Abstract

Graphene research is nowadays one of the worldwide most prominent fields of interest in

material science due to many extraordinary properties of graphene and related materials.

However, the different techniques of synthesis and subsequent handling and/or treatment have a

substantial impact on the properties of the graphene and thus a lot of efforts have been focused

on developing of the advanced methods for graphene preparation and characterization.

Graphene can be easily produced by oxidation and consequent exfoliation of the bulk graphite;

however, resulting graphene oxide needs to be reduced back to graphene-like structure due to

partial restoration of sp² network. Herein, a detailed study of the structural evolution of the

graphene oxide during electrochemical treatment has been performed using X-ray photoelectron,

Raman and infrared spectroscopies and the results were compared with non-oxidized graphene

nano-platelets. Additionally, graphene oxide in composite with LiFePO₄ olivine material, which

is electrochemically almost inactive in a freshly made state, has been tested by repeated

electrochemical cycling. Using various electrochemical methods, the progressive electrochemical

activity enhancement has been observed and spontaneous graphene reduction was identified as

responsible for this phenomenon.

The second part of this work deals with mono- and bilayer graphene under uniaxial in plane

loading. Generally, strain and even doping are present in graphene simultaneously and both play

an important role in the changes of its electronic structure. The behavior of various strained

graphene samples transferred onto the target polymer substrates were examined by Raman

spectroscopy and discussed with respect to presence of cracks, wrinkles, grain boundaries and

loss of bilayer lattice periodicity. Further, the level of stress and doping transferred to the crystal

from the substrate was calculated by the vector analysis method with a specific adjustment for

the uniaxial strain.

Finally, a new method for spectroelectrochemical characterization of isolated strained 2D

crystals has been established.

Key words: graphene, Raman spectroscopy, spectroelectrochemistry