) simulations, yet results based on 

this model support the proximity and mutual orientation of the E854 and K868 residues. 
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currents was apparently slower (Fig. 17B, p. 49). The finding that the charge-swapping 

double mutation substantially rescues the functionality of TRPA1 supports the hypothesis 

that the spatial proximity of the two residues E854 and K868. 

We further investigated whether introducing of an additional negative charge in the 

vicinity of E854 could affect the electrostatic attraction between the residues E854 and 

K868 and thus change the channel´s gating equilibrium. Therefore, we next measured 

currents from the R852E mutant and from the R852A mutant as a control. Mutation R852E 

resulted in a gain-of-function phenotype with increased basal activity and close-to-

saturation responses to the partial agonist cinnamaldehyde (CA). Intriguingly, Ca2+ did not 

substantially potentiate the CA-induced responses and instead inactivated them faster than 

wild-type, suggesting an outstanding role for R852 in the Ca2+-dependent modulation of 

TRPA1.   

The original study, in which the N855S mutation has been identified as an origin of the 

heritable pain syndrome, described an altered Ca2+ sensitivity of this mutant8. Unlike the 

authors of this study, we identified the location of the asparagine N855 within the S4-S5 

linker of TRPA1, which was confirmed by the newly resolved hTRPA1 structure. 

According to our data, the altered calcium sensitivity of the N855S mutant may arise from 

its vicinity to the residues E854 and K868 that are involved in allosteric coupling and 

voltage sensing. In addition, the exquisite changes in voltage-dependent gating of R852 

mutants and the selective disruption of voltage-dependent gating in the charge-swap 

E854R/K868E indicate that these residues can be a part of a voltage-sensing domain of 

TRPA1. 

 

5.4. C-terminal acidic cluster is involved in Ca2+-induced 

modulation of hTRPA1 

As has been thoroughly discussed in section 2.8.1., calcium ions belong to the most 

important physiological modulators of TRPA1. Therefore, our last project was focused on 

elucidating molecular mechanisms of Ca2+-dependent potentiation and inactivation of the 

TRPA1 channel, which still remain a matter of controversy.  

The obvious candidates for a domain through which Ca2+ can modulate TRPA1 are 

acidic residues on the intracellular side of TRPA1. Within the C terminus, a highly 

conserved sequence of acidic amino acids, 1077ETEDDD1082, shares the sequence similarity 

with the Ca2+- binding domain found in the hBest1 channel126 or so-called Ca2+ bowl 
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domain of the superfamily of BK channels127. To confirm the involvement of the 
1077ETEDDD1082 motif in Ca2+- mediated modulation we used site-directed mutagenesis, 

whole-cell electrophysiology, homology modeling and molecular dynamics simulations. 

As the first step, all negatively charged residues were individually mutated to alanine, 

a neutral amino acid. Except for E1077A, none of the mutant exhibited a substantially 

decreased relative sensitivity to CA compared to WT TRPA1 (Fig. 18A top, p. 52). 

However, the kinetics of the Ca2+ -dependent potentiation was dramatically changed in four 

out of the six charge-neutralized mutants: E1073A, D1080A, D1081A and D1082A (Fig. 

18B, p. 52). Among them, the most affected mutant was D1080A. In five of ten D1080A-

expressing cells that were treated with 2 mM Ca2+ and in three out of seven cells treated 

with 10 mM Ca2+, no potentiation at all was observed within the time interval tested (3-4 

min) (Fig. 18A bottom, p. 52). Instead, the CA-induced currents decayed in the presence of 

Ca2+ to their initial value obtained before the agonist was applied to these cells. 

Interestingly, under the conditions with 100 μM intracellular calcium, the D1080A mutant 

produced robust currents in response to CA in Ca2+ -free bath solution, and after the 

addition of external 10 mM Ca2+, the currents were consistently potentiated without any 

delay. In contrast, Ca2+ -induced responses through wild-type channels dialyzed with the 

same internal solution were mostly inactivated immediately after the addition of 10 mM 

Ca2+, suggesting that the mutation D1080A most likely has an effect on Ca2+ affinity.  

This observation further supports the idea that the whole region containing the 

negatively charged cluster is structurally important and involved in the Ca2+ -dependent 

modulation of TRPA1. Therefore, we utilized MD simulations to probe the Ca2+ -binding 

capability of the acidic region from TRPA1, using Ca2+ activation apparatus of the human 

BK channel127 as the template protein (pdb code 3MT5). After replacing the stretch of 10 

consecutive residues 889QFLDQDDDDD898 in the structure of the Ca2+ -binding domain of 

BK with 10 residues from human TRPA1 (1074IISETEDDDS1083), the MD simulations 

confirmed that this region is capable of binding Ca2+. Furthermore, we showed that the two 

residues D1080 and D1082 use oxygen atoms from their side chains for direct contact with 

calcium ions, which is in a good agreement with our experimental data (Fig. 18C, p. 52).  
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performed a series of experiments, which detected altered phenotypes, but we were able to 

conclude that this particular part of TRPA1 seems to be unlikely involved in trafficking to 

the membrane. Moreover, we identified one more gain-of-function mutant T1078D whose 

sensitivity to membrane voltage was increased while its responsiveness to CA remained 

unchanged. While T1078D is located in the primary sequence far from the membrane 

proximal regions, it is unlikely a part of the voltage sensor and the observed changes in its 

voltage modulation are most likely caused by altered allosteric coupling between the 

activation sites (voltage sensor, Ca2+ sensor) and movement of the gate. However, the role 

of threonine T1078 in TRPA1 phosphorylation cannot be excluded. 

 

5.5. Functional role of the distal C terminus of hTRPA1 

As the final step of the study, we constructed two C-terminal truncation mutants, 

TRPA1-Δ20 and TRPA1-Δ26 to investigate the role of the distal part of the hTRPA1 

carboxy terminus. In the TRPA1-Δ20 mutant, stop codon was introduced at N1100, which 

removed the last predicted C-terminal α-helix H6. In the TRPA1-Δ26 mutant, stop codon 

was introduced at E1094 (within the H5 helix) to preserve the structure of the loop 

containing the calcium-binding motif 1074IISETEDDDS1083 (Fig. 19A, p. 54).  

Mutation TRPA1-Δ26 did not produce measurable currents in response to any of the 

stimuli tested, indicating an important functional role of the predicted H5 helix (Fig. 19B 

and 19C, p. 54). In contrast, the TRPA1-Δ20 truncation mutant was functional. Unlike the 

wild-type channel, this mutant exhibited strikingly slower inactivation upon the addition of 

Ca2+ while it exhibited normal degree of Ca2+ -potentiation and normal responsiveness to 

voltage and CA (Fig. 19B and 19D, p. 54). This set of experiments identified the distal 

C terminus as a critical modulatory domain of TRPA1 involved in its Ca2+ -dependent 

inactivation. 

 



 

 

 

F
i
s
b
r
a
a
(
T

 

 

 

 

Figure 19. 
inactivation
structure fo
boxed. Res
representati
and +80 m
addition of 
(A) used f
TRPA1-Δ2

 

Truncatio
n. (A) Ami
or hTRPA1
sidues muta
ive whole-c

mV. The ap
f 2 mM Ca2

for truncati
0 truncation

 

ns in C ter
no acid seq

1 is indicat
ated in this
cell current
pplication o
+ are indica
ion mutant
n mutant up

rminus rev
quence of th
ted above t
s study are
ts through w
of 100 μM
ated above.
ts. Note th
pon the addi

veal region
he distal C 
the alignme

e indicated 
wild-type h

M cinnamald
. (C and D)

he obviousl
ition of 2 m

 involved i
terminus. P
ent. The re
in bold. (B

hTRPA1 me
dehyde (CA
) Voltage-r
y slower i
M Ca2+ com

in Ca2+-dep
Predicted se
egion of in
B) Time co
easured at 
A) and sub
ramp protoc
inactivation
mpared with

54

pendent 
econdary 
terest is 
ourse of 
-80 mV 

bsequent 
col as in 
n of the 
h WT. 

4 



55 
  

6. Conclusions 

The amount of new findings in the field of TRP channels´ research has dramatically 

increased in last few years. Whereas our former studies (see Publications 2 and 3) were created 

in the time period before the cryo-EM structure has been resolved, the results of our latest 

study could be interpreted in the context of this structure. However, the latest structural model 

does not contain the most distal N and C termini of the TRPA1 protein, probably because of a 

high flexibility of these regions, thus the functional studies we performed can still bring new 

insight into the TRPA1 gating mechanisms.  

A central observation of our first study is that the most conserved N-terminal consensus 

T/SPLH tetrapeptide motifs, which initiate the helix–turn–helix conformation of the repeats 

AR2, AR6, AR11, AR12 and AR13, are required for the proper functioning of TRPA1 and 

distinctly contribute to its multimodal activation. While the stabilizing mutations of AR2 and 

its neighboring AR3 affect voltage-dependent TRPA1 channel gating, a destabilizing mutation 

within AR6, T214D, affects both voltage- and Ca2+-dependent modulation. We also show that 

strict conservation of the T/SPLH motifs in AR11-AR13 is required for functional interactions, 

and most likely not for targeting TRPA1 to the plasma membrane. 

Our results suggest that the conserved T/SPLH motifs are not likely to be phosphorylated 

by Cdk5. The only residue fulfilling the consensus requirement and upregulating the function 

of TRPA1 under phospho-mimicking conditions is T673, which is outside the ARD. Also, the 

specific result of our study that the co-expression of p35 or Cdk5 with p35 significantly 

increased TRPA1-mediated responses to cinnamaldehyde is an important observation that was 

not previously reported. 

Homology modeling and molecular dynamics simulations revealed a salt bridge between 

residues E854 within the S4-S5 linker of one TRPA1 subunit and K868 in S5 domain from 

another subunit, which stabilizes the channel open state. We suppose that it is primarily 

disturbance of this interaction what causes changes in activation while of the N855S mutant 

channel, which underlies the familial episodic pain syndrome. 

We confirmed the binding capability of the C-terminal acidic cluster E1077 – D1082 for 

Ca2+ and its contribution to Ca2+ -dependent modulation of TRPA1. Moreover, we found that 

intact end (last 20 AA) of C terminus is essential for proper calcium-dependent inactivation of 

the TRPA1 channel. 

Taken together, our results contribute to the understanding of how the TRPA1 channel 

operates and how it may be regulated in cells. 
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N-terminal tetrapeptide T/SPLH 
motifs contribute to multimodal 
activation of human TRPA1 channel
Anna Hynkova, Lenka Marsakova, Jana Vaskova & Viktorie Vlachova

Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in 
pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal 
domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from 
mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region 
is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved 
T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to 
conformational stability. Here, we characterize the functional consequences of putatively stabilizing 
and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 
to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic 
calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative 
phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity 
of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the 
most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute 
to chemical-, calcium- and voltage-dependence.

Human transient receptor potential (TRP) subtype A1 (TRPA1) is an intrinsically cold and chemosensitive ion 
channel whose physiological role has been implicated in nociception, inflammatory pain, and itching1–5. This 
channel is one of the key sensors for various pungent and irritant compounds, being activated by thiol-reactive 
electrophiles and oxidants, but also by a number of nonelectrophilic chemicals, including menthol, nicotine, 
carvacrol, clotrimazole, and certain cannabinoids (for a review, see6). Moreover, TRPA1 is also dynamically mod-
ulated by permeating calcium ions7–9 and partially activated by strong depolarization10,11. While members of the 
TRP channel superfamily share a general tetrameric six-transmembrane (S1-S6) architecture and likely a similar 
mechanism of pore-opening12, all the stimuli that trigger this gating mechanism differ substantially and are medi-
ated or modulated by large cytoplasmic N and C termini that flank the relatively well conserved transmembrane 
domain (Fig. 1). The recent high-resolution structure of TRPA1 clearly indicates that chemical signals initiated 
by various stimuli might indeed be readily conveyed through cytoplasmic domains to the intracellular channel 
gate13–15.

TRPA1 is unique among mammalian TRP channels in bearing an extensive cytoplasmic amino terminus 
(720 of 1119 amino acids), comprised of a prominent ankyrin repeat domain (ARD; 1–649) consisting of a tan-
dem array of 17 ankyrin repeats (AR1–AR17), and a linker that connects ARD with the first transmembrane 
segment13,14,16. The N-terminus has been long known to be an immediate detector and integrator of the TRPA1 
activation stimuli. Initial mutagenesis studies proposed that membrane-permeable electrophilic molecules such 
as allyl isothiocyanate (AITC) or cinnamaldehyde (CA) react with free sulfhydryl groups on specific cysteines and 
the primary amine of lysines (C621, C641, C665, K710 in human and C415, C422 and C622 in mouse), inducing 
conformational changes leading to channel opening17–19. ARD has also been thought to regulate the activity of 
TRPA1 from a canonical EF-hand-like Ca2+ binding domain beginning at aspartate D468 in AR127,8. Although 
this hypothesis has been disputed by others9,20, an AR cluster centered around AR11 was shown to act as an 
important determinant of Ca2+-dependent desensitization21. The importance of the integrity of the ARD region 
was also supported by human genetic data indicating that a single nucleotide polymorphism in the Trpa1 gene, 
which results in a substitution in AR4 (E179K), is associated with paradoxical heat sensation22,23.
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A systematic study based on a series of chimeras between human and rattlesnake TRPA1 proposed two spa-
tially distinct, independent and transferable AR modules, the primary module AR10–AR15, and the enhancer 
module AR3–AR8 (Fig. 1B), that are each capable of conferring thermal or electrophilic sensitivity to the respec-
tive, otherwise insensitive orthologue21. In addition, AR6 is uniquely sensitive to changes in the coupling of 
temperature stimuli to the channel gate, and a single-point mutation in AR6 induced temperature activation 
without changing the sensitivity to chemical agonists in mouse TRPA124. The recently resolved high-resolution 
three-dimensional structure of the TRPA1 channel provides important support for the modularity of ARD by 
showing that AR12–AR16 are structurally integrated with the C-terminal tetrameric parallel coiled-coil, whereas 
the extended ARD (most likely AR1–AR11) is suspended below the membrane and forms a crescent-shaped 
structure13,16. All the results point to the widely accepted assumption that through evolution, the TRPA1 channel 
has acquired highly conserved discrete protein sub-structures that underlie its specific and species-dependent 
functional properties.

Recently, the N-terminus of TRPA1 has been surprisingly shown to be dispensable for a functional chan-
nel25. Purified human TRPA1 reconstituted into lipid bilayers can be readily activated by electrophiles, 
non-electrophiles as well as by cold without its N-terminal ARD (Δ​1–688 TRPA1) and the channel does not 
seem to need Ca2+ or accessory proteins for its responses. Thus, the role of the N-terminus now appears to be 
less clear than previously assumed and may consist of forming multi-ligand binding sites, interacting with other 
proteins, including self-association with other non-contiguous structures of the TRPA1 channel homotetramer26, 
the proper targeting of the protein into the plasma membrane20,25, and, importantly, in the direct regulation of 
the channel’s gating25.

Structurally, the predicted ankyrin repeats (ARs) comprising the ARD N-terminal region in TRPA1 are char-
acteristic ~33-amino acid motifs, each adopting a helix-turn-helix-extended loop secondary structure topology, 
stacking together in a close to linear fashion and producing a distinctive modular and elongated architecture26,27. 
Five of the ARs contain a strictly conserved T/SPLH tetrapeptide motif (Fig. 1A and Supplementary Fig. S1), a 
hallmark of the consensus ankyrin repeat sequence contributing substantially to local conformational stabil-
ity28,29. In such a motif, proline initiates the first α​-helix, whereas the pair of threonine and histidine forms intra- 
and inter-repeat hydrogen bonds (see Fig. 2A).

In this study, we hypothesize that the strict conservation within the evolutionarily conserved T/SPLH motifs 
in AR2, AR6, and AR11-13 across different species suggests that an especially precisely tuned stability of these 
N-terminal modules is essential for the proper functioning of the TRPA1 channel. Thus, we set out to characterize 
the functional consequences of stabilizing and destabilizing mutations in these important structural units.

Results
Mutations affecting the conformational stability of ankyrin repeat 2 affect voltage-dependent 
TRPA1 channel gating.  To examine how the conserved TPLH motif in ankyrin repeat 2 contributes to 
the functioning of the TRPA1 channel, we constructed three mutants: T100A, T100D, and M131G/A133T, that 

Figure 1.  Topology of human TRPA1 channel subunit. (A) Sequence alignment of highly conserved T/SPLH 
motifs in the N-terminal ankyrin repeats (AR) of human TRPA1 (hTRPA1). (B) Schematic of one hTRPA1 channel 
subunit (according to Paulsen et al.13,). TRP-box denotes TRP-like domain, H-T-H indicates helix-turn-helix motif. 
Conserved threonines and serine from T/SPLH tetrapeptide motifs and T/S residues mutated in this study are 
indicated in red, reactive cysteine residues (C621, C641 and C665) are represented by yellow circles.
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Figure 2.  Mutations affecting the conformational stability of the ankyrin repeat 2 and 3 affect voltage-
dependent TRPA1 channel gating. (A) Homology model of the first three N-terminal ankyrin repeats (AR) 
of hTRPA1 based on human ankyrinR (pdb code 1N11). In the consensus T/SPLH motif, the hydroxyl from 
the threonine/serine side-chain forms a hydrogen bond with a nitrogen atom from the histidine side-chain 
and results in a sharp turn prior to the first helix in the AR. Glycine two residues prior to T/SPLH allows 
for the compact L shape of the AR. Residues mutated in this study are indicated in red. (B) Representative 
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were intended to either destabilize or stabilize the conformation of the ankyrin repeat AR2 (Fig. 2A). We antic-
ipated that the alanine mutation at T100 could lower the structural stability, most likely due to eliminating the 
intra-repeat hydrogen bonds (T100 HN-H103 Nδ1, T100 Oγ1-H103 HN and T100 Hγ1-H103 Nδ1)29 and that the 
TPLH-mediated hydrogen-bonding network would be impacted even more by introducing a charged residue 
at this position. We also hypothesized that if the strictly conserved TPLH motif in AR2 contributes to channel 
functioning, then introducing a T/SxxH consensus sequence into the adjacent AR3 might have stabilizing effects 
through inter-repeat interactions, and thus be structurally and/or functionally beneficial.

To characterize the phenotypes of the mutants, we used whole-cell patch clamp recordings from transiently 
transfected HEK293T cells and assessed their voltage-dependent activation properties using a voltage step pro-
tocol from −​80 mV to +​200 mV, in 20 mV increments (Fig. 2B). The mutants expressed functional channels, 
however their responses to depolarizing voltage steps and their chemical sensitivities were dramatically different. 
Figure 2C compares the average conductance-to-voltage (G-V) relationships of voltage-dependent gating for 
the wild type and the mutant channels. For wild-type TRPA1, the Boltzmann fit gave a half-maximal activation 
voltage (V50) of 129 ±​ 2 mV and an apparent number of gating charges (z) of 0.72 ±​ 0.02 e0 (n =​ 128). The esti-
mated V50 and z were neither significantly changed in T100A (135 ±​ 6 mV; z =​ 0.80 ±​ 0.09 e0; n =​ 9) nor in the 
M131G/A133T double mutant channels (124 ±​ 6 mV; z =​ 0.73 ±​ 0.04 e0; n =​ 7). Apparent differences, however, 
were seen at hyperpolarizing voltages. The T100A mutant exhibited a decreased basal conductance at negative 
membrane potentials, indicating a disturbed closed–open equilibrium in favor of the closed state. In contrast, the 
double mutation M131G/A133T resulted in a gain of function phenotype, where the channel displayed significant 
voltage-independent gating at negative membrane potentials (Gmin of 14 ±​ 1% of Gmax; n =​ 7), suggesting that the 
energy required to activate the pore opening is reduced.

To test the chemical sensitivity of the mutants, we employed a standard protocol in which whole-cell mem-
brane currents were measured first in the absence of extracellular Ca2+ and in the presence of the partial agonist 
cinnamaldehyde (CA, 100 μ​M for 40 s). The agonist was then washed out for 10 s, and Ca2+ at a concentration of 
2 mM was added to the extracellular solution (Fig. 2D,E). The membrane potential was ramped up each second 
from –80 mV to +​80 mV (1 V/s). Intracellular Ca2+ was buffered to low levels with 5 mM EGTA in the patch 
pipette to assess the effects of permeating calcium ions9. Such a protocol enabled us to explore the sensitivity of 
individual mutants not only to an electrophilic agonist, which most likely leads to the persistent activation of 
TRPA117,18 but also to permeating calcium ions that activate and subsequently inactivate the channel through 
largely unknown mechanisms7,8,21. In agreement with previous reports, cinnamaldehyde at a concentration of 
100 μ​M evoked slowly developing currents in wild-type TRPA1 (2.5 ±​ 0.2 nA at +​80 mV after 40 s; n =​ 70) which 
slightly relaxed (by ~10%) to a lower sustained level upon washout. The addition of 2 mM Ca2+ to the bath solu-
tion induced, with a delay of ~13 s, a marked potentiation that was followed by an almost complete inactivation 
within 1 minute. During the 40 s-application of cinnamaldehyde, the T100A-mediated whole-cell outward cur-
rents were almost identical to those of the wild-type channels, but significantly reduced in an inward direction 
(Fig. 2D,F), matching the above-described reduction in voltage-induced currents at hyperpolarizing membrane 
potentials measured in control extracellular solution. Compared to the wild type, the delay in the onset of the 
second, Ca2+-dependent phase of the currents was almost twice as long (median value of 30 s; n =​ 9 versus 18 s 
for wild-type channels; n =​ 70), indicating that the reduction in inward current led to a reduction in the amount 
of calcium that enters the cell. The T100D mutation did not give voltage-sensitive channels in the range of volt-
ages explored, and only four of the nine tested cells revealed detectable, but minimal, responses induced by 
cinnamaldehyde at positive membrane potentials (Fig. 2D). The double mutant M131G/A133T channels dis-
played much larger responses to cinnamaldehyde at both negative and positive holding potentials (Fig. 2E), a 
linear current-voltage relationship after 40 s of exposure (Fig. 2F), and about 70% voltage-independent activa-
tion (Fig. 2G). Both the delay and the degree of Ca2+-induced potentiation were significantly reduced compared 
to wild-type channels (Fig. 2E). These observations confirm the previously proposed role of the cytoplasmic 
N-terminal ankyrin repeat-rich region in the regulation of TRPA1 and identify AR2 to be a domain contributing 
to voltage-dependent gating.

Specific mutation in conserved TPLH motif in ankyrin repeat six affects voltage- and 
Ca2+-dependent modulation.  Previous findings have implicated ankyrin repeat six in determining the 

current traces in response to indicated voltage step protocol (100 ms voltage steps from −​80 mV to +​200 mV; 
increment +​20 mV; holding potential −​70 mV) recorded in control extracellular solution ~1 min after whole-
cell formation. (C) Average conductances obtained from voltage-step protocols as in B. Data represent the 
means ±​ S.E.M. (n =​ 128 for WT and 7–26 for mutants), solid lines are best fits to a Boltzmann function as 
described in Methods. In some cases, the error bars are smaller than the symbol. (D) Time course of average 
currents through wild-type (solid circles, n =​ 70), T100A (filled circles, n =​ 9) and T100D (solid line, n =​ 9) 
mutants measured at +​80 mV and −​80 mV. The average currents are shown with gray bars indicating S.E.M. 
The application of 100 μ​M cinnamaldehyde (CA) and subsequent addition of 2 mM Ca2+ are indicated above. 
Below, average rectification of currents shown above, plotted as a function of time. Inset: voltage-ramp protocol. 
(E) Time course of average CA-induced currents in M131G/A133T. The average current for WT is shown in 
dashed line with gray bars indicating S.E.M. (F) Average current-voltage relationships of traces measured at 
times indicated by an arrow in panels D and E for wild-type (dashed line) and indicated mutants. (G) Voltage-
independent gating in M131G/A133T. Average conductances obtained from voltage ramp protocol (shown in 
panel D) normalized to Gmax. Dashed line for wild-type and solid lines for mutants are best fits to a Boltzmann 
function.
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temperature sensitivity of mouse TRPA1 and suggested its direct role in coupling the activating stimuli to gate 
opening24. To determine the functional role of the conserved TPLH motif in AR6 of human TRPA1, we first 
tested the T241A and T241D mutants (Fig. 3A,B) and found them to be both functional, which suggests that 
strict TPLH conservation is not crucial for TRPA1 functioning. The T241D mutation caused a leftward shift 
in the voltage-dependent activation curve, decreasing the V50 by ~20 mV without affecting the gating charge 
(0.68 ±​ 0.06 e0, n =​ 16). This mutant clearly displayed significant voltage-independent gating at hyperpolarized 
potentials (Fig. 3B), supporting the possible role of AR6 in defining the energetics of the channel gate.

In further attempts to either strengthen or weaken the AR6 consensus sequence, we next constructed two 
additional mutants. The first, K239G, was anticipated to improve the ankyrin fold and allow for a more compact 
L shape of the repeat AR6. The second mutant, H244R, was designed to perturb AR6 by decreasing its mechan-
ical stability30. Both the mutants yielded smaller currents in response to depolarizing voltages and also smaller 
maximal responses to chemical activators (Fig. 3C and see Fig. 4B below). This reduction, however, was probably 
not the result of their lower expression levels at the plasma membrane, because both the mutants displayed a sig-
nificantly enhanced conductance at negative membrane potentials (Gmin of 26 ±​ 6% and 44 ±​ 1% of Gmax; n =​ 14 
and 25), a leftward shift in the half-activation potential and an increased apparent number of gating charges 
(Fig. 3D,E), all of which strongly support functional changes. We observed that HEK293T cells transfected with 
H244R exhibited constitutive inward currents after the whole-cell configuration was established at −​70 mV, 
which indicates a constitutive activity of the mutant channel.

Figure 3.  Specific mutation in the conserved TPLH motif in the ankyrin repeat six affects voltage-
dependent modulation. (A) Homology model of the ankyrin repeats 5 to 7 of hTRPA1 based on human 
ankyrinR (pdb code 1N11). Residues mutated in this study are indicated in red. (B,C) Representative current 
traces in response to voltage step protocol (holding potential −​70 mV; 100 ms voltage steps from −​80 mV to 
+​200 mV; increment +​20 mV) recorded in control extracellular solution ~1 min after whole-cell formation. 
Representative current traces for wild-type TRPA1 are shown in Fig. 2B. The H244R mutation produced non-
zero current at −​70 mV at the beginning and the end of each voltage step during the voltage-step protocol (the 
dashed line depicts the −​70 mV baseline), indicating the constitutive activity. Below, average conductances 
obtained from voltage step protocols shown above. Solid lines are best fits to a Boltzmann function. The dashed 
line represents the fit obtained from data for wild-type TRPA1 shown in Fig. 2C. Note, both mutations, the 
stabilizing K239G and destabilizing H244R, reduce the responses of TRPA1 to voltage. (D) Summary of half-
maximal activation voltage (V50) of wild-type hTRPA1 and individual mutants from experiments as in (B,C) and 
Fig. 2C. The asterisks indicate significant differences between mutant and wild-type TRPA1 (*​P <​ 0.05, n =​ 138 
for WT and 7–27 for mutant channels). (E) Summary of apparent number of gating charges (z) of wild-type 
hTRPA1 and individual mutants from experiments as in (B,C) and Fig. 2C. The asterisks indicate significant 
difference from wild-type TRPA1 (*​P <​ 0.05).
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Figure 4.  Multimodal gating of TRPA1 depends on the stability of ankyrin repeat 6. (A,B) Time course of 
average whole-cell currents induced by 100 μ​M cinnamaldehyde (CA) in Ca2+-free solution and then exposed 
to 2 mM Ca2+, measured at +​80 mV and at −​80 mV in wild-type (dashed line) and indicated mutants. The 
application of CA and subsequent addition of 2 mM Ca2+ are indicated above. (C) Average current-voltage 
relationships of traces measured at times indicated by an arrow in panels A and B for wild-type (dashed line) 
and individual mutants T241A (gray line), T241D (orange line), K239G (green line) and H244R (black solid 
line). (D) Time course of representative whole-cell current responses to application of 25–47 °C heat step 
recorded from cells expressing wild-type and mutant hTRPA1 at +​80 mV and −​80 mV as indicated. The upper 
row of records (red lines) shows the temperatures of superfusing solution (ECS) measured by a thermocouple 
inserted into the shared outlet capillary of the drug application system. (E) Arrhenius plot of average heat-
induced whole-cell currents obtained from wild-type TRPA1 (n =​ 9), the T241D mutant (n =​ 7) and from non-
transfected HEK293T cells (NT, n =​ 6) measured at +​80 mV.
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Figure 5.  A short range stability of the ankyrin repeat 12 determines the gating and calcium regulation 
of human TRPA1. (A) Homology model of the ankyrin repeats 10 to 14 of hTRPA1. The grey part is based on 
ankyrinR (pdb code 1N11), the yellow part is based on the published structure of hTRPA1 (13; pdb code 3J9P). 
(B) Representative current traces in response to voltage step protocol. Representative current traces for wild-
type TRPA1 are shown in Fig. 2B. (C) Average conductances obtained from voltage step protocols as in B. Solid 
line is the best fit to a Boltzmann function. The dashed line represents the fit obtained for wild-type TRPA1 
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During the 40-s application of cinnamaldehyde, the T241D-mediated whole-cell currents were no different 
from those of the wild-type channels. Compared to wild-type TRPA1, the onset of the subsequent Ca2+-induced 
potentiation was not delayed, but it was apparently slowed (Fig. 4A). The average maximum rise slope of 
Ca2+-induced outward currents through the T241D channels was 0.37 ±​ 0.04 nA/s at +​80 mV (n =​ 12), whereas 
in wild-type channels it was 1.2 ±​ 0.1 nA/s (n =​ 70). T241A was not much different from wild-type TRPA1, indi-
cating a resilient nature of the hydrogen-bonding network in the AR6 region. In H244R, the inward currents 
induced after a 40-s application of cinnamaldehyde reached a similar maximum amplitude to that of the wild type 
(Fig. 4B,C). Both the mutations thus seemed to reduce the energy required to activate the pore opening at hyper-
polarizing potentials and influence the energetic coupling of putative voltage sensor activation to gate opening. 
The conserved TPLH motif in AR6 has a lesser contribution to channel functioning than that in AR2 in terms 
of alanine or aspartate substitution. On the other hand the K239G mutation, which conforms to the consensus 
glycine two residues prior to the TPLH motif, had a serious mutagenic impact, most likely due to eliminating 
important interactions in the loop preceding AR6.

Multimodal gating of TRPA1 depends on the stability of ankyrin repeat six.  In a recently pub-
lished study based on an unbiased screen of a random mutant library of mouse TRPA1, Jabba et al.24 revealed 
that AR6 is uniquely sensitive to changes in the coupling of temperature stimuli to the channel gate. The authors 
demonstrated that a single-point mutation in AR6 of mouse TRPA1 at position S250 (N249 in human TRPA1) 
induced temperature activation and temperature sensitivity of voltage-dependent activation, without changing 
the sensitivity to chemical agonists. In our study, we therefore asked whether the T241D mutant, which exhibited 
a depolarizing shift in voltage-dependent activation, also has a changed temperature sensitivity. We applied 3-sec 
heat steps from 25 °C to 50 °C (initial rate of ~25 °C s−1) and measured whole-cell currents from wild-type and 
mutant T241D channels at −​80 mV and at +​80 mV. As shown in Fig. 4D, both channels generated only faint cur-
rents at −​80 mV. At +​80 mV, increasing bath temperature elicited outward currents that persisted during heating 
in wild-type TRPA1, but in T241D the outward currents rapidly inactivated at temperatures above ~45 °C. In both 
channels, the currents exhibited only a weak temperature dependence (maximum Q10 of 2.5 in the wild type and 
2.3 in T241D; Fig. 4E).

Taken together, these findings imply that destabilizing mutations in the conserved TPLH motif of AR6 create 
functional channels that are gated in a less voltage-dependent manner, distinctly affecting their chemical acti-
vation and Ca2+-dependent modulation. Our observations also support the previous identification of AR6 as a 
sensitive modulator of thermal activation24.

Short-range stability of ankyrin repeat 12 determines the gating and calcium regulation of 
human TRPA1.  The multiple alignment of all available TRPA1 sequences from different vertebrate spe-
cies shows that the T/SPLH motifs are strictly conserved in the stretch of three adjacent repeats AR11-AR13 
(Supplementary Fig. S1). In the recently resolved cryo-EM structure, this tandem repeat region is part of a 
crescent-shaped density assembled into a propeller-like structure that is only loosely associated with the rest of 
the tetrameric channel complex13. Such a non-canonical arrangement of the ankyrin repeat domain has been 
attributed to the observation that AR10 substantially deviates from the ankyrin repeat consensus and contributes 
to forming a sharp and flexible kink before repeat 1216. Indeed, in support of this prediction, we did not observe 
any measurable currents through the N377T/F378P channels in response to either of the stimuli when we aimed 
to conform to the consensus signature by mutating a highly conserved 377NFLH motif in AR10 (data not shown). 
Thus, it is conceivable that precisely tuned stability within the evolutionarily conserved T/SPLH motifs in the 
ankyrin repeat cluster AR11-AR13 is essential for the proper functioning of TRPA1.

To explore this hypothesis, we next assessed the consequences of individual substitutions of T415, S448 
and T484 with alanine or aspartate (Fig. 5A). Only the alanine mutations were tolerated at T415 and T484, and 
resulted in channels with altered voltage dependency, significantly lower chemical responsiveness, and gating 
kinetics (Fig. 5B–E). Compared to wild-type TRPA1, these two mutants exhibited much smaller responses to cin-
namaldehyde, and the addition of Ca2+ to the bath solution induced only a weak potentiation (Fig. 5D). Also, the 
full agonist allyl isothiocyanate (AITC; 100 μ​M) induced smaller and, in T484A, also slower responses (Fig. 5E). 
In agreement with previous studies, AITC elicited rapidly developing membrane currents in wild-type TRPA1, 
characterized by a mean time activation constant τ​on of 5.0 ±​ 0.1 s (n =​ 33). After agonist washout, the addition of 

shown in Fig. 2C. Only the voltage-sensitive mutants are shown; n indicated in brackets. (D) Time course of 
average whole-cell currents through the wild-type hTRPA1 and the T415A (n =​ 8) and T484A (n =​ 11) mutants 
measured at +​80 mV (protocol shown in Fig. 2D). The application of 100 μ​M cinnamaldehyde (CA) and 
subsequent addition of 2 mM Ca2+ are indicated above. Below, average current-voltage relationships of traces 
measured at times indicated by an arrow in panel above. (E) Time course of average whole-cell currents through 
wild-type and mutant hTRPA1 measured at +​80 mV. The application of 100 μ​M allyl isothiocyanate (AITC) and 
subsequent addition of 2 mM Ca2+ are indicated above. Gray bars indicate S.E.M. from 33 (WT), 16 (T415A) 
and 10 (T484A) cells. T415D and T484D were insensitive to AITC (n =​ 13 and 10). Below, average rectification 
of currents through WT and T484A shown above. (F) Representative current traces in response to voltage step 
protocol (as shown in Fig. 2B) recorded in control extracellular solution. Below, average conductances obtained 
from currents as shown above (n indicated in brackets). Solid lines are best fits to a Boltzmann function. The 
dashed line represents the fit obtained from data for wild-type TRPA1. (G) Summary of voltage-independent 
component of voltage-induced gating for wild-type (n =​ 138) and individual mutants shown in this study 
(n =​ 7–27). The asterisks indicate significant (*​P <​ 0.05) differences between mutant and wild-type TRPA1.
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Figure 6.  Strict conservations of the T/SPLH motifs in AR11-AR13 are required for functional interactions 
and not for targeting TRPA1 to the plasma membrane. (A,B) Time course of average whole-cell currents 
through wild-type and mutant hTRPA1 measured at +​80 mV. The application of 100 μ​M cinnamaldehyde (CA, 
in panel (A)) or 100 μ​M allyl isothiocyanate (AITC, in panel (B)) and subsequent addition of 2 mM Ca2+ are 
indicated above. Below, average rectification of currents shown above. Note, the S448T (n =​ 18) and K446G 
(n =​ 5) mutants exhibit greater currents than WT in CA but not in the presence of AITC. Mutations S448A and 
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2 mM Ca2+ to the bath solution induced a marked inactivation (to 53 ±​ 5% of maximal response, after 100 s). The 
average AITC-induced currents through T415A were smaller, but τ​on and the extent of Ca2+-dependent inactiva-
tion were not significantly different from wild-type channels (4.7 ±​ 0.2 s; to 42 ±​ 6% of maximal response; n =​ 16). 
In contrast, T484A-mediated currents exhibited a mean time activation constant τ​on of 12.6 ±​ 0.4 s (n =​ 10) and 
almost complete Ca2+-dependent inactivation (19 ±​ 4%). The lower sensitivity of T484A is also visible in the 
higher rectification ratio during a 40-s application of AITC (Fig. 5E, lower graph). This result indicates that T484 
in AR13 is structurally required for the normal functioning of the TRPA1 channel.

In S448A and S448D, AITC failed to induce any appreciable currents at any examined membrane potential 
(Fig. 6B), indicating that this strictly conserved serine is crucial either for conformational stability, function or 
expression. To distinguish between these possibilities, we aimed to improve the stability of AR12 by construct-
ing two consensus-based mutations, S448T and K446G. We hypothesized that if S448 contributes substantially 
to ARD stability through intra- and inter-repeat hydrogen bonding, then the threonine at this position could 
improve ancillary interactions in its microenvironment by hydrophobic interactions associated with the threo-
nine methyl group29. The second mutation introducing glycine at position K446 was anticipated to better stabilize 
the ankyrin fold by stabilizing its L-shaped conformation and further allowing for a better intrinsic stability of 
AR12 and the interfacial stability between neighboring ARs. Notably, both the mutations produced functional 
channels that exhibited greater currents in response to depolarizing voltage steps and a significant conductance at 
negative membrane potentials, indicating the presence of a strong voltage-independent component (Fig. 5F,G). 
Moreover, we noticed that HEK293T cells transfected with K446G (but not with S448T) exhibited a much greater 
extent of cell rounding and detachment than cells expressing wild-type channels, which indicates a constitutive 
activity of the mutant channel (Supplementary Fig. S2). The estimated V50 and z were not significantly different 
from wild-type TRPA1, being 122 ±​ 4 mV and 122 ±​ 8 mV and 0.66 ±​ 0.04 e0 and 0.64 ±​ 0.04 e0 for K446G and 
S448T (n =​ 14 and 19). A bar graph in Fig. 5G compares the average values of the voltage-independent compo-
nent (Gmin/Gmax) for the examined T/SPLH mutants and suggests that the stretch of canonical ankyrin repeats 
AR11-13 tightly modulates the transition between the closed and open state of the channel in a manner that is 
independent of voltage sensor activation.

A remarkable finding was an apparent difference between the characteristic currents induced by cinnamalde-
hyde and AITC in S448T and K446G (Fig. 6A,B). The currents induced by 100 μ​M cinnamaldehyde were signif-
icantly greater and, upon the addition of Ca2+ to the bath solution, reached amplitudes that were ~1.4-fold and 
1.7-fold the amplitude of the wild-type channels. The currents resembled wild-type TRPA1 in terms of the extent 
of Ca2+-dependent desensitization (Fig. 6A). In a striking contrast, the maximum currents induced by AITC were 
smaller than in the wild-type channels and exhibited only a slight calcium-dependent desensitization (to 72 ±​ 5% 
and 84 ±​ 6% of the maximal response; n =​ 6 and 10; Fig. 6B).

Although the voltage causing half-maximal activation (V50) in S448T was not different from the wild type, the 
voltage-independent component of cinnamaldehyde-induced activation was different (Fig. 6C). Figure 6D shows 
the average conductance-to-voltage (G-V) relationships of voltage-dependent gating calculated by normalizing 
G-V curves with the Gmax value obtained after a 40-s exposure to 100 μ​M cinnamaldehyde. The S448T mutant 
clearly exhibits a much stronger voltage-independent component of gating at negative membrane potentials, indi-
cating that cinnamaldehyde alone, which is a sub-maximal stimulus for TRPA1, is sufficient to produce almost 
voltage-independent gating in S448T.

Taken together, our data support the previous suggestion that calcium-dependent desensitization of 
AITC-induced responses is specified by an AR cluster centered around AR1121. Moreover, we show that subtle 
changes in AR12 stability affect the Ca2+-dependent desensitization to varying degrees according to the mode of 
chemical activation, and increase the voltage-independent component of TRPA1 channel gating.

Strict conservation of the T/SPLH motifs in AR11-AR13 are required for functional interactions 
and not for targeting TRPA1 to the plasma membrane.  Our results demonstrate that the strictly 
conserved T/SPLH motifs are distinctly involved in multimodal activation of human TRPA1 channel, and muta-
tions at these positions may perturb intra- or inter-domain interactions, leading to altered activation profiles. 
We show that a subtle change in the structural stability of the AR11-13 stretch leads to qualitative changes in 
voltage-, cinnamaldehyde- and AITC-induced gating. On the other hand, changes in plasma membrane expres-
sion may also affect the qualitative behavior of the TRPA1 channel23,31. The increase in current responses in the 
S448T construct was surprising, since threonine is a conservative substitution, therefore we assessed the extent 
to which the mutation’s effects might reflect changes in surface expression. We used cell-surface biotinylation 

S448D were AITC-insensitive (n =​ 9 and 9). (C) Average current-voltage relationships of traces measured after 
40 s application of 100 μ​M CA at time indicated by an arrow in panel A for wild-type (dashed line) and indicated 
mutants. (D) Average conductances obtained for WT (open circles) and for S448T (orange squares) from voltage 
ramp protocol before (control) and after 40 s application of 100 μ​M CA at times indicated by arrows in panel A, 
normalized to Gmax. Dashed lines are best fits to a Boltzmann function. The G-V curves for CA-dependent gating 
of S448T exhibited significantly different parameters (V50 =​ 48 mV, Gmin =​ 0.67, z =​ 1.5 e0, n =​ 14) than wild-type 
TRPA1 (V50 =​ 54 mV, Gmin =​ 0.35, z =​ 1.2 e0, n =​ 91). (E) Correlation of the maximum conductances induced by 
depolarizing voltage (+​200 mV; see voltage-step protocol in Fig. 2B) against the maximum outward responses 
induced by cinnamaldehyde (measured at time indicated by an arrow in Fig. 2D,E) for all responsive mutants 
and for non-transfected cells (NT; n =​ 14). T100A indicated by a dashed circle diverges from linear relationship. 
(F) Correlation of the maximum current densities induced by depolarizing voltage against the maximum 
responses induced by AITC. Mutations indicated by dashed circles diverge from linear relationship.
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assay to examine the surface expression of the wild-type and two mutant proteins: the gain-of-function mutant 
S448T, and T415A as a loss-of-function control. As shown in Supplementary Figure S2, immunoblots of S448T 
and T415A confirmed that the proteins were processed and targeted to the membrane to a comparable extent to 
that of wild-type TRPA1. Thus, the changes in functionality are most likely due to structural changes. Additional 

Figure 7.  Conserved T/SPLH motifs as putative phosphorylation sites. (A) Average current traces in 
response to indicated voltage step protocol (holding potential −​70 mV; 100 ms voltage steps from −​80 mV to 
+​200 mV; increment +​20 mV) recorded in control extracellular solution ~1 min after whole-cell formation, n 
is indicated in brackets. Note, the presence of p25 protein in the cells had a cytotoxic effect, which resulted in 
reduced responses of TRPA1. (B) Average conductances obtained from voltage step protocols as in A. Solid lines 
are best fits to a Boltzmann function. The dashed line represents the fit obtained from data for wild-type TRPA1 
shown in Fig. 2C. (C,E) Time course of average whole-cell currents induced by 100 μ​M cinnamaldehyde (CA) in 
Ca2+-free solution and then exposed to 2 mM Ca2+, measured at +​80 mV in wild-type (dashed line) and wild-
type co-expressed with indicated proteins; n is indicated in brackets. The application of CA and subsequent 
addition of 2 mM Ca2+ are indicated above. (D,F) Average current-voltage relationships of traces measured after 
40 s application of 100 μ​M CA at time indicated by arrows in panels C and E for wild-type (dashed line) and 
indicated proteins.
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support for this hypothesis stems from the bi-directional scatter plots shown in Fig. 6E,F. These graphs correlate, 
for each mutant, the maximum conductances induced by depolarizing voltage (+​200 mV) against the maximum 
responses induced by cinnamaldehyde or AITC. Voltage, cinnamaldehyde and intracellular calcium, which are all 
sub-maximal stimuli for TRPA1, interact allosterically to enhance channel opening. The observation that alanine 
substitution at threonine T100 diverges from a linear relationship suggests the involvement of this residue in cou-
pling the voltage-sensing domain to TRPA1 channel opening. On the other hand, AITC is a full agonist of TRPA1, 
and mutations within the ankyrin repeat stretch AR11-AR13 seem to primarily affect the energetics of gating in 
the absence of membrane depolarization (seen in Fig. 5F,G), and coupling between the AITC-interacting region 
and the channel gate (seen in Figs 5E and 6B).

Conserved T/SPLH motifs as putative phosphorylation sites.  In general, the variable molecular 
surfaces formed by the assembly of ankyrin repeats and their modular architecture render AR proteins highly 
versatile and prone to binding with other biologically important proteins26,32. The extensive N-terminal ankyrin 
repeat domain of TRPA1 has been proposed to interact with several proteins that modulate the channel’s func-
tioning, cytoplasmic levels, turnover, or trafficking31,33–35. Evidence has also been presented that the N-terminus 
may be involved in phosphorylation-mediated regulation of the channel downstream of the phospholipase C and 
Src tyrosine kinase signaling pathways36,37. In the context of our study, we considered that some of the serines or 
threonines from the N-terminal T/SPLH motifs may represent potential phosphorylation sites, particularly for 
proline-directed Ser/Thr kinases. Among these, cyclin-dependent kinase 5 (CDK5) is a neuron-specific kinase 

Figure 8.  Phospho-mimicking and phospho-null substitutions at S344, S616 and T673. (A,B) Time course 
of average whole-cell currents induced by 100 μ​M cinnamaldehyde (CA) in Ca2+-free solution and then exposed 
to 2 mM Ca2+, measured at +​80 mV in wild-type (dashed line) and indicated mutants; n is indicated in brackets. 
The application of CA and subsequent addition of 2 mM Ca2+ are indicated above. Note, the aspartate mutation 
of S344 resulted in a loss-of-function phenotype, the T673D mutant is a gain-of-function phenotype. (C) Average 
current-voltage relationships of traces measured after 40 s application of 100 μ​M CA at times indicated by arrows 
in panels A and B for wild-type (dashed line) and indicated functional mutants.
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of great functional relevance, known to regulate nociceptive signaling via the N-terminus of the TRPA1-related 
channel TRPV138,39. Bioinformatics analysis of the human TRPA1 primary sequence predicts T100, T241, T415, 
S448, and T484 to be consensus sites for CDK5 at a high stringency level, some of these sites with even better 
scores than that predicted for threonine T407 in human TRPV1, the residue which is directly phosphorylated by 
CDK538 (Supplementary Table S1).

At first sight, the serine and threonine residues constituting the conserved T/SPLH motifs examined above 
are not likely to be involved in the phosphorylation of TRPA1, because the phosphonull alanine mutations and 
phosphorylation mimicking aspartate mutations did not lead to opposite changes in the functioning of the 
channel. However, structural changes around these residues, such as the M131G/A133T mutation, may affect 
phosphorylation at the contiguous sites - in a constitutive or activity-dependent manner. At the same time, the 
prediction shows that threonine substitution at S448 may also affect the prediction score. Therefore, as the first 
logical step, we tested the relevance of these considerations by assessing whether the co-expression of TRPA1 
with CDK5 and p35, a CDK5-specific activator, may modulate voltage-dependent channel activation. As shown 
in Fig. 7A,B, co-expression of CDK5/p35 resulted in no change in the maximal responses to depolarizing voltage, 
and only a slight increase in voltage-independent gating at hyperpolarized potentials. Similar effects have been 
also observed in cells co-expressing TRPA1 with p35 alone, but not in those expressing TRPA1 with CDK5. The 
co-expression of p35 alone or with CDK5 significantly increased TRPA1-mediated responses to cinnamaldehyde 
(Fig. 7C,D). Some authors suggest that CDK5 is present and functionally relevant in HEK293 cells40, while others 
have reported that HEK293 cells only express CDK5 at low levels and they lack endogenous CDK5 activity41. 
Thus, our result indicates that TRPA1 may be a substrate for the CDK5/p35 complex and/or its interaction with 
p35 may stabilize the activated state.

Proteolytic cleavage of p35 to p25 results in the cytosolic redistribution of CDK5, and therefore we also tested 
the effects of CDK5/p25 co-expression on TRPA1. Generally, we observed clear hallmarks of cytotoxicity in 
cells overexpressing p25, with or without TRPA1, which is an observation consistent with the literature42. The 
co-expression of TRPA1 with CDK5/p25 induced a less significant toxicity than that seen when TRPA1 was 
co-expressed with p25 alone, an explanation for this could be that the inclusion of CDK5 partially buffered the 
detrimental effects mediated by p25 alone. Intriguingly, CDK5 alone led to an increased responsiveness of TRPA1 
to cinnamaldehyde, but co-transfection with p25 abolished this effect (Fig. 7E,F). Thus, given these findings, we 
cannot unambiguously exclude some specific effects of CDK5.

Within the N-terminal region of TRPA1, a sequence prediction analysis also reveals three additional putative 
phosphorylation sites for CDK5, containing S344, S616 and T673 (as shown in Table S1). To test the functional 
role of these residues and to obtain a complete picture of the role of the T/SP motifs in the N-terminus of TRPA1, 
we constructed six additional mutants in which either serine or threonine were replaced by either alanine or 
aspartate to mimic the non-phosphorylated and phosphorylated forms of the TRPA1 protein, respectively. As 
shown in Fig. 8, only two mutations caused significant changes in TRPA1 channel’s activity: the S344D mutation 
failed to produce any appreciable currents, suggesting either a structural disturbance around the AR9 repeat or a 
failure of functional expression as a specific result of the phosphomimicking substitution. On the other hand, the 
T673D mutation resulted in channels whose responses to cinnamaldehyde were increased almost threefold (from 
2.4 ±​ 0.2 nA to 6.6 ±​ 1 nA at +​80 mV; n =​ 70 and n =​ 8). According to the recently resolved TRPA1 structure, 
T673 is solvent-accessible and located in a flexible loop connecting the β​-strands to the helix-turn-helix motif 
preceding the pre-S1 helix, i.e., well situated in a locus especially important for the detection, integration and 
transmission of activation stimuli13. This, together with our finding that the mutant T673A channels remained 
largely unchanged, indicates that this location, the resolution of which would require more detailed measure-
ments and modeling, may indeed represent a candidate target for Ser/Thr phosphorylation and further studies 
are needed to explore this possibility.

Discussion
A central observation of this study is that the most conserved N-terminal consensus T/SPLH tetrapeptide motifs, 
which initiate the helix–turn–helix conformation of the repeats AR2, AR6, AR11, AR12 and AR13, are required 
for the proper functioning of TRPA1 and distinctly contribute to its multimodal activation. The extensive 
N-terminal ankyrin repeat domain, according to which this channel has been dubbed, represents almost 74% of 
the cytoplasmic portion and 57% of the whole protein. Although the N-terminus is likely to be dispensable for 
a functional channel25, it is hard to believe that evolution has allocated such a large and structurally organized 
proportion of a protein merely for auxiliary functions such as trafficking, subcellular localization, homotetramer-
ization, or a number of poly-specific interactions. Indeed, for examples, AR6 dictates the directionality of temper-
ature activation to mouse TRPA124 and two isoforms of a Drosophila melanogaster TRPA1 ortholog, which arise 
from alternative splicing of the N-terminal region, enable flies to detect electrophilic compounds, but only one of 
them is highly sensitive to temperature43.

It has been well demonstrated that the two N-terminal AR modules, the primary AR10-AR15 and the 
enhancer AR3-AR8, are independent and transferable, each capable of bestowing thermal or electrophilic sen-
sitivity to the human TRPA1 channel21. However the extent to which the individual ankyrin repeats correspond 
to functional units still needs to be fully elucidated and understood. Previous mutagenesis and chimaeric stud-
ies have identified regions within the N-terminal ARD that dictate the pronounced specificity of the tempera-
ture, electrophilic, non-electrophilic, and oxidative sensitivity of TRPA17,8,17,18,24,44. Mutations within the ARD 
frequently rendered the TRPA1 channel non-functional and any mutation of AR consensus residues had been 
thought to result in an unstable protein26. To theoretically estimate the putative effects of mutations on the stabil-
ity of ARD, we used the program FoldX that calculates the folding energies of proteins and the effects of a point 
mutation on the stability of a protein (see Supplementary Methods). Theoretical energy measurements around 
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ankyrin repeat 2 predicted the average free energy change Δ​Δ​G =​ 1.05 kcal/mol for T100A and 4.63 kcal/mol for 
T100D, indicating the respective smaller and greater destabilizing effects of the mutations. In contrast, the double 
mutant M131G/A133T resulted in the average free energy change Δ​Δ​G =​ −​5.61 kcal/mol. These predictions 
correlate very well with the functional profiles shown in Fig. 2.

The putatively destabilizing mutations in AR6, T241A and T241D, had pronounced effects on the estimated 
free energy changes (Δ​Δ​G =​ 1.74 and 5.53 kcal/mol). However, both of these mutants were functional. On the 
other hand, mutations predicted to either destabilize or stabilize AR6 (H244R; Δ​Δ​G =​ 2.95 kcal/mol and K239G; 
Δ​Δ​G =​ −​3.61 kcal/mol) led to similar phenotypes with constitutive activity and changes in voltage dependence 
(Fig. 3C–E), suggesting that AR6 contributes to the energetics of the channel gate under resting conditions. The 
functional role of the extended loop preceding AR6 appears to be more important than the TPLH-mediated 
hydrogen-bonding network. When mutated, this region may sterically hinder and destabilize the channel gate 
upon depolarization. The T241D mutation, expected to be the most disruptive, changed the parameters of 
Ca2+-dependent potentiation (Fig. 4A) which may reflect perturbations in coupling between the calcium sensing 
domain and gate opening.

The recent study by Moparthi et al.25 implicated the N-terminal ARD region as an important gating modifier 
that may regulate the channel’s behavior in a voltage-dependent manner. The ankyrin repeats around AR2 and 
AR6 are sequentially distant from the transmembrane region expected to ‘sense’ the membrane electrical field, but 
they may contribute to voltage-dependent gating through interactions with the TRPA1 protein itself, membrane 
or membrane-associated factors13,16. The recently resolved structure of TRPA1 provides a mechanistic explanation 
of how the proximal part of ARD can communicate with the channel gate13: the information from the ARD can 
be transduced through the overlying helix-turn-helix motif of the linker region that forms a network of packed 
interactions with the TRP-like domain (Fig. 1B). From the structure, it is also apparent that the mutational conse-
quences for the canonical ankyrin cluster AR11-AR13 cannot be easily interpreted, because the region including 
AR11 is represented by only a weak electron density map and contains a flexible kink before AR12. If the T/SPLH 
motifs in AR11-AR13 assumed an ideal conformation in the context of the tertiary fold, the alanine and aspartate 
mutations at T415 would consistently change the free energy by −​0.6 and 3.2 kcal/mol and would lead to only 
moderate changes at T484 (Δ​Δ​G from −​1.03 to 1.36 kcal/mol). The conservative substitution S448T would yield 
Δ​Δ​G =​ −​1.12 kcal/mol, i.e. it should have a slightly stabilizing impact. One of the most surprising findings for us 
was that such a subtle change in AR12 led to a gain-of-function phenotype distinctly affecting the polymodal gat-
ing of the channel (Fig. 6). Serine is statistically three times less favored than threonine in T/SPLH tetrapeptides29, 
and thus the role of S448 in TRPA1 is likely to be specific and may be evolutionarily fine-tuned. The 448SPLH 
motif, strictly conserved in mammals, birds and reptiles, aligns with SALH in zebrafish, TALH in the nematode 
worm Caenorhabditis elegans, and TPLH in hymenoptera- specific TRPA. A strikingly conserved quadruplet of 
asparagines followed by glutamate, instead of 443SKDKK in human TRPA1, precedes the SPLH motif in insects.

We show that strict conservation of the T/SPLH motifs in AR11-AR13 is required for functional interac-
tions, and most likely not for targeting TRPA1 to the plasma membrane. Although changes in plasma membrane 
expression may also affect the qualitative behavior of the TRPA1 channel23,31, we believe that the S448T mutation 
results in a gain-of-function by mainly impacting the transition between the closed and open state of the channel 
in a way that is independent of the putative voltage sensor (Fig. 5F). When the channel is partially activated by 
cinnamaldehyde, S448 may contribute to allosteric coupling between the voltage-sensing domain and the gate, 
as can be inferred from Fig. 6D. To further characterize the impact of the S448T mutation on voltage-dependent 
gating, we used the allosteric model for voltage-sensor/gate allosteric coupling proposed by45,46 (Equation 1 in 
Supplementary Methods ). By fitting the normalized G-V curves for voltage activation, we obtained the values 
of the equilibrium constant for gate opening L and the allosteric coupling factor D. For wild-type TRPA1, these 
values were L =​ 0.06 and D =​ 166 (Supplementary Fig. S3 and Table S2). The S448T mutation increased the equi-
librium constant L by 67% and decreased the allosteric coupling factor D by only 16%. Even more pronounced 
effects were obtained for K446G, for which L was increased by 166%, whereas D was reduced by 46% compared 
to the wild-type. Taken together, these findings suggest that an increase in the structural stability of AR12 pre-
dominantly impacts the energetics of channel opening and modestly interferes with the allosteric mechanism of 
coupling the putative voltage-sensing domain and gate opening.

When designing this study, we considered that the strictly conserved T/SPLH motifs are consistent with the 
consensus phosphorylation sequence of proline-directed Ser/Thr kinases (T/SPXK/H/R). Phosphorylation has 
been shown to substantially regulate the subcellular targeting, biophysical properties and gating of many TRP 
channels47, to date very little is known about this kind of modification in TRPA1. Therefore for our substitution at 
the T/S position we used aspartate, which both mimics phosphorylation as well as being anticipated to sufficiently 
destabilize the ankyrin repeat’s conformation. The data obtained with aspartate mutants compared with their 
phospho-null counterparts suggest that the strict conservation of the T/SPLH motifs in ARD is not to enable or 
improve phosphorylation. The only residue fulfilling the consensus requirement and upregulating the function 
of TRPA1 under phospho-mimicking conditions is T673, which is outside the ARD. Also, the specific result of 
our study that the co-expression of p35 or CDK5 with p35 significantly increased TRPA1-mediated responses to 
cinnamaldehyde is an important observation that was not previously reported and is relevant to the putative roles 
of the N-terminal T/SPXH motifs.

We believe that the information provided by this study will facilitate our future understanding of how TRPA1 
operates, how is used for signal transduction and how it is regulated in native cells.

Methods
Expression and constructs of hTRPA1 channel.  Human embryonic kidney 293T (HEK293T) cells were 
cultured in Opti-MEM I media (Invitrogen) supplemented with 5% fetal bovine serum as described previously48. 
Cells were transiently co-transfected with 400 ng of cDNA plasmid encoding wild-type (WT) or mutant human 
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TRPA1 (wild type in the pCMV6-XL4 vector, OriGene) and with 200 ng of GFP plasmid (TaKaRa) per 1.6 mm 
dish using the magnet-assisted transfection (IBA GmbH.) technique. In the experiments with CDK5, the WT 
was co-expressed with CDK5 and p25 (p35) in the cDNA ratio 250:250:125 (400:250:150). A 1:1 cDNA ratio was 
used for the co-expression of the WT with CDK5, p25 or p35. The plasmids pcDNA3-CDK5-GFP, pcDNA3.1-
P25C-GFP and pCMV-P35 were obtained from the plasmid repository Addgene. The cells were used 24–48 h 
after transfection. At least three independent transfections were used for each experimental group. The wild-
type channel was regularly tested in the same batch as the mutants. The mutants were generated by PCR using a 
QuikChange Site-Directed Mutagenesis Kit (Stratagene) and confirmed by DNA sequencing (GATC Biotech).

Electrophysiology.  Whole-cell membrane currents were recorded by employing an Axopatch 200B 
amplifier and pCLAMP 10 software (Molecular Devices). Patch electrodes were pulled from a glass tube with a 
1.65-mm outer diameter. The tip of the pipette was heat-polished, and its resistance was 3–5 MΩ. Series resist-
ance was compensated by at least 70% in all recordings. The experiments were performed at room temperature  
(23–25 °C). Only one recording was performed on any one coverslip of cells to ensure that recordings were made 
from cells not previously exposed to chemical stimuli. A system for rapid superfusion and heating of the cul-
tured cells was used for drug application49. The extracellular bath solutions contained: 150 mM NaCl and 10 mM 
HEPES, with an added 2 mM HEDTA for the Ca2+-free solution, and 2 mM CaCl2 for the Ca2+-containing solu-
tions, adjusted to pH 7.3 with NaOH, 300 mOsm. The I-V relationships were measured in control bath solution 
containing 160 mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 10 mM glucose, adjusted 
to pH 7.3 and 320 mOsm. The whole-cell pipette solution contained the high buffer internal solution: 145 mM 
CsCl, 5 mM EGTA, 3 mM CaCl2, 10 mM HEPES, 2 mM MgATP, pH 7.3, adjusted with CsOH, 290 mOsm. 
Cinnamaldehyde and allyl isothiocyanate solution was prepared prior to use from a 0.1 M stock solution in 
Me2SO. All of the chemicals were purchased from Sigma-Aldrich.

Statistical analysis.  All of the electrophysiological data were analyzed using pCLAMP 10 (Molecular 
Devices), and curve fitting and statistical analyses were done in SigmaPlot 10 (Systat Software Inc.). 
Conductance-voltage (G-V) relationships were obtained from steady-state whole cell currents measured at the 
end of voltage steps from −​80 to +​200 mV in increments of +​20 mV, or from currents recorded by voltage ramp 
protocol in the presence of 100 μ​M cinnamaldehyde for 40 s. Voltage-dependent gating parameters were esti-
mated by fitting the conductance G =​ I/(V −​ Vrev) as a function of the test potential V to the Boltzmann equation: 
G =​ [(Gmax −​ Gmin)/(1 +​ exp (−​zF(V −​ V50)/RT))] +​ Gmin, where z is the apparent number of gating charges, V50 
is the half-activation voltage, Gmin and Gmax are the minimum and maximum whole cell conductance, Vrev is 
the reversal potential, and F, R, and T have their usual thermodynamic meanings. Statistical significance was 
determined by Student’s t-test or the analysis of variance, as appropriate; differences were considered significant 
at P <​ 0.05 where not stated otherwise. For statistical analysis of the voltage-independent component of gating 
(Gmin/Gmax) data, a logarithmic transformation was used to achieve a normal distribution. The data are presented 
as means ±​ S.E.M.
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a b s t r a c t

The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and
hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1eS6)
channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde,
but also by intracellular Ca2þ or depolarizing voltages. Within the S4eS5 linker of human TRPA1, a gain-
of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested
by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural
basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling,
molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the
model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of
recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-
reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage
stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities.
Moreover, mutation analysis of highly conserved charged residues within the S4eS5 region revealed a
gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca2þ-induced
potentiation and an accelerated Ca2þ-dependent inactivation. Based on the model and on a comparison
with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-
subunit salt bridges between adjacent S4eS5 regions are crucial for stabilizing the conformations
associated with chemically and voltage-induced gating of the TRPA1 ion channel.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The channelopathies that underlie monogenic human diseases
are of constantly increasing clinical relevance as our knowledge of
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TRP ankyrin; MD, molecular
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ript.
the structure and function of ion channels grows. Transient Re-
ceptor Potential Ankyrin receptor-1 (TRPA1) is one of the few ion
channels to have been recently linked to a heritable human pain
disorder (Kremeyer et al., 2010), and hence is viewed as a potential
specific and tractable drug target for treating chronic pain (Andrade
et al., 2012; Moran, 2012). This polymodal nonselective cation
channel is expressed at high levels in primary nociceptive sensory
neurons, where it acts as a molecular transducer for a variety of
environmental irritants such as cinnamaldehyde, allyl isothiocya-
nate or lipid peroxidation products, and, from the cytoplasmic side,
is critically regulated by Ca2þ ions (Doerner et al., 2007; Nilius et al.,
2012; Wang et al., 2008; Zurborg et al., 2007). The molecular
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architecture of the transmembrane region of TRPA1 is assumed to
be analogous to the large family of voltage-gated channels inwhich
each subunit of the homotetrameric channel contains six
membrane-spanning domains (S1eS6) with the S1eS4 sensor and
the pore-forming region consisting of the S5 and S6 segments and
the P-loop between them (Owsianik et al., 2006) (Fig. 1A). In the
S4eS5 linker of human TRPA1, the missense mutation N855S that
leads to increased channel activity has been recently found to be a
cause of familial episodic pain syndromemanifested as paroxysmal
pain induced by tiredness, fasting or cold (Kremeyer et al., 2010).
Multiple sequence alignment of 22 TRPA1 proteins from distinct
species (Fig. 1B) shows that N855 is replaced by lysine in cows and
goats, by serine in frogs and boas, and by arginine in zebrafish. On
the other hand, the charged residues in the immediate vicinity of
N855, R852 and E854, are conserved unanimously, indicating an
A

B

Fig. 1. Topology of pore-forming TRPA1 channel subunit and sequence alignment of selec
positions of gain-of-function mutation in S4eS5 linker. (B) Multiple sequence alignment of
charged residues and cysteine C856 are shown in color. Below, amino acid sequence conser
using WebLogo server (Crooks et al., 2004). The height of the particular amino acid at each
residues R852 and E854 in the immediate vicinity of N855 are conserved unanimously, w
mammalian organisms. (For interpretation of the references to color in this figure legend,
important functional role under evolutionary constraint, whereas
E864, conserved in mammals, is shifted right by one position in
non-mammalian organisms. In human TRPA1, the N855S mutation
shifts activation toward more negative voltages and changes the
channel's gating through a Ca2þ-dependent mechanism, resulting
in an increase in inward currents through the activated channels at
normal resting membrane potentials (Kremeyer et al., 2010).
Although the functional impact of this mutation has been estab-
lished in the original study, its structural basis is less understood.

Here we apply homology modeling, molecular dynamics simu-
lation, mutagenesis and electrophysiology, to explore the possi-
bility that the S4eS5 domain is specifically involved in TRPA1
activation, and thus important for the conformational coupling
between the S1eS4 sensor activation and gate opening. We iden-
tified a charged residue in the immediate vicinity of N855 that,
ted TRPA1 proteins. (A) Schematic of human TRPA1 channel subunit with indicated
S4eS5 linker from representative TRPA1 protein orthologs. Negatively and positively
vation within S4eS5 linker of TRPA1 proteins represented as sequence logo generated
position indicates its probability of occurrence at that position. Note that the charged
hereas E864, conserved in mammals, is shifted by one position to the right in non-
the reader is referred to the web version of this article.)
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when mutated, produced phenotypes with an increased basal
channel activity and sensitivity to chemical stimuli in which Ca2þ

did not potentiate and, instead, promoted rapid inactivation of the
currents. Notably, our data also identify two conserved residues in
the S4eS5 region that are critical for maintaining functionally
important inter-subunit interactions within the tetramer. We thus
provide novel mechanistic insights into the unique structural re-
quirements for human TRPA1 channel multimodal gating.

2. Materials and methods

2.1. Homology modeling of TRPA1 based on Kv1.2-2.1 crystal structure

Sequence alignments produced using ClustalW (Larkin et al., 2007) were
manually adjusted, with particular attention paid to the S4eS5 linker (amino acids
854e868) and the selectivity filter (amino acids 912e917), for which a partial
sequence alignment proposed in Wang et al. (2008) was respected. The positions of
the transmembrane helices in human TRPA1 (hTRPA1) predicted by TOPCONS
(Bernsel et al., 2009) were checked against the positions of the transmembrane
helices in Kv1.2-2.1 assigned by the DSSP algorithm (Kabsch and Sander, 1983).
Candidate homology models (20 structures) of the hTRPA1 monomer were built
with the software package MODELLER (Eswar et al., 2006; Marti-Renom et al., 2000)
using the Kv1.2-2.1 chimera (PDB code 2R9R; (Long et al., 2007)) as a template. The
best structure was selected according to the MODELLER objective function and vi-
sual inspection of the resulting structures. The homology model of the TRPA1
monomer was tetramerized by rotating around the z-axis by 90/180/270� . Two
sodium ions were inserted into the selectivity filter at the positions of two of the
potassium ions known from the Kv1.2-2.1 template crystal structure (Long et al.,
2007). The state of wild-type TRPA1 obtained after 5 ns of the first equilibration
MD run was used to prepare mutated TRPA1 tetramers with the point mutations
N855R and E854R/K868E by means of the psfgen plugin for VMD (Humphrey et al.,
1996). Finally, Kv1.2-2.1 was built with K308E/R322K mutations representing the
E854 and K868 of TRPA1.

2.2. Homology modeling of TRPV1-A1 chimeras based on TRPV1 cryoEM structure

TRPV1-A1 chimeric structures, where the S4eS5 linker from TRPA1 (i.e. amino
acids 854e868) replaced the corresponding parts of the rat TRPV1 tetrameric
structure (i.e. amino acids 560e575), were built with the software package MOD-
ELLER (Eswar et al., 2006; Marti-Renom et al., 2000) using a high-resolution cryo-
EM structure of apo TRPV1 (PDB code 3J5P (Liao et al., 2013)). The state of TRPV1-A1
obtained after 5 ns of the first equilibration MD run was used to prepare mutated
TRPV1-A1 tetramers with the pointmutations N855S, N855V bymeans of the psfgen
plugin for VMD (Humphrey et al., 1996).

2.3. Molecular dynamic simulations

All TRPA1, TRPV1, TRPV1-A1 and Kv1.2-2.1-K308E/R322K tetrameric structures
were independently inserted into the patch of the POPC bilayer and solvated in
TIP3P (Jorgensen et al., 1983) water molecules forming a cylindric simulated system
with its z-axis parallel to the z-axis of the tetramer. All-atom structure and topology
files were generated using VMD. Forces were computed using the CHARMM 27 force
field for proteins, lipids and ions (Beglov and Roux, 1994; MacKerell et al., 1998;
Schlenkrich et al., 1996). Simulated systems were energy-minimized, heated up to
310 K and equilibrated for 5 ns under cylindric boundary conditions. Symmetry
restraints of 10 kcal mol�1 Å�2 were applied to all alpha carbons. Moreover, addi-
tional constraints of 10 kcal mol�1 Å�2 were applied to fix backbone atoms in the
selectivity filter. Simulated systems were reduced to an orthorhombic cell, re-
solvated to ensure a solvent layer of at least 10 Å on both sides of the membrane
and neutralized in 0.5 M NaCl. This gives a periodic box with a size of ~130 Å, ~130 Å,
~90/110 Å for a simulated system consisting of ~180,000 atoms. Mutated proteins
were derived from wild-type TRPA1, TRPV1-A1 and Kv1.2-2.1 channels. All simu-
lated systems were again energy-minimized, heated and equilibrated without any
additional constraints for another 5 ns under periodic boundary conditions in the
isothermal-isobaric ensemble. All MD simulations were produced using the soft-
ware package NAMD 2.9 (Phillips et al., 2005) running on a local workstation
equipped with an NVIDIA graphics processing unit (GPU). The Particle-mesh Ewald
(PME) method with a grid size of 144 � 144 � 108/128 was employed for long-range
electrostatic forces (Cheatham et al., 1995). The cutoff for non-bonded interactions
was set to 12 Å. The SETTLE algorithm (tolerance 1e�8) was applied to constrain
bonds in water molecules (Ryckaert et al., 1977). Langevin dynamics was used for
temperature control with the target temperature set to 310 K. The Langevin piston
method was applied to achieve an effective pressure control with a target pressure
of 1 atm (Phillips et al., 2005). The integration timestep was set to 1 fs. Data were
recorded every 5 ps, analyzed using the CPPTRAJ module from the Amber Tools suite
(Roe and Cheatham, 2013). MD trajectories were visualized using the software
package VMD 1.9 (Humphrey et al., 1996). The molecular images were created with
YASARA (YASARA Biosciences). Further details of the modeling procedures,
illustrations of sequence alignments and coordinates of all structural models pre-
sented in this work are available from V.Z. and I.B. upon request.

2.4. Expression and constructs of hTRPA1 channel

Human embryonic kidney 293T (HEK293T) cells were cultured in Opti-MEM I
medium (Invitrogen) supplementedwith 5% FBS as described previously (Susankova
et al., 2007). The cells were transiently co-transfected with 400 ng of cDNA plasmid
encoding wild-type or mutant human TRPA1 (wild type in the pCMV6-XL4 vector,
OriGene, Rockville, MD) and with 200 ng of GFP plasmid (TaKaRa, Japan) per 1.6-mm
dish using the magnet-assisted transfection technique (IBA GmbH, Goettingen,
Germany). The cells were used 24e48 h after transfection. At least three indepen-
dent transfections were used for each experimental group. The wild-type channel
was regularly tested in the same batch as the mutants. The mutants were generated
by PCR using the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene, Hei-
delberg, Germany) and confirmed by DNA sequencing (GATC Biotech, Germany).

2.5. Electrophysiology

Whole-cell membrane currents were recorded by employing an Axopatch 200B
amplifier and pCLAMP 10 software (Molecular Devices, Sunnyvalle, CA). Patch
electrodes were pulled from a glass tube with a 1.65-mm outer diameter. The tip of
the pipette was heat-polished, and its resistance was 3e5 MU. Series resistance was
compensated by at least 70% in all recordings. The experiments were performed at
room temperature (23e25 �C). Only one recording was performed on any one
coverslip of cells to ensure that recordings were made from cells not previously
exposed to chemical stimuli. The extracellular bath solutions contained: 150 mM
NaCl and 10 mM HEPES, with an added 2 mM HEDTA for the Ca2þ-free solution, and
2 mM CaCl2 for the Ca2þ-containing solution, adjusted to pH 7.3 with NaOH,
300 mOsm. The IeV relationships were measured in a bath solution containing
160 mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 2 mMMgCl2, 10 mM HEPES, 10 mM glucose,
adjusted to pH 7.3 and 320 mOsm. The whole-cell pipette solution contained the
high buffer internal solution: 145 mM CsCl, 5 mM EGTA, 3 mM CaCl2, 10 mM HEPES,
2 mM MgATP, pH 7.3, adjusted with CsOH, 290 mOsm. Cinnamaldehyde and allyl
isothiocyanate solutions were prepared prior to use from a 0.1 M stock solution in
Me2SO. All of the chemicals were purchased from SigmaeAldrich (St. Louis, MO). A
system for rapid superfusion of the cultured cells was used for drug application
(Dittert et al., 2006).

2.6. Statistical analysis

All of the electrophysiological data were analyzed using pCLAMP 10 (Molecular
Devices), and curve fitting and statistical analyses were done in SigmaPlot 10 (Systat
Software Inc., San Jose, CA). Conductanceevoltage (GeV) relationships were ob-
tained from steady-state whole-cell currents measured at the end of voltage steps
from �80 to þ200 mV in increments of þ20 mV. Voltage-dependent gating pa-
rameters were estimated by fitting the conductance G ¼ I/(V � Vrev) as a function of
the test potential V to the Boltzmann equation: G ¼ [(Gmax � Gmin)/(1 þ exp
(�zF(V � V½)/RT))] þ Gmin, where z is the apparent number of gating charges, V½ is
the half-activation voltage, Gmin and Gmax are the minimum and maximum whole
cell conductance, Vrev is the reversal potential, and F, R, and T have their usual
thermodynamic meaning. Statistical significance was determined by Student's t test
or one-way analysis of variance; differences were considered significant at p < 0.05,
where not stated otherwise. For statistical analysis of ton data, a logarithmic trans-
formation was used to achieve a normal distribution. The data are presented as
means ± S.E.

3. Results

3.1. Structural modeling of TRPA1 based on Kv1.2-2.1 paddle
chimera template structure reveals inter-subunit interactions

The crystal structures of potassium voltage-gated (Kv) channels
in the open state (Long et al., 2007) and the electron cryo-
microscopic structure of the TRPV1 ion channel, in both the acti-
vated (open) and resting (closed) state (Cao et al., 2013; Liao et al.,
2013), provide two suitable structural templates for structural
modeling of the TRPA1 channel. First, we built an initial homology
model of the transmembrane part of human TRPA1 (M689-D963)
based on the Kv1.2-2.1 paddle chimera template structure (PDB
entry 2R9R; (Long et al., 2007)) (Fig. 2A, B). Themolecular dynamics
(MD) trajectory reached 30 ns and the root mean square deviation
(RMSD) measured for individual monomers and for the channel
complex indicated that the model was stable (Fig. 2C). In this
model, the side chains of N855 pointed towards the S4eS5 seg-
ments of adjacent TRPA1 monomers (and not to the S1 helix as



Fig. 2. Homology model of transmembrane region of human TRPA1 based on 2R9R structure reveals inter-subunit interactions. (A) Intracellular view of homology model of TRPA1
channel based on Kv1.2-2.1 paddle chimera (Long et al., 2007) with E854 and K868 residues indicated. The monomers are colored and one of them (yellow) is labeled. (B) Charged
residues E854 and K868 forming salt bridges in immediate vicinity of N855 shown in side view of two TRPA1 subunits. The inset shows the predicted interaction in more detail. (C)
Molecular dynamics simulation results obtained for TRPA1 model based on 2R9R structure. The root mean square deviation (RMSD) values, over backbone atoms for each monomer,
obtained after5 ns of thefirst equilibrationMDrun (time from�5 to0ns)wereused topreparemutatedTRPA1 tetramerswithpointmutationsN855R andE854R/K868E shown in E and
F. Time evolution of RMSD values and (D), distances separating side chains of E854 and K868 produced for TRPA1 homology models. Values lower than ~4 Å indicate the existence of
inter-subunit salt bridges. (E) Time evolutions of RMSD values (upper plot) and distances (lower plot) separating side chains at positions 854 and 868 for charge-swappingmutant and
(F) N855R mutant of TRPA1 homology model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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proposed in Zayats et al. (2013)). Notably, we saw more or less
stable inter-subunit salt bridges in the immediate vicinity of N855
that were formed between the side chains of amino acids at posi-
tions E854 and K868, and these interactions were stable for 22 ns of
MD simulation (Fig. 2D). To further corroborate these findings, the
E854R/K868E charge-swapping mutation and the substitution
N855R that introduced a positive charge at position 855 were also
tested by MD simulations (Fig. 2E, F). Importantly, two or three
inter-subunit salt bridges were retained all the way through every
simulation. In E854R/K868E, the average distances separating side
chains at positions 854 and 868 exhibited even lower fluctuations
around their mean values (4.05e4.6 Å; Fig. 2E) than the wild-type
TRPA1 (3.4e5.5 Å; Fig. 2D), further supporting the contribution of
these two sites to inter-subunit stability. The structures obtained at
the end of 15 ns of MD simulations were not significantly different
from the wild-type channel, indicating that the structural effects
caused by the substitutions are too subtle to be captured by the
models. However, given the immediate proximity of N855 to E854,
these results suggest that the functional changes observed in the
N855S mutant by Kremeyer et al. (2010) may originate, at least in
part, from changes in inter-subunit interactions.

3.2. Structural modeling based on the high-resolution cryo-EM
structure of TRPV1 channel confirms the proximity of E854 and
K868

TRPA1 shares a very low sequence identity of about 10%with the
structure of Kv1.2-2.1, which complicates the modeling and may
lead to errors in mapping structural features from the templates to
the model. To reduce the ambiguity, we aligned the TRPA1
sequence with the sequence of the related TRPV1 protein. For this
channel, high-resolution cryo-EM structures have been recently
solved in the closed state (PDB entry 3J5P) and in two open con-
formations (3J5Q, 3J5R) (Cao et al., 2013; Liao et al., 2013), one with
the TRPV1-specific agonist capsaicin and the other with two strong
activators: resiniferatoxin and double-knot toxin. Although the
overall sequence identity between the transmembrane parts of
TRPA1 and TRPV1 is again not high (~20%), in the S4eS5 linker
region it reaches almost 50% (Fig. 3A). A comparison of the se-
quences allows a direct assignment of the TRPV1 counterparts for
charged and conserved amino acids in TRPA1: R852 e G558, E854
e Q560, N855 e Q561, E864 e E570, K868 e R575, R872 e R579. In
TRPV1, R579 from S5 interacts directly with Q561 from the S4eS5
linker of an adjacent subunit, in addition to the inter-subunit
cation-p interaction with Y565 (Liao et al., 2013). This promotes
the hypothesis that inter-subunit interactions involving cognate
residues in TRPA1, N855 and R872, may underlie the gain-of-
function effects observed with the N855S mutation. To further
explore this possibility, we built another homologymodel, this time
based directly upon the 3J5P apo structure of TRPV1, in which only
the S4eS5 linker (Q560-R575) was replaced by the homologous
region E854-K868 from TRPA1 (Fig. 3BeF). RMSD values revealed
substantial conformational fragility and occasional reorganizations
that occurred in the peripheral areas (helices S1eS3) of the TRPV1-
A1 chimera subunits (Fig. 3B), as in the molecular dynamic simu-
lation of the TRPV1 template structure (Fig. 3F). Inter-subunit salt
bridges E854-K868 were not formed spontaneously during MD
simulations (Fig. 3B, E), although the side chains occasionally got
much closer to each other than in the initial cryo-EM structure. In
the subsequent set of MD simulations, modest harmonic con-
straints of 10 kcal mol�1 Å�2 were applied to E854 and K868 side
chains in the preliminary MD run (Fig. 3C). The inter-subunit salt
bridges then formed, however they only survived a limited time in
subsequent production MD runs. MD simulations were also per-
formed with the N855S and N855V mutants, in addition to the
TRPV1-A1 chimeric structures, however, we did not observe any
significant changes in the time course of RMSD or the average
distances separating side chains at positions 854 and 868 (data not
shown). The results from this series of simulations support the
proximity and mutual orientation of the E854 and K868 residues
and indicate that either the conformational states of TRPV1 may be
different from those of TRPA1, or that the formation of inter-subunit
salt-bridges between these residues is state-dependent or not
critical for the channel's conformational stability.

3.3. Structural alignment between Kv1.2-2.1 and TRPV1 enables the
alignment of the target TRPA1 sequence to be refined

In the final step of the modeling, we exploited the cryo-EM
structure of TRPV1 to further reduce inaccuracies in the initial
target-template sequence alignment between Kv1.2-2.1 and TRPA1.
Using the structural alignment of the Kv1.2-2.1 crystal structure
(Long et al., 2007) with the cryo-EM apo structure 3J5P of TRPV1
(Liao et al., 2013), we adjusted the sequence alignment between the
S4eS5 regions of Kv1.2-2.1 and TRPA1, which resulted in a shift by
just one position (Fig. 3A). In the refined alignment, E854 and K868
correspond to K308 and R322 in Kv1.2-2.1, not to G309 and E323, as
proposed in our initial alignment. In Kv1.2-2.1, the R322 side chain
points towards the K308 side chain. Both positively charged side
chains may be located so close to each other due to the presence of
the negatively charged side chain of E416 from helix S6. In order to
explore how the target-template sequence alignment influences
the formation of putative inter-subunit salt bridges, we ran MD
simulations of Kv1.2-2.1 with the point mutations K308E and
R322K (Fig. 3G). Over the entire MD trajectories, RMSDs for all
Kv1.2-2.1-K308E/R322K monomers reached very low values of
about 2 Å, corresponding to values that were only observed in
previous MD simulations with “stable” TRPV1-A1 monomers
(compare Fig. 3B, C). The inter-subunit salt bridges between E308
and K322 had similar stabilities to those observed in the TRPA1
homology model based on the original sequence alignment
(compare Figs. 3G and 2C and D). Thus overall, our simulation data
on TRPA1 indicates the existence of inter-subunit salt bridges be-
tween E854 and K868 and supports the hypothesis that the main
mechanism underlying the changes in the channel's activation
caused by the pathological N855S mutation is a disturbance of this
important subunitesubunit interaction. In addition, the data in-
dicates that, despite a substantial sequence homology shared by the
S4eS5 linkers of TRPA1 and TRPV1, the functional roles of cognate
residues may differ.

3.4. Electrophysiological measurements support the predicted
E854eK868 interaction

To examine whether the predicted inter-subunit interactions
contribute to the functionality of the TRPA1 channel, we con-
structed charge-neutralizing (E854A, K868A) and charge-reversing
(E854R, K868E) mutants of human TRPA1 and characterized their
phenotypes using whole-cell patch clamp recordings from tran-
siently transfected HEK293T cells. We hypothesized that if specific
interactions between opposite charges are required for proper
functioning, the charge-swapping double mutant might function-
ally rescue the channel. We thus also tested the functional prop-
erties of the TRPA1 double mutant E854R/K868E. The voltage-
dependent activation properties were assessed using a voltage
step protocol from �80 mV to þ200 mV (Fig. 4A). To compare the
energetic effects of mutations at hyperpolarizing voltages, where
voltage sensors are close to the resting state, the conductances
were plotted on a log scale (Fig. 4B). The E854A and E854R mutants
expressed AITC-sensitive channels (as shown below), however,



Fig. 3. Homology model of TRPA1 based on 3J5P structure of TRPV1 supports spatial proximity of E854 and K868, but their distances are not sufficient to form inter-subunit salt
bridges. (A) Alignments of S4eS5 region of TRPV1 with TRPA1 and two alternative alignments with Kv1.2-2.1. (B) Time evolution of RMSD values (upper plot) and distances
separating side chains of E854 and K868 (lower plot), produced for TRPV1-A1 chimera based on 3J5P template structure. Left, the RMSD values obtained for 5 ns of the equilibration
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their responses to depolarizing voltage steps were smaller in
amplitude and their steady-state activation curves were dramati-
cally shifted toward more positive potentials. Mutations at K868
elicited an increased basal conductance at negative potentials,
indicating a disturbed closedeopen equilibrium in favor of the
open state. The conductance of K868A and K868E was virtually
independent of the applied voltage, indicating that a less stringent
interaction between the activation gate and the presumed voltage-
sensing domain could destabilize the closed conformation of the
mutant channels. The charge-swapping mutation E854R/K868E
restored normal channel closure at hyperpolarizing voltages,
although it did not rescue normal voltage dependency. These data
indicate that substitutions at E854 and K868 result in channels with
altered gating kinetics.

To test the chemical sensitivity of the TRPA1 mutants, we used a
protocol in which whole-cell membrane currents were measured
first in the absence of extracellular Ca2þ and in the presence of the
full agonist allyl isothiocyanate (AITC, 100 mM for 40 s). The agonist
was then washed out for 10 s, and Ca2þ at a concentration of 2 mM
was added to the extracellular solution (Fig. 4C). The membrane
potential was ramped every second from�80mV toþ80mV (1 V/s)
(Fig. 4D). Intracellular Ca2þ was buffered to low levels with 5 mM
EGTA in the patch pipette to assess the effects of permeating cal-
cium ions (Wang et al., 2008). This protocol enabled us to explore
not only the sensitivity of individual mutants to electrophilic ago-
nists that lead to persistent activation of TRPA1 (Hinman et al.,
2006; Macpherson et al., 2007) but also to permeating Ca2þ that
activates the channel through a different mechanism (Doerner
et al., 2007; Zurborg et al., 2007). In wild-type TRPA1, AITC eli-
cited rapidly developing membrane currents characterized by a
mean time activation constant ton of 5.6 ± 0.7 s (n ¼ 20). After
agonist washout, the addition of 2 mM Ca2þ to the bath solution
induced a marked (58 ± 6%) inactivation. As expected from previ-
ous findings (Wang et al., 2008), the TRPA1 currents were inacti-
vated with a similar kinetics and to a similar extent as when Ca2þ

was added in the continuous presence of AITC (Fig. 4E). Compared
with wild-type TRPA1, all the single mutants exhibited much
smaller responses to AITC (Figs. 4C, F and 5A). The currents through
the E854 single mutant channels had much slower activation ki-
netics (Fig. 5B), whereas the degree of Ca2þ-induced inactivation
was similar to wild-type channels (Fig. 5C). In contrast, mutations
at K868 generated AITC-induced responses with an onset compa-
rable to the wild-type channels, however, the addition of Ca2þ to
the bath solution failed to induce any potentiation and only slightly
inactivated the currents (22 ± 4% in K868A and 16 ± 9% in K868E;
n ¼ 7 and 16) (Fig. 5C). The E854R/K868E double mutation gener-
ated currents with an apparently slower onset, but with maximal
amplitudes not significantly different from wild-type channels
(Figs. 4C and 5A). Upon the addition of Ca2þ to the bath solution,
this construct exhibited a potentiation that was followed by a more
pronounced inactivation than with wild-type TRPA1. As previously
shown, currentevoltage relationships of TRPA1 responses to AITC
becomemore linear with stronger activation, and less linear as they
inactivate (Kremeyer et al., 2010; Wang et al., 2008). Both the wild-
type and the double-mutant channels exhibited close-to-linear
currentevoltage relationships at peak response (Fig. 4Da), indi-
cating that a combination of 100 mMAITC with 2 mM Ca2þ activates
channels to their near-maximum activation capacity. In contrast to
MD run. (C) Modest harmonic constraints of 10 kcal mol�1 Å�2 were applied to E854 and K86
Note that the inter-subunit salt bridges formed, however they only survived a limited time i
K868 are shown on homology models based on 2R9R and (E) 3J5P template structures in en
plot) and distances separating side chains of Q560 and R575 (E854 and K868 in TRPA1; lowe
of equilibration MD run. (G) Molecular dynamics simulation results obtained for Kv1.2-2.1 st
between E308 and K322 (E854 and K868 in TRPA1). Values lower than ~4 Å indicate the e
wild-type channels, the whole-cell currents through the E854R/
K868E double mutant displayed marked outward rectification at
the end of the 100 s application of Ca2þ (Fig. 4Db). The finding that
the charge-swapping mutation E854R/K868E substantially rescues
the functionality of TRPA1 supports the hypothesis that inter-
subunit salt bridges are again formed between the side chains of
amino acids at these two positions which indicates the spatial
proximity of these two sites.

3.5. Mutations at R852 reveal a gain-of-function phenotype

Mutations at position K868 destabilized the closed, resting
conformation of the channel and strongly reduced responses to all
stimuli. We reasoned that if this residue is spatially close to E854,
then introducing an additional negative charge to the vicinity of
E854 could affect the electrostatic attraction between these two
residues and thus change the channel's gating equilibrium. There-
fore, we next measured voltage-induced currents from the R852E
mutant and from the R852A mutant as a control (Fig. 6A, B). For
wild-type TRPA1, the Boltzmann fit gave a half-maximal activation
voltage (V1/2) of 127 ± 2 mV and an apparent number of gating
charges (z) of 0.59 ± 0.02 (n ¼ 45). In R852E, V1/2 was significantly
shifted toward less depolarizing voltages (98 ± 2 mV;
z ¼ 0.68 ± 0.04; n ¼ 31), suggesting that the energy required to
activate the voltage sensor and pore opening is reduced. In contrast,
the open probabilities of R852A were apparently below 0.5 for
voltage protocols up toþ200 mV, so that values for V1/2 and z could
only be estimated from the averaged conductances (176 ± 3 mV;
n ¼ 32). As predicted, R852E exhibited increased basal activity,
however, it exhibited similar AITC-induced maximum current am-
plitudes andCa2þ-dependent inactivation to thewild-type channels
at both positive and negative membrane potentials (Fig. 6C). The
R852A mutant exhibited smaller and slower responses to AITC and
markedly increased outward rectification upon the addition of
2 mM Ca2þ to the bathing solution (Fig. 6D, below). The finding that
the alanine mutation produced stronger effects on chemical acti-
vation than the charge-reversingmutation indicates the importance
of polarity, chain length or both but, in any case, points to a specific
role for R852 in the Ca2þ-dependent modulation of TRPA1. To
explore this observation further, we used cinnamaldehyde (CA) as a
partial agonist of TRPA1,which enabled us to assess the potentiating
and inactivating effects of permeating Ca2þ (Fig. 7A). Cinnamalde-
hyde, at a concentration of 100 mM, evoked slowly developing cur-
rents inwild-type TRPA1 (2.2 ± 0.2 nA atþ80mV after 40 s; n¼ 25)
that slightly relaxed (by 10 ± 3%) to a lower sustained level upon
washout. The addition of 2 mM Ca2þ to the bath solution induced a
marked potentiation that was followed by an almost complete
inactivation within 1 min. The R852E mutant produced a very
different and striking pattern of responses. During the 40 s appli-
cation of CA, the currents became close to saturation, which would
indicate an increased sensitivity to the agonist. Adding 2mMCa2þ to
the bathing solution immediately inhibited the currents and only a
small and delayed potentiation was observed.

To explorewhether the replacement of the lysine amino group at
K868 with the larger arginine guanidinium group could influence
the functionality of the R852E mutant channel, we next compared
the CA-induced currents recorded from the K868R and R852E/
K868R mutants (Fig. 7B, C). The currents through K868R were
8 side chains in preliminary MD run (from �5 to 0 ns) for TRPV1-A1 chimera structure.
n the subsequent production MD run. (D) Side chains of residues E854, N855, C856 and
larged views of adjacent S4/S4eS5 regions. (F) Time evolution of RMSD values (upper
r plot) produced for TRPV1 cryo-EM structure 3J5P. Left, RMSD values obtained for 5 ns
ructure with point mutations K308E and R322K. Lower plot, time evolution of distances
xistence of inter-subunit salt bridges.
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Fig. 4. Charge-swap mutation E854R/K868E in S4eS5 linker rescues chemical sensitivity of TRPA1. (A) Representative current traces in response to indicated voltage step protocol
(holding potential �70 mV; 100 ms voltage steps from �80 mV to þ200 mV; increment þ20 mV) recorded in control extracellular solution ~1 min after whole-cell formation. (B)
Average conductances obtained from voltage step protocols as in A. Note, a logarithmic scale is used to compare the energetic effects of mutations at hyperpolarizing voltages. (C)
Time course of average whole-cell currents induced by 100 mM allyl isothiocyanate (AITC) in Ca2þ-free solution and then exposed to 2 mM Ca2þ in bath solution, measured
at þ80 mV inwild-type and indicated mutants. The application of AITC and subsequent addition of 2 mM Ca2þ are indicated above. (D) Representative currentevoltage relationships
of traces measured at times indicated by a and b in panel (C) for wild-type (dashed line) and E854R/K868E double-mutant TRPA1. Inset shows voltage-ramp protocol used for
measuring currents. (E) TRPA1 currents evoked in response to AITC and the subsequent addition of 2 mM Ca2þ to the bath solution (n ¼ 6). The currents were scaled by the
magnitude of the response to AITC and, therefore the y axis is represented by an arbitrary unit. The average normalized current for the wild type recorded with protocol such as in
(C) is shown for comparison (dashed line; n ¼ 18). Gray bars indicate S.E.M. (F) The average currents recorded from K868A and K868E are expanded and normalized to illustrate
more clearly the differences in activation and inactivation rate. Data represent mean ± S.E.M.; n indicated in brackets. The average normalized current for the wild type is overlaid
for comparison (dashed line with gray bars indicating S.E.M.; n ¼ 18).
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comparable to the wild-type channels. In contrast, the double mu-
tation generated currents with larger responses to CA and, upon the
addition of Ca2þ, the currents became less inactivated than in R852E
(compare the average currents at the endof recordings in Fig. 7A and
B, upper panels). These findings indicate that the R852 residue,
which is totally conserved across all TRPA1 channels (Fig. 1B) and
doesnothave a structurallyequivalent counterpart inTRPV1 (G558),
is clearly involved in the transduction of voltage and chemical
stimuli and participates in the Ca2þ-dependent regulation of TRPA1.
Moreover, we demonstrate that the functionality of the R852E
mutant can be affected by the conservativemutation at K868,which
indicates that the two residues are on the same allosteric pathway.

3.6. N855 and R872 are not likely to be involved in roles analogous
to those of the cognate residues from TRPV1

The transmembrane part of the TRPA1 channel is structurally
related to the TRPV1 channel for which the structure was recently
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Fig. 5. Summary of the effects of mutations on AITC-induced currents. (A) Average maximum AITC-induced currents from experiments as in Fig. 4C, measured at þ80 mV and
at �80 mV in absence of Ca2þ and then in the presence of 2 mM Ca2þ from wild-type and mutant TRPA1. Data represent mean ± S.E.M.; n indicated in brackets. (B) Mean time
activation constant (ton), obtained by fitting onset of AITC responses at þ80 mV to single exponential function. Asterisks indicate significant difference from wild-type TRPA1
(*P ¼ 0.01, unpaired t-test). (C) Degree of Ca2þ-induced inactivation at þ80 mV, expressed as % reduction in current reached at end of Ca2þ application relative to peak current.
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solved to 3.4 Å resolution using single-particle electron cryo-
microscopy (Liao et al., 2013). In TRPV1, Q561 interacts directly
with R579 from S5 from an adjacent subunit. Mutation Q561R
caused a gain of function of the channel and strong toxicity when
expressed in Saccharomyces cerevisiae (Myers et al., 2008). On the
other hand, R579 has been shown to contribute to the voltage-,
lipid- and cholesterol-dependent modulation of the TRPV1 channel
(Picazo-Juarez et al., 2011) and the R579E mutationwas completely
nonfunctional (Boukalova et al., 2010). The corresponding residues
in TRPA1 are N855 and R872, and thus we next examined the
properties of the N855R and R872E mutants (Fig. 8AeD). Interest-
ingly, neither themid-point of activation (131± 5mV) nor the slope
of the Boltzmann curve (z ¼ 0.60 ± 0.02; n ¼ 17) was affected in
N855R, compared with wild-type TRPA1 (Fig. 8A), which indicates
that this residue is situated outside the membrane electric field.
Outward conductances elicited at þ200 mV in the absence of
agonist were 27 ± 4 nS (n ¼ 17), comparable to those observed in
the wild-type channel (24 ± 2 nS; n ¼ 45). The N855R mutant,
however, respondedmore strongly to CA in Ca2þ-free bath solution,
which was also reflected in a decrease in the outward rectification
of the currents (Fig. 8C). The addition of 2 mM Ca2þ increased the
CA-induced currents to similar maximum amplitudes (6.6 ± 0.9 nA;
n ¼ 9) as in the wild-type channels (6.8 ± 0.4 nA; n ¼ 25). The
subsequent Ca2þ-induced inactivation was faster, but without sig-
nificant changes in the outward rectification, suggesting a similar
degree of inactivation as in the wild-type channel. A simplistic
interpretation is that mutations at N855 increase the strength of
coupling between the CA-sensing domain and the pore domain.

The R872E construct produced voltage-induced currents that
were smaller than those in wild-type channels, however, in
contrast to most of the other low-responder phenotypes, its
average conductanceevoltage relationship was markedly shifted
toward less depolarizing voltages (91 ± 2 mV; z ¼ 0.79 ± 0.05;
n ¼ 10; Fig. 8B). The amplitudes of the voltage-induced currents
at þ200 mV were about 5-fold lower, whereas the AITC-induced
currents reached about one half of the maximum currents recor-
ded from thewild-type channels (Fig. 8B and D). These data suggest
that the two residues, N855 and R872, are not likely to play iden-
tical roles to Q561 and R579 in TRPV1. The N855R mutation, in
contrast to Q561R, does not represent a prototypical gain-of-
function channel as it is not spontaneously active at resting
membrane potentials, and its half-maximal voltage for activation is
no different from the wild-type channel. Moreover, the R872E
mutant is fully functional and its leftward shift in the volta-
geecurrent relationship indicates that the mutation shifts the
gating equilibrium to favor the open state, whereas the analogous
mutation R579E leads to a non-functional channel in TRPV1.

4. Discussion

In this study, we propose a possible mechanism explaining the
gain-of-function phenotype of the N855S mutation in the ankyrin
TRPA1 channel, associated with familial episodic pain syndrome in
humans (Kremeyer et al., 2010). Using data from structural
modeling and whole-cell voltage-clamp recordings, we propose
that it is a change in the electrostatic environment experienced by
neighboring charged residues which causes a depolarized shift in
the voltage-dependence of CA-induced responses and changes the
N855S channel's gating through a Ca2þ-sensitive mechanism.

The first key finding of our study is the identification of inter-
subunit interactions between the two highly conserved charged
residues, E854, the neighboring residue of N855, and K868, from
the S5 helix of an adjacent subunit. By using comparative modeling
based on alternative alignments and two alternative templates, we
consistently find that the two residues E854 and K868 are in close
proximity and may form salt bridges. In our model based on the
3J5P structure of TRPV1 (Liao et al., 2013), inter-subunit salt bridges
E854-K868 were not formed spontaneously during MD simulations
(Fig. 3E), although these side chains occasionally approached each
other more closely than in the initial cryo-EM structure. This might
be a reflection of different conformational states, because the
template structure 2R9R represents an open state of the paddle
chimera Kv1.2-2.1 channel, whereas 3J5P represents the TRPV1
channel in a closed state. However, we do not favor this interpre-
tation, because the side chains of amino acids Q560 and R575 in
TRPV1 (i.e. E854 and K868 in TRPA1) are also further than 10 Å
apart in the structures of the two TRPV1 open conformations 3J5Q
and 3J5R (Cao et al., 2013; Liao et al., 2013). The high conservation
of the S4/S4eS5 domain throughout the mammalian members of
the TRPV channel subfamily and TRPA1 (~50% amino acid identity)
raises the question of to what extent the conformational states of
TRPV1 could be generalized to TRPA1. Vanilloid ligands bind TRPV1
directly within a hydrophobic pocket comprising the S4eS5 linker,
eliciting conformational changes that expand the lower gate (Cao
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Fig. 6. Mutations of R852, located at turn between S4 and S4eS5 linker, likely to disrupt allosteric interactions involved in voltage-dependent gating and Ca2þ-dependent
modulation. (A) Representative current traces in response to indicated voltage step protocol (holding potential �70 mV; 100 ms voltage steps from �80 mV to þ200 mV;
increment þ20 mV) recorded in control extracellular solution ~1 min after whole-cell formation. (B) Average conductances obtained from voltage step protocols as in A. Solid lines
are best fits to a Boltzmann function as described in Materials and Methods. The dashed line represents the fit obtained from data for wild-type TRPA1 shown in Fig. 4B. (C) Time
course of average whole-cell currents induced by 100 mM allyl isothiocyanate (AITC) and by 2 mM Ca2þ, measured at þ80 mV in R852E (green circles) and (D) in R852A (orange
squares). The average current for the wild type is shown for comparison (dashed line with gray bars indicating S.E.M., n ¼ 20). The application of AITC and subsequent addition of
2 mM Ca2þ are indicated above. In (C), note the increased basal R852E-mediated current at the beginning of the recording (0e10 s). Below, average rectification of currents shown
above. Changes in rectification ratio plotted as a function of time, calculated as absolute value of current at þ80 mV divided by current at �80 mV for each ramp from cur-
rentevoltage relationships (similar to those shown in Fig. 4D), measured in R852E (C) and R852A (D) (colored line with gray bars indicating ± S.E.M.). The average rectification for
the wild type is overlaid for comparison (dashed line ± S.E.M.; n ¼ 20). Note the dramatically increased outward rectification upon Ca2þ application in R852A. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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et al., 2013). In contrast, electrophilic compounds activate TRPA1
through covalent binding at specific cysteine residues on the
intracellularly located N-terminus (Hinman et al., 2006; Kang et al.,
2010; Macpherson et al., 2007) and simulations using low-
resolution electron density maps indicate that the chemical signal
might be readily conveyed to the intracellular channel gate through
cytoplasmic domains (Cvetkov et al., 2011; Takahashi et al., 2011).
Compared to voltage-gated channels, the S1eS4 domain of TRPV1
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Fig. 7. Mutation R852E exhibits separation-of-function phenotype when exposed to cinnamaldehyde. (A) (B) Time course of average whole-cell currents induced by 100 mM
cinnamaldehyde (CA) in Ca2þ-free solution and then exposed to 2 mM Ca2þ, measured at þ80 mV in wild-type and indicated mutants. The application of CA and subsequent
addition of 2 mM Ca2þ are indicated above. Each point represents the mean value ± S.E.M. (n indicated in brackets). The average currents for the wild type (A) and for R852E/K868R
(B) are respectively shown for comparison (dotted lines with gray bars indicating S.E.M.; n ¼ 18 and 6). Below, average rectification of currents shown above, calculated as absolute
value of current at þ80 mV divided by current at �80 mV, measured in R852E (A), and K868R and R852E/K868R (B) (colored lines with gray bars indicating ± S.E.M.). (C) Upper bars,
average maximum CA-induced currents from experiments as in A, measured at þ80 mV in absence of Ca2þ fromwild-type and mutant TRPA1. Data represent mean ± S.E.M.; n from
4 to 25. Lower bars, degree of Ca2þ-induced potentiation quantified as fold-increase in amplitude with respect to preceding current level of CA-induced responses measured
at þ80 mV. Dotted line indicates no increase. For wild-type TRPA1, this value was 4.1 ± 0.4 at þ80 mV (n ¼ 25). Except for K868R, all mutants were significantly different fromwild-
type TRPA1 (*P < 0.05, unpaired t-test). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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has a surprisingly less active role in channel gating, functioning as a
passive anchor upon which the S4eS5 linker moves in response to
ligand binding (Cao et al., 2013). Opening the inner gate does not
involve splaying the lower half of S6, which in Kv channels is
enabled by a glycine (GX3G) or proline (PVP) hinge in the middle of
S6 (Fowler and Sansom, 2013; Jensen et al., 2012; Long et al., 2005).
Within the S6 inner-pore region of TRPA1, however, there is a
highly conserved glycine hinge motif GLAVG that is critically
involved in the gating of the channel (Benedikt et al., 2009). Thus,
the gating mechanisms in TRPV1 and TRPA1 may substantially
differ. Also, we have previously demonstrated that structural de-
terminants within the S4/S4eS5 region of TRPV1, although
conserved in the primary sequence across the TRPV channel sub-
family, do not necessarily play functionally conserved roles
(Boukalova et al., 2010). We did not observe any significant changes
between the structures obtained fromMD simulations for thewild-
type TRPA1 channel and the N855S, N855R, or N855V mutants
(Fig. 2F and data not shown). This may suggest that the structural
effects caused by these substitutions are too subtle to be captured
by the models. However, we did observe an improved stability of
inter-subunit salt bridges in the MD simulation of the charge-swap
E854R/K868E double mutation model based on the 2R9R structure
(Fig. 2E), which indicates that these two side chains may have an
impact on the stability of the channel complex. Indeed, our elec-
trophysiological data shows that the charge-swapmutation E854R/
K868E, although capable of rescuing chemical responsiveness, still
cannot recover the intrinsic voltage sensitivity of TRPA1 (Fig. 4B).

Our second key finding is that a single charge-reversing muta-
tion at R852, which is located at the turn between S4 and the S4eS5
linker, three residues upstream of N855, generates channels with
increased basal activity and close-to-saturated chemical responses.
In this construct, Ca2þ did not substantially potentiate the CA-
induced responses and immediately, and more strongly than in
the wild-type channels, inactivated the currents induced by
cinnamaldehyde (but not by AITC). The voltage-dependent gating
in R852E was shifted toward less depolarizing voltages, indicating
that the energy required to activate the putative voltage sensor and
pore opening is reduced. In voltage-gated potassium and sodium
channels, the voltage-sensing domain S1eS4 transforms mem-
brane potential changes into channel gating through interactions
between positively charged arginines in S4 and negatively charged
residues in S1eS3. The opening of the channel then critically de-
pends on the interaction of the residues from the S4eS5 linker with
residues in the late S6 segment (Fowler and Sansom, 2013; Jensen
et al., 2012; Long et al., 2005). Compared to voltage-gated channels,
the voltage-dependency of TRPA1 is weak, with the estimated
apparent number of gating charges being about 0.7 (Karashima
et al., 2009; Samad et al., 2011). The S4 helix in TRPA1 does not
contain any positively charged residues but we show here that the
charge-neutralizing mutation R852A at the turn between S4 and
S4eS5 decreases its voltage sensitivity (Fig. 6B). In TRPV1, the
residue corresponding to R852, G558, is situated spatially close to
the TRP domain, mutations in which result in changes in the effi-
cient coupling of stimulus sensing and gate opening (Gregorio-
Teruel et al., 2014), and generate gain-of-function phenotypes
(Lin et al., 2012). To the best of our knowledge, it is not known
whether TRPA1 possesses the TRP domain. There is a conserved
sequence LWFLRK (992e997), showing a remarkable sequence
similarity to the TRP box of TRPV1 (IWKLQR at positions 696e701),
that follows S6. However, compared to TRPV1, there would be an
insertion of approx. 25 amino acids (I964-K989) wedged between
S6 and a potential TRP box. Thus determining whether R852 in
TRPA1 could alternatively interact with K997 (because in TRPV1,
R701 is directed to G558), or with some other residue near the
inner pore helix, is an interesting subject for future study. Given the
specific changes in voltage-dependent gating observed in the R852
mutants and the selective disruption of voltage-dependent gating
in the charge-swap E854R/K868E channels, we do not want to
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Fig. 8. N855 and R872 are not likely to play similar roles to their cognate residues from TRPV1. (A) Average conductances obtained from wild-type TRPA1 (solid circles) and N855R
(green squares) using voltage step protocols as in Fig. 4A, normalized to show that N855R conductance is no different from wild-type. Solid and dashed lines are best fits to a
Boltzmann function as described in Materials and Methods. For wild-type TRPA1, the fit gave a half-maximal activation voltage (V1/2) of 127 ± 2 mV (n ¼ 45). For N855R, V1/2 was
131 ± 5 mV (n ¼ 17). The conductanceevoltage relationships were normalized to make the data better comparable and to demonstrate that there is no sign of any difference. (B)
Mean steady-state activation curve obtained from R872E (orange circles). The dashed line with open symbols represents the best fit obtained from wild-type TRPA1. Note, loga-
rithmic scale is used to compare the conductances at hyperpolarizing voltages. (C) Time course of average whole-cell currents induced by 100 mM cinnamaldehyde (CA) in Ca2þ-free
solution and then in 2 mM Ca2þ, measured at þ80 mV in N855R. Each point represents the mean value ± S.E.M. (n indicated in brackets). The application of CA and subsequent
addition of 2 mM Ca2þ are indicated above. The average current for the wild type is shown for comparison (dotted line with gray bars indicating S.E.M,; n ¼ 18). Below, average
rectification of currents shown above, calculated as absolute value of current at þ80 mV divided by current at �80 mV. The average rectification for the wild type is overlaid for
comparison. (D) Average whole-cell currents measured at þ80 mV from R872E, induced by 100 mM allyl isothiocyanate (AITC) recorded in Ca2þ-free solution and then in 2 mM Ca2þ

(n indicated in brackets). Below, average rectification of responses shown above. Each point represents the mean value ± S.E.M. for n indicated above. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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exclude the possibility that these residues may comprise the
voltage-sensing domain itself.

Consistent with the previously proposed involvement of N855
in the Ca2þ-dependent gating of TRPA1, our results imply that the
S4eS5 linker contributes to agonist- and voltage-dependent acti-
vation and regulates the gating of the channel in a state-dependent
manner, and via a Ca2þ-sensitive mechanism. In the original study
by Kremeyer et al. (2010), the gain-of-function point mutation
N855S has been shown to exhibit normal currentevoltage plots in
the absence of agonist but a 5-fold increase in inward currents on
activation by chemical stimuli at normal resting membrane po-
tentials. Consistent with this, our data shows that N855R also ex-
hibits normal voltage-dependent gating (Fig. 8A), and increased,
much less outwardly rectified CA-induced currents (Fig. 8C). We
observed only a weak outward rectification of CA-induced re-
sponses inwild-type channels, which carried only about double the
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current atþ80mV than at�80mV under Ca2þ-free conditions with
intracellular Ca2þ buffered to low levels (Fig. 8C). This is different
from the results of the above study (Kremeyer et al., 2010), inwhich
a substantially lower Ca2þ-buffering capacity of the pipette content
was used in the whole-cell recordings. Taken together, these
comparisons lead us to hypothesize that the main effect of the
N855S mutation is an increased efficacy of CA and a reduced
inactivation induced by permeating calcium ions at negative
membrane potentials. It should also be considered that the
neighboring residue is a reactive cysteine C856 (compare the
relative side chain orientations in Fig. 3D and E), a target site of O2
in hyperoxia, for which a cytoplasmic disposition has been recently
proposed (Takahashi et al., 2011). Although the charged residues in
the vicinity of N855 are apparently involved in the allosteric
coupling of voltage sensor activation to channel opening, N855 it-
self does not seem to be involved in sensing changes in the mem-
brane electric field under resting conditions. In this sense, N855S
and N855R might be considered to be a rarer “separation-of-
function” phenotype rather than a “gain-of-function” phenotype.
During CA-induced activation, the S4eS5 linker apparently un-
dergoes conformational changes, involving N855, that alter the
voltage- and Ca2þ-dependency of TRPA1.
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Background: TRPA1 channel is modulated by Ca2�, but the molecular mechanisms are unclear.
Results:Mutations in the distal C-terminal acidic domain altered Ca2� dependence of TRPA1.
Conclusion: The C-terminal acidic cluster is involved in the Ca2�-induced potentiation and inactivation of TRPA1.
Significance: Identification of the Ca2�-dependent domain is important for understanding the role of TRPA1 in chemical
nociception.

The transient receptor potential ankyrin 1 (TRPA1) channel
is a Ca2�-permeable cation channel whose activation results
from a complex synergy between distinct activation sites, one of
which is especially important for determining its sensitivity to
chemical, voltage and cold stimuli. From the cytoplasmic side,
TRPA1 is critically regulated by Ca2� ions, and this mechanism
represents a self-modulating feedback loop that first augments
and then inhibits the initial activation.We investigated the con-
tribution of the cluster of acidic residues in the distal C terminus
of TRPA1 in these processes usingmutagenesis, whole cell elec-
trophysiology, and molecular dynamics simulations and found
that the neutralization of four conserved residues, namely
Glu1077 and Asp1080–Asp1082 in human TRPA1, had strong
effects on theCa2�- and voltage-dependent potentiation and/or
inactivation of agonist-induced responses. The surprising find-
ing was that truncation of the C terminus by only 20 residues
selectively slowed down the Ca2�-dependent inactivation 2.9-
foldwithout affectingother functional parameters.Our findings
identify the conserved acidic motif in the C terminus that is
actively involved in TRPA1 regulation by Ca2�.

The gating of transduction ion channels in response to vari-
ous potential life-threatening events is a crucial mechanism
underlying the function of sensory neurons. Among the chan-
nels that act as important signaling molecules involved in the
perception of noxious chemical, mechanical, and cold stimuli
in primary afferent neurons, there is one specific protein whose
unique polymodal activation properties have drawn much
attention over recent years for their potential therapeutic appli-

cations: the transient receptor potential ankyrin subtype 1
(TRPA1)2 channel (1, 2). In addition to a host of pungent and
other chemicals that either covalently interactwith (isothiocya-
nates, cinnamaldehyde, acrolein, and allicin) or bind to TRPA1
(cannabinoids, icilin, eugenol, thymol, and nicotine), the chan-
nel can also be activated by deep cooling (�17 °C) or depolar-
izing (��100 mV) voltages (3–10).
One of the ubiquitous and probably the most important

physiological activators of TRPA1 are calcium ions (Ca2�),
which enter through the channel or are released from internal
stores and, depending on the activation state of the channel,
dynamically control its critical properties such as unitary con-
ductance, ion selectivity, channel opening probability (8,
11–13), and surface expression levels (14). At micromolar con-
centrations, Ca2� ions activate the channel from the intracel-
lular side (EC50� 0.9–6�M) (15, 16) and strongly potentiate its
chemically and voltage-induced responses. This potentiation is
followed by an almost complete and irreversible inactivation,
and both processes are accelerated at higher intracellular con-
centrations of Ca2� (17). Although physiologically extremely
important, themolecularmechanisms of Ca2�-dependent acti-
vation and inactivation are still a matter of controversy.
The obvious candidates for a domain through which Ca2�

could modulate TRPA1 are acidic residues on the intracellular
side of TRPA1; unfortunately, information about the potential
role of this portion of the receptor is still very scarce, and it is
difficult to single out, in the human isoform, from the 112 cyto-
plasmic acidic residues. As for the cytoplasmic C terminus, evi-
dence for the important functional roles of charged regions
came from recent studies identifying a number of basic residues
that confer both chemical and voltage sensitivity to the TRPA1
channel, several of them located within or near the two penul-
timate �-helices H4 and H5 (18). These two predicted helices
flank a loop containing a highly conserved acidic stretch of
amino acids, 1077ETEDDD1082 (see Fig. 1A), and sharing sub-

* This work was supported by Czech Science Foundation Grant 305/09/0081,
Research Project Fund of the Academy of Sciences of the Czech Republic
Grant AV0Z50110509, and Ministry of Education, Youth and Sports of the
Czech Republic Grants 1M0517, MSM0021620835, SVV-2010-261 304, and
GAUK 426311.
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stantial sequence similarity with the Ca2�-binding domain
found in the hBest1 channel (19) or the so-called Ca2� bowl
domainof the superfamily of BKchannels (20).Herewe examined
the role of the above conserved acidic sequence motif and found
that it is involved in the Ca2�-mediatedmodulation of TRPA1.

MATERIALS AND METHODS

Expression and Constructs of hTRPA1 Channel—HEK293T
cells were cultured in Opti-MEM I medium (Invitrogen) sup-
plemented with 5% FBS as described previously (21, 22). The
cells were transiently co-transfectedwith 300–400 ng of cDNA
plasmid encoding wild-type or mutant human TRPA1 (wild
type in the pCMV6-XL4 vector, OriGene) and with 300 ng of
GFP plasmid (TaKaRa) per 1.6-mm dish using the magnet-as-
sisted transfection (IBA GmbH) method. The cells were used
24–48 h after transfection. At least two independent transfec-
tions were used for each experimental group. The wild-type
channel was regularly tested in the same batch as the mutants.
For membrane-targeting experiments, we used the C-termi-
nally GFP-tagged mutant D1080A of hTRPA1 (wild type in the
pCMV6-AC-GFP vector; OriGene) and the cyan fluorescent
protein-tagged pleckstrin homology domain of phospholipase
C �1 (kindly provided by Tamas Balla, NICHD, National Insti-
tutes of Health, Bethesda, MD). For fluorescence measure-
ments, we used the CellˆR imaging system based on an Olym-
pus IX-81 invertedmicroscope (Olympus) equippedwith a dual
emission setup (Dual-View Optical Insights), a Polychrome V
polychromator (Till Photonics), and a Hamamatsu Orca ER
camera (Hamamatsu Photonics). Intensity profiles were meas-
ured using the program ImageJ (National Institutes of Health).
Themutants were generated by PCR using theQuikChange XL
site-directed mutagenesis kit (Stratagene) and confirmed by
DNA sequencing (ABI PRISM 3100; Applied Biosystems).
Electrophysiology—Whole cell membrane currents were

recorded by employing an Axopatch 200B amplifier and
pCLAMP 10 software (Molecular Devices). Patch electrodes
were pulled from a glass tube with a 1.65-mm outer diameter.
The tip of the pipette was heat-polished, and its resistance was
3–5 M�. Series resistance was compensated by at least 70% in
all recordings. The experiments were performed at room tem-
perature (23–25 °C). Only one recording was performed on any
one coverslip of cells to ensure that recordings weremade from
cells not previously exposed to chemical stimuli. Conductance-
voltage (G-V) relationships were obtained from steady-state
whole cell currents measured at the end of voltage steps from
�80 to �200 mV in increments of �20 mV. Voltage-depen-
dent gating parameters were estimated by fitting the conduct-
anceG� I/(V�Vrev) as a function of the test potentialV to the
Boltzmann equation: G � [(Gmax � Gmin)/(1 � exp (�zF(V �
V1⁄2)/RT))] � Gmin, where z is the apparent number of gating
charges,V1⁄2 is the half-activation voltage,Gmin andGmax are the
minimum and maximum whole cell conductance, Vrev is the
reversal potential, and F, R, and T have their usual thermody-
namic meaning. A system for rapid superfusion of the cultured
cells was used for drug application (23). The extracellular bath
solutions contained: 150 mM NaCl and 10 mM HEPES, with an
added 2mMHEDTA for the Ca2�-free solution, and 2 or 10mM

CaCl2, for the Ca2�-containing solutions, adjusted to pH 7.3

with NaOH, 300 mOsm. The I-V relationships were measured
in the bath solution containing 160mMNaCl, 2.5mMKCl, 1mM

CaCl2, 2 mMMgCl2, 10 mMHEPES, 10 mM glucose, adjusted to
pH 7.3 and 320 mOsm. The whole cell pipette solution con-
tained the high buffer internal solution: 145 mM CsCl, 5 mM

EGTA, 3 mM CaCl2, 10 mM HEPES, 2 mM MgATP, pH 7.3,
adjusted with CsOH, 320mOsm. The pipette solution contain-
ing 100 �M free Ca2� was obtained by adding 10.24 mM Ca2�

and 10 mM EGTA to the internal solution. Cinnamaldehyde
solutionwas prepared prior to use from a 0.1 M stock solution in
Me2SO. All of the chemicals were purchased from
Sigma-Aldrich.
Homology Modeling and Molecular Dynamics Simulations—

The structure of the human BK channel was obtained from the
Protein Data Bank (code 3MT5). The BK-TRPA1 chimera was
constructed by replacing Ca2� bowl residues (20) with homol-
ogous residues from human TRPA1. Sequences were aligned
with ClustalW software (24) and then manually refined to
ensure the alignment of conserved residues in theTRPA1 chan-
nel matches calcium-binding residues in the Ca2� bowl of the
BK channel. A model of the chimera was built using the soft-
ware package MODELLER (25) resulting in 10 candidate mod-
els. The best structure was selected according to the MOD-
ELLER objective function, deviation of unmodified parts of the
channel from the template and visual inspection. An all-atom
structure was generated using the program LEaP from the
AMBER suite (26) using the Amber99SB force field and TIP3P
water model. One calcium ion and sulfate ion was added at a
location corresponding to the template. Total net charge of the
structure was neutralized using 17 sodium ions, and the struc-
ture was solvated with 21,109 water molecules. The initial
equilibration of the system was performed using NAMD2.7
(27) with a time step of 1 fs, cutoff 10 Å, Particle Mesh Ewald
grid size of 128 � 128 � 128, Langevin damping 5/ps. The
system was first minimized for 10,000 steps and then thermal-
ized to 310 K and equilibrated at 1 atm for 1 ns. Volume and
potential energy was monitored and reached stable values. For
production runs, we used the ACEMD software package (28)
running on a local work station equipped with an Nvidia GPU.
The simulations were run in the NVT ensemble with the same
parameters as for equilibration, except a time step of 4 fs
enabled by the hydrogen mass repartition scheme (29). Data
were analyzed using the program PTRAJ from the AMBER
suite (26) and visualized using VMD (30).
Statistical Analysis—All of the data were analyzed using

pCLAMP 10 (Molecular Devices), and curve fitting and statis-
tical analyses were done in SigmaPlot 10 (Systat Software). Sta-
tistical significance was determined by Student’s t test or the
analysis of variance; differences were considered significant at
p� 0.05, where not stated otherwise. For statistical analysis ofT50
data, a logarithmic transformation was used to achieve normal
distribution. All of the data are presented as the means� S.E.

RESULTS

Truncations in C Terminus Reveal Region Involved in Ca2�-
dependent Inactivation—We set out to investigate the Ca2�-
dependent potentiation and Ca2�-dependent inactivation in
human TRPA1 channels transiently expressed in HEK293T
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cells. Because some activation properties considerably differ
between the mammalian TRPA1 orthologs, we first quantified
the effects of Ca2� by exploiting the same stimulation protocol
as has been previously used by Wang et al. (17) for a detailed
characterization of the rat TRPA1 variant (Fig. 1B). The mem-
brane potential was ramped from �80 to �80 mV (1 V/s), and
whole cell membrane currents weremeasured in the absence of
extracellular Ca2� and in the presence of agonist (cinnamalde-
hyde, Cin, 100�M for 40 s). The agonistwas thenwashed out for
10 s, and Ca2� at a concentration of 2 mM or 10 mM was added
to the extracellular solution. Intracellular Ca2� was buffered
with 5 mM EGTA in the patch pipette. In accordance with (17),
Cin evoked slowly developing currents (2.4� 0.2 nAat�80mV
after 40 s, n � 38) that slightly relaxed (by 17 � 1%) to a lower
maintained level upon washout. The addition of Ca2� to the
bath solution induced a marked potentiation that was followed
by an inactivation that was almost complete within 1 min (Fig.
1B). The degree ofCa2�-induced potentiationwas quantified as
the fold increase in the amplitude after the addition of Ca2�

with respect to the preceding current level. For 2mMCa2�, this
value was 4.0 � 0.4 at �80 mV and 6.0 � 1.1 at �80 mV (n �
24), which is higher than that for the rat ortholog and is in good
agreement with the value previously reported for human
TRPA1 (17). The 10–90% rise time for potentiation was clearly
dependent on external Ca2�, being 7.8 � 1.0 and 2.5 � 0.5 s
(n � 22 and 16) for 2 and 10 mM Ca2�, respectively.

For Ca2�-dependent inactivation, the decay was adequately
described using a half-decay time, relative to the peak (T50).

After the introduction of 2 mM Ca2�, the currents decayed to
50% of their peak value in 31.9� 4.0 s at�80mV and in 18.9�
2.0 s at �80 mV (n � 19). At 10 mM Ca2�, the inactivation was
substantially faster (16.3 � 3.0 s at �80 mV and 11.2 � 2.0 s at
�80mV; n� 15), whichwasmost likely the cause of a concom-
itant reduction in the degree of Ca2�-induced potentiation
(3.1 � 0.4), compared with 2 mM Ca2� (p � 0.15). We did not
find any clear correlation between T50 and the degree of Ca2�-
dependent potentiation (r � �0.35, 2 mM Ca2�, �80 mV; n �
19; Spearman’s rank order correlation), which supports the pre-
vious suggestion that the inactivation of TRPA1 is not strictly
coupled to potentiation (11, 17, 31).
Having established the main characteristics of the Ca2�-de-

pendent modulation for wild-type channels, we constructed a
series of mutants in which the negative charges in the C-termi-
nal subregionGlu1073–Asp1082 were individually neutralized by
alanine substitution. In addition, two charge-reversing muta-
tions were created for the acidic cluster glutamates, E1077K
andE1079K. Furthermore, to test the overall structural require-
ments of the distal C terminus for channel activation, we intro-
duced stop codons at Glu1094 and Asn1100, resulting in two
C-terminal truncation mutants, TRPA1-	20 and TRPA1-	26.
The conservation of the primary structure of this region and the
residues chosen for mutagenesis are summarized and depicted
in Fig. 1A.
Mutation TRPA1-	26 did not produce measurable currents

in response to any of the stimuli tested, thus preventing further
evaluation (Fig. 1C). In contrast, functional channels were

FIGURE 1. Truncations in C terminus reveal region involved in Ca2�-dependent inactivation. A, alignment of distal C terminus of TRPA1 from various
species. The predicted secondary structure for hTRPA1 is indicated above the alignment. The region of interest is boxed. The residues in human TRPA1 that were
mutated in this study are indicated in bold type. B, time course of representative whole cell currents through human TRPA1 measured at �80 mV and �80 mV
as marked. The application of 100 �M Cin and subsequent addition of 2 mM Ca2� are indicated above. The right panel shows current-voltage relationships of
traces measured at times indicated by a, b, and c. C and D, voltage-ramp protocol as in B used for truncation mutants. Note the obviously slower inactivation
of the TRPA1-	20 truncation mutant upon the addition of 2 mM Ca2� to the bath solution compared with WT in B. E, average rate of current decay represented
as T50 for wild-type TRPA1 and truncation mutant TRPA1-	20. To obtain a similar rate of inactivation to the wild-type TRPA1, a 5-fold higher concentration of
calcium needed to be introduced for the TRPA1-	20 mutant. *, p � 0.006, Student’s t test. The data represent the means � S.E.; n � 6 for wild type and n � 3
for mutant.
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obtained with the TRPA1-	20 truncation mutant (Fig. 1D).
Compared with wild-type TRPA1, this mutant exhibited strik-
ingly slower inactivation upon the addition of Ca2� (T50 of
89.0 � 18.4 s for 2 mM Ca2� and 34.7 � 6.0 s for 10 mM Ca2�;
p� 0.01; n� 6 and 3; Fig. 1E). In other respects, this truncation
mutant exhibited a normal degree of Ca2�-induced potentia-
tion (3.0� 0.1; p� 0.63; n� 6) and a normal responsiveness to
voltage and Cin (Fig. 2A). The finding that truncation of the C
terminus by a further six residues was deleterious indicates an
important functional role for the distal part of the C terminus,
particularly a likely structural role of the predicted �-helix H5.
These initial screenings identified the distal C terminus as a
critical modulatory domain of TRPA1 involved in its Ca2�-de-
pendent inactivation, and we therefore further examined
whether the acidic region preceding this H5 helix could play its
presumed role of a high affinity Ca2� sensing site.
Mutations in C Terminus Reveal Strongly Sensitizing TRPA1

Phenotypes—The functionality of all constructed mutants was
compared by measuring the maximum outward currents at
�80 mV, in the absence and presence of 100 �M Cin. We
detected a dramatic increase in the amplitude of the outward
currents induced by voltage ramps in control Ca2�-free bath
solution through the E1077A and E1077K mutant channels at
the 0.01 probability level (Fig. 2, A and B). Also, the conduct-
ance to voltage (G-V) relationships for these two mutants were

significantly shifted toward less depolarizing potentials (the
voltage for half-maximal activation, V50, 110.8 � 5.8 and
104.5 � 6.0 mV; n � 18 and 12), compared with wild-type
TRPA1 channels (128.0 � 2.7 mV; n � 57; Fig. 2, C and D). In
E1077K, but not in E1077A, the inactivation produced by the
introduction of 2 mM Ca2� was significantly faster compared
with the wild type (T50 � 14.4 � 5.5 s; n � 6; p � 0.05), and the
currents decayed to a steady value 66 � 10% below their initial
basal activity levels (Fig. 2B). In both mutants, E1077A and
E1077K, the degree of potentiation of Cin responses by 2 mM

Ca2� was markedly reduced (2.5 � 0.4; n � 6; p � 0.087 and
1.9 � 0.3; n � 7; p � 0.009), obviously because of their initial
close to saturation state at �80 mV.
We suspected that this sensitizing effect reflected either a

gain of function (constitutively active) phenotype or tonic acti-
vation caused by an increased expression of the functional
mutant channels on the cell surface. Indeed, within our region
of interest, a sequence prediction analysis revealed two strong
consensus phosphorylation motifs containing serine 1076 and
threonine 1078, both predicted to be targeted by casein kinase
CK2 (as determined from the prediction servers NetPhosK or
NetPhorest). A similar phosphorylatable acidic cluster has been
reported to constitute a cytosolic sortingmotif that controls the
trafficking and surface expression of some ion channels, includ-
ing TRPA1-related TRPP2 and TRPV4 (32). To test this possi-

FIGURE 2. Mutations in C-terminal acidic region alter voltage and cinnamaldehyde sensitivity of TRPA1. A, left bar graph depicts average TRPA1 currents
at �80 mV in Ca2�-free extracellular solution before (control) and after 40 s of 100 �M Cin exposure. The right bar graph indicates relative activation by Cin for
wild-type channel and individual mutants. The data represent the means � S.E.; n � 6. The asterisks indicate significant differences between mutant
and wild-type TRPA1. *, p � 0.05, unpaired t test. Broken vertical lines indicate the mean values obtained from wild-type TRPA1. B, average currents at �80 mV
for wild-type TRPA1 and gain of function mutants E1077A and E1077K. The horizontal bars above the records indicate the duration of Cin and Ca2� application.
Note the difference in basal activation level at the very beginning of the record. The data represent the means � S.E. for n � 6. C, representative current traces
in response to indicated voltage step protocol (holding potential, �70 mV; voltage steps from �80 to �200 mV; increment �20 mV), recorded 
1 min after
whole cell formation. The bath solution contained 160 mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 10 mM glucose. D, average conductances
obtained from voltage step protocols as in C. The data represent the means � S.E.; n � 8.
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bility, we constructed additional four mutants in which either
serine or threonine were replaced by either alanine or aspartate
to mimic the nonphosphorylated and phosphorylated forms of
the protein, respectively. To our surprise, mutation T1078D
resulted in TRPA1 channels whose conductance to voltage
(G-V) relationships were also strongly augmented (from 27� 2
to 71� 5 nS at�200mV; n� 59 and n� 8) and shifted toward
less depolarizing potentials (V50, 98.1 � 6.8 mV; Fig. 2D). This
mutant responded relatively normally to Cin in Ca2�-free bath
solution (Fig. 2A) but had a faster 10–90% rise time of outward
current potentiation of Cin responses upon the addition of 2
mM Ca2� (2.7 � 0.2 s; n � 4; p � 0.05) and slightly (p � 0.094)
faster inactivation (16.1 � 5.2 s; n � 5) compared with the T50
for wild-type channels.
Whereas T1078D was observed to have large effects on volt-

age-dependent activation when using the voltage-step protocol
(Fig. 2, C and D), only modest effects on voltage- and cinnam-
aldehyde-dependent activation were seen when the standard
voltage-ramp protocol was utilized (Fig. 2A). This apparent
divergence seemed to be due to the alterations in the onset
kinetics upon voltage changes (�on � 36 � 3 ms versus 59 � 5
ms for wild-type; measured at �160 mV; n � 6 and 17; Fig. 2C)
and indicates that mutation T1078D affected the gating kinet-
ics of TRPA1. This interpretation is further supported by our
finding that mutation T1078A exhibited substantially reduced
responses to voltage and Cin and was capable of strong poten-
tiation by 2 mM Ca2� (5.5 � 0.8; n � 6; p � 0.125). The non-
phosphorylatable mutant S1076A and the phosphorylation-
mimicking S1076Dmutant channels were otherwise normal in
all general aspects of functionality.
This series of experiments indicates that a single mutation at

Glu1077, or the introduction of an additional negative residue at
Thr1078 are both likely to destabilize the charge balance at the
highly acidic C-terminal cluster of TRPA1. The findings that a
neutralizing or charge-reversing mutation at Glu1077 had sen-
sitizing effects support the notion that the functional changes
caused by mutations are likely to be steric or local, rather than
affected by increased membrane insertion of the channels
because of disruption of a phosphorylation consensus. More-
over, single pointmutations at the specific residues, located in the
primary sequence far from the membrane proximal regions, are
capable of increasing the sensitivity of TRPA1 tomembrane volt-
age without affecting its responsiveness to Cin. In other words, a
pathway distinct from voltage-dependent modulation and cova-
lent modification effectively controls the activity of TRPA1 via
conformational changes in the C-terminal acidic region.
Asp1080, Asp1081, and Asp1082 Are Residues Most Involved in

Ca2�-induced Potentiation of TRPA1—When the maximum
Cin-induced outward currents were related to the control volt-
age-induced responses obtained at the same membrane poten-
tial of �80 mV, none of the single mutations, apart from
E1077A and E1077K, exhibited a substantially decreased rela-
tive sensitivity to Cin compared with wild-type TRPA1, as
depicted in Fig. 2A. What we found, however, was that the
kinetics of the Ca2�-dependent potentiation were dramatically
changed in four out of the six charge-neutralized mutants:
E1073A, D1080A, D1081A and D1082A. The former mutation
strongly increased the degree of Ca2�-dependent potentiation

at both Ca2� concentrations and caused a delay in the peak
potentiation time in a significant number of cells (Fig. 3, A and
B). Distinct phenotypes were generated by the latter three neu-
tralizing mutations. Not only did these mutations lead to a
marked slowing down of the rise time and delayed the peak
potentiation time, they also led to a strongly reduced averaged
degree of potentiation observed within an interval of 
120 s
after the introduction ofCa2�, whichwas readily apparent from
the averaged current traces obtained from all cells tested (Fig.
3A). Ca2�-dependent potentiation was most apparently
blunted in the D1080Amutant. In five of ten D1080A-express-
ing cells that were treated with 2 mM Ca2� and in three out of
seven cells treated with 10 mM Ca2�, no potentiation at all was
observed within the time interval tested (3–4min); instead, the
Cin-induced currents decayed in the presence of Ca2� to their
initial value obtained before the agonist was applied to these
cells (Fig. 3A). Weaker but similar effects were observed in
D1081A andD1082A. The formermutation produced currents
that also exhibited a “delayed phenotype“, but when measured
over a period longer than the median time to peak for the wild
type (14 s), they frequently attained a similar degree of potenti-
ation to wild-type TRPA1 (Fig. 3, A and B).

For wild-type channels, the peak potentiation time, meas-
ured from the time at which 2 mMCa2� was introduced, varied
from4 s tomore than 30 swith amedian of 14 s (n� 22) and this
value became lower and normally distributed around the mean
of 6.0 � 1.1 s when the external Ca2� concentration was
increased to 10 mM (n � 16; Fig. 3C). The maximum potentia-
tion time has been previously shown to depend on external
Ca2� concentration (17), and thus the observed changes in the
kinetics of the Ca2�-dependent modulation in the mutants
shown in Fig. 3A could be due to a decreased sensitivity to
external Ca2�. Because the data for peak potentiation time in
wild-type TRPA1 was not normally distributed, to achieve reli-
able statistical significance in the distribution for the mutants
would require an unrealistically large number of cells to be
tested for each group. However, it was still evident that the
period ofmaximumpotentiating effect was delayed in a consid-
erable proportion of cells expressing D1080A, D1081A and
D1082A (Fig. 3A and supplemental Fig. S1). The most affected
mutant, D1080A, was functionally well expressed (Fig. 2A) and
appeared to be correctly targeted to the cell membrane (Fig.
3D). In this mutant, the addition of a higher concentration of
external Ca2� (10 mM) reduced the 10–90% rise time (from
18.7� 7.2 s to 7.0� 2.4 s;measured from five and four respond-
ing cells; Fig. 4A), accelerated inactivation (Fig. 4B), and
increased both the degree and probability of occurrence of the
maximum Ca2�-induced potentiating effect (Fig. 4C).
The high buffer internal solution used in our experiments

was estimated to contain 150 nM free Ca2�, which approxi-
mately corresponds to the basal intracellular concentration of
Ca2�. We therefore further tested whether allowing the inter-
nal concentration of Ca2� to increase would change the activ-
ity, especially for theD1080Amutant, which exhibited themost
significantly modified kinetics of Ca2�-dependent potentia-
tion. We compared the degree of potentiation and the rate of
inactivation in cells dialyzed with an intracellular solution con-
taining 100 �M free Ca2� (Fig. 4, C and D). Under these condi-
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tions, the D1080A mutant channels produced robust currents
in response to Cin in Ca2�-free bath solution, and after the
addition of external 10mMCa2�, the currentswere consistently
potentiated (2.2 � 0.4-fold; n � 5) without any delay. In con-
trast, Ca2�-induced responses through wild-type channels dia-
lyzed with the same internal solution were mostly inactivated
immediately after the addition of external 10mMCa2�, indicat-
ing a predominant effect on promoting inactivation over Ca2�-
induced potentiation (Fig. 4C). Despite differences between
D1080A and wild-type channels in the degree of potentiation,
we did not detect any difference in the rate of inactivation
betweenD1080A-expressing cells dialyzedwith an intracellular
solution containing 100 �M free Ca2� (T50 of 16.9 � 4.6 s; n �
5) and the wild-type channels (p � 0.919) or the D1080A
mutant channels (12.1� 2.0 s; p� 0.374; n� 4),measuredwith
the high buffer internal solution. Because the identified muta-
tion D1080A exhibits a normal responsiveness to Cin and
approaches the wild-type phenotype when internal Ca2� is
allowed to increase to 100 �M, these results suggest that this
mutation most likely has an effect on Ca2� affinity.
Molecular Dynamics Simulations Indicate That C-terminal

Acidic Cluster Is Capable of Playing Role of High Affinity Ca2�-
binding Site—The observations that Asp1080 indeed contrib-
utes to the Ca2�-dependent modulation of TRPA1, together

with the fact that substitutions at Glu1077 produced sensitized
phenotypes, further supports the idea that the whole region
containing the cluster of negative residues is structurally
important and involved in the Ca2�-dependent modulation of
TRPA1. How could the C-terminal acidic domain in TRPA1
accomplish the role of a high affinity Ca2� sensor?
To address this question, we utilized molecular dynamics

simulations to probe the Ca2�-binding capability of the acidic
region fromTRPA1, using the Ca2� activation apparatus of the
human BK channel (20) as the template protein (hSlo1; Protein
Data Bank entry code 3MT5). Each of the four� subunits of the
high conductance, Ca2�- and voltage-activated potassium BK
channel contain two tandem regulatory C-terminal domains
(RCK) that form an intracellular gating ring (33). The second of
these domains (RCK2) encompasses a primary binding site for
Ca2�, known as the Ca2� bowl, which exhibits a considerable
sequence similarity to the C-terminal acidic sequence of
TRPA1 (Fig. 5A). We used homology modeling to replace the
stretch of 10 consecutive residues Gln889–Asp898 (QFLDQD-
DDDD) in the structure of theCa2�-binding domain of BKwith
10 residues Ile1074–Ser1083 (IISETEDDDS) from human
TRPA1 (Fig. 5B), and using molecular dynamics simulations,
we explored whether this region is capable of binding Ca2�.
The system was simulated for a total of 200 ns after equilibra-

FIGURE 3. Potentiation of TRPA1 mutants by extracellular Ca2�. A, average TRPA1 currents evoked in response to 40 s of exposure to 100 �M Cin and
subsequent addition of 2 mM Ca2� as indicated by horizontal bars. The average current for the wild type is shown for comparison in gray in each plot. The
currents are normalized to their maximal cinnamaldehyde responses obtained prior to the addition of Ca2� to the bath solution. The data represent the
means � S.E. for the number of cells indicated. For D1080A, the average current for nonpotentiated cells (in red) is overlaid onto the average current from all
cells. B, average data from experiments as in A. Calcium-induced potentiation was measured as the fold increase in current, measured at �80 mV, following the
addition of 2 mM (left bar graph) or 10 mM (right bar graph) extracellular Ca2�. The asterisks indicate significant differences between mutant and wild-type
TRPA1. *, p � 0.05, unpaired t test. The lower bar graph represents the probabilities obtained from the t tests that compared the individual mutants with the wild
type. C, distribution of time to peak of Ca2�-induced potentiation for wild-type TRPA1 channels. For 2 mM Ca2�, four cells had time-to-peak outside the range
of 60 s. D, D1080A mutant of hTRPA1 expresses on the surface of HEK293T cells to a similar level as a control molecule containing membrane-targeting motif.
Panel a, typical confocal image from cell expressing D1080A mutant of the C-terminally GFP-tagged human TRPA1 and a fluorescence intensity profile plotted
for the cross-section indicated above. Panel b, wide-field fluorescence image of HEK293T cell expressing D1080A mutant of the C-terminally GFP-tagged
human TRPA1. The excitation wavelength was 470 nm, and emission was detected at 530 nm. Below is a fluorescence intensity profile plotted for the cell and
a cross-section (marked by line) indicated above. Panel c, wide field fluorescence image of a fluorescent marker for the membrane surface, cyan fluorescent
protein-tagged pleckstrin homology domain of phospholipase C�1 (CFP-PH), expressed in another HEK293T cell for comparison. Below, typical fluorescence
intensity profile plotted for the cell and cross-section indicated above. The excitation wavelength was 430 nm, and emission was detected at 475 nm.
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tion. The time course of the root mean square deviation
(RMSD) over the 200-ns period indicates that the system was
sufficiently relaxed after 70 ns, and the calcium-binding motif
was sufficiently relaxed after 110 ns (Fig. 5C). The displacement
of the calcium ion inside the calcium-bindingmotif was under 1
Å for most of the simulation (Fig. 5C), indicating that the ion
was quite stable. A significant increase in RMSD at the end of
the simulation was identified to be caused by the loose ends of
the polypeptides at residues 833–869. The structure between
these residues is missing from the Protein Data Bank structure
3MT5 and is missing from the model structure as well. There-
fore, we explored the influence of excluding these loose ends
(residues 830–862) from the RMSD calculation (Fig. 5C).
Because these residues do not interact with the residues of
interest, except for weak interactions in the last 25 ns of the run,
we do not expect this to have significant influence on the sim-
ulation results presented here.
The results of this computational experiment confirm that

the calcium ion is bound in the structure and thus prove the
ability of the acidic cluster from the TRPA1C terminus to form

a Ca2�-binding domain. Fig. 5D depicts the time course of the
number of calcium contacts with the protein and in total. The
average number of contacts throughout the simulation period
was 7.6, which is in good agreement with experimental meas-
urements carried out on various other Ca2�-binding proteins
(34). Two residues, Ile889 (Ile1074 in TRPA1) and Glu892
(Glu1077), are in contact with the calcium ion via their main
chain carbonyl oxygen atoms (Fig. 5C). Two residues, Asp895
(Asp1080) and Asp897 (Asp1082), use oxygen atoms from their
side chains for direct contact with the calcium ion. These bonds
are largely stable throughout the whole simulation period,
which is again in good agreement with the binding mechanism
of calcium ions in the Ca2� bowl in the BK cytoplasmic domain
(20).
To further test the model and to explore the effects of muta-

tions on the stability of calcium ion binding, we performed
additional molecular dynamics simulations using in silico ala-
nine mutations: E894A, D895A, D896A, and D897A (E1079A,
D1080A, D1081A, and D1082A in TRPA1). Disruptions of the
calcium-binding pocket were observed in D895A (D1080A)
and in D897A (D1082A) after, respectively, 11 and 4 ns of
molecular dynamics simulation (Fig. 6A). Mutations E894A
(E1079A) andD896A (D1081A) had no effect on the stability of
calcium binding during a 20-ns simulation. These findings sub-
stantiate the importance of the residues D1080A and D1082A
for Ca2� binding.

Next, we examined whether the side chain volume at posi-
tions Asp1080 and Asp1082 is important for the functionality of
the channel. Using site-directed mutagenesis, we individually
replaced these two residues with isoleucine and measured
whole cell responses toCin in the absence and presence of 2mM

Ca2� (Fig. 6B). Similar to what has been observed for D1080A,
mutation D1080I produced channels that responded normally
to cinnamaldehyde but exhibited strong changes in Ca2�-de-
pendent modulation. In three of seven D1080I-expressing cells
that were treated with 2 mM Ca2�, no potentiation at all was
observed within the time interval tested (Fig. 6B, left panel).
The D1082I mutant exhibited even more pronounced defects
(compared with D1082A and the wild type), yielding channels
that produced robust currents in response to Cin in Ca2�-free
bath solution, but the addition of external 2 mM Ca2� did not
exert any noticeable effect within the time interval tested (Fig.
6B, right panel). These results indicate that the side chain vol-
ume at Asp1082 is important for channel function and that iso-
leucine substitution at this positionmay create steric hindrance
for Ca2� access to the acidic region.

DISCUSSION

In this study, we identify the residues within the distal C-ter-
minal domain of the human ankyrin receptorTRPA1 thatwhen
mutated affect the Ca2�- and voltage-dependent gating of the
channel. The first key finding of our study is that truncation of
the C-terminal domain by 20 amino acids reduces the inactiva-
tion of the TRPA1 channel without altering its activation by the
thiol-reactive compound cinnamaldehyde or the degree of
Ca2�-dependent potentiation. This result provides further sup-
port for the previous suggestion that the inactivation mecha-
nism of TRPA1 is not coupled to activation/potentiation (17).

FIGURE 4. Mutations in C-terminal acidic domain affect kinetics of Ca2�-
induced potentiation. A, 10 –90% rise time of Ca2�-induced potentiation (2
mM) for wild-type and mutant TRPA1. The broken vertical line indicates the
mean value obtained from wild-type TRPA1. B, average data from experi-
ments as in Fig. 3A. Inactivation was measured at �80 mV and quantified as
the time, relative to the peak, at which the currents had decayed to 50% of
their maximum value. The broken horizontal lines indicate the mean values
obtained from wild-type TRPA1 for 2 and 10 mM Ca2�. In A and B, asterisks
indicate significant differences between mutant and wild-type TRPA1. *, p �
0.05, unpaired t test. C, left panel, increasing the concentration of extracellular
Ca2� from 2 mM to 10 mM partially restored the Ca2�-induced potentiation in
D1080A. Right panel, increasing the intracellular Ca2� concentration from 150
nM to 100 �M restored the potentiation of the cinnamaldehyde-induced cur-
rents in the D1080A mutant channels. The average current for the wild type is
shown for comparison in gray in each plot. The currents are normalized to
their maximal cinnamaldehyde responses obtained prior to the addition of
Ca2� to the bath solution. The data represent the means � S.E. for the num-
ber of cells indicated. D, average data from experiments as in C, quantified as
in Fig. 3B. The asterisk indicates a significant difference from wild-type TRPA1
measured with the high buffer internal solution containing 5 mM EGTA in the
patch pipette. *, p � 0.01, unpaired t test.
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Moreover, the inactivation requires Ca2� entry through the
activated channel, and thus the structural regions close to the
channel pore were proposed to undergo Ca2�-induced confor-
mational changes to regulate TRPA1 gating (11–13). The prox-
imal C-terminal domain of TRPA1 is thought to contain func-
tionally important juxtamembrane helix H1 (Ile964–Lys989)
adjacent to the predicted inner vestibule of the channel. We
have previously demonstrated that mutations in this domain
have strong effects on several aspects of TRPA1 functioning,
including changes in its voltage-dependent activation/deacti-
vation kinetics and a significant increase in the current variance
at depolarizing potentials (18). We then hypothesized that the
pore-forming S6 helix of TRPA1may extend to the cytoplasmic
region so that the proximal helix H1 could directly participate
in the regulation of gating or permeation properties of the
channel. The new finding that a distal C-terminal structure
provides theTRPA1 channelwith its ability to respond to exter-
nal calcium leads to the notion that the quarternary organiza-

tion of the C-terminal domain includes an intracellular gating
ring on the cytoplasmic surface, functionally reminiscent of the
Ca2�-dependent operation of the human BK channel gating
ring apparatus (20, 35). This hypothesis is further supported by
a recent report demonstrating a strong continuous density near
the transmembrane region revealed by single-particle electron
microscopy (36). Another line of evidence also supports this
possibility.
Our second key finding that the two neighboring mutations

within the acidic region, E1077K and T1078D, caused a shift in
the conductance-voltage (G/V) curve to less depolarized mem-
brane voltages indicates that the TRPA1 channel poremight be
controlled by voltage via a connection between the distal por-
tion of the C terminus and the putative voltage sensor or the
S6-H1 module. Compared with voltage-gated potassium chan-
nels, the voltage dependence of TRPA1 is very weak, with the
estimated apparent number of gating charges less than 1 (10,
18). It is anticipated that the putative voltage-sensing domain,

FIGURE 5. Homology modeling and molecular dynamics simulations of acidic region from TRPA1 based on Ca2� activation apparatus of human BK
channel (hSlo1; Protein Data Bank entry code 3MT5) as template protein. A, alignment of Ca2�-binding domain of BK with C-terminal acidic region from
human TRPA1. B, illustration of calcium-binding site in hSlo1-TRPA1 chimera with surrounding structures. Residues from the TRPA1 protein are shown in ball
and stick representation. Snapshot is the frame at 200 ns of the simulation. C, RMSD of protein and calcium-binding site. C also indicates the displacement of
the calcium ion inside of the calcium-binding domain. A significant increase in RMSD at the end of simulation was identified to be caused by loose ends of the
polypeptides at residues 833– 869, whose structure is not known and was missing from the model structure (see “Materials and Methods”). The system was
simulated for a total of 200 ns after equilibration. The time course of RMSD indicated that the system was sufficiently relaxed after 70 ns, and the calcium-
binding motif was sufficiently relaxed after 110 ns. The displacement of the calcium ion was less than 1 Å for most of the simulation, indicating that the ion was
stable. D, number of contacts with Ca2� ion throughout simulation. E, lengths of ionic bonds between calcium ion and atoms in calcium-binding site.

Calcium-dependent Domain in TRPA1

18074 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287 • NUMBER 22 • MAY 25, 2012

 at Institute of P
hysiology A

S
 C

R
, on A

ugust 23, 2012
w

w
w

.jbc.org
D

ow
nloaded from

 

http://www.jbc.org/


which has not been identified yet, most likely lies outside the
conventionally considered fourth transmembrane segment
(S4), because this region does not contain any charged residues
at all. Within the S4-S5 linker of human TRPA1, a gain of func-
tion point mutation N855S has been identified to exhibit a
5-fold increase in inward currents on activation by cinnamal-
dehyde, menthol, or the endogenous aldehyde 4-hydroxynon-
enal at normal resting membrane potentials (37). Removing
extracellular Ca2� ions shifts the voltage-dependent activation
by approximately �20mV in both the wild type and the N855S
mutant, compatible with the sensitizing effect of Ca2�. This
behavior can be explained well by the allosteric model of
TRPA1 activation by two different stimuli (38). In addition, the
decreased cooperativity of voltage-dependent gating under the
Ca2�-free conditions found in N855S indicates that this muta-
tion destabilizes the closed conformation, which could account
for a more general effect on channel gating (39) and is consis-
tent with the proposed functional role for the S4-S5 linker in
the gating of other thermosensitive TRP channels (40–42).

Wedonot have a strong structural explanation for the gain of
function effects seen in the E1077A, E1077K, and T1078D
mutants. The T1078D mutation in particular had large effects
on voltage-dependent activation when using the voltage-step
protocol, but only modest effects on voltage- and cinnamalde-
hyde-dependent activation when the standard voltage-ramp
protocol was utilized (Fig. 2). We attribute this apparent dis-
crepancy to the fast onset kinetics of the mutant channel upon
voltage changes and suggest that Thr1078 is implicated in allos-
teric coupling between the activation site(s) (voltage sensor,
Ca2� sensor) and the movement of the gate. As for the pro-
posed role of the whole acidic region in Ca2� binding, one
notion might be that the E1077K mutation mimics the Ca2�-
bound (i.e. sensitized) state of the channel. On the other hand,
the addition of a negative charge at T1078 could help to attract
and hold the positive calcium ions or transduce the Ca2� signal
further downstream. This interpretation would support the
suggestion that this region is important both for TRPA1 inac-
tivation and also for Ca2�-dependent potentiation. Site-di-
rectedmutagenesis studies have previously shown that neutral-
izations at two basic residues predicted to be located in the
distal helices H4 and H5, flanking the acidic C-terminal
domain, Lys1071 and Lys1092, are capable of significantly reduc-
ing the responsiveness of TRPA1 to allyl isothiocyanate at neg-
ative membrane potentials but also cause defects in its voltage-
dependent gating (18). Mutations at the cysteine or histidine
residues located in this region had no effect on TRPA1 activa-
tion (3). Therefore, together with our results, it appears that
specific charged residues within the entire region between
helices H4 and H5 may comprise an important functional unit
which, depending on Ca2� binding, transmits a chemical signal
from the N terminus to the gate. The recent 16 Å resolution
structure of TRPA1 indicates that covalent modifications
within the N termini might bridge adjacent monomers and
induce conformational changes in the cytoplasmic domains of
TRPA1 that lead to channel gating (36). By looking at this struc-
ture, it is tempting to speculate that the C-terminal helices
forming a symmetrical structure parallel to the membrane
planemight be stabilized by interactions between the positively
charged region Lys988–Arg1011 and the acidic cluster of the
adjacent subunit. Upon Ca2� binding, this interaction is dis-
rupted, which might result in the opening of the channel.
The third key finding of this study provides essential evi-

dence that the cluster of acidic residues in the TRPA1 cytosolic
C terminus plays an important role in Ca2�-dependent modu-
lation andmay represent a candidate region for the site of Ca2�

binding. This portion of the TRPA1 protein does not possess a
“classical” Ca2�-binding motif; thus our homology model can-
not lend any direct structural support for identifying the Ca2�-
binding site. However, this model does fit the requirements for
the 1074IISETEDDDS1083 motif being a Ca2�-binding loop; it
provides a basis for additional structural insights into the pos-
sible receptor-Ca2� contacts and in general is consistent with
our experimental results. According to our simulations, the two
residues Asp1080 and Asp1082 are predicted to be crucial for
binding calcium, whereas the side chains of Ile1074 and Glu1077
are in contact with the calcium ion using their main chain car-
bonyl oxygen atoms (Fig. 5B). Indeed, we identified residues

FIGURE 6. Mutations in C-terminal acidic region. A, molecular dynamics
simulations of in silico alanine mutations of the BK/TRPA1 chimera. RMSDs of
whole protein, calcium-binding site, and displacement of calcium ion in the
predicted calcium-binding site for each mutant. Calcium ion was stable in
E1079A and D1081A. Disruptions of the calcium-binding pocket were
observed in D1080A and in D1082A after 11 and 4 ns of molecular dynamics
simulation. The simulation of D1082A (D897A) mutation was particularly
unstable, and the calcium ion left the binding site very soon after simulation
entered production run. This simulation was interrupted after 10 ns of run.
B, potentiation of the TRPA1 mutants D1080I and D1082I by extracellular
Ca2�. Average whole cell currents evoked in response to 40 s of exposure to
100 �M Cin and subsequent addition of 2 mM Ca2� as is indicated by horizon-
tal bars. The average current for the wild type is shown for comparison in gray
in each plot. The currents are normalized to their maximal cinnamaldehyde
responses obtained prior to the addition of Ca2� to the bath solution. The
data represent the means � S.E. for the number of cells indicated. For D1080I,
the average current for nonpotentiated cells (in red) is overlaid onto the aver-
age current from all cells (in green).
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Glu1073, Glu1077, Asp1080, Asp1081, and Asp1082, the specific
properties of which are not involved in Cin activation, but all
appear to be most important for the modulation of the TRPA1
channel by Ca2�, thus supporting the homology model as a
plausible structure. To gain additional information toward a
possible structural explanation of our data, we conducted
measurements in which we explored the effects of the charge-
neutralizing double mutations E1077Q/E1079Q, E1079Q/
D1081N, and D1080N/1082N. All of the double mutants did
not producemeasurable currents in response to any of the stim-
uli tested, supporting the structural importance of the acidic
motif.
We can be reasonably certain that in most cases, the changes

in themagnitudes of the responses to cinnamaldehyde or depo-
larizing voltage are not due to changes in expression levels or
plasmamembrane targeting, because (a) simultaneous applica-
tion of voltage and Ca2� revealed considerable differences in
the relative cross-sensitization capacity between the mutants,
(b) several mutants were more specifically responding to volt-
age, i.e. their current-voltage relationships were qualitatively
different from that in the wild-type channel, and, moreover, (c)
we found that the strong consensus phosphorylation motifs
containing serine 1076 and threonine 1078 (1071KMEI-
ISETEDD1081 and 1073EIISETEDDDS1083), both predicted to be
targeted by casein-kinase CK2 with similar probabilities to
TRPP2 (NetPhorest Posterior probability of 0.6386 and 0.6261
versus 0.6453 (43)), unlike TRPP2 (32), do not constitute a cyto-
solic sorting motif involved in the trafficking and surface
expression of TRPA1. The findings that the nonphosphorylat-
able mutations S1076A and T1078A and the phosphorylation-
mimicking mutation S1076D generated near to wild-type phe-
notypes indicates that the functional changes caused by other
substitutions in this region are likely to be steric or local, rather
than related to changes in themembrane insertion of the chan-
nels. In any case, we cannot exclude the possible involvement of
the identified residues in the recently proposed, but yet to be
determined, mechanism by which localized Ca2� influx upon
TRPA1 activation controls channel functionality through its
acute translocation to the membrane (14).
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Summary 

Gain-of-function (GOF) mutations in ion channels are rare events, 

which lead to increased agonist sensitivity or altered gating 

properties, and may render the channel constitutively active. 

Uncovering and following characterization of such mutants 

contribute substantially to the understanding of the molecular 

basis of ion channel functioning. Here we give an overview of 

some GOF mutants in polymodal ion channels specifically 

involved in transduction of painful stimuli – TRPV1 and TRPA1, 

which are scrutinized by scientists due to their important role in 

development of some pathological pain states. Remarkably, 

a substitution of single amino acid in the S4-S5 region of TRPA1 

(N855S) has been recently associated with familial episodic pain 

syndrome. This mutation increases chemical sensitivity of TRPA1, 

but leaves the voltage sensitivity unchanged. On the other hand, 

mutations in the analogous region of TRPV1 (R557K and G563S) 

severely affect all aspects of channel activation and lead to 

spontaneous activity. Comparison of the effects induced by 

mutations in homologous positions in different TRP receptors (or 

more generally in other distantly related ion channels) may 

elucidate the gating mechanisms conserved during evolution. 
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Introduction 
 

The family of Transient Receptor Potential 

(TRP) ion channels mediates numerous sensory 

transduction processes, such as thermosensation, 

mechanosensation, sensation of irritative chemicals and 

different kinds of taste (for more information,  

see the TRP channel database: http://www.iuphar-

db.org/DATABASE/FamilyMenuForward?familyId=78).

As the voltage dependent potassium (Kv) channels, the 

TRP channels consist of four subunits, each with N- and  

C-terminal cytoplasmic domains, six transmembrane 

regions (S1-S6) and the central pore lined by S5 and S6 

together with the loop between them (Fig. 1A) 

(Moiseenkova-Bell and Wensel 2011, Kalia and Swartz 

2013). Among TRP channels, TRPV1 and TRPA1 are 

known to be specialized to transduce painful stimuli in 

mammals (Moran et al. 2011, Nilius and Owsianik 2011, 

Nilius et al. 2012). High temperature, low pH and some 

natural pungent compounds such as capsaicin act on 

TRPV1 to elicit nociception. TRPA1 is targeted by many 

environmental irritants including allyl isothiocyanate, 

responsible for the pungent taste of horseradish, and 

cinnamaldehyde from cinnamon. The activity of both 

channels is also modulated by voltage, but their 

sensitivity to depolarization is much lower than in Kv 

channels. Different parts of TRP channels are responsible 

for the sensitivity to different agonists (Nilius and 

Owsianik 2011, Winter et al. 2013). Due to the resulting 

allosteric gating, it is necessary to have in mind the 

complex character of TRP channels when evaluating the 



S206   Boukalova et al.  Vol. 63 
 

 

mutational analysis data. Gain-of-function (GOF) 

mutation may enhance the responses of the channel to 

one type of stimuli, but sensitivity to other agonists may 

be unchanged or even diminished. Amino acid 

substitutions which affect gating can lead to altered 

phenotype regarding to all aspects of channel activation 

(Myers et al. 2008b, Minor 2009, Pertusa et al. 2012). 

Such GOF mutations are invaluable in elucidating the 

mechanisms of signal transduction from different 

domains of the protein complex to channel gating. 
 
 

Fig. 1. (A) The topology of TRP channel 
subunit, that is formed by six transmembrane 
spanning domains (in orange), N- and C- 
cytoplasmatic ends. N-terminus contains 
ankyrin repeat domain (ARD), that is 
important in channel regulation. The regions 
containing gain-of-function mutation of TRP 
channels are depicted in darker color – 
extracellular part of the first transmembrane 
domain S1, loop between S4 and S5 helix  
(S4-S5) and the pore helix situated in the 
linker between S5 and S6. (B) Upper traces, 
representative whole cell patch clamp current 
recordings in response to voltage steps (from 
–120 mV to +200 mV) in HEK293T cells 
transfected with wild-type TRPV1 and G563S 
mutant. Lower trace, normalized 
conductance-voltage relationship obtained 
from steady state currents at the end of the 
pulse. The voltage depencence of G563S 
mutant is shifted towards less depolarizing 
voltages compared to wild-type TRPV1. 
(C) The sample recording of whole cell 
current responses of wild-type TRPV1 (upper 
trace) and G563S mutant (lower trace) to 
consecutive applications of low pH and 1 μM 
capsaicin. Holding potential –70 mV. Note the 
inhibitory effect of protons (pH 6.8) on 
TRPV1-G563S channel function, shown in 
inset. (D) Upper traces, representative 
current traces of wild-type TRPA1 and its 
N855R mutant in response to indicated 
voltage step protocol (voltage steps from  
–80 mV to +200 mV; increment +20 mV; 
holding potential –70 mV). Lower trace, 
normalized conductance-voltage relationship 
for wild-type TRPA1 (white symbols) and 
N855R mutant (blue symbols) fitted with 
Boltzmann equation. The data were obtained 
using the same voltage step protocol as 
shown in upper traces. (E) Time course of 
representative whole cell currents through 
human TRPA1 measured at +80 mV (upper 
trace) and –80 mV (lower trace). The 
horizontal bars above the records indicate the 
duration of 100 μM cinnamaldehyde and Ca2+ 
application. The chemical sensitivity of N855R 
mutant is increased and the inactivation 
kinetics is faster than in wild-type TRPA1. The 
voltage dependence of N855R mutant is 
unchanged. The data represent the means ± 
standard error. 
 

 
 

GOF mutants in TRPV1 – proton sensitized 
or inhibited? 

 

Several GOF mutants of the TRPV1 ion channel 

were revealed by unbiased genetic screening of a 

randomly generated population of TRPV1 mutants, 

which were tested for the ability to cause growth defects 

when expressed in yeast strains (Myers et al. 2008a). 

Two of the uncovered mutations, K160E and K155E, are 

located in the ankyrin repeat domain (ARD). These two 
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lysine residues were previously shown to modulate 

TRPV1 sensitivity and desensitization properties by 

binding ATP and calmodulin (Lishko et al. 2007). The 

study of Myers and colleagues (2008a) also revealed the 

important role of the outer pore region in TRPV1 gating. 

When mutated, the phenylalanine F640 and adjacent 

threonine T641 residues located in the putative flexion 

between pore helix and selectivity filter render the 

TRPV1 channel constitutively active with increased basal 

activity and enhanced chemical sensitivity. The authors 

hypothesised that F640L and T641S mutations mimic the 

proton-potentiated state, as they were insensitive to 

proton-mediated potentiation. 

In our project aimed at mutational analysis of the 

transmembrane region of the TRPV1 ion channel, we 

depicted several overactive mutants with strikingly 

similar phenotypic properties comprising increased basal 

activity and voltage sensitivity, altered kinetics of 

capsaicin-induced responses and incomplete deactivation 

after capsaicin washout. In contrast to wild-type TRPV1, 

low pH neither activates nor potentiates these GOF 

mutants, but instead stabilize their resting conformation 

(Pertusa et al. 2012) (Fig. 1B,C). These findings were 

surprising to us, considering that the mutations are 

located in distant regions of the protein subunit, such as 

(i) extracellular portion of S1 (R455K mutation), 

(ii) lower part of S4 and S4-S5 linker (R557K and 

G563S) and (iii) pore helix (T633A) (Boukalova et al. 

2013). 

Uncovering the GOF mutations in the S4/S4-S5 

region is consistent with its putative role in voltage 

sensing and signal transduction from peripheral domains 

(S1-S4) to the pore-forming domain subsequently leading 

to the opening or closing of the channel (Boukalova et al. 

2010). On the other hand, finding of constitutively active 

mutant with single amino acid substitution in the 

peripheral region of TRPV1 protein complex was not 

expected. So far, R455K is the only overactive mutation 

found in the S1-upper S4 region of TRPV1 protein 

complex, which forms binding capsule for chemical 

agonists (Jordt and Julius 2002, Gavva et al. 2004), but 

which direct role in ion channel gating was not presumed. 

According to previously published homology model of 

TRPV1 tetramer (Brauchi et al. 2007), it seems that 

arginine R455 and threonine T633 in the pore helix of 

adjacent subunit could be in close proximity. We 

hypothesized that, in analogy to Kv channels, S1-pore 

interface between neighbouring subunits of TRPV1 might 

serve to stabilize conformations associated with channel 

gating (Lee et al. 2009). This presumption could explain 

the similarity of R455K and T633A mutant phenotypes 

and the crucial role of arginine in S1 in TRPV1 gating. 

The most prominent feature of the GOF mutants 

described recently by us is the lack of low pH-induced 

activation. Conversely, relatively mild acidification of the 

extracellular solution inhibits the spontaneous activity 

and also the inward current remaining after capsaicin 

washout in R455K, R557K, G563S and T633A (Fig. 1C). 

Unlike in the outer pore region mutants F640L and 

T641S (Myers et al. 2008a), the phenotype of these 

mutants cannot be simply explained as mimicking the 

proton-potentiated state of TRPV1, as they failed to be 

activated by severe acidification of the extracellular 

solution (pH 5.5). In addition, in R455K, T633A and the 

S4-S5 overactive mutants we observed significantly 

slowed kinetics of the first capsaicin-induced response, 

which does not correspond to low pH-stimulated wild-

type TRPV1 characterized by much faster onset rate of 

responses elicited by capsaicin. 

In R455K, R557K, G563S and T633A, the 

washout phase of current responses after removal of 

capsaicin was markedly slowed down and the current 

did not deactivate to the basal level. The subsequent 

application of capsaicin led to rapid augmentation of the 

current amplitude, which in some cells was followed by 

again much slower onset phase (Fig. 1C). It appears that 

once exposed to capsaicin, the closed state of mutant ion 

channels is acutely destabilized. On the other hand, mild 

acidification of the extracellular space (pH 6.8) resulted 

in rapid and irreversible deactivation of the basal activity 

and also the current remaining after capsaicin washout. 

Overall, it seems that the overactive mutants can adopt at 

least two modes of activation and it is possible to switch 

between them using either capsaicin (to open the channel 

and leave it opened) or low pH (to close the channel and 

leave it closed). The question is whether this feature is 

unique for the GOF mutants, or whether it reflects innate 

phenotypic aspects of wild-type TRPV1 unmasked by the 

mutations. The later option is favoured by the fact that the 

same phenotype is found in several TRPV1 mutants with 

single amino acid substitution in different parts of the 

protein. 

 

Gain-of-function: which function of the 
many? 
 

High throughput unbiased functional screens  

and a combination of molecular evolution-selection 
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approaches helped to reveal a number of interesting 

mutants in TRPV1, TRPV3 and TRPM8 channels 

(Bandell et al. 2006, Grandl et al. 2008, 2010, Myers et 

al. 2008a). Pools of many thousands of mutants have 

been explored using random mutagenesis and calcium 

imaging in transfected HEK293 cells which led to the 

identification of some key regions of these channels that 

are likely to be important for channel activation or pore 

permeation (Pertusa et al. 2012). However, for the 250 

residue transmembrane part of the TRPV1 channel 

subunit, for example, the theoretical number of possible 

sequences is 20250 which is a number exceeding our 

imagination and all our experimental capacities. 

Moreover, for the thermosensitive TRP channels, the 

prototypically polymodal ion channels, it is important to 

test as many aspects of function as possible for each 

mutant because the activation modes can be readily 

uncoupled. No doubt, the chance of discovering a 

mutation that changes the function of an ion channel has 

to be greatly increased by combining an appropriate 

analogy, reasoning and informed intuition.  

In our recent project focused on the sixth 

transmembrane domain of the human transient receptor 

potential ankyrin receptor subtype 1 (TRPA1) channel 

(Story et al. 2003, Jordt et al. 2004), we aimed to identify 

residues that are likely to be core elements of the gating 

mechanism (Benedikt et al. 2009). This channel can be 

activated by a vast number of pungent and irritant 

chemicals that either covalently interact with 

(isothiocyanates, cinnamaldehyde, acrolein, allicin, 

oxidants and lipid peroxidation products) or bind to 

TRPA1 (cannabinoids, icilin, eugenol, thymol, nicotine), 

and can also be activated by deep cooling (<17 °C) or 

depolarizing (>+100 mV) voltages (Bandell et al. 2004, 

Corey et al. 2004, Bautista et al. 2005, Macpherson et al. 

2005, Nagata et al. 2005, Sawada et al. 2007, Caceres et 

al. 2009, Hu et al. 2009, Karashima et al. 2009, Andrade 

et al. 2012, Nilius et al. 2012). Using mutagenesis, 

electrophysiology and sequence homology with certain 

potassium and sodium channels, we identified several 

residues within the S6 inner pore-forming region that 

contribute to allyl isothiocyanate (AITC) and voltage-

dependent gating. We found that alanine substitution in 

the conserved mid-S6 proline (P949A) strongly affected 

the activation/deactivation and ion permeation. The 

P949A was functionally restored by substitution with a 

glycine but not by the introduction of a proline at 

positions –1, –2 or +1, which indicated that, just like in 

Kv channels, a flexible residue in the middle of S6 is 

structurally required for the normal functioning of the 

TRPA1 channel. Notably, we found a residue N954, at 

which alanine substitution generated a constitutively open 

(i.e. GOF) phenotype, suggesting a role in stabilizing the 

closed conformation. In a prospective unbiased functional 

screen, this mutant would probably remain unrecognized 

or misinterpreted as a loss-of-function, because AITC, at 

first, only slightly potentiates the currents through the 

N954A channels, but this is followed by a complete 

inactivation at negative membrane potentials (Benedikt et 

al. 2009). Our results also pointed to important functional 

roles for the two distal glycines G958 and G962, 

comprising the distal GXXXG-motif. The G958A “GOF” 

mutation strongly decreased the inactivation rate of 

AITC-induced whole-cell currents, whereas the G962A 

mutation led to a dramatically delayed onset of the 

secondary phase of AITC-induced activation, indicating 

that the distal G962 stabilizes the open conformation. 

G958, on the other hand, provides additional tuning 

leading to decreased channel activity. It seems likely that 

these two glycines play a role similar to that of the distal 

bi-glycine motif G(X)3G of the conserved IS6 domain of 

the CaV1.2 and CaV2.3 channels (Raybaud et al. 2006).  

In fact, for the polymodal TRPA1 ion channel, it 

is not easy even only to define what is the “gain-of-

function” because the channel has various activation 

modes and undergoes desensitization which depends on 

many factors, including its own activity (Story et al. 

2003, Jordt et al. 2004, Nilius and Owsianik 2011, Nilius 

et al. 2012). For example, by performing the systemic 

neutralization of 27 positively charged residues within the 

C-terminal tail of human TRPA1, we identified eight 

residues that are important to the allosteric regulation of 

the channel by chemical and voltage stimuli (K969, 

R975, K989, K1009, K1046, K1071, K1092, and R1099). 

In addition, we revealed three charge-neutralizing “GOF” 

mutants (R975A, K988A, and K989A) which exhibited 

higher sensitivity to depolarizing voltages, indicating that 

these residues may be directly involved in the voltage-

dependent regulation (Samad et al. 2011). However, the 

currents induced by AITC at negative membrane 

potentials were small or indistinguishable from wild-type 

in these mutants.  

 

GOF mutants in the distal C-terminal acidic 
motif of TRPA1 

 

An ubiquitous and physiologically important 

modulator of TRPA1 are calcium ions (Ca2+), which enter 
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through the open channel, or are released from internal 

stores, and dynamically control channel opening 

probability, unitary conductance, ion selectivity (Nagata 

et al. 2005, Cavanaugh et al. 2008, Patil et al. 2010, 

Nilius and Owsianik 2011), but also surface expression 

levels (Schmidt et al. 2009). Intracellular Ca2+ ions 

activate the channel at micromolar concentrations 

(EC50=0.9-6 µM) (Doerner et al. 2007, Zurborg et al. 

2007) and strongly potentiate chemically and voltage-

induced responses (Wang et al. 2008). This potentiation 

is followed by an almost complete and irreversible 

inactivation, and both processes are accelerated at higher 

intracellular concentrations of Ca2+. In our recent study, 

we identified the residues within the distal C-terminal 

domain of TRPA1 that when mutated affected the Ca2+- 

and voltage-dependent gating of the channel (Sura et al. 

2012). This study revealed several acidic residues in the 

TRPA1 cytosolic C-terminus that play important roles in 

Ca2+-dependent modulation and may represent a 

candidate region for the site of Ca2+ binding. According 

to our molecular dynamics simulations, the 

I1074ISETEDDDS1083 motif has been shown to form a 

Ca2+ binding loop, in which the two residues D1080 and 

D1082 are predicted to be crucial for binding Ca2+, 

whereas the side chains of I1074 and E1077 are in 

contact with the calcium ion using their main chain 

carbonyl oxygen atoms. We identified residues E1073, 

E1077, D1080, D1081, and D1082, the specific 

properties of which are not involved in cinnamaldehyde 

activation but all appear to be most important for the 

modulation of the TRPA1 channel by Ca2+. Notably, we 

found two mutants in this region, E1077A and E1077K, 

in which the degree of potentiation of cinnamaldehyde 

responses by 2 mM Ca2+ was markedly reduced 

obviously due to their initial close-to-saturation state at 

+80 mV. We reasoned that this sensitizing effect might 

reflect either a gain-of-function (constitutively active) 

phenotype or tonic activation due to an increased 

expression of the mutant channels on the cell surface. 

In this region, we identified two strong consensus 

phosphorylation motifs containing S1076 and T1078, 

both predicted to be targeted by casein kinase CK2. 

Therefore, we tested additional mutants in which either 

serine or threonine were replaced by either alanine or 

aspartate to mimic the nonphosphorylated and 

phosphorylated forms of the TRPA1 protein, 

respectively. We found that the nonphosphorylatable 

mutant S1076A and the phosphorylation-mimicking 

S1076D mutant channels were normal in all general 

aspects of functionality. Mutation T1078A exhibited 

substantially reduced responses to voltage and 

cinnamaldehyde and was capable of strong potentiation 

by 2 mM Ca2+, whereas mutation T1078D resulted in 

TRPA1 channels whose conductance to voltage 

relationships were also strongly augmented and shifted 

toward less depolarizing potentials. These findings 

indicate that the functional changes caused by other 

substitutions in this region are likely to be steric or local, 

rather than related to changes in the phosphorylation-

dependent membrane insertion of the channels. We, 

however, did not exclude the possible involvement of 

these amino acid residues in the recently proposed 

mechanism by which localized Ca2+ influx upon channel 

activation controls TRPA1 functionality through its acute 

translocation to the membrane (Schmidt et al. 2009). 

 

GOF mutant of TRPA1 – pain-related 
channelopathy 

 

The TRPA1 channel has been recently linked to 

a heritable human pain disorder (Kremeyer et al. 2010). 

In the S4-S5 linker of TRPA1, the missense mutation 

N855S that leads to increased channel activity has been 

revealed as a cause of familial episodic pain syndrome 

manifested as paroxysmal pain induced by tiredness, 

fasting or cold (Kremeyer et al. 2010). In their study, the 

authors demonstrate that the N855S mutant exhibits a  

4-fold increase in inward currents on activation by 

cinnamaldehyde, menthol, the endogenous aldehyde  

4-hydroxynonenal, or cold at normal resting membrane 

potentials. Removing extracellular Ca2+ ions shifted the 

voltage-dependent activation by +20 mV in both the 

wild-type and the N855S mutant, but under the Ca2+-free 

conditions, the cooperativity of voltage-dependent gating 

decreased only in N855S, but not in the wild-type TRPA1 

channels. This finding was interpreted as indicating that 

this mutation might destabilize the closed conformation 

of the channel, which could account for a more general 

effect on channel gating (Smith-Maxwell et al. 1998) and 

is consistent with the proposed functional role for the  

S4-S5 linker in the gating of other thermosensitive TRP 

channels (Brauchi et al. 2007, Voets et al. 2007, 

Boukalova et al. 2010). It is generally accepted that the 

electrophilic compounds, such as allyl isothiocyanate 

activate TRPA1 through covalent binding at specific 

cysteine residues on the intracellularly located  

N-terminus (Hinman et al. 2006, Macpherson et al. 2007, 

Kang et al. 2010). It is, however, not known how 
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covalent cysteine modifications translate into TRPA1 

activation. Simulations based on a low-resolution electron 

density map indicate that the chemical signal can be 

readily conveyed through cytoplasmic domains to the 

intracellular channel gate (Cvetkov et al. 2011). Although 

to discern the individual activation pathways in TRPA1 is 

very difficult even if we knew the actual structure of the 

channel (Cvetkov et al. 2011), it can be supposed that, 

analogous to Kv channels, the conformational changes 

within the S1-S4 “sensors” are converted by the inner  

S4-S5 linker helices directly into gate opening and 

closing through the motions of the S6 inner helices which 

dilate (open) and constrict (close) the pore entryway 

(Long et al. 2005a,b, 2007, Brauchi et al. 2007, Benedikt 

et al. 2009, Salazar et al. 2009). Interestingly, we found 

that the introduction of a positively charged residue at 

position N855 (N855R) increased the TRPA1-mediated 

current responses to cinnamaldehyde and speeded up the 

inactivation kinetics without affecting conductance to 

voltage relationships (Fig. 1D,E). This indicates that the 

mutation altered the chemical but not the voltage 

activation pathway of the TRPA1 channel.  

 

Future perspectives 
 

Chronic pain conditions, resulting from disease, 

injury or inherited, cause unimaginable suffering and 

constitute a huge burden for the individual and society. 

Both, TRPV1 and TRPA1 are implicated in acute and 

chronic pain states and are intensively studied as potential 

therapeutic targets (Brederson et al. 2013). Mutations in 

genes encoding ion channels associated with nociceptive 

pathways, e.g. voltage-gated sodium, potassium and 

calcium channels, TRP channels, ASIC channels or 

purinergic receptors, have been described to cause a 

variety of pathological states (Cregg et al. 2010, Lampert 

et al. 2010, Raouf et al. 2010, Nilius and Voets 2013, 

Waxman 2013). It is likely that with ongoing research 

further mutations will emerge and therefore future 

structural and functional studies will be necessary to 

enhance our understanding of the unique features of these 

channels and to elucidate how their pain-related 

functioning can be manipulated to therapeutic advantage. 

 

Conflict of Interest  
There is no conflict of interest. 
 

Acknowledgements 
This work was supported by the Grant Agency of the 

Czech Republic (305/09/0081 and 304/12/G069), GAUK 

500512 and 888513, CZ.1.07/2.3./00/30.0025, and the 

Research Project Fund of the Academy of Sciences of 

the Czech Republic RVO:67985823. 

 
References 
 

ANDRADE EL, MEOTTI FC, CALIXTO JB: TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133: 

189-204, 2012. 

BANDELL M, STORY GM, HWANG SW, VISWANATH V, EID SR, PETRUS MJ, EARLEY TJ, PATAPOUTIAN 

A: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41: 849-857, 

2004. 

BANDELL M, DUBIN AE, PETRUS MJ, ORTH A, MATHUR J, HWANG SW, PATAPOUTIAN A: High-

throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by 

menthol. Nat Neurosci 9: 493-500, 2006. 

BAUTISTA DM, MOVAHED P, HINMAN A, AXELSSON HE, STERNER O, HOGESTATT ED, JULIUS D, 

JORDT SE, ZYGMUNT PM: Pungent products from garlic activate the sensory ion channel TRPA1. Proc 

Natl Acad Sci USA 102: 12248-12252, 2005. 

BENEDIKT J, SAMAD A, ETTRICH R, TEISINGER J, VLACHOVA V: Essential role for the putative S6 inner pore 

region in the activation gating of the human TRPA1 channel. Biochim Biophys Acta Mol Cell Research 1793: 

1279-1288, 2009. 

BOUKALOVA S, MARSAKOVA L, TEISINGER J, VLACHOVA V: Conserved residues within the putative S4-S5 

region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels. 

J Biol Chem 285: 41455-41462, 2010. 

BOUKALOVA S, TEISINGER J, VLACHOVA V: Protons stabilize the closed conformation of gain-of-function 

mutants of the TRPV1 channel. Biochim Biophys Acta 1833: 520-528, 2013. 



2014  Gain-of-Function Mutations in TRP Channels   S211 
 
   

BRAUCHI S, ORTA G, MASCAYANO C, SALAZAR M, RADDATZ N, URBINA H, ROSENMANN E, 

GONZALEZ-NILO F, LATORRE R: Dissection of the components for PIP2 activation and thermosensation in 

TRP channels. Proc Natl Acad Sci USA 104: 10246-10251, 2007. 

BREDERSON JD, KYM PR, SZALLASI A: Targeting TRP channels for pain relief. Eur J Pharmacol 716: 61-76, 

2013. 

CACERES AI, BRACKMANN M, ELIA MD, BESSAC BF, DEL CAMINO D, D'AMOURS M, WITEK JS, FANGER 

CM, CHONG JA, HAYWARD NJ, HOMER RJ, COHN L, HUANG X, MORAN MM, JORDT SE: A sensory 

neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA 

106: 9099-9104, 2009. 

CAVANAUGH EJ, SIMKIN D, KIM D: Activation of transient receptor potential A1 channels by mustard oil, 

tetrahydrocannabinol and Ca(2+) reveals different functional channel states. Neuroscience 154: 1467-1476, 

2008. 

COREY DP, GARCIA-ANOVEROS J, HOLT JR, KWAN KY, LIN SY, VOLLRATH MA, AMALFITANO A, 

CHEUNG EL, DERFLER BH, DUGGAN A, GELEOC GS, GRAY PA, HOFFMAN MP, REHM HL, 

TAMASAUSKAS D, ZHANG DS: TRPA1 is a candidate for the mechanosensitive transduction channel of 

vertebrate hair cells. Nature 432: 723-730, 2004. 

CREGG R, MOMIN A, RUGIERO F, WOOD JN, ZHAO J: Pain channelopathies. J Physiol (Lond) 588: 1897-1904, 

2010. 

CVETKOV TL, HUYNH KW, COHEN MR, MOISEENKOVA-BELL VY: Molecular architecture and subunit 

organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286: 38168-38176, 2011. 

DOERNER JF, GISSELMANN G, HATT H, WETZEL CH: Transient receptor potential channel A1 is directly gated 

by calcium ions. J Biol Chem 282: 13180-13189, 2007. 

GAVVA NR, KLIONSKY L, QU Y, SHI L, TAMIR R, EDENSON S, ZHANG TJ, VISWANADHAN VN, TOTH A, 

PEARCE LV, VANDERAH TW, PORRECA F, BLUMBERG PM, LILE J, SUN Y, WILD K, LOUIS JC, 

TREANOR JJ: Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279: 20283-20295, 

2004. 

GRANDL J, HU H, BANDELL M, BURSULAYA B, SCHMIDT M, PETRUS M, PATAPOUTIAN A: Pore region of 

TRPV3 ion channel is specifically required for heat activation. Nat Neurosci 11: 1007-1013, 2008. 

GRANDL J, KIM SE, UZZELL V, BURSULAYA B, PETRUS M, BANDELL M, PATAPOUTIAN A: Temperature-

induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13: 708-714, 2010. 

HINMAN A, CHUANG HH, BAUTISTA DM, JULIUS D: TRP channel activation by reversible covalent 

modification. Proc Natl Acad Sci USA 103: 19564-19568, 2006. 

HU H, BANDELL M, PETRUS MJ, ZHU MX, PATAPOUTIAN A: Zinc activates damage-sensing TRPA1 ion 

channels. Nat Chem Biol 5: 183-190, 2009. 

JORDT SE, JULIUS D: Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108: 421-430, 2002. 

JORDT SE, BAUTISTA DM, CHUANG HH, MCKEMY DD, ZYGMUNT PM, HOGESTATT ED, MENG ID, 

JULIUS D: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. 

Nature 427: 260-265, 2004. 

KALIA J, SWARTZ KJ: Exploring structure-function relationships between TRP and Kv channels. Sci Rep 3: 1523, 

2013. 

KANG K, PULVER SR, PANZANO VC, CHANG EC, GRIFFITH LC, THEOBALD DL, GARRITY PA: Analysis of 

Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464: 597-600, 2010. 

KARASHIMA Y, TALAVERA K, EVERAERTS W, JANSSENS A, KWAN KY, VENNEKENS R, NILIUS B, 

VOETS T: TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 106: 1273-1278, 2009. 

KREMEYER B, LOPERA F, COX JJ, MOMIN A, RUGIERO F, MARSH S, WOODS CG, JONES NG, PATERSON 

KJ, FRICKER FR, VILLEGAS A, ACOSTA N, PINEDA-TRUJILLO NG, RAMIREZ JD, ZEA J, BURLEY 

MW, BEDOYA G, BENNETT DL, WOOD JN, RUIZ-LINARES A: A gain-of-function mutation in TRPA1 

causes familial episodic pain syndrome. Neuron 66: 671-680, 2010. 

LAMPERT A, O'REILLY AO, REEH P, LEFFLER A: Sodium channelopathies and pain. Pflugers Arch 460: 249-263, 

2010. 



S212    Boukalova et al.  Vol. 63 
 

 

LEE SY, BANERJEE A, MACKINNON R: Two separate interfaces between the voltage sensor and pore are required 

for the function of voltage-dependent K(+) channels. PLoS Biol 7: e47, 2009. 

LISHKO PV, PROCKO E, JIN X, PHELPS CB, GAUDET R: The ankyrin repeats of TRPV1 bind multiple ligands and 

modulate channel sensitivity. Neuron 54: 905-918, 2007. 

LONG SB, CAMPBELL EB, MACKINNON R: Crystal structure of a mammalian voltage-dependent Shaker family K+ 

channel. Science 309: 897-903, 2005a. 

LONG SB, CAMPBELL EB, MACKINNON R: Voltage sensor of Kv1.2: structural basis of electromechanical 

coupling. Science 309: 903-908, 2005b. 

LONG SB, TAO X, CAMPBELL EB, MACKINNON R: Atomic structure of a voltage-dependent K+ channel in a lipid 

membrane-like environment. Nature 450: 376-382, 2007. 

MACPHERSON LJ, GEIERSTANGER BH, VISWANATH V, BANDELL M, EID SR, HWANG S, PATAPOUTIAN 

A: The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15: 929-934, 

2005. 

MACPHERSON LJ, DUBIN AE, EVANS MJ, MARR F, SCHULTZ PG, CRAVATT BF, PATAPOUTIAN A: 

Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445: 

541-545, 2007. 

MINOR DL JR: Searching for interesting channels: pairing selection and molecular evolution methods to study ion 

channel structure and function. Mol Biosyst 5: 802-810, 2009. 

MOISEENKOVA-BELL V, WENSEL TG: Functional and structural studies of TRP channels heterologously expressed 

in budding yeast. Adv Exp Med Biol 704: 25-40, 2011. 

MORAN MM, MCALEXANDER MA, BIRO T, SZALLASI A: Transient receptor potential channels as therapeutic 

targets. Nat Rev Drug Discov 10: 601-620, 2011. 

MYERS BR, BOHLEN CJ, JULIUS D: A yeast genetic screen reveals a critical role for the pore helix domain in TRP 

channel gating. Neuron 58: 362-373, 2008a. 

MYERS BR, SAIMI Y, JULIUS D, KUNG C: Multiple unbiased prospective screens identify TRP channels and their 

conserved gating elements. J Gen Physiol 132: 481-486, 2008b. 

NAGATA K, DUGGAN A, KUMAR G, GARCIA-ANOVEROS J: Nociceptor and hair cell transducer properties of 

TRPA1, a channel for pain and hearing. J Neurosci 25: 4052-4061, 2005. 

NILIUS B, OWSIANIK G: The transient receptor potential family of ion channels. Genome Biol 12: 218, 2011. 

NILIUS B, APPENDINO G, OWSIANIK G: The transient receptor potential channel TRPA1: from gene to 

pathophysiology. Pflugers Arch 464: 425-458, 2012. 

NILIUS B, VOETS T: The puzzle of TRPV4 channelopathies. EMBO Rep 14: 152-163, 2013. 

PATIL MJ, JESKE NA, AKOPIAN AN: Transient receptor potential V1 regulates activation and modulation of 

transient receptor potential A1 by Ca2+. Neuroscience 171: 1109-1119, 2010. 

PERTUSA M, MOLDENHAUER H, BRAUCHI S, LATORRE R, MADRID R, ORIO P: Mutagenesis and 

temperature-sensitive little machines. In: Mutagenesis. MISHRA R (ed), InTech Open Access publisher, 

Valparaíso, 2012, pp 221-246. 

RAOUF R, QUICK K, WOOD JN: Pain as a channelopathy. J Clin Invest 120: 3745-3752, 2010. 

RAYBAUD A, DODIER Y, BISSONNETTE P, SIMOES M, BICHET DG, SAUVE R, PARENT L: The role of the 

GX9GX3G motif in the gating of high voltage-activated Ca2+ channels. J Biol Chem 281: 39424-39436, 2006. 

SALAZAR H, JARA-OSEGUERA A, HERNANDEZ-GARCIA E, LLORENTE I, ARIAS O, II, SORIANO-GARCIA 

M, ISLAS LD, ROSENBAUM T: Structural determinants of gating in the TRPV1 channel. Nat Struct Mol Biol 

16: 704-710, 2009. 

SAMAD A, SURA L, BENEDIKT J, ETTRICH R, MINOFAR B, TEISINGER J, VLACHOVA V: The C-terminal 

basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem J 433:  

197-204, 2011. 

SAWADA Y, HOSOKAWA H, HORI A, MATSUMURA K, KOBAYASHI S: Cold sensitivity of recombinant 

TRPA1 channels. Brain Res 1160: 39-46, 2007. 

SCHMIDT M, DUBIN AE, PETRUS MJ, EARLEY TJ, PATAPOUTIAN A: Nociceptive signals induce trafficking of 

TRPA1 to the plasma membrane. Neuron 64: 498-509, 2009. 



2014  Gain-of-Function Mutations in TRP Channels   S213 
 
   

SMITH-MAXWELL CJ, LEDWELL JL, ALDRICH RW: Uncharged S4 residues and cooperativity in voltage-

dependent potassium channel activation. J Gen Physiol 111: 421-439, 1998. 

STORY GM, PEIER AM, REEVE AJ, EID SR, MOSBACHER J, HRICIK TR, EARLEY TJ, HERGARDEN AC, 

ANDERSSON DA, HWANG SW, MCINTYRE P, JEGLA T, BEVAN S, PATAPOUTIAN A: ANKTM1, 

a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819-829, 

2003. 

SURA L, ZIMA V, MARSAKOVA L, HYNKOVA A, BARVIK I, VLACHOVA V: C-terminal acidic cluster is 

involved in Ca2+-induced regulation of human transient receptor potential ankyrin 1 channel. J Biol Chem 

287: 18067-18077, 2012. 

VOETS T, OWSIANIK G, JANSSENS A, TALAVERA K, NILIUS B: TRPM8 voltage sensor mutants reveal 

a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3: 174-182, 2007. 

WANG YY, CHANG RB, WATERS HN, MCKEMY DD, LIMAN ER: The nociceptor ion channel TRPA1 is 

potentiated and inactivated by permeating calcium ions. J Biol Chem 283: 32691-32703, 2008. 

WAXMAN SG: Painful Na-channelopathies: an expanding universe. Trends Mol Med 19: 406-409, 2013. 

WINTER Z, BUHALA A, OTVOS F, JOSVAY K, VIZLER C, DOMBI G, SZAKONYI G, OLAH Z: Functionally 

important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel - an 

overview of the current mutational data. Mol Pain 9: 30, 2013. 

ZURBORG S, YURGIONAS B, JIRA JA, CASPANI O, HEPPENSTALL PA: Direct activation of the ion channel 

TRPA1 by Ca2+. Nat Neurosci 10: 277-279, 2007. 
 

 

 
 


	Dissertation_Kádková_1.pdf
	N-terminus
	srep28700
	N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

	Results

	Mutations affecting the conformational stability of ankyrin repeat 2 affect voltage-dependent TRPA1 channel gating. 
	Specific mutation in conserved TPLH motif in ankyrin repeat six affects voltage- and Ca2+-dependent modulation. 
	Multimodal gating of TRPA1 depends on the stability of ankyrin repeat six. 
	Short-range stability of ankyrin repeat 12 determines the gating and calcium regulation of human TRPA1. 
	Strict conservation of the T/SPLH motifs in AR11-AR13 are required for functional interactions and not for targeting TRPA1  ...
	Conserved T/SPLH motifs as putative phosphorylation sites. 

	Discussion

	Methods

	Expression and constructs of hTRPA1 channel. 
	Electrophysiology. 
	Statistical analysis. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Topology of human TRPA1 channel subunit.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Mutations affecting the conformational stability of the ankyrin repeat 2 and 3 affect voltage-dependent TRPA1 channel gating.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Specific mutation in the conserved TPLH motif in the ankyrin repeat six affects voltage-dependent modulation.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Multimodal gating of TRPA1 depends on the stability of ankyrin repeat 6.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ A short range stability of the ankyrin repeat 12 determines the gating and calcium regulation of human TRPA1.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Strict conservations of the T/SPLH motifs in AR11-AR13 are required for functional interactions and not for targeting TRPA1 to the plasma membrane.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Conserved T/SPLH motifs as putative phosphorylation sites.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ Phospho-mimicking and phospho-null substitutions at S344, S616 and T673.


	S4-S5
	TRPA1-N855S_Zima, Vlachova 2015
	Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabili ...
	1. Introduction
	2. Materials and methods
	2.1. Homology modeling of TRPA1 based on Kv1.2-2.1 crystal structure
	2.2. Homology modeling of TRPV1-A1 chimeras based on TRPV1 cryoEM structure
	2.3. Molecular dynamic simulations
	2.4. Expression and constructs of hTRPA1 channel
	2.5. Electrophysiology
	2.6. Statistical analysis

	3. Results
	3.1. Structural modeling of TRPA1 based on Kv1.2-2.1 paddle chimera template structure reveals inter-subunit interactions
	3.2. Structural modeling based on the high-resolution cryo-EM structure of TRPV1 channel confirms the proximity of E854 and K868
	3.3. Structural alignment between Kv1.2-2.1 and TRPV1 enables the alignment of the target TRPA1 sequence to be refined
	3.4. Electrophysiological measurements support the predicted E854–K868 interaction
	3.5. Mutations at R852 reveal a gain-of-function phenotype
	3.6. N855 and R872 are not likely to be involved in roles analogous to those of the cognate residues from TRPV1

	4. Discussion
	Acknowledgments
	References


	C-terminus
	Sura C-konec_2012_finále
	PhysRes
	63_S205-1


 
    
       
          application/pdf
          
             
                N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel
            
         
          
             
                srep ,  (2016). doi:10.1038/srep28700
            
         
          
             
                Anna Hynkova
                Lenka Marsakova
                Jana Vaskova
                Viktorie Vlachova
            
         
          doi:10.1038/srep28700
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep28700
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep28700
            
         
      
       
          
          
          
             
                doi:10.1038/srep28700
            
         
          
             
                srep ,  (2016). doi:10.1038/srep28700
            
         
          
          
      
       
       
          True
      
   




