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Abstract 

Charles University 

Faculty of Pharmacy in Hradec Králové 

Department of Pharmacology and Toxicology 

Student: Martin Svoreň 

Supervisor: PharmDr. Martina Čečková, Ph.D. 

Specialized supervisor: PD Dr. Bernd Evert 

Title of diploma thesis: Analysis of genomic regions bound and regulated by 

Ataxin-3 

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph 

disease, is a dominantly inherited neurodegenerative disease. In SCA3, the disease 

protein ataxin-3 (ATXN3) contains an abnormally long polyglutamine (polyQ) tract 

encoded by CAG repeat expansion. ATXN3 binds DNA and interacts with 

transcriptional regulators pointing toward a direct role of ATXN3 in transcription. It 

is conceivable that mutant ATXN3 triggers multiple, interconnected pathogenic 

cascades leading to neurotoxicity, however, the principal molecular pathomechanism 

remains elusive. Here, PCR analyses of 16 ATXN3-bound genomic regions recently 

identified by next generation sequencing of immunoprecipitated ATXN3-bound 

chromatin fragments confirmed enriched binding of ATXN3 to 5 genomic regions 

next to genes encoding CCAAT/enhancer binding protein delta (CEBPD), period 

circadian clock-2 (PER2), phosphatase and tensin homolog (PTEN), serine protease 

inhibitor family F2 (SERPINF2) and thrombospondin-1 (THBS1). To investigate 

putative regulatory effects of ATXN3, the ATXN3-bound genomic regions were 

subcloned in, luciferase reporter constructs. Subsequently, wild type (WT) and 

hemizygous ATXN3-knockout human neuroblastoma cell line (SH-SY5Y) were 

transfected with the constructs and analyzed for ATXN3-modulated changes in 

luciferase activity. In ATXN3 knockout cells, a repressive ATXN3-dependent 

change in luciferase activity was found for CEBPD and THBS1 suggesting that 

ATXN3 binds to these regions to enhance or maintain transcriptional repression. In 

cells overexpressing normal or mutant ATXN3, an ATXN3 isoform dependent, 

regulatory effect was also found for CEBPD and THBS1 suggesting that ATXN3 



 

 

may be principally involved in the transcriptional regulation of these genes. The 

identified and analyzed genomic regions may contribute to pathogenetic processes 

involved in SCA3 disease.   



 

 

Abstrakt 

Karlova Univerzita 

Farmaceutická fakulta v Hradci Králové 

Katedra farmakológie a toxikológie 

Študent: Martin Svoreň 

Školiteľ: PharmDr. Martina Čečková, Ph.D. 

Školiteľ-špecialista: Doc. Bernd Evert, Ph.D. 

Názov diplomovej práce: Analýza oblastí genómu viazaných a regulovaných 

ataxínom 3 

Spinocerebelárna ataxia typu 3 (SCA3), známa tiež ako Machado-Josephova 

choroba, je dominantne dedičné neurodegeneratívne ochorenie. Je spôsobené 

mutantným proteínom ataxínom 3 (ATXN3), ktorý obsahuje abnormálne dlhý 

polyglutamínový segment kódovaný opakujúcim sa CAG kodónom. ATXN3 je 

schopný viazať DNA a interaguje s celým radom transkripčných faktorov. Tieto 

fakty poukazujú na priamu rolu ataxínu 3 v transkripcii. Je pravdepodobné, že 

mutantný ATXN3 spúšťa mnohé, vzájomne prepojené patogénne kaskády, vedúce k 

neuronálnej toxicite, no hlavný patomechanizmus zodpovedný za rozvoj tejto 

neurodegenratívnej choroby na molekulárnej úrovni ostáva neznámy. Nedávno sa 

sekvenovaním imunoprecipitovaných chromatínových fragmentov viazaných 

ataxínom 3 podarilo identifikovať 16 genómových oblastí, ktoré boli za účelom 

potvrdenia prítomnosti väzby ataxínu 3 na DNA ďalej analyzované pomocou PCR. 

Zvýšenú väzbovosť špecifickú pre ATXN3 vykázalo 5 oblastí v blízkosti týchto 

génov: CCAAT/enhancer viažúci proteín delta (CEBPD), preiodický cirkadiálny 

clock-2 (PER2), fosfatázový a tenzínový homológ (PTEN), inhibítor serínových 

proteáz rodiny F2 (SERPINF2) a trombospondín-1 (THBS1). Tieto genómové 

oblasti boli následne vklonované do luciferázových reporterov za účelom 

preskúmania možného regulačného efektu sprostredkovaného ataxínom 3. Následne 

bol pripravenými reportermi transfekovaný divoký typ (wild type) a hemizigotný 

ATXN3-knockoutovaný podtyp bunkovej línie ľudského neuroblastómu 

(SH-SY5Y). V ďalšom korku bola analyzovaná ataxínom 3 modulovaná luciferázová 

aktivita. V knockoutovanej bunkovej línie bol pozorovaný pokles luciferázovej 



 

 

aktivity sprostredkovaný ataxínom 3 v prípade genómových oblastí spojených s 

CEBPD a THBS1, naznačujúc, že ATXN3 sa viaže na tieto oblasti genómu za 

účelom vystupňovania alebo udržania transkripčnej represie. V bunkách, ktoré 

nadmerne exprimovali normálny alebo mutantný ATXN3 bol taktiež  pozorovaný 

regulačný efekt mediovaný jednotlivými izoformami ataxínu 3 v prípade CEBPD a 

THBS1, čo poukazuje na možný vplyv ataxínu 3 na transkripčú reguláciu 

spomínaných génov. Identifikované a analyzované oblsasti ľudského genómu by sa 

mohli podieľať na patogenetických procesoch vedúcich k SCA3 manifestácii. 

  



 

 

List of abbreviations 

ATXN3 Ataxin 3 

CBP cAMP-response element binding protein 

CEBPD CCAAT/enhancer binding protein delta  

ChIP Chromatin immunoprecipitation 

Ctr control 

dATP deoxyadenosine triphosphate 

dCTP deoxycytidine triphosphate 

dGTP deoxyguanosine triphosphate 

dTTP deoxythymidine triphosphate 

EtBr ethidium bromide 

FBS fetal bovine serum 

GFP green fluorescent protein 

HD Huntington disease 

HDL2 Huntington disease-like 2 

iPSC  induced pluripotent stem cell 

IPTG  isopropyl β-D-1-thiogalactopyranoside 

MJD Machado-Joseph disease 

NIs nuclear inclusions 

PCR polymerase chain reaction 



 

 

PER2 period circadian clock-2 

polyQ polyglutamine 

PTEN phosphatase and tensin homolog 

SCA3 Spinocerebellar ataxia type 3 

SERPINF2 serine protease inhibitor family F2 

SNP single nucleotide polymorphism 

TAE  tris(hydroxymethyl)aminomethane-

acetate-ethylenediaminetetraacetic acid 

TBP TATA-binding protein 

THBS1 thrombospondin-1 

UPS ubiquitin proteasome system 

WT wild type 

x-gal 5-bromo-4-chloro-indolyl-β-D-galactopyranoside 

β-gal β-galactosidase 

  



 

 

Contents 

1. Introduction ............................................................................................. 14 

2. Theoretical part ....................................................................................... 15 

2.1 Neurodegenerative diseases ........................................................ 15 

2.2 Trinucleotide repeat disorders ..................................................... 15 

2.3 Polyglutamine repeat disorders ................................................... 15 

2.4 Spinocerebellar ataxia type 3 ...................................................... 16 

2.4.1 SCA3 pathology .......................................................................... 17 

2.4.2 The disease protein – ataxin-3..................................................... 17 

2.4.3 Neurodegeneration mediated by ataxin-3 ................................... 17 

2.4.4 Potential cause of Spinocerebellar ataxia type 3 ......................... 18 

2.4.5 Genes potentially regulated by ataxin-3 ...................................... 19 

3. Aims ........................................................................................................ 20 

4. Experimental part .................................................................................... 21 

4.1 Materials ...................................................................................... 21 

4.2 Methods ....................................................................................... 23 

4.2.1 Chromatin preparation and immunoprecipitation (ChIP) ........... 23 

4.2.2 Design and characteristics of used primers ................................. 23 

4.2.3 Polymerase chain reaction........................................................... 25 



 

 

4.2.4 Agarose-TAE gel electrophoresis ............................................... 26 

4.2.5 Ligation of PCR amplified products to pCR2.1 vector ............... 27 

4.2.6 Transformation of Competent Cells with pCR2.1-Topo Vector . 27 

4.2.7 Blue/White colony screening of recombinant pCR2.1 clones .... 28 

4.2.8 Plasmid DNA Mini isolation of pCR2.1 and pGL4.23 construct 29 

4.2.9 Restriction digests of pCR2.1 and pGL4.23 vector constructs ... 30 

4.2.10 Preparative digests of pGL4.23 luciferase reporter and pCR2.1 

vectors containing subcloned inserts ........................................... 30 

4.2.11 Isolation of subcloned DNA fragments....................................... 30 

4.2.12 Ligation of isolated DNA fragments to pGL4.23 luciferase 

reporter vector ............................................................................. 31 

4.2.13 Transformation of competent E. coli cells with ligation products 

of pGL4.23 vector ....................................................................... 31 

4.2.14 Plasmid DNA Maxi isolation of pGL4.23 constructs ................. 31 

4.2.15 Cultivation of Wild Type and ATXN3-knockout Human 

Neuroblastoma Cells ................................................................... 33 

4.2.16 Transfection of Wild Type Neuroblastoma Cells (SH-WT) ....... 33 

4.2.17 Transfection of ATXN3-KO Neuroblastoma Cells (SH-KO) .... 34 

4.2.18 Lysis of transfected cells ............................................................. 35 

4.2.19 Luciferase reporter assay............................................................. 35 

4.2.20 Statistical analysis ....................................................................... 35 



 

 

4.3 Results ......................................................................................... 36 

4.3.1 ChIP-PCR optimization .............................................................. 36 

4.3.2 Validation of ATXN3 enriched genomic regions by ChIP-PCR 38 

4.3.3 PCR optimization and amplification of selected genomic regions . 

  .................................................................................................... 39 

4.3.4 Subcloning of PCR products into pCR2.1 vector and 

characterization of recombinant clones ....................................... 40 

4.3.5 Cloning of genomic inserts into pGL 4.23 reporter vector and 

characterization of recombinant clones ....................................... 41 

4.3.6 Regulatory activity of an ATXN3-bound, proximal region 

upstream of the CCAAT/enhancer binding protein delta (CEBPD) 

gene ............................................................................................. 43 

4.3.7 Regulatory activity of an ATXN3-bound, proximal region 

upstream of the period circadian clock-2 (PER2) gene .............. 46 

4.3.8 Regulatory activity of an ATXN3-bound, intronic region within 

the phosphatase and tensin homolog (PTEN) gene..................... 48 

4.3.9 Regulatory activity of an ATXN3-bound, intronic region within 

the serine protease inhibitor family F2 (SERPINF2) gene ......... 51 

4.3.10 Regulatory activity of an ATXN3-bound, proximal region 

downstream of the thrombospondin-1 (THBS1) gene ................ 54 

5. Discussion and conclusions .................................................................... 58 

5.1 Discussion ................................................................................... 58 



 

 

5.2 Conclusion .................................................................................. 63 

6. References ............................................................................................... 64 

 

 



14 

 

1. Introduction 

With increasing life expectancy, thanks to medical advancements, the society 

is now facing the problem with ageing of population, which is connected to another 

huge issue, neurodegenerative diseases (YoungSoo Kim et al., 2012). It was 

estimated that these disorders are found in about 5% of patients suffering from brain 

disorders. The total cost of neurodegenerative diseases in 28 countries in Europe was 

evaluated at about 72 billion Euros per year (Nieoullon, 2011). Pathology of these 

diseases is defined by continual neuronal loss usually associated with protein 

aggregation (Barnham et al., 2004). In general, characteristic features of 

neurodegenerative disorders are late onset, sensory-motoric and cognitive abilities 

impairment resulting from neuronal loss deteriorating with time. So far, many of the 

neurodegenerative diseases are not curable and the exact, usually complex 

pathomechanism, is not described, as they are varying in their origin what divides 

them in several groups (Nieoullon, 2011). 

Dominantly inherited neurodegenerative disorders, caused by polyglutamine 

repeats belong to the group of so called polyQ diseases. PolyQ diseases include 

spinocerebellar ataxias (SCA 1,2,6,7,17), and Huntington disease-like 2 (HDL2). 

Most commonly known polyQ diseases are Huntington disease (HD) and 

Spinocerebellar ataxia type 3 (SCA3). 

 In SCA3 disease, the mutation resulting in production of disease protein 

ATXN3 is well explained, nevertheless, the molecular mechanism resulting in 

neuronal death was not yet described. The main complication regarding ATXN3 is 

its involvement in numerous cellular processes and it is hard to define which one of 

them influence and trigger the onset of the disease (Costa & Paulson, 2012). 

Consequently, this work is focused on identification of genes potentially 

involved in SCA3 pathogenesis, which could help improve the whole understanding 

of this severe, potentially lethal disease. 

  



15 

 

2.  Theoretical part 

2.1 Neurodegenerative diseases 

Neurodegenerative diseases are defined as progressive neurological disorders 

characterized with selective neuronal loss in distinct parts of brain, resulting in 

various clinical presentations. Despite the broad etiological variations (e.g. hereditary 

disorders like Huntington’s disease caused by genetic mutation), the common feature 

of these disorders is formation of inter- or intraneuronal aggregates and inclusions 

built up from proteins with altered physicochemical properties and other proteasomal 

components. The most prevalent and intensively studied neurodegenerative diseases 

are Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis 

(Kovacs, 2014; YoungSoo Kim et al., 2012). 

2.2 Trinucleotide repeat disorders 

Inherited neurological disorders characterized by expansions of trinucleotide 

repeats belong to the group of so called trinucleotide repeat disorders. They form the 

largest group of inherited neurodegenerative diseases with so far 16 described 

disorders. It was shown, that the trinucleotide expansions are unstable and the 

number of trinucleotide repeats might be higher in successive generations (Fu et al., 

1991). These types of mutations are therefore called dynamic mutation. The severity 

of symptoms and the age of onset vary within these diseases and they are dependent 

on the number of instable trinucleotide repeats (Orr & Zoghbi, 2007). Trinucleotide 

repeat disorders differ also in exact expanded trinucleotide sequence and in their 

pathogenic mechanism.  

2.3 Polyglutamine repeat disorders 

Disorders, where expansions of trinucleotide repeat CAG is present in the 

coding regions of various genes, form a subgroup of trinucleotide repeat disorders, 

which are called polyglutamine (polyQ) diseases. CAG triplet codes for the amino 

acid glutamine, therefore the characteristic feature of these diseases is expanded 
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glutamine repeats in the respective mutant proteins. Each of these diseases have a 

different mutant protein (La Spada, et al., 1994; Zoghbi & Orr, 2000). 

A characteristic feature of all these disorders is the formation of intraneuronal 

inclusions, which mainly include the expanded polyglutamine proteins and several 

other proteins of neuronal proteasome. In every polyglutamine disease, different 

types of neurons are affected, this result in a pattern of atrophy unique for each 

polyglutamine disease and consequently explains different symptoms of each 

disorder (Davies et al., 1998; Ross, 1997; Rubinsztein, et al., 1999).  

A number mechanisms such as mitochondrial dysfunction, proteolytic 

cleavage of mutant protein, failure to clear the mutant protein, shuttling of the mutant 

protein to the nucleus and its subsequent aggregation, these all has shown to 

contribute to the observed neuronal loss, but the exact mechanism of neuronal death 

caused by the presence of the mutant protein is not known (Weber, et al., 2014). So 

far, there are nine polyglutamine disease known (see Introduction). 

One of the most prevalent and best studied dominantly inherited ataxias is the 

Spinocerebellar ataxia type 3 (SCA3), which is also the main topic of this project. 

2.4 Spinocerebellar ataxia type 3 

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph 

disease (MJD), is a neurodegenerative disease caused by an unstable CAG repeat 

expansion in the SCA3 gene leading to an expansion of polyglutamines (polyQ) in 

the corresponding protein, ataxin-3 (ATXN3) (Kawaguchi et al., 1994). The repeat 

expansion ranges from 12 to 44 triplets in healthy individuals and from 60 to 87 in 

SCA3 patients. In affected individuals, a slowly progressive ataxia syndrome 

appears, typically beginning between the ages of 20 and 50 years, characterized 

primarily by cerebellar ataxia and pyramidal signs. Presenting features include gait 

problems, speech difficulties, clumsiness, and often visual blurring and diplopia. 

Symptoms get worse over time leading to the need for assistive devices (including 

wheelchair) 10 to 15 years following onset. Currently, there is no cure for SCA3 but 



17 

 

treatments for symptoms can improve quality of life significantly (Costa & Paulson, 

2012). 

2.4.1 SCA3 pathology 

Neuropathologically, SCA3 is characterized by neuronal loss in the pons, 

cerebellum, thalamus and spinal cord. The cerebellum typically shows atrophy while 

the cerebral cortex is spared in disease. As in most polyQ diseases, affected neurons 

in SCA3 show characteristic formation of nuclear inclusions (NIs) containing polyQ-

expanded ATXN3, components of the ubiquitin proteasome system (UPS), 

chaperones, autophagy markers, transcription factors and other polyQ-containing 

proteins. 

2.4.2 The disease protein – ataxin-3 

ATXN3 is mainly localized in the cytoplasm but also shuttles between the 

cytoplasm and nucleus. It is a ubiquitously expressed deubiquitinase that controls 

protein quality and degradation of misfolded proteins via the UPS. ATXN3 has 

neuroprotective functions in stress response and regulation of aging-related signaling 

pathways. Moreover, ATXN3 binds DNA and interacts with transcription regulators 

pointing toward a direct role for ATXN3 in transcription (Costa & Paulson, 2012). 

2.4.3 Neurodegeneration mediated by ataxin-3 

The pathogenic process of neurodegeneration in SCA3 involves nuclear 

translocation and aggregation of ATXN3. Transgenic mice expressing mutant 

ATXN3 exclusively in the nucleus generate a severe neurodegenerative phenotype 

whereas expression of mutant ATXN3 directed to the cytoplasm causes only a mild 

phenotype (Bichelmeier et al., 2007). Recently, it was shown that nuclear import of 

ATXN3 is controlled by casein kinase 2-mediated phosphorylation of three serine 

residues in the C-terminus of ATXN3 (Mueller et al., 2009) whereas translocation to 

the cytoplasm is mediated by nuclear export signals (NES) in the N-terminus of 

ATXN3 (Antony et al., 2009; Macedo-Ribeiro et al., 2009). Aggregation of mutant 
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ATXN3 is enhanced by proteolysis that generates C-terminal polyQ-containing 

fragments which act as seeds for aggregation (Teixeira-Castro et al., 2011). Although 

mutant and normal ATXN3 undergo the same types of proteolytic cleavage, C-

terminal fragments of ATXN3 are only found in brain homogenates from SCA3 

patients and SCA3 transgenic mice (Colomer Gould et al., 2007; Goti, 2004). 

Nuclear accumulation of these fragments is caused most likely by the loss of NES 

signals after proteolytic release of the N-terminal part (Antony et al., 2009) and the 

lack of chaperone-mediated clearance by the UPS in the nucleus (Breuer, 2010). 

Proteolytic cleavage of ATXN3 can be mediated by calcium-dependent calpains. It is 

known that L-glutamate-induced excitation of SCA3 patient-specific, induced 

pluripotent stem cell (iPSC)-derived neurons initiates Ca2+-dependent, calpain-

mediated proteolysis of ATXN3 and formation of SDS-insoluble aggregates (Koch et 

al., 2011). Consistently, selective inhibition of calpain activity in transgenic SCA3 

mice reduced proteolysis and nuclear aggregation of mutant ATXN3 and prevented 

polyQ-induced neurodegeneration (Simões et al., 2012). 

2.4.4 Potential cause of Spinocerebellar ataxia type 3 

The current understanding on the pathogenesis of polyQ diseases is that 

cellular toxicity and dysfunction is caused by soluble polyQ-containing oligomers of 

the expanded polyQ proteins (Takahashi et al., 2010). PolyQ oligomers form soluble 

aggregation intermediates with a large number of other proteins (e.g. transcription 

factors) and interfere with the protein homeostasis, mitochondrial function and 

transcriptional regulation (Costa & Paulson, 2012). Several transcriptional changes 

have been reported early in disease progression in various models of polyQ diseases 

suggesting that transcriptional dysregulation underlies disease pathogenesis in SCA3 

and other polyQ disorders (Riley & Orr, 2006). In cell models of SCA3 several 

differentially expressed genes encoding transcription factors, inflammatory cytokines 

and cell surface proteins prior to the formation of NIs and cell death were identified 

(Evert et al., 2001; Evert et al., 1999; Evert et al., 2003; Jeub et al., 2006). Also, in 

cerebella of transgenic SCA3 mice, altered expression of genes involved in 

glutamatergic signaling and signal transduction occurs before the onset of 
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neurological symptoms (Chou et al., 2010). On the one hand, transcriptional 

dysregulation in polyQ disorders is caused by depletion of transcriptional 

components such as TBP (TATA binding protein) and CBP (cAMP-response 

element binding protein) into NIs. On the other hand, several of the polyQ proteins 

have normal functions in transcriptional regulation that are altered by polyQ 

expansion (Riley & Orr, 2006). It has been shown that mutant ATXN3 has an altered 

DNA binding reducing its ability to form histone deacetylating repressor complexes 

and to activate ATXN3-regulated genes (Araujo et al., 2011; Evert et al., 2006). 

2.4.5 Genes potentially regulated by ataxin-3 

Recently, using chromatin immunoprecipitation (ChIP) and next generation 

sequencing, Dr. Evert´s group identified several genomic regions significantly 

enriched by ataxin-3 in induced pluripotent stem (iPS) cells derived neurons from 

healthy controls and SCA3 patients. Moreover, differentially expressed mRNAs were 

previously found by RNA sequencing of iPS-derived neurons from controls and 

SCA3 patients. To identify ATXN3-regulated genes, the mRNA changes were 

correlated to differentially ATXN3-bound genomic regions resulting in a list of 

potential candidate genes regulated by ATXN3. Thus, using this set of genes, the aim 

of the thesis was (i) to validate enriched binding of ATXN3 to the genomic regions 

found by ChIP sequencing and (ii) to analyze the potential regulatory activity of the 

confirmed ATXN3-bound genomic regions by reporter assays. 
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3. Aims 

The aim of the thesis was (i) to validate enriched binding of ATXN3 to 

genomic regions found by ChIP sequencing and (ii) to analyze the potential 

regulatory activity of confirmed ATXN3-bound genomic regions by reporter assays. 
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4. Experimental part 

4.1 Materials 

Sterile endotoxin-free water B. Braun Melsungen AG, Germany 

dATP Solution (100 mM) 25µl, Thermo Scientific, USA 

dCTP Solution (100 mM) 25µl, Thermo Scientific, USA 

dGTP Solution (100 mM) 25µl, Thermo Scientific, USA 

dTTP Solution (100 mM) 25µl, Thermo Scientific, USA  

BioTherm™ Taq DNA Polymerase (5 U/µl), GeneCraft®, Germany 

10x Taq DNA Polymerase Buffer A+, Segenetic, Germany 

10x Taq DNA Polymerase Buffer without MgCl2 GeneCraft®, Germany 

MgCl2 Solution for PCR (50 mM), GeneCraft®, Germany 

Agarose low EEO, Applichem, Germany 

GelRed™ Nucleic Acid gel stain, Biotium, USA 

Opti-MEM® I Reduced Serum Medium, no phenol red, Gibco, UK 

DMEM/F-12, GlutaMAX, Gibco, UK 

10% active FBS, Biochrom GmbH, Germany 

Nonessential amino acids 100mM, MEM NEAA 100x, Gibco, UK  

Penicilin (10,000 U/ml), PenStrep, Gibco, UK 

Streptomycin (10,000 μg/ml), PenStrep, Gibco, UK 

Sodium pyruvate (1%), Gibco, UK 
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T4 DNA Ligase (5 U/µL), Thermo Scientific, USA 

T4 DNA Ligase Buffer (10x), Thermo Scientific, USA 

FastDigest Buffer (10X), Thermo Scientific, USA 

BglII FastDigest, Thermo Scientific, USA 

EcoRI FastDigest, Thermo Scientific, USA 

HindIII FastDigest, Thermo Scientific, USA 

PstI FastDigest, Thermo Scientific, USA 

SacI FastDigest, Thermo Scientific, USA 

XbaI FastDigest, Thermo Scientific, USA 

XhoI FastDigest, Thermo Scientific, USA 

LB-medium, Carl Roth, Germany 

Select agar, Invitrogen, Spain 
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4.2 Methods 

4.2.1 Chromatin preparation and immunoprecipitation (ChIP) 

ChIP assays were performed using the Magna ChIP A/G kit (Millipore) 

following the instructions of the manufacturer. In brief, iPS-derived neural stem cells 

from controls and patients were seeded on 6-cm plates and differentiated to neurons 

for six weeks. Neuronal cells were fixed by adding formaldehyde (1% final 

concentration) and cross-linked adducts were resuspended and sonicated, resulting in 

an average chromatin fragment size of 400 bp. For ChIP, a mouse monoclonal 

antibody was used against ATXN3 (1H9, Millipore) and an unspecific mouse control 

IgG (Millipore). Protein-bound, immunoprecipitated DNA was reverse cross-linked 

and purified by using DNA purification mini-columns according to the instructions 

of the manufacturer. 

4.2.2 Design and characteristics of used primers 

The primers were designed using the software program Oligo (Visual Basic 

6.0 SP5) which calculates melting and optimal annealing temperatures, considers the 

formation of hairpin loops and primer dimers. Designed primers were synthesized by 

Thermo Fisher Scientific (Germany). 

Two different types of primers were used, (i) primers for the amplification 

and analysis of ATXN3-enriched genomic regions by ChIP-PCR and (ii) primers 

containing restriction sites for Sac I and Xho I (cleavage motives 5’- GAG CTC -3’ 

and 5’- CTC GAG -3’, respectively) for the subcloning of confirmed ATXN3-bound 

genomic regions into plasmids. Details about primers used for enrichment screening 

are listed in Table 1 and for cloning are shown in Table 2. 
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Table 1 Primers used for analysis and verification of ATXN3-enriched genomic regions 

Primer sequence (5' to 3') Gene region 
Melting 

temperature 

[°C] 

Annealing 
temperature 

[°C] 

Suggested 
temperatures 

[°C] 

Length of 
gene region 

[bp] 

ACAGCTGAGGCAGGCCCTGG RRBP1(1)_For 59.5 
59.3 58 / 60 /62 185 

AGCTCCATTGCCCTTAAAGC RRBP1(1)_Rev 55.5 

ACCTCATCCTGTCACCCCTG SERPINF2(1)_For 52.4 
57.1 - 60.8 52 / 54 / 56 185 

CCTAGGAATCTGCATTTTTACC SERPINF2(1)_Rev 53.4 

TCTTGAATTCTCCCAACAATCATC ELAVL2_For 55.0 
57.9 - 61.6 52 / 54 / 56 141 

GGACACCTGAGCATCTTGCCTC ELAVL2_Rev 56.2 

TCTTTCCACTAGCCTTGCTC SEMA6A_For 50.7 
51.6 50 / 52 /54 133 

GTCAAGTTAAGAAGGGCAGG SEMA6A_Rev 50.7 

ACAAACATCAAATACCAGAAAAGC THBS1(1)_For 54.2 
53.7 52 / 54 /56 231 

CAAGAGTTTTGCTGTGGGATGG THBS1(1)_Rev 55.8 

CCTAAAAGAGACTGGAGACCTGG CEBPD-I(1)_For 54.9 
57.0 56 / 58 / 60 239 

GCACTGTGTGCTTGCATCTGG CEBPD-I(1)_Rev 53.5 

ATCTATGGATATGAATAGGGCTG DOCK10_For 52.8 
56.9 - 60.6 56 / 58 / 60 163 

CATTGAGTTCACCTTCCCAATC DOCK10_Rev 53.2 

GTGGCTGAGGGCCCAGTTCC COL6A3_For 59.1 
57.7 - 61.4 58 / 60 / 62 162 

CTGCCTTGTAGCTGGGAGAAG COL6A3_Rev 54.3 

GTACATGTTTTCTTCCATTTTCC TOX3_For 52.3 
57.1 - 60.8 56 / 58 / 60 133 

CTGTGGCATAGGTACTCATGGC TOX3_Rev 53.8 

GAGTATGTGCCAGTTTTAAAAGAG ARRDC3_For 52.6 
57.2 - 60.9 56 / 58 / 60 132 

CTTTTGCCCAGAAAAATGGCG ARRDC3_Rev 60.3 

GTTGCCCTAGGGGAGATTCC FOSL2_For 55.9 
59.1 58 / 60 / 62 181 

TGAGGAGTCCTCCTCCCACC FOSL2_Rev 54.1 

TAAACAGATGTTGCAGAGGG TLR4_For 48.9 
55.8 - 59.5 56 / 58 / 60 137 

CTTGTTCTCTTAATTTACTTGG TLR4_Rev 47.9 

GGTCCAATAAACATCCCTGC KLF10_For 52.5 
54.4 52 / 54 /56 164 

GAGTGGCTGAACCCATGTCC KLF10_Rev 53.3 

CACAGAGTCCAGCAGGCAGC PER2_For 53.3 
57.6 56 / 58 / 60 141 

CAGTCCCCTCCCCCTGGTGG PER2_Rev 60.7 

GCCCCACAACAAATTCTCACC THBS1(2)_For 55.5 
57.6 - 61.3 58 / 60 / 62 146 

GAGTTTTGCTGTGGGATGGAAG THBS1(2)_Rev 55.4 

TGTGAGTCAGACTGCAGCTCTGG CEBPD-I(2)_For 53.9 
55.5 54 / 56 / 58 124 

GCACTGTGTGCTTGCATCTGG CEBPD-I(2)_Rev 53.5 

TGGACTCCAGGCCCAGCTC RRBP1(2)_For 55.6 
58.0 - 61.8 58 / 60 / 62 150 

AGCTCCATTGCCCTTAAAGC RRBP1_Rev 55.5 

ACCCCTGAGTGTGGCCCTGG SERPINF2(2)_For 58.7 
57.5 - 61.1 58 / 60 / 62 172 

CCTAGGAATCTGCATTTTTACC SERPINF2(1)_Rev 53.4 

ACCTCATCCTGTCACCCCTG SERPINF2(1)_For 52.4 
56.6 - 60.3 56 / 58 / 60 153 

GTGACCCTGGTGGAGGAAC (1x SNP) SERPINF2(2)_Rev 50.5 

ACCCCTGAGTGTGGCCCTGG SERPINF2(2)_For 58.7 
56.6 - 60.3 56 / 58 / 60 140 

GTGACCCTGGTGGAGGAAC (1x SNP) SERPINF2(2)_Rev 50.5 

TGCTTTTTTTCCGCCTTTCC PTEN_For 58.5 
52.4 52 / 54 / 56 117 

GAAACATTCACCATGGCTGC PTEN_Rev 52.2 

GGCTTCCTTCAGGGTCCAGC CEBPD-III_For 57.4 
55.3 54 / 56 / 58 148 

GCAGAAATTTAACCACAGCCAC CEBPD-III_Rev 54.5 
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Table 2 Primers used for amplification and subcloning of confirmed ATXN3-bound genomic 

regions 

4.2.3 Polymerase chain reaction 

The Polymerase Chain Reactions (PCR) were conducted in 25µl reaction 

volumes containing 0.2 µM of forward and 0.2 µM reverse oligonucleotide primers, 

200 µM deoxynucleotide solution containing dATP, dTTP, dCTP und dGTP 

(Qiagen, Germany), 2.5 µl of the 10x PCR-Buffer containing 15 mM MgCl2 (GC-

002-006, BioThermTM, Genecraft; Germany) and 0.2 µl of the TaqPolymerase 

5U/µl (GC-002-1000, BioThermTM, Genecraft; Germany). In some cases, 2.5 µl of 

DMSO and/or 2.5µl of Betaine were added to enhance specificity of PCR reaction. 

In other cases, Mg2+ concentration was increased up to 2.5 mM by using 2.5 µl of 

10x Buffer without MgCl2 and adding 1.25µl of 50mM MgCl2 to increase PCR 

efficiency. The DNA templates were always preincubated at 45°C for 5 minutes and 

placed on ice. At least 1 to 2 µl (200 -400 ng) of the template DNA was added and 

filled up with nuclease-free water to its final volume. For analysis of ATXN3-

enriched genomic regions, chromatin DNA immunoprecipitated with an ATXN3-

specific antibody derived from iPSCs neurons of 3 SCA3 patients and 2 control 

subjects was used. For amplification and subcloning of confirmed ATXN3-bound 

regions, genomic DNA isolated from four different human cell lines was used as 

template. For each PCR, a negative control lacking template DNA was included, 

serving as a control for unspecific contamination. 

Primer sequence (5' to 3') Gene region 
Melting 

temperatur

e [°C] 

Annealing 
temperature 

[°C] 

Suggested 
temperatures 

[°C] 

Length of 

gene 

region 
[bp] 

gagctcGGTCCCACCTCTTTTATGG THBS_SacI_For 50.7 
60.6 - 64.3 58 / 60 / 62 968 

ctcgagTTTCTTTCAGAGTTTGGGC THBS_XhoI_Rev 49.3 

gagctCATCTCTGCTGGGGCAGG PTEN_SacI_For 52.7 
57.2 - 61.0 58 / 60 / 62 858 

ctcgaGAACAACTGTGAGACTTGCAGG PTEN_XhoI_Rev 50.7 

gagctcGGAAAAGTGAAATGGAATGG CEBPD_SacI_For 51.0 
56.2 54 / 56 / 58 901 

ctcgagAATACCAGTGCCAGAGCAGC CEBPD_XhoI_Rev 52.2 

gagctCAACCTCATCCTGTCACCCCTG SERPINF2_SacI_For 56.2 
58.1 - 61.8 58 / 60 / 62 940 

ctcgaGTGAGACCCTCCAGCACAGTGG SERPINF2_XhoI_Rev 55.5 

ctcgaGTTTTCAAGGTGATCCCTGC PER2_XhoI_For 51.9 
58.9 58 / 60 / 62 840 

gagctCACCCCCTTCTGCGTTCAGC PER2_SacI_Rev 58.1 
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The PCR reactions started with an initial DNA denaturation step at 94°C for 2 

minutes followed by 32 cycles consisting of denaturation at 94°C for 45 seconds, 

annealing at 50-64°C for 45 seconds and elongation at 72°C for 45 seconds. After 

completion of the PCR cycles, a final step at 72°C for 5 minutes was included. The 

reactions were conducted in a Tprofessional Thermocycler (Biometra; Germany). 

4.2.4 Agarose-TAE gel electrophoresis 

4.2.4.1 Gels used for analysis and validation of ATXN3-enriched regions 

The ChIP-PCR products were separated on 1,5% TAE agarose gel stained 

with Gel-red (2,5µl/100ml). Each agarose gel well was loaded with a mix of 10µl 

PCR product and 2µl 10x Xylene-Loading dye (Qiagen; Germany). For size 

discrimination, 4µl of a 100 bp DNA ladder and a 1 kb DNA ladder were used (500 

ng/µl, Gene Craft; Germany). Gel electrophoresis was performed at 180V for 30-90 

minutes (Electrophoresis Power Supply E831, Consort; Belgium) (41-2025-R, 

PeqLab Biotechnologie GmBH; Germany). 

4.2.4.2 Gels used for preparation of DNA fragments and characterization of clones 

DNA fragments obtained by restriction digests were separated on a 1% TAE 

agarose gel. Each agarose gel well was loaded with a mix of 15µl restriction digest 

and 2µl 10 Xylene-Loading dye (Qiagen; Germany). In addition, 10µl of a 1 kb 

DNA ladder were used (500 ng/µ, Gene Craft; Germany). 

Gel electrophoresis was performed at 180V for 30-80 minutes 

(Electrophoresis Power Supply E831, Consort; Belgium) (41-2025-R, PeqLab 

Biotechnologie GmBH; Germany). Subsequently the agarose gel was taken out from 

electrophoresis chamber and stained in the dark in a 1x TAE solution containing 

ethidium bromide (0.5 µg/ml) (EtBr) for 10 minutes. Followed by two washes in 

H2O in the dark for 10 minutes to remove unbound EtBr. The agarose gel was then 

placed on a ultraviolet illuminator to visualize EtBr-stained DNA. To enhance the 
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resolution and size discrimination of DNA fragments, a second electrophoresis was 

very often conducted. 

4.2.5 Ligation of PCR amplified products to pCR2.1 vector 

PCR products synthesized by Taq DNA polymerase contain 3´ 

deoxyadenosine overhangs and therefore are suitable to be ligated into the linearized 

pCR2.1 Topo TA vector containing 3´ thymidine overhangs (Thermo Fisher 

Scientific Inc.). The multiple cloning site (MCS) of the pCR2.1 vector contains 

several restriction sites for endonucleases (for instance EcoR I, Xho I and Sac I) and 

is located inside the E. coli lacZα gene, which encodes for the α-peptide of β-

galactosidase (β-gal). The successful ligation of a PCR product within the MCS of 

the pCR2.1 vector results in disruption of the α-peptide and plasmid 

recircularization. In addition, the pCR2.1 vector carries resistance genes for 

ampicillin and kanamycin. 

The ligation reaction consisting of 1 µl of Salt Solution, 1µl of the Topo TA 

pCR2.1 Vector, 1µl of fresh PCR product and 3µl of distillated water was conducted 

in 50µl reaction tube. The ligation reaction was incubated for 10 minutes at room 

temperature and immediately used for the transformation of competent bacterial 

cells. 

4.2.6 Transformation of Competent Cells with pCR2.1-Topo Vector 

Chemically competent E. coli (Top10F’) cells, susceptible to ampicillin, were 

transformed in volumes of 52 μl consisting of 2 μl ligation product and 50 μl 

competent cells kept on ice constantly. The suspension was mixed gently and 

incubated on ice for 10 to 30 min, followed by a heat shock at 42°C in a water bath 

(MultiTempIII, Amersham Pharmacia Biotech AB, Sweden) for exactly 30 seconds. 

The reaction was then removed and placed on ice immediately and incubated for 

another 2 minutes. After adding 250 μl of LB medium without ampicillin, the 

transformed bacterial cells were incubated at 37 °C for 60 minutes by 225 rpm on an 
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Innova®40 thermoshaker (New Brunswick Scientific; USA) and then plated on LB-

agar plates containing ampicillin. 

4.2.7 Blue/White colony screening of recombinant pCR2.1 clones 

The competent E. coli cells (Top10F’) carry a mutation in their LacZ gene 

(LacZΔM15). The LacZ gene encodes β-galactosidase (β-gal), which enables the 

bacteria to hydrolyze lactose into glucose and galactose. The deletion of the amino 

acids 11-41 of β-gal (LacZΔM15 mutation) disables the protein to form its active 

form, a tetramer, which renders it nonfunctional. The function can be complemented 

by plasmids expressing amino acids 1-59 (α-peptide) of ß-gal. 

LB-agar plates containing 75µl/ml of ampicillin were gently dried under the 

constant sterile-air flow. Then 40μl of a 5-bromo-4-chloro-indolyl-β-D-

galactopyranoside (X-Gal) stock solution (20mg/ml) and 40 μl isopropyl β-D-1-

thiogalactopyranoside (IPTG) (10 mM) were evenly spread on the plates. X-Gal is a 

colorless analogue of lactose and can be hydrolyzed by β-gal into galactose and 5-

bromo-4-chloro-3-hydroxyindole. 5-bromo-4-chloro-3-hydroxyindole forms dimers 

which are oxidized into 5,5'-dibromo-4,4'-dichloro-indigo, an intensively blue 

substance. The plates were exposed to sterile-air flow for 30 minutes to dry. The 

expression of β-gal in bacteria was enhanced by the addition of IPTG. 

Two X-Gal/IPTG plates were used for each transformation reaction. 50 μl of 

the transformation reaction were spread on the first plate, the remaining 250 μl were 

spread on the second plate. The plates were incubated over night at 37 °C. 

Successfully transformed bacterial cells carrying the pCR2.1 vector are resistant 

against ampicillin and form bacterial colonies on the plate. White colored colonies 

indicate that the region encoding for the α-peptide of the vector is disrupted by the 

subcloned insert and that the β-gal of the E. coli cells remains non-functional. 

Three to six white colonies were picked using the tip of a pipette and 

transferred into a 15ml falcon tube containing 5 ml of LB medium containing 
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ampicillin (75µl/ml). The cells were incubated at 37 °C with 225 rpm on an 

Innova®40 thermoshaker (New Brunswick Scientific; USA) over night. 

4.2.8 Plasmid DNA Mini isolation of pCR2.1 and pGL4.23 construct 

Isolation of plasmid DNA was performed using the ZR Plasmid MiniprepTM - 

Classic Kit (Zymo Research Corp.; USA). For cryo conservation and reinoculation, 

500 µl from the transformed E. coli suspension were transferred into a 1,5 ml 

Eppendorf tube and stored at 4°C. The remaining bacterial suspension was 

centrifugated at 4000 rpm for 30 minutes at 4°C (Centrifuge 5810R, Eppendorf; 

Germany). 

The supernatant was discarded and the pellet re-suspended entirely in 200 μl 

P1 buffer. The prepared solution was transferred into a clear 1.5 ml Eppendorf tube. 

Consequently 200 μl of the P2 buffer was added and mixed by inverting the tube 3 

times. Then 400 μl of P3 buffer was added and the obtained solution was gently 

mixed by inverting the tube 5 times. The mixture was incubated for 2 minutes at 

room temperature. Then, the sample was centrifuged (Biofuge Pico, Heraeus; 

Germany) for 2 minutes at 13 000 rpm. 

A Zymo-SpinTM IIN column was placed in a collection tube and the 

supernatant was transferred into the column. The Zymo-SpinTM IIN/Collection tube 

assembly was centrifuged for 30 seconds at 13 000 rpm. The flow-through was 

discarded and 200 μl of the Endo-Wash buffer was added to the column followed by 

centrifugation for 1 minute at 13 000 rpm. Than 400 μl of the Plasmid Wash Buffer 

was added to the column and centrifuged for 30 seconds at 13 000 rpm. The Zymo-

SpinTM IIN column was then placed into a clean 1.5 ml safety-lock Eppendorf tube 

and the plasmid DNA was eluted with 30 μl of water by centrifugation for 30 

seconds at 13 000 rpm. 
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4.2.9 Restriction digests of pCR2.1 and pGL4.23 vector constructs 

To confirm the presence of subcloned inserts in pCR2.1 and pGL4.23 vectors, 

the isolated plasmids were digested with various restriction endonucleases to 

discriminate the size, orientation and number of the inserted sequences. 

The digest reactions were conducted in 15 μl volumes. Each reaction 

consisted of 2 μl plasmid DNA, 0.5 μl of restriction enzyme, 1.5 μl 10x restriction 

buffer and was filled to its end volume with water. The mixtures were incubated for 

15 minutes at 37°C and the length of produced fragments was estimated via gel 

electrophoresis in a 1% TAE gel. 

4.2.10 Preparative digests of pGL4.23 luciferase reporter and pCR2.1 vectors 

containing subcloned inserts 

The digest reactions were performed in 40 μl volumes. 4 µl to 27 µl of the 

plasmid DNA (2-4 µg), were digested with 3 μl Sac I and then with 3 μl Xho I in the 

presence of 4 μl 10x Buffer. Each reaction was filled up to a total volume of 40 μl 

with water. The mixtures were incubated for 15 minutes at 37°C. The digested 

plasmids were then separated on a 1% TAE agarose gel by gel electrophoresis. 

4.2.11 Isolation of subcloned DNA fragments 

The separated vector and insert fragments were excised from the agarose gel 

with a scalpel and placed into a clean 1.5 ml Eppendorf tube. Excised agarose slices 

containing the separated vector/inserts were weighted and 3 times the volume of 

ADB buffer solution was added (Zymoclean™ Gel DNA Recovery Kit). The tubes 

were placed in a water bath at 50°C and incubated for 5-10 minutes, until the gel 

slice was completely dissolved. 

The agarose gel solution was transferred to a Zymo-SpinTM Column in a 

collection tube and centrifuged at 13 000 rpm for 60 seconds. The obtained flow-

through was discarded. Then, 200 μl of DNA wash buffer were added to the columns 

and centrifuged for 30 seconds again. The washing step was repeated once. The 
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column was transferred into a 1.5 ml tube and 6μl of water was added. The DNA was 

eluted by centrifugation for 60 seconds. 

4.2.12 Ligation of isolated DNA fragments to pGL4.23 luciferase reporter 

vector 

The ligations with pGL4.23 were performed in 10 μl reaction volumes. 

Approximately 30-40 ng of the insert were ligated to 60 ng of linearized pGL4.23 

vector. Then, 1 μl ligase, 1 μl 10x ligase buffer and 1-7 µl water were added to the 

mixture. 

First, the vector, insert and water were mixed together and incubated for 5 

minutes at 45 °C. The solution was then transferred on ice. Finally, 10x ligase buffer 

and ligase were added. The mixture was incubated at 14 °C overnight. 

4.2.13 Transformation of competent E. coli cells with ligation products of 

pGL4.23 vector 

The transformations were conducted in 52 μl volumes consisting of 2 μl of 

the ligation product and 50 μl competent E. coli cells. The ligation product was 

added to 50 µl of competent cells, incubated on ice for 20 min and transformed by a 

heat shock in a water bath at 42 °C for exactly 30 seconds. The reaction was then 

placed on ice immediately and incubated for 2 minutes. Then, 250 μl LB medium 

were added to the suspension. The mixture was incubated at 37 °C for 1 hour by 225 

rpm. 

4.2.14 Plasmid DNA Maxi isolation of pGL4.23 constructs 

The EndoFree Plasmid Maxi Kit (Qiagen) was used for the endotoxin-free 

isolation of the recombinant pGL4.23 reporter plasmids. For this, 500 μl of the 

respective E. coli cultures, confirmed by restriction analysis of the isolated plasmids 

described above were used to inoculate a 100 ml LB medium containing 75 µl/ml of 

ampicillin in an Erlenmeyer flask. The suspension was incubated for 12-17 hours at 
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37°C and 225 rpm. The cell suspension was split into two 50 ml falcon flask and the 

bacterial cells were centrifugated at 4000 rpm at 4°C for 30 minutes. 

The supernatant was discarded, the bacteria pellets were thoroughly 

resuspended in 5 ml P1 buffer and transferred to a 50 ml falcon flask. Then, 10 ml of 

P2 buffer was added and the solution was mixed gently by inverting 5 times and 

vortexing once for few seconds. Then, the mixture was incubated at room 

temperature for 5 minutes. Subsequently, 10 ml of P3 buffer were added and the 

bacterial lysate was mixed immediately by inverting 5 times and vortexed for 5 

seconds once more. The lysate was centrifuged for 30 minutes at 4000 rpm. 

The solution was then transferred to a clean 50 ml falcon tube without 

disturbing the thick layer located on its surface. After addition of 2.5 ml endotoxin 

removal (ER) buffer, the lysate was mixed by inverting and kept on ice for 30 

minutes on a rotating platform. 

A Qiagen-tip 500 was equilibrated with 10 ml QBT buffer and the column 

was emptied by gravity flow. Then, the lysate was placed to the Qiagen-tip 500 and 

allowed to flow through the column by gravity flow. After washing the Qiagen-tip 

two times with 30 ml QC buffer, the DNA was eluted from the Qiagen-tip in an 

ultracentrifuge tube using 15 ml QN buffer. 

The DNA was precipitated by adding 11 ml room-temperature isopropanol. 

The solution was immediately mixed and centrifuged at 15.000 x g for 30 minutes at 

4°C. The supernatant was carefully decanted without disturbing the DNA pellet. 

The DNA pellet was washed with 5 ml room-temperatured 70% ethanol and 

centrifuged at 15,000 x g for 5-10 minutes. The supernatant was carefully removed. 

The DNA pellet was airdried for 5-8 minutes and dissolved in 200-400 μl TE buffer. 
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4.2.15 Cultivation of Wild Type and ATXN3-knockout Human Neuroblastoma 

Cells 

The human neuroblastoma cells (SH-SY5Y) were cultured in DMEM/F-12, 

GlutaMAX (Gibco; UK) supplemented with 10% active FBS (Biochrom GmbH; 

Germany), 1% nonessential amino acids (100mM, MEM NEAA 100x, Gibco; UK), 

10,000 U/ml of penicillin and 10,000 μg/ml streptomycin (PenStrep, Gibco; UK) and 

1% sodium pyruvate (Gibco;UK). The mediums were stored at 4°C. 

The cell lines were cultivated in cell culture flasks with a culture area of 150 

cm2 (Cellstar®Cellculture Flask, Greiner Bio-One GmbH; Germany) in an incubator 

(Hera Cell, Heraeus Instruments; Germany) at 37 °C and 5% CO2 concentration. For 

splitting of the cells, the medium was removed and the cells were washed once with 

10 to 15 ml of PBS (Dulbecco, Biochrom GmbH; Germany). 

The cells were incubated with 1 ml of 5% Trypsin-EDTA (10x) (Gibco; UK) 

for 3-5 minutes at 37°C to dissociate the cells from the culture flask surface. The 

unattached cells were resuspended in 9 ml medium. The wildtype SH-SY5Y cells 

were split at a dilution of 1:5 to 1:10 depending on the cell concentration two to three 

times a week. The ATXN3-KO cells previously generated by CRISPR-Cas9 

mediated gene knockout of ATXN3 in the parental wildtype SH-SY5Y cells were 

subcultured at a dilution of 1:2. The cell splitting was done under sterile conditions in 

a laminar flow (Hera safe, Heraeus Instruments; Germany). 

4.2.16 Transfection of Wild Type Neuroblastoma Cells (SH-WT) 

The SH-WT cells were seeded in 24-well tissue culture plates (Cellstar, 

Greiner Bio-One; Germany) at a density of 400,000 cells/well 24 hours prior to 

transfection. The cell counting was performed with a Neubauer chamber. 

For transfection, two separate solutions were prepared. Solution A contained 

6 μl of the transfection reagent Lipofectamine 2000 (Invitrogen; USA) and 200 μl of 

Opti-Mem (Gibco; UK). The solution was mixed and incubated for at least 5 minutes 

at room temperature. 
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Solution B contained 200 μl Opti-Mem, 2µl of the respective pGL4 luciferase 

reporter construct (1 µg/μl), 2 μl of the actin gene-promoter-driven co-reporter 

Renilla luciferase (pRL-Actin; 10 ng/μl) and 1 μl of GFP-expression construct 

(1μg/μl) or 1 μl GFP-ATXN3-expression construct (1μg/μl). Solution A was added 

to Solution B and incubated for 20 minutes at room temperature. 

The medium was removed from the tissue culture plates and approximately 

100µl of the transfection mixture was added into each well. Each transfection was 

carried out four times. After two hours incubation at 37°C, 500 μl medium was 

added to each well and the plates were incubated for additional 24 hours. 

4.2.17 Transfection of ATXN3-KO Neuroblastoma Cells (SH-KO) 

The SH-KO cells were seeded in the first three columns of 24-well tissue 

culture plates (Cellstar, Greiner Bio-One; Germany) at a density of 200,000 

cells/well and SH-WT at the same density were seeded at remaining three columns of 

the plate, 24 hours prior to transfection. The cell counting was performed with a 

Neubauer Chamber. 

On the day of transfection two separate solutions were prepared. Solution A 

contained 9 μl of the transfection reagent Lipofectamine 2000 (Invitrogen; USA) and 

300 μl of Opti-Mem (Gibco; UK). The solution was mixed and incubated for at least 

5 minutes at room temperature. 

Solution B contained 300 μl Opti-Mem, 4.8 µl of the respective pGL4 

luciferase reporter construct (1 µg/μl) and 3 μl of the co-reporter pRL-Actin (10 

ng/μl). Solution A was added to Solution B and incubated for 20 minutes at room 

temperature. 

The medium was removed from the tissue culture plates and approximately 

100 µl of the transfection mixture was added into each well. Each transfection was 

carried out three times. After two hours incubation, 500 μl medium was added to 

each well and the plates were incubated for another 24 hours. 
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4.2.18 Lysis of transfected cells 

After removal of the medium, cells were washed once with 500μl PBS per 

well and lysed by adding 50 μl passive lysis buffer (Promega, Madison, USA) to 

each well. The plates were incubated for 20 minutes at room temperature on a shaker 

(KS260 Basic; IKA®; Germany). The cell lysates were placed on ice and transferred 

on 96-well tissue culture plates (Sarstetedt Inc.; USA) and either used directly for 

luciferase assay or stored at -20 °C. 

4.2.19 Luciferase reporter assay 

For measurement of luciferase activity, white 96-well plates were loaded with 

10 μl of each lysate sample per well using luciferin as substrate. In addition, for 

normalization of transfection efficiency, 10 μl of each lysate sample in a separate 

well was also measured for the Renilla luciferase activity using coelenterazine as 

substrate (co-reporter pRL-Actin under the control of a human ß-actin promoter was 

always co-transfected). The luciferase activities were measured in a microplate 

luminometer (CentroLB960, Berthold Technologies; Germany). The reader was 

programmed (MicroWin2000) to inject each 40 μl of Renilla/ Firefly substrates in 

each well and measure the luminescence signal for 10 seconds. Signal values were 

exported to and analyzed in MS Excel and GraphPad Prism. 

4.2.20 Statistical analysis 

For statistical analysis was used GraphPad Prism 7.0 software 

(GraphPad Software, Inc., San Diego, California, USA). Statistical significance was 

analyzed using paired t-test or one-way ANOVA. A P value < 0.05 was considered 

statistically significant. Data are presented as mean ± standard deviation (SD). 
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4.3 Results 

4.3.1 ChIP-PCR optimization 

For PCR amplification of specific ATXN3-enriched genomic regions 

previously identified by ChIP sequencing, the reaction conditions for each primer 

pair used were optimized by using various annealing temperatures varying Mg2+ 

concentrations and occasionally by the addition of betaine and/or DMSO as is 

illustrated on Figure 1. Optimized conditions are shown in Table 3. 

Figure 1 Analysis of PCR products containing 239 bp of the CEBPD-I(1) gene region by agarose 

gel electrophoresis. Optimization was performed using a temperature gradient (56°C, 58°C, 60°C) 

with and without DMSO (10%). 1,5% TAE agarose gel, 180V for 30 minutes, Gel-Red, Template: 

chromatin DNA of SCA3 patient FS11; Ctr without DNA, 10 μl PCR product+ 2μl Loading buffer, 

4 μl marker 
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Table 3 Optimized conditions identified for the amplification of specific genomic regions  

Gene region 

Optimized 

temperature 

[°C] 

Concentration of Mg2+ 

[mM] 

Betaine 

[%] 

Length of gene 

region [bp] 

RRBP1(1) 62 1,5 - 185 

SERPINF2(1) 52 1,5 - 185 

ELAVL2 52 1,5 - 141 

SEMA6A 54 1,5 - 133 

THBS1(1) 52 1,5 - 231 

CEBPD-I(1) 60 1,5 - 239 

DOCK10 58 1,5 - 163 

COL6A3 62 1,5 - 162 

TOX3 56 1,5 10 133 

ARRDC3 60 1,5 - 132 

FOSL2 62 1,5 - 181 

TLR4 54 2,5 - 137 

KLF10 56 1,5 - 164 

PER2 60 1,5 - 141 

THBS1(2) 62 1,5 - 146 

CEBPD-I(2) 58 2,5 - 124 

RRBP1(2)_For 

RRBP1(1)_Rev 
62 1,5 - 150 

SERPINF2(2)_For 

SERPINF2(1)_Rev 
60 1,5 - 172 

SERPINF2(1)_For 

SERPINF2(2)_Rev 
60 1,5 - 153 

SERPINF2(2) 58 1,5 - 140 

PTEN 58 1,5 - 117 

CEBPD-III 62 1,5 10 148 
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4.3.2 Validation of ATXN3 enriched genomic regions by ChIP-PCR 

For ChIP-PCR, chromatin DNA prepared from differentiated iPS-derived 

neurons of 2 SCA3 patients and 2 control subjects was immunoprecipitated using an 

ATXN3-specific antibody. The purified ATXN3-bound chromatin fragments were 

then used as DNA templates for the amplification of the 22 genomic regions 

(previously identified by ChIP sequencing) with each primer pair under optimized 

conditions (see Table 1). For some genomic regions, new primers and smaller-sized 

amplicons were chosen for specific amplification by PCR (see Table 1).  Enrichment 

of ATXN3 was confirmed for genomic regions located within or closed to genes 

encoding: phosphatase and tensin homolog (PTEN), thrombospondin 1 (THBS1), 

serine protease inhibitor family F2 (SERPINF2), CCAAT/enhancer binding protein 

delta (CEBPD-I) and period circadian clock 2 (PER2) (Figure 2). Interestingly, the 

enrichment of ATXN3 to genomic regions of both CEBPD-I and THBS1 was 

significantly lower in SCA3 patient (#2) compared to control (#2) suggesting that 

mutant ATXN3 has probably altered or reduced binding properties in neurons of 

SCA3 patients. 

Figure 2 Verified ATXN3-enriched genomic regions. Quantification of ATXN3 enriched 

genomic regiones located  within the CEBPD-I , PER2, PTEN, THBS1 and SERPINF2 

gene analyzed by ChIP-PCR. The amount of immunoprecipitated chromatin DNA was 

normalized to the amount of input chromatin DNA determined by densitometric 

quantification of the generated PCR products. Values are expressed in percentage of the 

respective input signal (100%). The results are presented as the mean ± SD of three 

independent experiments (n=3) 
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4.3.3 PCR optimization and amplification of selected genomic regions 

For the confirmed ATXN3-bound regions, new primers including restriction 

sites (Sac I and Xho I) for subcloning in the pGL4 luciferase vector were designed 

and used to amplify genomic regions containing the respective ATXN3-enriched 

sequence together with 5’ and 3’ flanking regions. Optimization of PCR conditions 

was performed similarly as for the ChIP-PCRs, and is exemplarily shown 

in Figure 3. Genomic DNAs isolated from 3 different human cell lines, a neuronal 

stem cell line (NSC), tumor cell line (HeLa) and lymphoblastoid cell line (Lym). 

were used as templates. After determination of the optimal conditions (Table 4), the 

confirmed ATXN3-bound genomic regions were specifically amplified and used for 

cloning into pCR2.1 vector. 

Table 4 Optimized conditions identified for the amplification of specific genomic regions used for 

subcloning into pCR2.1 and pGL4.23 vectors 

  

Gene region 
Optimized temperature 

[°C] 

Length of genomic region 

[bp] 

CEBPD-I 60 901 

PER2 58 840 

PTEN 62 858 

SERPINF2 58 940 

THBS1 62 968 
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4.3.4 Subcloning of PCR products into pCR2.1 vector and characterization of 

recombinant clones 

The amplificated PCR products of each genomic region were inserted and 

ligated to the pCR 2.1 vector (see Methods). After transformation of competent 

E. coli cells with the pCR2.1 ligation products, ampicillin-resistant clones were 

grown on agar plates and recombinant clones were identified by Blue/White 

screening. Individual clones were picked and grown in small scale culture medium 

containing ampicillin and used for isolation of plasmid DNA. 

To verify the presence, size and orientation of the subcloned inserts, plasmid 

DNA of several recombinant clones was isolated and digested with restriction 

enzymes Eco RI and SacI/XhoI. Single EcoRI digests of pCR 2.1 clones were used 

to discriminate the size of the subcloned inserts whereas double digests with SacI and 

XhoI were used to release the inserts for further subsequent forced cloning into pGL4 

reporter vector also restricted with SacI and XhoI.  

Figure 3 Analysis of PCR products containing 858 bp of the PTEN gene region by agarose gel 

electrophoresis. Optimization was performed using different temperatures (62°C and 64°C) 1,0% 

TAE agarose gel, 180V for 30 minutes, GelRed, Template: Genomic DNA from a neuronal stem 

cell line (NSC), tumor cell line (HeLa) and lymphoblastoid cell line (Lym); Ctr without DNA, 10 μl 

PCR product+ 2μl Loading buffer, 4 μl Marker of each 100 bp and 1 kb ladder. 
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4.3.5 Cloning of genomic inserts into pGL 4.23 reporter vector and 

characterization of recombinant clones 

The purified SacI/XhoI inserts of the respective pCR2.1 clones (4.3.4) were 

cloned into a SacI/XhoI-restricted pGL 4.23 reporter vector in front of the luciferase 

gene. After transformation of competent E. coli cells with the pGL4.23 ligation 

products, ampicillin-resistant clones were selected on agar plates.  Individual clones 

were picked and propagated for the isolation of plasmid DNA. To confirm the 

presence and size of the cloned inserts, plasmid DNA isolated from several 

recombinant clones was digested with the restriction enzymes SacI and XhoI  

(Figure 4). Moreover, to assure that the subcloned inserts are present as single 

copies, additional restriction digests were performed, as listed in Table 5. The 

generated pGL4.23 constructs were verified by sequencing. 

 

Figure 4 Restriction digests of generated plasmids using enzymes XhoI and SacI resulting in 

linearized pGL4 vector backbones and release of the subcloned inserts, 1,0% TAE agarose gel, 180V 

for 45 minutes, EtBr, 2μl Loading buffer, 4 μl Marker of 1 kb ladder. 
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Table 5 Confirmation digest of cloned plasmids 

  

Reporter construct Restriction enzyme Approximate length of expected fragments [bp] 

pGL4.23-CEBPD-I Pst I 
3631 

1485 and 62 

pGL4.23-PER2 Apa I 
4696 

419 

pGL4.23-PTEN Hind III 
4588 

543 

pGL4.23-SERPINF2 Bgl II 
4785 

430 

pGL4.23-THBS1 Xba I 
2656 

2590 
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4.3.6 Regulatory activity of an ATXN3-bound, proximal region upstream of 

the CCAAT/enhancer binding protein delta (CEBPD) gene 

In Figure 5 the chromosomal localization of the ATXN3-enriched genomic 

region upstream of the CEBPD gene and the amplificated region cloned into the 

reporter vector pGL4.23 in front of a minimal promoter and a Firefly luciferase 

(luc2) is shown. 

4.3.6.1  Reporter activity of the pGL4-CEBPD-I construct in human neuroblastoma 

SH-SY5Y cells overexpressing normal and mutant ATXN3 

To study the functional effects of ATXN3 on CEBPD gene transcription, SH-

SY5Y cells were transfected with the pGL4 luciferase reporter containing the 901 bp 

genomic region upstream of the CEBPD gene and expression plasmids encoding 

green fluorescent protein (GFP) and GFP fusion proteins of human full length 

Figure 5 Chromosomal localization of the cloned CEBPD genomic region and construction of the 

pGL4-CEBPD-I reporter vector 
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normal (Q13) and mutant (Q77) ATXN3. Co-expression of normal ATXN3Q13 

increased reporter activity by approximately 40% compared to controls transfected 

with a GFP expression plasmid only (Figure 6). A similar although lower increase in 

reporter activity (~25%) was observed when mutant ATXN3Q77 was co-expressed, 

pointing towards an enhancing effect of normal ATXN3 and a partially reduced 

activating capacity of mutant ATXN3 on this genomic region.  

4.3.6.2 Reporter activity of the pGL4-CEBPD-I construct in hemizygous ATXN3 

Knockout human neuroblastoma SH-SY5Y cells 

To further analyze potential regulatory effects mediated by ATXN3 on the 

subcloned genomic CEBPD-I region, a previously generated human neuroblastoma 

SH-SY5Y cell line exhibiting only one functional allele for the expression of 

ATXN3 (hemizygous knockout) were transfected with the pGL4-CEBPD-I 

luciferase reporter construct and compared to the luciferase activities obtained in 

wildtype SH-SY5Y cells. 

Figure 6 Mean Luciferase Activity (%) of pGL4-CEBPD-I construct in 

Human Neuroblastoma Cells. The results are presented as the mean ± SD of 

four independent experiments (n=4). Data were statistically analysed using 

One-way ANOVA, P < 0.05 
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In both wildtype and ATXN3 knockout SH-SY5Y cells, the pGL4-CEBPD-I 

reporter activity was strongly repressed to one-fifth of the activities obtained in cells 

transfected with the empty control pGL4 vector. Interestingly, ATXN3-KO cells 

(~20%) showed a less strong repression of the CEBPD-mediated reporter activity 

compared to wildtype cells (~10%) as shown in Figure 7, suggesting that the 

ATXN3-mediated repression is partially reduced in ATXN3-KO cells through the 

hemizygous knockout of endogenous ATXN3. The partial loss of repression in KO 

cells, however, indicates that endogenous ATXN3 suppresses rather than enhances 

the CEBPD-mediated activity found under ATXN3 overexpression conditions 

(4.3.6.1). 

  

Figure 7 Mean Luciferase Activity (% of native pGL4 reporter activity) of 

pGL4-CEBPD-I construct in WT and hemizygous ATXN3 Knockout Human 

Neuroblastoma Cells. The results are presented as the mean ± SD of three 

independent experiments (n=3).  Data were statistically analysed using paired 

t-test, P < 0.05 
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4.3.7 Regulatory activity of an ATXN3-bound, proximal region upstream of 

the period circadian clock-2 (PER2) gene 

In Figure 8 the chromosomal localization of the ATXN3-enriched genomic 

region upstream of the PER2 gene and the amplificated region cloned into the 

reporter vector pGL4.23 in front of a minimal promoter and a Firefly luciferase 

(luc2) is shown. 

4.3.7.1  Reporter activity of pGL4-PER2 construct in human neuroblastoma SH-

SY5Y cells overexpressing normal and mutant ATXN3 

To further analyze a possible regulatory effect mediated by ATXN3 on the 

subcloned PER2 genomic region in vitro, the pGL4-PER2 luciferase reporter 

construct was co-transfected with expression plasmids encoding green fluorescent 

protein (GFP) and GFP fusion proteins of human full length normal (Q13) and 

mutant (Q77) ATXN3 into the human neuroblastoma cell line SH-SY5Y. 

Figure 8 Chromosomal localization of the cloned PER2 genomic region and construction of the 

pGL4-PER2 reporter vector 
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The genomic region linked to PER2 slightly increased luciferase activity in 

response to co-expression of normal ATXN-3 whereas the activity mildly decreased 

when mutant ATXN-3 was co-expressed (Figure 9). The small changes in luciferase 

activity found for the PER2-associated region gene are unlikely to account for a 

substantial ATXN3-mediated regulatory effect under the conditions analyzed. 

4.3.7.2 Reporter activity of pGL4-PER2 construct in hemizygous ATXN3 KO 

human neuroblastoma cells  

To study a putative regulatory effect of ATXN3 on the PER2 subcloned 

region., ATXN3 knock-out and wildtype SH-SY5Y cells were transfected with 

pGL4-PER2 luciferase reporter construct. In both wildtype and ATXN3 knockout 

SH-SY5Y cells, the pGL4-PER2 reporter activity was strongly repressed to 

approximately 15% of the activities obtained in cells transfected with the empty 

control pGL4 vector (Figure 10).  

Figure 9 Mean Luciferase Activity (%) of pGL4-PER2 construct in Human 

Neuroblastoma Cells. The results are presented as the mean ± SD of four 

independent experiments (n=4). Data were statistically analysed using One-

way ANOVA, P < 0.05 
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However, the PER2 gene-linked genomic region showed no differences in 

luciferase activity between ATXN3 KO and WT cells, suggesting that repression of 

the subcloned region is not ATXN3-dependent under the conditions analyzed. 

4.3.8  Regulatory activity of an ATXN3-bound, intronic region within the 

phosphatase and tensin homolog (PTEN) gene 

To study the regulatory activity of the ATXN3-enriched proximal PTEN 

region, a reporter construct was generated by PCR amplification of a 858 bp genomic 

fragment from intron 2 of the PTEN gene (with total 9 exons) and insertion into the 

reporter vector pGL4.23 upstream of a minimal promoter and a Firefly luciferase 

(luc2) gene (Figure 11). 

  

Figure 10 Mean Luciferase Activity (% of native pGL4 vector activity) of 

pGL4-PER2 construct in WT and heterozygous ATXN3-knockout Human 

Neuroblastoma Cells. The results are presented as the mean ± SD of three 

independent experiments (n=3).  Data were statistically analysed using paired 

t-test, P < 0.05 
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4.3.8.1  Reporter activity of pGL4-PTEN construct in human neuroblastoma SH-

SY5Y cells overexpressing normal and mutant ATXN3 

To further analyze a possible regulatory effect mediated by ATXN3 on the 

subcloned PTEN genomic region in vitro, the pGL4-PTEN luciferase reporter 

construct was co-transfected with expression plasmids encoding green fluorescent 

protein (GFP) and GFP fusion proteins of human full length normal (Q13) and 

mutant (Q77) ATXN3 into the human neuroblastoma cell line SH-SY5Y. 

The gene region linked to PTEN showed a slightly increased luciferase 

activity in response to co-expression of normal ATXN-3. Similarly. a small increase 

in luciferase activity was found when mutant ATXN-3 was co-expressed 

(Figure 12). Thus, a regulatory effect mediated by ATXN3 on this genomic region 

under the conditions analyzed is unlikely. 

Figure 11 Chromosomal localization of the cloned PTEN genomic region and construction of the 

pGL4-PTEN reporter vector 
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4.3.8.2 Reporter activity of pGL4-PTEN construct in hemizygous ATXN3 KO 

human neuroblastoma cells 

To investigate a putative regulatory effect of ATXN3 on the PTEN subcloned 

region, ATXN3 knock-out human neuroblastoma SH-SY5Y and wildtype SH-SY5Y 

cells were transfected with the pGL4-PTEN luciferase reporter construct. In both 

wildtype and ATXN3 knockout SH-SY5Y cells, the pGL4-PTEN reporter activity 

was slightly repressed to ~70% in WT and 80% in KO cells compared to the 

activities obtained in cells transfected with the empty control pGL4 vector 

(Figure 13). 

However, no significant differences in luciferase activity of the PTEN-linked 

region were found in ATXN3-KO and WT cells (Figure 13), suggesting no ATXN3-

dependent regulatory activity of the subcloned genomic region. 

  

Figure 12 Mean Luciferase Activity (%) of pGL4-PTEN construct in Human 

Neuroblastoma Cells. The results are presented as the mean ± SD of four 

independent experiments (n=4). Data were statistically analysed using One-

way ANOVA, P < 0.05 
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4.3.9 Regulatory activity of an ATXN3-bound, intronic region within the 

serine protease inhibitor family F2 (SERPINF2) gene 

To study the regulatory activity of the ATXN3-enriched proximal SERPINF2 

region, a reporter construct was generated by PCR amplification of a 940 bp genomic 

fragment from intron 5 (with total 10 exons) and insertion into the reporter 

vector pGL4.23 upstream of a minimal promoter and a Firefly luciferase (luc2) gene 

(Figure 14) 

Figure 13 Mean Luciferase Activity (% of native pGL4 vector activity) of 

pGL4-PTEN construct in WT and heterozygous ATXN3-knockout Human 

Neuroblastoma Cells. The results are presented as the mean ± SD of three 

independent experiments (n=3).  Data were statistically analysed using paired 

t-test, P < 0.05 
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4.3.9.1  Reporter activity of pGL4-SERPINF2 construct in human neuroblastoma 

SH-SY5Y cells overexpressing normal and mutant ATXN3 

To analyze a possible regulatory effect mediated by ATXN3 on the subcloned 

SERPINF2 genomic region in vitro, the pGL4-SERPINF2 luciferase reporter 

construct was co-transfected with expression plasmids encoding green fluorescent 

protein (GFP) and GFP fusion proteins of human full length normal (Q13) and 

mutant (Q77) ATXN3 into the human neuroblastoma cell line SH-SY5Y. 

The gene region linked to SERPINF2 slightly decreased activity in response 

to co-expression of normal ATXN-3. This tendency increased even more when 

mutant ATXN-3 was co-expressed (Figure 15) pointing toward a very weak 

ATXN3-dependent repressive effect of the subcloned genomic region under the 

conditions analyzed. 

Figure 14 Chromosomal localization of the cloned SERPINF2 genomic region and construction 

of the pGL4-SERPINF2 reporter vector 
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4.3.9.2 Reporter activity of pGL4-SERPINF2 construct in hemizygous ATXN3 KO 

human neuroblastoma cells 

A repressive effect was also found in ATXN3 knock-out human 

neuroblastoma wildtype SH-SY5Y cells transfected with pGL4-SERPINF2 

luciferase reporter construct. In both wildtype and ATXN3 knockout SH-SY5Y cells, 

the pGL4-SERPINF2 reporter activity was strongly repressed to one third of the 

activities obtained in cells transfected with the empty control pGL4 vector 

(Figure 16). 

No significant ATXN3-dependent differences for the SERPINF2-linked 

region were found between ATXN3 KO and WT cells except for a small reduction of 

the repressive effect in KO cells (Figure 16). 

  

Figure 15 Mean Luciferase Activity (%) of pGL4-SERPINF2 construct in 

Human Neuroblastoma Cells. The results are presented as the mean ± SD of 

four independent experiments (n=4). Data were statistically analysed using 

One-way ANOVA, P < 0.05 
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4.3.10 Regulatory activity of an ATXN3-bound, proximal region downstream of 

the thrombospondin-1 (THBS1) gene 

In Figure 17 the chromosomal localization of the ATXN3-enriched genomic 

region upstream of the THBS1 gene and the amplificated region cloned into the 

reporter vector pGL4.23 in front of a minimal promoter and a Firefly luciferase 

(luc2) is shown. 

  

Figure 16 Mean Luciferase Activity (% of native pGL4 vector activity) of 

pGL4-SERPINF2 construct in WT and heterozygous ATXN3-knockout 

Human. The results are presented as the mean ± SD of three independent 

experiments (n=3).  Data were statistically analysed using paired t-test,  

P < 0.05 
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Figure 17 Chromosomal localization of the cloned THBS1 genomic region and construction of the 

pGL4-THBS1 reporter vector 

4.3.10.1 Reporter activity of pGL4-THBS1 construct in human neuroblastoma SH-

SY5Y cells overexpressing normal and mutant ATXN3 

To analyze a possible regulatory effect mediated by ATXN3 on the subcloned 

THBS1 genomic region in vitro, the pGL4-THBS1 luciferase reporter construct was 

co-transfected with expression plasmids encoding green fluorescent protein (GFP) 

and GFP fusion proteins of human full length normal (Q13) and mutant (Q77) 

ATXN3 into the human neuroblastoma cell line SH-SY5Y. 

The luciferase activity of the subcloned region linked to the THBS1 gene 

showed an increase of circa 20% in response to the co-expression of normal ATXN3. 

This tendency increased by another 20% when mutant ATXN3 was co-expressed 

(Figure 18), suggesting an ATXN3-dependent activation of the THBS1 genomic 

region that might be relevant for SCA3 pathogenesis. 
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4.3.10.2 Reporter activity of pGL4-THBS1 construct in ATXN3 KO human 

neuroblastoma cell line 

The possible modulating effect of ATXN3 on the regulatory activity of the 

THBS1 subcloned genomic region was also analyzed in ATXN3 knock-out and 

wildtype human neuroblastoma SH-SY5Y cells line transfected with pGL4-THBS1 

luciferase reporter construct. In both wildtype and ATXN3 knockout SH-SY5Y cells, 

the pGL4-THBS1 reporter activity was strongly repressed to approximately one-fifth 

of the activities obtained in cells transfected with the empty control pGL4 vector 

(Figure 19). Repression of luciferase activity was stronger in WT (10%) compared 

to KO (20%) cells suggesting that endogenous ATXN3 present in SH-SY5Y cells 

probably acts as a transcriptional repressor on the subcloned genomic element 

(Figure 19).  

  

Figure 18 Mean Luciferase Activity (%) of pGL4-THBS1 construct in 

Human Neuroblastoma Cells. The results are presented as the mean ± SD of 

four independent experiments (n=4). Data were statistically analysed using 

One-way ANOVA, P < 0.05 
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Figure 19 Mean Luciferase Activity (% of native pGL4 vector activity) of 

pGL4-THBS1 construct in WT and heterozygous ATXN3-knockout Human 

Neuroblastoma Cells. The results are presented as the mean ± SD of three 

independent experiments (n=3).  Data were statistically analysed using paired 

t-test, P < 0.05 
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5. Discussion and conclusions 

5.1 Discussion 

Transcriptional dysregulation represents a possible pathogenetic mechanism 

in polyQ diseases and has been shown in various polyQ disease models suggesting 

that differential expression of genes contributes to disease pathogenesis in SCA3 and 

other polyQ disorders (Riley & Orr, 2006). ATXN3 is known to interact with several 

transcription factors, binds to specific genomic regions and regulates expression of 

distinct genes (Costa & Paulson, 2012; Dueñas et al., 2006). In this thesis, 16 

ATXN3-bound genomic regions, previously identified by ChIP sequencing, 

correlating to differentially expressed mRNAs in human iPS-derived neurons were 

verified by ChIP-PCR analyses using ATXN3-immunoprecipitated chromatin from 

different human iPS-derived neurons. ChIP-PCR analyses confirmed 5 ATXN3-

enriched genomic regions which were used for the generation of reporter constructs 

containing the identified ATXN3-bound regions in front of a luciferase gene. The 

reporter constructs were used to study the potential capacity of ATXN3 to modulate 

transcription of the identified genomic regions in human neuroblastoma SH-SY5Y 

cells overexpressing different ATXN3 isoforms and SH-SY5Y-derived ATXN3 

knockout cells expressing only one functional allele of ATXN3. 

In both wildtype and ATXN3 knockout SH-SY5Y cells, the subcloned 

ATXN3-bound genomic regions of CEBPD-I, PER2, SERPINF2 and THBS1 

strongly repressed the transcription of the reporter luciferase whereas the subcloned 

genomic region of PTEN did not significantly alter the luciferase activity compared 

to the activity of the empty reporter construct. In contrast to yet known ATXN3-

regulated genes (Araujo et al., 2011; Evert et al., 2006; Reina et al., 2012; Sacco et 

al., 2014), the genomic regions analyzed here are not localized within core promoter 

regions of the genes but in intronic or genomic regions up/downstream of the 

associated genes. Thus, it is likely that the ATXN3-bound genomic regions studied 

here, except PTEN, function as repressing elements to silence transcription of the 

associated genes.  
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However, in regard to ATXN3-modulated regulation, only the genomic 

ATXN3-bound regions associated with the CEBPD-I and THBS1 gene exerted 

ATXN3-dependent changes in luciferase activity (Figure 7 and Figure 19, 

respectively). Compared to wildtype cells, the repressing capacity of CEBPD-I and 

THBS1 in ATXN3 knockout cells was reduced by half suggesting that ATXN3 binds 

to these regions to enhance or maintain transcriptional repression. The mechanism of 

repression is not clear yet but could principally involve formation of repressor 

complexes and histone deacetylation as recently shown for the ATXN3-mediated 

repression of the matrix metalloproteinase-2 gene transcription (Evert et al., 2006). 

Moreover, ATXN3 is known to interact with the TATA-box binding protein (TBP) 

and to inhibit histone acetyltransferase activity (Li, et al., 2002). Since transcription 

of the reporter luciferase in the generated constructs is controlled by a minimal 

promoter containing a TATA box it is possible that ATXN3 interferes with the 

assembly and formation of the transcription initiation complex at the minimal 

promoter. Future studies, using the reporter constructs without minimal promoter or 

deleted TATA box are required to show if ATXN3 confers its repressive capacity via 

TBP-mediated transcription.  

Similarly, in wildtype cells overexpressing GFP fusion proteins of normal 

and mutant ATXN3, ATXN3-dependent changes were found only for the reporter 

constructs containing the genomic regions associated with the CEBPD-I and THBS1 

genes. For CEBPD-I, co-expression of normal and mutant human full-length ATXN3 

clearly increased the luciferase activity compared to the control co-expressing GFP 

protein only (Figure 6). Interestingly, the increase in luciferase activity mediated by 

mutant ATXN3 was lower than by normal ATXN3 possibly indicating a partial loss 

of function of the mutant ATXN3 protein. Among other functions, CEBPD is a 

crucial transcription factor involved in inflammatory processes in the human brain 

(Ramji & Foka, 2002) and has been shown to be significantly upregulated in rat 

mesencephalic cells overexpressing mutant ATXN3 and brain sections of SCA3 

patients (Evert et al., 2003).  Thus, ATXN3 normally may be involved in the 

regulation of the CEBPD gene expression and altered CEBPD expression may be 
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associated with SCA3 disease. However, future studies are required to investigate the 

implication of CEBPD in SCA3 pathogenesis in more detail. 

For THBS1, normal and mutant human full-length ATXN3 also increased the 

luciferase activity with an upward trend for mutant ATXN3 suggesting that mutant 

ATXN3 exerts a gain of function mediating aberrant transcriptional activation of the 

THBS1 genomic region (Figure 18). THBS1 is involved in proliferation and 

differentiation of neural progenitor cells and critically supports neuronal migration in 

brain tissue (Lu & Kipnis, 2010). Moreover, THBS1 was found to be upregulated in 

mesencephalic cells overexpressing mutant ATXN3 (Evert et al., 2003). These 

findings suggest that ATXN3 could be involved in transcriptional regulation of the 

THBS1 gene expression. Recently, it has been reported, that induction of CEBPD 

contributes to the repression of THBS1 transcription (Ko et al., 2015). Further 

studies are needed to clarify whether ATXN3 participates in the regulation of 

CEBPD and THBS1 and, if transcriptional dysregulation of these targets contributes 

to SCA3 pathogenesis.  

The ATXN3-mediated changes observed for the ATXN3-bound genomic 

regions associated with PER2, PTEN and SERPINF2 gene in ATXN3 

overexpressing SH-SY5Y wildtype cells were only moderate indicating that 

regulatory effects mediated by ATXN3 on these regions under the conditions 

analyzed are unlikely (Figure 9, Figure 12 and Figure 15, respectively). However, 

since ATXN3 is involved in the cellular stress response (Costa & Paulson, 2012), the 

reporter activity of the constructs should also be analyzed in cells exposed to various 

stress stimuli including oxidative stress and heat shock. In addition, future studies 

should include co-expression of ATXN3 without a GFP fusion protein as well as 

other ATXN3 isoforms (Costa & Paulson, 2012). ATXN3 is alternatively spliced to 

encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif 

(Harris et al., 2010).  Moreover, at least 20 different protein isoforms of ATXN3 

from 56 identified alternative transcripts of the gene have been predicted 

(Bettencourt et al., 2010, 2013) demonstrating the high variability of ATXN3 gene 
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transcripts and the existence of cell type-specific isoforms for individual cellular 

functions. 

The enormous diversity of ATXN3 splice variants may be one explanation 

for the opposite effects encountered for ATXN3-dependent discrepancies obtained in 

reporter assays for the analyzed genomic regions. In this work two different 

experimental approaches were used (i) reporter assays in human neuroblastoma SH-

SY5Y cells overexpressing artificial GFP fusion proteins of ATXN3 and (ii) reporter 

assays in human neuroblastoma SH-SY5Y ATXN3 knockout cells expressing 

endogenous ATXN3 from one functional allele of ATXN3. On one side, the ATXN3-

mediated increased luciferase activities found for CEBPD and THBS1 in SH-SY5Y 

wildtype cells may be simply caused by an altered property of the artificial ATXN3 

variant fused to GFP. On the other side, the loss of repressing activity by the loss of 

one copy of endogenous ATXN3 found for CEBPD and THBS1 regions in ATXN3-

knockout cells may be also caused by off-target effects resulting from genetic 

modification of the cell line. Moreover, since the ATXN3-bound genomic regions 

were inserted in front of minimal promoter in the reporter constructs, activating and 

repressing effects may have interfered with each other. Therefore, additional 

experiments should also include reporter constructs of the analyzed genomic regions 

without a minimal promoter. In addition, further experiments in SH-SY5Y ATXN3 

knockout cells are required to analyze whether co-expression of ATXN3 is capable 

to rescue the loss of repression found in KO cells for CEBPD and THBS1. 

In this thesis, enriched binding of ATXN3 to five genomic regions in iPS-

derived neurons from controls and SCA3 patients was confirmed. The analysis of 

their potential gene regulatory activity revealed that two of the ATXN3-bound 

genomic regions exert altered gene regulatory activities in response to the loss of 

endogenous and co-expressed recombinant ATXN3. Correspondingly, the binding of 

ATXN3 to genomic regions of both CEBPD-I and THBS1 was significantly lower in 

SCA3 patient compared to control indicating that altered binding properties of the 

mutant ATXN3 protein may contribute to differential regulatory effects and altered 

expression of the associated genes in SCA3 (Figure 2). Thus, the identified genomic 
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regions are likely to be regulated by ATXN3 and might be implicated in pathological 

processes in SCA3 disease.  



63 

 

5.2 Conclusion 

ATXN3 is widely expressed in numerous mammalian tissues and is involved 

in many diverse processes in mammalian cells. Besides its function in protein quality 

control, ATXN3 plays an important role in transcriptional regulation. We focused 

our efforts on the identification of genes regulated by ATXN3 to better understand 

the molecular mechanisms underlying the pathogenesis of the severe 

neurodegenerative SCA3 disease. 

Our data confirmed enriched binding of ATXN3 to five genomic regions in 

iPS-derived neurons from controls and SCA3 patients. The analysis of their potential 

gene regulatory activity revealed that two of the ATXN3-bound genomic regions, 

CEBPD and THBS1, exert altered gene regulatory activities in response to the loss of 

endogenous and co-expressed recombinant ATXN3. The identified genomic regions 

are likely to be regulated by ATXN3 and might be implicated in pathological 

processes in SCA3 disease. 

  



64 

 

6. References 

Antony, P. M. A., Mäntele, S., Mollenkopf, P., Boy, J., Kehlenbach, R. H., Riess, O., 

& Schmidt, T. (2009). Identification and functional dissection of localization 

signals within ataxin-3. Neurobiology of Disease, 36(2), 280–292. ISSN 0969-

9961 

Araujo, J., Breuer, P., Dieringer, S., Krauss, S., Dorn, S., Zimmermann, K., … Evert, 

B. O. (2011). FOXO4-dependent upregulation of superoxide dismutase-2 in 

response to oxidative stress is impaired in spinocerebellar ataxia type 3. Human 

Molecular Genetics, 20(15), 2928–2941. ISSN 0964-6906 

Bettencourt, C., Raposo, M., Ros, R., Montiel, R., Bruges-Armas, J., & Lima, M. 

(2013). Transcript Diversity of Machado-Joseph Disease Gene (ATXN3) Is Not 

Directly Determined by SNPs in Exonic or Flanking Intronic Regions. Journal 

of Molecular Neuroscience, 49(3), 539–543. ISSN 0895-8696 

Bettencourt, C., Santos, C., Montiel, R., Do Carmo Costa, M., Cruz-Morales, P., 

Santos, L. R., … Lima, M. (2010). Increased transcript diversity: Novel splicing 

variants of Machado-Joseph Disease gene (ATXN3). Neurogenetics, 11(2), 

193–202. ISSN 1364-6745 

Bichelmeier, U., Schmidt, T., Hübener, J., Boy, J., Rüttiger, L., Häbig, K., … Riess, 

O. (2007). Nuclear localization of ataxin-3 is required for the manifestation of 

symptoms in SCA3: in vivo evidence. The Journal of Neuroscience : The 

Official Journal of the Society for Neuroscience, 27(28), 7418–7428. ISSN 

0270-6474 

Breuer, P., Haacke, A., Evert, B. O., & W??llner, U. (2010). Nuclear aggregation of 

polyglutamine-expanded ataxin-3: fragments escape the cytoplasmic quality 

control. Journal of Biological Chemistry, 285(9), 6532–6537. ISSN 0021-9258 

  



65 

 

Colomer Gould, V. F., Goti, D., Pearce, D., Gonzalez, G. A., Gao, H., Bermudez de 

Leon, M., … Brown, D. R. (2007). A Mutant ataxin-3 fragment results from 

processing at a site N-terminal to amino acid 190 in brain of Machado-Joseph 

disease-like transgenic mice. Neurobiology of Disease, 27(3), 362–369. ISSN 

0969-9961 

Costa, M. do C., & Paulson, H. L. (2012). Toward understanding Machado-Joseph 

disease. Progress in Neurobiology, 97(2), 239–257. ISSN 0301-0082 

Davies, S. W., Beardsall, K., Turmaine, M., DiFiglia, M., Aronin, N., & Bates, G. P. 

(1998). Are neuronal intranuclear inclusions the common neuropathology of 

triplet-repeat disorders with polyglutamine-repeat expansions? Lancet, 

351(9096), 131–133. ISSN 0140-6736 

Dueñas, A. M., Goold, R., & Giunti, P. (2006). Molecular pathogenesis of 

spinocerebellar ataxias. Brain, 129(6), 1357–1370. ISSN 0006-8950 

Evert, B. O., Araujo, J., Vieira-Saecker, A. M., de Vos, R. a I., Harendza, S., 

Klockgether, T., & Wüllner, U. (2006). Ataxin-3 represses transcription via 

chromatin binding, interaction with histone deacetylase 3, and histone 

deacetylation. The Journal of Neuroscience : The Official Journal of the Society 

for Neuroscience, 26(44), 11474–11486. ISSN 0270-6474 

Evert, B. O., Vogt, I. R., Kindermann, C., Ozimek, L., de Vos, R. a, Brunt, E. R., … 

Wüllner, U. (2001). Inflammatory genes are upregulated in expanded ataxin-3-

expressing cell lines and spinocerebellar ataxia type 3 brains. The Journal of 

Neuroscience : The Official Journal of the Society for Neuroscience, 21(15), 

5389–5396. ISSN 1529-2401 

Evert, B. O., Vogt, I. R., Vieira-Saecker, A. M., Ozimek, L., de Vos, R. A. I., Brunt, 

E. R. P., … Wüllner, U. (2003). Gene expression profiling in ataxin-3 

expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J 

Neuropathol Exp Neurol, 62(10), 1006–18. ISSN 0022-3069 



66 

 

Evert, B. O., Wüllner, U., Schulz, J. B., Weller, M., Groscurth, P., Trottier, Y., … 

Klockgether, T. (1999). High level expression of expanded full-length ataxin-3 

in vitro causes cell death and formation of intranuclear inclusions in neuronal 

cells. Human Molecular Genetics, 8(7), 1169–1176. ISSN 0964-6906 

Fu, Y. H., Kuhl, D. P., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., … 

Warren, S. T. (1991). Variation of the CGG repeat at the fragile X site results in 

genetic instability: resolution of the Sherman paradox. Cell, 67(6), 1047–58. 

ISSN 0092-8674 

Goti, D. (2004). A Mutant Ataxin-3 Putative-Cleavage Fragment in Brains of 

Machado-Joseph Disease Patients and Transgenic Mice Is Cytotoxic above a 

Critical Concentration. Journal of Neuroscience, 24(45), 10266–10279. ISSN 

0270-6474 

Harris, G. M., Dodelzon, K., Gong, L., Gonzalez-Alegre, P., & Paulson, H. L. 

(2010). Splice isoforms of the polyglutamine disease protein ataxin-3 exhibit 

similar enzymatic yet different aggregation properties. PLoS ONE, 5(10). ISSN 

1932-6203 

Chou, A. H., Chen, C. Y., Chen, S. Y., Chen, W. J., Chen, Y. L., Weng, Y. S., & 

Wang, H. L. (2010). Polyglutamine-expanded ataxin-7 causes cerebellar 

dysfunction by inducing transcriptional dysregulation. Neurochemistry 

International, 56(2), 329–339. ISSN 0197-0186 

J., E., M., E., & F., B. (2004). Neurodegenerative diseases and oxidative stress. 

Biomedicine and Pharmacotherapy, 58(1), 39–46. ISSN 0753-3322 

Jeub, M., Herbst, M., Spauschus, A., Fleischer, H., Klockgether, T., Wuellner, U., & 

Evert, B. O. (2006). Potassium channel dysfunction and depolarized resting 

membrane potential in a cell model of SCA3. Experimental Neurology, 201(1), 

182–192. ISSN 0014-4886 

  



67 

 

Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., 

… Akiguchi, I. (1994). CAG expansions in a novel gene for Machado-Joseph 

disease at chromosome 14q32.1. Nature Genetics, 8(3), 221–228. ISSN 1061-

4036 (Print) 

Ko, C. Y., Chu, Y. Y., Narumiya, S., Chi, J. Y., Furuyashiki, T., Aoki, T., … Wang, 

J. M. (2015). The CCAAT/enhancer-binding protein 

delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in 

Alzheimer’s disease. Neurobiology of Aging, 36(3), 1356–1368. ISSN 1558-

1497 

Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., … Brüstle, 

O. (2011). Excitation-induced ataxin-3 aggregation in neurons from patients 

with Machado–Joseph disease. Nature, 480, 543–546. ISSN 0028-0836 

Kovacs: Neuropathology of Neurodegenerative Diseases. 2012. Cambridge 

University Press, ISBN: 978-110758866-0;978-110767420-2, 1-7. 

Li, F., Macfarlan, T., Pittman, R. N., & Chakravarti, D. (2002). Ataxin-3 is a histone-

binding protein with two independent transcriptional corepressor activities. 

Journal of Biological Chemistry, 277(47), 45004–45012. ISSN 0021-9258 

Lu, Z., & Kipnis, J. (2010). Thrombospondin 1--a key astrocyte-derived neurogenic 

factor. FASEB Journal : Official Publication of the Federation of American 

Societies for Experimental Biology, 24(6), 1925–34. ISSN 1530-6860 

Macedo-Ribeiro, S., Cortes, L., Maciel, P., & Carvalho, A. L. (2009). 

Nucleocytoplasmic shuttling activity of ataxin-3. PLoS ONE, 4(6). ISSN 1932-

6203 

Mueller, T., Breuer, P., Schmitt, I., Walter, J., Evert, B. O., & Wüllner, U. (2009). 

CK2-dependent phosphorylation determines cellular localization and stability of 

ataxin-3. Human Molecular Genetics, 18(17), 3334–3343. ISSN 0964-6906 

  



68 

 

Nieoullon, A. (2011). Neurodegenerative diseases and neuroprotection: current views 

and prospects. Journal of Applied Biomedicine, 9(4), 173–183. ISSN 1214-

021X 

Orr, H. T., & Zoghbi, H. Y. (2007). Trinucleotide Repeat Disorders - 

annurev.neuro.29.051605.113042. Annual Review of Neuroscience. ISSN 0147-

006X 

Ramji, D. P., & Foka, P. (2002). CCAAT/enhancer-binding proteins: structure, 

function and regulation. The Biochemical Journal, 365(Pt 3), 561–75. ISSN 

0264-6021 

Reina, C. P., Nabet, B. Y., Young, P. D., & Pittman, R. N. (2012). Basal and stress-

induced Hsp70 are modulated by ataxin-3. Cell Stress and Chaperones, 17(6), 

729–742. ISSN 1355-8145 

Riley, B. E., & Orr, H. T. (2006). Polyglutamine neurodegenerative diseases and 

regulation of transcription: Assembling the puzzle. Genes and Development, 

20(16), 2183–2192. ISSN 0890-9369 

Ross, C. A. (1997). Intranuclear neuronal inclusions: A common pathogenic 

mechanism for glutamine-repeat neurodegenerative diseases? Neuron, 19(6), 

1147–1150. ISSN 0896-6273 

Rubinsztein, D. C., Wyttenbach, A., & Rankin, J. (1999). Intracellular inclusions, 

pathological markers in diseases caused by expanded polyglutamine tracts? 

Journal of Medical Genetics, 36(4), 265–270. ISSN 0022-2593 

Sacco, J. J., Yau, T. Y., Darling, S., Patel, V., Liu, H., Urbé, S., … Coulson, J. M. 

(2014). The deubiquitylase Ataxin-3 restricts PTEN transcription in lung cancer 

cells. Oncogene, 33(August), 4265–4272. ISSN 1476-5594 

  



69 

 

Simões, A. T., Gonçalves, N., Koeppen, A., Déglon, N., Kügler, S., Duarte, C. B., & 

Pereira De Almeida, L. (2012). Calpastatin-mediated inhibition of calpains in 

the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and 

aggregation, relieving Machado-Joseph disease. Brain, 135(8), 2428–2439. 

ISSN 1460-2156 

Takahashi, T., Katada, S., & Onodera, O. (2010). Polyglutamine diseases: Where 

does toxicity come from? What is toxicity? Where are we going? Journal of 

Molecular Cell Biology, 2(4), 180–191. ISSN 1674-2788 

Teixeira-Castro, A., Ailion, M., Jalles, A., Brignull, H. R., Vilacã, J. L., Dias, N., … 

Maciel, P. (2011). Neuron-specific proteotoxicity of mutant ataxin-3 in C. 

elegans: Rescue by the DAF-16 and HSF-1 pathways. Human Molecular 

Genetics, 20(15), 2996–3009. ISSN 0964-6906 

Warren, S. T., & Nelson, D. L. (1993). Trinucleotide repeat expansions in 

neurological disease. Current Opinion in Neurobiology, 3(5), 752–759. ISSN 

0959-4388 

Weber, J. J., Sowa, A. S., Binder, T., & Hübener, J. (2014). From pathways to 

targets: Understanding the mechanisms behind polyglutamine disease. BioMed 

Research International, 2014. ISSN 2314-6141 

YoungSoo Kim, Yunkyung Kim, Onyou Hwang and Dong Jin Kim (2012). 

Pathology of Neurodegenerative Diseases, Brain Damage - Bridging Between 

Basic Research and Clinics, Dr. Alina Gonzalez-Quevedo (Ed.), ISBN: 978-

953-51-0375-2, InTech 

Zoghbi, H. Y., & Orr, H. T. (2000). Glutamine Repeats and Neurodegeneration. 

Annual Review of Neuroscience. ISSN 0147-006X 

 


