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ABSTRAKT 

Dědičné poruchy glykosylace (Congenital disorders of glycosylation, CDG) jsou 

rychle rostoucí skupinou vzácných dědičných metabolických poruch s prevalencí až 

1:20 000, které jsou zapříčiněny genetickými defekty narušujícími proces 

glykosylace, tj. enzymatického připojení specifické sacharidové struktury na kostru 

proteinů nebo lipidů. Kvůli nespecifitě a variabilitě klinických příznaků u pacientů je 

určení diagnózy CDG velmi složité, a významně se spoléhá na správnou 

biochemickou a genetickou analýzu. 

Záměrem předložené dizertační práce bylo studium CDG na biochemické a 

molekulárně-genetické úrovni v rámci České a Slovenské republiky, které 

zahrnovalo tři specifické cíle: A.) zavést a optimalizovat laboratorní screeningové 

metody pro detekci CDG u klinicky suspektních pacientů, B.) určit odpovídající 

genetický defekt u pozitivních pacientů zachycených pomocí screeningu a studovat 

patobiochemické aspekty jednotlivých typů CDG na buněčné úrovni, a C.) 

analyzovat poruchy glykosylace s jinou (non-CDG) etiologií.  

Mezi přínosy této práce patří optimalizace isoelektrické fokusace 

apolipoproteinu C-III (ApoC-III) jako metody pro detekci abnormální 

O-glykosylace, a také popis praktických implikací metod pro screening CDG (např. 

detekce specifického polymorfizmu transferinu, u kterého nelze screening CDG 

použít, nebo nález hyposialovaného ApoC-III u glykogenóz). Kromě toho při 

charakterizaci subcelulární struktury a různých patobiochemických aspektů ve 

fibroblastech pacientů s vybranými typy CDG byly popsány dosud nepublikované 

jevy (např. buněčná akumulace reaktivních forem kyslíku u CDG). Díky aplikaci 

nových metod a studiu průběhu onemocnění, identifikace biochemické a genetické 

podstaty onemocnění byla provedena u více než 20 pacientů. Unikátní případy 

(RFT1-CDG, PGM1-CDG, MAN1B1-CDG, defekt NgBR) byly publikovány a 

přinesly zcela nové poznatky vztahující se k fenotypu nebo genotypu dané poruchy.  

 

Klíčová slova: dědičné poruchy glykosylace, CDG, screening, apolipoprotein C-III, 

transferin   
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ABSTRACT 

Congenital disorders of glycosylation (CDG) represent a rapidly growing group of 

rare inherited metabolic diseases with estimated prevalence as high as 1:20 000, 

which are caused by genetic defects that impair the process of glycosylation, i.e. the 

enzymatic addition of a specific saccharide structure onto a protein or lipid 

backbone. Due to non-specificity and variability of clinical symptoms in the patients, 

the medical diagnosis of CDG remains extremely challenging and significantly relies 

on accurate biochemical and genetic analyses. 

The overall goal of the present dissertation thesis was to study CDG at the 

biochemical and molecular genetic level in the context of the Czech and Slovak 

Republic, which involved three specific aims: A.) to introduce and optimize 

laboratory screening methods for CDG detection in a group of clinically suspected 

patients, B.) to determine the corresponding genetic defect in the positive patients 

selected via CDG screening and to study the pathobiochemical aspects of specific 

CDG types at the cellular level, and C.) to analyze glycosylation disturbances of non-

CDG etiology.  

Contributions of this work include optimization of isoelectric focusing of 

apolipoprotein C-III (ApoC-III) as a screening method for O-glycosylation 

abnormalities, as well as the description of practical implications for using CDG 

screening methods (e.g., the detection of a specific transferrin polymorphism that 

hampers N-glycosylation screening, or the finding of hyposialylated ApoC-III in 

glycogen storage diseases). Moreover, while studying the subcellular structure and 

various pathobiochemical aspects in fibroblasts from CDG patients, we made 

observations that had not been previously reported (e.g., the cellular accumulation of 

reactive oxygen species in CDG). We accomplished biochemical characterization 

and genetic diagnosis in more than 20 patients, and selected cases (RFT1-CDG, 

PGM1-CDG, MAN1B1-CDG, NgBR defect) were published, bringing novel 

phenotype and genotype findings.  

 

Keywords: congenital disorders of glycosylation, CDG, screening, 

apolipoprotein C-III, transferrin  
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Ca
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: calcium ions 
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Dol-P-Man: dolichol-phosphate-mannose 

eIF2: eukaryotic translation initiation factor 2 

EOGT: epidermal growth factor domain-specific O-linked N-acetylglucosamine transferase 

ER: endoplasmic reticulum 

ERAD: endoplasmic reticulum-associated degradation pathway 

ERp57: endoplasmic reticulum resident protein 57  

FBS: fetal bovine serum 

Fe
3+

: ferric ions 

Fru-1-P: fructose-1-phosphate 

Fru(c)-6-P: fructose-6-phosphate 

Fuc: fucose 

G: guanine 

GAG: glycosaminoglycans 

Gal: galactose 

Gal-1-P: galactose-1-phosphate 

GalNAc: N-acetylgalactose 

GalNAc-Ts: N-acetylgalactose transferases  

GDP: guanosine diphosphate 

GDP-Fuc: guanosine-5′-diphospho-fucose 

GDP-Man: guanosine-5′-diphospho-mannose  
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Glc-6-P: glucose-6-phosphate 

GlcA: glucuronic acid 

GlcN: glucosamine 

GlcNAc: N-acetylglucosamine 

GlcNAc-1-P: N-acetylglucosamine-1-phosphate 

Gln: glutamine 

Gly: glycine 

GM3: monosialodihexosylganglioside 

GPI: glycosylphosphatidylinositol 
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GRP78: 78 kDa glucose-regulated protein (also known as BiP) 

GSD: glycogen storage disease(s) 

GTP: guanosine triphosphate 

GWAS: genome-wide association study 

H2O2: hydrogen peroxide 

HCC: hepatocellular carcinoma 

hCIT: human cis-isoprenyltransferase (also known as DHDDS) 

HDL: high-density lipoproteins 

HeLa: immortal cell line derived from cervical cancer (named after the donor Henrietta 
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HFI: hereditary fructose intolerance   

His: histidine 

HPLC: high-performance liquid chromatography 

Hyl: hydroxylysine 

ICAM-1: intercellular adhesion molecule 1 

IdoA: iduronic acid 

IEF: isoelectric focusing  

IF: impact factor 

IgA(1): immunoglobulin A(1) 

IgG: immunoglobulin G 

IRE1: inositol-requiring protein 1  

IQ: intelligence quotient 

JNK: c-Jun N-terminal protein kinase 

LAMP1: lysosomal-associated membrane protein 1  

LDL: low-density lipoproteins 

LLO: lipid linked oligosaccharide(s) 

Lys: lysine   

MALDI: matrix-assisted laser desorption ionization 

Man: mannose 

ManAc: N-acetylmannosamine  

MAN1B1: α-1,2-mannosidase 

Man-1-P: mannose-1-phosphate 

Man-6-P: mannose-6-phosphate 

Met: methionine 

MPI: phosphomannose isomerase  
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mRNA: messenger ribonucleid acid 

MS: mass spectrometry 

Mw: molecular weight 

nano-LC: miniaturized technique of liquid chromatography 

NeuAc/Neu5Ac: N-acetylneuraminic acid (sialic acid) 

NgBR: Nogo-B receptor 

NGS: next generation sequencing  

NGLY1: N-glycanase 1 

NPC2: Niemann-Pick disease, type C2 protein 

NRF2: nuclear respiratory factor 2 

OGT: O-linked N-acetylglucosamine transferase 

OST: oligosaccharyltransferase 

P: phosphate 

p58
IPK

: protein kinase inhibitor of 58 kDa (also known as DNAJC3)  

PBS: phosphate-buffered saline 

PCR: polymerase chain reaction 

PDI: protein disulfide isomerase 

PERK: protein kinase RNA-like ER kinase 

PFA: paraformaldehyde  

PGM(1): phosphoglucomutase (1) 

pI: isoelectric point  

PMM(2): phosphomannomutase(2) 

PNA: peanut agglutinin  
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RFLP: restriction fragment length polymorphism  
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ROS: reactive oxygen species 

RT: room temperature 

SAA4: serum amyloid A4 

SAHH: S-adenosylhomocysteine hydrolase 
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SDS-PAGE: sodium dodecylsulphate polyacrylamide gel electrophoresis 

SEC23A, SEC23B: components of the COPII  

Ser: serine 

SLC35C1: solute carrier family 35 member C1 

SLC39A8: solute carrier family 39 member 8 

SNP: single nucleotide polymorphism 

T: thymine 

TAG: triacylglycerol(s) 

TEM: transmission electron microscopy 

Ter: translation termination codon 
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TMEM165: transmembrane protein 165 

TMEM199: transmembrane protein 199 
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UPR: unfolded protein response 
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XBP1: X-box binding protein 1 

Xyl: xylose 
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1 INTRODUCTION 

1.1 Glycosylation 

Glycosylation is an abudant type of co- and post-translational modification of both proteins 

and lipids, with more than 50 % of the human proteome estimated to be glycosylated [1]. It 

comprises a covalent attachment of either a monosaccharide, oligosaccharide or 

polysaccharide moiety (the latter two are referred to as „a glycan“) in sequential steps, 

exerted by a complex molecular machinery of enzymes and other proteins that are involved 

in production of the glycosylation substrates (i.e., nucleotide-monosaccharides), glycan 

assembly, transfer of the activated monosaccharide or glycan onto polypeptide/lipid 

backbone, and further glycan modification. This process is localized in cytosol, nucleus, 

rough endoplasmic reticulum (ER) and Golgi apparatus, and, in most cases, is followed by 

secretion of the newly synthesized glycoproteins into extracellular space. Based on the type 

of glycosidic bond either through amide group (-NH-) of asparagine or hydroxy group (-O-) 

of threonine/serine/hydroxylysine, protein N- and O-glycosylation is distinguished, 

respectively. These two major classes will be the main focus of the thesis. Other types of 

mammalian protein glycosylation include C-mannosylation (C-C bond via Trp) and 

glypiation (attachment of glycosylphosphatidylinositol anchor) [2]. Lipid glycosylation 

yielding glycosphingolipids begins with stepwise addition of monosaccharides to ceramide, 

but shares some glycosylation enzymes with protein glycosylation. While the biosynthetic 

pathway for the addition of N-glycans is highly conserved and all N-glycoproteins share a 

common glycan core structure, a great variability exists in O-glycan composition and the 

corresponding enzymatic reactions to produce them; the schematic overview with a brief 

description is shown in Fig. 2a, b and Table 1. The major classes of the synthesized 

vertebrate glycan structures are depicted in Fig. 1.  

 

1.1.1 The biological importance of glycosylation 

Glycosylation produces an extremely diverse spectrum of glycoproteins and glycolipids that 

execute various biological functions such as cell-cell communication, immune response, 

signal transduction, have hormonal and enzymatic activity or help maintain structural 

integrity [3] (Fig. 3). In general, genetic modifications affecting the initial glycan 

biosynthesis steps are embryonically lethal in mice [4], demonstrating the critical role of 

glycosylation for survival. The presence of glycans promotes physicochemical properties 

(e.g., the correct conformation, stability, solubility) that are often necessary for acurrate 
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function of the glycoconjugates. Secondly, specific recognition of glycans by other 

molecules, either by intrinsic or extrinsic glycan-binding proteins, is an important 

mechanism mediating numerous ligand-receptor interactions (e.g., the clearance of serum 

glycoproteins by hepatic asialoglycoprotein receptor [5], leukocyte capture and rolling 

mediated by selectin-selectin ligand interactions [6], etc.) or might be exploited by 

pathogens for host cell infection [7]. Well established is the role of N-glycans in facilitating 

protein folding within a calnexin (CNX)-calreticulin (CRT) cycle [8], which is a part of ER 

quality control system. Briefly, monoglucosylated intermediate is recognized by lectin-

chaperones CNX and CRT (bound to oxidoreductase ERp57 - endoplasmic reticulum 

resident protein 57), enhancing protein folding efficiency by preventing aggregation and 

mediating formation of disulfide bonds. This is coupled to a de- and reglucosylation cycle, 

retaining the glycoprotein within ER lumen until it acquires a proper conformation and can 

be transported to Golgi for further processing. If the glycoprotein fails to fold properly, it is 

directed to ER-associated degradation pathway (ERAD) and eventually gets degraded by 

proteasome.       

 

Fig. 1: The major classes of vertebrate glycan structures. Glycoconjugates, i.e. 

glycoproteins, proteoglycans and glycolipids, contain oligosaccharide chains (glycans) of 

various structures covalently bound to the protein or lipid. The picture schematically shows 

the structures of the most common glycans found in humans. Source: [9].  
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Fig. 2a: N-glycosylation, part 1: N-glycan assembly and its transfer onto nascent 

polypeptide. N-glycan assembly starts with the transfer of GlcNAc-1-P from cytosolic 

UDP-GlcNAc onto ER-membrane bound dolichol-P (Dol-P) to generate Dol-P-P-GlcNAc, 

which is extended by addition of another GlcNAc and, subsequently, five mannose residues 

(from GDP-Man), forming Dol-P-P-GlcNAc2Man5. This structure is then „flipped“ across 

the ER membrane into its lumen, where further elongation of the glycan takes place: four 

more mannose units are added from Dol-P-Man and three glucose residues from Dol-P-Glc 

(both Dol-P-Man and Dol-P-Glc are first synthesized facing cytosol and then „flipped“ into 

ER lumen to serve as sugar donors). This is followed by the transfer of the generated 

oligosaccharide Glc3Man9GlcNAc2 from dolichol to asparagine of the newly synthesized 

polypeptide chain, catalyzed by the enzyme oligosaccharyltransferase (OST). Modified from: 

[4].  
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Fig. 2b: N-glycosylation, part 2: N-glycan processing in endoplasmic reticulum and 

Golgi.  Attached to a polypeptide, the N-glycan is modified to Glc1Man9GlcNAc2 before 

entering calnexin-calreticulin cycle. The correctly folded N-glycoproteins are then 

transported via vesicles to Golgi cisternae, where further processing occurs: mannose 

trimming, addition of N-acetylglucosamine, generation of the Man-6-P tag (lysosomal 

proteins), fucosylation, galactosylation and sialylation. Fully glycosylated proteins are 

eventually secreted to plasma membrane. Modified from: [4].  
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Table 1:  Seven types of O-glycosylation based on the first monosaccharide attached. 

The first monosaccharide   Initiated in* Glycan structure (source: [4, 9, 10]) 

O-linked GalNac (mucin-type) † Golgi (R)-GalNAcα1-Ser/Thr  

O-linked Xyl (glycosaminoglycans) Golgi (R)-GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-Ser 

O-linked GlcNAc  Cytosol, nucleus‡  GlcNacβ1-Ser/Thr 

O-linked Gal ER (Glcα1-2)Galβ1-Hyl  

O-linked Man ER (NeuAcα2-3)Galβ1-4GlcNAcβ1-2Manα1-Ser/Thr 

O-linked Glc ER (Xylα1-3Xylα1-3)Glcβ1-Ser or (R)-Glcα1-Tyr  

O-linked Fuc ER Glcβ1-3Fucα1-Ser/Thr or 

(NeuAcα2-6Galβ1-4GlcNAcβ1-3)Fucα1-Thr/Ser 

R – variable residue 

*subcellular compartment where the addition of the first sugar takes place [11] 

†the most frequent O-glycosylation type in humans  

‡to a lesser extent also in mitochondria  

 

       

 

Fig. 3: Schematic representation of various biological functions that glycans participate 

in. Glycans facilitate protein folding, regulate intracellular trafficking, play role in host-

pathogen interactions and determine the function of various proteins including enzymes, 

hormones, antibodies or receptors. Source: [12]. 
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1.1.2 Regulation of glycosylation 

Due to its critical physiological function and complexity, glycosylation is a dynamic and 

highly regulated process. It is modulated by many factors: the rates of polypeptide 

translation and protein folding, localization and cellular concentration of nucleotide-

monosaccharides, localization of and competition between multiple 

glycosyltransferases/glycosidases, and membrane trafficking [13]. The precise mechanism 

of Golgi trafficking, including action of the resident glycosylation enzymes which show a 

polarized distribution, has been debated for a long time. The present evidence favours the 

so-called cisternal maturation model [14, 15]. This scheme postulates that after the newly 

synthesized and folded proteins leave ER in vesicles, they fuse and subsequently mature into 

Golgi cisternae stacks (progressing from cis, through medial to trans compartments, i.e. in 

the anterograde direction). While the cargo proteins remain in the cisternal lumen, the Golgi-

resident glycosylation enzymes are transported in vesicles by retrograde trafficking and 

recycled, gradually modifying the passing cargo proteins, thus forming the final composition 

of the glycans. The expression of enzymes determining glycan structure is cell type-specific 

and developmentally modulated [16], and these physiological changes in glycosylation are 

functionally important for processes such as embryogenesis and cell activation [17, 18]. An 

enormous amount of data exists regarding glycosylation alterations in reponse to 

pathophysiological stimuli or in various disease conditions. The primary, genetically 

determined defects of glycosylation in humans comprise a group of rare diseases labeled as 

congenital disorders of glycosylation (CDG), which are reviewed in Chapter 1.2 and 

constitute the main topic of this thesis. Secondary changes in protein glycosylation (of non-

CDG etiology) are then shortly described in Chapter 1.5.       

 

1.1.3 Unfolded protein response   

The characteristic oxidizing conditions and a high calcium concentration in the ER lumen 

provide a unique environment for efficient protein folding, which relies on the coordinated 

action of molecular chaperones (classical such as BiP/GRP78 (binding immunoglobulin 

protein/78 kDa glucose-regulated protein) or carbohydrate-binding, e.g. CNX or CRT; the 

activity of both classes is dependent on Ca
2+

), oxidoreductases (protein disulfide isomerase 

family or PDIs, e.g. ERp57) and peptidyl-prolyl cis/trans isomerases [19]. A variety of 

physiological or pathological stimuli might disturb ER homeostasis, thus overwhelming ER 

protein-folding capacity and causing ER stress. These include calcium and redox imbalances, 

hypoxia, nutrient deprivation or diverse pharmacological compounds such as tunicamycin 

which blocks protein N-glycosylation by inhibiting the transfer of N-acetylglucosamine-1-
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phosphate from UDP-N-acetylglucosamine to dolichol phosphate (the first step of N-glycan 

assembly; see Fig. 2a) [4]. To cope with the load of accumulated misfolded or unfolded 

proteins resulting from these perturbations, ER has evolved complex adaptive signalling 

pathways collectively termed „the unfolded protein response“ (UPR); see Fig. 4. UPR 

pathway has three branches, initiated by the stress sensors protein kinase RNA-like ER 

kinase (PERK), inositol-requiring protein 1 (IRE1) and activating transcription factor 6 

(ATF6). During physiological conditions, BiP chaperone is bound to these sensors, keeping 

them inactive. ER stress leads to its dissociation, due to interaction of BiP with exposed 

hydrophobic regions of the misfolded proteins, and subsequent activation of the three 

signalling arms. While the main function of the PERK pathway is attenuation of protein 

translation, IRE1 and ATF6 are mostly involved in upregulation of the UPR proteins, such 

as molecular chaperones, to increase protein-folding capacity. Upon unresolved, severe and 

prolonged ER stress, UPR induces apoptosis via two critical mediators c-Jun N-terminal 

protein kinase (JNK) and C/EBP homologous protein (CHOP) to protect organism by 

eliminating the damaged cells.       

 

 
Fig. 4: Unfolded protein response. Under conditions of ER stress, BiP binds to unfolded 

proteins, what is accompanied by its release from IRE1, ATF6 and PERK. This leads to 

activation of these three main signal transducers of UPR and, subsequently, upregulation of 

their downstream targets,  whose role is to increase protein-folding capacity and decrease the 

biosynthetic burden of ER. BiP: binding immunoglobulin protein; IRE1: inositol-requiring 

protein 1; ATF6: activating transcription factor 6; PERK: protein kinase RNA-like ER 

kinase; XBP1: X-box binding protein 1; eIF2α: eukaryotic translation initiation factor 2α; 

ATF4: activating transcription factor 4.  Source: [20].  
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1.2 Congenital disorders of glycosylation: a general overview 

The first reported case of a patient with a congenital disorder of glycosylation (CDG) dates 

back to the year 1984, when Jaeken et al. described a novel syndrome in twin sisters, who 

manifested with deficient sialylation of plasma and cerebrospinal fluid transferrin [21]. Later, 

the biochemical basis of this disease was identified as the phosphomannomutase 2 (PMM2) 

deficiency due to mutations in the PMM2 gene [22]. In this disorder, the conversion of 

mannose-6-phosphate to mannose-1-phosphate is affected, a step necessary for the 

subsequent formation of the activated substrate GDP-mannose, which is utilized as a 

building block in glycosylation pathways. Using the analysis of serum glycoproteins, more 

subtypes of what was at the time called „carbohydrate-deficient glycoprotein 

syndrome“ have been discovered, and based on the transferrin profile from isoelectric 

focusing (see Chapter 1.3.1.1), they were divided into two groups: CDG types I and II. 

While type I pattern was suggestive of a defect in the first biosynthetic steps of N-glycan 

assembly, type II indicated impaired processing of N-glycoproteins occurring later in Golgi. 

The individual genetic defects were denoted by lowercase letters (e.g., CDG-Ia), whereas the 

unsolved cases were (and still are) labeled as CDG-Ix or CDG-IIx. Modern technologies 

(e.g., next-generation sequencing) significantly accelerated identification of new 

glycosylation defects, some of which could not be assorted using the original classification 

[23]. One such example is the defect of multiple glycosylation pathways and possibly also 

other biochemical processes caused by the deficiency of the ATP6V0A2 protein, a subunit 

of a vacuolar-type proton pump (v-ATPase), which is essential for acidification of Golgi and, 

thus, necessary for its proper function by maintaining pH homeostasis. Novel nomenclature 

was therefore accepted, using symbol for the causative gene plus the „-CDG“ suffix [24].   

 

To this date, PMM2-CDG (formerly known as CDG-Ia) is the most frequent type of CDG 

with estimated prevalence of 1:20 000 [25], accounting for the majority of all of the 

diagnosed CDG patients. More than 100 types of CDG have been described up until now, 

which should not come as a surprise since it is predicted that a considerable part of the 

whole genome, approximately 1-2 %, is involved in glycosylation [26]. From the functional 

point of view, primary glycosylation disorders arise due to a defect in i) genes encoding 

glycosyltransferases; ii) genes involved in the biosynthesis of the donor substrates; iii) genes 

required for the translocation of the donor substrates; iv) genes regulating 

glycosyltransferases localization; and v) genes affecting Golgi milieu. Because of the 

ubiquitous character of glycoproteins and their diverse functions, CDGs generally manifest 
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as multi-system diseases. The clinical presentation typically begins in infancy and ranges 

from very mild to severe, with substantial childhood mortality (of approx. 25 % in PMM2-

CDG [27]). Failure to thrive, dysmorphy, microcephaly, psychomotor retardation, hypotonia, 

ataxia, seizures, coagulopathy and hepatopathy are frequent features. In certain types, 

strabismus, inverted nipples and abnormal fat distribution might serve as a helpful clinical 

hint for CDG diagnosis. Patients often suffer from endocrine dysfunction, show growth 

retardation, urogenital abnormalities and impaired immunity with recurrent infections. 

Sometimes, a typical dermatological symptoms and skeletal deformities are present.  

 

Usually, CDG syndromes are divided into categories according to the type of the 

glycosylation reaction affected (i.e., disorders of protein N- or O-glycosylation, lipid 

glycosylation and glycosylphosphatidylinositol anchor glycosylation, and defects in multiple 

glycosylation pathways), and they sometimes share a similar phenotype. Each of these 

groups will be shortly discussed below. The classification is not rigid, since the 

glycosylation reactions might overlap and affect each other, as is continuously being 

unraveled by new research studies. Because of the broadness of this family of metabolic 

diseases, a proper review covering every CDG type is not possible within the scope of this 

thesis. However, the list of CDG types reported up until now can be found in the 

Supplement: Tables Sa-d.  

 

1.2.1 Disorders of protein N-glycosylation 

Defects limited to N-glycosylation often present with intellectual disability, hypotonia and 

seizures, like the most frequent ALG6-CDG (the deficiency of α-1,3-glucosyltransferase 1) 

with at least 30 patients reported in literature [28]. Apart from the enzymes catalyzing 

stepwise attachment of the monosaccharides (GlcNAc, Man and Glc) to the growing 

dolichol-bound N-glycan in ER encoded by DPAGT1 and ALG 1, 2, 3, 6, 8, 9, 11-14 [29-39], 

other proteins might be affected such as those participating in flipping of the glycan from 

cytosol into ER lumen (in RFT1-CDG, the deficiency of Man5GlcNac2-PP-Dol flippase [40]; 

with sensorineural deafness as a typical feature in the patients) or different subunits of the 

oligosaccharyltransferase (OST) complex, which transfers the glycan onto nascent protein, 

e.g. in TUSC3-CDG or MAGT1-CDG [41], both manifesting as a non-syndromic 

intellectual disability. Additionaly, defects in enzymes modifying protein-bound 

oligosaccharide have been described, e.g. GCS1-CDG (the deficiency of  α-1,2-glucosidase 

1 [42]), MAN1B1-CDG (α-1,2-mannosidase deficiency [43]) or MGAT2-CDG (GlcNAc-

transferase II deficiency), which was the first recognized CDG type II [44]. A special type of 
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CDG was recently discovered, NGLY1-CDG (the deficiency of N-glycanase 1 [45]), that is 

sometimes called a „disorder of deglycosylation“. NGLY1 protein specifically 

deglycosylates the misfolded N-linked glycoproteins in cytosol and assists in their 

degradation within ERAD, which explains the finding of cytoplasmic accumulation of 

storage material in liver biopsy of the NGLY1-CDG patients [46]. Besides the common 

developmental delay and hypotonia, a distinct symptom, alacrima - absence of the secretion 

of tears - was noted as in the patients [46]. I-cell disease, albeit historically not classified as 

CDG but rather as a lysosomal storage disease (mucolipidosis II), is caused by defective 

GlcNAc-1-P transferase (GNPTA gene), whose action is critical for targeting lysosomal 

enzymes into lysosomes [47]. The patients show gingival hypertrophy, delayed development, 

hepatosplenomegaly, dysmorphism, and severe skeletal abnormalities [48].       

 

1.2.2 Disorders of protein O-glycosylation 

Defects in protein O-mannosylation are characterized by aberrant α-dystroglycan (α-DG) 

glycosylation, thereby receiving collective name „α-dystroglycanopathies“. Glycosylation of 

α-DG is crucial for its binding to laminin, thus linking cytoskeleton to extracellular matrix in 

tissues such as muscle, brain, nerve and heart. Disruption of its function is reflected in the 

clinical manifestation of the patients, who typically suffer from muscle dystrophy and 

developmental brain and eye abnormalitiess. The severity of symptoms is variable ranging 

from mild limb girdle muscle dystrophy to severe, often lethal congenital malformations in 

Walker-Warburg syndrome, and it at least partly depends on the mutated genes. The most 

common defect is in fukutin-related protein (FKRP gene [49]), others involve fukutin 

(FKTN [50]), protein O-mannosyltransferases 1/2 encoded by POMT1/POMT2 [51, 52], 

protein O-mannosyl-β-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1 [53]), 

N-acetylglucosaminyltransferase-like protein (LARGE [54]) or isoprenoid synthase domain 

containing (ISPD [55]). Dystroglycanopathy was also diagnosed in patients with mutations 

in POMGNT2, TMEM5, B3GALNT2, POMK, B3GAT1 and GMPPB [56-61].      

 

Defects in glycosaminoglycans (GAG) assembly are associated with skeletal and connective 

tissue disorders such as multiple hereditary exostoses (caused by mutations in EXT1/EXT2 

encoding exostosin glycosyltransferases 1/2 [62-64]) or different forms of Ehler-Danlos 

syndrome (e.g., due to mutations in B3GALT6 and B4GALT7 encoding 

galactosyltransferases that participate in GAG synthesis [65-67]). Similarly, phenotypes 

involving bone, skin and eye abnormalities result from defects in GAG sulfation (e.g., 

mutations in genes encoding various sulfotransferases, such as CHST3, CHST6, CHST8 or 
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CHST14 [68-71]).  

 

Reticular hyperpigmentation (Dowling-Degos disease) is a typical feature in autosomal 

dominant defects of POFUT1 and POGLUT1 genes, catalyzing protein O-fucosylation and 

O-galactosylation, respectively [72, 73]. Developmentally crucial Notch signalling is 

impaired in the defect of LFNG gene (coding Lunatic Fringe, which transfers 

N-acetylglucosamine to O-linked fucose on Notch receptors), leading to spondylocostal 

dysostosis with severe vertebral anomalies [74]. Elongation of O-linked fucose by adding a 

glucose residue on thrombospondin type 1 repeats is compromised in Peters Plus syndrome 

due to mutations in B3GALTL gene [75]. While epidermal growth factor (EGF) domain-

specific O-linked N-acetylglucosamine (O-GlcNAc) transferase (EOGT) is defective in 

Adams-Oliver syndrome [76], mutations in nucleocytoplasmic O-GlcNAc transferase (OGT) 

have been very recently discovered to cause X-linked intellectual disability [77]. In 

mammals, there is a family of 20 N-acetylgalactose transferases (GalNAc-Ts) catalyzing the 

first step of mucin type O-glycosylation [11], however so far only one GALNT gene, 

GALNT3, has been shown to underlie disease in human, defined as familial tumoral 

calcinosis [78]. Mutations in PLOD gene, coding for an enzyme that hydroxylates Lys 

residues in collagens, indirectly lead to an O-galactosylation defect and manifest as Ehler-

Danlos syndrome in the patients [79].   

 

1.2.3 Disorders of lipid and glycosylphosphatidylinositol anchor glycosylation 

GM3 synthase, an enzyme catalyzing the initial step of lactosylceramide conversion to 

complex gangliosides (lipid glycosylation), is affected due to ST3GAL5 defect in Amish 

infantile epilepsy [80] and in salt and pepper syndrome [81], which is named due to the 

characteristic skin appearance. Mutations in B4GALNT1 give rise to complex hereditary 

spastic paraplegia [82]. Neurological phenotype present in all the disordes above only 

stresses the critical role of glycans for the function of brain, where most of them are found in 

the form of glycosphingolipids [83].  

 

11 defects in glycosylphosphatidylinositol (GPI) anchor glycosylation have been described 

up until now, the majority genetically characterized in the last 5 years. They are caused 

either by a defect in proteins involved in ER-localized biosynthesis of GPI-anchor (encoded 

by PIGA, PIGY, PIGL, PIGW, PIGM, PIGV, PIGN, PIGO, PIGT [84-93]) or disrupted lipid 

remodeling steps of GPI-anchor maturation in Golgi (PGAP2, PGAP3 [94, 95]). The major 

symptoms of the patients include intellectual disability, epilepsy and multiple congenital 
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anomalies; laboratory finding of hyperphosphatasia is also common. Interestingly, PIGA 

defect (GlcNAc-PI synthesis protein deficiency) has been found with both somatic and 

X-linked inheritance, presenting as complement-mediated hemolysis (paroxysmal nocturnal 

hemoglobinuria [84]) or clinically heterogeneous spectrum of disorders including severe 

phenotype with multiple congenital anomalies and infantile lethality, respectively [85, 96].          

 

1.2.4 Disorders of (potentially) multiple glycosylation pathways  

Donor substrates for the glycan assembly include 11 building blocks, 9 out of which are 

nucleotide-activated and two are dolichol-phosphate linked monosaccharides; besides their 

utilization in protein/lipid glycosylation, their metabolism is connected with other 

biochemical pathways such as glycolysis/gluconeogenesis, glycogen metabolism, nucleotide 

metabolism or pentose phosphate pathway. Defects in the biosynthesis of donor substrates 

represent the great majority of patients diagnosed with CDG, predominantly the already 

mentioned PMM2 deficiency (defect of Man-6-P to Man-1-P conversion). In terms of the 

onset of the disease and its clinical presentation, three types are distinguished: infantile 

multisystem, late-infantile and childhood ataxia-intellectual disability, and adult stable 

disability [97]. PMM2-CDG patients show psychomotor retardation, axial hypotonia, 

cerebellar hypoplasia, they often have failure to thrive, dysmorphy, strabismus or excessive 

subcutaneous fat. Seizures and stroke-like episodes might occur, and adults exhibit impaired 

sexual development. Unfortunately, the current therapy consists of only management of the 

symptoms, but prenatal genetic counselling is available. It is noteworthy that based on the 

outcome of at-risk pregnancies, even though the autosomal recessive inheritance manner 

would suggest 1/4 risk of having an affected child, in reality it is closer to 1/3 [97]. 

Production of Man-6-P from Fru-6-P is defective in MPI-CDG (phosphomannose isomerase 

deficiency [98]), a relatively frequent CDG type which lacks the neurological involvement 

present in most CDG syndromes and mainly manifests as hepatic-intestinal disease (protein-

losing enteropathy). Other examples of glycosylation defects due to reduced substrate 

availability result from pathogenic mutations in PGM1 [38, 99] and PGM3 [100] 

(phosphoglucomutase 1 and 3 deficiencies). While the first one has a characteristic 

hyposialylated transferrin pattern and a recognizable clinical phenotype (bifid uvula, growth 

retardation, myopathy, cardiomyopathy [101]), the latter manifests as immunodeficiency 

with neurocognitive impairment (plus skeletal dysplasia in some cases [102]) and shows 

normal transferrin glycosylation [100]. Intriguingly, PGM1-CDG also belongs to the group 

of glycogen storage diseases (GSD), demonstrating that there might be a blurred line in 

diagnosis of CDG. Some authors even consider GSD type Ib a glycosylation disorder (CDG), 



26 

 

as the detected aberrant neutrophils’ glycosylation is predicted to profoundly contribute to 

neutrophil dysfunction characteristic for this disease [103]. GNE gene encodes UDP-

GlcNAc-2-epimerase/ManAc kinase, catalyzing the rate-limiting step in the biosynthesis of 

sialic acid. Its defect leads to inclusion body myopathy (quadriceps-sparing proximal and 

distal muscle weakness; autosomal recessive disorder) [104] and sialuria with dominant 

inheritance [105].   

 

Abnormal biosynthesis of dolichol and dolichol-P-mannose have also been identified to 

underlie glycosylation disorders, and result from mutations in SRD5A3, DHDDS, DOLK and 

DPM1-3 [106-111]. The symptoms range from retinis pigmentosa to intellectual disability 

with hypotonia and various malformations. Dol-P-Man produced by Dol-P-Man synthase 

complex (encoded by DMP1-3) is utilized in N-glycosylation, GPI-anchor biosynthesis and 

O-mannosylation, integrating disorders of N-glycosylation, GPI-anchor glycosylation 

disorders and α-dystroglycanopathies. Analogically, MPDU1-CDG (ichthyosis syndrome) is 

caused by the defect in MPDU1 encoding enzyme required for utilization of Dol-P-Man in 

these glycosylation pathways [112].  

 

Another family of disorders potentially affecting multiple glycosylation pathways include 

deficiencies of Golgi transporters of activated monosaccharides: GDP-Fuc, CMP-NeuAc, 

UDP-Gal and UDP-GlcNAc (encoded by SLC35C1, SLC35A1, SLC35A2 and SLC35A3 

[113-117], respectively). The patients have different clinical features, but intellectual 

disability/autism and seizures are usually present; other symptoms perhaps reflect the 

importance of the implied monosaccharide for cellular function, e.g., the role of fucose for 

immunity as demonstrated by susceptibility for infections in SLC35C1-CDG. Decreased 

transport of UDP-GlcA and UDP-GalNAc from cytosol to ER due to mutations in SLC35D1 

(Schneckenbecken dysplasia [118]) leads to defective chondroitin sulfate biosynthesis (GAG 

assembly defect) and possibly other glycosylation pathways.  

 

The last group of defects is related to Golgi structure, function (trafficking) and milieu 

disturbances. Conserved oligomeric Golgi (COG) complex is a heteromeric complex 

constituting of 8 subunits, and it is important for proper glycosylation in Golgi by tethering 

transport vesicles to its membranes, thus determining the correct localization of Golgi 

glycosylation enzymes [119-121]. Up until now, the deficiencies of all but one (COG3) 

subunits have been identified to underlie human diseases [122-128]. Interestingly, a study 

which addressed the differential effects of lobe A (COG1-4) and lobe B (COG5-8) on the 



27 

 

stability of selected glycosylatransferases in HeLa cells showed that while lobe A depletion 

(COG3 knockdown) resulted in dramatic changes of Golgi structure, lobe B depletion 

(COG7 knockdown) severely altered localization and steady-state level of the analyzed 

enzymes [129]. The most severe manifestations (severe neurological impairment, infantile 

lethality) have been observed in COG(6,7,8)-CDG, while COG(1,2,4,5)-CDG usually 

showed milder phenotypes, even though it seems rather dependent on how the mutations 

affect overall COG functionality than on the subunit itself. Coat protein complex II (COPII)-

coated vesicles transport secretory proteins from ER to Golgi, and mutations affecting their 

essential components SEC23A and SEC23B have been described to cause cranio-lenticulo-

sutural dysplasia and congenital dyserythropoietic anemia type II, respectively [130, 131]. 

Golgi trafficking is also affected in achondrogenesis type 1A due to defect of TRIP11 [132]. 

On the other hand, Golgi milieu is disrupted in the deficiencies of ATP6V0A2, TMEM165, 

SLC39A8, TMEM199 and CCDC115 [133-137]. ATP6V0A2 is a subunit of ATP-

dependent proton pump essential for acidification of membrane enclosed organelles 

including Golgi apparatus, and the lack of its activity in ATP6V0A2 defect leads to N- and 

O-glycosylation abnormalities observed in the patients [133, 138]. These show a distinct 

phenotype of cutis laxa (loose skin) or wrinkly skin syndrome, with hyperlaxity of the joints, 

dysmorphy and varying neurological involvement [138]. The exact mechanism for 

hypoglycosylation in ATP6V0A2-CDG has not yet been definitely elucidated, however 

some studies have confirmed a critical role for Golgi pH gradient in determining correct 

distribution of glycosyltransferases, where even a minor change in pH caused their 

mislocalization [139, 140]. The major symptoms in the patients with the deficiency of 

TMEM165 include psychomotor retardation, short stature, dysmorphy and profound skeletal 

dysplasia [134, 141]. While first it was suggested that TMEM165 participates in 

calcium/proton transport [142], the latest studies provide evidence that the glycosylation 

defect caused by its deficiency results from disrupted manganese homeostasis in Golgi [143]. 

The pathobiochemical mechanism is presumably similar to the one implied in the deficiency 

of SLC39A8, a transporter responsible for manganese uptake into the cell, where the 

function of manganese-dependent enzymes, such as β-1,4-galactosyltransferase, is impaired 

[135].        
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1.3 Diagnostic approach for CDG 

Due to non-specifity and extreme variability of the clinical manifestations, CDG should be 

suspected by clinicians (mostly pediatricians) in any patient suffering from unexplained 

symptoms with multi-organ involvement. Coagulopathy, characterized by low serum 

coagulation factors VIII, IX, XI, XIII, antithrombin III, protein C or protein S, is a common 

sign and might point to a glycosylation disorder. Other laboratory findings from routine 

blood panels that have been reported in multiple CDG patients include hypoglycemia, 

elevated transaminases, hypoalbuminemia, hypocholesterolemia and increased creatine 

kinase. To selectively search for a glycosylation defect, the first choice of test and a gold 

standard used in CDG screening is the analysis of serum markers, N- and O- glycoproteins, 

transferrin (TF) and apolipoprotein C-III (ApoC-III).   

 

1.3.1 Biochemical screening of congenital disorders of glycosylation   

1.3.1.1 Isoelectric focusing of transferrin 

Human transferrin (TF) is an abundant 79 kDa liver-derived serum N-glycoprotein, whose 

main biological function is the transport of iron and its delivery to target cells. It carries two 

N-linked bi- or tri- (with minor fraction of tetra-) antennary glycans of the complex type, 

and each antennae terminates with negatively charged sialic acid residue [144]. Up to 7 

isoforms of sialylated TF are observed in serum (asialo- to hexasialo-), and their relative 

distribution can be investigated by isoelectric focusing (IEF) with immunofixation, which is 

used in CDG screening. Whereas tetrasialo- is the predominant form in physiological 

conditions (> 50 % of total TF), various CDGs affecting protein N-glycosylation show 

pathological pattern characterized by relative decrease of the fully glycosylated isoforms 

(tetra- to hexa-), accompanied by relatively increased levels of tri-, di-, mono- and 

asialotransferrin [145]; see Fig. 5. Alternatively, TF microheterogeneity might be addressed 

using different methods, e.g. analysis by sodium dodecylsulphate polyacrylamide gel 

electrophoresis (SDS-PAGE), high-performance liquid chromatography (HPLC), capillary 

electrophoresis or mass spectrometry (MS) [146-150]. Additional serum glycoproteins such 

as thyroxine-binding globulin, -1-antitrypsin, haptoglobin or antithrombin III can be 

analyzed to confirm globally reduced N-glycosylation [146, 151, 152].  
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Fig. 5: Analysis of serum transferrin sialylation by isoelectric focusing. A] Sera from a 

negative control (NC; a healthy individual) and patients with glycosylation disorders 

affecting N-glycosylation (P1, P2) were separated by isoelectric focusing (pH 5-7), 

transferrin was labeled by immunofixation and stained by Coomassie. In both patients, there 

is a marked relative decrease of fully sialylated (most notably tetrasialo-) transferrin. While 

P1 shows a CDG type I transferrin (TF) pattern, i.e. a relative increase of di- and asialoTF 

typical for disorders of N-glycan assembly in ER, the relative increase of tri-, di- and 

monosialoTF in P2 is characteristic for CDG type II with impaired N-glycan processing in 

Golgi. Numbers on the left indicate sialic acid content (asialo- to hexiasialo-) of the 

individual transferrin isoforms. B] Monosaccharide composition of the most dominant 

transferrin glycan form under physiological conditions (tetrasialoTF).     

 

 

In the pre-analytical phase of IEF TF, the serum samples are saturated with iron to prevent 

misinterpretation of the results due to varying Fe
3+

 load. To exclude the contribution of pI-

altering TF polypeptide variants to the pathological profile, IEF analysis is repeated after 

neuraminidase treatment of samples. Regarding sex- and age-dependent differences of the 

relative amounts of sialylated TF isoforms, no statistically significant changes were found 

between males and females, neither between age categories within the age interval 2-18 

years [145]. However, the experience of CDG experts has shown that hypoglycosylated TF 

might be observed even in healthy newborns and normalization of their profile can take up 

to several weeks (personal communication, CDG Orphan Course, Nijmegen, 2013). On the 

contrary, normal TF glycosylation was detected in affected fetus (at 19 weeks of gestation), 

proving CDG screening from fetal blood is not possible [153]. Pathological TF profile was 

also found in various non-CDG conditions such as galactosemia, hereditary fructose 

intolerance (HFI), severe liver disease or alcohol abuse [154-156]; see Chapter 1.5. All the 

factors above need to be considered in CDG screening evaluation.   
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1.3.1.2 Isoelectric focusing of apolipoprotein C-III 

To search for disturbances in O-glycosylation, the analysis of serum apolipoprotein C-III 

(Apo C-III) by IEF and Western blot was introduced as a complementary test to IEF TF 

[157]. ApoC-III is a core 1 mucin type O-glycoprotein of approx. 9 kDa, synthesized 

predominantly in liver. It acts as an inhibitor of lipoprotein and hepatic lipases, i.e. of VLDL 

or LDL clearance. ApoC-III contains one O-linked glycan attached to its polypeptide chain, 

and three sialylated isoforms can be observed by IEF analysis: asialo-, monosialo- and  

disialoApoC-III; see Fig. 6.  

 

Aberrant ApoC-III sialylation, defined by relatively decreased disialo- with relatively 

increased monosialo- and/or asialoApoC-III, has been detected in some of the disorders of 

multiple glycosylation pathways, such as the deficiencies of COG subunits or ATP6V0A2 

defect. Similarly to TF, ApoC-III sialylation is influenced by various factors, such as age or 

certain pathophysiological conditions (e.g., the acute phase of hemolytic uremic syndrome) 

[158]. Interestingly, not only the level of ApoC-III, but also its glycosylation status is 

responsive to biochemical alterations associated with metabolic syndrome [159, 160]. This 

is all discussed in more detail in Chapters 1.5, 4.1.4 and 4.3.2. 

 

 

 

Fig. 6: Analysis of serum apolipoprotein C-III sialylation by isoelectric focusing.          
A] Sera from a negative control (NC; a healthy individual) and a patient with glycosylation 

disorder affecting mucin O-glycosylation (P) were separated by isoelectric focusing (pH 3.5-

5), proteins were blotted onto nitrocellulose membrane and immunodetected using antibody 

to apolipoprotein C-III. While di- and monosialoApoC-III are the most abundant forms with 

approximately 1:1 ratio in healthy controls, the patients show variably decreased di- and 

increased mono- and/or asialoApoC-III (relative to total ApoC-III). Numbers on the left 

indicate sialic acid content (asialo-. monosialo-, disialo-) of the individual apolipoprotein 

C-III isoforms. B] Monosaccharide composition of the fully glycosylated glycan 

(disialoApoC-III).     
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1.3.2 Further biochemical analyses 

After a pathological type I pattern is detected using IEF TF, enzyme activities of 

phosphomannomutase (PMM) and phosphomannose isomerase (MPI) are first measured in 

leukocytes (preferentially [161]) or fibroblasts of the patients, as these are amongst the most 

common CDG types. If PMM and MPI activities are normal, the next step is lipid linked 

(i.e., dolichol-bound) oligosaccharide (LLO) analysis. Briefly, fibroblasts are metabolically 

labeled, LLO’s are extracted and released oligosaccharides are then analyzed by HPLC. 

Noteworthily, study in ALG11-CDG fibroblasts suggests that prior to metabolic labeling, 

the patients’ cells need to be starved in low glucose (0.5 mM) medium for pathological LLO 

pattern - accumulation of shortened intermediates - to appear, otherwise the defect might be 

masked [162]. For CDG type II, further characterization depends on mass spectrometry 

(with MALDI as the preferred ionization method) analysis of the structure of N- and 

O-glycans, isolated from specific glycoproteins or whole plasma/serum [163-165]. Recently, 

a rapid and sensitive method, especially suitable for medical diagnostic setting, was 

developed by van Scherpenzeel et al. [149], who employed nanoLC-chip [C8]-QTOF MS 

for protein specific glycoprofiling of intact transferrin, allowing for a diagnosis of a number 

of CDG subtypes in a single assay. Additionaly, other approaches might be applied in 

unsolved CDGs, such as staining/fluorescent-labeling techniques using lectins or specific 

antibodies. Labeling with fluorescently tagged peanut agglutinin (PNA) lectin, which binds 

to non-sialylated core 1 O-glycans [166], is used to reveal hypoglycosylation in fibroblasts 

from patients with combined N- and O-glycosylation disorder such as the deficiency of 

COG subunits [122]. A functional test to detect the retrograde trafficking delay 

characteristic for COG deficiency can be performed by immunocytochemical analysis using 

antibody to a Golgi membrane protein (e.g., giantin) after incubating the cells with fungal 

toxin brefeldin A, which induces extensive retrograde transport of Golgi components to ER 

[167]. The group of α-dystroglycanopathies show reduced staining for α-dystroglycan using 

glycan-epitope recognizing antibodies in immunohistochemical analyses of the muscle 

biopsies. Moreover, the binding of α-DG to laminin-2 is compromised, what can be detected 

by Western blot using laminin overlay assay [168]. When a suspicion is narrowed down to a 

specific CDG type by combining clinical and laboratory findings, selected diagnostic tests 

might be performed according to the character of the individual defect; e.g., the suspected 

enzyme activity measurement, analysis of plasma polyprenols (increased in SRD5A3-CDG 

[169]), detection of oligosaccharides in urine (a specific tetrasaccharide is found in GCS1-

CDG [42]), assessment of neutrophil adhesion (deficient in SLC35C1-CDG [170]), analysis 

of GPI and GPI-anchored proteins expression in granulocytes (decreased in GPI anchor 
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glycosylation defects [171, 172]), etc. However, cases differ and while some patients show 

certain biochemical abnormalities, others with the same CDG type might have 

borderline/normal results. Thus, diagnosis confirmation at the genetic level is always 

necessary. It is also important to note that most of the above analyses are done on a research 

basis, and because of the broad spectrum of CDG defects and the need for variety of tests, 

they often require a colaboration with other laboratories that provide the needed technical 

equipment and expertise.      

 

1.3.3 Genetic analyses 

Most of CDG types are inherited in an autosomal recessive manner, however there are a few 

exceptions with an X-linked inheritance (e.g., MAGT1-CDG, ALG13-CDG), autosomal 

dominant inheritance (e.g., hereditary multiple exostoses caused by mutated EXT1 gene) or 

somatic inheritance (e.g., Tn-Syndrome with mutations in COSMC). De novo mutations 

have also been identified [116, 173]. When clinical picture and laboratory analyses provide 

substantial evidence for a known defect in a specific gene, Sanger sequencing of the 

candidate gene is performed in the proband and their relatives, respectively. This might be 

the case of e.g. ATPV6V0A2-CDG, which presents with specific phenotype (cutis laxa) and 

biochemical analyses show combined N- and O-glycosylation abnormalities [174], or 

PMM2-CDG after finding positive IEF of TF (type I pattern) and reduced PMM enzymatic 

activity. PMM2-CDG is also, as the most prevalent CDG, the best studied in terms of 

genotype-phenotype correlations. Majority (> 80 %) of the detected mutations in PMM2 are 

missense, and the patients are usually compound heterozygotes [175]; homozygosity is 

likely incompatible with life [176]. In PMM2-CDG individuals of European ancestry, 

approx. 40 % carry a pathogenic variant p.Arg141His. Generally, all patients, regardless of 

their genotypes, exhibit the typical clinical features (i.e., developmental delay, cerebellar 

atrophy, peripheral neuropathy etc.), however some variants have been recognized to be 

associated with milder or more severe phenotypes [177-179].  

 

In individuals, in whom there is no clear hint suggestive of a defined CDG type, multi gene 

panel (next generation sequencing, NGS) can be performed as a cost effective alternative to 

single gene testing. Using NGS, the researchers might choose between either genome or 

exome sequencing, or a (more specific) disease-targeted panel with selected genes. Exome 

sequencing approach was successfully applied for identification of e.g. a PIGV defect in 

hyperphosphatasia mental retardation syndrome [90] or DHDDS mutations in patients with 

retinis pigmentosa [107]. Limitations of NGS methods include uncomplete and uneven 
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gene/exon coverage, a nonquantitative character (it is problematic to detect 

deletions/duplications), as well as the possibility of “wrong hits” - thus, the following 

functional studies are always necessary to confirm the gene defect as causative. Other 

methods for identifying the genetic basis of CDGs, albeit perhaps not as powerful as NGS, 

have been used historically, such as homozygosity mapping to discover the FKTN defect in 

patients with Fukuyama-type congenital muscular dystrophy [50] or comparative genome 

hybridization to detect the defect of B3GALTL gene underlying Peters Plus syndrome [75].  

 

1.4 Therapy in CDG 

For the majority of CDGs, the treatment is, currently, purely symptomatic. In general, it is 

important to maintain proper nutrition and caloric intake, which in some cases requires the 

use of nasogastric or gastrostomy tube feeding. Depending on the specific conditions present, 

some patients will benefit from antiepileptic drugs, hormonal replacement therapy, physio-, 

speech, language and occupational therapy or various surgical procedures (e.g., to correct 

ophthalmological or skeletal abnormalities). There are four CDG types, for which more or 

less effective treatment was developed: MPI-CDG, SLC35C1-CDG, PIGM-CDG and 

PGM1-CDG. In individuals with MPI-CDG, oral ingestion of mannose has been shown to 

normalize their protein-losing entheropathy and coagulation abnormalities, as well as the TF 

hypoglycosylation [98, 180]. Nevertheless, in some cases a progressive liver disease 

developed despite the mannose therapy [181, 182]. A successful liver transplantation was 

performed in one therapy-resistant MPI-CDG patient, whose condition dramatically 

improved afterwards [182]. Mannose administration was also tested in PMM2-CDG, 

unfortunately no clinical improvement was noted [183]. However, the research studies to 

find a novel therapy approach continue and some show promising results, such as prenatal 

mannose treatment in mouse PMM2-CDG models [184] or chemical inhibition of MPI 

enzymatic activity (to divert Man-6-P towards glycosylation) in PMM2-CDG fibroblasts 

[185]. Defective function of GDP-fucose transporter in SLC35C1-CDG (also known as 

LAD II) can be partially corrected by oral fucose supplementation, which led to reduced 

peripheral neutrophil counts in the subjects studied by Marquardt et al. [186]. However, not 

all of the patients are responsive to this therapy, as it is dependent on the mutations and the 

associated residual activity of  SLC35C1 [187]. A striking improvement was observed in a 

girl with PIGM-CDG (PIGM transfers the first mannose from dolichol-phosphate-mannose 

to phosphatidylinositol) after sodium phenylbutyrate therapy, which restored her GPI 

biosynthesis by modulating histone acetylation and the patient could walk again, interact and 
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became seizure-free [188]. The most recent is the therapeutic strategy designed for patients 

with PGM1-CDG (phosphoglucomutase 1 deficiency), a glycosylation disorder that was 

discovered just a few years ago, but might become one of the most frequent CDG types with 

already more than 19 patients described worldwide. Analyses in the patients’ fibroblasts 

revealed a relative decrease of the activated galactose (UDP-Gal), which was in line with the 

hypogalactosylation of serum glycoproteins detected by mass spectrometry [101]. 

Encouraging experiments in PGM1-deficient cell lines cultivated in the presence of 

galactose were followed by a trial in the patients, who showed variable alleviation of the 

symptoms after a few weeks of daily galactose ingestion [189]. The latest observational 

study in 10 PGM1-CDG patients, who received oral galactose supplementation for 18 weeks, 

shows restoration of liver function (transaminanses values), coagulation abnormalities and 

improvement of endocrine status as well as cessation of rhabdomyolitic episodes [190]. 

     

1.5 Secondary glycosylation disturbances (of non-CDG etiology)  

Various non-CDG diseases present with more or less specific changes in glycosylation 

pattern as a secondary phenomenom, even though their contribution to the pathophysiology 

is often unclear. The most extensively studied example is cancer, where aberrant glycan 

structures - typically with increased branching, sialylation and fucosylation - are a universal 

feature in multiple cancer types, and result from down- and up-regulation of a subset of 

genes involved in glycan synthesis [4]. One such example is hepatocellular carcinoma 

(HCC), where elevation of fucosylated glycoproteins, including transferrin, and its abnormal 

branching was detected in sera from the patients [191, 192]. Moreover, significant 

correlations are observed between glycosylation status and tumor progression, and it is 

currently well established that altered tumor-cell glycosylation promotes metastasis [193]. 

For instance, liver cirrhosis progression to HCC was found to be accompanied by increased 

degree of haptoglobin fucosylation [194].  

 

Historically, the analysis of transferrin glycosylation or the so-called carbohydrate-deficient 

transferrin (CDT) test was originally applied to detect excessive alcohol (ethanol) 

consumption and it has been used for almost 40 years now [156]. Elevated CDT (i.e., 

reduced transferrin glycosylation) in alcoholic patients was explained by the reduced activity 

of Gal- and GlcNAc- transferases measured in their serum [195], and the inhibitory effect of 

acetaldehyde on the activity of hepatic glycosyltransferases was confirmed by experiments 

in rats [196].  
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Different autoimmune and inflammatory diseases manifest with complex glycosylation 

abnormalities, what was first observed in patients with rheumatoid arthritis (RA) who 

showed increased agalactosylated serum immunoglobulins G (IgGs) [197]. Variable changes 

in glycosylation, predominanty studied on main serum proteins (alpha1-acid glycoproten, 

IgG, IgA, transferrin, haptoglobin, C-reactive protein), were also found in ankylosing 

spondylitis, systemic lupus erythematosus, Sjögren syndrome or ulcerative colitis [198]. 

Altered protein glycosylation in RA involves galactosylation, fucosylation, mannosylation, 

sialylation and branching, and its extent is associated with the disease activity [199]. In 

primary IgA nephropathy, aberrant O-linked glycosylation of IgA1 is a consistent finding 

[200]. Moreover, alterations in serum glycosylation have been reported in acquired, 

common diseases associated with metabolic „derangement“. Significant differences in 

N-glycan composition were detected by MS analysis of serum from patients with type 2 

diabetes compared to healthy controls, and specific N-glycan structures strongly correlated 

with parameters of metabolic syndrome [201]. In other study with the aim to analyze 

apolipoprotein composition in patients with metabolic syndrome, the authors found reduced 

glycosylation of ApoC-III, as well as hypoglycosylation of ApoE and SAA4 [160]. 

 

Changes in serum glycosylation were also documented in monogenic disorders other than 

CDGs, namely HFI (fructose-1-phosphate aldolase deficiency) and galactosemia (galactose-

1-phosphate uridyltransferase deficiency) [155, 202]. The CDG type I-like pathologic IEF 

profile of transferrin seen in untreated frutosemia [155] can be explained by the inhibitory 

effect of excess Fru-1-P on MPI [203]. N-glycans of serum transferrin in untreated 

galactosemic patients are deficient in galactose and sialic acid, as well as exhibit increased 

branching and fucosylation [154, 204]. The reason for TF hypoglycosylation is unclear, but 

thought to be either inhibition of galactosyltransferase by the accumulated Gal-1-P or 

decreased availability of the substrate UDP-Gal [154, 205]. Moreover, global changes in 

both N- and O-glycome in plasma from the patients were detected by MS [206]. Since in 

both disorders the transferrin pattern normalizes with therapy (galactose- or fructose-free 

diet), it can be used as a marker of treatment efficiency [207].  

 

Lastly, hyposialylation of TF and ApoC-III (and presumably other serum glycoproteins) is a 

feature in patients with a rare but distinct type of hemolytic uremic syndrome, caused by 

neuraminidase released into circulation by Streptococcus pneumoniae [158]. 
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1.6 Glycosylation disorders: future perspectives 

With respect to what can be anticipated in the research of glycosylation-related diseases in 

the near future, extremely interesting and relevant seems the hypothesis put forward by 

Rhodes, who suggests that an inherited factor combined with various environmental factors 

might produce a spectrum of different phenotypes [208]. Based on the observation of similar 

glycosylation abnormalities in inflammatory bowel disease and colonic cancer, he 

specifically speculated that genetically determined alteration in O-glycosylation 

simultaneously predisposes to increased risk of colon cancer, Crohn’ s disease and ulcerative 

colitis, and the outcome depends on additional factors and their interactions, e.g. infection 

with pathogenic bacteria, smoking, etc. In support of this concept, multiple studies have 

recently linked FUT2 (fucosyltransferase 2 encoding gene) non-secretor status with the 

susceptibility to Crohn’ s disease [209-211], and it was also implicated as a risk factor for 

developing chronic pancreatitis [212]. In addition, Hansen et al. in their recent study points 

out that while most of the known CDGs are caused by defects in glycosylation-involved 

genes without predicted functional redundancy, deleterious mutations in 

glycosyltransferases with high degree of potential genetic „backup“ (i.e., in large 

homologous families, such as GalNAc-Ts) might produce rather subtle phenotypes in 

homozygous and compound heterozygous form [213]. For instance, genome-wide 

association studies (GWAS) have implicated GALNT2 as a candidate gene regulating plasma 

lipid levels and propose that its defect is associated with cardiovascular disease [214]. It can 

be expected that many more such examples will be discovered in the upcoming years.        
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2 AIMS OF THE THESIS 

Since the beginning of our research on inherited glycosylation disorders, we have learnt that 

for CDG diagnosis, a close cooperation between clinicians, biochemists and molecular 

geneticists is crucial. Even though a therapy is currently available only for a few CDG types, 

giving accurate diagnosis enables prenatal testing and genetic counselling in the affected 

families. Moreover, broadening the knowledge on pathophysiology of the defects in 

glycosylation might potentially help develop novel therapeutic approaches, not only for 

CDG, but also for a wide spectrum of other diseases where glycosylation disturbances have 

been discovered.         

 

The specific aims of the thesis were: 

 

A.) To introduce, optimize and perform simple and rapid screening methods for the 

detection of congenital disorders of glycosylation (CDG) in a large group of clinically 

suspected patients from Czech and Slovak Republic.  

 

B.) To apply laboratory approaches for further biochemical and molecular 

characterization of the patients with glycosylation defect detected in screening, to 

establish the genetic diagnosis and to describe pathophysiology of their disease at cellular 

level.  

 

C.) To study alterations in protein glycosylation of non-CDG etiology, in order to both 

improve the diagnostic process and to better understand the implications of the secondary 

glycosylation changes for the health condition of the analyzed patients.   
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3 MATERIAL AND METHODS 

I. Ad published results, see individual articles/manuscript in the Supplement.  

 

II. Material and methods related to the unpublished results:  

3.1 Material 

Patients’ and controls’ fibroblasts derived from skin biopsies were cultivated in DMEM 

medium (E15-843, PAA Laboratories GmbH) supplemented with 10 % fetal bovine serum 

(FBS; SV30180.03 Hyclone) and antibiotics (P11-002, PAA Laboratories GmbH), at 37 °C 

in 5 % CO2 environment. Control primary dermal fibroblasts (3 lines, denoted as C1-3) were 

purchased commercially from ATTC (Manassas, Virginia); the donors were all male 

newborns. The analyzed patients are shortly characterized below; the listed age is the 

patient’s age when the biopsy was performed. 

  

3.1.1 Patients 

PMM2-CDG: Male, 2 years old. Hypotrophy, facial dysmorphy, arthrogryposis, atypical fat 

pads and inverted nipples were observed since birth. There was no psychomotor 

development, but he had central hypotonic syndrome, hepatomegaly, nephropathy, 

hepatopathy and severe coagulopathy. Type I pathological transferrin pattern (relatively 

increased di- and asialoTF) was found in CDG screening. The measurement of PMM 

enzyme activity in the lymphocytes did not reveal decreased values, however, in the 

following analysis of PMM2 gene by Sanger sequencing in his blood, two heterozygous 

missense mutations were detected, c.422G>A (p.Arg141His) and c.691G>A (p.Val231Met), 

which are considered detrimental to the protein function.  

         

ALG8-CDG: Female, 2 months old. Since the birth at 29+0 weeks of pregnancy, she 

presented with multiple severe complications including acute renal failure, hypertonia, 

gastrointestinal bleeding, protein losing enteropathy, ascites, cardiomyopathy and 

progressive hepatosplenomegaly; laboratory findings showed anemia, trombocytopenia and 

coagulopathy. Despite continuous intensive therapy, the patient died at 2.5 months of age 

due to multi-organ failure. CDG screening revealed type I pathological TF pattern. The 

analysis of PMM enzyme activity was normal, and no pathological mutations were found in 

PMM2 gene. After LLO analysis, which revealed accumulation of  dolichol-PP-

GlcNAc2Man9 and dolichol-PP-GlcNAc2Man9Glc, and review of the literature, Sanger 
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sequencing of ALG8  gene  was suggested. Two heterozygous missense variations were 

found in ALG8 gene  in the patient’s blood: pathogenic mutation c.139A>C (p.Thr47Pro) 

and a novel mutation c.1090C>T (p.Arg364Ter), resulting in premature stop codon; the 

detected mutations are thought to be detrimental to the protein function.  

   

RFT1-CDG: Male, 16 years old. His clinical picture included psychomotor delay, hypotonia, 

ataxia and bilateral hearing loss; hepatosplenomegaly and coagulopathy were noted. The 

analysis of TF glycosylation in CDG screening showed type I pathological pattern. Based on 

the LLO analysis (showing accumulation of dolichol-PP-GlcNAc2Man5) performed in 

fibroblasts from the patient’ s sister with the same disorder, analysis of the gene encoding 

Man5GlcNac2-PP-Dol flippase (protein RFT1 homolog) was indicated. Two heterozygous 

missense mutations c.1222A>G (p.Met408Val) and c.1325G>A (p.Arg442Gln) were found 

in RFT1 gene  by Sanger sequencing in the patient’ s blood, and the following restriction 

fragment length polymorphism (RFLP) analysis of the detected variations in 150 healthy 

controls confirmed that the mutations were not polymorphisms (thus, were likely 

pathogenic).      

 

CDG-IIx(1): Male, 3 months old. Admitted to hospital at 10 weeks for severe jaundice, 

hepatosplenomegaly, ascites and cutis laxa; laboratory tests showed conjugated 

hyperbilirubinemia, hepatopathy, coagulopathy and hypercholesterolemia. The patient died 

at 3 months of age due to liver failure. CDG screening revealed pathological TF profile 

(type II pattern; with relatively increased tri-, di-, mono- and asialoTF) and marked 

ApoC-III hyposialylation, indicating combined N- and O-glycosylation defect.  

       

CDG-IIx(2): Male, 23 years old. He manifested with growth retardation, skeletal dysplasia 

including scoliosis, short trunk, genu valgum and broad phalanges, ptosis and convergent 

strabismus. Coagulopathy was present. CDG screening showed relatively increased 

trisialoTF and asialoApoC-III, indicating combined N- and O-glycosylation defect.   

 

3.2 Methods 

Only fibroblasts with passage number < 10 were used for the analysis. With the exception of 

transmission electron microscopy, the cells from controls and patients were cultivated on 

glass coverslips to reach, if possible, the confluence of 70 - 80 % before the individual 

experiments were performed. For these methods, epifluorescence microscope Nikon Diaphot 
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200 with the software Viewfinder (version 3.0.1, Pixera Corporation) were used. In all 

assays, multiple pictures were taken and the representative images were chosen for 

evaluation and discussion.  

 

3.2.1 Golgi labeling 

Media from the cells grown on coverslips were discarded, they were washed with 

phosphate-buffered saline (PBS; BE17-517Q BioWhittaker, Lonza; 10 times diluted with 

distilled water), fixed with 4 % paraformaldehyde (PFA; 19943 Affymetrix) for 10 min at 

4 °C, washed in PBS twice and permeabilized with 0.1 % (V/V) Triton X-100 (T9284 Sigma) 

in PBS for 20 min at room temperature (RT). After washing with PBS (2x), a blocking 

solution (5 % (V/V) FBS in PBS) was applied, in which the cells were incubated for 1 hour 

(RT). Blocking solution was then replaced by a solution of primary antibody (1:200 giantin 

antibody, ab37266 Abcam, in blocking solution) and left to incubate at 4 °C overnight. The 

cells were thoroughly washed with PBS (3x), followed by incubation with solution of 

fluorescently labeled secondary antibody (1:1000 anti-mouse IgG1-Alexa Fluor 488, 

A21121 Invitrogen; diluted in blocking solution) for 2 hours, RT. Following washing with 

PBS (2x), nucleus was stained with DAPI solution (D1306 Invitrogen, 10 µg/ml in PBS) for 

10 min, RT. Finally, the cells were washed with PBS (3x) and the green/blue fluorescent 

signal was observed and imaged at automatic exposure mode. 

 

3.2.2 PNA staining 

For each tested cell line, fibroblasts were cultivated on two coverslips. Prior to labeling, one 

of them was incubated with neuraminidase (11585886001 Roche, 50 mU in 0.25 ml media) 

for 1 hour at 37 °C. Then media from both coverslips were discarded, the cells were washed 

with PBS and fixed with 1 % (V/V) PFA in PBS (10 min, RT). After washing with PBS, the 

solution containing Alexa Fluor 488 conjugated peanut agglutinin (PNA) lectin (L21408 

Invitrogen, 5 µg/ml in PBS with 1 % (V/V) FBS) was added and left for 1 hour at 37 °C. 

The cells were washed with PBS (3x) and the green fluorescent signal was observed and 

imaged at manually set exposure. The neuraminisade-treated cells serve as a control of the 

experiment. 

 

3.2.3 In vivo ROS (reactive oxygen species) detection 

The fibroblasts were incubated with dihydroethidium (DHE; D1168, Invitrogen) solution 

(5  µM in PBS) for 10 min at 37 °C, then washed with PBS (2x) and the red fluorescent 
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signal was observed and imaged at manually set exposure. 

 

3.2.4 Catalase staining 

Media from the cells grown on coverslips were discarded, they were washed with PBS, 

fixed with 4 % PFA for 15 min at 4 °C, washed in PBS twice and permeabilized with 0.1% 

(V/V) Triton X-100 in PBS for 10 min at room temperature (RT). After washing with PBS 

(2x), a blocking solution (10 % (V/V) FBS in PBS) was applied, in which the cells were 

incubated for 1 hour (RT). Blocking solution was then replaced by a solution of primary 

antibody (1:100 catalase antibody, A21987 Invitrogen; diluted in blocking solution) and left 

to incubate at 4 °C overnight. The cells were thoroughly washed with PBS (3x), followed by 

incubation with solution of fluorescently labeled secondary antibody (1:1000 anti-mouse 

IgG1-Alexa Fluor 488 in blocking solution) for 2 hours, RT. Finally, the cells were washed 

with PBS (3x) and the green fluorescent signal was observed and imaged at at manually set 

exposure. 

 

3.2.5 Transmission electron microscopy (TEM) 

The fibroblasts were fixed in 2 % (w/V) potassium permanganate in PBS for 15 min at RT 

and dehydrated by ethanol series: 50%, 70%, 90% ethanol for 10 min each step and 100% 

ethanol for 30 minutes. Dehydrated cells were incubated in propylene oxide for 15 min 

(twice) and embedded into Durcupan Epon (Electron Microscopy Sciences) at 60 °C, 

overnight. Samples were sectioned by microtome Ultracut III ultramicrotome (Reichert) into 

thick cuts ranging from 600 to 900 Å. Cuts were stained with lead citrate and uranyl acetate 

[215]. Finally, pictures were taken using transmission electron miscroscope Jeol JEM 

1200Ex.   
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4 RESULTS AND DISCUSSION   

4.1 Results and discussion related to the aim A.)  

Screening methods for the detection of congenital disorders of glycosylation (CDG). 

 

The list of publications related to the aim A.):  

1] Guillard M, Wada Y, Hansikova H, Yuasa I, Vesela K, Ondruskova N, Kadoya M, 

Janssen A, Van den Heuvel LP, Morava E, Zeman J, Wevers RA, Lefeber DJ. Transferrin 

mutations at the glycosylation site complicate diagnosis of congenital disorders of 

glycosylation type I. J Inherit Metab Dis. 2011Aug;34(4):901-6. 

2] Honzík T, Magner M, Krijt J, Sokolová J, Vugrek O, Belužić R, Barić I, Hansíkova H, 

Elleder M, Veselá K, Bauerová L, Ondrušková N, Ješina P, Zeman J,Kožich V. Clinical 

picture of S-adenosylhomocysteine hydrolase deficiency resembles phosphomannomutase 

2 deficiency. Mol Genet Metab. 2012 Nov;107(3):611-3. 

3] Van Scherpenzeel M, Timal S, Rymen D, Hoischen A, Wuhrer M, Hipgrave-Ederveen A, 

Grunewald S, Peanne R, Saada A, Edvardson S, Grønborg S, Ruijter G, Kattentidt-

Mouravieva A, Brum JM, Freckmann ML, Tomkins S, Jalan A, Prochazkova D, Ondruskova 

N, Hansikova H, Willemsen MA, Hensbergen PJ, Matthijs G, Wevers RA,Veltman JA, 

Morava E, Lefeber DJ. Diagnostic serum glycosylation profile in patients with intellectual 

disability as a result of MAN1B1 deficiency. Brain.2014 Apr;137(Pt 4):1030-8. 

4] Ondrušková N, Honzík T, Kytnarová J, Matoulek M, Zeman J, Hansíková H. Isoelectric 

Focusing of Serum Apolipoprotein C-III as a Sensitive Screening Method for the 

Detection of O-glycosylation Disturbances. Prague Med Rep. 2015;116(2):73-86. 

 

Author’ s contribution: biochemical analyses of selected glycoproteins (1-4), molecular 

genetic analysis (1) and manuscript preparation (4).     
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4.1.1 A rare transferrin mutation at the glycosylation site hampers the screening of CDG. 

1] A 7-year-old boy suffered from cyclic vomiting accompanied by ketosis and metabolic 

acidosis. He also had atypical fat pads and inverted nipples, what raised a clinical suspicion 

of CDG. Analysis of serum TF revealed a pattern with decreased relative amount of 

tetrasialo- (31.3 %, vs. reference range 51.1-59.2 %) and increased disialoform (33.5 %, vs. 

ref. range 4.7-8.5 %), not resembling any profiles typically found in CDG patients. No 

polymorphic variants were found by IEF of TF after neuraminidase treatment. SDS-PAGE 

of TF showed two bands of approximately the same intesity, one representing the fully 

glycosylated TF and the lower one corresponding to a TF carrying only one glycan. The 

biochemical analysis is shown in Fig. 7. A similar IEF pattern was detected in his healthy 

mother, suggesting a non-pathogenic cause. We thus decided to sequence the TF gene by 

Sanger method. Besides detecting 4 polymorphisms which had already been described 

elsewhere, a novel mutation was found in exon 16 of the patient´s TF gene, causing amino 

acid alteration at one of the two TF N-glycosylation sites (heterozygous c.1889A>C; 

p.Asn630Thr). This was confirmed by our collaborators’ MALDI-MS analysis of the 

immunopurified TF from the patient and his mother. The present case demonstrates the 

potential pitfalls, albeit rarely occuring, of CDG screening method using the analysis of TF 

glycosylation.        

  

                               

Fig. 7: CDG screening in the patient with rare transferrin polymorphism.           Serum 

analyzed by A] isoelectric focusing and B] SDS-PAGE of transferrin. PC: PMM2-CDG, C: 

a control, S: the subject and SM: the subject’s mother. Numbers on the left (A) indicate 

sialic acid content (asialo-, disialo-, hexiasialo-) of the individual transferrin isoforms.    
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4.1.2 A case of S-adenosylhomocysteine hydrolase deficiency clinically resembles 

PMM2-CDG.  

2] A female patient manifested with neonatal onset of hypotonia, psychomotor retardation, 

hepatopathy and strabism. Severe coagulopathy and the absence of elevated methionine and 

homocysteine at the age of 2 months prompted us to search for CDG. However, IEF of 

serum transferrin was normal, as well as the acitivities of oxidative phosphorylation 

complexes in the patient’ s fibroblasts, excluding both an N-glycosylation defect and a 

mitochondrial disorder. After 8 months, gradual elevation of methione (259-547 μmol/l, 

controls 12-45) and total homocysteine (16.1-22.4, controls 3.5-10) appeared, but it was 

only after acute decompensation at the age of 4.5 years when the patient showed markedly 

increased plasma levels of S-adenosylhomocysteine (6.8 μmol/l, controls 0.004-0.081) and  

S-adenosylmethione (3.2 μmol/l, controls 0.013-0.141), that a suspicion of 

S-adenosylhomocysteine hydrolase (SAHH) deficiency was raised. The SAHH activity 

measured in the patient's erythrocytes and fibroblasts was decreased to 11 % of the control 

levels. Molecular analysis of the AHCY gene revealed a compound heterozygosity for 

pathogenic mutations c.145C>T (p.Arg49Cys) and c.211G>A (p.Gly71Ser), confirming the 

diagnosis of SAHH deficiency. The striking resemblance of this patient's clinical picture to 

those that we have seen in our PMM2-CDG patients can be a useful note for clinicians (see 

Table 2). Also, our case shows that SAHH deficiency should be considered even if the levels 

of homocysteine and methionine are normal in neonatal and infantile period.    

 

Table 2: Comparison of the clinical data: the SAHH subject vs. PMM2-CDG patients.   

Symptoms SAHH-deficient patient PMM2-deficient patients 

 Current report Czech patients (n = 17) 

Hypotonia ++ 17/17 

Psychomotor retardation + 17/17 

Cerebellar hypoplasia - 13/13 

Strabism + 17/17 

Hypo/Areflexia + 7/13 

Seizures - 6/17 

Microcephaly + 14/17 

Hepatomegaly/Hepatopathy ++ 14/17 

White matter abnormalities ++ 1/9 

Coagulopathy ++ 17/17 
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4.1.3 A novel rapid diagnostic test for the diagnosis of MAN1B1-CDG from serum.   

3] In 2011, whole-exome sequencing identified MAN1B1 (encoding α-1,2-mannosidase) as a 

causative gene underlying autosomal-recessive intellectual disability [43]. MAN1B1-CDG 

shows a typical type II pattern in IEF of transferrin with a relative increase of trisialoform, 

however, CDG-IIx are generally more complicated to further characterize than CDG-Ix due 

to lack of specific diagnostic methods. Our collaborators have applied a novel high 

resolution mass spectrometry (MS) method for direct glycoprofiling of intact plasma 

transferrin, and observed a unique pattern of hybrid type N-glycans in MAN1B1 deficiency. 

The aim of the study was to test this approach as a novel diagnostic test which could be used 

for a rapid and specific screening in a cohort of 100 patients with CDG-IIx. The group 

included our 14 year-old male patient, in whom we previously detected relatively increased 

trisialotransferrin. Rapid analysis of immunopurified transferrin by nanochip-C8-QTOF-MS 

showed an abnormal presence of two hybrid type N-glycans at average mass of 79224 Da 

and 79062 Da (see Fig. 8) in 12 patients - including ours - from the analyzed group, and this 

was in agreement with deficient processing of protein-bound glycans by MAN1B1. Sanger 

sequencing of MAN1B1 gene was performed in those 12 individuals, and pathogenic 

mutations were identified in all of them, confirming the efficiency of the novel functional 

diagnostic assay. Clinically, the group of MAN1B1-CDG patients all presented with 

intellectual disability with delayed motor and speech development, however variable 

associated findings were observed such as hypotonia, truncal obesity and macrocephaly (in 

~ 65 %). Also, a distinct facial dysmorphy (thin lateral eyebrows, bulbous nose tip, thin 

upper lip) was noted in about half of the patients. We believe MAN1B1-CDG might be a 

fairly common intellectual disability syndrome and the presented method is a valuable tool 

for its diagnosis.  

                                                      

Fig. 8: A representative mass spectrometry profile of intact transferrin analyzed by 

nanochip-C8-QTOF-MS in serum from MAN1B1-CDG patient versus control. x-axis: 

the corresponding mass of the glycans (represented by individual peaks) in Da; y-axis: their 

relative abundance. 
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4.1.4 ApoC-III isoelectric focusing is a sensitive method for detection of O-glycosylation 

defects.   

4] Isoelectric focusing and Western blot detection of serum ApoC-III, a method originally 

developed by Wopereis et al. [157], was introduced in our laboratory and performed in 170 

healthy subjects of both genders in the age interval 1 day-42 years. The statistically 

evaluated distribution of the three ApoC-III sialylated isoforms in different sexes and age 

categories is shown in Fig. 9. No statistically significant changes were found between males 

and females. However, we observed a relative decrease of ApoC-III2 and an increase of 

ApoC-III0 with growing age. Additionally, ApoC-III was analyzed in 25 patients with 

various selected metabolic diseases (Prader-Willi syndrome (s.), Rett s., Silver-Russell s., 

DiGeorge s., Gapo s., Schnitzler s., Marfan s., Stickler s., dyschondrosteosis, chronic renal 

dysfunction, PMM2-CDG, EXT1-CDG, NgBR deficiency, PGM1-CDG and MAN1B1-

CDG) to examine possible secondary O-glycosylation disturbances. Mild ApoC-III 

hypoglycosylation, mostly with relatively elevated ApoC-III1, was found in 4/10 of our 

patients with Prader-Willi s.(PWS). While the previous study by Munce et al. [216] reported 

a correlation between the aberrant ApoC-III profiles in PWS patients and sleep 

abnormalities, we found no such relationship. However, we noted that the positive 

individuals had higher serum triacylglycerol levels (≥ 1.4 mmol/l) than those with normal 

profiles. The first step of ApoC-III glycosylation is specifically catalyzed by the enzyme 

encoded by the GALNT2 gene, and, interestingly, it seems that its expression might be 

regulated by various metabolic factors such as hyperglycemia in diabetes [217]. Moreover, 

certain SNPs in the GALNT2 gene were found to be associated with the levels of plasma 

triacylglycerols and cholesterol [214]. Thus, we suggested that the increased triacylglycerols 

(TAG) in PWS might be relevant in the etiology of their ApoC-III hypoglycosylation. 

Indeed, this assumption was very recently validated by the study performed in the group of 

non-diabetic adolescent participants by Yassine et al., who concluded that ApoC-III0 (both 

the aglycosylated form and the one containg the whole glycan without any sialic acid 

residues) and ApoC-III1 appear to be under metabolic control, and their relative abundance 

is associated with fasting plasma TAG [218]. Other metabolic disorders where we have 

shown, for the first time, borderline/slightly pathological ApoC-III included PGM1-CDG 

and MAN1B1-CDG. We conclude that the analysis of ApoC-III by isoelectric focusing is a 

simple and sensitive method to detect mucin O-glycosylation disturbances. However, our 

results indicate that the glycosylation status of ApoC-III might vary intraindividually 

depending on the patient’s metabolic condition, and therefore analyses at multiple 

chronological points in the same individual are recommended.        
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Fig. 9: Evaluation of gender- and age-dependent differences in the distribution of 

ApoC-III sialylated isoforms separated by isoelectric focusing of serum samples, 

determined in a group of healthy individuals (n = 170) of both genders (89 males, 

81 females) in three different age categories: 1) < 2 y (n = 70), 2) 2-6 y (n = 16) and 

3) 7-42 y (n = 84). The bold line inside box-plots represents median. 1) Wilcoxon test 

results (female vs. male) for a) ApoC-III2: p = 0.238 (< 2 y); 0.157 (2-6 y); 0.345 (7-42 y), 

b) ApoC-III1: p = 0.226 (< 2 y); 0.281 (2-6 y); 0.181 (7-42 y) and c) ApoC-III0: p = 0.522 

(< 2 y); 0.380 (2-6 y); 0.165 (7-42 y). 2) Kruskal-Wallis test results (age dependent 

differences) for a) ApoC-III2: p = 0.002 (female - F); 0.008 (male - M), b) ApoC-III1: 

p = 0.041 (F); 0.110 (M) and c) ApoC-III0: p < 0.001 (F); < 0.001 (M). 
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4.2 Results and discussion related to the aim B.)  

Further biochemical and molecular characterization of CDG patients. 

 

I.   The list of publications related to the aim B.):  

1] Ondruskova N, Vesela K, Hansikova H, Magner M, Zeman J, Honzik T. RFT1-CDG in  

adult siblings with novel mutations. Mol Genet Metab. 2012 Dec;107(4):760-2. 

2] Ondruskova N, Honzik T, Vondrackova A, Tesarova M, Zeman J, Hansikova H. Glycogen 

storage disease-like phenotype with central nervous system involvement in a PGM1-CDG 

patient. Neuro Endocrinol Lett. 2014;35(2):137-41. 

3] Park EJ, Grabińska KA, Guan Z, Stránecký V, Hartmannová H, Hodaňová K, Barešová 

V, Sovová J, Jozsef L, Ondrušková N, Hansíková H, Honzík T, Zeman J, Hůlková H, Wen R, 

Kmoch S, Sessa WC. Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, 

causes a congenital disorder of glycosylation. Cell Metab. 2014 Sep 2;20(3):448-57.  

 

II.   Additional unpublished experiments related to the aim B.): 

4] The changes in subcellular structure, ultrastructure of organelles and pathobiochemistry 

in the cultivated skin fibroblasts from selected patients with congenital disorders of 

glycosylation.  

 

Author’ s contribution: biochemical analyses of selected glycoproteins (1-3), molecular 

genetic analysis (2), manuscript preparation (2) and analysis of fibroblasts by 

immunocytochemical and immunofluorescent methods (4).      
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4.2.1 Siblings with novel mutations in RFT1 gene show a milder phenotype of RFT1-CDG.   

1] Two siblings, a boy (older) and a girl, were born at term and had an uneventful postnatal 

adaptation. The onset of their first symptoms began at 8 and 6 months, respectively. They 

gradually presented with psychomotor delay, hypotonia, seizures and ataxia. A bilateral 

hearing loss was recognized in the boy, while the girl developed no hearing impairment. In 

both, a mild hepatosplenomegaly was detected using abdominal ultrasound, and laboratory 

findings revealed coagulopathy with decreased levels of protein C and factor XI (plus factor 

VIII and XI in the girl).   The diagnosis of CDG was made when they reached a young adult 

age, after IEF of serum transferrin showed type I pattern. Following the detection of normal 

PMM and MPI activities in lymphocytes and cultivated fibroblasts, LLO analysis was 

performed in the girl’s fibroblasts confirming the accumulation of dolichol-PP-

GlcNAc2Man5. Because the analysis of protein-linked glycan was normal, sequencing of the 

RFT1 gene - encoding Man5GlcNac2-PP-Dol flippase - was suggested. In both patients, two 

novel heterozygous missense mutations were found in RFT1, c.1222A>G (p.Met408Val) 

and c.1325G>A (p.Arg442Gln); see Fig. 10. At the time of article publication, the patients 

(19 and 21 years old) showed profound intellectual disability (IQ < 20), dysmorphic 

features, hypotonia, mild coagulopathy and epilepsy (well controlled), similarly to the 

previously described RFT1-CDG patients. In contrast, the 6 patients reported elsewhere had, 

additionally, feeding problems, failure to thrive and poor visual contact. The milder 

phenotype observed in our patients can perhaps be explained by the position of their 

mutations in RFT1 gene, which lead to amino acid change in the transmembrane region, as 

opposed to defects in the protein sections facing the ER lumen in patients with more severe 

symptoms.  

 

 

Fig. 10: Sequence profiles with the pathogenic RFT1 mutations in the affected siblings. 
Chromatogram of the two causative mutations in exon 12 (heterozygous c.1222A>G, 

p.Met408Val  and c.1325G>A, p.Arg442Gln) from the Sanger sequencing analysis of the 

RTF1 gene in the female RFT1-CDG patient; the corresponding reference sequence is 

shown at the top (brown background).    
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4.2.2 A boy diagnosed with PGM1-CDG presents with a novel feature of neurological 

impairment.   

2] A 10-year-old boy with a cleft palate and short stature manifested with mutli-systemic 

symptoms including hepatopathy, coagulapathy, cholecystolithiasis, myopathy and 

microcephaly. In addition, laboratory findings of hypoglycemia, hyperlipidemia, 

hypothyroidism and hyperuricemia were noted. While IEF of TF revealed relatively 

increased levels of its di-, mono- and asialoform, SDS-PAGE and Western blot of TF 

showed the presence of low-Mw smear corresponding to transferrin polypeptide carrying 

incomplete glycan chains; see Fig. 11. Because ApoC-III glycosylation was normal to 

borderline, the results overall indicated a defect affecting (predominantly) the processing of 

N-glycans. Shortly before our diagnosis was made, an article was published reporting 

identification of a novel CDG type due to phoshoglucomutase 1 (PGM1) deficiency in two 

patients using whole-genome sequencing [38]. Interestingly, their IEF TF pattern was quite 

characteristic and very similar to that seen in our patient. Furthermore, both of the two 

diagnosed  individuals had a distinct feature: a cleft palate. We therefore decided to measure 

the enzyme activity of PGM, using a spectrophotometric method, in our patient’s fibroblasts. 

Indeed, we detected markedly decreased PGM activity (< 5 % ) compared to healthy 

controls. Based on the following molecular analysis of PGM1 exons by Sanger sequencing, 

our patient was found to be a compound heterozygote for c.1010C>T (p.Thr337Met) and 

c.1508G>A (p.Arg503Gln). In silico tools confirmed the pathogenicity of these mutations, 

and PCR-RFLP analysis did not detect any of them in our group of 100 healthy controls. 

Moreover, protein alignment showed that the affected codons are evolutionary conserved, 

supporting the presumed causality of the detected variations. In reponse to studies 

suggesting a therapeutic effect of galactose supplementation in the PGM1-CDG patients 

[219], we started our patient on a lactose-rich diet with a dose of 40-50 g of lactose per day 

(due to impossibility to medically prescribe galactose in Czech republic). Unfortunately, 

neither clinical nor laboratory improvement resulted from this intervention. Compared to 

other PGM1-CDG cases, our patient showed a novel feature of mild neurological 

impairment. 
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Fig. 11:  CDG screening in the PGM1-CDG patient. Serum analyzed by A] isoelectric 

focusing and B] SDS-PAGE of transferrin. C: a control, PC: PMM2-CDG and S: the subject. 

Numbers on the left (A) indicate sialic acid content (asialo- to hexiasialo-) of the individual 

transferrin isoforms.   

 

4.2.3 A novel CDG type due to dolichol biosynthesis defect is caused by mutations in 

NGBR gene. 

3] Two male siblings of Roma origin presented with congenital scoliosis, severe 

neurological involvement, hypotonia refractory epilepsy, hearing deficit and visual 

impairment. Patient 1 died at the age of 29 months, patient 2 was still alive (4 years old) at 

the time of article publication, however died soon afterwards at the age of 6 years. The 

exoms of the probands and their parents were sequenced and four genetic variants were 

discovered, out of which the homozygous missense mutation c.869 G>A (p.Arg290His) in 

the NUS1 (NGBR) gene was evaluated as the one most likely to be responsible for the 

clinical phenotype; the unrelated parents and healthy siblings were heterozygous for this 

variation. The affected aminoacid is located in an evolutionarily conserved C-terminal 

domain of NgBR, and the mutation was, using in silico tools, predicted to be damaging for 

the protein function. In order to characterize the effect of the detected mutation on cellular 

pathophysiology, fibroblasts were isolated from the patients and used in the following 

experiments. The levels of NgBR mRNA and protein were found to be not significantly 

different, demonstrating that the protein translation and processing were not altered by the 

p.Arg290His mutation. Next, the known aspects of NgBR function were assessed: free 

cholesterol levels, cis-prenyltransferase (cis-PT) activity and glycosylation. Filipin staining 

showed increased accumulation of cholesterol in both patients, while microsomal cis-PT 

activity using isolated membranes from the patients’ cells was detected to be less than 20 % 

of the control’s. Addressing glycosylation, mannose incorporation into glycoproteins was 

measured and found to be markedly lower in the affected siblings. While Western blot in the 

fibroblasts   revealed   hypoglycosylation   of   glycoproteins  LAMP1  and  ICAM-1,  serum    
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markers TF and ApoC-III analyzed in the patient 2 were normal (not shown in article). 

Similarly to the described DHDDS-CDG cases, the patients with NgBR defect also had 

altered ratios of dolichol in urine and blood as assessed by mass spectrometry. In addition, 

our collaborators demonstrated the necessity of both NgBR and hCIT (DHDDS) for dolichol 

biosynthesis by experiments in mice, mice embryonic fibroblasts and yeast models. Overall, 

the published data provide evidence for the essential role of NgBR in dolichol synthesis and 

protein glycosylation, and report a novel type of CDG due to NgBR defect. Postulated 

functions of the NgBR/hCIT complex in cellular metabolism are illustrated in Fig. 12.     

 

4.2.4 Altered subcellular structure and pathophysiology found in fibroblasts from CDG 

patients. 

4] Cultivated skin fibroblasts from a group of our patients with either genetically determined 

CDG-I (n = 3; PMM2-CDG, ALG8-CDG and RFT1-CDG) or undiagnosed CDG-IIx (n = 2) 

were analyzed to characterize the subcellular structure, ultrastructure of specific organelles 

and selected aspects of the cellular pathobiochemistry in these disorders. First, the 

morphology of Golgi apparatus as the main site of glycosylation was investigated by means 

of immunocytochemistry using antibody to human giantin (Golgi membrane protein); see 

Fig. 13a. Compared to the control cell lines, abnormal Golgi structure was found in both 

CDG-IIx cultures, defined by its increased dilatation (in CDG-IIx(1)) and fragmentation (in 

CDG-IIx(2)). Golgi dilatation was also observed in RFT1-CDG, however it must be noted 

that this could be related to the overall poor growth of the fibroblasts. Morphological 

changes of Golgi were previously described in various CDG type II disorders affecting 

multiple glycosylation pathways, such as the deficiency of COG subunits or TMEM165 

[125, 134]. To examine the organelles in detail, we analyzed the fibroblasts by transmission 

electron microscopy (Fig. 13b) and in CDG-I lines we saw a normal organization of Golgi 

stacks, what we failed to detect in CDG-IIx cells. In addition, there was an increased 

occurence of swollen endoplasmic reticulum in PMM2-CDG and ALG8-CDG, perhaps 

reflecting ER stress in the cells. In the next experiment using fluorescently labeled PNA 

lectin, the increased signal in both CDG-IIx patients pointed to reduced sialylation of mucin 

O-glycoproteins, confirming a combined N- and O-glycosylation defect (Fig. 13c). 

Strikingly, immunofluorescent assay using dihydroethidium (DHE) showed a markedly 

higher intensity of the red fluorescent signal in all studied CDG lines, in comparison to 

controls (Fig. 13d). DHE is used to monitor reactive oxygen species (ROS) in tissues in vivo, 

forming a red fluorescent product upon reaction with superoxide anions [220]. We assume 

that the elevated cytosolic ROS levels we detected in CDG could be a consequence of the 
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activation of UPR (unfolded protein response), which was studied by Lecca et al. by means 

of transcriptome analysis in primary fibroblasts from 9 CDG-I patients (4x ALG6-CDG, 3x 

DPM1-CDG and 2x ALG12-CDG) [221]. While the UPR gene expression profiles were 

quite uniform in their tested group, the extent of the responses appeared to mirror the 

severity of the individual defects. The overexpression of DNAJC3/P58IPK, encoding a 

PERK inhibitor and a cochaperone p58
IPK

 [222, 223], was a consistent finding in all CDG-I 

types. Repression of the PERK pathway (thus, protein translation maintenance) was in 

agreement with the detection of no significant overexpression of CHOP (which is 

downstream of PERK), as well as observed induction of amino acid biosynthesis, and the 

author suggested that this could be a key mechanism to ensure cell survival in CDG 

fibroblasts. The exact mechanism how ER stress (UPR) triggers oxidative stress is not well 

understood; ROS are generated as a by-product of oxidative folding in ER, but their 

production might also be increased as a result of ER-mitochondrial communication 

involving calcium signaling [224]. We can only speculate about the origin of the markedly 

increased ROS levels that we found in CDG, but it seems possible that inhibition of PERK 

signaling could play a role. Apart from phosphorylation of eIF2α, PERK also targets nuclear 

respiratory factor 2 (NRF2), which upon phosphorylation binds to the antioxidant response 

element (ARE) to activate transcription of genes encoding enzymes that promote resistance 

to oxidative stress [225]. Indeed, PERK (-/-) cells (mouse embryonic fibroblasts) 

accumulated ROS when exposed to ER stress [226]. Another unexpected and novel finding 

was our immunocytochemical detection of decreased catalase signal within peroxisomes in 

CDG-IIx(1) (Fig. 13e), what is a feature of certain inherited peroxisomal disorders [227]. 

Relevant to this observation might be a study by Murakami et al., who showed the existence 

of an integrated system in mammals to utilize catalase - a key antioxidant enzyme which 

catalyzes the decomposition of H2O2 - by changing its localization from peroxisomes to 

cytosol in response to increased cytosolic H2O2 level [228]. It is, however, unclear to us why 

the aberrant catalase distribution was seen only in CDG-IIx(1) and not in the other analyzed 

CDG patients who also displayed a significant (and some of them even greater) ROS 

accumulation. Possibly the reduced peroxisomal catalase staining in the patient CDG-IIx(1) 

is directly related to his disorder, however, further elaboration is difficult as his genetic 

defect has not been identified so far.   
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Fig. 13a: Altered Golgi morphology in fibroblasts from selected CDG patients.  

Golgi structure was visualized in the cells by immunocytochemical analysis using antibody 

to giantin, a Golgi membrane protein (green signal), and nucleus was stained with DAPI 

(blue); the final images were created by merging the two channels. While a normal juxta-

nuclear Golgi localization can be seen in the control and CDG type I patients (PMM2-CDG, 

ALG8-CDG), fibroblasts from CDG type II patients show aberrant Golgi morphology with 

increased dilatation (CDG-IIx(1)) and fragmentation (CDG-IIx(2)). Abnormal Golgi 

structure in RFT1-CDG might be related to the observed poor growth of the cell line.          
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Fig. 13b: Disorganization of organelles in fibroblasts from selected CDG patients 

revealed by ultrastructure analysis. The cells were analyzed by transmission electron 

microscopy, using 25 000x magnification. In CDG type I (PMM2-CDG, ALG8-CDG), we 

saw increased occurrence of swollen endoplasmic reticulum (*). While they showed a 

normal organization of Golgi stacks (>), this could not be detected in CDG type II 

fibroblasts.      
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Fig. 13c: Affected mucin type O-glycosylation in fibroblasts from selected CDG 

patients. Reduced terminal sialylation of mucin type O-glycans was detected in both of our 

patients with uncharacterized CDG type II by assay using fluorescently labeled peanut 

agglutinin (PNA) lectin (binds to the exposed Gal residues). The images show cells without 

(left) and with (right; +N) neuraminidase treatment prior to PNA labeling.   
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Fig. 13d (part 1/2): Detection of ROS levels in fibroblasts from selected CDG patients. 

Reactive oxygen species (ROS) were detected in the analyzed cells by immunofluorescent 

assay using dihydroethidium (DHE). Red fluorescent signal, which reflects the intracellular 

levels of superoxide anions, was observed to be significantly increased in all studied CDG 

cell lines. The analysis consisted of two separate experiments (part 1, part 2 of the figure) 

and for each tested cell line, two representative images are shown.  
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Fig. 13d (part 2/2): Detection of ROS levels in fibroblasts from selected CDG patients. 

Reactive oxygen species (ROS) were detected in the analyzed cells by immunofluorescent 

assay using dihydroethidium (DHE). Red fluorescent signal, which reflects the intracellular 

levels of superoxide anions, was observed to be significantly increased in all studied CDG 

cell lines. The analysis consisted of two separate experiments (part 1, part 2 of the figure) 

and for each tested cell line, two representative images are shown.  
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Fig. 13e: Catalase staining in fibroblasts from selected CDG patients. The marker 

enzyme of peroxisomes, catalase, was detected using immunocytochemical method (green 

fluorescent signal). Its characteristic localization in peroxisomes - a dotted pattern - was 

observed to be reduced in the CDG-IIx(1) patient.  
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4.3 Results and discussion related to the aim C.)  

Alterations in protein glycosylation of non-CDG etiology. 

 

I.   Publication related to the aim C.): 

1] Ondrušková N, Honzík T, Kytnarová J, Matoulek M, Zeman J, Hansíková H. Isoelectric 

Focusing of Serum Apolipoprotein C-III as a Sensitive Screening Method for the 

Detection of O-glycosylation Disturbances. Prague Med Rep. 2015;116(2):73-86. 

 

II.   Manuscript (under revision) related to the aim C.): 

2] Ondruskova N, Honzik T, Kolarova H, Zeman J, Hansikova H. ApoC-III 

hypoglycosylation in glycogen storage diseases: the role of UDP-GalNAc depletion? J 

Inherit Metab Dis. 2016; xx(x):x.  

 

Author’ s contribution: biochemical analyses of selected glycoproteins and manuscript 

preparation.  
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4.3.1 Prader-Willi patients with elevated triacylglycerols show ApoC-III hypoglycosylation.  

1] Mild ApoC-III hypoglycosylation was found in 4/10 of the analyzed patients with Prader-

Willi syndrome in our study, and we suggest that this might be linked to their increased 

plasma triacylglycerols (for more detail, see Chapter 4.1.4  and the article in Supplement). 

 

4.3.2 Novel observation of ApoC-III hypoglycosylation in various glycogen storage 

diseases.    

2] The recategorization of phosphoglucomutase 1 (PGM1) deficiency, which originally 

belonged to the group of glycogen storage diseases (precisely, GSD type XIV) and since 

2012 has been classified as CDG, has inspired us to examine possible glycosylation 

abnormalities in serum from our group of 30 patients with previously, enzymatically or 

genetically, established GSD diagnosis. Our aim was to analyze the glycosylation status of 

CDG screening markers, N- and O-glycoproteins TF and ApoC-III, by isoelectric focusing 

followed by immunofixation or Western blot in sera from the following group of GSD 

patients: 2x type 0, 7x Ia, 3x non-Ia (Ib), 6x II, 7x III, 1x VI and 4x IX. While most of the 

patients had normal and few of them had borderline TF glycosylation, mild to profound 

ApoC-III hypoglycosylation was an unexpected and repeated finding in subjects with GSD 

Ia (6/7), non-Ia (2/3), III (7/7), VI (1/1) and IX (4/4). GSD type III, VI and IX patients 

showed the most pathological profile, with relatively decreased amount of disialoApoC-III 

(mean values: 22 % vs 43.4 % in controls), accompanied by relatively increased  

monosialoApoC-III (68.2 % vs 53.3 %) and/or asialoApoC-III (9.8 % vs 3.3 %). To find out 

whether the detected ApoC-III0 fraction represented ApoC-III with shortened glycan chain 

or no glycan at all, we run the samples on SDS-PAGE, along with a control sample after 

neuraminidase treatment. Based on the position of the bands, we presume that (in GSD 

patients) there is an increased abundance of ApoC-III0 which carries no glycan, i.e. is 

aglycosylated; see Fig. 14. Because dyslipidemia is a frequent finding in GSD and in our 

previous work we had hypothesized a role of elevated triacylglycerols (TAG) in etiology of 

the slight ApoC-III hypoglycosylation seen in our Prader-Willi patients, four individuals 

with hypertriglyceridemia (1.7 – 14.1 mmol/l) of different origin were subsequently tested. 

Their normal to borderline ApoC-III sialylation indicated that TAG could not be the 

causative factor for the observed markedly hypoglycosylated ApoC-III in GSD. It is relevant 

to note that GSD III, VI and IX share a common defect in metabolic conversion of glycogen 

to Glc-1-P, suggesting that the reason for ApoC-III hypoglycosylation could be the resulting 

reduced availability of glycosylation substrates, namely UDP-GalNAc (the first 

monosaccharide bound to ApoC-III polypeptide; not present in TF glycan). As for GSD type 
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Ia and non-Ia, intriguingly, there seemed to be a connection between the detected ApoC-III 

hypoglycosylation and the extent of their metabolic (de)compensation - characterized by 

evaluating multiple parameters: their glycemia, lipidemia, hepatic function or various 

clinical complications. It is known that the first step of ApoC-III O-glycosylation is 

specifically catalyzed by polypeptide N-acetylgalactosaminyltransferase 2 encoded by 

GALNT2, and expression of GALNT2 was previously found to be decreased e.g. in the 

patients with type 2 diabetes, perhaps due to their hyperglycemia [217]. Furthermore, there 

is a relationship between GALNT2 expression and TAG concentration; GWAS studies 

implicated a link between certain SNPs in GALNT2 and TAG/cholesterol levels [214], and 

probands with  GALNT2 mutations leading to reduced catalytic activity of the enzyme 

showed lower TAG and elevated HDL [229]. In our analysis, however, no single metabolic 

factor was identified as the molecular link underlying reduced ApoC-III glycosylation. 

Overall, our results not only can be useful in differential diagnosis, but also might help 

broaden the knowledge of GSD pathophysiology (in particular, of GSD type III, VI and IX). 

In addition, they suggest that ApoC-III glycosylation status could potentially serve as a 

marker in monitoring the disease course in GSD type Ia and non-Ia.                    

  
 

Fig. 14: ApoC-III glycosylation in selected samples from patients with various types of 

GSD. Serum analyzed by A] isoelectric focusing and B] SDS-PAGE of ApoC-III. Lane 1: 

GSD type Ia, lane 2: GSD non-Ia,  lane 3: GSD III, lane 4: GSD VI, lane 5: GSD IX, lane 

6/7: a healthy control, serum with/without previous neuraminidase treatment. ApoC-III2,1,0: 

asialo-, monosialo- and disialoApoC-III. Arrows on the right indicate fully glycosylated 

form (F), desialylated form (D) and aglycosylated form (A) of ApoC-III, as judged by their 

position.  
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5 CONCLUSION  

The overall goal of the present dissertation was to study the biochemical and molecular 

genetic aspects of congenital disorders of glycosylation (CDG) in the context of the Czech 

and Slovak Republic, what makes a unique research project within our geographic region. 

The contributions of this work include introducing laboratory methods to screen and further 

biochemically characterize CDG, establishing genetic diagnosis of specific glycosylation 

disorders in a group of probands, as well as bringing original findings in terms of differential 

diagnosis, the cellular pathophysiology and clinical manifestations of various CDG types. 

The core of the thesis is based on the published articles from the author and her 

collaborators, extended by some unpublished experiments. After elaboration of the research 

problem, three specific aims of the thesis were proposed and each of them was then 

addressed in the corresponding subsection of the Chapter 4 (Results and Discussion). 

 

The first section focused on selective CDG screening, which involves the biochemical 

analysis of serum markers, transferrin and apolipoprotein C-III, by isoelectric focusing. In a 

boy with unexplained symptoms, we report a finding of an unusual novel TF mutation, 

which leads to the loss of one glycosylation site and thus hampers the use of TF analysis for 

detecting an N-glycosylation defect. The next study, on the other hand, shows the benefit of 

this simple screening test helping to exclude N-glycosylation disorder despite a strong 

clinical suspicion of PMM2-CDG in a female neonate, who was later diagnosed with 

S-adenosylhomocysteine hydrolase deficiency. In collaboration with Van Scherpenzeel et al., 

we successfully diagnosed our CDG-IIx male patient by means of a new methodical 

approach that allowed for a direct diagnosis of MAN1B1-CDG from serum based on the 

patient’s distinct MS spectrum pattern. The last article describes the introduction of 

ApoC-III analysis for the screening of O-glycosylation disturbances in our laboratory; we 

also make a noteworthy observation of the relationship between the relative distribution of 

ApoC-III glycoforms and the levels of serum triacylglycerols.  

The middle part dealt with further laboratory characterization of CDG suspected patients: 

the first article discusses two siblings with the rare RFT1-CDG syndrome (only six patients 

had been previously reported worldwide) and the second one describes a boy with the 

treatable phosphoglucomutase 1 deficiency (PGM1-CDG). All three patients were the first 

diagnosed cases of these rare disorders in Czech republic, and both studies make novel 

contributions by extending the knowledge on genotype and phenotype spectrum of CDG. 

Next, in collaboration with other groups, we identify a new glycosylation disorder due to 
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defect of NgBR - a protein involved in dolichol biosynthesis. This is followed by the 

author’s unpublished experiments that examine cellular structure and pathobiochemistry in 

the cultivated fibroblasts from selected patients with glycosylation disorders, involving the 

detection of significantly increased levels of cellular ROS in CDG that has not yet been 

described elsewhere. 

In the last section, serum glycosylation abnormalities of non-CDG origin were investigated 

in a group of patients with various types of glycogen storage diseases. The novel finding of 

pathological ApoC-III glycosylation in certain GSD types is a useful information for CDG 

screening, as well as potentially uncovers previously unrecognized aspects of GSD 

pathophysiology.     

 

In conclusion, the proposed aims of the thesis were accomplished. Since the beginning of 

our CDG research, we have biochemically and genetically diagnosed 32 patients, with 10 

different types of CDG (PMM2-CDG: n = 20; EXT1/EXT2-CDG: n = 3; RFT1-CDG:  n = 2; 

NGBR-CDG: n = 2; ALG8-CDG: n = 1; DPAGT1-CDG: n = 1; SRD5A3-CDG: n = 1; 

MAN1B1-CDG: n = 1; PGM1-CDG: n = 1). The present work has substantially extended 

the spectrum of applied methods to identify the underlying cause of specific glycosylation 

disorders in patients with clinical suspicion of CDG, and thus has improved the diagnostic 

options for these diseases in the Czech Republic. Simultaneously, it has enabled the prenatal 

testing and genetic counselling in the affected families. And last but not least, the presented 

results obtained within international collaboration have strengthened our laboratory’s 

position in the worldwide CDG community.          
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Table Sa. Disorders of N-glycosylation. 

Disorders of N-glycosylation 

Affected gene Inheritance Function of the encoded protein NCBI Gene ID 

DPAGT1 AR GlcNAc-1-P transferase 1798 

ALG1 AR β-1,4-mannosyltransferase  56052 

ALG2 AR α-1,3/1,6-mannosyltransferase  85365 

ALG3 AR α-1,3-mannosyltransferase 10195 

ALG6 AR α-1,3-glucosyltransferase 29929 

ALG8 AR α-1,3-glucosyltransferase 79053 

ALG9 AR α-1,2-mannosyltransferase 79796 

ALG11 AR α-1,2-mannosyltransferase 440138 

ALG12 AR α-1,6-mannosyltransferase 79087 

ALG13 X-linked UDP-GlcNAc transferase subunit 79868 

ALG14 AR UDP-GlcNAc transferase subunit 199857 

RFT1 AR Man5GlcNAc2-PP-Dol flippase 91869 

TUSC3 AR Oligosaccharyltransferase subunit 7991 

MAGT1 X-linked Magnesium transporter associated with 

oligosaccharyltransferase  

84061 

DDOST AR Oligosaccharyltransferase subunit 1650 

STT3A AR Oligosaccharyltransferase subunit 3703 

STT3B AR Oligosaccharyltransferase subunit 201595 

MGAT2 AR GlcNAc transferase  4247 

MOGS AR α-1,2-glucosidase 7841 

MAN1B1 AR α-1,2-mannosidase 11253 

NGLY1 AR N-glycanase 55768 

SSR4 X-linked,  

de novo 

Translocon-associated protein complex 

subunit 

6748 

GNPTA AR GlcNAc-1-P transferase 79158 

PRKCSH AD Glucosidase II subunit  5589 
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Table Sb. Disorders of O-glycosylation. 

Disorders of O-mannosylation  (-dystroglycanopathies) 

Affected gene Inheritance Function of the encoded protein NCBI Gene ID 

POMT1 AR Protein O-mannosyltransferase 10585 

POMT2 AR Protein O-mannosyltransferase 29954 

POMGNT1 AR Protein O-mannose β-1,2- 

N-acetylglucosaminyltransferase 

55624 

FKTN AR Putative glycosyltransferase 2218 

FKRP AR Putative glycosyltransferase 79147 

LARGE AR Xylosyltransferase, glucuronyltransferase 9215 

ISPD AR 2-C-methyl-D-erythritol 4-phosphate 

cytidylyltransferase  

729920 

POMGNT2 AR Protein O-mannose β-1,4- 

N-acetylglucosaminyltransferase  

84892 

TMEM5 AR Putative glycosyltransferase 10329 

B3GALNT2 AR β-1,3-N-acetylgalactosaminyltransferase 148789 

POMK AR Protein O-mannose kinase 84197 

B3GAT1 AR β-1,4-glucuronyltransferase 11041 

GMPPB AR GDP-mannose pyrophosphorylase  29925 

Disorders of the glycosaminoglycan assembly (O-Xyl linked) 

XYLT1 AR Xylosyltransferase  64131 

B4GALT7 AR β-1,4-galactosyltransferase  11285 

B3GALT6 AR β-1,3-galactosyltransferase  126792 

B3GAT3 AR β-1,3-glucuronyltransferase   26229 

EXT1 AD GlcA/GlcNAc transferase  2131 

EXT2 AD GlcA/GlcNAc transferase 2132 

PAPSS2 AR 3'-phosphoadenosine 5'-phosphosulfate 

synthase  

9060 

SLC26A2 AR Sulphate transporter 1836 

CHST3 AR Chondroitin 6-O-sulfotransferase  9469 

CHST6 AR GlcNAc-6-O-sulfotransferase 4166 

CHST8 AR GalNAc-4-O-sulfotransferase  64377 

CHST14 AR GalNAc-4-O-sulfotransferase 113189 

DSE AR Dermatan sulfate epimerase 29940 
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Table Sb. Disorders of O-glycosylation (continuation). 

Disorders of mucin O-glycosylation  (O-GalNAc linked) 

Affected gene Inheritance Function of the encoded protein NCBI Gene ID 

GALNT3 AR GalNAc transferase 2591 

COSMC Somatic Chaperone of β-1,3-galactosyltransferase  29071 

Other O-glycosylation disorders (O-Fuc, O-Glc, O-GlcNAc, O-Gal  linked) 

POFUT1 AD Protein O-fucosyltransferase 23509 

B3GALTL AR β-1,3-glucosyltransferase 145173 

LFNG AR O-fucosylpeptide 

β-1,3-GlcNAc ltransferase 

3955 

POGLUT1 AD Protein O-glucosyltransferase  56983 

EOGT AR EGF domain-specific O-linked GlcNAc 

transferase 

285203 

OGT X-linked O-linked GlcNAc transferase 8473 

PLOD1 AR Lysine hydroxylase 5351 
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Table Sc. Disorders of lipid and glycosylphosphatidylinositol anchor glycosylation. 

Disorders of lipid glycosylation 

Affected gene Inheritance Function of the encoded protein NCBI Gene ID 

ST3GAL5 AR Lactosylceramide α-2,3-sialyltransferase 8869 

B4GALNT1 AR β-1,4-GalNAc transferase 2583 

PIGA  Somatic,   

X-linked 

GlcNAc-PI synthesis 5277 

PIGY AR Part of the GPI-GlcNAc transferase complex 84992 

PIGL AR De-N-acetylation GlcNAc-PI 9487 

PIGW AR Acylation of the inositol ring of PI 284098 

PIGM AR Transfer of the first mannose to GPI 93183 

PIGV AR Transfer of the second mannose to GPI 55650 

PIGN AR Transfers phosphoethanolamine to the first 

mannose of GPI  

23556 

PIGO AR Transfers phosphoethanolamine to the third 

mannose of GPI 

84720 

PIGT AR Component of the GPI transamidase 51604 

PGAP2 AR Role in GPI anchor maturation 27315 

PGAP3 AR Role in GPI anchor maturation 93210 

  



89 

 

Table Sd. Disorders of (potentially) multiple glycosylation pathways. 

Disorders of multiple glycosylation pathways 

Affected gene Inheritance Function of the encoded protein NCBI Gene ID 

PMM2 AR Phosphomannomutase 2 5373 

MPI AR Mannose phosphate isomerase 4351 

PGM1 AR Phosphoglucomutase 1 5236 

PGM3 AR Phosphoglucomutase 3 5238 

GNE AR, AD Glucosamine (UDP-N-acetyl)-2-

epimerase/N-acetylmannosamine kinase 

10020 

GFPT1 AR Glutamine fructose-6-phosphate 

transaminase 

2673 

DHDDS AR Dehydrodolichyl diphosphate synthase 

subunit 

79947 

DOLK AR Dolichol kinase 22845 

SRD5A3 AR Steroid 5 alpha-reductase  79644 

NGBR AR Promotes cis-prenyltransferase activity 116150 

DPM1 AR Dol-P-Man synthase subunit (catalytic) 8813 

DPM2 AR Dol-P-Man synthase subunit  (regulatory) 8818 

DPM3 AR Dol-P-Man synthase subunit  (stabilizer) 54344 

GMPPA AR GDP-mannose pyrophosphorylase 29926 

MPDU1 AR Mannose-P-dolichol utilization 9526 

SLC35A1 AR CMP-sialic acid transporter 10559 

SLC35A2 X-linked,   

de novo 

UDP-galactose transporter 7355 

SLC35A3 AR UDP-N-acetylglucosamine transporter 23443 

SLC35C1 AR GDP-fucose transporter 55343 

SLC35D1 AR UDP-GlcA/UDP-GalNAc transporter 23169 

B4GALT1 AR β-1,4-galactosyltransferase 2683 

ST3GAL3 AR α-2,3-sialyltransferase 6487 

TRIP11 AR Role in Golgi structure 9321 

SEC23A AR Role in Golgi trafficking 10484 

SEC23B AR Role in Golgi trafficking 10483 

SEC63 AD Role in Golgi trafficking 11231 

COG1 AR Role in Golgi-to-ER retrograde transport 9382 
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Table Sd. Disorders of (potentially) multiple glycosylation pathways (continuation).  

Disorders of multiple glycosylation pathways 

Affected gene Inheritance Function of the encoded protein NCBI Gene ID 

COG2 AR Role in Golgi-to-ER retrograde transport 22796 

COG4 AR Role in Golgi-to-ER retrograde transport 25839 

COG5 AR Role in Golgi-to-ER retrograde transport 10466 

COG6 AR Role in Golgi-to-ER retrograde transport 57511 

COG7 AR Role in Golgi-to-ER retrograde transport 91949 

COG8 AR Role in Golgi-to-ER retrograde transport 84342 

ATP6V0A2 AR Role in Golgi pH regulation 23545 

ATP6V1A AR Role in Golgi pH regulation 523 

TMEM165 AR Role in Mn
2+ 

homeostasis in Golgi 55858 

SLC39A8 AR Role in Mn
2+ 

homeostasis in Golgi 64116 

TMEM199 AR Role in Golgi homeostasis (unspecified ) 147007 

CCDC115 AR Role in Golgi homeostasis (unspecified ) 84317 
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