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Chapter 1

Introduction

This chapter contains a survey summarizing several particular concepts and tools
useful in research of connections between a ring structure and a structure of
categories of modules.
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CLASSES OF RINGS DETERMINED BY A CATEGORICAL

PROPERTY

There are many properties of the category of all modules over a ring which can be

easily recognized from the structure of rings. This phenomenon can be illustrated

by the classical theorem characterizing left perfect rings:

Theorem 0.1. [17, Theorem P] The following statements are equivalent for a ring

R:

(1) Every left module has a projective cover.

(2) R=J(R) is semisimple and J(R) is left T-nilpotent .

(3) R=J(R) is semisimple and every non-zero left R module contains a maximal

submodule.

(4) R satis�es the descending chain condition on principal right ideals.

(5) Every 
at left module is projective.

Note that the conditions (1) and (5) deals with the structure of the category of

all modules over the ring, however the conditions (2), (3), and (4) are expressed in

the language of ring structure.

Characterization by both ring-theoretical and categorical properties are known

for various classical classes of rings such semisimple, hereditary, semihereditary or

abelian regular ones. Recall for example a characterization of von Neumann regular

rings [49, Theorem 1.1 and Corollary 1.13] which appears to be useful as a test class

for ring theoretical characterization of some categorical properties.

Theorem 0.2. The following statements are equivalent for a ring R:

(1) For every x 2 R there exists an element y 2 R such that x = xyx.

(2) Every principal left (right) ideal is generated by an idempotent.

(3) Every �nitely generated left (right) ideal is generated by an idempotent.

(4) Every �nitely generated submodule of a projective left R-module P is a direct

summand of P.

(5) Every left (right) module is 
at.

Clearly, the �rst three condition are ring-theoretical and the last two module-

theoretical. Furthermore, it is worth mentioning that the �rst condition quanti�es

only elements of a ring while the second and third ones are formulated in language

of lattices of one-sided ideals.

Unfortunately, not all classes of rings de�ned by some natural condition on cate-

gory of modules can be described by some nice ring-theoretical property. There are

two reasons of such a lack. The �rst one is caused by our ignorance; the problem

seems to be simply too hard for our imperfect tools and the goal of this thesis is to
4
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at least partially solve some problems of the described character. The second rea-

son is fundamental, based on set theory. Such an example of a module-theoretical

properties which cannot be describe in the ring structure example is the existence

of Whitehead test module for projectivity. As it is proved in [96] it is independent

of ZFC with Generalized Continuum Hypothesis over all right hereditary non-right

perfect ring.

The main objective of this thesis is to partially summarize known results for

several classes of rings determined by some categorical property. Four of the studied

classes, namely of steady, strongly steady, tall, and mod-retractable rings represent

typical examples of such rings, since their categorical de�nitions are natural an

easily applicable, while other two classes of general semiartinian, and RM-rings can

be de�ned by ring-theoretical property, nevertheless relevant structural questions

coming from the context of module theory needs transfer categorical properties to

the ring structure.

Let us remark that a module means right R-module over some unitary associative

ring R within the whole text. For non-explained terminology we refer to standard

monographs [11, 49, 90].

1. Compact objects

An object c of an abelian category closed under coproducts and products is said

to be compact if the covariant functor Hom(c;�) commutes with all direct sums i.e.

there is a canonical isomorphism in the category of abelian groups Hom(c;
L
D) �=L

Hom(c;D) for every system of objects D. The concept of compactness presents

an easy way to replace �nitely generated modules in general abelian categories.

Nevertheless, the clear form of the categorical de�nition is a reason why compact

objects can be applied as a useful tool also in categories containing �nitely generated

objects in standard sense.

1.1. History. The systematic research of compact objects in the context of module

categories was started by Hyman Bass in 60's. His famous book [18] contains as

an exercise a basic non-categorical characterization of the notion. Let us mention

here the author's comment to the exercise that examples of compact objects in the

category of all modules which are not �nitely generated "are not easy to �nd" [18,

p.54].

The introductory work on theory of compact modules is due to Rudolf Rentschler.

However his PhD thesis [78] and the paper [79] contains a list of basic examples

and several necessary and su�cient conditions of compactness, the core of these

works is an attempt to answer the natural question over which rings coincide the

classes of compact modules and of �nitely generated ones. It should be mentioned

that compact objects in categories of all modules have been studied under various

terms: module of type �, dually slender, �-compact, or U-compact module. We

will use the term small module here.
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Further study of small modules has been motivated by progress of research in

several di�erent branches of algebra. One of the most important source of ques-

tions concerning smallness or more generally compactness comes from the context

of representable equivalences of module categories. However ?-modules which ap-

pear to be an important notions in this branch of module theory were shown to

be necessary �nitely generated [32, 33], more general context deals with in�nitely

generated small modules [93, 94, 95]. Another important motivation for study of

the notion has appeared in the structure theory of graded rings [75] and almost free

modules [94]. Lattice theoretical approach to smallness is presented in the work

[54]. Fruitful motivation of many questions in this theory comes from the dual

context of so called slim and slender modules [38, 42, 45, 74], albeit the tools and

ideas of research are far from being dual.

Commuting properties of functors Hom are studied in many cases only for mod-

ules from the category Add(M) of direct summands of direct sums of copies of

some module M . Recall that a module M which is a compact object of the cat-

egory Add(M) is called self-small. The notion was introduced in [12] as a tool

for generalization of Baer's lemma [48, 86.5]. Self-small modules turn out to be

important also in the study of splitting properties, [5, 21] and representable equiva-

lences between subcategories of module categories in connection with tilting theory

[32, 33]. The notion is very useful in structure theory of mixed abelian groups

[9, 20].

The work [71] is devoted to study of compactness in stable categories, i.e. cat-

egories whose objects are all modules and groups of morphisms factorize through

projective modules. Namely, it is proved that over right perfect rings compact of ob-

jects of the stable category can be represented by some standard �nitely generated

modules.

1.2. Small modules. As it is shown in [18] or in [79, 1o], small modules can be

described in natural way by language of systems of submodules.

Lemma 1.1. The following conditions are equivalent for an arbitrary module M:

(1) M is small,

(2) if M =
S
i<!Mn for an increasing chain of submodules Mn �Mn+1 �M ,

then there exists n such that M =Mn,

(3) if M =
P

i<!Mn for a system of submodules Mn � M , n < !, then there

exists n such that M =
P

i<!Mn.

The condition (2) implies immediately that every �nitely generated module is

small. Moreover, it is clear from (3) that there is no in�nitely countably generated

small module. An another easy consequence of Lemma 1.1 is an observation that

a union of strictly increasing chain of the length �, for an arbitrary cardinal �

of uncountable co�nality, consisting of small submodules give us as well a small
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module. A small module can be constructed in such a way for instance as a �-

generated uniserial module, which is, indeed, the union of a chain of �-many cyclic

submodules.

This construction motivates de�nition of particular subclasses of small modules.

For an arbitrary cardinal number � we say that a module M is �-reducing if for

every submodule N � M such that gen(N) � � there exists a �nitely generated

submodule F such that the inclusions N � F �M holds.

For an arbitrary ring R let us denote by SM(R), R�(R), FG(R) and FP(R)

respectively the classes of all small, �-reducing, �nitely generated and �nitely pre-

sented right R-modules. It is easy to formulate the following hierarchy of these

classes:

FP(R) � FG(R) � R�(R) � R�(R) � SM(R)

where � < � are in�nite cardinals.

Note that all the inclusions are strict in general. Of course, every �+-generated

ideal in valuation ring is a witness of the inequalities R�+(R) 6= R�(R) 6= FG(R).

Furthermore, it is proved in the paper [95, Theorem 2.8] that a ring power F! for

each �eld F contains a small right ideal which is not !-reducing. It is important to

remark that classes R�(R) and SM(R) have similar class properties as the class

FG(R). Namely, the classes SM(R) and R�(R) for each in�nite cardinal are closed

under taking homomorphic images, extensions and �nite sums [104, Proposition

1.3].

There exist natural classes of rings over which each injective module is necessary

small. Let us denote by I(R) the class of all injective modules over a ring R.

Theorem 1.2. [95, Theorem 1.6] Let � be an in�nite cardinal and R a ring.

(1) If there exists an embedding R
(�)
R ! RR, then I(R) � R�(R).

(2) If there exists an embedding R2
R ! RR, then I(R) � R!(R).

The hypothesis of (1) is satis�ed by the endomorphism ring End(V ) for any

�-dimensional vector space V . Furthermore, any non-commutative domain which

does not satisfy the right Ore condition (for example polynomials in two non-

commuting variables Zhx; yi) satis�es the hypothesis of (2).

A similar observation as in Theorem 1.2 is made in the paper [33]:

Proposition 1.3. [33, Lemma 1.10] Let R be a simple ring containing an in�nite

orthogonal set of idempotents. Then I(R) � R!(R).

As a consequence we get that I(R) � R!(R) for every non-artinian simple von

Neumann regular ring R. Indeed, it means that if all injective modules are small,

then there exists a proper class of non-isomorphic small modules. Thus we have

examples of rings over which small modules can be arbitrarily large.

1.3. Steady rings. Rings over which the class of all compact (or small) modules

coincides with the class of all �nitely generated ones are called right steady. It is
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well-known that the class of all right steady rings is closed under factorization [33,

Lemma 1.9], �nite products [94, Theorem 2.5], and Morita equivalence [43, Lemma

1.7].

Clearly, rings over which there exists proper class of non-isomorphic small mod-

ules (as those from Theorem 1.2 and Proposition 1.3) are not steady. On the other

hand, several classes of rings satisfying some �niteness conditions are well-known

to be right steady:

Theorem 1.4. A ring R is right steady provided any of the following conditions

holds true:

(1) R is right noetherian; ,

(2) R is right perfect;

(3) R is right semiartinian of �nite socle length,

(4) R is a countable commutative ring,

(5) R is an abelian regular ring with countably generated ideals.

Note that (1) has been established independently by several authors ([79, 70],

[32, Proposition 1.9], [44, p.79], (2) is proved in [33, Corollary 1.6], (3) in [95,

Theorem 1.5], (4) in [79, 110], and (5) in [113, Corollary 7].

As an easy consequence of the Theorem 1.4(1) we obtain a characterization of

rings over which small modules are precisely �nitely presented ones:

Theorem 1.5. [104, Theorem 1.4] A ring R is right noetherian if and only if

SM(R) = FP(R).

Although an existence of a general ring-theoretic criterion for steady rings is still

an open problem, there is a construction of some kind of minimal example of an

in�nitely generated small module over a non-steady ring:

Theorem 1.6. [102, Theorem 1.4] Let R be a ring, � = card(R)+, and denote by

Simp the representative set of all simple right modules. Then R is not right steady

if and only if T =
Q
S2Simp S

� �
L

S2SimpE(S) contains an in�nitely generated

small submodule.

Obviously Theorem1.6 can be reformulated to the claim that a ring R is right

steady if and only if the module T (of cardinality bounded by 22
card(R)

) contains

no in�nitely generated small submodule.

Let us remark that for commutative regular rings a module-theoretical criterion

of existence of an in�nitely generated small module can be formulated in a more

elegant form, that the representative class of small modules over a commutative

regular ring is in general a set, and there is an estimate of the cardinality of each

small module:

Theorem 1.7. [102, Theorem 2.7] Let R be a commutative regular ring. Then

R is steady if and only if the module R� = HomZ(R;Q=Z) contains no in�nitely

generated small submodule.
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We have remarked that a ring-theoretical characterization of steadiness is an

open problem, nevertheless criteria of steadiness are known for several particular

classes of rings.

Remind that a ring is called right semiartinian if every non-zero cyclic module

contains a simple submodule [72]. Large classes of examples both steady and non-

steady abelian regular semiartinian rings are constructed in the paper [43]. The

articles [83] and [105] characterize steadiness of abelian regular semiartinian rings

[83, Theorem 3.4] and regular semiartinian rings with primitive factors artinian:

Theorem 1.8. [105, Theorem 3.5] Let R be a regular semiartinian ring with prim-

itive factors artinian. Then the following conditions are equivalent:

(1) R is right steady;

(2) R is left steady;

(3) There exists no in�nitely generated small right ideal of any factor of R.

(4) There exists no in�nitely generated small left ideal of any factor of R.

In particular, an abelian regular semiartinian ring R is is not right steady if and

only if there is an abelian regular factor-ring, �R, of R and a member, I, of the socle

chain of �R such that I is an in�nitely generated dually slender right �R-module [83,

Criterion A].

In the case of abelian regular rings the criterion of steadiness is formulated in

the work [109] where w(M) = supfdimR=I(M=MI)j I maximal idealg:

Theorem 1.9. [109, Theorem 3.2] Let R be an abelian regular ring. Then the

following conditions are equivalent:

(1) R is right steady,

(2) R=
T
n<! In is right steady for every system of maximal ideals In, and there

exists no small module M with �nite w(M) which is either !1-generated or

contained in
Q
i<! Fi where Fi are n-generated modules.

(3) There exists no (!1-generated) !1reducing module and no in�nitely gener-

ated small submodule of
Q
n<! R=Jn for any system of ideals Jn.

(4) There exists no in�nitely generated small submodule of
Q
n<! R=Jn for any

system of ideals Jn and every !1-generated module M with �nite w(M)

contains a countable set C such that M=
T
c2C MAnn(c) is in�nitely gen-

erated.

The fact that steady continuous regular rings are precisely semisimple rings is

presented in [107, Theorem 4.7]. Furthermore, a necessary and su�cient condition

of steadiness of valuation rings is given in [113, Theorem 13] and more general case

of chain rings (i.e. rings with linearly ordered lattices of both right and left ideals)

is characterized in the paper [103]:

Theorem 1.10. [103, Theorem 2.4] For a chain ring R the following conditions

are equivalent:
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(1) R is right steady.

(2) There exists no !1-generated uniserial right module.

(3) R=rad(R) contains no uncountable strictly decreasing chain of ideals, R

contains no uncountably generated right ideal and for every ideal I and for

every prime ideal P � I there exists an ideal K such that P � K � I.

However countable valuation rings are steady, it is known an example of a count-

able chain ring which is not right steady [103, Example 1.9]. The result of Theo-

rem 1.10 can be generalized for a class of serial rings:

Theorem 1.11. [103, Theorem 3.5] The following conditions are equivalent for a

serial ring R with a complete set of orthogonal idempotents fei; i � ng:

(1) R is right steady,

(2) eiRei is right steady for every i � n,

(3) there exists no !1-generated uniserial right R-module.

It is an open problem whether some analogue of Hilbert basis theorem is valid

for steadiness, i.e. whether a polynomial ring over a right steady ring is necessary

right steady. It is known for example that polynomial rings in �nitely many vari-

ables over right perfect ring [108, Proposition 2.6] and polynomial rings in count-

ably many variables over commutative neotherian rings are right steady [79, 11o],

but the question whether polynomial rings in countably many variables over non-

commutative neotherian rings are right steady waits for an answer. The strongest

result concerning countably many variables is the following claim:

Theorem 1.12. [108, Theorem 2.7] If X is a countable set of variables and R a

right perfect ring such that EndR(S) is �nitely generated as a right module over its

center for every simple module S, then R[X] is right steady.

On the other hand, polynomial rings in uncountably many variables are not

steady as it is witnessed by the following example.

Example 1.13. [108, Example 3.1, Proposition 3.2] Let R be an arbitrary ring

and consider the additive monoid N!1 . For every � < � � !1 de�ne e�� 2 N!1

by the rule e��(
) = 1 whenever 
 2 h�; �) and e��(
) = 0 elsewhere. Moreover,

E denotes the submonoid of N!1 generated by fe�� j � < � � !1g and consider a

monoid ring S = R[E]. Then the ideal
S
�<! e0�S is !1-generated and !1-reducing

as a right S-module, which proves that S is not right steady.

LetX be an uncountable set of variables. Since there exists a surjective map ofX

onto the monoid E, it can be extended to a surjective homomorphism from the free

commutative monoid in free generators X to the monoid E and this homomorphism

of monoids can be extended to a surjective homomorphism of the polynomial ring

R[X] onto R[E]. Thus R[X] is not right steady.
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1.4. Self small modules. Recall that a module M is self-small provided it is

a compact object in the category Add(M). Similarly as in the case of non-small

modules, non-self-small ones can be characterized by the condition that there exists

a countable chain M0 ( M1 ( � � � ( Mn ( : : : ; n < ! of submodules of M such

that M =
S
n<!Mn and for every n < ! there exists a non-zero endomorphism

fn : M ! M such that fn(Mn) = 0 [12, Proposition 1.1]. It is worth mentioning

that the full endomorphism ring can serve as a tool for recognizing whether a

module is self-small. In particular, if for a module M either End(M) is countable

or the �nite topology on End(M) is discrete, then M is self-small [12, Corollaries

1.4 and 2.1]. Nevertheless, endomorphism rings cannot detect self-smallness of a

module in general:

Theorem 1.14. [106, Theorem 2.9] Let R be a non-artinian abelian regular ring.

Then there exists a pair of a self-small module M and a non-self-small module N

such that EndR(M) �= EndR(N).

The class of all self-small modules is closed under endomorphic images and direct

summands but the following example shows that it is not closed under �nite direct

sums:

Example 1.15. [40, Example 4] The group
Q
p2P Zp is self-small by [106, Example

2.7] as well as the group Q. The product Q �
Q
p2P Zp is not self-small by [40,

Example 3].

Let us remark that the natural question which �nite sums of self-small modules

are as well self-small has an easy answer. Note that the hypothesis on Hom-groups

in the condition (2) is satis�ed if for example Hom(Mi;Mj) = 0 whenever i 6= j.

Proposition 1.16. [40, Proposition 2.4] The following conditions are equivalent

for a �nite system of self-small modules (Mij i � k):

(1)
L

i�kMi is not self-small

(2) there exist i; j � k and a chain N1 � N2 � ::: � Nn � ::: of proper

submodules of Mi such that
S1
n=1Nn = Mi and HomR(Mi=Nn;Mj) 6= 0

for each n 2 N.

The case of in�nite products of self-small modules is much more complicated and

only particular results are known.

Proposition 1.17. [106, Proposition 1.6] Let (Mij i 2 I) be a system of self-small

modules satisfying the condition HomR(
Q
j2InfigMj ;Mi) = 0 for each i 2 I. ThenQ

j2I Mj is a self-small module.

It is well-known that over semisimple rings as well as over local or commutative

perfect rings the classes of small, self-small and �nitely generated modules coincides.

On the other hand, every generic module is an example of an in�nitely generated

self-small module over (of course artinian) Kronecker algebras.
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It motivates the de�nition of right strongly steady rings as rings over which every

right self-small module is �nitely generated. Note that the ring R =

�
Q R
0 R

�
is

non-singular right artinian but it is not right strongly steady since its maximal right

ring of quotients

�
R R
R R

�
serves as an example of an in�nitely generated self-small

R-module [22, Example 3.11]. On the other hand, every upper triangular matrix

ring over a division ring (and, in particular, over a �eld) is right strongly steady

[22, Example 3.13].

Closure properties of strongly steady rings are similar as in the case of steady

ones; they include factorization, �nite products and Morita equivalence [22, Lem-

mas 2.1-4]. However the commutativity simpli�es the situation, ring theoretical

characterization of strongly steady rings is an open problem even in this case.

More clear is the (important) case of right non-singular rings:

Theorem 1.18. [22, Theorem 3.9] Let R be a right non-singular right strongly

steady ring. Then R is right artinian.

This result allows to formulate a criterion for commutative non-singular rings:

Theorem 1.19. [22, Theorem 3.10] A non-singular commutative ring is strongly

steady if and only if it is semi-simple.

Furthermore note that every right noetherian right strongly steady ring is right

artinian by [22, Proposition 3.16].

Special attention is given to study of self-small abelian groups. It is easy to see

that every self-small torsion group is �nite [12, Proposition 3.1], but the question

which mixed abelian groups are self-small seems to be very interesting and attractive

for researchers [5, 7, 20, 21]. If A is a torsion free abelian group of �nite rank, then

the R-typ of A is the quasi-isomorphism class of A=F , where F is a free subgroup of

A with A=F torsion. To conclude this section recall at least one basic result about

self-smallness of mixed abelian group with �nite rank torsion-free part:

Proposition 1.20. [12, Proposition 3.6] Suppose that A is a mixed abelian group

and that A=tA has �nite rank. Then A is self-small if and only if

(a) for all primes, p, (tA)p is �nite and

(b) the R-type of A=tA is p-divisible for all primes p with (tA)p 6= 0.

1.5. Abelian categories. However the de�nition of a compact object is categori-

cal, we have discussed results in the category of modules which can be formulated

just in the language of modules. Nevertheless, some particular questions of the

theory can be easily formulated in language of abelian categories. Before we try to

do it, let us start with needed categorical terminology and basic tools.

A category with a zero object is called additive if for every �nite system of

objects there exist product and coproduct which are canonically isomorphic, every

Hom-set has the structure of an abelian group and the composition of morphisms
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is bilinear. An additive category is abelian if there exists kernel and a cokernel

for each morphism, monomorphisms are exactly kernels of some morphisms and

epimorphisms cokernels. A category is said to be complete (cocomplete) whenever

it has all limits (colimits) of small diagrams exist.

We suppose in the sequel that A is an abelian category closed under arbitrary

coproducts and products. By the term family or system we mean any discrete

diagram, which can be formally described as a mapping from a set of indexes to a set

of objects. Suppose thatN �M are two families of objects of the categoryA. Then

a corresponding coproducts are denoted by (
L
M; (�M jM 2M)), (

L
N ; (e�N jN 2

N )) and a products by (
Q
M; (�M j M 2 M)), (

Q
N ; (e�N j N 2 N )). Note that

there exists canonical morphisms �N :
L
N !

L
M and �N :

Q
M!

Q
N given

by universal properties of colimit
L
N and limit

Q
N , which satis�es �N = �N e�N

and �N = e�N�N for each N 2 N .

For arbitrary ' = ('N j N 2 N ) 2
L
fA(M;N) j N 2 Ng let us denote by F

a �nite subsystem such that 'N = 0 whenever N =2 F and let � : M !
Q
N be

the morphism given by the universal property of the product (
Q
N ; (�N ); N 2 F)

applied on the cone (M; ('N j N 2 N )) (i.e. �N � � = 'N ). Then

	N (') = �F � �
�1 � �F � �

where � :
L
F !

Q
F denotes the canonical isomorphism. Note that the de�ni-

tion 	N (') does not depend on choice of F . Furthermore the mapping 	N is a

monomorphism in the category of abelian groups for every family of objects N .

Now, we are ready to formulate precise general de�nition of the central notion.

An object M is said to be C-compact if 	N is an isomorphism for every family

N � C. Note that the class of all C-compact objects is closed under �nite coproducts

and cokernels since the contravariant functor A(�;
L
N ) commutes with �nite

coproducts and it is left exact.

Now we are able to formulate an elementary criterion of compact object, which

generalizes Lemma 1.1:

Lemma 1.21. If M is an object and a class of objects C, then it is equivalent:

(1) M is C-compact,

(2) for every N � C and every f 2 A(M;
L
N ) there exists �nite subsystem

F � N and a morphism f 0 2 A(M;
L
F) such that f = �F � f 0,

(3) for every N � C and every f 2 A(M;
L
N ) there exists �nite subsystem

such that F � N , f =
P
F2F

�F � �F � f .

Note that the commuting properties seems to play important role not only for

Hom-functors. For example coherent functors introduced in [13] are characterized

in the module categories in [36, Lemma 1] as exactly those covariant functors which

commute with direct limits and direct products. The result was extended to locally

�nitely presented categories in [66, Chapter 9]. Commuting properties of covariant

Ext1-functors are studied in [24, 91, 50, 8, 86].
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The defect functor Dev� = CokerHom(�;�) of a morphism � is a natural gen-

eralization of both covariant Hom and Ext1 functors in an arbitrary locally �nitely

presented abelian category.

If � : L! P is a homomorphism in C, then we have the following examples [23,

Example 2]:

(1) If C is abelian, P is projective and � a monomorphism, then Def�(�) is

canonically equivalent to Ext1(P=�(L);�).

(2) If P = 0, then Def�(�) is canonically equivalent to Hom(L;�).

(3) If � is an epimorphism and � : K ! L is the kernel of � then Def�(�)

represents the covariant defect functor associated to the exact sequence

0! K
�
! L

�
! P ! 0.

(4) If R is a unital ring, C = Mod-R, and L and P are �nitely generated and

projective then Def�(R) represents the transpose of P=�(L).

Furthermore, the following criteria are known for an arbitrary homomorphism

� : L! P [23, Proposition 9]:

(1) Suppose that P is a compact object. The functor Def� commutes with

direct sums if and only if L is a compact object.

(2) Suppose that P is a �nitely generated object. The functor Def� commutes

with direct unions if and only if L is �nitely generated.

(3) Suppose that P is a �nitely presented object. Then Def� commutes with

direct limits if and only if L is �nitely presented.

As an analogue of [36, Lemma 1] in the case of direct unions the following result

can be proven:

Theorem 1.22. [23, Theorem 10] A functor F : C ! Ab commutes with respect

direct products and direct unions if and only if it is naturally isomorphic to a defect

functor Def� associated to a homomorphism � : L ! P with L and P �nitely

generated.

As an consequence we obtain for any homomorphism � : L ! P between pro-

jective modules equivalence of the three following properties:

(1) Def� commutes with direct sums,

(2) Def� commutes with direct unions

(3) Def� commutes with direct limits

Moreover, if these conditions are valid, then Def�(R) is a �nitely presented left

R-module [23, Proposition 11]. Let �J denote the canonical projection. Then the

commuting of Def� with a direct sum of objects can be characterize in the following

way:

Theorem 1.23. [23, Theorem 24] If � : L! P is a homomorphism and (Mi; i 2 I)

a family of objects, the following conditions are equivalent:

(1) Def� commutes with the direct sum of (Mi; i 2 I),
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(2) for every f 2 Hom(L;
L

i2I Mi) there exist �nite subset F � I, and g 2

Hom(P;
L

i2InF Mi) such that �InF f = g�.

If � is a cardinal less than the �rst !-measurable cardinal and Def� commutes

with countable direct sums then Def� commutes with direct sums of � objects

[23, Proposition 26]. Thus in the constructible universe Def�(�) commutes with

countable direct sums if and only if Def�(�) commutes with all direct sums and,

in particular, for each M 2 C Ext1C(M;�) commutes with countable direct sums if

and only if Ext1C(M;�) commutes with all direct sums.

2. Semiartinian rings

Recall that a moduleM is semiartinian provided each non-zero factor ofM con-

tains a simple submodule and a ring R is right semiartinian if RR is a semiartinian

module. Of course, a right semiartinian ring can be characterized by the module

class conditions such that

(1) every module is semiartinian, or

(2) every non-zero module contains a simple submodule.

However the class of all semiartinian ring can be easily described by both ring-

theoretical and categorical conditions, it seems to interesting the question how the

structure of a semiartinian ring re
ects some additional condition such as steadiness

or strongly steadiness. This way of research motivates the de�nition the right socle

chain, which is the uniquely de�ned strictly increasing chain of ideals (S� j � �

�+1) in a right semiartinian ring R satisfying S�+1=S� = Soc(R=S�), S0 = 0 and

S�+1 = R.

2.1. History. The notion generalizes the notion of a right artinian ring, which can

be described precisely as a semiartinian ring with the socle chain of a �nite socle

length and �nitely generated slices Soc(R=S�). Moreover, by [17, Theorem P] every

non-zero module over a left perfect ring has a non-zero socle, hence every left perfect

ring is right semiartinian. Basic structural results about general semiartinian rings

are published in papers [26, 39, 48, 72, 85]. Furthermore, let us recall the important

construction presented in the paper [16]:

Proposition 2.1. [16, Proposition 4.7] Let � be an in�nite cardinal, K a �eld

and R
 a semiartinian K-algebra with primitive factors artinian and socle chain

(S�
 j � � �
) for each 
 < �. Let R =
L


<�R
 + K �
Q

<�R
 and put

� = sup
<� �
 . If either � is limit or f
j �
 = �g is in�nite, then:

(1)
L


<� S�
 is the �-th member of the socle chain 8� � �.

(2) If each R
 is right semiartinian, then R is right semiartinian with socle

length � + 1.

(3) R has primitive factors artinian.
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Note that if the algebras in the construction are supposed to be (abelian) reg-

ular, then the constructed ring R is so. Actually, the classical result claims that

commutative semiartinian rings are close to abelian regular ones:

Theorem 2.2. [72, Th�eor�eme 3.1, Proposition 3.2] Let R be a ring.

(1) R is left semiartinian if and only if J(R) is right T-nilpotent and R= J(R)

is left semiartinian.

(2) Let R be a commutative semiartinian ring. Then R= J(R) is abelian regular

and semiartinian.

Properties and constructions of semiartinan rings close to von Neumann regular

ones are studied in papers [18, 15, 39, 83, 43] while papers [2, 1] are focused to

correspondence between the class of semiartinian rings and other interesting classes

of rings de�ned by some property of module categories.

2.2. Results. The notion of a dimension sequence plays an important role in re-

search of regular semiartinian ring with primitive factors artinian. Nevertheless,

before the de�nition we need to formulate the following result:

Theorem 2.3. [83, Theorem 2.1] Let R be a right semiartinian ring and L = (S� j

� � �+1) the right socle chain of R. Then the following conditions are equivalent:

(1) R is regular and all right primitive factor rings of R are right artinian,

(2) for each � � � there are a cardinal ��, positive integers n��, � < ��,

and skew-�elds K��, � < ��, such that S�+1=S� �=
L

�<��
Mn�� (K��),

as rings without unit. The pre-image of Mn�� (K��) coincides with the �-

th homogeneous component of R=S� and it is �nitely generated as right

R=S�-module for all � < ��. Moreover, �� is in�nite if and only if � < �.

If (1) holds true, then R is also left semiartinian, and L is the left socle chain of

R.

Denote by R the class of all regular right semiartinian rings R such that all

(right) primitive factor-rings of R are (right) artinian. If R 2 R, then the family

D(R) = f(��; f(n�� ;K��) j � < ��g) j � � �g

collecting data from the previous theorem is said to be the dimension sequence of

R.

The dimension sequences of a regular semiartinian ring naturally re
ects the

structure of single semisimple slices. Note that structural theory of the notion is

developed in [110, 112]. An application of combinatorial set theory [46, 92] allows

to prove necessary conditions satis�ed by this invariant:

Theorem 2.4. [110, Proposition 3.1 and Theorem 3.5] Let R 2 R be abelian

regular, Generalized Continuum Hypothesis holds and �; � be ordinals satisfying

� + � � �. Then jh�; �ij � 2�� . If cf(��) > max(j�j; !), then ��+� � ��.

Otherwise ��+� � �+� .
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On the other hand, commutative regular semiartinian rings with a particular

given rank of slices of the socle chain can be constructed:

Theorem 2.5. [110, Theorem 5.1] Let � be an ordinal, K a �eld, and (��j � � �)

a family of cardinals satisfying for every � � � � � the conditions:

(a) �� � �+� if cf(��) = !, and �� � �� otherwise,

(b) �� < ! i� � = �,

(c) jh�; �ij � ��.

Then there exists a commutative regular semiartinian K-algebra with dimension

sequence f(��; f(1;K��) j � < ��g) j � � �g where K�� = K for all � � � and

� < ��.

Furthermore, it is possible to generalize results on dimension sequences for a suit-

able subclass of regular right semiartinian rings R with primitive factors artinian,

namely, for those R satisfying the condition that every ideal which is �nitely gener-

ated as two-sided ideal is �nitely generated as right ideal. It is proved in the paper

[112, Theorem 3.4] that over these rings and under Generalized Continuum Hypoth-

esis it holds that ��+�(n) � ��(m), wheneverm � n and �; � are ordinals such that

�+� � � and cf(��(n)) > max(j�j; !), where f(��; f(n�� ;K��) j � < ��g) j � � �g

is dimension sequence and ��(n) = cardf� < ��j n�� � ng).

3. Tall rings

A moduleM which contains a non-noetherian submodule N such that the factor

M=N is non-noetherian as well is studied �rst in the paper [84] under the term tall.

The notion of a right tall ring is de�ned in the same paper as a ring over which

every non-noetherian right module is tall. Note that this notion presents a "typical"

example of a ring described by a module-class property.

3.1. History. It is not hard to see that the class of all right tall rings is closed under

factors, �nite products, and Morita equivalence. Although in [84] is presented a

criterion of right tall rings using the notion of Krull dimension of all modules, an

existence a general ring-theoretic necessary and su�cient condition remains to be

an open problem.

Theorem 3.1. [84, Theorem 2.7] The following statements are equivalent for a

ring R:

(1) R is right tall,

(2) every non-noetherian module has a proper non-noetherian submodule,

(3) every module with Krull dimension is noetherian.

Since every maximal submodule of a non-noetherian module is non-noetherian,

the condition (2) implies that every right max ring, over which every nonzero right

module contains a maximal submodule, is necessarily right tall [31, p. 31]. Never-

theless, the following example shows that the revers implication does not hold.
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Example 3.2. [76, Example 3.2] Put I =
P

i x
2
iF [X] and R = F [X]=I for a �eld

F and an in�nite countable set of variables X = fx1; x2; : : : g. Let Xi = xi + I

and de�ne an ideal J =
P

iXiR. Then J is a nil ideal, since X2
i = 0 and R is

commutative. As R=J �= F , R is tall ring by [76, Lemma 3.1]. Moreover, J is a nil

maximal ideal of R, thus it is the Jacobson radical of R. Since X1 � � � � �Xn 6= 0 for

every n, J is not T-nilpotent, hence R is not a max ring.

No general ring-theoretical criterion characterizing max rings neither correspon-

dence between the classes of all tall and all max rings is known. Nevertheless, max

rings are studied by many authors from various points of view and with di�erent

motivations [25, 27, 31, 47, 53, 63, 97]. Among another results let us recall several

classical module-theoretical necessary and su�cient conditions:

Theorem 3.3. [47, 53, 63] The following conditions are equivalent for a ring R:

(1) R is a right max ring;

(2) R=J(R) is a right max ring and J(R) is right T-nilpotent,

(3) every non-zero submodule of injective envelops E(S) contains a maximal

submodule for every simple module S,

(4) there is a cogenerator for the category of right modules whose every non-zero

submodule contains a maximal submodule.

Much more is known about both commutative max rings and commutative tall

rings. The most important fact from our point of view is ring-theoretical criteria

of commutative max ring:

Theorem 3.4. [47, 53, 63] The following conditions are equivalent for a commu-

tative ring R:

(1) R is a max ring;

(2) R=J(R) is a regular ring and J(R) is left T-nilpotent,

(3) the localization at any maximal ideal of R is a max ring,

(4) the localization at any maximal ideal of R is a perfect ring.

3.2. Results. For description of commutative tall rings are very useful to formulate

necessary structural condition of non-tall rings:

Theorem 3.5. [76, Theorem 2.6] Let R be a commutative non-tall ring. Then

there exists a maximal ideal I and a sequence of ideals I = J1 � J2 � : : : such that

(1) IJi � Ji+1 for each i,

(2) R=Ji is artinian for each i,

(3)
T
i Ji is a prime ideal,

(4) R=
T
n I

n is not a tall ring.

Note that ideals Jn from the previous theorem cannot be replaced by the powers

Jn1 in general [76, Example 3.7]. On the other hand, if R is tall, then for every
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non-idempotent maximal ideal I such that R=Ii is artinian for each i, the inter-

section
T
j I

j is not a prime ideal [76, Proposition 2.9]. As the consequence can be

formulated the following criterion:

Theorem 3.6. [76, Theorem 2.12] The following conditions are equivalent for a

commutative ring R:

(1) R is not tall,

(2) there exists a non-noetherian artinian module,

(3) there exists an artinian module M , elements x 2 R and mj 2M such that

mj+1x = mj and mj+1 =2 mjR for each j and M =
S
jmjR.

(4) there exists a sequence of ideals Jj of R and elements xj 2 R such that R=Jj

is artinian, Jj+1 ( Jj, xjr 2 Jj+1 i� r 2 Jj and the length of Sj(R=Jj) is

equal to the length of Sj(R=Jk) for each j � k < !.

Finally note that the previous criterion can be expressed in a very simple form

in the case of a commutative noetherian ring R, namely, R is tall if and only if R

is artinian [76, Theorem 2.10].

4. Retractability and coretractability

Both the central notions of this section, i.e. completely coretractable and mod-

retractable rings present examples of rings naturally determined by a categorical

property. A module M such that its every nonzero submodule contains a nonzero

endomorphic image of M is called retractable and, dually, M is called coretractable

if there exists a nonzero homomorphism of M=K to M for every proper submodule

K � M . For example each �nitely generated module over commutative ring is

retractable [41].

4.1. History. The importance of the notions has emerged in research of Baer mod-

ules [81, 82], endomorphism rings of nonsingular modules [61, 62], compressible

modules [87, 89] and module lattices [51, 101]. The works [10, 41, 52] are devoted

to rings over which every module is retractable or coretractable.

Main results of [10] describe rings over which every right module is coretractable,

such rings are called right completely coretractable. Dually, a ring R is said to be

right mod-retractable provided every right R-module is retractable.

It is proved in [111, Theorem 2.4] that a ring is right (left) completely core-

tractable if and only if it is isomorphic to a �nite product of matrix rings over

right and left perfect rings. Furthermore, every cyclic right and left R-module is

coretractable [111, Proposition 3.2].

The papers [41, 52] started to study mod-retractable rings. Note that the class of

mod-retractable rings is closed under Morita equivalence, factorization, and �nite

products [41]. Moreover it is known that any right mod-retractable ring is an

example of a right max ring [64, Theorem 3.3].
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4.2. Results. However mod-retractable rings are precisely rings such that all their

torsion theories are hereditary, the general ring-theoretical criterion of mod-retract-

ability is not know. The characterization is available only for several particular

classes of rings and for all commutative rings:

Theorem 4.1. [64, Theorem 3.3] Let R be a left perfect ring. Then R is right

mod-retractable if and only if R �=
Q
i�kMni(Ri) for a system of a local rings Ri,

i � k, which are both left and right perfect.

As an easy consequence can be shown that every commutative perfect ring is

mod-retractable.

A similar criterion is proved for the class of right noetherian rings:

Theorem 4.2. [64, Theorem 3.3] Let R be a right noetherian ring. Then R is right

mod-retractable if and only if R �=
Q
i�kMni(Ri) for a local right artinian rings Ri.

As it was mentioned a criterion of mod-retractability is known for the class of

commutative rings:

Theorem 4.3. [64, Theorem 3.10] Let R be a commutative ring. Then R is mod-

retractable if and only if R is semiartinian.

Finally note that from the previous result immediately follows that every com-

mutative semiartinian ring is necessarily mod-retractable.

5. RM rings

First recall that a module M satis�es the restricted minimum condition if for

every essential submodule N of M , the factor M=N is artinian. The class of all

modules satisfying the restricted minimum condition is well-known to be closed

under submodules, factors as well as �nite direct sums. Note that a semiartinian

module M satis�es the restricted minimum condition if and only if M= Soc(M) is

artinian.

5.1. History. A ring R is called a right RM-ring if RR satis�es restricted minimum

condition as a right module. Obviously, the class of all right RM-rings contains all

right artinian rings and principal ideal domains. This observation partially explains

the historical motivation of research of these rings. Structure theory of RM-rings

and domains was studied in the papers [28, 29, 34, 37, 73]. Among others let us

recall the following result:

Theorem 5.1. [34, Theorem 1] Let R be a noetherian domain. Then R has Krull

dimension 1 if and only if it is an RM-domain

However the de�nition of RM-rings has a ring-theoretical nature (it actually deals

with cyclic modules), the correspondence between RM-rings and the classes of rings

studied above is clari�ed in the context of results of the paper [6], which is devoted
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to structure research of classes of torsion modules over RM-domains. Namely, it

seems to be interesting question here whether there exists nice categorical property

which is equivalent to the ring-theoretical de�nition.

5.2. Results. Ring-theoretical results for non-commutative as well as commutative

rings are proved in [113]. Recall a useful technical result which consists of several

necessary conditions of modules over general RM-ring where E(M) denotes the

injective envelope of a module M :

Theorem 5.2. [113, Theorem 2.11] Let R be a right RM-ring and M a right R-

module.

(1) If M is singular, then M is semiartinian.

(2) E(M)=M is semiartinian.

(3) If M is semiartinian, then E(M) is semiartinian. In particular, E(S) is

semiartinian for every simple module S.

As an consequence it can be obtained the observation for a right RM-ring R

that R is a nonsingular ring of �nite Goldie dimension whenever Soc(R) = 0 [113,

Theorem 2.12].

For a semilocal RM-rings can be proved the following criterion:

Theorem 5.3. [113, Theorem 2.17] Let R be a semilocal RM-ring and Soc(R) = 0.

Then the following conditions are equivalent:

(1) R is noetherian,

(2) J(R) is �nitely generated,

(3) the socle length of E(R=J(R)) is at most !.

Recall characterization of commutative RM-domains from the paper [6] which

motivates are research:

Theorem 5.4. [6, Theorem 6 and 9] The following conditions are equivalent for a

commutative domain R:

(1) R is an RM-ring,

(2) M = �P2Max(R)M[P ] for all torsion modules M ,

(3) R is noetherian and every non-zero (cyclic) torsion R-module has an es-

sential socle,

(4) R is noetherian and every self-small torsion module is �nitely generated.

The most important result of the article [113] describes commutative RM-ring

in the language of module categories which generalizes the previous result:

Theorem 5.5. [113, Theorem 3.7] The following conditions are equivalent for a

commutative ring R:

(1) R is an RM-ring,

(2) M = �P2Max(R)M[P ] for all singular modules M ,
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(3) R=Soc(R) is Noetherian and every self-small singular module is �nitely

generated.

The question whether a similar result is valid in the non-commutative case re-

mains open.

6. Conclusion

Let us summarize the contribution of the present thesis:

(1) We describe the structure of rings belonging to classes determined by a

particular categorical property. Namely, in [22], [105], [76], [64], and [65]

respectively are characterized several subclasses of right strongly steady,

steady, tall, mod-retractable, and RM-rings. The structural theory of

abelian regular semiartinian rings is developed in [110].

(2) We answer several structural question on classes of compact objects, in

particular, [106] is devoted to closure properties of the class of all self-

small modules and [102] determines test modules for the class of all small

modules.

(3) We contribute to the study of commuting properties of functors in [23].
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Chapter 2

Self-small modules and strongly

steady rings

The main goal of this chapter is to describe structural properties of classes of self
small modules. The text consists of two papers:
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Chapter 3

Small modules and steady rings

The chapter presents two particular solutions of general problem on ring-theoretical
description of steady rings. The �rst text provides instead a ring-theoretical
property an idea of a test module of steadiness and the second one gives a ring-
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The defect functor of

homomorphisms and direct

unions
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Chapter 5

Re
ection of categorical

properties to a ring structure
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