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Chapter 1

Introduction

• What is the fastest way from Prague to Berlin?

• How many rooms do I need to satisfy all the reservations for a room in a
hotel?

• Can we schedule jobs on a server, so that all the ordering requirements are
met?

• Can we draw a circuit diagram so that no two components interconnections
intersect?

These are examples of questions that we sometimes need to answer. Hence,
it is natural to ask, how fast we can find the answer. Or formally said, what the
time complexity of those problems is. In this thesis, we study the complexity
of several problems of a “combinatorial nature”. For some of them we design
efficient algorithms, for others we show that they are unlikely to be solvable in a
reasonable (polynomial) amount of time.

In the first part, we study Constraint Satisfaction Problems on infinite do-
main. It is a very general class of problems (for example our third question can
be formulated in the framework of constraint satisfaction), which recently un-
dergoes very fast development. We present general introduction to the state of
the art in constraint satisfaction in Chapter 2. We continue by results for the
most symmetric case of constraint satisfaction on infinite domains — equality
constraint languages — in Chapter 3. Finally, in Chapter 4, we study a more
practical class of languages — temporal constraint languages.

One thing our sample problems have in common is that they can be formulated
in the language of graph theory. Sometimes, special properties of graphs arising
in a particular problem can allow for an efficient solution. One special property
a graph can have is, that it can be described in a geometric fashion. For example
in our second sample problem, we can consider a graph in which vertices of the
graph are reservations and two reservations are connected by an edge if and only
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if they overlap. We look for an assignment of a number (room) to each vertex
(reservation) so that two adjacent vertices get different numbers. This problem
is generally hard to solve. However, in our case, it is possible to find a solution
quickly, as our graphs are of a special kind. We can assign each reservation
corresponding time-interval on a line. Again, we want to assign a number to each
interval so that two intersecting intervals get different numbers. For intervals on
a line, this problem is well-known to be solvable in polynomial time. Thus we
see that a special structure of the graph and its geometric description can help
us in designing an efficient solution.

In the second part of the thesis, we study graphs having these geometric de-
scriptions. We show that all series-parallel graphs can be represented as contact
graphs of segments in three directions in Chapter 6. We continue by designing
a fixed parameter tractable algorithm for the Independent Set Problem in in-
tersection graphs of segments in a fixed number of directions in Chapter 7. A
problem of finding a balanced ordering of vertices, which is motivated by an effort
to design an algorithm for nice drawings of a graph in the plane, is studied in
Chapter 8.

1.1 Papers of the Author Related to the Thesis

This thesis is based on following papers of the author:

1. M. Bodirsky, C. Dangelmayr, and J. Kára: Representing Series-parallel
Graphs as Intersection Graphs of Line Segments in Three Directions, In:
Innovative Applications of Information Technology for Developing World,
Kathmandu, Nepal, 2006.

2. M. Bodirsky and J. Kára: The complexity of equality constraint languages,
Proceedings of the International Computer Science Symposium in Russia
(CSR’06), LNCS 3967 (2006), 114–126. Extended journal version is sub-
mitted.

3. M. Bodirsky and J. Kára, A Fast Algorithm and Lower Bound for Temporal
Reasoning, submitted.

4. J. Kára and J. Kratochv́ıl: Fixed Parameter Tractability of Independent Set
in Segment Intersection Graphs, In Parameterized and Exact Computation,
Second International Workshop, IWPEC 2006,LNCS 4169 (2006), 166–
174.

5. J. Kára, J. Kratochv́ıl, and D. R. Wood, On the complexity of the balanced
vertex ordering problem, Proc. of 11th Annual International Conference,
COCOON 2005, LNCS 3595 (2005), 849–858. Extended journal version is
submitted.
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Part I

Constraint Satisfaction
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Chapter 2

Introduction to Constraint
Satisfaction

In this part, we present results about constraint satisfaction. This field experi-
ences an intensive development carried out by a growing group of researchers. It
is also interesting as a meeting point of several distinct fields of mathematics and
computer science — algebra, combinatorics and logic. This synergy is extremely
fruitful and sometimes brings unexpected connections and results. The area also
attracts interest because many computational problems arising in artificial intel-
ligence or generally computer science can be expressed as constraint satisfaction
and optimization problems. In this chapter, we introduce basic definitions and
theorems about constraint satisfaction.

2.1 Constraint Satisfaction Problems

The Constraint Satisfaction Problem (CSP) can be informally stated as follows:
Given a finite set of variables, find an assignment of values to variables, subject
to specified constraints. A wide variety of a real-world combinatorial problems
such as planning [67], scheduling [95], frequency assignment problems [37], image
processing [80], programming language analysis [81] or natural language under-
standing [2] can be formulated as a CSP. In database theory, constraint satis-
faction has its applications in conjunctive-query evaluation [48, 68]. A CSP is
interesting also from a theoretical point of view as it is quite expressive framework
but in the natural parameterization all the problems seem to be either tractable
(we use this term for problems solvable by an algorithm running in polynomial
time) or NP-hard. We refer the reader to [45, 84] for general introduction to the
complexity theory and definitions of complexity classes.

To demonstrate the versatility of a CSP we show several sample problems
that can be modelled as a CSP:

Example 2.1. The n-queen problem: Given n queens, find their placement

5



A B C D E

1

2

3

4

5

List of words

an da
ad eddie
aid li
and nl
ape pay
apple plane
asp re
bar si
bay

Figure 2.1: A crossword puzzle

on the n × n chessboard so that no two queens can attack each other.

Example 2.2. A crossword puzzle: Given a crossword and a list of words, find
an assignment of words to entries, so that each entry in a row/column is assigned
a word that fits into given space and crossing words agree (see Figure 2.1).

Example 2.3. A cryptography problem: Given the pattern
S E N D
M O R E

M O N E Y
find an assignment of letters to digits so that the resulting sum is correct.

There are several ways how to formally state CSP. We begin with the alge-
braic formulation:

Definition 2.1. An instance of a constraint satisfaction problem is a triple
(V,D, C) where

• V is a finite set of variables,

• D is a set (not necessarily finite) of values sometimes also called domain,

• C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is a pair
(Vi, Ri), Vi being a list of variables of length mi called the constraint scope
(also denoted by V (Ci)) and Ri being an mi-ary relation over the set D
called the constraint relation (also denoted by R(Ci)).

The question in the problem is, whether there exists a solution to (V,D, C), i. e.,
a function s : V → D such that for each Ci, 1 ≤ i ≤ q, the image of the constraint
scope Vi (s(Vi) := (s(v) | v ∈ Vi) is in the relation Ri.
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Any instance of CSP can be also easily rephrased to a logic form. We just
consider equivalent predicates ρi on the set D instead of constraint relations
Ri and ask whether a formula ρ1(V1) ∧ . . . ∧ ρq(Vq) is satisfiable. This form is
often used in database theory as it closely corresponds to the conjunctive query
evaluation [68], as is demonstrated by the following example:

Example 2.4. A relational database is a finite collection of tables. A table is
comprised of a scheme and an instance, where

• A scheme is a finite set of attributes and each attribute has a defined set
of possible values (called domain).

• An instance is a finite set of rows, where each row is a mapping that assigns
to each attribute from the scheme a value from its domain.

A standard question in the relational databases is the Conjunctive query

evaluation problem [48, 68]. The problem is to decide, whether a given con-
junctive query to the relational database, i. e., a query of the form ρ1 ∧ . . . ∧ ρq

with ρi, 1 ≤ i ≤ q being an atomic formula, has a solution.

Another equivalent reformulation of the constraint satisfaction problem is
using homomorphisms [40, 74]. We need to introduce a few definitions before we
can state the reformulation itself:

Definition 2.2. A relational signature τ is a set of relation symbols Ri, each
associated with a finite arity mi. A (relational) structure Γ over the relational
signature τ (also called τ -structure or constraint language) is a set DΓ (the do-
main) together with a relation Ri ⊆ Dmi

Γ for each relation symbol Ri of arity mi

from τ . For simplicity, we use the same symbol for a relation symbol and the
corresponding relation. If necessary, we write RΓ to indicate that we are talking
about the relation R belonging to the structure Γ.

Definition 2.3. Let Γ and Γ′ be τ -structures. A homomorphism from Γ to Γ′ is a
function f from DΓ to DΓ′ such that for each mi-ary relation symbol Ri in τ and
each mi-tuple (a1, . . . , ami

), if (a1, . . . , ami
) ∈ RΓ, then (f(a1), . . . , f(ami

)) ∈ RΓ′

.
In this case, we say that the mapping f preserves the relation symbols Ri.

Now, we are ready to state an alternative definition of the constraint satisfac-
tion problem instance.

Definition 2.4. An instance of a constraint satisfaction problem is a pair of
relational structures (S, Γ) with the same relational signature, such that S is
finite. The question in the problem is, whether there exists a homomorphism
from S to Γ.
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The idea, why this definition is equivalent to Definition 2.1, is that tuples in
relational structure S define constraint scopes and relational structure Γ defines
corresponding constraint relations. Now, we show several more examples of var-
ious combinatorial problems expressed as a CSP. More problems can be found
for example in [58, 74]. For the sake of brevity, we often use homomorphism
formulation in our examples.

Example 2.5. Graph Coloring: An instance of Graph Coloring prob-
lem [45] consists of a graph G and an integer k. The question is whether the
vertices of G can be labelled with numbers {1, . . . , k} (called colors) in such a way
that adjacent vertices are labelled with different numbers.

This problem can be expressed as an CSP instance (G,Kk), where Kk denotes
a complete graph on k vertices.

Example 2.6. Clique: An instance of Clique problem [45] consists of a graph
G = (V,E) and an integer k. The question is whether there exists a subset of
vertices U ⊆ V of size k such that every two distinct vertices from U are connected
by an edge.

This problem can be expressed as a CSP instance (Kk, G) provided G has no
loops (i. e., vertex connected by an edge to itself).

Example 2.7. System of Equations: In this problem, we are given a system
of q linear equations on some set of variables x1, . . . , xk assuming values from a
field F. The question is to find an assignment of values to variables so that each
linear equation is satisfied.

This problem can be expressed as a CSP instance (X,D, E) (here it is more
convenient to use the algebraic formulation of a CSP), where X = {x1, . . . , xk},
D is a set of elements of the field F and E is a set of constraints {E1, . . . , Eq}.
Constraint scope of Ei is the set of variables present in the i-th equation and its
constraint relation corresponds to possible solutions of this equation.

Example 2.8. Satisfiability: An instance of Satisfiability problem [45] is
a formula φ, which is a conjunction of a set of clauses. Each clause is a disjunc-
tion of literals and each literal is either a variable or a negation of a variable.
The question is whether there is an assignment of truth values to variables such
that φ is true.

This problem can be expressed as a CSP instance (X, {0, 1}, C) (we again use
the algebraic formulation of a CSP), where X is a set of variables of the formula
and for each clause C with variables x1, . . . , xk, there is a constraint C ′ in C
with the constraint scope x1, . . . , xk and a constraint relation R = {(y1, . . . , yk) ∈
{0, 1}k : C(y1, . . . , yk) is true}.

Example 2.9. Graph Isomorphism: In this problem, we are given two graphs
G = (V,E), H = (V ′, E ′) and we have to decide whether there exists a bijection
f between V and V ′ such that {f(u), f(v)} ∈ E ′ if and only if {u, v} ∈ E.
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We can express the problem as ((V,E,E), (V ′, E ′, E ′)), where E =
(

V

2

)
\ E

and E ′ =
(

V ′

2

)
\ E ′.

Example 2.10. Hamiltonian Circuit: An instance of Hamiltonian Cir-

cuit problem consists of a graph G = (V,E). The question is whether there
is a subgraph of G isomorphic to a cycle having |V | vertices. Recall that a cy-
cle with k vertices, Ck, is a graph on a vertex set {v1, . . . , vk} with the edge set
{{vi, vi+1}, 1 ≤ i < k} ∪ {{vk, v1}}.

A formulation as a CSP can be as follows: ((V,C|V |, 6=V ), (V,E, 6=V )). 6=V is
defined as {(u, v) ∈ V 2 : u 6= v}.

2.2 Parameterizations of CSP

Given the versatility of CSP, it is no surprise that generally CSP is NP-hard. In
particular, several problems shown above are well-known NP-hard problems [45].
Therefore it is natural to study parameterizations of the problem. There are two
natural parameterizations of the problem, which can be informally stated as:

1. Restrict the structure of constraint scopes in the instance.

2. Restrict allowed types of constraint relations.

The first parameterization can be formally expressed as a structural require-
ment on the hypergraph defined by constraint scopes. The second parameteriza-
tion is formally described by a set of allowed constraint relations. Note that in
the homomorphism formulation, this corresponds to the restriction of the first or
the second relational structure.

The case, when the structure of constraint scopes is fixed, has been studied
in connection with databases [48, 68]. The complete classification (under a mild
complexity theory assumption) of the complexity of problems in this parameter-
ization has been recently given in [50]. The core of a finite relational structure Γ
is a substructure Γ′ of Γ such that every endomorphism of Γ′ is an automorphism
of Γ′. We refer the reader for the definition of tree-width to [89].

Theorem 2.1. [50] Suppose that FPT 6=W[1]. Then for every recursively enu-
merable class C of structures of bounded arity holds: If there is w ≥ 1 such that
the core of every structure in C has tree-width at most w, then the problem of the
existence of a homomorphism from C to some structure D is tractable. Otherwise
the homomorphism problem is NP-complete.

In this thesis, we consider the second parameterization. I. e., we restrict the
set of allowed constraint relations. Formally, we use the following definition:
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Definition 2.5. Let Γ be a constraint language. A constraint satisfaction prob-
lem over Γ, CSP(Γ), is the subclass of a CSPsuch that every constraint relation
of the instance of CSP(Γ) belongs to Γ. For convenience, we sometimes write just
CSP(R) for a set of relations R and leave the domain implicit. We sometimes
write CSP(R) for a relation R instead of CSP({R}) to simplify the notation.

In the homomorphism formulation of CSP, the problem CSP(Γ) naturally
corresponds to the problem with fixed target τ -structure Γ. Observe that for
example problem System of Equations (Example 2.7) can be expressed as
CSP(Γ) for a fixed Γ. On the other hand, it is not immediately obvious, how to
express for instance the problem Coloring from Example 2.5 as CSP(Γ) for a
fixed Γ. Certainly, the corresponding parameterized problem k-coloring (i. e.,
given a graph decide whether it can be properly colored by k colors) is easy to
express. For the general problem Coloring, similarly as for problems such as
Satisfiability (Example 2.8), the key is to use the fact that Γ can be infinite.
So Γ can contain needed constraint relations for every number of colors, size of a
clause, respectively. Existence of such infinite constraint languages introduces a
slight ambiguity in the definition of tractability, which is commonly avoided by
following definitions:

Definition 2.6. A constraint language Γ is called tractable if for each finite
Γ′ ⊆ Γ the problem CSP(Γ′) is tractable. The language Γ is called globally
tractable if CSP(Γ) is tractable.

Intuition behind these definitions is that if we speak about simple tractability,
our algorithm can depend exponentially on the sizes of constraint relations as they
are fixed and finite. On the other hand, if we want a global tractability for an
infinite language, our algorithm has to run in time polynomial in the sizes of
constraint relations (up to constantly many exceptions).

It is easy to see that for finite languages, definitions are equivalent. For infinite
languages, global tractability implies tractability but not vice versa (see [21]).
Actually, it is an open problem whether tractability generally implies global
tractability also for infinite languages. For most languages studied so far, this
seems to be the case.

Another possible source of confusion is the case when the domain D of Γ
is infinite. In such cases, instance (V,D, C) of CSP(Γ) contains infinite D and
therefore the size of the input to an algorithm could be considered infinite. To
avoid this, we never allow infinite D to be a real part of the input and we rather
deal with the domain implicitly.

Because of the versatility of the Satisfiability problem, several variations
of the problem were introduced and studied. The best known are: Horn-sat,
3-sat, or Nae-sat [45].

Example 2.11. Horn-sat: In this problem, we have to solve Satisfiability

problem for a formula in which each clause has at most one positive literal.

10



Example 2.12. 3-sat: This is a Satisfiability problem for a formula in which
each clause has exactly three literals.

Example 2.13. Nae-sat (Not-all-equal-satisfiability): In this problem, we are
given a formula φ with each clause containing exactly three literals. We are to
find an assignment of truth values to variables such that in each clause, there is
at least one literal evaluated as true and at least one literal evaluated as false.

While the first of the above problems is well-known to be tractable [33] the
other two problems are NP-complete [45]. Above modifications of Satisfiabil-

ity problem motivated a definition of a generalized satisfaction problem, which
in our framework exactly corresponds to the constraint satisfaction problem over
the domain {0, 1}. Schaefer has completely classified complexity of generalized
satisfaction problems in his paper [91] in 1978. We present here his result using
our definitions.

Theorem 2.2. [91] Let Γ be a constraint language over the domain {0, 1}.
CSP(Γ) is tractable if at least one of the following holds:

• Each relation in Γ is satisfied by setting all variables to the same constant.

• Each relation in Γ is definable by a CNF formula in which each clause
contains at most one positive literal.

• Each relation in Γ is definable by a CNF formula in which each clause
contains at most one negative literal.

• Each relation in Γ is definable by a CNF formula in which each clause
contains at most two literals.

• Each relation in Γ is the set of solutions of a system of linear equations
over the field GF(2).

Otherwise CSP(Γ) is NP-complete.

Hence in our constraint satisfaction framework, this result can be viewed as
a complete classification of complexity of a constraint satisfaction problem over
the domain with two elements.

Success in the classification of the complexity of the generalized satisfaction
problem has motivated attempts to obtain a similar classification for related
problems. For example, P. Hell and J. Nešetřil have characterized the complexity
of the following problem:

Definition 2.7. Graph H-coloring: In this problem, we are given an undi-
rected graph G and ask whether there exists a homomorphism from G to H.
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t 1
∈

R

t 2
∈

R

. . .

t k
∈

R

−→

t
∈

R

︸ ︷︷ ︸

f

Figure 2.2: A k-ary polymorphism f

In their paper [54], they have showed that the problem is tractable if H is
bipartite and NP-complete otherwise. The complexity of a similar problem for
directed graphs is still open. In fact, in the light of the following theorem from [40]
this is not a big surprise:

Theorem 2.3. [40] Every CSP(Γ) with finite Γ is polynomial-time equivalent to
Graph H-coloring for a suitable directed graph H.

Finally, we would like to remark that recently, Bulatov managed to classify
complexity of constraint satisfaction problems for all constraint languages over
the domain of size three [20].

2.3 Polymorphisms and Expressibility

Generalizing the previous questions, we can ask, what the complexity of CSP(Γ)
for given Γ is. Can we provide the characterization for all possible constraint
languages? This has proved to be a quite complex task. Several methods have
been used in determining complexity of some languages. Approach using general
algebra and notion known as polymorphisms has turned out to be particularly
fruitful.

Definition 2.8. Let D be a set, and O be the set of finitary operations on D,
i. e., functions from Dk to D for finite k’s. We say that a k-ary operation f ∈ O
preserves an m-ary relation R ⊆ Dm if whenever R(xi

1, . . . , x
i
m) holds in Γ for all

1 ≤ i ≤ k, then R
(
f(x1

1, . . . , x
k
1), . . . , f(x1

m, . . . , xk
m)

)
holds in Γ. If f preserves

all relations of a constraint language Γ, we say that f is a polymorphism of Γ.

See Figure 2.3 for a graphical explanation of a polymorphism.

Definition 2.9. Let Γ be a constraint language over a domain D. Then Pol(Γ)
denotes the set of all polymorphisms of Γ. Inversely, if F is a set of finitary
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operations, then Inv(F ) denotes the set of all relations that are preserved by all
operations in F .

In other words, a polymorphism f is a homomorphism from Γk = Γ× · · · ×Γ
to Γ, where Γ1 × Γ2 is the (categorical- or cross-) product of the two relational
τ -structures Γ1 and Γ2. Hence, the unary polymorphisms of Γ are the endomor-
phisms of Γ, and the unary bijective polymorphisms are the automorphisms of
Γ.

To simplify the notation, we use [k] to denote the set {1, . . . , k}. To dis-
tinguish tuples of values from just plain elements of the domain or from names
of variables, we use small Latin letters with a bar above as symbols for tu-
ples — e. g. t. We write t[i] for the i-th element of the tuple t. If f is an
l-ary function and t1, . . . , tl are k-tuples, we define f(t1, . . . , tl) to be the k-tuple
(f(t1[1], . . . , tl[1]), . . . , f(t1[k], . . . , tl[k])). When dealing with polymorphisms, we
sometimes need the following definitions:

Definition 2.10. A k-ary operation f : Dk → D depends on the i-th argu-
ment, i ∈ [k], if there are x1, . . . , xk ∈ D and x′

i ∈ D such that f(x1, . . . , xk) 6=
f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk). We say that f is essentially l-ary, if it depends

on exactly l arguments.

Now, we show an example to illustrate the notion of polymorphisms and also
motivate further definitions:

Example 2.14. Let R := {(0, 0), (1, 2), (0, 1), (1, 1)} be a relation over the do-
main {0, 1, 2}. A ternary operation

sp(x, y, z) :=
{ y if x = y or y = z or x = z

1 otherwise.

preserves R. Let t1, t2, t3 be pairs from R. If the first case applies for both triples
(t1[1], t2[1], t3[1]), (t1[2], t2[2], t3[2]), we obtain t2, which is from R. For the first
triple, the second case never applies since 2 never occurs in the first triple. Hence,
we have to check only the case that for the second triple the second case is applied.
But the resulting pair is then either (0, 1) or (1, 1), which are both in R.

In CSP(R), we can also express other constraint relations. For example we
can force relation R′ := {(0, 0), (0, 1), (0, 2), (1, 1)} on a pair of variables (x, y) by
putting R on (x, z) and (z, y), where z is some auxiliary variable. It is easy to
check that sp also preserves R′. Actually, this is not just by chance, as we show
in several following paragraphs.

Definition 2.11. A k-ary relation R can be expressed in a constraint language
Γ over D if there exists an instance (V,D, C) of CSP(Γ), and a list, L, of k
variables, such that the solutions of (V,D, C) restricted to L form the relation R.
The set of all relations which can be expressed in Γ is called the expressive power
of Γ, 〈Γ〉.
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A set of relations R that is closed under expression (i. e., anything that can
be expressed using relations in R is in R) is called a relational clone. Similarly,
a set F of finitary operations over D that contains all projections (projection is
a mapping Dk → D such that f(x1, . . . , xk) = xi for all x1, . . . , xk ∈ D and some
i ∈ {1, . . . , k}) and is closed under compositions (a composition of f : Dk → D
with g1, . . . , gk : Dl → D is a function h : Dl → D defined as h(x1, . . . , xl) :=
f(g1(x1, . . . , xl), . . . , gk(x1, . . . , xl))) is called a (polymorphism) clone. In case D
is infinite, we also require a clone F to be locally closed [98]. We say that
f : Dk → D is interpolated by a set of operations F ′ ⊆ F if for all finite D′ ⊆ D
there is f ′ ∈ F ′ such that f ′(x1, . . . , xk) = f(x1, . . . , xk) for all x1, . . . , xk ∈ D′.
The set of operations F is locally closed if any operation that is interpolated
by operations from F is already in F . Clones have been intensively studied in
general algebra [90, 98] and the results provide essential tools for classification of
complexity of constraint satisfaction problems. See for example Section 2.4.

The following standard lemma directly follows from the definitions:

Lemma 2.4. For any constraint language Γ and any relation R from the expres-
sive power of Γ, the problem CSP(Γ∪{R}) is reducible in polynomial time to the
problem CSP(Γ).

The fact that if f is a polymorphism for two constraints C1, C2, then it is a
polymorphism for their conjunction give us another handy standard result:

Lemma 2.5. For any constraint language Γ, any relation R from the expressive
power of Γ and any polymorphism f of Γ, the relation R is preserved by f .

This trivial result can be extended to a much more interesting theorem, that
can be found for example in [87].

Theorem 2.6. [87] For every constraint language Γ over a finite domain, the
equality Inv(Pol(Γ)) = 〈Γ〉 holds.

Theorem 2.6 together with Lemma 2.4 also gives us the following complexity
result:

Theorem 2.7. [58] For all constraint languages Γ, Γ′ over a finite domain, if
Pol(Γ) ⊆ Pol(Γ′), then CSP(Γ′) is reducible in polynomial time to CSP(Γ).

This result can also be viewed as follows: The set of polymorphisms of a
constraint language Γ determines complexity of CSP(Γ) up to a polynomial time
reduction. Actually, this result is not limited only to finite domains but also
holds in some infinite cases as we describe below in Theorem 2.9.

Now, we turn our attention to the logical description of the expressive power
of a constraint language. Let τ be a relational signature. A formula over τ
(τ -formula) is called primitive positive, if it has the form

∃x1, . . . , xk : φ1 ∧ . . . ∧ φl,
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Figure 2.3: Operations Inv and Pol.

where φ1, . . . , φl are atomic τ -formulae that may contain free variables and exis-
tentially quantified variables from x1, . . . , xk. The atomic τ -formula may also be
of the form x = y. A formula is called existentially positive, if it is a disjunctive
combination of primitive positive formulae (i. e., it is a first order formula with-
out negations and universal quantification). Every formula with k free variables
naturally defines a k-ary relation over any τ -structure Γ. It is not hard to verify
that relations which can be defined by primitive positive formulae over Γ are
precisely those relations that can be expressed in Γ.

Generalization of Theorem 2.6 to infinite domains has been found in [11, 18].
First, we introduce a well-established notion from model theory:

Definition 2.12. A constraint language Γ over a countable domain is called ω-
categorical if all countable models of its first order theory are isomorphic to Γ.

ω-categoricity can be characterized also differently:

Theorem 2.8. [23] Let Γ be a constraint language over a domain D. Then the
following is equivalent:

• Γ is ω-categorical.

• The automorphism group of Γ is oligomorphic (i. e., it has only finitely
many orbits of k-tuples of elements from D for any k ≥ 1).

• Every k-ary first-order definable relation in Γ is a union of a finite number
of orbits of k-tuples of the automorphism group of Γ.
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Examples of ω-categorical languages are for example constraint languages over
rational numbers with constraint relations defined by first order formulae using
= and < as atomic relations. So (Q, {<,≤, =}) is ω-categorical. Automorphisms
of such languages are certainly all increasing mappings Q → Q. Hence, it follows
that for any k ≥ 1, there are at most 1 ·3 · . . . ·(2k−1) orbits of k-tuples from Q in
the automorphisms group. To demonstrate last characterization in Theorem 2.8,
consider relation R(x, y, z) := {(x, y, z) | (x < y) ∨ (x < z)}. Such relation
is composed of seven orbits of triples. They are characterized by inequalities
x < y < z, x < z < y, y < x < z, z < x < y, x = y < z, x = z < y, and
x < y = z.

Now, we are ready to present result for infinite domains:

Theorem 2.9. [11, 18] Let Γ be an ω-categorical constraint language. Then
relations preserved by all polymorphisms of Γ are precisely those that have a
primitive positive definition in Γ. I. e., Inv(Pol(Γ)) = 〈Γ〉.

This theorem theorem is fundamental to our further research of constraint
satisfaction over infinite domains as it allows us to use the powerful machinery of
polymorphisms and algebra also in the case of ω-categorical constraint languages.

Also this theorem allows us to extend a standard corollary of Theorem 2.6 to
ω-categorical languages:

Corollary 2.10. Let Γ be an ω-categorical constraint language and let R be a
relation that does not have a primitive positive definition in Γ. Then there is
f ∈ Pol(Γ) such that f does not preserve R.

A similar counterpart on the side of polymorphisms holds even for arbitrary
(not only ω-categorical) relational structures [98].

Proposition 2.11. Let F be a clone over D and let g be a finitary operation
over D such that g 6∈ F . Then there is R ∈ Inv(F) such that R is not preserved
by g.

To slightly practice work with polymorphisms of a constraint language, we
present here a useful lemma:

Lemma 2.12. Let Γ be an ω-categorical constraint language and R be a k-ary
relation that is a union of l orbits of k-tuples of Aut(Γ). If R 6∈ 〈Γ〉, then there
is an at most l-ary f ∈ Pol(Γ) such that f is not preserving R.

Proof. Recall that by Theorem 2.8, every relation first order definable in Γ is a
union of finitely many orbits of Aut(Γ). If R 6∈ 〈Γ〉, Corollary 2.10 asserts that
there is a polymorphism g that does not preserve R. If g is at most l-ary, we
are done. Otherwise let m be the arity of g and t1, . . . , tm be tuples from R such
that g(t1, . . . , tm) is not in R. As R is a union of l orbits of Aut(Γ) and l < m,
there are some tuples in t1, . . . , tm that are from the same orbit. In particular,
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we can without loss of generality assume that for each tuple tl+1, . . . , tm, there is
some tuple from t1, . . . , tl that is in the same orbit. Let oi be the number of the
tuple that is in the same orbit as ti for l + 1 ≤ i ≤ m. Clearly, there are also
automorphisms αl+1, . . . , αm of Γ such that αi(toi

) = ti. Therefore the operation
f defined as f(x1, . . . , xl) := g(x1, . . . , xl, αl+1(xol+1

), . . . , αm(xom
)) also violates

R and it is l-ary.

We conclude this section with another example of a standard local generation
argument.

Lemma 2.13. Let Γ be such that Aut(Γ) has one orbit of 2-sets. If Γ has a
non-injective endomorphism f , then Γ also has a constant endomorphism.

Proof. Let f be an endomorphism of Γ such that f(b) = f(b′) for two distinct
values b, b′ from D. Let a1, a2, . . . be an enumeration of D. We construct an
infinite sequence of endomorphisms e1, e2, . . ., where ei is an endomorphism that
maps the values a1, . . . , ai to a1. This suffices, since by local closure, the mapping
defined by e(x) := a1 for all x is an endomorphism of Γ.

For e1, we take the identity map, which clearly is an endomorphism with the
desired properties. To define ei for i ≥ 2, let α be an automorphism of Γ that maps
{a1, ei−1(ai)} to {b, b′} (such automorphism exists because of the assumption on
Aut(Γ)). Then the endomorphism f(α(ei−1(x))) is constant on a1, . . . , ai (recall
that a1 = ei−1(a1) = . . . = ei−1(ai−1)). There is also an automorphism α′ that
maps f(b) to a1. Then ei(x) := α′(f(α(ei−1(x)))) is an endomorphism with the
desired properties.

2.4 Results for Finite Domains

To demonstrate the strength of the algebraic approach to constraint satisfaction
we present here a few classic results for finite domains.

Let D be a finite domain in this section. Let f be a k-ary operation from
Dk → D.

• f is called idempotent if f(d, . . . , d) = d for all d ∈ D.

• f is called essentially unary (note that this definition coincides with the
definition of essentially l-ary for l = 1) if there exists i ∈ [k] and a non-
constant g : D → D such that f(d1, . . . , dk) = g(di) for all (d1, . . . , dk) ∈
Dk.

• f is called a semiprojection if k ≥ 3, f is not a projection and there is
i ∈ [k] such that for all d1, . . . , dk ∈ D satisfying |{d1, . . . , dk}| < k it holds
that f(d1, . . . , dk) = di.
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• f is called a majority operation if k = 3 and f(d′, d, d) = f(d, d′, d) =
f(d, d, d′) for all d, d′ ∈ D.

• f is called an affine operation if k = 3 and f(d1, d2, d3) = d1 + d2 − d3 for
all d1, d2, d3 ∈ D where (D, +,−) is an Abelian group [3].

The following theorem has been shown using results from general algebra [90,
98]:

Theorem 2.14. [21] Let Γ be a constraint language such that it does not have a
non-injective endomorphism. Then either

1. Pol(Γ) contains essentially unary operations only, or

2. Pol(Γ) contains an operation that is

(a) a constant operation, or

(b) a majority operation, or

(c) an idempotent binary operation (which is not a projection), or

(d) an affine operation, or

(e) a semiprojection.

Since for finite domains, we can always assume that Γ does not have a non-
injective endomorphism (otherwise CSP(Γ) can be reduced in polynomial time
to CSP(Γ′) such that Γ′ does not have a non-injective endomorphism [21]), The-
orem 2.14 determines the complexity of a large class of constraint satisfaction
problems. For example in case 1, it follows that the problem is NP-complete. On
the other hand in cases 2a, 2b, 2d, the problem CSP(Γ) is shown to be tractable
and hence the only unsettled cases are 2c and 2e.

Further results about constraint satisfaction problems for finite domains can
be found for example in [20, 21, 29]. In [21], a conjecture about the complexity
of constraint satisfaction problems over a finite domain has been posed. We state
here its informal variant. Let I be an instance of CSP(Γ), t1, . . . , tk some l-
tuples of variables from I and R a relation over the same domain as I. For a
solution f to I, we can define a k-tuple tf so that tf [i] = 1 if R holds on f(ti)
and tf [i] = 0 otherwise. In this way, the instance I simulates some k-ary relation
S = {tf | f a solution to I} over {0, 1}.

Conjecture 2.1. If CSP(Γ) is not able to simulate any of the NP-complete cases
of generalized satisfiability problem over a Boolean domain, then the problem
CSP(Γ) is tractable.

We refer the reader for a more formal formulation to [21].
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Chapter 3

Equality Constraint Languages

In this chapter, we start a presentation of our results for constraint satisfaction
problems over countably infinite domains. We start the research by studying the
most symmetric languages. I. e., those that are preserved by all permutations of
the domain. Actually, we define them as languages where each constraint relation
can be defined by an =-formula (i. e., a Boolean combination of atoms of the form
x = y) in Section 3.1 and show that the symmetry is an equivalent characteriza-
tion. We call such languages equality constraint languages. The material of this
chapter is mostly based on papers [15, 16] of the author.

First, let us show two examples of equality constraint languages:

Example 3.1. Let Γ be a relational structure (N, {=, 6=}). Then CSP(Γ) is
the computational problem to determine for a given set of equality or inequality
constraints on a finite set of variables whether the variables can be mapped to the
natural numbers such that variables x, y with a constraint x = y are mapped to
the same value and variables x, y with a constraint x 6= y are mapped to distinct
values.

Note that Example 3.1 is a tractable constraint language as we can consider
the undirected graph on the variables of an instance I of CSP(Γ), where two
variables x and y are joined if and only if there is a constraint x = y in I. Then
it is easy to see that I does not have a solution if and only if it contains an
inequality-constraint x 6= y such that y is reachable from x in the graph defined
above. Clearly, such a reachability test can be performed in linear time in the
size of the input.

Example 3.2. Let Γ be the relational structure (N, {S}), where S is the ternary
relation S := { (x1, x2, x3) ∈ N3 | (x1 = x2 ∧ x2 6= x3) ∨ (x1 6= x2 ∧ x2 = x3)}.

For this language, we show that CSP(Γ) is NP-complete in Section 3.3.
The main result of this chapter is that we determine the complexity of con-

straint satisfaction problems for all equality constraint languages. In particular,
we show that each problem is either tractable or NP-complete. The containment
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in NP is easy to see: A non-deterministic algorithm can guess which variables
in an instance I denote the same element in Γ and can verify whether there is
a corresponding solution for I. To prove that certain equality constraint lan-
guages are NP-hard (Section 3.3), we apply the algebraic approach to constraint
satisfaction.

For the tractable equality constraint languages, we present an algorithm that
outperforms other algorithms that are on resolution or based on establishing
relational consistency. Moreover, if the constraint relations are represented by
formulae in DNF, then our algorithm is the first polynomial-time algorithm. We
also discuss the complexity of the so-called meta problem of constraint satisfaction
complexity, i. e., the question whether a given finite equality constraint language
is tractable or not.

3.1 Equality Constraint Languages and Their

Representations

We start with a formal definition of an equality constraint language:

Definition 3.1. An equality constraint language is a constraint language Γ =
(D, {R1, R2, . . . }) on a countably infinite domain D where all relations can be
defined with Boolean combinations of the equality relation.

Clearly, every permutation of D preserves all relations R1, R2, . . . and hence
equality constraint languages have a highly transitive automorphism group.

Conversely, suppose that R is a k-ary relation that is preserved by all permu-
tations of D. Such a relation is a union of finitely many orbits of k-tuples with
respect to the permutation group that contains all permutations. It is easy to
see that the orbits of k-tuples in R can be described by a conjunction of equality
and inequality relations. Hence, every relational structure that is preserved by
all permutations is an equality constraint language.

For the rest of this chapter Γ = (D, {R1, R2, . . . }) always denotes an equality
constraint language. There are different natural ways to represent the relations
R1, R2, . . . in instances of the CSP. If the constraint language is finite, the choice
of the representation clearly does not affect the computational complexity. How-
ever, if the constraints of the language are specified in input, the representation
of the constraint relations matters. The representation that dominated in the
literature on the CSP over finite domains is the representation of a relation by
the set of its tuples. However, note that there are other natural possibilities
for the choice of the representation. In [28], for constraint satisfaction problems
over a Boolean domain, representations of constraint relations by formulae in
disjunctive normal form (DNF) have been studied as well.

We study two natural ways to represent relations in equality constraint lan-
guages, which are analogous to the two mentioned representations over a finite
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domain: the representation by sets of tuples and the representation by a formu-
lae in DNF. We show that in both cases the tractable constraint languages are
globally tractable.

The first representation by sets of tuples is the closest analogue to representa-
tions of relations over a finite domain by the set of tuples in the relation. Clearly,
a non-empty relation from an equality constraint language contains an infinite
number of tuples, and therefore we cannot use such representations for equality
constraint languages. However, as we have seen before, every k-ary relation in Γ
is a union of a finite number of orbits of k-tuples of the automorphism group of
Γ. Let s be a k-tuple from one of these orbits. Let ρ be the equivalence relation
on the set {1, . . . , k} that contains those pairs {i, j} where si = sj. Clearly, all
tuples of the same orbit lead to the same equivalence relation ρ. Hence, every
k-ary relation R in Γ corresponds uniquely to a set of equivalence relations on
{1, . . . , k}, which we call the representation of R. Sometimes, we identify a rela-
tion R from Γ with its representation. For example, we freely write ρ ∈ R if ρ is
an equivalence relation from the representation of R. Let |R| denote the number
of orbits of k-tuples contained in R (i. e., the number of equivalence relations in
the representation of R).

For algorithmic purposes, it is convenient to not use equivalence relations
explicitly, but instead take from each orbit of R one tuple as its representant.
Hence, in the algorithm, we rather speak about the representation of a relation
by a set of tuples instead of the representation by a set of equivalence relations.

Example 3.3. Consider again the ternary relation S(x1, x2, x3) from Exam-
ple 3.2 that is defined by the =-formula (x1 = x2∧x2 6= x3)∨ (x1 6= x2∧x2 = x3).
The representation of S by equivalence relations consists of two equivalence rela-
tions, each containing exactly two equivalence classes. An example of a represen-
tation of S by a set of tuples is {(0, 0, 1), (0, 1, 1)}.

Note that hardness results that we present in Section 3.3 hold independently
from the representation. The algorithmic results in Section 3.4 do depend on the
representation. Clearly, the meta problem of deciding whether a given constraint
language is tractable discussed in Section 3.5 may also depend on the way how
the relations of the language are represented.

3.2 Intersection-closed Relations

In this section, we study an important property that an equality constraint lan-
guage might have.

Definition 3.2. Let ρ and ρ′ be equivalence relations on a set X. We say that ρ
is finer than ρ′, and write ρ ⊆ ρ′, if ρ(x, y) implies ρ′(x, y) for each x, y ∈ X. We
also say that ρ′ is coarser than ρ in this case. The intersection of two equivalence
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relations ρ and ρ′, denoted by ρ ∩ ρ′, is the equivalence relation σ such that
σ(x, y) if and only if ρ(x, y) and ρ′(x, y). Finally, let c(ρ) denote the number of
equivalence classes in ρ.

Lemma 3.1. For a k-ary relation R in an equality constraint language on a
countable set D, the following conditions are equivalent.

1. R is preserved by every injective binary operation on D;

2. R is preserved by an injective binary operation on D;

3. R is preserved by a binary operation f such that there are two k-element
subsets S1, S2 of the domain such that f restricted to S1 × S2 is injective;

4. The representation of R is closed under intersections, i. e., ρ ∩ ρ′ ∈ R for
all equivalence relations ρ, ρ′ ∈ R;

5. R can be defined by an =-formula that is Horn, i. e., an =-formula in CNF
where each clause contains at most one expression of the form x = y.

Proof. The implication from 1 to 2 and from 2 to 3 is immediate. Let ρ and
ρ′ be two equivalence relations from the representation of R. Pick two k-tuples
s and s′ in R that lie in the orbits that are described by ρ and ρ′. Now, let
f be a binary operation of D that is injective on its restriction to S1 × S2 for
two k-element subsets S1, S2. Let α1 and α2 be permutations of D that map the
values of the k-tuples s and s′ to S1 and S2, respectively. Then by the injectivity
of f on S1×S2, the k-tuple s′′ := f(α1(s), α2(s′)) satisfies s′′[i] = s′′[j] if and only
if ρ(i, j) and ρ′(i, j). Hence, we found a tuple in R that lies in the orbit that is
described by ρ ∩ ρ′, which is therefore also contained in the representation of R,
and therefore 3 implies 4.

Every injection of D2 into D preserves every relation with an intersection-
closed representation, because it maps two tuples that correspond to equivalence
relations ρ and ρ′ to a tuple that corresponds to ρ ∩ ρ′. We thus proved that 4
implies 1.

To show that 2 implies 5, let R be preserved by a binary injective operation
f , and let φ(x1, . . . , xk) be a formula in a CNF that defines R. By a CNF we
mean that the formula φ is a conjunction of clauses, each clause is a disjunction
of literals, and each literal is either positive (i. e., of the form x = y) or negative
(i. e., of the form x 6= y). The formula φ is called in reduced form if it does
not contain a clause or a literal such that removing this clause or literal from φ
creates an equivalent formula. It is clear that every formula is equivalent to a
reduced formula and hence we can assume that φ is in a reduced form. Suppose
for contradiction that φ is not Horn, i. e., there exists a clause φα of φ which
contains two equalities xi = xj and xi′ = xj′ . Construct φ′ from φ by removing
the equality xi = xj, and φ′′ by removing xi′ = xj′ . There exist a, b ∈ Xn such
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that φ(a) but not φ′(a), and φ(b) but not φ′′(b). Clearly, a[i] = a[j], a[i′] 6= a[j′],
b[i] 6= b[j], and b[i′] = b[j′]. Set c := f(a, b). Then c[i] 6= c[j], c[i′] 6= c[j′], and in
fact φ(c) does not hold. Hence, R is not preserved by f , a contradiction.

We finally show that 5 implies 2. Let R be a relation that can be defined by
a Horn =-formula, and let f be a binary injective operation. Let s and t be two
tuples in R. We verify that f(s, t) satisfies each clause C. First, consider the case
that s or t satisfies a negative literal. Then f(s, t) satisfies this literal as well, by
injectivity of f . In the other case, both s and t do not satisfy all negative literals.
Hence, there must be a positive literal, and s and t must satisfy this literal. But
then f(s, t) satisfies this literal as well. Therefore, f preserves R.

Corollary 3.2. An operation f generates an injective binary operation g if and
only if every equality constraint relation that is preserved by f is intersection-
closed.

Proof. If f generates an injective binary operation g, then every relation R that is
preserved by f is also preserved by g, and Lemma 3.1 shows that R is intersection
closed. Conversely, if every equality constraint relation R preserved by f is inter-
section closed, we claim that f generates all injective binary operations. Suppose
the contrary. By Proposition 2.11, there is an equality constraint relation R that
is preserved by f but not by an injective binary operation g. Another applica-
tion of Lemma 3.1 shows that R cannot be intersection closed, contradicting the
assumption.

3.3 A Generic Hardness Proof

In this section, we prove that every equality constraint language without a con-
stant unary or an injective binary polymorphism has NP-hard constraint satisfac-
tion problem. We start by noting that the automorphism group of every equality
constraint language has one orbit of 2-sets and therefore Lemma 2.13 applies to
all such languages.

Lemma 3.3. If Γ does not have a constant endomorphism, then there is a pri-
mitive positive definition of the relation x 6= y in Γ.

Proof. Suppose Γ has a k-ary polymorphism f that does not preserve 6=, i. e.,
there are k-tuples u and v such that u[i] 6= v[i] for all i ∈ [k], but f(u[1], . . . , u[k])
is equal to f(v[1], . . . , v[k]). Let α2, . . . , αk be permutations of D such that αi

maps u[1] to u[i] and v[1] to v[i]. Then the endomorphism g defined as g(x) :=
f(x, α2(x), . . . , αk(x)) is not injective, because g(u[1]) = f(u[1], . . . , u[k]) =
f(v[1], . . . , v[k]) = g(v[1]), and by Lemma 2.13 locally generates a constant, in
contradiction to the assumptions. Hence, every polymorphism of Γ preserves 6=
and by Theorem 2.9 the relation 6= has a primitive positive definition in Γ.
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Now comes the central argument.

Theorem 3.4. Let f be a binary operation that depends on both arguments.
Then f together with all permutations locally generates either a constant unary
operation or a binary injective operation.

Proof. Suppose that f does not locally generate a constant operation. We want
to use Corollary 3.2 and show that every equality constraint relation R that is
preserved by f is intersection closed, which implies that f locally generates a
binary injective polymorphism. Suppose for contradiction that R is an n-ary
equality constraint relation, n ≥ 2, that is closed under f but not intersection
closed, i. e., there are two equivalence relations ρ and ρ′ in R such that ρ∩ρ′ is not
in R. Choose ρ and ρ′ such that (c(ρ), c(ρ′)) is lexicographically maximal. Let s
and t be n-tuples of D that define the equivalence relations ρ and ρ′. Because ρ is
not finer than ρ′ we can find indices p and q such that s[p] = s[q], t[p] 6= t[q]. Let
r be the number of equivalence classes of ρ that are contained in the equivalence
class of p in ρ′. Choose p and q such that r is minimal.

Consider 2n−1 distinct elements a1, . . . , a2n−1 from D. By the infinite pigeon-
hole principle, there is an infinite subset S1 of D such that f(a1, b) = f(a1, b

′)
for all b, b′ ∈ S1, or f(a1, b) 6= f(a1, b

′) for all b, b′ ∈ S1. We apply the same
argument to a2 instead of a1, and S1 instead of D, and obtain an infinite subset
S2 of S1. The argument can be iterated to obtain an infinite subset S2n−1 such
that for all a ∈ {a1, . . . , a2n−1} we either have f(a, b) 6= f(a, b′) for all b, b′ ∈
S2n−1, or f(a, b) = f(a, b′) for all b, b′ ∈ S2n−1. Then there is also an n-element
subset A of {a1, . . . , a2n−1} and an n-element subset B of S2n−1 such that either
f(a, b) 6= f(a, b′) for all a ∈ A and b, b′ ∈ B, or f(a, b) = f(a, b′) for all a ∈ A
and b, b′ ∈ B. Note that in the latter case, f(a, b) 6= f(a′, b) for all distinct
elements a, a′ ∈ A, and b ∈ B. Otherwise, if f(a, b) = f(a′, b), then f does not
preserve the inequality relation, because there is b′ ∈ B such that b′ 6= b and
f(a, b) = f(a, b′), and hence f(a, b) = f(a′, b′), but a 6= a′ and b 6= b′. But this
is impossible, because Lemma 2.13 shows that in this case f locally generates a
constant operation. Therefore, we found two n-element sets A and B such that
either f(a, b) 6= f(a′, b) for all a, a′ ∈ A and b ∈ B, or f(a, b) 6= f(a, b′) for all
a ∈ A and b, b′ ∈ B. Without loss of generality we assume that the first case
applies.

Since f cannot only depend on the first argument, there are elements u, v1,
and v2 in D such that v1 6= v2 and f(u, v1) 6= f(u, v2). We can assume that v2 is
from B: For this, consider any element v′ of B. If f(u, v′) 6= f(u, v1), we choose
v′ instead of v2 and are done. If f(u, v′) = f(u, v1), then f(u, v′) 6= f(u, v2), and
we choose v′ instead of v2 and v2 instead of v1.

Let α1 be a permutation of D that maps s[p] = s[q] to u and the other entries
in s to A. Let α2 be a permutation of D that maps t[p] to v1, t[q] to v2, and
the other entries in t to B. First, assume that we could also choose u ∈ A and
v1 ∈ B with f(u, v1) 6= f(u, v2). Then it is easy to check that the equivalence

24



u

v1

v2

A

B

Figure 3.1: A binary operation f generating an injective binary operation from
the proof of Theorem 3.4. Circles mark values for indices from equivalence
classes of ρ contained in equivalence classes of ρ′. A cross marks the value
f(α1(s[q]), α2(t[q])).

relation σ of the tuple f(α1(s), α2(t)) has more equivalence classes than ρ and
since f preserves R, we also have that σ ∈ R. Because σ is always coarser than
ρ ∩ ρ′, we easily obtain a contradiction to the maximality of (c(ρ), c(ρ′)).

So now assume that f(a, v) = f(a, v′) for all a ∈ A and v, v′ ∈ B and fix
u ∈ D \ A, v1 ∈ D, v2 ∈ B with f(u, v1) 6= f(u, v2). Now, the argument about
σ is more refined. By Lemma 2.13, f preserves 6= and hence f(u, v) 6= f(a, b)
for any v ∈ D, a ∈ A, b ∈ B. If r = 0, then for each equivalence class of ρ,
there is an index i ∈ [k] from this class such that t[i] ∈ B. Therefore all these
indices are in distinct equivalence classes of σ. Because index p was mapped to
yet another equivalenc class, we see that σ has more equivalence classes than
ρ. A contradiction to the maximality of (c(ρ), c(ρ′)). If r ≥ 1, then σ has
more equivalence classes than ρ′, for the following reason (see Figure 3.1): Every
equivalence class C of ρ′ either consists of a union of equivalence classes from ρ,
or contains an element from an equivalence class in ρ that is not contained in C.
But also in the latter case, by the choice of p and q such that r is minimal, we
can infer that C contains some equivalence class from ρ. Hence, in both cases,
we can associate in that way one equivalence class from ρ to every class in ρ′

and we can also pick an index contained in the contained equivalence class of ρ
for each equivalence class of ρ′. By the choice of α1, α2 and because f preserves
6=, all these picked indices belong to distinct equivalence classes in σ. Moreover,
f(α1(s[q]), α2(t[q])) lies in yet another equivalence class of σ since no equivalence
class of ρ′ contains a class of elements equivalent to q in ρ. Thus, σ has more
equivalence classes than ρ′. Since σ is not coarser than ρ, the existence of the
relations ρ and σ then contradicts the choice of ρ and ρ′ where (c(ρ), c(ρ′)) was
lexicographically maximal.

Now, we show hardness of a CSP for the relation S that was defined in
Example 3.2.
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Lemma 3.5. If the relation S has a primitive positive definition in Γ, then
CSP(Γ) is NP-hard.

Proof. First observe that by identification of arguments x1 and x2, if S has a
primitive positive definition in Γ, then the inequality relation has a primitive
positive definition in Γ as well. We prove the NP-hardness by reduction from the
NP-hard problem 3-coloring [45]. Let G = (V,E) be a graph that is an instance
of 3-coloring. We construct an instance of CSP(Γ) that has a polynomial size
in |V | and |E| and is satisfiable if and only if G has a proper 3-coloring. Lemma 2.4
asserts we can use inequality constraints and the relation S to formulate this
instance. The set of variables in this instance is V ∪ V ′ ∪ {c1, c2, c3}, where V ′ is
a copy of V , and c1, c2, c3 are three new variables representing colors. We impose
inequality constraints on each pair in c1, c2, c3 and on each pair (u, v) for uv ∈ E.
We impose the constraint S on (c1, v

′, c2) for each v′ ∈ V ′, and on (v′, v, c3) for
each v ∈ V , where v′ is the copy of v in V ′. By construction, a solution to these
constraints induces a proper 3-coloring of G. Conversely, a simple case analysis
shows that any proper 3-coloring can be extended in a way that satisfies these
constraints.

As we already mentioned in the introduction, the constraint satisfaction prob-
lem for equality constraint languages is always contained in NP. By combining
the results obtained in this chapter we can prove the following:

Theorem 3.6. If Γ has no constant unary and no injective binary polymorphism,
then CSP(Γ) is NP-complete.

Proof. If the relation S can be expressed in Γ, we have by Lemma 3.5 and
Lemma 2.4 that CSP(Γ) is NP-complete. If relation S cannot be expressed
in Γ, Lemma 2.12 asserts that there is an at most binary polymorphism f of
Γ violating S as S is a union of two orbits of triples. If f is essentially unary,
then it generates a unary non-injective operation (because it violates S) and by
Lemma 2.13 a constant unary polymorphism. Otherwise f is essentially binary
and by Theorem 3.4 we are done.

3.4 Tractable Constraint Languages

The case that Γ contains a constant unary polymorphism gives rise to trivially
tractable constraint satisfaction problems: If an instance of such constraint satis-
faction problem has a solution, then there is also a solution that maps all variables
to a single value. In this case, an instance of CSP(Γ) is satisfiable if and only
if it does not contain a constraint R, where R denotes the empty relation in Γ.
Clearly, this can be decided efficiently. Such constraint languages are also called
0-valid in the literature, e. g. in [26].
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To finish the classification of the complexity of equality constraint languages,
we are left with the case that Γ has a binary injective polymorphism. We present
an algorithm with polynomial running time that can adapted to work for repre-
sentations of the constraint relations by sets of tuples and for representations by
DNF formulae.

These two representations of the constraint relations in the input are different
with respect to succinctness. It is easy to transform representations by sets of
tuples into representations by DNF. For every relation R that is represented by a
set of l k-tuples, we can find a formula φ of size at most O(k2l) such that a tuple
a satisfies φ if and only if a is in R. The formula can be found as follows: For
each equivalence relation ρ ∈ R, we introduce one monomial to φ. The monomial
contains xi = xj if (i, j) ∈ ρ, and contains xi 6= xj if (i, j) 6∈ ρ. Note that given
a DNF formula φ(x1, . . . , xk) that represents a k-ary relation R, the size of the
representation of R by a set of tuples may be exponential in the size of φ. Hence,
a polynomial time algorithm for instances where the constraints are represented
in DNF implies a polynomial time algorithm for constraints represented as tuples,
but not vice-versa.

We now review known algorithmic results for intersection-closed equality con-
straint languages. If the constraint relations in an instance of the CSP are
explicitly given as Horn clauses, then the corresponding constraint satisfaction
problem can be solved by a resolution-based algorithm that was developed by
Bürkert and Nebel for temporal reasoning problems [22]. The worst-case run-
ning time of this algorithm is cubic in the size of the input. Our algorithm for
representations by DNF formulae can be applied in this case as well, and has a
significantly better running time. The algorithm of Nebel and Bürkert can also be
applied, if the constraint language is finite, since we can in this case assume that
the Horn representation of all the relations in the constraint language is known.
However, their algorithm cannot be applied if the constraint language is infinite
and the constraint relations are represented by sets of tuples or by formulae in
DNF.

If an intersection-closed equality constraint language is finite or represented
by sets of tuples, then the corresponding constraint satisfaction problem can be
solved by an instantiation of the relational consistency algorithm as introduced
in [31]. The worst-case running time of this algorithm is at most quadratic in
the size of the input, and again the algorithm presented below has a significantly
better running time.

We now present our new algorithm for intersection-closed equality constraints.
The algorithm works both for representations by DNF formulae and representa-
tions by sets of tuples, only the implementation of some auxiliary procedures
differs.

Algorithm 3.1. Input: a set of variables X, a set of constraints C
// For each constraint s, V (s) denotes a list of variables
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// constrained by s.
// For each variable x, we construct a set C(x) that contains a pair (s, i)
// for all constraints s where the variable x appears at the i-th position.
for each x ∈ X do

C(x) := ∅
for each s ∈ C do

for i := 1 to arity(s) do

C(V (s)[i]) := C(V (s)[i]) ∪ {(s, i)}
for each x ∈ X do

P (x) := |C(x)|
// Todo contains constraints that impose further contractions
Todo := C
// Contracted is a graph on the variables that contains edges for contracted
// pairs of variables
Contracted := (X, ∅)
while Todo 6= ∅ do begin

Let s be an arbitrary element from Todo
Todo := Todo \ {s}
// Compute new contractions forced by s
c := ForcedContractions(s)
for all {x, y} ∈ c do begin

// Perform the contraction of x and y
Add edge {x, y} to Contracted
// Compute a list of constraints containing both x and y
I := ∅
if P (x) ≥ P (y) then begin

for each (s′, i) ∈ C(y) do

if (s′, ?) ∈ C(x) then

I := I ∪ {s′}
end

else begin

for each (s′, i) ∈ C(x) do

if (s′, ?) ∈ C(y) then

I := I ∪ {s′}
end

// Update all affected constraints
for all s′ ∈ I do begin

// Compute a representation of s′ ∧ x = y
UpdateConstraint(s′,x,y)
if |s′| = 0 then

Reject

if s′ changed then

Todo := Todo ∪ {s′}
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end

// Update the occurrences of the less frequent variable
if P (x) ≥ P (y) then begin

for each (s, i) ∈ C(y) do

V (s)[i] := x
C(x) := C(x) ∪ C(y)
P (x) := P (x) + P (y)

end

else begin

for each (s, i) ∈ C(x) do

V (s)[i] := y
C(y) := C(x) ∪ C(y)
P (y) := P (x) + P (y)

end

end

end

Assign a different value to each connected component in Contracted.
Assign to each variable the value of its component.

Algorithm 3.1 uses procedures ForcedContractions and UpdateConstraint

that are not implemented in the pseudocode above. Their implementation de-
pends on the representation of the constraints in the input, and will be presented
later.

Recall that a k-tuple s represents an equivalence relation σ if σ(x, y) if and
only if s[x] = s[y]. We say that a k-tuple s is finer than a k-tuple t (and t is coarser
than s) if the equivalence relation represented by s is finer than the equivalence
relation represented by t. A k-tuple u is an intersection of two k-tuples s and t
if u represents the intersection of the equivalence relations represented by s and
t. We say that a tuple is consistent with x = y (x 6= y) if the value assigned to x
is equal to (different from) the value assigned to y.

For representations of the constraints by formulae in DNF, we need the fol-
lowing definitions. A formula φ in DNF is a disjunction of monomials, and a
monomial is a conjunction of literals. A literal is either a positive atom of the
form x = y or a negative atom of the form x 6= y, where x and y are variables
from X. For example, the formula (x = y ∧ x 6= z) ∨ (x 6= y) ∨ (y 6= z ∧ x = y)
has three monomials.

Fix an enumeration z1, . . . , zn of the variables X. We say that a k-tuple t
satisfies a monomial with k variables zi1 , . . . , zik , where 1 ≤ i1 ≤ · · · ≤ ik ≤ n, if
after the substitution of zij by t[j] for all j ∈ [k] all literals of the monomial are
true. Observe that if two tuples satisfy a monomial, then their intersection also
satisfies a monomial. Hence, there is a unique finest tuple among all tuples that
satisfy the monomial. We say that a monomial M is finer than a monomial M ′

if the finest tuple satisfying M is finer than the finest tuple satisfying M ′. We
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say that a monomial M is consistent with x = y (x 6= y) if there exists a tuple
satisfying M that is consistent with x = y (x 6= y).

First, we describe the implementation of procedures for the case that con-
straints are represented by sets of tuples. Procedure ForcedContractions selects
the finest tuple t from its input constraint s. For each value v that appears in
t, the procedure adds to the returned list {V (s)[i1], V (s)[ij]} for each 2 ≤ j ≤ l,
where i1, . . . , il are the indices of entries that have value v in t. The procedure
UpdateConstraint(s,x,y) goes through the list of tuples in the representation
of s and removes those tuples where x and y have different values.

If the constraints are represented by formulae in DNF, we need an additional
data structure to achieve the desired running time. For each monomial M of a
formula in DNF, we construct a graph G(M) whose vertices are the variables
constrained by the monomial. Note that for a k-ary constraint the number of
such variables might be less than k, because some variables might occur several
times in the list V (s), or because a monomial uses less than k variables. The
edges of the graph are the pairs {x, y} such that the monomial contains the
literal x = y. We arbitrarily select one vertex from each connected component
of this graph, and call this vertex the representant of the component. Our data
structure contains for each variable x constrained by the monomial a pointer
Rep(x) to the representant of the connected component containing x. Moreover,
for each representant of a connected component, we maintain a hash table. For
each term x 6= y in the monomial, we insert Rep(x) to the hash table of Rep(y),
and Rep(y) to the hash table of Rep(x).

The implementation of procedure ForcedContractions(s) selects the finest
monomial M0 in s, i. e., a monomial that is finer than all other monomials in
the formula defining the constraint relation. Note that such finest monomial
always exists, because there is the finest tuple satisfying the constraint, and
this tuple satisfies at least one monomial, which is the finest monomial. Then
ForcedContractions returns a list that contains all edges {x,Rep(x)} for all
vertices x of G(M) satisfying x 6= Rep(x).

The procedure UpdateConstraint(s,x,y) looks up Rep(y) in the hash table
of Rep(x) for each monomial M . If Rep(y) is found in the table, we remove the
monomial M from s. Otherwise, suppose that the size of the hash table of Rep(x)
plus the number of variables having the representant Rep(x) is larger than the
corresponding number for Rep(y). In this case, consider the set of all variables
having the representant Rep(y). We change the representant of these variables to
Rep(x) and rehash the hash table of Rep(y) into the hash table of Rep(x). In case
that the size of the hash table of Rep(x) plus the number of variables having the
representant Rep(x) is smaller or equal to the corresponding number for Rep(y),
we symmetrically change the representant of all variables having Rep(x) as a
representant to Rep(y) and rehash the hash table of Rep(x) to the hash table of
Rep(y).

Now, we show the correctness of Algorithm 3.1.
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Lemma 3.7. The procedure ForcedContractions(s) returns a list of pairs of
variables {x, y} such that x = y holds in every assignment that satisfies the con-
straint s and that is also consistent with u = v for every edge {u, v} in Contracted.
After the execution of the procedure UpdateConstraint(s,x,y) the constraint de-
scription contains exactly those tuples/monomials that are consistent with x = y
for each edge {x, y} in Contracted.

Proof. The lemma is easy to verify in the case that constraints are represented by
sets of tuples. The procedure UpdateConstraint removes exactly tuples where
x 6= y and so its correctness is obvious. Also the correctness of the procedure
ForcedContractions then immediately follows.

If constraints are represented by formulae in DNF, let M be a monomial in the
formula representing s. By the construction of G(M) variables having the same
representant get the same value in any assignment satisfying M . Also Rep(x) is
in the hashtable of Rep(y) if and only if values of Rep(x) and Rep(y) are different
in any assignment satisfying M . Therefore, we find Rep(x) in the hashtable of
Rep(y) in UpdateConstraint if and only if monomial M can never be satisfied and
we have correctly removed it. So UpdateConstraint works as described in the
statement of the lemma. Correctness of ForcedContractions then immediately
follows.

Lemma 3.8. If {x, y} is an edge in Contracted, then either the instance (X, N, C)
has no solution, or x and y have the same value in every solution.

Proof. Suppose the instance (X, N, C) has a solution. We prove the lemma by
induction on the number of edges in Contracted. If Contracted has no edges, the
lemma trivially holds. Now suppose there are k +1 edges in Contracted. There is
some edge {x, y} that was added last and by induction, we know that the variables
in the first k edges must have the same value in every solution. The edge {x, y}
was added because it was returned by the procedure ForcedContractions for
some constraint s′. Lemma 3.7 implies that then x = y holds in every satisfying
assignment to s′ that is consistent with the equalities described by the first k
edges. Hence, because s′ must be satisfied, we conclude that x and y have the
same value in every solution.

Let Σ be the equivalence relation on X such that Σ(x, y) if and only if x is
connected to y by a path in Contracted. For s ∈ C, let Σ(s) denote the equivalence
relation Σ restricted to variables constrained by s.

Lemma 3.9. If Algorithm 3.1 rejects the instance (X, N, C), then it does not have
a solution.

Proof. By Lemma 3.7, every constraint s contains all tuples/monomials that are
consistent with all equalities contained in Σ(s). As Lemma 3.8 shows, if {x, y} is
an edge of Contracted, variables x, y get the same value provided that (X, N, C)
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has a solution. Hence, if there is no remaining tuple/monomial in s, the constraint
cannot be satisfied and (X, N, C) has no solution.

We finish the correctness proof with the following lemma.

Lemma 3.10. The assignment created by the last two steps of Algorithm 3.1 is
a solution to (X, N, C).

Proof. We first prove the statement for the case where the constraints in the input
are represented by sets of tuples. Then every constraint s can be seen as a set of
equivalence relations as discussed in Section 3.1. We show that for each constraint
s ∈ C the equivalence relation Σ(s) is contained in s. First, suppose that there
is no σ ∈ s coarser than Σ(s). Consider a moment when a pair {x, y} was added
to Contracted and hence there ceased to be a coarser equivalence relation in s
than the equivalence relation defined by Contracted. Clearly, s had to constrain a
variable from both the connected component of x and the connected component
of y. But then s was in I, all the tuples were removed from s, and the instance
was rejected. A contradiction. So s has to contain an equivalence relation σ
coarser than Σ(s). If s does not contain Σ(s), consider the last moment when
some equivalence relation was removed from s. At this moment, s was added to
Todo and s already did not contain Σ(s). Hence, when s was considered later
when processing Todo, we had to add to Contracted some pairs that were not in
Σ(s) (the pairs present in some equivalence relation coarser than Σ(s) that was
the finest in s) — in contradiction to the definition of Σ(s).

When constraints are represented by formulae in DNF, the proof is similar.
We argue that for each constraint s, there is a monomial that can be satisfied
when all the equalities from Σ(s) hold. Then we conclude (in the same way as in
the above paragraph) that among all such monomials there must be one that is
satisfied even when all the inequalities from Σ(s) hold.

Now, we discuss the running time of Algorithm 3.1. We show that for both
representations of the input, the algorithm has the running time O(m log m),
where m is the size of the input. If the constraint relations are represented by
sets of tuples, m is

∑

s∈C ar(s)·|s|. If constraints s ∈ C are represented by formulae
φ(s) in DNF, then m is

∑

s∈C |φ(s)|, where |φ| is the length of the formula φ.

The initialization phase of the algorithm can clearly be implemented such
that the initialization takes O(m) time. To achieve the desired running time
of procedure ForcedContractions, we have to describe how to efficiently find
the finest tuple/monomial in the representation of a constraint relation. If the
constraints are represented by sets of tuples, the idea is to sort the tuples of a
constraint relation by the number of different values. Similarly, if the constraints
are represented by formulae in DNF, we sort the monomials by the number of
connected components in the graphs G(M) defined for each monomial.
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Observation 3.11. Let R be an intersection-closed k-ary relation that is repre-
sented as a set of tuples. If we sort tuples in the representation of R inversely
according to the number of different values (i. e., s < t if |{s[i] : 1 ≤ i ≤ k}| >
|{t[i] : 1 ≤ i ≤ k}|), then if s is finer than t, it also holds that s < t.

Proof. If s is finer than t, then s must have more equivalence classes implying
s < t.

Observation 3.12. Let R be an intersection-closed k-ary relation that is repre-
sented by a formula in DNF. If we sort the monomials inversely according to the
number of connected components in the graph G(M), then if M is finer than M ′

and M ′ is not finer than M , it also holds that M < M ′.

Proof. If M is finer than M ′ and M ′ is not finer than M , the finest tuple satisfying
M must have more values than the finest tuple satisfying M ′. Hence graph of
G(M) must have more connected components than graph G(M ′), since all the
vertices in the same connected component must get the same value.

Observation 3.11 asserts that the first tuple in the sorted list is the finest one.
Similarly, Observation 3.12 asserts that the first monomial in the sorted list is
the finest one (as there is unique finest monomial). In both cases, we can use
bucket sort such that the sorting is done in O(m) time.

A constraint is added to Todo only if it has a new finest tuple/monomial (either
in the beginning of the algorithm or after removal of an older tuple/monomial).
Hence, the total time spent by processing the Todo list is in O(m). The total
time spent by procedure ForcedContractions can be also estimated by O(m),
because the finest tuple/monomial is the first in the list and because the number
of contractions is linear in the size of a tuple/monomial.

What remains is to estimate the time spent by contracting pairs of variables.
The computation of constraints containing both x and y and of C(x)∪C(y) can
be implemented as follows. We represent each set C(x) as a hash table in which
a constraint containing x is the hashed key and the index of entry corresponding
to x is a value associated with this key. For each hash table C(x), we keep a
potential P (x). In the beginning, we assign each hash table a potential P (x)
equal to |C(x)|. Hence, the sum of all potentials equals m. If two tables are
joined, we set the potential of C(x)∪C(y) to P (x) + P (y). When we compute a
list of constraints containing both x and y and also when we compute unions of
hash tables, we always rehash the table with the smaller potential into the table
with the larger potential. By rehashing, we obtain a hash table with C(x)∪C(y).
The overall time spent for the computations of unions is clearly linear in the
number of elements we had to rehash. The overall time spent by looking up
constraints present in both hashtables is upperbounded by the time needed for
the computation of unions and therefore we can neglect it. We can estimate the
number of times an element of a table is rehashed as follows. If an element is
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rehashed, the potential of the resulting table is at least twice the potential of
the rehashed one, because we rehashed the table with the smaller potential. As
the potential of a table can never exceed m, we immediately get that a single
element can be rehashed at most log m times. Hence, the overall time spent in
the computations of unions and intersections is in O(m log m). Similarly, we can
estimate that a single element of a list V (s) is relabeled at most log m times, and
hence the time spent by relabeling these lists is also in O(m log m).

Finally, we need to estimate the time spent in procedure UpdateConstraint

(the time spent for the remaining operations that perform contractions is clearly
in O(m)). The test whether a tuple/monomial is consistent with x = y can be
performed in O(1). If the constraints are represented by formulae in DNF, we
have to further spent some time for updating representants and rehashing the
hash tables inside UpdateConstraints. Here, we can use a similar potential
argument as for the hash tables C(x), and conclude that the total time spent by
these update operations is in O(m log m).

We summarize the major results of this section in the following theorem.

Theorem 3.13. Let Γ be an intersection-closed equality constraint language and
(X, N, C) be an instance of CSP(Γ). If the constraint relations in C are repre-
sented by sets of tuples or by formulae in DNF, then Algorithm 3.1 computes a
solution of (X, N, S) (or decides that there is no solution) in time O(m log m),
where m denotes the size of the input.

If the constraint language is finite, the size of an instance I can be measured
by i :=

∑

s∈C ar(s). The result for representations by sets of tuples implies that
the constraint satisfaction problem can be solved in time O(i log i).

3.5 The Meta Problem for Tractability

Let Γ be a finite equality constraint language. In this section, we want to study
the computational complexity of determining whether CSP(Γ) can be solved
in polynomial time. The complexity of this task depends on the choice of the
representation in which Γ is specified. As in the previous section, we focus on
representations by sets of tuples, and representations by DNF formulae.

Let us first consider representations of the relations in Γ by sets of tuples.
We first check whether all relations R in Γ admit the constant assignment. To
determine whether R is intersection closed, we have to check whether for all pairs
of tuples r, s in the representation of a relation R in Γ the intersection of the
tuples (the coarsest tuple that is finer than both tuples r and s) is also in the
representation of R. Clearly, these computations can be done in polynomial time.

We have thus shown the following.

Proposition 3.14. If Γ is an equality constraint language that is represented by
a set of tuples, then the meta problem can be solved in polynomial time.
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Now, suppose the relations in Γ are represented in DNF. Again, it can be
checked easily whether CSP(Γ) is 0-valid. We can also set up an algorithm
that non-deterministically verifies in polynomial time that for any two distinct
equivalence relations in R their intersection is in R as well. Hence, the meta-
problem for these two representations is in coNP. We now show that this problem
is also coNP-hard.

Proposition 3.15. It is coNP-complete to decide whether an equality constraint
language Γ whose relations are represented by an =-formula in DNF is tractable.

Proof. We have already seen that the problem is in coNP. To show hardness, let
φ be a propositional formula in DNF. We create an =-formula Ψ as follows. For
each propositional variable x in φ, we introduce a new pair of variables ux and vx.
For each monomial x1 ∧ · · · ∧ xl ∧¬y1 ∧ · · · ∧ ¬yk in φ, we introduce a monomial
ux1

= vx1
∧· · ·∧uxl

= vxl
∧uy1

6= vy1
∧· · ·∧uyk

6= vyk
. Let ψ be the disjunction of

all these monomials, and let Ψ be ψ ∨ u = v ∨ u′ = v′, where u, u′, v, and v′ are
new constraint variables that do not appear in ψ. We claim that Ψ is equivalent
to a Horn =-formula if and only if φ is a boolean tautology. Clearly, if φ is a
tautology, then ψ is a tautology as well, and hence Ψ is equivalent to true and
so it is equivalent to a Horn formula.

Conversely, if Ψ is equivalent to a Horn formula, then it is intersection-closed
by Lemma 3.1. The tuples that satisfy Ψ consist of the tuples where u = v
and the remaining variables are set arbitrarily, the tuples where u′ = v′ and
the remaining variables are set arbitrarily, and the tuples where ψ holds and u,
u′, v, and v′ are set arbitrarily. If we compute intersection-closure of all tuples
satisfying u = v with all tuples satisfying u′ = v′, we obtain (among other tuples)
tuples having all possible configurations of equalities on the variables of Ψ and
satisfying u 6= v and u′ 6= v′. It follows that φ is a tautology. The proposition
then follows from the well-known fact that the problem whether a given boolean
formula in DNF is a tautology is coNP-hard.
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Chapter 4

Temporal Constraint Languages

In this chapter, we present our results for another class of constraint languages
over a countably infinite domain — temporal constraint languages. These are the
languages that are definable over the dense linear order (for formal definition see
Definition 4.1). We manage to fully classify the complexity of constraint satisfac-
tion problems for these languages. In particular, we discover two new tractable
languages and design algorithms for them. For example in Section 4.4, we present
an algorithm solving constraint satisfaction problem for several languages strictly
containing Ord-Horn language introduced by Bürckert and Nebel [22]. Running
time of our algorithm meets the running time of the fastest algorithm designed
for this class by Koubarakis [69]. We also show in Section 4.3 that unlike Ord-
Horn languages, some of our languages cannot be solved by Datalog. Part of this
chapter is based on the paper [17] of the author.

First, we define a temporal constraint language:

Definition 4.1. A temporal relation is a relation that is first-order definable in
an unbounded countable dense linear order. All such linear orders are isomor-
phic [55, 76], but for convenience, we always use (Q, <), i. e., the dense linear
order on the rational numbers. An example of a temporal relation is the ternary
Betweenness relation {(x, y, z) ∈ Q3 | (x<y ∧ y<z) ∨ (z<y ∧ y<x)}. It is well-
known that every temporal relation also has a quantifier-free definition [55, 76],
i. e., we can define every temporal relation with a formula that is a Boolean com-
bination of literals of the form x < y or x = y (as shown above in the case of
Betweenness relation).

A temporal constraint language is a constraint language whose every con-
straint relation is temporal. As an example, consider the language Γ0 := (Q, {6=
,≤, <, =}), with the obvious interpretation over (Q, <).

Temporal constraint languages play an important role in artificial intelligence.
Almost any area in AI — for instance common-sense reasoning, natural language
processing, scheduling, planning — involves some sort of temporal reasoning.
In 1993, Golumbic and Shamir [47] listed applications of temporal reasoning

37



problems in archeology, behavioral psychology, operations research, and circuit
design. Since then, the area has been growing constantly, and temporal reasoning
became one of the benchmark applications of constraint processing in general [30].
Contributions to the field have various background, e. g. database theory [79],
constraint satisfaction complexity [74], the theory of relation algebras [75, 36],
combinatorics [47], or the already mentioned artificial intelligence [41].

One of the most fundamental and well-known temporal constraint languages is
the so-called point algebra. This language contains relation symbols for =, <,≤,
and 6=, interpreted over an infinite linear order. Vilain, Kautz and van Beek
showed that consistency of a given set of constraints over this language can be
decided in polynomial time by local consistency techniques [66]. Later, van Beek
described an algorithm that runs in O(n2), where n is the number of variables [7].

A considerably larger tractable temporal constraint language is the already
mentioned Ord-Horn. It strictly contains the point algebra and Bürkert and
Nebel used resolution to show that consistency of a set of Ord-Horn constraints
can be decided in O(s3), where s is the size of the input. They also showed
that establishing path-consistency can be used to decide whether a given set of
Ord-Horn constraints has a solution.

Ord-Horn is motivated by temporal reasoning tasks for constraints on time
intervals. The study of constraints on intervals (which can be used to model
information about events in time) was initiated by Allen [1], who introduced an
algebra of binary constraint relations on intervals. The complexity to decide the
consistency of a given set of constraints from Allen’s algebra is NP-complete in
general [1]. However, several fragments of Allen’s interval algebra are tractable.
All tractable fragments have been classified recently [35, 57]. It is well-known
that every constraint on intervals can be translated into a constraint on time
points. Hence, algorithmic results for temporal reasoning with time points can
be used for reasoning with time intervals as well. Bürkert and Nebel used this
translation to identify one of the tractable fragments of Allen’s interval algebra,
namely the set of all interval constraints that translate to Ord-Horn constraints
on points.

There are temporal constraint languages for time points where one cannot
expect a polynomial time algorithm. A well-known temporal constraint lan-
guage with an NP-complete consistency problem consists of a single relation
symbol for the Betweenness relation from Definition 4.1; another example of a
constraint language with an NP-complete constraint satisfaction problem is the
language containing the cyclic ordering relation, which is the ternary relation
{(x, y, z) | x<y<z ∨ y<z<x ∨ z<x<y}. The constraint satisfaction problems
for these two languages are listed as NP-complete in the book of Garey and
Johnson [45]. We want to remark that the complexity of temporal constraint
satisfaction problems for a fixed and finite number of time points was completed
recently [27]; however, the restriction to a finite number of time points changes
the nature of the problem considerably.
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To conclude introduction to temporal constraint languages we would like to
define some notation and make a few observations about temporal constraints. It
is straightforward to check (due to properties of Aut(Q, <) that whether or not an
n-tuple t is a solution to an instance only depends on the weak linear order tp(t)
defined on {1, . . . , n} by (i, j) ∈ tp(t) if and only if t[i] ≤ t[j]. This immediately
leads to an observation that a constraint satisfaction problem for every temporal
constraint language is in NP. If the weak linear order tp(s) is identical to tp(t) for
some n-tuple s, we say that s satisfies tp(t). This observation leads to a natural
way of representing temporal relations. If R is a k-ary temporal relation, R can
be represented by a set R of weak linear orders on [k] as follows: For every k-tuple
t ∈ R, the weak linear order tp(t) is contained in R. Conversely, for every weak
linear order o ∈ R there is a tuple t ∈ R such that o = tp(t). As an example, the
relation Betweenness defined above can be characterized as the set of all tuples
satisfying either tp((0, 1, 2)) or tp((2, 1, 0)). As we can represent each weak linear
order in R by a tuple over {1, . . . , k}, we can also view R as a set of tuples over
{1, . . . , k}. We use this view especially in the algorithms, where we work with
constraint relations as with finite sets of tuples of integers.

We say a k-tuple t is injective, if for all i, j ∈ [k], i 6= j it holds that t[i] 6= t[j].
We say a relation R is injective, if for all t ∈ R the tuple t is injective.

4.1 Closure Properties of Temporal Constraints

In this section, we introduce several closure properties of temporal constraints
used later. For the sake of brevity, we say that a set of operations F generates
an operation g if F together with all automorphisms of (Q, <) locally generates
g.

A k-ary operation f on Q defines a weak linear order on Qk. We can simply
define that x is less or equal to y in this weak linear order if f(x) ≤ f(y). The
following observation easily follows from the properties of Aut(Q, <):

Observation 4.1. Let f and g be two k-ary operations that define the same weak
linear order on Qk. Then f generates g and g generates f .

We start by defining two unary operations neg and cyc on Q. Operation neg is
defined as neg(x) := −x and operation cyc is defined as −1/(x−1) for x ≤ 0 and
−1/(x + 1) for x > 0. We continue with binary operations. Let lex be a binary
operation on Q such that lex(a, b) < lex(a′, b′) if either a < a′, or a = a′ and
b < b′. Note that every operation lex satisfying these conditions is by definition
injective. By Observation 4.1, it is easy to see that all such operations generate
the same clone.

Let ll be a binary operation on Q such that ll(a, b) < ll(a′, b′) if one of the
following cases applies

• a ≤ 0 and a < a′
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xy xy

Figure 4.1: A visualization of ll (left) and dual-ll (right) operations

• a ≤ 0 and a = a′ and b < b′

• a > 0 and b < b′

• a > 0 and b = b′ and a < a′

For an illustration, see Figure 4.1. In diagrams like this one, we draw a directed
edge from (a, b) to (a′, b′) if f(a, b) < f(a′, b′). Again, all operations satisfying
these conditions are by definition injective and generate the same clone. It is also
easy to see that ll generates lex. Similarly to the ll operation, we can define a
dual-ll operation, as depicted in Figure 4.1.

Let pp be a binary operation on Q such that pp(a, b) ≤ pp(a′, b′) if one of the
following cases applies:

• a ≤ 0 and a ≤ a′

• a > 0 and b ≤ b′

For an illustration, see Figure 4.2. Clearly, pp is not injective. Similarly to
the pp operation, we can define a dual-pp operation. Unoriented lines in rows
and columns of the picture denote the pairs getting the same value.

Definition 4.2. We say that a relation is ll-closed, dual-ll-closed, pp-closed, or
dual-pp-closed if it is preserved by ll, dual-ll, pp, or dual-pp, respectively.

To exercise properties of these operations, we show that neither of these op-
erations generates one of the others. Recall that because of Proposition 2.11, we
only need to find for each (ordered) pair of operations a relation that is preserved
by the first operation but not by the second one.

Definition 4.3. Let Rmin be the ternary relation {(x, y, z) | x>y ∨ x>z}, and
Rmax be {(x, y, z) | x<y ∨ x<z}.

These relations show that ll and dual-ll do not generate each other:
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xy xy

Figure 4.2: A visualization of pp (left) and dual-pp (right) operations

Lemma 4.2. The relation Rmin is preserved by ll and not preserved by dual-ll.
Similarly, the relation Rmax is preserved by dual-ll and not preserved by ll.

Proof. We prove the lemma just for the Rmin relation. The proof of the statement
for Rmax relation is analogous. We claim that the relation Rmin is preserved by
the ll operation: Let (x1, x2, x3) and (y1, y2, y3) be triples from the relation Rmin.
Without loss of generality, x1 > x2 (note that the relation is symmetric in the
second and the third argument). If in this case y1 ≥ y2, then, because ll preserves
≤, we have that ll(x1, y1) ≥ ll(x2, y2), and because ll is injective, we have that
ll(x1, y1) > ll(x2, y2). Therefore (ll(x1, y1), ll(x2, y2), ll(x3, y3)) is in Rmin, and we
are done. So let us assume that y1 < y2, and therefore y1 > y3. By the same
argument as above, we can show that (ll(x1, y1), ll(x2, y2), ll(x3, y3)) ∈ Rmin unless
x1 < x3. So let us assume that x1 < x3. Now, in case x2 > 0, the operation
ll preserves Rmin, since in this case ll acts like a lexicographic order on the two
triples. Otherwise, x2 ≤ 0. It is easy to check that then ll(x2, y2) < ll(x1, y1)
since x1 > x2.

However, Rmin is not preserved by the dual-ll operation: Consider tuples
t1 := (−1, 1,−2) and t2 := (−1,−2, 1) that are both in Rmin. If we apply the
dual-lloperation to these two tuples, we obtain dual-ll(−1,−1) < dual-ll(−2, 1) <
dual-ll(1,−2), and hence the tuple dual-ll(t1, t2) is not in the relation Rmin.

Similarly, we can define distinguishing relations for pp and dual-pp:

Definition 4.4. Let Smin be the ternary relation {(x, y, z) | x = y < z ∨ x = z <
y}, and Smax be {(x, y, z) | x = y > z ∨ x = z > y}.

Lemma 4.3. The relation Smin is preserved by pp and not preserved by dual-pp.
Similarly, the relation Smax is preserved by dual-pp and not preserved by pp.

Proof. Again, we prove the lemma only for Smin as the proof for Smax is analogous.
Let (x1, x2, x3) and (y1, y2, y3) be triples from Smin. Since pp preserves ≤ and <,
if x1 = x2 < x3 and y1 = y2 < y3 (or similarly if x1 = x3 < x2 and y1 = y3 < y2),
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the resulting triple (z1, z2, z3) := (pp(x1, y1), pp(x2, y2), pp(x3, y3)) satisfies z1 =
z2 < z3 (z1 = z3 < z2, respectively) and hence is in Smin. So suppose without
loss of generality (Smin is symmetric in the second and the third argument) that
x1 = x2 < x3 and y1 = y3 < y2. If x1 ≤ 0, then by the definition of pp it holds
that z1 = z2 and z2 < z3. Hence Smin holds on the resulting tuple. Also if x1 > 0,
we have z1 = z3 by the definition of pp and z3 < z2 and so Smin again holds on
the resulting tuple. We conclude that Smin is preserved by pp.

On the other hand, if we apply dual-pp to triples (−1,−1, 1) and (−1, 1,−1),
we obtain a triple dual-pp(−1,−1) < dual-pp(−1, 1) < dual-pp(1,−1). Hence,
we obtained an injective triple, which clearly is not in Smin.

Actually, relations Smin and Smax are not preserved by ll or dual-ll because
these operations are injective. Therefore we conclude:

Corollary 4.4. The operations pp and dual-pp do not generate the operation ll
or the operation dual-ll.

Finally, to show that ll and dual-ll do not generate pp or dual-pp, we a
introduce relation L:

Definition 4.5. Let L be a 4-ary relation {(u, v, x, y) | u 6= v ∨ x 6= y}.

Lemma 4.5. The relation L is preserved by ll and by dual-ll but not by pp or by
dual-pp.

Proof. The preservation of L by ll and by dual-ll directly follows from the fact
that both operations are injective. The relation L is not preserved by pp, be-
cause for quadruples (−1,−1, 1, 2) and (0, 1, 2, 2) from L, the resulting tuple
(pp(−1, 0), pp(−1, 1), pp(1, 2), pp(2, 2)) satisfies that pp(−1, 0) = pp(−1, 1) and
pp(1, 2) = pp(2, 2). Similarly, it is easy to check that by applying dual-pp to
quadruples (−2,−1, 1, 1) and (0, 0, 1, 2) from L we obtain a quadruple not from
L.

Now, we turn our attention to closure properties of a different kind that are
useful for designing algorithms.

Definition 4.6. The i-th entry in a k-tuple t is called minimal if t[i] ≤ t[j] for
every j ∈ [k]. It is called strictly minimal if t[i] < t[j] for every j ∈ [k] \ {i}.

The i-th entry in a k-tuple t is called maximal if t[i] ≥ t[j] for every j ∈ [k].
It is called strictly maximal if t[i] > t[j] for every j ∈ [k] \ {i}.

Definition 4.7. Let R be a k-ary relation. A set of entries S ⊆ [k] is called a
min-set for the i-th entry in R if there exists a tuple t ∈ R such that the i-th
entry is minimal in t, and it holds that t[i] = t[j] for every j ∈ S and t[i] < t[j]
for every j ∈ [k] \ S. We say that t is a witness for this min-set. We simply say
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that a set of entries S ⊆ [k] is a min-set in R if it is a min-set for some i-th
entry.

Analogously, we define that a set of entries S ⊆ [k] is a max-set for the i-th
entry in R if there exists a tuple t ∈ R such that the i-th entry is maximal in t,
and it holds that t[i] = t[j] for every j ∈ S and t[i] > t[j] for every j ∈ [k] \ S.

We also need a notion of a projection of a relation:

Definition 4.8. Let R be a k-ary relation and X ⊂ [k]. A projection of R to
[k] \ X is a relation p[k]\X(R) := {(t[i])i∈[k]\X | t ∈ R}. An ordered projection of
R to [k] \ X is a relation p<

[k]\X(R) := {(t[i])i∈[k]\X | t ∈ R, t[i] > t[j] for all i ∈

[k] \ X, j ∈ X}.

Definition 4.9. Let f be a binary operation preserving <. We say that f provides
a min-intersection closure if f(0, 0) < f(0, x) and f(0, 0) < f(x, 0) for all integers
x > 0. We say that f provides a min-union closure if f(0, 0) = f(0, x) = f(x, 0)
for all integers x > 0. We say that f provides a min-xor closure if f(0, 0) >
f(0, x) = f(x, 0) for all integers x > 0.

In a similar way, we can define a max-intersection, a max-union, and a max-
xor closure provided by an operation. However, we mostly speak about min-
properties in this chapter as the arguments can be straightforwardly dualized
(e. g. by taking dual-ll instead of ll) to obtain similar results for max- properties.

Example 4.1. For example operation lex provides a min-intersection closure and
operation min provides a min-union closure. Operation

f(x, y) :=
{ α(min(x, y)) for (x, y) 6= (0, 0)

0 for x = y = 0

where α is an automorphism of (Q, <) such that α(x) < 0 for x ≤ 0 and α(x) > 0
for x > 0, provides a min-xor closure.

Definition 4.10. Closure properties of min-sets: Let R be a temporal rela-
tion. We say that R has intersection-closed/union-closed/xor-closed min-sets if
for every two min-sets A, B of R, it holds that:

• A ∩ B is a min-set (provided the intersection A ∩ B is nonempty) of R,

• A ∪ B is a min-set of R,

• A 4 B (the symmetric difference of A and B) is a min-set of R.

Now, we relate the above properties of min-sets and operations providing some
min- properties:

Lemma 4.6. Let R be a temporal relation closed under an operation f that
provides a min-intersection closure. Then R has intersection-closed min-sets.
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Proof. Let A and B be two min-sets and tA and tB two tuples witnessing these
min-sets. Then we can take automorphisms αA and αB of (Q, <) such that αA

maps the minimal value of tA to 0 and all other values of tA to integers greater
than 0. Similarly, αB maps the minimal value of tB to 0 and all other values
of tB to integers greater than zero. Consider a tuple tC := f(αA(tA), αB(tB))
witnessing some min-set C. Because αA(tA) is 0 for all entries from A, αB(tB)
is 0 for all entries of B, f(0, 0) < f(0, x) and f(0, 0) < f(x, 0) for all integers
x > 0, it follows that in tC all entries of A∩B have smaller value than all entries
of A 4 B. Because f preserves <, all entries of A ∩ B also have a smaller value
than all entries not in A ∪ B. We conclude that C = A ∩ B.

In the same straightforward, way we can prove the following two lemmas:

Lemma 4.7. Let R be a temporal relation closed under an operation f that
provides a min-union closure. Then R has union-closed min-sets.

Proof. Let A and B be two min-sets and tA and tB two tuples witnessing these
min-sets. Then we can take automorphisms αA and αB of (Q, <) such that αA

maps the minimal value of tA to 0 and all other values of tA to integers greater
than 0. Similarly, αB maps the minimal value of tB to 0 and all other values
of tB to integers greater than zero. Consider a tuple tC := f(αA(tA), αB(tB))
witnessing some min-set C. Because αA(tA) is 0 for all entries from A, αB(tB) is
0 for all entries of B, f(0, 0) = f(0, x) and f(0, 0) = f(x, 0) for all integers x > 0,
it follows that in tC , all entries of A∪B have the same value. Because f preserves
<, all entries of A∪B have also a smaller value than all entries not in A∪B (as
they must have values greater than f(0, 0)). We conclude that C = A ∪ B.

Lemma 4.8. Let R be a temporal relation closed under an operation f that
provides a min-xor closure. Then R has xor-closed min-sets.

Proof. Let A and B be two min-sets and tA and tB two tuples witnessing these
min-sets. Then we can take automorphisms αA and αB of (Q, <) such that αA

maps the minimal value of tA to 0 and all other values of tA to integers greater
than 0. Similarly, αB maps the minimal value of tB to 0 and all other values
of tB to integers greater than zero. Consider a tuple tC := f(αA(tA), αB(tB))
witnessing some min-set C. Because αA(tA) is 0 for all entries from A, αB(tB) is
0 for all entries of B, f(0, 0) > f(0, x) = f(x, 0) for all integers x > 0, it follows
that in tC all entries of A ∩ B have a larger value than all entries of A 4 B,
which have all the same value. Because f preserves <, all entries of A ∩ B have
a smaller value than all entries not in A ∪ B (as they must have values greater
than f(0, 0)). We conclude that C = A 4 B.

A nice property of polymorphisms is that they are preserved under projections:

Observation 4.9. Let R be a relation preserved by some k-ary operation f . Then
arbitrary projection of R is also preserved by f .
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Proof. Let R′ be a projection of R to X and t′1, . . . , t
′
k ∈ R′. By the definition of

R′ there are t1, . . . , tk ∈ R such that t′i is a projection of ti for all i ∈ [k]. As R is
preserved by f , the tuple t := f(t1, . . . , tk) is also in R and hence its projection
t′ to X is in R′.

4.2 Ord-Horn and ll-closed Constraints

The class of Ord-Horn constraints was introduced by Bürckert and Nebel [22] to
identify a tractable class of interval constraints. It is always possible to trans-
late interval constraints into temporal constraints [66]. If the translation of an
interval constraint language falls into a tractable temporal constraint language,
the interval constraint language is tractable as well. Bürckert and Nebel showed
that the class of interval constraints having a translation into Ord-Horn tem-
poral constraints is a maximally tractable fragment of Allen’s interval algebra.
Note that this does not imply that the class of Ord-Horn constraints is a maxi-
mally tractable temporal constraint language on time points. Indeed, this is not
the case, as we show in this section. Lemma 4.10 below shows that the class
of Ord-Horn constraints is ll-closed. Since the relation Rmin defined in Defini-
tion 4.3 is ll-closed but not Ord-Horn, the class of ll-closed constraints is strictly
larger than Ord-Horn. Since we prove in Section 4.4 that ll-closed constraints are
tractable, Ord-Horn is not a maximally tractable class of temporal constraints.
We also present a characterization of ll-closed constraints in terms of structural
restrictions on a formula in the conjunctive normal form.

Definition 4.11. A temporal relation is contained in the temporal constraint
language Ord-Horn if and only if it can be defined by a conjunction of formulae
of the form

(x1 = y1 ∧ · · · ∧ xk = yk) → x0 O y0 ,

where O ∈ {=, <,≤, 6=}.

In the following proofs, if Φ is a formula on variables x1, . . . , xk and t is a
k-tuple representing an assignment of values to x1, . . . , xk, we write t[xi] for the
entry of t corresponding to the variable xi of Φ. We also write Φ(t) for a formula
in which each variable is substituted by its value defined by t.

First, we show that all Ord-Horn temporal relations are preserved by the ll
and the dual-ll operations:

Lemma 4.10. All temporal relations in Ord-Horn are preserved by ll and by
dual-ll.

Proof. We give the argument for the ll operation only. The argument for dual-ll
is analogous. It suffices to show that every relation that can be defined by a
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formula Φ of the form (x1 = y1 ∧ · · · ∧ xk = yk) → x0 O y0 is preserved by
ll, where O ∈ {<,≤, =, 6=}. Let t1 and t2 be two 2k + 2-tuples that satisfy Φ.
Consider a 2k + 2-tuple t3 obtained by applying ll componentwise to t1 and t2.
We distinguish two cases: Either there is i ∈ [k] such that t1[xi] 6= t1[yi] or
t2[xi] 6= t2[yi] — in this case, xi = yi is not satisfied in t3 as well by the injectivity
of ll and therefore the tuple t3 satisfies Φ. Or t1[xi] = t1[yi] and t2[xi] = t2[yi]
holds for all i ∈ [k]. But then, as t1 and t2 satisfy Φ, the literal x0 O y0 holds in
both t1 and t2. Since ll preserves all relations in {<,≤, =, 6=}, the literal x0 O y0

holds in t3, and therefore t3 satisfies Φ as well.

As we already mentioned above, relation Rmin is ll-closed but not Ord-Horn. It
is a natural question, whether Ord-Horn with addition of Rmin is able to express
all ll-closed relations. We show that this is not quite the case but Ord-Horn
with addition of Rmin

= := {(x, y, z) | x > y ∨ x > z ∨ x = y = z} is able to
express all ll-closed relations. Analogously, it is the case that Ord-Horn with
Rmax

= := {(x, y, z) | x < y∨x < z∨x = y = z} is able to express all dual-ll-closed
relations. We start by an auxiliary lemma:

Lemma 4.11. Let R be a k-ary ll-closed injective temporal relation. Then R can
be defined by a conjunction of formulae of the form x > y1∨x > y2∨ . . .∨x > yk.

Proof. Let Φ be a formula in conjunctive normal form defining R. I. e., Φ is a
conjunction of clauses, each clause is a disjunction of literals, each literal is of
the form x < y, x ≤ y, x = y, or x 6= y. Because R is injective, any literal of
the form x 6= y is always satisfied and hence we can without loss of generality
assume that Φ does not contain such literals. Similarly, we can also assume that
Φ does not contain literals of the form x = y (as they are never satisfied). If Φ
contains a literal of the form x ≤ y, we can change it to x < y and because of the
injectivity of R, we obtain an equivalent formula. So in the following, we assume
that Φ contains only literals of the form x < y. Among formulae defining Φ, we
choose such formulae that have the least number of clauses of the form different
from the statement of the lemma. Among these formulae, we choose a formula
that has the least number of literals. We call such a formula reduced. All these
choices are obviously without loss of generality.

Now suppose that Φ has a clause C of the form different from the form
described in the statement of the lemma. That means there are literals `1 :=
x1 > y1, `2 := x2 > y2 in C such that x1 and x2 are distinct variables. Because
Φ is reduced, there is a tuple t1 such that `1 is the only satisfied literal in C(t1).
Also there is a tuple t2 such that `2 is the only satisfied literal in C(t2). If t1 can
be chosen such that t1[x2] is smaller than t1[x1], t1[y1], and t1[y2], then we can
choose automorphism α of (Q, <) such that t1[x2] is mapped to 0. Consider tuple
t := ll(α(t1), t2). Observe that if in both t1 and t2 a literal is not satisfied, then
it is not satisfied in ll(α(t1), t2), because ll preserves ≤. Therefore only literals `1

or `2 can be satisfied by t in C. As t[x2] is strictly smaller than t[y2], the literal
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`2 cannot be satisfied by t. Because t2[x1] < t2[y1], it also holds that t[x1] < t[y1]
and hence `1 is not satisfied in t either. So t is not a satisfying assignment for Φ.
A contradiction with the fact that Φ expresses an ll-closed relation. Similarly, we
can argue that t2 cannot be chosen such that t1[x1] is smaller than t1[y1], t1[x2],
and t1[y2]. Therefore the formula Ψ := (x1 > y1 ∨ x1 > y2) ∧ (x2 > y1 ∨ x2 > y2)
is satisfied for any satisfying assignment of Φ (recall that R is injective). Let
Φ′ be the formula Φ with clause C removed and with two clauses of Ψ added.
Clearly, Φ′ has less clauses of the form different from the one described in the
statement of the lemma. Therefore if we show that Φ′ is equivalent to Φ, we
obtain a contradiction with the choice of Φ.

It is easy to see that any satisfying assignment of Φ is also satisfying Φ′ —
both added clauses are satisfied in any satisfying assignment of Φ and removal
of a clause cannot make a satisfying assignment unsatisfying. To show the other
direction consider some satisfying assignment t of Φ′. Clearly, all the clauses of
Φ except for C are satisfied by t (as they are also present in Φ′). Tuple t also
satisfies both clauses of Ψ. We can rewrite Ψ to (x1 > y1 ∧ x2 > y1) ∨ (x1 >
y1 ∧ x2 > y2) ∨ (x1 > y2 ∧ x2 > y1) ∨ (x1 > y2 ∧ x2 > y2). If the first, the
second, or the fourth conjunction is satisfied by t, then t[x1] > t[y1]∨ t[x2] > t[y2]
and therefore C(t) clearly holds. If the third conjunction is satisfied by t and
the literal `1 does not hold (i. e., t[x1] < t[y1]), we have a chain of inequalities
t[y2] < t[x1] < t[y1] < t[x2] and hence t[x2] > t[y2]. We conclude that also in this
last case C holds.

In the following, we slightly abuse the notation and write Rmin(x, y1, . . . , yk)
for a relation {(x, y1, . . . , yk) | x > y1 ∨ . . . ∨ x > yk}. We also use relation
Rmin

= (x, y1, . . . , yk) defined as Rmin
= (x, y1, . . . , yk) := Rmin(x, y1, . . . , yk)∨ x = y1 =

y2 = . . . = yk. First, we check that all these relations are preserved by ll:

Lemma 4.12. Relations Rmin(x, y1, . . . , yk) and Rmin
= (x, y1, . . . , yk) are preserved

by ll.

Proof. First, we show preservation of Rmin. Let t1, t2 be two k + 1-tuples from
Rmin and let t3 := ll(t1, t2). Since t1 ∈ Rmin, there is i ∈ [k] such that t1[yi] < t1[x].
Also there is j ∈ [k] such that t2[yj] < t2[x]. Therefore Rmin(t1[x], t1[yi], t1[yj])
and Rmin(t2[x], t2[yi], t2[yj]) holds. As we have shown in Lemma 4.2, relation
Rmin on three variables is preserved by ll and so Rmin(t3[x], t3[yi], t3[yj]) holds
too. Therefore t3 is from Rmin(x, y1, . . . , yk).

Now, we show the preservation of Rmin
= . Let t1, t2 be two k+1-tuples from Rmin

=

and let t3 := ll(t1, t2). If t1, t2 ∈ Rmin, then t3 is from Rmin and consequently it is
also from Rmin

= . If t1 is a constant tuple, then the tuple t3 is just an automorphic
image of t2 and therefore t3 also satisfies Rmin

= . The same argument holds if t2 is
a constant tuple and we conclude that Rmin

= is preserved by ll.

Now, we are ready to show a general theorem:
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Theorem 4.13. A temporal relation R is ll-closed if and only if it can be defined
by a conjunction of formulae (which we call clauses) of the form

x1 6= y1 ∨ · · · ∨ xk 6= yk, or

(x1 = y1 ∧ · · · ∧ xk = yk) → Rmin(z0, z1, . . . , zl), or

(x1 = y1 ∧ · · · ∧ xk = yk) → Rmin
= (z0, z1, . . . , zl),

Proof. The implication from right to left is easy to verify. Similarly as in the proof
of Lemma 4.10, we just need to argue for a single clause. The clauses of the first
type are Ord-Horn and we have already verified the closure in Lemma 4.10. For
clauses of the second and the third type, let t1 and t2 be two 2k+l+1 tuples satis-
fying the clause and let t3 := ll(t1, t2). If there is i ∈ [k] such that t1[xi] 6= t1[yi] or
t2[xi] 6= t2[yi], then by the injectivity of ll t3[xi] 6= t3[yi] and therefore t3 satisfies
the clause. Otherwise, since t1[xi] = t1[yi] and t2[xi] = t2[yi] for all i ∈ [k], we
have that Rmin(z0, z1, . . . , zl) (Rmin

= (z0, z1, . . . , zl), respectively) holds in both the
tuples. As ll preserves Rmin and Rmin

= by Lemma 4.12, Rmin(t3[z0], t3[z1], . . . , t3[zl])
(Rmin

= (t3[z0], t3[z1], . . . , t3[zl]), respectively) holds as well and therefore t3 satisfies
the clause.

For the implication from the left to the right, we proceed by induction on
the arity n of R. For n = 2 the theorem holds as if we identify second and the
third argument in Rmin(z0, z1, z2) (Rmin

= (z0, z1, z2)), we obtain a relation z0 > z1

(z0 ≥ z1, respectively). So assume n > 2. Let i, j ∈ [n], i < j be two entries of
R. A contraction of i, j in R is a relation Rij(x1, . . . , xj−1, xj+1, . . . , xn) defined
as R(x1, . . . , xj−1, xi, xj+1, . . . , xn) (i. e., we force entries i and j of R to be equal
and then project the relation to x1, . . . , xj−1, xj+1, . . . , xn). It is straightforward
to verify that if R is ll-closed, then Rij is ll-closed too. We also define inj(R) to be
the relation containing all the injective tuples of R. Again, it is straightforward
to verify that if R is ll-closed, then so is inj(R).

We construct the formula Φ defining R as follows: For each pair 1 ≤ i <
j ≤ n of entries, let Φij(x1, . . . , xj−1, xj+1, . . . , xn) be the formula defining Rij.
By induction, all its clauses have the form as described in the statement of the
theorem. We add to each clause a literal xi 6= xj (the form of the clauses clearly
remains of the form described in the statement) and add all the modified clauses
to Φ. Finally, let Φinj be the formula defining inj(R) as stated in Lemma 4.11.
We take each clause C of Φinj. If there is a tuple t ∈ R such that t is constant on
all variables z0, z1, . . . , zlC of C, then we add to Φ a clause C∨z0 = z1 = . . . = zlC

(which is equivalent to Rmin
= (z0, z1, . . . , zlC )). Otherwise we add to Φ a clause C

(which is equivalent to Rmin(z0, z1, . . . , zlC )). It is easy to check that all added
clauses are of one of allowed types and therefore Φ has a form described in the
statement of the theorem.

What remains to verify is that Φ really defines R. First, let t be a k-tuple
such that t 6∈ R. If t is injective, then t 6∈ inj(R) and hence Φinj is not satisfied by
t. No literal of the form z0 = z1 = . . . = zlC can be satisfied by t and so Φ is not
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satisfied either. If t is not injective, there is 1 ≤ i < j ≤ n such that t[i] = t[j]
and tij := (t[1], . . . , t[j − 1], t[j + 1], . . . , t[n]) 6∈ Rij. Therefore some clause C of
Φij is not satisfied by tij and consequently clause C ∨xi 6= xj of Φ is not satisfied
by t. So in this case t does not satisfy Φ too.

Now, we verify that for all t ∈ R, the n-tuple t satisfies Φ. If t is injective, all
the clauses arising from formulae Φij are satisfied, because these clauses contain
xi 6= xj, which is satisfied. Because in this case t ∈ inj(R), t also satisfies Φinj

and so t satisfies all the clauses of Φ. If t is not injective, let C be a clause of Φ
created from some clause of Φij. If t[i] 6= t[j], C is satisfied by t as C contains
xi 6= xj. If t[i] = t[j], then (t[1], . . . , t[j − 1], t[j + 1], . . . , t[n]) ∈ Rij and thus this
tuple satisfies Φij. We also infer that t satisfies C. Finally, let C be a clause of Φ
created from some clause of Φinj. The clause C is of the form x > y1∨ . . .∨x > ym

and possibly has a literal x = y1 = . . . = ym. If t is constant on the variables of
C, then, by the construction of Φ, C contains the literal x = y1 = . . . = ym and so
C is satisfied. So suppose t is not constant on the variables of C and assume for
contradiction that t[x] ≤ t[yi] for all i ∈ [m] (otherwise we see that t satisfies C).
As t is not constant on the variables of C, there is j ∈ [m] such that t[x] < t[yj].
Because Φinj was reduced, there is tuple t′ ∈ inj(R) that satisfies only the literal
x > yj in C. Consider tuple t′′ := lex(t, t′). Because t′ is injective and lex is an
injective operation, the tuple t′′ is injective too. Since t[x] ≤ t[yi] for all i ∈ [m],
t′[x] < t′[yi] for all i ∈ [m] \ {j}, and lex preserves ≤, we get that t′′[x] < t′′[yi]
for all i ∈ [m] \ {j}. Finally, as t[x] < t[yj], we also have that t′′[x] < t′′[yj] by
the properties of lex. Hence, t′′[x] < t′′[yi] for all i ∈ [m] and therefore t′′ does
not satisfy C and thus Φinj. But t′′ is injective and is from R (recall that R is
ll-closed) and therefore t′′ satisfies inj(R). A contradiction with the fact that Φinj

defines inj(R).

Note that the above theorem gives us a nice list of relations, that are enough
to express all ll-closed relations. Actually, we do not need the whole power of
primitive positive definitions, because we do not use existential quantification. If
we use existential quantification, our list of relations can be even shorter:

Corollary 4.14. A temporal relation R is ll-closed if and only if it can be ex-
pressed in a temporal constraint language Γ containing relations <, Rmin

= (z0, z1, z2)
and E(x1, y1, z1, y2) := {(x1, y1, z1, z2) | x1 6= y1 ∨ z1 = z2}.

Proof. Clearly, the first two relations can be defined by formulae of the form
described in Theorem 4.13. The third relation can be defined by

(x1 = y1 → Rmin
= (z1, z2, z2)) ∧ (x1 = y1 → Rmin

= (z2, z1, z1))

Therefore all the relations in Γ are by Theorem 4.13 ll-closed and consequently
all relations expressible in Γ are ll-closed by Theorem 2.9.

For the other implication, it is enough to show that all the relations defined
by clauses of the type described in Theorem 4.13 can be expressed in Γ. First, we
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show that relation F (x1, y1, x2, y2, z1, z2) := {(x1, y1, x2, y2, z1, z2) | (x1 = y1∧x2 =
y2) → z1 = z2} can be expressed in Γ. Let u1, u2, u3 be three new variables.
We impose constraints E(x1, y1, u1, u2), E(x2, y2, u2, u3), and E(u1, u3, z1, z2).
Clearly, if x1 = y1 and x2 = y2, then u1 = u2 = u3 and so z1 = z2. On the
other hand, if x1 6= y1 or x2 6= y2, there are values for u1, u2, u3 that satisfy all
the constraints and u1 6= u3. Hence, values of z1 and z2 are unrestricted. We have
just shown that described instance expresses F . Now suppose R is defined by
x1 6= y1∨ . . .∨xk 6= yk. We prove that R can be expressed in Γ by induction on k.
If k = 1, we can express R by E(x1, y1, z, z

′)∧z < z′, where z, z′ are two new vari-
ables. Now assume k > 1 and we can express all relations of this type for smaller
k. Let z, z′ be two new variables and force z 6= z′∨x3 6= y3∨ . . .∨xk 6= yk (we can
express this relation by induction) and F (x1, y1, x2, y2, z, z

′). It is straightforward
to check that the relation expressed on x1, y1, . . . , xk, yk is R.

Next, we show that Rmin
= (z0, . . . , zl) can be expressed for every l ≥ 2. Again,

we proceed by induction on l. For l = 2 the statement is obvious as we have
Rmin

= (z0, z1, z2). So let us assume that l > 2 and that we can express all rela-
tions of this type for smaller l. We express Rmin

= (z0, . . . , zl) by Rmin
= (z0, z1, x) ∧

Rmin
= (x, z2, . . . , zl). It is easy to check that whenever z0, . . . , zl satisfies Rmin

= , we
can choose a value of x to satisfy also our formula. On the other hand, if our
formula is satisfied, then either z1 < z0, x < z0, or z0 = z1 = x. In the first case,
Rmin

= (z0, . . . , zl) is satisfied. In the second case, as Rmin
= (x, z2, . . . , zl) holds, it fol-

lows there is 2 ≤ i ≤ l such that zi ≤ x and therefore Rmin
= (z0, . . . , zl) is satisfied

too. In the third case, it either holds that x = z2 = . . . = zl and Rmin
= (z0, . . . , zl)

is satisfied or there is 2 ≤ i ≤ l such that zi < x = z0 and so Rmin
= (z0, . . . , zl) is

satisfied as well.

It is easy to see that Rmin(z0, z1, z2) is expressed by Rmin
= (z0, z1, z2) ∧ (z0 6=

z1 ∨ z0 6= z2). For larger l, we express Rmin(z0, . . . , zl) by Rmin(z0, z1, x) ∧
Rmin(x, z2, . . . , zl). It is straightforward to check that this expression is correct.

Finally, we show how to express relation (x1 = y1 ∧ . . . ∧ xk = yk) →
R(z0, . . . , zl) if we are able to express R(z0, . . . , zl). Let x′

2, . . . , x
′
k, y′

2, . . . , y
′
k

and z′0, . . . , z
′
l be new variables. We impose constraints F (x1, y1, x2, y2, x

′
2, y

′
2),

and F (x′
i, y

′
i, xi+1, yi+1, x

′
i+1, y

′
i+1) for all 2 ≤ i ≤ k − 1. From the definition

of F it follows that if xi = yi for all i ∈ [k], then also x′
k = y′

k. We further
impose constraints R(z′0, . . . , z

′
l) and E(x′

k, y
′
k, zj, z

′
j) for all 0 ≤ j ≤ l. There-

fore if xi = yi for all i ∈ [k], then zj = z′j for all 0 ≤ j ≤ l and so R is
imposed on z0, . . . , zl. If there is i ∈ [k] such that xi 6= yi, there exists satisfy-
ing assignment to all imposed constraints with F as a constraint relation where
x′

k 6= y′
k. Therefore z0, . . . , zl are not constrained by any of the newly imposed

constraints and we conclude that the newly imposed constraints really express
relation (x1 = y1 ∧ . . . ∧ xk = yk) → R(z0, . . . , zl).
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4.3 ll-closed Constraints and Datalog

In this section, we introduce Datalog, and then prove that the constraint satisfac-
tion problem for ll-closed constraints cannot be solved by Datalog programs. This
result should not be confused with the weaker fact that establishing k-consistency
does not imply global consistency for any k. This was shown for Ord-Horn in [69].
But recall that Ord-Horn can be solved by a Datalog program [22].

All constraint satisfaction problems studied in the literature so far where one
can show that they cannot be solved by Datalog have the ability to count [40].
It is easy to verify that the temporal constraint language that only contains the
ternary relation Rmin does not have the ability to count. However, we present a
proof that CSP(Rmin) cannot be solved by a Datalog program.

We now define Datalog. Our definition will be purely operational; for the
standard semantical approach to the evaluation of Datalog programs see [38].
A Datalog program is a finite set of Horn clauses, i. e., clauses of the form
ψ ← φ1, . . . , φl, where l ≥ 1 and where ψ, φ1, . . . , φl are atomic formulae of the
form R(x). The formula ψ is called the head of the rule, and φ1, . . . , φl are called
the body. We assume that all variables in the head also occur in the body. The
relation symbols occurring in the head of some clause are called intentional, and
all other relation symbols in the clauses are called extensional.

If Γ is a finite temporal constraint language, we might use Datalog programs
to solve CSP(Γ) as follows. Let Π be a Datalog program whose extensional
symbols are from Γ, and let L be the set of intentional relation symbols of
Π. We assume that there is one distinguished 0-ary intentional relation sym-
bol false. Now suppose we are given an instance I of CSP(Γ). An eval-
uation of Π on I proceeds in steps i = 0, 1, . . . . At each step i, we main-
tain a set of literals I i with relation symbols from L; it always holds that
I i ⊂ I i+1. Each clause of Π is understood as a rule that may derive a new
literal (with a relation symbol from L) from the literals in I i. Initially, we have
I0 := I. Now suppose that R1(x

1
1, . . . , x

1
k1

), . . . , Rl(x
l
1, . . . , x

l
kl

) are literals in I i,
and R0(y

0
1, . . . , y

0
k0

) ← R1(y
1
1, . . . , y

1
k1

), . . . , Rl(y
l
1, . . . , y

l
kl

) is a rule from Π, where

yi
j = yi′

j′ if and only if xi
j = xi′

j′ . Then R0(x
0
1, . . . , x

0
l ) is the newly derived literal

in I i+1, where x0
j = x0

j′ if and only if y0
j = y0

j′ . The procedure stops if no new
literal can be derived. We say that Π solves CSP(Γ), if for every instance I of
CSP(Γ) there exists an evaluation of Π on I that derives false if and only if I
has no solution.

We want to remark that the so-called method of establishing path-consistency,
which is very well-known and frequently applied in Artificial Intelligence, can be
formulated with Datalog programs where the intentional symbols are at most
binary and all rules use at most three variables in the body.

We prove that already for the temporal language that only consists of Rmin

there is no Datalog program that solves the corresponding constraint satisfac-
tion problem. We use a pebble-game characterization of the expressive power of
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Datalog, which was originally shown in [40] and [68] for finite domain constraint
satisfaction, and which holds for a wide variety of infinite domain constraint
languages as well, including qualitative temporal constraint satisfaction (see the
journal version of [13]).

Let Γ be a temporal constraint language, and let I be an instance of CSP(Γ).
Then the existential k-pebble game on I is the following game between the players
Spoiler and Duplicator. Spoiler has k pebbles p1, . . . , pk. He places his pebbles
on variables from I. Initially, no pebbles are placed. In each round of the game,
Spoiler picks some of these pebbles. If they are already placed on I, then Spoiler
first removes them from I. He then places the pebbles on variables from I,
and Duplicator responds by assigning elements from Q to these variables. This
assignment has to satisfy all the constraints C from I where all variables in C are
pebbled, otherwise Spoiler wins the game. Duplicator wins, if the game continues
forever, i. e., if Spoiler can never win the game. Note that if Spoiler removes some
pebble from I, we can also erase the value assigned to the corresponding variable
(as its value plays any role only when a pebble is placed on it again and at that
moment, we can assign it a new value).

Theorem 4.15. [13] Let Γ be a temporal constraint language. There is no Dat-
alog program that solves CSP(Γ) if and only if for every k there exists an incon-
sistent instance I of CSP(Γ) such that Duplicator wins the existential k-pebble
game on I.

The rest of this section is devoted to the proof of the following theorem.

Theorem 4.16. There is no Datalog program that solves CSP(Rmin).

Proof. Let k be an arbitrary number. To apply Theorem 4.15, we have to con-
struct an inconsistent instance I of CSP(Rmin) such that Duplicator wins the
existential k-pebble game on I.

For this, let G be a 4-regular graph of girth 2k + 1, i. e., all cycles in G have
more than 2k vertices. It is known and easy to see that such graphs exist; it
is even known that there are such graphs of size exponential in k [56]. Orient
the edges in G such that there are exactly two outgoing and two incoming edges
for each vertex in G. Since G is 4-regular, there exists an Euler tour for G (see
e. g. [32]), which shows that such an orientation exists.

Now, we can define our instance I of CSP(Rmin) as follows. The variables of
I are the vertices from G. The instance I contains the constraint Rmin(w, u, v) if
and only if uw and vw are the two incoming edges at vertex w. We claim that
I does not have a solution: If there was a solution, some variable w must denote
the minimal value. But for every variable w we find a constraint Rmin(w, u, v) in
I, and this constraint is violated since either u or v must be strictly smaller than
w.

Now, we show that Duplicator has a winning strategy for the existential k-
pebble game on this instance. Let r be a vertex of G. Consider a subgraph G′

r of
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G induced by vertices of G from which there is an oriented path of length at most
k to r. Because G has a girth 2k + 1, G′

r is a binary (every vertex has outdegree
zero or two) tree. We call a binary subtree of G′

r a dominated tree for r if it has
the root r and all its leaves are pebbled. Since there are at most k pebbles in G,
a dominated tree for any vertex has at most 2k vertices. Conversely, any binary
tree in G that has all its leaves pebbled is a dominated tree for its root as it can
have at most k leaves and thus can have depth at most k.

Duplicator always maintains the property that whenever the root r in a dom-
inated tree for r is pebbled during the game, then the value assigned to r is
strictly larger than the minimum of all the values assigned to the leaves. Clearly,
this property is satisfied at the beginning of the game.

Suppose that during the game Spoiler pebbles the variable u. Let T1, . . . , Ts

be those newly created dominated trees for r1, . . . , rs that have variable u as a
leaf and have pebbled their roots r1, . . . , rs, for s ≥ 0. If s > 0, let ri be the root
that received the minimal value a among all the roots r1, . . . , rs. We claim that
if u is the root of a dominated tree T , then a is strictly larger than the minimum
b of all the values assigned to the leaves of T . Otherwise, the graph T ∪ Ti was
a dominated tree that violates the invariant even before the variable u has been
pebbled, a contradiction. Therefore in this case Duplicator can choose a value
c between b and a for the variable u. Since c is smaller than a, in all the new
dominated trees T1, . . . , Ts in G the value assigned to r1, . . . , rs is strictly larger
than c, and hence the invariant is preserved. Particularly, if Rmin(w, u, v) (or
Rmin(w, v, u)) is a constraint in Φ where w and v have been pebbled, then this
constraint is satisfied by the assignment.

Since c is larger than b, this choice also guarantees that if v, v′ are pebbled
variables, then any constraint of the form Rmin(u, v, v′) is satisfied, because in
this case the variables u, v, v′ induce a dominated tree with the root u in G.

If there is no dominated tree T for u, then Duplicator assigns a value to u
that is smaller than all values assigned to other variables. The remaining case is
that s = 0. In this case, Duplicator plays a value that is larger than all values
assigned to other variables. In both cases, it is easy to check that Duplicator
maintains the invariant and satisfies all constraints C of I where all variables are
pebbled. By induction, we have shown that Duplicator has a winning strategy
for the existential k-pebble game on Φ.

4.4 An Algorithm for ll-closed Languages

In this section, we present an algorithm for ll-closed constraints. It is straight-
forward to dualize all arguments and the algorithm, and we will therefore also
obtain an algorithm for dual-ll-closed constraints.

One of the underlying ideas of the algorithm is to use a subroutine that tries to
find a solution where every variable has a different value. If this is impossible, the

53



subroutine should return a set of at least two variables that denote the same value
in all solutions. It is one of the fundamental properties of ll-closed constraints
that this is always possible.

To formally introduce our algorithm, we need the following definition. Let
I = (V,D, C) be an instance of CSP(Γ) and X ⊂ V . A projection of I to V \ X
is an instance of CSP(Γ), I ′ = (V \ X,D, C′), where C′ = {pV \X(C) | C ∈ C}.
Observe that any operation preserving all constraint relations in I also preserves
all constraint relations in I ′ (by Observation 4.9). Also note that if I ′ does not
have a solution, then I does not have a solution either.

Because lex provides min-intersection closure, any relation R preserved by lex
has intersection-closed min-sets (by Lemma 4.6). Hence, if the i-th entry has
min-sets S1, . . . , Sl, for l ≥ 1, then there is some j ∈ [l] such that Sj is a subset
of all min-sets for the i-th entry. We call such a min-set the minimal min-set for
the i-th entry in R.

Lemma 4.17. Let R be a k-ary relation preserved by lex, t ∈ R, i ∈ [k], and let
S be the minimal min-set for the i-th entry in R. If t[j] ≥ t[i] for every j ∈ S,
then t[i] = t[j] for every j ∈ S.

Proof. Let t′ ∈ R be the tuple that witnesses the minimal min-set S. Suppose
there is a tuple t ∈ R such that not all entries in S are equal in t (in particular,
|S| > 1). Consider the tuple t′′ := lex(t′, t). By the properties of lex it holds that
t′′[i] < t′′[j] for every j ∈ [k] \ S. Furthermore, t′′[i] ≤ t′′[j] for j ∈ S if and only
if t[i] ≤ t[j] for all j ∈ S. Thus, unless t′′ witnesses a smaller min-set for i in R
(which would be a contradiction), we have that t′′[i] > t′′[j] for some j ∈ S and
so t[i] > t[j].

To develop our algorithm, we use a specific notion of a constraint graph of a
temporal CSP instance, defined as follows:

Definition 4.12. The constraint graph GI of a temporal CSP instance I is a
directed graph (X,E) defined on the variables X of I. For each constraint of the
form R(x1, . . . , xk) from I, we add a directed edge xixj to E if in every tuple from
R where the i-th entry is minimal the j-th entry is minimal as well.

Note that if the i-th entry is not minimal in any tuple, there are directed
edges from xi to all xj, j ∈ [k].

Example 4.2. Let R(x, y, u, v) be the 4-ary temporal relation defined by (x=y ∧
y<u∧u=v)∨(x<y∧y<u∧u<v). Consider an instance I := ({x1, x2, y1, y2, y3}, Q,
{R(x1, x2, y1, y2), R(x1, x2, y2, y3), R(x1, x2, y3, y1)}). The constraint graph GI for
the instance I has vertices x1, x2, y1, y2, y3, edges from y1, y2, y3 to all other vari-
ables, and an edge from x2 to x1.

Definition 4.13. If I contains a constraint C imposed on y such that C does
not admit a solution where y denotes the minimal value, we say that y is blocked
(by C).
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We would like to use the constraint graph to identify variables that have
to denote the same value in all solutions, and therefore introduce the following
concepts.

Definition 4.14. A strongly connected component K of the constraint graph GI

for a temporal CSP instance Φ is called a sink component if no edge in GI

leaves K, and no variable in K is blocked. A vertex of GI that belongs to a sink
component of size one is called a sink.

In the previous example, the variables y1, y2, y3 are blocked, and x1 and x2 are
not blocked. The set of vertices {y1, y2, y3} forms a strongly connected compo-
nent, which is not a sink component, because there are outgoing edges. Moreover,
the variables in K are blocked. The singleton-set {x1} is a strongly connected
component without outgoing edges and without blocked vertices, and thus x1 is
a sink.

The following lemma shows an important consequence of lex-closure of con-
straints.

Lemma 4.18. Let K be a sink component of the graph GI for an instance I with
lex-closed constraints. Then all variables from K must have the same value in
all solutions of I.

Proof. We assume that I has a solution, and that K has at least two vertices
(otherwise the lemma is trivial). Let t be a solution of I, and let M ⊆ K be the
set of variables that have in t the minimal value among the variables of the sink
component K. If M = K, we are done.

Otherwise, because K is a strongly connected component, there is an edge
in GI from some vertex u ∈ M to some vertex v ∈ K \ M . By the definition
of GI , there is a constraint C in I such that whenever u denotes the minimal
value of a solution of C, then v has to denote the minimal value as well. By
permuting arguments, we can assume without loss of generality that C is of the
form R(w1, . . . , wk) where w1 = u and w2 = v. Because K is a sink component,
the variable u cannot be blocked, and hence there is a minimal min-set S for the
first entry in R. Clearly, S contains 2, because v is the second argument of C
and uv is an edge of GI .

Note that GI contains an edge from u to wi for all i ∈ S. Since K is a sink
component, all these variables wi are in K. Because u has in t the minimal value
among the variables in K, there is no variable wi, i ∈ S, which has a smaller
value than u in t. This contradicts Lemma 4.17, because the value for u in t is
different than the value for v.

Lemma 4.18 immediately implies that we can add constraints of the type
x = y for all variables x, y from the same sink component K. Equivalently, we
can consider the CSP instance I ′ where all the variables in K are contracted,
i. e., where all variables from K are replaced by the same variable. In some
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cases, a solution to a projected instance with ll-closed constraints can be used to
construct a solution to the original instance.

Lemma 4.19. Let I be an instance of the CSP with variables X and ll-closed
constraints. Let x be a sink in GI . If the projection I ′ of I to X \ {x} has an
injective solution, then I has an injective solution as well.

Proof. Let s be an injective solution to I ′. Consider a constraint C from I that is
imposed on x. By the definition of I ′, there is a tuple t ∈ R(C) such that t agrees
with s on V (C) \ {x}. Because x is a sink, there is a tuple t′ ∈ R(C) such that
the entry corresponding to x is strictly minimal. Let β be an automorphism of
(Q, <) mapping t′[x] to 0. It is now easy to check that there is an automorphism
α of (Q, <) such that the tuple t′′ := α(ll(β(t′), t)) agrees with s on X \ {x}, and
the entry t′′[x] is strictly minimal. As R(C) is ll-closed, t′′ ∈ R(C). Thus we see
that for each constraint C imposed on x, there is a tuple in R(C) where the entry
corresponding to x is strictly minimal, and the rest of the tuple agrees with s on
X \{x}. Hence, we can extend s by assigning to x a value smaller than any value
used in s, and the lemma readily follows.

We are ready to state our algorithm for instances with ll-closed constraints.

Algorithm 4.1.

Spec(I) {
// Input: Instance I with variables X

// Output: If I has no solution, then return false.

// If I has an injective solution, then return true.

// Otherwise return S ⊆ X, |S| ≥ 2, s.t. for all

// x, y ∈ S we have x = y in all solutions of I.

G := ConstructGraph(I)

Y := ∅, I ′ := I

while G contains a sink s do begin

Y := Y ∪ {s}
I ′ := projection of I ′ to X \ Y

G := ReconstructGraph(I ′)

end

if Y = X then

return true

else if G has a sink component S then

return S

else

return false

}
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Algorithm 4.2.
Solve(I): {
// Input: Instance I with variables X
// Output: true or false

S := Spec(I)
if S = false then

return false

else if S = true then

return true

else begin

Let I ′ be the contraction of S in I
return Solve(I ′)

end

}

Theorem 4.20. The procedure Solve(I) in Algorithm 4.2 decides whether a
given instance I of a constraint satisfaction problem with ll-closed constraints
has a solution. There is an implementation of the algorithm that runs in time
O(nm), where n is the number of variables of I and m is the weighted number of
constraints in I.

Proof. The correctness of the procedure Spec immediately implies the correctness
of the procedure Solve. In the procedure Spec, after iterated deletion of sinks in
G, we have to distinguish three cases.

In the first case, Y = X. We inductively construct an injective solution of
I as follows. Let x1, . . . , xn be the elements from Y in the order in which they
were included into Y . For 0 ≤ i ≤ n, let Ii be the instance I projected to
X \ {x1, . . . , xi}. Note that I0 = I, and that In = I ′ is the projection of I to
the empty set, which trivially has an injective solution. So assume i < n and Ij

has an injective solution for all i < j ≤ n. Then Lemma 4.19 applied to xi, the
instance Ii, and the injective solution to Ii+1 implies that also Ii has an injective
solution. By induction, Ii has an injective solution for all 0 ≤ i ≤ n, and in
particular I0 = I has an injective solution. Therefore, the output true of Spec
is correct.

Otherwise, in the second case, G contains a sink component S with |S| ≥ 2.
We claim that for all variables x, y ∈ S we have x = y in all solutions to I.
Lemma 4.18 applied to the projection of I to X \ Y implies that whenever some
variables are in the same sink component, they must have the same value in every
solution, and hence the output is correct in this case as well.

In the third case, Y 6= X, but G does not contain a sink component. Note that
in every solution to I ′ some variable must denote the minimal value. However,
by the construction of G, if x gets the minimal value, then all variables reachable
from x must get the same value and thus all vertices of some sink component
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must get the minimal value. Since each strongly connected component without
outgoing edges contains a blocked vertex, there is no variable that can denote
the minimal value, and hence I ′ has no solution. Because I ′ is a projection of I
to X \ Y , the instance I is inconsistent as well.

Since in each recursive call of Solve, the instance in the argument has at
least one variable less, Solve is executed at most n times. It is not difficult to
implement the algorithm such that the total running time is cubic in the input
size. However, it is possible to implicitly represent the constraint graph and to
implement all sub-procedures such that the total running time is in O(nm). We
describe an implementation of the procedure Spec that is linear in the input size.

The constraint graph GI is not computed explicitly, but instead we create
the following data structure in the beginning of the procedure Spec. For each
constraint in the instance, we sort the tuples according to their number of different
values. Now, the data structure contains for each variable v and each constraint
that is imposed on v a reference to the tuple t in this constraint such that v has
the least value in t and t has the largest number of different values. Moreover,
for each value in each tuple, we create a list that contains the entries where this
value appears in the tuple. Finally, for each variable v, we also have a list that
contains the constraints that are imposed on v and block v. With bucket sort,
the total time to set up this data structure is linear in the input size. Even
though the constraint graph G is not explicitly represented, it is possible to use
the above data structure to compute the strongly connected components of G in
linear time, using depth-first search.

Now, we describe how the algorithm finds sinks, how the data structure is
updated after projections, and how the algorithm finds sink components if there
is no sink left and not all variables have been projected out. To find sink and
sink components, we also have to be able to determine efficiently whether a node
is blocked or not.

Initially, because we have computed the strongly connected components, and
because we know which variables are blocked, we can create a list that contains
all sinks of the initial instance. Suppose that s is a sink of G at some iteration of
the while-loop. We then first compute the projection of I ′ to X \ Y by updating
only the constraints imposed on s in I ′. If new unblocked sinks are created by
removing s, we add them to the list of sinks. At this step, we can also determine
whether a constraint no longer blocks a variable v (a new value became minimal
in some tuple t after projecting out s and v is among the entries with this value
in t), and in this case we can update the list of blocking constraints for v. As
soon as this list becomes empty, we know that v is no longer blocked. In this
case, if v does not have any outgoing edges in the current constraint graph, which
we can determine efficiently using our updated data structure, we add v to the
list of sinks. The total number of operations we have to perform in all iterations
of the while-loop is then bounded by m.

Finally, if there is no sink left, but not all variables have been projected
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out, then we can compute the strongly connected components of the resulting
constraint graph (again, this can be done in linear time using depth-first search
on our data structure), and since we know which variables are blocked, we can
also find the sink components.

Note that we can assume that n is smaller than m. Otherwise, the instance
is not connected (we use the notion of connectivity for instances of the CSP as
e. g. in [53]). We can in this case use the same implementation, analyze the
running time for each of the connected components separately, and will get the
same result. This shows that the algorithm can be implemented so that it runs
in time O(nm).

4.5 An Algorithm for Some pp-closed Languages

In this section, we present a polynomial time algorithm that solves constraint
satisfaction problem for languages that are pp-closed and also closed under an
operation providing a min-intersection closure, a min-union closure, or a min-
xor closure. Although at the first sight the languages closed under pp and an
operation providing a min-intersection closure may seem to be a subclass of ll-
closed languages (recall that we have shown in Lemma 4.5 that there is a relation
preserved by the ll operation but not by the pp operation), this is not the case.
Consider for example operation f defined as:

f(x, y) :=
{ α(min(x, y)) if x 6= y

β(x) if x = y

where α and β are two automorphisms of (Q, <) such that α(x) > β(x) >
α(x − ε) for all x ∈ Q and all 0 < ε ∈ Q (see Figure 4.3). This operation
provides a min-intersection closure and there is a relation R(x1, x2, x3, x4) :=
{(x1, x2, x3, x4) | x1 = x2 < x3 < x4 ∨ x1 > x2 > x3 = x4 ∨ x1 = x2 < x3 =
x4 ∨ x1 = x2 > x3 = x4}, which is pp-closed and also closed under operation
f . But it is straightforward to check that this relation is not even lex-closed
and therefore it cannot be ll-closed. So the class of ll-closed constraint languages
is incomparable to the class of languages that are pp-closed and have a poly-
morphism providing min-intersection closure. As usual, we concentrate only on
pp and polymorphisms providing min-intersection/xor/union closure properties.
All the arguments can be easily reformulated for dual-pp and polymorphisms
providing max-intersection/xor/union closure properties.

Algorithms for these languages have a few similar ideas as the algorithm for
ll-closed languages. We also look for a variable that can have the minimal value in
a solution. Unlike the algorithm for ll-closed languages, we impose all equalities
and inequalities that are forced by such variable being minimal and then consider
how the rest of the solution can look like on the other variables. We later show
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Figure 4.3: An operation providing min-intersection closure.

that if the instance has a solution, it also has a solution that satisfies all these
additional constraints.

To formally introduce our algorithm, we need the following definition. Let I =
(V,D, C) be an instance of CSP(Γ) and X ⊂ V . A ordered projection of I to V \X
is an instance of CSP(Γ), I ′ := (V \ X,D, C′), where C′ := {p<

V \X(C) | C ∈ C}.
Observe that any operation preserving all constraint relations in I and relation
< also preserves all constraint relations in I ′ (by Observation 4.9 and the fact
that if an operation preserves two relations, it also preserves their conjunction).
Therefore the instance I ′ has also all constraints pp-closed and closed under an
operation providing some min- closure property.

Let I = (X, Q, C) be an instance of CSP over Q. We call a set of variables
S ⊂ X a min-set of I, if for all constraints C ∈ C satisfying S ∩ V (C) 6= ∅, the
set S ∩ V (C) is a min-set of R(C).

Now, we show a lemma demonstrating usefulness of min-sets:

Lemma 4.21. Let I = (X, Q, C) be an instance of temporal CSP such that all
constraint relations are closed under pp operation and let S be a min-set of I.
Then I has a solution if and only if the ordered projection I ′ of I to X \ S has a
solution.

Proof. First suppose I ′ has a solution s′ and consider some constraint C ∈ C
such that V (C) ∩ S 6= ∅ and V (C) 6⊆ S. By the definition of ordered projection,
there is a tuple t1 ∈ R(C) that coincides with s′ on V (C)∩ (X \ S). Also by the
definition of min-set, there is a tuple t2 ∈ R(C) that witnesses a min-set V (C)∩S
of R(C). Let α be an automorphism of (Q, <) that maps the minimal value of t2
to 0. As the relation R(C) is pp-closed, the tuple t3 := pp(α(t2), t1) is in R(C).
It is easy to check that this tuple also witnesses the min-set V (C) ∩ S and after
mapping by a proper automorphism it also coincides with s′ on V (C) ∩ (X \ S).
As we can find such tuple for all the constraints in C such that V (C)∩S 6= ∅, we
conclude that a solution s′ of I ′ can be extended to a solution s of I by setting
all the variables of S to a value smaller than any other value in s′. Clearly, all
the constraints in C with V (C) ∩ S = ∅ or V (C) ⊂ S are satisfied by s too.
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Now suppose that I has a solution s. We show that it has a solution s′ where
S is the set of variables with minimal value and s′ coincides with s on X \ S.
Such solution s′ restricted to X \S is a solution to the ordered projection I ′ of I
to X \ S as it satisfies all the inequalities imposed by the ordered projection. So
we only have to verify that s′ really is a solution of I. Let C ∈ C be a constraint
of I such that V (C) ∩ C 6= ∅ (all other constraints are satisfied by s′ trivially)
and t1 be s restricted to V (C). Clearly, t1 ∈ R(C) as s is a solution of I. By the
definition of the min-set S, there is t2 ∈ R(C) witnessing the min-set S ∩ V (C)
of R(C). Similarly as in the previous paragraph, let α be an automorphism of
(Q, <) that maps the minimal value of t2 to 0. Because the relation R(C) is pp-
closed the tuple t3 := pp(α(t2), t1) is in R(C). It is easy to check that this tuple
witnesses the min-set V (C)∩ S and after mapping by a proper automorphism it
also coincides with s on X \ S. Therefore C is satisfied by s′.

The above lemma basically asserts that if we are able to identify a min-set
for every instance of CSP from some language in polynomial time, we have a
polynomial time algorithm for finding a solution of those instances. The algorithm
is as follows:

Algorithm 4.3.
Solve(I) {
// Input: Instance I of a temporal CSP with variables X and
// constraints C whose constraint relations are pp-closed
// Output: A solution s to I or false if it does not exist.

i := 0
while X 6= ∅ do begin

S := FindMinSet(I)
if S = false then

return false

for each x ∈ S do

s[x] := i
i := i + 1
I := ordered projection of I to X \ S

end

return s
}

We only require that the function FindMinSet returns a min-set of I if I
has a solution (otherwise it can return either a min-set or false) and that all
constraint relations of I are pp-closed. The running time of the algorithm is
O(n · (t(FindMinSet) + m) + n), where t(FindMinSet) is the running time of the
function FindMinSet, n = |X|, and m is the weighted number of constraints in
I.
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Now, we concentrate on finding a min-set of I. Firstly, we deal with the case
that we have an operation providing a min-intersection closure. Similarly as in
the case of ll-closed constraints, we can define a notion of a minimal min-set:
Let R be a k-ary constraint relation in I and S ⊆ [k] be a set of entries such
that there is a min-set A of R with S ⊆ A. Because R has intersection-closed
min-sets, we have that there is also a min-set B of R such that B is a subset of
every min-set containing S. We call such a min-set the minimal min-set of R
containing S.

Now, we are ready to state our function for finding a min-set:

Algorithm 4.4.
FindMinSetIC(I) {
// Input: Instance I of CSP with variables X and constraints C whose
// constraint relations have intersection-closed min-sets
// Output: Return min-set S ⊆ X of I.
// If there is no such set S, return false.

for all x ∈ X do begin

S := {x}
recheck := true

correct := true

while recheck ∧ correct do begin

recheck := false

for all C ∈ C do begin

if there is no min-set of R(C) containing S ∩ V (C) then

correct := false

else begin

S := S ∪ the minimal min-set of R(C) containing S ∩ V (C)
if S changed then recheck := true

end

end

end

if correct then return S
end

return false

}

It is straightforward to check that the above algorithm runs in time O(n2m)
where n is the number of variables of I and m is the weighted number of con-
straints in I.

Lemma 4.22. If I has a solution, then the function FindMinSetIC in Algo-
rithm 4.4 returns a set S of variables such that for all constraints C ∈ C such
that S ∩ V (C) 6= ∅ it holds that S ∩ V (C) is a min-set of R(C).
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Proof. If I has a solution, there is some set S ′ of variables that have the min-
imal value in this solution. Consider a run of the while loop in the function
FindMinSetIC for some variable x ∈ S ′. In the beginning, it holds that S =
{x} ⊆ S ′. Because for each C ∈ C, we have that S ′ ∩ V (C) is a min-set of R(C)
if S ′ ∩V (C) is non-empty, correct cannot be set to false while S ⊆ S ′. Because
we always add to S only variables of the minimal min-set of R(C) containing
S ∩ V (C), all these variables are always in S ′ and therefore S remains a subset
of S ′ all the time. At some moment, the while loop terminates. Because correct
is true, we return a set S. When the while loop terminated, recheck was false
and so for all C ∈ C, the set S did not change. That means that for all C ∈ C,
the minimal min-set of R(C) containing S ∩ V (C) was a subset of S, i. e., it was
equal to S ∩ V (C).

Theorem 4.23. There is an algorithm running in time O(n3m) solving CSP(Γ)
for Γ closed under pp and a polymorphism providing a min-intersection closure.

Proof. Lemma 4.21 and Lemma 4.22 directly imply correctness of the Algo-
rithm 4.3 using function FindMinSetIC from Algorithm 4.4.

Secondly, we consider languages preserved under operation f providing min-
union closure. This case has some similarities to the case of operation providing
min-intersection closure. Let R be a k-ary relation closed under f and S ⊆ [k].
Let A1, . . . , Al be all min-sets of R such that Ai ⊆ S for all i ∈ [l]. Because R has
union-closed min-sets, there is some Aj, j ∈ [l] such that Ai ⊆ Aj for all i ∈ [l].
We call such min-set the maximal min-set of R contained in S. Note that this
can be an empty set for some S.

Now, we are ready to state our function for finding a min-set:

Algorithm 4.5.
FindMinSetUC(I) {
// Input: Instance I of a CSP with variables X and constraints C whose
// constraint relations have union-closed min-sets
// Output: Return min-set S ⊆ X of I.
// If there is no such set S, return false.

S := X
recheck := true

while recheck do begin

recheck := false

for all C ∈ C do begin

if S ∩ V (C) 6= ∅ then begin

S := (S \ V (C)) ∪ the maximal min-set of R(C)
contained in S ∩ V (C)

if S changed then recheck := true

end
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end

end

if S 6= ∅ then

return S
else

return false

}

As in the case of intersection-closed min-sets, it is straightforward to check
that the function FindMinSetUC has a running time O(mn), where n is the num-
ber of variables of I and m is the weighted number of constraints in I. Now, we
prove correctness of the function FindMinSetUC:

Lemma 4.24. If I has a solution, then the function FindMinSetUC in Algo-
rithm 4.5 returns a set S of variables such that for all constraints C ∈ C such
that S ∩ V (C) 6= ∅, it holds that S ∩ V (C) is a min-set of R(C).

Proof. If I has a solution, there is some set S ′ of variables that have the minimal
value in this solution. In the beginning of the function, S is set to X and therefore
S ⊇ S ′. We show that S ⊇ S ′ during the whole run of the function. Let C ∈ C be
some constraint of I. Because S ′∩V (C) is a min-set of R(C) contained in S, the
maximal min-set added to S \V (C) certainly contains S ′∩V (C). Therefore after
this modification to S, it still holds that S ⊇ S ′. At some moment the function
terminates and because ∅ 6= S ′ ⊆ S, we return the set S. At the moment the
while-loop was terminated, recheck has been set to false. Therefore for all
C ∈ C such that S ∩ V (C) 6= ∅, it holds that S ∩ V (C) is equal to (the maximal)
min-set contained in S.

Theorem 4.25. There is an algorithm running in time O(n2m) solving CSP(Γ)
for Γ closed under pp and a polymorphism providing a min-union closure.

Proof. Lemma 4.21 and Lemma 4.24 directly imply correctness of the Algo-
rithm 4.3 using the function FindMinSetUC from Algorithm 4.5.

Finally, we consider languages preserved under operation f providing a min-
xor closure. Let R be a k-ary relation preserved by f . For a tuple t ∈ R, we
define χmin(t) to be a vector from {0, 1}k such that χmin(t)[i] = 1 if and only if
t[i] is minimal in t. We define χmin(R) as {χmin(t) | t ∈ R}. As R is closed under
f , the set χmin(R) is closed under addition of distinct vectors over GF (2) and so
χmin(R) ∪ {{0}k} is also closed under the operation g(x, y, z) := x + y + z over
GF (2). Such operation is called affine (usually, affine operations are defined as
x + y − z but for GF (2) this is equivalent) and a set of vectors closed under the
affine operation is exactly the set of solutions of a system of linear equations [28].
Moreover this system can be constructed in polynomial time. So if we have an
instance I = (V, Q, C) of a temporal CSP such that the constraint relation of
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every C ∈ C is closed under f , we implement function FindMinSetX as follows:
It constructs a system S of linear equations over GF (2) with the set of variables
xv, v ∈ V, and equations as described above for each C ∈ C. Then it finds
a solution of S distinct from {0}k. If S has such solution, then the variables
getting value 1 in this solution form a min-set of I, which function FindMinSetX

returns. If S has no such solution, then I has no min-set and function returns
false. We can summarize the results of this paragraph in the following theorem:

Theorem 4.26. There is a polynomial algorithm solving CSP(Γ) for Γ closed
under pp and a polymorphism providing a min-xor closure.

4.6 A Classification of Complexity of pp-closed

TCSPs

In this section, we give a complete classification of the complexity of temporal
constraint satisfaction problems that have the operation pp as a polymorphism.
In particular, we show that this class of CSPs has a dichotomy — i. e., each
problem is either tractable or NP-complete.

Theorem 4.27. Let Γ be a temporal constraint language that is able to express
the relation Smin(x, y, z) from Definition 4.4. Then CSP(Γ) is NP-complete.

Proof. By Lemma 2.4, it is enough to show that CSP(Smin) is NP-complete. We
reduce 1-in-3-SAT [45] to the problem CSP(Smin). Let φ be an input formula
for 1-in-3-SAT with variables x1, . . . , xn. We create the following instance I of
CSP(Smin):

• our instance will have a distinguished variable a.

• for each variable xi of φ, we introduce two variables v1
i , v

2
i and a constraint

Smin(a, v1
i , v

2
i )

• for each clause C with variables xi, xj, xk, we add a new variable vC and
introduce the following constraints: Smin(vC , v1

i , v
1
j ), Smin(a, vC , v1

k)

We show that I has a solution if and only if φ was 1-in-3 satisfiable. For
the implication from right to left suppose we have some 1-in-3 satisfying truth
assignment s. We assign a value 0 and for each variable xi of φ, we assign 0 to
v1

i and 1 to v2
i if xi is true in s and i + 1 to v1

i and 0 to v2
i if xi is false in s.

Clearly, the constraints Smin(a, v1
i , v

2
i ) are satisfied for all i ∈ [n]. For each clause

C containing variables xi, xj, xk, exactly one of variables is true in s. If it is xk,
we assign min(i + 1, j + 1) to vC and see that both constraints Smin(vC , v1

i , v
1
j )

and Smin(a, vC , v1
k) are satisfied (as v1

k is assigned 0). If it is xi or xj, we assign 0
to vC and again see that both constraints are satisfied.
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For the implication from left to right, let s be a solution to I. Without loss of
generality we can assume that a has value 0 (otherwise we can apply appropriate
automorphism of (Q, <) to s). Because of the constraints Smin(a, v1

i , v
2
i ), exactly

one of v1
i , v

2
i is 0 and the other variable is greater than 0 for all i ∈ [n]. We set

variable xi to true if v1
i is 0. Otherwise we set xi to false. Now, we have to check

that there is exactly one variable set to true in each clause. Let C be some clause
of φ with variables xi, xj, xk. First, we check that at most one variable is true
in each clause. If xk is true, it means that v1

k is 0 and so vC must be greater
than 0. Consequently both v1

i and v1
j must be greater than 0 and so xi and xj

are false. If xi or xj is true, then it is so because v1
i or v1

j are 0, respectively.
From the properties of Smin it follows that at most one of these variables is 0
(and hence at most one of xi, xj is true) and vC must be 0 too. Hence, v1

k must
be greater than 0 and so xk is false. What remains to check is that at least one
variable is set to true in each clause. If all variables xi, xj, xk are false, it means
that v1

i , v
1
j , v

1
k are all greater than zero. Therefore vC is greater than zero and the

constraint Smin(a, vC , v1
k) cannot be satisfied; a contradiction. So there is exactly

one true variable in each clause and so the truth assignment we have defined is
1-in-3 satisfying.

Now, we show that if the relation Smin cannot be expressed in Γ (i. e., by
Theorem 2.9, there is some polymorphism of Γ that does not preserve Smin),
then there is a polymorphism of Γ providing special closure properties. First, we
show two auxiliary lemmas:

Lemma 4.28. Let f be a binary polymorphism preserving < such that there is an
infinite sequence x1 < x2 < . . . and y such that f(x1, y) > f(x2, y) < f(xi, y) for
all i > 2. Then f generates an operation providing a min-intersection closure.

Proof. Because f preserves <, we have that for arbitrary infinite sequence y1 <
y2 < . . ., y1 > y, it holds that f(x2, yi) > f(x1, y). Hence operation f(α(x), β(y)),
where α is an automorphism of (Q, <) mapping 0, 1, . . . to x2, x3, . . . and β is
an automorphism of (Q, <) mapping 0, 1, 2, . . . to y, y1, y2, . . ., provides min-
intersection closure.

Lemma 4.29. Let f be a binary polymorphism preserving < such that there are
infinite sequences x1 < x2 < . . . and y1 < y2 < . . . with the property that for
all j > 1 there is some i0 > 1 such that for all i ≥ i0, it holds that f(xi, y1) <
f(x1, yj). Furthermore, we require that f(x1, y1) > f(xi, y1) > f(xj, y1) for all
1 < i < j or f(x1, y1) > f(xi, y1) = f(xj, y1) for all 1 < i < j (cf. Figure 4.4).
Then {f, pp} generates an operation providing a min-intersection closure.

Proof. First, we show that there is a sequence of operations f1, f2, . . . generated
by {f, pp} such that for each fk it holds that fk(0, 0) < fk(x, 0) and fk(0, 0) <
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Figure 4.4: Two possibilities of the operation from Lemma 4.29.

fk(0, x) for all integers x, 0 < x < k. Then we use this sequence to generate an
operation g providing a min-intersection closure.

So let k > 0 be fixed integer. By the assumptions of the lemma, there is
i0 > 1 such that for all i ≥ i0 it holds that f(xi, y1) < f(x1, yk). So we apply an
automorphism of (Q, <) to the first argument of f so that 0, 1, 2, . . . is mapped to
x1, xi0 , xi0+1, . . . and another automorphism of (Q, <) to the second argument of
f so that 0, 1, . . . is mapped to y1, y2, . . .. Let f ′ denote the resulting operation.
If f(xi, y1) > f(xj, y1) for all 1 < i < j, we choose an automorphism α of
(Q, <) such that f ′(x, 0) is mapped to k − x for all integers x, 0 ≤ x ≤ k. In
case f(xi, y1) = f(xj, y1) for all 1 < i < j, we choose an automorphism α of
(Q, <) so that f ′(0, 0) is mapped to k and f ′(1, 0) is mapped to 0. We set
fk(x, y) := f ′(α(f ′(x, y)), y) and we have to check that fk(0, 0) < fk(x, 0) and
fk(0, 0) < fk(0, x) for all integers x, 0 < x < k. So let x be an integer from
{1, . . . , k − 1}. From the choice of α, it holds that fk(0, 0) = f ′(α(f ′(0, 0)), 0) =
f ′(k, 0) and

• fk(x, 0) = f ′(α(f ′(x, 0)), 0) = f ′(k − x, 0) if f(xi, y1) > f(xj, y1) for all
1 < i < j, or

• fk(x, 0) = f ′(0, 0) if f(xi, y1) = f(xj, y1) for all 1 < i < j.

From the properties of f , we have that f ′(k, 0) < f ′(k − x, 0) for all integers
x, 0 < x ≤ k and so fk(0, 0) < fk(x, 0) in the first case. In the second case,
we have that f ′(k, 0) < f ′(0, 0) and therefore fk(0, 0) < fk(x, 0) for all integers
x, 0 < x < k. Also, from the properties of f and the definition of f ′, it follows that
f ′(0, x) > f ′(1, 0) for all x, 0 < x < k. So we have fk(0, x) = f ′(α(f ′(0, x)), x) >
f ′(0, 0) > f ′(k, 0) for all x, 0 < x < k from the properties of f and because f ′

preserves < (observe that α(f ′(0, x)) > α(f ′(1, 0)) ≥ 0). So we conclude that
fk(0, 0) < fk(0, x) for all x, 0 < x < k too.
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Now, we concentrate on generating g from f1, f2, . . .. Fix some enumera-
tion x1, x2, . . . of Q. Clearly, for every k, there are only finitely many order-
ings of the set {(xi, xj) | i, j ∈ [k]}. Therefore there are (up to an automor-
phism of (Q, <)) only finitely many operations on {x1, . . . , xk} × {x1, . . . , xk}.
Hence, for every k, there are infinitely many operations among f1, f2, . . . that
are up to an automorphism of (Q, <) the same on {x1, . . . , xk} × {x1, . . . , xk}.
It immediately follows, that we can choose a subsequence g1, g2, . . . of f1, f2, . . .
and automorphisms α1, α2, . . . of (Q, <) so that αi(gi) is the same as αj(gj) on
{x1, . . . , xi}×{x1, . . . , xi} for all j > i. Now, we define g(x, y) to be αi(gi(x, y)) for
arbitrary i such that x, y ∈ {x1, . . . , xi}. It immediately follows from the defini-
tion of local generation that α1(g1), α2(g2), . . . generate g and therefore f1, f2, . . .
generate g. By the choice of f1, f2, . . ., it also follows that g(0, 0) < g(0, x) and
g(0, 0) < g(x, 0) for all integers x > 0 and so g provides a min-intersection clo-
sure.

Now, we are ready to prove the crucial lemma:

Lemma 4.30. Let f be a binary polymorphism that preserves < and violates the
relation Smin. Then {f, pp} generate an operation providing a min-intersection,
a min-union, or a min-xor closure.

Proof. Because f preserves < and violates Smin, we can assume without loss of
generality (possibly after swapping arguments) that there are x1, x

′, y1, y
′ ∈ Q

such that x1 < x′, y1 < y′ and (f(x1, y1), f(x′, y1), f(x1, y
′)) 6∈ Smin. We fix x1, y1

for the rest of the proof. Now, we distinguish several cases:

1. There are infinite sequences x2 < x3 < . . . and y2 < y3 < . . . such that
x1 < x2, y1 < y2, f(xi, y1) > f(x1, y1), and f(x1, yi) > f(x1, y1) for all
i > 1. In this case, an operation f(α(x), β(y)), where α is an automorphism
of (Q, <) mapping 0, 1, . . . to x1, x2, . . . and β is an automorphism of (Q, <)
mapping 0, 1, . . . to y1, y2, . . ., provides a min-intersection closure and we
are done.

2. There are infinite sequences x2 < x3 < . . . and y2 < y3 < . . . such that
x1 < x2, y1 < y2, and f(xi, y1) = f(x1, y1) = f(x1, yi) for all i > 1.
In this case, f after applying automorphisms of (Q, <) mapping 0, 1, . . .
to x1, x2, . . . and 0, 1, . . . to y1, y2, . . . to its arguments provides min-union
closure.

3. There is an infinite sequence x2 < x3 < . . . such that x1 < x2, f(x2, y1) <
f(x1, y1), and f(xi, y1) > f(x2, y1) for all i > 2. In this case, we can use
Lemma 4.28 and obtain that f generates an operation providing a min-
intersection closure.
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4. There is an infinite sequence y2 < y3 < . . . such that y1 < y2, f(x1, y2) <
f(x1, y1), and f(x1, yi) > f(x1, y2) for all i > 2. In this case, we can just
swap arguments and proceed as in case 3.

5. There is x2 > x1 such that f(x2, y1) < f(x1, y1) and we are not in case 3
or 4. Then there must be infinite sequence x2 < x3 < . . . such that x1 < x2

and f(xi, y1) ≥ f(xj, y1) for all 2 ≤ i < j. Either this sequence has a
subsequence x′

2 < x′
3 < . . . such that f(x′

i, y1) = f(x′
j, y1) for all 2 ≤ i < j,

or it has a subsequence x′
2 < x′

3 < . . . such that f(x′
i, y1) > f(x′

j, y1) for all
2 ≤ i < j. Fix a subsequence x′

2, x
′
3, . . . with one of these properties. Now,

we distinguish three subcases:

(a) There is an infinite sequence y2 < y3 < . . . such that y1 < y2 and
for each i > 1 there is j ≥ 2 satisfying f(x1, yi) > f(x′

j, y1). In this
case, we can apply Lemma 4.29 and obtain that {f, pp} generates an
operation providing a min-intersection closure.

(b) There is an infinite sequence y2 < y3 < . . . such that y1 < y2 and
f(x1, yi) = f(x′

2, y1) for all i > 1. In this case, we can assume that
f(x′

i, y1) = f(x′
j, y1) for all 2 ≤ i < j as otherwise we can apply

case 5a. Hence for chosen x1, x
′
2, x

′
3, . . . and y1, y2, . . ., it holds that

f(x1, y1) > f(x1, yi) = f(x′
i, y1) for all i > 1 and therefore f after

applying automorphisms of (Q, <) mapping 0, 1, 2, . . . to x1, x
′
2, x

′
3, . . .

and 0, 1, . . . to y1, y2, . . . to its arguments provides a min-xor closure.

(c) The only remaining case is (recall that we are not in case 4 or 5a)
that there is an infinite sequence y2 < y3 < . . . such that y1 < y2 and
f(x1, yi) ≥ f(x1, yj) for all 2 ≤ i < j. If there is i > 1 such that for all
j ≥ 2 it holds that f(x1, yi) < f(x′

j, y1), we can just swap arguments
and apply case 5a. Otherwise it holds that f(x1, yi) > f(x1, yj) and
f(x′

i, y1) > f(x′
j, y1) for all 2 ≤ i < j. Furthermore, for every j > 1,

there is i0 > 1 such that for all i ≥ i0, we have f(x′
i, y1) < f(x1, yj)

(otherwise the condition from the second sentence of the paragraph is
satisfied). Hence, we can apply Lemma 4.29 and obtain that {f, pp}
generates an operation providing a min-intersection closure.

6. There is y2 > y1 such that f(x1, y2) < f(x1, y1) and we are not in case 3
or 4. In this case, we can just swap arguments and apply case 5.

Now, we deal with the remaining possibilities. So suppose that none of the
previous cases applied. First, note that if there was x2 > x1 such that f(x2, y1) <
f(x1, y1), then one of the cases 3, 4, or 5 would apply. Similarly, if there was
y2 > y1 such that f(x1, y2) < f(x1, y1), then one of the cases 3, 4, or 6 would
apply. Hence, in the remaining cases, we know that for all x > x1 and y > y1 it
holds that f(x, y1) ≥ f(x1, y1) and f(x1, y) ≥ f(x1, y1). Because case 1 or case 2
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did not apply, we can (possibly after swapping arguments) assume that there are
no x2 < x3 < . . . such that x1 < x2 and f(xi, y1) = f(x1, y1) for all i > 1 and there
are no y2 < y3 < . . . such that y1 < y2 and f(x1, yi) > f(x1, y1) for all i > 1. If
there is at least x2 > x1 such that f(x2, y1) = f(x1, y1), then because f preserves
<, f provides a min-intersection closure after applying automorphisms of (Q, <)
mapping 0, 1, 2, . . . to x2, x3, x4, . . . (where x3, x4, . . . are chosen so that f(xi, y1) >
f(x2, y1) = f(x1, y1) for all i > 2) and 0, 1, . . . to y1, y2, . . . to the arguments
of f . Similarly, if there is at least y2 > y1 such that f(x1, y2) > f(x1, y1),
then because f preserves <, the assumptions of Lemma 4.29 are satisfied (after
swapping arguments) for y2 < y3 < y4 < . . . (where y3, y4, . . . are chosen so that
f(x1, yi) = f(x1, y1) for all i > 2) and x1 < x2 < . . .. Hence, the only remaining
possibility is that for any y > y1, it holds that f(x1, y) = f(x1, y1) and for any
x > x1, it holds that f(x, y1) > f(x1, y1). But then (f(x1, y1), f(x, y1), f(x1, y)) ∈
Smin for any x > x1, y > y1, which is a contradiction to the choice of x1, y1 in the
beginning of the proof.

Now, we have to deal with the case that Γ is not able to express the < relation.
An easy corollary of Lemma 2.12 is:

Corollary 4.31. Let Γ be a temporal constraint language that cannot express <.
Then Γ has a unary polymorphism that violates <.

The standard result of Cameron [23], Theorem 3.10, characterizing highly
transitive permutation groups on a countable set implies the following character-
ization of the reducts of (Q, <) (i. e., relational structures over Q that are closed
under first-order definitions and whose all relations are first-order definable in
the dense linear order (Q, <)). An alternative proof of the characterization of
reducts of (Q, <) is given in [59] and we use the formulation of the theorem from
this paper.

Theorem 4.32. Up to first-order interdefinability, there are exactly five reducts
of (Q, <):

• The dense linear order (Q, <) itself,

• The structure (Q,Betweenness),

• The structure (Q,Cyclic), where Cyclic is a ternary relation defined as
Cyclic(x, y, z) := {(x, y, z) | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)},

• The structure (Q, Sep), where Sep is a 4-ary relation Sep(x1, y1, x2, y2) :=
{(x1, y1, x2, y2) | (x1 < x2 < y1 < y2) ∨ (x1 < y2 < y1 < x2) ∨ (y1 < x2 <
x1 < y2) ∨ (y1 < y2 < x1 < x2) ∨ (x2 < x1 < y2 < y1) ∨ (x2 < y1 < y2 <
x1) ∨ (y2 < x1 < x2 < y1) ∨ (y2 < y1 < x2 < x1)},

• The structure (Q, ∅).
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Note that in the case of (Q, ∅), the relation 6= has a primitive positive definition
in the structure. The following result of Bodirsky and Nešetřil allows us to
translate the result directly into the language of polymorphisms:

Theorem 4.33. [11, 18] Let Γ be an ω-cathegorical relational structure. Then
a relation R has a first-order definition in Γ if and only if R is preserved by all
automorphisms of Γ.

Proposition 4.34. Let Γ be a temporal constraint language (recall that it can be
viewed as a relational structure over Q). Then one of the following happens:

• All unary polymorphisms of Γ preserve <, or

• there is a non-injective unary operation that is a polymorphism of Γ, or

• the clone generated by all unary polymorphisms of Γ is the clone generated
by neg, or

• the clone generated by all unary polymorphisms of Γ is the clone generated
by cyc, or

• the clone generated by all unary polymorphisms of Γ is the clone generated
by neg and cyc, or

• all permutations are polymorphisms of Γ.

Proof. If Γ has a non-injective unary polymorphism, we are done. Otherwise
we know that every unary polymorphisms of Γ is an automorphism of Γ. Thus
if there is a unary polymorphism f of Γ violating <, then, by Theorem 4.33,
< does not have a first-order definition in Γ. Thus one of the last four cases
of Theorem 4.32 apply. All unary polymorphisms of Γ generate some locally
closed clone that is the clone generated by unary polymorphisms of one of the
structures (Q,Betweenness), (Q,Cyclic), (Q, Sep), or (Q, ∅) by Theorem 4.32. In
the first case, neg is a polymorphism of the structure (Q,Betweenness) and cyc
is not a polymorphism of the structure. Thus the clone generated by all unary
polymorphisms of (Q,Betweenness) is the clone generated by neg. Similarly, in
the second case, we get that the clone generated by all unary polymorphisms of
(Q,Cyclic) is the clone generated by cyc. In the third case, both neg and cyc
are polymorphisms of the structure (Q, Sep) and the structure is not preserved
by all permutations. So the clone generated by all unary polymorphisms of the
structure is the clone generated by neg and cyc. In the fourth case, all the
permutations of Q are polymorphisms of the structure and so we are done.

We continue by showing that if pp ∈ Pol(Γ) and either neg or cyc are also
polymorphisms of Γ, then Γ also has a binary polymorphism f that preserves <
but violates Smin. We can then plug this polymorphism into Lemma 4.30 and
obtain the same result as if Γ was able to express <.
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Lemma 4.35. The operation pp together with neg or cyc generate a binary op-
eration f that preserves < and violates Smin.

Proof. First, we show that {neg, pp} generates the binary operation f . We set
f(x, y) := neg(pp(neg(x), neg(y))). We verify that f preserves <. Let x1 < x2

and y1 < y2. Clearly, neg(x1) > neg(x2) and neg(y1) > neg(y2). As pp pre-
serves <, it follows that pp(neg(x1), neg(y1)) > pp(neg(x2), neg(y2)). Therefore
f(x1, y1) < f(x2, y2) and we conclude that f preserves <. It is also easy to see
that f violates Smin. Consider tuples t1 := (−1,−1, 0) and t2 := (−1, 0,−1) and
let t3 := f(t1, t2). From the definition of f and pp it follows that t3[1] < t3[2] and
t3[1] < t3[3]. We conclude that t3 does not satisfy Smin.

For the operation cyc, we define f(x, y) := cyc(pp(cyc(x), y)). In this def-
inition we pick operation pp defined as pp(x, y) = x if x ≤ 0 and pp(x, y) =
2 − 1/(y + 1) for x > 0. Again, we first verify that f preserves <. Let
x1 < x2, y1 < y2 and z1 := pp(cyc(x1), y1), z2 := pp(cyc(x2), y2). If x1 > 0
or x2 ≤ 0, it holds that cyc(x1) < cyc(x2) and because pp preserves <, we have
that z1 < z2. By our choice of pp, it also follows that either z1 > 0 or z2 ≤ 0 and
so f(x1, y1) < f(x2, y2). So suppose that x1 ≤ 0 and x2 > 0. The choice of pp
implies that z1 > 0 and z2 < 0 and so cyc(z1) < cyc(z2). Again < is preserved.
Finally, we have to check that f violates Smin. Consider tuples t1 := (−1,−1, 1)
and t2 := (−1, 1,−1) and let t3 := f(t1, t2). By the definition of cyc the tuple
cyc(t1) is (1/2, 1/2,−1/2). Therefore after application of pp we obtain a triple
(pp(1/2,−1), pp(1/2, 1), pp(−1/2,−1)). It is easy to check that these are three
distinct values and as cyc is injective, t3 also contains three distinct values. We
have just shown that f violates Smin.

Results in this section and Section 4.5 directly imply the following theorem:

Theorem 4.36. Let Γ be a temporal constraint language having the polymorphism
pp. If Smin ∈ 〈Γ〉, CSP(Γ) is NP-complete. Otherwise CSP(Γ) is tractable.

Proof. If Γ is able to express Smin, then by Theorem 4.27 CSP(Γ) is NP-complete.
Otherwise Lemma 2.12 implies that there is an at most binary polymorphism f
of Γ that violates Smin. If this polymorphism also violates <, Proposition 4.34
asserts that either neg or cyc are polymorphisms of Γ and so by Lemma 4.35 there
is a binary polymorphism g of Γ that preserves < and violates Smin. Using this
polymorphism (or directly polymorphism f if it preserves <), we obtain using
Lemma 4.30 that there is a binary polymorphism h of Γ such that h provides a
min-intersection closure, a min-union closure, or a min-xor closure. In each of
these cases (as Γ also has the pp polymorphism), Theorem 4.23, Theorem 4.25,
or Theorem 4.26 give us that CSP(Γ) is tractable.
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Figure 4.5: The operation from Lemma 4.37.

4.7 Operations Generating ll or dual-ll

This section contains a sequence of results gradually weakening assumptions
needed for an operation to generate ll or dual-ll operation. We use these re-
sults in the next section to finish a classification of the complexity of a constraint
satisfaction problem for temporal constraint languages.

To speak about properties of an operation on some restricted sets, the fol-
lowing definitions are useful: If S1, . . . , Sd are sets, we call a set of the form
S1 × · · · × Sd a grid, and also write Sd for a product of the form S × · · · × S
with d factors. A [k]d-subgrid of a grid S1 × · · · × Sd is a subset of S1 × · · · × Sd

of the form S ′
1 × · · · × S ′

d, where S ′
i is a k-element subset of Si. We say that a

k-ary operation f behaves as a k-ary operation g on S ⊂ Qk if the (non-strict)
ordering induced by f on the tuples in S is the same as the ordering induced on
these tuples by g.

We start by several technical lemmas about generation of ll.

Lemma 4.37. Let f be a binary operation such that there are c, d ∈ Q and sets
S(i), T

(i)
1 , T

(i)
2 ⊆ Q for each i > 0 such that |S(i)| = |T

(i)
1 | = |T

(i)
2 | = i, t1 < d < t2

for all t1 ∈ T
(i)
1 , t2 ∈ T

(i)
2 and f behaves as lex on S(i) × T

(i)
1 and on S(i) × T

(i)
2

and that f(s, t1) < c < f(s, t2) for all s ∈ S(i), t1 ∈ T
(i)
1 , t2 ∈ T

(i)
2 (see Figure 4.5

for an illustration of the operation f). Then f generates ll.

Proof. We show that for all positive integers k, f generates a binary operation
gk such that there are sets S ′, T ′

1, T ′
2, |S

′| ≥ k, |T ′
1| ≥ k, |T ′

2| ≥ k satisfying:

• gk(x, y) behaves as lex(x, y) on S ′ × T ′
2,

• gk(x, y) behaves as lex(y, x) on S ′ × T ′
1, and

• gk(s, t1) < c < gk(s, t2) for all s ∈ S ′, t1 ∈ T ′
1, t2 ∈ T ′

2.
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This already implies that f generates ll.
So fix k a positive integer, choose l := (3k)k, and pick arbitrary T ′

1 ⊂ T
(l)
1 ,

T ′′
2 ⊂ T

(l)
2 , and S ′ ⊂ S(l) such that T ′

1 = {b1, . . . , bk}, b1 < b2 < . . . < bk,
T ′′

2 = {c1, . . . , c2k}, c1 < c2 < . . . < c2k, and S ′ is formed by the k smallest
elements of S(l). We also define T ′

2 := {c1, . . . , ck}. There is an automorphism
β of (Q, <) that maps the set {f(s, t) | s ∈ S ′′, t ∈ T ′

1 ∪ T ′′
2 } to S(l), where S ′′

contains the l/3k smallest elements of S(l). Let α1, . . . , αk be automorphisms of
(Q, <) such that αi maps b1, . . . , bi to b1, . . . , bi, and {bi+1, . . . , bk}∪T ′

2 to T ′′
2 . We

define

gk(x, y) := f(β(f(β(f(. . . β(f(β(f(x, α1(y))), α2(y))) . . .)), αk−1(y))), αk(y))

Operation gk behaves as lex on S ′ × T ′
2 as f behaves as lex on S(l) × T

(l)
2 ,

automorphisms α1, . . . , αk map T ′
2 into T ′′

2 , and so the automorphism β always
maps its argument back into S(l) on S ′ × T ′

2. Also the outermost application
of f in the definition of gk(x, y) implies that gk(s, t1) < c < gk(s, t2) for all
s ∈ S ′, t1 ∈ T ′

1, t2 ∈ T ′
2. It remains to check that gk(x, y) behaves as lex(y, x) on

S ′ × T ′
1. We show that for arbitrary u1, u2 ∈ S ′, v1, v2 ∈ T ′

1 such that v1 ≤ v2,
u1 < u2 if v1 = v2, it holds that gk(u1, v1) < gk(u2, v2). If u1 ≤ u2 and v1 ≤ v2,
then because f preserves ≤ on S(l) × (T ′

1 ∪ T ′′
2 ), we immediately obtain that

gk(u1, v1) ≤ gk(u2, v2) and by injectivity of f on S(l)× (T ′
1∪T ′′

2 ), that gk(u1, v1) <
gk(u2, v2). The only remaining case is u1 > u2 and v1 < v2. Let i ∈ [k] be
such that v1 = bi. By the choice of αi, we know that αi maps v1 to bi and v2

to T ′′
2 . Therefore f(s, αi(v1)) < c < f(s′, αi(v2)) for all s, s′ ∈ S(l). If i = 1,

we are done as this is also the result of gk. So assume i > 1. The function
f on the level i − 1 from outside evaluates f(s, αi−1(v1)) and f(s′, αi−1(v2)),
respectively, where s, s′ ∈ S ′′, s < s′. As f preserves < on S × (T ′

1 ∪ T ′′
2 ), we get

that f(s, αi−1(v1)) < f(s′, αi−1(v2)). We can now argue in the same way for the
function on the level i−2 from outside. The ordering of the first argument is thus
transferred up to the first level and we conclude that gk(u1, v1) < gk(u2, v2).

In the following lemmas, we call operations g(x, y) = lex(x, neg(y)) and
g(x, y) = lex(y, neg(x)) weakly negated lex. If for any x, x′ ∈ Q, x 6= x′, it holds
that g(x, y) < g(x′, y′) for all y, y′ ∈ Q, or g(x, y) > g(x′, y′) for all y, y′ ∈ Q,
we say that the first argument of g is its major argument (an example of such
operation is lex). Analogously, we define that the second argument of g is its
major argument.

Lemma 4.38. Let f be a binary operation preserving < such that there are c, d ∈
Q and sets S

(i)
1 , S

(i)
2 , T (i) ⊂ Q for each i > 0 such that |S

(i)
1 | = |S

(i)
2 | = |T (i)| = i,

s1 < d < s2 for all s1 ∈ S
(i)
1 , s2 ∈ S

(i)
2 , f(s1, t) < c < f(s2, t) for all s1 ∈ S

(i)
1 ,

s2 ∈ S
(i)
2 , and t ∈ T (i), and f behaves as:
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• (weakly negated) lex with major the first argument on S
(i)
1 × T (i) and as

(weakly negated) lex with major the second argument on S
(i)
2 × T (i), or

• as (weakly negated) lex with major the second argument on S
(i)
1 × T (i) and

as (weakly negated) lex with major the first argument on S
(i)
2 × T (i).

Then f generates ll or dual-ll.

Proof. We assume that f behaves as (weakly negated) lex having the first argu-

ment major on S
(i)
1 ×T (i) and as (weakly negated) lex having the second argument

major on S
(i)
2 ×T (i) for all i > 0. The other case is symmetric. Similarly as in the

previous lemma, we show that for all positive integers k, f generates an operation
gk such that there are sets S ′

1, S ′
2, T ′, |S ′

1| ≥ k, |S ′
2| ≥ k, |T ′| ≥ k, such that

• gk(x, y) behaves as lex(x, y) on S ′
1 × T ′,

• gk(x, y) behaves as lex(y, x) on S ′
2 × T ′, and

• gk(s1, t) < c < gk(s2, t) for all s1 ∈ S ′
1, s2 ∈ S ′

2, t ∈ T ′.

It then immediately follows that f generates ll. So fix k a positive integer,
choose l := 64k6, and let S ′

1 be formed by the k smallest elements of S
(l)
1 , S ′

2 be

formed by the k smallest elements of S
(l)
2 , and T ′ be formed by the k smallest

elements of T (l). We also define S ′′
1 to be the l/2k smallest elements of S

(l)
1 , S ′′

2

to be the l/2k smallest elements of S
(l)
2 , and T ′′ to be the l/2k smallest elements

of T (l). It follows that there is an automorphism α of (Q, <) mapping the set

{f(s, t) | s ∈ S ′′
1 , t ∈ T ′} to S

(l)
1 and the set {f(s, t) | s ∈ S ′′

2 , t ∈ T ′} to S
(l)
2 . Also

there is an automorphism β of (Q, <) mapping the set {f(s, t) | s ∈ S ′
1 ∪ S ′

2, t ∈
T ′′} to T (l).

Having these automorphisms we define

gk(x, y) := f(α(f(x, β(f(x, y)))), β(f(α(f(x, y)), y)))

We show that gk has the desired properties. Operation gk preserves < as f
preserves <. Hence, it is enough to verify the correct ordering of gk(u1, v1) and
gk(u2, v2) for u1, u2 ∈ S ′

1 ∪ S ′
2, u1 ≤ u2 and v1, v2 ∈ T ′, v1 ≥ v2. We distinguish

four cases:

• Firstly, suppose u1 ∈ S ′
1 and u1 < u2. We know that f(u′

1, v
′
1) < f(u′

2, v
′
2)

for all u′
1 ∈ S

(l)
1 , u′

2 ∈ S
(l)
1 ∪ S

(l)
2 , u′

1 < u′
2, v′

1, v
′
2 ∈ T (l) — either u′

2 ∈ S
(l)
1

and then the inequality follows from the fact that f has major the first
argument in S

(l)
1 × T (l), or u′

2 ∈ S
(l)
2 and then we have the inequality

because f(u′
1, v

′
1) < c < f(u′

2, v
′
2). Because also α(f(u1, v

′
1)) ∈ S

(l)
1 and

α(f(u2, v
′
2)) ∈ S

(l)
1 ∪ S

(l)
2 for all v′

1, v
′
2 ∈ T ′′, it is straightforward to ver-

ify that there are u′
1 ∈ S

(l)
1 , u′

2 ∈ S
(l)
1 ∪ S

(l)
2 , u′

1 < u′
2 and v′

1, v
′
2 ∈ T (l)
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such that u′
1 = α(f(u1, β(f(u1, v1)))), u′

2 = α(f(u2, β(f(u2, v2)))), v′
1 =

β(f(α(f(u1, v1)), v1)), and v′
2 = β(f(α(f(u2, v2)), v2)). Therefore we have

that gk(u1, v1) = f(u′
1, v

′
1) < f(u′

2, v
′
2) = gk(u2, v2) and we are done.

• Secondly, suppose u1 ∈ S ′
1 and u1 = u2. We have that v1 > v2, as if v1 = v2,

we have nothing to prove. If f behaves as lex on S
(l)
1 × T (l), we get that

f(u1, β(f(u1, v1))) > f(u2, β(f(u2, v2))) as f also preserves ≤ in S
(l)
1 × T (l).

If f behaves as weakly negated lex on S
(l)
1 × T (l), we have that f(u1, v1) <

f(u2, v2), and thus f(u1, β(f(u1, v1))) > f(u2, β(f(u2, v2))). As f has major

the first argument in S
(l)
1 × T (l), we conclude that gk(u1, v1) > gk(u2, v2),

which we wanted to prove.

• Thirdly, suppose u1 ∈ S ′
2 and v1 > v2. It follows that u2 ∈ S ′

2. Therefore

α(f(u1, v
′
1)) ∈ S

(l)
2 for all v′

1 ∈ T ′′ and α(f(u2, v
′
2)) ∈ S

(l)
2 for all v′

2 ∈ T ′′.
Set u′

1 := α(f(u1, β(f(u1, v1)))), u′
2 := α(f(u2, β(f(u2, v2)))). Because f

has major the second argument in S
(l)
2 × T (l), we have that f(u′′

1, v1) >

f(u′′
2, v2) for all u′′

1, u
′′
2 ∈ S

(l)
2 . Thus if we set v′

1 := β(f(α(f(u1, v1)), v1)),
v′

2 := β(f(α(f(u2, v2)), v2)), we know that v′
1 > v′

2. Giving these facts
together, we get that gk(u1, v1) = f(u′

1, v
′
1) > f(u′

2, v
′
2) = gk(u2, v2).

• Finally, suppose u1 ∈ S ′
2 and v1 = v2. We see that u2 ∈ S ′

2 and u2 > u1 as
otherwise there is nothing to prove. Similarly as in the previous case, we
see that u′

1 := α(f(u1, β(f(u1, v1)))), u′
2 := α(f(u2, β(f(u2, v2)))), are both

in S
(l)
2 . Let v′

1 := β(f(α(f(u1, v1)), v1)) and v′
2 := β(f(α(f(u2, v2)), v2)). If

f behaves as lex on S
(l)
2 × T (l), we see that v′

1 < v′
2 and thus gk(u1, v1) =

f(u′
1, v

′
1) < f(u′

2, v
′
2) = gk(u2, v2). If f behaves as weakly negated lex on

S
(l)
2 × T (l), we have that f(u1, v1) > f(u2, v2). By the choice of α we know

that α(f(u1, v1)), α(f(u2, v2)) ∈ T
(l)
2 and consequently v′

1 < v′
2. We again

conclude that gk(u1, v1) = f(u′
1, v

′
1) < f(u′

2, v
′
2) = gk(u2, v2).

Lemma 4.39. Let f be a binary operation preserving < such that there are c, d ∈
Q and sets S(i), T

(i)
1 , T

(i)
2 ⊂ Q for each i > 0 such that |S(i)| = |T

(i)
1 | = |T

(i)
2 | = i,

t1 < d < t2 for all t1 ∈ T
(i)
1 , t2 ∈ T

(i)
2 , and f behaves as (weakly negated) lex

on S(i) × T
(i)
1 and on S(i) × T

(i)
2 , it has major the first argument in these two

subgrids and f(s, t1) < c < f(s, t2) for all s ∈ S(i), t1 ∈ T
(i)
1 , and t2 ∈ T

(i)
2 . Then

f generates ll.

Proof. Similarly as in the previous lemmas, we show that for all positive integers
k, f generates an operation gk such that there are sets S ′, T ′

1, T ′
2, |S ′| ≥ k,

|T ′
1| ≥ k, |T ′

2| ≥ k, such that

• gk behaves as lex on S ′ × T ′
1,
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• gk behaves as lex on S ′ × T ′
2, and

• gk(s, t1) < c < gk(s, t2) for all s ∈ S ′, t1 ∈ T ′
1, t2 ∈ T ′

2.

Such operations g1, g2, . . . generate an operation g which behaves as lex on
S × T1 and on S × T2 for S = Q, T1 = {y ∈ Q | y < 0}, T2 = {y ∈ Q | y > 0}
and which satisfies g(s, t1) < c < g(s, t2) for all s ∈ S, t1 ∈ T1, t2 ∈ T2. Such
operation satisfies conditions of Lemma 4.37 and thus we get that f generates
ll. So fix k a positive integer, choose l := k2, and let S ′ be formed by the k
smallest elements of S(l), T ′

1 be formed by the k smallest elements of T
(l)
1 , and

T ′
2 be formed by the k smallest elements of T

(l)
2 . It follows that there is an

automorphism α of (Q, <) mapping the set {f(s, t) | s ∈ S ′, t ∈ T ′
1} to T1 and

the set {f(s, t) | s ∈ S ′, t ∈ T ′
2} to T2.

Having this automorphism we define gk(x, y) := f(x, α(f(x, y))). Clearly, gk

preserves <. It also holds that gk(s, t1) < c < gk(s, t2) for all s ∈ S ′, t1 ∈ T ′
1,

and t2 ∈ T ′
2, because α mapped f(x, y) to T1 if y ∈ T ′

1 and to T2 if y ∈ T ′
2 for all

x ∈ S ′. It remains to show that gk behaves on both grids S ′ × T ′
1 and S ′ × T ′

2 as
lex. If f behaves as lex on some grid, then so does gk because of the property of α
described above. So assume that f behaves as weakly negated lex on at least one
of the grids. Let it be S ′ × T ′

1. For S ′ × T ′
2, the argument is the same. We show

that for arbitrary u1, u2 ∈ S ′, v1, v2 ∈ T ′
1 such that u1 ≤ u2, v1 < v2 if u1 = u2,

it holds that gk(u1, v1) < gk(u2, v2). If u1 < u2, this immediately follows due to
the outer application of f , which preserves < and has major the first argument
in S × T1. So assume that u1 = u2 and v1 < v2. But then f(u1, v1) > f(u2, v2),
and consequently f(u1, α(f(u1, v1))) < f(u2, α(f(u2, v2))).

Now, we are ready for proving the main result of this section. Its proof uses so
called product Ramsey theorem (PRT) [49], which can be easily derived from the
classical infinite Ramsey theorem; see [82] for a general introduction to Ramsey
theory.

Theorem 4.40. [49] For all positive integers d, r, m, and k, there is a positive
integer R(d, r,m, k) such that for all sets S1, . . . , Sd, |Si| ≥ R(d, r,m, k) for all
i ∈ [d], and an arbitrary coloring of [m]d subgrids of S1 × . . . × Sd with r colors,
there exists a [k]d subgrid of S1 × . . . × Sd such that all [m]d subgrids of the [k]d

subgrid have the same color.

As we use the above theorem for d = m = 2 and r is also obvious from the
context, we use just R(k) instead of R(d, r,m, k) in our notation. We apply the
theorem to prove the following:

Lemma 4.41. Let f be a binary injective operation preserving < and violating
Betweenness. Then f generates ll or dual-ll.
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t1[1] t1[2] t1[3]
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S1S2
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T2

t2[1]

t2[2]

t2[3]

t1[1] t1[2] t1[3]

Figure 4.6: Grids chosen for application of product Ramsey theorem. Depicted
ordering on values of f follows from the choice of t1, t2 and because f preserves
<.

Proof. We identify three subgrids of Q × Q and show using Theorem 4.40 on
these grids that f generates ll or dual-ll.

As f is injective, there are t1, t2 ∈ Betweenness such that t := f(t1, t2) 6∈
Betweenness and t is injective. As f preserves <, we can without loss of generality
assume that t1[1] < t1[2] < t1[3] and t2[1] > t2[2] > t2[3] (otherwise, we can
consider f with swapped arguments).

There are two possibilities for triple t. Either t[1] > t[2] < t[3] or t[1] < t[2] >
t[3]. Depending on this condition, we choose grids we apply product Ramsey
theorem to. In the first case, let S1 := {x ∈ Q | t1[1] < x < t1[2]}, S2 := {x ∈
Q | t1[3] < x}, T1 := {y ∈ Q | t2[3] < y < t2[2]}, and T2 := {y ∈ Q | t2[1] < y}.
Similarly, in the second case let S1 := {x ∈ Q | t1[2] < x < t1[3]}, S2 := {x ∈
Q | x < t1[1]}, T1 := {y ∈ Q | t2[2] < y < t2[1]}, and T2 := {y ∈ Q | y < t2[3]}.
See Figure 4.6 for an illustration of chosen grids.

Now, we apply the product Ramsey theorem (Theorem 4.40) to grid S1 × T1.
We use the theorem for d = m = 2 and arbitrarily large k. We color the [2]× [2]
subgrids of the grid according to the strict linear order (recall that f is injective)
appearing on the [2] × [2] subgrid. As our sets S1, T1 are infinite, we can obtain
subsets U (k) ⊆ S1 and V (k) ⊆ T1 of arbitrary size from the theorem, in particular
such that |U (k)| ≥ R(k), |V (k)| ≥ R(k) and all the [2]× [2] subgrids of U (k)×V (k)

are colored by the same color. Next, we apply the product Ramsey theorem the
to grid U (k) × T2 with the same coloring as above and obtain subsets S

(k)
1 ⊆ U (k)

and T
(k)
2 ⊆ T2. Finally, we apply the theorem to S2 × V (k) and obtain subsets

S
(k)
2 ⊆ S2 and T

(k)
1 ⊆ V (k). Both grids S

(k)
1 × T

(k)
2 and S

(k)
2 × T

(k)
1 have the same

strict linear ordering induced on all their [2]× [2] subgrids, |S
(k)
1 | ≥ k, |S

(k)
2 | ≥ k,

|T
(k)
1 | ≥ k, and |T

(k)
2 | ≥ k.

The only injective orderings of a [2] × [2] subgrid preserving < that can be
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Figure 4.7: Four injective orderings of [2] × [2] grid preserving < that can be
present on all [2] × [2] subgrids of a large grid.

present on all [2] × [2] subgrids of a large grid are depicted in Figure 4.7. It is
straightforward to check that the resulting ordering in the grid corresponds to one
of the operations lex(x, y), lex(y, x), lex(x, neg(y)), and lex(y, neg(x)). Therefore

f behaves as one of these operations on the grids S
(k)
1 × T

(k)
1 , S

(k)
1 × T

(k)
2 , and

S
(k)
2 × T

(k)
1 . If f behaves as (weakly negated) lex with major the first argument

on one of the grids and as (weakly negated) lex with major the second argument
on another grid for infinitely many k’s, then clearly f satisfies conditions of
Lemma 4.38 (possibly after swapping arguments) and we see that f generates ll
or dual-ll. Otherwise the (weakly negated) lex has the same major argument in
all three grids for infinitely many k’s and it satisfies conditions of Lemma 4.39
(possibly after swapping arguments). We again conclude that f generates ll or
dual-ll.

4.8 A Complete Classification of Complexity of

TCSPs

In this section, we connect results from Section 4.6 and Section 4.7 and prove
that every temporal constraint satisfaction problem is either tractable or NP-
complete. We start with three general lemmas about polymorphisms of temporal
constraint languages:

Lemma 4.42. Let f be k-ary polymorphism such that there are x1, . . . , xk and
y1, . . . , yk such that xi < yi for all i ∈ [k] and f(x1, . . . , xk) = f(y1, . . . , yk). Then
f generates a constant operation.

Proof. The proof directly follows from Lemma 2.13. The group of automor-
phisms of (Q, <) has just one orbit of 2-sets and so it is enough to show that
f generates a non-injective endomorphism and apply Lemma 2.13. Because
xi < yi for all i ∈ [k], there are automorphisms α2, . . . , αk such that the au-
tomorphism αi maps x1 to xi and y1 to yi for all i ∈ {2, . . . , k}. The op-
eration g(x) = f(x, α2(x), . . . , αk(x)) is then a non-injective endomorphism as
g(x1) = f(x1, . . . , xk) = f(y1, . . . , yk) = g(y1).

Lemma 4.43. Let f be a binary operation not generating cyc and not preserving
<. Then either f generates a constant operation or neg(f(x, y)) preserves <.
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Proof. Consider a temporal constraint language Γ := Inv(f). As f does not
preserve < and < has only one orbit of pairs in the automorphism group of
(Q, <), Lemma 2.12 asserts that there is a unary polymorphism g of Γ violating
<. Either it is a non-injective endomorphism and Lemma 4.42 asserts that Γ
has a constant operation or Proposition 4.34 implies that g generates neg. As
Theorem 2.9 implies that the clone generated by f is equal to Pol(Γ), we know
that either f generates a constant operation or f generates neg. In the first case,
we are done. So assume next that we are in the second case.

We show that neg(f(x, y)) preserves <. Because f does not generate a
non-injective unary polymorphism, we have that f(x1, y1) 6= f(x2, y2) for all
x1, x2, y1, y2 ∈ Q, x1 < x2, y1 < y2. Because f also does not generate a
unary polymorphism violating Betweenness (all unary injective polymorphisms
violating Betweenness generate cyc by Proposition 4.34), it satisfies for every
x1, y1, x2, y2, x3, y3 ∈ Q, x1 < x2 < x3, y1 < y2 < y3, that f(x1, y1) < f(x2, y2) <
f(x3, y3) or f(x1, y1) > f(x2, y2) > f(x3, y3). As f does not preserve <, there
are a1, b1, a2, b2 ∈ Q, a1 < a2, b1 < b2 such that f(a1, b1) > f(a2, b2). Consider
arbitrary x3, y3 ∈ Q such that x3 > a2, y3 > b2. Because f does not generate cyc,
it holds that f(x3, y3) < f(a2, b2). By the same argument applied to a2, b2, x3, y3,
we get that f(x3, y3) > f(x4, y4) for all x4 > x3 and y4 > y3. Now, consider
arbitrary x1, y1, x2, y2 ∈ Q, x1 < x2, y1 < y2. We show that f(x1, y1) > f(x2, y2).
Clearly, there are x3, y3, x4, y4 such that max(x2, a2) < x3 < x4, max(y2, b2) <
y3 < y4. Because f(x3, y3) > f(x4, y4) and f does not generate cyc, we have
that f(x1, y1) > f(x3, y3) and f(x2, y2) > f(x3, y3). Thus we can even infer
that f(x1, y1) > f(x2, y2) as otherwise f would generate cyc. We conclude that
operation neg(f(x, y)) preserves <.

Lemma 4.44. Let f be a binary operation generating cyc. Then either f gen-
erates a constant operation, or f generates all permutations of Q or there is
an automorphism α of (Q, <) such that cyc(α(f(x, y))) or cyc(α(neg(f(x, y))))
preserves <.

Proof. If there are a1, b1, a2, b2 ∈ Q, a1 < a2, b1 < b2, such that f(a1, b1) =
f(a2, b2), then by Lemma 4.42 f generates a constant operation. So we further
assume that f(a1, b1) 6= f(a2, b2) for all a1, b1, a2, b2 ∈ Q, a1 < a2, b1 < b2. Propo-
sition 4.34 asserts, that any unary polymorphism violating Sep, generates all
permutations of Q. Therefore, we also further assume that any unary operation
generated by f preserves Sep.

As f generates cyc, there are a1, b1, a2, b2, a3, b3 ∈ Q, a1 < a2 < a3, b1 < b2 <
b3, such that f(a1, b1) < f(a2, b2) > f(a3, b3) or f(a1, b1) > f(a2, b2) < f(a3, b3).
Without loss of generality we assume that the first case is true as otherwise we
can consider neg(f(x, y)) instead. First, assume that f(a3, b3) > f(a1, b1) and
consider arbitrary x1, y1 ∈ Q such that x1 < a1, y1 < b1. It cannot be that
f(x1, y1) < f(a1, b1) as then f(x, α(x)), where α is an automorphism of (Q, <)
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mapping x1 to y1, a1 to b1, a2 to b2, and a3 to b3, would be a unary oper-
ation violating Sep. For the same reason, it also cannot be that f(x1, y1) >
f(a3, b3). We see that x1, y1, a1, b1, a2, b2 are such that f(a2, b2) > f(x1, y1) >
f(a1, b1). We can therefore without loss of generality assume that we have chosen
a1, b1, a2, b2, a3, b3 so that f(a3, b3) < f(a1, b1) < f(a2, b2) as otherwise we can con-
sider neg(f(x, y)) instead of f and choose x1, y1, a1, b1, a2, b2 for a1, b1, a2, b2, a3, b3.
Note that neg(neg(f(x, y))) = f(x, y) and so we are still considering either f(x, y)
or neg(f(x, y)).

Let x1, y1 ∈ Q be such that x1 < a1, y1 < b1. Because f does not generate
a unary operation violating Sep, it is straightforward to check that f(a3, b3) <
f(x1, y1) < f(a1, b1). Similarly, we obtain that for any x2, y2 ∈ Q such that
x2 > a3, y2 > b3 it holds that f(x1, y1) > f(x2, y2) > f(a3, b3). To finish our
observations about f , consider x2, y2, x

′
2, y

′
2 ∈ Q, a3 < x2 < x′

2, b3 < y2 < y′
2.

By taking a1, b1, a2, b2, x2, y2 instead of a1, b1, a2, b2, a3, b3, we obtain by the above
arguments that f(x2, y2) < f(x′

2, y
′
2). Similarly for x1, y1, x

′
1, y

′
1 ∈ Q, x1 < x′

1 <
a1, y1 < y′

1 < b1, we obtain that f(x1, y1) < f(x′
1, y

′
1).

Set d := inf{f(x, y) | x, y ∈ Q, x < a1, y < b1}. As all such values f(x, y) are
bounded below by any f(x′, y′) for x′, y′ ∈ Q, x′ > a3, y′ > b3, we have that also
d > f(x′, y′). Let α be an automorphism of (Q, <) such that it maps d to 0 and
set g(x, y) := cyc(α(f(x, y))). We show that g preserves <.

Let u1, v1, u2, v2 ∈ Q be such that u1 < u2, v1 < v2. We have to verify that
cyc(α(f(u1, v1))) < cyc(α(f(u2, v2))). First, assume that f(u1, v1) < f(u2, v2). If
f(u1, v1) > d, we are done as α(f(u1, v1)) > 0 and cyc thus preserves the ordering.
Otherwise consider arbitrary x1, y1, x2, y2 ∈ Q, x1 < x2 < min(u1, a1), y1 < y2 <
min(v1, b1). As f(x1, y1) > d, we see that f(u1, v1) < f(x1, y1) < f(x2, y2). But
then, because f does not generate a unary polymorphism violating Sep, we have
that f(u2, v2) < f(x1, y1). As f preserves < in the set {x | x < a1}×{y | y < b1}
and we can choose x1, y1 arbitrarily if they are small enough, we conclude that
f(u2, v2) ≤ d and therefore cyc(α(f(u1, v1))) < cyc(α(f(u2, v2))).

Now, assume that f(u1, v1) > f(u2, v2). We show that f(u1, v1) > d and
f(u2, v2) < d, which directly implies that cyc(α(f(u1, v1))) < cyc(α(f(u2, v2))).
If f(u1, v1) < f(x1, y1) for all x1, y1 ∈ Q, x1 < min(u1, a1), y1 < min(v1, b1),
we can choose x1, y1, x

′
1, y

′
1 ∈ Q, so that x1 < x′

1 < u1, y1 < y′
1 < v1, and

f(u2, v2) < f(u1, v1) < f(x1, y1) < f(x′
1, y

′
1). A contradiction with the fact

that f does not generate a unary polymorphism violating Sep. Similarly, if
f(u2, v2) > f(x3, y3) for all x3, y3 ∈ Q, x3 > max(u2, a3), y3 > max(v2, b3),
we can choose x3, y3, x

′
3, y

′
3 ∈ Q, so that u2 < x3 < x′

3, v2 < y3 < y′
3, and

f(x3, y3) < f(x′
3, y

′
3) < f(u2, v2) < f(u1, v1). Again, a contradiction with the

fact that f does not generate a unary polymorphism violating Sep. So there are
x1, y1, x3, y3 ∈ Q such that x1 < min(u1, a1), y1 < min(v1, b1), x3 > max(u2, a3),
y3 > max(v2, b3), and f(x1, y1) < f(u1, v1) and f(x3, y3) > f(u2, v2). We see
that f(u1, v1) > d and f(u2, v2) < d (as f(x3, y3) < f(x2, y2) for all x2, y2 ∈ Q,
x2 < a1, y2 < b1).
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Putting the above two lemmas together yields the following result fundamental
for our further progress:

Lemma 4.45. Let f be a binary operation. Then f satisfies at least one of the
following:

• Either f generates a constant operation, or

• f generates all permutations of Q, or

• f preserves <, or

• neg(f(x, y)) preserves <, or

• there is an automorphism α of (Q, <) such that cyc(α(f(x, y))) preserves
<, or

• there is an automorphism α of (Q, <) such that cyc(α(neg(f(x, y)))) pre-
serves <.

Proof. Suppose f does not preserve <. If f does not generate cyc, we use
Lemma 4.43 and obtain that either f generates a constant operation, or op-
eration neg(f(x, y)) preserves <. If f does generate cyc, we apply Lemma 4.44
and obtain that, indeed, we are in one of the cases described in the statement of
the lemma.

Intuitively, this lemma tells us that if we have a binary operation f generating
a non-increasing automorphism, then either we are in one of the simple cases or
f also generates a binary operation preserving < (and thus not generating any
non-increasing automorphism), which has otherwise similar properties as f . We
use this result in the following characterization of temporal constraint languages:

Lemma 4.46. Let Γ be a temporal constraint language. Then Γ satisfies at least
one of the following conditions:

• Either Pol(Γ) contains a constant operation, or

• CSP(Γ) is NP-complete, or

• cyc ∈ Pol(Γ) and neg ∈ Pol(Γ), or

• there is binary f ∈ Pol(Γ) such that f violates Betweenness and preserves
<.

Proof. If Betweenness ∈ 〈Γ〉, then CSP(Γ) is clearly NP-complete as the prob-
lem CSP(Betweenness) is well-known to be NP-complete [45]. So suppose that
Betweenness 6∈ 〈Γ〉. Lemma 2.12 asserts that there is an at most binary operation
f ∈ Pol(Γ) that violates Betweenness. If f preserves <, we are done (note that in
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this case f has to be binary). Otherwise < has not primitive positive definition in
Γ and by Proposition 4.34 either neg, or cyc, or a non-injective unary operation
are polymorphisms of Γ. In the third case, Lemma 4.42 asserts that a constant
operation is a polymorphism of Γ and we are done.

If cyc is a polymorphism of Γ, then consider relation Cyclic(x, y, z) := (x <
y < z) ∨ (y < z < x) ∨ (z < x < y). If this relation has a primitive positive
definition in Γ, then CSP(Γ) is NP-complete as CSP(Cyclic) is known to be NP-
complete [45]. So assume in the following that Cyclic does not have a primitive
positive definition in Γ and by Lemma 2.12 there is a unary polymorphism of
Γ (note that Cyclic has just one orbit of triples in Aut(Γ) when cyc ∈ Pol(Γ))
violating Cyclic. Proposition 4.34 then asserts that neg ∈ Pol(Γ) or a non-
injective unary operation is a polymorphism of Γ. In the first case, we are done
because {cyc, neg} ⊆ Pol(Γ). In the second case, we are done by Lemma 4.42.

The remaining case is that cyc 6∈ Pol(Γ), Γ does not have a non-injective
endomorphism and has a binary polymorphism f generating neg (not generating
cyc) and not preserving Betweenness and <. We apply Lemma 4.43 to f and
obtain that neg(f(x, y)) preserves <. Clearly, neg(f(x, y)) is a polymorphism of
Γ and it still violates Betweenness, because (x, y, z) 6∈ Betweenness if and only if
(neg(x), neg(y), neg(z)) 6∈ Betweenness. So neg(f(x, y)) is the operation required
in the statement of the lemma.

For a while, we postpone our classification of temporal constraint languages
and show that the constraint satisfaction problem for relation Sep defined in
Theorem 4.32 is NP-complete.

Theorem 4.47. The problem CSP(Sep) is NP-complete.

Proof. We prove NP-hardness of CSP(Sep) by a reduction from the problem
CSP(Betweenness), whose NP-completeness has been established in [45]. So
assume we are given an instance I = (X, Q, C) where each constraint in C has
a constraint relation Betweenness. The instance I ′ of CSP(Sep) is created as
follows. The set of variables is X ∪ {a}, where a is a new variable. For each
constraint C ∈ C on variables x1, x2, x3 we add a constraint Sep(a, x2, x1, x3) to
C′. It is obvious, that I ′ is in CSP(Sep) and that the transformation can be
performed in polynomial time. We only have to check that I ′ has a solution
if and only if I has a solution. If I has a solution t, then for any constraint
C ∈ C on variables x1, x2, x3, their values are either t[x1] < t[x2] < t[x3] or
t[x3] < t[x2] < t[x1]. Therefore, if we assign to a a value smaller than all the
values of t, all constraints in C′ are satisfied and we have a solution of I ′. For the
other implication, suppose I ′ has a solution. Because Sep is preserved by cyc,
it also has a solution t in which a gets the minimal value among all variables of
I ′. Now, consider a constraint C ′ ∈ C′ on variables a, x2, x1, x3. As a has the
minimal value in t, it holds that either t[x1] < t[x2] < t[x3] or t[x3] < t[x2] < t[x1]
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and so the corresponding constraint C ∈ C is satisfied. We see that t restricted
to X is a solution of I.

Now, we are ready to further extend our classification:

Lemma 4.48. Let Γ be temporal constraint language such that {neg, cyc} ⊆
Pol(Γ). Then Γ satisfies at least one of the following:

• Either Pol(Γ) contains a constant operation, or

• CSP(Γ) is NP-complete, or

• Aut(Γ) contains all permutations of Q, or

• there is binary f ∈ Pol(Γ) such that f violates Sep and preserves <.

Proof. If Sep ∈ 〈Γ〉, then Theorem 4.47 asserts that CSP(Γ) is NP-complete.
So we can further assume that Sep 6∈ 〈Γ〉. Because Sep has just two orbits of
4-tuples in Aut(Γ) when Pol(Γ) contains cyc, Lemma 2.12 asserts that there is
an at most binary polymorphism f violating Sep. If f is unary or generates a
unary polymorphism violating Sep, Proposition 4.34 gives us that either Γ has a
non-injective endomorphism and therefore by Lemma 4.42 a constant operation,
or all permutations of Q are automorphisms of Γ. So we are done in this case.

We further assume that f is binary and does not generate a unary operation
violating Sep. By Lemma 4.45, either f(x, y), or neg(f(x, y)), or cyc(α(f(x, y))),
or cyc(α(neg(f(x, y)))) preserve < for some polymorphism α of (Q, <). Let g
denote such operation. In all these cases, it is straightforward to verify that
(u, v, x, y) ∈ Sep if and only if (g(u), g(v), g(x), g(y)) ∈ Sep and we conclude that
g(x, y) still violates Sep.

Results obtained in this section so far can be summarized (and slightly ex-
tended) in the following theorem:

Theorem 4.49. Let Γ be a temporal constraint language. Then it satisfies at
least one of the following:

• CSP(Γ) is NP-complete, or

• Pol(Γ) contains a constant operation, or

• Aut(Γ) contains all permutations of Q, or

• there is binary f ∈ Pol(Γ) preserving < and violating Betweenness.
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Proof. Lemma 4.46 gives us that either Γ has a constant polymorphism, or
CSP(Γ) is NP-complete, or {cyc, neg} ⊆ Pol(Γ), or there is binary f ∈ Pol(Γ)
such that f violates Betweenness and preserves <. In the first two cases and in
the fourth case, we are immediately done. In the third case, Lemma 4.48 applied
to Γ asserts that either we are in one of the first two cases, or Aut(Γ) contains
all permutations of Q, or there is binary f ∈ Pol(Γ) such that f violates Sep and
preserves <. So it is enough to show that f also violates Betweenness.

If f does not preserve 6= (i. e., there are a1, b1, a2, b2 ∈ Q, a1 < a2, b1 > b2,
such that f(a1, b1) = f(a2, b2)), it immediately follows that it does not preserve
Betweenness. So assume in the following that f preserves 6=.

If there are a1, b1, a2, b2, a3, b3 ∈ Q such that a1 < a2 < a3, b1 > b2 > b3,
and f(a1, b1) < f(a2, b2) > f(a3, b3) or f(a1, b1) > f(a2, b2) < f(a3, b3), then f
clearly violates Betweenness and we are done. Assume for contradiction that such
a1, b1, a2, b2, a3, b3 do not exist — i. e., for all such a1, b1, a2, b2, a3, b3, it holds that
either f(a1, b1) < f(a2, b2) < f(a3, b3) or f(a1, b1) > f(a2, b2) > f(a3, b3). As f
violates Sep, there are t1, t2 ∈ Sep such that f(t1, t2) 6∈ Sep. We can without
loss of generality assume that t1[1] < t1[3] < t1[2] < t1[4] as otherwise we can
permute entries of the tuples. All the possible combinations of two tuples are
depicted in Figure 4.8. Tuples t1, t2 cannot be in combinations depicted in the
first line as those configurations result in a tuple from Sep(because of the as-
sumption from the beginning of the paragraph). For combinations in the second
line, we show there are u1, u2, u

′
1, u

′
2, v1, v2, v

′
1, v

′
2 ∈ Q, u1 < u′

1, v1 > v′
1, u2 < u′

2,
v2 > v′

2, such that f(u1, v1) < f(u′
1, v

′
1) if and only if f(u2, v2) > f(u′

2, v
′
2).

In the first combination in the second line, f(t1[1], t2[1]) < f(t1[3], t2[3]) if and
only if f(t1[4], t2[4]) > f(t1[2], t2[2]), provided f violates Sep. Therefore we can
choose (u1, v1) := (t1[1], t2[1]), (u′

1, v
′
1) := (t1[3], t2[3]), (u2, v2) := (t1[2], t2[2]),

(u′
2, v

′
2) := (t1[4], t2[4]). In the second combination in the second line, we can

choose (u1, v1) := (t1[1], t2[1]), (u′
1, v

′
1) := (t1[2], t2[2]) and depending on the or-

dering of f(u1, v1) and f(u′
1, v

′
1), either setting (u2, v2) := (t1[3], t2[3]), (u′

2, v
′
2) :=

(t1[2], t2[2]) or setting (u2, v2) := (t1[1], t2[1]), (u′
2, v

′
2) := (t1[4], t2[4]) gives us

pairs with the desired properties. In the third and the fourth combination in the
second line, the choice of u1, v1, u

′
1, v

′
1, u2, v2, u

′
2, v

′
2 is obvious. Moreover, we can

choose the values so that (u1, v1) 6= (u′
2, v

′
2) and (u′

1, v
′
1) 6= (u2, v2) because of the

assumption on f from the beginning of the paragraph.
Having chosen u1, v1, u

′
1, v

′
1, u2, v2, u

′
2, v

′
2 consider u′

3, v
′
3 ∈ Q such that u′

3 >
max(u′

1, u
′
2), v′

3 < min(v′
1, v

′
2). Because of the assumption on f from the beginning

of the previous paragraph, we have that either f(u1, v1) > f(u′
1, v

′
1) > f(u′

3, v
′
3) >

f(u′
2, v

′
2) > f(u2, v2), or f(u1, v1) < f(u′

1, v
′
1) < f(u′

3, v
′
3) < f(u′

2, v
′
2) < f(u2, v2).

But then for u3, v3 ∈ Q, u3 > u′
3, v3 < v′

3, there is no possible value of f(u3, v3)
— in all cases, we obtain a configuration violating Betweenness either on (u′

1, v
′
1),

(u′
3, v

′
3), (u3, v3) or on (u′

2, v
′
2), (u′

3, v
′
3), (u3, v3). We conclude that f violates

Betweenness.
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Figure 4.8: Possible combinations of two 4-tuples t1, t2 from Sep. Solid lines
denote ordering resulting from f preserving <, dashed lines denote ordering re-
quired for f(t1, t2) 6∈ Sep. Numbers are indices of corresponding entries in tuples
t1, t2.

The first three cases in the previous theorem are easy to deal with. Therefore,
we concentrate on the fourth case. First, we prove two technical lemmas:

Lemma 4.50. Let f be a binary operation such that there are c, d ∈ Q and
sets S(i), T

(i)
1 , T

(i)
2 ⊆ Q for each i > 0 such that |S(i)| = |T

(i)
1 | = |T

(i)
2 | = i,

t1 < d < t2 for all t1 ∈ T
(i)
1 , t2 ∈ T

(i)
2 , f behaves as a projection to the first

argument on S(i) × T
(i)
1 and on S(i) × T

(i)
2 and f(s, t1) < c < f(s, t2) for all

s ∈ S(i), t1 ∈ T
(i)
1 , t2 ∈ T

(i)
2 (see Figure 4.9 for an illustration of the operation f).

Then f generates lex.

Proof. We show that for all positive integers k, f generates a binary operation
gk such that there are sets S ′, T ′

1, |S
′| ≥ k, |T ′

1| ≥ k such that gk(x, y) behaves as
lex(y, x) on S ′ × T ′

1. This already implies that f generates ll.

So fix k a positive integer, choose l := (3k)k, and pick arbitrary T ′
1 ⊂ T

(l)
1 ,

T ′′
2 ⊂ T

(l)
2 , and S ′ ⊂ S(l) such that T ′

1 = {b1, . . . , bk}, b1 < b2 < . . . < bk,
T ′′

2 = {c1, . . . , c2k}, c1 < c2 < . . . < c2k, and S ′ is formed by the k smallest
elements of S(l). We also define T ′

2 = {c1, . . . , ck}. There is an automorphism
β of (Q, <) that maps the set {f(s, t) | s ∈ S ′′, t ∈ T ′

1 ∪ T ′′
2 } to S(l) where S ′′

contains the l/3k smallest elements of S(l). Let α1, . . . , αk be automorphisms of
(Q, <) such that αi maps b1, . . . , bi to b1, . . . , bi, and {bi+1, . . . , bk} ∪ T ′

2 to T ′′
2 .

Now, we are ready to define gk:

gk(x, y) := f(β(f(β(f(. . . β(f(β(f(x, α1(y))), α2(y))) . . .)), αk−1(y))), αk(y))
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S

T2

T1

Figure 4.9: The operation from Lemma 4.50.

We verify properties of gk. For that let u1, u2 ∈ S ′, v1, v2 ∈ T ′
1. If v1 6= v2,

suppose without loss of generality that v1 < v2 = bi, i ∈ [k]. It follows that
αi−1(v1) ∈ T ′

1 and αi−1(v2) ∈ T ′′
2 and so β(f(u′

1, αi−1(v1))) < β(f(u′
2, αi−1(v2)))

for all u′
1, u

′
2 ∈ S(l). For all j ∈ [k], j ≥ i, it holds that αj(v1), αj(v2) ∈ T ′

1. Thus
starting at the function on level k − i from outside, the second argument of f is
both for (u1, v1) and (u2, v2) from T ′

1 and the first argument is smaller for (u1, v1)
than for (u2, v2) and remains in S(l). We conclude that gk(u1, v1) < gk(u2, v2).

If v1 = v2, suppose without loss of generality that u1 < u2. As v1 = v2,
second arguments of f at all levels are always the same. Operation f satisfies that
f(x, y) < f(x′, y) for all x, x′ ∈ S(l), x < x′ and y ∈ T ′

1 ∪ T ′′
2 . Thus the ordering

of the first argument is preserved on all levels and as u1, u2 ∈ S ′ and v1, v2 ∈ T ′
1,

it remains all the time in S(l). We conclude that gk(u1, v1) < gk(u2, v2).

Lemma 4.51. Let f be a binary operation violating Betweenness and preserv-
ing <. Then there are t1, t2 ∈ Betweenness such that f(t1, t2) is injective and
f(t1, t2) 6∈ Betweenness.

Proof. As f violates Betweenness, there are two triples t1, t2 ∈ Betweenness such
that t := f(t1, t2) 6∈ Betweenness. Because f preserves <, we can without loss
of generality assume that t1[1] < t1[2] < t1[3] and t2[1] > t2[2] > t2[3]. If t is
injective, we are done. Otherwise we distinguish two cases:

1. t[1] = t[2] = t[3]: In that case, take a triple s1 such that s1[1] < t1[1],
s1[2] = t1[2], and s1[3] = t1[3]. We also choose a triple s2 such that t2[2] <
s2[1] < t2[1], s2[2] = t2[2], and s2[3] = t2[3]. It is straightforward to check
that s1[1] < s1[2] < s1[3] and s2[1] > s2[2] > s2[3] and thus both triples
belong to Betweenness. Now, consider s := f(s1, s2). Because f preserves
<, we have that s[2] = t[2], s[3] = t[3], and s[1] < t[1] = s[2] = s[3].
Therefore s 6∈ Betweenness. Take s1 instead of t1, s2 instead of t2 and
proceed with case 2.
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2. If exactly two entries in t have the same value, let i, j be their indices and let
k be the index of the entry with the unique value. We assume that t[k] > t[i]
(the other case is symmetric). It is straightforward to verify that there is
an entry in t such that making the value of this entry smaller would make
t injective and it would still not be in Betweenness. We can without loss
of generality assume that i is an index of such entry. We choose s1 so that
s1[i] < t1[i], s1[j] = t1[j], s1[k] = t1[k], and s1[1] < s1[2] < s1[3]. We choose
s2 such that s2[i] < t2[i], s2[j] = t2[j], s2[k] = t2[k], and s2[1] > s2[2] > s2[3].
As in case 1, we see that s1, s2 ∈ Betweenness. For tuple s := f(s1, s2),
we have that s[i] < t[i], s[j] = t[j], and s[k] = t[k]. By the choice of i we
conclude that s is injective, s 6∈ Betweenness and we are done.

Now, we are ready to prove the crucial result of this section. We again use the
product Ramsey theorem (Theorem 4.40) in a very similar way as in the proof of
Lemma 4.41.

Theorem 4.52. Let Γ be a temporal constraint language and f its binary poly-
morphism preserving < and violating Betweenness. Then f generates lex(x, y),
lex(x, neg(y)), pp, or dual-pp.

Proof. As f violates Betweenness and preserves <, Lemma 4.51 asserts there are
t1, t2 ∈ Betweenness such that t := f(t1, t2) 6∈ Betweenness and t is injective. As
f preserves <, we can without loss of generality assume that t1[1] < t1[2] < t1[3]
and t2[1] > t2[2] > t2[3] (otherwise, we can consider f with swapped arguments).

There are two possibilities for triple t. Either t[1] > t[2] < t[3] or t[1] < t[2] >
t[3]. Depending on this condition we choose grids we apply product Ramsey
theorem to. In the first case, let S1 := {x ∈ Q | t1[1] < x < t1[2]}, S2 := {x ∈
Q | t1[3] < x}, T1 := {y ∈ Q | t2[3] < y < t2[2]}, and T2 := {y ∈ Q | t2[1] < y}.
Similarly, in the second case let S1 := {x ∈ Q | t1[2] < x < t1[3]}, S2 := {x ∈
Q | x < t1[1]}, T1 := {y ∈ Q | t2[2] < y < t2[1]}, and T2 := {y ∈ Q | y < t2[3]}.
See Figure 4.6 for an illustration of chosen grids.

We apply the product Ramsey theorem to the grid S1×T1. We use the theorem
for d = m = 2 and arbitrarily large integer k. We color each [2]×[2] subgrid of this
grid according to the non-strict linear order of the four elements (see Figure 4.10).
As S1 and T1 are infinite and, in particular, larger than R(R(k)), the theorem
asserts that there are subsets U (k) ⊆ S1 and V (k) ⊆ T1 such that |U (k)| ≥ R(k),
|V (k)| ≥ R(k), and [2] × [2] subgrids of U (k) × V (k) are monochromatic. Next,
we apply the Product Ramsey theorem to the grid U (k) × T2 with the same kind
of coloring as above and obtain subsets S

(k)
1 ⊆ U (k) and T

(k)
2 ⊆ T2. We end

with applying the product Ramsey theorem to the grid S2 × V (k) with the same
kind of coloring as above and obtain subsets S

(k)
2 ⊆ S2 and T

(k)
1 ⊆ V (k). Again,

both grids S
(k)
1 ×T

(k)
2 and S

(k)
2 ×T

(k)
1 have the same linear ordering induced on all
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Figure 4.10: Possible non-strict linear orders on 2 × 2 grids. Strong lines denote
equalities, oriented lines ordering. We omit edges implied by transitivity.

[2]× [2] subgrids, |S
(k)
1 | ≥ k, |S

(k)
2 | ≥ k, |T

(k)
1 | ≥ k, and |T

(k)
2 | ≥ k. The only linear

orderings that can be induced on [2] × [2] subgrids of a large grid are the first
two orderings depicted in the first line of Figure 4.10 and the first four orderings
depicted in the second line of Figure 4.10. Therefore f on each of those three
grids behaves either as a projection to one of arguments, as lex(x, y), as lex(y, x),
as lex(x, neg(y)), or as lex(y, neg(x)). We see that f can behave on each of grids
in 6 different ways and thus there are just 63 possibilities how f behaves on grids
for given k. Hence, we there is an infinite set K ⊆ N such that f behaves the
same way on grids S

(k)
1 × T

(k)
1 for all k ∈ K, the same way on grids S

(k)
1 × T

(k)
2

for all k ∈ K, and the same way on grids S
(k)
2 × T

(k)
1 for all k ∈ K.

If f behaves as lex(x, y), lex(y, x), lex(x, neg(y)), or lex(y, neg(x)) on some of
the grids for all k ∈ K, it clearly generates either lex(x, y) or lex(x, neg(y)) and
we are done.

So assume that f behaves as a projection on all three grids for all k ∈ K.
Observe that by the choice of S

(k)
1 , S

(k)
2 , T

(k)
1 , and T

(k)
2 , and because f preserves <,

we have that either f(x, y) < f(t1[2], t2[2]) < f(x′, y′) for all (x, y) ∈ S
(k)
1 × T

(k)
1 ,

(x′, y′) ∈ (S
(k)
1 × T

(k)
2 ) ∪ (S

(k)
2 × T

(k)
1 ) (this is in case S

(k)
1 is below S

(k)
2 and T

(k)
1

is below T
(k)
2 ), or f(x, y) > f(t1[2], t2[2]) > f(x′, y′) for all (x, y) ∈ S

(k)
1 × T

(k)
1 ,

(x′, y′) ∈ (S
(k)
1 × T

(k)
2 ) ∪ (S

(k)
2 × T

(k)
1 ) (this is in case S ′′

1 is above S
(k)
2 and T

(k)
1

is above T
(k)
2 ). Now, we distinguish two possibilities. Either f behaves as a

projection to the same argument on each of three grids for all k ∈ K or f
behaves as a projection to the first argument on one grid and as a projection to
the second argument on some other grid for all k ∈ K. In the first case, suppose
without loss of generality that f behaves on each grid as a projection to the
first argument (otherwise we can swap arguments). Due to the observation from
the beginning of the paragraph, we can apply Lemma 4.50 and conclude that f
generates lex.

Now, we turn our attention to the second case and show that f generates
pp or dual-pp. Again, we assume without loss of generality that f behaves as a
projection to the first argument on S

(k)
1 ×T

(k)
1 for all k ∈ K. Let S

(k)
1 ×T

(k)
2 be the

grid where f behaves as a projection to the second argument (the other case is
symmetric). Due to the observation from the beginning of the previous paragraph
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we immediately see that f behaves either as pp (this is in case T
(k)
1 is above T

(k)
2 )

or as dual-pp (this is in case T
(k)
1 is below T

(k)
2 ) on the grid S

(k)
1 × (T

(k)
1 ∪ T

(k)
2 )

after swapping arguments for all k ∈ K. Thus f generates pp or dual-pp.

Before we get to our final theorem, we show that if we have lex(x, y), or
lex(x, neg(y)) operations, we can assume that the operation violating Betweenness
is injective.

Lemma 4.53. Let f be a binary operation violating Betweenness and preserving
< and g a binary injective operation preserving < with major the first argument.
Then {f, g} generates a binary injective operation preserving < and violating
Betweenness.

Proof. As f violates Betweenness and preserves <, we can by Lemma 4.51 choose
two triples t1, t2 ∈ Betweenness such that t := f(t1, t2) 6∈ Betweenness and t is
injective. We define operation h(x, y) := g(g(f(x, y), x), y). It is easy to see
that h is injective: If h(x, y) = h(x′, y′) for some x, x′, y, y′ ∈ Q, we infer that
y = y′ because of the outer application of g, which is injective, and similarly
that x = x′ because of the inner application of g. As both f and g preserve
<, it follows that h also preserves <. Operation h also violates Betweenness, as
h(t1, t2) = g(g(t, t1), t2) and t is injective, g preserves < and has major the first
argument.

We conclude the section by putting all the results obtained so far together:

Theorem 4.54. Let Γ be a temporal constraint language. Then CSP(Γ) is
tractable if Γ satisfies one of the following conditions:

1. Γ has a constant polymorphism, or

2. ll ∈ Pol(Γ), or

3. dual-ll ∈ Pol(Γ), or

4. pp ∈ Pol(Γ) and Γ also has a polymorphism providing a min-intersection
closure, or

5. pp ∈ Pol(Γ) and Γ also has a polymorphism providing a min-union closure,
or

6. pp ∈ Pol(Γ) and Γ also has a polymorphism providing a min-xor closure,
or

7. dual-pp ∈ Pol(Γ) and Γ also has a polymorphism providing a max-intersec-
tion closure, or

8. dual-pp ∈ Pol(Γ) and Γ also has a polymorphism providing a max-union
closure, or
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9. dual-pp ∈ Pol(Γ) and Γ also has a polymorphism providing a max-xor clo-
sure.

Otherwise CSP(Γ) is NP-complete.

Proof. If Γ has a constant endomorphism, then assigning the same value to every
variable of an instance I of CSP(Γ) is a solution of I. So CSP(Γ) is tractable.
We have seen in Section 4.4 (Theorem 4.20) that if ll is a polymorphism of Γ,
then CSP(Γ) is tractable. If Γ has the pp polymorphism and a polymorphism
providing a min-intersection, a min-union, or a min-xor closure, we have shown
in Section 4.5 (Theorem 4.23, Theorem 4.25, and Theorem 4.26) that CSP(Γ) is
tractable. All the algorithms for dual polymorphisms are straightforward mod-
ifications of the corresponding algorithms for normal cases. Therefore all the
temporal constraint satisfaction problems mentioned in the statement are really
tractable.

Now, we concentrate on the NP-completeness part. Theorem 4.49 asserts that
either CSP(Γ) is NP-complete (as it contains some relation whose constraint
satisfaction problem is NP-complete), or Pol(Γ) contains a constant operation
(in which case CSP(Γ) is tractable as we have argued above), or Pol(Γ) contains
all permutations of Q, or there is binary f ∈ Pol(Γ) that preserves < and violates
Betweenness.

In the third case, Γ is an equality constraint language and results in Section 3
give us that CSP(Γ) is either tractable or NP-complete. CSP(Γ) is tractable
only if Γ has a binary injective polymorphism g (Theorem 3.6) and it is easy to
see that there exists some permutation π of Q such that π(g(x, y)) = ll(x, y).
Therefore Γ is ll-closed or NP-complete.

So it remains to deal with the case of the binary operation f . By Theo-
rem 4.52, the operation f either generates pp, dual-pp, lex, or weakly negated
lex. In the first two cases, we are either in one of the described tractable cases
or NP-complete by Theorem 4.36 and its dual counterpart. In the third and
the fourth case, f generates a binary injective operation g preserving < and
violating Betweenness by Lemma 4.53. Finally, using Lemma 4.41 we get that g
generates ll or dual-ll and thus we are in one of the described tractable cases.

4.9 Conclusion

In this chapter, we have completely characterized complexity of constraint sat-
isfaction problems for temporal constraint languages. We have identified several
interesting tractable classes (in particular, two classes strictly containing class
Ord-Horn) and shown that algorithms for some of these constraint satisfaction
problems cannot follow from standard resolution techniques.

Several of the techniques introduced in this chapter can be applied not only
to prove the presented results; we rather believe that they are useful in many
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other contexts of constraint satisfaction complexity classification. For instance,
the application of the product Ramsey theorem in Section 4.8 on polymorphisms
of a constraint language is an example with great potential for future use; note
that for a temporal constraint language, we only used the special case d = m = 2.
This technique is probably useful for any constraint language that can be defined
within an ω-categorical structure.

We also expect that our algorithmic results will inspire future algorithms for
constraint satisfaction. While most of the polynomial algorithms that are known
and used to solve infinite-domain constraint satisfaction problems are based on
local consistency techniques, we used graph algorithms on an appropriately de-
fined notion of constraint graph in Section 4.4. It remains an interesting open
question whether this algorithm can be sped up for example using structural
results from Corollary 4.14.

Another possible direction of future research is to combine the qualitative
temporal constraints that were studied here with quantitative constraints, for
example linear constraints, i. e., constraints of the form 15x ≤ 7y + z − 3. This
moves the subject towards the area of linear programming. Surprisingly, even
though Ord-Horn constraints define non-convex solution spaces, the combination
of Ord-Horn constraints and linear constraints can still be solved in polynomial
time [4, 26, 69]. The algorithms known for such problems solve a polynomial
number of linear programs. We believe that a similar approach can be used to
extend these results to a combination of ll-closed and linear constraints. Because
of our structural characterization of ll-closed constraints in Corollary 4.14, it is
enough to extend the result to constraints of the type x > y ∨ x > z ∨ x = y = z.
It seems that such constraints can be modeled by a combination of Ord-Horn
clauses and linear programming, which would give the desired result. Another
possible question is, whether it is possible to efficiently solve a combination linear
constraints and other tractable classes of temporal constraints we have identified.
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Part II

Geometric Representations of
Graphs and Graph Drawing
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Chapter 5

Introduction to Geometric
Representations of Graphs and
Graph Drawing

In this part, we present three results on geometric representations of graphs and
graph drawing. This area turns out to be an interesting interconnection of graph
theory and geometry, which has developed to a broad research field over the years.
We introduce geometric representations of graphs in Section 5.1 and speak about
graph drawing in Section 5.2.

5.1 Geometric Intersection Graphs

One common way, how to represent a graph in a geometric fashion, is to assign
to each vertex of the graph a geometric object (for example a segment in the
plane) such that two objects intersect if and only if the corresponding vertices
are joined by an edge. We use the following definitions to formally speak about
representations:

Definition 5.1. Let F = {S1, . . . , Sn} be a family of sets. The intersection graph
of F , denoted Ω(F), is the graph having F as a vertex set and Si is adjacent to
Sj, i, j ∈ [n], if and only if i 6= j and Si ∩ Sj 6= ∅. A graph G is an intersection
graph if there exists a family F such that G is isomorphic to Ω(F) and in that
case, F is called a representation of G. For a vertex v of an intersection graph,
v denotes the set in F corresponding (in an isomorphism) to v.

It is easy to observe that every graph is the intersection graph and hence the
previous definition seems to be useless. But we can restrict the sets in the family
F in some way and then the fact that the graph is the intersection graph is non-
trivial again. For example, we can consider intersection graphs of segments in
the plane. See Figure 5.1 for an example of the intersection graph of segments.
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Figure 5.1: An example of the intersection graph of segments and its represen-
tation. Segments v1 and v2 should lie on the same line. They are drawn slightly
apart just for clarity.

It is easy to see that not all graphs are in this class. In fact, it is NP-hard to
decide whether a graph is the intersection graph of segments in the plane [72] so
these graphs form a non-trivial subset of all graphs.

Now, we present a few other examples of intersection graphs:

Example 5.1. (Classes of geometric intersection graphs)

• Interval graphs (Figure 5.2): These are intersection graphs of closed inter-
vals of the real line. This class of intersection graphs is one of the oldest
ones and also one of the most popular ones. It was introduced by Hajós
already in 1957 [51] and lots of results about this class have been proved
since. A subclass of interval graphs are proper interval graphs which are
intersection graphs of closed intervals such that no interval contains an-
other one (note that this is also equivalent to the requirement that all the
segments have the same length [88]).

• Circular-arc graphs (Figure 5.3): These are intersection graphs of closed
arcs of a circle. Although these graphs resemble interval graphs at the first
sight, they are quite different in their nature. For example, a cycle of any
length is the circular-arc graph but it is not the interval graph.

• Disk graphs (Figure 5.4): These are intersection graphs of closed disks in
the plane. Although these graphs are still simple in their geometric nature,
they already form a rather rich class of graphs. For example all planar
graphs are disk graphs [96].

• String graphs (Figure 5.5): These are intersection graphs of simple Jordan
curves (a curve is simple if it does not intersect itself) in the plane. It is easy
to verify that this class of graphs contains all the other intersection classes
presented so far. Still, recognizing whether a graph is a string graph is NP-
complete [71, 92]. Interestingly, this was one of few recognition problems,
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Figure 5.2: An example of the interval graph with its representation. Intervals
are depicted above each other to make the length of each interval clear, although
they should lie on the same line.
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Figure 5.3: An example of the circular-arc graph with its representation. Again,
arcs are drawn slightly apart for the sake of clarity.

where proving that the problem is in NP was harder than showing NP-
hardness and finding the proof took a long time.

• d-box graphs: A d-dimensional box is the Cartesian product of intervals
[ai, bi] for 1 ≤ i ≤ d. A graph is a d-box graph if it is the intersection graph
of d-dimensional boxes in Rd. Hence interval graphs are precisely 1-box
graphs. This class of intersection graphs is an example of the class where
geometric objects are not in the plane but a space of arbitrary dimension.

There are two basic directions in the study of intersection graphs. One di-
rection of research studies which graphs are in a particular class of intersection
graphs. Our result in Chapter 6 is an example of a result of this kind. The other
direction of research focuses more on computational problems for graphs from
some class C of intersection graphs. Either special properties of graphs from C
are used to design more efficient algorithms, or it is shown that a problem is still
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Figure 5.4: An example of the disk graph with its representation.
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Figure 5.5: An example of the string graph with its representation.
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hard even when restricted to the graphs from C. Our result in Chapter 7 is an
example of such result.

As we work with segment intersection graphs in the following two chapters,
we now present a few results for them. As we already mentioned above, these
are intersection graphs of straight line segments in the plane (seg denotes this
class of graphs). If a graph G is the intersection graph of straight line segments
in the plane such that the segments are only in d distinct directions, we say that
G is the segment intersection graph in d directions (d-dir denotes this class of
graphs). Note that the graph in Figure 5.1 is the 3-dir graph. Obviously, 1-dir

graphs are exactly interval graphs. For simplicity, we often identify a vertex of a
graph with the segment representing it if no ambiguity arises.

The following question of Scheinerman[93] has motivated a lot of research
in the area of intersection graphs: Is every planar graph the intersection graph
of a set of segments in the plane? Although there have been several partial
answers to the question, the original question still remains unanswered. H. de
Fraysseix, P. Ossona de Mendez, and J. Pach[43] and independently I. Ben-Arroyo
Hartman, I. Newman and R. Ziv[52] have shown that every planar bipartite graph
is the contact graph of a set of segments in two directions (the contact graph
of segments is the intersection graph of segments such that no two segments
cross). N. de Castro et al.[24] have extended the result and showed that planar
triangle-free graphs are contact graphs of segments in three directions. Probably
the best result in this direction is the paper by H. de Fraysseix and P. Ossona de
Mendez[42] showing that every 4-connected 3-colorable plane graph is the contact
graph of segments and that any 4-colored planar graph without an induced C4

using 4 colors is the intersection graph of segments.
A weaker conjecture that every planar graph is the intersection graph of a

set of pseudosegments (i. e., simple Jordan curves such that every two curves
intersect at most once) in the plane has been proved very recently by J. Chalopin,
D. Gonçalves, and P. Ochem [25].

We refer the reader to [78, 19] for a more comprehensive introduction to
intersection graphs and related topics.

5.2 Graph Drawing

When we work with graphs, we usually draw them on a sheet of paper to get the
idea how the graph “looks like”. Also in other areas of science and engineering,
visualization of graphs is a key component of support tools — for example for
drawing data flow diagrams, object-oriented class hierarchies, organization charts,
circuit schematics, and many others. Hence, we need algorithms which draw
graphs so that they are easy to read and understand and which require no, or
only small, human assistance.

Because of the combinatorial and geometric nature of the problem, and the
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wide range of application domains, research in graph drawing has been conducted
within several diverse areas of graph theory, algorithmics, and human-computer
interaction. Books such as [6, 60] give an excellent overview of the topic.

There are several measures of the quality of drawing. One aim is to minimize
the number of crossings, another to display graph symmetries and yet another
to keep the area of the drawing small. These goals can be formalized as multi-
objective optimization problems (e. g., construct a drawing with minimum area
and minimum number of bends and crossings). Naturally, trade-offs are often
necessary in order to solve these problems.

Probably the oldest problem from the area of graph drawing is: Can we draw
a graph into the plane so that curves corresponding to edges do not cross? Here,
drawing of the graph is a function Γ which maps each vertex v to a distinct point
Γ(v) and each edge {u, v} to a simple open Jordan curve Γ(u, v), with endpoints
Γ(u) and Γ(v). Graphs which admit such drawings are called planar and are
studied for a long time. A classic result independently established in [39, 97, 100]
shows, that every planar graph admits a planar straight-line drawing. Drawings
constructed in those works contained vertices exponentially close together and
so such drawings are impractical for our purposes. More practical straight-line
drawings are due to a result of de Fraysseix, Pach, and Pollack [44] and indepen-
dently Schnyder [94]. They show that every planar graph with n vertices has a
planar straight-line drawing with vertices drawn into a grid with O(n2) area.

Sometimes, other than straight-line drawings are desirable. For example in
VLSI design, we need a drawing of a graph into the plane or 3D space, such that
each edge is drawn as a polygonal chain of axis-parallel segments. These drawings
are called orthogonal. Obviously, a graph has to have the maximum degree 4 (or
6, respectively) to allow for the orthogonal drawing. This obstacle can be avoided
by drawing vertices as boxes rather than only points. In orthogonal drawing an
important aesthetic criterion is to minimize the number of bends in each edge.
For a given embedding of a planar graph, it is possible to find the drawing of edges
which minimizes the number of bends using minimum cost flows [99]. However, it
is generally NP-hard to minimize bends over all possible embeddings of a planar
graph [46].

A special case of orthogonal graph drawing arises when vertices of a graph are
placed on the main diagonal of the three-dimensional grid — such drawings are
called diagonal drawings. Diagonal drawings are examples of the wider class of
general-position orthogonal drawings, in which no two vertices are in a common
grid plane. This model, introduced by Papakostas and Tollis [85] and Biedl [10] in
the context of 3-dimensional orthogonal box-drawings, has also been used in the
quadratic-time algorithm [102], which produces general position 4-bend drawings
of simple graphs with maximum degree 6. This algorithm moves the vertices from
an initial diagonal layout with the aim of reducing bends. In diagonal drawings,
minimizing the number of bends requires finding a balanced ordering of vertices.
Here balanced means that the neighbors of each vertex v are evenly distributed
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to the left and right of v. Such orderings are also a starting point for several other
graph drawing algorithms [61, 62, 85, 101, 102]. The problem of determining such
an ordering was recently studied by Biedl et al. [8] and we further extend their
results in Chapter 8.
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Chapter 6

Representing Series-parallel
Graphs as Intersection Graphs of
Line Segments in Three
Directions

In this chapter, we show that series-parallel graphs (i. e., K4-minor free graphs)
can be represented as contact intersection graphs of straight-line segments in
three directions. Moreover, in our representations no two segments of the same
direction intersect. The paper of Fraysseix et al.[42] covers all series-parallel
graphs, but cannot be adapted to give contact representations using only three
directions. Three directions are the best possible, because a series-parallel graph
might contain a triangle. For the same reason, our work is not covered by the
work of N. de Castro et al.[24]. Furthermore, our construction appears to be
much simpler. This chapter is based on the paper [14] of the author.

6.1 Series-parallel Graphs

A series-parallel network (SP network) is a graph with two distinguished vertices
s and t, called a source and a sink, inductively defined as follows: let G1 and
G2 be two SP networks, where s1 is the source of G1, t1 is the sink of G1, and
similarly s2, t2 are the source and the sink of G2. Then the following graphs are
also SP networks:

• The graph Gs that is created from G1 and G2 by identifying t1 with s2.
The source of Gs is s1 and the sink of Gs is t2. This operation is called a
serial composition.

• The graph Gp that is created from G1 and G2 by identifying s1 with s2

and t1 with t2. The source of Gp is the vertex created by identification of
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the sources and the sink of Gp is the vertex created by identification of the
sinks. This operation is called a parallel composition.

A series-parallel graph (SP graph) is a graph G such that the 2-connected
components of G are SP networks. It is a well-know fact [19] that SP graphs
can be equivalently characterized as K4-minor free graphs. An SP network G is
called maximal if each serial composition during its creation was followed by a
parallel composition with an edge.

6.2 Intersection Graphs of Line Segments

We study intersection graphs of segments in three directions in which no two
segments with the same direction can intersect, no three segments share a com-
mon point, and a common point of two segments is an endpoint of exactly one
of them. We denote this class of graphs by pure-3-seg-contact. The three
directions we consider in our paper are horizontal, vertical and diagonal (defined
by the equations x = 0, y = 0, and x = y, respectively). In the rest of the paper
we consider only segments and lines in one of these three directions.

Recall that for a vertex v, v denotes the segment representing the vertex v.
A cone is an area between two different halflines l1, l2 ending in a single common
point. We always consider only cones with an angle smaller than or equal to π/2.
We say that a cone is bounded by two segments σ1, σ2 if they both contain the
point l1 ∩ l2, one of the segments is contained in one of the halflines (say σ1 ⊂ l1)
and the other segment shares more than one point with the other half line (say
σ2 ∩ l2 contains more than one point). See Figure 6.1 for an example of a cone.

Let C be a cone bounded by two segments σ1 and σ2. We say that C is
admissible if there exists a segment τ ⊂ C such that τ is in the (unique) direction
different from the directions of σ1 and σ2 and τ shares a common point with σ1

and a common point with σ2. Moreover, these common points are not endpoints
of σ1 or σ2. We say that τ is assuring admissibility of C.

We begin with an easy lemma about touching representations.

Lemma 6.1. Let G = (V,E) be a graph such that is has a representation IG in
pure-3-seg-contact. Then for each subgraph G′ = (V ′, E ′) of G there is a
representation IG′ of the graph G′ in pure-3-seg-contact. Furthermore, IG′

is obtained from IG by shortening some of the segments and deleting some of the
segments.

Proof. We first remove from IG those segments that correspond to vertices not
present in G′. Thus we obtain a representation of G[V ′]. Now, let F := E(G[V ′])\
E ′. If F = ∅, we are done. Otherwise consider e = {u, v} ∈ F . Segments u and v
meet in a common point in IG[V ′] and without loss of generality u ends there. We
can shorten u so that it does not intersect v, but all other intersection points are
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Figure 6.1: In the left: a cone bounded by segments σ1 and σ2. The cone is admis-
sible and τ assures its admissibility. In the right: an example of a representation
of a serial composition of G1 and G2.

preserved. Obtained representation will clearly represent graph G[V ′] − e. If we
repeat the above procedure for each edge e ∈ F , we clearly obtain a representation
I ′
G of G′.

6.3 Representations of SP Graphs

Now, we present a lemma about representations of SP networks.

Lemma 6.2. For every maximal SP network G with the source s and the sink
t, every admissible cone C, bounded by two segments σ and σ′, and for every
segment τ assuring admissibility of C there exists a representation IG of G in
pure-3-seg-contact such that σ = s, σ′ = t, and IG is inside the triangle
defined by σ, σ′, and τ .

Proof. We prove the lemma by induction on the size of G. If G contains just s
and t connected by an edge, we are immediately done (σ and σ′ already represent
the graph).

If G is a serial composition of graphs G1 and G2, let u denote the common
node of the two composed graphs. We represent u as a segment u = τ given in
the statement of the lemma. It is now easy to check (see Figure 6.1) that there
are admissible cones bounded by σ and τ and bounded by σ′ and τ . Hence, G1

can be represented in the admissible cone bounded by σ and τ limited by some
segment as shown in Figure 6.1 by induction. Similarly, we can represent G2

between σ′ and τ .
Otherwise G is a parallel composition of G1 and G2. We can first by induction

represent G1 in C limited by τ and then choose a segment τ ′ in C parallel to τ
and close enough to the intersection of σ and σ′ so that it does not intersect any
segment of the representation of G1. Then we can represent G2 in C limited by
τ ′ by induction, and we are done.

Now, we introduce a lemma allowing us to make a graph 2-connected. First,
we state a well-known result:
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Proposition 6.3. A graph G contains K4 as a minor if and only if G contains
a subdivision of K4 as a subgraph.

Lemma 6.4. Let G be a graph without K4 as a minor. Then there is a graph H
such that G is a subgraph of H, H is 2-connected, and H does not contain K4 as
a minor.

Proof. If G contains several connected components, we can connect the compo-
nents by new edges so that G becomes connected and we do not introduce a K4

minor. So assume that G is connected. We proceed by induction on the number
of blocks (a block is an edge-maximal 2-connected subgraph or an edge) of G. If
G contains only one block, we are done since G is 2-connected. Let C1 and C2 be
two different blocks of G sharing an articulation v. Let u1 and u2 be neighbors
of v in C1 and C2, respectively. Let G′ be the graph G where we add the edge
{u1, u2}. Clearly, the number of blocks in G′ is one less than the number of blocks
in G. Hence, if we did not introduce K4 minor, we can proceed by induction.
Suppose G′ contains a K4 minor. By Proposition 6.3 G′ contains a subdivision
S of K4. Let W := {w1, . . . , w4} be the vertices of degree three in S. As there
are three vertex disjoint paths from each vertex of W to each other vertex of W ,
vertices in W must be contained in one 2-connected component of G′. For the
same reason W must be contained even in a 2-connected component of G, as for
any vertex x ∈ C1 − v there are at most two vertex disjoint paths from x to any
vertex in C2 − v. Without loss of generality let S be contained in C1. It follows
that S must contain a path that goes from C1 through v to C2 and via the edge
{u1, u2} back to C1. But if we replace the path between v and u2 by an edge
{v, u1}, we obtain a subdivision of K4 that is a subgraph of G. Proposition 6.3
immediately yields a contradiction.

Theorem 6.5. Let G = (V,E) be an SP graph. Then G has a representation
IG ∈ pure-3-seg-contact.

Proof. First, we use Lemma 6.4 to obtain a graph H that is 2-connected, does
not contain a K4 minor, and contains G as a subgraph. Then we add edges to H
and obtain a maximal SP network H ′. The application of Lemma 6.2 to H ′ yields
a representation that lies between two arbitrary touching segments σ and σ′ in
different directions. Finally, we apply Lemma 6.1 and obtain a representation of
G.

6.4 Conclusion

We have presented a simple construction showing that each series-parallel graph
has a representation as a contact graph of segments on three directions. Although
it is unlikely that one would succeed in answering the question of Scheinerman
using such simple techniques as in this chapter, it may be still possible to answer
the question for some restricted classes of planar graphs.
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Chapter 7

Fixed Parameter Tractability of
Independent Set in Segment
Intersection Graphs

In this chapter, we present a fixed parameter tractable algorithm for the Inde-
pendent Set problem in 2-dir graphs and also its generalization to d-dir graphs.
Moreover, our algorithms are robust in the sense that they do not need the actual
representation of the input graph and they answer correctly even if they are given
a graph from outside the promised class. The chapter is based on the paper [63]
of the author.

7.1 Introduction

Let G = (V,E) be a simple undirected graph. In the following we use n for the
number of vertices |V | and m for the number of edges |E|. Let deg v denote
the number of edges incident with v, N(v) the open neighborhood of v (i. e.
N(v) := {u ∈ V | {u, v} ∈ E}) and N [v] the closed neighborhood of v (i. e.
N [v] := N(v)∪ {v}). If U ⊆ V , then we write G[U ] for the subgraph induced on
the set U (i. e., the graph G′ = (U,E ′) where E ′ := {{u, v} ∈ E | u ∈ U, v ∈ U}).
We write G− v instead of G[V \ {v}] for the sake of brevity. A set of vertices U
is called independent if G[U ] contains no edges, and it is called a clique if G[U ]
is a complete graph. The symbols α(G) and ω(G) denote the largest size of an
independent set and of a clique, respectively.

The problem of finding an independent set of maximum size is a well known
NP-hard problem, which remains NP-hard for many restricted graph classes.
For instance for planar cubic graphs [45]. Though it is solvable in polynomial
time in interval graphs (1-dir graphs), it is NP-hard already for 2-dir graphs
[73]. Also from the fixed parameter complexity point of view, the problem is
hard. It is W[1]-complete when parameterized by the size of the independent
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set k [34]. Therefore it is reasonable to ask for its parameterized complexity for
restricted graph classes. As observed many times (and noted e. g., in the recent
monograph of Niedermeier [83]), the problem is trivial for planar graphs (when
parameterized by k) since every planar graph is guaranteed to have α(G) ≥ n

4
.

Fellows asked [private communication, 2005] what the fixed parameter complexity
of this problem is when restricted to 2-dir graphs. Note that the answer is not
as obvious as for planar graphs, since 2-dir do not guarantee independent sets
of any nontrivial size — all cliques are 2-dir graphs (in fact even 1-dir graphs).

In this chapter, we answer this question, even in a more general setting for
d-dir graphs. This complements independent result of Marx [77] showing that
finding an independent set in segment intersection graphs (i. e., with unlimited
number of directions) is W[1]-complete. The author also presents a fixed param-
eter tractable algorithm for the case when the number of directions is bounded
but his algorithm requires a segment representation of an input graph.

In Section 7.3, we present a fixed parameter tractable algorithm (i. e., an
algorithm running in time O(f(k)nO(1))) for the Independent Set problem in 2-

dir graphs. In Section 7.4, we generalize this algorithm to an FPT algorithm for
d-dir graphs (where both d and k are parameters). Our algorithms are designed
to be “robust” — i. e., they either output an independent set of size k or answer
that there is no independent set of size k or detect that the given graph is not
a 2-dir (d-dir) graph. Hence they answer correctly even if the input graph is
not from the required class. This fact is important especially because of the fact
that seg, d-dir, and even 2-dir graphs are NP-hard to recognize [70, 72]. Thus
it is not possible for an algorithm to first construct a segment representation of
the graph and then use it in its computation.

7.2 Reduction Step

Observation 7.1. Let G = (V,E) be an arbitrary graph and u, v ∈ V two of its
vertices such that N [u] ⊆ N [v]. Then α(G) = α(G − v).

Proof. Clearly, α(G) ≥ α(G− v) and so we concentrate on the second inequality.
Note that N [u] ⊆ N [v] implies {u, v} ∈ E. Hence at most one of the vertices
u, v can be in any independent set. If an independent set S contains v, the set
S \{v}∪{u} is also independent and of the same size. That proves the statement
of the observation.

We call a graph reduced if no closed neighborhoods are in inclusion. By con-
secutive application of the reduction step described in Observation 7.1, we reduce
the input graph G to a reduced graph G′ such that α(G) = α(G′). Such reduc-
tion can be performed in time O(mn) (and independently of k). In pseudocode
of algorithms presented below, we use procedure Reduce to perform this graph
reduction.
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7.3 Algorithm for 2-dir Graphs

In this section, we present an FPT algorithm for Independent Set in 2-dir graphs.
We begin with an easy observation:

Lemma 7.2. Let G = (V,E) be a 2-dir graph. Then for each v ∈ V , the graph
G[N(v)] is an interval graph.

Proof. Consider a 2-dir representation RG of the graph G. The vertex v is
represented as a segment v in one of the two directions. Consider the set of
segments Iv := {v ∩ u | {u, v} ∈ E} This set clearly contains one segment for
each neighbor of v and all the segments have the same direction (some of them
can be a single point). Hence, Iv induces an interval graph. Moreover, it can be
easily verified that Iv is an interval representation of G[N(v)].

Next, we derive an important general lemma about d-dir graphs.

Lemma 7.3. Let RG be a d-dir-representation of a reduced graph G = (V,E). If
|V | > ((k−1)(d−1)+1)d(k−1)2, then either there are segments s1, . . . , sk ⊆ RG

such that all of them are parallel with the same direction and no two of them lie
on the same line, or there is a line l which contains k pairwise non-intersecting
segments.

Proof. Suppose that RG does not contain k parallel segments lying on k different
lines. Let l be a line containing at least one segment. Denote by Vl the set
of vertices corresponding to the segments lying on the line l and let Gl be the
(interval) graph G[Vl]. Since G is reduced, Gl is a proper interval graph (no
interval can be contained in another one).

Let c := (k − 1)(d − 1) + 1. First, we prove that ω(Gl) ≤ c. Suppose for
contradiction that Gl contains a clique of size c + 1. Order the vertices from left
to right by the left endpoints of their intervals (or by the the order of their right
endpoints — since this is a proper interval representation, these two orderings
are the same). Let C2, . . . , Cc+1 be the lexicographically minimal cliques of sizes
2, . . . , c + 1, respectively, and denote their vertices Ci = {vi

1, v
i
2, . . . , v

i
i} (in the

ordering). Consider the last two vertices vc+1
c , vc+1

c+1 of Cc+1. The vertex vc+1
c must

have a neighbor uc+1 (in the graph G) that is not a neighbor of vc+1
c+1 (otherwise

vc+1
c would be thrown out in the reduction step). The segment uc+1 cannot lie on

the line l since vc+1
c lies before vc+1

c+1 and so the vertex uc+1 would have to lie before
vc+1

c+1 and we would get a lexicographically smaller clique Cc+1 \{v
c+1
c+1}∪{uc+1} of

the size c+1. The same argument for cliques C2, . . . , Cc yields vertices u2, . . . , uc

in the directions different from the direction of l. Let ri := vi
i−1 \vi

i be the part of
the segment representing vi

i−1 that is not part of the segment representing vi
i, for

2 ≤ i ≤ c+1. Since the segments ri do not overlap and each segment ui intersects
vi

i−1 in ri, each of the vertices u2, . . . , uc+1 lies on a different line. But by the choice
of c = (k − 1)(d − 1) + 1 (applying the pigeon-hole principle), there must be a
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Figure 7.1: A situation of the last two vertices of the i-th clique.

r3 r4 r5
r2
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7u2
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Figure 7.2: A situation in a graph Gl for c = 4. The lexicographically minimal
cliques are: C2 = {1, 2}, C3 = {2, 3, 4}, C4 = {2, 3, 4, 5}, C5 = {3, 4, 5, 6, 7}.

direction with at least k segments from u2, . . . , uc+1. This is a contradiction with
the assumption that there are no such k segments. See Figure 7.1 for an example
of a situation in one clique and Figure 7.2 for an example of the whole situation
on the line l.

Since Gl is an interval graph, it is in particular a perfect graph and hence
α(Gl) · ω(Gl) ≥ |Vl|. As we assumed that |V | > cd(k − 1)2 and because for every
direction, there are at most k − 1 lines containing at least one segment in this
direction (otherwise we easily find k parallel segments), there must be a line l
with at least c(k − 1) + 1 segments. Hence, for this line l, we conclude that

α(Gl) ≥ d c(k−1)+1
c

e = k as claimed by the statement of the lemma.

Corollary 7.4. Let G = (V,E) be a reduced 2-dir graph. Then either |V | ≤
2k(k − 1)2 or α(G) ≥ k.

Proof. The corollary trivially follows from Lemma 7.3.

Algorithm 7.1.
Let G = (V,E) be the input graph.
Reduce(G)

if |V | ≤ 2k2(k2 − 1)2 then begin

Compute the adjacency matrix of G.
for each I ⊆ V , |I| = k do

if I is independent then

Output I and exit.

Output that there is no independent set of size k in G.
end

else begin
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Find greedily an inclusion-wise maximal independent set I.
if |I| ≥ k then

Output I and exit.

for each v ∈ I do begin

Compute G′ = G[N(v)].
if G′ is not an interval graph then

Output that G is not a 2-dir graph and exit.

Find a maximum independent set I of G′ (using the fact that
G′ is an interval graph.

if |I| ≥ k then

Output I and exit.

end

Output that G is not a 2-dir graph.
end

Theorem 7.5. Algorithm 7.1 finds in time O(k6k+2 +mn+n2) for a given graph
G = (V,E) either an independent set of size at least k or answers that there is
no independent set of size (at least) k or detects that G is not a 2-dir graph.

Proof. The algorithm first performs the reduction step as described in Section 7.2.
This takes O(mn) time. Let G′ = G[V ′] be the resulting graph. If |V ′| ≤
2k2(k2 − 1)2 = O(k6), we run a brute-force algorithm that tries all subsets of
vertices of size k — there are O(k6k) such sets — and for each of them, we check
whether it is an independent set or not (this can be easily done in time O(k2) if
we have precomputed adjacency matrix of the graph). Hence in this case we are
done in the time O(k6k+2 + mn + n2).

If |V ′| > 2k2(k2 − 1)2, then Corollary 7.4 asserts that either G′ is not a 2-dir

graph or it contains an independent set of size k2. We find an (inclusion-wise)
maximal independent set I in G′ — this can be done in O(m + n) time by a
greedy algorithm. If it has size at least k, we are done. Otherwise we claim that
there must be a vertex v ∈ I such that there is an independent set of size k in
N(v) (if G was a 2-dir graph). This follows from the fact that every vertex not
in I is adjacent to at least one vertex in I. Hence if J is an independent set of
size k2, then some vertex in I must be adjacent to at least k vertices from J \ I.
So it is enough to find a maximum independent set in G′[N(v)] for each v ∈ I.
From Lemma 7.2, we know that each of the graphs G′[N(v)] is an interval graph,
and thus its independence number can be computed in polynomial time. Hence,
for every vertex v of I, we verify that G′[N(v)] is an interval graph (and reject
G as not being 2-dir if it is not) in O(m + n) time and we compute a maximum
independent set in time O(m + n). If none of these independent sets has size at
least k, we again reject G as not being a 2-dir graph.

Note that if we get a 2-dir representation of the graph G as part of the input,
the algorithm from Theorem 7.5 would be much simpler. In the kernelization step,
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it would suffice to have enough vertices guaranteeing an independent set of size
k (and not k2) and we could find it by simply checking the types of independent
sets described in Lemma 7.3.

7.4 Algorithm for d-dir Graphs

In this section, we present an algorithm for Independent Set in d-dir graphs.
The algorithm is in fact simpler than the one for 2-dir graphs but its correctness
is less obvious and its running time is worse. Due to Lemma 7.3, a large enough
reduced d-dir graph must contain a big independent set. Hence, we use a similar
trick as for 2-dir graphs and for d-dir graphs whose number of vertices does not
guarantee an independent set of size k3d, we run a brute force algorithm to decide
the existence of an independent set of size k. For larger graphs, we indirectly
show that there is a sufficiently limited number of cliques in whose neighborhoods
it suffices to search for independent sets of size k, and that those neighborhoods
have a simple structure. Now, we formalize the above statements:

Corollary 7.6. Let G = (V,E) be a reduced d-dir graph. Then either |V | ≤
((k − 1)(d − 1) + 1)d(k − 1)2 or α(G) ≥ k.

Proof. The statement trivially follows from Lemma 7.3.

Lemma 7.7. Let RG be a d-dir representation of a reduced graph G = (V,E).
Let dv be the direction of the segment v for v ∈ V . Denote by G′ the graph obtained
from G[N(v)] by the reduction procedure of Section 7.2. Then G′ contains at most
two vertices that were represented by segments in the direction dv in RG.

Proof. Let l be the line containing v. Note that G′ contains only neighbors of v.
Let Vl be the set of neighbors of v that are represented by segments parallel with
the direction dv, and let Sl be the set of segments representing them. Then all
segments of Sl lie on the line l. Since G was reduced, no segment in Sl can contain
another one (including v itself) and hence each segment in Sl contains exactly one
endpoint of the segment representing v. Let v1, . . . , vt be the vertices of Sl whose
segments contain the left endpoint of v, ordered from left to right. Since apart
from Sl, G[N(v)] contains only vertices corresponding to the segments crossing
v, we see that N [v1] ⊆ N [v2] ⊆ . . . ⊆ N [vt], and hence only the vertex v1 survives
the reduction step and is included in G′. Similarly, at most one of the vertices
represented by segments containing the right endpoint of v remains in G′. See
Figure 7.3 for an example of a reduction of a neighborhood.

Theorem 7.8. There is an algorithm running in time O(d2kk9dk+2 +n2 +k3dmn)
that given a graph G = (V,E) either finds an independent set of size k or answers
that there is no independent set of size k or detects that G is not a d-dir graph.
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v

Figure 7.3: A vertex v (dotted interval) and its neighbors. Dashed intervals are
the vertices that are removed in the reduction step on G[N(v)]. Vertical thick
lines represent points of intersection with segments in other directions.

Proof. The algorithm first performs the reduction step as described in Section 7.2.
This takes O(mn) time. Let G′ := G[V ′] be the resulting graph. If |V ′| ≤
((k3d − 1)(d− 1) + 1)d(k3d − 1)2 = O(d2k9d), we run a brute-force algorithm that
tries all subsets of vertices of size k — there are O(d2kk9kd) such sets — and for
each set checks whether it is an independent set or not (that can be easily done in
time O(k2) provided we have precomputed the adjacency matrix of G′). Hence,
in this case we are done in time O(d2kk9dk+2 + n2 + mn).

If |V ′| > ((k3d−1)(d−1)+1)d(k3d−1)2, we know by Corollary 7.6 that either
G′ is not a d-dir graph or G′ contains an independent set of size k3d. Now, we
start the following recursive procedure:

Algorithm 7.2.
procedure FindIndependentSet(G, depth)
begin

Find a maximal independent set I in the given graph G.
if |I| ≥ k then

Output I and abort (at all levels of recursion).
if depth ≥ 3d then

Output that G is not a d-dir graph and abort.
for each v ∈ I do begin

G′ := G[N(v)]
Reduce(G′)

if |V (G′)| ≥ k then

FindIndependentSet(G′, depth + 1)
end

end

If the recursive procedure did not find any independent set, we answer that
G is not a d-dir graph. Hence, the overall algorithm for d-dir graphs looks as
follows:

Algorithm 7.3.
Let G = (V,E) be the input graph.
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Reduce(G)

if |V | ≤ ((k3d − 1)(d − 1) + 1)d(k3d − 1)2 then begin

Compute the adjacency matrix of G.

for each I ⊆ V , |I| = k do

if I is independent then

Output I and exit.

Output that there is no independent set of size k in G.

end

else begin

FindIndependentSet(G,0)

Output that G is not a d-dir graph.

end

The time complexity of the recursive call of FindIndependentSet is obviously
O(k3dmn). What remains to be proved is that if G is a d-dir graph, then the
recursion always finds an independent set of size k (recall that if G is a d-dir

graph it must contain such independent set). Correctness of the other answers
easily follows from this fact. If G is a d-dir graph, it contains an independent
set of size k3d. Hence some vertex from the maximal independent set must have
an independent set of size k3d−1 in its neighborhood (by a similar argument as
in Theorem 7.5). By induction and because the reduction does not change the
size of a maximum independent set, we argue that there is a branch of recursion
whose graph considered in the depth i of the recursion contains an independent
set of size k3d−i. By Lemma 7.7, we know that during the recursion we can choose
at most three vertices from each direction. Thus in the depth of recursion 3d− 1
every obtained graph can contain at most one vertex. Hence, we see that if G is
a d-dir graph, then the recursion must stop before the depth 3d− 1 as otherwise
we get a contradiction. There are only two ways of stopping the recursion before
the depth 3d. Either we get a graph with less than k vertices or we find an
independent set of size k. As there must be a branch of recursion whose graph at
the depth i contains an independent set of size k3d−i, we know that this branch
cannot stop because of the lack of vertices and hence it must stop because it
found an independent set of size k.

7.5 Conclusion

We have presented efficient FPT algorithms for the Independent Set problem
restricted to intersection graphs of segments with segments lying in a bounded
number of direction (where both the size of the sought independent set k and
the number of directions d are considered as parameters). Given the simplicity
of the situation for two directions, it might be interesting to determine whether
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Figure 7.4: A recursion tree with a depth of the recursion written on the left and
guaranteed independent set size written on the right.

there is a fixed parameter tractable algorithm running in time 2O(k) · p(m,n) in
this case.

It is worth mentioning the parallel to the (classical) complexity of the Clique
problem restricted to intersection graphs. The Clique problem is known to be NP-
hard for string graphs and also for intersection graphs of convex sets, polynomial
time solvable (but not FPT with regard to d as parameter) for d-dir graphs and
its complexity still remains open for seg graphs. This question was asked in [73],
for a recent survey on its development and related questions cf. [5].
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Chapter 8

On the Complexity of the
Balanced Vertex Ordering
Problem

In this chapter, we consider the problem of finding a balanced ordering of the
vertices of a graph. More precisely, we want to minimize the sum, taken over
all vertices v, of the difference between the number of neighbors to the left and
right of v. This problem, which has applications in graph drawing, was recently
introduced by Biedl et al. [Discrete Applied Math. 148:27–48, 2005]. They
proved that the problem is solvable in polynomial time for graphs with maximum
degree three, but is NP-hard for graphs with maximum degree six. One of our
main results is to close the gap in these results, by proving NP-hardness for
graphs with maximum degree four. Furthermore, we prove that the problem
remains NP-hard for planar graphs with maximum degree four and for 5-regular
graphs. On the other hand, we introduce a polynomial time algorithm that
determines whether there is a vertex ordering with total imbalance smaller than
a fixed constant, and a polynomial time algorithm that determines whether a
given multigraph with even degrees has an ‘almost balanced’ ordering. Results
in this chapter are based on the paper [65] of the author.

8.1 Introduction

Let G = (V,E) be a multigraph without loops. An ordering of G is a bijection
σ : V → {1, . . . , |V |}. For u, v ∈ V with σ(u) < σ(v), we say that u is to the left
of v and that v is to the right of u. The imbalance of v ∈ V in σ, denoted by
Bσ(v), is

∣
∣|{e ∈ E : e = {u, v}, σ(u) < σ(v)}| − |{e ∈ E : e = {u, v}, σ(u) > σ(v)}|

∣
∣.

When the ordering σ is clear from the context we simply write B(v) instead
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of Bσ(v). The imbalance of ordering σ, denoted by Bσ(G), is
∑

v∈V Bσ(v). The
minimum value of Bσ(G), taken over all orderings σ of G, is denoted by M(G).
An ordering with imbalance M(G) is called minimum. The following two facts
hold for every ordering:

• Every vertex of odd degree has imbalance at least one.

• The two vertices at the beginning and at the end of the ordering have
imbalance equal to their degrees.

These two facts imply the following lower bound on the imbalance of an ordering.
Let odd(A) denote the number of odd degree vertices among the vertices of
A ⊆ V . Let (d1, . . . , dn) be the sequence of vertex degrees of G, where di ≤ di+1

for all i ∈ {1, 2, . . . , n − 1}. Then

Bσ(G) ≥ odd(V ) − (d1 mod 2) − (d2 mod 2) + d1 + d2.

An ordering σ is perfect if the above inequality holds with equality. perfect

ordering is the decision problem whether a given multigraph G has a perfect
ordering. This problem is clearly in NP.

Biedl et al. [8] gave a polynomial time algorithm to compute a minimum
ordering of graphs with maximum degree at most three. On the other hand, they
proved that it is NP-hard to compute a minimum ordering of a (bipartite) graph
with maximum degree six.

One of the main results of this paper is to close the above gap in the complexity
of the balanced ordering problem with respect to the maximum degree of the
graph. In particular, we prove that the perfect ordering problem is NP-
complete for simple graphs with maximum degree four.

Whether the balanced ordering problem is efficiently solvable for planar graphs
with maximum degree four is of particular interest since a number of algorithms
for producing orthogonal drawings of planar graphs with maximum degree four
start with a balanced ordering of the vertices [9, 85]. We answer this question in
the negative by proving that the perfect ordering problem is NP-complete
for planar simple graphs with maximum degree four.

Our third NP-hardness result states that finding an ordering with minimum
imbalance is NP-hard for 5-regular simple graphs. All of these NP-hardness
results for ordering problems are presented in Section 8.3. The proofs are based
on reductions from various satisfiability problems. Section 8.2 contains several
NP-completeness results for used satisfiability problems. While the complexity of
most of these satisfiability problems follows from a general result by Schaefer [91],
we believe that our proofs are simpler and the result for planar 2–in–4sat is
of independent interest.

In Section 8.4, we present our positive complexity results. In particular, we
describe a polynomial time algorithm that determines whether a given graph has
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an ordering with at most k imbalanced vertices for any constant k. This algorithm
has several interesting corollaries. For example, the perfect ordering problem
can be solved in polynomial time for a multigraph in which all the vertices have
even degrees (in particular, for 4-regular multigraphs).

8.2 NP-Hardness of Satisfiability Problems

In this section, we prove several NP-hardness results about various satisfiabil-
ity problems. Note that the results in this section could be also achieved by
verifying conditions of a general theorem of Schaefer [91], but we feel that our
proofs are simpler. First, we introduce several basic definitions about satisfi-
ability. Throughout this chapter, formulae are considered to be in a conjunc-
tive normal form. That is, each formula ϕ is a conjunction of some m clauses
c1∧c2∧· · ·∧cm, where each clause ci is a disjunction of ni literals li1∨ li2∨· · ·∨ lini

for all i ∈ {1, . . . ,m}. A literal is either a variable or its negation. The size
of a clause is the number of literals in it. Suppose ϕ is a formula with vari-
ables x1, . . . , xn. The incidence graph of ϕ is the bipartite graph with vertex set
{c1, . . . , cm, x1, . . . , xn}, where {ci, xj} is an edge if and only if the variable xj oc-
curs in the clause ci. A truth assignment of a formula ϕ with variables x1, . . . , xn

is an arbitrary function t : {1, . . . , n} → {0, 1}. The values 0 and 1 are also
sometimes called false and true, respectively. A truth assignment t is satisfying
if there is at least one true literal in every clause. The formula ϕ is satisfiable if
it has at least one satisfying truth assignment.

The decision problem asking whether a given formula ϕ is satisfiable is called
sat. If we assume that every clause in the given formula ϕ has size exactly
three, then the decision problem asking whether ϕ is satisfiable is called 3sat.
Two common variants of 3sat are Not–All–Equal 3-Satisfiability (nae–3sat for
short) and 1–in–3 Satisfiability (1–in–3sat). Both these problems are defined on
formulae in which each clause has size exactly three. Furthermore in nae–3sat

the formulae are without negations. A truth assignment t is NAE satisfying if
each clause has at least one true and at least one false literal. t is called 1–in–3
satisfying if each clause has exactly one true literal. The notions of NAE satisfi-
able and 1–in–3 satisfiable formulae, and the corresponding decision problems are
defined in the obvious way. It is well known that sat, nae–3sat, and 1–in–3sat

are NP-complete (see [91]).
We say that a formula ϕ for which all clauses have five literals is 2–or–3–in–5

satisfiable if there exists a truth assignment such that in each clause either two or
three literals are true. Let 2–or–3–in–5sat denote the decision problem asking
whether a given formula without negations is 2–or–3–in–5 satisfiable.

Lemma 8.1. The problem 2–or–3–in-5sat is NP-complete.

Proof. The problem clearly belongs to NP. We prove NP-completeness by a re-
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duction from nae–3sat, which is NP-complete [91]. Suppose we are given a
formula ϕ without negations. Create a formula ϕ′ from ϕ by adding a new clause
c0 := x ∨ x ∨ x ∨ x′ ∨ x′, and by substituting each clause c with clause c ∨ x ∨ x′

where x and x′ are new variables. Given a NAE-satisfying truth assignment t
for ϕ, a 2-or-3-in-5-satisfying truth assignment t′ for ϕ′ can be created by setting
t′(x) := 0 and t′(x′) := 1. Also, if t′ is a 2–or–3–in–5 satisfying truth assignment
for ϕ′, then t′(x) = ¬t′(x′) by clause c0. Thus, restricting t′ to the variables of ϕ,
we obtain a NAE-satisfying truth assignment for ϕ.

The next lemma uses the following version of the satisfiability problem. Let
ϕ be a formula in which all clauses have four literals. A truth assignment t is
2–in–4 satisfying if each clause in ϕ has exactly two true literals. ϕ is 2–in–4
satisfiable if there exists a 2–in–4 satisfying truth assignment. 2–in–4sat is the
decision problem asking whether a given formula ϕ is 2–in–4 satisfiable.

Lemma 8.2. The problem 2–in–4sat is NP-complete for formulae without nega-
tions.

Proof. The problem is obviously in NP. We prove its NP-completeness by reduc-
tion from 1–in–3sat, which is NP-complete for formulae without negations [91].
Let ψ be a formula given as an input for 1–in–3sat. Create a formula ψ′ with
a new variable v by adding v to each clause of ψ. We now show that ψ is 1–in–3
satisfiable if and only if ψ′ is 2–in–4 satisfiable. If t is a 1–in–3 satisfying truth
assignment for ψ, then by setting t′(v) := 1 and t′(x) := t(x) for each variable
x 6= v of ψ′, we obtain a 2–in–4 satisfying truth assignment for ψ′. Conversely, if
t′ is a 2–in–4 satisfying truth assignment for ψ′, then either t′ (in the case that
t′(v) = 1) or 1 − t′ (in the case that t′(v) = 0) restricted to variables of ψ is a
1–in–3 satisfying truth assignment for ψ.

Now, we strengthen the result from the previous lemma.

Lemma 8.3. The problem 2–in–4sat is NP-complete for planar formulae with-
out negations.

Proof. Suppose we have a formula ϕ with clauses of size four without negations.
We now show that if the formula ϕ is not planar we can alter it in polynomial
time so that the resulting formula ϕ′ is planar and ϕ is 2–in–4 satisfiable if and
only if ϕ′ is 2–in–4 satisfiable. The formula ϕ′ will contain some negations but
we also define a planar formula ensuring v = ¬v′ for two of its variables v, v′

and all 2–in–4 satisfying truth assignments. Hence by substitution of each edge
representing the negative occurrence by this gadget we prove the lemma.

Let d be a drawing of the incidence graph of ϕ in the plane, such that any two
edges cross at most once. We proceed by induction on the number of crossings
in d. If there is no crossing, we are done. Now suppose there is some crossing
and for all formulae having a drawing of their incidence graph with less crossings
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Figure 8.1: The crossing gadget for two edges {v, c} and {v′, c′} (left) and the
negation gadget for a negative occurrence of variable v in clause c (right). Empty
circles represent clauses, and full circles represent variables. The symbol ¬ marks
a negative occurrence.

the lemma holds. Consider an edge e = (v, c) and the crossing with some edge
e′ = (v′, c′) closest to v on the edge e. Create a new formula ψ by adding three
new variables vee′ , vee′

v , vee′

v′ and two clauses cee′

1 := ¬v ∨ ¬v′ ∨ vee′ ∨ vee′

v , cee′

2 :=
¬v∨¬vee′∨vee′

v′ ∨vee′

v . Then substitute occurrences of v in c by vee′

v , and occurrences
of v′ in c′ by vee′

v′ . See Figure 8.1 for an example of a gadget for two crossing edges.
After the substitution we clearly obtain a formula with a drawing with one

less crossing. It remains to show that ψ is 2–in–4 satisfiable if and only if ϕ
is 2–in–4 satisfiable (we get the rest using the induction). Let t be a 2–in–4
satisfying truth assignment for ϕ. Setting t′(x) := t(x) for all variables x of ϕ,
t′(vee′

v ) := t(v) and t′(vee′

v′ ) = t′(vee′) := t(v′), we obtain a 2–in–4 satisfying truth
assignment for ψ. The other implication can be seen as follows. Let t′ be a 2–in–4
satisfying truth assignment for ψ. We set t(x) := t′(x) for each variable x of ϕ.
If we show that t′(v) = t′(vee′

v ) and t′(v′) = t′(vee′

v′ ), we immediately get that t is
a 2–in–4 satisfying truth assignment for ϕ. We analyze two cases (the other two
follow by symmetry):

• t′(v) = t′(v′) = 1: In this case, cee′

1 has already two literals set to zero and
so t′(vee′

v ) = t′(vee′) = 1. Now looking at cee′

2 we see that two of its literals
are set to zero and one literal is set to one. Thus t′(vee′

v′ ) = 1.

• t′(v) = ¬t′(v′) = 1: If t′(vee′) = 1, then cee′

1 has two literals set one and
one literal set to zero. Thus t′(vee′

v ) must be zero. But then cee′

2 has three
literals set to zero and we can conclude that this cannot be the case. Hence
t′(vee′) = 0 and t′(vee′

v ) = 1 to satisfy cee′

1 . Moreover cee′

2 has two literals set
to one and one literal set to zero showing that t′(vee′

v′ ) = 0.

Now, it remains to show how to remove the negative occurrences from ϕ′. For
each negative occurrence of variable v in clause c, we add seven new variables
vvc

n , vvc
1 , . . . , vvc

6 and four new clauses cvc
0 := v ∨ vvc

n ∨ vvc
1 ∨ vvc

2 , cvc
1 := vvc

1 ∨ vvc
2 ∨

vvc
3 ∨ vvc

4 , cvc
2 := vvc

3 ∨ vvc
4 ∨ vvc

5 ∨ vvc
6 , cvc

3 := vvc
1 ∨ vvc

2 ∨ vvc
5 ∨ vvc

6 . See Figure 8.1
for an example of a created gadget. We also substitute the negative occurrence
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of v in c by a positive occurrence of vvc
n . Let ϕ′′ be the resulting formula. It

is straightforward to check that t′′(v) = ¬t′′(vvc
n ) in any 2–in–4 satisfying truth

assignment t′′ of ϕ′′ and by setting t′′(vvc
1 ) := t′′(vvc

3 ) := t′′(vvc
5 ) = t′(v) and

t′′(vvc
2 ) := t′′vc

4 := t′′vc
6 := t′′vc

n = ¬t′(v) we get a 2–in–4 satisfying truth assignment
t′′ of ϕ′′ from a 2–in–4 satisfying truth assignment t′ of ϕ′.

Note that if we allowed multiple occurrences of one variable in a clause in the
previous lemma the negation gadget would become trivial and for our purposes
such a weaker lemma would be sufficient. But we decided to prove the stronger
version as we find the lemma of independent interest.

8.3 NP-Hardness of Balanced Ordering Prob-

lems

In this section, we prove several NP-hardness results about balanced ordering
problems.

Theorem 8.4. The perfect ordering problem is NP-complete for planar
graphs with maximum degree four.

Proof. NP-hardness is proved by a reduction from 2–in–4sat for planar formulae
without negations (see Lemma 8.3). Given a formula ϕ, create a graph Gϕ with
one vertex uc for each clause c. For each variable v that occurs ov times in
ϕ, add a path on 3ov + 1 new vertices pv

1, . . . , p
v
3ov+1 to Gϕ, add ov additional

vertices qv
1 , . . . , q

v
ov

, and connect qv
i , i ∈ {1, . . . , ov}, with vertices pv

3i−2 and pv
3i.

The path with the additional vertices is called a variable gadget. Finally for each
i ∈ {1, . . . , ov}, connect vertex pv

3i−2 of the path to uc, where c is the clause
corresponding to the i-th occurrence of the variable v. These edges are called
clause edges. See Figure 8.2 for an example of this construction.

Observe that the maximum degree of Gϕ is four. In particular, deg(uc) =
4, deg(qv

i ) = 2 for all i ∈ {1, . . . , ov}, deg(pv
3i) = 3 for all i ∈ {1, . . . , ov},

deg(pv
3i−2) = 4 for all i ∈ {2, . . . , ov}, deg(pv

3i−1) = 2 for all i ∈ {1, . . . , ov},
deg(pv

1) = 3, and deg(pv
3ov+1) = 1. Also note that the created graph is planar if

the incidence graph of ϕ is planar.
We now prove that Gϕ has a perfect ordering if and only if ϕ is 2–in–4 satis-

fiable. Suppose Gϕ has a perfect linear ordering σ. For each variable v and for
each i ∈ {1, . . . , ov} the vertex pv

3i−1 has one neighbor to the left and one neighbor
to the right in σ (since deg(pv

3i−1) = 2). Similarly, qv
i has one neighbor to the

left and one neighbor to the right in σ. Thus they must be placed between pv
3i−2

and pv
3i. As pv

3i−1 and qv
i are on one side (e.g., to the left) of vertex pv

3i−2 (pv
3i)

the other neighbors of the vertex must be on the other side. This implies that
in σ, the path in each variable gadget is in the order given by its numbering or
inverse numbering, and all the clause edges (the edges with exactly one endpoint
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Figure 8.2: Constructed graph for formula (a∨b∨c∨d)∧(a∨c∨d∨e)∧(a∨b∨d∨e).
The three clauses have numbers 1, 2, 3 in the picture.

in the variable gadget) have a clause vertex on the same end (for example, the
left end of each clause edge is a vertex of a path). If the path in the gadget for
variable v is ordered according to its numbering, then set t(v) := 0. Otherwise set
t(v) := 1. This truth assignment is 2–in–4 satisfying because each clause vertex
has two neighbors on each side.

For a given truth assignment t, we can analogously construct a perfect linear
ordering. First, place each variable gadget corresponding to a variable with t(v) =
0 with the path placed according to the inverse ordering, and put each vertex
qv
i immediately after vertex pv

3i−1, i ∈ {1, . . . , ov}. Then place vertices uc in an
arbitrary order and finally the variable gadgets corresponding to variables with
t(v) = 1 with the paths ordered according to the numbering and vertices qv

i placed
immediately after the vertex pv

3i−2.

The following two technical lemmas will be used later for removing parallel
edges from a multigraph without changing an ordering with minimum imbalance.

Lemma 8.5. Let G be the multigraph drawn in Figure 8.3 with two parallel edges
added between the vertices a and b. Then there exists a minimum ordering of G
such that a is the leftmost and b the rightmost vertex. Such an ordering is called
a natural ordering of G.

Proof. The ordering a, 1, 2, 3, 4, 5, 6, b has imbalance 20. We claim that there is no
ordering with smaller imbalance. Let v1, . . . , v8 be some ordering of the vertices.
We distinguish two cases:

1. There are two parallel edges between v1 and v2 (or symmetrically between
v7 and v8). Because there is only one double-edge in our graph, v1 = a and
v2 = b (the case v1 = b and v2 = a is the same) and we also know that there
is at most one neighbor to the right of v7. Since each vertex of G is connected
to exactly one of a and b, there is only one neighbor to the left of v3. Because
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Figure 8.3: The triple edge gadget.

the other vertices have imbalance at least one (they have odd degrees), the
imbalance of the ordering is at least B(v1) + B(v3) + B(v7) + B(v8) + 4 =
5 + 3 + 3 + 5 + 4 = 20.

2. There is no parallel edge between v1 and v2 nor between v7 and v8. In
this case, there is at most one neighbor to the left of v2, and at most
one neighbor to the right of v7. Hence the total imbalance is at least
B(v1) + B(v2) + B(v7) + B(v8) + 4 = 5 + 3 + 3 + 5 + 4 = 20.

Lemma 8.6. Let G be a 5-regular multigraph and let c be the number of triple-
edges in G. Let G′ be the graph obtained from G by replacing each triple-edge of
G with endpoints a and b by the triple-edge gadget in Figure 8.3. The vertices a
and b of the gadget are identified with the original end-vertices of the triple-edge.
Then M(G) = M(G′) − 10 · c.

Proof. Given an ordering of G with imbalance i, we can create an ordering of G′

with imbalance i+10 · c by inserting, for each triple-edge ab, the vertices 1, . . . , 6
from the gadget in Figure 8.3 between a and b and in this order (the imbalance
of a and b does not change by the substitution). Thus M(G) ≥ M(G′) − 10 · c.
On the other hand, if we have a minimum ordering of G′ with imbalance i′, below
we show that by changing the given ordering so that each gadget is in its natural
ordering, we obtain an ordering with imbalance ≤ i′. Hence, the new ordering
has imbalance i′, from the minimality of i′. By substituting each gadget with the
triple-edge we obtain an ordering of G with imbalance i′ − 10 · c, proving that
M(G) ≤ M(G′) − 10 · c.

Suppose we have a triple-edge gadget in G′ between vertices a and b, with a
to the left of b. Each of the vertices has two neighbors u1, u2 (u′

1, u
′
2 respectively)

outside of the gadget. Let u1 be to the left of u2, and let u′
1 be to the left

of u′
2. If u1, u2 are both to the right of a and u′

1, u
′
2 are both to the left of b,

then we are in the situation described by Lemma 8.5, and we can conclude that
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after reordering the vertices of the gadget (so that vertices a and b retain their
ordering with respect to all other vertices of the graph), we obtain an ordering
with less or equal imbalance. If u1 is to the left and u2 to the right of a (u′

1 and
u′

2 are both still to the left of b), then the imbalance of the gadget in the natural
ordering in this situation is 18 and any ordering of the gadget cannot have a
smaller imbalance, as in the new situation only the order of vertices of one of the
edges incident with the gadget has changed. Hence, if we reorder the vertices of
the gadget, we obtain an ordering of the graph with less or equal imbalance. Now
consider the general situation. We have j neighbors of a outside of the gadget
and j′ neighbors of b outside of the gadget (0 ≤ j, j′ ≤ 2) on the other side of a
(b respectively). In the original situation the natural ordering of the gadget has
imbalance 20 − 2 · (j + j′). There cannot be an ordering with smaller imbalance
because in the situation only the order of vertices of the j + j′ edges incident
with the gadget changed. Hence, we can conclude that reordering the gadget
into the natural ordering cannot increase the imbalance of the graph regardless
of the ordering of v, u1, u2 and v′, u′

1, u
′
2.

For the next reduction, we use the 2–or–3–in-5sat problem, which we
proved to be NP-complete in Section 8.2.

Theorem 8.7. The perfect ordering problem is NP-complete for 5-regular
multigraphs.

Proof. We prove NP-hardness by a reduction from 2–or–3–in-5sat. Suppose
that we are given a formula ϕ without negations and with all clauses of size five.
Moreover, assume that each variable occurs in at least two different clauses in the
formula. We can make a formula satisfy this condition by adding satisfied clauses
of type x∨x∨x∨¬x∨¬x. Now create the following multigraph G from ϕ. For each
clause c, add a new vertex vc to G. For each variable x that occurs ox times in ϕ,
add a new path (called a variable path) with 2ox−2 vertices vx

1 , . . . , vx
2ox−2, where

edges vx
2i−1v

x
2i, 1 ≤ i ≤ ox−1, are triple-edges. Connect vertex vx

2i, 1 ≤ i ≤ ox−1,
of the path to the vertex corresponding to the clause with i-th occurrence of x.
Furthermore, connect vertex vx

2ox−2 to the vertex corresponding to the clause with
the ox-th occurrence of x (because x was in at least two different clauses, we can
without loss of generality assume that no parallel edges are created). Connect
each vertex vx

2i−1, 1 ≤ i ≤ ox − 1, to the new vertex px
i , and connect each vertex

vx
1 to the new vertex px

0 . Now, the only vertices which have degree other than five
are in the set P := {px

j : x is a variable, 0 ≤ j ≤ ox − 1} and these have degree
one. By running the following procedure two times for the set P , all the vertices
will have degree five.

n := |P |
Arbitrarily number the vertices in P by 1, . . . , n.
while |P | ≥ 3 do

Let ui, uj, uk be three vertices in P .
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Figure 8.4: Constructed graph for formula (a∨ a∨ b∨ c∨ d)∧ (a∨ b∨ b∨ c∨ d).
Clause vertices are marked 1 and 2. Clause vertices and variable paths are drawn
in black color, vertices px

i and vertices added by the procedure are in gray color.

P := P \ {ui, uj, uk} ∪ {un+1, un+2}
Add a complete bipartite graph on ui, uj, uk and un+1, un+2 to G.
n := n + 2

end

// Now P = {ui, uj}
Add to G a complete bipartite graph on ui, uj and two new vertices s1, s2.
Add a triple-edge s1s2 to G.

Let n0 denote the value of n at the beginning of the procedure and n1 the
value of n at the end of the procedure. It is easy to check that G is 5-regular.
We now show that G has a perfect ordering if and only if ϕ was 2-or-3-in-5
satisfiable. Suppose we have a perfect ordering of G. It holds for every ordering
that B(s1) + B(s2) > 2. Since the ordering is perfect, the ordering begins s1, s2

without loss of generality. By a similar argument, the ordering ends with vertices
s′2, s

′
1, where s′1 and s′2 are the vertices added at the end of the second run of

the procedure on P . Because all other vertices are balanced, we know that every
variable path is either in its natural ordering or reversed. Moreover all edges
between the variable path and clauses have clause vertices to the right (or to the
left in the reversed case). Because all clause vertices are balanced we get a 2-or-3-
in-5 satisfying truth assignment of ϕ by assigning t(x) := 0 to the variables whose
path is naturally ordered and t(x) := 1 to the variables whose path is reversed.
For the converse, suppose we have a 2-or-3-in-5 satisfying truth assignment t of ϕ.
First, we place vertices s1, s2, un1

, . . . , un0+1 added in the first run. We continue
by placing vertices px

j where x is a variable with t(x) = 0 and 0 ≤ j ≤ ox − 1.
Then we place variable paths for variables x such that t(x) = 0 in their natural
ordering and after them the clause vertices. We finish by placing symmetrically
the rest of the paths and vertices added in the second run. It is straightforward
to check that this ordering is perfect.

Corollary 8.8. It is NP-hard to find a minimum ordering for 5-regular graphs.

126



Proof. Construct the multigraph G as in the reduction in the proof of Theo-
rem 8.7. Say G has c triple edges. Construct G′ from G by substituting each
triple-edge by a triple-edge gadget. Observe that G′ remains 5-regular and is a
simple graph. From Lemma 8.6 we know that orderings of G′ with imbalance
|V | + 10 · c correspond to perfect orderings of G. This proves NP-hardness of
finding the ordering with such imbalance. Hence finding a minimum ordering for
5-regular graphs is NP-hard.

8.4 Algorithm

In this section, we present an algorithm that determines in polynomial time
whether a given multigraph has an ordering with constant imbalance. First, we
introduce a key lemma.

Lemma 8.9. There is an O(n + m) time algorithm to test whether a multigraph
G with n vertices and m edges has an ordering in which a given list of vertices
imbalanced = (v1, . . . , vk) are the only imbalanced vertices, and σ(vi) < σ(vi+1)
for all 1 ≤ i ≤ k − 1.

Proof. The vertices not in the list imbalanced are called balanced. The algo-
rithm works as follows: First, we check that all odd-degree vertices are in the
imbalanced list. If not, then we can reject since every odd-degree vertex must
be imbalanced. Now assume that all balanced vertices have even degrees. Then
start building an ordering σ from left to right. We append to σ those vertices that
have not been placed yet and have half of their neighbors already placed. Such
vertices are called saturated and are stored in the set saturated. Because satu-
rated vertices are balanced each saturated vertex must be placed before any of its
unplaced neighbors. In particular, saturated vertices must form an independent
set. Hence, we cannot make a mistake when placing any saturated vertices. If
there is no saturated vertex, the vertex which is placed next will be imbalanced
and hence it must be the first unused vertex from the imbalanced list. It remains
to prove that it is not better to place some vertices from the imbalanced list
while there are still some saturated vertices. If the order of vertices of any edge
does not change then we have an equivalent ordering. Otherwise it does change,
in which case some balanced vertex becomes imbalanced (as the order of vertices
in an edge can change only for the edges which contain at least one balanced
vertex) and we must reject.

The following theorem is a consequence of Lemma 8.9.

Theorem 8.10. There is an algorithm that, given an n-vertex m-edge multigraph
G, computes a minimum ordering of G with at most k imbalanced vertices (or
answers that there is no such ordering) in time O(nk · (m + n)).
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Proof. The algorithm is simple: just try all the possible choices of k imbal-
anced vertices and their orderings. For each such choice run the procedure from
Lemma 8.9 and select the ordering with minimum imbalance from those order-
ings. There are O(nk) k-tuples of imbalanced vertices, and for each such k-tuple,
by Lemma 8.9, we can check in O(m + n) time whether there is an ordering
with the chosen vertices imbalanced, and if so, compute the imbalance of the
ordering.

Corollary 8.11. There is a polynomial time algorithm to determine whether a
given multigraph G has an ordering with imbalance less than a fixed constant c.

Proof. Apply the algorithm from Theorem 8.10 with k = c − 1. If the algorithm
rejects the multigraph or produces an ordering with imbalance greater than c,
then the graph does not have an ordering with imbalance less than c (because any
ordering with imbalance less than c must have at most c−1 imbalanced vertices).
Otherwise the algorithm outputs some ordering with imbalance less than c, and
we are done.

Corollary 8.12. The perfect ordering problem is solvable in time O(n2(n+
m)) for any n-vertex m-edge multigraph with all vertices of even degree.

Proof. Apply the algorithm from Theorem 8.10 with k = 2, and then check
whether the achieved imbalance is equal to that required by the perfect or-

dering problem. A perfect ordering of a multigraph with even degrees must
have exactly two imbalanced vertices (assuming there is at least one edge).

8.5 Conclusion and Open Problems

In this chapter, we have considered the problems of checking the existence of
a perfect ordering for planar graphs with maximum degree four and 5-regular
multigraphs. Both these problems were shown to be NP-complete, thus answering
a number of questions raised by Biedl et al. [8]. We have also established that
it is NP-hard to find an ordering with minimum imbalance for 5-regular simple
graphs. We have also introduced an algorithm for determining an ordering with
imbalance smaller than k running in time O(nk(n + m)). It would be interesting
to obtain a fixed-parameter-tractable (FPT) algorithm for this problem (as one
cannot hope for a polynomial solution unless P=NP).
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[19] A. Brandstädt, V. Bang Le, and J. P. Spinrad, Graph Classes: A Survey,
SIAM Monographs on Discrete Mathematics and Applications, 2000.

[20] Andrei A. Bulatov, A dichotomy theorem for constraint satisfaction problems
on a 3-element set, J. of ACM 53 (2006), 66–120.

[21] A. Bulatov, A. Krokhin, and P. Jeavons, Classifying complexity of con-
straints using finite algebras, SIAM J. Comput. 34(3) (2005), 720–742.

[22] H.-J. Bürckert and B. Nebel, Reasoning about temporal relations: A maxi-
mal tractable subclass of Allen’s interval algebra, J. of the ACM 42(1) (1995),
43–66.

[23] P. J. Cameron, Oligomorphic Permutation Groups, Cambridge University
Press, 1990.

[24] N. de Castro, F. J. Cobos, J. C. Dana, and A. Márquez. Triangle-Free Planar
Graphs as Segment Intersection Graphs, J. of Graph Algorithms and Applica-
tions 6 (2002), 7–26.
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