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Abstrakt 
 
 

Výzkum (nejen) uhlíkatých nanomateriálů v čele s grafenem je v současné době jednou z 

nejčastěji studovaných oblastí materiálové fyziky a chemie, zejména díky mimořádným 

vlastnostem těchto materiálů vhodným k využití pro konverzi a uchování energie. Během 

syntézy grafenu a následné manipulace však dochází k narušování jinak téměř ideální 

krystalové struktury grafenu a tím i ke změně jeho elektronických vlastností. Proto je 

naprosto nezbytné mít strukturu grafenu „pevně pod kontrolou“, čehož je možné dosáhnout 

pouze vývojem a použitím pokročilých instrumentálních metod. 

Grafen může být snadno připraven oxidací a následnou exfoliací grafitu za vzniku tzv. oxidu 

grafenu. Jedná se o materiál o tlouštce několika málo vrstev grafitu, který má na svém 

povrchu navázané funkční skupiny obsahující kyslík, které narušují unikátní, sp2 

hybridizovanou síť uhlíkových atomů a tedy i elektronovou strukturu grafenu. Z tohoto 

důvodu je pro některé aplikace nutné podrobit oxid grafenu alespoň částečné redukci. V první 

části této práce je detailně studována jeho elektrochemická redukce za pomoci 

fotoelektronové, infračervené a především Ramanovy spektroskopie. Dosažené výsledky byly 

dále porovnávány s referenčním neoxidovaným materiálem. Možné využití tohoto procesu je 

demonstrováno na elektrochemické aktivaci nanokompozitu oxidu grafenu s LiFePO4. 

Druhá část práce se zaměřuje na mechanické, jednoosé natahování jedno- a dvouvrstvého 

grafenu přeneseného na plastický substrát. Při těchto deformacích byly pozorovány změny v 

elektronové struktuře grafenu pomocí Ramanovy spektroskopie a výsledky interpretovány 

zejména s přihlédnutím k velikosti domén grafenu, přítomnosti povrchových „anomálií“, jako 

jsou například trhliny a vrásy, nebo změnám vzájemné orientace grafenových vrstvev. K 

rozlišení přenesené mechanické deformace a dopování náboji (oba vlivy jsou v grafenu běžně 

přítomny) byla použita vektorová analýza, upravená pro jednoosý tah. 

Na závěr byla vyvinuta metoda pro in-situ spektroelektrochemii izolovaných dvourozměrných 

krystalů, které mohou být zároveň kontrolovaně deformovány nezávisle na ostatních vlivech. 

 

Klíčová slova: grafen, Ramanova spektroskopie, spektroelektrochemie.



 
 

Abstract 

 
 
Graphene research is nowadays one of the worldwide most prominent fields of interest in 

material science due to many extraordinary properties of graphene and related materials. 

However, the different techniques of synthesis and subsequent handling and/or treatment have 

a substantial impact on the properties of the graphene and thus a lot of efforts have been 

focused on developing of the advanced methods for graphene preparation and 

characterization.  

Graphene can be easily produced by oxidation and consequent exfoliation of the bulk 

graphite; however, resulting graphene oxide needs to be reduced back to graphene-like 

structure due to partial restoration of sp2 network. Herein, a detailed study of the structural 

evolution of the graphene oxide during electrochemical treatment has been performed using 

X-ray photoelectron, Raman and infrared spectroscopies and the results were compared with 

non-oxidized graphene nano-platelets. Additionally, graphene oxide in composite with 

LiFePO4 olivine material, which is electrochemically almost inactive in a freshly made state, 

has been tested by repeated electrochemical cycling. Using various electrochemical methods, 

the progressive electrochemical activity enhancement has been observed and spontaneous 

graphene reduction was identified as responsible for this phenomenon. 

The second part of this work deals with mono- and bilayer graphene under uniaxial in plane 

loading. Generally, strain and even doping are present in graphene simultaneously and both 

play an important role in the changes of its electronic structure. The behavior of various 

strained graphene samples transferred onto the target polymer substrates were examined by 

Raman spectroscopy and discussed with respect to presence of cracks, wrinkles, grain 

boundaries and loss of bilayer lattice periodicity. Further, the level of stress and doping 

transferred to the crystal from the substrate was calculated by the vector analysis method with 

a specific adjustment for the uniaxial strain. 

Finally, a new method for spectroelectrochemical characterization of isolated strained 2D 

crystals has been established. 

 

Key words: graphene, Raman spectroscopy, spectroelectrochemistry 
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1 Introduction 

 In this work, various nanomaterials have been investigated from the perspective of 

basic research on advanced nanocomposites for optoelectronic and energy applications. In 

general, graphene, as well as other carbon allotropes, and diverse inorganic oxides play an 

important role in present/future energy conversion and storage. For example, graphene oxide 

is nowadays tested for use in solar cells as an electron carrier and used for photocatalysis and 

electrocatalysis. Graphene with its unique and fascinating mechanical and electronic 

properties is the ideal candidate for hi-tech technologies, including high yield sun-harvesting 

and non-silicon electronics. To make these technologies available, it is crucial to understand 

all principles and processes taking place in these materials and, above all, it is necessary to be 

able to characterize those using appropriate state-of-the-art instrumental methods.  

 In the first part, fundamental facts as well as the most important methods of 

preparation and characterization of nanomaterials used within this work will be summarized. 

 

1.1 Carbon allotropes 

 It is well known that carbon has many modifications, the so-called carbon allotropes. 

Various structures are formed due to different configurations of electrons in the valence band 

of the carbon atom. The allotropes differ in the amount of sp1 (α,β-carbyne (C≡C)n, chaoite), 

sp2 (fullerenes, nanotubes, graphene) and sp3 (diamond) bonded carbon atoms. Furthermore, 

materials like amorphous carbon consist of a mixture of carbon atoms with varying 

hybridization. Some of those allotropes can fit in the “nanomaterial” definition, usually in all 

three dimensions (the usual definition of nanomaterials says that at least one its dimension 

should be smaller than 10-7 m). Nanomaterials in general exhibit unique properties compared 

to bulk materials primarily due to quantum confinement effects. This is naturally valid also 

for carbon nanostructures. In this thesis, mainly graphene-related nanomaterials will be 

discussed.  
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Figure 1: Allotropes of sp2 hybridized carbon: (a) graphite, (b) buckminsterfullerene, (c) 

graphene sheets, (d) fullerene C540, (e) fullerene C70, (f) single-walled carbon nanotube 

(picture under CC BY-SA 3.0 license).  

 

1.2 Graphene 

 For a long time it was presumed that graphene cannot exist free-standing (isolated), 

only until 2004 when single-layer graphene was isolated and characterized by nearly a 

coincidence using adhesive Scotch tape and bulk graphite (HOPG – highly oriented pyrolytic 

graphite) for mechanical cleavage and subsequent on-tape transferring onto the Si/SiO2 wafer 

[1]. This method, exfoliation - in adjusted form, is still utilized for laboratory preparation of 

individual graphene flakes for particular experiments where high-quality defect-free 

specimens are needed. Since 2004 graphene became one of most scientifically studied 

materials because of its remarkable properties and promising future use in new industrial and 

hi-tech fields such as medicine, catalysis, photovoltaics, opto-electronics, advanced transistors 

fabrication, detectors, sensors and other electronics, energy conversion and storage, or 

building/transport composites. Graphene is the basic building block of all sp2 bonded carbon 

allotropes and can be imagined as “packed” into fullerene (with pentagons added into the 
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otherwise hexagonal lattice), rolled-up into the nanotubes or stacked to form graphitic 

structure. As mentioned above, graphene has many unique properties. It is visible by a naked 

eye, in spite of having 97.7% optical transmittance. It has the highest Young´s modulus of 

approximately 1 TPa, strength over 160 GPa [2]. Graphene has also the highest known 

thermal conductivity of ~5000 W.m-1.K-1 [3]. Similarly to the case of carbon nanotubes, 

graphene nano-ribbons (long narrow graphene strips) can be considered as 1-dimensional in 

term of quantum confinement and they exhibit electronic (semiconducting or metallic) and 

mechanical properties corresponding to the edge-atom structure type, armchair or zigzag. 

 It should be noted that the term graphene is not used solely for monoatomic layers. Bi-

layer graphene is a stack of two sheets where half of the atoms of the first layer is 

geometrically aligned in the centre of carbon hexagons of the second layer (AB or Bernal 

stacking), in some specific cases the carbon atoms of both layers are exactly aligned on top of 

each other (AA stacking). However, the latter configuration is energetically less favorable, 

hence much less common compared to the AB stacking. Three and more layers can be aligned 

in ABA or ABC stacking. Twisted graphene is a general term for bi- or few-layer graphene 

with misoriented (rotational) stacking. With mismatch angle between the layers, a superlattice 

is formed, manifested as Moiré pattern. Such structures can be found at the surface layers of 

natural graphite and also can be prepared in laboratory [4-6]. 

 

1.2.1 Graphene oxide 

 Long time before the first preparation of pristine graphene, graphite oxide, prepared by 

oxidation (and intercalation) of graphite, and consisting of stacked individual graphene oxide 

sheets, was known [7]. The oxidation protocol was altered many times, and currently, natural 

or synthetic graphite is usually used as a starting material and it is oxidized by modified 

Hummer’s method [8], originally using concentrated sulfuric acid, sodium nitrate and 

potassium manganate, followed by an ultrasonic exfoliation to form graphene oxide (GO), in 

most cases in the form of water suspension. The resulting GO usually consists of several 

graphene layers and contains oxidic functional groups, which make GO more suspendable in 

polar solvents but decrease its conductivity due to the depletion in the conjugated sp2 network, 

from the defects created in the otherwise perfect crystal lattice [9].  
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Figure 2: Scheme of graphite bulk (left) and graphene oxide created by oxidization and 

exfoliation (right). Oxidic functional groups are depicted in red color. 

 

 Chemical composition of GO is not yet fully described, as it consists of various 

chemical groups with non-stoichiometric atomic rates [10]. Several models describe the 

presence of hydroxyl and epoxy functional groups, carbonyl and carboxyl groups, and, also, 

esters, lactols or tertiary alcohols are also present [11, 12].  

 To improve the conductivity of the GO, it needs to be partially reduced to so called 

reduced graphene oxide (rGO, reduced graphene) using a high temperature treatment [13-15] 

and/or a reducing agent like hydrogen, hydrazine or sodium borohydride [11, 14-16] and also 

electrochemicaly [17-27]. However, it is not possible to fully reduce GO back to graphene, 

because some oxidic-groups always remain and the sp3 defects in the crystal lattice are not 

completely healed. Despite those disadvantages, efforts to reduce GO are still alive, because it 

is a very cheap way to mass-produce fillers for various composites and advanced structures of 

reduced graphene in a lot of fields of science. More detailed study of GO electrochemical 

reduction using in-situ Raman spectroelectrochemistry is in the Appendix 1. 

 

1.2.2 Graphene preparation 

 For later use in laboratory or industry there is an important step in deciding on the 

right way how to prepare graphene with desirable physical properties. Various methods have 
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been developed. The first method used for single layer graphene preparation was the 

mechanical exfoliation advanced by Geim and Novoselov [1], which was at the beginning of 

the Nobel prize awarded research in 2010. The Scotch tape was used for repeated peeling of 

the HOPG (after previous treatment due to forming the suitable rough surface), the exfoliated 

thin layers (floating on surface of acetone as mediator liquid) were deposited on Si/SiO2 wafer 

and consequently investigated to reveal the famous ballistic transport of electrons in graphene 

[28]. This method is allowed by the different and much weaker van der Walls forces between 

parallel layers (energy ~2 eV/nm) compared to interlayer covalent bonds in graphene layer 

and the force necessary for peeling of two layers is thus only 300 nN/nm2 [29]. The 

exfoliating procedure is convenient for the preparation of well defined crystals especially 

when single crystalline graphite is used. The lateral dimensions of the obtained single and 

few-layer graphene flakes can reach 1 mm nowadays, with typical sizes on the order of 

several tens of micrometers. The main disadvantages are relatively small crystal domains and 

contamination by adhesives from the used tape. Since the first mechanical cleavage, the 

procedure has been modified and advanced. In our research group, the procedure is as 

follows. Cleaned (acetone, isopropyl alcohol, methanol, in ultrasound) Si/SiO2 wafers 

(additionally treated with O2 plasma) and/or various plastic bars (for mechanical experiments) 

were used as the target support material for exfoliated graphene. For the mechanical 

experiments, the substrates were covered by a thin spincoated layer of organic compounds, 

e.g. SU-8 (epoxy-based negative photoresist: SU8 2000.5, MicroChem), PMMA 

(polymethylmethacrylate) or some other polymers to improve surface properties such as 

adhesion, roughness, optical attributes – optical contrast. Afterwards, natural graphite was 

repeatedly peeled by the Scotch tape and gently pressed to the prepared substrate. Finally, the 

samples were treated by high temperature and/or by UV light to cure the spincoated polymers. 

All other more detailed steps are described in the experimental parts of the attached papers. 

The obtained graphene layers must be interrogated to reveal the exact number of layers. The 

most suitable instruments for this purpose are atomic force spectroscopy, optical and electron 

microscopy and the mostly used Raman spectroscopy. The mechanical exfoliation is also 

widely used for fabrication of some other 2D materials, e.g. MoS2 (molybdenite), WSe2, 

hexagonal form of boron nitride, etc. 
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Figure 3: Left: Optical microscope image (mag. 500x) of bulk graphite (lighter part = more 

layers) and few-layered graphene (varies in optical contrast due to diverse number of layers) 

as-prepared by mechanical exfoliation. Right: Graphene grown on a polycrystalline copper 

foil using CVD method. Beginning of the growth of the second layer growth is clearly visible 

(darker objects), Scanning electron microscope image (mag. 1000x). 

 

 Probably the mostly utilized preparation methods for large-area single layers with 

reasonable quality are “bottom-up” synthesis, especially Chemical Vapor Deposition (CVD) 

method. The CVD technique is based on the decomposition of carbon precursors as a source 

for graphene: solid compounds (camphor, PMMA, sucrose, hexachlorbenzene or 

nanopowder) [30-33], gas precursors (methane, ethylene, acetylene, etc.) [34, 35] or liquid 

carbon precursors (methanol, ethanol, hexane, etc.) [36-38]. For the purpose of research 

related to this thesis, catalyst metal (copper foil) was heated up to 1273 K and annealed for 20 

minutes under a flow of H2 in helium, methane was introduced for some specific time 

(dependent on growth requirements) and finally, the sample was cooled to room temperature. 

For example, in the case of growing isotopically labeled 12/13C double-layer graphene, 12CH4 

and 13CH4 can be injected into CVD system separately [39]. Nowadays, the CVD process can 

be optimized to yield graphene with single crystal domains with lateral sizes in mm range, 

and possibly even larger ones on metal catalysts with uniform single crystalline surface, with 

controlled number of layers. However, due to the need of a metal catalyst, it is necessary to 

subsequently transfer the as-grown graphene to a desired substrate; unfortunately, this process 

involves the formation of physical defects as cracks and wrinkles in the graphene crystal. 
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 There are several other approaches how to prepare single or few-layer graphene. 

Liquid-phase exfoliation produces large amounts of graphene sheets (both single and few-

layer) using organic solvents or surfactant-water solutions together with expanded graphite 

with quite high yields [40-42]. Graphene can be further produced by epitaxial growth on 

silicon carbide [43], by unzipping of single/double-walled carbon nanotubes or fullerenes [44-

46] resulting in high quality nanoribbons or by precipitation from carbon-rich transition 

metals such as nickel [47]. 

 

1.2.3 Transfer techniques 

 Requirements for substrates needed for the fabrication of nanoscale structures for 

research and applications often differ from those used for graphene preparation. Especially, 

CVD method produces large-area graphene films using metal catalysts, and, therefore, it is 

usually necessary to move graphene onto various different substrates (e.g. plastic sheets for 

flexible transparent electronics, gate dielectrics for electronic applications). Until today, many 

transfer procedures were invented, generally involving synthetic polymers as sacrificial 

support layers during the transfer.  

 Recently, the most generally utilized method is the wet transfer technique using 

polymethylmetacrylate (PMMA) as the sacrificial polymer [48], which was frequently used 

within this thesis as well [49, 50]. In general, a thin polymer layer is spin-coated onto the 

graphene resting on the metal foil, which is thereafter etched away, e.g. in FeCl3, HCl, 

Fe(NO3)3, or CuCl2 solutions. The graphene-polymer stack is washed in deionized (D.I.) 

water and left floating on the water surface. The whole stack is than picked-up by the target 

substrate, and finally PMMA is dissolved in an appropriate solvent (most usually in acetone 

or acetone vapor) and/or cleaned thermally (~300°C). While this method is simple and 

capable of transferring large-area samples, there are several disadvantages. Firstly, PMMA 

reacts slightly with the metal etchants leaving unwanted residues on graphene [51]. Secondly, 

the “fishing” method is inappropriate for transferring onto hydrophobic substrates, and, 

finally, some applications require polymeric substrates, hence the final step of support 

polymer dissolution/annealing has to be modified in order not to damage the target polymer. 

An alternative solution of different polymer than PMMA, which could be soluble in less 
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aggressive solvents (short aliphatic or alicyclic hydrocarbons or alcohols) could be an 

advantage for some purposes. In this way, the problems with PMMA residues can be solved 

simultaneously [51]. For example, transfer using acetic acid, instead of acetone for post-

transfer sample cleaning, was described as preferable due to avoiding of the polymer residues 

usually identified in common  treated samples [52]. Processes without using the sacrificial 

polymer were also documented [53]. The authors used a mixture of isopropyl alcohol (IPA) 

and ammonium persulfate [(NH4)2S2O8] solution as etchant. After dissolving the metal, single 

layer graphene remains floating on the surface. The solution was then exchanged for a 

mixture of D.I. water and IPA to achieve the required surface tension. The fished out 

graphene is then polymer-remnants free [52]. 

 Moreover, some other polymers were found suitable for graphene transfer. The main 

advantages of cyclododecane (C12H24, CDD) are its solubility in non-polar and aromatic 

compounds, hydrophobicity and sublimation under room conditions. It is therefore possible to 

treat the sample by heating to remove nearly all CDD residues [54]. Another available carrier 

material is poly[L-lactic acid] (PLLA) [55], with which 2D materials can be easily transferred 

onto both hydrophobic and hydrophilic surfaces via PLLA polymer attached to a glass slide. 

A droplet of water penetrating preferentially between hydrophobic polymer (with the attached 

2D material) and hydrophilic initial substrate (Si/SiO2) cause their separation. Primarily, 

mechanically exfoliated materials are convenient for PLLA transfer process [56]. 

 Instead of the wet transfer, which is not the proper method for hydrophobic target 

substrates, some dry transfer method can be used. For several experiments in thesis-enclosed 

papers we used dry “stamping” procedure where a chunk of poly(dimethylsiloxane), PDMS,  

is placed on the graphene/sacrificial polymer (spincoated polyisobutylene, PIB) stack before 

the metal-etching and the stamp is peeled off mechanically after the placement onto the target 

substrate (see Fig. 4). The final step is to remove the support polymer layer, hexane is used in 

the case of PIB [57]. 
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Figure 4: Top: PIB assisted “dry” transfer technique procedure scheme. Bottom: Comparison 

of mono-layer graphene before (as prepared on copper, SEM image, left) and after PIB 

assisted transfer (on PMMA bar, optical image, right)  

 

 Thermal-release tapes can be also used for transfer, but its price is too high to be used 

commercially on a large scale at the moment [58]. More exotic transfer methods include for 

example the direct lamination of CVD graphene from copper onto various flexible substrates 

in a pressing device [59], or micro-transfer contact printing [60] onto gold-coated Si/SiO2 

using graphene as “ink”. All mentioned transfer techniques involve benefits (scale, purity, 

price etc.) as well as some problems (deformation, used chemicals), so it is crucial to pick the 

proper one for the desired application and also to optimize the protocol according to the 

required properties of graphene structures and target substrates. 
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1.2.4 Electronic structure in graphene 

 Pristine (single-layer) graphene is one atom-thick sheet of carbon atoms that are 

packed in a hexagonal honeycomb crystal lattice and could be casually described as a one 

single layer of sp2 bonded carbon atoms in graphite. Every atom, except for those on the 

edges, in an ideal graphene has three σ-bonds (2s, 2px and 2py hybridized orbitals, average 

distance between carbon atoms is 1.42 Å [61]) with the nearest surrounding atoms, and one π-

bond (2pz orbital) oriented perpendicularly out of the 2D crystal plane. Those π-orbitals in all 

graphene carbon atoms form conjugated hybridized π (bonding) and π* (anti-bonding) bands 

and are the cause for the peculiar electronic properties such as extremely high charge 

mobilities even at room temperature [62], thermal conductivity 5000 W m-1 K-1 [3], etc.   

 Graphene has a linear dispersion of electrons and holes (forming the Dirac coins), thus 

the valence and the conduction bands are “touching” in the Dirac points (non-equivalent K 

and K´ points in reciprocal space, see Fig. 5) making graphene a zero band gap semiconductor 

(semimetal). As mentioned, in the armchair type of graphene nanoribbons there is a 

difference; the band gap has a finite energy in there. In the graphene Brillouin zone (primitive 

cell in reciprocal space, BZ) there are three (four with K´) points of high symmetry, namely Г, 

K and M in the centre, on the corner and in the centre of the edge of the hexagon-shaped 

primitive cell, respectively. 

 According to calculations, energy of the σ bands is far away from the Fermi level [63], 

however, this does not apply to π bands (Fig. 5, bottom). Two electrons are in the π band 

which leaves π* unoccupied, and those bands are hybridized in K (K´) symmetry points. 

Presence of the Fermi level precisely in those K points is due to the equivalency of the carbon 

atoms in BZ. There are, again, two atoms in the unit cell and therefore six normal modes 

around the Г point with two of them doubly degenerate. E2g, one-degenerate in-plane optical 

mode is active in the Raman process (RP). 
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Figure 5: Left: Scheme of a graphene projected in 2D reciprocal space with the distinctive 

Dirac cones and Fermi level (dotted line). Right: Marked reciprocal lattice vectors (b1, b2) 

and points of high symmetry (K, K´, M, Г), in graphene Brillouin zone (hexagon in the 

centre). Bottom: Energy dispersion for π and π* bands along the high symmetry points (Fermi 

level is zero in K points). Bottom picture adapted with permission from Taylor & Francis 

from Ref. [63]. 

 

 By adding the second graphene layer to form bi-layer graphene, the electronic 

structure changes. The π and π* orbitals split into symmetric and antisymmetric combinations 

resulting in a quadratic electron dispersion instead of the linear one [64]. Moreover, two 

parabolically dispersed bands are introduced. These bands, π1 and π1*, do not touch in the 

Dirac point this time. 

 

1.2.5 Raman spectroscopy of graphene related materials 

 Raman spectroscopy is one of the preferred methods for the characterization of 

carbonaceous materials. It is fast, non-destructive and very sensitive to changes in the 
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structure of these materials. It can provide information about the electronic structure of 

graphene, number of layers [65], interlayer coupling [66], structural defects [26, 67], or 

chemical functionalization. Moreover, phonons (and thus Raman peaks) react to magnetic 

field, temperature, stress/strain and doping [49, 68, 69] and many other physical or chemical 

stimuli.  

 In a simplified view, the Raman effect is based on the interaction of a photon with 

molecular vibrations. In the resonant Raman effect, additional interactions with charge 

carriers - in general with an exciton (electron - hole pair) of energy equal to the energy of the 

incident photon - take place. The incident photon can pass through the material or can be 

absorbed, reflected or photoluminescence can appear. Further, when interacting with atoms or 

molecules the photons can be scattered elastically (Rayleigh scattering) or, in very few cases 

(~10-7 photons), the photon can interact with a specific vibration of the molecule in such a 

way that the molecule is excited to a virtual energy state. When the photon is released back, 

its energy is different compared to the initial one. The resulting energy of such an inelastically 

scattered photon can be lower or higher (Stokes and anti-Stokes shift) and those shifts, i.e. 

difference between energy of the incoming and outgoing photon, appear as bands in the 

Raman signal. Usually, only Stokes processes are studied by Raman spectroscopy and 

therefore displayed in spectra. To have an active Raman transition there must be a change in 

the electric dipole polarizability of the molecule during the vibration. 

 For a better understanding of the Raman scattering in sp2 carbons it is important to 

describe phonon (vibrational quantum of energy) dispersion in graphene. Its unit cell consists 

of two unequal carbon atoms and therefore there can be calculated six phonon dispersion 

bands labeled oTA, iTA, iLA, oTO, iTO, iLO. Three branches are acoustic (A), three optic 

(O). Two bands have their origin in vibrations perpendicular to the graphene plane (out-of-

plane phonons, o) and for the other four, the phonons modes are in-plane (i). If the nearest C-

C atoms bond is taken as basic direction, than phonon modes could be denoted as longitudinal 

(L) and transverse (T) when the vibration is parallel or perpendicular, respectively. All six 

phonon branches are showed in Fig. 6 in graphene 2D reciprocal space [63]. 
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Figure 6: Calculated phonon dispersion curves for mono-layer graphene. Energy (as relative 

reciprocal centimeters) is plotted against high symmetry points in Brillouin zone (oTA, iTA, 

iLA, oTO, iTO, iLO). Adapted with permission from American Physical Society from 

Ref. [70]. 

 

 Concerning the number of scattering events in the Raman process, the order of the RP 

can be distinguished. In the first order process one phonon with a very small momentum is 

created. Double resonant processes can involve one or two phonons during two scattering 

events and shows overtones (multiples of integers for Raman modes) and combination modes 

(in the Raman spectra, they appear as sum of different phonon induced modes). The Raman 

spectrum of graphene shows numerous peaks, including those common for all carbonaceous 

materials. Nevertheless, in most cases, only two to four main Raman features are usually 

considered and evaluated. 

 The G mode (so called “graphitic”, usually around 1580 cm-1 for suspended graphene) 

assigned to the E2g symmetry high frequency phonon at the Г point is common for all sp2 

bonded carbon allotropes. It is a first order, doubly degenerate (optical transverse iTO and 

longitudinal LO) phonon mode caused by the vibration of carbon atoms in plane [71]. It does 

not require the whole carbon hexagons, but appears in every sp2 bonded area. G band is 

sensitive to hydrostatic pressure and both uniaxial and biaxial strain as well. In general, 

tension induces redshift (also known as band downshift / softening, i.e. shift of a band 

position to lower numbers of cm-1 on the x-axis in the Raman spectra), while compression 
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induces blueshift (i.e., upshift / phonon stiffening).On top of that, uniaxial strain causes 

splitting of this band into G+ and G- subpeaks. The splitting takes place due to different 

atomic motions parallel or perpendicular to the direction of the induced strain. The G band is 

also very sensitive to doping (hole or electron). The effects of strain and doping, together with 

their disentangling from the Raman spectra will be discussed more detailed in the next 

chapters. There are other stimuli, which inflict changes in the G band characteristics (Raman 

shift, linewidth, intensity), e.g. increasing temperature red shifts the G band. However, within 

this thesis, the temperature effect is taken into account only to the extent of not overheating 

the sample during measurement (in other words, the laser power is always kept low enough 

not only to avoid the sample damage, but also to prevent unwanted shifts from the local 

heating). 

 

 

Figure 7: Typical Raman spectra of defective graphene with three prominent peaks: D, 

G(+D´), G´ (also called 2D). Adapted with permission from Elsevier from Ref. [64]. 

 

  D (intravalley, ~1350 cm-1) an d  D’ (intervalley, ~1615 cm-1) modes are 

induced by the presence of defects in the hexagonal graphitic structure. An electron from the 

valence band is inelastically scattered by a phonon and elastically scattered by the defect upon 

D band generation. It is a second order double resonant process between K and K´ points 
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demanding one phonon (iTO) and a defect [72]. This mode appears only in the defective sp2 

carbons, it is not present in perfect graphene. The D mode (as are also the D´ and 2D modes) 

is dispersive, its position and intensity change with the photon energy (for Elaser = 2.41 eV, the 

frequency, ω = 1350 cm-1). The D band shift change and also linewidths (usually evaluated as 

full width at half maximum, FWHM) can be used for the estimation and description of 

disorder (with information obtained from other methods taken into consideration, see 

Ref. [26]). Sometimes, Tuinstra-Koenig relation is being used for calculating the lateral 

domain size (La) in graphene using the ratio of D and G intensities {I(D)/I(G)} [71]. 

 

Equation 1: Tuinstra-Koenig equation [C(λ) is excitation-dependent proportionality 

constant]. 

  

 The 2D band (in literature also as G´, ~2500-2800 cm-1) is approximately twice the 

frequency of the D mode, the D band overtone, but is not connected with any disorder. It is 

generated by the second-order (intervalley) double- or triple-resonant process between the K 

and K’ points involving two phonons. As mentioned above, the 2D mode is energy dispersive. 

The 2D peak attributes again respond to the changes of strain and doping but in a different 

manner compared to the G mode.  Using the 2D mode, it is possible to study additional 

properties of the system, e.g.,  the number of layers and their stacking order  - the 2D mode in 

single layer graphene can be considered as a single Lorentzian lineshape, but the Bernal 

stacked bi-layer graphene exhibits the 2D mode consisting of four Lorentzian peaks. Also, the 

intensity of the 2D band is the highest for one layer only (owing to the triply resonant 

character in this particular case). 

 Many others Raman bands can be observed in the spectra of graphene or in graphitic 

materials in general. Briefly: D´´ (~1500 cm-1), 2D´ (overtone to D´, ~3240 cm-1) [73], 

combined modes (e.g. two phonon induced D + D´) [65] or some more exotic bands such as 

the R modes (rotational, one phonon processes due to the structure modulation without 

requiring defects) observed in twisted multilayered graphene and which depend on the 

mismatch angle between the two superposed layers [4]. In this work, in particular the D, G 
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and 2D bands are essential, thus Fig. 8 illustrates schematically the processes underlying these 

modes as displayed in the reciprocal space. 

 

 

 

 

Figure 8: Graphic illustration of one-phonon second-order double resonance D mode (top), 

first order doubly degenerate G mode (middle) and two-phonon second-order double 

resonance G´(2D) mode (bottom). Generated Raman shift: ω, Fermi level: horizontal dashed 

line. 

 

 Due to isotope labeling, there is a great chance to examine fundamental properties of 

multi-layer graphene samples when different layers are fabricated by the CVD method using 

isotopically differentiated precursors [69]. The isotope-induced shift between the 12C and 13C 

graphene bands of the same origin can be expressed as in the Eq. 2. 
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Equation 2: All-carbon vibrations isotope shift calculation (ω: Raman peaks position;     .: 

concentration of 13C isotope naturally present in 12C sample;        : concentration of 13C isotope 

in enriched sample). 

 

1.2.6 Strain and doping in graphene 

 It is well known that one single layer of the graphene has a zero bandgap under 

standard conditions. The bandgap could be “opened” by several ways, for example by 

pattering of the graphene 2D structures [74], using special substrates or by temperature 

induced strain [47, 75]. Applying the uniaxial tensile strain or better the combination of 

uniaxial and sheer strain - considering the calculated very high strain levels needed in the first 

case, bandgap can be engineered and opened. However, the necessary strain is still quite high 

(up to 18%) to be obtained and used in practical applications [76]. The bandgap engineering 

by mechanical deformation can have a huge impact on the use of graphene in nanoelectronics 

or, for example, as a part of prospective flexible solar cells. As shown also by our Raman 

spectroscopic study of bilayer graphene under uniaxial tension (Appendix 3), Raman 

spectroscopy can be indeed a very useful characterization technique not only to determine the 

basic properties of graphene, but also a plethora of more advanced characteristics and to serve 

as a direct probe of the graphene electronic structure.  

 As mentioned in the previous sub-chapter,  tension causes phonon softening due to the 

lowering of the lattice energy (decrease of the interaction forces between atoms), and thus the 

Raman bands are redshifted [77]. Compression produces the exactly opposite effect, blueshift. 

Under uniaxial strain, the G peak splits into two components G+ (perpendicular to the strain 

axis) and G- (parallel with the strain axis) with shift rates of ~10-14 and ~30-33  cm-1/%, 

respectively, for graphene on polymer substrates. The response to tension/compression is not 

only reflected in the sign if the peak shift changes, but also in their overall behavior: under 

tension the peak frequency changes follow linear trends, while under compression the 

evolution of the peak shifts follows a second order polynomial due to progressive buckling of 
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the layer [78]. Under uniaxial strain, the 2D mode splitting was observed too, but the 

character of the splitting depends on the direction of both the applied stress and polarization 

of incoming light with respect to the crystal lattice orientation in the reciprocal space, namely 

of the K-K’ pairs [79]. Shift rates for biaxial strain are also reported for G and 2D bands, and 

they are more than twice the shifts induced by the uniaxial strain [80]. For our purposes of 

mechanical uniaxial deformation of graphene (Appendices 3 and 4), cantilever beam 

technique was used together with in-situ Raman spectroscopy (Fig. 9). 

 

   

Figure 9: Scheme of the cantilever beam experimental setup and equation for the nominal 

strain Ɛ(x) calculation on the top of the beam (i.e. in the graphene) on the investigated spot. 

The downward bending direction marked by an arrow induces uniaxial tension.  

 

 Doping of graphene can be understood either as an injection of electrons into the 

conduction band (n-type doping) or as a depletion of electrons (injection of holes) from (to) 

valence band (p-type doping) causing shift of the Fermi level. Frequency of the Raman G 

band increases even with small doping levels regardless of the doping type. Electron doping 

causes only insignificant shifts of 2D frequencies for the concentration of electrons e < 2 x 

1013 cm-2 and beyond that a non-linear softening for progressive n-doping [81]. Hole doping 

shifts the 2D band position to higher wavenumbers, however, not linearly. Both doping 

directions decrease FWHM of the G and increase FWHM of the 2D bands [49, 65, 72, 82]. 

 The precise distinction between doping and strain, both usually present and distributed 

throughout each graphene flake, is of utmost importance. In Appendix 4, a useful method 
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(modified for uniaxial strain) for doping vs. strain separation via vector analysis of in-situ 

Raman data sets is presented.  

 

1.3 LiFePO4 olivine 

 LiFePO4 (LFP, olivine family mineral triphylite) is considered a promising cathode 

material in Li-Ion batteries [83, 84]. During charging of LFP, the lithium ions are extracted 

from its structure into the electrolyte. In the discharge process, lithium ions are inserted back. 

The main advantages of LFP are its flat voltage profile, low material cost, sufficient material 

supply, high stability and better environmental compatibility compared to other cathode 

materials. LFP has a theoretical capacity of 170 mAh/g however, the strong covalent bonds 

between oxygen and phosphorous or iron also lead to low ionic diffusivity and poor electronic 

conductivity, therefore the real capacity of pristine LFP is insufficiently low. 

                    

 

Figure 10: SEM image of pristine LFP crystals (left) and mixture LFP/GO (right). The crystal 

structure of pristine LFP viewed along the c-axis (bottom). Iron atoms occupy octahedral sites 

(dark shaded), phosphorus atom tetrahedral sites (light shaded). Lithium atoms are depicted as 

small circles in octahedral positions. Adapted with permission from Elsevier from Ref. [85]. 
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 LFP conductivity thus needs to be improved, and it can be done for example by 

decreasing the crystal size (enlargement of active surface), doping, carbon coating [86] or 

addition of some type of conductive carbon such as carbon black, graphene oxide or carbon 

nanotubes [27, 87, 88]. Electrochemical activation of LFP by simultaneous reduction of 

graphene oxide is studied in-situ and described in Appendix 2. 
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2 Aims of the thesis 

 With respect to the previous work of the research group of Prof. Ladislav Kavan at the 

J. Heyrovsky Institute of Physical Chemistry of the CAS, the work has been aimed on the 

selected aspects of preparation and characterization of nanomaterials for electrochemical 

energy conversion and storage. In spite of the seemingly too broad nature of the studies, there 

were two strong links connecting them: (i) graphene, in one form or another, as an important 

building block of the nanocomposite, and (ii) the use of advanced in-situ Raman spectroscopy 

techniques to investigate the behavior of the materials relevant to the possible application.  

 The results, which are incorporated in the attached papers, can be organized into two 

main chapters. In the first one, electrochemical reduction of graphene oxide was studied by 

Raman microspectroscopy, and, furthermore, for the GO/LFP composite, a specific case 

(reduction or activation for GO and LFP, respectively) of rGO utilization in cathodic battery 

material was tested.  

 The second area of research in this work consisted of systematic Raman studies of 

mono- and bi-layer graphene under uniaxial in-plane loading which is important in terms of 

potential utilization of graphene as a component of flexible photovoltaic devices. Several 

angles of the graphene and its interface to a polymer substrate were examined: the comparison 

of behavior of strained mono- and bilayer graphene, the effect of cracks, grain boundaries and 

delaminated wrinkles on the interfacial shear stress transfer, the effect of the loss of 

periodicity in bilayer graphene, and, from a fundamental methodological point of view, the 

separation and quantification of both the strain and doping levels by modified vector analysis 

of Raman data sets.  

 As a final target, development of an advanced spectroscopic method combining in-situ 

doping and strain loading was chosen. 
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3 Concise summaries of results and discussion 

3.1 Raman spectroelectrochemistry of graphene oxide 

3.1.1 Electrochemical reduction of graphene oxide 

 As mentioned earlier, graphene oxide (GO) is heavily decorated by various oxidic 

functional groups introduced during the GO fabrication, which makes the material more 

soluble in polar solvents, but substantially decreases its conductivity. For this reason, GO 

needs to be reduced to repair the sp2 network at least to some extent. One of the possible, 

simple and effective, ways of GO reduction is an electrochemical treatment, for example by 

spontaneous self-activation as a constituent part of a nanocomposite material of 

electrochemically cycled cathode for secondary lithium-ion batteries.  

 

 

Figure 11: Schematic illustration of the three-electrode cell used for Raman SECH 

measurements, electrodes labeled as used in protic solvent case. (RE: reference electrode; CE: 

counter electrode; WE: working electrode). Sample on platinum mesh depicted as a black 

rhomboid under the laser beam spot. 
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  Few Layered Graphene Oxide (FLGO; 2-4 layers, thickness <3 nm, avg. dimensions 

of individual flakes 300-800 nm) and Graphene NanoPlatelets (GNP; thickness <3 nm, avg. 

diameter 5µm) were both suspended in D.I. water (1 mg/mL) or isopropanol (IPA), 

respectively. The suspension was doctor bladed onto F-doped SnO2 conducting glass support 

and left to dry under room conditions. For experiments in aprotic electrolyte solutions, the 

material was mixed with 5 wt% of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-

pyrrolidone (NMP), and doctor bladed the same way (area of the films ~1 cm2). Finally, the 

electrodes were dried at 100°C in vacuum. Electrodes for in-situ Raman 

spectroelectrochemistry (SECH) consist of only dip-coated FLGO (or GNP) on the platinum 

mesh (99.9% purity). The schematic illustration of the SECH cell is in Fig. 11. For aprotic 

environment the electrolyte solution was 1 M LiPF6 in ethylene carbonate + 

dimethylcarbonate (EC/DMC; 1/1; w/w). The reference and counter electrodes were from Li-

metal, hence all potentials are quoted against the Li/Li+ reference electrode in this medium, 

and measurements were carried out under Ar atmosphere. During the in-situ Raman SECH, 

Ag wire as pseudoreference and platinum wire as counter electrodes were used with 1M KOH 

electrolyte solution.  

 In Fig. 1 of the Appendix 1, cyclic voltammograms (CV) of FLGO and GNP 

electrodes are displayed. In the case of the FLGO, reduction peak (~2.4 V vs. Li/Li+) is 

clearly visible in the first cycle and during the following progressive cycling the peak current 

decreases. Moreover, the decrease of current densities at the reduction side of the 

voltammograms is also pronounced. Those changes could be explained by the progressive 

reduction of some of the attached oxidic groups. No such effect was observed in the GNP 

voltammograms due to absence of those groups in the initial material. 

 Another view of those processes can be obtained by X-ray photoelectron spectroscopy 

(XPS). GO and GNP samples were prepared on a gold foil (99.95% purity) from D.I. water or 

IPA solutions. XPS peaks C1s and O1s were used for comparing of GNP, original FLGO and 

FLGO after 70 electrochemical cycles. However, it is very difficult to deconvolute 

overlapping multi-peaks, thus three subpeaks for C1s and two for O1s bands were fitted. For 

the C1s peak there is a band assigned to C-C (binding energy 284.6 eV) and two bands for 

carbon–oxygen functionalities: C-O (hydroxyl and epoxy groups, 286.7 eV) and CO + OC-O- 

(288.2 eV) [14, 16]. Two bands are included in O1s peak: CO (O-CO-, 531.1 eV) and C-O 

(532.6 eV). Two most pronounced changes during cycling can be traced: Firstly, C/O 
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stoichiometric ratio increases and, secondly, subpeak on 532.6 eV relatively decreases. It is 

presumed that preferential reduction of functional groups containing less oxygen, and/or 

evolution of CO2 could take part upon cycling. 

 Raman spectra were measured by Labram HR spectrometer (Horiba Jobin-Yvon) 

interfaced to a microscope with 50x long working distance objective. Spectroelectrochemical 

in-situ studies used 514 nm (2.41 eV) and ex-situ electrochemistry 514 or 633 nm (1.96 eV) 

laser excitation. The D and G(+D’) peaks were fitted by Lorentzian and Breit-Wigner-Fano 

(BWF) lineshapes, respectively [67, 89]. 

 

Equation 3: Breit-Wigner-Fano lineshape equation (I0: peak intensity; ω0: peak position; Г: 

FWHM of the peak; Q-1: BWF coupling coefficient. 

 

 Raman spectroscopy ex-situ before and after electrochemical treatment was carried out 

to probe the impact of the voltammetric cycling on both FLGO and GNP materials. After the 

50 voltammetric cycles the I(D)/I(G) ratio increases, the D and G peak positions redshift and 

FWHM of both bands decreases. Ratio of D and G Raman band intensities, I(D)/I(G), is 

usually increasing during reduction of GO and is often misunderstood as spontaneous 

introducing of other defects  in the graphene crystal lattice (according to the Tuinstra-Koenig 

relation, see chapter 1.2.5) and even diminution of graphene lateral domain size. However, it 

is necessary to take all of the parameter changes into consideration. Narrowing of FWHM of 

both main peaks clearly points to structural ordering. Downshift of the D band can be 

explained by increasing the size of the aromatic clusters. Redshift of the G band is unclear and 

contrary to expectations by Ref. [67], and it could be connected with changes of both 

subpeaks (G and D´) parameters whose response on reduction could be independent. 

Therefore, it is necessary to explain increasing I(D)/I(G) parameter upon the reduction by a 

different model, and it can be done using the “amorfization trajectory model” first introduced 

in Ref. [67]. During amorfization in the stage 2 (NC-Graphite → amorphous carbon, Fig. 12, 
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orange arrow) average distance between the defects is increasing due to opening of the 

aromatic rings and I(D)/I(G) parameter here depends on the second power of  La (lateral 

domain size) [67]. Increasing of the I(D)/I(G) of FLGO is thus in good agreement with all 

other changes upon reduction. The electrochemical cycling of GNP is reflected in changes in 

presumed direction (Fig. 12, red arrow). 

 

 

Figure 12: Modified amorfization trajectories diagram [67]. I(D)/I(G) parameter changes 

upon reduction of FLGO and GNP are marked by orange or red arrow, respectively. 

 

 In-situ Raman spectroelectrochemistry was performed to examine the reversibility of 

GO/GNP oxidation/reduction under electrochemical treatment, both short- and long-term 

(Fig. 5 and 6, Appendix 1). GNP spectra show nearly reversible behavior with only small 

changes in the observed parameters, probably caused by mild redox process and/or lattice 

contraction/expansion due to doping. The FLGO behavior can be divided into two main 

phases, the first of which is different to GNP. In this phase, reduction of FLGO, due to 

relatively fast cutting-off the oxidic groups, is strong. The second phase is mostly reversible, 

however, small differences between oxidation and reduction of FLGO still can be observed.  
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3.1.2 Activation of graphene oxide/LiFePO4 olivine composite 

 The practical consequence of the effects described above can be demonstrated in the 

case of LFP/FLGO composite, which is electrochemically almost passive in a freshly made 

state and spontaneously enhances its activity when the electrochemical charge/discharge 

cycling progresses. To demonstrate the activation of LFP by FLGO, the presence of any other 

carbonaceous additive in the composites was avoided. The prepared composite was further 

compared to the two other LFP mixtures with multiwalled carbon nanotubes (MWCNT) and 

carbon black (CB) fabricated under the same conditions. The changes in the FLGO structure 

during electrochemical experiments were monitored separately by Raman and infrared 

spectroscopies. The composites were prepared by simple mixing of LFP and 10 %wt of sp2 

carbon in D.I. water or IPA, evaporated to dryness and then treated electrochemically as 

described earlier for aprotic electrolytes. Fig.1 of Appendix 2 shows SEM images of those 

composites. The effect of cycling, i.e. the increase of the chronoamperometric charge 

capacities of LFP/FLGO can be seen in Fig. 13 (left). The capacities exhibit dramatic increase 

which is reminiscent of the spontaneous cycle-dependent activation observed also by cyclic 

voltammetry. The maximum capacity of ~90 mAh/g is reached after 105 chronoamperometric 

cycles (switching between 4 and 2.7 V vs. Li/Li+). Mixtures with MWCNT and carbon black 

shows capacities of 20 and 60 mAh/g, respectively, followed by a gradual drop of capacity. 

Pure LFP is not electrochemically active and thus has almost zero capacities upon cycling. 

Fig. 13 (right) shows the results of galvanostatic charging at 1C rate (in battery applications 

1C corresponds to one hour charge or discharge of the electrode system) during progressive 

chronoamperometric cycling proving electrochemical activation of the composite and increase 

of capacities. 
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Figure 13: Anodic (4 V vs. Li/Li+) and cathodic (2.7 V) capacities derived from potential-

step chronoamperometric measurements of LFP with 10 wt% of added FLGO (left chart). 

Data for every 10th cycle are plotted. The inset zooms into the last cycles of the experiment 

(every cycle shown). The right chart depicts evolution of galvanostatic charge-discharge 

curves (1st-30th cycle). 

 

 By Raman ex-situ spectroscopy of freshly prepared and cycled electrodes, the same 

processes as discussed earlier for GO reduction were observed, i.e., the increase of the size of 

small aromatic clusters (D mode redshift), structural ordering of GO during cycling 

(narrowing of the D band). The behavior also confirms the explanation of the G band 

blueshift and I(D)/I(G) ratio increase using amorfization diagram [67] in stage two. 

 Fourier-transform infrared (FT-IR) spectroscopy was used as a complementary method 

to gain deeper insight into the changes in the FLGO structure, which occur during the 

electrochemical experiments. The spectra were accumulated with ZnSe anvil attenuated total 

reflection accessory from 320 scans. Some of the FT-IR peaks (namely at 1120, 1260, 1305, 

1505 cm-1) initially present vanish during the cycling (corresponding to epoxy-, carboxy- and 

carbonyl groups, and esters) indicating the loss of those functional groups during cycling 

(reduction) of FLGO. Peaks in the region of aromatic-rings-vibrations are markedly shifted, 

indicating changes of the graphitic structure (Fig. 14).  
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Figure 14: FT-IR spectra of pure FLGO and FLGO as the electrode material before and after 

electrochemical treatment. Spectra of pure FLGO and before treatment are multiplicated for 

clarity. PVDF binder peaks positions are marked by asterisks. 

 

3.2 Raman in-situ monitoring of strain and doping in graphene 

3.2.1 Bernal bilayer graphene under uniaxial tension 

 Various bilayer graphene flakes with Bernal stacking (2-L, and together with 

neighboring monolayer flakes, 1-L) under uniaxial strain were investigated (Appendix 3) 

using Raman spectroscopy (both point- and mapping-wise). The samples were prepared by 

mechanical cleavage and transferred on the PMMA bar (spincoated by SU-8 photoresist) and 

consequently covered by additional layer of polymers (PMMA or SU-8). Samples were 

strained using cantilever beam experimental setup (Fig. 9) and the shifts and linewidths of the 

Raman G and 2D bands were compared. 

 As was already mentioned, uniaxial strain induces G peak splitting to G+ and G- with 

shift rates about 31 and 10 cm-1/% (uniaxial strain, on polymer) [90, 91]. Splitting of the 2D 

band was also observed in some cases, but it is strongly influenced by the excitation energy 

and mutual orientation of the strain, polarization direction of excitation/scattered light and 
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crystal lattice [79]. In the first studied case, the measured flake (F1) consists of mono- and bi-

layer region with the orientation of both of ~21° with respect to the strain axis. The lattice 

orientation was calculated from G+/G- intensities. The same orientation of the lattice in both 

regions confirms that indeed both regions belong to the same flake [79, 90]. The strain-shift 

rates of both G subpeaks confirm normal (i.e. full) stress transfer behavior of both mono- and 

bilayer regions in spite of the twice higher stiffness of the bilayer. Evolution of the 2D 

subpeaks is different for monolayer and bilayer. In the first case the subpeaks shifted with rate 

of ca. -41.5 and -22.4 cm-1/%. The first component became also more intense with increasing 

strain. The analysis of the 2D mode in bilayer graphene is more complicated, because it is 

already split into four components (2D11, 2D12, 2D21 and 2D22) due to splitting of the π-bands 

and phonon band dispersions (more details in Appendix 3 text and Fig. 2). Those components 

were fitted by Lorentzian lineshapes with fixed and equal FWHMs for the analysis of spectra 

acquired under strain. During the loading, the 2D11 component blueshifts at a rate of  

-29 cm-1/%, while the other three at ~ -50 cm-1/%. The intensities of the components also 

change: the 2D12 intensity increases, while the other are slightly decreased. Comparing the 

intensities and shifts of the 2D subpeaks in mono- and bilayer graphene, it was suggested that 

the lower shift rate of the 2D11 component in 2-LG (of the principally same origin as the 2D 

band in 1-LG) and the increase of the neighboring 2D12 component is actually a joint effect 

reflecting the strain-induced splitting of the 1-LG-like 2D11 component in a way similar to the 

splitting of the 2D band in 1-LG (the 2D12 component then becomes a superposition of the 

original 2D12 and the faster-shifting component of the split 2D11 component, whereas the 

‘new’ 2D11 is only the slower-moving subpeak). 

 Even though the shift rates measured in F1 indicated the same stress transfer in the 1- 

and 2LG, the maps of the Raman shift of the flake 2 (F2) show the difference of the stress 

uptake between 1-L and 2L graphene at high strain levels; the stress transfer is larger for the 

monolayer. By changing the laser excitation it was also observed that higher excitation energy 

causes progressive broadening of 2D FWHM. Here it is important to remind that 2D splitting 

(lineshape) depends not only on the excitation energy, but also on the polarization of light 

(both incident and scattered) and lattice orientation, so it is crucial to take all these terms into 

consideration. In the F2, all four components of the 2-L 2D band have linear strain-shift rates 

and linear evolution of intensities , which correlates with simple broadening of the 2D peak in 

the monolayer part of F2 (i.e., no observable splitting). The obvious correspondence between 
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the overall behavior of the 2D11 in 2-L and 2D in 1-L also in the F2 flake supports the 

hypothesis of relating the origin of these two peaks. Furthermore, on the F2 maps, various 

inhomogeneities in the strain field (at 0.74% nominal strain) were studied. Firstly, the stress 

transfer is negligible at the edges of the flakes as well as close to a linear defect observed in 

the monolayer part, consistently with the shear-lag theory [92]. Secondly, at higher nominal 

stress of ~0.5%, slippage or failure is presumed according to the break in the linearity of 2D 

components shifts. Lastly, in the small area of the bilayer, distinct Raman spectra with 

features different from those of AB stacked graphene were observed: the G peak in this region 

consist of one more intense component (1578 cm-1) and one much weaker (1594 cm-1), which 

is clearly different from G+ and G- splitting in a ‘normal’ bilayer. The 2D peak has also a 

particular shape (no clear splitting into the 4 components), and additionally, no D band was 

present (hence no local defects). A lot of possible causes were taken into consideration, but 

this event was finally described as a creation of local asymmetry of the two graphene layers 

due to unequal strain fields imposed on the two layers from the top/bottom polymer. The two 

G subpeaks were assigned to Eg and Eu modes; the latter is normally active only in IR but here 

it is activated by the breaking of the bilayer inversion symmetry upon unequal deformation. 

  

3.2.2 Stress and charge transfer in graphene under uniaxial 

tension 

 Both strain and doping influence the Raman bands in different ways, but, usually, both 

are present simultaneously (strain could be induced by preparation and transfer processes, 

doping can be involved due to substrate charges and/or impurities on the graphene surface). 

Vector analysis of the phase space of the G and 2D bands was successfully tested to 

decompose strain and doping in the presence of biaxial strain [68, 93, 94]. In the Appendix 4, 

simply supported or embedded CVD graphene was tested under uniaxial loading using the 

cantilever beam technique together with in-situ monitoring by Raman microspectroscopy. 

CVD graphene was transferred by two different methods: PDMS-assisted dry transfer 

technique (PIB transfer) and standard wet PMMA transfer, both described earlier. Median 

size of the graphene domains between cracks, folds or wrinkles is ~2 um in the PDMS-

assisted transfer and less than 1 um in PMMA-assisted transfer. The domains are mostly 

delimited by cracks in the PDMS transfer and by wrinkles in the PMMA transfer. After 
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transfer to plastic PMMA bar (cleaned and spincoated with different polymers), some samples 

were covered by an additional layer of polymer to better fix the graphene for further 

mechanical experiments.  

 The shifts of the G and 2D bands were compared as well as widths of both bands. In 

this way, the level of charge transfer doping and strain can be assessed. In general, strain 

causes G peak softening and splitting (biaxial strain ~60 cm-1/%, uniaxial 37 and 19 cm-1/% 

for freestanding graphene, 31 and 10 cm-1/% for graphene on polymer) for uniaxial strain [78, 

90, 95]. Also, strain has a larger influence on 2D band, again redshift for biaxial (or simple 

supported uniaxial) strain by a factor ~2.2-2.5, and a factor ~3 for uniaxial strain in full 

supported samples [96, 97]. Those factors are calculated as an average, as for example G+ (10 

cm-1/%), G- (31 cm-1/%) and 2D (60 cm-1/%) are shifts under uniaxial loading. For doping, G 

band is more sensitive compared to 2D band. Doping causes upshift for G and 2D peaks with 

a factor ~0.5-0.7 for hole injection (p-doping). When concentration of electrons is below 2 x 

1013 cm-2, the shifts are only negligible for the 2D band, and followed by a non-linear redshift 

[81, 98]. Doping change can be estimated by the calculation (Eq. 4) , for the case of p-doping 

[94]. 

 

Equation 4: Simplified formula for estimation of the hole concentration change (in order of 

1013 cm-2). 
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Figure 15: An example of the G-2D vector analysis of a graphene sample. P: G and 2D 

positions of the measured sample; 0: G and 2D zero position for freestanding graphene (no 

doping from substrate; 2D position depends on the excitation energy) [99]; ∆ωG strain: shift of 

the G band due to present strain;   ∆ωG doping: shift induced by doping. 

 

 These differences in the G and 2D band shifts caused by strain/doping can be used for 

the vector analysis, where the data points in the orthogonal G and 2D position phase space are 

converted into coordinate system of doping (expressed as charge carrier concentration) and 

strain (expressed as relative elongation) [68]. Thus, in the vector analysis diagram (Fig. 15), 

different axes are used for calculating strain and doping contribution, namely iso-doping (line 

slope of 3 for uniaxial strain in contrast to the normally used slope of 2.2-2.4 for biaxial 

strain) and iso-strain (slope 0.7 for hole doping) lines. In this vector system, one can subtract 

strain and doping components (and therefore the doping/strain levels) from the total G (2D) 

shift using zero position [0;0] in which no strain or doping is present. The zero point 2D 

coordinate varies with laser excitation energy and it is benchmarked from freestanding 

graphene (i.e. zero doping) [99]. By vector analysis is also possible to estimate the 

distribution of doping/strain in a larger area (from Raman mapping). In Fig. 15, an example of 

one-point Raman measurement (red point, P), with analysis of the strain and doping 
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components, is showed. Also, there is a theoretical example of such an area (green oval) in the 

plot, where Raman parameters could have lain in the case of the graphene flake with only 

variation in strain present (i.e. without substantial doping). 

 In Appendix 4, three different cases are described in detail using the Raman 

spectroscopy vector analysis. First case, graphene transferred by the PIB technique 

additionally covered by parylene C polymer, second case, PMMA transferred graphene 

covered by parylene C, and third case, graphene transferred using PIB but simply supported 

with no after-transfer covering. In  all cases,  o ne p o in t as well as the whole flake area was 

examined by Raman spectroscopy during sample bending (i.e. application of uniaxial in-plane 

tensile strain). Already at the first look at the plotted G and 2D band parameters in the first 

case, it is obvious that there are some discrepancies between theoretical and measured shift 

rates of both bands that would occur when only strain would take place (Fig. 3: B and C, 

Appendix 4). Those observations can be explained rationally by changes in the doping during 

the bending, which have stronger influence on the G band compared to the 2D band. 

Furthermore, it is known that the charge carrier concentration spatially fluctuates in graphene 

(the so-called charge puddles [100]), causing a wide distribution of the G Raman band shift (if 

the fluctuations are at a lateral scale larger than the Raman spot) or the G band broadening (if 

smaller) [101]. Both effects are present, therefore the strain shift rates have to be corrected 

taking into account the charge doping as well. The analysis of single-spot Raman 

measurement reveals local depletion of holes during the experiment. It can be presumed that 

measured spot was located inside a charge puddle with increased hole concentration. During 

stretching the graphene was flattened (partially), thus a better contact was made, and 

consequently the charge was better distributed to the surrounding graphene.  
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Figure 16: An example of correlations of the fitted parameters of the G and 2D bands of the 

graphene flake transferred on the PMMA covered substrate (black diamonds at 0% nominal 

strain, green diamonds at 1% nominal strain). Red and green arrows indicate theoretical 

directions of values’ distribution caused by doping and strain (slope 0.7 and 3), respectively. 

 

 On the other hand, data from maps (0 and 0.5% of nominal strain) show different 

behavior. Using vector analysis on median values from the maps it was revealed that the 

contribution of doping to the changes is only minor (line-slope between the medians of 3.6, 

∆n ~0.1 x 1013 cm-2). The G-peak shift rate is 8.9 cm-1/% in this case, hence the ratio to the 

theoretical shift is 0.44 (i.e., the stress transfer efficiency). The vector analyses of the other 

two cases are discussed in detail in the attached paper. Comparing all three cases, it is obvious 

that the applied strain causes gradual alignment of the crumpled CVD graphene on the 

substrate. The flattening causes changes in carrier concentration. The strain distribution across 

the samples varies significantly, owing to the growth and transfer process, which induces 

wrinkles and faults in the CVD graphene. In simply supported specimens, the stress transfer 

efficiency is generally very low and the changes in Raman spectra are dominated by 

variations in the charge transfer originating from the realignment of the domains on the 

substrate upon the application of strain. In contrast, samples covered with an additional 
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polymer layer reveal profoundly increased stress transfer efficiencies, and the changes of 

charge doping levels are negligible. Vector analysis of the one single spot can be deceptive 

and the processes in whole flake can vary noticeably, thus data obtained from whole flake 

maps should be assessed instead. Additionally, this method can be used for evaluation of the 

strain/doping variation inside one sample where wrinkles, folds and cracks can induce spatial 

strain/doping variations. 

 

3.3 Development of a new method for in-situ Raman (micro)-

spectroelectrochemistry 

 The previous chapters show clearly that the process of strain and charge transfer 

doping occur simultaneously and, very often, they influence each other in the studied 

specimens. Hence, the idea of incorporation of both (electrochemical and mechanical) 

techniques into one in-situ spectroscopic set-up is particularly appealing to gain new insights 

of the mutual relation between crystal and electronic structure of 2D materials. The 

combination of the bending method and in-situ Raman SECH meets in the making of a new 

apparatus. Scheme of the basic instrumental setup of it is depicted in Fig. 17. 

 The method consists of a cantilever beam bending device, µ-droplet electrochemical 

system and Raman spectrometer with ‘free-space’ microscope to accommodate the bulky in-

situ measuring setup. The electrochemistry is conducted in a droplet (of average diameter  

~X-X0 µm) substituting the classic electrochemical cell. The droplet itself contains an 

electrolyte solution (6M KCl, the high concentration to avoid fast evaporation; it also allows 

to overcome the high resistance in the confined system) as well as the microcapillary does 

(apex diameter of few µm), which is inserted inside the droplet and contains electrodes (RE: 

Ag/AgCl, CE: Pt). The graphene, or other 2D crystal, contacted by a silver paste serves as a 

working electrode. Part of the system is mounted on the piezo-driven micro-manipulating 

device and connected to the micro-pump enabling the control of the droplet shape, diameter 

and volume. The droplet additionally works as a lens for the laser beam and enhances the 

signal slightly when optimally focused. Controlled doping (shift of the Fermi level) and strain 

level (breaking the lattice symmetry, changing the chemical potential) can thus be studied on 

a microscale. By an electrochemical polarization and by bending of the sample, it is possible 
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to determine the real zero level of Raman shifts for strain and doping when both are already 

present in the freshly made samples (common situation). This experimental setup also allows 

to control/measure the strain and the doping independently. 

 

 

Figure 17: In-situ uniaxial deformation combined with μ-droplet Raman 

spectroelectrochemistry. 

 

 The µ-droplet setup was already tested on two different graphene samples, one on the 

bare PMMA polymer beam and one on the SU-8 resist covering the beam. The first one 

showed a larger initial charge doping (EF ~ -0.32 eV), as determined from the minima in the 

evolution of the Raman G band with the applied both negative and positive potentials, but 

smaller stress transfer efficiency (~25%), as obtained from analysis of G and 2D band shifts 

compared to the existing benchmarks. The second sample showed a negligible initial charge 

doping (EF  ~ -0.05 eV) and a larger stress transfer efficiency (~50%).  
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Figure 18: Raman G (top left) and 2D band (top right) positions in a single layer graphene as 

a function of nominal strain (%) and potential (V vs Ag/AgCl). The real strain is ~25% of the 

nominal strain. The strain has been changed in 0.2% steps and the potential in 0.1 V steps. 
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4 Conclusions 

 Reduction of FLGO and GNP during electrochemical cycling was studied in 

Appendix 1. In-situ Raman spectroelectrochemistry showed that the redox processes were 

reversible for graphene nanoplatelets and irreversible for graphene oxide. Hence, the primary 

degree of oxidation has an influence on the initial reduction process, which can be described 

by two phases for FLGO. Raman shifts and evolution of intensities and linewidths of the 

single resonance tangential E2g “graphitic” G mode and the defect-induced double resonance 

D and D’ modes were examined using different fitting models. The derived data showed a 

great complexity of the structural changes occurring during the reduction of FLGO primarily 

in the first phase, with a predominant effect of narrowing of the defect distribution and 

probably a simultaneous increase of the stacking order of graphene sheets. Changes in the 

second phase were affected mostly by mild oxidation/reduction and/or by graphene lattice 

expansion/contraction. Furthermore, XPS measurements pointed to a preferential removal of 

carboxy- and hydroxy- functional groups with epoxy groups still present. 

 In Appendix 2, mainly nanocrystalline olivine-type LiFePO4 was used as the cathode 

material because of its low-cost, stability and availability. To improve the conductivity and 

charge transfer in the active electrode material, some form of sp2-hybridized carbon should be 

added. In the presented study carbon nanotubes, conductive carbon black and few-layer 

graphene oxide were compared as the conductive additive to olivine material. Various 

voltammetric and amperometric measurements were performed to investigate the influence of 

the carbon material on the reversibility, cycle stability and capacity of the prepared electrodes. 

The composite of LFP and FLGO showed an intriguing evolution of capacities during the 

electrochemical treatment, when the charge/discharge cycling of this nanocomposite resulted 

in a progressive reduction of the FLGO, which in turns lead to its better conductivity and a 

gradual capacity increase of the tested composite of up to 90 mAh/g. To elucidate the 

observed behavior, Raman and IR spectroscopy were used for the characterization of the 

structural changes in the graphene oxide induced by electrochemical charge/discharge 

processes. 

 In Appendix 3, a systematic Raman study of uniaxially deformed mono- and bilayer 

graphene samples embedded in the polymer matrix, using laser energies from the visible to 

the near-IR range, is presented. It was shown that the strain directly influenced the double 
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resonance bands, with the 2D11 component in the bilayer being more sensitive to the induced 

deformations, comparably to the 2D band in the monolayer. In terms of the mechanical 

stability, we observed that the interface failure or slippage of the bilayer occurs at lower 

tension levels compared to the monolayer part of the same flake and the stress transfer is zero 

on the edges of the flakes. Additionally, the Bernal-stacked two layers fully embedded in a 

matrix are locally susceptible to non-uniform strain field components, which induce a 

breaking of the bilayer inversion symmetry. This in turn leads to the activation of the infrared 

Eu mode and the appearance of a single broad 2D band.  

 In Appendix 4, it was shown that the strain distribution across the uniaxially loaded 

graphene samples varies significantly, owing to the growth and transfer process, which 

induces wrinkles and faults in the CVD graphene. The vector analysis method uses the 

correlation of the G and 2D band frequencies to separate biaxial strain from charge doping in 

various graphene samples and can be modified for uniaxial as well as biaxial strain applied to 

the graphene flakes. In simply supported specimens under uniaxial loading, the stress transfer 

efficiency is generally very low and the changes in Raman spectra were dominated by 

variations in the charge transfer originating from the realignment of the graphene domains on 

the substrate upon the application of strain. On the other hand, samples covered with an 

additional polymer layer revealed profoundly increased stress transfer efficiencies, and the 

changes of charge doping levels were negligible. Furthermore, it was also shown that the 

analysis performed on a single spot can be misleading and only large area map investigations 

can provide comprehensive information about the stress and doping in the graphene samples. 

 At the final stage of the thesis preparation, a method of “μ-droplet 

spectroelectrochemistry” for mechanical experiment of the 2D materials has been developed 

and tested in the first experiments. This technique allows, indeed, to conduct highly localized 

spectroelectrochemical characterization of isolated 2D crystals upon strain loading together 

with in-situ Raman spectroscopic investigation. 
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1-L, 2-L  monolayer, bilayer 

BWF   Breit-Wigner-Fano lineshape 

BZ   Brillouin zone 

CB   carbon black 

CDD   cyclododecane 

CE   counter electrode 

CV   cyclic voltammetry, cyclic voltammogram 

CVD   chemical vapor deposition 

CHA   chronoamperometry 

EC/DMC  ethylene carbonate + dimethyl carbonate 

FLGO   few-layered graphene oxide 

FT-IR   Fourier transform infrared spectroscopy 

FWHM  full width at half-maxima 

GNP   graphene nanoplatelets 

GO   graphene oxide 

HOPG   highly oriented pyrolytic graphite 

LFP   LiFePO4 

MWCNT  multi-walled carbon nanotubes 

NMP   N-methyl-2-pyrrolidone 

PDMS   poly(dimethylsiloxane) 

PIB   polyisobutylene 

PLLA (PLA)  polylactic acid 

PMMA  poly(methyl methacrylate)     

PVDF   polyvinylidene fluoride 

RE   reference electrode 
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RGO (rGO)  reduced graphene oxide 

RP   Raman process 

SECH   spectroelectrochemistry 

SEM   scanning electron microscopy 

WE   working electrode 

XPS    X-ray photoelectron spectroscopy
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